AN ALGORITHM TO DISTRIBUTE AND LOAD BALANCE SHARED-FATE TASKS
IN MOBILE AD HOC NETWORKS

BY

ALEXANDER THOMAS LOEB

THESIS
Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Adviser:

Associate Professor Robin Kravets

Abstract

The pace of mobile networking is rapidly changing. Each year, waves of new smartphones,
tablets, netbooks, and laptops are being released to consumers and subsequently being
adopted in greater numbers than ever before. The effect is a much denser environment,
rich with mobile devices able to keep people connected throughout their daily activities.
With these advances come new problems. Devices are becoming so dense in social environ-
ments that there is increasing redundancy in computational efforts, wasting energy. Tasks
including 802.11 neighbor discovery and GPS location among others have deterministic re-
sults for devices in close proximity, as is common in dense environments. It is the objective
of this thesis to design an algorithm to allow varied devices in dense mobile ad hoc networks
to distribute and load balance these tasks among each other, ultimately leading to energy

savings through reduced redundancy.

i

To CKH

il

Acknowledgments

Thanks to Robin Kravets for general guidance and support, to Mehedi Bakht for countless
conversations and emails, to Johnny Carlson for help handling the shortcomings of the
Android platform, and to Simon Krueger for inspiration. Lastly, additional thanks to Robin,

Mehedi, and Johnny as I am just a fraction of a greater scheme.

v

Table of Contents

Chapter 1: Introduction e 1
Chapter 2: Motivation e 3
Chapter 3: Design 0 0 i i i e e e e 11
Chapter 4: Evaluation 0 oo ee 17
Chapter 5: Conclusion 0 i i i i it i it e it e et e e e 22
Bibliography L e e e e e e e e e 23

Chapter 1: Introduction

Mobile devices ranging from laptops and netbooks to tablets and smartphones are becoming
increasingly pervasive as their mobility and connectivity increase. From 2010 to 2011, adop-
tion rates of smartphones alone increased roughly 10% in the US, UK, and Spain, putting
the total adoption rate of each at approximately 30%. Nearly every new mobile device has at
least one wireless interface, more commonly having two or more. The cost of this flourishing
wireless connectivity is the energy consumption required to operate the wireless interfaces of
these mobile devices. Further, it is widely recognized that these wireless interfaces are the
most power intensive components of modern mobile devices. Specifically, wireless interfaces
account for over 50% of the total energy consumption on mobile devices when active [8]. In
accord with Amdahl’s law there has been a lot of work done on reducing energy consumption
of these wireless interfaces. Previous work has shown that redundant links in wireless ad
hoc networks can be shut off intermittently by exploiting node density [2], effectively con-
serving energy. It has further been shown that leveraging multiple, complimentary wireless
interfaces in a coordinated manner [8] [9] effectively conserves energy. Both techniques rely
on using other nodes or radios to allow a node or nodes to temporarily turn off their high
power wireless interfaces without compromising network connectivity.

However, existing work focuses on tasks either within a single node (e.g., device associa-

tion) or on tasks that require a set of nodes to act in concert (e.g., routing). An artifact of
the increased node density resulting from an increase in mobile devices is the formation of
a third, new and unstudied, task. When nodes are in close proximity and acting indepen-
dently, any sensory input is likely to be identical for those nodes, as if both nodes occupied
the same physical space, and they would both observe the same environment around them.
While it is impossible for multiple nodes to physically occupy the same space, many sensors
are inaccurate enough that the distance between nodes in close proximity may cause them
to observe the same or very similar environments. Examples of this kind of task are GPS
location and long range neighbor discovery. These tasks can be said to be fate-shared and
exhibit nearly deterministic results across nodes in close proximity.

Given that an 802.11 radio consumes roughly an order of magnitude more energy than
a Bluetooth radio under nominal use of each radio respectively [8], in combination with the
observation that nodes in close proximity achieve deterministic results for this new class of
tasks, it would be energy conserving to use a low power radio such as Bluetooth to distribute
the responsibility of performing these tasks across nodes in close proximity. The assumptions
are that any nodes not performing a task of this nature has its radio turned off, and that
the range of the low power radio is within the approximate tolerance for error of the sensory
input. With respect to GPS and 802.11 neighbor discovery, this happens to be true.

