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Abstract

A filling subgroup of a finitely generated free group F (X) is a subgroup which

does not fix a point in any very small action free action on an R-tree. For the

free group of rank two, we construct a combinatorial algorithm to determine

whether or not a given finitely generated subgroup is filling. In higher ranks,

we discuss two types of non-filling subgroups: those contained in loop vertex

subgroups and those contained in segment vertex subgroups. We construct a

combinatorial algorithm to determine whether or not a given finitely generated

subgroup is contained in a segment vertex subgroup. We further give a com-

binatorial algorithm which identifies a certain kind of subgroup contained in a

loop vertex subgroup. Finally, we show that the set of filling elements of F (X)

is exponentially generic in the sense of Arzhantseva-Ol’shanskĭı, refining a result

of Kapovich and Lustig.

Let Γ be a fixed hyperbolic group. The Γ-limit groups of Sela are exactly the

finitely generated, fully residually Γ groups. We give a new invariant of Γ-limit

groups called Γ-discriminating complexity and show that the Γ-discriminating

complexity of any Γ-limit group is asymptotically dominated by a polynomial.

Our proof relies on an embedding theorem of Kharlampovich-Myasnikov which

states that a Γ-limit group embeds in an iterated extension of centralizers over

Γ. The result then follows from our proof that if G is an iterated extension of

centralizers over Γ, the G-discriminating complexity of a rank n extension of a

cyclic centralizer of G is asymptotically dominated by a polynomial of degree

n.
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Chapter 1

Introduction

1.1 Filling Elements and Filling Subgroups of

Free Groups

The action of a group on a metric space is one of the fundamental tools of

geometric group theory. When such an action is sufficiently well-behaved, it can

reveal many different properties of the group which may be otherwise difficult

to discover. These geometric methods are integral to the modern understanding

of free groups, surface groups, and their corresponding automorphism groups.

An R-tree is a geodesic metric space in which every pair of points is connected

by a unique injective path. Free groups and surface groups admit many actions

on R-trees, and the study of these actions is a central concern in modern group

theory. Such important spaces as the compactification of Culler-Vogtmann outer

space (in the case of free groups) and the compactification of Teichmüller space

(in the case of surface groups) have important characterizations in terms of

actions on trees.

Our results in Chapter 2 are concerned with the algorithmic and statistical

properties of actions of a free group on R-trees. The central notion here is

that of a filling element, an element which has a non-degenerate action in every

sufficiently nice action on an R-tree. Filling elements are the free group analogue

of filling curves in a closed, orientable, hyperbolic surface. Filling curves have

played an important role in the theory of surface groups, which we will briefly

review here.

Let Σ be a closed, orientable surface of genus at least two. By a surface

group we mean the fundamental group of such a surface Σ. Let α and β be

closed curves on Σ. The geometric intersection number, denoted i(α, β), is the

least number of intersections between members of the free homotopy classes of

α and β. If β is such that i(α, β) > 0 for every essential simple closed curve α,

then we say that β is a filling curve .

Recall that the dual tree Tα associated to an essential simple closed curve

α on Σ is a simplicial tree equipped with a small minimal isometric action by

π1(Σ). (From now on, we will assume all our surface group actions on trees are

minimal and isometric.) It is well-known that if β is a (not necessarily simple)

closed curve on Σ, then the translation length of β on Tα, denoted ||β||Tα , is
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equal to i(α, β). Therefore, a closed curve β is filling if and only if it has positive

translation length on Tα for every essential simple closed curve α.

As a consequence of Skora’s duality theorem, any simplicial tree equipped

with a small action by π1(Σ) can be collapsed down into a tree Tα for some

essential simple closed curve α. Therefore, a closed curve β is filling if and only

if it has positive translation length in every small action of π1(Σ) on a simplicial

tree. An application of Bass-Serre theory shows that a closed curve β is filling

if and only if it is not conjugate into a vertex subgroup in any elementary cyclic

splitting of π1(Σ).

We now move from surface groups to consider a finitely generated non-

Abelian free group F (X). The Culler-Vogtmann outer space, denoted CV (F (X)),

is the projectivized space of free discrete actions of F (X) on simplicial trees.

Outer space is the free group counterpart to Teichmüller space in the sense that

it admits a properly discontinuous isometric action by the outer automorphism

group of F (X) [16]. Moreover, outer space also admits a Thurston-type com-

pactification CV (F (X)), the projectivized space of very small actions of F (X)

on R-trees [5].

In [25], Kapovich and Lustig introduce the notion of a filling element as a

free group analogue for a filling curve. A filling element is an element w ∈ F (X)

that has positive translation length in every very small action of F (X) on an

R-tree. The cyclic subgroup generated by a filling element is an instance of a

finitely generated filling subgroup of F (X): a subgroup which does not fix a

point in any very small action of F (X) on an R-tree.

In the same paper in which they introduce filling elements, Kapovich and

Lustig prove the following theorem, which serves as the inspiration for our in-

vestigation of the filling property:

Proposition 1.1 ([25, Theorem 13.6]). With respect to the uniform measure

on ∂F (X), for almost every infinite geodesic ray in the Cayley graph of F (X),

every sufficiently long initial segment of that ray represents a filling element of

F (X).

The proof of Kapovich and Lustig’s theorem is non-constructive, so while it

is a strong indication that filling elements should be common in a free group, it

cannot be used to show that the filling elements are common in any formal sense,

nor does it provide a method for identifying such an element. Furthermore, their

result does not address the more general concept of a filling subgroup.

The first part of Chapter 2 is dedicated to finding a partial solution to the

following decision problem:

Let F (X) be a finitely generated, non-Abelian free group. Given a

finitely generated subgroup H of F (X), is H a filling subgroup?

Decision problems such as these have long played an important role in group
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theory. Dehn’s three major group-theoretic decision problems, the word, con-

jugacy, and isomorphism problems, have been studied extensively and have

lead to such important concepts as the small cancellation conditions and word-

hyperbolicity.

Our first main result is:

Theorem A (c.f. Theorem 2.26). Let F (a, b) denote the free group of rank

two. There is an algorithm to determine, given a finitely generated subgroup H

of F (a, b), whether or not H is a filling subgroup.

In higher rank cases, we have two different types of non-filling subgroup:

those which are elliptic in a cyclic segment splitting of F (X) and those which

are elliptic in a cyclic loop splitting of F (X) (see Definitions 2.14 and 2.17.)

A vertex subgroup in a cyclic segment splitting of F (X) has a highly struc-

tured Stallings graph. Specifically, up to automorphism, the Stallings graph

of such a subgroup consists of a bouquet of circles labeled by the elements of

some proper subset of X plus a loop labeled by the remaining elements of X.

This structure is encoded by the combinatorial Property (S) (Definition 2.27).

Immersions onto a graph with Property (S) are preserved by the Whitehead

minimization process (Proposition 2.28), a consequence of which is our second

main result:

Theorem B (c.f. Theorem 2.34). Let F (X) be a free group of finite rank at least

three. There is an algorithm to determine, given a finitely generated subgroup

H in F (X), whether or not H is elliptic in a cyclic segment splitting of F (X).

As in the segment case, a vertex subgroup in a cyclic loop splitting of F (X)

also has a very rigid combinatorial structure which can be characterized in terms

of Stallings graphs. Briefly, a Stallings graph has Property (L) if it has an edge

with a unique label which separates the graph into two components, at least one

of which is rank one (see Definition 2.35.) Up to automorphism, a subgroup of

a loop vertex subgroup has a Stallings graph which admits an immersion onto

a graph with Property (L). However, unlike the case with Property (S), the

Whitehead minimization process does not preserve immersions onto graphs with

Property (L), so the previous technique cannot algorithmically detect whether

or not a subgroup is contained in a loop vertex subgroup. However, Property

(L) itself can be detected up to automorphism.

Theorem C (c.f. Theorem 2.37). Let F (X) be a free group of finite rank

at least three. There is an algorithm to determine, given a finitely generated

subgroup H of F (X), whether or not there exists φ ∈ AutF (X) such that the

Stallings graph of φ(H) satisfies Property (L).

Another aspect of filling elements we would like to address is their statistical

properties. Kapovich and Lustig’s theorem indicates that filling elements should

be fairly common in a free group. However, the non-constructive nature of the
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proof does not allow us to formalize the sense in which filling elements are

common.

The second part of Chapter 2 is dedicated to investigating whether or not the

set of filling elements of F (X) is generic in the following sense of Arzhantseva

and Ol’shanskĭı. Let S be a subset of elements of F (X). We say that S is

F (X)-generic if

lim
R→∞

#(S ∩BR)

#BR
= 1,

where BR is the set of elements of F (X) with X-length at most R [29]. If the

limit converges exponentially fast, we say that S is exponentially F (X)-generic.

(We will give a slightly more general definition of genericity in Definition 2.39.)

Historically, the earliest appearance of the notion of genericity seems to be

due to Guba [21]. Shortly afterwards, Gromov gave a formal definition in the

context of finitely presented groups [20]. In the same paper, Gromov asserts

that almost every finitely presented group is hyperbolic, a fact first proved by

Ol’shanskĭı [39] and later by Champetier [14, 15]. Subsequent results in sta-

tistical group theory include the work of Arzhantseva [1, 2], Arzhantseva and

Ol’shanskĭı [3], and Ollivier [35, 34, 36, 37]. The surveys by Ghys [19] and Ol-

livier [38] provide an excellent overview of genericity with a focus on random

groups. More recent results in statistical group theory apply the notion of gener-

icity to computational group theory. Some group-theoretic decision problems

with high worst-case complexity have been shown to have low complexity on a

generic set of inputs [28, 29]. These results have furthered the understanding of

the average-case complexity of these problems [26, 27].

Our final main result on the filling property is:

Theorem D (c.f. Theorem 2.45). Let F (X) be a free group of finite rank at

least two.

1. Let w ∈ F (X). If the stabilizer of w in AutF (X) is infinite cyclic, then

w is filling.

2. The set of filling elements of F (X) is exponentially F (X)-generic.

3. There exists an exponentially F (X)-generic subset S of F (X) such that

every element of S is filling and the membership problem for S is solvable

in linear time.

This result recalls the result of Bonahon that filling is the typical behavior

of closed curves on a closed orientable hyperbolic surface [7, 8, 9]. Genericity of

the filling property is therefore another example of the symmetry between free

and surface groups.

We briefly note the following application of Theorem D to the work of

Reynolds [43]. An injective endomorphism φ : F (X) → F (X) is admissible

if φ(F (X)) is a filling subgroup. Reynolds shows that an admissible injective

endomorphism of F (X) acts on CV (F (X)) with a single attracting fixed point.

4



As a corollary to Theorem D, we see that admissibility is the typical behavior

of injective endormorphisms. Specifically, let N be the cardinality of X and

consider the set of N -tuples (w1, . . . , wN ) of elements of F (X). Let BNR denote

the set of such tuples with |wi|X ≤ R for each i = 1, . . . , N . We may extend

the notion of genericity to subsets of F (X)N : a subset S ⊆ F (X)N is generic if

lim
R→∞

#(S ∩BNR )

#BNR
= 1,

and exponentially generic if the above limit converges exponentially fast. Since

the set of filling elements is exponentially generic in F (X), the set of tuples

of filling elements is exponentially generic in F (X)N . After restricting to the

set of tuples representing injective endomorphisms, we obtain an exponentially

generic subset of admissible injective endomorphisms.

1.2 Residual Properties of Γ-Limit Groups

Quantitative analysis of group properties is an increasingly active field in modern

group theory. In particular, the various residual properties of groups have proven

themselves quite suitable for investigation through quantitative means.

Let P be a property of groups, and recall that a group G is residually P if

for every nontrivial element g ∈ G, there is a homomorphism φ : G → H such

that H is a group with property P and φ(g) 6= 1. We say that a group is fully

residually P if for every finite subset of nontrivial elements S ⊆ G − 1, there

is a homomorphism φ : G → H such that H is a group with property P and

1 /∈ φ(S).

(An alternate definition of fully residually P insists that the homomorphism

φ not just avoid 1 but actually be injective on S. Note that φ is injective on

S if and only if the image under φ of the set {uv−1 : u, v ∈ S, u 6= v} does

not include 1, so these definitions are equivalent. Also note that we also do

not require our homomorphisms to be surjective, as may sometimes be the case

when discussing residual properties.)

For instance, let G be a residually finite group with finite generating set X.

Let f : N→ N be such that whenever g ∈ G− 1 has X-length at most R, then

there exists φ : G → H such that φ(g) 6= 1 and |H| ≤ f(R). When f is the

smallest such function, then we think of f as measuring the complexity of the

residual finiteness of G; we may also think of f as measuring the growth of the

number of subgroups of G with respect to index. This version of complexity

has been studied extensively by Bou-Rabee in [11], with additional results by

Kassabov and Matucci [30].

Bou-Rabee has obtained further results by restricting his attention to finite

nilpotent or finite solvable quotients. This yields group invariants known as the

nilpotent Farb growth and the solvable Farb growth, and Bou-Rabee has obtained
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new characterizations of algebraic group properties in terms of the asymptotic

properties of these growth functions. For instance, Bou-Rabee has shown that

a finitely generated group G is nilpotent if and only if it has nilpotent Farb

growth which is polynomial in log(n) [11]. Similarly, a finitely generated group

is solvable and virtually nilpotent if and only if it has solvable Farb growth that

is polynomial in log(n) [12].

Rather than considering residually finite groups, we will study another well-

known class of groups with strong residual properties: the Γ-limit groups of

Sela. Let Γ be a fixed torsion-free hyperbolic group. A Γ-limit group G is a

finitely generated, fully residually Γ group: for any finite subset S ⊆ G − 1,

there exists a homomorphism φ : G → Γ such that 1 /∈ φ(S). We say that the

set S is Γ-discriminated by φ.

Fix finite generating sets X and Y for G and Γ, respectively. Let the homo-

morphism φR : G→ Γ discriminate BR(G,X)−1, where BR(G,X) is the closed

ball of radius R in G with respect to X. Here, we measure the complexity of

φR by the maximum Y -length over all images of elements of X. The minimum

complexity required to discriminate each set BR(G,X)− 1, as a function of R,

is called the Γ-discriminating complexity of G, and it is an invariant of G up to

asymptotic equivalence. (See Definition 3.45.)

Our main result on the Γ-discriminating complexity of Γ-limit groups is the

following:

Theorem E (c.f. Theorem 3.57). The Γ-discriminating complexity of a Γ-limit

group is asymptotically dominated by a polynomial.

