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ABSTRACT

Many existing encrypted Internet protocols leak information through packet sizes and

timing. Though seemingly innocuous, prior work has shown that such leakage can

be used to recover part or all of the plaintext being encrypted. The prevalence of en-

crypted protocols as the underpinning of such critical services as e-commerce, remote

login, and anonymity networks and the increasing feasibility of attacks on these ser-

vices represent a considerable risk to communications security. Existing mechanisms

for preventing traffic analysis focus on re-routing and padding. These prevention tech-

niques have considerable resource and overhead requirements. Furthermore, padding

is easily detectable and, in some cases, can introduce its own vulnerabilities.

To address these shortcomings, we propose embedding real traffic in synthetically

generated encrypted cover traffic. Novel to our approach is our use of realistic network

protocol behavior models to generate cover traffic. The observable traffic we generate

also has the benefit of being indistinguishable from other real encrypted traffic further

thwarting an adversary’s ability to target attacks. In this dissertation, we introduce the

design of a proxy system called TrafficMimic that implements realistic cover traffic

tunneling and can be used alone or integrated with the Tor anonymity system. We

describe the cover traffic generation process including the subtleties of implementing

a secure traffic generator. We show that TrafficMimic cover traffic can fool a complex

protocol classification attack with 91% of the accuracy of real traffic. TrafficMimic

cover traffic is also not detected by a binary classification attack specifically designed

to detect TrafficMimic.

We evaluate the performance of tunneling with independent cover traffic models and

find that they are comparable, and, in some cases, more efficient than generic constant-
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rate defenses. We then use simulation and analytic modeling to understand the perfor-

mance of cover traffic tunneling more deeply. We find that we can take measurements

from real or simulated traffic with no tunneling and use them to estimate parameters

for an accurate analytic model of the performance impact of cover traffic tunneling.

Once validated, we use this model to better understand how delay, bandwidth, tunnel

slowdown, and stability affect cover traffic tunneling.

Finally, we take the insights from our simulation study and develop several biasing

techniques that we can use to match the cover traffic to the real traffic while simul-

taneously bounding external information leakage. We study these bias methods using

simulation and evaluate their security using a Bayesian inference attack. We find that

we can safely improve performance with biasing while preventing both traffic anal-

ysis and defense detection attacks. We then apply these biasing methods to the real

TrafficMimic implementation and evaluate it on the Internet. We find that biasing can

provide 3-5x improvement in bandwidth for bulk transfers and 2.5-9.5x speedup for

Web browsing over tunneling without biasing.
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CHAPTER 1

INTRODUCTION

As more sensitive information is transmitted over computer networks, there has been

a steady increase in the deployment of encryption to protect data in-flight. Encryp-

tion is critical to e-commerce and has been key to the broad impact and success of

the Internet. Myriad encrypted network protocols have emerged (e.g., [1–4]) that en-

able applications like encrypted Web browsing, VPNs, secure shells, and VoIP. Though

encrypted protocols have been implemented at every layer of the OSI model, in this

work we focus primarily on SSL/TLS1, the most common application-layer end-to-end

encrypted protocol used on the Internet.

Since the data payload of an encrypted protocol is protected by strong encryption, at-

tackers use the information leaked by side channels to recover the contents or intent of

the plaintext traffic. This type of attack, called traffic analysis, uses the sizes and timing

of packets sent across the network. Though traffic analysis has been a well-studied spy-

ing technique for many decades, it has recently found applications in attacking Internet

traffic.

To further motivate this problem, consider the following example of traffic analysis

of encrypted Web browsing using the HTTPS protocol. Figure 1.1 depicts this sce-

nario. The canonical activity of Web browsing is that a small request is followed by a

larger response. The SSL tunnel created by HTTPS does not mask this behavior. An

adversary (Alice) with appropriate access to monitor the network can see the encrypted

payloads as they cross the network. She can also see the boundaries between requests

and responses. Therefore, if Alice has access to the encrypted content on a Web site

1SSL was formally renamed TLS when it was standardized by the IETF. In this work, we use the
term SSL to refer to the SSLv3/TLSv1 protocol in use today.
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Bob’s 
Computer 

Encrypt 
29874ABA.XM.FJ 
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DFALAPDJFA.MF 
2304AODJHFA0U 
@)$*(KJFA;KDJA 

Alice’s Vantage Point 
Small message of 
size 349 bytes… 
 HTTP Request! 

29874ABA.XM.FJ 
DFALAPDJFA.MF 
2304AODJHFA0U 
@)$*(KJFA;KDJA 
29874ABA.XM.FJ 
DFALAPDJFA.MF 
23$*(KJFA;KDJA 
29874ABA.XM.FJ 
DFALAPDJFA.MF 
2304AODJHFA0U 
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Transfer 
Completed 

Page 

Response of length    
14328 bytes 
Bank Fund Transfer Page! 
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4;KDJA23ADK 
542542342AF 

5452323 
4JA123 

2542234 

Requested money 
Transfer for the 

Amount of $3000 

Do you wish to  
Accept? Encrypt 

DFALAPF 
DJHFA0U 
KJFADJA 
65sd4safg 

29874ABA.XM.FJ 
DFALAPDJFA.MF 
2304AODJHFA0U 
@)$*(KJFA;KDJA 
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4;KD5J 
542542 

Decrypt 

GET /request? 
myacccount. 
Transfer.html 
HTTP/1.1 

29874ABA.XM.FJ 
DFALAPDJFA.MF 
2304AODJHFA0U 
@)$*(KJFA;KDJA 
29874ABA.XM.FJ 
DFALAPDJFA.MF 
23$*(KJFA;KDJA 
29874ABA.XM.FJ 
DFALAPDJFA.MF 
2304AODJHFA0U 
@)$*(KJFA;KDJA 

Transfer 
Request 

Figure 1.1: A simple example of encrypted traffic analysis of the HTTPS protocol

(for example, she and the victim (Bob) both have on-line banking accounts at the same

bank) then Alice can catalog the size of each individual object on the site. Once she

has done this, she can snoop Bob’s traffic and reliably determine the pages he has vis-

ited without directly compromising any cryptographic keys, algorithms, or protocols.

Alice can deduce, for example, that Bob transferred money because he has been to the

transfer-request and the transfer-completed pages.

Existing traffic analysis attacks can recover a wide range of information from en-

crypted communications, e.g., Web page visits [5–7], typed passwords [8, 9], speech

data [10, 11], and embedded protocols [12, 13]. Some users can tolerate such vul-

nerabilities; however, a growing number of applications (e.g., low-latency anonymity

systems and VPNs) and users (e.g., whistle-blowers and people in oppressive regimes)

need better protection from these attacks.

Existing techniques for preventing traffic analysis center on sending data with fixed

intervals and/or with fixed payload sizes. Prior work has shown that such constant-rate

techniques can result in considerable overhead [6, 10]. Furthermore, packets legiti-
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mately dropped during a constant-rate stream increase the effectiveness of flow linking

attacks in mix systems [14]. Though the constant-rate defense is effective at reducing

the information leakage that enables most traffic analysis attacks, is also clearly reveals

that a user is employing countermeasures to evade traffic analysis. This may, in itself,

result in unwanted attention and scrutiny. We call this related attack defense detection.

To resist both traffic analysis and defense detection attacks, we propose using re-

alistic cover traffic tunnels to mask the observable behavior of the real traffic to be

transmitted. Thus, the cover traffic model dictates when and how much data should

be transmitted. Real data is queued until there is cover traffic available to send it. If

there is no real data to send, the cover traffic is padded appropriately and sent. Strong

encryption prevents the attacker from separating what portions of the network commu-

nications contain real data and which are padding.

In this dissertation, we present the design, implementation, and evaluation of a cover

traffic tunneling system called TrafficMimic. The following statement summarizes the

objectives of this dissertation:

Tunneling real data through realistic cover traffic models is a robust de-

fense that provides balanced performance and security against powerful

traffic analysis attacks.

Existing encrypted protocols provide minimal traffic analysis resistance in exchange

for better performance. This work provides users the option of changing this trade-

off to favor more secure communications thereby balancing security and performance

better than existing solutions.

The generality of the cover traffic model allows the user great flexibility in combat-

ing attacks. The degree of independence between the real traffic and the cover traffic

drives how probable it is for an attacker to recover information from the session. It

also influences the performance of the real traffic compared to its native performance

without tunneling. Initially, we study cover traffic processes that are independent from

the real traffic that they carry. We call these independent cover traffic models. We then

show how to loosely couple the cover traffic process to the requirements of the real
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traffic while keeping attacker observable information leakage to a minimum. We call

these biased cover traffic models.

We then show that using cover traffic models can robustly counter both traffic analy-

sis and defense detection better than constant-rate techniques. Our defenses are robust

because they correct the information leakages in current protocols and do not depend

on specific attack implementation weaknesses. Since we assume the attacker’s capabil-

ities may range from those of a stealthy intruder to the network operator, we develop

defenses that thwart even the most powerful attacks using the most advanced methods.

Specifically, we target attacks that rely on the information leaked by common end-to-

end encryption protocols currently used on the Internet (e.g., packet timing, payload

sizes, etc).

To address these research challenges, we utilize simulation, analytic modeling, sta-

tistical machine learning, and full system implementations. Since this work has direct

applicability to real privacy enhancing technologies, we ensure that the results of our

research are focused on practicality. This includes developing and testing usable sys-

tem implementations with quantifiable risks to attack and utilizing real network trace

data to drive the learning and attack processes.

1.1 Structure of the Dissertation

The structure of this dissertation is as follows: The remainder of Chapter 1 covers

the motivation and threat model for our work. This includes a review of recent traffic

analysis attacks and their effectiveness. We then develop a threat model that favors the

attacker in terms of access and resources.

In Chapter 2, we describe the design and implementation of our cover traffic tunnel-

ing system: TrafficMimic. We present methods for generating realistic cover traffic,

borrowing from prior work on traffic generation from the simulation and modeling

research community [15]. Since the quality of the cover traffic in our work is security-

sensitive, we describe how existing traffic generators need to be modified to ensure they
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do not leak information. We then describe the system design and C++ implementation

details of TrafficMimic. We also present a practical application of TrafficMimic by

integrating cover traffic tunneling with Tor [16].

Chapter 3 contains an evaluation of the security and performance properties of our

system implementation of TrafficMimic. We develop several protocol classification and

anomaly detection attacks that are based, in part, on recent research in this area [12,13,

17]. We show that TrafficMimic is able to fool our complex traffic classification attack

91% of the rate at which it works for real traffic. To address defense detection, we

show that TrafficMimic cover traffic is indistinguishable from real traffic, even when

attacked with a classifier trained with TrafficMimic models. We also show that realistic

cover traffic can, in some cases, provide comparable performance to static constant-

rate cover traffic. We then discuss performance problems that arise from mismatches

between properties of the cover and real traffic.

In Chapter 4 we further examine the performance effects we observed in Chapter 3

using a simulation model and implementation in SSFNet [18]. We then develop a

bi-directional analytic model for independent cover traffic tunneling and validate it

using the results of our simulation study. This validated model allows us to understand

performance properties of the real traffic like slowdown and the stability of cover/real

traffic combinations.

We next investigate techniques for biasing the selection of cover traffic to better

match the real traffic being tunneled in Chapter 5. We derive several statistical and

algorithmic biasing functions and describe their implementation in a simulator. We use

this simulator along with a Bayesian inference attack to compare the bias functions’

security and performance. We study the effects of biasing on defense detection using

the two sample Kolmogorov-Smirnov test. We then evaluate biased cover traffic mod-

els in our system implementation of TrafficMimic. We observed up to 5x improvement

in bulk transfer performance and 2.5-9.5x improvement in Web site load time as com-

pared to independent cover traffic. We also found that bidirectional overhead was also

reduced using biasing. This study shows that we can safely enhance the real-world

performance of TrafficMimic using biasing.
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Num Time Del ta From To TCP f l a g s TCP i n f o
1 0 .000000 43620 > h t t p s [ PSH , ACK] Seq=1 Ack=1 Len=693
2 0 .037718 h t t p s > 43620 [ACK] Seq=1 Ack =694 Len=0
3 0 .467329 h t t p s > 43620 [ACK] Seq=1 Ack =694 Len=1448
4 0 .000123 h t t p s > 43620 [ACK] Seq =1449 Ack =694 Len=1448
5 0 .000023 43620 > h t t p s [ACK] Seq =694 Ack =2897 Len=0
6 0 .000092 h t t p s > 43620 [ACK] Seq =2897 Ack =694 Len=1448
7 0 .000649 h t t p s > 43620 [ACK] Seq =4345 Ack =694 Len=1448
8 0 .000018 43620 > h t t p s [ACK] Seq =694 Ack =5793 Len=0
9 0 .000091 h t t p s > 43620 [ACK] Seq =5793 Ack =694 Len=1448

10 0 .000068 h t t p s > 43620 [ PSH , ACK] Seq =7241 Ack =694 Len=658
11 0 .000014 43620 > h t t p s [ACK] Seq =694 Ack =7899 Len=0

Figure 1.2: Portion of a packet trace of HTTPS browsing taken from tshark [19]

We present a review of relevant related work in traffic analysis attacks, attack pre-

vention, and network traffic generation in Chapter 6. We then conclude and describe

future work in Chapter 7.

1.2 Traffic Analysis Threats

To establish effective techniques for preventing traffic analysis, we first examine the

mechanics of precisely what information is currently leaked by encrypted protocols.

We do so using an example taken from a portion of an HTTPS connection. We show

the output in a format similar to that of Wireshark [19] in Figure 1.2.

The first information we can readily glean from this trace is that the two hosts are

communicating over the HTTPS protocol. Unless being used in concert with a proxy,

tunnel, or VPN service, current encrypted protocols do not directly obscure who is

communicating. When used for a VPN, encrypted protocols may obscure the exact

end-points of the communications since the IP headers are also encrypted. However,

an attacker is still able to tell the end-points of the VPN (i.e., what organization hosts

it). In our work, we do not prevent the attacker from determining the end points of

the communications because existing work on anonymous relays and Internet blocking

resistance can provide this.

The next thing we can observe from the above trace is the timing of the packets.

Since we collected this trace at the client, we can observe round trip time of the first

data packet as approximately 38ms. We can also see when the client and server send
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data. The next thing we can observe is the length of the payloads in the packets. We

can tell that the client sent a total of 693 bytes and the server sent 7898 bytes in this

portion of the trace.

Using the information we have observed so far, we can apply what we know of the

normal operation of HTTP to reconstruct what is taking place. We see that a GET

request was likely sent in packet 1. Using the timing of the packets, we deduce that

the server processing time was approximately 467 ms. In a typical HTTP connection,

the server sends back HTTP response headers and the content requested. We collected

the response headers by crawling over one million pages from the Internet and found

them to have a mean length of 212 bytes. Thus, we estimate the size of the object re-

quested was approximately 7686 bytes (7898-212). After examining the corresponding

plaintext session, we found our estimates from the encrypted session to be within close

margins.

1.3 Related Work on Traffic Analysis Attacks

As evidenced by the preceding example, encrypted protocols can leak considerable

amounts of information. Encrypted traffic analysis has been the subject of research

since the advent of encrypted Internet protocols [20, 21]. To further understand this

threat, we next present a taxonomy of traffic analysis against Internet encrypted proto-

cols.

1.3.1 Anonymity Attacks

Anonymity systems are a common target for traffic analysis attacks. By hiding infor-

mation about each user’s identity, anonymity systems force attackers to use side chan-

nels to glean information about user identity. Raymond provides an overview of traffic

analysis techniques against anonymity systems [22]. One such side channel attack is

to correlate traffic patterns entering and leaving an anonymity system [23,24]. Hintz et

al. demonstrated a different type of attack on the SafeWeb system [25] that utilized a
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HTTP protocol-specific attack (similar to those described in Section 1.3.4).

Zhu and Bettati developed another class of anonymity attacks they call flow sepa-

ration [26]. They use blind source separation techniques to distinguish different flows

inside a mix network. While their attack does not violate anonymity directly, their

techniques make it easier to apply traffic analysis techniques on mixed traffic.

There are two approaches to using cover traffic in anonymity systems: link padding

and end-to-end padding. Link padding ensures that a passive adversary observing traffic

between the routers is unable to learn any information about the flows being carried.

The use of realistic cover traffic in this scenario would help hide the fact that a router

is forwarding anonymous traffic. Link padding, of course, does not provide a defense

against compromised routers. End-to-end padding can be used to address this problem,

but it is vulnerable to network perturbations, intentional or otherwise, that introduce

distinct patterns in different flows [27]. An end-to-end realistic cover stream used by an

anonymity system will likewise not help resist traffic analysis aimed to link anonymous

flows, as each stream will have a distinct signature, but it will help protect from other

attacks described below.

1.3.2 Stepping Stone Detection

Traffic analysis is also used to detect stepping stones [28], which are compromised

computers that are used to relay malicious traffic to hide its true origin. The method-

ologies used are often similar to traffic analysis in anonymous communication net-

works [29,30]. In this scenario, constant-rate cover traffic is likely to arouse suspicion.

Donoho et al. [31] suggested constraining the cover traffic distribution to preserve a

Pareto inter-arrival distribution and studied detection mechanisms that exploit this con-

straint, while Blum et al. analyzed using cover traffic following a Poisson process [32].

Realistic cover traffic would, of course, be the stealthiest approach to avoiding stepping

stone detection.

8



1.3.3 Protocol Detection

Protocol detection is increasingly important both for security and for operational rea-

sons. Intrusion detection systems with appropriate knowledge of the protocol may be

better able to analyze traffic [33]. Also, it may be necessary to identify unknown pro-

tocols and subject them to further examination or a specialized routing policy (e.g.,

VoIP). Many protocol detection techniques are based upon examining the content of

the traffic data [34].

The contents are obscured in encrypted protocols, so more sophisticated methods

must be employed. Moore and Zuev use a Naı̈ve Bayes classifier to classify individual

flows using flow length, port numbers, and inter-flow time [17]. Wright et al. use hidden

Markov models to identify encrypted and plaintext protocols using only packet timing

and size [35]. They address some of the difficulties in utilizing so few features (time and

size) in encrypted protocols, but still find that detection can be error-prone. They also

propose methods for identifying traffic using aggregates of size information only [13].

They use the K-nearest-neighbor algorithm in conjunction with the Kullback-Leibler

divergence to classify traffic aggregates collected in ten second intervals.

The work by Dhamankar and King used a large set of features (such as client/server

traffic ratio, entropy, and standard deviation of request/response times) [12]. They

also used a different classification mechanism by doing K-means clustering and then

nearest neighbor using both Euclidean and Mahalanobis distance metrics. Their results

focused on VoIP traffic (specifically Skype), but they were also successful at detecting

other UDP protocols, such as NetBIOS, within small error margins.

