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ABSTRACT 

 

The two goals of this thesis are A) to develop an embedded system whose purpose is to control the 

Novint Falcon as a robot, and B) to develop a control experiment that demonstrates the use the Novint 

Falcon as a robotic actuator.  The contents of this report are therefore divided into two parts.  Part A 

deals specifically with the Novint Falcon, which is a PC input device which is "haptic" in the sense that it 

has a force feedback component.  It is similar in configuration to the common delta robot, whose speed 

and accuracy has made it useful in pick-and-place operations.  Along with its relatively low cost 

compared with other platforms, this makes it a good candidate for academic application in robot 

modeling and control.  An embedded system is developed to interface with the multiple motors and 

sensors present in the Novint Falcon.  Part B deals with demonstrating the use of the Novint Falcon as an 

actuator for a ball-on-plate control experiment.  The results show that the device is a viable solution for 

high-speed actuation of small-scale mechanical systems. 
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Part A: Using the Novint Falcon as a Robot 

Novint’s description of the Falcon is:  “The Novint Falcon is an entirely new type of game controller. 

Replacing your mouse or joystick, the Falcon is, essentially, a small robot that lets you experience true 

virtual touch unlike any controller in history. [2]”  It is shown in Figure 1. 

 

Figure 1: The Novint Falcon 3D Controller 

The user moves the spherical grip around in 3D space, providing input to a PC.  At the same time, the PC 

computes the appropriate forces to “push back” at the user with, based on the physical rules of some 

virtual interaction.  In this way, the Falcon can generate a virtual “feeling”, such as pushing against a wall 

or lifting a weight.  It has high enough resolution to simulate simple textures, and it is strong enough to 

apply a force of two pounds in any direction [2].   
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Although it is intended to be used as a type of force-feedback PC game controller, other applications 

have been explored, including robotics [3].  The relatively low cost of the Novint Falcon makes it a good 

candidate for a high-volume academic robotic platform.  Actuation can be accomplished by using the 

force-feedback motors to move the manipulator.  Robotic control of the Novint Falcon requires a 

kinematic understanding of the mechanical configuration of the device, as well as a digital computer to 

perform necessary control calculations.  The device’s mechanical system will remain unchanged in this 

project; however, its electrical system will be bypassed to allow direct control of the force-feedback 

motors. 
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1: Kinematic Configuration 

The mechanical configuration of the Novint Falcon was first introduced by Tsai and Stamper in their 

1997 technical research report [1].  The Novint Falcon’s configuration is identical to that presented in 

this report, which has several attractive characteristics. 

- The kinematics have closed-form solutions. 

- Position and orientation of the manipulator are uncoupled. 

- The construction uses only revolute joints, resulting in a lower hardware cost. 

The Novint Falcon consists of a stationary platform and a moving platform.  In general, the stationary 

platform is attached to the world coordinate frame, and the moving platform can be thought of as the 

manipulator.  The two platforms are connected by three identical parallel kinematic chains, much like 

the common delta-configuration robot.  A simplified schematic of Figure 1 is shown in Figure 2.  It differs 

from Figure 1 in that the device is facing upward instead of sideways.  The links are labeled by numbers 

0 through 16, where the stationary platform is labeled 0 and the moving platform is labeled 16. 
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Figure 2: Mechanical schematic of the Novint Falcon’s robotic configuration 

There are four links in each of the three kinematic chains.  The first link in each chain (links 1, 2, and 3) is 

connected to the stationary platform, equally spaced from the other two lowest links.  The next four 

links form a parallelogram connected to the moving platform.  The four-bar parallelogram consists of 

links (4, 7, 10, 13) for the first chain, (5, 8, 11, 14) for the second chain, and (6, 9, 12, 15) for the third 

chain.  The three parallelograms are connected to the moving platform with equal spacing.   

 

The result of this configuration is a moving platform with only translational degrees of freedom – that is, 

the moving platform will always have the same orientation, but its position in 3D space can be 

controlled by actuating only the lowest three joints.  Accordingly, the Novint Falcon has sensors to 

detect the angular position of only the lowest three joints.  An analysis of the constrained degrees of 

freedom of the device can be found in the paper by Tsai and Stamper[1]. 
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1.1 Inverse Kinematics 

The inverse kinematics problem for this platform can now be stated: Given the (x,y,z) position of the 

center of the moving platform, find the angular position of the lowest three joints.  This problem has 

been solved by Tsai and Stamper [1].  This section is a summary of their work.  Figure 3 is a side view 

schematic of one of the three kinematic chains.  The subscript i denotes the ith kinematic chain, where i 

is 1, 2, or 3. 