In order to prove Theorem E, we must first start with the simplest exam-

ples of Γ-limit groups: the finitely generated, free Abelian groups. The free

Abelian group Zn is fully residually Z, and our next main result establishes its

Z-discriminating complexity.

Theorem F (c.f. Theorem 3.53). The Z-discriminating complexity of Zn is

asymptotically equivalent to a polynomial of rank n− 1.

The fundamental construction in our study of Γ-limit groups is the extension

of a centralizer. Informally, if G is a Γ-limit group, we may construct another

Γ-limit group G′ by extending a centralizer of G by a free Abelian group of

finite rank. (See Definition 3.4.)

Our next result is motivated by the well-known “big powers” property of

hyperbolic groups. If Γ is a hyperbolic group and u ∈ Γ generates its own

centralizer, then for any tuple of elements (g1, g2, . . . , gk) of elements of G−〈u〉,
there is an integer N such that

un0g1u
n1g2u

n2 . . . unk−1gku
nk

is nontrivial in Γ whenever |ni| > N for i = 1, . . . , k − 1 and either |ni| > N or

ni = 0 for i = 0, k.
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The big powers property seems to appear first due to B. Baumslag in his

study of fully residually free groups [4]; a later version appears due to Ol’shanskĭı

in the context of hyperbolic groups [40]. Most recently, the big powers property

is proven by Kharlampovich and Myasnikov for relatively hyperbolic groups in

[31] using the techniques of Osin from [41, 42]. Our main technical lemma,

Lemma 3.42, is an analysis of the big powers property for relatively hyperbolic

groups with the goal of analyzing the dependence of N on the group G, gener-

ating set X, and the elements gi and u.

By iterating the extension of centralizer construction, we obtain a group

known as an iterated extension of centralizers (see Definition 3.7). Iterated

extensions of centralizers are relatively hyperbolic and therefore have the big

powers property. By combining Theorem F with our analysis of the big powers

property, we obtain our third main result.

Theorem G (c.f. Theorem 3.55). Let G be an iterated extension of centralizers

over Γ. Let G′ be a rank n extension of a cyclic centralizer of G. Then the G-

discriminating complexity of G′ is asymptotically dominated by a polynomial of

degree n.

Repeated application of Theorem G gives us our final main result, a bound on

the discriminating complexity of an arbitrary iterated extension of centralizers

over Γ.

Theorem H (c.f. Theorem 3.56). The Γ-discriminating complexity of an iter-

ated extension of centralizers over Γ is asymptotically dominated by a polynomial

with degree equal to the product of the ranks of the extensions.

Theorem H then directly implies Theorem E via a theorem of Kharlampovich

and Myasnikov, which states that every Γ-limit group embeds in some iterated

extension of centralizers over Γ [31].

7



Chapter 2

Filling Elements and Filling
Subgroups of Free Groups

2.1 Background

Let X be a finite set with at least two elements. Define X−1 := {x−1 : x ∈ X}
to be the set of formal inverses of elements of X, and set X± := X tX−1. We

denote the set of words on the letters X± by (X±)∗. A word in (X±)∗ is freely

reduced if it has no subword of the form xx−1 or x−1x for any x ∈ X. A word

in (X±)∗ is cyclically reduced if every cyclic permutation of that word is freely

reduced.

Let F (X) be the free group on the letters X. The X-length of w ∈ F (X),

denoted |w|X , is the length of the freely reduced word in (X±)∗ which represents

w. We will indicate that H is a finitely generated subgroup of F (X) by H ≤fg
F (X).

2.1.1 Stallings Graphs

Definition 2.1 (X-digraph). Given a finite set X, an X-digraph is given by

the data (V,E, ·+, ·−, λ), where:

• V and E are sets;

• ·+, ·− : E → V ; and

• λ : E → X.

We call V the vertex set and E the edge set. For e ∈ E, we say that e− is

the initial vertex of e and e+ is the terminal vertex of e. We call lambda the

labeling function.

Let S be an X-digraph. By V S and ES we denote the vertex and edge sets

of S, respectively. For v ∈ V S, we define the in-link of v to be lk+(v) := {e ∈
ES : e+ = v}, and we say the in-hyperlink of v is hl+(v) := {λ(e) : e ∈ lk+(v)}.
Likewise, we define the out-link of v to be lk−(v) := {e ∈ ES : e− = v} and

the out-hyperlink of v to be hl−(v) := {λ(e)−1 : e ∈ lk−(v)}. The link of v is

lk(v) := lk−(v) ∪ lk+(v) and the hyperlink of v is hl(v) := hl−(v) ∪ hl+(v).

We say that the degree of v ∈ V S is degS(v) := # lk(v). If degS(v) = 0 we

say that v is isolated, and if degS(v) = 1 we say that v is a leaf. If no vertex of

S is a leaf, we say that S is cyclically reduced.
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If u, v ∈ V S are such that there is e ∈ ES with e− = v and e+ = u, then

we say that u and v are adjacent and that e is incident to both u and v. If

e, f ∈ ES are such that e− = f−, then we say that e and f are coinitial ; if

e+ = f+, then e and f are coterminal. The edges e and f are coincident if e

shares an endpoint with f .

Let Y ⊆ X. A Y -edge is any edge with label in Y . The set of Y -edges of S

is denoted EY S.

Convention. To aid readability, we will always denote singleton sets by their

unique element. For instance, if x ∈ X, we will write x-edges rather than

{x}-edges, and the set of x-edges of S will be denoted ExS rather than E{x}S.

We say that S is folded at v if λ induces a bijection lk(v)→ hl(v). The graph

S is folded if S is folded at every vertex. If S is not folded, then some pair of

coterminal or coinitial edges e, f ∈ ES share the same label. We fold these

edges by identifying the pair of edge e and f and either the vertices e− and f−

if e and f are coinitial or the vertices e+ and f+ if e and f are coterminal. The

process of performing folds in S until none remain is called folding.

We may delete a leaf v of S by deleting v and the unique edge incident to

it. By repeatedly deleting leaves, we eventually arrive at a cyclically reduced

X-digraph. We call this process cyclic reduction.

Lastly, if S and T are X-digraphs, an X-map is a map S → T which sends

vertices to vertices, edges to edges, and preserves both orientation and label.

We will assume that all of our maps of X-digraphs are X-maps. An X-map is

an immersion if the induced map on the link of a vertex is injective for every

vertex of S.

Definition 2.2 (Dual digraph). Given an X-digraph S, we may construct the

dual of S, denoted S∗, by adding a set of formal inverse edges ES := {ē : e ∈
ES} and extending ·−, ·+, and λ as follows:

(ē)− := e+,

(ē)+ := e−, and

λ(ē) := λ(e)−1.

By defining (ē) = e, the above equations are satisfied for any e ∈ ES∗.
A path p in an X-digraph S is a sequence of edges p = e1e2 . . . el in the dual

S∗ such that (ei)+ = (ei+1)− for all i = 1, . . . , l − 1. The path p is a loop if

we further have that (el)+ = (e1)−. The path is immersed if ei+1 6= ēi for all

i = 1, . . . , l−1. The label of p is λ(p) := λ(e1) . . . λ(el). The length of p is l. We

say that an X-digraph S is connected if there exists a path between any two

vertices.

Remark. For the purposes of this chapter, we will not distinguish much between

an X-digraph S and its dual S∗. Specifically, for x ∈ X, we will regard an x−1-

edge as simply an x-edge with the opposite orientation. If e is an x-edge, we
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will therefore consider it as an x-edge in that it contributes the label x to the

hyperlink of e+, and also as an x−1 edge as it contributes the label x−1 to the

hyperlink of e−.

Definition 2.3 (Stallings graph). Let H ≤fg F (X). The Stallings graph rep-

resenting H with respect to X, denoted SX(H), is the unique X-digraph with

basepoint such that a freely reduced word in (X±)∗ represents an element of H

if and only if it occurs as the label of an immersed loop of SX(H) beginning

and ending at the basepoint.

Recall that we may construct SX(H) as follows. Let h1, . . . , hk be elements of

(X±)∗ representing a finite set of generators of H. Beginning with a basepoint,

denoted 1, we construct a loop beginning and ending at 1 with label hi for each

i; let S0 be the resulting graph. We then perform all possible folds in S0 (in

any order) to obtain a folded graph S1. Finally, we repeatedly delete leaves of

S1 different from 1 until no leaves remain except possibly the basepoint. The

resulting graph is SX(H), and it is well-known that SX(H) is invariant with

respect to the choice of generating set for H as well as the order of the folds

and leaf deletions.

Suppose that SX(H) is cyclically reduced. For any g ∈ F (X), we may

construct SX(Hg) from SX(H) by adding a new basepoint 1′, a path from 1 to

1′ labeled by g, and then folding and deleting non-basepoint leaves. Therefore

whenever SX(H) is cyclically reduced, we will forget the basepoint and think

of SX(H) as representing HAutF (X), the conjugacy class of H in F (X), rather

than the single subgroup H.

2.1.2 Whitehead’s Algorithm

Definition 2.4 (Whitehead automorphism). A type I Whitehead automorphism

is an automorphism φ ∈ AutF (X) which is induced by permutations and in-

versions of the set X±.

A type II Whitehead automorphism is an automorphism φ ∈ AutF (X) for

which there exists m ∈ X± such that φ(m) = m and

φ(x) ∈ {x,m−1x, xm, xm}

for all x ∈ X. We call m the multiplier for φ.

Given a type II Whitehead automorphism φ with multiplier m, define

C :=
{
x ∈ X± : φ(x) ∈ {m,xm, xm}

}
.

Then φ is determined completely by the pair (C,m), and we refer to C as the

cut for φ.

Let C ⊆ X± be such that m ∈ C and m−1 /∈ C. We call such a C an m-cut.

For any m ∈ X± and m-cut C, the pair (C,m) defines a type II Whitehead

automorphism of F (X).
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More generally, if C,D ⊆ X±, we say that C cuts D if D contains an element

of both C and C ′ := X± − C.

Definition 2.5 (Hypergraph). A hypergraph is a tuple (V,E, ι), where V and

E are sets and ι : E → P(V ), where P(V ) denotes the power set of V . The

elements of V are called vertices and the elements of E are called hyperedges.

We call ι the incidence function.

Let Γ be a hypergraph. We refer to the vertex and hyperedge sets of Γ by

V Γ and EΓ, respectively. We will refer to the incidence function by simply ι

when Γ is clear from context. We say that a hyperedge e ∈ EΓ is incident to

a vertex v ∈ V Γ if v ∈ ι(e). A pair of hyperedges e, e′ ∈ EΓ are coincident if

ι(e) ∩ ι(e′) 6= ∅. Two vertices v, v′ ∈ V Γ are adjacent if there is a hyperedge

e ∈ EΓ with v, v′ ∈ ι(e).
More generally, if Y ⊂ V Γ, we say that a hyperedge e ∈ EΓ is incident to

Y if ι(e)∩ Y 6= ∅. Let Y1, . . . , Yn, Z be subsets of V Γ. We say that a hyperedge

e ∈ EΓ has type (Y1, Y2, . . . , Yn;Z) if e is incident to each Yi for i = 1, . . . , n but

e is not incident to Z. When Z is empty, we will write (Y1, Y2, . . . , Yn) instead of

(Y1, Y2, . . . , Yn; ∅). We denote by [Y1, Y2, . . . , Yn;Z]Γ the number of hyperedges

of Γ of type (Y1, Y2, . . . , Yn;Z).

Let Y ⊆ V Γ, and let Y ′ denote the complement V Γ − Y . We define the

capacity of Y in Γ to be the number of hyperedges of Γ incident to both Y and

its complement; in the above notation,

capΓ(Y ) = [Y, Y ′]Γ.

Let v ∈ V Γ. The degree of v in Γ is the number of edges incident to v; in

the above notation,

degΓ(v) = [v]Γ.

Definition 2.6 (Whitehead hypergraph). Let S be a cyclically reduced X-

digraph. We define the Whitehead hypergraph of S to be the hypergraph Γ(S) :=

(X±, V S,hl : V S → P(X±)).

Given a cyclically reducedX-digraph S and an automorphism φ ∈ AutF (X),

one may construct φ(S) from S as follows. First, for all x ∈ X, we subdivide

every x-edge in S into a path and relabel this path with φ(x). We fold the re-

sulting graph and then delete leaves until none remain; the final graph is φ(S).

When S represents the conjugacy class HAutF (X), we have that φ(S) represents

φ(H)AutF (X).

When φ = (C,m) is a type II Whitehead automorphism, this construction

has the special feature of being “local”. Let v ∈ V S be such that m ∈ hl(v),

and let e be the m-edge with endpoints v and u for some u ∈ V S. We “unhook”

each edge in lk(v) with label in C −m and reconnect that edge to u instead. If

v ∈ V S is such that m /∈ hl(v), we then construct an auxiliary vertex vaux and

an auxiliary m-edge with initial vertex vaux and terminal vertex v. We again
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(a) The neighborhood of v before
applying φ = (C,m).

(b) Constructing the auxiliary ver-
tex vaux.

(c) Folding identifies vaux and the
vertex u at the other end of the
edge corresponding to m in hl(v).
If no such vertex u exists, no fold-
ing occurs.

Figure 2.1: Locally, the Whitehead automorphism φ = (C,m) moves the edges
in hl(v) ∩ (C −m) across the edge corresponding to m ∈ hl(v) (if present).

“unhook” the edges of lk(v) with label in C −{m} and reconnect them to vaux.

The result of performing these moves at every vertex is the graph φaux(S), and

we obtain φ(S) from φaux(S) by cyclic reduction. (See Figure 2.1; the dotted

edges represent edges which may or may not be present.)

We make the following observations about φaux(S):

1. There is an injection from the vertex set of S to the set of non-auxiliary

vertices of φaux(S); we will refer to this injection simply as φaux.

2. (a) Let e be an m-edge of S such that e− = u and e+ = v. Then

hl(φaux(v)) = (hl(v) ∩ (C ′ ∪m) ∪ (hl(u) ∩ (C −m). (2.1)

(b) Let v ∈ V S with m /∈ hl(v). Then

hl(vaux) = m−1 ∪ (hl(v) ∩ (C −m)) .

3. A vertex of φaux(S) is a leaf if and only if it is one of the following:
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(a) vaux for v ∈ V S with hl(v) ⊆ C ′; or

(b) φaux(v) for v ∈ V S with hl(v) ⊆ (C −m).