While it is not the aim of this thesis to evaluate the energy savings of these new tasks, it
is the aim of this thesis to design, deploy, and evaluate an implicit leader election algorithm
that enables mobile devices in highly dynamic ad hoc networks to coordinate their efforts in
accomplishing these shared-fate tasks. The following chapters will examine the existing work
motivating the design of such an algorithm, the design and implementation of the algorithm,

its evaluation, and finally conclude.

Chapter 2: Motivation

The motivation for this thesis begins with the observation that increased device availability
and adoption rates of modern mobile devices results in greater network density in social en-
vironments. As such, it is appropriate that the exploration of existing work begins with work
attempting to exploit similar densities. Span [2] exploits these node densities to eliminate
redundant links in 802.11 packet forwarding. Specifically, in ad hoc networks, every node
that has an 802.11 radio on can serve as a vertex along a path while routing a packet from
source to destination. In a dense ad hoc network, there is an abundance of links, creating
redundancy. Span identifies this redundancy and reduces it by forming one hop clusters with
the one node acting as a clusterhead. The clusterhead keeps it 802.11 radio active to route
packets through the network while the remaining nodes in the cluster put their 802.11 radios
into power saving mode. This drastically reduces energy consumption within the network.
Further, to attain fairness, each node use energy levels and neighbor counts, combined with
a random back-off value, to decide whether or not it should elect itself as a clusterhead.
This allows the nodes to rotate in and out of leadership, distributing the cost among one
another, and ultimately increasing the longevity of the entire network. Finally, each node
does all of this while making purely local decisions. The caveat to Span is their requirement

that connectivity must be maintained at all times when possible, and so their definition of

fairness is not absolutely fair. That is, if a node is a bridge between two connected com-
ponents and it is the only such node, it will never be rotated out of leadership, causing it
to expend more energy than other nodes in the network. The authors of Span argue that
node mobility reduces the likelihood of a node remaining in such a position for prolonged
durations. While many of the core features of the work in this thesis are similar to Span:
randomized back-off, fairness, clustering, and leader election, the application and mecha-
nisms vary considerably in detail. Routing is inherently a task that must be distributed
in nature to operate correctly. The tasks in this thesis are inherently isolated operations,
always performed by a single node even when many nodes in the network are performing it
and obtaining the same results. Further, Span is unable to turn off a node’s 802.11 radio
because it disrupts the node’s ability to be asynchronously woken up. This thesis leverages
the commonality of multiple, heterogeneous wireless interfaces to allow each node to turn
off its long range, typically 802.11, radio, resulting in greater energy savings.

Expanding further on the subject of multiple, heterogeneous wireless interfaces on modern
devices, the exploration of existing work that follows is a summary of relevant works that
similarly exploit multiple, heterogeneous wireless interfaces. CoolSpots [8] achieves energy
conservation by designing several protocols to control which wireless interface is used to
transmit and receive data based on the available bandwidth of the channel. Specifically, the
authors recognize that Bluetooth consumes roughly an order of magnitude less energy when
active compared to 802.11 at the cost of range and bandwidth. Upon further assuming that
it is fairly common to be within Bluetooth range of 802.11 infrastructure, and thus the only
practical trade off between Bluetooth and 802.11 becomes the energy cost for bandwidth.
This allows them to develop several protocols that control the node’s ability to detect when

this assumption is true, and more importantly when to switch from using Bluetooth to 802.11

and vice versa. While they explore the extremes of always using 802.11 or Bluetooth, the
more interesting mechanisms explore a static tolerance, hybrid approach based on channel
capacity estimates along with a static tolerance, and a hybrid capacity estimate with dynamic
tolerance. In all three, when the bandwidth is repeatedly observed to be less than the
tolerance, the node switches to Bluetooth. In the static version, the switch to 802.11 is
simply when the bandwidth is repeatedly observed to be above tolerance. The capacity
estimate schemes use the RT'T from frequent pings to estimate the available channel capacity
to determine when to switch to 802.11.

