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ABSTRACT

In railroad track inspection, the inspection images contain periodically oc-

curring components. Computer vision has recently been applied to several

railroad applications due to its potential to improve the efficiency, objectivity,

and accuracy when analyzing large databases of acquired video and images.

We utilize those promising results to develop a more general method to detect

and segment any periodically occurring objects in an image. The techniques

used to analyze the periodically occurring track components could be used to

analyze a broader class of images which contain periodically repeating objects

that are similar, but not identical. We demonstrate how spectral estimation-

based methods can be used to extract periodically repeating components in

track inspection video.

Periodically occurring activities occur in many videos. Particularly in bio-

logical applications, activities tend to be formed from one or two characteris-

tic poses that move in a repetitious manner. We introduce a signal-processing

based method for periodic activity detection and segmentation that utilizes

a unified spatial-frequency approach.

The spectral estimation technique that we used requires a one-dimensional

signal as input. In images and video, one-dimensional signals are created.

We demonstrate how the more general technique of frequency estimation,

object localization, and iterative decomposition using the frequency domain

can be used to analyze images with periodically occurring components, video

of translating images, and videos containing periodic activities.

Additionally, a method is introduced that quantifies the perceptual quality

reduction in distorted images. Humans perceive distortion in images more

prominently when it occurs in perceptually salient regions. This is similar

to detecting periodically occurring objects, since humans will notice periodi-

cally occurring objects. Objects that occur in a periodic fashion, and whose

photometric properties result in more saliency, will be more observable from
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a human’s perspective.

We demonstrate our signal processing-based methods on railroad track

inspection images, which were our primary motivation. We provide more

experimental evidence of its generalization beyond this specific application.
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CHAPTER 1

INTRODUCTION

Periodically occurring components are often encountered in infrastructure

inspection. For example, a railroad track is composed of many individual

ties, and a train is composed of individual railcars. Most repeating compo-

nents are similar to each other, but not identical due to various manufac-

turing differences and environmental conditions. Railroads are vital to the

infrastructure of most countries, but many inspection tasks are performed

manually by a human inspector. Computer vision algorithms are useful in

several railroad tasks, including track inspection [1], [2], [3]. Other problems

involving infrastructure inspection could also benefit from computer vision.

Algorithms can potentially provide a more objective assessment of track

conditions than human inspectors. However, it is difficult to create an algo-

rithm that is robust to numerous unforeseen conditions. Spatial templates

and other application-specific detection methods can be developed to accom-

plish specific inspection tasks. There is great value in creating a general

method to detect and segment the occurrences of periodic objects in track

inspection without prior knowledge of component appearance. By detecting

periodic components without prior knowledge of spatial appearance, a com-

puter vision system may one day perform track inspection over thousands of

miles of track with minimal human involvement.

We first give an overview of computer vision for railroad inspection. We

then describe the railroad track inspection project, and provide our motiva-

tion for studying periodic object detection in depth. We also describe our

work in periodic activity recognition in video, and describe how it relates to

periodic object detection.

Overall, there is a broader class of problems that this thesis presents.

Spectral estimation is at the core of our algorithms, and spectral estimation

techniques are applied to one-dimensional signals that are generated from

images and video. This can be utilized in images with periodic components,
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videos with translating objects, and videos containing periodically moving

objects. This thesis begins by presenting computer vision solutions for rail-

road inspection applications, and proceeds to develop a broader technique

that can be used in the future for a variety of inspection applications.

1.1 Computer Vision for Railroad Inspection

Many railroad inspection applications can benefit from computer vision.

Railroad inspection is typically performed by a human inspector. Manual in-

spection is time-consuming, and the Federal Railway Administration (FRA)

has many guidelines that must be met for track and railcars to remain op-

erational. Computer vision can objectively analyze large amounts of data

in an efficient manner, and can supplement the manual inspection by either

detecting defects, or identifying probable defects to an inspector for further

inspection.

Computer vision has been successful in a feasibility study for undercarriage

inspection of passenger railcars [4] (Figure 1.1(a)) and structural underframe

inspection of railcars [5] (Figure 1.1(b)). For both of these applications, a

panoramic image was formed from consecutive video frames, and this im-

age was compared against specific spatial templates to ensure compliance to

safety standards.

Computer vision has also been applied to an intermodal train monitoring

system [6], safety appliance inspection [7], and three-dimensional track re-

construction. Computer vision has recently been applied to railroad track

inspection [1], [2], and this application is the motivation for this thesis.

1.2 Computer Vision for Railroad Track Inspection

A computer vision algorithm has recently been created to identify defective

track components [1] [2], [3]. The defective track components that are identi-

fied include missing and raised spikes, moved and missing anchors, and faulty

turnout components.

Recently, a track cart has been developed as a collaboration between the

Railroad Engineering Program and the Computer Vision and Robotics Lab-

2



(a)

(b)

Figure 1.1: (a) Multispectral inspection of passenger railcars and (b)
structural underframe inspection.

oratory. This track cart, which is shown in Figure 1.2, captures video of a

railroad track with off-the-shelf cameras, and records this data to a laptop.

This allows us to record large amounts of video data that we use to detect

defects in track components. Railroad track inspection algorithms are devel-

oped to analyze the data acquired from the track cart. The resulting images

and video from this inspection will be presented in this thesis.

Figure 1.2: Track cart.

A necessary step to accomplish the defect detection is to have reliable
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detection and segmentation of track components. Though computational

speed is not a requirement, it should be considered in designing an algorithm

that may one day have to be adapted to perform in real time.

An additional consideration for an algorithm is its robustness to changing

environmental conditions, changing track conditions, and changing appear-

ances of track components. Since some track must be inspected for defects

as often as twice per week [1], an algorithm must operate correctly for a wide

range of component appearance, as track can persist for thousands of miles.

Also, this data must be processed in an efficient manner. Thus, a fast, robust

method that adapts to many track conditions is desired.

1.3 Periodic Object Detection

Throughout the process of algorithm development, coarse-to-fine algorithms

consistently performed well. Additionally, algorithms based on textures and

signal processing techniques increased the robustness of defect detection. To

detect wooden ties in a track video, a method that formed global, periodic

signals from the inspection data continued to be superior. These signals

allowed the algorithms to achieve a more global detection, and spectral esti-

mation was applied to the signals.

Spectral estimation is a signal processing-based method to detect period-

icity in a one-dimensional signal. In this thesis, we first demonstrate the

ability of spectral estimation to detect periodically repeating components

that repeat in a single, horizontal direction. This is motivated by the track

inspection video data that we acquired in the field, where a lateral view cap-

tures periodic ties in a unidirectional manner. We adapt this to the problem

of detecting a periodic object of unknown appearance, and unknown direction

of periodicity within a two-dimensional image.

The track inspection application restricts the direction of periodicity to

the horizontal direction; however, many other applications do not have such

specific domain knowledge. The horizontally oriented periodic object de-

tection algorithm is expanded into a more general algorithm for detecting

periodic objects in images. For this more general algorithm, we assume that

periodicity can occur in any arbitrary direction, and we assume that there is

no prior knowledge of the size, shape, or appearance of the repeating object.
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1.4 Periodic Activity in Video

Many biological motions are periodic due to the nature of motion in biological

organisms. Video obtained of such motion will produce spatial frequencies

whose instantaneous frequency is periodic. Thus, signal detection can again

be used to detect such objects. This is demonstrated in Chapter 5 on videos

of human activity. Activity recognition from video is an important task

with applications in surveillance and human computer interaction (HCI). We

propose a method that models a non-rigid human with a free range of motion

as a rigid object with piecewise linear motion. This allows us to detect the

most dominant motions, detect common motions between activities of the

same class, and detect characteristic poses for certain activities.

Although detecting periodic activity in video seems like a very different ap-

plication than periodic object detection on railroad tracks, there are several

similarities. Both transform the data into one-dimensional signals, and subse-

quently use spectral estimation to detect periodicity in those one-dimensional

signals. Also, in both images and video, many of those one-dimensional

signals were orthogonal to one another. Finally, both of these methods

achieved superior results when they utilized techniques that were inspired

by the Fourier slice theorem.

From this knowledge, we develop a more general framework. Utilizing

spectral estimation is helpful when one can transform the multi-dimensional

problem into a one-dimensional signal. To do this, one can use spatial projec-

tion to detect objects in images, time-elapsed spatial frequency components

for detecting translating objects in video, and instantaneous frequency of

time-elapsed spatial frequency components for detecting periodically repeat-

ing objects. This is covered in Chapter 6.

1.5 Perceptual Image Quality Assessment

Oftentimes, our algorithms for detecting periodicity in images will hone in

on an object which a human would not notice, but which is in fact period-

ically repeating. Further, any human inspector is somewhat vulnerable to

objects that are salient to him or her, but are not relevant to the inspection.

Alternately, if algorithms are not detecting objects that are salient for a hu-
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man, in certain applications the algorithms might need to be improved. We

determine that it is useful to quantify how the human visual system (HVS)

perceives image distortion so that in the future, our algorithm might be even

more robust [8].

To quantify the loss of image quality in a way that mimics the HVS,

it is intuitive to quantify the loss of visual quality to the objects in the

image, since these objects will be the focus of the HVS. This would require

precise object segmentation, which is cumbersome. However, mid-level region

features provide a way to quantify the loss of quality for individual regions.

We develop a method for quantifying the quality loss of individual regions,

and then weigh the influence of these regions on the final perceptual quality

metric based on each region’s size and saliency. The effect of the image

quality loss on structured object parts is thus effectively captured.

1.6 Overview

In this thesis, we will focus on detecting and segmenting periodically occur-

ring objects in images. First, we focus on railroad specific applications in

Chapters 2 and 3. Chapter 3 focuses on detecting periodic components that

occur when repeating objects are located only along one dimension. This

is expanded into a more general method for detecting periodic objects that

occur along any two-dimensional orientation within an image in Chapter

4. Additionally, no prior knowledge of object size, shape, or appearance is

assumed.

Periodically occurring activities in video are analyzed in Chapter 5, and a

signal-processing method is used to detect and segment moving objects that

are performing a periodic activity. Although the detection and segmentation

of periodic objects in images, and the detection and segmentation of periodic

activities in video are approached in separate methods, they in fact share

many common traits. A more general method is presented in Chapter 6

which relates the detection and segmentation of periodic objects in images,

translating objects in video, and periodically moving objects in video.

Computer vision inspection algorithms may one day replace or supplement

manual inspection. In anticipation of this, properties of the human visual

system are studied in Chapter 7. A perceptually-based image quality assess-
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ment is presented there that relies on a segmentation-based methodology.

Finally, in Chapter 8, we provide suggestions for future work and conclude.
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CHAPTER 2

RAILROAD TRACK INSPECTION

2.1 Track Inspection

The Federal Railroad Administration (FRA) requires track to be inspected

for physical defects at specified time intervals, which may be as often as

twice per week [1], [2]. Enhancements to the current manual inspection pro-

cess are possible using computer vision. Computer vision could potentially

supplement manual inspection due to its ability to objectively process large

amounts of video and image data. Figure 2.1 shows the two camera view-

points that we use for railroad track inspection. The viewpoint shown in

Figure 2.1(a), where the side of the track is visible, is known as a lateral

view. The viewpoint shown in Figure 2.1(b), where both sides of the track

are visible, is known as an over-the-rail view.

(a) (b)

Figure 2.1: (a) Lateral view of the track and (b) over-the-rail view of the
track.
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2.2 Components

Figure 2.2 introduces the various components of the track. Figure 2.2 (a)

delineates the largest components. The rail is in the top half of the image.

The rail is the part of the track along which the train wheels move. The

wooden tie is delineated with a white trapezoid, and the ties are oriented

perpendicularly to the rail. The steel tie plate is delineated with a green

trapezoid. Tie plates are placed between the tie and the rail when they

intersect and hold the rail to the tie. The ballast, labeled on the left and

right sides of the tie, is composed of small rocks.

(a) (b)

Figure 2.2: (a) Localization of rail, ballast, tie, and tie plate. (b)
Localization of spikes, tie plate holes, and anchor.

The following objects are localized in Figure 2.2 (b): one spike (shown here

in an ellipse), two tie plate holes (shown in the squares), and two anchors

(shown in a green rectangles). Spikes are hammered into the tie plate to

keep it in place. Rail anchors secure the rail from moving perpendicular to

the tie.

The components shown in Figure 2.2 (rail, tie plates, ties, cut spikes,

rail anchors, and ballast) are commonly inspected for compliance with FRA

regulations. Computer vision is a potentially valuable tool to facilitate in

that inspection. Cumulative information on spikes, anchors, and tie plates

conditions could be analyzed with pattern recognition algorithms, and defects

could be detected with trend analysis.
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2.2.1 Turnouts

At certain locations in a track, there is convergence as tracks join each other

and divergence as one track forks into two. These areas of the track are known

as turnouts or switch areas, and defects in the switch area will frequently

result in an accident. The part of the track that occurs before and after

the switch area is known as the closure area. As a railcar enters the closure

area, the switch must be in a configuration that allows the railcar to continue

to the correct track. There are many critical components within the switch

area.

Track components in turnouts differ in both size and shape from those

found in normal tangent or curved track. For this reason we must correctly

identify the specific section of the track the system is inspecting and whether

it is part of a turnout. Some of the components located within the turnout

are: the switch point, the frog, the heel, and the joint bar. Worn or broken

switch points are the most frequent causes of mainline accidents in turnouts

for track Classes 4 and 5 on U.S. railroads, followed by other frog, switch,

and track appliance defects [9].

Defect detection for the switch point and other components is extremely

important. However, to detect defects in the individual parts, a more global

detection of the switch area itself must occur. Our goal is to detect the pres-

ence of a switch area using the lateral view. In the future, a detection using

the over-the-rail view could also be achieved. Also, alternatively a global

positioning system (GPS) could be implemented to detect the occurrence of

a turnout. However, visual inspection would still be necessary to analyze

individual components within the turnout, and a globally motivated initial

step would create the most robust algorithm.

Figures 2.3(a) and (b) show some of the components for which computer

vision will assist in turnout inspection. These are: the switch rod and switch

rod bolts (Figure 2.3(a)), and the switch heel and joint bar bolts (Figure

2.3(b)). Computer vision should be able to achieve the necessary resolution

to detect defects in these objects. Additionally, the periodicity of the bolts

will aid in turnout detection.

10



(a) (b)

Figure 2.3: Turnout components: switch rod and switch rod bolts (a), and
switch heel and joint bar bolts (b).

2.3 Panorama Generation

Panoramic images aid in visualizing defects and can be used in the future

to provide a chronological record of track conditions. Algorithms generate

panoramas from video data by concatenating consecutive video frames from

video that is acquired as the track cart rolls along the track. The procedure

is shown in Figure 2.4. When the video records motion in the horizontal

direction, the vertical strips at the center of the frames provide the minimum

amounts of distortion and perspective difference. The distortion becomes

more severe with increased distance from the component and the center of

the image. In Figure 2.4, the third step performed by the algorithm is velocity

estimation, which detects the distance the camera moved between consecutive

frames. This velocity information is used to determine the size of the strip

required from each frame to construct accurate panoramas at a variety of

data collection speeds. These strips are then appended to each other to

create the final panoramic image.