As a result, note that if φ = ({m},m), then φ(S) = S. If φ = (C,m) and

φ′ = (C ′,m−1), then note that φ(S) = φ′(S). This latter observation allows us

to assume that, without loss of generality, m ∈ X.

By keeping careful track of the construction for φ(S), it is possible to describe

the change in the number of vertices between S and φ(S).

Proposition 2.7 ([44]). Let S be a connected, cyclically reduced X-digraph with

Whitehead hypergraph Γ = Γ(S), and let φ = (C,m) be a type II Whitehead

automorphism with m ∈ X. Then we have:

#V φ(S)−#V S = capΓ(C)− degΓ(m).

We will find it useful to recast Proposition 2.7 in terms of change in number

of edges.

Proposition 2.8. Let S be a connected, cyclically reduced X-digraph with

Whitehead hypergraph Γ = Γ(S), and let φ = (C,m) be a type II Whitehead

automorphism with m ∈ X. Then we have:

1. #Eφ(S)−#ES = capΓ(C)− degΓ(m)

2. For a Whitehead automorphism φ = (C,m) with m ∈ X, we have

#ExS = #Exφ(H)

for all x 6= m.

Proof. Let S represent the conjugacy class HAutF (X). Since S is connected, we

have the well-known relation #ES = #V S − 1 + R, where R is the rank of H

as a free group. Since φ(S) represents the class φ(H)AutF (X) and φ(H) must

also have rank R, we then have #Eφ(S) = #V φ(S)− 1 +R, and part 1 follows

immediately.

Part 2 follows from the “local” version of the construction of φ(S). The only

positive edges introduced in the subdivision stage have label m, and the only

leaves which arise after subdivision and folding are leaves with hyperlink {m}.
Therefore, the only positive edges added or removed in the application of φ to

S are those labeled m.

We will recast Gersten’s version of Whitehead’s algorithm in graph-theoretic

terms first seen in [24] and used later in [44] to analyze the complexity of the

Whitehead reduction process.

Let S be a connected, cyclically reduced X-digraph and let φ ∈ AutF (X).

We call φ(S) an automorphic image of S. We say that φ reduces S if #V S <

#V φ(S) (or equivalently, #ES < #Eφ(S)), and that φ expands S if #V S >
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#V φ(S) (or equivalently, #ES > #Eφ(S)). Where S is clear from context, we

will say that φ is reducing or expanding. If no automorphism reduces S, then

we say that S is minimal.

Theorem 2.9 (Whitehead’s Theorem [18]). Let S be a connected, cyclically

reduced X-digraph.

1. If S is not minimal, then some Whitehead automorphism reduces S.

2. Let S be minimal, and suppose there is φ ∈ AutF (X) such that φ(S) is

also minimal. Then there exists a sequence of type II Whitehead auto-

morphisms φ1, . . . , φk such that φi does not expand φi−1 ◦ · · · ◦ φ1(S) and

φk ◦ · · · ◦ φ1(S) = φ(S).

Let S be a cyclically reduced X-digraph. Let min(S) denote the set of

minimal automorphic images of S. Whitehead’s Theorem gives an effective

algorithm for constructing min(S) given S. Let S and T be cyclically reduced

X-digraphs representing conjugacy classes HAutF (X) and KAutF (X); then there

exists φ ∈ AutF (X) such that K = φ(H) if and only if min(S) = min(T ).

This gives us Gersten’s extension of Whitehead’s famous algorithm to finitely

generated subgroups.

Theorem 2.10 (Whitehead’s algorithm). There is an algorithm to decide, given

H,K ≤fg F (X), whether or not there exists φ ∈ AutF (X) such that φ(H) = K.

2.1.3 Outer space

Definition 2.11 (R-tree). An R-tree is a geodesic metric space in which every

two points are connected by a unique injective path and this path is a geodesic.

We say that the action of F (X) on an R-tree T is:

• isometric if each element w ∈ F (X) acts as an isometry on T ;

• minimal if there exists no F (X)-invariant subtree of T ;

• very small if the stabilizer of any tripod is trivial and the stabilizer of any

arc is either trivial or maximal cyclic in the stabilizers of the endpoints of

the arc;

• simplicial if T has the topological structure of a simplicial complex.

We will now assume that all actions of F (X) on R-trees are isometric and

minimal.

Definition 2.12 (Filling subgroup). Let H ≤fg F (X). We say that H is a

filling subgroup if H fixes no point in any very small action of F (X) on an R-

tree, and that H is a non-filling subgroup if H fixes a point in some very small

action of F (X) on an R-tree. We say that w ∈ F (X) is a filling element if w

generates a filling subgroup of F (X).
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The work of Guirardel allows one to approximate the very small action of

F (X) on a given R-tree by a very small action on a simplicial tree. In particular,

if H fixes a point in the R-tree, then we may have H fix a point in the simplicial

approximation [22, Theorem 1].

Proposition 2.13. A subgroup H ≤fg F (X) is non-filling if and only if H fixes

a point in some very small action of F (X) on a simplicial tree T .

A very small action of F (X) on a simplicial tree gives a particular type of

decomposition of F (X) called a graph of groups decomposition, the details of

which can be found in [47]. We briefly review the associated terminology.

Definition 2.14 (Cyclic splitting). A cyclic splitting of F (X) is the decompo-

sition of F (X) as the fundamental group of a graph of groups with cyclic edge

groups. A free splitting of F (X) is the decomposition of F (X) as the funda-

mental group of a graph of groups with trivial edge groups. An edge map refers

to a homomorphism from an edge group to a vertex subgroup in a particular

graph of groups. A splitting is elementary if the corresponding graph of groups

is connected and has exactly one edge. An elementary splitting is a segment

splitting if the underlying graph of groups has two distinct vertices and is a loop

splitting if it has only one vertex. An elementary splitting is nontrivial if it is

either a loop splitting or a segment splitting in which neither edge map is an

isomorphism. An elementary cyclic splitting is very small if the image of the

edge group is maximal cyclic in the vertex subgroup(s).

We say that H ≤fg F (X) is elliptic in a splitting of F (X) if H is conjugate

to a subgroup of a vertex subgroup. Subgroups which are not elliptic in a given

splitting are said to be hyperbolic.

Proposition 2.15. A subgroup H ≤fg F (X) is non-filling if and only if H is

elliptic in either a nontrivial elementary free splitting of F (X) or a nontrivial,

very small, elementary cyclic splitting of F (X).

Proposition 2.16. The vertex subgroups in a nontrivial, very small, elementary

cyclic segment splitting of F (X) have the form

〈A, b〉 and 〈B〉,

where AtB is a basis for F (X), #A ≥ 1,#B ≥ 2, and b ∈ 〈B〉 is not a proper

power.

The vertex subgroup in a cyclic loop splitting of F (X) has the form

〈U, uv〉,

where U t {v} is a basis for F (X) and u ∈ 〈U〉 is not a proper power.

Proof. This is a straightforward application of a lemma of Bestvina-Feighn [5,

Lemma 4.1]. Similar results also appear in [48, 51, 52].
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(a) A standard segment vertex subgroup.

(b) A standard loop vertex subgroups.

Figure 2.2: Stallings graphs of standard vertex subgroups.

Definition 2.17 (Segment, loop vertex subgroups). We call a subgroup 〈A, b〉
as in Proposition 2.16 a segment vertex subgroup. A subgroup 〈U, uv〉 is called

a loop vertex subgroup. When A t B = X or U t {v} = X, we say that these

vertex subgroups are standard. By SV and LV we denote the sets of standard

segment and standard loop vertex subgroups, respectively.

If H is a segment vertex subgroup, then for an automorphism φ induced by

a bijection A tB → X, φ(H) ∈ SV. Thus, every segment vertex subgroup has

an automorphic image in the set SV. Likewise, every loop vertex subgroup has

an automorphic image in LV and every proper free factor has an automorphic

image in SF .

Let H ≤fg F (X) be a proper free factor of F (X). If H = 〈Y 〉 where

Y ⊂ X, then we say that H is a standard free factor. By SF we denote the

set of standard free factors of F (X). Note that every standard free factor is a

subgroup of a standard loop vertex subgroup.

Proposition 2.18. A subgroup H ≤fg F (X) is non-filling if and only if there

exist φ ∈ AutF (X) and K ∈ SV ∪ LV such that φ(H) ≤ K.

2.2 Main Results

2.2.1 Algorithmic Properties of Filling Subgroups

Definition 2.19 (Automorphic subgroup problem). Let K be a (possibly in-

finite) collection of subgroups of F (X). The automorphic subgroup problem,
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denoted ASP(K), is the problem:

Given H ≤fg F (X), do there exist K ∈ K and φ ∈ AutF (X) such

that φ(H) ≤ K?

Little seems to be known about ASP(K), even in the case where H consists

of a single subgroup. However, in the case where H consists of a single cyclic

subgroup, ASP(H) can be solved by Whitehead’s algorithm.

Recall that SF is the set of standard free factors of F (X), and that H ≤fg
F (X) is contained in a proper free factor of F (X) if and only if H has some

automorphic image which is a subgroup of of a standard free factor.

Proposition 2.20. ASP(SF) can be decided for any free group F (X) of finite

rank.

Proof. Let H ≤fg F (X). Let Y be a basis for F (X) such that H ≤ 〈Y ′〉 for

some Y ′ ⊂ Y . Let φ ∈ AutF (X) be induced by a bijection Y → X, so that

φ(Y ′) := X ′ ⊂ X. The graph S = SX(φ(H)) therefore omits some element

m ∈ X as an edge label.

Let ψ = (C,m) be a Whitehead automorphism, where S omits m as an edge

label. Proposition 2.8 states that applying ψ to S changes only the number

of positive edges labeled m, and so ψ must expand S. We conclude that any

reducing Whitehead automorphism for S must have a multiplier which occurs

as an edge label in S. Therefore if the X-digraph S omits m as an edge label, S

can be minimized without ever introducing m as an edge label. Every element

of min(S) = min(SX(H)) must therefore omit some letter of X from its set of

edge labels. Conversely, it is straightforward to see that if some (every) element

of min(SX(H)) omits a letter from X, then H is contained in a proper free

factor.

Corollary 2.21. There is an algorithm to determine, given H ≤fg F (X),

whether or not H is contained in a proper free factor of F (X).

Proof. The subgroup H is contained in a proper free factor if and only if there

exist φ ∈ AutF (X) and K ∈ SF such that φ(H) ≤ K. However, φ(H) ≤ K ∈
SF if and only if some (every) element of min(SX(φ(H))) omits an element of

X as an edge label. Since min(SX(φ(H))) = min(SX(H)), our algorithm is as

follows.

Algorithm 2.22. Given H ≤fg F (X), we may determine whether or not H is

contained in a proper free factor of F (X) as follows:

1. Construct the finite graph SX(H).

2. Construct an element T of min(SX(H)).
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3. Determine whether T omits some element of X as an edge label. If T

omits some element of X as an edge label, conclude that H is contained

in a proper free factor of F (X). Otherwise, conclude that H is contained

in no proper free factor of F (X).

2.2.1.1 The Rank Two Case

Let F (a, b) denote the free group of rank two. The following characterization of

the standard vertex subgroups of F (a, b) follows directly from Proposition 2.16.

Proposition 2.23. For F (a, b), we have SV = ∅ and LV = {〈a, ab〉}.

Clearly, an element w ∈ F (a, b) is non-filling if and only if φ(w) ∈ 〈a, ab〉
for some φ ∈ AutF (a, b). The problem of identifying the non-filling elements of

F (a, b) is therefore equivalent to ASP(〈a, ab〉).

Theorem 2.24. The problem ASP(〈a, ab〉) is decidable.

Proof. Suppose that H ≤fg 〈a, ab〉 is cyclically reduced and that H is contained

in no proper free factor of F (a, b). We have an immersion SX(H)→ SX(〈a, ab〉).
Note that if this immersion is not a surjection, then H is contained in a proper

free factor of F (a, b) (either 〈a〉 or 〈ab〉).
Every vertex of S = SX(H) therefore has a hyperlink which is a subset

of either {a, a−1, b} or {a, a−1, b−1}. In particular, note that the set of initial

vertices of b-edges in SX(H) is disjoint from the set of terminal vertices of

b-edges, and so SX(H) has at least 2#EbS vertices.

Suppose that S − EbS has k connected components. Since S is cyclically

reduced, each of these components has at least one a-edge. Since S −EbS is an

a-digraph, each connected component of S−EbS is either a path or a cycle. We

therefore have #EaS ≥ 2#EbS − k, hence #EaS + k ≥ 2#EbS. Since each of

the connected components of S−EbS must have at least one a-edge, #EaS ≥ k
and therefore #EaS ≥ #EbS. In terms of the Whitehead hypergraph Γ(S), we

have degΓ(a) ≥ degΓ(b).

Now suppose that φ = (C,m) is a reducing Whitehead automorphism for

H. Since C is an m-cut, if C has one or three elements, φ(S) = S. C therefore

has two elements; without loss of generality, we may assume that C = {a, b}.
Suppose that m = a, so that φ = ({a, b}, a) is reducing. Clearly φ leaves

SX(〈a, ab〉) invariant, so φ(S) admits an immersion onto SX(〈a, ab〉).
Suppose that m = b, so that φ = ({a, b}, b) is reducing. Since degΓ(a) ≥

degΓ(b), the Whitehead automorphism φ′ = ({a, b}, a) is also reducing for S.

By the above observation, φ(S) also admits an immersion onto SX(〈a, ab〉).
Therefore, if S admits an immersion onto SX(〈a, ab〉), there is at least one

element of min(S) which also admits such an immersion. It follows directly

that an arbitrary subgroup H ≤fg F (a, b) has some automorphic image which
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(a) SX(〈a, ab〉) (b) Γ(SX(〈a, ab〉))

(c) Γ(SX(H)) for H ≤fg F (X), showing
every possible edge.

Figure 2.3: Graphs associated to the subgroup 〈a, ab〉.
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is a subgroup of 〈a, ab〉 if and only if some element of min(SX(H)) admits an

immersion onto SX(〈a, ab〉). Our algorithm is therefore the following:

Algorithm 2.25. Given H ≤fg F (a, b), we may determine whether or not there

exists φ ∈ AutF (a, b) such that φ(H) ≤ 〈a, ab〉 as follows:

1. Construct the finite graph SX(H);

2. Construct the finite set min(SX(H));

3. If some member of min(SX(H)) admits an immersion onto SX(〈a, ab〉),
conclude that there is φ ∈ AutF (a, b) such that φ(H) ≤ 〈a, ab〉. Otherwise,

conclude that no such φ ∈ AutF (X) exists.

