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Abstract

The compact radio source Sagittarius A* (Sgr A*) is the nearest and most-intensively-

studied supermassive black hole candidate. With a broadband spectrum which likely

requires several emission mechanisms for explanation, and structure of innermost

accretion flow not yet well constrained, the understanding of accretion into Sgr A*

demands advances in both theories and computational calculation.

To increase the understanding of Sgr A* in particular, and low-luminosity active

galactic nuclei in general, we perform relativistic radiative transfer (RT) calculation

with general relativistic magnetohydrodynamic (GRMHD) simulation of accretion

flow simulation. We are able to use the models to constrain observational parameters

of Sgr A*.

We also compute the synchrotron emissivity and absorptivity from first principles,

in order to verify improved approximate equations for the RT calculation. The code

can handle a wide range of electron distributions, therefore the application is not

limited to accretion disk simulation.

In order to explain a feature in the observed flaring spectrum, we add nonthermal

component to the electron distribution. We then perform relativistic Monte Carlo RT

calculation of the disk model, and show that a small amount of power-law electron is

enough to modify the spectral slope.

Finally, we describe a recipe for performing relativistic polarized RT, which would

allow a further study to constrain model parameters with polarization observations

from Sgr A*.
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Reason for doing radiative transfer:

Nothing has really happened until it has been recorded.

– Virginia Woolf
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Schödel et al. [2007]. Flaring data are from from Dodds-Eden et al.
[2009], Genzel et al. [2003] at NIR, and Baganoff et al. [2001] at X-ray. 4

2.1 Images of the accretion disk viewed at a wavelength of 1mm seen at
inclination angles of 5◦ (top), 30◦ (middle) and 90◦ (bottom). Each
frame shows a view 40M wide in the plane of the singularity. Frames
in the left column are “infinite” resolution images, while those in the
right column have been convolved with a symmetric Gaussian beam to
simulate a 8000km baseline VLBI observation. The linear colour map
used is shown at the right of the images. Each image has been scaled
by its maximum intensity for illustrative purposes. . . . . . . . . . . 30

2.2 Spectra taken at iinc = 30◦ using snapshots of the a∗ = 0.94 disk at
different points along its evolution. Lines A-G respectively represent
tpic = 1150M, 1250M, 1326M, 1434M, 1500M, 1560M, 1666M . . . . . 31

2.3 Spectra taken at iinc = 30◦ and tpic = 1250M , but using simulation
data from evolutions with different black hole spins. Lines A-F respec-
tively represent a∗ = 0, 0.5, 0.75, 0.88, 0.94, 0.97. . . . . . . . . . . . . 32

2.4 Spectra taken at tpic = 1250M using a∗ = 0.94 simulation data at
different iinc. Lines A-C respectively represent iinc = 5◦, 30◦, 90◦. . . . 32

2.5 From left to right are snapshots of γ, ρ◦, b2 and Aφ—whose isosurfaces
follow poloidal magnetic field lines—at tpic = 1500M for a run using
568× 256 cells. The height of each image is 2000M . White (red in the
colour version) represents the maximum of the colour scale, and black
(blue in the colour version) the minimum. Logarithmic colour scales
are used for ρ◦ ∈ [10−8, 1] and b2 ∈ [10−10, 10−3]. Linear colour scales
are used for γ ∈ [1, 3.5] and Aφ ∈ [0, 0.08]. . . . . . . . . . . . . . . . 35

x



2.6 Profiles of ρ◦ (black solid line), p (blue long dashes) and b2/2 (red
short dashes) are shown in the top figure. The radial dependence of ṁ
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Chapter 1

Introduction

1.1 Low-luminosity AGN

Active Galactic Nuclei (AGNs) are the central energetic compact regions of galaxies

for which the bright emission cannot be accounted for only by stars and interstellar

medium (ISM). Among the common AGN subclasses are quasars, Seyfert galaxies,

quasi-stellar objects (QSOs), BL Lacs objects, radio galaxies and Low Ionization

Nuclear Emission-line Regions (LINERs). As with any kind of classification, there

are overlaps in the categories. There are also sub-categories and exceptional cases;

AGNs come in many different forms, and show a large variety in broadband spectra

and line emission.

Despite the vast diversity in the observational properties among different types of

AGNs, efforts to construct a unified model of AGN have had moderate success through

the years [see Tadhunter, 2008, Urry, 2003, for review]. The unified models suggest

that different types of AGNs are similar objects at different evolutionary stages and at

different orientation angles. Now the general understanding is that all AGNs (indeed,

virtually all galaxies) host a supermassive black hole (mass MBH ≥ 106M¯) and an

accretion disk. Many models also include a relativistic jet which extends from the

region near the black hole to up to tens of kpc.

