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Abstract

This paper studies the problem of wrapper generation and proposes the concept of visual-relational data

extraction as the foundation for modeling wrappers. Towards large scale integration, we identify the key

requirements of wrapper deployment, and observe the limitations of the state of the art— which inherently

result from their low-level wrapper modeling. We thus propose the visual-relational modeling and develop

the execution and learning mechanisms. Our experiments show significant improvements towards satisfying

the accuracy and consistency requirements.
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Chapter 1

Introduction

Wrapper generation is fundamental for enabling data extraction from structured data sources, a crucial step

in information integration and search. This paper attempts to consider wrapper generation with a new

paradigm of modeling data sources. While various approaches exist, they all uniformly resort to HTML

features and tag patterns to model the “regularity” of sources. We observe that modeling is fundamental—

which inherently limit existing approaches to match several key requirements. As a different approach, we

propose visual relational modeling, which aim to specify wrappers with high-level features and only minimal

patterns.

While a well-recognized problem, with the prevalence of databases on the Web, wrapper generation is

increasingly a barrier for realizing large scale information integration across the Internet. On this “deep

Web,” numerous data sources provide structured information (e.g., amazon.com for books; cars.com for

automobiles) accessible only via dynamic queries instead of static URL links. To explore the contents

behind the surface from such databases, as a major hurdle, we must extract structured data from the query

results—which we refer to as data pages. To illustrate, Figure 1.1 shows two data pages from Yahoo, at

different times. Such data pages presents a set of records, e.g., [jobtitle, company, location, date], which are

dynamically retrieved from the underlying database.

With the proliferation of databases on the Web, users’ need to access such information has been pressing

and, consequently, wrapper generation has become the key enabling techniques. Current search services

cannot meaningfully index such data, precisely due to the challenge of extracting data from HTML text

pages. With effective wrapper construction, we will be able to enable large scale integration of specialized

and structured information, e.g., building vertical search over various structured domains such as jobs (e.g.,

simplyhired.com crawls and extracts job data from thousands of company sources) and shopping (e.g.,

thefind.com indexes product information from numerous vendors).

In practical deployment towards building large scale vertical search, however, we realized that current

wrapper approaches fall short in several critical aspects. To motivate, we systematically examine the full

life cycle of a wrapper, towards scalable and cost-effective wrapper deployment (Chapter 3). While we
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Figure 1.1: hotjobs.yahoo.com: two different dates.

identify three key requirements — accuracy,consistency, and intuitiveness — unfortunately, no existing

approaches satisfy all. While their induction approaches differ (Chapter 2), they are essentially identical

in their wrapper modeling, which rely on low-level HTML features and tag-sequence patterns, resulting in

wrappers that require rigid regularity, fragile to changes, and unintuitive to understand.

As our key insight, we propose to elevate representation to visual perception and to minimize the patterns

of wrappers to only relations between desired elements. Our proposal is guided by the “dual” principles of

wrapper modeling: high-level features and minimal patterns. With visual-relational modeling as the core, we

develop model execution for data extraction, and model induction for wrapper generation, thus completing

the overall framework.

We have performed extensive experimental evaluation, and the results demonstrate significant improve-

ment over existing approaches. For concrete and realistic study, we collected a large dataset, the 2Y5D

Dataset, over two years (October 2004 - August 2006) across five domains (Auto, Book, Job, Movie, Music).

We compare our visual relational framework to several representative existing approaches. For accuracy,

our system returns high F1-measure in the range of 85%-95%, outperfoming the second-best apporache by

a margin of 20%-55%. For consistency over time, our system preserves wrapper correctness for far longer

periods than existing approaches, in the range of 200%-700% times. We have deployed the system in building

large scale vertical search for the apartment domain, which requires building agents for thousands of rental

data sources, and our experience in the industrial setting has been encouraging and consistent with the

experimental evaluation.
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In summary, our contribution in this paper includes:

∙ Concept : we propose novel concept of visual-relational data extraction for wrapper modeling.

∙ Framework : We propose effective execution and learning of the visual-relational model.

∙ Evaluation: We extensively evaluated the accuracy and consistency of our approach over two years of real

dataset.
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Chapter 2

Related Work

Related works to ours are in wrapper induction research. We, therefore, want to compare with them in the

following two aspects of this topic.

Wrapper Model: In term of model language, most of previous works [1, 2, 3, 4, 5, 6, 7] use low-level

rules directly in HTML source code to skip unnecessary information and reach to specific pattern of desired

information. Baumgartner et. al. [8] uses prolog-like language called Elog, which contains visual-based

predicates such as before, after. However, these predicates actually reflex the internal order of HTML

tag structure rather than on the interface level. The main problem with these low-level languages is the

inconsistency of wrapper description in the context of rapidly updating and changing speed of webpages. To

the best of our knowledge, our work is the first research work which completely leverage the wrapper model

into visual abstraction level by using probabilistic visual relations. In term of output structure support, linear

approaches [6, 9] support a linear extraction without optional, repetitive and nested structure. Hsu et. al.

introduce non-linear finite-state transducer on SoftMealy to deal with missing and multi-value attribute.

Hierarchical-model-based approaches in STALKER [3], RoadRunner [1] and XWRAP [10] support all kinds

of attribute variation such as missing values, multi-value and nested structure. The relational visual model

presented in this paper provides all of these supports.

Induction technique The very first approach focuses on developing some declarative languages to assist

users in constructing wrappers. These languages are proposed as simpler alternatives for common functions

written in general programming languages. Some systems belong to this approach are [11, 2]. Building rules

in these supported languages is not intuitive and extremely error-prone to users.

Supervised learning approaches to learn data extraction rules and/or patterns. Later on, these rules

and patterns are used to identify data elements that follow them and assign label. The usual accuracy of

this approach is not very good since most data does not always follow the same rules and patterns. Many

induction systems have been introduced include in [5, 3, 6]. In our approach, we only need one training

example which require no expertise from users. Even with minimal input from users, our technique achieves

a very high accuracy because most of the inconsistency has been removed when we leverage our system into
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the highest level of abstraction. It is also worthy to know that in the context of this paper, we consider our

approach as semi-automatic even though the implemented system is fully automatic with additional domain

knowledge - in comparison with RoadRunner [1] needs at least two similar pages and ViNTs [7] requires

both multi-record pages and non-result pages from search engines.

Automatic learning [1, 12, 13] base on the regularity of HTML structure as the basis for alignment and

extraction. These methods, however, are not very robust since they require very structured input pages

to have a good accuracy. Not to mention many of the pages different data record might have different tag

structure because of their format different. Generally, the output of these approaches need to be intensively

post-processed to be used. In our approach, we require minimal label training records (i.e. user just hight

light what they want on one data record) to avoid post-processing and labeling. As noted above, the

technique in this paper are comparable with automatic learning technique.

Visual Usage: In a different perspective, related works to our paper also contain papers which use visual

information in extracting/alanyzing webpages [14, 7, 15, 16, 17]. Deng et. al. use visual alignment to identify

the meaning of webpage regions such as banner, main content, menu, etc. Webform analyzing research

[16, 17] also partially/fully use visual information in identifying form elements as well as associating with

corresponding labels. ViPER [15] utilizes visual bounding box as the main measure in ranking data regions

which helps to eliminate low-informative data regions in output. However, the extraction algorithm in ViPER

(i.e. Global Sequence Alignment) is applied completely in HTML source code. ViNTs [7] has an interesting

idea in introducing the visual block regularity in extraction. However, this method is not applicable in

extracting detail attributes of each data record where the attributes are written in a sequence (e.g. book’s

attributes in Amazon.com) since the shapes of each data record is completely different. Moreover, the paper

made a very strong assumption to have both resulted and non-resulted pages from search engine which

virtually give the correct extracted regions. The technique in ViNTs is also trickly since it depends too

much on multiple heuristics to identify first content line of a records.
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Chapter 3

Motivation: Model Matters

Observation: Wrapper through Life Cycle. Let’s start with observing the “big picture” for a wrapper

in its full course of operation. In Figure 3.1, centering around a wrapper (the shaded box), there are several

key stages of creation, execution, and maintenance.

∙ Wrapper Creation & Repair:. At the very first wrapper creation stage, a “wrapper developer” creates a

wrapper for a source (e.g., amazon.com books). Essentially, such creation will build a wrapper model, which

we denote Ω, for specifying the template structure of the source for data extraction.

This stage has been the focus of most wrapper research–How to automate wrapper generation as much as

possible? Many “mostly automatic” approaches have been developed, as Chapter 2 discussed. In particular,

as a representative category, wrapper induction takes a few example pages from the source and automatically

“induce” the underlying template as HTML tag tree patterns, which is then used as the model Ω for data

extraction by recognizing the same tag patterns in future pages.

No current solutions are fully automatic; they all require certain amount of manual efforts—typically for

collecting one or multiple training pages, labeling these pages, or matching the induced template slots to our

desired data attributes. As an example, the RoadRunner system [] takes multiple pages in training, does

not need labeling, but requires developers to check the output templates and select some slots as desired

attributes (say, in the pattern <li><i>Title:</i> . . . <href> #pcdata </href> . . . </li>, the #pcdata” slot

is for attribute title).

The stage also handles wrapper repairing. When a wrapper breaks, such as due to source changes,

the developer will fix the wrapper, either by regenerating it from scratch (requiring collecting new training

example pages, labeling, etc.) or by inspecting and fixing the model directly.

∙ Wrapper Execution:. In regular production, at the wrapper execution stage, we will use the wrapper to

extract data records from input pages from the source. Essentially, the wrapper will execute its model Ω

over each input page, i.e., to match Ω (say, as tag tree patterns in RoadRunner) with the page and thus

extract data in desired slots. Thus routinely, given data pages as input, the wrapper outputs extracted data,
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Figure 3.1: Wrapper through its full life cycle.

by executing its model trained earlier.

The exact execution (or “parsing”) mechanism depends on how the model is expressed. For instance, in

most induction approaches, when Ω uses tag tree path patterns, the wrapper find the matching paths (and

data elements) from the DOM tree of an input page. If Ω uses tag delimiters, then the wrapper would locate

the matching tags and identify data values in between.

∙ Wrapper Verification:. Over time, a wrapper may break—i.e., it can no longer extract data satisfactorily

from the source—since the source may change. When the source changes its page structure, the wrapper’s

model Ω does not match the source pages well any more. As such changes are expected, in the wrapper

verification stage, we must regularly check the “health” of the wrapper, e.g., by monitoring the quality of

the output data. If the wrapper indeed breaks, it will be sent back to the first stage for repairing.

Not all source changes will break a wrapper. The exact impact depend on the particular model of the

wrapper. Since different wrapper approaches use different model and execution mechanisms, they will differ

in how their wrappers can react to changes. For instance, as most induction approaches resort to HTML

tag path patterns, for any small change (say, by inserting an addition tag <b>. . .</b>, a path pattern may

become mismatching.

Implications: Wrapper Requirements. Throughout the life cycle of a wrapper, we can clearly identify

several important requirements for its effective operation. As the basis, Figure 3.1 marks the performance

“parameters.”

∙ Labor L: In creation-&-repair, how much manual labor work does it require?

∙ Cost S: In creation-&-repair, what skill does it require?
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∙ Accuracy P1: In execution, how accurate is the wrapper?

∙ Consistency P2: In verification, how consist does the wrapper remain correct over time?

With these key parameters that characterize various aspects of a wrapper approach, we clearly identify

the following requirements for a wrapper framework to be effective.