 

Figure 3: Side view of the ith kinematic chain 

The coordinate frame (x, y, z) is attached to the center of the stationary platform.  The origin (the center 

of the stationary platform) is labeled point O, and the center of the moving platform is labeled point P.  

p is the vector from the center of the stationary platform to the center of the moving platform.  The 

distance from the center of the stationary platform to the lowest joint (joint Ai) is denoted r, and the 

distance from the center of the moving platform to the highest joint (joint Ei) is denoted c.  The lengths 

of the links are labeled a, b, d, and e.  The angular positions of links Ai, Bi, and Ci are given by ϴ1i, ϴ2i, and 

ϴ3i, respectively.  A coordinate frame (ui, vi, wi) is defined for each kinematic chain, attached at point Ai.  
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The following coordinate transformation expresses the position of point P in the (ui, vi, wi) coordinate 

system. 

   [
           
            
   

]   [
  
 
 
] 

where ϕi is the angle of rotation of the ith kinematic chain with respect to the (x, y, z) coordinate frame, 

and pi = [pui, pvi, pwi]
T.  Expressions for pui, pvi, and pwi are given by: 

              [           ]        

            

            [           ]        

The solution for ϴ3i is instantly apparent. 

        
  
   
 

 

With ϴ3i known, an equation with ϴ1i as the only unknown is generated by isolating the ϴ2i terms in the 

equations for pui, and pwi and then summing the squares of those two equations so that ϴ2i is eliminated 

with the application of the Pythagorean relationship. 

(     )
     

       (     )                   

 (   )   (   )         
    (   )

  

Define a half-angle tangent to transform this equation into a polynomial expression. 

       
   
 

 

This produces the following relationships: 
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Substituting these into the previous equation and simplifying, the following equation is obtained: 

      
               

where we define 

       
     

               
    (   )

        (   )     (   )           
    

       

           

       
     

               
    (   )

        (   )     (   )           
    

       

This quadratic equation can be solved for t1i, which gives two possible values for ϴ1i for each of the two 

possible values of ϴ3i.  ϴ2i can then be found by substituting these values into the initial expression of 

the manipulator position.  Thus, there are four possible solutions for any given (x, y, z) position.  In the 

configuration of the Novint Falcon, the range of motion of joint C prevents angle ϴ3i from being 

negative.  This eliminates two solutions.  Similarly, ϴ1i is always in the first quadrant, which eliminates 

the remaining ambiguity, leaving one solution. (from [1]) 
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1.2 Forward Kinematics 

The forward kinematics problem is essentially the inverse of the inverse kinematics problem:  Given 

(ϴ11, ϴ12, ϴ13,), find the (x, y, z) position of the center of the moving platform.  However, the closed-form 

analytical solution to this problem is significantly more complex.  Tsai and Stamper [1] have shown that 

the parallel configuration of the manipulator results in 16 forward kinematic solutions for any given set 

of values for the angular positions of the lowest three joints.  The solution involves solving a high-degree 

polynomial [1][3].  Since the forward kinematics function is expected to be executed every sampling 

period (1 kHz), it is desired to avoid this complexity.  Nonetheless, if closed-loop position control is to be 

achieved, a computation of the forward kinematics is required.  Fortunately, there are other methods 

available for this computation.  One alternative is to use a look-up table and interpolation.  The main 

advantage with a look-up table is that it needs to be generated only once, and subsequent use involves 

computationally simple interpolation.  The disadvantage is that some accuracy is sacrificed, depending 

on the resolution of the table.  To achieve higher accuracy, we recognize that the forward kinematic 

problem is a system of nonlinear equations in three variables.  Therefore, a nonlinear zero-finding 

method such as Broyden's method can be used [4].  Since this is an iterative method, it is not 

guaranteed to converge to the true solution unless the “starting guess” is relatively close to the true 

solution.  Given this limitation, a combination of a look-up table and Broyden's method will work.  The 

look-up table will give an approximate solution, which will then be used as a starting point for Broyden's 

method to converge to the true solution.  In a real-time control environment, it is assumed that this 

computation will occur every sampling period.  In light of this, another good starting point for Broyden’s 

method is simply the position of the manipulator at the previous time step.  Using these heuristics, 

Broyden’s method converges to less than 0.1 mm error in 1-2 iterations. 
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1.3 Implementation of Kinematics 

The relevant dimensions of the Novint Falcon are enumerated in Table 1. 

Dimension Value

a 60 mm

b 103 mm

c 16.3 mm

d 12 mm

e 12 mm

r 37 mm

ϕ1 ­14.44°

ϕ2 ­105.56°

ϕ3 ­225.56°  

Table 1: Dimensions of the Novint Falcon 

Computation of the inverse kinematics for the first kinematic chain is implemented in Code Sample 1.  