In contrast to improving data transmission, [9] leverages multiple, heterogeneous wireless
interfaces to achieve energy savings during device association and connection setup. The
authors, similar to CoolSpots, note that there are many scenarios in which both short and
long range wireless interfaces are in range of an access point, and in those scenarios, it is worth
leveraging the short range, low power interface whenever possible. In [9], both Bluetooth and
Mica2 Mote radios are examined as the low power, short range interface while 802.11 is used
as the high power interface. Further, the authors focus on device association and connection
setup to achieve energy savings as this is typically more common than data transmission and
costs just as much. Their approach requires that the access point broadcast a beacon over
the low power interface that contains the necessary association information for 802.11. This
way, a node can disable its 802.11 radio, conserving energy, and upon receiving a beacon
over the less expensive interface, enable 802.11 and immediately connect to an access point
without needing to waste energy scanning and acquiring the same information that was
sent in the beacon. While the Mote proved to be the most effective at this, Bluetooth also
resulting in energy savings, but caused an increase in connection latency due to overhead in

the design of Bluetooth.

CoolSpots effectively leverages multiple, heterogeneous wireless interfaces to conserve
energy during data transmission with respect to a single node. [9] also leverages multiple,
heterogeneous wireless interfaces, but it explores device association and connection setup,
but still only for a single node. Further, both only consider when a node is in range of
infrastructure with both long and short range interfaces, additionally requiring that the
infrastructure support both interfaces. In contrast, this thesis aims to exploit both the
energy savings and the range disparity of the heterogeneous wireless interfaces to coordinate
the efforts of many nodes in an ad hoc setting.

To distribute a task across a cluster of many, otherwise independent nodes, a key step
is the election of a leader to coordinate their efforts. [4] provides two algorithms for leader
election in mobile ad hoc networks. The first is an adaptation of the TORA algorithm [7] to
support the propagation of a leader id while the second is an extension of the first to support
concurrent changes to the topology during the leader election process. Both algorithms form
a directed acyclic graph in which the root is known by every node in the graph and as
a result, is considered the leader of the graph until a topology change in detected. Both
algorithms construct the graph by having some node observe a topology change, triggering
it to propagate updates to all of its neighbors. Every node, in turn, examines its neighbors
status and from that, derives its new status. It suffices to say that the status contains enough
information to make the updates ordered and unique, as well as allow each neighbor to adjust
its place in the graph with respect to the leader’s position. While concurrent updates cannot
be ordered by definition, the adapted version adds a mechanism to allow one update to
overtake another update by comparing the updates and effectively using a tie break.

Another approach to leader election in an ad hoc mobile setting was proposed in [10].

In their algorithm, they also construct a directed acyclic graph in the form of a spanning

tree, but they do so only temporarily. Specifically, the algorithm uses a breadth first search
approach to propagate an election message to every neighbor of a node that observes a
topology change. Upon receipt of an election message, a node marks the sender as its parent
and continues the propagation to its neighbors, excluding its own parent. Upon receiving
an election message from a node other than one’s parent, an ack is sent to the sender. Once
all neighbors, excluding one’s parent, have ack’d the election message, a node then ack’s
its parent’s election message. The ack contains the summary of the information needed to
elect the new leader. Once the election initiating node has been ack’d, it selects the leader
using the information in the ack, and propagates a leader message in the same manner as
the election message. A key difference in this approach from the approach in [4] is that
the leader elected is considered a most-valued node in some respect (i.e., this algorithm
is extrema-finding, where the implementor can define what defines extrema). This new
algorithm works well on a static topology. To adapt it to handle a dynamic topology with
concurrent topology changes, two more messages, probe and reply, are added to allow node’s
to request and reply to heartbeats. While the technique used in the initial algorithm is
referred to as a diffusing computation, a dynamic topology suffers from having multiple
diffusing computations at once, resulting in conflicting results to the leader election process.
The modified version assigns a unique value to each diffusing computation and dictates
that a node only participate in a single diffusing computation at a time and that higher
valued computations cause a node to immediately stop participating in a lowered valued
computation in favor of the higher valued computation. Further, all node’s now send probe
messages to any node that it is expecting an ack from. If a reply message is not received
within a timeout period, the node that did not reply is dropped from the computation.