Phase correlation is used to estimate the velocity in a frame-by-frame man-

ner. Phase correlation is a well-known technique in image processing that

estimates the displacement between two images by utilizing the Fourier do-

main. For two consecutive images, I1 and I2, let I2(x⃗) = I1(x⃗− x⃗0); that is,

they are related by a spatial shift. Then their Fourier transforms, F1(ω⃗) and

F2(ω⃗), are related by a phase shift, F1(ω⃗) = F2(ω⃗)e
−jω⃗T x⃗0 . For robust detec-

tion of spatial shift, one can use phase correlation of the frequency domain
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Figure 2.4: Method for creating panorama.

as follows:

F1(ω⃗)F2(ω⃗)
∗

|F1(ω⃗)F2(ω⃗)∗|
= ejω⃗

T x⃗0 (2.1)

where the exact value of x⃗0 can now be determined by transforming ejω⃗
T x⃗0

into the spatial domain, where x⃗0 will appear as a peak δ(x⃗ − x⃗0). Each

individual vertical strip’s width is determined using this method, and strips

are concatenated to form the panorama.

Once the panoramas are generated, the results of the component inspection

can be superimposed onto it (Figure 2.12 on page 19). Alternately, the

inspection can take place on the panorama itself by detecting the appropriate

search areas, and subsequently recognizing the components and detecting
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defects.

2.4 Previous Work

We have developed algorithms to detect the rail, wooden ties, ballast, tie

plates, cut spikes, and rail anchors using a global-to-local algorithmic ap-

proach [1], [2]. The components are detected using manually created mod-

els and highly customized techniques. Our approach uses low-level features

such as image gradients and textures to provide robust detection of more

consistent features, such as the rail, then uses these features to resolve a

restricted search area to find components with greater visual variation, such

as cut spikes and anchors. The spikes and anchors are then found in these

restricted search areas using spatial template matching.

The local features that we use include edges and Gabor features. Edges

are frequently used to detect objects in computer vision since object bound-

aries often generate sharp changes in brightness [10]. Image gradients (edges)

should be consistent among differing ties and rails, but unanticipated track

objects or debris could create unwanted edges, causing challenges for the

algorithms. For this reason, texture information from the ballast, tie, and

steel was incorporated into an edge-based algorithm to improve its robust-

ness. This approach relies on texture classification using Gabor filters, which

produce low-level texture features.

2.4.1 Lateral Analysis

Our method for analyzing track components from a lateral view operates in

a coarse-to-fine manner where the components are detected and localized, in

the following order:

1. Detect and segment the rail

2. Coarsely detect ties

3. For each tie, segment the tie plate

4. For each tie, segment the tie
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5. For each tie, detect, segment, and measure the spikes and anchors

We demonstrate our method for the tie shown in Figure 2.5, which was

acquired from field video data. First, we detect and segment the rail.

Figure 2.5: Field-acquired video frame of tie.

Since we operate using a coarse-to-fine approach, we decompose the image

beginning with the rail, which is the largest, most consistently detectable

object. The strong gradients of the rail make it the most detectable object in

both of the camera views. The base of the rail from Figure 2.5 is localized by

detecting its strong horizontal gradient. However, to prevent false detection,

particularly due to any edges caused by shadows, it is necessary to use texture

classification in detecting the base of the rail.

We reliably classify textures using Gabor filtering. Specifically, we use the

Gabor filters described in [11]. Labeled examples of ballast, tie, and steel

textures were created using previously stored images. When presented with

a previously unseen image, such as the one in Figure 2.5, texture patches

are extracted and classified as either “ballast” or “non-ballast” (steel or tie).

Though the classification may contain noise due to occluding objects (e.g.

leaves or ballast on ties), this method robustly provides a “non-ballast” region

that is centered on the tie. This is demonstrated in Figure 2.6(a), where the

frame is divided into block-based patches, and each patch is classified as

either “ballast” (shown in white) or “non-ballast” (shown in black). This is

a coarse estimate, and later stages localize the track components in greater

detail.
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Using this method, the rail and tie are both isolated from the ballast

(Figure 2.6 (a)). Though the boundaries are inexact, the tie area is reliably

isolated for subsequent processing. We continue to process a video frame if

a tie is detected in the center of the frame.

(a) (b)

Figure 2.6: (a) Ballast detection mask. (b) Localization of base of the rail.

The base of the rail is detected by a strong horizontal edge. In Figure

2.6(b), texture information is used to ensure that the detected base of the

rail separates steel from ballast on either side of the tie.

We also created an algorithm that uses global information to detect which

frames in a video contain ties. For example, to determine that the image in

Figure 2.7(a) contains a tie and therefore requires further processing, infor-

mation about the consecutively surrounding video frames is included in that

detection. To achieve this, for every video frame we quantify the probability

that a tie is present. We do this by comparing each binary mask, as in Figure

2.7(b) to a binary spatial template. We only compare the lower half of the

mask, as shown in Figure 2.8(a), with the template shown in Figure 2.8(b).

We subtract the difference, and sum the absolute value of that difference. A

value is computed for each frame in the video. This results in a signal that

is sinusoidal with respect to time when the inspection video is acquired at

a constant speed, as shown in Figure 2.9(a). To avoid the requirement of

constant speed, the signal can also be recorded as a function of inter-frame

displacement (Figure 2.9(b)).

The video frames that contain a tie are located at the maximum ampli-

tude of the signal in Figure 2.9(a). In the case of non-constant velocity, the

video frames which contain a tie are computed by determining which frame
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(a) (b)

Figure 2.7: Masked lateral image (a) original image and (b) binary texture
classification mask for image, where black is “non-ballast” and white is
“ballast.”

(a) (b)

Figure 2.8: (a) Lower half of binary texture classification mask and
(b)template that mask is compared against.

corresponds to the pixel-based distance at the maximum amplitude of Figure

2.9(b). The remainder of the algorithm will proceed only for the frames that

contain ties.

The tie plate is subsequently detected by its two horizontal edges, and

texture information is again used to confirm that the upper edge separates

steel-to-steel textures and that the lower edge separates steel-to-tie textures.

The results are shown in Figure 2.10(a). After delineation of the two hori-

zontal edges, the vertical edges that form the sides of the tie and tie plate are

found since they are reliably detected only if their search space is restricted.

A restricted search space is needed because shadows, occlusions, and other

unforeseen anomalies will cause unanticipated edges and shapes. The ver-

tical tie edge is the dominant gradient that exists on both sides of the tie

plate-to-tie edge, while the vertical tie plate edge is the dominant gradient

that exists only above the tie plate-to-tie edge.

The spikes are located with spatial correlation using a previously developed

template (Figure 2.10(b)). Spikes will only be found in certain locations,

which will limit the search area after the tie plate and rail are both detected.
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(a)

(b)

Figure 2.9: Response of binary classification mask to template as a function
of (a) frame number and (b) pixel-based distance.
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(a) (b)

Figure 2.10: (a) Tie plate and tie detection. (b) Spike, anchor, and tie plate
hole detection.

These locations include a row of line spikes next to the base of the rail and

another row of hold down spikes further from the rail. Since the search space

is restricted, a low threshold can be set for the template response. Therefore,

the appearance of a spike altered by conditions has a higher probability of

being detected, since we have lowered the threshold for a template match.

Missing spikes are detected by a two-dimensional filter that consists of a

dark square surrounded by a steel-colored square. The color of the steel is

extracted from the isolated tie plate. Our current detection of spike heads is

not yet robust due to environmental variability and differential wear patterns,

but when the search area is limited, the accuracy improves.

Gauge side refers to the part of the track that is between the two rails, and

field side refers to the part of the track outside the two rails. Rail anchors,

when installed correctly, have more distinctive visual characteristics when

viewed from the gauge side of the rail as compared to the field side: therefore,

our anchor inspection primarily uses a gauge-side lateral view. The search

area for the anchors is restricted to where the rail meets the ballast on either

side of the tie plate. Anchors are detected by identifying their parallel edges,

and the distances to both the tie and tie plate are measured. This scheme is

robust to shadows, since shadows will result in similar intensity distributions

for parallel edges in the same anchor. It is also robust to anchor rotation

and skewing, since the parallel edges that we detect need not be vertical.

In Figure 2.11, a defective (moved) anchor is detected due to the anchor’s

distance from the tie.
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Panoramic images (Figure 2.12) provide a way to visualize the results of

computer vision algorithms, even if the algorithms are applied to the video

itself. Panoramas could be used as a recording medium to record the history

of a track for trend analysis and alert human inspectors of problems.

Figure 2.11: Detected defect (moved anchor).

(a)

(b)

Figure 2.12: (a) Detected ties/tie plates and (b) detected spikes and
anchors on panoramic images.

2.4.2 Over-the-Rail Analysis

The algorithmic approach to over-the-rail analysis is similar to that of the lat-

eral view. The ties are located again with a template mask. We perform our
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analysis on video frames that contain a foreground tie located approximately

at two-thirds the height of the image. A binary image that contains binary

blocks which indicate ballast/non-ballast classification is used, as shown in

Figure 2.13(a). The tie filter shown in Figure 2.13(b) is overlaid against the

binary image, and the amount of overlap is recorded. This filter response is

plotted against the number of frames in Figure 2.14. Notice that the filter

response is periodic. In the video, the foreground ties come into view in a

periodic manner, and as such the filter response to the template in Figure

2.13(b) is periodic.

(a) (b)

Figure 2.13: (a) Mask of ballast / non-ballast textures. (b) Tie filter.
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Figure 2.14: Response of mask from Figure 2.13(a) to the tie filter in
Figure 2.13(b).

The rail is again considered the most reliable object in the video, and a

coarse-to-fine approach is adopted which begins with the localization of the
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(a) (b)

(c) (d)

Figure 2.15: Over the rail detection. (a) Original image, (b) detected rail,
(c) tie plate and tie delineated, and (d) spike and tie plate hole detection.

21



rail, as shown in Figure 2.15(b). Then, the tie and tie plate are delineated.

Strong gradients are hypothesized to be the edges of the tie, and the area

above and below the hypothesized edge is tested to confirm that it is a

boundary between tie and ballast. The resulting delineation is shown in

Figure 2.15(c). The delineation between the tie plate and tie/ballast is done

in a similar manner. Finally, the spikes and anchors are located with spatial

and spatial gradient templates. The result is shown in Figure 2.15(d).

2.5 Signal Processing Insights

In developing inspection algorithms for the specific application of railroad

track inspection, important insights were gained into how valuable signal

processing techniques are in developing robust computer vision algorithms.

As shown in Section 2.3, velocity of moving track was more accurately esti-

mated and ties were more accurately detected and segmented. The velocity

estimation utilized the fact that inter-frame translation produces a frequency-

domain phase shift. This was used to create a panoramic image that was free

of processing artifacts.

Our early work on track inspection relied on highly calibrated templates

and customized algorithms [1]. One of the most challenging parts of track

inspection, however, is the required robustness in the presence of varying

environmental conditions and varying component variations that are found

within thousands of miles of track. Thus, algorithms should be able to tol-

erate a wide variance of component appearances due to environmental con-

ditions and manufacturing differences. From Sections 2.4.1 and 2.4.2, we

discovered that the most robust part of this algorithm was due to creating a

one-dimensional signal from the video data. We also discovered that Gabor

filters were reliable in texture classification. In fact, in many of the training

algorithms for texture classification, a synthetic picture of ballast was used,

and the results were still acceptable. Therefore, by combining both Gabor

filtering and one-dimensional signal extraction, a robust method for periodic

component extraction could be created.
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2.6 Conclusion

We demonstrated the effectiveness of our defect detection algorithm for rail-

road track inspection. We were able to successfully isolate ties, delineate

ties and tie plates, and localize and measure the spikes and anchors. As

noted in Section 2.5, robust algorithms can be developed that utilize signal

processing-based methods. Specifically, Gabor filters have demonstrated ro-

bustness in characterizing textures, and the algorithm that will be presented

in Chapters 3 and 4 utilizes Gabor filters to decompose images so that the

repeating objects are more detectable. Also, as noted in Section 2.5, a one-

dimensional signal mapping produces a more global scope for detection, and

in Chapters 3 and 4, we will demonstrate how spectral estimation can be

applied to one-dimensional signals.
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CHAPTER 3

DETECTION AND SEGMENTATION OF
PERIODICALLY REPEATING OBJECTS

WITH KNOWN ORIENTATION

In railroad inspection, periodically occurring components are often encoun-

tered. For example, a train is composed of individual railcars, and railroad

track is composed of many individual ties. Most repeating components are

similar to each other, but not identical due to various manufacturing differ-

ences and environmental conditions. Railroads are vital to the infrastructure

of most countries, but many inspection tasks are performed manually by a

human inspector. Computer vision algorithms have shown promise in solving

many railroad problems, including track inspection [1].

An algorithm is presented in this chapter for detecting and segmenting

periodically occurring components. We use spectral estimation algorithms

on a Gabor feature space to identify repeating textures and components.

This technique is demonstrated on railroad track inspection panoramas. An

example panorama is shown in Figure 3.1, where each wooden tie occurs at

four approximately equidistant locations. In addition to finding the domi-

nant periodicities and components, spectral estimation algorithms allow us

to detect less-dominant periodicities. This is useful since many components

are themselves made of smaller periodically repeating components.

Figure 3.1: Rail track inspection panorama.
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3.1 Background

The Fourier domain is effective in classifying spatially periodic textures [12].

The spatial frequency can be used as a self-filter, where the highest mag-

nitude spatial frequencies from the image itself are used in filtering, thus

emphasizing the parts of the spatial frequency that contain a dominant peri-

odicity. However, this method is ineffective on many real world images, such

as a railroad track panorama. There are two main reasons for this: first, the

tie and ballast textures are not well-structured. Thus, quantifying them as

periodically repeating tessellations is inaccurate. Second, the illumination in

both the tie and ballast have similar magnitudes, and only larger gradients

could benefit from self-filtering (e.g. rail-to-ballast).

Periodically occurring objects are not often studied in literature, but many

existing object detection methods could be applied to periodic objects. Typ-

ically, object detection is performed by training a system to detect the ap-

pearance of a certain object, and then testing the system on a database of

previously unseen objects. Existing methods often use spatial feature point

detection followed by hypothesis testing of proposed models [13]. Often,

one needs to find both the spatial appearance and configuration description

of object parts that are shared by objects of the same class. This could

be extended to periodically occurring components by using feature detection

followed by hypothesis testing of various hypothesized periodicities. The nov-

elty of our algorithm lies in its ability to find the component descriptions that

best describe the periodically recurring parts of an image through spectral

estimation techniques, which provide elegant solutions for detecting multiple

periodic signals in a noisy signal. In this chapter, the images will contain

periodically occurring objects in a previously known direction. By applying

this to a Gabor feature space, we are able to detect periodically occurring

textures and components in an unsupervised manner.

3.2 Model

Periodically occurring track components are difficult to detect due to their

within-class variation, the hierarchical structure of many components, and

aberrations to exact periodicity. A successful methodology should (1) esti-
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mate the periodicity for each component, (2) describe the spatial appearance

of those components, and (3) spatially localize those components.

Our approach begins with finding dominant spatial periodicities using

spectral estimation techniques. We then determine a spatial description for

the components using that periodicity.