While most cover traffic techniques are effective at preventing protocol detection,

realistic cover traffic can be tuned so that a particular cover protocol is recognized. This

is especially relevant since corporations and governments are now employing network

anomaly detection systems (NADS) to track encrypted traffic usage. This technology

can be used to enforce network security policies, such as preventing unauthorized VPN

connections or catching malware command and control channels. Several commercial

vendors offer NADS products including Securify, PacketMotion, Mazu Networks, and
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Arbor Networks.

1.3.4 Protocol-Specific Attacks

A common attack against HTTPS is to identify the web site being browsed when the

destination address is not available (e.g., when using an anonymous proxy) [36]. Initial

approaches used individual object sizes to identify pages on the Internet [7] or correlate

links across pages [37]. Later work added packet inter-arrival times to the prior metrics

to identify which site a user was browsing [5]. The attack decreases in accuracy as

the time between training the model and applying it to test traffic increases. Libera-

tore and Levine went on to evaluate several techniques for identifying encrypted HTTP

streams [6]. For their techniques, they found a much smaller reduction in attack accu-

racy than prior work as the time between training and attack grew. Shi et al. propose

another mechanism for identifying a site through a trace of encrypted browsing [38].

The novelty of their approach is to represent a browsing session as a vector of connec-

tion counts and data volumes transferred on each connection. They then use a support

vector machine to classify the session vectors and differentiate Web sites. Herrmann et

al. studied a Multinomial Naı̈ve Bayes classifier on several different types of encrypted

proxy systems. They also studied some of the difficulties associated with false positives

and browser caching.

Monrose and Rubin discovered that by examining the keystroke timing behavior,

they could extract the text being typed into a real-time system [8]. Song et al. used

this idea to extract typed passwords (from stepping-stone connections) and commands

from SSH sessions [9].

Because of its quality of service and bandwidth requirements, detecting VoIP is of

interest to network operators. Indeed, this was the primary motivation for the work of

Dhamankar and King [12]. Wright et al. have taken detection further to try to infer the

language being spoken using only features of the encrypted packets being sent [11].

The variable bit-rate encoders used by many VoIP schemes leak information in packet

sizes because the different sounds that make up speech are encoded differently. With
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a simple classifier they were able to achieve up to 90% accuracy for many languages.

They also used hidden Markov models to detect some spoken phrases without the need

to train on audio samples of the speaker [10].

Realistic cover traffic models can be used to destroy the specific features extracted by

the above attacks while preserving the overall traffic model. For example, by using an

HTTPS model to generate cover traffic for an HTTPS session, protocol identification

will correctly classify the activity, but a website identification will be misled.

1.4 Threat Model

To establish the effectiveness of our prevention techniques, we use a threat model that

is specific to preventing certain types of traffic analysis and favors the attacker in terms

of resources and access. We focus on obscuring the timing, payload sizes, and behav-

ior patterns of encrypted traffic. We are not able to reduce the amount of data to be

sent, but we can obscure its semantics from the attacker. We assume the attacker may

passively observe traffic at any point after it has been encrypted and may do so with

high-precision timing. We assume that the attacker cannot directly compromise any

encryption key or algorithm and must focus on side-channel analysis. We also consider

the adversary to have considerable resources at his/her disposal and to have no need to

be stealthy. Our system does not obscure who is communicating or whether two parties

are communicating at all. However, when used with an anonymity network, proxy, or

covert channel, which can prevent flow linking, our work is capable of minimizing the

information an attacker can recover from any type of known traffic analysis attack.

Since protocol classification may be required for an attacker to know which protocol-

specific attacks to carry out, we focus on preventing protocol classification attacks.

Protocol classification is also central to conducting and defending against the defense

detection attack. Thus, we use a supervised learning protocol identification traffic anal-

ysis attack. We assume that the attacker has access to generic network traces with which

he/she trains the protocol identification attack. The attacker then uses this trained clas-
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sifier against specific target networks and hosts. We also use an unsupervised-learning

method to identify protocol anomalies (i.e., constant-rate traffic flowing over a port

which usually contains a real protocol). We describe the design and implementation of

these attacks in more detail in Section 3.1.

Finally, we note that in addition to malicious attacks on user privacy, there are many

scenarios where traffic analysis plays a benevolent role in network security. For exam-

ple, network operators may use traffic analysis to perform network policy enforcement

and intrusion detection thereby improving security for their users. Network policies that

forbid unauthorized outbound virtual private networks can protect internal resources

from attack and help mitigate exfiltration of sensitive information. To alleviate the con-

fusion over the ambiguous motivations of those doing traffic analysis, we assume that

those conducting the attack are the adversaries.
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CHAPTER 2

TRAFFICMIMIC DESIGN

The primary purpose of TrafficMimic is to prevent traffic analysis attacks, like those

discussed in Section 1.2. Since these attacks use the information (e.g., packet sizes

and timing) that SSL and other end-to-end encryption protocols leak, we must leak

as little information as possible from TrafficMimic. The most basic approach to stop

information leakage is to map the real traffic onto a simple flat protocol model like

constant-rate. Indeed, this method has been used with success in mitigating traffic anal-

ysis attacks in prior work [6, 10, 25, 37]. However, using such simple protocol models

appears anomalous and is easily detectable by the adversary. To ensure responsive and

efficient communications, constant-rate traffic must be emitted at the maximum desired

rate all the time, resulting in considerable overhead. Furthermore, these methods are

difficult to tune due to their mismatch with real Internet protocols (and excessive tuning

may result in information leakage of its own).

To best address the problems with existing traffic analysis resistance, we use realistic

protocol behavior models to generate cover traffic rather than constant-rate traffic. Us-

ing realistic models allows a user to ensure the attacker sees the protocol behaviors that

are expected of the port, user, or location, thwarting defense detection. Realistic mod-

els can also provide performance advantages, especially with respect to excess padding

overhead.

Realistic cover traffic models can either be independent or dependent of the real

traffic flowing through them. When using an independent cover traffic model, Traf-

ficMimic provides the same strong level of traffic analysis resistance as constant-rate

models while simultaneously preventing defense detection. In Chapter 5 we study how

to relax independent models while quantifying the information loss.
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The overhead incurred by using an independent realistic model varies greatly de-

pending on the properties of the cover traffic and the requirements of the real traffic.

However, similar to how the simple models may be tuned via parameters, the user may

select an independent model based upon his/her requirements for tunneled real traf-

fic. A good deal of automatic tuning/fitting takes place when using the same model

for cover traffic as the real traffic. For example, a user may tunnel his/her real Web

browsing session over independent Web browsing cover traffic.

2.1 Secure Traffic Generation

So far, we have espoused that using realistic cover traffic has certain security benefits.

However, this assumption is highly dependent on the quality of the generated cover traf-

fic (i.e., how realistic is it?). Studying relevant work in realistic traffic generation from

the simulation and performance analysis communities revealed that generating truly

realistic traffic is complex and highly dependent on the beholder’s idea of what fea-

tures are important to realism. For example, it is often important for traffic generators

used for network algorithm testing to properly emulate network link congestion [15] or

for traffic generators used to test Web servers to properly exercise the caching mecha-

nism [39].

Our goals in using realistic cover traffic are i) to minimize information leaks from the

real traffic and ii) to ensure that the synthetic traffic of a given protocol is indistinguish-

able from actual traffic of that protocol. Since our application of traffic generation is

security-sensitive due to defense detection attacks, we found that we needed a different

set of requirements than those of previous work. We call this set of requirements and

goals secure traffic generation.

We consider secure traffic generation to have two phases: learning and playback.

Secure traffic generation shares many requirements for both learning and playback with

existing traffic generators used for a variety of purposes. These include the requirement

for realistic modeling of think time, objects passing over the network, and connections.
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We next describe how secure traffic generation differs from existing work on traffic

generation. We describe each of the requirements and the rationale behind them below.

1. Network Agnostic and Responsive We do not consider link or network prop-

erties to be a part of a secure traffic generation model because we want it to

be responsive to actual network conditions when it is used for tunneling. Indeed,

improperly responding to network conditions could enable a defense detection at-

tack. Thus, when extracting information from network traces, we must be careful

to focus on features that are salient to the protocol’s behavior and minimize the

effects any particular network has on learning secure protocol models. We gen-

erate protocol behavior models at the application layer so that they can actively

react to congestion and load dynamically. We believe that models generated only

from packet-level information (e.g., inter-packet timing) or that are played back

using “open-loop” UDP traffic generators (e.g., Harpoon [40]) are not suitable

for secure traffic generation.

2. Quality/Type of Training Secure traffic generation is only as good as its input

data. Thus, it is important to ensure the training data is free of significant packet

loss, inconsistencies, and route asymmetry. It is also important that the train-

ing data be recent to ensure that it will thwart defense detection attacks. Our

experience with several freely-available anonymized packet traces used in this

work indicate that, while suitable for supporting our work, these traces fall short

for real use in an adversarial environment due to several of these quality issues.

Lastly, since secure traffic generation involves a learning phase (in our design

using a network trace), care should be taken to mitigate training-based attacks,

which attempt to skew the learned model for the attacker’s purposes. Others have

studied this idea in the context of evading intrusion detection [41,42], and we find

it similarly applicable to secure traffic generation.

3. Synchronized Traffic Generation between Hosts Differing from the previous

two requirements, which focus on the learning phase, this requirement is rele-

vant instead to the playback of secure traffic models. Since secure traffic models
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Table 2.1: Features collected by Swing [15]

InterConn Time between connections
numpairs Number of req/resp exchanges per connection
req/resp The size of individual requests and responses
reqthink Wait time between exchanges on a connection

are bidirectional, we find that it is important that we use a single synchronized

generator to create a cover traffic tunnel. The inconsistencies and anomalies that

result from having two independent (or even semi-independent) traffic genera-

tors at either end of a secure tunnel can enable several defense detection attacks.

Thus, secure traffic generation must ensure statistical, aggregate, and very spe-

cific heuristic properties of the modeled protocol.

To build the learning phase of our secure traffic generator we make use of structural

models of observable protocol/network behavior. Structural models are a common tech-

nique used for simulation and performance testing of networks [43]. Structural models

attempt to mimic the real interactions between the layers that generate network traffic

(e.g., network, protocol, application, user). We use Swing, a recent network traffic gen-

erator [15], to create realistic protocol behavior models. Swing uses a structural model

that includes user, session, connection, packet, and network sub-models to generate

realistic traffic for network emulations. It does so by analyzing dumped network trace

files and extracting empirical CDFs of structural features. Table 2.1 gives the features

from Swing we used and their descriptions.

We discard the network-level details of the Swing models to ensure that they remain

network agnostic. Some network timing attributes still leak into the structural models

we use. Since, network-specific delays are likely to be small compared to both user

and session timing, this is effect is minimal. However, some application layer timing

information (e.g., reqthink) may be fine-grained enough to be affected by network-

specific delays.

At first, we underestimated the effect that the quality of the input data to Swing would

have on its ability reliably perform secure traffic generation. Network traces collected
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from high-bandwidth links, like those we use in this work, are often very difficult to

process because of packet loss, routing anomalies, network scans, and end-device TCP

stack implementation differences. Since Swing aggregates traffic properties across con-

nections of a single port it observes in a trace, we found that the models it produces in-

clude data from malformed connections. Furthermore, Swing sometimes mis-handled

TCP stream reassembly (e.g., it counts TCP phantom bytes as real transmissions) and

was unable process to non-Ethernet link layer traces. While these problems have min-

imal impact on Swing in its primary purpose as a performance evaluation tool, we

need to carefully sanitize input traces to preserve the security of the traffic generation

process.

We developed a set of trace sanitization tools, which perform the following tasks:

• Remove connections where only one direction was observed. While these con-

nections halves have some valuable information, the loss request/response corre-

lation significantly skews Swing models.

• Remove connections with significant packet loss. These connections stress the

end-device TCP stack and often expose non-fatal anomalies that are hard for

Swing to properly reconstruct.

• Remove connections with only a few bytes transmitted. These connections are

often result of network scans and do not contain enough real information to war-

rant retention.

• Reconstruct link-layer headers on which Swing depends. This ensures that Swing

can track the direction of packets and correlate activities in both directions.

This preprocessing ensures that we only generate models from a set of cleansed con-

nections that can be safely used with Swing.

We ensure synchronized playback of the models extracted by Swing using asyn-

chronous generation threads and a lightweight inter-node communication mechanism

for specifying generated traffic. We describe this system and the operation of the Traf-

ficMimic tunnel next.
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Figure 2.1: Tunneling real traffic through model-based cover traffic using TrafficMimic

2.2 Playback and Tunneling

TrafficMimic is a cover traffic playback system that incorporates a tunnel of real user

traffic inside cover traffic. TrafficMimic is a TCP connection forwarding proxy service

(it can also support UDP traffic over TCP cover traffic). TrafficMimic accepts connec-

tions via local/remote port forwarding, SOCKS, or HTTP CONNECT protocols and

forwards all data sent and received over the input port across an encrypted tunnel.

To use TrafficMimic, the user must have TrafficMimic nodes at both end points of

the communication. The remote TrafficMimic node removes the added control and

padding information and delivers the decrypted data to the destination; likewise, data

from the destination is embedded in cover traffic, encrypted, and padded at the remote

node and decrypted by the local TrafficMimic node. As outlined in the threat model,

we assume that the attacker can only see the encrypted traffic between the TrafficMimic

hosts. Figure 2.1 shows the architecture of TrafficMimic.

Both endpoints of a TrafficMimic tunnel share the same design. We refer to the

node accepting connections to forward as the tm-client and the end point connecting to

destination hosts as the tm-server. To ensure synchronized cover traffic generation, a

single node controls the generation of cover traffic for both nodes. We call this node

the master and the other node the slave. The master may be at the tm-server or the

tm-client. Since the master controls all cover traffic generation, the bidirectional cover

traffic model can incorporate synchronized actions and predefined sub-sequences that

would not be possible with two independent cover traffic generators at the tunnel end-
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points.

All cover traffic generation is performed in terms of traffic requests. A traffic request

is a specification for what cover traffic TrafficMimic nodes will generate on a tunnel. A

traffic request contains four elements: a type, a unique ID, a size, and a time. The type

dictates whether the request is to send data or open/close/reconnect a connection. The

size parameter specifies the number of bytes to send and the relative time parameter

tells the system when to perform the requested action. The unique ID allows the master

and slave to synchronize.

Each TrafficMimic node contains an asynchronous thread that handles the generation

and processing of cover traffic. To create cover traffic, the master model thread uses

Swing features to create model requests, which consist of a traffic request to be sent

to the slave and a model response, which contains zero or more traffic requests that

the slave should send back. TrafficMimic creates an appropriately sized output buffer

according to the model request. TrafficMimic then embeds the model response and

any real user data to be sent across the tunnel into the buffer. If additional space still

remains, TrafficMimic pads it to the model-specified length. This buffer is then sent to

the slave over an SSL-encrypted channel.

Upon receiving model responses from the master, the slave sleeps as specified and

instructs its core network event loop to connect/disconnect the tunnel and to send data

at the appropriate times. The slave uses the same process for merging control traffic,

padding, and real user data as the master to create a bidirectional channel.

To allow the master initiated cover traffic to be synchronized with the data the slave

sends back, the master model thread assigns a unique ID to each traffic request it gen-

erates. When the slave sends data back to the master, it includes the ID of the traffic

request that it received to generate that data. This allows the master to wait for the

responses from the slave to be sent back before proceeding with generating additional

cover traffic.

Since master model threads are asynchronous from the rest of the proxy system and

contain built-in synchronization, they are straightforward to write. Consider the simple

model thread in Figure 2.2. Each call to sendModelRequest blocks until the associated
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Figure 2.2: Psuedocode showing the implementation of a simple model thread

whi le True {
/ / i n s t r u c t ma s t e r t o c r e a t e a new c o v e r c o n n e c t i o n
t 1 = new T r a f f i c R e q u e s t (CONNECT)
sendModelReques t ( new ModelRequest ( t 1 ) )

/ / i n s t r u c t ma s t e r t o send 500 b y t e s i m m e d i a t e l y
t 2 = new T r a f f i c R e q u e s t (SEND DATA, 500)
m = new ModelRequest ( t 2 )

/ / c r e a t e a c o n t a i n e r f o r s l a v e r e s p o n s e s
r e s p = new ModelResponse ( )
/ / i n s t r u c t s l a v e t o send 1000 b y t e s a f t e r 20ms
r e s p . add ( new T r a f f i c R e q u e s t (SEND DATA, 1000 , 2 0 ) )
/ / i n s t r u c t s l a v e t o e x p e c t t o be d i s c o n n e c t e d from t h e m as t e r
r e s p . add ( new T r a f f i c R e q u e s t (WAIT DISCONNECT ) )

/ / a s s o c i a t e t h e r e s p o n s e s w i t h t h e ma s t e r r e q u e s t
m. s e t R e s p o n s e ( r e s p )

/ / send t h e ma s t e r r e q u e s t and 2 s l a v e r e s p o n s e s
sendModelReques t (m)

/ / D i s c o n n e c t c o v e r c o n n e c t i o n
t 3 = new T r a f f i c R e q u e s t (DISCONNECT)
sendModelReques t ( new ModelRequest ( t 3 ) )

/ / pause b e f o r e b e g i n n i n g a new c o v e r c o n n e c t i o n
s l e e p ( 1 )

}

action is complete. Furthermore, the model thread may simply sleep to emulate think

time rather than requiring more complex synchronization with the main event loop.

Thus, the master model thread is very general and easy to program for a wide variety

of protocols while avoiding complex synchronization problems.

2.3 Implementation

Our TrafficMimic implementation consists of approximately 9,000 source lines of C++.

TrafficMimic shares the configuration options and syntax for port forwarding, HTTP

Connect, and SOCKS 4/4a/5 proxy servers with the OpenSSH client to ease adop-

tion [44]. Users can integrate TrafficMimic with many standard applications that na-

tively support proxies (e.g., most Web browsers, instant messengers, IRC clients, etc...)

or with applications that do not natively support proxies using transparent solutions like

proxychains, tsocks, or WinGate.
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TrafficMimic uses two object interfaces for managing data: messages and fragments.

Both are tied to a lightweight serialization interface, which allows objects to be con-

verted into a heavily-packed byte array and efficiently moved across network sockets

and IPC pipes. Messages are high-level objects that implement the functionality of

TrafficMimic. They support sending real data through the tunnel, sending padding, re-

solving addresses, and connecting remote/local hosts using the TrafficMimic forward-

ing protocol.