∙ R1: Accuracy:. To produce high quality data, we require high accuracy; i.e., to maximize P1. To achieve

accuracy, a good framework must be robust in handling various sources with varying degrees of template

“regularity” to induce.

∙ R2: Consistency:. To reduce maintenance cost, we require high consistency; i.e., to maximize P2. To

achieve consistency, a good framework must be resistant to source evolutions with varying degrees of change

significance. We stress that, with the rapid evolution of Web data, sources tend to change more and more

frequently, and thus consistency is crucial.

∙ R3: Intuitiveness:. To reduce human cost, we require high intuitiveness of working with the framework;

i.e., to reduce sophisticated work, or L and S. Where is the manual work? To begin with, as just explained,

full automation is unlikely, and most approaches require certain manual work in preparing the input and

matching the output of wrapper creation. Further, as no such “automatic” approaches can guarantee 100%

accuracy, a developer often needs to correct or tune a wrapper (including repairing broken wrappers). Thus,

in addition to reducing the amount of work L, we also desire that the generated wrappers—or their models—

are easy to understand by users.

Problems: Current Deficiencies. As we outline the requirements, we found that, unfortunately, no

current approaches meet all the requirements. We discuss each requirement in turn. To be concrete, we use

two example pages from hotjobs.yahoo.com, as Figure 1.1 shows, collected at two different dates (August

2005 and October 2004, respectively)—excerpted from our 2Y5D-Dataset (a set of pages over two years in

5 domains; Table 5.1.

First, for accuracy: Most current approaches require rigid regularity in HTML tag path sequences with

a fundamental assumption that all data records share similar tag paths. Such assumption can often be

violated with today’s increasingly complex page styles and HTML coding, and thus compromise accuracy.

Consider a simple example in Figure 1.1b, where the odd and even rows (in the tabular listing) are of

different formats, which are results of different underlying HTML tag values and tag structures. Thus the

DOM subtrees of even and odd tuples can be quite different. This type of page, therefore, causes difficulties

for current approaches that use HTML tag patterns—essentially because that the regularity at the HTML
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level is limited. (Our experiments in Chapter 5 validate this observation by comparing the robustness of

different approaches for different structures.)

Second, for consistency: All current approaches rely on quite “low-level” and “internal” page features

in their modeling, which are rather sensitive to even small changes in sources. The existing framework all

resort to HTML-level characteristics, such as DOM structure, color, text pattern, length of data, text size,

etc., as their features for modeling (the Ω). Those features are only seen in the HTML coding—and not

visible to end users; thus they represent low-level and internal detail that may change, even when the desired

elements are largely unaffected. Consequently, the current approaches compromise consistency, with their

choice of model features.

For example, observe the two pages in Figure 1.1, which captures the evolution of the hotjobs.yahoo.com.

While the visual characteristics are quite similar (e.g., the attributes are aligned in the same way visually),

their underlying HTML features are radically different, and will break any wrappers that remember such

patterns. (Chapter 5 also validates this observation by comparing the consistency of different approaches

over a two-year course.)

Third, for intuitiveness: With the low-level HTML features and tag path structure as their model ex-

pression “language,” current wrappers require users who can speak HTML code. While everyone can browse

Web pages, it requires relatively skilled programmers to manipulate HTML code. Thus, current approaches,

again, compromise intuitiveness.

For instance, for patterns generated by say RoadRunner, the developer needs to match the data slots to

attributes, which will require reading HTML code (and regular expressions) of <li><i> Author: </i> (<br>

#pcdata </b>)+.

Insight: Model Matters. As we just analyzed, it becomes evident that the deficiencies of current state of

the art are inherently due to the choice of modeling—i.e., how we describe extraction patterns. While many

approaches have been with different techniques, surprisingly, to date, they all uniformly assume HTML-level

features and patterns as the modeling language. The low-level modeling has resulted in relying on rigid

patterns (thus reducing accuracy), sensitive to internal and small changes (thus affecting consistency), and

requiring HTML skill (thus barring intuitiveness).

Our main thesis in this paper is, therefore, the choice of modeling matters. We aim to address the

current deficiencies by understanding the impact of modeling, and to propose an effective framework with

novel modeling.

The Wrapper Modeling Principles. Reflecting on the limitation of current approaches, we believe that

appropriate modeling must follow two principles:

9



∙ High-level Features: As just explained, current modeling relies on low-level HTML features that are

internal to a page (or invisible to users), which are thus likely irregular and unstable. Our modeling should

use “high-level” features that are visible to human users.

∙ Minimal Patterns: Further, current modeling also relies on regularity patterns that involve tag sequence

that are either paths leading to the desired elements or delimiters around them. Such patterns tend to

be compromised by even changes only in the surrounding context of elements (e.g., adding a link to

each author, or inserting a “Used Price”.) Our modeling should use use “minimal” patterns that only

concentrates on elements of interest, and not their surrounding context.

Our Proposal: Visual Relational Modeling. Guided by the dual modeling principles, we develop a

novel wrapper framework consisting of a new model and the associated learning and execution techniques.

As the key foundation, our propose to construct wrappers with visual features and relational patterns. On

one hand, form the Principle of High-level Features: We elevate the level of abstraction for our wrappers

to the visual -level features of a page—exactly as what human users will see of the page as rendered by a

browser, which is probably the highest-level possible. On the other hand, from the Principle of Minimal

Patters, we concentrate our patterns to only those relations between desired elements (and not surrounding

tag sequences). Thus, to see explicitly what “elements” are desired, we require input of one example record.

For instance, consider Figure 1.1, supposing we want to extract jobtitle, company, and date. Focusing

on these elements, we may describe them as, left(jobtitle, company) (jobtitle is at the left of company) and

left(company, location). Note that they hold for both pages of different times.

System Setting: We conclude with concrete definition of our system setting.

Input : One or more example data pages, where

one record is labeled with attributes desired.

Output : Wrapper for extracting similar data pages.

3.1 Visual Relational Wrapper Model

At the core of our system, we need a mechanism for specifying a wrapper. For a wrapper W to extract data

from a page P, such a specification, or a model, should describe what elements on the page are of interest

and where they are.

The effectiveness of a wrapper essentially hinges on its model. As the driving mechanism of a wrapper,

the model determines the performance of the wrapper and serves as the interface to users who “train” the

10
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Figure 3.2: Example page fragment (amazon.com).

wrapper. Thus, our requirements (Section 3) for wrapper—accuracy, robustness, and intuitiveness–directly

translate into the desired properties for the model.

Thus, we believe that wrapper induction is not simply the problem of learning patterns and inducing

a model—the choice of models does matter. As Section 3 explained, while various solutions exist, they all

universally assume the “standard” HTML as the representation of their modeling of Web pages. Because

their wrapper models similarly amount to the specification of tag sequence patterns in HTML trees, while

their induction approaches differ, they all suffer the limitations inherent in the choice of modeling.

As our main insight, to meet the requirements, our model clearly distinguishes from the traditional

specification: We propose visual relational constraint model for specifying a wrapper, which elevates page

representation to the visual (instead of hidden HTML code) level and minimize the constraints to only

relational (instead of sequence) patterns between elements of interest.

Given an HTML data page, which contains a set of data records (which are usually results in response

to a query), since a wrapper aims to extract those records, its model must describe, on such a page, how to

locate such records—i.e., for each record: What are the desired elements? Where are them on the page? As

our running example, we consider the page fragment, as Figure 3.2 shows.

What: Schema. First, what elements are of interest? Essentially, as we are looking for a set of records,

we are asking what consists such records, or their “schema.” We assume a record as a flat set of attributes,

each of which can be omitted or repeated. We found this structure simple yet sufficiently expressive for

most data sources. As we focus on extracting values of data elements, and not their potential hierarchical

structure, we are viewing records as “flattened”–which is nature in most cases. Even for the rare cases when

data is nested (e.g., airfare itinerary, where a record contains departure and returning, each can be a record

of several attributes, e.g., time and flight), our model can still target the desired elements and extract their

values, although without the potential hierarchy (e.g., as time1, flight1, time2, flight2). Further, the flexible

multiplicity of attribute occurrence, as we found, is frequently required as data is not always uniform (e.g.,
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a book record may not have an cover, or may have multiple author).

Thus, as the first component of our model (the “what” component), we define schema of a record

(E , T ,Q) for specifying a set of attributes E= {a1, . . . , an} , their types in T = {t1, . . . , tn}, and quantifiers

Q = {a1, . . . , an}. That is, S specifies some n attributes, each with an attribute name (or attribute identifier)

ai, type ti, and a quantifier qi. Comparably, this component can be considered as a set of attributes E = {ei}

(represented by attribute names). Each attribute ei is a 2-tuple (type, quantifier).

Example 1 (Schema): For our example (Figure 3.2), suppose we are interested in, for each book, the

cover image or cover, title, author, format (hardcover or paperback), and “Buy New” price. As types, we see

that author and format are plain text, title is an link (or “anchor text”), cover is an image and price is number.

As quantifiers, all the attributes will appear exactly once, except author, which may appear multiple times.

The schema model of the desired book records is thus E= { cover(image, 1), title(link, 1), author(text, +),

format(text, 1),newprice(number, 1) }

To describe types, the system supports a customizable set of types T , which ei : type is drawn from, i.e.,

ei : type ∈ T . Even though we keep type set T opened in our framework (for the purpose of customization and

flexibility), the implemented type-recognizer in our framework is error-free since T is a generalized concept

of standard HTML-tag set. The type set, however, can include any “domain” of values that are of interest

to the application and that can be recognized from pages.

To describe the multiplicity of an attribute, i.e., how many values may occur, the system supports the

set of quantifiers Q. We adopt the standard regular expression quantifiers, Q = {1, ?, +, ∗}.

Where: Visual Relations. Second, where are those elements of interest? While existing wrapper

approaches all “address” elements by HTML tag path patterns, we take a fundamentally different view. For

describing the “where,” as the second component of our model, we provide matching patterns in therms

of constraints on the elements, where each constraint is gauged at the visual level (and not the HTML

tags), and involves only the elements of interest (and not the irrelevant sequence in the surroundings). Each

constraint is thus a binary visual relation between a pair of desired attributes. Note that in principle, n-ary

relations are possible; we choose to use only binary relations, for intuitiveness and simplicity.

Our design of visual relations follows directly from, as Section 3 motivated, the principles of the highest

level of presentation and the minimal extent of patterns. To be at the highest level, we gauge the visual

perception of users and, to be minimal, we characterize only those desired attributes. Consider Figure 3.2

with the schema in Example 1, how to describe where these attributes are on the page? With visual relations,

our patterns would describe how the attributes relate, in terms of visual layout, to each other. For instance,

cover is at the left of title or left(cover, title); title is at the top of price or top(title, price), and cover is at the

12



left of price or left(cover, title), etc.

In determining whether a particular visual relationship holds, we use each element’s visual positions as

determined by browser rendering—i.e., as human users would see it. Specifically, for a given page, such

visual elements will be produced by rendering the page as in a browser and then “tokenizing” it into basic

units, each associated with visual positions on the page. We characterize each element by its entire span,

i.e., , the tight bounding box that encloses the element: We view the page as a Cartesian coordinate system,

with the top-left corner as the origin (0, 0). On the page, each element is a rectangle with a “start point”

(x, y) as its top-left corner, from where each dimension extends a range, width and height respectively, as a

rectangle area, and thus its visual coordinate is (x, y, widtℎ, ℎeigℎt). To determine a visual relation of two

elements a1 and a2, we simply compare their coordinates, i.e., (a1.x, a1.y, a1.width, a1.height) versas (a2.x,

a2.y, a2.width, a2.height).