Besides the “classical” AGNs, there are situations in which the galactic nuclei are

relatively dim, both relative to the Eddington luminosity Ledd ≡ 1.5 × 1044 erg s−1

(MBH/106M¯), and relative to the host galaxy as a whole. The structure of the

accretion disk in a low-luminosity AGN (LLAGN) could be different from that in a

quasar. Among the LLAGNs, the most carefully observed objects are Sagittarius A*

(Sgr A*) and M87.
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1.1.1 Sagittarius A*

The Galactic center contains a high density of stars and plasma within a small region,

which is coincident with the location of a compact and powerful radio source called

Sgr A*. By measuring the orbits of the short-period stars, the enclosed mass is

estimated to be 4.1×106M¯ [Ghez et al., 2008, Gillessen et al., 2009], and distance is

8.4 kpc [Reid et al., 2009]. Very-Long-Baseline Interferometry (VLBI) measurements

provide a constraint of the size of the source, which implies the mass density is at

least 9.3 × 1022 M¯ pc−3 [Doeleman et al., 2009]. The evidence that Sgr A* is a

supermassive black hole is compelling 1. Most alternate theories are ruled out by

applying dynamical constraints to the measured mass and density [Maoz, 1998]. See

Genzel, Eisenhauer, & Gillessen [2010] for a review of why the alternatives are ruled

out.

Sgr A* is the most studied supermassive black hole candidate. One of the reasons

is that it is relatively easy to observe due to its angular size and proximity. The

Schwarzschild radius of Sgr A* is about 0.1 AU, which corresponds to an (unlensed)

angular size of 10 µas. Its angular scale is twice as large as the next largest black

hole candidate, M87. The close distance also allows Sgr A* to be observed with

high angular resolution. Recent VLBI observations have achieved a resolution which

could be just enough to resolve the black hole event horizon. The 1.3 mm VLBI

observations indicate that the intrinsic diameter of Sgr A* is 37+16
−10 µas, whereas the

minimum apparent diameter (due to gravitational lensing) is 52 µas [Doeleman et al.,

2009]. It is possible that most of the emission from Sgr A* may not be centered on

the black hole [Doeleman et al., 2009].

As stated before, an intriguing property of Sgr A* is its low luminosity. In fact it

is the faintest in terms of Eddington luminosity among the known supermassive black

hole candidates. The bolometric luminosity of Sgr A* is at least 7 order of magnitude

below the Eddington limit [Baganoff et al., 2003, Ghez et al., 2005]. Most of the energy

emitted from the system is at sub-millimeter (sub-mm) wavelengths. The emission

in X-rays is about 2 order of magnitude fainter, and therefore LX/Ledd . 10−9.

1.1.2 Emission from Sgr A*

According to observations, most of the time Sgr A* is in a steady, quiescent state.

Figure (1.1) shows a compilation of the observations. The quiescent state has been

detected in radio to sub-mm. There are also claims of detection at near infrared (NIR)

1We use the name Sgr A* loosely as the light source and also the unseen central mass.
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and X-ray. Upper limits are determined at mid-infrared (MIR) and NIR. One of the

dominant features is the “sub-millimeter bump”, which is commonly believed to be

produced by thermal synchrotron emission [Özel, Psaltis, & Narayan, 2000, Yuan,

Quataert, & Narayan, 2003]. On the low-frequency side of the bump, the emission in

radio and centimeter could originate from power-law synchrotron emission from the

extended accretion disk at r À GM/c2 [Mahadevan, 1998, Özel, Psaltis, & Narayan,

2000]. On the high-frequency side in the infrared (IR) wavelengths, strong flares

have been detected [Genzel et al., 2003, Schödel et al., 2007]. Due to the enormous

extinction, there is currently no observational data around the ultraviolet band, where

it is believed the first Compton-scattering bump should be located. In the X-rays, a

low-luminosity quiescent state has been observed.

On top of the quiescent state, Sgr A* also has flares that last for up to about

three hours. Flares were first detected in the X-rays [Baganoff et al., 2001], then

in the NIR band [Genzel et al., 2003, Schödel et al., 2007] and most recently in the

sub-mm [Marrone et al., 2008] and radio bands [Yusef-Zadeh et al., 2008]. A NIR

flare has about a factor of 10 increase in brightness [Genzel et al., 2003], while the

flux of Sgr A* can increase by over 100 times in an X-ray flaring event [Eckart et al.,

2004, Porquet et al., 2003]. The NIR flares occur a couple of times each day [Eckart

et al., 2006, Yusef-Zadeh et al., 2006]. The X-ray flares have a lower rate of about

once per day [Baganoff et al., 2003]. There is not enough data to determine the rate

of sub-mm flares.

It is natural to suspect that flares at different frequencies are related. In fact, all

X-ray flares are associated with NIR flares [Eckart et al., 2004, 2006, Yusef-Zadeh et

al., 2006], whereas NIR flares can occur independently [Hornstein et al., 2007]. X-ray

flares occur simultaneously with NIR flares [Eckart et al., 2004, 2006, Yusef-Zadeh et

al., 2006]. It is claimed that radio flares occur about 20 minutes after X-ray flares,

and sub-mm flares occur about 100 minutes after an X-ray flares [Yusef-Zadeh et al.,

2008].