Messages are divided into fragments when they are sent over the tunnel. This allows

messages to be arbitrarily split across different transmissions and even across different

TCP connections. Each fragment contains a very small header (as small as 2 bytes

using varint integers [45]), model response data, and some portion of a message. We

always encode model response data into each fragment to ensure that cover traffic gen-

eration continues even in cover traffic models with very small packets. The fragment

serialization interface allows fragments as small as 8 bytes. Since encrypted block ci-

phers that are part of SSL and other encrypted protocols use 8 byte or greater block

sizes, we can precisely mimic most encrypted traffic with TrafficMimic.

TrafficMimic uses an event loop powered by the select system call to monitor all

in-use sockets. As stated earlier, TrafficMimic uses asynchronous model threads (im-

plemented using pthreads) to govern traffic generation at the master and slave. These

threads utilize IPC pipes and the same serialization interface used for external connec-

tions to asynchronously communicate traffic requests to the main network event loop.

The main event loop communicates back to the model threads (for full traffic generation

synchronization) with blocking feedback queues.

2.3.1 Tor Integration

The Tor project is an excellent candidate for integration with TrafficMimic because of

its goal of traffic analysis resistance and anonymity [16]. Tor provides traffic analysis

resistance by forwarding traffic through a set of anonymous relays. However Tor is

vulnerable to both traffic analysis and defense detections that TrafficMimic mitigates.
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Figure 2.3: Using TrafficMimic end-to-end with Tor

It is especially vulnerable on the link between the Tor user and the first relay in the Tor

network (first hop link). An attacker can reconstruct some information about a user’s

activities by monitoring this link (e.g., Web site identification [46]). Furthermore, an

attacker can locate and block Tor traffic using a defense detection attack on this or any

Tor link because of the unique SSL network fingerprint of Tor traffic [47].

Since TrafficMimic uses standard proxy initiation mechanisms with which Tor is

compatible, we are able to integrate TrafficMimic into the Tor anonymity network in

several ways. First, we can run TrafficMimic end-to-end over the Tor network, prevent-

ing first-hop traffic analysis attacks and making flow linking attacks by a global passive

adversary considerably more difficult. Second, we can use TrafficMimic to protect in-

dividual Tor links between relays and users, preventing identification and blocking of

Tor.

The usage model for using TrafficMimic end-to-end with Tor is as follows. The user

instructs TrafficMimic to cover his/her protocol behaviors with realistic cover traffic

before it enters the Tor network. The TrafficMimic covered data then traverses the Tor

network eventually arriving at an exit-enabled Onion Router (OR). TrafficMimic runs

locally on this OR and performs the final connection to the destination. To support

this type of integration, we enhanced TrafficMimic to support the SOCKS protocol as

a client as well as a server. Figure 2.3 shows the components of Tor and TrafficMimic

and how they interconnect.

To help users who wish to use TrafficMimic with Tor, we add a special TrafficMimic

exit policy that is propagated through the Tor directory. We do this by making a small
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(3 line) change to the code of each OR that also runs a tm-server. We use an unallocated

IP address (e.g., 0.0.0.1) as a placeholder in the exit policy for connecting to the Traf-

ficMimic node. The OR code change maps this address to localhost to ensure that users

can talk to the tm-server. Since this unallocated IP address will propagate through the

Tor directory, users may connect to Tor using TrafficMimic without the need to change

their Tor OP software, intermediate ORs, or the Tor directory, providing a path for

incremental deployment.

There is some potential benefit to removing cover traffic in the middle of a Tor path,

rather than at the last hop, since it would make traffic analysis at the entry and exit

nodes (rather than by an external observer) more difficult. However, this would require

a more significant modification to the Tor architecture.

The second integration protects individual SSL connections used by Tor. This pre-

vents both traffic analysis and defense detection attacks for any link forwarded over

TrafficMimic. Consider the example of a user protecting his/her first-hop link to Tor

(Figure 2.4). The user configures his/her OP to connect to the local tm-client using the

HTTPSProxy Tor configuration option (ReachableAddresses and FacistFirewall

might be also necessary). The TrafficMimic-enabled entry guard OR should advertise

port n for relay connections using the ORPort option while actually configuring the re-

lay to listen on a different port m using ORListenAddress. The tm-server should listen

on port n and forward incoming connections to localhost:m. This process will transpar-

ently inject TrafficMimic protection into any Tor link without changes to the directory

service. To address some blocking-resistance problems, Tor bridge nodes (unpublished

one-hop relays into the Tor network) can also use this technique.

2.4 Conclusions

In this chapter, we have presented the design and implementation of TrafficMimic, a

system to resist traffic analysis by generating realistic cover traffic. TrafficMimic is

able to both hide details about the traffic generated by users and also prevent defense
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Figure 2.4: Using TrafficMimic to protect individual Tor links from detection and traffic
analysis

detection by using realistic traffic models that do not appear anomalous. We discussed

the requirements and our implementation of secure traffic generation using Swing. We

also present the system architecture and implementation details of TrafficMimic that

support easy-to-write traffic generation threads and careful synchronization. Lastly, we

presented several usable integrations of TrafficMimic into the Tor anonymity network

that improve its resistance to both traffic analysis and blocking attacks.
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CHAPTER 3

INDEPENDENT COVER TRAFFIC
EVALUATION

We evaluate TrafficMimic in two aspects: its security properties and the performance of

using it for tunneling real traffic. We use three sets of network traces to train models and

test our classification attacks. We use data from the CAIDA Anonymized 2009 Internet

Traces Dataset [48] (January and February hour-long traces from the equinix-chicago

monitor). Since we were unable to reconstruct a sufficient number of bidirectional

SSH connections from these CAIDA traces, we also used several hour-long traces col-

lected by the University of North Carolina on their campus-wide border link in April

2003 [49]. As an independent validation set, we also use one hour of traffic collected

from Los Alamos National Laboratory’s (LANL) border gateway link in Sept 2009.

We use several wide-area links to evaluate both security and performance (see Ta-

ble 3.1). We run TrafficMimic nodes on the endpoints of these links and evaluate the

tunnel traffic between them. While not fully representative of the Internet, these links

vary enough to prove the effectiveness of our approach and its resistance to attack.

In future work, we could evaluate TrafficMimic with more wide-area links by using

PlanetLab [50].

Since Tor is likely to make protocol classification and other attacks more diffi-

cult [46], the results we present are a best case for the attacker. Tor likewise has a

considerable impact on performance [51] that we plan to investigate in future work.

3.1 Traffic Classification Attack

To evaluate our traffic analysis resistance mechanisms we build upon existing attack

methods [12, 13, 17]. In this section, we describe the design of our classification attack
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Table 3.1: Wide-area test links

Label Client Server RTT
MN-UK Montreal London 85ms
IL-CA Illinois California 63ms

Table 3.2: Features extracted by the trace analysis system for use in our classification
attack

Bytes Sent Bytes Received
Mean Sent Pkt IAT Mean Received Pkt IAT
Variance Sent Pkt IAT Variance Received Pkt IAT
Number of Exchanges Inter-Exchange Time
Connection Duration

and its performance classifying real traffic. We later use this attack to validate secure

traffic generation in Section 3.2.

The goal of the classification attack is to label a single connection of an unknown

encrypted protocol with its plaintext protocol identity. Conservatively, we assume that

we cannot use any information from the payload. Our classifier employs supervised

learning and the weighted K nearest neighbor (K-NN) algorithm. For each example

in the test set, our implementation calculates the Euclidean distance to each training

example finding the K nearest neighbors. We then weight the neighbors according to

their distance and classify each test sample based on the class with the highest weight.

In our experiments, we found that values of K greater than 3 did not improve and in

some cases reduced the overall accuracy of our classifier. Thus, we use K = 3 in all the

following results.

We selected some standard features from the work Dhamankar and King [12] and

Moore and Zuev [17]. We augmented these features with several features that showed

promise for being salient in detecting differences between protocols (see Table 3.2 for

the full list). The first of such new features relate to protocol exchanges. We define

an exchange as a subsequence of network communications within a single connection

where the initiator and responder both send data (i.e., one or more packets with non-

zero payloads). This is similar to the concept of pairs in the work of Vishwanath and
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Vahdat [15]. To reconstruct exchanges, we merge together all data packets that flow

in one direction as one half of an exchange. When a data packet is sent back by the

other peer, the second half of the exchange begins. This process repeats as the flow of

data packets alternates between the initiator and responder. Though they do not cover

all possible protocol interactions, exchanges capture the great majority of common

protocol idioms. Refer to Figure 3.1 for a diagram of the exchange state machine and

an example of how to determine exchange boundaries. We also use the total duration of

the connection as a feature. In some cases, the length of our hour-long traces artificially

limited this feature, though we still found it to improve classification performance. We

experimented with various types of individual packet size related features, but we found

that they were too noisy to improve the attack.

To extract relevant features from each TCP connection, we process packet traces

using libpcap and perform TCP stream reassembly to avoid errors introduced by lost,

delayed, and reordered packets. We use standard techniques to identify and in some

cases infer when TCP connections are established [15]. We consider the initiator of the

TCP connection (the party who sends the initial SYN packet) to be the sender and all

data sent back to the initiator from the responder to be received data. For example, in

a connection where a browser connects to a Web server, the data sent by the initiator

(browser) is the HTTP request and the data received from the responder (Web server)

is the HTML or other Web content requested. Although our trace analysis system does
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not support IP fragmentation, we found comparably few instances of fragmentation in

the Internet traces we analyzed.

To support the scale of our input traces (on the order of 100 million packets), we

created a custom feature extraction tool. By using careful resource control on the hash

tables and lists we used to track connection status, our Java-based analysis system is

able to process around one hundred thousand packet headers per second.

Since these features have vastly different units (e.g., seconds vs. bytes), we use

z-scoring to standardize the values to a common range. To compute the z-score, we

estimate the population standard deviation and mean using sampling from the training

set. We used matrix conditioning to evaluate our choice of features. We use the matrix

condition number for a normal matrix A given by

ce =
λmax(A)
λmin(A)

(3.1)

where λmin and λmax are the smallest and largest eigenvalues of A respectively. We

consider a matrix with a ce value roughly similar to its number of features to be well

conditioned. We also used the trace of the inverse correlation matrix of A to identify re-

dundant features. Using the full set of features from Table 3.2, we found the combined

CAIDA and UNC training data to have a favorable ce equal to 22.8.

3.1.1 Validation

We tested our classifier using cross-validation by training and testing data from the

same network link at different times. We classified connections collected from CAIDA

in February to those collected from January and from UNC on April 20 to April 29. To

make the attack more realistic, we also tested the performance of our traffic classifier by

training on traffic from one network (from CAIDA and UNC) and applying it against

data collected from an entirely different network (from LANL). This approach differs

from that taken by previous traffic identification work that used cross-validation of a

single network link. Indeed, such generalization should reduce the accuracy and fidelity
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Table 3.3: Results of traffic classification using K-NN classifier

Protocol Accuracy F-score
SSH 95.1% 0.886
STMP 88.7% 0.863
HTTPS 90.5% 0.874

of the techniques. Despite this, we feel that this threat model is most appropriate for an

attacker wishing to perform wide-scale traffic analysis. Furthermore, we have designed

our classifier such that it captures and compares features of the protocol’s behavior and

minimal information that are side effects of the network. We are the first to evaluate a

generic traffic classification attack in this manner.

We focus on three common Internet protocols: HTTPS, SMTP, and SSH. Each rep-

resents a varying degree of interactivity, bulk transfer, and other protocol variations.

As in previous work [13,34], we use known port numbers to label our training and test

sets. While this labeling mechanism is not strictly guaranteed to be correct (as our work

demonstrates), we have achieved high classification performance in testing, minimizing

the concern of mislabeling. Since the protocols we wished to analyze did not occur in

the traces with equal probability, we employed random sampling to construct training

and test sets for our classifier that had comparable numbers of connections from each

protocol.1

We show the results of the single-link cross validation test in Table 3.3. The overall

accuracy of the cross-validation CAIDA test of was greater than 91% and compares

favorably with existing work using similar methods [12, 13, 17]. Since accuracy does

not entirely reflect the performance of the classifier with respect to false positives and

false negatives, we also report the F-score. The F-score is the harmonic mean of the

precision and recall of the classifier and captures how many samples are missed and

how many are incorrectly labeled simultaneously. We found the F-scores to be very

good (>0.86) in this test.

Using the independent LANL trace, we found that the accuracy and F-score of our

1An attacker with a non-uniform prior probability of protocols carried by encrypted traffic would
need to alter this methodology.

29



Table 3.4: Classification attack results validated with LANL data

Protocol Accuracy F-score
SSH 92.3% 0.78
SMTP 85.2% 0.863
HTTPS 82.0% 0.791

classifier suffered only ∼10% compared to results from the cross-validation experi-

ment. We show the detailed results from this test in Table 3.4 (overall accuracy 80.1%).

We also noted that the network conditions in our test traces are considerably different

(CAIDA: recent inter-ISP, UNC: university border link from 6 years ago, and LANL:

recent border link to a large research institution). Thus, the classifier still performs cor-

rectly in this generic test the vast majority of the time, even with considerable network

differences exhibited in the traces.

3.2 Security Results

In this section we evaluate the realism of TrafficMimic using the classifier described

above. We use two attack scenarios to evaluate our cover traffic. The first is a generic

protocol classification attack and the second is specifically designed to detect Traf-

ficMimic.

3.2.1 Protocol Classification Attack

We first evaluate the realism of TrafficMimic using a generic protocol identification

attack. The goal of the attacker is to identify the underlying protocol running over

or using encrypted transport. As described before, this type of attack is the first step

for an attacker to target specific users or applications. Indeed, it can be considered

a precursor to more valuable attacks like website fingerprinting or real time session

keystroke attacks.

To construct the experiment, we use Swing to generate traffic parameters for HTTPS,

SMTP, and SSH protocols learned from the Feb CAIDA 2009 and UNC April 29, 2003
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Figure 3.2: Classification attack results for generated cover traffic

traces as described in Section 2.1. For comparison to these realistic protocols models,

we also use TrafficMimic to generate constant-rate cover traffic. TrafficMimic sends a

full size packet (1448 bytes) every 500ms. The slave TrafficMimic client echoes back

the same size packet upon receiving a packet from the master. Ten such exchanges

occur per connection before a new connection starts. This constant-rate model is a

trade-off between interactivity, bandwidth, and overhead. In future work we plan to

also evaluate randomized traffic models. We take the generated cover traffic and apply

the classifier using the training data from a different time period of traffic (Jan CAIDA

and April 20).

When using TrafficMimic, we were able to fool our classifier approximately 73% of

the time for the three realistic protocols we generated (Figure 3.2). Thus, on average,

our generated protocols are properly detected as real protocols at 91% of the rate that

real protocols are. This is well within the error range for our classifier in the general

attack scenario described above and is unlikely to lead to reliable defense detection.

We also extend our classification attack to support a simple anomaly detection algo-

rithm as follows. During training, we find the maximum distance of any training point

in each class from the centroid of the class (e.g., mk where k enumerates the classes

in the training set). During the application phase, we consider any test example whose

distance, di, to its nearest neighbor is greater than the maximum distance observed dur-
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ing training to be an anomaly. We use the threshold t to control the degree to which test

examples are labeled unknown. Thus a test example is considered an unknown protocol

if: di > t ∗mk.

Illustrating the vulnerability to defense detection of constant-rate schemes, we found

that we were 77.1% accurate in detecting constant-rate traffic as anomalous (using the

max distance detector with t=1.1). We found that the distance threshold algorithm was

not able to differentiate SMTP and constant-rate traffic as well as it was for HTTPS,

SSH, and constant-rate. To solve this problem, we introduce another simple unsuper-

vised anomaly detector to be used for port 25 only. It uses the K-means algorithm to

cluster the data. It then uses a threshold algorithm to determine which clusters have

the lowest mean inter-cluster distance. Any clusters that have greater than the thresh-

old inter-cluster distance are considered anomalous. We found that this technique was

95%+ accurate at differentiating SMTP and constant-rate traffic.

3.2.2 TrafficMimic-Tailored Attack

We next test TrafficMimic’s ability resist a defense detection attack specifically de-

signed to identify TrafficMimic generated traffic. To conduct the attack, the attacker

constructs a binary classifier that is trained to differentiate real traffic of a given protocol

from TrafficMimic generated traffic mimicking the same protocol. Thus, the attacker

has access to TrafficMimic and may use it generate training data for the attack.

To create training data, the attacker first samples real traffic of protocol X from a

generic trace (in our case we use HTTPS from the February CAIDA trace data). Then

the attacker takes the same generic trace and trains TrafficMimic behavior models for

protocol X . The attacker then generates cover traffic using the X model over a moni-

tored network link (IL-CA). The attacker combines these two sets of training data in a

manner that preserves an equal base-rate (i.e., half real and half cover). The attacker

can now use this training data to differentiate fake and real traffic of protocol X using

the same protocol classification attack described in Section 3.2.1.

To evaluate the effectiveness of this attack we use TrafficMimic to generate a second
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set of traffic, which is then tested against the trained classifier. We use a distinct (but

generic) network trace to create behavior models for the defender (i.e., LANL traces).

Thus we do not allow the attacker to train on exactly the same trace as the defender.

We then test it over the MN-UK link because in the worst, but most realistic, scenario

the attacker does not have access to the same network link as the defender. We found

the attack to be no more effective than random guessing (49.4% accuracy).

3.3 Performance and Overhead Results

We next investigate the performance of TrafficMimic as it compares to a constant-

rate defense. We use two simple mechanisms to generate real traffic: an SSH-based

interactivity model and bulk transfer. While these traffic patterns do not reflect real

network usage, they provide insight into the performance and overhead properties of

TrafficMimic. We believe that the interdependencies between using a complex traffic

generator like Swing to both load the system with real traffic and generate cover traffic

to carry it would result in data that were difficult to interpret. We repeat each of the

experiments below at least 10 times.

3.3.1 Interactive Performance

To evaluate interactive traffic in a TrafficMimic tunnel, we use a traffic model inspired

by our prior work [52]. Instead of analytically modeling the distributions of packet

sizes and inter-packet times, we extract these features directly from SSH traces from

the January CAIDA data set. Since SSH includes both interactive uses (e.g., typing in

a terminal) and other non-interactive features (e.g., file transfer or X forwarding), we

focus on extracting only the features resulting from a user typing into an SSH console.

In a standard SSH connection, each user key press generates an encrypted packet to

the server. The server immediately responds with another encrypted packet that con-

tains the character to be displayed on the user’s terminal. Since these key-press/response

packets require only a few bytes to transmit, the packets sent over the wire are the
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Figure 3.3: Overhead of generated protocols carrying interactive traffic on MN-UK link

minimum size for the encryption and MAC algorithm chosen by SSH (28-52 bytes de-

pending on algorithm). We searched for exchanges of packets in SSH connections that

used one of the possible minimum packet sizes for both the key-press and key-response

packets. We compute the latency between these key exchanges to find the user think

time between key presses.