To describe such visual relational constraints in our model, the system should support a set of predicates

as the vocabulary. While these predicates may capture various relationships between elements, as Section 3

motivated, we want them to be intuitive and easy to understand by users—and thus we wish to keep these

predicates simple yet sufficient in capturing the visual arrangement of records.

What are essential predicates to support? As the essence of visual layouts, we observe that every data

page share common presentation characteristics:

∙ Two-dimensional topology: Elements are related to each other in both the x-dimension, left and right,

and the y dimension, top and bottom. As the relations are symmetric, we support predicates left(⋅) and

top(⋅). E.g., as noticed earlier, in Figure 3.2, we have left(cover, title) and top(title, price).

∙ Tabular alignment: Records are often laid out in some tabular alignment, such as, for the row orientation,

horizontally aligned and, for the column orientation, vertically aligned. Thus, correspondingly, we support

predicates alignx(⋅) and aligny(⋅). E.g., in Figure 3.2, since the cover image is vertically aligned with title,

their relation aligny(cover, title) holds true.

Overall, to capture these essential characteristics, we need to support only four predicates V = {left,

top, alignx, aligny}. While the choices are naturally motivated by the visual characteristics of record layout

patterns, they prove to be very effective in our empirical study (Section 5). While expressive, as only a small

number of simple relationships, these predicates are quite intuitive to understand and easy to determine,

which indeed meet our requirements.

Definition 1 (Visual Relations): A visual relation between attributes a1 and a2 is a binary predicate

r(a1, a2), where r ∈ V ≡ {left, top, alignx, aligny}. Each predicate is determined as follow:
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∙ left(a1, a2): true if a1.y + a1.width ≤ a2.x.

∙ top(a1, a2): true if a1.y + a1.height ≤ a2.y.

∙ alignx(a1, a2): true if ¬left(a1, a2) ∧ ¬left(a2, a1).

∙ aligny(a1, a2): true if ¬top(a1, a2) ∧ ¬top(a2, a1).

Since a relation describes a predicate between attributes, it is either true or false in each record—However,

it may not hold uniformly across all records. Some relations may hold for all records, e.g., in Figure 3.2,

left(cover, title) does hold for all the records. However, in contrast, for record 1 and 2, observe that title

is at the top of format (“hardcover”), which does not hold for record 3 (where title is at the same row as

format “paperback”); thus, top(title, format) is inconsistent from record to record. Such “inconsistency”

can result from either “client-side” rendering settings or “server-side” data characteristics. Client-side effect

comes from the reason that data is longer than the width of its container (e.g., document, browser, etc)

and thus automatically goes to a new line. This inconsistency, however, is rather easily to be removed by

extending the canvas width in buffer while rendering the page. The technique is very cheap and trivial in

implementation. We call the state gained by applying this technique as unbounded-canvas environment (will

be used in our framework)/.

Therefore, as visual relations may not be consistent across predicates, we need to capture their “fuzziness”—

in a probabilistic sense. For our toy example as just mentioned, top(title, format) holds true for 2/3 or 67%

of the time, statistically, while left(cover, title) holds 3/3 or 100%. Each visual relation r in our model will

thus associate with a probability p(r), written as r:p(r), which indicates how likely r will hold true in a

record, e.g., top(title, format):0.67 and left(cover, title): 1.0.

Example 2 (Visual Relations): Continuing Example 1, for our example page, what are the visual rela-

tions?

Examining every pair of attributes from E , we may identify several visual relations with non-zero

probabilities—i.e., holding true in at least one record. For instance, between cover and title, checking

each relation r in V, we find that left(cover, title) and aligny(cover, title) hold for all three records, thus both

100% (and top and alignx are of zero probability). For the reversed pair, i.e., (title, cover), only aligny holds

(with 100%).

We can similarly check for the remaining pairs, to obtain the set of visual relations ℛ = {left(cover,

title):1.0, aligny(cover, title), aligny(title, cover), top(title, price): 1.0, top(title, format):0.67, left(cover, ti-

tle):1.0, ⋅ ⋅ ⋅ }

Overall: Wrapper Model. With the schema E and visual relations ℛ in place, in our system, we
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define a model Ω = (E , ℛ), which specifies what attributes and where they are, for a record in our target

data page to extract. E.g., for our example (Figure 3.2), Ω consists of the schema in Example 1 and visual

constraints in Example 2.

Definition 2 (Visual Relational Wrapper Model): The visual relational wrapper model for a data page

is a 2-tuple Ω = (E , ℛ), which specifies the schema and visual characteristics of the records on the page:

E is the set of 2-tuple attributes e(type, quantifier) with type e : type and quantifier e : quantifer, and ℛ

the set of visual relations between the attributes.

3.2 Model Execution: Extracting Data

In this section, we formulate the model execution architecture. Given a model Ω={E ,ℛ} and a page P, we

need to output a maximal set of non-overlapping tuples (i.e., data records) Υ = {Υi} ∈ P which is generated

by Ω. We call the probability that a tuple Υi is generated by visual model Ω is p(Υi∣Ω). If p(Υi∣Ω) is too

small, it is unlikely that Υ is generated by Ω and thus not a good candidate tuple to be extracted. Therefore,

we use a generative threshold �0 as lower-bound of generative probability to determine if a candidate tuple

Υi is considered to be generated by Ω. In other words, a candidate tuple Υi is a valid tuple if and only if

p(Υi∣Ω) ≥ �0. The higher p(Υi∣Ω), the better tuple Υi is. P (Υi∣Ω), hence, also indicates the ranking score

of a candidate tuple. Consequently, the output of our model extraction is a maximal non-overlapping set of

valid tuples {Υi} with highest ranking score (Equation 3.1)

Υ = Argmax{Υi∣p(Υi∣Ω)≥�0}
∑

Υi∈{Υi}

p(Υi∣Ω) (3.1)
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Note that visual model Ω, by definition, holds the statistical measures of visual relations among attributes

of a data record. Each of such measures, in fact, represents a generative distribution of one relation between

two attributes. For example, with a simple pair of two 1-quantifier attributes ei, ej ∈ E (ei : quantifer

= 1 and ej : quantifer = 1), relation r(ei, ej) : pr has only two possible instantiations: r(ei, ej) = 1 or

r(ei, ej) = 0 (i.e., r holds or not hold) with probability of pr and (1−pr) respectively. The real distribution,

however, can be much more complicated (Section 3.2.1) since we support all possible quantifiers. Each

combination of ∣R∣ relation instantiations, in turn, denotes a specific alignment layout of target data records

which we call relational schema configuration (or schema configuration in short). Since schema configurations

capture all possible variations of alignment layout of a data record, a record candidate essentially follows

one specific configuration. Our extraction framework is, thus, three-phased. First, consider visual model Ω

as a visual alignment generative model, we generate schema configurations and their generative probabilities

(Section 3.2.1). Second, toward an efficient parsing, we optimize the parsing order in order to identify invalid

configuration as soon as possible, the information are stored inside a tree structure called configuration tree

Tguide (Section 3.2.2). Third, we parse page Pfollowed the guidance of Tguide and aim for the top-ranked

dataset which satisfies Equation 3.1 (Section 3.2.3).

3.2.1 Relational Schema Generative Model

As Section 3.1 discussed, our visual model Ω captures the relative alignment information between each pair

of two attributes (i.e., visual relations). As such, two data records should be considered the same (i.e.,

identical generative probability) w.r.t. generative behavior from Ω as long as they share the same schema

configuration. Implicitly holding statistical distributions of visual relations, our visual model, thus, is a

generative model of schema configuration. The generative probability of a record implies generative prob-

ability of its schema configuration. This section explains internal components of the schema configuration

generation.

Model Reduction

Schema configuration is a combination of relation instantiations. Ideally, each relation r(ei, ej) of two

attributes ai, aj should only contains two instantiations: either hold or not-hold. Unfortunately, this is not

always the case. A multi-instance attribute (e.g., author in Amazon’s books) with “+”/“*” quantifier can

make its relation become fuzzy since the relation might hold with some instances but not-hold with the

others. Such fuzziness is further deepened with optional attributes (i.e., “*” and “?”). Identified the source

of relation instantiation fuzziness, we therefore want to reduce the quantifier set. Firstly, we observe that
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(e+) = (e1)(e∗) and thus a “+”-attribute can be replaced by one “1”-attribute and one “*”-attribute. This

conversion is done by quantifier decomposition operator QD (Definition 3). Secondly, we further observe

that an optional attribute become non-optional if we include null in the data type. This transformation

(denoted by QR) is formalized in Definition 4.

Definition 3 (Quantifier Decomposition): A quantifier decomposition operator (QD) is an operator

which transforms a visual model Ω = (E = e1, . . . , em, ℛ) containing some “+”-quantifier attribute ek into

model Ω̈=(Ë , ℛ̈) without such attribute by replacing ek(type,+) by two attributes e1
k(type, 1) and e∗k(type, ∗

so that

∙ Ë = {e1, . . . ,e1
k, e∗k, ek+1,. . . }

∙ ℛ̈ = ℛ−ℛk + Replace(ℛk, ek, e1
k) + Replace(ℛk, ek, e∗k) where ℛk is relation set of ek

Definition 4 (Optional Removal): An optional removal operator (QR) is an operator which transforms

any optional attribute ek(type, quantifier) of visual model Ω into non-optional attribute ëk(type ∪ null,

quantifier) where ëk : quantifier =“1” if ek : quantifier = “?′′ or ëk:quantifier=“+” if ek:quantifier=“*”.

By applying two operators QD and QR in that order, the induced model guarantees to have only two

types of quantifier: “1” and “+”. This 2-step model transformation seems to pose internal conflict (i.e.,

first remove +-attributes and later transform to +-attributes again) but, in fact, it does not. After 2-step

transformation, every +-attribute is guaranteed to have type with null included. This plays a crucial role to

identify the hidden distribution of relation instantiation which decides the generative behavior of Ω. From

now on, we assume visual model contains only quantifier “1” and “+”.

Relational Schema Configuration Generation

We can safely assume that every +-attribute contains at most N∗max instances. N∗max is called instance-bound.

Empirically, in our system which operates on dataset 2Y5D, we choose N∗max=3. From model reduction,

we know that every +-attribute of model Ω (after reduced) accept null as a valid type. As a sequence, a

+-attribute ei is comparable with a N∗max-tuple {e1
i , . . . , e

N∗
max

i } where eki can be a null instance.