While these algorithms perform leader election in a mobile ad hoc setting, they incur a

lot of overhead by constructing a directed acyclic graph and propagating changes for every
topology change when the graph’s only purpose is to determine which node is the current
leader. This thesis is only concerned with clusters with a one hop radius given the constraint
on the accuracy of the task results, and as a result does not need to construct a directed
acyclic graph because each node is adjacent to the current leader. Further, for the purposes
of this thesis, it is sufficient to allow partitions to occur without immediate detection and
correction as they will automatically be corrected within a time bound less than or equal to
the length of a single task interval. Finally, the work of this thesis is able to achieve fairness
through a randomized approach, avoiding the need to define fairness in terms of an extrema
and thus not requiring that leader election be extrema-finding.

Given that traditional leader election algorithms are ill suited to handle the scenario
proposed by this thesis, a more unconventional approach is needed. Span [2] allows clusters
of nodes to coordinate packet routing by constructing a dominating set across the clusters
and having each clusterhead act as a vertex in a routing backbone. While the work in this
thesis does not require that the clusterheads be able to reach one another, the approach in
Span, the approximation of a dominating set, is still valid to form the clusters by selecting
clusterheads and designating all one hop neighbors as part of that cluster. To evaluate this
approach, a study of existing work on dominating sets is necessary. The work in [3] first
establishes that the problem of finding a minimum connected dominating set is known to
be NP-hard, and then proposes two greedy approximation algorithms as well as variants
on each. The first algorithm uses a greedy heuristic to choose a start node, growing a tree
outward from that node. Specifically, the maximum degree node is chosen to be the start
node. Once at a given node, mark it as part of the dominating set and mark its neighbors as

connected to the dominating set. The algorithm then proceeds to choose the next connected

node with the highest degree of unmarked neighbors that is not marked itself to add to
the dominating set. This repeats until all nodes are in connected. The second algorithm
proposed consists of two phases. In the first phase, instead of growing a tree, it assembles
pieces that are not connected to the rest of the set. These pieces are assembled by always
choosing to mark the next node that results in the largest, non-zero, reduction in the number
of pieces. The second phase connects the connected components.

As discussed previously in this section, constructing and maintaining a tree in a mobile
ad hoc environment is undesirable due to the high dynamism and the message overhead.
With this in mind, the previous algorithms to approximate a connected dominating set are
infeasible. However, [1] acknowledges this problem and proposes a localized, distributed
algorithm to operate in mobile ad hoc environments. The algorithm proposed models the
mobile ad hoc network as a unit-disk graph, constructs a maximal independent set, and
finally connects the components by identifying connector nodes as those nodes that are
between a pair of dominators that are at most three hops away from one another. The
authors then clarify that connectors stay connectors only so long as they connect at least
two dominators, and if this fails to be true at any time, the connector becomes a leaf.
Further, the selection of the connectors included in the connected dominating set are chosen
greedily (i.e., there may be more than one path between two dominators, and the path chosen
is not necessarily the shortest path). While this algorithm is much quicker to construct a
connected dominating set and does so in a manner that is easier to maintain across changes
to the topology, the work in this thesis does not strictly require a connected dominating set,
although the approach is more desirable than traditional leader election algorithms.

In the reexamination of Span with respect to dominating sets, the problem of leader

election can be seen as a matter of contention for the role of leader within the cluster. Given

that a cluster does not care which node performs the task, but only that one node perform
it at any instant, the problem can be viewed as a form of medium access control. The MAC
parallel exists because MAC protocols do not care which node is transmitting at any instant,
so long as only one node is transmitting at a time and further that if any node wants to
transmit then some node is allowed to transmit. The work in this thesis further parallels
MAC protocols in that they too attempt to achieve fairness among nodes. Both [5] and [6]
examine fairness in MAC protocols, which is directly related to the work in this thesis as it
relies on a form of random back-off selection during a contention window in order to achieve

load balancing across nearby nodes.

10

Chapter 3: Design

To allow independent nodes to distribute the execution of a task, common to the entire set
of nodes, two requirements must be met: the nodes must be aware of each other, and the
nodes must be able to distribute the results of the task to the entire set of nodes. Awareness
is required to identify redundancy in the efforts of individual nodes. If two nodes do not
know about one another, they cannot coordinate their efforts. To eliminate redundancy,
nodes must be able to defer execution of the task to another node. This is only valid if that
node can then distribute the results of the task to the entire set of nodes. The algorithm put
forth in this thesis further requires that nodes be able to distribute the workload in networks
exhibiting high dynamism such as those of mobile ad hoc networks, and finally that the
workload be distributed fairly across the entire set of nodes.