We created a simple echo utility that randomly samples the interactive SSH data we

extracted and emits appropriately sized packets with the timing from the trace. We

then connect this utility to TrafficMimic with various generated cover traffic models.

In addition to using the constant rate model described above (Const1), we also created

a second constant-rate model that had a faster inter-packet time (Const2). We ran the

echo utility without TrafficMimic to find the mean latency of the network link (native).

We show the results of this experiment using the MN-UK link in Figure 3.3. We found

that we were able to achieve a mean delay comparable to the constant-rate schemes with

only a moderate increase in excess bytes. Surprisingly, protocols that inherently do not

seem to favor sustained interactivity such as SMTP and HTTPS both offer reasonable

delay compared to the constant-rate models.

While it was easy to improve the performance of the constant-rate model without

sacrificing overhead (Const2), realistic traffic patterns would make this tuning more
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difficult. For example, long periods of network silence would generate much higher

overhead with the faster acting constant-rate stream. In an empirical test of real user

Web browsing with Const1 and Const2 showed up to a 3.4x increase in overhead with-

out appreciable performance improvement. Furthermore, cover traffic tunnels, either

realistic or constant, still significantly impact mean interactive latency.

3.3.2 Bulk Transfer

To test the bandwidth of cover traffic tunneling we use Iperf [53] to generate a simple

one-way bulk transfer of a 100KB file. Since HTTPS is generally more asymmetric in

the number of bytes transferred from vs. to the server, we also perform the bulk transfer

from the slave to the master TrafficMimic node (HTTPS-resp). For the other protocols

and constant-rate models, we perform the bulk transfer from the master to the slave

node. Figure 3.4 shows the bandwidth in kbps for the entire bulk transfer on the wide

area test links. Figure 3.5 shows the ratio of the transmitted bytes to the original 100KB

test file size. This figure includes both directions of the cover traffic even though the

bulk transfer is only one-way.

The results show that we are able to achieve comparable or better bandwidth using

realistic protocol models as compared to the constant-rate model. The performance of
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HTTPS is especially good because the return path in the HTTP(S) protocol inherently

favors bulk transfer of files. The SSH traffic model showed much higher overhead. This

is primarily due to the asymmetry of SSH connections in how much flows from server

to client. Overall, realistic protocol models provide several options for performing

bulk transfer efficiently while not succumbing to the security problems associated with

defense detection. In Chapter 5, we investigate how to optimize the generation of

realistic cover traffic depending on the properties of the real flow and the needs of the

user.

3.3.3 Web Browsing

To illustrate some of the performance properties of TrafficMimic we use it with var-

ious traffic models to browse 5 common Internet sites. We retrieve the pages using

a tunnel on the MN-UK link. We use an OpenSSH tunnel to approximate the native

performance of proxying through these hosts. We show in Figure 3.6 the slowdown of

each protocol behavior model compared to the native proxy. The HTTPS traffic model

is better suited to carrying Web traffic than the generic constant-rate model. We also

found the SSH client model to be effective at transmitting Web traffic. We do not show

the results for SMTP because its performance carrying Web traffic was very poor (80-
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Figure 3.6: Web page load times using cover traffic models

150x slowdown). We believe this is due to the long sleep times that can occur in SMTP

that are mismatched with interleaved Web requests.

3.4 Conclusions

To evaluate TrafficMimic, we developed a new traffic classification algorithm based,

in part, on previous work in the area. We showed that the traffic models used in Traf-

ficMimic result in detection rates that are similar to those of real traffic and thus pro-

vide a good countermeasure for defense detection. We also evaluated the performance

of TrafficMimic for both interactive and bulk-transfer protocols and compared it with

constant-rate cover traffic models. Overall, we found that TrafficMimic offered reason-

able performance; in a later chapter of this work, we investigate how to parameterize

traffic generation models to better fit the real traffic being tunneled, and the effect this

has on both performance and security.
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CHAPTER 4

UNDERSTANDING TRAFFICMIMIC
PERFORMANCE

We thus far presented the design and evaluation of independent realistic cover traffic

tunneling. We next turn to simulation and analytic modeling to more deeply under-

stand the performance properties of our approach. In this chapter1, we investigate what

effect realistic cover traffic tunneling has on the real traffic being sent. Specifically,

what happens when the cover traffic and real traffic differ greatly in rate, and in the

fundamental carry size? Under what conditions would the latency of the real traffic be

significantly affected by various cover traffic? Under what conditions can we ensure

that the throughput of the real traffic is not affected by tunneling?

We developed a simulation model of this type of scenario using SSFNet [18]. The

model has detail with respect to protocols running on the hosts, but is simple in its

representation of the network. This chapter describes the model, and results analyzing

the effects of tunneling. It then develops an analytic model, which assumes tunneling

is carried out on a per-session basis. The model captures tunneling of both the request,

and the response elements of the traffic in a manner similar to the HTTP protocol. The

model characterizes performance as a function of traffic characteristics, and validates

the model’s predictions against measurements observed in the simulator. Using the

validated model, we determine conditions under which real traffic throughput is not

impacted by tunneling (although latency will always be impacted), and quantitatively

evaluate the impact on real traffic latency (e.g., “slowdown”) that tunneling imposes.

We develop a Markov chain model of this system, use it to determine conditions under

1Material from this chapter has, in part, appeared before in SIMULATION: Transactions of The So-
ciety for Modeling and Simulation International [54]. This chapter is also based, in part, on materials
in Proceedings of the 2008 Conference on Principles of Advanced and Distributed Simulation [55]. The
authors retain partial copyright and approve the use of the previously published materials in this disser-
tation. David M. Nicol contributed to the data, analysis, figures, and tables in Sections 4.2 and 4.3.
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which real traffic throughput is not affected, and use it to quantitatively explore how

real traffic latency is affect by tunneling.

4.1 Simulation

To develop a tractable simulation model for TrafficMimic, we model all cover and real

traffic as request/response pairs. Each request/response pair is a single flow. This model

captures the behavior of many protocols and provides a consistent means to specify both

model and real traffic. The size of requests and responses can be read from a trace file,

or be generated randomly from given probability distributions.

In the simulator, we consider there to be two peer hosts within the system which

generate cover traffic to mask the real traffic they are transmitting to each other. We

assume that the attacker only has access to the network on which the real traffic is

obscured by the cover traffic. If this system is used as a proxy service, we do not protect

the real traffic from analysis before it is received and tunneled by one of the proxy end-

points. For simplicity in this simulation we assume that both the cover traffic and real

traffic originate on the same host.

We use similar terminology for the components of the simulation model as we do

for the implementation of TrafficMimic as described in Section 2.2. The tm-client is

the host that originates the cover connection and issues the request. The cover traffic

tm-server sends a response to the client after receiving its cover request. As we are

interested in impacts on real traffic that are much larger in magnitude than network

latencies, we need not (and do not) model the communication network between host

and client with any significant detail. Furthermore, we will see that the traffic itself has

high variance, which implies that the behavior already has significant effects we would

expect to see using a more detailed network model.

The core simulation loop continually plays back the cover traffic flows over simu-

lated TCP connections. A cover traffic flow has the following steps:

1. tm-client issues a cover request to the tm-server
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2. tm-server sends a cover response back to the client

3. tm-client pauses for randomly distributed inter-cover flow time and then repeats.

The sizes of the request and response may vary from session to session. We obtain

baseline performance of the real traffic by using these cover traffic flows. We time-

stamp each request and response at creation to calculate its delay. Later we can compare

the baseline delay against the performance of the same traffic embedded in a tunnel.

While the simulator is generating cover flows, it also sends available real traffic over

the tunnel. Similarly to TrafficMimic, either the tm-client or tm-server may be the

originator for the real traffic. The real traffic client host is called the master and the

server is called the slave. The master generates a real request (we will call A) for a

certain number of bytes to be sent after a random amount of time into the simulation.

Since the simulator is already sending cover traffic from the start of the simulation,

this will ensure that A will begin either during or between existing cover flows. We

mark A with its creation time-stamp, so that when it is delivered we can compute the

total delay. The simulator queues A until the cover flow next transmits data. A can be

embedded in either a request or response of the cover traffic. The system uses the size

of the cover traffic transmission to consume the correct number of bytes from A. This

process continues until A is fully sent (potentially across multiple distinct cover flows).

There may be additional cover flow padding to be transmitted if the remaining data in

A is smaller than the final cover message that carries it. Once the slave receives A, it
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generates and sends a response, B in a similar fashion. At the end of the simulation, the

master and slave each report the throughput and delay of A and B.

We illustrate an example of this process in Figure 4.1. We represent the cover session

as a series of flows with a real session above them in the diagram. The cover session is

inactive when the real request arrives, so it waits for the cover session to begin again.

The real response is split across three cover flows and takes considerably longer to

transmit than the real request. The real flow completes before the last cover flow that

carries it because the real data to be transmitted is smaller than the final cover response

that carries it.

Figure 4.1 also introduces several delay metrics we use to describe the performance

of cover and real flows. We use the term transmission delay to describe the time it

takes to transmit a request or response of X bytes. This delay starts when the request

or response is created and ends when it is fully received by the other end-point of the

connection. Cover transmission delay represents only the time required to transmit X

bytes across the network using TCP. Real transmission delay may span several cover

flows, therefore may also include TCP connection setup/tear-down and inter-cover ses-

sion times. We call the time required to complete both the request and response of a

single flow the total delay. Again, real total delay may span several cover flows and

may include time that is not directly due to transmitting data across the network.

4.1.1 Implementation

We created the system model described above using SSFNet [18]. The model contains

two protocol hosts which use blocking sockets running TCP. We adapted the standard

blocking socket TCP server and client to play back cover flows automatically, and

also play back generated model traffic if so specified in the model configuration file.

We specify distributions and moments or empirical CDFs for request and response

sizes which the server and client will use. The inter-cover flow time is drawn from an

exponential distribution with mean 200ms.

The entity representing the tm-client communicates certain information to the entity
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representing the tm-server to govern the generation of the simulated message sizes.

The tm-client entity specifies the sending time, the size of the request, the size of the

response, the type of the message, and the number of bytes from the real traffic to

be tunneled. Given that our TrafficMimic implementation imposes minimal overhead

from its forwarding and fragmentation protocol, our simulator models an ideal tunnel

implementation where space consumed by this per-message overhead does not reduce

the amount of space available in a cover message for real traffic. Data sizes of the

request and the response are sampled from empirical probability distributions based on

real observations.

Both tm-client and tm-server use timers to implement the start of the real traffic.

When fired, the timer’s callback code generates either a request or a response, as ap-

propriate. Since each simulation will only show the effect of a single real flow, the

model needs only to record the aggregate amount of requested traffic to send, and the

aggregate amount of traffic that has been received. This captures the queued real mes-

sage’s time waiting for enough tunnel traffic to be communicated.

Each message also has a state code, which specifies the connection state (new, empty,

and continue). The empty state simply tells the server to ignore the message because

no real traffic needs to be transmitted. This cover flow is entirely padding. The new

state instructs the slave that a new real flow is starting and gives the parameters for

its behavior. The continue state encodes the number of real bytes sent in an existing

real flow. Both master and slave keep track of the number of bytes remaining to be

received on a real flow. When receiving part of a real message, the slave determines

whether the message is a request or a response by a flag in the message called initiator.

It then decrements the local state of how many bytes remain to finish the message.

If the message has been completed, it will print a report on the overall throughput of

the system and then generate a response. Minor bookkeeping is needed to support

computation of real traffic bandwidth and latency.
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4.1.2 Generating Realistic Traffic

In this study, we focus on the behavior of HTTP traffic because it is the dominant

protocol used on the Internet today. Furthermore its encrypted equivalent, HTTPS, is

the most widely used encrypted protocol. We consider the specific behaviors of HTTP

since the TLS tunnel used by HTTPS does not change the observable patterns of the

protocol2. As stated, the typical pattern for HTTP is a small request followed by a

larger response. While this does not capture the full spectrum of what HTTP can do, it

provides a structure for the most common use of the protocol.

To determine the size distributions for requests and responses, we collected data from

real network traces. We assumed that all traffic on port 80 was HTTP. Since we did not

have access to packet payloads, we were unable to validate this assumption. After per-

forming appropriate TCP stream reassembly, we used several heuristics to differentiate

requests and response from a live network trace. All bytes sent to port 80 were requests

and bytes from port 80 were responses. Since requests and especially responses can

be split across many individual IP packets, we coalesce the packets together. All non-

zero length payloads sent in one direction without a non-zero length payload sent in the

other direction are coalesced together as one. This allows for the TCP stack to transmit

acknowledgments without arbitrarily splitting objects. Due to network reordering and

congestion, this heuristic may incorrectly classify request and responses. However, we

assume this to be rare enough to not skew the response size distributions considerably.

We used the above methods to analyze two hour-long traces collected by the Uni-

versity of North Carolina campus-wide border link in April 2003 [49]. While the data

from these two traces are similar, we use the data from one trace to generate cover traf-

fic and the other trace for real traffic. This allows us to keep the cover and real traffic

independent since we randomly sample real observations from the traces to generate

responses sizes.

To find the distribution of request sizes, we eliminated large outliers in the data.

These larger requests were likely HTTP POST commands, which contained a variable

2We ignore the behavior of TLS itself in this analysis; specifically, session start-up, key exchange,
and session tear-down.
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length payload. Even after removing large outliers, we retained over 90% of the data in

both traces. We observed that the request sizes were Gaussian and verified this using the

Shapiro-Wilk normality test. The mean request size from these traces, approximately

400 bytes, also matched intuition based on the number and length of HTTP headers

used by common Web browsers.

We found the distribution for response sizes to be more complicated. Prior work has

estimated that responses are a mix of a log-normal distribution and a long-tailed distri-

bution such as Pareto [39]. In the traces we analyzed, we observed significant variation

in response sizes, so we chose to use empirical distributions rather than fitting a known

distribution. Since some types of HTTP responses only include headers (e.g., for cache

control), we focused on the upper quartile of the response data (greater than ∼4KB).

This ensured that we were capturing actual Web content rather than HTTP headers or

XMLHttpRequests generated by AJAX. We also excluded very large responses (greater

than 1MB) as they likely represented file downloads rather than Web page browsing.

The large files we excluded represented less than 1% of the data.

Intuitively, response sizes vary greatly depending on the nature of the content being

browsed. For example, browsing a text-only web page will exhibit significantly differ-

ent object sizes than viewing a page with high-resolution images or videos. We used

K-means clustering to identify three different categories and respective empirical dis-

tributions. We call the categories low, medium, and high with respect to the magnitude

of their center points. While the distinction between these categories is purely arbitrary,

they establish some reasonable classes of response sizes to evaluate disparities between

different traffic types. Thus, we can evaluate the performance resulting from different

mixtures of these categories for the cover and real traffic. We give descriptions of the

clusters from both traces we analyzed in Table 4.1.

4.1.3 Results

Our simulation evaluation uses a simple network that connects two routers with a 50ms

delay and 100Mbits/s bandwidth link; each router has one attached host (client, and
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Table 4.1: Response size distribution clusters from UNC Web traffic traces

(a) Real traffic–collected April 20, 2003

Center Count Min Max
low 15206 395972 3779 76440
med 137702 25592 76458 378673
high 619700 2761 378798 1048352

(b) Cover traffic–collected April 29, 2003

Center Count Min Max
low 15441 437974 4250 100808
med 186254 14112 100849 432750
high 679303 2889 432826 1048463

server); host to router links have 20ms delay and 1.5Mbits/s bandwidth (Figure 4.2).

While simple, this network provides a useful baseline to quantify the effects of tunnel-

ing on a normal Internet user.

1.5 Mbits/s
20ms delay

1.5 Mbits/s
20ms delay

100 Mbits/s
50ms delay

Client Server

Figure 4.2: Simulated network configuration.

We evaluated the performance of cover sessions with the parameters from the three

response size categories on the network configuration specified above to establish a

baseline for TCP performance on our network. We show the results for transmission

throughput in Table 4.2. This data is computed by averaging the results of many exper-

iments. Each experiment randomly chooses a size sample from the empirical distribu-

tion associated with its type, then measures the time needed transmit the data (e.g., the

transmission delay). Data size divided by the measured transmission delay gives one

throughput sample. Table 4.2 gives the sample means and standard deviations from
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Table 4.2: Baseline transmission throughput (bytes/sec)

request low medium high
mean 4243 21453 99643 148963

std dev 1449 11613 17138 6468

Table 4.3: Total delay (seconds) on a real session tunneled over HTTP cover traffic

Traffic Types Mean Total Delay Std Dev
low/low 2.899 1.683

low/medium 3.394 1.767
low/high 6.399 3.621

medium/low 12.666 5.716
medium/medium 4.647 1.948

medium/high 7.327 3.658
high/low 53.053 16.486

high/medium 11.179 3.165
high/high 10.299 3.809

these experiments. Despite the large variation, we based the statistics on so many sam-

ples that the width of the 95% confidence interval is very small (less than 1% of the

mean).

These values capture the impact that the TCP protocol has on transfer rates—the

larger the segment sent, the lower the per-byte cost is. Our analytic model will use

these baseline measurements to account for size-dependent throughput.

To evaluate the effects of tunneling, we layered one traffic model on top of another.

To denote each tunnel test, we specify a traffic model that runs the real traffic first

followed by a slash and then the cover traffic model. For example, we call a test running

medium load real traffic over low load cover traffic: medium/low. The metric of interest

is total delay of a real flow—the difference between when a real flow’s request is ready

to be carried, and when the last byte of the real flow’s response is delivered.

We performed simulation experiments to assess the effects of tunneling real traffic

running HTTP over a tunnel that also uses HTTP. Table 4.3 gives the sample mean

and standard deviation of the total delay associated with serving that request and its

corresponding response, as a function of the real and cover traffic types. We will use
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Figure 4.3: “Response Throughput” of HTTP traffic tunneled over HTTP cover traffic

data in this table as the basis for comparison with an analytic model that predicts total

delay. Figure 4.3 shows a different metric associated with these same experiments, the

mean “response throughput”, where each sample measures the total number of bytes

delivered by the response only, divided by the total delay from arrival of the real traffic

request to the time when the last byte of the response is delivered. The idea is to focus

attention on the essential payload of the transaction, and treat the transmission of the

HTTP request as part of the set-up overhead, and not part of the delivered data. Each

real traffic type is shown by a series on the graph and the cover traffic type is indicated

on the x-axis. The error bars denote the 95% confidence interval around the sample

mean. The “none” category is the response throughput of the native traffic type, i.e.,

when the cover flow is not used. Each data point corresponding to a cover flow is

marked with the size of the corresponding throughput response, relative to the native

relative throughput.