Relation instantiation: implicit distribution With the probabilistic relation set ℛ, we now define

the underlying distribution of each relation r(ei, ej) ∈ ℛ. As noted above, relation instantiation depends

entirely on relevant attribute’s quantifiers. As such, given pr as the probability of relation r ∈ ℛ, we have

three scenarios of set {ei:quantifer, ej :quantifier} as follows.
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First - {“1”, “1”}: There are two possible instantiations Inst1 when r(ei, ej) hold and Inst0 when

r(ei, ej) not-hold with probabilities

P1(r = Instk∣Ω) =

⎧⎨⎩ pr if k = 1

1− pr if k = 0
(3.2)

Second - {“1”, “+”}: Without loss of generality, we assume ej is the “+”-attribute. Thus, relation

r is actually a set of N∗max primitive relations r(ei, e
k
j ) with k=1 . . . N∗max. Intuitively, r has (1 + N∗max)

instantiations {Instk} where Instk indicates that there are exactly k primitive relations hold. There are

C
N∗

max

k =
n!

k!(n− k)!
different picks for such k-set of hold relations from N∗max primitive relations; each with

probability of pkr .(1− pr)N
∗
max−k. Therefore, the probability of a relation instantiation Instk is:

P2(r = Instk∣Ω) = C
N∗

max

k .pkr .(1− pr)N
∗
max−k (3.3)

Third - {“+”, “+”}: Similarly, this relation is actually a set of (N∗max)2 primitive relations r(eui , e
v
j )

with u, v=1 . . . N∗max. Thus, r has (1 + (N∗max)2) instantiations {Instk} where Instk indicates that there

are exactly k primitive relations hold. The probability of a relation instantiation Instk is:

P3(r = Instk∣Ω) = C
(N∗

max)2

k .pkr .(1− pr)(N∗
max)2−k (3.4)

Generation Behavior and Generative Probability We now discuss how model Ω generates rela-

tional schema configurations. By definition, model Ω represents nR = ∣ℛ∣ distributions of visual relation.

For each relation r ∈ ℛ, Ω simply decides to select one instantiation Instr with probability P (Instr∣Ω).

The final result of nR such selections on all r ∈ ℛ is an nR-set of relation instantiations which we call

schema configuration. The probability that Ω generates a configuration is called configuration generative

probability. We now formalize such probability. Assume all relations in ℛ are mutually-independent then

each selection of relation instantiation is also independent from others. As such, configuration generative

probability P ({Instr}∣Ω) of a configuration that relation r has instantiation Instr is product of its instan-

tiation probabilities P (r = Instr∣Ω) (Equation 3.5). A configuration with generative probability not less

than generative threshold �0 is considered a valid configuration. Ones with probability less than �0 are called

invalid configuration.

P ({Instr}∣Ω) =
∏
r∈ℛ

P (r = Instr∣Ω) (3.5)
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Where P (r(ei, ej) = Instr∣Ω) =⎧⎨⎩
P1(r = Instr∣Ω) if both ei, ej are 1-attributes

P2(r = Instr∣Ω) if either ei or ej is 1-attribute

P3(r = Instr∣Ω) if neither ei, ej is 1-attribute

3.2.2 Configuration Tree: Parsing Efficiency

Invalid configurations are unimportant in our extraction framework since they represent data records which

are unlikely to be generated from Ω. Generally, to identify if a configuration C = {InstrC} is invalid (InstrC is

instantiation of r in C), we need to check its generative probability follows Equation 3.5. Intuitively, if there

exist a subset Csub ∈ C (called partial configuration of C) so that
∏

Instr
C
∈Csub

P (r = InstrC ∣Ω) < �0, then C

is definitely an invalid configuration (since
∏

Instr
C
∈C

P (r = Instrkr ∣Ω) ≤
∏

Instr
C
∈Csub

P (r = InstrC ∣Ω)). Such

Csub is called invalid partial configuration. Consequently, an invalid configuration can be identified without

the need to identify all of its relation instantiations as long as we find an invalid partial configuration of it.

To capture the generative probability of such partial configurations, we need to consider the configuration

generation process as a sequence of relation instantiation generation. The generation process, with respect to

a specific generative sequence (r1, r2, ..., rnR
) , can be represented by a nR-depth tree called configuration tree.

A node in level i represents a partial configuration (Instr1 . . . Instri), each node in level i has exactly N
ri+1

Inst

children with N
ri+1

Inst is the number of instantiations of relation ri+1 . Each child in level (i+ 1) is a partial

configuration which extends from its parent configuration with one specific instantiation of ri+ (denoted by

the edge from its parent). In general, level i of a configuration tree w.r.t order (r1 . . . rnR
) holds all possible

partial configurations of a set of relation r1 . . . ri. Therefore, Leaf nodes are schema configurations (i.e.,

partial configuration of all relations) with configuration generative probability. The sequence (r1, r2, ..., rnR
)

is called parsing order.

Example 3 (Configuration Tree): Assume model Ω = (E ,ℛ) from Amazon.com has E={title1, author+,

UsedPrice1 } where superscript denotes attribute’s quantifier. ℛ = {r1 = left(title, UsedPrice):0.7, r2 =

left(author, UsedPrice):0.6, r3 = top(title, UsedPrice):1}. Generative Threshold �0=0.1, instance bound

N∗max=2 for book on Amazon. Notationally, we write r(Ik : p) to indicate instantiation Instk (i.e., there are

exactly k primitive relations hold) of relation r has probability of p. As such, we have three distributions

r1(I1 : 0.7, I0 : 0.3), r2(I2 : 0.62, I1 : 0.24, I0 : 0.42), r3(I1 : 1, I0 : 0). Figure 3.4-a, shows the configuration

generation w.r.t relation order r1 − r2 − r3. The tree is generated as follows: First, start from root (level

0), consider to first relation in parsing order (i.e., r1), then this relation has two instantiation Ir11 :07 = hold

and Ir10 :0.3 = not-hold. As such, we have two branches from root indicate these two instantiation of r1 with
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Figure 3.4: Configuration Tree Generation

probability 0.7 and 0.3 respectively. The two child nodes on level 1 are, therefore, two partial configurations

{r1 = Ir11 } and {r1 = Ir10 }. Each of these two nodes generates three children in level 2 since relation r2 has

three different instantiations, etc.

Paring Order - Toward Efficient Parsing Observation on Figure 3.4-a shows that even more than

half of the generated configurations are invalid (i.e., 7 out of 12), most of them (i.e., 5) can only be identified

when the tree is fully generated. With different parsing order, we observe a major difference on configuration

tree in Figure 3.4-b. All invalid configurations except one can be identified without the need to generate

to full configuration. One configuration represented many record candidates. Configuration tree pruning,

therefore, is a crucial step toward an efficient parsing.

As the above observation motivates, essentially, we need to identify the parsing order which leads to the

best pruned configuration tree (i.e., smallest number of nodes). This problem shares some similarity with

decision tree classification problem where we need to identify the best attribute that maximizes classification

capability first. In our context, the best relation is the one it can lead to invalid configuration as soon as

possible. As a result, comparable with several heuristics used in Decision Tree Classification, we can apply

a simple heuristic by picking relation which contain the lowest instantiation probability pmin. For example,

in Example 3, we favor r3 first since pmin(r3) = 0 and r1 last since pmin(r1) = 0.5.

In our implementation, however, we decided to take brute force approach to find the best parsing order

because of the following reasons. Firstly, the parsing order is model-dependent only and thus it can be

done offline once and used in every extraction pages. Secondly, the number of parsing orders is quite small

(e.g., 24 for 4-attribute model) and generating a tree is extremely fast (because all distributions of relation

instantiation are known) so brute force approach is actually fast. Lastly, saving one branch of the pruned tree
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means a huge save in the parsing phase since there are many data record candidates match that instantiation

branch. The algorithm is, thus, straightforward, for each parsing order, from root node we expand next level

nodes by instantiations of the first relations. A new node is then expanded again by instantiations of the

next relation as long as its probability ≥ �0. Finally, after the tree is generated, any leaf node either not

in depth-nR or has generative probability less than �0 is removed along with its edges. The number of

remaining nodes determines the size of configuration tree with that parsing order. Output the smallest tree.

3.2.3 Parsing

This section presents the parsing framework follow a pruned configuration tree Tguide. We first generate

attribute candidates from page P, then prune them using distance-based clustering. Candidates of different

attributes are then combined together w.r.t parsing order in configuration tree to form valid data records.

Ranking will be applied on non-overlapped sets of valid records to determine the best output dataset.

Attribute Candidate Generation

This section introduces the technique to generate and shorten the set of attribute candidates from a page

Pfor a given model Ω = (E={e1, . . . , en}, ℛ). Basically, for each attribute e ∈ E , our type-recognizer

generates a list of data elements which match e : type. This list, however, can be large if e : type is too

general. This fact motivates us to develop a method to shorten the number of candidate for each attribute.

Visual Regularity: Record regularity has been used by several extraction methods such as tree-

alignment or pattern-based approaches. These approaches, however, only try to utilize the regularity in

HTML source code level which results in severe limitation in many types of web pages. The scenario of

yahoo hotjob in Figure 1.1-b illustrates this limitation. We, therefore, want to leverage the regularity ab-

straction to visual layer to overcome the aforementioned limitation. In Figure 1.1-b, even the format of even

and odd data records is different, the vertical distance between the same attribute of two consecutive records

are constant (approximately).

Definition 5 (vertical distance): Let di=< xi, yi, wi, ℎi >, dj=< xj , yj , wj , ℎj > be two data elements

with their rendering positions top-left (x, y), width w and height ℎ. A vertical distance between di and dj

is Γ (di , dj)=∣xi - xj ∣.

Definition 6 (Γ-cluster): A ordered list of data elements D={d1, . . . , dm} (m ≥ 3) forms a Γ-cluster if

and only if any pair of two consecutive elements (dk, dk+1) (k ∈ [1, m-1]) has the same vertical distance

Γ(dk, dk+1)= Γ. Γ is called step of the cluster.
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Claim 1 (Visual Conservation): Let Υi, Υj , Υk is 3 consecutive n-tuples which are generated from

visual model Ω = (E={e1, . . . , en}, R) where Υt = {dt1, dt2, . . . , dtn} with (t=i/j/k), then the following

properties hold for any p1 ,p2 ∈ [1,m] in unbounded-canvas environment:

1. Internal conservation: Γ (dip1 ,dip2 )=Γ (djp1 ,djp2)=Γ (dkp1 ,dkp2)

2. External conservation: Γ (dip1 ,djp1 )=Γ (djp1 ,dkp1 )=Γ (dip2 ,djp2 )=Γ (djp2 ,dkp2)

Interestingly, from external conservation characteristic (in unbounded-canvas environment), we also have

Γ(eki, e(k+1)i) = Γ(ekj , e(k+1)j) with k ∈[1, n] and i, j ∈[1, m] which leads to Claim 2.

Claim 2 (Preserved Attribute Cluster): Assume a parsing page has n data records generated from

visual model Ω = (E={e1, . . . , em}, ℛ) (i.e., n extracted m-tuples) Υk = {ek1, ek2,. . . , ekm} (k=1,..,n),

then the following statement holds: if Di = {e1i, . . . , eni} is a Γ-cluster of attribute ei then Dj = {e1j , . . . ,

enj} is also a Γ-cluster of attribute ej(with any pair of attributes ei,ej ∈ E )

This claim leads to the algorithm to filter out candidate sets of attributes in visual model. Because the

claim infers that all the candidate sets for all attributes in visual model must be clusters with the same

vertical distance. This algorithm is just one part of the framework, and due to space limitation, we only

describe the main idea of the algorithm. We first try to build clusters for each candidate. Second, we

compare steps from clusters of different attributes. An attribute cluster is kept if for each other attribute,

we can find at least one cluster with the same step.

Example 4 (link cluster): : In Amazon example in Figure 3.5, consider a data record has only two

elements title and price. Therefore, visual model Ω = (E , ℛ) has E={title, price} and E :type={link, number}.

Obviously, the initial candidates for title are all links on the page. We have some Γ-cluster such as {menu

link}, {title}, {buy new}, {Used & new}, the first one is a d-cluster while the others are D-cluster.

Clearly, there is no d-luster on price candidate set (i.e., type number). This means only D-clusters are kept

for both candidate sets. Elements of {menu link} are no longer candidates for title.