For simplicity, we have applied this only to images with repeating compo-

nents in the horizontal direction, but it could be applied along other orienta-

tions as well. Each image I(x⃗) is decomposed into R groups of rows, so that

I(x⃗) = [I1(x)
T I2(x)

T . . . IR(x)
T ]T . Each group of rows, Ir(x), contains

Ny

R

pixel-high image rows and is represented as the summation of K repeating

components Ck where k ∈ K, each occurring with periodicity Tk. Each com-

ponent is described by Ck = {pk, Tk, υk}, where pk is the two-dimensional

appearance, Tk is the periodicity, and υk is the phase offset. Periodicity is

defined as the number of pixels between consecutive component occurrences,

as measured from a fixed point in that component. Phase offset indicates

the location of the first instance of a repeating component with respect to

the left-most pixel at x = 0.

We express the image row Ir(x) with the equation

Ir(x) =
K∑
k=1

∑
z∈Zk

δ(x− (xk + zTk + υk))pk(xk) + η(x)) (3.1)

where Zk represents the range of z for which the component instance is

contained within the image row Ir(x), and η(x) is the part of the image

row that does not repeat. The term xk refers to each component’s internal

coordinate system, which indexes into pk using only one dimension. We

assume that the image itself is composed primarily of repeating components

C.

Our proposed method utilizes spectral estimation techniques to detect

dominant periodicities, and then subsequently finds the most probable υk

given the dominant Tk. We assume that the appearance description pk has

width (Tk
2
), so pk can be inferred from Tk, υk, and the image I(x⃗).

The entire algorithm is shown in Figure 3.2. As a first step (top of Fig-

ure 3.2), the image row Ir(x) is converted into a sequence of M blocks,

[b0(x)b1(x) . . . bM(x)]. Gabor features are extracted for each block, which we

represent as Gd(bm(x)), where d is the dimension of the Gabor feature. The
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Figure 3.2: Component localization algorithm.
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Gabor features from [11] were used, since they are effective at discriminat-

ing textures. The cumulative application of the d-th dimension of the Gabor

transform to all blocks in the image row Ir(x) is represented as Gd(Ir(x)). The
total number of dimensions is G. A G-dimensional Gabor feature space is uti-

lized for its descriptive capabilities [10]. Illumination alone is prohibitively

noisy due to the high variance of color and intensity, even within several

consecutive instances of the same component.

The remainder of the algorithm will be described in Sections 3.3 and 3.4.

In Section 3.3, the periodicity of each row is estimated. In Section 3.4, the

components are localized by computing the phase offset υk for all compo-

nents, and subsequently pk is computed.

3.3 Detection Using Multiple Signal Classification

The row-wise frequency estimation is accomplished by applying the Multi-

ple Signal Classification (MUSIC) algorithm to the block-wise Gabor trans-

formed image rows of b⃗(x). The MUSIC algorithm is used to detect multiple

signals contained in a received signal [14]. The algorithm models a received

signal, y, as

y = As+ v (3.2)

where A is the signal subspace, s is the vector of signal amplitudes with

respect to that subspace, and v is a noise vector. In MUSIC, the dominant

signals, s, are computed by finding the dominant frequencies on the noise

projection subspace. First, the covariance matrix Ry is computed

Ry = E{yyH} = YYH = ARsA
H + σ2I (3.3)

where Y is a rectangular Toeplitz matrix such that YYH is a biased estimate

of the autocorrelation matrix for the signal vector y [15]. The matrix Y is

defined as
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Y =



y(h+ 1) · · · y(1)
...

. . .
...

y(M + h) · · · y(h+ 1)
...

. . .
...

y(M) · · · y(M − h)

y∗(1) · · · y∗(h+ 1)
... . . .

...

y∗(h+ 1) · · · y∗(M − h)
... . . .

...

y∗(M − h) · · · y∗(M)



(3.4)

where M is the length of the block-wise signal y, and h is an index 1 ≤ h ≤
M .

We create independent signals from each of the signals yd = Gd(Ir(x)). To
estimate periodicity for the entire row, we can either predict the periodicity

for each signal, yd = Gd(Ir(x)), and choose the period which is computed

the most often, or we can predict the periodicity using all of the inputs, yd

combined. We found that using the latter approach yielded the more robust

estimations.

We sum the Y matrices from each of the dimensions, where a Y matrix

composed of the response from the d-th dimension is denoted Yd. The final

matrix Y is the computed as

Y =
∑
d

Yd (3.5)

We initially estimate the number of signals (or components) that are

present in the current row as L, and the number of eigenvectors in the de-

composition of Ry as D. The eigenvectors ej, where j ∈ {(L + 1) . . . D},
span the noise subspace. This is used to find the maximum values of the

following function:

J(ω) = 20 log10

(
1∑D

j=L+1 |aH(ω)ej|2

)
(3.6)

which allows us to implement J(ω⃗) as the sum of the fast Fourier transform
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(FFT) of all noise eigenvectors ei where i ∈ {(L + 1) . . . D}. From this,

we can detect up to L periodicities that are present along Ir(x), as they

correspond to L peaks. We then detect the peaks of J(ω) based on SNR.

An example output of J(ω) is shown at the output of every MUSIC block

in Figure 3.2, where power (in dB) is plotted as a function of frequency ω.

Peaks are measured using SNR with respect to the noise floor. We define the

SNR of each peak detect for Tk as

SNRk = J

(
2π

Tk

)
−
∑
ω ̸= 2π

Tk

J(ω) (3.7)

where 2π
Tk

is quantized to the nearest value of ω. In our experiments, ω is

defined in increments of 2π
256

.

3.4 Component Localization

The output of Section 3.3 provides an estimate for periodicity, Tk, but no

information on the location of a component. We define υk as the phase offset

from the left-most coordinate x = 0 (the left-most position of Ir(x)). To find

Tk, we create a series of masks, each with periodicity Tk, which consist of

alternating ones and zeros with an offset by a candidate υ. Each mask, Wυ,

can be placed over the panorama, where each Wυ is composed of vertically

aligned columns of ones and zeros that alternate every (Tk
2
), with an offset

of υ pixels from x = 0. Our goal is to find υk that isolates the periodically

occurring component pk. This is shown at the bottom of Figure 3.2.

We propose a weighted MUSIC algorithm, MUSICαm , to test the hypoth-

esis that any given bm belongs to a periodically repeating component. As

shown in Figure 3.2, the results of MUSICαm are combined with estimates

of Wυ to determine υk. We do not produce a single pk for each Ck, but

rather we produce a set of all appearances of that component. One could

pick one representative pk, or use further modeling techniques to fuse them

into a single appearance model.
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3.4.1 Weighted MUSIC Algorithm

We assume that all occurrences of the same component are clustered in Gabor

feature space, so that if a block bm periodically occurs, then the distance

in feature space between bm(x) and all Ir(x) = [b0(x)b1(x) . . . bM(x)] will

oscillate when computed in successive 0, 1, . . . ,M order. We use the value

of block bm(x) in Gabor feature space to weight the G-dimensional feature

space by the vector α, where αm,d = ||Gd(bm)||, where Gd(bm) refers to the

d-th dimensional Gabor features of bm.

Equation 3.5 is reweighted for each Gabor block m so that

Y =
∑
d

αm,dYd (3.8)

The resulting SNRm is plotted for M components, as shown in the right

side of Figure 3.2. Blocks that periodically occur with period Tk should

produce the highest SNR.

3.4.2 Component Isolation

After MUSICαm is computed ∀m ∈ M , the blocks bm(x) that produced

highest SNRm are hypothesized to belong to the periodically occurring com-

ponents. A new window is formed from this detection, Ws(x). The window

mask Wυ(x) with maximum overlap to Ws(x) is chosen as the optimum υk.

The spatial description pk is the description of a repeating component that

is found by extracting all occurrences of a periodically repeating component.

Once Tk and υk are found, then either a representative component is chosen

or the median value of all components is computed.

3.4.3 Non-Dominant Periodicity Detection

One of the advantages of the spectral estimation framework is its ability to

detect multiple periodicities. In the previous methodology, the dominant

frequency will in fact consist of the first two peaks, since the input y is real.

The previous methodology can be performed on non-dominant frequencies by

setting L > 2 and detecting a third peak in J(ω). In our algorithm, we limit

the number of detected peaks in the first iteration to L = 1. After isolating
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the component with primary periodicity, the algorithm is rerun to detect the

less dominant of L = 3 periodicities. Section 3.5 contains an example with

multiple periodicities.

3.5 Experimental Results

Components are detected in panoramic images of railroad track. Video data

was acquired from a camera on a hand-pushed cart that captured video at

30 frames per second. From the video, we created a panoramic image by

first estimating the interframe displacement, then stitching the video frames

together using the computed displacement, as described in Section 2.3. The

resulting panoramas were Ny = 360 pixels in height and between Nx = 1000

and Nx = 2000 pixels wide. To form the M Gabor blocks, we decomposed

the image into overlapping blocks of size Nb = 64. The blocks overlap with

their neighboring blocks by (N/2) pixels, so M = Nx

(Nb/2)
.

We computed Tk, pk, and υk for all components in two separate track

panoramas. The first panorama contained sequential bolts and the second

panorama contained track components that were acquired from the lateral

viewpoint described in Section 2.4.1.

The panorama in Figure 3.3(a), contains four consecutive bolts. Figure

3.3(b) indicates the detected periodicity for each row Ir(x) . Color is propor-

tional to the SNR of the detected Tk, ranging from strongest (red/orange) to

weakest (light blue). This is also apparent in gray scale, where the brightest

rows correspond to the highest SNR. The patterns that were chosen for each

row are proportional to the detected period Tk, but are illustrated without

regard to υk, so their positive and negative duty cycles do not align with any

particular object in the horizontal direction. High frequency is detected in

the rows containing the bolts. Figure 3.3(c) shows the consecutively labeled

rows, where A arbitrarily indicates components of one type, and B indicates

components of another type. In some experiments, A and B were both pe-

riodic components, and in others only one was periodic. In Figure 3.3(c), υk

has been learned from the algorithm, so the boundaries of each component

were drawn accordingly.

The resulting detected components are shown in Figure 3.4. Note that the

original image is not exactly periodic. The spacing between the bolts is not
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(a)

(b)

(c)

Figure 3.3: Track bolts. (a) Panoramic image of inspected track with
periodic bolts. (b) Periodicity Tk per row, where image color is proportional
to SNR. (c) Labeling of each row using the detected period, Tk, and phase
shift, υk.

Figure 3.4: Detected bolts (Object 7A).
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(a)

(b)

Figure 3.5: Periodicity detection of track panorama from Figure 3.1. (a)
Periodicity Tk per row, where image color is proportional to SNR. (b)
Labeling of each row using the detected period, Tk, and phase shift, υk.

exactly uniform, yet our algorithm chooses a best-fit period that contains

much of the bolt component, as shown in Figure 3.4. We refer to the bolts as

Object 7A because they are located at the 7A labeling in in Figure 3.3 (c).

The second panorama that we examined was shown in Figure 3.1. Ten

groups of image rows, I1(x), I2(x), . . . , I10(x), are processed. The results of

the initial Tk estimates are shown in Figure 3.5(a), where again the col-

ors/illumination are proportional to SNR. From these initial periodicity Tk

estimates, we solve for υk according to our algorithm. The detected compo-

nents’ Tk and υk can be seen in Figure 3.5(b).

Detected components are shown in Figure 3.6. The tie plates are effectively

located as Object 8A in Figure 3.6(a). Note that in the original image, Figure

3.1, the anchors are missing from the rightmost tie. Our algorithm worked

well despite this, and in components such as 6B and 7A (Figures 3.6(b) and

3.6(c)), it is evident that the missing anchor causes the components to not

look identical. Object 9B is shown in Figure 3.6(d). Our method is able to

separate ballast texture from tie texture, despite the presence of unknown

granular material on the tie. Periodicity can be detected in the first rows of

the panorama (Object 1A in Figure 3.6) even though the image itself has poor

quality at that location. In Figure 3.6(f), it is again demonstrated that the

tie texture can be detected even in the presence of anomalous environmental
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(a) Object 8A (b) Object 6B

(c) Object 7A (d) Object 9B

(e) Object 1A (f) Object 10B

Figure 3.6: Detected primary components.

elements.

We continued to process the panorama in Figure 3.1 to detect secondary

periodicities. We use the MUSIC algorithm to find the next dominant fre-

quency, as described in Section 3.4.3. The results are shown in Figure 3.7,

where Rows 6, 7, and 10 all contain strong secondary periodicities. Note that

Row 7, which contained a lower-frequency tie plate component in Figures 3.5

and 3.6(c), now produces a high frequency component corresponding to the

anchor. Also note that Object 7A in Figure 3.8(b) includes images of both

the top of a tie plate and of ballast. This is correct, since an anchor occurs

either to the left or right of a tie plate, so Object 7A does not occur with

the same periodicity as object 7B. Similarly, Row 6, which had contained a

higher-frequency anchor component in Figure 3.6(b), now contains a lower-

frequency tie plate component, as shown in Figure 3.8(c). When processing

Row 10, it is evident from the original image, Figure 3.1, that there is both

an aberration of the periodicity due to the left-most tie being skewed, and

also due to heavy ballast cover on the ties. Nevertheless, our algorithm found

the best approximation to the primary component in Figure 3.6(f). A lower
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frequency is detected in Figure 3.8(d), that contains both tie and neighboring

ballast as one unit.

Figure 3.7: Ir(x) with strongest secondary periodicities (r = 6, 7, and 10).

(a) Object 7 B (b) Object 7 A

(c) Object 6 A (d) Object 10 B

Figure 3.8: Detected secondary components.

The algorithm yielded satisfactory results in our experiments. It was ro-

bust to periodicity aberrations and anomalous appearances. The detected Tk

and υk reliably delineated many of the periodically occurring components.

3.6 Turnout Inspection

Our periodic component detection method is also useful for turnout detec-

tion. As Section 2.2.1 stated, the turnout is a vital part of the track that must

be carefully inspected. First, however, it must be detected that a turnout
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is being inspected, as the components there are quite different than in regu-

lar straight or curved track. We detect the presence of a turnout using the

lateral viewpoint.

We created a signal processing-based method for detecting periodic com-

ponents indicative of turnouts, such as frog bolts or joint bar bolts (Figure

3.9), and estimating that period, T . The estimation of periodic component

location within turnouts is carried out by converting the video of the middle

portion of the video, containing the rail web, into a panoramic mosaic (Fig-

ure 3.10(a)). The periodicity of the components in the panoramic mosaic

are then estimated, and the components subsequently localized. We utilize a

block-wise Gabor transform for computational efficiency, since the expected

sizes of the components are known.

Figure 3.9: Original turnout panorama.

(a)

(b)

Figure 3.10: Turnout bolts used in recognition. (a) Original panoramic
image and (b) block-wise Gabor image.

The image is transformed in a block-wise manner into the Gabor frequency

domain (Figure 3.10(b)). Each block’s height is identical to the height of the

rail web area shown in Figure 3.10(a), and each block’s response is computed

using an overlapping window with respect to each block’s right neighbor.