We found that for low and high load real traffic, response throughput increases mono-

tonically with increasing bandwidth cover models. The sole exception to this trend is

the data point where medium load real traffic is carried by heavy load cover traffic.

The way to understand why the trend need not be uniform across all traffic types is
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the realization that with increasing cover bandwidth there comes both the performance

enhancing aspect of greater transmission efficiencies due to longer response transmis-

sions, but at the same time longer average wait times by the real traffic waiting for the

current cover session to end before its own request is served. The data otherwise con-

firms intuition; that low bandwidth cover traffic severely impacts performance (heavy

load real traffic gets only 8% of native response throughput, and even low load real

traffic gets only 29%); on the other hand, with heavy load cover traffic the performance

is (very approximately) half that of the native traffic for two of the traffic types, and a

quarter for the other. We improved the performance results compared to our previous

results [55] by delivering real data as soon as it is received rather than waiting for the

cover session, which carries the data to complete. We later apply this enhancement to

the TrafficMimic implementation in Chapter 5.

Overall, we observe substantial decreases in performance due to tunneling, with

some sensitivity to the cover traffic type. This indicates a need to carefully choose

the cover traffic model to fit the needs of the real traffic.

4.2 Analytic Model

A simple analytic model allows us to explore the inter-relationships between model

parameters and how the characteristics of the cover flow and real flow interact to affect

the performance of the real flow when tunneled. We develop the model, validate it,

and use it to derive bounds on the performance of tunneled traffic, and to describe

constraints on the cover flow that are necessary to ensure that the real traffic when

tunneled is not delayed beyond its natural arrival rate.

4.2.1 Model Details

We suppose that the data sizes of both cover flow and real flow sessions are measured

in a common unit, bytes, and that with respect to these units, the size of a session is a

random number of units. We assume that the distribution of an HTTP request size is
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the same for both cover and real flows, and denote that variable as Greq. The size of

an HTTP response for the cover flow is G(c)
rsp, and the size of an HTTP response for the

real flow is G(r)
rsp. The time required to transmit a byte of a HTTP request is denoted

τreq, while the time required to transmit a response byte of the cover flow is denoted τc,

and the corresponding time for a real flow’s response byte sent without tunneling is τr.

These constants incorporate all the effects of the network on packet transmission, e.g.,

TCP congestion control, packet loss, and link bandwidths. We distinguish between τreq

and τc because the length of the messages sent may be different, and so the average

cost-per-byte will be different due to TCP congestion control.

Tunneled real flow performance depends in part on the delays between cover ses-

sions, which we assume are random, independent, and exponentially distributed, de-

noted I. The mean cover flow inter-session delay is E[I] = µc.

We can view the process of a cover flow as an alternating “on-off” renewal pro-

cess [56], where the off time is exponential with mean µc, and the on time has the

distribution of Tc = (τreqGreq + τcG(c)
rsp). We introduce the notation of Tc for simplicity

of expression needed later, and note that

E[Tc] = τreqE[Greq]+ τcE[G(c)
rsp]

and

E[T 2
c ] = τ

2
reqE[G2

req]+2τreqτcE[Greq]E[G
(c)
rsp]+ τ

2
c E[(G(c)

rsp)
2].

The total delay associated with a real session has three components. The first is the

waiting time between when the real session arrives to be served, and when the next

cover session starts by carrying some (or all) of the real session’s HTTP request in a

cover HTTP request, we call this random time Rwait . On the time-line of Figure 4.1

Rwait is the interval between instant (a) and instant (b). The second component starts

where the first left off, and ends at the instant where the first cover response begins

to carry the real response; we call this Rreq. On the time-line of Figure 4.1 this is
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equal to the interval from instant (b) to (c). The final component picks up there, and

ends when the last byte of the real response is received; we call this delay Rrsp—on

the example the gap from (c) to (d). The mean total delay for the real session is

E[Rwait ]+E[Rreq]+E[Rrsp]. We now consider each of these terms.

If the real session arrives while the cover session is busy, then it waits for the cover

session to end, and then waits for a full inter-session delay to pass. If the real session

arrives while the cover session is idle, then it waits only for the remaining inter-session

delay. But since that delay is exponentially distributed, the residual delay is as well.

In either case Rwait contains an exponentially distributed intersession delay. Under our

assumptions, the cover session has run to “equilibrium” by the time the real traffic

request arrives, then by renewal theory [56] the probability of the cover session being

busy when the real session arrives is the ratio of its mean on time to the sum of the

mean on and mean off times. If the request arrives when the cover session is busy, the

mean time until the cover session ends is the “mean excess life” [56] of the random

variable Tc (defined above), known to be E[T 2
c ]/(2E[Tc]), which, applied to our model,

enables us to write

E[Rwait ] = µc +

(
E[Tc]

E[Tc]+µc

)(
E[T 2

c ]

2E[Tc]

)
. (4.1)

The expression of E[Rreq] is conceptually more complex. Depending on the size of

the HTTP request presented by the real flow, it may require multiple full cover sessions

to carry the real HTTP request embedded in the cover HTTP requests. Denote this

random variable by Creq; in Figure 4.1 it happens that Creq = 0 because the real request

is entirely carried in the first cover session request. The distribution of Creq is defined

in terms of the distributions of the sizes of the real and cover HTTP request blocks.

For simplicity of expression (and based on empirical observation) we assume that the

real and cover request block sizes are independent and identically distributed. If we

then define a sequence of i.i.d. samples of Greq as Greq,0,Greq,1,Greq,2, . . ., then the
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distribution of Creq is seen to be given by

Pr{Creq < n} = Pr{
n

∑
i=1

Greq,i < Greq,0}

= Pr{0 < Greq,0−
n

∑
i=1

Greq,i} (4.2)

While this expression is slightly daunting in the general case, we observe that under the

assumption (verified empirically) that Greq has a Gaussian distribution, then the sum

Greq,0−∑
n
i=1 Greq,i is Gaussian, with mean (1− n)E[Greq] and variance nVar(Greq).

Therefore, given empirically determined estimates of E[Greq] and Var(Greq) we can

easily compute the distribution of Creq.

We can express the mean value of Rreq as

E[Rreq] = E[
Creq

∑
i=1

(I +Tc)]+ τreqE[Greq],

recalling that I is the random inter-session delay for the cover traffic. This expression

recognizes that Rreq is comprised of Creq full cover sessions and inter-session delays

(because the real request block is not yet fully carried), followed by one final cover re-

quest (that carries the last piece of the real request). Now Creq is technically a “stopping

time” [56], so that Wald’s Lemma allows us to simplify the above as

E[Rreq] = E[Creq](µc +E[Tc])+ τreqE[Greq]. (4.3)

Finally, the derivation of E[Rrsp] follows the logic of E[Rreq]: a random number of

full cover session cycles are needed to carry real response bytes, but on the last session

the final segment of response bytes are carried. We denote the random number of

full cover sessions needed by Crsp; in the example of Figure 4.1 we have Crsp = 2.

Following the same logic as before observe that the distribution of Crsp is given by

Pr{Crsp < n}= Pr{0 < G(r)
rsp−

n

∑
i=1

G(c)
rsp,i}
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where {G(c)
rsp,i}, i = 1,2,3, . . . is an i.i.d. sequence of instances of cover response block

sizes G(c)
rsp. We can segregate the time spent carrying real response traffic into the time

spent in actual transmission, and time spent in the other phases of the cover session that

are not directly carrying real response traffic. The mean time spent actually transmitting

real response bytes is just τcE[G(r)
rsp]. Here it is important to recognize that the per-byte

transmission cost is that of the cover flow, not that of the native real flow. The extra

time in the cover session is comprised of a sum of Crsp instances of cover inter-session

and cover request transmission times. Crsp is a stopping time with computable mean,

just as Creq was, which brings us to the expression

E[Rrsp] = E[Crsp]

(
µc + τreqE[Greq]

)
+ τcE[G(r)

rsp]. (4.4)

Using equations 4.1, 4.3, and 4.4 we have an expression for the mean delay a real

session has under the tunneling scheme:

E[Dreal] = E[Rwait ]+E[Rreq]+E[Rrsp]. (4.5)

While the expression is exact, it is important to know that in practical application some

approximations will be needed. The exact distributions of Crsp and Creq depend on the

exact distributions of Greq, G(r)
rsp, and G(c)

rsp. We have good reason to model Greq as hav-

ing a Gaussian distribution. We know that G(c)
rsp and G(r)

rsp emphatically do not. When

known, the distributions of Crsp and Creq might be computed to whatever accuracy

that is needed. Still, in the validation study we consider next, we use the empirically

observed mean and variance of those sizes, and assume that the distributions are Gaus-

sian. This greatly simplifies the computation of the distributions of Crsp and Creq, and

hence computation of their mean values.

4.2.2 Validation

Before we use the analytic model to explore system behavior, we consider first how

well it describes the simulation data we have collected already.
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Section 4.1.2 describes how we gathered request and response data sizes from real

traffic, and from these categorized each HTTP response as being in a “low”, “medium”,

or “high” load category. We observed that request data sizes were well described by

Gaussian distributions, but that the response data sizes were not. Table 4.1 gives the

mean and standard deviation of the measured response data sizes, and Table 4.3 gives

the simulation results estimating a real session’s mean delay, as a function of the cover

and real traffic type. It is important to note that the simulation sampled the response

sizes from the empirical distribution based on a real network trace. Specifically, every

time the simulation sampled a response size, it chose one of the empirically observed

session response sizes uniformly at random.

Equation 4.5 expresses our analytic expression for mean delay, in terms given by

equations 4.1, 4.3, and 4.4. The latter two depend on values of E[Creq] and E[Crsp],

which in turn depend on the distribution of the real and cover response sizes. To sim-

plify these calculations we will assume that the response size distributions are Gaussian,

even though the empirical distributions fail standard statistical tests for the Gaussian.

Under this approximation we can compute the mean delays predicted by our model,

and compute the relative error: (dpred− dobs)/dobs, where dpred is the delay predicted

by the model and dobs is the mean delay observed by the simulation. Table 4.4 gives

the relative error as a function of the real and cover traffic types, where, as before, we

characterize an experiment in terms of the real traffic type, followed by ’/’ and then the

cover traffic type. It also gives a standard measure of the quality of a simulation based

estimate, also called relative error, equal to the width of the confidence interval divided

by the sample mean.

Despite the approximations of E[Creq] and E[Crsp], the analytic model predictions

match very well with the simulation measurements. 7% absolute error is the largest

magnitude observed, and is only slightly larger than the simulation’s own relative error.

We believe the “high” load real traffic experiments have the best accuracy because the

delay time is dominated by transmission of real response data (in both predicted and

measured forms), which our model very accurately captures, and which leads to much

smaller variation in the simulation. When the real traffic load is “low” there is a much
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Table 4.4: Relative error of analytic model predictions of mean real session delay, and
simulation-based estimates

Relative Error
Traffic Types Model Simulation

low/low 0.053 0.051
low/medium -0.067 0.045

low/high -0.068 0.049
medium/low 0.041 0.039

medium/medium 0.001 0.036
medium/high -0.073 0.043

high/low 0.003 0.027
high/medium 0.008 0.025

high/high 0.007 0.032

larger contribution to delay in the Rwait and Rreq components, and there is a larger

variation in the simulated values as well.

Having now strong confidence in the predictive power of our analytic model, we

now use it to better understand how characteristics of cover and real flows may affect

performance of the tunneled flow.

4.2.3 Lower Bound on Slowdown

Our first consideration is of the impact tunneling has on real traffic delay as a function

of the traffic characteristics. Under certain conditions on the cover traffic we can derive

a lower bound on slowdown—the degree by which the real traffic is delayed more under

tunneling than natively. Towards this end we identify a condition under which E[Dreal]

increases as µc increases.

Since E[Dreal] = E[Rwait ]+E[Rreq]+E[Rrsp] and each of these is a function of µc,

consider the derivative dE[Dreal]/dµx. Inspection of equations 4.3 and 4.4 show clearly

that dE[Rreq]/dµc > 0 and dE[Rrsp]/dµc > 0, so we ask under what conditions are we

assured that dE[Rwait ]/dµc > 0? Observe from equation 4.1 that

dE[Rwait ]

dµc
= 1−E[T 2

c ](E[Tc]+µc)
−2/2.
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A sufficient condition for this derivative to be non-negative is that

2(E[Tc]+µc)
2 ≥ E[T 2

c ].

which will certainly be satisfied if after we drop the µc term we still have

2(E[Tc])
2 ≥ E[T 2

c ].

Now E[T 2
c ] = var(Tc)+(E[Tc])

2, so the condition above is satisfied if E[Tc]
2≥ var(Tc).

This is essentially a bound on the variation of Tc that is met by a large class of prob-

ability distributions, loosely, ones whose variation is not larger than an exponential’s

(where the square of the mean is identically the variance). This observation leads us to

the first result

Lemma 1 If E[Tc]
2 ≥ var(Tc), then E[Dreal] is a monotone increasing function of µc,

so that E[Dreal] is minimized when µc = 0.

One way of thinking about the impact that tunneling has on performance is to con-

sider the ratio of the mean delay of a real traffic session under tunneling to the mean

delay run natively. This is a measure of the relative increase in delay due to tunnel-

ing. Lemma 1 tells us the numerator is minimized (and so the slowdown is minimized)

when µc = 0. We reduce the numerator even further assuming E[Creq] = E[Crsp] = 0.

Under these minimizing assumptions the slowdown is at least

E[T 2
c ]/(2E[Tc])+ τreqE[Greq]+ τcE[G(r)

rsp]

τreqE[Greq]+ τrE[G
(r)
rsp]

.

The delay τreqE[Greq] which appears in both the numerator and denominator is, in

large flows of interest, small relative to τcE[G(r)
rsp] and τrE[G

(r)
rsp]. Another step towards

simplifying this ratio is to recognize that since Tc is the sum of τcG(c)
rsp with a non-

negative random variable, the mean excess of τcG(c)
rsp is necessarily smaller than the

mean excess of Tc. Thus, making that substitution reduces the ratio further. Under
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these substitutions then a lower bound on slowdown is

τ2
c E[(G(c)

rsp)
2]/(2τcE[G(c)

rsp])+ τcE[G(r)
rsp]

τrE[G
(r)
rsp]

=

(
τc

τr

)(
E[(G(c)

rsp)
2]

E[G(c)
rsp]E[G

(r)
rsp]

+1
)
. (4.6)

This leads us to our result on a lower bound on slowdown.

Theorem 1 Suppose that E[Tc]
2 ≥ var(Tc), and that τreqE[Greq] is negligible relative

to τcE[G(r)
rsp] and τrE[G

(r)
rsp]. Then the ratio of the mean delay of a real session under

tunneling to the native mean delay is at least

(
τc

τr

)(
var(G(c)

rsp)

E[G(c)
rsp]E[G

(r)
rsp]

+1
)
+

τcE[G(c)
rsp]

τrE[G
(r)
rsp]

.

Proof: We use the identity E[(G(c)
rsp)

2] = var(G(c)
rsp) +E[G(c)

rsp]
2 and equation 4.6 to

derive the result. �

The final expression for slowdown exposes a key relationship that impacts it. The ra-

tio τcE[G(c)
rsp]/τrE[G

(r)
rsp] compares the time it takes to transmit a cover session response

with the time it takes to natively transmit a real session response. When the cover traf-

fic and real traffic types are identical this ratio is one, τc = τr, and so the slowdown

is at least two. When the cover session response is significantly larger than the real

session response then we expect τc < τr, and this slowdown bound is at least the degree

to which it takes longer to transmit a cover session response than it does a real session

response (natively). When the cover session response is significantly smaller than the

real session response then we expect τc > τr, and slowdown is at least τc/τr.

When considering the implications of these equations, it is important to remember

that they are predicated on the assumption that τreqGreq is comparatively negligible. For

example, in Figure 4.3 we have τreqGreq being approximately 50% percent of τrG
(r)
rsp,

so it cannot be viewed as negligible. Still, these simple bounds expressions help to

explain the data points associated with the real session under heavier load.
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4.3 Markov Chain Model

The dynamics of additional delay suffered by a real session are complex. The for-

mulation shown already is able to express the mean delay a real session suffers, but

expresses only that mean. For any deeper understanding of what is going on we need

a different model. By making some simplifying assumptions we are able to describe

dynamics using the theory of Markov chains. Towards this end we ignore the HTTP

request phase for both real and cover sessions, and so model the “on” phase as that

carrying the HTTP response, with the “off” phase being the (exponential) inter-session

delay with mean µc. Unlike the earlier analysis, here we consider the real traffic to

itself be an on-off process, with exponential off-time having mean µr.

We assume the number of bytes sent in a cover session “on” phase is geometrically

distributed, so that the time spent in the on phase is a constant times a geometric random

variable. We assume that µc and µr are expressed in units where that constant is 1. We

suppose that the mean number of bytes transmitted during a cover session on period

has mean 1/pc, and that the mean number of bytes required by a real session has mean

1/pr.

Under these assumptions we can model and analyze system dynamics formally using

the theory of Markov chains. The state of the cover process is always off (0) or on (1).

The state of the real process is either off (0), waiting for a cover session to carry more

real traffic (1), or being carried by the cover session (2). There are six interesting

system states denoted by a tuple of these two state descriptions. On entry to any one of

them, the memoryless properties of the exponential and geometric distributions make

the future behavior of the system entirely dependent on the state entered. The time

within a state need not be exponential though, so the continuous time process is not

a standard continuous time Markov chain. However, the system we describe has an

embedded discrete-time Markov chain from which we will be able to derive the steady-

state state occupancy probabilities of the continuous time stochastic process.

We now describe each state, its outbound transition probabilities, and the mean time

the system stays in that state (which is needed for the steady-state probabilities). A
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Pr{ G(pc)< Exp(μr) }

1
1

1

(1/μr)/
(1/μr+1/μc)

1-(1/μr)/
(1/μr+1/μc)

(0,0)
1/(1/μr+1/μc)

(1,0)
E[ min{G

(pc),Exp(μr)} ]

(0,1)
μc

(1,2)
1/pe

(0,2)
μc

(1,1)
1/pc

Pr{ G(pc) ≥ Exp(μr) }

pc(1-pr)/pe

pcpr/pe

pc(1-pr)/pe

Figure 4.4: Discrete-time Markov chain for session model

diagram of this chain is also shown in Figure 4.4. We denote states as ovals with

transition probabilities labeling the arrows. We give the mean waiting time inside each

state oval along with its tuple state label (x,y).