Valid Record Generation

A record candidate (nR-tuple with nR = ∣ℛ∣) is simply any combination of attribute candidates with respect

to attribute quantifier Υi = (c1, c2 . . . cm) where ck is a set of candidates for attribute ek. ck is either 1-set/

N∗max-set if ek is “1”-attribute/ “+”-attribute respectively. Number of such record candidates is huge but

only a portion of them are valid records which belong to some valid configuration. Our configuration tree

is a perfect structure to determine how to parse a candidate (i.e., check its relation instantiations) in an

efficient manner so that we can eliminate invalid candidates without the need to check all of its relations. In
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9 

have the same vertical distance *
i . We call *

iE  a 
*
i cluster  of iE . Apparently, if there is a *

i cluster  in iE  

then there is a *
ik cluster  in iE with k is an integer (e.g.: 

1 3 5{ , , ,...}i i ie e e forms a *2 i cluster  ). However, *
ik cluster  is a 

subset of *
i cluster  . Therefore, in the context of this paper, we 

do not consider *
ik cluster  . It means if we have a clusters   

then there is no clusters  such that clusters  = 
k clusters   

Interestingly, from external conservation characteristic, we also 
have ( 1) ( 1)( , ) ( , )ki k i kj k je e e e    with [1, ]k n  and , [1, ]i j m  

Claim 4.2.2.2: Assume a parsing page has n m-attribute data 
records 1 2{ , ,... }k k k kmr e e e , then the following statement holds: if 

*
1{ ,..., }i i niE e e  is a * cluster  in candidate-set iE of attribute i 

then *
1{ ,..., }j j njE e e  is also a * cluster  in candidate-set jE  

( , [1, ]i j m ) 

 

 

 

 

 

 

 

 

 

 

 

This claim leads to the algorithm to filter out all of the candidate 
sets for all attributes in visual pattern. Because the claim infers 
that all the candidate sets for all attributes must be clusters with 
the same vertical distance. If Ei - candidate set for attribute ei can 
be clustered with distance r but there exist an attribute ej whose 
candidate set Ej unable to be clustered with distance r, then r-
cluster of Ei is not a good cluster. The pseudo-code for clustering 
the algorithm is presented in figure 4.8. 

The purpose of this technique is reducing the size of all candidate 
sets for every attribute based on the distance conservation 
characteristics. 

Example: Let took an example on Amazon (figure 4.9) to see how 
the distance-based clustering technique helps to reduce the 
candidate sets of all attributes. 

 

 

 

In this example, consider a data record has only two elements. 
Therefore, visual pattern Ω = (E, T, Q, R) with E={title, price}, 
data-type T={link, text-number}. Obviously, the initial candidates 
for title are all links on the page. Cluster the title candidates, we 
receive some clusters  such as {menu link}, {title}, {buy 
new}, {Used & new}, the first one is a d cluster while the 
others are D clusters . In this example, it is quite trivial when we 
easily recognize that all clusters on price candidates 
are D clusters .  This means only D clusters are kept for both 
candidate sets. Menu links are no longer candidates for title. The 
remaining candidates will be easy to verify through our visual 
relationships R. 

 

4.2.3 The algorithm  

The algorithm receives a visual pattern Ω = (E, T, Q, R) and a 
page P as input, then outputs all extracted instances of E on P.  

Figure 4.10 shows all steps in the locating algorithm. Because the 
locating algorithm bases on level-wise technique (4.2.1), it 
becomes a three-phase algorithm. 

Phase 1 

We apply the level-wise matching technique on 4.2.1 to acquire 
level-1 pattern Ω1 from Ω. The initial candidate set for each 
attribute ei is acquired from all elements in the parsing page P 
which match the corresponding data-type Ti. These candidate sets 
are later on reduced significantly by applying distance-based 
clustering technique (4.2.2). From these sets, we apply 
constraint-matching function so that all attributes in extracted 
instances “satisfy” the constraint set R. The output of this function 
is a set of extracted instances for Ω1. 

Phase 2 

We first acquire level-2 pattern Ω2=(E2, T2, Q2, R2). Because 
phase starts after phase 1 finishes, we can inherit some additional 
constraints given from phase one’s result. Firstly, the number of 
extracted instances in this phase must be exactly the same as the 

d 

D 

Figure 4.9: Reduce candidate set by distance-based 
clustering  

Input: iE is candidate set for attribute ie ( [1, ]i m  

Steps: 

   Separate iE into ni disjoint    ik clusters       

( [1, ]ik n ) 

    With each iE , find all 
*
i clusters  such as  

                 
* * *
1 2 ... m                

Output: 
*( )i iE clusters     

Figure 4.8: Pseudo code  

 

Figure 3.5: Reduce Candidate Set by Distance-based Clustering

a different view, if we gradually expand record candidates follow the structure of Tguide, we will finally reach

all valid records and avoid invalid ones. With that principle in mind, we generate a valid record tree Tvalid

with the same structure as Tguide. The only different is the content of each node. Each node of Tvalid keeps

a set of partial record candidates which satisfy the configuration path to it (i.e., satisfy all of the relation

instantiations along the path). Start from root with empty partial tuple set. From a node level k (which

contain several partial tuple tk), for each branch r(ei, ej) = Instr from this node, we generate partial tuple

set of the node in level (k + 1) as follows: First, if two attribute ei and ej are already covered in tuple tk

then this tuple is kept in node (k + 1) if it satisfies r(ci, cj) = Instr and removed otherwise. The partial

subset retrieved in k + 1 node, in this case, is a subset of the set in node k. Second, if any of attribute ei

or ej is not covered in tk (or both) then we find candidate for that attribute (ci for ei and/or cj for ej)

from the attribute candidate set so that r(ci, cj) = Instr, the new partial candidate gained by adding this

attribute candidate into rk will be put into the set of node level (k+1). Repeat this step from root to all

leaves. This generation process, guarantee we only generate tuples with valid configurations. Invalid ones

have been pruned on-the-fly since their configurations have been pruned from Tguide. Tuples in leaf nodes

of Tvalid are all valid records we want to find.

Null relation: The basic operation in valid record tree generation above is to determine instantiation
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of a primitive relation between two attribute candidates. Since attribute candidate has specific position,

the decision is straightforward except for null candidate. Primitive relations of a null candidate are call

null relations. The question is should a null relation be considered as hold or not-hold? As long as the

attribute accepts null, null is considered as “good” candidate. Since r:p indicates the probability that r

hold (and not-hold with probability 1-r:p), a good candidate should follow the instantiation with greater

probability. As such, since we consider null is good, a primitive null relation r is considered as hold if

P (r = “ℎold′′∣Ω) ≥ 0.5 and not-hold otherwise. We, however, still want to avoid the null-syndrome which

indicates the choice of null for every possible optional attribute. While there is nothing wrong in principle,

we prefer to have a not-null candidate if they share the same configuration. We guarantee this by always

chose a non-null attribute candidate before null-candidate in Plan Ranking.

Plan Ranking and Final Output

Two valid tuples Υ1=(e11,e21, . . . , em1) and Υ2=(e12, e22, . . ., em2) are considered as non-overlapping tuples

if and only if e1k∩e2k = ∅ with any k ∈[1. . .m]. A plan is a decision of picking a set of non-overlapping valid

tuples Υ={Υ1,Υ2, ...,Υt} as output dataset. Our ultimate goal is to find the best output plan rather than

just find the best output tuple. We call plan-rank is a measure to determine which plan is better output.

Since each output have a specific ranking score (i.e., its configuration’s generative probability), it is natural

to consider a accumulative plan-rank which is sum of all ranking scores of a plan’s tuples Υi in plan. The

best output plan is the one with highest plan-rank (Equation 3.1). Intuitively, as long as a valid tuple can

be added into an existing plan (i.e., no overlapping), the new plan is always better than the old one because

P (Υk∣Ω) ≥ �0 > 0 with any valid tuple Υk. As a result, in the context of our paper, a plan always refers

to a maximal plan (i.e., the plan that can not be expanded). Basically, there are two approaches to select

output plan: top-k ranking and greedy. Due to paper’s space limitation, we only describe their main ideas

(straightforward for implementation).

Top-k ranking: in this approach, we first generate all maximal plans from the set of valid tuple acquired

in Step 1. Second, we rank all generated plans by their plan-ranks. Last, we will output top-k plan from the

ranked list. In our extraction scenario, we only consider top-1 plan which is the best output. This approach

is obviously inefficient. It only works acceptably if we have a good generative threshold �0 which guarantees

to output a small number of valid tuples.

Greedy matching: As indicated above, top-k ranking approach gives us the best output. That ap-

proach, however, is not good in term of efficiency. We propose greedy approach to remove the overhead of

generating all maximal plans in top-k approach. The basic idea of this approach is to pusℎ all valid tuples
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(got from above step) into a stack in descending order of their configuration probability (i.e., push tuples

with lower configuration generative probability first). Start from an empty plan, we expand the plan by pop

out the the first valid tuple which does not overlap with any of the tuples in the current plan. The greedy

approach stops whenever the stack is empty.

Note: Experimental result of this paper is conducted from Greedy Matching approach which proves to

be very efficient and accurate.
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Chapter 4

Model Induction

Section 3.2 explains how to extract data records from web pages given a visual model Ω(E ,ℛ) and a

generative threshold �0. The question, consequently, is how to have a good estimation of those two concepts

from one training example - which is the input of our system. As Chapter 3.1 mentions, Ω captures relation

fuzziness of data records which results from either client side or server side inconsistency. That means visual

model, in fact, holds structure estimation of one data record on a specific source (i.e., intra-source structure).

A training example is just one concrete instance thus cannot capture such fuzziness. An optimal visual visual

model, therefore, essentially derives from a good sample dataset (which have approximate distribution with

the source dataset). Assume our training page Pis a representative page which holds such sample dataset.

The model Induction framework thus contain two phases : 1. Extraction: extracting sample dataset Υ from

page P; 2. Estimation: estimate Ω Υ then estimate �0 from Ω and Υ.

4.1 Extraction

Given an unidentified model and threshold, extraction algorithm in Chapter 3.2 is thus inapplicable. We,

however, have one training example labeled on page P. As a result, all possible features and/or characteristics

of this example need to be exploited in order to ensure a good and complete output. Assume page Pcontains

n m-tuple data records {Υi = (ei1, . . . , eim)}, (i = [1, n]) on training page P. Where, eik is a data element

corresponding with attribute ek of data record Υi. Let Υ0 be the labeled training example.

On the view of each training attribute element e0k: from this attribute element, the type-recognizer

reveals data type of attribute ek. Besides, e0k also reveals a partial information for ek : quantifier (i.e..

+ if users label several instances and 1 if users label one instance). The partial quantifier, however, lacks

optional characteristic which we will recover later (i.e., + can be * and 1 can be ?). More importantly,

e0k gives us clue of how to get to the correct clusters for each attribute ek from the clustering algorithm.

Basically, for all of the clusters retrieved from the general clustering algorithm, we first identify the ones

which contain labeled attributes (seeded clusters). From seeded clusters, we can easily identify the desired
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data region (which is the parent HTML tag of all seeded clusters). Finally, we chose all clusters belongs to

this region and have the same step with seeded clusters (since optional attributes breaks up original clusters

into several sub-clusters of the same step). Candidate for each attribute ek is a set of clusters type ek : type

from those clusters. Two attributes of the same type thus share the same set of clusters. Those clusters are

called clean clusters. Basically, a clean cluster of attribute ek is either a correct cluster of this attribute or

a cluster of other attribute with the same data type.