For F (a, b), a subgroup H ≤fg F (X) is non-filling if and only if H has an

automorphic image in 〈a, ab〉. We may therefore solve the membership problem

for the set of filling subgroups of F (a, b).

Theorem 2.26. There is an algorithm to determine, given H ≤fg F (a, b),

whether or not H is a filling subgroup.

2.2.1.2 Segment vertex subgroups in higher rank

Let F (X) be a free group of rank at least three.

Recall that SV is the set of subgroups of F (X) of the form 〈A, b〉 where

A tB = X, #A ≥ 1, #B ≥ 2, and b ∈ 〈B〉 is not a proper power.

Let S be an X-digraph and let Y ⊆ X. The subgraph of S spanned by

the Y -edges is the subgraph consisting of all Y -edges and all vertices having an

incident Y -edge.

Definition 2.27 (Property (S)). We say that an X-digraph satisfies property

(S) if:

1. S is connected and cyclically reduced; and

2. There is a partition X = A tB such that

(a) The subgraph spanned by the A-edges is a bouquet of single edge

loops; and

(b) The subgraph spanned by the B-edges is rank one.

Any element of SV has a Stallings graph which satisfies Property (S). We

immediately obtain the following.

Proposition 2.28. Let H ≤fg F (X). Then H is a subgroup of some element of

SV if and only if SX(H) admits an immersion into a graph satisfying Property

(S).

20



Figure 2.4: Stallings graph of a standard segment vertex subgroup.

Lemma 2.29. Let S be a connected, cyclically reduced X-digraph admitting an

immersion onto a graph satisfying property (S). Suppose that S represents (a

conjugacy class of) a subgroup contained in no proper free factor of F (X). If S

is not minimal, then some element of min(S) also admits an immersion onto a

graph satisfying property (S).

Proof. Suppose T is an X-digraph satisfying Property (S) such that π : S → T

is an immersion. Let A t B = X be the partition given in the definition of

Property (S). Let the basepoint of T be the unique vertex whose hyperlink

meets A±, and let b = b1 . . . br be the label of the loop in T labeled by B-edges,

beginning and ending at the basepoint. Note that the hyperlink of the basepoint

is A± ∪ {b−1
1 , br}.

Since π : S → T is an immersion, there is a k such that, for any non-

basepoint v ∈ V T , the preimage π−1(v) is a set of exactly k vertices. More, the

subgraph of S spanned by the B-edges is the union of exactly k paths labeled by

b, any two of which are either disjoint or intersect only at one or both endpoints.

The following technical proposition will provide useful sufficient conditions

for Property (S) to be preserved.

Proposition 2.30.

1. Let φ = (C,m) be a Whitehead automorphism with m ∈ A± and let T be

as above. If C does not cut the hyperlink of any non-basepoint vertex of

T , then φ(T ) also satisfies property (S).

2. Let φ = (C,m) be a Whitehead automorphism with m ∈ B± and let T be

as above. If C does not cut the set A±, then φ(T ) also satisfies property

(S).

Proof. Suppose φ = (C,m) is as in part 1 of the proposition. In the construction

of φ(S), new m-edges are only introduced at vertices of S whose hyperlinks are

cut by C. Therefore, the only new edges introduced in the application of φ are

incident to the basepoint; since every A-edge of T has the basepoint as its initial
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and terminal vertex, these new edges are folded away, leaving a B-labeled loop

beginning and ending at the basepoint.

Suppose φ = (C,m) is as in part 2 of the proposition. If A± is not cut by

C, then the effect of φ on T is to replace the loop labeled b with a loop labeled

φ(b) or possibly φ(b)m
−1

. The resulting graph satisfies Property (S).

Convention. To simplify notation, we define the following sets.

• ∆ := (A± ∩ C)− {m,m−1, b−1
1 , br}

• Σ := (A± ∩ C ′)− {m,m−1, b−1
1 , br}

• Π := (B± ∩ C)− {m,m−1, b−1
1 , br}

• Ω := (B± ∩ C ′)− {m,m−1, b−1
1 , br}

Note that we do not necessarily have that m,m−1, b−1
1 , and br are pairwise

distinct.

Suppose that b−1
1 = br, and consider Γ(S). Since in Γ(S), the only element

of B± adjacent to some element of A± is br, a direct calculation shows that

the Whitehead automorphism φ = (B± − b−1
r , br) reduces S. By Proposition

2.30, φ(T ) satisfies Property (S). We will therefore assume from now on that

b−1
1 6= br.

Suppose that φ = (C,m) reduces S, where m ∈ A±. First note that if C does

not cut {b−1
1 , br}, then either (C∪B±,m) or (C−B±,m) is reducing for S, since

only b−1
1 and br are adjacent to elements of A± in Γ(S). By Proposition 2.30,

the image of T under either of these Whitehead automorphisms again satisfies

Property (S).

Now assume that, without loss of generality, br ∈ C and b−1
1 ∈ C ′ := X±−C

and that C cuts the hyperlink of some non-basepoint vertex of T . Since the

preimage under π of a non-basepoint vertex is a set of k internal vertices in

SX(H), we have [Π,Ω]Γ(S) ≥ k. Therefore, passing from (∆ ∪ {m, br} ∪ Π,m)

to (∆ ∪m,m) reduces the capacity by at least k (since at least k hyperedges

contributing to capacity came from the hyperlink of an internal vertex) at the

cost of adding [br,∆ ∪m]Γ(S) to the capacity. However, a br-edge is coincident

to an A-edge in at most k vertices of S, so [br,∆ ∪ m]Γ(S) ≤ k. Therefore,

capΓ(S)(∆ ∪ m) ≤ capΓ(S)(∆ ∪ {m, br} ∪ Π), and so φ′ = (∆ ∪ m,m) must

reduce S. Again, by Proposition 2.30, φ′(T ) satisfies Property (S). (See Figure

2.5.)

Now suppose that φ = (∆ ∪ {m, br} ∪ Π,m) reduces S, where m ∈ B±.

Once again, if C does not cut {b−1
1 , br}, then either (∆ ∪ Σ ∪ m ∪ Π,m) or

(m ∪ Π,m) will also reduce S. By Proposition 2.30, each of these Whitehead

automorphisms preserve Property (S). We may therefore assume that br ∈ C
and b−1

1 ∈ C ′.
Consider the quantities [∆, br; Σ ∪ Ω ∪ {b−1

1 ,m−1}]Γ(S) and [∆,Σ ∪ Ω ∪
{b−1

1 ,m−1}; br]Γ(S). Suppose that [∆, br; Σ∪Ω∪ {b−1
1 ,m−1}]Γ(S) ≤ [∆,Σ∪Ω∪
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(a) Γ(S) with (∆ ∪m ∪Π,m) reducing, m ∈ A±.

(b) Γ(S) with (∆ ∪m,m) reducing, m ∈ A±.

Figure 2.5: If (∆∪m∪Π,m) reduces S with m ∈ A±, then so must (∆∪m,m).

{b−1
1 ,m−1}; br]Γ(S). Moving ∆ into C ′ must therefore not increase the capacity

of the cut, and so φ′ = ({m, br} ∪Π,m) must be reducing for S.

Suppose that [∆, br; Σ∪Ω∪{b−1
r ,m−1}]Γ(S) > [∆,Σ∪Ω∪{b−1

1 ,m−1}; br]Γ(S).

A straightforward calculation then shows that the Whitehead automorphism

φ′ = (∆ ∪ br, br) reduces S.

Proposition 2.31. For i = 1, . . . , r, define φi := (∆ ∪ bi, bi). If φr re-

duces S, then for all i = 1, . . . , r − 1, the Whitehead automorphism φi re-

duces φi+1 · · ·φr(S). Furthermore, φ1 . . . φr(S) immerses onto a graph satisfy-

ing Property (S).

Proof. First notice that since S immerses onto T with property (S), then

φi+1 · · ·φr(S) immerses onto φi+1 · · ·φr(T ). Set Πi := B± − bi and Π−1
i :=

B± − b−1
i .

Suppose v ∈ V S has type (∆, br; Σ∪Πr). The vertex adjacent to v via the br

edge will then have hyperlink type (∆, br−1; Σ∪Πr−1) in φr(S). Moreover, this

is the only way in which a vertex of φr(S) may have type (∆, br−1; Σ ∪ Πr−1).

Therefore

[∆, br; Σ ∪Πr]Γ(S) = [∆, br−1; Σ ∪Πr−1]Γ(φr(S)).

Suppose v ∈ V S has type (∆,Σ ∪ Πr; br). Then v contributes an auxiliary

vertex with hyperlink of type (∆, b−1
r ; Σ∪Π−1

r ). Again, the only way a hyperlink
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(a) Γ(S) with (C,m) reducing, m ∈ B±.

(b) If p ≤ q, then ({br,m} ∪Π, br) is reducing.

(c) If p > q, then (∆ ∪ br, br) is reducing.

Figure 2.6: If (C,m) reduces S with m ∈ B±, then either (C ∩ B±,m) or
(∆ ∪ br, br) also reduces S.
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of type (∆, b−1
r ; Σ ∪Π−1

r ) may arise is as such an auxiliary vertex, so

[∆, b−1
r ; Σ ∪Π−1

r ]Γ(φr(S)) = [∆,Σ ∪Πr; br]Γ(S).

However, since a vertex of φr(S) whose hyperlink meets ∆ must have hyperlink

contained in ∆ ∪ {b−1
r , br−1}, a vertex of φr(S) is of type (∆, b−1

r ; Σ ∪ Π−1
r ) if

and only if it is of type (∆,Σ ∪Πr−1; br−1). We therefore have

[∆,Σ ∪Πr; br]Γ(S) = [∆,Σ ∪Πr−1; br−1]Γ(φr(S)).

Given that φr = (∆ ∪ br, br) reduces S, it follows immediately that

[∆, br; Σ ∪Πr]Γ(S) > [∆,Σ ∪Πr; br]Γ(S).

Using the above equivalences, we then have

[∆, br−1; Σ ∪Πr−1]Γ(φr(S)) > [∆,Σ ∪Πr−1; br−1]Γ(φr(S)),

which is equivalent to saying that φr−1 = (∆ ∪ br−1, br−1) reduces φr(S).

To see that φi reduces φi+1 · · ·φr(S), note that any hyperedge of Γ(φi+1 · · ·φr(S))

incident to ∆ is contained in ∆∪{b−1
i+1, bi}. A similar argument shows that any

vertex whose hyperlink contributes to capacity and not degree in φi+1 · · ·φr(S)

came from a vertex with hyperlink contributing to capacity and not degree in

φi+2 · · ·φr(S), and similarly for vertices contributing to degree and not capacity.

It then follows that φi reduces φi+1 · · ·φr(S).

Since the net effect of φ1 · · ·φr is to multiply the edges in ∆ by the entire

word b, it is immediate that φ1 · · ·φr(S) immerses onto T .

By Proposition 2.31, if φr = (∆ ∪ br, br) reduces S, then we have an en-

tire sequence of reducing Whitehead automorphisms which, when applied to

S, yield an X-digraph that again immerses onto a graph with Property (S).

Therefore, whenever S admits an immersion onto a graph satisfying Property

(S), some element of min(S) is guaranteed to also admit an immersion onto a

graph satisfying Property (S).

Corollary 2.32. Let F (X) be a free group with #X ≥ 3. Then ASP(SV) is

decidable.

Proof. If H ≤fg F (X) is such that φ(H) ≤ K ∈ SV, then SX(φ(H)) im-

merses onto an X-digraph satisfying Property (S). Therefore some element of

min(SX(φ(H))) immerses onto an X-digraph satisfying Property (S); equiva-

lently, some element of min(SX(φ(H))) has a principal quotient satisfying Prop-

erty (S). Since min(SX(φ(H))) = min(SX(H)), some element of min(SX(H))

has a principal quotient satisfying Property (S).

Our algorithm is therefore:
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Algorithm 2.33. Given H ≤fg F (X), we may determine whether or not there

exist φ ∈ AutF (X) and K ∈ SV such that φ(H) ≤ K as follows:

1. Construct the finite X-digraph SX(H).

2. Construct the finite set min(SX(H)).

3. Construct the finite set PQ(min(SX(H))) :=
⋃

M∈min(SX(H))

PQ(M).

4. For each P ∈ PQ(min(SX(H))), determine whether or not P satisfies

Property (S). If a P satisfying Property (S) is found, conclude that there

exist φ ∈ AutF (X) and K ∈ SV such that φ(H) ≤ K. Otherwise, con-

clude that no such φ ∈ AutF (X) and K ∈ SV exist.

Theorem 2.34. Let F (X) be a free group of finite rank at least three. There

is an algorithm to determine, given H ≤fg F (X), whether or not H is elliptic

in a nontrivial, very small, elementary cyclic splitting of F (X).

2.2.1.3 Loop vertex subgroups in higher rank

Let F (X) be a free group with rank at least three.

Recall that the set LV is the set of standard loop vertex subgroups; in other

words, groups of the form

〈U, uv〉

where U t {v} = X and u ∈ 〈U〉 is not a proper power.

Observe that SX(〈U, uv〉) has a unique v-edge, and that the complement of

this edge has at least one component of rank one.

Definition 2.35 (Property (L)). Let S be a Stallings graph. We say that S

satisfies Property (L) if

1. There is some x ∈ X for which SX(H) has a unique x-edge e; and

2. SX(H)− e has two connected components, at least of which is a rank one

graph.

We say that H ≤fg F (X) satisfies Property (L) if SX(H) does.

We note that SX(〈U, uv〉) satisfies Property (L). Suppose T is a cyclically

reduced subgraph of SX(〈U, uv〉). It is straightforward to verify that either T

satisfies Property (L) or omits some x ∈ X as an edge label.

Lemma 2.36. Let S be a cyclically reduced X-digraph satisfying property (L),

and let φ = (C,m) be a reducing Whitehead automorphism for S. Then either

φ(S) satisfies Property (L) or φ(S) omits some element of X as an edge label.
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Figure 2.7: A Stallings graph satisfying Property (L). The unlabeled edges have
labels different from v.

Proof. Let φ = (C,m) reduce S. Let v ∈ X be such that S has a unique v-edge

e and that S − e has two components, at least one of which is rank one.

First, suppose that m 6= v±. Then φ(S) also has a unique v-edge, since φ

changes only the number of m-edges.