The purpose of this algorithm is to allow nodes in close proximity to distribute the
execution of a task across the entire set of nodes. Specifically, a task is any operation that is
common to all nodes in the set, but only requires one node to execute such that the entire set
can obtain the results. This is possible for any task that has results that are insensitive to
the minor variations in location of the nodes in the set. This thesis defines minor variations
to be equivalent to the range of the short range wireless interface supported by each node.

An example of such a task is obtaining a GPS location for a given node. GPS sensors are

11

roughly accurate to the range of a Bluetooth radio, and are far more expensive to operate.
Thus it is more efficient to allow one node to obtain its GPS location and distribute the result
to the other nodes within Bluetooth range. This allows the other nodes to save energy by not
enabling the expensive GPS radios. However, there are many tasks fitting this description,
so the rest of the thesis will generally refer to ”the task” instead of any one specific example.
Further, any node that is said to be executing the task is a leader.

In order to handle the high dynamism resulting from highly mobile nodes, the task
coordination algorithm operates on local information, making purely local decisions at each
node. Further, in order to distribute the workload of performing the task, nodes must be
able to take turns. As a result, the algorithm consists of two intervals, similar to MAC
protocols: the task interval and the contention interval. During the task interval, a node is
either performing the task with its high power wireless interface enabled or it is listening
for beacons with its low power wireless interface while its high power wireless interface is
disabled. During the contention interval, a node selects a contention slot and waits for that
slot to arrive before beaconing, with its low power wireless interface, to signal that it will
perform the task. If it receives a beacon from another node prior to the selected slot, the

node returns to listening for beacons instead of contending.

3.1 The Task Interval

To maintain coverage of the task at all times, the leader performs the task until the next
leader begins performing the task (i.e., with respect to the high power wireless interface,
the task interval extends to the very end of the contention interval). If this were not the

case, there would be a gap in performing the task during the contention interval. However,

12

with respect to the low power wireless interface, each node transmits beacons during the
segment of the task interval that does not overlap with the contention interval. If nodes
were to transmit low power beacons during the contention interval, they would be mistaken
for election beacons and thus break the protocol. As this thesis is not concerned with the
details of the task itself, any reference to the task interval throughout the remainder of this
thesis refers to the segment of the task interval that does not overlap with the contention
interval (i.e., the task interval is to be interpreted with respect to the low power wireless
interface only).

During the task interval, each node in the set transmits beacons over the low power
wireless interface. If the node is not a leader, these beacons only contain a synchronization
value. If the node is a leader, the beacons are more frequent and not only contain the same
synchronization value, but also contain any partial results of the task. The synchronization
value is the beginning of the task interval of the lowest id node in the cluster at the time
that node joined the cluster. This synchronization value allows new nodes to join the cluster
and locally calculate the progress of the current task interval so that the node knows when
the next contention interval starts. If the lowest id node or the leader leave the cluster, the
synchronization value remains the same so that the remaining nodes in the cluster can still
coordinate their efforts. While this offers a low overhead, local solution to these scenarios,

it also creates the potential for a cluster to not have a leader.

3.2 The Contention Interval

The contention interval is the period of time between task intervals. During the con-
tention interval, it is the responsibility of the cluster to elect the next leader. The contention

interval is subdivided into slots, called contention slots. The number of slots in the con-

13

tention interval is said to be the length of the contention interval. In the simple contention
interval, each node in the cluster randomly selects a slot in the contention interval (i.e., an
integer value between zero and contention interval length, exclusive). Each node waits until
the slot it chose arrives. If the slot arrives and no other node has chosen an earlier slot, the
node transmits a beacon indicating that it is the new leader. If another node has chosen
an earlier slot, the beacon sent by that earlier node indicates that a leader is chosen and all
other nodes are to stand down, returning to non-leader status for the following task interval.
Further, it is possible to have multiple leaders if multiple nodes choose the same contention
slot. However, with a well-chosen contention interval length, multiple nodes choosing the
same contention slot has a low probability, and if the task intervals are short, there is less
time spent without a leader in the event that the leader leaves. However, these circum-
stances designate this algorithm as a best effort approach. Finally, if a node with a lower id
than that of the synchronization node joins the cluster, all of the nodes in the cluster must
resynchronize.