On the view of visual relations between training attribute elements. Each visual relation has some

specific instantiation on training example. To exploit that information, we need to identify a relation or

set of relations which must share the same instantiations over any data record Υi. Those relations, if exist,

must be implied from the HTML source code (thus they hold for every data records). Theorem 1 defines

such relations.

Theorem 1 (Visual Invariant): Given a deep-web source dataset Υ = {Upsilonk} where Υk is a m-tuple

data record with m attributes a1, . . . , am . If any of the following sets of visual relations hold for a data

record Υk ∈ Υ in unbounded-canvas environment, it must also hold for every other data record Υℎ ∈ Υ in

that environment.

- top(ai, aj)

- aligny(ai, aj) and left(ai, aj)

proof: From the meaning of unbounded canvas environment, if we have top(ai, aj) holds true for Υk,

there must be some explicit delimiter in HTML source code (i.e., <div>, <br> or <tr>) which separates

the two attributes of Υk. Those of other records Υℎ are also populated from server database and thus

essentially subject to the same delimiter of the HTML source which means top(ai, aj) holds on them. On

the other hand, If aligny(ai, aj) is true for Υk, it implies that ai and aj are populated from server database

without any line delimiter in between. In that case, left(ai, aj) guarantees that ai is populated first, then

aj . This should also be the same for every other data records and we have both aligny(ai, aj) and left(ai,

aj) hold on any Υℎ.

False candidates: What? Since all record candidates are generated from clean clusters, a wrong one

must has at least one incorrect attribute which, either: (1) Be null while in fact it is not (i.e., immature

candidate) or (2) Comes from other data records (i.e., false inter-record candidate) or (3) Comes from the

correct date record but in wrong order (i.e., false intra-record candidate).

Immature candidate: This type of candidate, intuitively, results in a reduction in the total number of

attributes of output dataset Υ comparing to the output plan which replaces immature candidate by the

corresponding mature data record.
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Figure 4.1: Types of false combination from clean clusters

False intra-record candidate: This type of candidate occurs only if there are at least two attributes of

the same data type. In our case, we consider two attributes are non-overlapped. Therefore, either one stays

on top of the other or they are horizontally aligned and one stays on the left of the other. In either case,

the same visual constraints must be held on every correct data record as the Visual Invariant theorem (i.e.,

Theorem 1) states. Since this type of candidate breaks the Visual Invariant comparing to training example,

we can avoid it by maintaining this visual invariant in candidate generation.

False inter-record candidate: This wrong combination occurs when attributes of two or more data records

are considered as one candidate. Since output data records are non-overlapped, correct attributes in the

region of this false candidate (e.g., NP1, T2, A2, F2, Date2 in Figure 4.1) cannot be considered in other

output candidates and thus be missing from the output dataset. As a result, this type of combination also

results in a reduction in the total number of output attributes.

Characteristics of false candidates mentioned above lead us to a modification of the ranking equation (i.e.,

Equation 3.1) in Extraction Framework. Rather than maximizing the generative probability of output plan

(i.e., output dataset) which is not available in this induction phase, we aim for maximizing the total number

of output attributes while still maintaining the visual invariant in each record candidate. Equation 4.1 shows

this modification in which every Υi is non-overlapped with others and satisfies the Visual Invariant proposed

by the training data record Υ0. ∣Υi∣ stands for the size record candidate Υi (i.e., number of attributes of

Υi).

Υ = Argmax{Υi∣V isual Invariant(Υi)=true}
∑
i

∣Υi∣ (4.1)

Following all the principles above, Algorithm 1 shows the pseudo code for extracting output data records

from training example Υ0 = (e01, e02, . . . , e0m) and training page P. Input of this algorithm is clean clusters
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retrieved from Clustering algorithm with seed. For the purpose of efficiency, we greedily expand a data record

to as many attributes as possible yet still guarantee not to violate the Visual Invariant (line 8 to 20). This

avoids including immature candidates in the final output dataset. We also incorporate Internal Conservation

condition (i.e., Claim 1.1) into candidate generation process (i.e., line 10) to reduce the number of tested

dataset. The optimal output dataset is the one with maximum number of attributes (i.e., line 36).

4.2 Estimation on Extracted Sample Dataset

Visual Model Induction With the sample dataset extracted, estimating visual model Ω = (E ,ℛ) is

straightforward. As mentioned above, while E : type is determined, the quantifier set still lacks of optional

characteristic. From extracted dataset Υ, we add optional characteristic for attribute ei (i.e., changing +

to * and 1 to ?) if there is at least one record Υk ∈ Υ in which ei is missing. For each pair of attributes

(ai, aj), we generate every relations (top, left, alignx, aligny) with probability following Equation 4.2.

r∗(ai, aj) : p =
∣ {Υk ∈ Υ ∣ r(eki, ekj) = 1} ∣

∣ Υ ∣
(4.2)

Generative Threshold Induction At this stage, we already have visual model Ω and dataset Υ on the

training page. The remaining question is that: what would be the appropriate generative threshold for our

extraction framework on this particular data source. As discussed above, a better threshold should induce

a better output. In the context of this paper, we use F1 as the standard measure to evaluate quality of

extracted data records. Let Fextract denote the extraction function in Chapter 3.2. Di = Fextract(Ω, �i,P) is

the output dataset when extract page Pwith generative threshold �i w.r.t predefined model Ω. Intuitively,

we can cast our generative threshold optimization problem into a search problem of variable � ∈ [0, 1] to

maximize quality of output F1(Fextract). As in this stage, extraction space is the training page P0, we

are going to maximize Fextract(Ω, �i,P0). We convert the original search space into a discrete search space

[0, �, ..., n�] (with n = ⌈1/�⌉. By doing this, we always guarantee the error bound � of the induced threshold.

For each extracted dataset Di, F1 measure can be calculated by Equation 4.3. This search problem is

straight-forward and will not be presented in detail in our paper.

F1(Fextract) =
2∣D ∩ Fextract∣
∣D∣+ ∣Fextract∣

(4.3)
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Algorithm 1 Model Induction

1: Input: m clean clusters (ascending w.r.t vertical coordinate) E∗
i = {dki } (k=1..mi); Training example

(e01, e02, . . . , e0m)
2: Output: output dataset Υ = {Υi}
3: begin
4: /* Record candidate pool */ Pc = ∅
5: /* candidate generation */
6: /* record candidate */ r ← (r1 = null, . . . , rm = null)
7: expand times = 0
8: /* Candidate-Expansion: */
9: for eacℎ cluster E∗

i tℎat ri = null do
10: if ∃r∗i ∈ E∗

i so tℎat (r∗i .y − ei.y = rk.y − ek.y) and (visual invariant(r∗i , rk) = true) witℎ∀ k tℎat rk ∕= null
then

11: ri ← r∗i
12: expand times + +
13: else
14: /*avoid regenerate this optional attribute again by changing null value*/
15: ri ← optional
16: expand times + +
17: end if
18: end for
19: if expand times < m then
20: goto Candidate-Expansion
21: else
22: Pc ← Pc + r
23: end if
24: /* maximize non-overlapped dataset by top-1 ranking approach*/
25: Υ = ∅
26: Record Pool Pool = ∅
27: /* Expansion: */
28: expand pool = set of r ∈ Pc, r not overlap any r∗ ∈ Pool
29: if expand pool ∕= ∅ then
30: for eacℎ r ∈ expand pool do
31: Pool← Pool + r
32: goto : Expansion(line 27)
33: end for
34: else
35: /* cannot expand anymore, then check if it is maximal pool*/
36: if ∣Pool∣ > ∣Υ∣ then
37: Υ← Pool
38: end if
39: end if
40: end
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Chapter 5

Experiments

In order to assess the effectiveness of our approach, we evaluate it against different approaches over 2Y5D

dataset - a huge collection of webpages which guarantees the diversity of representation in both high level

(i.e. webpage interface) and low level (i.e. HTML source code). We first study the accuracy of our systems in

comparison with other systems. Secondly, we show how robust a high-leveled approach is against low-leveled

ones. Lastly, we compare the consistency of our system with that of others.

Dataset The the purpose of evaluation, we use 2Y5D, a dataset collected from Oct-2004 to Aug-2006

on five domains: automobiles, book, job, movies and music. Each domain consists of from 15 to 25 sources

and there are several queries applied on each source. For each query, we retrieves up to three result pages

returned at one queried time. Figure 5.1 summaries characteristics of this dataset.

5.1 Accuracy and Robustness

To assess accuracy and robustness of our Visual Relational Extraction approach (Vex), we compare it against

two other approaches: RoadRunner (RR) y Crescenzi at al. [1] and MDR by Liu et al. [12]. We chose

these two systems because tree-alignment approaches the latest and most effective. They can be divided

into two categories based on the requirement to extract data: 1. multiple-page approach which requires

at least two pages to align; 2. single-page approach which executes the alignment on each input page.

RoadRunner represents the former and MDR represents the latter. It should be noted that the output ofFigure 7: Types of false combination from clean clusters
Algorithm 2 Model Induction
1: Input: m clean clusters (ascending w.r.t vertical coordinate) E∗i =
{dki } (k=1..mi); Training example (e01, e02, . . . , e0m)

2: Output: output dataset Υ = {Υi}
3: begin
4: Record candidate pool Pc = ∅
5: /* candidate generation */
6: record candidate r ← (r1 = null, . . . , rm = null)
7: expand_times = 0
8: /* Candidate-Expansion: */
9: for eacℎ cluster E∗i tℎat ri = null do

10: if ∃r∗i ∈ E∗i so tℎat (r∗i .y − ei.y =
rk.y − ek.y) and (visual_invariant(r∗i , rk) =
true) witℎ∀ k tℎat rk ∕= null then

11: ri ← r∗i
12: expand_times + +
13: else
14: /*avoid regenerate this optional attribute again by changing null

value*/
15: ri ← optional
16: expand_times + +
17: end if
18: end for
19: if expand_times < m then
20: goto Candidate-Expansion
21: else
22: Pc ← Pc + r
23: end if
24: /* maximize non-overlapped dataset by top-1 ranking approach*/
25: Υ = ∅
26: Record Pool Pool = ∅
27: /* Expansion: */
28: expand_pool = set of r ∈ Pc, r not overlap any r∗ ∈ Pool
29: if expand_pool ∕= ∅ then
30: for eacℎ r ∈ expand_pool do
31: Pool← Pool + r
32: goto : Expansion(line 27)
33: end for
34: else
35: /* cannot expand anymore, then check if it is maximal pool*/
36: if ∣Pool∣ > ∣Υ∣ then
37: Υ← Pool
38: end if
39: end if
40: end

spectively. Examining the structure of the sources on these do-
mains, we notice two possible explanations for this phenomenon.
First, most of the sources in these two domains have a very well-
structured interface with each attribute is put into one cell of the
result table. This type of layout somehow guarantees the consis-
tency of the alignment and thus of the visual relations which seems
not even need the tolerance provided by our probabilistic model.
The second possible explanation comes the fact that we hardly ob-
serve optional attributes insides the sources of those two domains.
This may be also the reason why we have the worst result in book
domain. In book sources, we frequently see books lacking some
of the attributes such as used Price, format or sometimes even Au-
thors. We can see that RR performs relatively bad in our experi-
ment. A closer look at the sources which RR performs the worst,
we notice that RR have problem in recognizing recursive structure
in the page which in turn, outputs multiple data records as one sin-
gle tuple. Consequently, the corresponding precision and recall is
affected greatly. MDR performs moderate in our experiment. Its
result is generally better than RR and worse than Vex.