The implementation of Broyden’s method to solve the forward kinematics problem uses the inverse 

kinematics function iteratively.  Broyden’s method takes the general form of Code Sample 2. 
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function [theta1] = inverse_kinematics(x, y, z) 

r = 37; 

a = 60; 

b = 103; 

c = 16.3; 

d = 12; 

e = 12; 

phi = -0.252 %radians 

 

pu = x*cos(phi) + y*sin(phi) - r; 

pv = -x*sin(phi) + y*cos(phi); 

pw = z; 

 

theta3 = acos(pv/b); 

 

l0 = pw^2+pu^2+2*c*pu-2*a*pu+a^2+c^2-d^2-e^2-b^2*sin(theta3)^2-

2*b*e*sin(theta3)-2*b*d*sin(theta3)-2*d*e-2*a*c; 

l1 = -4*a*pw; 

l2 = pw^2+pu^2+2*c*pu+2*a*pu+a^2+c^2-d^2-e^2-b^2*sin(theta3)^2-

2*b*e*sin(theta3)-2*b*d*sin(theta3)-2*d*e+2*a*c; 

 

t1 = (-l1-sqrt(l1^2-4*l2*l0))/(2*l2); 

theta1 = atan(t1)*2; 

 

Code Sample 1: Inverse Kinematics (MATLAB) 
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x0 = initial guess 

B0 = initial Jacobian approximation 

for k = 0, 1, 2, ... 

 Solve Bksk = -f(xk) for sk 

 xk+1 = xk + sk 

 yk = f(xk+1) – f(xk) 

 Bk+1 = Bk + ((yk – Bksk)sk
T
)/(sk

T
sk) 

end 

Code Sample 2: Broyden’s Method (pseudocode) 

 

For the application-specific forward kinematics, xk = [xk, yk, zk]
T is the kth approximation of the position of 

the moving platform.  f is the inverse kinematics function whose input is the [x, y, z] position of the 

moving platform and whose output is the three angles of the lowest three joints, [ϴ11, ϴ12, ϴ13]
T.  Bk is 

the kth approximation of the Jacobian matrix of the nonlinear function f.  Note that the derivative of f is 

not explicitly evaluated.  Rather, the Jacobian matrix is successively approximated.  Since the Jacobian of 

the inverse kinematics function is difficult to compute, this is a desired property. (from [15]) 

  

 

 

 

 

 

 

 

 



12 
 

2: Control 

The required components for feedback control of the Novint Falcon are available in the device.  Three 

DC motors actuate the lowest three joints, and three encoders provide position feedback for the lowest 

three joints.  To achieve control of the (x, y, z) position of the manipulator, the Novint Falcon can be 

considered to have three inputs and three outputs.  The three inputs are the voltages across the three 

DC motors that drive the lowest joint of each kinematic chain.  The three outputs are the x, y, and z 

position of the center of the moving platform.  Using the kinematics derived in the previous section to 

provide desired motor angular positions, the system can be posed as three single-input single-output 

(SISO) systems, rather than one multiple-input multiple-output (MIMO) system.  The angular position of 

each motor will then be uncoupled and controlled individually.  Position control of each DC motor is 

attained using the common PID controller by selecting appropriate gains.  A block diagram for feedback 

control of a single DC motor using this classical control strategy is shown in Figure 4. 

 

Figure 4: PID control strategy for a DC motor 

It is difficult to compute gains analytically since the plant characteristics of the DC motor are unknown 

and nonlinear.  The nonlinearities are due to the nonlinear dynamics of the device.  Therefore, an 

alternative manual approach is taken.  The gains can be tuned experimentally until a suitable response is 

achieved.  Once the appropriate gains have been found, the position of the manipulator can be 

controlled to a point in its workspace.  A block diagram for this manipulator position control strategy is 

shown in Figure 5. 



13 
 

 

Figure 5: Position control strategy for the Novint Falcon 

In the block diagram of Figure 5, the “Motor Control Loop” blocks represent the system of the Figure 4 

for each motor.  The loop is closed in these blocks rather than in an “outer loop” that feeds back the (x, 

y, z) position.  This is done for two reasons.  First, to directly feed the sensor output back, rather than an 

output value of the nonlinear forward kinematics function.  Second, to avoid having to input an error 

term rather than an absolute position into the inverse kinematics function.  It is easy to see that the 

behavior of the position error of the manipulator is directly related to the behavior of the motor angular 

error by the inverse kinematic function.  The conclusion is that a well-designed motor control will result 

in a well-behaved position control; e.g., the step response of the moving platform will have the same 

time constant as the step response of the DC motors.  So, the goal is to design the controller of Figure 5 

to satisfy some design specifications.  The manual control gain tuning procedure is enumerated here: 