This window overlaps by half of the block’s width. This block-wise Gabor

response is then processed as a one-dimensional signal (Figure 3.11(a)). The
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(a)

(b)

Figure 3.11: Turnout detection: (a) G(Ir(x)) and (b) J(ω) of G(Ir(x)).
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MUSIC algorithm is subsequently applied to find periodic components (Fig-

ure 3.11(b)).

The MUSIC algorithm outputs a frequency analysis, in which the input

signal’s frequency response is computed for each frequency (Figure 3.11(b)).

Dominant frequencies are then detected. The output of 3.11(b) shows the

power at each radial frequency, ω. Each radial frequency relates to the period,

T , by the formula ω = 2π
T
. Hence, when the peak is located at T = 0.14, the

component repeats every T = 14.3 blocks. This is a satisfactory approxima-

tion for the bolts in Figure 3.9, and this distance can vary depending on the

turnout angle, component and turnout design, and turnout manufacturer.

If localization is needed, then autocorrelation can be performed on the

blocks in the Gabor frequency domain. Candidate blocks would be proposed

that have a strong Gabor frequency response (Figure 3.10(b)). The autocor-

relation between a candidate block and all blocks that are nT blocks apart

would be measured, where n is a positive integer. Blocks that yield a strong

Gabor response and that are highly correlated to blocks nT away would be

identified as repeating components.

3.7 Conclusion

This chapter presented a detection and localization algorithm for inspection

panoramas that contain periodically repeating parts in one direction. The

algorithm that we presented relies on a panoramic image, which was obtained

by concatenating parts of successive video frames from a field-acquired in-

spection video. This algorithm operates in an unsupervised manner, but

with the prior knowledge that all of the periodically repeating components

occur in the horizontal direction. Since it was unsupervised, however, the

components that were detected may or may not have been the components

that a human would have identified.

Such an algorithm has valuable future applications to railroads for more

extensive and reliable monitoring than is currently feasible. The use of this

periodicity detection algorithm, which can identify specific sections of track

based on the appearance of periodic component locations, will be key to

invoking distinct machine vision algorithms to identify and inspect the par-

ticular components normally found in track sections such as turnouts and
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other special track work. This was demonstrated with the turnout detection.

By detecting a turnout this way, as opposed to GPS, we already have iso-

lated key components, such as turnout switch rod bolts, so that inspection

can proceed quickly.

The one-dimensional algorithm can be further developed to provide ways

to adapt to changing environmental conditions. The results of the one-

dimensional algorithm are encouraging, and this work naturally has a two-

dimension extension. Because MUSIC is not designed for multiple dimen-

sions, the extension to two dimensions is non-trivial. Additionally, making

an algorithm general to all sizes, orientations, and appearances of objects is

difficult. A two-dimensional algorithm is created in Chapter 4.
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CHAPTER 4

TWO-DIMENSIONAL PERIODICITY

Chapter 3 demonstrated the effectiveness of periodicity detection for an in-

spection panorama where the periodicity was present in a single direction.

As a further simplification, the choice of Gabor block size N was given. This

chapter explores the more general case, where periodicity may occur in two

dimensions, and it is unknown what choice of N is optimal for detecting the

periodic object.

We extend the one-dimensional scenario from Chapter 3 to a more general

two-dimensional periodicity detection. The two-dimensional image is Gabor-

transformed in a continuous, rather than block-wise, manner. The Gabor

directions which yield the minimum entropy in the filtering are examined for

periodicity. A method similar to the Fourier slice theorem is used to detect

the angle of periodicity. This model is refined using spatial and frequency

information to localize the periodically repeating components in an image.

4.1 Background

Detecting and modeling periodic textures is a well-studied problem. It is

frequently studied in structural texture analysis, since many textures can

be characterized by distinct periodic patterns (e.g. bricks in a brick wall).

Examples of this research area include [16], [17], and [18]. Periodic textures

in research, however, typically consist of tessellations of a regular structure.

We detect periodicity in complex objects that may contain several textures,

and that are similar but not identical.

The Fourier domain can detect some spatially periodic textures [12]. Spa-

tial frequency can be used as a self-filter, where the highest magnitude spa-

tial frequencies from the image itself are used in filtering, thus emphasizing

the spatial frequencies that contain a dominant periodicity. However, this

41



method falls short when used on the real world image of the track panorama.

There are two reasons for this: first, the tie and ballast textures are not well-

structured. Thus, quantifying them as periodically repeating tessellations is

inaccurate. Second, the spatial frequencies in both the tie and ballast have

similar magnitudes, and only larger gradients benefit from self-filtering (e.g.

rail-to-ballast).

Wold modeling defines each image as a periodic component, a linear com-

ponent, and noise [19].

Some work has been done in the field of detecting periodicity of structural

objects [20]. In this paper, features of interest are first extracted. Then,

filtering is created using the Fourier transform of those features convolved

with the Fourier transform of autocorrelation. This is repeated iteratively,

where the Fourier transform of the features is updated using the new esti-

mated periodic estimate. Although few thresholds are used, the reliance of

this method on the initialization of textures of interest makes it susceptible

to noise.

Spectral estimation has been used to detect rotational and reflectional

symmetry in images [21]. In [21], angular correlation is used to obtain a

one-dimensional representation of an object in an image, and then spectral

estimation is used to recover the periodicity, which is related to the order of

symmetry. We have similarly chosen to use spectral estimation for its ability

to efficiently and robustly detect the frequency in a one-dimensional signal.

4.2 Model

A two-dimensional image I(x⃗), or I(x, y), consists of periodically repeating

objects and non-periodic image parts. Each object that repeats does so in a

direction, θ, with a periodicity of T pixels. The values for θ and T are not

known a priori. Neither is spatial information such as the size and appearance

of the object.

The direction of periodicity, θ, is the angle along which repeating objects

will occur every T pixels. Examples of two values of θ are shown in Figure

4.1. Specifically, θ = 0 and θ = π
4
are demonstrated.

The proposed method will detect the periodic objects, solve for their θ and

T , and extract all occurrences of those objects. Since the objects are similar
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Figure 4.1: Example images for θ = 0 (left) and θ = 3π
4
(right).

but not identical, we found that periodicity detection is most robust when

I(x⃗) is first spatially filtered by many Gabor filters. Periodicity detection

is then done on each of the filtered images, and the results are combined to

form a single hypothesis for θ and T .

Decomposing I(x⃗) into Gabor responses helps remove spatial variations

between objects, as most objects share a general shape, even if their appear-

ance varies. It also provides several different input signals to our algorithm.

4.2.1 Gabor Filter

Each Gabor-filtered version of the image I(x⃗) is produced by a unique Gabor

filter. The Gabor filters are specified by orientation (ϕ), wavelength (λ),

phase offset (ψ), and spectral aspect ratio (γ) [22]. Each two-dimensional

Gabor filter gλ,ϕ,ψ,σ,γ(x, y) is defined as

gλ,ϕ,ψ,σ,γ(x, y) = exp

(
−x

′2 + γ2y′2

2σ2

)
cos

(
2π
x′

λ
+ ψ

)
(4.1)

where

x′ = x cosϕ+ y sinϕ

y′ = −x sinϕ+ y cosϕ (4.2)

We set γ = 1 and ψ = 0. We introduced a new variable, B, which is the

size of the filter in pixels. We set σ = B
6
and λ = 2B

5
. This was determined

empirically, and a variety of settings could achieve similar results. We varied

the orientation (ϕ) from 0 to π, and we varied B from 8 to 40 pixels. The

longest dimension of any image I(x⃗) was 256 pixels. Our Gabor filters are
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denoted as gϕ,B(x, y).

The Gabor transform of image I(x, y), for a given filter gϕ,B(x, y) is denoted

as Gϕ,B(x, y).

Gϕ,B(x, y) =
∑
τx,τy

I(τx, τy)gϕ,B(x− τx, y − τy) (4.3)

We create these Gabor-filtered images, and for each image we determine

if the orientation ϕ is periodic in the direction θ, as measured by a formula

that will be presented in Section 4.3. Two examples of the Gabor orientations

ϕ = 0 and ϕ = 3π
4
are shown in Figure 4.2.

Figure 4.2: Gabor filters g(ϕ=0,B=64)(x⃗) (left) and g(ϕ= 3π
4
,B=64)(x⃗) (right).

4.3 Periodicity Detection

Our methodology consists of periodicity detection and extraction of object

occurrences. We detect the object’s periodicity by analyzing all (ϕ, θ) across

several scales of B with a spectral estimation algorithm. The Fourier-based

methods that we use, including the spectral estimation algorithm, allow us

to iteratively detect and localize several periodic objects.

Detection is challenging when there is no prior knowledge of the appearance

of the object, or the direction of the periodicity. For each Gϕ,B(x⃗), a one-

dimensional projection, sϕ,B,θ(λ), is computed in the θ direction. Spectral

estimation is then used to analyze sϕ,B,θ(λ) and detect the periodicity T .

The projection sϕ,B,θ(λ) is defined as

44



sϕ,B,θ(λ) =

∫ ∞

−∞

∫ ∞

−∞
Gϕ,B(x, y)δ(λ− x cos θ − y sin θ) dx dy (4.4)

The Fourier slice theorem [23] is often used when one-dimensional projec-

tion signals are being computed on an image at an angle θ. This is because the

Fourier transform of the projection is equivalent to a “slice” of the Fourier

transform at θ. Let Fϕ,B(u, v) be a two-dimensional Fourier transform of

filtered image Gϕ,B(x, y). The Fourier transform of the projection signal,

F{sϕ,B,θ(t)} = Sϕ,B,θ(ω), is equivalent to

Sϕ,B,θ(ω) = Fϕ,B(ω cos θ, ω sin θ) (4.5)

This means that the line formed by (u = ω cos θ, v = ω sin θ) in the Fourier

transform has values that can be computed by the Fourier transform of the

projection, Sϕ,B,θ(ω). This is visualized as a one-dimensional “slice” of the

Fourier transform at the angle θ.

T could be estimated by identifying a high-energy frequency in the Fourier

domain along the “slice” at angle θ [23]. However, since we are detecting

a small number of periodic signals that are superposed onto a signal, we

instead use spectral estimation. Specifically, the Multiple Signal Classifi-

cation (MUSIC) spectral estimation algorithm is applied to the projection

signal sϕ,B,θ(t) due to its ability to extract sinusoidal signals more robustly.

Let s = sϕ,B,θ(t), the MUSIC algorithm states that the signal s, typically

referred to as a “received” signal, is modeled as

s = Ad+ z (4.6)

where A is the signal subspace, d is the vector of signal amplitudes with

respect to that subspace, and z is a noise vector [14]. In MUSIC, the goal is

to find the sinusoidal signals d, and this is achieved by finding the dominant

frequencies on the noise projection subspace. First, the covariance matrix

Rs is computed where

Rs = E{ssH} = ARdA
H + σ2

zI (4.7)
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where Rs and Rd are the autocorrelation matrices of s and d respectively,

E is the expected value symbol, σz is the standard deviation of noise, and I

is the identity matrix. The noise eigenvectors are then used to recover the

sinusoidal signals d in the received signal s. We apply the MUSIC algorithm

to the signal sϕ,B,θ(λ) to obtain an estimate for Tϕ,B,θ.

4.3.1 Quantifying Spatial Correctness

Each estimate of Tϕ,B,θ is measured for correctness. We spatially verify

that the periodicity of each one-dimensional projection signal is correctly

estimated by measuring the strength of the alternating local minima and

maxima, as they occur every Tϕ,B,θ. For the projection signal sϕ,B,θ(t), the

maximum and minimum values are detected at locations tmax and tmin, re-

spectively. The quality metric, Qϕ,B,θ, is then computed as follows:

q1 =
∑
n1

(sϕ,B,θ(tmin + n1Tϕ,B,θ)

−sϕ,B,θ(tmin + n1
Tϕ,B,θ
2

))

q2 =
∑
n2

(sϕ,B,θ(tmax + n2
Tϕ,B,θ
2

))

−sϕ,B,θ(tmax + n2Tϕ,B,θ)

Qϕ,B,θ = q1 + q2

where n1 and n2 are all positive integers such that the offsets needed for the

quality metric still are within the length of the signal sϕ,B,θ(t). Qϕ,B,θ will

have a high value for signals with large amplitudes that alternate at a regular

periodicity Tϕ,B,θ. In practice, a range of values around the offsets were used,

since an exact Tϕ,B,θ is restrictive.

4.3.2 Detecting (ϕ, θ)

Λ(ϕ, θ) is the cumulative measure for quality across all scales B:
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Λ(ϕ, θ) =
∑
B

Qϕ,B,θ (4.8)

We select the (ϕ0, θ0) that yields the maximum Λ(ϕ, θ). Neighboring values

of ϕ often yield very similar responses. Hence, we will use a set of ϕ, which we

denote as Φ, in the Sections 4.4 and 4.4.1. We set Φ = {ϕ0}, and then add

to Φ all neighboring ϕ with a value of Λ(ϕ, θ0) within one standard deviation

of Λ(ϕ0, θ0), where the standard deviation is computed from the set of all

Λ(ϕ, θ0).

4.4 Iteration

After the orientation θ0 that produces a dominant periodicity is detected,

other periodic objects should also be detected. The Fourier slice theorem,

which was our motivation for using spectral estimation on sϕ,B,θ(t) in Sec-

tion 4.3, is used iteratively to suppress dominant periodic objects so that

objects with a less-dominant periodicity can be discovered. One can sup-

press the “slice” corresponding to ϕ0 in the Fourier domain and reconstruct

the object. That is, set F (ω cosϕ0, ω sinϕ0) = 0 where F (u, v) is the Fourier

transform of the image I(x⃗). An example is shown in Figures 4.3(a)-(e).

The image in Figure 4.3(c) is reconstructed only from the image “slice”

F (ω cosϕ0, ω sinϕ0). The residual image shown in Figure 4.3(d) is formed by

suppressing F (ω cosϕ0, ω sinϕ0) in the Fourier domain and then transform-

ing the Fourier domain back to the spatial domain. Notice how the horizontal

lines are left intact in Figure 4.3(d). In fact, they contain a localized period-

icity along θ = π
2
. Although the objects are smaller and the periodicity only

occurs for two cycles, the periodicity is evident in the updated Figure 4.3(e)

(note the brightness around ϕ = 0, θ = π
2
).

The ladder example in Figures 4.4(a)-(e) demonstrates similar results for

the ladder. The original Λ(ϕ, θ) has several high values, but the highest

occurs around θ0 =
π
2
and ϕ0 = π. The reconstruction of F (ω cosϕ0, ω sinϕ0)

in Figure 4.4(c) shows the horizontal rungs of the ladders. The residual image

of Figure 4.4(d) no longer has rungs, and it is now evident that there is some

approximately horizontal periodicity (at θ ≈ 0) due to the sides of the ladder

and the shape of the bushes. This periodicity is not as regular, but it is
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(a)

(b) (c)

(d) (e)

Figure 4.3: (a)-(e) Synthetic example. (a) Original synthetic image, (b)
Λ(ϕ, θ), (c) reconstructed image from F (ω cosϕ0, ω sinϕ0), (d)
reconstructed residual image where F (ω cosϕ0, ω sinϕ0) = 0, and (e) Λ(ϕ, θ)
from residual image.
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(a)

(b) (c)

(d) (e)

Figure 4.4: (a)-(e) Ladder example. (a) Original ladder image, (b) Λ(ϕ, θ),
(c) reconstructed image from F (ω cosϕ0, ω sinϕ0), (d) reconstructed
residual image where F (ω cosϕ0, ω sinϕ0) = 0, and (e) Λ(ϕ, θ) from residual
image.
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evident in the updated Λ(ϕ, θ) in Figure 4.4(e).