Recall that φ(S) is constructed from S in three stages: subdivision, folding,

and leaf deletion. Let S1 and S2 be the connected components of S − e. Let ui

be the endpoint of e in Si for i = 1, 2.

We may construct φ(S) by first subdividing and folding each Si to obtain a

graph S′i. It is clear that, since φ is an automorphism, Si and S′i have the same

rank. We then connect the vertices u1 and u2 via an appropriately oriented

path labeled with φ(v), to obtain a graph T . By construction, T has at most

two unfolded vertices, u1 and u2, and has a unique v-edge which is also a cut

edge. Making the final two folds at u1 and u2 and deleting any leaves which T

may have introduces no new paths between the endpoints of the unique v-edge,

and so T satisfies Property (L).

Now suppose that m = v±. Since φ reduces S, it must reduce the number

of v-edges in S. Since S has exactly one v-edge, φ(S) must have no v-edges, so

φ(S) omits some element of X as an edge label.

Theorem 2.37. There is an algorithm to determine, given H ≤fg F (X),

whether or not there exists φ ∈ AutF (X) such that SX(φ(H)) satisfies Property

(L).

Proof. If there exists such a φ ∈ AutF (X) such that SX(φ(H)) satisfies Prop-

erty (L), then by Lemma 2.36, min(SX(φ(H)) = min(SX(H)) has an element

which satisfies Property (L). Since elements of min(SX(H)) represent sub-

groups which are automorphic images of H, the converse also holds. Therefore,

the algorithm is as follows:

Algorithm 2.38. Given H ≤fg F (X), we may determine whether or not there

exists φ ∈ AutF (X) such that SX(φ(H)) satisfies Property (L) as follows:
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1. Construct the finite graph SX(H).

2. Construct the finite set min(SX(H)).

3. If some element of the finite set min(SX(H)) satisfies Property (L), con-

clude that there exists φ ∈ AutF (X) such that SX(φ(H)) satisfies Prop-

erty (L). Otherwise, conclude that no such φ exists.

2.2.2 Genericity of Filling Elements

We will now turn our attention to the statistical properties of the set of filling

elements of a non-Abelian free group F (X). The following may be found in the

author’s preprint [50].

Definition 2.39 (Genericity [29]). Let S ⊆ T ⊆ F (X). We say that S is

T -generic in the sense of Arzhantseva-Ol’shanskĭı if

lim
R→∞

#(S ∩BR)

#(T ∩BR)
= 1,

where BR denotes the set of elements of F (X) whose X-length does not exceed

R.

If the above limit converges exponentially quickly, then we say that S is

exponentially T -generic. We say that S is (exponentially) T -negligable if its

complement T − S is (exponentially) T -generic.

2.2.2.1 The set TS′

In [29], Kapovich, Schupp, and Shpilrain construct an exponentially F (X)-

generic set with several important properties related to Whitehead’s algorithm.

Definition 2.40 (The set TS′). Let C ⊆ F (X) be the set of cyclically and

freely reduced elements of F (X). The set TS is the set of w ∈ C which are

not proper powers, whose cyclic length is increased by every non-inner type

II Whitehead automorphism, and whose conjugacy class is fixed by no type I

Whitehead automorphism. The set TS′ is the set of elements w ∈ F (X) whose

cyclic reductions are in TS.

Proposition 2.41 ([29, Theorem 8.5]). Let #X ≥ 2 and let TS′ ⊆ F (X) be

as above.

1. The set TS′ is exponentially F (X)-generic.

2. For any nontrivial w ∈ TS′, the stabilizer of w in AutF (X) is the infinite

cyclic group generated by right-conjugation by w.

3. The membership problem for TS′ is solvable in linear time.
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2.2.2.2 Filling elements

We first consider the case where w ∈ F (X) is elliptic in an elementary splitting

of F (X) over the trivial group.

Lemma 2.42. Let w ∈ F (X) be elliptic in an elementary splitting of F (X)

over a trivial group. Then w has non-cyclic stabilizer in AutF (X).

Proof. To say that w is elliptic in an elementary splitting of F (X) over a trivial

group is equivalent to saying that w is contained in a proper free factor of F (X).

Suppose that w is not a proper power. Let A tB be a basis for F (X) such

that #A,#B ≥ 1 and w ∈ 〈A〉. Let σ : F (X)→ F (X) be right-conjugation by

w. Define τ : F (X)→ F (X) via

τ(x) =

xw if x ∈ A,

x if x ∈ B,

where xw := w−1xw. Since w ∈ 〈A〉, τ is an automorphism of F (X). Both σ

and τ fix w. However, σ fixes exactly 〈w〉, while τ fixes 〈w,B〉. Thus σ must

be distinct from every power of τ , so the AutF (X) stabilizer of w cannot be

cyclic.

If w = zr where r > 1 and z is not a proper power, then z is elliptic in

an elementary cyclic splitting if and only if w is elliptic in that same splitting.

We may therefore pass from w to its root z, which is also elliptic in the given

splitting. The argument above shows that z has a non-cyclic stabilizer, and

since the stabilizer of w contains that of z, the element w must have non-cyclic

stabilizer in AutF (X) as well.

Since the set TS′ is an exponentially F (X)-generic set whose elements all

have cyclic stabilizers in AutF (X), any set consisting of elements with non-

cyclic stabilizers is exponentially F (X)-negligable.

Corollary 2.43. The set of elements of F (X) which lie in a proper free factor

of F (X) is exponentially F (X)-negligable.

Remark. This is a slight generalization of results appearing in [10] and [13],

which show that the set of primitive elements of F (X) is F (X)-negligable.

Lemma 2.44. Let w ∈ F (X) be elliptic in some elementary cyclic splitting of

F (X). Then w has a non-cyclic stabilizer in AutF (X).

Proof. Suppose that w is not a proper power.

Let w ∈ F (X) be elliptic in a segment of groups. Then there must exist a

basis AtB of F (X) such that #A ≥ 1, #B ≥ 2, b ∈ 〈B〉, and either w ∈ 〈A, b〉
or w ∈ 〈B〉. Note that if b is a proper power of some c ∈ F (X), then we would

have w ∈ 〈A, c〉, so w would remain elliptic in a splitting of the same type.
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Hence we may assume that b is not a proper power. Define an automorphism

σ : F (X)→ F (X) by

σ(y) =

y, if y ∈ A

yb, if y ∈ B.

Any power of σ fixes the rank 2 subgroup 〈A, b〉 pointwise and so also fixes

w, whereas right-conjugation by w fixes exactly the cyclic subgroup 〈w〉. Right-

conjugation by w must therefore differ from every power of σ, so the stabilizer

of w in AutF (X) cannot be cyclic.

If w ∈ 〈B〉, since #A ≥ 1, w lies in a proper free factor of F (X). Lemma

2.42 states that such an element has a non-cyclic stabilizer in AutF (X).

Let w ∈ F (X) be elliptic in a loop of groups. There then exists a basis

U t {v} of F (X) such that w ∈ 〈U, uv〉 for some u ∈ 〈U〉. We define the

homomorphism τ : F (X)→ F (X) by

τ(y) = y for y ∈ U

τ(v) = uv.

Since u ∈ 〈U〉, τ is an automorphism. In particular, τ fixes the subgroup

〈U, uv〉 pointwise, so no power of τ equals right-conjugation by x, which fixes

only the cyclic subgroup 〈w〉. Again, the stabilizer of w in AutF (X) therefore

cannot be cyclic.

We handle the case where w is a proper power in the same way it was handled

in the proof of Lemma 2.42.

Theorem 2.45. Let F (X) be a finitely generated non-Abelian free group.

1. Let w ∈ F (X). If the stabilizer of w in AutF (X) is infinite cyclic, then

w is filling.

2. The set of filling elements of F (X) is exponentially F (X)-generic.

3. There exists an exponentially F (X)-generic subset S of F (X) such that

every element of S is filling and the membership problem for S is solvable

in linear time.

Proof. Part 1 follows from Lemmas 2.42 and 2.44. Since every element of TS′

has a cyclic stabilizer in AutF (X) (Proposition 2.41, part 1), every element of

TS′ must be filling. Part 2 then follows from the fact that TS′ is exponentially

F (X)-generic (Proposition 2.41, part 2). Finally, part 3 follows from Proposition

2.41, part 3, taking S to be exactly TS′.
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Chapter 3

Residual Properties of
Limit Groups

3.1 Background

Let G be a group with a generating set X.

Definition 3.1 (Cayley graph). The Cayley graph of G with respect to the

generating set X, denoted Cayley(G,X), is an oriented graph with vertex set in

bijection with G. The edge set is in bijection with G×X, where the pair (g, x)

corresponds to an edge having initial vertex g, terminal vertex gx, and label x.

For a fixed set X, an X-word is a finite sequence of elements of X. By

X∗ we denote the set of all X-words, including the empty word. When X is a

generating set for a group G, then every element of X∗ represents an element

of G. Where it is necessary to distinguish between them, we will denote by w

the element of G represented by w ∈ X∗.
Recall that for an element g ∈ G, the word length with respect to X or

X-length, of g, denoted |g|X , is number of letters in the shortest X-word repre-

senting g. Equivalently, |g|X is the number of edges in the shortest path from

1 to g in Cayley(G,X).

For an integer R ≥ 0, the ball of radius R with respect to generating set X

is the set BR(G,X) = {g ∈ G : |g|X ≤ R}. Where G and X are clear from

context, we will denote this set simply by BR. Note that when X is a finite set,

then BR is also finite for any integer R ≥ 0.

Finally, for elements g, h ∈ G, the right-conjugate of h by g is the element

hg := g−1hg.

3.1.1 Γ-limit groups

Sela first introduced the notion of a limit group in [45] in his investigation of

groups having the elementary theory of a non-Abelian free group. Sela later

generalized this notion to that of a Γ-limit group, where Γ is some fixed torsion-

free hyperbolic group [46].

Definition 3.2 (Residual properties). Fix a group H. We say that a group G

is residually H if for any g ∈ G− 1, there exists a homomorphism φg : G→ H

such that φg(g) 6= 1. A group G is fully residually H if for any finite set S

of nontrivial elements of G, there exists a homomorphism φS : G → H such
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that 1 /∈ φS(S). The homomorphisms φg and φS are called H-discriminating

homomorphisms for g and S, respectively.

For the remainder of this chapter, Γ will denote a non-Abelian, torsion-free

hyperbolic group.

Definition 3.3 (Γ-limit group [46]). We say that a group G is a Γ-limit group

if G is finitely generated and fully residually Γ.

A trivial example of a Γ-limit group is Γ itself. For a more complicated ex-

ample, it is well-known that fundamental groups of closed, orientable hyperbolic

surfaces are F2-limit groups, where F2 denotes the free group of rank two.

We may produce new Γ-limit groups from existing limit groups through a

construction called an extension of a centralizer. Extensions of centralizers will

provide the basis for our analysis of the residual properties of limit groups.

Let G be a group, and given g ∈ G, let CG(u) = {g ∈ G : ug = u} denote

the centralizer of u in G.

Definition 3.4 (Extension of a centralizer [32]). Suppose that for some u ∈ G,

the centralizer C = CG(u) is Abelian and that φ : C → A is injective for some

Abelian group A. We call the amalgamated product

G(u,A) := G ∗C=φ(C) A

the extension of the centralizer C by A with respect to φ. We will call the

extension direct if A = φ(C)×B for some subgroup B ≤ A. A direct extension

is free of rank n if B ∼= Zn.

Having given the most general definition, we will now assume that all ex-

tensions of centralizers are free and of finite rank. We will omit reference to the

homomorphism φ when it is clear from context.

The following proposition is well-known and will serve as the starting point

for our investigation of the residual properties of Γ-limit groups.

Proposition 3.5. The extension of centralizer G(u,A) is a G-limit group.

Proposition 3.6 ([32, Corollary 3]). A maximal Abelian subgroup of G(u,A)

is either conjugate to a subgroup of G, conjugate to A, or cyclic.

Definition 3.7 (Iterated extension of centralizers). Let G be a group. An

iterated extension of centralizers over G is a group H for which there exists a

finite series

G = G0 ≤ G1 ≤ · · · ≤ Gk = H

such that for i = 0, . . . , k − 1, each Gi+1 is an extension of a centralizer of Gi.

Since each Gi+1 is fully residually Gi, we immediately obtain the following:

Proposition 3.8. An iterated extension of centralizers over G is fully residually

G.
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The following theorem of Kharlampovich and Myasnikov will allow us to ap-

proach the residual properties of arbitrary Γ-limit groups by considering iterated

extensions of centralizers.

Proposition 3.9 ([31, Theorems D, E]). Every Γ-limit group embeds into some

iterated extension of centralizers over Γ.

Recall that a subgroup H ≤ G is malnormal if H∩Hg = 1 for all g ∈ G−H.

Definition 3.10 (CSA group [32]). A group G is called a CSA-group if every

maximal Abelian subgroup of G is malnormal. G is called a CSA*-group if it is

a CSA-group and has no elements of order 2.

We summarize some of the important properties of CSA- and CSA*-groups.

Proposition 3.11 ([32]).

1. Any torsion-free hyperbolic group is a CSA*-group.

2. The class of CSA*-groups is closed under iterated extensions of centraliz-

ers.

3. Let G be a CSA-group and let A ≤ G be a maximal Abelian subgroup.

Then there is u ∈ G for which A = CG(u).

4. Let G be a CSA-group. For any maximal Abelian subgroup A, NG(A) = A.

5. Let G be a CSA-group. Then commutativity is a transitive relation on the

set G− 1.

3.1.2 Relative hyperbolicity

The following discussion is taken from Osin [42] with some minor modifications

to notation inspired by Hruska [23].

By a pair (G,P) we denote a group G with a distinguished set of subgroups

P = {Pλ}λ∈Λ. A subgroup H ≤ G is called parabolic if it is conjugate into some

P ∈ P, and hyperbolic otherwise. We call the conjugates of the elements of P
maximal parabolic subgroups.

Definition 3.12 (Relative generating set). Let P =
⋃
λ∈Λ

(Pλ − {1}). We say

that X ⊆ G is a relative generating set for (G,P) if G is generated by X ∪ P.

If X is finite, we call it a finite relative generating set.

Definition 3.13 (Relative presentation). We may consider G as a quotient of

the group

F := (∗λ∈ΛPλ) ∗ F (X),

where F (X) is the free group with basis X. Note that the group F is generated

by X ∪ P.
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For each λ ∈ Λ, let Sλ denote all the words in (Pλ− 1)∗ which represent the

identity in Pλ. Further denote

S :=
⋃
λ∈Λ

Sλ.