1. Find some intuitive starting point for kp, and set ki and kd to zero. 

2. Tune kp until the response speed is fast.  There may be some overshoot in the step response. 

3. Increase kd until the overshoot decreases to an acceptable level. 

4. Repeat steps 2 and 3 until the response is as fast as possible with acceptable overshoot. 

5. Determine the steady-state error due to static friction and increase ki accordingly. 
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It is important to note that the goal is to design a feedback control such that the motor position will 

track a continuous trajectory with high fidelity.  Although the design is largely taking place with respect 

to step response specifications, a good step response will result in good trajectory tracking.  After 

tuning, the gains resulting in the best response are kp = 20, kd = 0.2, and ki = 1.  The step response of the 

Novint Falcon moving from (x, y, z) = (-22, 14, 135) to (x, y, z) = (-4, 3, 112) is shown in Figure 6, as well as 

the response of the motors.  Figure 7 shows the performance when tracking a sinusoidal trajectory 

input.  In both figures, the dotted line is the reference input and the solid line is the output. 

 

Figure 6: Step response of the designed position controller 
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Figure 7: Trajectory response of the designed position controller 

As a final note, in all results presented in this section, difference equations are computed from dicrete 

representations of the designed controller and implemented on a digital computer.  A discrete 

differentiator has the form 

 ( )   
   

   
 

A discrete integrator is of the form 

 ( )   
  
   

 

where Ts = 10-3 seconds is the sampling period of the discrete system. 
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3: Hardware Implementation 

The Novint Falcon device communicates to a controlling computer through a USB (Universal Serial Bus) 

port.  Novint reports a sampling rate of 1 kHz through the USB interface [2].  However, Martin and Hillier 

[3] reported that this update rate was not sustained with high fidelity, and typically missed commands 

or reads resulted in a real-world communication rate between 800 Hz and 1 kHz, depending on the 

controlling computer’s load.  In other words, the non-realtime nature of a PC operating system 

contributed to variations in the sample rate.  The PC interface also resulted in a 2-5 sample delay 

between commands being issued and results being received.  It is desired to control the three motors in 

the Novint Falcon at a hard real-time sampling rate of 1 kHz.  This type of high-fidelity control can be 

achieved with an embedded processor running a real-time operating system.  There are several 

challenges in implementing this hardware strategy, including: 

1. Overriding the existing embedded system in the Novint Falcon 

2. Choosing a suitable processor 

3. Driving the three DC motors 

4. Reading the three motor position sensors 

To override the existing embedded system in the Novint Falcon, the circuit board in the device must be 

analyzed.  It is shown in Figure 8.   The controlling processor is indicated in Figure 8.  Removing this chip 

results in a more “static” system; i.e., individual components of the Novint Falcon are not enabled and 

disabled unexpectedly.  It is important to note that after this modification, the device will be 

permanently disabled for its intended purpose as a haptic input controller. 
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Figure 8: The embedded circuit board in the Novint Falcon.   

Component Description

1 TMS320 Digital Controller

2 Encoder LED emitters and photosensors

3 Supplementary Sensors

4 Motor Leads

5 Controller Buttons  

Table 2: Description of components in Figure 8 
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3.1: Embedded Processor 

The basic requirements for the embedded processor to control the Novint Falcon are enumerated here. 

1. Powerful enough to handle a 1 kHz sample rate 

2. Capable of driving a DC motor (pulse-width modulated outputs or DAC outputs) 

3. Sensor inputs to handle motor position feedback and supplementary sensors 

The Texas Instruments TMS320F28335 Delfino Microcontroller controlCard is a complete board-level 

module in an industry-standard Dual In-line Memory Module (DIMM) form factor, shown in Figure 9. 

[13] 

 

Figure 9: The F28335 controlCard [13] 

The F28335 satisfies all the basic requirements for control of the Novint Falcon. [13] 

1. It has a 150 MHz clock speed and is more than capable of a 1kHz sample rate.  It also has a 

floating-point unit, making control calculations more efficient. 

2. Its multiple pulse-width modulated outputs can be amplified to drive the three motors of the 

Novint Falcon 

3. It has quadrature counters to interface with the encoders attached to each motor, as well as a 

Serial Peripheral Interface (SPI) to communicate with external quadrature counter chips.  Its 

many General Purpose Input/Output (GPIO) pins can serve as inputs for any supplementary 

sensors. 
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3.2: Driving the DC Motors 

The F28335 is capable of producing a pulse-width modulated (PWM) signal with a varying duty cycle 

with an amplitude of 3.3 V [13].  In order to drive one of the DC motors in the Novint Falcon, this signal 

needs to be amplified to ±12 V.  This way, a 50% duty cycle will result in zero motor torque, 100% will be 

full torque in one direction, and 0% will be full torque in the opposite direction.  This signal amplification 

is achieved with the A3953 Full-Bridge PWM Motor Driver chip from Allegro MicroSystems, Inc. [11]  A 

schematic of this chip is shown in Figure 10. 