However, this is potentially unfair because the same node or subset of nodes may be
repeatedly elected by randomly choosing the lowest slot, putting more work on themselves
and less on the remaining nodes. To avoid this scenario, an exponentially decaying back-
off mechanism is added. This mechanism requires that each node maintain an additional
parameter, the contention back-off value, to act as a history of its contributions to the efforts
of the cluster. The contention back-off value changes for each node after every contention
interval based on the results of that contention interval. Each node initializes the back-off
value to the length of the contention interval. If the node is not elected during a contention
interval, it halves its contention back-off value to increase the probability of being elected

during subsequent contention intervals. If the node is elected during the contention interval,

14

the node resets its contention back-off value to the initial value, thus reducing its probability

of being elected multiple times consecutively.

3.3 Implementation

The proposed algorithm was implemented for Android platform and was deployed to a
dozen Google G1 and G2 phones. While the implementation is a full implementation of the
algorithm in this thesis, it differs considerably in behavior due to practical limitations of
modern smartphones. Specifically, the algorithm outlined in this thesis assumes broadcast
capability for the low power, short range radio. However, modern smartphones typically
only have a Bluetooth radio for short range communication and Bluetooth lacks broadcast
capability. The effect of this is that the communication between devices in a cluster must
be explicit between nodes in that the only way to simulate broadcast with Bluetooth is to
independently connect to each neighbor. The main consequence of explicit communication
is that the synchronization value is unnecessary. This is because the only way to know the
contention interval begins is for the leader to connect to every neighboring node and ask
each node which slot it picked. The leader then picks the lowest slot chosen and reconnects
to each neighbor, announcing which node is the new leader. If multiple nodes choose the
same contention value, the leader randomly chooses one of them as the new leader. If the
current leader leaves the cluster, leaving no device to initiate the contention interval, the
devices in the cluster timeout after expecting a connection and each elects itself, causing the
entire cluster to consist of leaders. This is remedied by having nodes eliminate each other
when two leaders receive each others’ beacons. Specifically, if a leader receives a beacon
from another leader, the leader with the lower id continues and the other leader immediately

stops performing the task. This is necessary to avoid multiple leaders trying to initiate a

15

contention interval simultaneously.

The impact of these behavioral changes is both positive and negative. The positive
impacts are that there is a time bound on how long the cluster proceeds without a leader,
and further that there will only ever be at most one leader in a cluster, allowing for the
short time required for multiple leaders to converge. However, the explicit communication
negatively impacts the efficiency of the protocol in that connections can fail requiring them
to time out before the next can be established. In the worst case, all connections fail and
the leader spends an amount of time proportional to the number of nodes in the cluster

multiplied by the timeout value attempting to elect a new leader, only to elect itself again.

16

Chapter 4: Evaluation

The successful implementation of the algorithm on the Android platform is, in itself, an ex-
ample of the applicability and effectiveness of the algorithm in that it can be implemented on
commodity hardware without significant modifications. Further, clusters ranging in size from
two to sixteen devices were successfully able to distribute a critical task among themselves,
demonstrating both energy savings and successful distribution of the results of the critical
task. Finally, the Android implementation was able to successfully hand-off the critical task
across devices making purely local decisions.

To measure the effectiveness of load balancing (i.e., fairness) through the use of the
exponentially decaying back-off mechanism, both the theoretical algorithm as well as the
Android implementation were tested to investigate any potential effects of the practical
application on theoretical fairness. Further, tests were designed specifically to investigate
the effect of the contention interval length on fairness, as indicated by the distribution of the
leadership role across all nodes in a given cluster. Average latency, defined as the number of
contention slots from the start of a contention interval to the contention slot that resulted in
leader election, was also measured during testing to further evaluate the impact of contention
interval length on efficiency. Several trials were run on cluster sizes of four, eight, and sixteen

nodes. Each cluster size was tested with contention interval lengths starting at four slots and

17

300

w 290

]