Let R ⊆ (X ∪ P)∗ be such that the normal closure of R generates the kernel

of the homomorphism F → G. We say that (G,P) has the relative presentation

〈X,P | R,S〉. (3.1)

If X and R are finite, then we say that the relative presentation (3.1) is finite.

If (G,P) has a finite relative presentation, we say that (G,P) is finitely relatively

presented.

Suppose that (G,P) has a relative presentation as in (3.1). If W ∈ (X ∪ P)∗

represents the identity in G, then there is an expression

W =F

k∏
i=1

Rfii (3.2)

with equality in the group F and such that Ri ∈ R and fi ∈ F for each i.

Definition 3.14 (Relative isoperimetric function). Let θ : N→ N. We say that

θ is a relative isoperimetric function for (G,P) if there exists a finite relative

presentation with X and R as above such that for any W ∈ (X ∪ P)∗ with

|W |X∪P ≤ n, there exists an expression of the form (3.2) such that k ≤ θ(n).

Definition 3.15 (Relative Dehn function). We call the smallest relative isoperi-

metric function for a relative presentation the relative Dehn function of that

relative presentation. If a relative presentation has no finite relative isoperi-

metric function, then we say that the relative Dehn function for that relative

presentation is not well-defined.

Definition 3.16 (Relatively hyperbolic group). We say that (G,P) is a rela-

tively hyperbolic group if (G,P) has a finite relative presentation with a well-

defined, linear relative Dehn function.

3.1.3 Iterated extensions of centralizers over Γ are

relatively hyperbolic

We will now fix a non-Abelian, torsion-free hyperbolic group Γ. Our goal is next

to show that an iterated extension of centralizers over Γ is hyperbolic relative

to its maximal non-cyclic Abelian subgroups. We begin by noting the following

results which may both be found in [17].
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Proposition 3.17 ([17]). Let (G,P) be a torsion-free relatively hyperbolic group.

Let U be a cyclic hyperbolic subgroup such that NG(U) = U . Then (G,P∪{U})
is also a torsion-free relatively hyperbolic group.

Proposition 3.18 ([17]). Let (G1,P1) and (G2,P2) be relatively hyperbolic

groups. Let P ∈ P1, and suppose that P is isomorphic to a parabolic sub-

group of (G2,P2). Let G = G1 ∗P G2. Then (G, (P1 − {P}) ∪ P2)) is relatively

hyperbolic.

Corollary 3.19. An iterated extension of centralizers over a torsion-free hyper-

bolic group Γ is hyperbolic relative a set of representatives of conjugacy classes

of maximal non-cyclic Abelian subgroups.

Proof. We induct on k, the number of steps in the iterated extension. If k = 0,

Gk = Γ is hyperbolic and we are done.

Suppose that (Gk,Pk) is relatively hyperbolic, where Pk is a set of repre-

sentatives of conjugacy classes of maximal non-cyclic Abelian subgroups of Gk.

Without loss of generality, we may assume that Gk+1 is constructed by extend-

ing the centralizer C(u) = CGk(u) of a hyperbolic element u ∈ Gk by a rank n

free Abelian group A, so that

Gk+1 = Gk ∗C(u) A.

Since u is hyperbolic in the CSA-group (Gk,Pk), the centralizer C(u) is

maximal Abelian and NGk(C(u)) = C(u) by Proposition 3.11. Moreover, C(u)

is cyclic; otherwise, u would be contained in a maximal non-cyclic Abelian sub-

group of (Gk,Pk), contradicting that u is hyperbolic. Therefore, by Proposition

3.17, (Gk,Pk ∪ {C(u)}) is relatively hyperbolic. The free Abelian group A may

be viewed as the relatively hyperbolic group (A, {A}), so C(u) ≤ A is parabolic.

By Proposition 3.18, (Gk+1,Pk∪{A}) is therefore a relatively hyperbolic group.

Finally, Proposition 3.6 states that every maximal non-cyclic Abelian subgroup

of Gk+1 is conjugate to some member of Pk ∪{A}, so Gk+1 is indeed hyperbolic

relative to its maximal non-cyclic Abelian subgroups.

3.1.4 Relative hyperbolic geometry

Fix a relatively hyperbolic group (G,P) with finite relative generating set X.

We call Cayley(G,X ∪ P) the relative Cayley graph.

Recall that a metric space (X, dX) is δ-hyperbolic, or simply hyperbolic, if it

satisfies the thin triangles condition: for any geodesic triangle with sides α, β, γ,

every point of α is δ-close in the metric dX to some point of β ∪ γ.

Proposition 3.20 ([42]). Let (G,P) be a relatively hyperbolic group. Then for

any finite relative generating set X, the relative Cayley graph Cayley(G,X ∪ P)

is hyperbolic.
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We have two distinct metrics on Cayley(G,X ∪ P). The relative metric is

denoted dX∪P , and for u, v ∈ Cayley(G,X ∪ P), we define dX∪P(u, v) to be the

least number of edges in any path in Cayley(G,X ∪ P) having u and v as end-

points. The absolute metric is denoted dX , and for u, v ∈ Cayley(G,X ∪ P),

we define dX(u, v) to be the least number of edges in any X-labeled path in

Cayley(G,X ∪ P) having u and v as endpoints. Note that while Cayley(G,X ∪ P)

is hyperbolic with respect to the relative metric, it will generally not be hyper-

bolic with respect to the absolute metric.

A relative geodesic is an isometry p : [0, L] → (Cayley(G,X ∪ P), dX∪P),

where [0, L] is a closed interval of real numbers. We say that the endpoints of p

are p(0) and p(L). Since every point Cayley(G,X ∪ P) is a distance at most 1

from some vertex, we will assume that L is an integer and that p maps integers

to vertices. For u, v ∈ Cayley(G,X ∪ P), we denote by [u, v]X∪P a relative

geodesic with endpoints u and v.

Similarly, an absolute geodesic is an isometry p : [0, L]→ (Cayley(G,X ∪ P), dX).

We denote an absolute geodesic having u and v as endpoints by [u, v]X .

A relative (absolute) broken geodesic is a finite concatenation of relative (ab-

solute) geodesics. For a finite collection {a1, . . . , ak} of points in Cayley(G,X ∪ P),

we will denote by [a1, a2, . . . , ak]X∪P a broken relative geodesic which is the

union of relative geodesics

k−1⋃
i=1

[ai, ai+1]X∪P . Likewise, [a1, a2, . . . , ak]X denotes

the analogous broken absolute geodesic.

The length of a path α in Cayley(G,X ∪ P), denoted len(α), is the number

of edges in the path. Note that len([a, b]X∪P) = dX∪P(a, b) and len([a, b]X) =

dX(a, b), for instance.

Definition 3.21 (Fellow traveling). Let p, q : [0, L]→ (Cayley(G,X ∪ P), dX∪P)

be relative geodesics. We say that p and q are relative (absolute) k-fellow travel-

ers if dX∪P(p(i), q(i)) ≤ k (resp. dX(p(i), q(i)) ≤ k) for every integer i in [0, L].

We say that p and q relatively (absolutely) k-fellow travel for a length of L′ if

p|[0,L′] and q|[0,L′] are relative (absolute) k-fellow travelers.

Remark. Our notion of k-fellow traveling is often referred to in the literature

as synchronous k-fellow traveling, to distinguish it from asynchronouse k-fellow

traveling, which does not respect the parameterization of the geodesics. We will

not require the notion of asynchronous k-fellow traveling here.

Definition 3.22 (Relatively quasiconvex). A subgroup H of (G,P) is called

relatively quasiconvex if there exists a constant ε > 0 such that the following

holds. Let g, h ∈ H and let [g, h]X∪P be an arbitrary relative geodesic in

Cayley(G,X ∪ P). Then for every vertex v ∈ [g, h]X∪P , there exists a vertex

u ∈ H such that

dX(v, u) ≤ ε.
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Definition 3.23 (Strongly relatively quasiconvex). A relatively quasiconvex

subgroup H of (G,P) is called strongly relatively quasiconvex if the intersection

H ∩ P g is finite for any g ∈ G and P ∈ P.

Osin notes in Proposition 4.10 of [42] that the relative and strong relative

quasiconvexity properties are invariant with respect to choice of finite generating

set for G.

Proposition 3.24 ([42, 4.19]). Let (G,P) be a relatively hyperbolic group, and

let u ∈ G be a hyperbolic element. Then the centralizer CG(u) is a strongly

relatively quasiconvex subgroup of G.

Let λ > 0 and c ≥ 0. Recall that a map of metric spaces f : (X, dX) →
(Y, dY ) is a (λ, c)-quasi-isometric embedding if for all a, b ∈ X, we have

1

λ
dX(a, b)− c ≤ dY

(
f(a), f(b)

)
≤ λdX(a, b) + c.

Proposition 3.25 ([42]). Every strongly relatively quasiconvex subgroup of

(G,P) is quasi-isometrically embedded in Cayley(G,P).

Proposition 3.26 ([42]). Let u be a hyperbolic element of (G,P). Then CG(u)

is cyclic.

Proposition 3.27 ([42]). For any hyperbolic u ∈ (G,P) generating its own

centralizer, there are constants λu > 0, cu ≥ 0 such that

1

λu
|n| − cu ≤ dX∪P(1, un) ≤ λu|n|+ cu (3.3)

for all n ∈ Z.

3.2 Main Results

3.2.1 Relative hyperbolic geometry

We once again fix a relatively hyperbolic group (G,P) with finite relative gener-

ating setX such that the relative Cayley graph Cayley(G,X ∪ P) is δ-hyperbolic.

Lemma 3.28. Let u ∈ G be a hyperbolic element generating its own centralizer

U = CG(u). There is a function B0 : N→ N depending only on (G,P), X, and

u such that the following holds.

Let g ∈ G − U . Let p, q ∈ U and s, t ∈ gU . For any p′, q′ ∈ [p, q]X∪P

and s′, t′ ∈ [s, t]X∪P such that [p′, q′]X∪P and [s′, t′]X∪P are absolute k-fellow

travelers, then

dX∪P(p′, q′), dX∪P(s′, t′) ≤ B0(k).
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Figure 3.1: Producing the relation w−1uaw = ub in the proof of Lemma 3.28

Proof. Set B0(k) = (2ε+ 1)(2|X|)k+2ε, and suppose that for some nonnegative

integer k, there exist p, p′, q, q′, s, s′, t, and t′ which satisfy the hypotheses but

such that dX∪P(p′, q′) > B0(k).

We may find (2|X|)k+2ε vertices, denoted xi, on [p′, q′]X∪P such that if

i 6= j then dX∪P(xi, xj) > 2ε. To each xi we may associate a umi ∈ U such

that dX(xi, yi) ≤ ε, since U is relatively quasiconvex. Note that if i 6= j,

then mi 6= mj ; otherwise, we would have dX∪P(xi, xj) ≤ dX(xi, xj) ≤ 2ε,

contradicting the choice of the xi.

Since [p′, q′]X∪P and [s′, t′]X∪P are absolute k-fellow travelers, for each xi

there is a vertex yi ∈ [s′, t′]X∪P such that dX(xi, yi) ≤ k. Since U is ε-

quasiconvex, for each yi there is guni ∈ gU such that dX(yi, gu
ni) ≤ ε.

To each point xi, we associate the broken absolute geodesic [umi , xi, yi, gu
ni ]X .

The length of such a path is at most k+2ε, and there are (2|X|)k+2ε such distinct

paths, since no two of these paths have the same endpoint umi .

However, there are strictly fewer than (2|X|)k+2ε distinct path labels for

paths of length at most k + 2ε. Therefore, there are indices k, l such that

[umk , xk, yk, gu
nk ]X and [uml , xl, yl, gu

nl ]X have the same label, w. As the end-

points of these w-labeled paths differ by elements of U , we obtain a relation of

the form w−1uaw = ub for some integers a, b.

Since G is relatively hyperbolic, we must have that a = ±b [42, Corollary

4.21]. Therefore, w2 commutes with ua. Since G is a CSA-group and is therefore

commutative-transitive (Proposition 3.11), w commutes with u and hence must

be a power of u. This contradicts that U and gU are distinct cosets of U .

Lemma 3.29. Let u ∈ G be a hyperbolic element generating a maximal cyclic

subgroup U . There is a function E0 : N→ N depending only on (G,P), X, and

u such that the following holds.

For all m,n ∈ Z with m < 0 < n, the relative geodesics [1, um]X∪P and

[1, un]X∪P relatively k-fellow travel for a length of at most E0(k).

Proof. If not, since U is relatively quasiconvex and therefore quasi-isometrically

embedded in Cayley(G,X ∪ P), there would have to be arbitrarily large powers
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Figure 3.2: Finding a shorter coset representative in Lemma 3.30

of u which have relative length bounded above by a constant. However, this

contradicts that U is quasi-isometrically embedded.

Let S be some set of elements of (G,P). We say that g ∈ S is an X ∪ P-

shortest element of S if |g|X∪P ≤ |h|X∪P for every h ∈ S.

Lemma 3.30. Let u ∈ G generate a cyclic hyperbolic subgroup U . There is a

function C0 : N→ N depending only on (G,P), X, and u such that the following

holds.

Let h be an X ∪ P-shortest element of hU . Then for any integer n, the

geodesics [h, 1]X∪P and [h, hun]X∪P absolutely k-fellow travel for no longer than

C0(k).

Proof. Suppose that for fixed k and n, [h, 1]X∪P and [h, hun]X∪P absolutely

k-fellow travel for longer than k + ε. Then there is a vertex p ∈ [h, 1]X∪P with

dX∪P(h, p) > k+ε and such that there exists w ∈ [h, hun]X∪P with dX(p, q) ≤ k.

Since U is relatively quasiconvex with constant ε, there is a vertex r ∈ hU with

dX(q, r) ≤ ε. Then [1, p, q, r]X∪P is a broken relative geodesic of length at most

dX∪P(1, p)+k+ ε < dX∪P(1, h), contradicting that h among the dX∪P -shortest

elements of hU . (See Figure 3.2.)

Remark. The analogous statement holds for elements h which areX ∪ P-shortest

in the coset Uh. Moreover, also note that if h is X ∪ P-shortest in UhU , then

h is X ∪ P-shortest in both Uh and hU .

Proposition 3.31 ([41]). Let (G,P) be relatively hyperbolic with finite relative

generating set X. There exist constants ρ, σ > 0 having the following property.