 

Figure 10: Schematic of the A3953 Full-Bridge PWM Motor Driver [11] 

For this application, the pulse-width modulated signal will be input at the PHASE pin (pin 7).  OUTA will 

be connected to the motor’s negative terminal, and OUTB will be connected to the motor’s positive 

terminal.  The motor terminals are indicated in Figure 8 by blue squares.  The LOAD SUPPLY pins should 

be connected to +12V.  The BRAKE pin will be pulled up to 3.3V to disable that function. 
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3.3: Angular Position Feedback 

Each of the three DC motors in the Novint Falcon is equipped with a large encoder wheel along with a 

light-emitting diode (LED) and photosensor.  These are indicated in Figure 8 by green squares.  As the 

encoder wheel turns along with the motor, the gaps in the wheel pass between the LED and 

photosensor, generating quadrature encoder signals.  Keeping a count of these signals provides an 

accurate measure of how far and in which direction the motor has turned.  This is accomplished with the 

LS7366R Quadrature Counter with Serial Peripheral Interface (SPI).  A schematic of this chip is shown in 

Figure 11 [10].  The previously mentioned SPI protocol is fully compatible with the F28335 [13]. 

 

Figure 11: Schematic of the LS7366R Quadrature Counter [10] 

The quadrature encoder channels A and B are connected to the A and B pins, respectively (pins 12 and 

11).  The SPI bus is serviced on the SS, SCK, MISO, and MOSI pins (pins 4, 5, 6, and 7). 
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3.4: Supplementary Sensors 

Each of the three DC motors in the Novint Falcon is equipped with a “home position” sensor that is 

tripped when the motor is at a specific angle.  The sensor leads are indicated in Figure 8 by pick squares.  

These sensor outputs can be connected to GPIO inputs on the F28335 to detect the absolute angular 

position of the motors [13].  Electrical schematics are provided in the appendix. 
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4: Conclusions and Future Studies 

Direct control of the three DC motors in the Novint Falcon was accomplished while keeping the existing 

sensory infrastructure intact.  The control strategy was linear, despite the nonlinear nature of the 

device.  It was found that a P-I-D control in conjunction with kinematic computations enabled the Novint 

Falcon to follow a trajectory through three-dimensional space with minimal phase lag.  The problem of 

controlling the Falcon via some form of dynamic state feedback remains. [8]  This is a difficult problem, 

since it involves explicit measurement of the dynamic parameters of the components in the Falcon - i.e., 

dimensions, masses, and moments of inertia of all links.   

 

Alternatively, it was noted that the nonlinearities and uncertainties in the dynamic model of the Novint 

Falcon make an adaptive control approach a good candidate for an effective controller.  The simplest 

adaptive control is an integral term; i.e., using a P-I-D controller in place of a P-D controller.  This has a 

relatively slow response and adversely affects the control response.  A second approach would be a 

model-reference adaptive control, and a third possibility is some kind of self-tuning linear adaptive 

control. 
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Part B: The Ball-on-Plate System 

The goal of this portion of the project is to design a laboratory control experiment that uses the Novint 

Falcon as an actuator, proving the concept of the device as a robotic manipulator.  The mechanical 

system to be controlled is the “ball-on-plate” system, which consists of a ball free to roll around on a flat 

plate.  The applied control would presumably “balance” the ball at a certain position on the plate, or 

control the position of the ball on the plate [5] [6] [7].  This system was chosen for several reasons. 

1. In its chosen implementation, the experiment requires the use of three cooperating Novint 

Falcon devices.  This will demonstrate the capabilities of the embedded approach to the control 

system. 

2. This experiment will involve some vision processing for detecting ball position.  Visual servo 

control can then be demonstrated in conjunction with the Novint Falcon. 

3. The system has a “slow” response; i.e., the ball rolls slowly enough that the effects of variations 

in control parameters can be easily observed, and the Novint Falcon's response time is 

significantly faster than the control experiment. 

The chosen implementation for the ball-and-plate system is shown in a schematic in Figure 12. 
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Figure 12: Schematic of the ball-and-plate system implementation 

Three Novint Falcon devices are arranged facing upwards and equally spaced.  The plate rests on top of 

the three moving platforms.  This way, the position of the moving platforms determines the tilt angle of 

the plate. 
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5: Ball Position Feedback 

Ball position feedback is accomplished with a camera facing downwards from directly above the plate 

[12].  A wide-angle lens is used to maximize the viewing angle of the camera.  Vision processing 

algorithms are employed to threshold and segment the image in order to find the ball's position.  The 

vision processing (along with the control algorithm) is implemented on the Digital Signal Processor (DSP) 

in an OMAP-L138 SoC system [14]. 
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5.1: Vision Processing 

Much of this section is based on the work of Spong, Hutchinson, and Vidyasagar [8] in their book, Robot 