This method of successively suppressing periodic objects in the Fourier

domain is superior to successively removing them in the spatial domain.

Periodic objects can be spatially contained within other periodic objects,

and this can be difficult to detect using spatial windowing.

4.4.1 Localization

Once the objects’ periodicities have been detected, we localize and segment

all occurrences of the repeating objects. There are two methods to achieve

this: extracting the objects as repeating edges, or extracting the objects as

repeating blocks.

4.4.2 Edge-Based Segmentation

The Gabor features that are oriented at Φ can also be spatially localized

in the image by thresholding all Gϕ,B,θ(x⃗), where ϕ ∈ Φ, and combining the

results spatially. Alternately, one can also threshold the image reconstruction

from F (ω cosϕ0, ω sinϕ0), as shown in Figures 4.4(c) and (h). Additional

refinements, such as spatially filtering all edges that are not periodic with

respect to neighboring edges, can also be done. The results of the edge-based

segmentations that are obtained from thresholding Figures 4.4(c) and (h) are

shown in Figure 4.5(a) and (b).

4.4.3 Blockwise Localization

Blockwise localization is necessary if the repeating objects are large in size

and an edge does not adequately localize the objects. Both images shown in

Figures 4.4 (a) and (f) contain edge-like repeating objects, but the objects

can also be detected in a blockwise fashion. This is shown in Figure 4.5(c)

and (d).

Periodicity is computed in a row-wise manner, where the rows are oriented

in the direction θ0. The size of these rows can be determined by finding the

scale, B, that produced the maximum value of Qϕ0,B,θ0 for Λ(ϕ0, θ0). We
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(a) (b)

(c) (d)

Figure 4.5: (a) Edge-based segmentation of synthetic image, (b) edge-based
segmentation of ladder image, (c) blockwise segmentation of synthetic
image, and (d) blockwise segmentation of ladder image.
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denote this as B0. In a row-wise manner, periodic objects are detected and

localized.

Spectral estimation, like other Fourier-based algorithms, has high precision

in the frequency domain, but no spatial resolution. We develop a method to

localize the object which assumes that all objects repeat with a 50% duty

cycle. That is, if an object occurs every T pixels, the component itself is T
2

pixels long.

Since we are operating in a row-wise manner, we transform each row into

a one-dimensional projection signal. After θ0 is detected, as described in

Section 4.3, we define a signal w = wB0,ϕ(t), where

wB0,ϕ(t) =

∫ ∞

−∞

∫ ∞

−∞
Gϕ,B0(x, y)δ(x− t cos θ0, y − t sin θ0) dx dy (4.9)

We can follow the reweighting method of Section 3.4.1 for the values of

ϕ. Initially, all αϕ(x) = 1. For all x contained in each row, we hypothesize

that x = x′ is an object and set αϕ(x
′) = Gϕ,B0(x

′). MUSIC provides an

SNR for the periodicity that it detects, so for every candidate x′, we obtain

an SNR value. The x′ that yields the highest SNR according to MUSIC is

considered our “object,” and the duty cycle is produced such that the object

is contained in a single cycle.

4.5 Experimental Results

Figures 4.6, 4.7, and 4.8 demonstrate the complete iterative process for de-

tecting and segmenting periodic objects in the original image, 4.6(a). In

each of the iterations, the image that is currently being examined for peri-

odic objects is shown in Figures 4.6(a), 4.7(a), and 4.8(a), respectively. The

measure of Λ(ϕ, θ) for each of the images is shown in Figures 4.6(b), 4.7(b),

and 4.8(b), respectively. From this measure of Λ(ϕ, θ) a maximum value was

found, and a set of Φ was selected from this. The image was filtered by the

value of ϕ. The images are shown as the filtered image, Figures 4.6(c), 4.7(c),

and 4.8(c), along with the residual images, 4.6(d), 4.7(d), and 4.8(d). The

residual images are used as input to the next stage in the algorithm. That

is, Figures 4.6(d) and 4.7(a) are identical, as are Figures 4.7(d) and 4.8(a).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: First iteration. (a) Original image, (b) Λ(ϕ, θ), (c)
reconstructed image from F (ω cosϕ0, ω sinϕ0), (d) reconstructed residual
image from (F (ω⃗)− F (ω cosϕ0, ω sinϕ0), (e) gradient-based segmentation
of image, and (f) block-based segmentation of image.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Second iteration. (a) Image from first iteration, (b) Λ(ϕ, θ), (c)
reconstructed image from F (ω cosϕ0, ω sinϕ0), (d) reconstructed residual
image from (F (ω⃗)− F (ω cosϕ0, ω sinϕ0), (e) gradient-based segmentation
of image, and (f) block-based segmentation of image.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Third iteration. (a) Image from second iteration, (b) Λ(ϕ, θ),
(c) reconstructed image from F (ω cosϕ0, ω sinϕ0), (d) reconstructed
residual image from (F (ω⃗)− F (ω cosϕ0, ω sinϕ0), (e) gradient-based
segmentation of image, and (f) block-based segmentation of image.
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The filtered images, Figures 4.6(c), 4.7(c), and 4.8(c), are segmented both

using the gradient method and in a blockwise manner. This is shown in

Figures 4.6(d)-(e), 4.7(d)-(e), and 4.8(d)-(e).

The method performs very well on this image, and the objects are seg-

mented successfully by using the Fourier domain. This sort of separation

would not have been possible in the spatial domain. Additionally, the ability

to iteratively apply the method to the filtered image allows us to find all

periodically occurring components.

4.6 Conclusion

A method for detecting and localizing periodic objects in images was pre-

sented. This method utilizes the robustness of spectral estimation and the

spatial-frequency properties of the Gabor transform. We are able to predict

the direction of periodicity using the MUSIC algorithm, and subsequently

perform iterative detection as we separate periodic parts of the image from

nonperiodic parts using the Fourier domain. Two methods for segmentation

were presented: an edge-based method and a block-wise method. The block-

wise method is used in railroad track inspection. The MUSIC algorithm

detects multiple periodicities, which enables the detection of all periodically

repeating components of the track. There are many applications for this

method in automated track inspection, as an autonomous system will need

to adapt to thousands of miles of track. Future works will include auto-

matically updating models, utilizing the efficient Fourier-domain methods

to quickly detect track defects, applying this to symmetry detection, and

developing a similar method for detecting vanishing points on the horizon.
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CHAPTER 5

ACTIVITY RECOGNITION

In this section, we present an activity recognition algorithm that utilizes a

unified spatial-frequency model of motion to recognize large-scale differences

in action using global statistics, and subsequently distinguishes between mo-

tions with similar global statistics by spatially localizing the moving objects

[24]. We model the Fourier transforms of translating rigid objects in a video,

since the Fourier domain inherently groups regions of the video with simi-

lar motion in high energy concentrations within its domain to make global

motion detectable. Frequency-domain statistics can be used to isolate the

frames that both adhere to our model and contain similar global motion; thus,

we can separate activities into broader classes based on their global motion.

A least-squares solution is then solved to isolate the spatially discrimina-

tive object configurations that produce similar global motion statistics. This

model provides a unified framework to form concise globally-optimal spatial

and motion descriptors necessary for discriminating activities. Experimental

results are demonstrated on a human activity dataset.

5.1 Introduction

Activity recognition is vital to many applications including surveillance and

video indexing. We propose a video model that uses a parameterized ap-

proach where one assumes that a video contains moving objects, and then

attempts to extract both the motion and appearance of these objects. This is

useful to a variety of applications where the domain knowledge is limited and

one wishes to create a concise set of intuitive features that describe how mo-

tions vary and how their spatial configurations vary. We create a frequency-

domain model that allows us to discover global motion differences between

extremely different activity classes (which we refer to as meta-classes), and to
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localize areas where discriminative spatial configurations occur and solve for

these local features. Human activity meta-classes could be humans walking

versus humans staying in place while performing some action. In surveil-

lance, global pre-processing methods that isolate video frames containing

locally interesting activity are useful.

The main contributions are as follows: (1) We develop a unified spatial-

frequency domain model for analyzing moving objects in a video. (2) Using

the same model, we demonstrate global discrimination of meta-classes and

spatial isolation of regions that produce similar global motion but have dif-

fering local properties. Finally, (3) we create a generative description for ac-

tivities where spatial regions which discriminate motion classes are isolated.

This section presents background, the model, and experiments to verify this

approach.

5.2 Background

Activity recognition is a well-studied problem. Most work either derives

global features from spatio-temporal gradients [25], or analyzes spatio-

temporal cubic interest points detected using space-time gradients [26, 27].

Additionally, domain-specific algorithms have been developed that incorpo-

rate prior knowledge of the activity being performed [28]. The work of

[25] provides global recognition of motion at a lower recognition rate than

the state of the art using statistical operations of histograms, but with the

advantages of being non-parametric and amenable to a variety of motion sce-

narios. Works such as [27] and [26] use spatio-temporal cubes and attempt

to find cubes which are representative of a particular activity.

Although all methods achieve high levels of success on activity recogni-

tion databases, none provide a congruent method that, using one modeling

framework, incorporates both global motion classification and spatial local-

ization of moving components. Also, no other method can examine a video

in its entirety and determine which frames are more immune to noise. Our

work has similar advantages to many of the previous methods. We have a

global scope of video motion so our features and templates are chosen with

global knowledge, since energy is concentrated in the Fourier domain along

the trajectory of dominant moving objects.
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5.3 Frequency-Domain Signal Extraction

Our model for moving objects in video uses the frequency domain, since it

is widely known to have a global scope. Recent work has shown that spatial

localization can be computed if motion adheres to this model [29]. We obtain

the spatial Fourier transform of each video frame at time t, It(ω⃗), and model

it as

It(ω⃗) =
L∑
l=1

Ol(ω⃗)e
jω⃗T ρ⃗l(t) + Vnoise(ω⃗)− Vback(ω⃗) (5.1)

where there are L objects, each with spatial Fourier transform Ol(ω⃗), and

each with displacement ρ⃗l(t) (with respect to its position at t = 0). For

a constant velocity, ρ⃗l(t) = tv⃗l(t). Vback(ω⃗) is occluded background and

Vnoise(ω⃗) is noise. Each frame is N ×N pixels. This was described in [29].

Equation 5.1 models rigid objects, since Ol(ω⃗) is time invariant.

Based on a technique called mu-propagation [30], setting ω⃗ = (µ1, µ2), a

signal zµ1,µ2(t) is introduced such that zµ1,µ2(t) = It(µ1, µ2), so that

zµ1,µ2(t) =
L∑
l=1

Ol(µ1, µ2)e
j(µ1tρl,x(t)+µ2tρl,y(t))

+ Vnoise(µ1, µ2)− Vback(µ1, µ2) (5.2)

where the x and y displacement of each object l is represented as ρl,x(t) and

ρl,y(t) respectively. The terms µ1 and µ2 can also be expressed as µ1 =
2πm1

N

and µ2 = 2πm2

N
, where (m1,m2) refers to a spatial frequency bin if It(ω⃗) is

implemented discretely.

We implement an M -length discrete short-time Fourier transform (STFT)

Zµ1,µ2(p, t) for the signal zµ1,µ2(t), and now examine each STFT frequency bin

−M
2
≤ p ≤ M

2
at time t. The frequency bin p is produced by the demodulator

ωp =
2πp
M

, such that

|Zµ1,µ2(p, t)| = |
H−1∑
h=0

zµ1,µ2(t+ h)w(h)e−jωph| (5.3)

where w(h) is a windowing function and H is the length of that window [31].

The signal Zµ1,µ2(p, t) is the demodulation of zµ1,µ2(t) by the frequency ωp.
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Therefore, if v⃗l(t) = V⃗l (constant-valued), then due to object l, |Zµ⃗(ωp, t)| ∝
|Ol(µ⃗)| in the frequency bin p that matches the modulating velocity V⃗l. This

occurs when µ⃗T V⃗l = ωp, which will create a peak value at frequency bin

p = M
N
m⃗T V⃗l. Thus, if an object l0 travels with V⃗l during the time t + 1 to

t+ h, then Equation 6.13 becomes

|Zµ⃗(p, t)| = |
H−1∑
h=0

Ol0(µ⃗)w(h)

+
H−1∑
h=0

(
L∑
l=1

Ol(µ⃗)
t+h∏
k=t+1

ej(µ⃗
T v⃗l(k))

)
w(h)e−jωph|

≈ |Ol0(µ⃗)
H−1∑
h=0

w(h)| (5.4)

where the second term in Equation 5.4 is negligible if there are no other

objects with velocity v⃗l. It becomes evident that in real world applications,

noise is introduced from other objects with velocities close to v⃗l, from a time-

variant Ol0(µ⃗), and from the noise terms in Equation 5.1. Figure 5.1 shows

the STFT for the spatial bin (m1,m2) = (0, 10) over time for the “galloping”

sequence of the Weizmann database [32], resized with N = 100. Note the

periodicity in the motion, due to the vertical oscillation of the person while

galloping.

To use the STFT to both perform classification and identify consecutive

frames that adhere to our model from Equation 5.1, we use statistics that

concisely summarize the shape and the constancy of the STFT.

Spectral Centroid: The spectral centroid is a well-known function that

measures the center of mass of the frequency bins as a point in time.

C(t) =
M∑
p=1

p|Zµ⃗(p, t)|∑M
p=1 |Zµ⃗(p, t)|

(5.5)

Entropy: We compute the entropy across the frequency bins at each time t

and create the signal
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Figure 5.1: STFT of z(0,0.628)(t).

H(t) = −
M∑
p=1

|Zµ⃗(p, t)|∑M
p=1 |Zµ⃗(p, t)|

log2(
|Zµ⃗(p, t)|∑M
p=1 |Zµ⃗(p, t)|

) (5.6)

We then detect consecutive frames with d
dt
H(t) = 0. A rigid object under-

going translational motion results in a constant entropy as an object with

constant energy travels on a trajectory, as shown for the majority of frames

in Figure 5.1. Alternately, one can look for Zµ⃗(p, t) to be independent of time

to detect consecutive frames with a constant velocity. With entropy, finding

frames with | d
dt
H(t)| ≫ 0 is indicative of an event beyond the scope of our

model (e.g. sudden appearance or disappearance of object) because a large

change in entropy is indicative of a discontinuity in the phase modulation

from Equation 5.1.