Figure 11 shows a big gap between the average accuracy of our
system and that of MDR and RR. This fact holds on all of the
tested domains with a large dataset which guarantees the diversity
of HTML structures. Does that simply mean that given any input

Figure 12: Robustness with different webpages structures
Domain #Sources #pages #Sampled

Source
#Sampled
pages

Auto 13 7148 3 2418
Book 25 31693 5 4923
Job 15 9545 3 2618
Movie 23 22822 5 5036
Music 22 23853 5 5921

Table 3: Consistency Test: Sampled Dataset

pages, Vex will outperform MDR and RR in term of extraction ac-
curacy? If not, then what is the reason for the gap shown in Fig
11? To answer these considerations, we decided to show our col-
lected statistic in another perspective. For each domain, how do
RR, MDR and Vex perform in their best input, good input and gen-
eral input? Figure 12 shows F-measure statistic of each approach
in their top 25% sample pages, top 50% sample pages and all the
sample pages, respectively.

Sensitivity to input data - Robustness The results in Figure 12
shows a steady drop of MDR’s accuracy from top 25% result to
average result (i.e. 32% decrement on Auto, 35% on Book, 67%
on Job, 18% on Movie and 30% on Music). Not dropped as fast
as MDR, RR also has significant decrement from top 25% to 100%
result such as 40% on Job and 19% on Auto domain. This indi-
cates that MDR and RR are extremely sensitive to the input data.
In top 25% result, MDR’s accuracy is generally comparable with
Vex’s. However, in top 50% result, MDR’s accuracy is already sig-
nificantly lower than Vex’s. On contrary with MDR and RR, Vex
shows a stable result on all three scenarios, the highest difference of
top 25% and 100% accuracy is in Music and Movie domains with
a drop of 9% and 8%, respectively. There is virtually no difference
in the three scenarios on other domains. This means our approach
is very robust on different webpage structures.

7.2 Consistency Evaluation
In this part, we do experiment to examine how our generated
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Figure 8: Data Extraction

Υ = Argmax{Υi∣V isual_Invariant(Υi)=true}
∑

i

∣Υi∣ (6)

Following all the principles and modifications above, Figure 8
shows the pseudo code for extracting output data records from train-
ing example Υ0 = (e01, e02, . . . , e0m) and training page P . Input
of this algorithm is clean clusters retrieved from Clustering algo-
rithm with seed. For the purpose of efficiency, we greedily expand
a data record to as many attributes as possible yet still guarantee not
to violate the Visual Invariant (line 8 to 20). This avoids including
immature candidates in the final output dataset. even though. We
also incorporate Internal Conservation condition (i.e., Claim 1.1)
into candidate generation process (i.e., line 10) to reduce the num-
ber of tested dataset. The optimal output dataset is the one with
maximum number of attributes (i.e., line 36).

6.2 Estimation on Extracted Sample Dataset
Visual Model Induction With the sample dataset extracted, esti-

mating visual model Ω = (E ,ℛ) is straightforward. As mentioned
above, while E : type is determined, the quantifier set still lacks
of optional characteristic. From extracted dataset Υ, we add op-
tional characteristic for attribute ei (i.e., changing + to * and 1 to
?) if there is at least one record Υk ∈ Υ in which ei is missing.
For each pair of attributes (ai, aj), we generate every relations (top,
left, alignx, aligny) with probability following Equation 7.

r∗(ai, aj) : p =
∣ {Υk ∈ Υ ∣ r(eki, ekj) = 1} ∣

∣ Υ ∣ (7)

Domain #Sources #Webpages #Queries
Auto 13 7148 3
Book 25 31693 6
Job 15 9545 4
Movie 23 22822 6
Music 22 23853 6

Table 1: 2Y5D Dataset Characteristics

Generative Threshold Induction At this stage, we already have
visual model Ω and dataset Υ on the training page. The remaining
question is that: what would be the appropriate generative thresh-
old for our extraction framework on this particular data source. As
discussed above, a better threshold should induce a better output.
In the context of this paper, we use F1 as the standard measure
to evaluate quality of extracted data records. Let Fextract denote
the extraction function in section 5. Di = Fextract(Ω, �i,P) is
the output dataset when extract page Pwith generative threshold �i
w.r.t predefined model Ω. Intuitively, we can cast our generative
threshold optimization problem into a search problem of variable
� ∈ [0, 1] to maximize quality of output F1(Fextract). As in
this stage, extraction space is the training page P0, we are going
to maximize Fextract(Ω, �i,P0). We convert the original search
space into a discrete search space [0, �, ..., n�] (with n = ⌈1/�⌉. By
doing this, we always guarantee the error bound � of the induced
threshold. For each extracted dataset Di, F1 measure can be cal-
culated by Equation 8. This search problem is straight-forward and
will not be presented in detail in our paper.

F1(Fextract) =
2∣D ∩ Fextract∣
∣D∣+ ∣Fextract∣

(8)

7. EXPERIMENTS
In order to assess the effectiveness of our approach, we evalu-

ate it against different approaches over 2Y5D dataset - a huge col-
lection of webpages which guarantees the diversity of representa-
tion in both high level (i.e. webpage interface) and low level (i.e.
HTML source code). We first study the accuracy of our systems
in comparison with other systems. Secondly, we also show how
robust a high-leveled approach is against low-leveled ones. Lastly,
we compare the consistency of our system with that of others.

Dataset The the purpose of evaluation, we use 2Y5D, a dataset
collected from Oct-2004 to Aug-2006 on five domains: automo-
biles, book, job, movies and music. Each domain consists of from
15 to 25 sources and there are different queries applied on each
source. For each query, we retrieves up to three result pages re-
turned at one queried time. Table 1 summaries characteristics of
this dataset.

7.1 Accuracy and Robustness
To assess accuracy and robustness of our Visual Relational Ex-

traction approach (Vex), we compare it against two other approaches:
RoadRunner (RR) proposed by Crescenzi at al. [1] and MDR pro-
posed by Liu et al. [12]. The reason we choose these two ap-
proaches is because tree-alignment approaches are the latest and

Figure 5.1: 2Y5D Dataset Characteristics
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Figure 5.2: F-measure evaluation

MDR system is segmentations of data records only. However, we understand that with the same mechanism

and algorithm, they can further extend the current system to recognize all possible properties of each data

record. Therefore, in favor of MDR, we assume that all properties of each extracted data record are correct

as long as its region is recognized correctly.

Setup As mentioned above, at one specific time in our dataset, there might be either one or several

result pages crawled for one combination of source and query. Since RR requires several pages to execute,

we automatically retrieved all of the combinations of source, query and time which have at least two pages

collected. Each combination in this set, therefore, guarantees that the corresponding data can be applied

for all three aforementioned approaches. In our experiment, we took randomly 7 sources on Auto, 12 on

Book, 8 on Job, 11 on Movie and 10 on Music for evaluation. For each source, we decided to have only one

example in time dimension to avoid duplication in case there is no change in its HTML code over time. For

the same reason of avoiding duplication, even one combination of source-query-time contains several result

pages, we only run MDR and Vex on one page. Roadrunner, however, is executed on all pages and the final

result is the mean of accuracy values achieved from those pages.

Metrics: Extraction accuracy is measured using F -measure (i.e., F1 score) - a harmonic mean between

precision and recall. For a set of input pages, let M is a set of correct data records which are manually

identified; E is the set of data records extracted by one algorithm, then precision P , recall R and F -measure

F are defined as: P= ∣M∩E∣E ; R = M∩E
M ; F = 2PR

P+R

Results Figure 5.2 shows the accuracy of all three approaches over five domains. The statistic indicates

that Vex outperforms other approaches on all tested domains with very high accuracy ranging from 0.86
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Figure 5.3: Robustness with different webpages structures

to 0.95. Especially on Auto and Job domain, we achieved the highest accuracy with F-measure equals

to 0.95 and 0.93, respectively. Examining the structure of the sources on these domains, we notice two

possible explanations for this phenomenon. First, most of the sources in these two domains have a very

well-structured interface with each attribute is put into one cell of the result table. This type of layout

somehow guarantees the consistency of the alignment and thus of the visual relations which seems not even

need the tolerance provided by our probabilistic model. The second possible explanation comes the fact

that we hardly observe optional attributes insides the sources of those two domains. This may be also the

reason why we have the worst result in book domain. In book sources, we frequently see books lacking

some of the attributes such as used Price, format or sometimes even Authors. We can see that RR performs

relatively bad in our experiment. A closer look at the sources which RR performs the worst, we notice that

RR have problem in recognizing recursive structure in the page which in turn, outputs multiple data records

as one single tuple. Consequently, the corresponding precision and recall is affected greatly. MDR performs

moderate in our experiment. Its result is generally better than RR and worse than Vex.

Figure 5.2 shows a big gap between the average accuracy of our system and that of MDR and RR.

This fact holds on all of the tested domains with a large dataset which guarantees the diversity of HTML

structures. Does that simply mean that given any input pages, Vex will outperform MDR and RR in term

of extraction accuracy? If not, then what is the reason for the gap shown in Fig 5.2? To answer these

considerations, we decided to show our collected statistic in another perspective. For each domain, how do

RR, MDR and Vex perform in their best input, good input and general input? Figure 5.3 shows F-measure
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how robust a high-leveled approach is against low-leveled ones.
Thirdly, we compare the consistency of our system with that of
others. Lastly,without consider about the relevant extraction sys-
tem, we do two experiments to prove the effectiveness of our visual
features over other type of features.

Dataset The the purpose of evaluation, we use 2Y5D, a dataset col-
lected from Oct-2004 to Aug-2006 on five domains: automobiles,
book, job, movies and music. Each domain consists of from 15 to
25 sources and there are different queries applied on each source.
For each query, we retrieves up to three result pages returned at one
queried time. Table 1 summaries characteristics of this dataset.

7.1 Accuracy and Robustness
To assess accuracy and robustness of our Visual Relational Ex-

traction approach (Vex), we compare it against two other approaches:
RoadRunner (RR) proposed by Crescenzi at al. [1] and MDR pro-
posed by Liu et al. [12]. The reason we choose these two ap-
proaches is because tree-alignment approaches are the latest and
most effective. They can be divided into two categories based on
the requirement to extract data: 1. multiple-page approach which
requires at least two pages to align; 2. single-page approach which
executes the alignment one each input page. RoadRunner repre-
sents the first category and MDR represents the second. It should
be noted that the output of MDR system is segmentations of data
records only. However, we understand that with the same mecha-
nism and algorithm, they can further extend the current system to
recognize all possible properties of each data record. Therefore, in
favor of MDR, we assume that all properties of each extracted data
record are correct as long as its region is recognized correctly.

Setup As mentioned above, at one specific time in our dataset, there
might be either one or several result pages returned for one combi-
nation of source and query. Since RR requires several pages to ex-
ecute, we automatically retrieved all of the combinations of source,
query and time which have at least two pages collected. Each com-
bination in this set, therefore, guarantees that the corresponding
data can be applied for all three aforementioned approaches. In
our experiment, we took randomly 7 sources on Auto domain, 12
sources on Book, 8 sources on Job, 11 sources on Movie and 10
sources on Music for evaluation. For each source, we decided to
have only one example in time dimension to avoid duplication in
case there is no change in its HTML code over time. For the same
reason of avoiding duplication, even one combination of source-
query-time contains several result pages (i.e. first result pages col-
lected when execute a query on a source at one specific date), we
only run MDR and Vex on one page. Roadrunner, however, is exe-
cuted on all pages and the final result is the mean of accuracy values
achieved from those pages.