(0,0) : Both processes are off, which means that the state changes when the first of the

waiting times completes. Since the waiting times are exponential, the probability

of transitioning to (0,1) (i.e., the real session arrives first) is (1/µr)/(1/µr +

1/µc). The probability of transitioning to (1,0) is the complement of this—no

other transitions from this state are possible. The mean holding time in this state

is the mean of the minimum of the two constituent exponentials, e.g., 1/(1/µr +

1/µc).

(0,1) : A real session has arrived and is waiting for the cover process to begin. When

it does, the system transitions to state (1,2)—that’s the only transition possible.

The mean time the system spends in this state once entered is µc.

(1,0) : The cover process starts at a time when the real process is off. From here one

of two things can happen. Either the cover process completes before the real pro-

cess starts (i.e., a transition to (0,0)), or a real session arrives to be carried while

the cover session is yet active. The transition probability into (0,0) is therefore

the probability that a geometric with success probability pc is less than an expo-
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nential with mean µr; the transition probability into (1,1) is its complement. The

mean time in this state is the mean of the minimum of independent geometric and

exponential random variables. These quantities can be computed numerically.

(1,1) : In this state the cover process is active while the real process is waiting. The

only transition from this state is to (0,1). The mean time in the state once entered

is 1/pc.

(1,2) : This is the only system state where real traffic is carried. The system stays in

this state until either the cover session ends, or the real session ends. At any given

step the probability that at least one of the two sessions ends given that neither

has yet is pe = 1− (1− pc)∗ (1− pr)—one minus the probability that they both

end. Transitions are possible into state (0,2) (with probability pc(1− pr)/pe ),

into state (1,0) (with probability pr(1− pc)/pe ), or state (0,0) (with probability

pc pr/pe).) The mean time in this state once entered is 1/pe.

(0,2) : This state is reached when a cover session ends before the real session it was

carrying completes. The only transition from here is back into state (1,2), which

occurs when the cover process enters the on state again. The mean time in this

state once entered is µc.

The values of the transition probability matrix P for this system are described above;

it is straightforward to numerically solve vector equation π∗ = π∗P to find the equilib-

rium state occupancy probabilities (in vector π∗), e.g., using Gaussian elimination. By

the theory of generalized Markov processes [56], the equilibrium fraction of time the

system is in state S is given by πS = π∗S mS/∑states T π∗T mT , where mS is the mean time

in state S, once entered.

4.3.1 Stability

The session model we have explored has the characteristic of holding back real traffic in

one session so long as the traffic in the previous session is still being carried. As such,
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using tunneling could therefore reduce the rate at which real sessions are processed. We

aim to answer the following questions: what are the characteristics of the cover flow

that are necessary to “keep up” with a real flow, or alternatively, given a cover flow,

what real flows can use it to tunnel without having their inherent session throughput

adversely affected?

We approach the problem by thinking of the tunneling as a service, and the real

sessions to be tunneled as jobs to be served. We again ignore the HTTP request phase.

In this model we allow the “off” time of one cycle to coincide with the processing time

of a previous cycle. In other words, the waiting time between successive real session

transfers may be masked by the processing time of a prior transfer. Viewed this way

gives rise to a queueing system with one server, whose mean service time is E[Dreal].

The inter-arrival time between real sessions is the time between the beginnings of real

sessions when they are run natively. Continuing to use 1/pr to denote the mean number

of bytes in a real session response, and 1/pc to denote the mean number of bytes in a

cover session response, the mean of this inter-arrival time is τr/pr +µr, where µr is the

mean “down” time between successive delivered real sessions, run natively.

We know from the theory of G/G/1 queueing systems [56] that the queue is sta-

ble (i.e., has a limiting state occupancy distribution) when the service rate is strictly

greater than the mean inter-arrival time. We obtain the service rate from our Markov

chain model—the fraction of time the system is in state (1,2), times the cover session

throughput: π(1,2)/τc. Stability is ensured when

π(1,2)/τc >
1.0

τr/pr +µr
.

In the subsequent analysis of slowdown we use this bound to consider only model

parameter sets where the resulting system is stable.
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4.3.2 Slowdown

Vector π from the Markov chain model encodes what we need to compute slowdown.

Consider: given that the system has a real session to carry, the rate at which that data

is carried is the fraction of time the system is in state (1,2), conditioned on there being

real traffic to carry, times 1/τc:

ψc = (1/τc)
π(1,2)

(1−π(0,0)−π(1,0))
.

The native rate that real session traffic is carried, given that real traffic is available, is

1/τr. Given N packets to transmit (N large), the slowdown is

slowdown =
Nψc

N/τr

= (τr/τc)

(
π(1,2)

1−π(0,0)−π(1,0)

)
.

We now use this model to investigate how different model parameters affect slow-

down.

It is intuitive that slowdown will be impacted significantly by the availability of cover

traffic—more and more cover traffic yields smaller slowdowns. The experiments we

performed use cover traffic utilization as the independent variable. Another important

factor is the relative sizes of cover and real sessions. Figure 4.5 plots slowdown as

a function of cover traffic utilization, given a baseline native real utilization of 10%.

Experiments identical to these with increasing real utilization yield essentially identical

slowdowns. We plot slowdown for a variety of mixes of pr and pc. Three features of

this data stand out. The first is that slowdown is a convex decreasing function of cover

session utilization. When utilization is high there is a lot of traffic to be tunneled—

provided that the sizes of the real sessions are large relative to the cover sessions. For

even when cover utilization is high, a short real session will have to wait for a long

cover session to finish before the real session can start. This is seen in the second

feature of the data; for a given cover utilization, slowdown is an increasing function
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Figure 4.5: Slowdown as a function of cover traffic utilization when native real utiliza-
tion is 10%

pr/pc (e.g., the ratio of the mean cover session size to mean real session size). The

final interesting facet of the data is that even when pr/pc is advantageous, under low

cover utilization the slowdown can be quite large. This reflects the waiting time a real

session incurs for a cover session to come along and start to carry it.

The conclusions we can draw from this graph are that slowdown can be small—less

than 25%, say, provided that one is willing to dedicate a large portion of bandwidth to

the cover traffic relative to the real traffic, and that the cover sessions are short relative

to real traffic sessions. Deviation from these conditions brings one into the realm of

slowdowns that are a factor of 5 or more. One should note though that slowdown is

a measure of the impact on latency. The conditions studied here all ensure that the

tunneling does not impact the long-term rate of real traffic sessions.

4.3.3 Bandwidth

Next we consider bandwidth use. This is straightforward, appealing to the renewal

structure of the session models. We view transmitted kilobytes as a reward; the rate at

which this reward is earned is the mean consumed bandwidth. The theory of reward
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renewal processes says that if reward is earned at rate λ during an on cycle, and not

at all during an off cycle, then the limiting rate at which the process as a whole earns

reward is λE[on time]/(E[on time] +E[off time]). Applied to our models, the cover

session earns reward at rate 1/τc during the on cycle, and the real session earns it at

rate 1/τr during the on cycle. The overall rate reward values are thus

λc =

(
τc/pc

τc/pc +µc

)
1
τc
,

and

λr =

(
τr/pr

τr/pr +µr

)
1
τr
.

We have seen that the cover flow must be frequent enough to carry real flow without

affecting throughput. An informative metric to compute is the ratio λc/λr, giving us

the factor by which the cover traffic has more volume. We obtain

(λc/λr) = (pr/pc)

(
τr/pr +µr

τc/pc +µc

)
.

This has the intuitive interpretation as the factor by which the cover traffic carries more

packets during a session than does the real traffic, times the factor by which a native

on-off cycle of the real traffic is longer than a cover traffic session. For fixed pr, τr, and

τc this ratio increases as (1/pc) increases, e.g., as the length of the cover session grows.

4.4 Conclusions

Independent cover traffic tunneling can exact a considerable performance cost to the

real traffic being tunneled. In this chapter we investigate the properties of those perfor-

mance costs using simulation and analytic modeling. We use the simulation to gener-

ate measurements of traffic behavior, using high fidelity models of protocols that carry

traffic. We use the measurements to validate an analytic model of latency. We then

augment the model to capture the dynamics of tunneling sessions, in a Markov chain

formalism. From this model we can express conditions under which the real traffic
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throughput is unaffected by tunneling, and extract the slowdown—i.e., the factor by

which the latency is increased by tunneling.

The models aid us in determining constraints to follow that ensure that the real traf-

fic’s throughput, latency or stability are bounded. As intuition suggests, real traffic

slowdown is minimized when there is ample cover traffic to carry it. Similarly, real

bandwidth grows as the volume of cover traffic grows in relation to the real traffic vol-

ume. However, we found that mismatches between the relative sizes of cover and real

sessions can result in significant performance degradation. These mismatches can re-

sult from having a cover stream that is too small, and though its utilization is high, the

inter session time can drastically increase latency. When the cover stream is too large,

the real traffic has to wait for large empty cover streams to complete before real trans-

mission can begin. Even when the relative sizes are favorable, a cover session model

with low utilization can result in higher slowdowns. Thus, the waiting times that arise

from the combination of real and cover traffic have a greater impact on performance

than padding or native network transmission time.

We found that the nature of our problem allows for an interesting and useful de-

coupling of models. We show that it is possible to take measurements from real or

simulated traffic and use it to estimate parameters for an accurate analytic model of

tunneling, without the measurements or simulations having any notion at all of tunnel-

ing. Analysis of the analytic model shows that its predictions of slowdown are very

dependent on the accuracy of the ratios of the mean time to transmit a packet using

the cover session pattern, to the mean time to transmit it in the native real flow. The

analytic model is useful as an explanatory device without accurate measurements of

these means, but is questionable as a predictive device without them. Together these

different model forms can address analysis of tunneled traffic in a way that neither can

individually.
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CHAPTER 5

ENHANCING PERFORMANCE WITH
BIASED COVER TRAFFIC

Existing encrypted traffic analysis attacks rely on some sort of inference technique to

reconstruct information about the plaintext. Since these techniques have nonzero error

rates, we have the ability to relax our independence assumption for cover traffic tun-

neling to improve performance. We approach this problem by biasing the selection of

cover traffic parameters based on the current state of the real traffic. We treat the bi-

asing process as a per-parameter black-box function, which transforms the parameter’s

distribution into an optimized selection.

We investigate biasing through simulation and Internet study of various functions

we have developed using intuition from our previous simulation and analytic modeling

work in Chapter 4. We focus on biasing on object size parameters (request and response

sizes from Table 2.1).

The degree to which we can make cover traffic generation dependent on the real

traffic to improve performance is security-sensitive. In this chapter, we investigate the

following questions about biasing: How much does biasing aid reconstruction of the

plaintext by an attacker? What impact does biasing have on defense detection? With

knowledge of the expected protocol behavior of the real traffic, can a user optimally

select a cover traffic model? How does biasing improve the performance of the Traf-

ficMimic tests using an independent cover traffic model from Chapter 3?

5.1 Biasing

In the unoptimized system described in Chapter 2, TrafficMimic generates the stream

of cover traffic independently from the data actually being sent by the real flow. This
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ensures that an attacker is unable to recover information leaked by the cover traffic.

While secure, this scheme can produce poor performance when there is a mismatch

between the traffic properties of the real and cover traffic. In this section, we describe

methods for selecting cover traffic patterns with knowledge of the real traffic.

As described before, we collect empirical distributions of structural features learned

from a real network trace using Swing. TrafficMimic uses distributions of request

size, response size, inter-exchange time, and inter-connection time to generate cover

traffic. To sample these distributions to create cover traffic, we perform the empirical

equivalent of inverse transform sampling by converting uniform [0,1] variates to indices

into the sorted array that stores the empirical distribution.

The general approach to our performance improvements involves biasing the selec-

tion of the samples from the empirical distribution. Rather than directly sampling, we

call a function bias that takes the empirical distribution to sample, the state of the real

flow, and a parameter that controls amount of biasing to apply. The state parameter

describes the needs of the real flow for the traffic parameter described by the empir-

ical distribution. This state can either be the instantaneous current value of a traffic

property (e.g., the number of bytes of the real flow that are queued to be sent) or an

estimate of the current state from history (e.g., the exponential moving average of past

real inter-exchange times). This function returns a random sample from the empirical

distribution whose selection is influenced by the current state of the real flow.

In this chapter, we focus on creating and evaluating bias functions that operate on

the object size traffic properties (request or response sizes). TrafficMimic uses a local

per-flow buffer of 64KB (qmax) to store pending real data at both the tm-server and tm-

client. The bias functions use the amount of data in this pending buffer as their state

parameter. We use the variable q to denote the amount of data in this buffer.

From our work in Chapter 4, we observed that frequent object splitting and the extra

waiting it causes was the dominant reason for poor performance. We also found that

excessive overage impacted latency because large underutilized cover objects cause the

cover flow to stall sending padding when real data is waiting. We use these insights

to design bias functions that avoid splitting and minimize excess bytes. Though these
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assumptions may not be optimal1, for all protocols, we show that they can considerably

improve performance for many common protocols.

5.1.1 Functional Biasing

The first class of biasing techniques work by influencing the selection of samples from

the empirical distribution using a statistical distribution described by the probability

density function fb. fb is a piecewise continuous distribution2 that maps uniform [0,1]

to biased [0,1] given the cumulative fraction x0 of the current value of q. We find this

value by using the empirical observations of the CDF Fcov.

Fcov(q) = x0

We then randomly sample the distribution described by fb using inverse transform

sampling. This requires that we derived the inverse CDF F−1
b of fb. We also need a

[0,1] uniform random variable y as input to this process. Thus, F−1
b takes parameters y,

x0, and a set of parameters denoted by param.

F−1
b (y,x0, param) = xs

Now we can select a biased sample c from the cover distribution using its inverse

CDF and a biased [0,1] random variate xs.

F−1
cov (xs) = c

We next describe several candidate fb distributions that we will use to bias object

size distributions.
1Avoiding splitting and minimizing excess bytes may not be optimal, especially for protocols (e.g.,

VoIP) that differ considerably from our test set of SSH, SMTP, and HTTPS.
2Note that fb is continuous, even though fcov could be discrete. We assume that fb is continuous so

that it can be applied to any traffic parameter (i.e., one that is continuous, like interconnection time). We
utilize the natural binning that occurs with a sampled empirical distribution to convert between discrete
and continuous representations.
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Probability Split

We start with a simple bias distribution. It attempts to avoid object splitting by prefer-

entially selecting values greater than q with a fixed probability 1− p.

fb(x,x0, p) =


p
x0

0≤ x < x0

1−p
1−x0

x0 ≤ x≤ 1

We derive the CDF by integration:

∫ x

0

p
x0

dz =
px
x0

∫ x0

0

p
x0

dz+
∫ x

x0

1− p
1− x0

dz = p+
(

1− p
1− x0

)
(x− x0)

Fb(x,x0, p) =


px
x0

0≤ x < x0

p+
(

1−p
1−x0

)
(x− x0) x0 ≤ x≤ 1

and invert the CDF to yield F−1
b

F−1
b (y,x0, p) =


yx0
p 0≤ y < p

x0 +
(y−p)(1−x0)

1−p p≤ y≤ 1

Since the bias functions that we develop have different parameter ranges, we develop

a standardized parameter α that increases bias as the parameter grows larger. In all

cases, we consider α = 0 to designate no biasing. For this probability distribution, we

consider α to be related to p as follows: p = 1/α. Figure 5.1(a) shows a sample of the

PDF of this function graphically where p = 0.25 (similarly α = 4).
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Figure 5.1: Sample PDFs of various bias functions with x0 = 0.6
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Linear Decay

The next distribution we describe features a uniform probability below x0 and then a

linear decay for x ≥ x0. The motivation for this function is to bias giving mass larger

than x0 while simultaneously limiting overhead. To construct a PDF for this distribution

we construct a piesewise function. The height of the distribution is h for x < x0. For

x0 ≥ x, we have a triangle with area 1− x0h. We can then find its height y0 (i.e., the

height of the optimal point x0). We then find the slope of the line forming the triangle

and its intercept.

fb(x,x0,h) =

h 0≤ x < x0

2(hx0−1)(x−1)
(x0−1)2 x0 ≤ x≤ 1

Fb(x,x0,h) =

hx 0≤ x < x0

1+(hx0−1) (x−1)2

(x0−1)2 x0 ≤ x≤ 1

We can then use the inverse of the CDF to create biased samples from the cover size

distribution.

F−1
b (y,x0,h) =


y
h 0≤ y < hx0

1+(x0−1)
√

(y−1)
(hx0−1) hx0 ≤ y≤ 1

Again we use parameter α , where h = 1/α. Figure 5.1(b) shows a sample of this func-

tion graphically where h = 1.

Linear Decay Variation

We also created a variation of the above linear decay function, which decays to h rather

than 0 on the right side. We use a similar to technique to derive the PDF, CDF, and

inverse CDF.
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fb(x,x0,h) =

h 0≤ x < x0

2x(h−1)
(x0−1)2 +

(h(x2
0−2x0−1)+2)
(x0−1)2 x0 ≤ x≤ 1

Fb(x,x0,h) =

hx 0≤ x < x0

((h−1)x2+(h(x2
0−2x0−1)+2)x−(h(x2

0−x0−1)−x0+2)
(x0−1)2 +hx0 x0 ≤ x≤ 1

F−1
b (y,x0,h) =


y
h 0≤ y < hx0

|x0−1|
√

4(h−1)y+h2(x2
0−2x0+1)−4h+4−h(x2

0−2x0−1)−2)
2(h−1) hx0 ≤ y≤ 1

We use the same input parameter standardization: h = 1/α. Figure 5.1(c) shows a

sample of this variation graphically where h = 1.