5.3.1 Meta-Classes

The mean value as well as the amplitude of the signals C(t) andH(t) are used

as features to differentiate global motions. One can also use periodicity, as

described in [30]. We combine classes into meta-classes so that we achieve

minimal error in a linear support vector machine (SVM) which uses these

statistical features. This can be replaced with a domain-specific scheme.
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5.4 Spatial-Domain Template Extraction

Once we isolate frames that adhere to our model and determine meta-class

membership, the spatial domain regions are solved. Each object’s displace-

ment ρ⃗l can be determined using only the Fourier transform of the initial

video frame I(ω⃗) and the Fourier transform of a subsequent frame I ′(ω⃗) [29]

I ′(ω⃗)

I(ω⃗)
=

∑L
l=1Ol(ω⃗)e

−j2πω⃗T ρ⃗l∑L
l=1Ol(ω⃗)

=
L∑
l=1

(
Ol(ω⃗)∑L
l=1Ol(ω⃗)

)
e−j2πω⃗

T ρ⃗l (5.7)

The values ρ⃗l are then determined by peak detection after an inverse

Fourier transform. The frequency domain segmentation for each object,

Ol(ω⃗), is obtained using a least-squares (LS) formulation. We construct

Z =


1 1 . . . 1

1 e−jω
T ρ⃗1 . . . e−jω

T ρ⃗L

...
. . .

...
...

1 e−j(N−1)ωT ρ⃗1 . . . e−j(N−1)ωT ρ⃗L

 (5.8)

and the vector of consecutive video frames, I⃗ = [I1(ω⃗) . . . IT (ω⃗)]. We solve for

the frequency-based motion segmentation represented by O⃗ = [O1(ω⃗) . . . OL(ω⃗)]

using the LS formulation

O⃗ = Z†I⃗ (5.9)

for every frequency ω⃗. Tikhonov regularization is used to constrain the energy

of O⃗ as shown in [29].

From the L frequency-based segmentations, we obtain the N ×N spatial

segmentation from the inverse Fourier transform of each Ol(ω⃗). From each

spatial solution, we determine the boundaries of our object from the areas of

the image with the strongest gradient. To register the spatial solution with

the original image, one should look for the strongest matching gradients

between I(ω⃗) and the LS solution.
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5.5 Experimental Results

We demonstrate the ability of our algorithm to discriminate activity and

form a generative description for activity using the Weizmann database.

This database contains ten actions, each performed by nine different sub-

jects. This database contains only one object that was necessary for activity

discrimination. The signal z(0,0.628)(t) was created according to Equation

5.2, and statistics were created from it. C(t) corresponds to vertical motion

(since m1 is set to DC). We found that the measures |median(C(t))| and
(max(C(t))−min(C(t))) make the “stationary motions” separable from the

“moving motions” of this dataset (Figure 5.2). We define “moving motions”

as motions where a person traverses the entire screen, while in “stationary

motions” the person is not traveling.
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Figure 5.2: Meta-class classification.

Next we discriminate the motions within each meta-class. Figure 5.3 shows

the analysis of two subjects performing a “galloping” motion as they move

from right to left. We locate the maximum upward motion (maxC(t)) in Fig-

ures 5.3(a-b), and then find the spatial localization. The resulting objects
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F−1{O1(ω⃗)} are shown in Figures 5.3(c-d) along with their edge-based tem-

plates. Due to human kinematics, the poses in Figures 5.3(c-d) are similar

in appearance within their respective classes. In Figures 5.3(e-f), the spatial

location of the objects is shown along with an arrow indicating v⃗1(t). Figure

5.4 shows the analysis of two subjects performing a “skip” motion as they

move from right to left. We locate the maximum upward motion (maxC(t))

in Figures 5.4(a-c), and then spatially reconstruct the objects. The resulting

objects F−1{O1(ω⃗)} are shown in Figures 5.4(d-f). The edge-based templates

that this produces are shown in Figures 5.4(g-i).

We similarly analyze the maximum downward motion (minC(t)). The

poses obtained during training are stored as templates, and during testing

the correlation is measured between the test pose and the templates. We

randomly separate the dataset into six training and three testing sequences.

We average the error rates of 25 experimental runs, each with a different

random permutation of the dataset.

This achieved an average recognition of above 80% on the database. Though

this is below the state of the art in [26], the work here has several advantages.

First, it forms a generative model which describes how spatial structures dif-

fer when global motion statistics are similar. This work can be extended

to more complex activities in the future. Second, the global and local in-

formation that it provides is contained within the same model so that the

local information is found from globally located frames of interest. Third, it

allows us to locate frames globally by summarizing all of the video’s content

using our statistics. Spatial templates are kept to a minimum by only being

formed at both the temporally and spatially discriminative areas.

5.6 Conclusion

We have provided a unified model for activity recognition that utilizes the

frequency domain’s ability to concentrate the energy of a moving object along

the velocity trajectory in the Fourier domain. This allows both a high-level

categorization of motion meta-classes and a subsequent isolation of frames

that discriminate the lower sub-classes. The supporting spatial regions are

then identified through a least-squares solution.

For object segmentation, a gradient-based method was effective. This is
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Galloping results for two subjects. (a)-(b): C(t), (c)-(d):
reconstructed objects from O1(ω) along with segmentation results using
image gradients, (e)-(f): spatial location with arrow indicating v⃗1(t).
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(a) (b)

(c)

(d) (e) (f)

(g) (h) (i)

Figure 5.4: Skip results for three subjects. (a)-(c): C(t) for subjects 1, 3,
and 6. (d)-(f): Reconstructed objects from O1(ω) for subjects 1, 3 and 6.
(g)-(i): Segmentation results using image gradients.
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similar to the gradient-based method in Chapter 4, and it is applicable for

similar reasons. The gradients that are orthogonal to the direction of motion

are the ones that are reconstructed with the highest quality. Similarly, the

strong gradients in Chapter 4 provide the most evidence of periodicity. This

and other similarities occur because detecting periodic activity in a video

is similar to detecting periodic objects in images. This is explored in great

detail in Chapter 6.
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CHAPTER 6

GENERAL MODEL FOR PERIODICITY
DETECTION IN IMAGES AND VIDEO

In Chapter 4, periodically occurring objects were detected in images, and

all occurrences of these objects were subsequently segmented. In Chapter

5, periodically occurring activities were detected in video, and the objects

producing those activities were segmented. In both situations, the periodic

objects and activities were similar, but not identical, to each other.

The solutions presented in Chapters 4 and 5 both utilized global infor-

mation provided by the Fourier domain to detect the presence of a periodic

object and to determine that object’s frequency. Since the Fourier domain

is unable to spatially localize an object, however, the subsequent segmenta-

tion in each algorithm relies on an edge-based or block-based segmentation

method.

In Chapters 4 and 5, the image and video being processed were separated

into one-dimensional signals. In Chapter 4, Gabor-filtered versions of the

original image were created. For each Gabor-filtered image, one-dimensional

signals were created by projecting those Gabor-filtered images along can-

didate directions of periodicity. In Chapter 5, video containing periodic

activity was decomposed into spatial frequency components in the Fourier

domain, and the instantaneous frequencies of several spatial frequency com-

ponents were examined over time using the STFT. The spectral centroid of

the instantaneous frequency was calculated so that a one-dimensional sig-

nal resulted from the instantaneous frequency analysis, and periodicity was

detected using this signal.

In both of these applications, the two-dimensional (2D) images and the

2-D plus time (2D+t) videos are transformed into a set of one-dimensional

signals. The resulting one-dimensional signals are analyzed using spectral es-

timation to determine their frequency. Many of these signals are orthogonal.

For example, Gabor filters such as those used in Chapter 4 are orthogonal

when oriented at different angles, and the spatial frequencies that are used
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in Chapter 5, are orthogonal. Some of these one-dimensional signals will

contain periodic information and some will not; thus, our goal is to identify

the signals that contain periodicity, and combine the output of these signals

to produce a more robust frequency estimation.

By forming a general framework for periodicity detection in images and

video, other application-specific problems can be converted to a similar for-

mat as the problems outlined in this chapter. For example, the method of

detecting ties that was presented in Section 2.4 also utilizes a one-dimensional

signal that is created by aggregating the results of two-dimensional Gabor

filters. It is application-specific, but the method presented is inspired by

the general framework of the more fundamental problems presented in this

chapter.

This chapter provides: (1) a problem definition that summarizes image

and video periodicity detection, (2) a general framework for obtaining one-

dimensional signals from 2D images and 2-D+time videos, (3) a framework

for combining those signals into one estimate of periodicity, and (4) a method

for segmentation of the periodic object in images, and any object producing a

periodic activity in video. There are many parallels between the methods for

detecting periodic objects in images, detecting translating objects in video,

and detecting objects producing a periodic activity in video.

6.1 Motivation

We outline the three problems involving periodicity detection in images and

video, and propose a solution using spectral estimation techniques.

We summarize the three problems to solve as follows:

• Images: When an image is periodic in spatial locations, we must find

the direction(s) of periodically repeating components, and segment all

occurrences of the components that produce this periodicity.

• Video (translational): A translating moving object produces a phase

modulation in the spatial frequency domain. Spatial frequency signals

evolve periodically in time, but with a constant periodicity (thus, in-

stantaneous frequency is constant at all times). We must detect the
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translating velocities by detecting the periodicity of the spatial fre-

quency signals as they evolve over time, and then segment the objects

that produce the velocities corresponding to the detected values.

• Video (periodic): An object that is moving periodically will produce

spatial frequency phase modulation that is periodic. That is, when the

instantaneous frequency is examined for each spatial frequency, it will

be periodic. We must detect which spatial frequencies exhibit periodic

instantaneous frequency, compute the period of those instantaneous

frequencies, and segment the objects that produce this.

The images and video are modeled as follows:

6.1.1 Images

A model for the image, with periodically repeating components, is created.

A two-dimensional image I(x⃗), where x⃗ = (x, y), consists of both periodically

repeating components, Ck, and non-periodic parts of the image, η(x⃗). Each

component, Ck, is described as Ck = {pk, Tk, υk}, where pk is the two-

dimensional appearance, Tk is the periodicity, and υk is the phase offset.

Periodicity is defined as the number of pixels between consecutive component

occurrences, as measured from a fixed point in that component. Phase offset

indicates the location of the first instance of a repeating component with

respect to the left-most pixel at x = 0.

The two-dimensional image, I(x⃗), is described as

I(x⃗) =
K∑
k=1

∑
z∈Z⃗k

δ(x⃗− (x⃗k + zT⃗k + υ⃗k))pk(x⃗k) + η(x⃗) (6.1)

where Z⃗k represents the two-dimensional range of z for which the component

instance, k, is contained within the image I(x⃗), and η(x⃗) is the part of the

image row that does not repeat. The term x⃗k refers to each component’s in-

ternal coordinate system, which has the equivalent size as pk(x⃗k). We assume

that the image itself is composed primarily of the K repeating components,

C, where Ck = {pk, Tk, υk}.
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6.1.2 Video

Recent work has shown that spatial localization can be computed if motion

adheres to a rigid model of moving objects in a video [29]. We obtain the

spatial Fourier transform of each video frame at time t, It(ω⃗), and model it

as

It(ω⃗) =
L∑
l=1

Ol(ω⃗)e
jω⃗T ρ⃗l(t) + Vnoise(ω⃗)− Vback(ω⃗) (6.2)

where there are L objects, each with spatial Fourier transform Ol(ω⃗), and

each with displacement ρ⃗l(t) (with respect to its position at t = 0). Vback(ω⃗)

is occluded background and Vnoise(ω⃗) is noise. Each frame is Nx×Ny pixels.

This was described in [29]. Equation 6.2 models rigid objects, since Ol(ω⃗)

is time invariant.

6.1.3 Periodic Activity in Video

A periodic activity is characterized by the rigid objects Ol(ω⃗) (from Equa-

tion 5.1) translating with a periodic displacement ρl(t). This periodic dis-

placement results in the an instantaneous frequency in Equation 5.1 that is

periodic. We model this instantaneous frequency as

ρ⃗l(t) = E{ρ⃗l(t)}+ a⃗lcos(f⃗lt+ ψ⃗l) (6.3)

where E{ρ⃗l(t)} represents the expected or mean value of the displacement

for object l, f⃗l is the frequency of the periodic signal, a⃗l is the amplitude,

and ψl is the offset. The expected value, E{ρ⃗l(t)}, is simply the translational

motion of the object, while a⃗l is the expected amount of displacement due

to the periodic motion.

6.2 Obtaining One-Dimensional Estimates

One-dimensional estimates for periodicity are obtained from the 2D images

and 2D+t videos. An efficient mapping that captures the property we are

looking for, namely a signal that oscillates at the same frequency as the

repeating object or activity, is described for both images and video.
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6.2.1 Images

As shown in Chapter 3, the one-dimensional estimates are composed of the

projections along θ from various Gabor filters defined by ϕ and B. That is,

the one-dimensional signal, sϕ,B,θ(λ), is defined as

sϕ,B,θ(λ) =

∫ ∞

−∞

∫ ∞

−∞
Gϕ,B(x, y)δ(λ− x cos θ − y sin θ) dx dy (6.4)

If the one-dimensional signal sϕ,B,θ(λ) is periodic, then we conclude that

some object is repeating. Since the Gabor-filtered image, Gϕ,B(x, y), is used

instead of the original image I(x, y), the spatial periodicity of certain tex-

tures and gradients will be detected, even if the color and illumination is

ambiguous.

6.2.2 Video (Translational)

The object ol is assumed to be constant in time, and all ol are defined at the

initial time t0. Thus, at time t0, Equation 5.1 becomes

It0(ω⃗) =
L∑
l=1

Ol(ω⃗) + Vnoise(ω⃗)− Vback(ω⃗) (6.5)

At time t0, we assume that the object has displaced by zero, that is,

ρ⃗l(t0) = 0. At all subsequent times, each displacement ρ⃗l(t) results in a

phase shift Ol(ω⃗)e
jω⃗ρ⃗l(t).

Displacement can also be expressed as velocity, where ρ⃗l(t) − ρ⃗l(t0) =∫ t
t0
ν⃗l(t). If velocity is constant, then we represent this constant velocity as

vl(t) = νl ∀t. Thus, ρ⃗l(t) = (t− t0)ν⃗l. Letting t0 = 0, a translational object

l has its displacement computed as

ρ⃗l(t) = tν⃗l (6.6)

For an object traveling at a constant velocity, an individual given fre-

quency, k⃗, produces a frequency response
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Fk⃗(it(x⃗)) = It(ω⃗k) =
L∑
l=1

Ol(ω⃗k)e
jω⃗T

k⃗
ν⃗lt + Vnoise(ω⃗)− Vback(ω⃗) (6.7)

To ease the computation, we choose a particular frequency where only one

component, either the x or y component, has a non-DC value. That is, each

frequency is ω⃗k = (0, µk,y) for some k, or ω⃗k = (µk,x, 0) for some k. The

resulting signal for ω⃗k = (µk,x, 0) is

Ol(µk,x, 0)e
jµk,xνl,xt (6.8)

A complex signal ej2πf0t has a frequency of f0 and a period of T0 =
1
f0
. In

the discrete fourier transform (DFT), a spatial frequency (µk,x, 0) corresponds

to a spatial frequency bin (kx, 0). Equation 6.8 can be rewritten as

Ol(µk,x, 0)e
j2π kx

Nx
νl,xt (6.9)

where Nx is the width of each frame and νl,x is the velocity of the l-th object

in the x-direction.

The signal Ol(µk,x, 0)e
j2π kx

Nx
νl,xt oscillates with frequency fl,x =

kxVl,x
Nx

, and

period Tl,x =
Nx

kxVl,x
.

One can therefore apply spectral estimation to the spatial frequencies of

Fk{It(x⃗)} to estimate the constant translational velocity of the objects ol.