Modeling and Control.  Two ideas are used - “thresholding” and “connected components”. 

i. Thresholding [8] 

Thresholding is the process by which the controlling computer distinguishes between pixels of interest 

and unimportant pixels.  This is accomplished by looking at the color values of the pixels.  The ball on the 

plate occupies pixels of certain ranges of red, green and blue levels.  These ranges are called the color 

thresholds.  The computer looks at each pixel and determines whether the color of that pixel is within 

the predefined range of colors that correspond to the ball.  The thresholded image is then segmented 

into two types of pixels – pixels that belong to the ball, and pixels that do not.  This is, of course, 

assuming that no other visible objects are similarly colored.  The result of thresholding is shown in Figure 

13. 

 

Figure 13: Raw image (left) and the same image after thresholding (right) [8] 
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ii. Connected Components [8] 

After segmentation by thresholding, there is often more than one object detected in the image.  They 

can be distinguished from each other by defining a group of pixels that are all connected as an object, 

and compiling data on all connected components in the image.  A two pixels are defined as “connected” 

if they are directly above and below or left and right of each other.  Figure 14 illustrates the concept of 

connected components. 

 

Figure 14: The connected components of Figure 13 [8] 

In this way, the pixels corresponding to the ball can be distinguished from pixels in other objects, and a 

better measurement of the ball's location can be made.  After all pixels belonging to the ball are 

identified, the centroid of their area is computed and used as the ball’s location. 
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5.2: Lens Distortion 

It was observed that the distortion in the wide-angle lens used is predominantly radial in nature.  This 

“fisheye” distortion is illustrated in Figure 15. 

 

Figure 15: Observed wide-angle lens “fisheye” distortion 

A mapping from pixel position to actual position is desired.  With the assumption that all of the lens 

distortion is radial, all that remains is to develop a function g(r) that maps a pixel's distance from the 

center pixel to the real distance of that point from the center of the plate.  This is accomplished by 

imaging a square grid and compiling a table of pixel distances and true distances, then fitting a least-

squares polynomial to the data.  The data and a least-squares quadratic polynomial is shown in Figure 

16. 
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Figure 16: Results of lens distortion analysis 
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6: Dynamic Model 

As mentioned before, the mechanical system to be modeled is the “ball-on-plate” system, which 

consists of a ball free to roll around on a flat plate.  The applied control would presumably “balance” the 

ball at a certain position on the plate, or control the position of the ball on the plate.  This is 

accomplished by changing the angle of the plate.  A simple schematic of the system is shown for the 

one-dimensional “ball-on-beam” system in Figure 17.  A hollow ball is used for this analysis.  It is also 

assumed that the ball-on-plate system is a two-dimensional analog of the ball-on-beam system. 

 

Figure 17: Simplified ball-on-beam system 

It is further assumed that the pivot point of the beam is at the point of contact between the ball and 

beam.  Thus, there are no lever-arm forces applied to the ball when the angle changes.  The dynamics 

for this simplified system can be found using the torque equation     .  Since  ̈     and   
    

 
, 

the equation of motion is  

 ̈  
  

 
     

This model describes a nonlinear system with varying input parameter ϴ.  If the system is linearized via 

Taylor series about the equilibrium ϴ = 0 (i.e., the small angle approximation), the equation of motion  

 ̈  
  

 
  

describes the approximate motion of the system within a small neighborhood of ϴ = 0.  The goal of this 

analysis is to determine a feedback control ϴ that regulates the system to x = 0.  This can be 

accomplished with both linear and nonlinear feedback. 
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 6.1: An Implementation that Approximates the Dynamic Model 

It is clear from Figure 12 that the plate has all six degrees of freedom (in a certain workspace).  This 

freedom allows the plate to pivot about any point within its workspace.  We will constrain the plate to 

pivot about the point of contact between the plate and the ball, approximating the dynamic system 

described above.  The problem statement is this: given two control inputs ϴx and ϴy, at what positions 

must the three moving platforms be to actuate these inputs?  The geometric derivation of this process 

follows.  See Figure 18 for reference.   

 

Figure 18: Geometric reference 

First, define a coordinate system (x, y, z) whose origin is the center of the system and at the same height 

as the ball.  Note that in the final implementation, the ball will always be at the same height, so this 



32 
 

coordinate frame is static.  Triangles OAC and ODE are coplanar.  Determine the slope m of the line y = 

mx and the angle γ as follows: Note that triangles ABC and DEF are similar.  So: 

  

  
 
  

  
 

     
         

 
     

   (
 
   )      

 

     
    

 
     

    
 

        
      
     

 

The value of angle γ is found using triangle ABC: 

     
  

  
 

     
         

 
     
    

 

Let the positions of the three moving platforms for θx = θy = 0 be denoted p1, p2 and p3.  First compute 

their perpendicular distance to the line y = mx: 

   
         

√    
 

Then the new x and y positions are 

 ̃         (      )    (
 

 
       ) 

 ̃         (      )    (
 

 
       ) 

Finally, to fix the ball’s height, simply add or subtract the necessary distance from the z component of 

each of p1, p2, and p3.  If the ball’s x and y position is given by bx and by, then 

 ̃   (   
       

√    
)      

All that remains is the trivial task of converting these coordinates to each device’s individual frame of 

reference.  Note that with this algorithm, the devices need not be arranged in any specific way. 
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7: Linear Control Design 

The linearized dynamic system can be represented with two states. 