Exponential Decay

Rather than linear decay after x0 we can use exponential decay.

pd f (x,x0,h) =

h 0≤ x < x0

eb−mx x0 ≤ x≤ 1

1−hx0 =
∫ 1

x0

eb−mxdx

eb =
(1−hx0)m

e−mx0− e−m

Because we want the exponential to have a finite tail, we simplify by considering the

term e−m = 0. Thus:
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b≈ log(m(1−hx0))+amx

fb(x,x0,h) =

h 0≤ x < x0

m(1−hx0) · em(x0−x) x0 ≤ x≤ 1

We next need to parameterize this function by selecting an appropriate m given a

value of x0. We choose to limit the error caused by the simplification above. We use ε

to represent the error factor at x = 1

ε = e−m ≈ 0

We parameterize ε by β as follows:

β =−log(ε)

Thus, m for a given β and x0 is

m =
log(1− x0)+β

1− x0

We use a static value of β and use h to vary the biasing level of the function. Next to

convert to a CDF, we integrate

Fb(x,x0h) =

hx 0≤ x < x0

hx0 +(1− x0)
(

1− em(x0−x)
)

x0 ≤ x≤ 1

F−1
b (x,x0,h) =


y
h 0≤ y < hx0

x0− 1
m log

(
1− y−hx0

1−hx0

)
hx0 ≤ y < 1

Again we use the standardization h = 1/α . Figure 5.1(d) shows a sample of the expo-

nential decay bias distribution graphically where h = 0.75.
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Reverse Linear

We next evaluate a distribution that attempts to cause fewer splits even when some splits

will occur. The intuition is that sending larger cover sizes even when causing splits,

reduces the total number of splits. To accomplish this, we create another piecewise

function. Unlike the previous functions, this distribution has a flat probability density

to the right of x0. It uses a linear increasing function to the left of x0. The height of

the triangle is a fraction p of the height of the flat line to the right of x0. Using this

technique and parameterization we can create a PDF, CDF, and inverse CDF. First we

can find h using p:

h =
2

px0−2(x0−1)x0

The remainder of the derivation follows as before:

fb(x,x0, p) =


2px

(px0−2(x0−1))x0
0≤ x < x0

h x0 ≤ x≤ 1

Fb(x,x0, p) =


hpx2

2x0
0≤ x < x0

h(px2+2x0x−2x2
0)

2x0
x0 ≤ x≤ 1

F−1
b (y,x0, p) =


√

2x0
hp y 0≤ y < x0 ph

2

√
x0

√
2pyh(2p+1)x0√

hp
− x0

p
x0 ph

2 ≤ y≤ 1

Because this function’s parameter is related to the area to the left of x0, we use a dif-

ferent parameter standardization: p = 1− 1/α. Figure 5.1(e) shows a sample of this

function graphically where p = 0.75.

5.1.2 Algorithmic Biasing

The next class bias techniques we investigate work by selecting biased samples using

an algorithm tailored to the traffic property being biased. These functions work directly
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towards our performance goals rather than indirectly through a statistical distribution.

Each algorithm samples the empirical cover distribution several times until it finds a

suitable value. We call this basic approach Try, Try Again (TTA).

Linear TTA

This algorithm works by iteratively sampling the cover distribution up to r times. The

first sample ci, where ci > q, is used to transmit the data. If no suitable c is found after

r samples, the final sample cr is used. Figure 5.2(b) shows a sample output distribution

from this algorithm compared to an unbiased Geometric in Figure 5.2(a).

Optimal TTA

We also developed an enhancement to this algorithm that attempts to find “best fit” c

given the amount data in the pending buffer. Given a set of r random samples c1, . . . ,cr

and q bytes in the pending buffer, the algorithm selects c such that c > q and c is

the minimum of all ci > q. If there is no ci > q, then the algorithm selects c to be

the maximum over all ci. Figure 5.2(c) shows a sample output distribution from this

algorithm.

5.1.3 Sampling Without Replacement

A final consideration for each of the bias functions we have described thus far is the

sampling method. To preserve the shape of the expected cover size distribution to

prevent defense detection attacks, we can sample without replacement. To prevent

exhaustion of the empirical data, we first create a L length subset of samples from

the empirical distribution. We then can run the above algorithms on this subset and

sample without replacement. When exhausted, the algorithm regenerates a new subset

of length L. This ensures that the shape of the observed cover size distribution remains

consistent within a window of L observations.
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Figure 5.2: Illustration of algorithmic biasing of a Geometric distribution (mean 9.77e-
5) with r = 4 and q = 10000 (q shown in red)

(a) Unbiased

0 20000 40000 60000 80000 100000 120000
0

200

400

600

800

1000

1200

(b) Biased with linear algorithm

0 20000 40000 60000 80000 100000 120000 140000
0

200

400

600

800

1000

1200

(c) Biased with optimal algorithm

0 20000 40000 60000 80000 100000 120000
0

200

400

600

800

1000

1200

1400

75



We can sample without replacement with both functional and algorithmic biasing.

We treat the subset Fsub like the original ECDF, Fcov. The functional techniques use

the biased [0,1] value to index into Fsub. Similarly, the algorithmic techniques select r

samples from Fsub before selecting a biased cover size.

5.2 Attacks

We now present the attack and evaluation methodology we use to quantify and compare

the differences between biasing methods. We use simulation to evaluate the attack be-

cause the low-noise of the simulation favors the attacker. We use information theoretic

metrics to compare information leaked by biasing.

5.2.1 Bayesian Attack

We use Bayesian data analysis to form an attack against biasing. The goal of the at-

tacker is to infer the value of q given observation of a single cover session size covi

traversing the network. We present this attack as a theoretical examination of how

much information the attacker can recover when TrafficMimic is biased. We neither

expect this attack perform exceptionally well in practice nor do we provide the de-

sign and evaluation of an attack that can recover the original object size given a set of

inferred q values.

We use Bayes Theorem as follows:

P(q|covi) =
p(covi|q)p(q)

p(covi)
(5.1)

We assume that the attacker knows the distribution of queue and cover session sizes.

We further assume that the attacker has full details of TrafficMimic’s operation and

biasing algorithms (including qmax and the biasing parameter α or r).

In the following sections we describe the three phases of this attack: pre-computation,

observation, and attack.
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1. Pre-computation Before conducting the attack, the attacker needs to compute

the values of p(cov|q) for each possible value of q given a specific biasing algo-

rithm and parameters. With functional biasing, the attacker can compute these

probabilities using the PDF and CDF of the bias distribution. For algorithmic

techniques, the attacker creates a distribution of probabilities by sampling the

output of the bias algorithm to create an empirical distribution of distsize el-

ements. To make these computation scalable, we allow the attacker to bin the

q sizes using the bufincrement variable. We also perform smoothing using a

kernel density estimator [57] on the distributions to create empirical probability

mass functions that can be later used in the Bayes calculations.

2. Observation In the next phase, the attacker observes cover sizes on the network

that he/she wishes to attack. In our attack, we use a simple simulator to generate

data for this phase. The simulator first samples a real session size to transfer

using TrafficMimic. It creates a buffer of size qmax and automatically fills it as

space and real data are available. It then uses the same logic as TrafficMimic

to bias and select cover sizes to cover the real traffic. The simulator runs many

iterations of real flows (qsimi) which each generate one or more cover sizes (covi).

The simulator stores the results in a tuple (qsimi,covi), which is passed to the next

phase. The simulator also computes the average overage (this is perfect overage

with no TrafficMimic overhead, only excess padding bytes sent) and average

number of cover sessions required to send a real object. These values are proxies

for the real performance of the biasing technique when used with TrafficMimic.

3. Attack Application In this phase, the attacker takes an observed cover size from

the simulation, covi, and uses equation 5.1 to generate a probability distribu-

tion of P(q|covi) for all possible qi. The attacker chooses a normalizing factor,

p(covi), for equation 5.1 that ensures that all probabilities sum to one over a suf-

ficiently large sample set. Empirically estimating this value is difficult because

of sampling error. Next the attacker smooths this distribution with a kernel den-

sity estimator and finds the maximum P(qi|cov). We call this maximal likelihood
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object size qesti . The attacker repeats this process for all covi.

The attacker can then take the qsimi and compare it to qesti to test the accuracy of the

attack. We consider the attack successful if qesti is within the attack bin width (i.e.,

bufincrement) of qsimi .

5.2.2 Mutual Information

In addition to the raw attack accuracy described above, we use several mutual informa-

tion metrics to test the attack. First we define some notation. We use Qsim to denote

a random variable from the distribution observed in qsim. Likewise, we use Qest to de-

note a random variable from the distribution observed in qest . Similarly, we use Csim to

denote a random variable for distribution covi.

To directly evaluate the information recovered using the Bayesian attack, we com-

pute the mutual information of Qsim between Qest :

I(Qsim;Qest) = ∑
qsim∈Qsim

∑
qest∈Qest

p(qsim,qest) log
(

p(qsim,qest)

p(qsim) p(qest)

)
(5.2)

This requires that we compute the joint probability distribution function for Qsim and

Qest . We use the methods described by Ince et al. to compute this mutual informa-

tion [58]. We use the bin width estimator from Silverman [57].

We also develop an estimator for I(Qsim;Qest) using only Csim. Bayes rule provides a

result for Qest by taking the following input: priors of Csim and Qsim and the conditional

probability of Csim given Qsim (i.e., p(covi|q) from equation 5.1). We use M to denote

the random variable from the distribution of p(covi|q). We can then consider Bayes

rules as a function f as follows:

Qest = f (Qsim,M,Csim)

Consider a simplified estimation function g, which takes only Csim as input and pro-

duces an estimate of qg (and its associated random variable Qg):
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Figure 5.3: Mutual information estimator comparison for linearBias with HTTPS traffic
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qg = g(Csim)

The prior distribution of Qsim is fixed and does not contribute additional information

to Qest . Furthermore, there is no information in M that is not contained in Csim. Which

leads to the following approximation:

I(Qsim;Qest)≈ I(Qsim;Qg)

The data processing inequality bounds the amount of information in Qg to that in

Csim:

I(Qsim;Qg)≥ I(Qsim;Csim)

Under reasonable conditions3 on g, we find:

I(Qsim;Qest)≈ I(Qsim;Csim)

3In the case that g is a sufficient statistic, then I(Qsim;Qg) = I(Qsim;Csim)
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To test this estimator, we computed both mutual information metrics from simulation

runs collected from each of the bias functions described above. Figure 5.3 shows the

similarity between mutual information computed using I(Qsim;Qest) and I(Qsim;Csim)

for the linearBias function4. We see that the estimator both preserves the shape of the

mutual information metric and is within a small margin of error. For the remainder of

the results in this paper, we use I(Qsim;Csim) because it is faster to compute.

5.3 Simulation Study

We again use network trace data from the CAIDA (for HTTPS and SMTP) and UNC

(for SSH). In all results, we take 20,000 real objects and simulate sending them through

a tunnel of cover traffic with each of the biasing functions. As in Chapter 4, we use

the notation realprotocol / coverprotocol for specifying combinations of real and cover

protocol models. Unless otherwise specified, we use response size distributions.

For comparison to existing constant padding techniques, we also test a biasing func-

tion that always selects a fixed size object (constantMTU). We tested a range of ten

fixed object sizes between the lower and upper quartiles of each real distribution. This

range of fixed object sizes illustrate some of the trade-offs between overhead and num-

ber of sessions for a constant rate scheme.

5.3.1 Performance

We first evaluate biasing HTTPS real traffic from the February CAIDA trace with

HTTPS cover traffic learned from January. We use the algorithms with replacement

described in Section 5.1. Figures 5.4 through 5.7 show the results of this experiment.

Bias parameter 0 in all the series corresponds to unbiased TrafficMimic performance.

As expected, the biasing algorithms are able to reduce the average number of cover

sessions required to send the real object. Since overage in our simulation is only a

reflection of the last cover size required to send each real object, we observed larger

4linearBias is representative of the estimator’s performance for other bias techniques
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Figure 5.4: Session performance of HTTPS/HTTPS biased with replacement
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Figure 5.5: Overhead of HTTPS/HTTPS biased with replacement
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Figure 5.6: Mutual information of HTTPS/HTTPS biased with replacement
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than expected variations across bias techniques. This will be evaluated in more detail

in section 5.5. As Figure 5.5 shows, several algorithms can reduce overage, others (e.g.

linearTTA, expBias, and probSplit) increase overage while still providing good session

performance. This small additional overage is unlikely to affect HTTPS performance

considerably since it will usually add only one additional object transmission time to

the user-perceived latency. Figure 5.6 shows that linear functional techniques leak the

most information about the real object sizes while the algorithmic methods (linear and

optimal TTA) and expBias leak the least information. We observed a small amount

mutual information with no biasing because both distributions drawn from the same

underlying protocol HTTPS.

Since all of these tests are performed with replacement, the biased cover distributions

are skewed from the original expected cover distribution. Figure 5.7 shows a zoomed

view of the empirical CDFs for each biasing algorithm across the entire simulation

for bias parameter 4. We use the two-sample Kolmogorov-Smirnov test to investigate

the relative differences between the biased cover distributions. All the bias algorithms

have a zero probability of being drawn from the unbiased cover distribution based on
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Figure 5.7: HTTPS/HTTPS observed cover size distribution
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the confidence estimation given by Stephens [59, 60] for bias factors greater than 1.

So, both constantMTU and sampling with replacement provide minimal resistance to

defense detection. We investigate the practicality of using KS as a defense detection

attack in more detail in Section 5.3.3.

5.3.2 Traffic Combinations

We next simulated the SSH protocol over SMTP (See Figures 5.8 through 5.10). In our

previous study, we found that both SMTP and SSH are dissimilarly asymmetric in the

number of bytes sent and received. Because of this, we found more striking differences

between biasing algorithms. The functional algorithms that favored mass above x0,

were able to reduce the number of sessions to nearly 1. However, these algorithms also

resulted in the most overage and considerable information leakage (over 1 bit per cover

object). This is due to SSH needing to send a large response but SMTP only offering

smaller cover sizes. When this distribution is skewed by the bias functions, they push

the SMTP protocol model into a less common but still possible state where its bytes

sent versus received ratio is reversed.
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Figure 5.8: Session performance of SSH/SMTP biased with replacement
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Figure 5.9: Mutual information of SSH/SMTP biased with replacement
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Figure 5.10: Overhead of SSH/SMTP biased with replacement
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The algorithmic approaches and reverseLinear were less sensitive to this problem.

However, they were only able to provide modest performance advantages. This is

because these algorithms would only occasionally reverse the bytes sent ratio as ev-

idenced by the very small overhead observed in Figure 5.10.

We next looked at sending HTTPS requests over a cover traffic stream of HTTPS

responses. In this case, the unbiased cover distribution would usually be able to transmit

the request in a single session. So, we consider the cover stream over provisioned for

carrying the real stream. Thus, we observed that biasing had only a minimal effect on

the session performance (see Figure 5.11). We also found in Figure 5.12 that several of

the biasing techniques (e.g., optimalTTA, linearBias, reverseLinear, and varLinearBias)

were able to reduce overage even though they are not specifically tuned for this over

provisioned situation.

5.3.3 Defense Detection

We have already established that biasing with replacement provides minimal resistance

to defense detection. We next want to understand how to reduce defense detection risk
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Figure 5.11: Session performance of HTTPS-req/HTTPS-resp biased with replacement

0 2 4 6 8 10 12 14 16 18
bias parameter

0

1

2

3

4

5

6

7

8

9

A
v
g
 N

u
m

 S
e
ss

io
n
s 

p
e
r 

R
e
a
l

constantMTU
expBias
linearBias
linearTTA
optimalTTA
probSplit
reverseLinear
varLinearBias

Figure 5.12: Overhead of HTTPS-req/HTTPS-resp biased with replacement
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Figure 5.13: OptimalTTA without replacement and varying L sized subsets
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while retaining a session and overhead advantage over constantMTU. We approach this

problem by sampling without replacement on a random subset of size L. This allows

the biased cover distribution to remain consistent with the original distribution over a

window of size L. We wish to investigate how varying the size of the sampling subset

L impacts the attacker’s ability to detect biasing using a KS-test.

In our previous examination in Section 5.3.1, we used data from the entire simu-

lation of 20,000 real object transmissions to perform the KS-test. Realistically, the

attacker should choose some smaller window W and test subsets of length W from the

observed cover traffic. This allows the attacker to make a determination about defense

detection much more quickly. The attacker faces a trade-off between noise impacting

detection confidence and the amount of cover traffic needed to make a determination.

Similarly, the defender has a trade-off between performance gain and low detectability.

Intuitively, we expect the attacker to gain the detection advantage when L >W .

We investigated these competing trade-offs using several simulations. We first ex-

amine the session performance of choosing various values for L. We tested the opti-

malTTA algorithm on HTTPS traffic with parameter 5 with a variety of subset sizes.
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Figure 5.14: Windowed KS test attack on optimalTTA
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We show the 99th percentile of session lengths in Figure 5.13. We see performance

improvement over no biasing even with very small values of L (e.g., 5 or 10). We also

tested a much larger subset length of 5000 and found the performance improvement

remained modest at 7.8% fewer sessions than L = 500.

To test the attacker’s trade-off on selecting a W , we use the two-sample KS-test on

the original cover distribution (all the HTTPS response traffic from CAIDA February)

compared to sampled biased cover distributions from Figure 5.13 at a variety of window

and subset lengths. To understand the impact of noise, we also test the original cover

distribution against an independent test set of unbiased data (learned from HTTPS traf-

fic from CAIDA January). We used 95% confidence for the KS test to indicate that the

observed samples are drawn from the same distribution. We repeated testing L length

subsets for 100 iterations for each W . We show the maximum W for which each value

of L falls within the attacker’s confidence interval in Figure 5.14. We also show this

for our independent set of HTTPS traffic (labeled ‘real’ in the chart). We found that

windows above 50 reduced the confidence for the attack against the real test set. Fur-

thermore, we found that the we were able to use values of L smaller than the window
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Figure 5.15: Mutual information of HTTP/HTTP biased without replacement L = 100
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required by the attacker to detect it (deviating from our intuition about detection advan-

tage above). To remain within the noise threshold for an independent test on real traffic,

the attacker needs to use values of W 50 or smaller. So, we can safely use subsets of

length 300 for this particular scenario. We use a conservative estimate of L = 100 for

our remaining examination of sampling strategies.

We next wanted to investigate in more detail the performance properties of all our

biasing techniques when sampled with replacement on a random subset of size 100.

Figures 5.15 and 5.16 show the results of this test. As expected, the amount of in-

formation leakage when sampling without replacement was reduced from the what we

observed in Figure 5.6. We see that the KS-statistics for the bias functions are now near

or below the value we observed for bias factor 1 when sampling with replacement. This

results in much higher confidence that the distributions are indistinguishable from real

cover traffic.

Despite remaining consistent with the original cover distribution within the attack

window, sampling without replacement still results in some performance gain. This

is due to cover/real size matches that occur before the subset becomes depleted. Fig-
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Figure 5.16: KS D statistic of HTTP/HTTP biased without replacement L = 100
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ure 5.17 shows the ratio of number of sessions with biasing to the number of sessions

required without biasing. On average there is a 55% increase in the average number

of sessions when sampling without replacement. Unlike sampling with replacement,

average overage for all the biasing techniques was lower than the overage with no bi-

asing. The overage decrease was especially true of bias functions (e.g., expBias and

probSplit) that strongly bias selecting values larger than x0. As the subsets became

more depleted, very large cover sizes were quickly pruned out even though the bias

algorithm was favoring values in the tail of the distribution.

5.3.4 Trading Off Performance and Security

The simulations we have developed can help us to understand the performance and se-

curity trade-offs between techniques. Given the complexities of combining protocols

in tunnels, these simulations themselves can have a great impact on the user’s choice

of cover protocol. To illustrate this by example, we take the HTTPS/HTTPS exper-

iment we performed before and show trade-offs in Figure 5.18. We see that there is

considerable range for improving session performance while maintaining low informa-
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Figure 5.17: Session performance compared to no biasing
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tion leakage (linearTTA, optimalTTA, expBias, and probSplit). However, expBias and

probSplit can have higher overhead than the others. Also consider the example shown

in reverseLinear. It provides good session performance and low overhead, but has one

of the higher information leakages. Since these leaks are still small by comparison, this

might prove appropriate for some user scenarios.