This method will become cumbersome for many objects L. The phase cor-

relation method shown in Section 2.3 is preferable for detecting interframe

velocities.

Spectral estimation is used in a synthetic example, shown in Figure 6.1, to

detect constant translational motion. All spatial frequencies k⃗x = (µx, 0) and

k⃗y = (0, µy) are examined. The phase component of Equation 6.9, j2π kx
Nx
ν⃗l,xt,

has a frequency
kxν⃗l,x
Nx

and period T = Nx

kxν⃗l,x
that will be detected by spectral

estimation. The measure of correctness from Equation 4.3.1 is utilized again

to confirm that the signal oscillates accordingly.
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Figure 6.1: Frame from synthetic video. Arrow indicates direction.

6.2.3 Video (Periodic)

When an object ol moves periodically, the velocity ν⃗l(t) will no longer be

constant as in the case of translational motion. Instead, it will itself be a

periodic function. For the lth object’s motion in the x direction, the phase

of each of spatial frequency in the x-direction is now

ρl,x(t) = alcos(fl,xt+ ψl,x) (6.10)

The instantaneous frequency of Equation 6.10 can now be examined for

evidence of a periodic function. An STFT is used. Since the output of this is

a two-dimensional function, we utilize the one-dimensional spectral centroid

projection from Chapter 5.

The periodically moving object can itself be translating. This is easy to

detect in the instantaneous frequency, as the resulting signal will have a

non-zero mean value.

A measure of correctness is applied to confirm that the temporal signal

is in fact phase-modulated by a periodic signal. The measure of correctness

from Equation 4.3.1 can be used to measure this.
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6.3 Aggregating the Frequency Estimates

The frequency estimates obtained in Section 6.2 can either be detected sep-

arately and subsequently grouped, or they can be computed concurrently by

operating on a signal that is formed by superposing several one-dimensional

signals. This section contains the methods used to aggregate the periodicity

estimate in images and video.

6.3.1 Images

The individual estimates for sϕ,B,θ(λ) are aggregated into one function, Λ(ϕ, θ),

by computing a quality metric Qϕ,B,θ for all (ϕ,B, θ) and summing across all

block sizes B. The values (ϕ0, θ0) = argmaxϕ,θ Λ(ϕ, θ) are chosen. The

frequency is then estimated from a reconstructed image, in the direction

of θ0, where the reconstruction occurs using the ϕ0 that exhibited peri-

odicity. The final estimate of T will be formed from a filtered image in

the direction ϕ0, projected in the direction θ0, with a B that resulted in

B0 = argmaxB Qϕ0,B,θ0 .

Our method involved decomposing images into Gabor-filtered images, pro-

jecting and summing these images in the direction θ, and estimating the pe-

riodicity from that. This was motivated by the Fourier slice theorem, which

states that the one-dimensional Fourier transform of the projection of an im-

age along the direction θ is equivalent to the Fourier slice of that image in

the Fourier domain at angle θ. Although we applied the MUSIC algorithm to

that one-dimensional projection, this was only to avoid the spectral spread

that the Fourier domain would produce. MUSIC is used because there is

an assumption of a small number of periodic signals. In the spatial Fourier

domain, the edges and other objects that are occurring in the θ direction can

be isolated by decomposing the Fourier domain at angle θ. This is illustrated

in Figure 6.2(a), where it is indicated that along the spatial Fourier direction

θ, there should be dominant peaks. These correspond to a repeating object’s

frequency, and the θ where this occurs corresponds to the direction of repe-

tition. Since we first filtered the image into many Gabor-filtered images, the

stacked effect of the image indicates that several of these estimates exist.
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Figure 6.2: Relationship between direction of periodicity (θ) and the spatial
Fourier transform. (a) In images, a periodic object will result in high
energy spatial frequency along the orientation of periodicity, and (b) in
video, a translating object will result in periodic frequencies along an
orientation θ, where all periodicities will be related by a constant value.

6.3.2 Videos (Translational)

The estimates of periodicity are obtained from the individual results of the

spatial frequency bins. T is estimated from several spatial frequency bins,

and the most commonly obtained T is determined. Extending the analysis of

Section 6.2.2, the time-induced frequency of the spatial frequency (µk,x, µk,y)

is
kxνl,x
Nx

+
kyνl,y
Ny

. If the two spatial frequencies are related by some constant,

say that µk,y = mµk,x. Then the modulation term becomes

kxνl,x
Nx

+
kyνl,y
Ny

=
kxνl,x
Nx

+
(mkx)νl,y

Ny

= kx

(
νl,x
Nx

+
mνl,y
Ny

)
(6.11)

Thus, if the spatial frequencies are related by µk,y = mµk,x, then their

periodicity that is induced by νl,x and νl,y will be related by a constant value

kx. For |θ| ≤ π
4
, m = tan θ. An example of spatial frequency bins that are

related in this manner is shown in Figure 6.2(b).

If a video contains translational motion, then the spatial frequencies along

θ should all have time-related periodicities that are proportional to each

other. Thus, each spatial frequency can be used as an estimate. For compu-
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Figure 6.3: Frequency detection for horizontal and vertical motions in
synthetic video.

tational ease, the estimations used in the experiment for Figures 6.3(a) and

(b) are acquired at θ = 0 and θ = π
2
respectively.

6.3.3 Videos (Periodic)

When spatial frequencies are related by µk,y = mµk,x, the time-induced pe-

riodicity among them is related by a constant, as stated in Section 6.3.2.

Thus, the effect on instantaneous frequency is as follows. From Section 6.2.3,

ρl,x(t) = alcos(fl,xt+ ψl,x) and ρl,y(t) = alcos(fl,yt+ ψl,y).

The result of a MUSIC algorithm that is applied to this will be the detec-

tion of the frequencies f⃗l,x and f⃗l,y. However, all frequencies that are related

by µk,y = mµk,x will have the same instantaneous frequency modulations fl,x

and fl,y. Thus, we should utilize all frequency bins along some θ to form an

estimate of fl,x and fl,y.

As explored in Chapter 3, from a received signal yd, the Toeplitz matrix

Yd can be created. Then, Y is created, where Y =
∑

dYd. An autocor-

relation matrix is then formed, Ry = YYH , and the MUSIC algorithm is

subsequently applied. To estimate the values of f⃗l,x and f⃗l,y for a given di-

rection θ, this method is applied to several frequency bins d = (µ1, µ2) along

the angle θ.

Let z(µ1,µ2)(t) be the spatial frequency (µ1, µ2) as it evolves in time, that

is,
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zµ1,µ2(t) =
L∑
l=1

Ol(µ1, µ2)e
j(µ1tvl,x(t)+µ2tvl,y(t))

+ Vnoise(µ1, µ2)− Vback(µ1, µ2) (6.12)

Applying an STFT yields

|Zµ1,µ2(p, t)| = |
H−1∑
h=0

zµ1,µ2(t+ h)w(h)e−jωph| (6.13)

We compute the spectral centroid, as we did in Chapter 5, for the frequency

(µ1, µ2):

Cµ1,µ2(t) =
M∑
p=1

p|Zµ⃗(p, t)|∑M
p=1 |Zµ⃗(p, t)|

(6.14)

This will serve as our input signal to MUSIC, as in Chapter 3. We again

form a Toeplitz matrix from our signal, y = Cµ1,µ2(t), and denote it as

Ykµx ,kµy
. These matrices are then added for all kµx , kµy that lie along an

angle θ, and the matrices are accumulated as

Y =
∑

kµy/kµx=tan θ

Ykµx ,kµy
(6.15)

From this, we can find the MUSIC algorithm according to Chapter 3. The

autocorrelation matrix is formed

Ry = E{yyH} = YYH = ARsA
H + σ2I (6.16)

and after performing the MUSIC algorithm, an estimate for periodicity as

determined by all frequencies along line θ, Tθ, is given.

For example, for the Weizmann video sequence of eli-jump.avi, various

orientations of θ are examined using spectral estimation to determine which

ones exhibit periodicity. As shown in Figure 6.4, there is periodicity in a

person jumping, which repeats approximately every 12 frames of the video.

The video is now examined at several orientations θ. The periodicity of

T ≈ 14 is detected more prominently at certain θ, as indicated by the various

SNR responses in Figures 6.5(a)-(c).
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Figure 6.4: (a) Frame 1 (b) Frame 5 (c) Frame 9 (d) Frame 15.
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Figure 6.5: (a) θ = 0.3927, (b) θ = 1.5708, (c) θ = 2.3562.
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The SNR alone cannot completely determine which orientation θ is pro-

ducing a periodic signal. To determine this, Tµx,µy is computed for (µx, µy) at

many orientations. The median value is computed, TMV . The set of consec-

utive orientations that produce a periodicity Tθ ≈ TMV is computed, and the

longest range of consecutive θ is determined and stored in a vector Θ. These

Θ represent the spatial frequencies that produce a periodic signal. These are

going to originate from rigid objects that maintain a strong edge oriented at

a θ contained within Θ.

6.4 Segmentation

The estimate of periodicity for both images and video utilizes the frequency

domain, so the estimated periodicity, T , will not contain any spatial local-

ization information. For this reason, once the global properties of expected

T are known, the segmentation of the object presents a challenge.

6.4.1 Images

In Chapter 3, two methods for segmentation were proposed. A gradient-

based method was suitable for objects that were defined primarily by their

edges, and a block-based method was suitable for larger objects.

6.4.2 Video (Translational)

In [29], a method was introduced that involved a least-squares solution for

object reconstruction, followed by a block-based method for segmentation.

For video frames that are Nx × Ny in size, the result of this least-squares

formulation is also Nx × Ny in size; however, the resulting frames contain

a spatial-frequency filtered version of the image where each reconstructed

object has sharp gradients, and thus appears more visible.

The segmentation in [29] is implemented in a block-wise manner. Cross-

correlation is used to determine which image patches of the reconstructed

objects are most similar to the original image. These image patches are then

labeled as the object.

80



A gradient-based method could also be implemented in a similar fashion

to Chapter 3. Gradient-based methods work well because the reconstructed

object, having been formed in the spatial frequency domain, will have sharp

edges where the spatial-frequency domain was successfully reconstructed.

The gradient-based method used for segmenting periodic activities [24] is

also applicable to translating objects in video.

6.4.3 Video (Periodic)

The segmentation procedure for video containing periodic activity is identical

to what was presented for translational video in Section 6.4.2. Additionally,

we can isolate the θ that produced the dominant periodicity rather than the

dominant velocity.

One can isolate the θ with spatial frequencies which predict the same

T . These correspond to edge orientations that had the most evidence of

periodicity. The gradient method works well if there is consistent periodicity

detection along an angle θ (therefore strong, oriented gradients). An example

of the most dominant θ from the Weizmann movie daria-skip.avi is shown in

Figure 6.6(a), and the original video frame is shown in Figure 6.6(b).

Figure 6.6: (a) Reconstruction of the strongest orientations that are rigid
and periodic, and (b) video frame from original video.
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6.5 Conclusion

In this chapter, we produced a formulation for detecting periodicity in im-

ages and video which utilizes spectral estimation. We demonstrated how

one-dimensional projection signals can be created from images and video.

Using the Fourier slice theorem as motivation, one can gain valuable in-

sight from spatial frequencies that lie along a line at angle θ in the spatial

Fourier domain. There are three problems which we identified as similar

problems with similar solutions: periodic object detection in images, transla-

tional moving object detection in video, and periodic moving object detection

in video. Many other applications can utilize similar solutions, particularly

applications where the inspected image or video can be summarized as a

one-dimensional signal.

82



CHAPTER 7

SEGMENTATION-BASED PERCEPTUAL
IMAGE QUALITY ASSESSMENT

Computational representation of perceived image quality is a fundamental

problem in computer vision and image processing, which has assumed in-

creased importance with the growing role of images and video in human-

computer interaction (HCI) [8]. A system in which an algorithm can alert a

railroad track inspector of a defect that he or she is likely to have overlooked

is an example of HCI. This is a motivating reason to study the human visual

system (HVS), and to analyze how the HVS perceives distortion.

It is well-known that the commonly used peak signal-to-noise ratio

(PSNR), although analysis-friendly, falls far short of this need. We propose

a perceptual image quality measure (IQM) in terms of an image’s region

structure. Given a reference image and its “distorted” version, we propose

a “full-reference” IQM, called Segmentation-based Perceptual Image Quality

Assessment (SPIQA), which quantifies this quality reduction, while mini-

mizing the disparity between human judgment and automated prediction of

image quality. One novel feature of SPIQA is that it enables the use of

inter- and intra-region attributes in a way that closely resembles how the

HVS perceives distortion. Experimental results over a number of images and

distortion types demonstrate SPIQA’s performance benefits.

7.1 Introduction

An IQM that creates a computational representation of perceived image qual-

ity is needed in computer vision and image processing, and has assumed

increased importance with the growing role of images and video in human-

computer interaction. PSNR is the de-facto standard for quality assessment

due to its computational simplicity; however, its use of a pixel-based distance

metric fails to capture the human-perceived qualities of image distortion.
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Several other IQMs have been proposed recently [33], but none form a com-

putationally robust method that mimics the HVS. Humans comprehend the

contents of an image, and using mid-level techniques, an IQM should emulate

the HVS by examining the structure of an image and quantifying distortion

in terms of the perturbations to image structure. Segmentation is a mid-

level vision technique that captures the structure of an image and achieves

dimensionality reduction by dividing an image into regions that are defined

by their shape, color, size, and texture. SPIQA, our proposed IQM, achieves

superior results by using segment-based regions to quantify the distortion of

an image in terms of image structure.

We compare SPIQA against PSNR and the three IQMs which had the best

experimental performance in the recent survey paper [33]. Our IQM, like all

three of the IQMs in [33], had superior results to PSNR. SPIQA not only

outperformed the three IQMs in [33], but was able to train on only 13% of the

database that was used in [33] and achieved lower root mean square error

(RMSE) with respect to human opinion scores, even before the nonlinear

regression fitting that was necessary in [33].

The rest of this chapter is organized as follows: Section 7.2 summarizes

the previous work on IQM’s, Section 7.3 gives a description of the underlying

components that formulate the SPIQA measure, Section 7.4 presents experi-

mental results of the algorithm, demonstrating its performance as compared

to the IQMs that achieve the best results in [33], and Section 7.5 provides

concluding comments and future goals.

7.2 Background

The formulation of IQMs for image quality assessment (QA) is an old field.

IQMs can be divided into two categories, subjective or objective IQMs, ac-

cording to the amount and form of human intervention involved. (1) A

subjective IQM requires direct human intervention, since it is based on the

cumulative judgment of a group of human observers. This type of IQM is

heavily correlated with the observers’ preferences.

(2) On the other hand, an objective IQM analyzes a distorted image and

possibly a reference image, in the absence of any direct human intervention.

Most IQMs are of this type. Objective IQMs are categorized as either “full-
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reference” or “blind-reference” according to the availability of the reference

image. The former category renders a quantitative measurement of the qual-

ity of an image in the absence of the reference. Most IQMs fall into the

second category, where the measure is computed by comparing the reference

and distorted images. In this paper, we will discuss a novel, “full-reference,”

region-based IQM, SPIQA.