B 280

s

w 270

m

-4 350 P &

g node O
w 250 +—

E = node 1
= 240 —# i

2 230 node 2
=

-E 2720 rll:rdE 3
3

210

ZDD T T T T T T T T T T 1
4 8 16 32 64 128 256 512 102420434096

Length of Contention Interval (in slots)

Figure 4.1: The effect of contention interval length on fairness in a cluster of four nodes.
Each contention interval length was tested on 1000 consecutive contention intervals.

increasing by powers of two up to 4096 slots. Each cluster was subjected to 1000 consecutive
contention intervals at each contention interval length. Figures 4.1, 4.2, and 4.3 summarize
these trials. In each figure, each series is a unique node in the cluster. Note that the figures
in this thesis are plotted on a log scale due to the contention interval lengths tested.

The leadership role is distributed fairly evenly over all of the nodes in a cluster indepen-
dent of contention interval length as seen in the figures. It is worth noting that these trials
were run against the implementation of the algorithm and not the theoretical algorithm.
The significance of this is, as previously mentioned, that the implementation does not allow
multiple leaders to be elected by randomly choosing one of the several nodes elected while
the theoretical version allows the nodes to proceed as leaders simultaneously. The difference
is demonstrated by running the exact same set of trials on an eight node cluster, recording
the number of times each node participates in the random tie break instead of which node
was chosen to lead. While the random tie breaking mechanism creates fairness, it does so

irrespective of the back-off range selection if the length of the contention interval is too small

18

150

w 145

=

E 140 node O

5 135 ——node 1

8 i

[130 =—node 2

g 125

t =—node 3

< 120

_% 115 m——nde 4

_E 110 node 5

8 105 node 6
100 T T T T T T T T T T 1 node 7

4 3 16 32 64 128 256 512 1024204534096
Length of Contention Interval {in slots)

Figure 4.2: The effect of contention interval length on fairness in a cluster of eight nodes.
Each contention interval length was tested on 1000 consecutive contention intervals.

100

node O

=—=node 1

80 node 2

m——node 3

=——node 4

node 5

=—node &

===node 7

Contention Intervak as Leader

40 node 8
=—node 9
30
node 10
20 node 11
===node 12
10
node 13
o T T T T T T T T T 1 node 14
4 8 16 32 64 128 256 512 1024 2048 4096

node 15
Length of Contention Interval (in slots)

Figure 4.3: The effect of contention interval length on fairness in a cluster of sixteen nodes.
Each contention interval length was tested on 1000 consecutive contention intervals.

19

900

300

700 - SN o
500 N 1
500 A - 2
400 L 3
300 \ 1

200 \ 5

100 e (5

Mumberof Times Choosing Lowest Shot

4 8 16 32 64 128 256 512 1024 2048 4056

Length of Contention Interval (in slots)

Figure 4.4: The effect of contention interval length on fairness in a cluster of eight nodes,
allowing multiple leaders simultaneously. Each contention interval length was tested on 1000
consecutive contention intervals.

for the size of the cluster. This is an expected result, as there are too few contention slots
to allow the nodes to spread out and benefit from the back-off range adjustments, resulting
in several nodes choosing the lowest slot simultaneously. This is best demonstrated by the
contention interval of length four with cluster size eight in that the expected value of nodes
per contention slot is two, thus yielding an expected leader count of two per task interval
when averaged over all rounds of the trial. These effects can be seen in Figure 4.4. As a
final point of interest, although the two versions of the algorithm behave with significant
difference under ill conditioned contention interval lengths, both versions achieve fairness
levels of approximately 0.999 according to Jain’s fairness index. This is intuitive in that
the implementation creates artificial fairness by randomly choosing a leader among those
eligible while the theoretical version achieves fairness because all nodes are equally likely to
be elected as a redundant leader.