5.4 Biasing Implementation in TrafficMimic

To better understand how these bias functions work on real networks and with a full

cover traffic model (which includes timing, exchanges, and connections rather than uni-

directional biased object sizes), we implemented algorithmic and functional biasing in

our full C++ implementation described in Section 2.3. To enable biasing, we needed

to change portions of the core traffic generation architecture. We also added a critical

performance enhancement that we discovered during the development of our SSFNet

simulator. We re-factored TrafficMimic to deliver real data as soon as it arrived rather
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Figure 5.18: Performance and security trade-offs for HTTPS/HTTPS biasing
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(b) Mutual information versus overage
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than waiting for the entire cover traffic message that carries it to finish. This allows

heavily padded messages to be delivered quickly and the destination to begin process-

ing while the remainder of the padding finishes.

The primary change required for implementing biasing is that the biasing algorithms

need the current state of the real traffic in order to select an optimal cover traffic param-

eter. We developed two solutions to this problem: feedback and split biasing.

5.4.1 Feedback

Since the master controls all cover traffic in a bidirectional cover traffic tunnel, this

meant that we need a feedback mechanism to pass the current buffer state from the

slave back through the tunnel to the master. Furthermore, the main event loop, where

the state of the real connection is stored and serviced, runs in a separate thread from

the master model thread. So, even the local real buffer state is not directly accessible to

the master model thread (where biased parameters are selected). TrafficMimic already

sends confirmation traffic reqs back across the tunnel when responding to the master.

The primary purpose of these confirmations is to synchronize the generation of traffic

using IDs. We overloaded some unused fields in these confirmations to store the real

buffer state. Upon receiving the confirmation, the master’s event loop also embeds the

local state into the confirmation. It then enqueues the confirmation to the master model

thread. So, after sending some data that required a response, the master model thread

will have an updated view of both the local and remote buffer states.

5.4.2 Split Biasing

We observed that when using algorithmic biasing, we could split the biasing process

into two phases: one phase executed by the master model thread and one phase executed

by the event loop. This allowed us to avoid having stale information about the local or

remote buffer state because we can offload the selection of the optimal traffic parameter

to the event loops of both the master and slave. Though this effect is minimal when
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applied to the local buffer state on the master, the potential for stale buffer information

on the slave could be considerable. To split the biasing process we allow the master

model thread to select r random variates from the appropriate distribution and encode

them into a special type of traffic req called a traffic req multi. Because small rs tend to

produce considerable performance improvements (as we observed during simulation),

the additional overhead is minimal. Unfortunately, this splitting can only be used with

the TTA algorithms because they only need to send a small amount of data. Functional

biasing methods would require transmission of large empirical distributions (thousands

of observations) to offload biasing to the slave while still maintaining control of the

biasing and model training processes at the master.

5.5 Real-World System Evaluation

Using our bias-enabled implementation of TrafficMimic we repeated some of the per-

formance tests from Chapter 3. We used the MN-UK link for the tests. We trained

Swing using the February CAIDA traces for HTTPS and SMTP and the 2003 UNC

traces for SSH. We used each of the bias algorithms with replacement. Unless other-

wise specified we used the feedback biasing implementation.

5.5.1 Bulk Transfer

We first repeated the 100KB bulk transfer using each of the biasing algorithms with a

range of bias parameters. Figure 5.19 shows the results for transferring 100KB over

the HTTPS response stream biased with each of the algorithms with replacement. We

observed considerable increases in bandwidth, especially for functional biasing tech-

niques. Bulk transferring 100KB (i.e., greater than qmax), ensures that x0 remains nearly

1 for much of the test. This allows the functional algorithms to heavily utilize the long

tails of the cover object size distributions. Since the algorithmic techniques have a rel-

atively smaller working set of values from which to choose (i.e., maximum 10), their

performance gain is more modest.
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Figure 5.19: Bulk transfer over HTTPS-resp

0 2 4 6 8 10
Bias Parameter

0

200

400

600

800

1000

A
v
e
ra

g
e
 B

a
n
d
w

id
th

 (
kb

p
s)

expBias
linearBias
linearTTA
optimalTTA
probSplit
reverseLinear
varLinearBias

We also show how biasing with optimalTTA improves the performance for different

cover protocols in Figure 5.20. We perform a 100KB bulk transfer over the request

stream of each protocol. We choose optimalTTA for its solid performance and low

information leakage in a variety of scenarios as observed during simulation.

We saw reductions in bidirectional overhead for SSH and HTTPS-req. Since the

SMTP request stream is larger than SSH and SMTP, there is minimal overhead due

mostly to the need for an empty response stream. We observed a 3.5 to 5.5x improve-

ment in bandwidth with biasing across all the algorithms. Unfortunately, biasing cannot

improve the performance of SSH, without vastly changing its attacker observed output

distribution thereby failing defense detection and leaking too much information. The

optimalTTA algorithm prevents this problem at the expense of better performance.

5.5.2 Web Browsing

We next repeated the Web site load time experiment from Section 3.3.3. We show the

results of biasing load times with the optimalTTA algorithm with parameter 5 in Fig-

ure 5.21. We show the speedup from using biasing compared to the unbiased data in
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Figure 5.20: Bulk transfer with the optimalTTA algorithm
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Table 5.1: Web browsing with biased cover traffic (seconds)

HTTPS-Split HTTPS SMTP SSH
google.com 6.45 6.42 72.53 14.77
facebook.com 8.82 11.65 42.44 11.47
youtube.com 14.62 15.18 126.10 36.64
yahoo.com 19.43 34.19 151.77 28.58
live.com 12.05 12.70 77.12 22.12

Figure 5.21: Website load time speedup with optimalTTA, parameter 5
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Figure 3.6. We show the raw values in Table 5.1. We found a 2.5-9.5x improvement

in Website load time with biasing. We were also able to considerably improve the per-

formance of Web browsing over the SMTP protocol (see Figure 5.22). Unfortunately,

using this protocol for tunneling HTTP still falls short of practicality for most users.

There are some fundamental incompatibilities in the interaction of these protocols. We

found the most considerable problems with SMTP were related to long inter-exchange

times and a relatively small response stream.

Lastly, we wanted to investigate the effect of feedback versus split biasing on perfor-

mance. The Website test is most indicative of a real user because it includes both di-

rections and some timing discrepancies. Thus, we are most likely to observe problems

associated with stale buffer information in this test. We show the results of browsing to

the top 5 websites with split biasing using HTTPS in Figure 5.21. We found that split

biasing usually provided a small performance improvement over feedback. However,

the degradation caused by feedback does not outweigh using functional biasing when
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Figure 5.22: Web browsing over SMTP
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it is more appropriate than algorithmic techniques.

5.6 Conclusions

In this chapter, we developed functional and algorithmic methods to bias the selec-

tion of cover traffic parameters based on the needs of the real traffic. Since we found

splitting to have a significant impact on performance in Chapter 4, we performed an

evaluation using object size distributions and biasing techniques that avoid splitting

while minimizing overhead. We found that our biasing strategy was able to improve

performance while bounding information leakage and retaining resistance to defense

detection. Furthermore, the biasing techniques we have developed are general enough

to be applied to other performance sensitive traffic parameters like packet or session

timing.

We then performed a system evaluation of biasing in TrafficMimic using real Inter-

net links. We confirmed the performance gains with biasing are considerable with real

and synthetic workloads. Though cover traffic tunneling will always exact some per-

formance cost, our work has shown that TrafficMimic can be used practically on the

Internet. This helps to ensure that its integration into other privacy enhancing technolo-

gies like VPNs or anonymity systems is feasible for real users.
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CHAPTER 6

RELATED WORK

In this chapter, we present related work in the research areas that this work spans. We

also expand upon the related work on traffic analysis threats from Section 1.2.

6.1 Traffic Analysis

The traffic analysis attacks we described in Section 1.2 focus on attacking specific

protocols usually at the connection level between two fixed hosts. There has also been

prior work in analyzing cross-host connection behaviors. Karagiannis et al. developed

a classification strategy called BLINC that uses host connection patterns, server/client

traffic disparities, and community detection to perform flow classification [61]. They

focus on peer-to-peer traffic, but find that their approach has value for detecting and

understanding a wide variety of protocols. They also develop heuristics for detecting

attacks and other types of anomalous behavior using traffic analysis.

Later work extended some of the concepts from BLINC to create traffic dispersion

graphs (TDGs). These graphs model the social behavior of the network using a directed

graph where edges are defined with some network interaction [62]. They construct

TDGs using both cross-host connection behavior and single connection features (e.g.,

bytes sent/received). Iliofotou et al. go on to create dynamically updating TDGs and

use them to detect polymorphic blending attacks [63]. They find that they are able to

correctly classify peer-to-peer traffic attempting to blend with a set of standard proto-

cols (e.g., HTTP, DNS, etc...) even when the amount of blended peer-to-peer traffic is

only 10% of the standard traffic. TrafficMimic would be able to evade single connec-

tion statistics used by a TDG-based detector but does not obscure cross-host connection
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patterns without being used with a VPN or proxy.

Traffic analysis is an effective defensive tool for detecting the command and control

signals from botnets. Botsniffer [64] used traffic analysis techniques to detect bonet

command control, which relied on cross-host connection counting similar to the work

on BLINC. Gu et al. later developed BotMiner, which more fully took advantage of

traffic analysis for command and control detection [65]. BotMiner’s c-plane monitor

collected netflow records on which hosts were communicating and used non-parametric

clustering to find groups of hosts with similar communication patterns. By correlating

this information with data on botnet activities (e.g., sending SPAM, scanning, etc...),

they were able to improve botnet detection accuracy. They also address some potential

evasion techniques that botnets can use to evade their detection techniques including

real traffic mimicry and covert channels.

Zeng et al. expand on the work of BotMiner [66] to correlate network traffic analysis

with host-based data collection. This allows greater flexibility for deployment because

it alleviates the privacy issues associated with deep packet inspection, and it provides

higher quality data to the detector because anonymous network traffic analysis can be

error-prone [67].

Traffic analysis and intrusion detection experimentation often requires real labeled

network training data. Several efforts have attempted to provide better labeling. Tres-

tian et al. develop heuristics to classify end host application usage in a target network

by searching for freely available or unintentionally leaked information from logs, fo-

rums, lists, and peer-to-peer tracking [68]. This technique is especially powerful when

little to no network trace data is available. Gringoli et al. developed the gt architecture

for collecting host-level information to establish the ground truth about the protocol

and even application origins of network packet data. In future work, we could use

gt to collect application information to better label the training data we used with our

classification attack in Section 3.1.
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6.2 Preventing Traffic Analysis

One commonly studied method for preventing traffic analysis is to add packets to the

stream to remove the correlation between the plaintext protocol and its encrypted equiv-

alent. Guan et al. developed NetCamo, which provides traffic analysis resistance by

adding and rerouting packets with strict quality of service bounds [69]. In later work,

they investigated how constant and variable packet inter-arrival times resist traffic anal-

ysis [70]. Wang et al. propose methods to optimally schedule real and padding packets

in low-latency anonymity systems to prevent flow linking attacks [71]. Levine et al. in-

vestigated timing information leaked by low-latency mix systems [14]. They propose a

novel traffic analysis prevention technique called defensive dropping to be used in con-

cert with constant-rate padding. Since any legitimate packet drops in a constant-rate

stream of packets will increase its correlation through a mix, they propose injecting

such drop events randomly into the stream.

Another defense mechanism is to pad data at the application rather than packet layer.

Liberatore and Levine evaluate several methods for determining the identities of pages

in an encrypted Web browsing session [6]. To defend against their attack, they propose

several effective, yet high overhead, application layer link padding methods. Other

systems use cover traffic mixed with peer traffic and padding (e.g., Tarzan [72]) or

plaintext blending (e.g., Infranet [73]) to evade traffic analysis.

Similar to our work, Wright et al. propose mapping real traffic patterns onto an ex-

isting real cover traffic model [74]. They use a linear optimization to find a solution

to map packet sizes from the real traffic to the target packet size distribution. They

evaluate their technique with success against an HTTP Web site identification attack as

well as VoIP phrase detection. Differing from our work, their work focuses solely on

packet sizes, rather than timings, and assumes that the former are either independently

and identically distributed or from short packet sequences. They do not address the

degree to which their technique prevents defense detection, especially when looking at

longer packet sequences. Gianvecchio et al. developed a covert timing channel based

on learning a distribution of inter-packet delays from specified input traffic [75]. They
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likewise assume that inter-packet delays are i.i.d. Our work produces greater realism

since it mimics protocol features that are more than one or two packets long.

6.3 Traffic Modeling and Generation

Traffic generation has been the subject of study in the simulation, modeling, and per-

formance assessment fields for some time. Being a dominant protocol on the Internet

for some time, previous work has focused heavily on modeling HTTP traffic. Mah per-

formed one of the first measurement studies of empirical Web packet trace data [76].

He found that most features did not have a good enough fit to a known distribution, so

he used inverse transform sampling of empirical distributions to model traffic (as we

do for TrafficMimic).

Barford and Crovella also developed a model for HTTP traffic called SURGE [39].

Differing from the work of Mah, SURGE uses several structural components and fits

the empirical data to known parametrized distributions. Harpoon later automated this

process for generic protocols using a network trace to configure the generator [40]. It

collects empirical statistics from an input trace on file sizes, interconnection times, IP

addresses, and the number of active sessions and then uses this empirical data to play

back UDP transfers.

Cao et al. developed a connection-based model of HTTP traffic [77]. They argue

that the connection/network model better captures the behavior of HTTP on the net-

work than the page-oriented models often used to test Web server performance. In a

similar vein, Swing [15] generates realistic network traffic for use in an emulation en-

vironment using generic network traffic models. It uses empirical distributions taken

from a network trace of users, applications, connections, and the network to generate

realistic TCP traffic.

Kannan et al. focus on modeling and reconstructing user sessions which span differ-

ent connections and even protocols [78]. They represent user sessions using determin-

istic finite automata, which capture the order, type, and directionality of the connections
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composing a session. In future work, TrafficMimic could incorporate cross connection

session features in the generation of cover traffic.
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CHAPTER 7

CONCLUSION

Of the myriad challenges to communicating securely over a network, preventing traffic

analysis is perhaps the most daunting. Seemingly insignificant information leakage can

compromise the security of encryption, key management, and secure protocol design.

The growing use of encryption is forcing traffic analysis into the mainstream of privacy

attacks, while effective and practical defenses have seen only minimal deployment.

Through our work on this dissertation, we have begun to address this shortcoming. We

have presented the design, implementation, and evaluation of a realistic cover traffic

tunneling system called TrafficMimic, which strongly resists traffic analysis and de-

fense detection.

Through our use of realistic cover traffic, TrafficMimic addresses both traditional

traffic analysis as well as defense detection attacks. We have shown that traffic classifi-

cation, anomaly detection, and defense detection attacks are all unable to differentiate

real traffic from our synthetic cover traffic. Through our use of independent traffic

models or mutual information bounded biasing, we ensure that minimal information

about the real traffic is leaked to the attacker. Because we based the attacks on state-

of-the-art techniques (including clustering, K-NN classification, Bayesian inference,

KS-testing), allowed the attacker considerable resources and access (including large

varied training sets where we assume port-based labeling is correct), and ensured that

the attacks were practical for use on real networks (by validating our techniques using

independent validation sets collected at different times and on different networks), we

have high confidence that our defenses work. While these attacks do not represent the

full spectrum of potential attacks against TrafficMimic, they are sufficiently powerful

and varied to illustrate the robustness of TrafficMimic.
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Since our aim is to address traffic analysis attacks in real systems, we devoted consid-

erable effort to the practicality of the implementation and performance of TrafficMimic.

We found independent cover traffic modeling was very secure but suffered poor perfor-

mance especially for common Internet tasks (e.g., chat or Web browsing). After careful

study of independent cover traffic tunneling with simulation and a bi-directional ana-

lytic model, we addressed the performance gap by developing cover traffic parameter

biasing methods, which tune the cover tunnel to the requirements of the real traffic.

Since this technique has the potential to leak information, we developed attacks and

methods to understand the information leakage and the affects biasing have on defense

detection. By using these performance enhancements, we were found a multiple fold

increase in the performance of TrafficMimic tunneling.

These performance improvements provide users with a variety of choices of cover

traffic models with differing properties for information leakage, defense detection re-

sistance, bandwidth, and latency. Since standard encrypted protocols provide minimal

resistance to traffic analysis, these choices widen the spectrum of options for a privacy

seeking user. Through our work, we have created a range of traffic analysis defenses

that allow users to balance performance with better security.

7.1 Future Work

There are several areas of future research that will improve the fidelity, performance,

and security of TrafficMimic. First, we expect that learning models of traffic for secure

traffic generation can be improved. For example, we can encapsulate more network

traffic details like multi-connection or multi-port sessions. We can also capture addi-

tional security-sensitive details like careful mimicry of the plaintext portions of the SSL

handshake and connection setup.

Second, we can further improve performance by biasing other cover traffic parame-

ters. As discussed in Chapter 5, our biasing techniques are general enough to be applied

to other parameters like inter-connection time, number of exchanges, etc.. These en-
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hancements can provide better interactive latency for real-time sessions or chat. This

would further expand the security and performance options offered by realistic cover

traffic generation.

The third opportunity for future work is tighter integration of TrafficMimic into com-

mon privacy enhancing technologies. We have already shown how TrafficMimic can

integrate in several ways to the Tor anonymity network. To help the adoption of Traf-

ficMimic within Tor, we intend to perform a Tor-specific performance and security

evaluation. Since Tor is capacity limited, we may need to tune our bias algorithms to

minimize excess padding while still providing the SSL traffic analysis resistance that

Tor currently lacks.

We also intend to investigate how TrafficMimic can implement a VPN, which tunnels

all of a user’s traffic through multiple cover traffic streams. We have already performed

some analysis that suggests that packet-oriented tunneling has certain performance ad-

vantages. We will investigate this further both through additional simulation study and

evaluating a real TrafficMimic VPN implementation.

Lastly, we also plan to investigate how TrafficMimic functionality can be encapsu-

lated into a library for inclusion with arbitrary programs. We could implement this

feature using a library wrapper around the SSL library similar to the way transparent

socks proxies wrap the socket interface. This would broaden the adoption of Traf-

ficMimic by allowing developers and users alike to seamlessly integrate traffic analysis

into any application that already uses SSL encryption for its network communications.
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