Traditional objective IQMmethods rely primarily on modeling and approx-

imating the functionality of HVS in terms of well-known image processing

operations. One of the first notable IQMs was the Just Noticeable Differ-

ence (JND) measure, which was developed in the seminal work by Lubin

([34]). JND and other traditional IQMs quantify the threshold of distortion

that must be exceeded before a human can perceptually detect that this dis-

tortion has been imposed on the reference image. These methods tend to

fall short of efficiently approximating the complex, nonlinear functionality of

the HVS. Also, some methods of this IQM type rely on parameters that are

dependent on experimental settings.

More recent objective IQMs are considered signal fidelity IQMs, since they

compute the measure based on inherent features of the pair of images only,

thus avoiding dependence on the experimental setup. In this work, we con-

sider three IQMs: (a) the simplest and the de facto standard measure of peak

signal-to-noise ratio (PSNR), and two signal fidelity IQM’s that showed the

best experimental performance in a recent survey [33]: (b) Multi-Scale Struc-

tural Similarity (MSSSIM) [35] and (c) Visual Information Fidelity (VIF)

[36].

(a) PSNR uses a pixel-based distance noise. However, this method fails to

capture the structure of distortions. Such structure plays an important role

in perception of distortion by humans, and occurs in most applications (e.g.

blocking artifacts due to JPEG compression).

(b) MSSSIM divides an image into rectangular blocks, or patches, and

computes first and second order statistics for each patch. These results are

combined to form the MSSSIM. It suffers from the following limitations.

First, its use of first and second order moments does not suffice to represent

the luminance distribution of image patches. Second, its “structural factor”

is independent of the spatial distributions of image values. The spatial rela-

tionships within the image are not explored, which are known to be important

to the HVS. This is evident from the phenomenon called visual masking [37],
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where respective luminance distributions and spatial localization of the im-

age regions are able to mask or enhance the presence of a distortion in a

specific region.

(c) VIF takes an information fidelity approach to the problem of image QA

using wavelet decomposition. No explicit interaction between wavelet sub-

bands is modeled. Instead, the subband-specific VIF measures are pooled

together independently to render the final overall IQM. This independence

counteracts a highly regarded factor in HVS literature ([37]), the contrast sen-

sitivity function (CSF), which renders certain wavelet subbands (especially

the lower and higher frequencies) less effective than others in determining

image quality.

In this paper, we propose a signal fidelity IQM (SPIQA), which manip-

ulates some of the important characteristics of the HVS, while remaining

independent of subjective factors related to the experimental setup. We

make use of the well-known psychophysical observation that human vision

tends to concentrate on coherent image regions instead of arbitrary image

blocks. Consequently, we propose to use features inherent to regions result-

ing from image segmentation. We impose inter- and intra-segment measures

that take into account possible regional interactions that have been ignored

by previous IQMs.

7.3 Region Based Image Quality Assessment

In this section, we describe how SPIQA is formulated. The major motivation

for our measure is to incorporate image segments in its definition, which

makes the quality measure depend on spatial structure in addition to image

intensity values.

Image segmentation partitions an image into disjoint regions that con-

tain pixels that are “similar” to each other, but “different” from the pixels

of another region. The problem of efficient and perceptually correct seg-

mentation is still an unsolved problem in computer vision, but there are

numerous algorithms in the literature that approximate the segmentation.

We use the segmentation algorithm implemented in [38]. In essence, this

multi-scale segmentation algorithm proposes a region model characterized

by a homogeneous region surrounded by ramp discontinuities. Thus, each

86



segment at every photometric scale includes ramp and non-ramp pixels. In

our implementation, we require that segmentation be performed at a single

photometric scale and only on the reference image, where the same segment

boundaries are also used for the distorted image.

Assuming that image segmentation is given, we compute the overall mea-

sure as a weighted sum of the regional image quality measures (RIQMs).

These weights summarize the importance of each segment in determining

the overall image quality. Before proceeding with in-depth explanation of

SPIQA, we present an outline of its structure:

SPIQA =
∑

segi⊂Iref

κi RIQMi (7.1)

κi = β1sali + (1− β1)sizei ; β1 ∈ [0, 1] (7.2)

where κi weighs the contribution of the RIQM in the ith segment. It sum-

marizes all inter-segment interactions by quantifying the importance of the

corresponding segment in terms of its overall saliency and size. RIQMi is the

regional quality measure and it summarizes all intra-segment interactions ac-

cording to how the HVS perceives the quality of each segment independently.

7.3.1 Inter-Segment Interactions: κi

The term κi is expressed as a linear combination of the following two nor-

malized factors:

sizei =
# of pixels in segi
# of pixels in Iref

, sali =
saliency of segi
saliency of Iref

Here, saliency is computed in accordance to human visual attention as de-

scribed in [39] (refer to Figure 7.1). We justify the use of saliency from a

human perception point of view. Humans concentrate on high-level features

of an image to identify its contents; however, the saliency algorithm computes

the saliency map using low-level features and on a pixel basis. By incorpo-

rating the pixel-based saliency map into our coherent regions, we are able

to incorporate higher-level features that better represent the focus of human
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attention. By virtue of κi’s, the effects of distortion on the image quality are

more influenced by the distortions in the most salient regions. To the best of

our knowledge, the use of such segment interaction is novel to non-traditional

IQM formulation, which usually assumes independence between neighboring

blocks or bands.

Figure 7.1: The reference image is on the left and its corresponding regional
saliency map is on the right. Lighter regions indicate higher saliency.

7.3.2 Intra-Segment Interactions: RIQMi

This section highlights the intra-segment interactions, which capture the

“similarity” between the reference and distorted segment. The YCrCb color

space (primarily the luminance component) is used, since it best approxi-

mates the HVS color perception among common color spaces. RIQM is de-

fined as the product of three factors: RIQMi = (∆Γi)
β3(∆Hi)

β4(∆NMi)
β5 .

These factors quantify the similarity in histogram, mutual information, and

spatial variation between the reference and distorted segment. They are

properly normalized to take on values in the range [0,1].

Gradient Similarity (∆Γ): We differentiate the reference and distorted

segment in terms of difference in Sobel gradient energy. This structural term

is absent in PSNR, MSSSIM, and VIF. Based on [38], a segment contains

either significant ramp or non-ramp pixels, which are distinguished according

to the variations of their luminance values with their neighbors. In fact, it

is important to evaluate the perceptual effects of distortion on these two

kinds of pixels. Therefore, we can write ∆Γ of a segment (p) as a linear
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combination of two terms: the gradient similarity at significant ramp pixels

(∆Γpr) and at non-significant ramps (∆Γpnr) as in (7.3) with β2 ∈ [0, 1].

∆Γp = β2∆Γpr + (1− β2)∆Γpnr (7.3)

where ∆Γpr and ∆Γpnr are defined as

∆Γpr =
2
−→
Γ refpr ·

−→
Γ dispr

∥
−→
Γ refpr∥2 + ∥

−→
Γ dispr∥2 + ϵ

(7.4)

∆Γpnr =
2
−→
Γ refpnr

·
−→
Γ dispnr

∥
−→
Γ refpnr

∥2 + ∥
−→
Γ dispnr

∥2 + ϵ
(7.5)

The Sobel gradient energy, Γ, that is used in (7.3)-(7.5) is computed from

the gradient of the image I: Γx(i) = ∥∇Ix(i)∥, where x defines the specific

region components (pr|pnr) and the specific image type (dis|ref).

Histogram Similarity (∆H): This term is a non-structural factor that

measures the difference in the distribution (estimated by a histogram) of the

luminance values of the pixels within the reference and distorted segment.

We define it as ∆Hp =
2
−→
H refp ·

−→
Hdisp

∥
−→
H refp∥2+∥

−→
Hdisp∥2+ϵ

. This factor improves on the SSIM

measure, since the difference in luminance distributions encompasses more

information than simply the 1st and 2nd moments.

Normalized Mutual Information Similarity (∆NM): This is another

non-structural factor, which builds on the assumption made in [36] that the

HVS reacts to the loss in mutual information between the reference and dis-

torted images. It normalizes the segment mutual information by the entropy

of the reference segment. We define it as ∆NMp =
I(Irefp ;Idisp )

H(Irefp )
.

We determine all five β values by minimizing the squared error between the

resultant SPIQA and the experimental human decisions, in difference mean

opinion score (DMOS) format, over a set of N training image pairs as shown

below.

−→
β ∗ = arg min

∑N
t=1 |DMOS(t)− SPIQA(t,

−→
β )|2

Contributions: The contributions of our proposed IQM are threefold: (1)

it uses image segmentation to delineate coherent regions of human attention,

(2) it quantifies both inter- and intra-region interactions in a manner that

conforms to certain functional aspects of the HVS, and (3) it quantifies the
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quality of an image segment via local (e.g. at ramp and non-ramp pixels)

and global features that represent both the structure and the content of each

segment.

7.4 Experimental Results

We evaluate our IQM on the LIVE database used by [33], which presents the

most recent and comprehensive survey of the performance of various IQMs

available in the literature. We will compare our proposed IQM with the ones

examined in [33] (i.e. MSSSIM and VIF) using the experimental human

results that [33] presents in normalized DMOS format.

First, we show empirical evidence that demonstrates the improvement in

an IQM’s performance when it is applied to image segments instead of rect-

angular image blocks. This justifies our claim that using segmented regions

for QA produces a measure that is more correlated to the HVS than using

the non-structural image areas described in prior work. For example, Table

7.1 shows the improvement in performance of a segment-based SSIM over

the original SSIM, which is in part due to the fact that the deterioration due

to block boundaries is significantly alleviated.

Table 7.1: Original SSIM vs. segment SSIM

CC RMSE
Original SSIM 0.7815 18.75
Segment SSIM 0.9257 6.120

Next, we learn the β values from 13% of the image pairs in the database

(i.e. 20 from each of the five distortion types) and compare the performance

of SPIQA against that of MSSSIM and VIF on the whole database. Figure

7.2 shows each raw quality measure before and after nonlinear regression (as

described in [33]). For visual purposes, we only consider a portion of the

LIVE database in these plots. The impact of nonlinear regression on both

VIF and MSSSIM is quite significant, while it is incremental for SPIQA.

Table 7.2 summarizes the performance of SPIQA, VIF, MSSSIM, and

PSNR. Here, all the database samples are used for training in order to com-

pare to the experimental results reported in [33]. These experiments show
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that SPIQA outperforms other measures of image quality, despite the in-

troduction of nonlinear regression. In fact, piecewise polynomial regression

results in more significant overall performance for SPIQA. This improvement

is primarily due to the similarity between the spread of the raw SPIQA mea-

sures and the DMOS values.

Table 7.2: RMSE comparison between SPIQA and (PSNR + MSSSIM +
VIF)

PSNR MSSSIM VIF SPIQA
JPEG2000 10.61 5.999 5.093 5.076
JPEG 12.17 5.465 5.318 5.585
WN 4.669 6.358 4.360 3.920
GBlur 11.44 5.823 3.991 4.117
FF 12.97 10.40 6.855 3.519

All Data 13.43 9.369 8.246 6.546

Table 7.3: SPIQA weights from 100 samples

β1 β2 β3 β4 β5
All Types 0 0.872 2.407 0.670 0.255

Table 7.3 shows the numerical values for the estimated β values. They rep-

resent the relative importance of each individual value in determining image

quality. From these results, we can make some remarks about the importance

of each factor in the SPIQA measure from its corresponding β value. This

dependence highlights not only the mechanism of the distortion, but also the

location of its manifestation in the image (e.g. at object boundaries, “flat”

intensity regions, or over the entire image). The β values and their meaning

are described as follows:

• β1: Regional saliency is the single inter-regional factor to be main-

tained. This term already has an inherent relationship with segment

size, as it is the normalized sum of all saliency values within a segment.

• β2: Significant ramp pixels tend to be more effective in detecting change

in image quality especially for distortion types that impose structured

alteration at locations close to strong edges (e.g. JPEG2000).

• β3: ∆Γ plays the most influential role in QA. This is due to the funda-

mental impact of structured organization on human visual perception.

91



Figure 7.2: SPIQA, VIF, and MSSSIM, before (top) and after (bottom)
regression.
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• β4: ∆H is critical in evaluating distortion types that produce significant

disruptions in regional luminance distribution (e.g. Gaussian blur).

But, the HVS seems to tolerate more change in ∆H than ∆Γ.

• β5: ∆NM is the least important factor, despite its informational de-

scription of human visual judgment.

7.5 Conclusion and Future Work

In this paper, we presented a novel segmentation based image quality mea-

sure, which models both inter- and intra-segment relationships, thus captur-

ing the HVS characteristics more effectively than previous IQMs. SPIQA im-

proves over the state-of-the-art quality measures by reducing the gap between

automatic prediction and human judgment of image quality.

For future work, we would like to explore the performance of the HVS when

performing certain inspection tasks, particularly for railroad track inspection.

We would be interested in detecting not only distortion perception, but also

object fixation as it affects inspection. If one were to quantify a per-region

human attention measure, it could assist in developing a computer vision

system whose primary goal is to alert an inspector to defects that he or she

is likely to overlook.
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CHAPTER 8

CONCLUSION

Computer vision shows great promise in railroad track inspection. Using

computer vision algorithms, many defect detection and object identification

solutions have been developed. We introduced an algorithm that detects and

segments periodically occurring objects in images. Initially, this algorithm

was developed for video data that involved objects that were oriented only

along one direction. The periodic objects were detected in a row-wise manner,

and spectral estimation was used. Spectral estimation is a valuable signal

processing technique that allows us to extract periodic signals from a one-

dimensional signal, and its robustness to noise allows it to effectively estimate

periodicity in real-world inspection images.

An extension of the method for detecting periodicity along one dimension

was presented that allows us to detect periodic objects that are oriented

along any direction. Additionally, no prior knowledge about the object’s size,

shape, or appearance is required. One-dimensional projections were obtained

from Gabor-filtered images, and orientation of the objects and direction of

periodicity was computed.

We presented a method for periodic activity recognition that also uti-

lizes the Fourier domain to form one-dimensional signals. From these one-

dimensional signals, which are computed in the Fourier domain, one can

detect periodicity and classify activity. Though periodic object detection in

images and periodic activity recognition in video may seem different, the so-

lutions are remarkably similar. The similarity was examined in Chapter 6,

and a broader formulation was developed for mapping images and video into

one dimension and utilizing spectral estimation to detect periodicity. Also,

the signals that we choose to analyze are oriented along some angle θ in the

spatial frequency domain, which is similar to the Fourier-slice theorem for

detection and spatial frequency estimation.

The general framework from Chapter 6 can be developed into numerous
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applications, and there should be future work to determine the full breadth

of inspection technologies that can benefit from this. Future research should

also be conducted to determine which parts of an image the HVS will focus

on. This will allow us to anticipate inspector inattention, which will assist our

algorithm in providing the objective assessment that humans cannot provide.

Overall, the use of signal-processing techniques has produced a robust set

of algorithms that should continue to be developed. Such algorithms utilize

global information across video frames, spectral estimation for robust peri-

odicity estimation, and a Fourier-slice type of examination in the Fourier

domain, which leads to more robust solutions. Future railroad track inspec-

tion technology should incorporate automatic detection and segmentation of

periodically occurring objects to achieve a more robust system.
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