Metrics: Extraction accuracy is measured using F -measure (i.e.,
F1 score) - a harmonic mean between precision and recall. For a
set of input pages, let M is a set of correct data records which are
manually identified; E is the set of data records extracted by one
algorithm, then precision P , recallR and F -measure F are defined
as: P= ∣M∩E∣

E
; R = M∩E

M
; F = 2PR

P+R

Results Figure 9 shows the accuracy of all three approaches over
five domains. The statistic indicates that Vex outperforms other
approaches on all tested domains with very high accuracy rang-
ing from 0.86 to 0.95. Especially on Auto and Job domain, we
achieved the highest accuracy with F-measure equals to 0.95 and
0.93, respectively. Examining the structure of the sources on these
domains, we notice two possible explanations for this phenomenon.
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Figure 9: F-measure evaluation

Figure 10: Robustness with different webpages structures

First, most of the sources in these two domains have a very well-
structured interface with each attribute is put into one cell of the
result table. This type of layout somehow guarantees the consis-
tency of the alignment and thus of the visual relations which seems
not even need the tolerance provided by our probabilistic model.
The second possible explanation comes the fact that we hardly ob-
serve optional attributes insides the sources of those two domains.
This may be also the reason why we have the worst result in book
domain. In book sources, we frequently see books lacking some
of the attributes such as used Price, format or sometimes even Au-
thors. We can see that RR performs relatively bad in our experi-
ment. A closer look at the sources which RR performs the worst,
we notice that RR have problem in recognizing recursive structure
in the page which in turn, outputs multiple data records as one sin-
gle tuple. Consequently, the corresponding precision and recall is
affected greatly. MDR performs moderate in our experiment. Its
result is generally better than RR and worse than Vex.

Figure 9 shows a big gap between the average accuracy of our
system and that of MDR and RR. This fact holds on all of the
tested domains with a large dataset which guarantees the diversity
of HTML structures. Does that simply mean that given any input
pages, Vex will outperform MDR and RR in term of extraction ac-
curacy? If not, then what is the reason for the gap shown in Fig
9? To answer these considerations, we decided to show our col-
lected statistic in another perspective. For each domain, how do
RR, MDR and Vex perform in their best input, good input and gen-
eral input? Figure 10 shows F-measure statistic of each approach
in their top 25% sample pages, top 50% sample pages and all the
sample pages, respectively.

Domain Sources S pages P #Sampled S #Sampled P
Auto 13 7148 3 2418
Book 25 31693 5 4923
Job 15 9545 3 2618
Movie 23 22822 5 5036
Music 22 23853 5 5921

Table 2: Consistency Test: Sampled DatasetFigure 5.4: Consistency Test: Sampled Dataset

statistic of each approach in their top 25% sample pages, top 50% sample pages and all the sample pages,

respectively.

Sensitivity to input data - Robustness The result in Figure 5.3 shows a steady drop of MDR’s

accuracy from top 25% result to average result (i.e. 32% decrement on Auto, 35% on Book, 67% on Job,

18% on Movie and 30% on Music). Not dropped as fast as MDR, RR also has significant decrement from

top 25% to 100% result such as 40% on Job and 19% on Auto domain. This indicates that MDR and RR

are extremely sensitive to the input data. In top 25% result, MDR’s accuracy is generally comparable with

Vex’s. However, in top 50% result, MDR’s accuracy is already significantly lower than Vex’s. On contrary

with MDR and RR, Vex shows a stable result on all three scenarios, the highest difference of top 25% and

100% accuracy is in Music and Movie domains with a drop of 9% and 8%, respectively. There is virtually

no difference in the three scenarios on other domains. This means our approach is very robust on different

webpage structures.

5.2 Consistency Over Time

In this part, we do experiment to examine how our generated wrapper can cope with webpage chang-

ing/updating over time. Fortunately, our dataset is perfectly matched this type of experiment since we have

the data collected from 2004 to 2006 for each source in all five domains. We compare our system with

wrapper generated by RoadRunner (RR) and a DOM-path-based wrapper model (DPath) [7] (MDR also

belongs to this type since it uses DOM path to measure similarity - even it does not induce a wrapper

explicitly)

Setup In this experiment, we randomly picked 3 sources from Auto and Job domain, 5 sources from each

of the other domains. For each source, we collected pages from all the dates available in our repository in

a time-ascending order. We first generated wrapper from the first date of this source, run it on consecutive

dates until it breaks. Whenever the wrapper breaks, we regenerate it and continue the same process. The
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Figure 5.5: Average of induced wrapper’s life

average life (days) of these wrappers is the measure represented the consistency of the wrapper against this

source. Figure 5.4 shows sampled dataset.

The result in Figure 5.5 indicates that Vex outperforms other approaches in term of consistency of

inferred wrappers. It gets the best result in Movie domain. Specifically, in this domain, our experiment

shows that 40% of the tested sources (i.e. two out of five) gives the perfect result with Vex. That means the

wrapper generated from data collected in the first date in our dataset still works well with that source over

almost two years. This also infers that the real lives of those wrappers are actually longer than the values

we recorded.

Wrappers generated by RR broke quite frequently. This might result from the fact that RR uses the

generated AND-OR tree as its wrapper so that it can align with a new input pages to get the result extracted.

However, any small update of the source, which does not even belong to the want-to-be-extracted region,

can compromise some AND node and therefore make the whole wrapper broken. DPath improves the model

by describing the path to desired elements only. However, whenever there is some addition/removal of tags

in those element regions such as format tags, then the DPath rules are violated and thus the corresponding

wrapper breaks. Wrapper model of Vex, in the other hand, is built on the highest abstraction level (i.e. visual

interface). Therefore, most of the normal changes in HTML source code (even when some new attributes

are added into data records) do not affect the visual relation. It explains why Vex greatly outperforms RR

and Dpath in wrapper consistency benchmark.
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Figure 5.6: Feature Coverage

5.3 Features Effectiveness Evaluation

To illustrate the effectiveness of the features chosen in our model (i.e., visual relation), we try to compare

with other types of feature in different perspectives. In this section, we do not intend to discuss about any

specific extraction system, only the choice of features used in extraction. Since our feature (denoted by

VS-Rel) is high level and relative (i.e., it does not describe specification for any attribute but the alignment

between them), we propose comparison with low-level features and absolute high level features. The former

is represented by XPath from document root (denoted by Xpath) since most of the works in this level

use DOM-path to express desired attributes. The later is represented by CSS features (denoted by VS-

Abs). Specifically, VS-Rel uses explicit relations (top, left) and implicit ones (vertical distance between 2

consecutive attributes); Xpath uses path from HTML tag and consider the length as number of features (so

we can count similarity of other element by number of held features); VS-Abs uses font name, color and

font-weight and font-style for each attributes. In general, the number of features are almost the same on

three feature sets (16-18 for 4 attributes).

In wrapper induction topic, regardless of the concrete extraction techniques, good features should be

able to cover a good: 1. Feature coverage over time which means data record should have the same value

of chosen feature over time (thus empower Consistency of the system built on top); and 2. Discriminative

power between good and bad data records of the same source at one specific time (thus empower Accuracy).

Remember that a system can have better Consistency and/or Accuracy than others even its features have

less Feature coverage and/or Discrimination power by applying several heuristics and better techniques in

its extraction framework (but it is out of scope of this evaluation).

Feature Coverage on time dimension For each domain, we randomly chose two sources on 2Y5D. For

each source, we labeled one data record at the first crawled date and used its features’ values as the base
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feature values. For the next 30 crawled dates, we picked 4 dates in a relatively equal interval, each date has

one data record labeled. Features’ values from those records were compared with base feature values. We

recorded the number of labeled records which have identical feature values with base feature values. That

number is presented in the Y axis of the chart on Figure 5.6. Visual Relation is almost the same on most of

the picks. Absolute Visual performs the worst which indicates the most frequent change/update are about

Cascade Style Sheet update (i.e., format). Visual relation is perfect on 3 domain and rather bad in Book

and Music which we do not expect since the Wrapper life in our system is high. A close look on the bad

source on Music (all four picks are failed), we notice the reason comes from the fact that one attribute is

missing right after the first date we crawled (i.e., Songs which is a list of songs on the Album) and our

evaluation test consider the later records have different features since Song is now null. This kind of change,

however, does not affect our extraction framework.

Discrimination Power A feature set is considered to have good discriminative power if good data records

are highly similar w.r.t feature values while a good and a fake record should have highly different values. For

each domain, we randomly picked one source in 2Y5D and one live source on the web since live sources have

much more noise than the ones we crawled (missing frames). For live sources, we chose Amazon.com for

Book, Hotjobs.yahoo.com for Job, Cars.com for Auto, cdconnection.com for Music and Netflix for Movie.

For each source, we labeled one good record then get candidate list for each attribute which is a list of

HTML elements with the same tag name with the labeled attribute. We then combined random candidate

of each attribute to form a testing tuple. After comparing the features similarity with the labeled record,

we categorized tuples into four types of similarity: low (¡40%), medium([40%, 60%)), med-high([60%, 80%))

and high([80$, 100%]). The number of testing tuples on each domains is roughly 25M (millions), 34M,

22M, 8M, 3M on Book, Job, Auto, Music and Movie respectively (total possible tuples are around hundreds

millions). Since the test is extensive and number of tuples are huge, we report the distribution on the log

chart in Figure 5.7 (the y axis denotes log(N) where N is the number of tuples belong to each category)

In general, VS-Rel shows a very consistent trend on all domains with the majority of tuples has low

similarity with labeled record while the number of high-similarity tuples is very limited (maximum is 348 on

Movie). Others feature set have unpredicted trend which changes from sources to sources. For Visual-Abs,

most of the testing tuples are on med-high or high category except for book domain. A deep look into the

format of these sources, we see that on hotjob, netflix or cdconnection, almost all texts and links share the

same format (color and font name) except font weight and font style. In Book domain, however, VS-Abs

shares the same trend with VS-Rel. It looks like using format features is only applicable in rich-formatted

pages which define diverse format for different elements. For Xpath, the expected trend (i.e., indicate good
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Figure 5.7: Statistics on each Feature Similarity Level (logN)

discrimination) is observed in Book and Job but not in the other domains. The structure of tested sources

on these domain reveal this fact. For example, on Music (i.e., cdconnection.com empirically), there is almost

no noise, the content only contains the result table with different attribute on each records. The majority

of testing tuples, therefore, always have high similar structure with labeled one. In Amazon and Hotjob,

however, there are a lot of noise for each attributes from different regions of the pages and thus XPath

performs better. This evaluation implicitly tells the discriminative power of Visual Relation regardless of

the page structure and/or embedded CSS of webpages.
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Chapter 6

Conclusion

This paper studies the problem of wrapper generation and proposes the concept of visual-relational data

extraction as the foundation for modeling wrappers. Towards large scale integration, we identify the key

requirements of wrapper deployment, and observe the limitations of the state of the art— which inherently

result from their low-level wrapper modeling. We thus propose the visual-relational modeling and develop

the execution and learning mechanisms. Our experiments show significant improvements towards satisfying

the accuracy and consistency requirements. For future work, we want to extend the wrapper model to also

incorporate the navigation of a target data source, beyond data extraction.
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