  ̇     

 ̇  
  

 
  

This linear system is a double integrator with a gain of 3g/2.  Its behavior near the equilibrium is related 

to the eigenvalues of its Jacobian matrix. 

  [

  
  

 

  

   

  

 

  

   

]  [
  
      

] 

     
    √        

 

 
 

For asymptotic stability, these eigenvalues must be strictly negative.  This is true for any control effort ϴ 

such that 

  

   
        

  

   
   

The simplest control strategy satisfying these requirements is the common P-D control consisting of a 

linear combination of the position and velocity of the ball. 

             

To track a reference input R, this control law must be modified to act on an error signal: 

    (    )    (
 

  
    ) 

The closed-loop transfer function with this control effort is shown in Figure 19. 
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Figure 19: P-D control strategy block diagram 

 ( )  
(   ⁄ )    (   ⁄ )  

   (   ⁄ )    (   ⁄ )  
 

Before kp and kd are chosen, it is important to note that this linear model is stable for any kp > 0 and kd > 

0, and becomes more stable as these gains increase.  However, due to the realities of the nonlinear 

system, it would be catastrophic to choose them to be arbitrarily large.  Therefore, as part of the design 

specification, the step response will have a lower-bounded rise time.  The ball will never accelerate 

faster than 9.81 m/s2.  In fact, with our small angle approximation, we can intuitively say that the ball 

should never accelerate faster than 1 m/s2.  Coupled with the fact that the step input will be scaled-

down, some heuristic design considerations result in a minimum allowable rise time of approximately 

one second.  All that remains is to choose gains kp and kd to satisfy some damping consideration to 

control oscillations, say, ζ = 0.6.  So, with g = 9.81 m/s2, we have 

     
 

√    
[       (

√    

 
)]                     

  
                         

                            

A computer simulation of the step response with these gains and a step of 0.1 is shown in Figure 20.  

The control effort is the dotted line. 
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Figure 20: Simulated step response of the P-D control 

The next step is to implement this control strategy on the physical system that this model and 

simulation approximates. 
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8: Feedback-Linearized Control Design 

In contrast to the linear design section, the sinusoidal nonlinearity in the model is considered here.  

Recall the system equation of motion 

 ̈  
  

 
     

Let        (
 

  
 ).  Then, 

 ̈  
  

 
   [     (

 

  
 )]    

The system can now be mathematically viewed as linear, as long as the control effort u is transformed 

into ϴ before input to the plant.  Since the plant is now a unity gain double integrator (extensively 

studied [9]), the controller can be designed using linear techniques.  A similar analysis to the linear 

design leads to the same basic control strategy as above – a P-D control consisting of a linear 

combination of the position and velocity of the ball.  Using identical specifications, proportional and 

derivative gains are obtained. 

 

 ( )  
      

         
 

     
 

√    
[       (

√    

 
)]                     

  
                   

                      

A computer simulation is shown in Figure 21.  The dotted line is the control effort, and the solid line is 

the output.  The input was a step of 0.1 meters.   
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Figure 21: Simulated step response of the feedback-linearized P-D control 

This response is very similar to the response of the system with linear control.  This is expected, since 

the small angle approximation used in the linear controller design is more or less valid. 
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9: Implementation and Results 

Controller design was accomplished in the continuous domain.  To simulate and implement a P-D 

control on a digital system, the control must be discretized.  The control effort will then pass through a 

zero-order hold before output to the plant.  The sample rate of this system will be constrained to the 

sample rate of the sensor (camera), which is 25 Hz in its final implementation [12]. 

 

Figure 22: Discrete control strategy block diagram 

The discrete derivative is achieved with a finite difference calculation.  Discrete simulations of both the 

linear and nonlinear feedback controllers are shown in Figures 23 and 24. 

 

Figure 23: Simulated discrete step response of the linear P-D control 

This is the response for the linear feedback controller with kp = 0.52 and kd = 0.23.  The rise time is faster 

and the overshoot is slightly greater. 
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Figure 24: Simulated discrete step response of the feedback-linearized P-D control 

An important part of any P-D controller design is dealing with signal noise, particularly in the derivative 

term.  When a noisy signal is differentiated the noise is amplified.  For this application, noise is expected 

to occur in the sensor output.  One solution is a low-pass filter.  Consider the unity-gain first-order filter 

with cutoff frequency ω. 