Finally, the effect of too large a contention interval is that nodes spend a longer than

necessary time waiting for their contention slot to arrive because the nodes are so far spread

20

4 nodes

0 / 8 nodes

Average Latency Until Leader Elected
lo

3 % o b b
Neoar @ g o %m.@m'@#@cﬁ“

Length of Contention Interval (in slots)

Figure 4.5: Average latency from the start of a contention interval to the election of a new
leader on clusters of size four and eight nodes. Each contention interval length was tested
on 1000 consecutive contention intervals.

out over the entire window. This is clearly visible in Figure 4.5 with a cluster of four nodes
and a contention interval of length 4096, yielding an average of 167 slots until a node is
elected leader over 1000 contention intervals. In the Android implementation, this turns out
not to matter because the nodes do not actually wait the number of slots chosen because the
existing leader selects the next leader in constant time with respect to the number of slots.
However, upon further investigation, a cluster of eight nodes has negligible latency up to a
contention interval of length 4096. If this is cross referenced with the data from the other
figures, it is clear that fairness can be achieved in a cluster of size eight with a contention

interval considerably smaller than 4096, eliminating concerns of latency entirely.

21

Chapter 5: Conclusion

The contributions of this thesis are both the examination of shared-fate tasks with respect
to sensory input of mobile devices and an algorithm to distribute and load balance these
tasks across clusters of varying size. The implementation and deployment of this algorithm
is a further contribution in that it demonstrates its potential for practical application on
modern, commodity hardware. It is left to future work to further investigate the nature of
these shared-fate tasks as well as the range of application of the algorithm proposed in this
thesis. Finally, it is left to future work to investigate the energy savings achieved through

use of the algorithm in this thesis.

22

Bibliography

1]

Khaled M. Alzoubi, Peng-Jun Wan, and Ophir Frieder. Message-optimal connected
dominating sets in mobile ad hoc networks. In Proceedings of the 3rd ACM international
symposium on Mobile ad hoc networking € computing, MobiHoc 02, pages 157-164,
New York, NY, USA, 2002. ACM.

Benjie Chen, Kyle Jamieson, Hari Balakrishnan, and Robert Morris. Span: An energy-
efficient coordination algorithm for topology maintenance in ad hoc wireless networks.
In ACM Wireless Networks Journal, pages 85-96, 2001.

S. Guha and S. Khuller. Approximation algorithms for connected dominating sets.
Algorithmica, 20:374-387, 1998. 10.1007/PL00009201.

Navneet Malpani, Jennifer L. Welch, and Nitin Vaidya. Leader election algorithms for
mobile ad hoc networks. In Proceedings of the 4th international workshop on Discrete
algorithms and methods for mobile computing and communications, DIALM 00, pages

96-103, New York, NY, USA, 2000. ACM.

Thyagarajan Nandagopal, Tae-Eun Kim, Xia Gao, and Vaduvur Bharghavan. Achieving
mac layer fairness in wireless packet networks. In Proceedings of the 6th annual inter-

national conference on Mobile computing and networking, MobiCom 00, pages 87-98,
New York, NY, USA, 2000. ACM.

Timucin Ozugur, Mahmoud Naghshineh, Parviz Kermani, C. Michael Olsen, Babak
Rezvani, and John A. Copeland. Balanced media access methods for wireless networks.
In Proceedings of the 4th annual ACM/IEEE international conference on Mobile com-
puting and networking, MobiCom 98, pages 21-32, New York, NY, USA, 1998. ACM.

Vincent D. Park and M. Scott Corson. A highly adaptive distributed routing algorithm
for mobile wireless networks, 1997.

Trevor Pering, Yuvraj Agarwal, Rajesh Gupta, and Roy Want. Coolspots: reducing
the power consumption of wireless mobile devices with multiple radio interfaces. In
Proceedings of the 4th international conference on Mobile systems, applications and
services, MobiSys 06, pages 220232, New York, NY, USA, 2006. ACM.

23

[9]

[10]

Trevor Pering, Vijay Raghunathan, and Roy Want. Exploiting radio hierarchies for
power-efficient wireless device discovery and connection setup. In Proceedings of the 18th
International Conference on VLSI Design held jointly with 4th International Conference
on Embedded Systems Design, VLSID ’05, pages 774-779, Washington, DC, USA, 2005.
IEEE Computer Society.

Sudarshan Vasudevan, Jim Kurose, and Don Towsley. Design and analysis of a leader
election algorithm for mobile ad hoc networks. In Proceedings of the 12th IEEE In-
ternational Conference on Network Protocols, pages 350-360, Washington, DC, USA,
2004. IEEE Computer Society.

24