Let ∆ be a triangle with vertices x, y, z whose sides [x, y]X∪P , [y, z]X∪P , [x, z]X∪P

are relative geodesics in Cayley(G,X ∪ P). Suppose that u and v are vertices

on [x, y]X∪P and [x, z]X∪P respectively such that

dX∪P(x, u) = dX∪P(x, v)
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Figure 3.3: A relative geodesic triangle. The shaded lines join pairs of points on
the triangle which are ρ-close in the absolute metric. The shaded area represents
the region where the absolute ρ-fellow traveling property may fail.

and

dX∪P(u, y) + dX∪P(v, z) ≥ dX∪P(y, z) + σ.

Then

dX(u, v) ≤ ρ.

Recall that if x, y, and z are vertices in Cayley(G,X ∪ P), then the Gromov

inner product is defined as

〈y|z〉x :=
1

2
(dX∪P(x, y) + dX∪P(x, z)− dX∪P(y, z)).

Corollary 3.32. Let ρ, σ, x, y, z be as in Proposition 3.31. Then adjacent sides

[x, y]X∪P and [x, z]X∪P absolutely ρ-fellow travel for length at least 〈y|z〉x−σ/2.

Proof. Let u ∈ [x, y]X∪P and v ∈ [x, z]X∪P be such that dX∪P(x, u) = dX∪P(x, v) =

` and dX∪P(u, y) + dX∪P(v, z) ≥ dX∪P(y, z) + σ. We then have

dX∪P(u, y) + dX∪P(v, z) = dX∪P(x, y) + dX∪P(x, z)− 2`.

Further,

dX∪P(x, y) + dX∪P(x, z)− 2` ≥ dX∪P(y, z) + σ

dX∪P(x, y) + dX∪P(x, z)− dX∪P(y, z)− 2` ≥ σ

2〈y|z〉x − 2` ≥ σ

〈y|z〉x − σ/2 ≥ `.

Therefore, if ` ≤ 〈y|z〉x−σ/2, then u and v satisfy the hypotheses of Propo-

sition 3.31 and are therefore ρ-close in the absolute metric.

For a given relative geodesic triangle with vertices x, y, z, the center of the

side [x, y]X∪P is the point c ∈ [x, y]X∪P such that dX∪P(x, c) = 〈y|z〉x and

dX∪P(y, x) = 〈x|z〉y.
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Figure 3.4: A decomposition of Q and one of its sides.

Lemma 3.33. Let u ∈ G generate a maximal cyclic hyperbolic subgroup U . Let

g ∈ G, and let h ∈ G be a X ∪ P-shortest element of UgU . There is a constant

F0 depending only on (G,P), X, and u such that the following holds.

Suppose that we have m and n such that g = umhun. Then [1, um]X∪P

and [umh, umhun]X∪P each absolutely 2ρ-fellow travel [1, umhun]X∪P from their

respective shared endpoints for all but at most F0 of their length.

Proof. LetQ be the relative geodesic quadrilateral with sides [1, um]X∪P , [um, umh]X∪P ,

[umh, umhun]X∪P , and [1, umhun]X∪P .

By drawing a relative geodesic diagonal forQ, we obtain two relative geodesic

triangles. As in Proposition 3.31, every pair of sides in either of these triangles

absolutely ρ-fellow travel from their common vertex for a length of at least their

Gromov inner product minus σ/2.

We extend the fellow-traveling property of the sides of these triangles to

the sides of Q. (See Figure 3.4 for one configuration of such an extension;

the shaded area represents the area near the centers of the triangles where

absolute fellow traveling is not guaranteed.) We see that there exist vertices

a, a′, b, b′ ∈ [1, um]X∪P such that:

1. The subpath [1, a]X∪P and some initial subpath of [1, umhun]X∪P abso-

lutely 2ρ-fellow travel;

2. The subpath [um, b]X∪P and some initial subpath of [um, umh]X∪P abso-

lutely 2ρ-fellow travel;

3. The subpath [a′, b′]X∪P absolutely 2ρ-fellow travels some subpath of [umhun, umh]X∪P ;

and

4. The relative lengths of the subpaths [a, a′]X∪P and [b′, b]X∪P do not exceed

σ.
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We are interested in the total length of the subpath [a, um]X∪P , since, as

noted, [1, a]X∪P fellow travels with a subpath of [1, umhun]X∪P . Observation

(2) above implies that the length of [um, b]X∪P is at most C0(2ρ), by Lemma

3.30. Observation (3) implies that the length of [a′, b′]X∪P is at most B0(2ρ),

by Lemma 3.28.

Consequently, we have that

len([a, um]X∪P) ≤ B0(2ρ) + C0(2ρ) + 2σ =: F0.

Lemma 3.34. Let u, g, h,m, and n be as in Lemma 3.33. Then we have

len([1, um, umh, umhun]X∪P) ≤ 3|g|X∪P + 2F0.

Proof. The lengths of the subpaths [1, um]X∪P and [umh, umhun]X∪P are bounded

above by |g|X∪P + F0 by Lemma 3.33. Since h is a X ∪ P-shortest representa-

tive of UgU , we have |h|X∪P ≤ |g|X∪P , and so the length of [um, umh]X∪P is

at most |g|X∪P .

Let r = (r0, r1, . . . , rk) be a tuple of integers. We define

min(r) := min
i
|ri|.

Lemma 3.35. Let (G,P) be a relatively hyperbolic group with finite generating

set X, and let U be a subgroup generated by a hyperbolic element u ∈ G. There

exists a positive integer N0 depending only on (G,P), X, and u such that the

following holds.

Let h = (h1, h2, . . . , hk) be a tuple of elements of X such that each hi is

X ∪ P-shortest in the double coset UhiU 6= U , and let r = (r0, r1, . . . , rk) be a

tuple of integers. Define

wh(r) := ur0h1u
r1h2u

r2 · · ·urk−1hku
rk .

Then wh(r) 6= 1 in G for all r such that min(r) > N0.

Proof. Let α be a path in Cayley(G,X ∪ P) labeled by

(ur0 ∗ h1 ∗ ubr1/2c) ∗ (udr1/2e ∗ h2 ∗ ubr2/2c) ∗ · · · ∗ (udrk−1/2e ∗ hk ∗ urk),

where ∗ denotes concatenation of words (as opposed to concatenation followed

by free reduction) and b·c, d·e are the usual floor and ceiling functions. Let

α1 be the subpath labeled by ur0 ∗ h1 ∗ ubr1/2c and αk the subpath labeled by

udrk−1/2e ∗ hk ∗ urk , and for each i = 2, . . . , k − 1, let αi be the subpath of α

labeled by udri−1/2e ∗ hi ∗ ubri/2c. The path α is then the concatenation of the

αi. Further define the vertices vi−1 and vi to be the endpoints of αi for each i.
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Figure 3.5: The decomposition of α.

Finally, for each i, define βi to be a relative geodesic [vi−1, vi]X∪P , and define

β to be the broken relative geodesic which is the concatenation of the βi. (See

Figure 3.5.)

Lemma 3.36. For each i and n we have

2

λu
bmin(r)/2c − 2cu − 2F0 ≤ len(βi). (3.4)

Proof. This follows directly from Proposition 3.27 and Lemma 3.33.

Proposition 3.37. For all r with

bmin(r)/2c > λu(E0(4ρ+ δ) + F0 + cu) (3.5)

and 1 ≤ i < k, βi and βi+1 relatively δ-fellow travel for a length of at most

E0(4ρ+ δ) from their common endpoint vi.

Proof. Suppose there is an r satisfying (3.5) and i such that βi and βi+1 rela-

tively δ-fellow travel for a length longer than E0(4ρ+δ). By construction, there

are relative geodesics γi−1 and γi starting at vi labeled by u−bri/2c and udri/2e

respectively. These relative geodesics absolutely 2ρ-fellow travel βi and βi+1 for

all but at most F0 of their length. By choice of r and Corollary 3.27, γj and βj

are absolute 2ρ-fellow travelers for a length of at least E0(4ρ+δ) for j = i, i+1.

However, if βi and βi+1 are relative δ-fellow travelers for longer than E0(4ρ+

δ), then γi and γi+1 are relative (4ρ+δ)-fellow travelers for longer than E0(4ρ+

δ), contradicting Lemma 3.29. (See Figure 3.6.)

Note that in a relative geodesic triangle, adjacent sides relatively δ-fellow

travel for a length of at least the Gromov inner product. This fellow traveling

property allows us to show that the concatenation of relative geodesic segments

is a quasi-geodesic with parameters depending on the Gromov inner product.
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Figure 3.6: βi and βi+1 cannot fellow travel too far without causing γi and γi+1

to fellow travel.

Proposition 3.38. Let x, y, z ∈ Cayley(G,X ∪ P). Then every subpath of the

broken relative geodesic [x, y, z]X∪P is a (1, 2〈x|z〉y + 2δ)-quasigeodesic.

Proposition 3.38 shows that for r satisfying (3.5), every adjacent pair of

relative geodesics βi and βi+1 is a relative (1, 2E0(4ρ+ δ) + 2δ)-quasigeodesic.

Proposition 3.39 ([33, Lemma 4.8]). Let Y be a δ-hyperbolic space. Given

quasigeodesity constants (λ, c), there exist κ, λ′, and c′ such that every k-local

(λ, c)-quasigeodesic is a (λ′, c′)-quasigeodesic.

Proposition 3.40. Let κ, λ′, c′ be such that in Cayley(G,X ∪ P), every κ-local

(1, 2E0(4ρ+ δ) + 2δ)-quasigeodesic is a (λ′, c′)-quasigeodesic. Let r satisfy (3.5)

and further assume that

bmin(r)/2c ≥ λu
(κ

2
+ cu + F0

)
. (3.6)

Then β is a (λ′, c′)-quasigeodesic.

Proof. By Proposition 3.38, for every i, the broken geodesic βi ∪ βi+1 is a

(1, 2E0(4ρ+ δ)+2δ)-quasigeodesic. The inequality (3.6) implies that the length

of each βi is larger than κ. Every subpath of β of length at most κ is contained in

βi∪βi+1 for some i, and is therefore a relative (1, 2E0(4ρ+δ)+2δ)-quasigeodesic.

The conclusion then follows from applying Proposition .

Now let r be such that

bmin(r)/2c > λu

(
c′

2
+ cu + F0

)
. (3.7)

Then the length of each βi is at least c′, and so the length of β is at least c′.

The broken relative geodesic β, which is also a (λ′, c′)-quasigeodesic, therefore

has necessarily distinct endpoints. Since α has the same endpoints as β and is

labeled by wh(r), we have wh(r) 6= 1 in G.

Let N−1 be an integer larger than the right hand side in the inequalities

(3.5), (3.6), and (3.7). Pick an integer N0 such that N0 > 2N−1 + 2. Then
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for all (r) with min(r) > N0, we have that bmin(r)/2c > N−1. Thus N0 is the

promised constant.

Lemma 3.41. Let (G,P) be a relatively hyperbolic group with finite generating

set X, and let U be a subgroup generated by a hyperbolic element u ∈ G. There

is a linear function N1 : N→ N such that the following holds.

Let g = (g1, g2, . . . , gk) be a tuple of X-words such that

k∑
i=1

|gi|X ≤ R and

gi ∈ G− U for all i. For any tuple of integers r = (r0, . . . , rk), define

wg(r) := ur0g1u
r1g2u

r2 · · ·urk−1gku
rk . (3.8)

Then we have wg(r) 6= 1 in G for all r such that min(r) > N1(R).

Proof. Consider a single gi. We may write gi = usihiu
ti with hi a X ∪ P-

shortest element of UgiU . By Lemma 3.33, we have

|usi |X∪P , |uti |X∪P ≤ |gi|X + F0 ≤ R+ F0.

Using the constants λu and cu from Proposition 3.27, define

N1(R) := N0 + 2λu(R+ F0 + cu),

where N0 is the constant from Theorem 3.35. Note that λu(R + F0 + cu) >

|si|, |ti| for all i.

Let r = (r0, r1, . . . , rk) be a tuple of integers with min(r) > N1(R). Then

we have

wg(r) = ur0g1u
r1g2u

r2 · · ·urk−1gku
rk

= ur0(us1h1u
t1)ur1(us2h2u

t2)ur2 · · ·urk−1(uskhku
tk)urk)

= (ur0+s1)h1(ut1+r1+s2)h2(ut2+r2+s3) · · · (utk−1+rk−1+sk)hk(utk+rk)

(3.9)

where every exponent of u appearing in (3.9) has magnitude at least N0. By

Theorem 3.35, wg(r) is nontrivial in G.

Lemma 3.42. Let (G,P) be a relatively hyperbolic group with finite generating

set X, and let U be a subgroup generated by a hyperbolic element u ∈ G. There

is a linear function N2 : N→ N such that the following holds.

Let g = (g1, g2, . . . , gk) be a tuple of X-words, and let g0, gk+1 be X-words

such that

k+1∑
i=0

|gi|X ≤ R and gi ∈ G−U for all i. Let r = (r0, . . . , rk) be a tuple

of integers and define

wg(r) = ur0g1u
r1g2u

r2 · · ·urk−1gku
rk .
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Then for all r such that min(r) > N2(R), the elements

wg(r),

g0wg(r),

wg(r)gk+1, and

g0wg(r)gk+1

are all nontrivial in G.

Proof. Note that if

min(r) > 2λu (2λ′R+ cu + F0 + c′) + 2,

then

bmin(r)/2c > λu (2λ′R+ cu + F0 + c′)

and therefore |wg(r)|X∪P > 2R. Define

N2(R) := N1(R) + 2λu (2λ′R+ cu + F0 + c′) + 2,

and note that since N1 is linear in R, so is N2.

Then for all r with min(r) > N2(R), we have |wg(r)|X∪P > 2R ≥ |g0|X∪P +

|gk+1|X∪P , and so none of the promised words are trivial in G by Lemma 3.41.

3.2.2 Discriminating complexity

Let H be a finitely generated group, and let G be a fully residually H group.

Let X and Y be fixed finite generating sets for G and H, respectively.

Definition 3.43 (Complexity). Let φ : G → H. The complexity of φ with

respect to the finite generating sets X and Y is

|φ|YX := max
x∈X
|φ(x)|Y .

The following proposition is straightforward to verify.

Lemma 3.44. Let φ : G → H and θ : H → K and let X, Y , and Z be finite

generating sets for G,H, and K, respectively. Then

|θ ◦ φ|ZX ≤ |φ|YX · |θ|ZY .