 ( )  
 

   
 

Differentiating the input signal results in the filter below.  The Bode plot for this “filtered differentiator” 

is shown in Figure 25. 

  ( )  
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Figure 25: Bode diagram for G’(s) 

The filter G’(s) can be thought of as a differentiator that attenuates frequencies in the stopband.  It was 

found that using the attenuating differentiator in place of an ideal differentiator in the P-D controller 

eliminated high-frequency noise when a cutoff frequency of ω = 5 was used.  The z-transform for that 

cutoff frequency is given by 

 ( )  
    

        
 

Of course, it is important to simulate the system using this filter in place of the discrete differentiator to 

observe any negative effects it may have.  Figures 26 and 27 show the step responses of the two 

controllers that were designed. 
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Figure 26: Step response of linear P-D controller using filtered derivative 

 

Figure 27: Step response of feedback-linearized P-D controller using filtered derivative 
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9.1: Results 

Both the linear and nonlinear feedback controllers were implemented on the test platform. 

The step response for linear P-D feedback with kp = 0.52 and kd = 0.23 is shown in Figure 28. 

 

Figure 28: Step response for linear P-D control 

The oscillations are pronounced, as predicted by the model due phase lag in the filtered differentiation.  

Tuning gains to kp = 1 and kd = 1 results in a more satisfactory response, shown in Figure 29. 

 

Figure 29: Tuned step response for linear P-D control 
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The step response for the feedback-linearized controller is shown in Figure 30 for kp = 7.67 and kd = 3.32. 

 

Figure 30: Step response for feedback-linearized P-D control 

Similarly, the oscillations are more pronounced than in the simulated model due to unmodeled delays 

and phase lag.  Tuning the gains to kp = 10 and kd = 10 results in the response shown in Figure 31.  

 

Figure 31: Tuned step response for feedback-linearized P-D control 
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9.2: Trajectory Tracking 

As a final step, control gains were tuned for tracking a trajectory on the plate.  Performance of the 

feedback-linearized controller is shown in Figure 32 for tracking a slow circular trajectory with kp = 30 

and kd = 12. 

 

Figure 32: Circular trajectory tracking ball position 

Increased control gains are required for slow trajectory tracking, since even a small error needs to be 

corrected.  The difficulties here are the unmodeled nonlinearities in the system.  These include: 

1. The ball is not perfectly round.  This causes unforseen changes in the required control effort. 

2. Similarly, the plate is not perfectly flat.  In fact, some miniscule convexity can be expected from 

the plate bending under its own weight. 

3. The rolling ball has a dead zone due to static friction.  For any angles less than approximately 1°, 

the ball does not move. 

4. Dynamic friction.  The unmodeled rolling friction and air friction slow down the response of the 

ball. 

5. Elastic deformation of the ball and plate at the point of contact with the plate. 
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10: Conclusions and Future Studies 

A ball-on-plate balancing system was implemented using three Novint Falcon devices as actuators.  P-D 

control and feedback-linearized P-D control both were found to be satisfactory.  The model 

approximated the results well, demonstrating the viability of the Novint Falcon as an actuator for small-

scale control applications.  Some improvement in the performance of the system is possible by using a 

more spherical ball or flatter plate. 

 

The near-linear nature of the ball-on-plate system makes it an ideal candidate for linear optimal control 

design.  It is possible to design a linear quadratic regulator to regulate the system to the origin.  More 

specifically, a finite-horizon discrete-time linear quadratic regulator may be a good choice. 

 

The nature of this ball-on-plate system required some constraints to be placed on the plate’s position 

(see section 6.1).  Some interesting problems could arise when these constraints are changed.  For 

example, the ball’s position on the plate can be controlled by a pure translation of the plate, rather than 

a change of angle.  An exploration of these possibilities is left for future work. 

 

The vision processing algorithms used are functional, but the ball position signal is subject to significant 

low-frequency noise, as well as some uncertainty.  A better algorithm undoubtedly exists.  Two 

possibilities are edge detection and optical flow.  Edges are less sensitive to ambient light and color 

threshold changes.  Optical flow produces a field of displacement vectors defining the translation of 

each pixel in a region.  As a final thought, several algorithms could be used together with a Kalman filter 

to provide a converging estimate of the ball's position. 
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Appendix:  Electrical Schematics 

 

Figure A.1: Sample wiring for A3953 Full-Bridge PWM Motor Driver [11] 

 

Figure A.2: Sample wiring for supplementary sensors 

 

Figure A.3: Sample wiring for LS7366 Quadrature Counter [10] 