Remark. Using the above convention, if X ′ and Y ′ are alternate finite generating

sets for G and H, respectively, we have

|φ|Y
′

X′ ≤ | Id |XX′ · |φ|YX · | Id |Y
′

Y .
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Since G is fully residually H, for every R ∈ N, there is a homomorphism φR

which H-discriminates the finite set BR(G,X)− 1.

Definition 3.45 (Discriminating complexity). Define a function CH,YG,X : N→ N
via

CH,YG,X (R) := min{|φ|YX : (φ : G→ H) discriminates (BR(G,X)− 1)}.

The function CH,YG,X so defined is called the H-discriminating complexity of G

with respect to finite generating sets X and Y .

We will be interested in asymptotic classes of the discriminating complexity

for a given group. To this end, if f, g : N → N, we say that f is asymptotically

dominated by g, denoted f � g, if there is a constant K such that for all n,

f(R) ≤ Kg(KR) +K.

We say that f is asymptotically equivalent to g, denoted f ≈ g, if f � g and

g � f .

Lemma 3.44 and the remark following it imply the following proposition.

Proposition 3.46. Let G be a fully residually H group. Let X,X ′ be finite

generating sets for G, and let Y, Y ′ be finite generating sets for H. Then we

have

CH,YG,X � C
H,Y ′

G,X′ .

As a result of the above proposition, the asymptotic class of theH-discriminating

complexity of G is invariant with respect to choice of finite generating set for

both G and H. Therefore, we will omit reference to these generating sets and

simply indicate (the asymptotic class of) the H-discriminating complexity of G

by CHG .

In order to study H-discriminating complexity, we will find it useful to estab-

lish some notation for sequences of homomorphisms which discriminate larger

and larger balls in a given group.

Definition 3.47 (Discriminating sequence). Let Φ = (φR : G → H)R∈N be a

sequence of homomorphisms. If for each R ∈ N, the set BR(G,X) − 1 is H-

discriminated by φR, we say that Φ is a H-discriminating sequence with respect

to the finite generating set X.

It is straightforward to see that a finitely generated groupG is fully residually

H if and only if G admits an H-discriminating sequence with respect to some

(every) finite generating set.

We also make the following observation. Let X and X ′ be finite generating

sets forG and let Φ be anH-discriminating sequence forG with respect toX. By

passing to an arithmetic subsequence of Φ, we may obtain an H-discriminating

sequence with respect toX ′, and the complexity of this subsequence is equivalent

to that of Φ.
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Definition 3.48 (Complexity function). Given an H-discriminating sequence

Φ, we construct the H-discriminating complexity function associated to Φ, the

function CΦ : N→ N defined via:

CΦ(R) := |φR|YX .

We briefly note that complexity functions of discriminating sequences pro-

vide an obvious upper bound for discriminating complexity.

Proposition 3.49. Let G and H be finitely generated groups and let G be fully

residually H. Let Φ = (φR)R∈N be an H-discriminating sequence for G. Then

CHG � CΦ.

3.2.2.1 Free Abelian groups

We begin by investigating the Z-discriminating complexity of a free Abelian

group Zn.

Proposition 3.50. The Z-discriminating complexity of Zn is asymptotically

dominated by a polynomial of degree n− 1.

We will consider the elements of Zn to be n-tuples of integers. For R ∈
N, define [−R,R]n := {(t1, . . . , tn) ∈ Zn : |ti| ≤ R, 1 ≤ i ≤ n}. Instead

of discriminating closed balls in Zn with respect to the usual metric, we will

construct homomorphisms which are injective on the sets [−R,R]n for each

R ∈ N.

Lemma 3.51. For n,R ∈ N, define the homomorphism θn,R : Zn → Z by

θn,R(t1, . . . , tn) =

n∑
i=1

(2R+ 1)i−1ti.

Then θn,R induces a bijection from [−R,R]n to the interval

In,R :=

[
−1

2
((2R+ 1)n − 1) ,

1

2
((2R+ 1)n − 1)

]
.

Proof. We proceed by induction. Since θ1,R is the identity for all R, we have

the promised bijection for n = 1.

Fix r and assume that θn,R induces a bijection from [−R,R]n to In,R. Note

that that

θn+1,R(t1, . . . , tn+1) = θn,R(t1, . . . , tn) + (2R+ 1)ntn+1.
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By the inductive hypothesis, we have

∣∣θn+1,R(t1, . . . , tn+1)
∣∣ ≤ ∣∣θn,R(t1, . . . , tn)

∣∣+ (2R+ 1)n
∣∣tn+1

∣∣
≤ 1

2

(
(2R+ 1)n − 1

)
+R(2R+ 1)n

=
1

2
(2R+ 1)n +

1

2
2R(2R+ 1)n − 1

2

=
1

2

(
(2R+ 1)n+1 − 1

)
.

Therefore θn+1,R maps [−R,R]n+1 into the interval In+1,R.

Suppose that there are (s1, . . . , sn), (t1, . . . , tn) ∈ [−R,R]n+1 such that θn+1,R(t) =

θn+1,R(s). We then have

θn,R(t1, . . . , tn) + (2R+ 1)ntn+1 = θn,R(s1, . . . , sn) + (2R+ 1)nsn+1.

We must have tn+1 6= sn+1 or we contradict the injectivity of θn,r. However, by

using the inductive hypothesis, we have

(2R+ 1)n − 1 ≥
∣∣θn,R(t1, . . . , tn)− θn,R(s1, . . . , sn)

∣∣
=
∣∣(2R+ 1)n(sn+1 − tn+1)

∣∣
≥ (2R+ 1)n,

a contradiction.

We have shown that θn+1,R maps [−R,R]n+1 injectively to In+1,R. Since

both sets have the same cardinality, θn+1,R is a bijection between [−R,R]n+1

and In+1,R.

Proposition 3.50 follows immediately from Lemma 3.51 since each homomor-

phism θn,R is injective on BR and therefore discriminates BR−1. Furthermore,

the complexity of θn,R is (2R+ 1)n−1, as promised.

The following result is well-known from number theory and will help us to

establish a lower bound on the Z-discriminating complexity of Zn.

Siegel’s Lemma ([6, 49]). Let A be an M × N integer matrix with M > N

and A 6= 0. Let B be a constant such that for every entry aij of A, we have

|aij | ≤ B. Then there exists a nonzero N × 1 integer matrix X with entries xi

such that AX = 0 and for each i,

|xi| ≤ (NB)M/(N−M).

Corollary 3.52. The Z-discriminating complexity of Zn asymptotically domi-

nates a polynomial of degree n− 1.

Proof. Let Φ = (φR)R∈N be a Z-discriminating sequence for Zn. By definition,

φR discriminates the set BR − 1, the closed ball of radius R with respect to

(WLOG) the standard basis of Zn.
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Each φR can be represented by an n × 1 integer matrix whose entries are

bounded above in magnitude by CΦ(R). By Siegel’s lemma, there exists for each

φR an element of the kernel of φR whose entries are bounded above in magnitude

by (nCΦ(R))1/(n−1). Since φR discriminates BR−1, it also discriminates the set

of nontrivial elements whose entries are bounded above in magnitude by bR/nc.
We must then have

R

n
− 1 ≤

⌊
R

n

⌋
≤ (nCΦ(R))1/(n−1)

(R− n)n−1

nn−1
≤ nCΦ(R)

(R− n)n−1

nn
≤ CΦ(R).

Therefore CΦ(R) � Rn−1.

In particular, taking Φ such that CΦ(R) = CΓ
G(R), we have that CΓ

G(R) �
Rn−1.

Theorem 3.53. The Z-discriminating complexity of Zn is asymptotically equiv-

alent to a polynomial of rank n− 1.

For p ∈ Z, define a homomorphism θpn,R : Zn → Z by

θpn,R(t1, . . . , tn) := pθn,R(t1, . . . , tn).

Note that since θn,R discriminates the set [−R,R]n−1, if i ∈ θpn,R([−R,R]n−1),

then |i| > |p|. Clearly θpn,R then also discriminates [−R,R]n − 1.

3.2.2.2 Extensions of centralizers

Let Γ be a non-Abelian, torsion-free hyperbolic group. Let G be an iterated

extension of centralizers over Γ with finite generating set X, and let u ∈ G be

a hyperbolic element which generates its own centralizer. Let G′ be a rank n

extension of the centralizer C(u) = CG(u). Fix elements T = {t1, . . . , tn} ⊂ G′

be such that {u, t1, . . . , tn} is a basis for the free Abelian group CG′(u).

We define a homomorphism Θp
n,R : G′ → G via:

Θp
n,R(g) := g for all g ∈ G

Θp
n,R(ti) := up(2R+1)i−1

for i = 1, . . . , n.

By putting T in bijection with the standard basis for Zn, it is clear that the

homomorphism Θp
n,R |〈T 〉 is equivalent to θpn,R. Consequently, for all nontrivial

a ∈ 〈T 〉 is such that |a|T < R, then Θp
n,R(a) is a power of u of exponent greater

than or equal to p in magnitude. We further observe that Θp
n,R is a retraction

onto G.

Lemma 3.54. Let w be an element of G′ with |w|X∪T ≤ R. There is a linear

function N3 : N→ N such that Θ
N3(R)
n,R (w) 6= 1.
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Proof. Since G′ is an amalgamated product, we may write w as a geodesic

X ∪ T -word

w = g0a0g1a1 · · · gkakgk+1 (3.10)

where for each i, gi is an X-word and ai is a T -word. We may further assume

that no gi or ai is the empty word, except possibly g0, gk+1, or both.

First, we may assume that if some gi is not a power of u, then no gi is a

power of u. To see this, suppose that gj is some power of u but gj−1 is not, and

consider the subword gj−1aj−1gjaj . Since aj−1 is a word in the generators T ,

it represents an element of the centralizer of u. Consequently, we may rewrite

this subword as gj−1gjaj−1aj without increasing the X ∪T -length of the overall

word. By replacing gj−1gj and aj−1aj with possibly shorter words representing

the same elements, we obtain another word representing w in G′ of length at

most R.

Define

N3(R) := N2(R) +R+ 1

and note that, because N2(R) is linear in R, the function N3(R) is also linear

in R .

Consider the homomorphism Θ
N3(R)
n,R : G′ → G. Then

Θ
N3(R)
n,R (w) = g0u

r0g1u
r1g2u

r2 · · · gkurkgk+1

= g0wg(r)gk+1,

where g = (g1, . . . , gk), r = (r0, . . . , rk), wg(r) is as in Equation 3.8 possibly

g0 or gk+1 or both are trivial. Since |ai|T ≤ |w|X∪T ≤ R, we have min(r) >

N2(R) for all i. Since
∑
|gi|X ≤ R and G is relatively hyperbolic with u a

hyperbolic element generating its own centralizer, by Theorem 3.42 we have

that Θ
N3(R)
n,R (w) 6= 1 in G.

Now suppose that w can be written as a geodesic (X ∪ T )-word

w = ur0a0,

where r0 is an integer, a0 is a nonempty T -word, and |ur0 |X + |a0|T ≤ R. Since

|u|X ≥ 1, |r0| ≤ R. By definition, Θ
N3(R)
n,R (a) = ue where |e| > R, and so

Θ
N3(R)
n,R (w) 6= 1 in G.

Theorem 3.55. Let G be an iterated extension of centralizers over Γ. Let G′

be a rank n extension of a cyclic centralizer of G. Then the G-discriminating

complexity of G′ is asymptotically dominated by a polynomial of degree n.

Proof. By the previous theorem, the homomorphism Θ
N3(R)
n,R maps all elements

of G′ with X ∪ T -length at most R to nontrivial elements of G. Therefore,(
Θ
N3(R)
n,R

)
R∈N

is a G-discriminating sequence for G′.

To compute the complexity of Θ
N3(R)
n,R , we first note that Θ

N3(R)
n,R fixes ele-
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ments of X. For ti ∈ T , we have Θ
N3(R)
n,R (ti) = u(N3(R))(2R+1)i−1

. Therefore, as

a function of r,

|ΘN3(R)
n,R | ≤ |u|X(N3(R))(2R+ 1)n−1 ≈ Rn,

since N2(R) is linear in R. Thus the complexity of the sequence
(

Θ
N3(R)
n,R

)
R∈N

is asymptotically dominated by Rn.

3.2.2.3 Iterated extensions of centralizers

Theorem 3.56. The Γ-discriminating complexity of an iterated extension of

centralizers over Γ is asymptotically dominated by a polynomial with degree equal

to the product of the ranks of the extensions.

Proof. Let G be an iterated extension of centralizers over Γ, and let

Γ = G0 ≤ G1 ≤ · · · ≤ Gk = G

be a sequence such that Gi is an extension of a centralizer of Gi−1 for i =

1, . . . , k.

By Theorem 3.55, each Gi has a Gi−1-discriminating family with complexity

polynomial of degree equal to the rank of the extension. By composing these

families, we obtain a Γ-discriminating sequence for G which is also of polynomial

complexity; in particular, the properties of complexity imply that the degree of

the polynomial is equal to the product of the ranks of the extensions required

to construct G.

3.2.2.4 Arbitrary Γ-limit groups

Theorem 3.57. The Γ-discriminating complexity of any Γ-limit group is asymp-

totically dominated by a polynomial.

Proof. Let G be a Γ-limit group. By Proposition 3.9, there is a G′ which is

an iterated extension of centralizers over Γ such that G ≤ G′. Choose a finite

generating set X for G′ which includes a finite generating set Y for G. Then

for all R ∈ N, we have BR(G, Y ) ⊆ BR(G′, X), so a Γ-discriminating sequence

exists for G′ which is also a Γ-discriminating sequence for G.

Lemma 3.58. Let G be a Γ-limit group with a free Abelian subgroup of rank

n + 1. Then the Γ-discriminating complexity of G asymptotically dominates a

polynomial of degree n.

Proof. Since the asymptotic class of the complexity of a Γ-discriminating se-

quence is invariant with respect to choice of finite generating set, we may choose

a generating set Y for G with a subset T ⊆ Y such that 〈T 〉 is free Abelian

of rank n + 1. Let Φ = (φR) be a Γ-discriminating sequence for G. Since Γ

is torsion-free hyperbolic, every Abelian subgroup of Γ is isomorphic to Z, and
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therefore every φR must map 〈T 〉 to a cyclic subgroup. Since T ⊆ Y , restrict-

ing Φ to 〈T 〉 gives us a Z-discriminating sequence for 〈T 〉 ∼= Zn+1. Therefore,

the complexity of Φ must asymptotically dominate a polynomial of degree n by

Proposition 3.52.
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