To further complicate the picture, quasi-periodic oscillations (QPOs) with a pe-

riod of 20 minutes have been claimed in the NIR and X-rays [Aschenbach et al.,

2004, Belanger et al., 2006, Genzel et al., 2003, Meyer et al., 2006]. However, newer

statistical analyses do not find a significant indication of QPO in the NIR [Do et al.,

2009, Meyer et al., 2008]. Meyer et al. [2008] also claim that quasi-periodicities in the

X-rays are ruled out statistically, but they only reference an unpublished work. It is

still under debate whether quasi-periodic sub-structure does exist.

Spectra of flares have also been observed. The NIR νLν spectral indices are

3



Figure 1.1 Compilation of quiescent and flaring observations of Sgr A* from radio to
X-ray regime. Quiescent data from the left to the right are from An et al. [2005],
Falcke et al. [1998], Marrone et al. [2006] at radio bands, Genzel et al. [2003] at NIR
and Baganoff et al. [2003] at X-rays. Upper limits at NIR are from Hornstein et
al. [2007], Melia & Falcke [2001], Schödel et al. [2007]. Flaring data are from from
Dodds-Eden et al. [2009], Genzel et al. [2003] at NIR, and Baganoff et al. [2001] at
X-ray.

claimed to be positive (' 0.4) for strong flares [Gillessen et al., 2006, Hornstein et

al., 2007] and negative for weak flares [Eisenhauer et al., 2005, Krabbe et al., 2006].

Some X-ray flares are reported to have a positive spectral index [Porquet et al.,

2008]. However, more data are needed to show whether all X-ray flares have the same

spectral properties.
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1.1.3 Polarization of Sgr A*

Besides the unpolarized observations, polarization of emission from Sgr A* is also

measured. Information contained in the polarized radiation is important for under-

standing the emission mechanism and the disk structure. For example, synchrotron

emission is expected to be highly polarized, especially if the magnetic field configura-

tion is coherent across the source. Polarized radiation is also produced by Compton

scattering, which provides further information to probe the condition near to the

source.

In the radio band, linear polarization (LP) is not detected (< 0.1%) while circular

polarization (CP) is found to be up to ∼ 0.1% [Bower et al., 2001] in the quiescent

state. This is different from high-luminosity AGNs which typically have larger LP

compared to CP [Bower et al., 2001, Bower, 2003]. During flaring events, LP in the

radio band could be as high as ∼ 1% [Yusef-Zadeh et al., 2007, 2008]. LP of Sgr

A* is found to be 2.1% in the mm regime [Macquart et al., 2006] and about 10%

in the sub-mm band [Aitken et al., 2000, Marrone et al., 2007]. However, no CP is

detected at sub-mm frequencies [Marrone et al., 2006]. NIR flares are found to be

highly polarized [up to ∼ 20%; Eckart et al., 2006].

Below sub-mm bands, LP is small and the CP fraction is an increasing function

of frequency [Aitken et al., 2000, Bower et al., 2001, Bower, 2003, Sault & Macquart,

1999]. This is counter-intuitive because both synchrotron radiation and Faraday

conversion produce a large LP and a CP fraction that drops as frequency increases.

Polarization information also allows one to understand conditions along the line

of sight from Sgr A*. It is now possible to measure Faraday rotation, which is the

frequency-dependent change of polarization orientation. Marrone et al. [2007] find

that the rotation measure RM = −(5.6 ± 0.7) × 105 rad m−2 between 227 and 343

GHz. Another observation constrains RM between 22 to 43 GHz to ∼ −2.5× 103 to

5× 105 rad m−3, depending on the detailed assumption [Yusef-Zadeh et al., 2007].

1.1.4 Comparison of Sgr A* and M87

M87 is another underluminous AGN (in terms of its Eddington value). The mass of

the central supermassive black is 3.4× 109M¯, which is significantly heavier than Sgr

A*. Therefore, even though M87 is much further away (∼ 16 Mpc) than Sgr A*, the

angular diameter of M87’s event horizon is only about half as large as Sgr A*.

There are many differences between M87 and Sgr A*. Due to the larger mass

of M87, the dynamical timescale is about 5 hours and the orbital timescale at the
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innermost stable circular orbit (ISCO) is of order days. Both are much longer than

the corresponding timescale for Sgr A*. Therefore observations of M87 could have

higher temporal resolution (in terms of timescales of the object) compared to that of

Sgr A*.

Another major difference between M87 and Sgr A* is M87’s prominent relativistic

jet; it is one of the closest radio galaxies with a bright radio jet. Because we are on

the galactic plane, observation of Sgr A* is obscured in different levels throughout

the spectrum. On the other hand, there is no evidence of interstellar scattering of

sub-mm and mm observations of M87 [Broderick & Loeb, 2009].

1.2 Accretion flow

So far we have discussed the properties of LLAGNs in general, and Sgr A* and M87 in

particular. We now have to explain details of accretion flow, which is a central concept

in AGN models. While it is obvious that accretion of matter could occur when the

gravity of the central object dominates, the details and geometry of accretion are not

trivial.

We will first introduce the simplest model of the flow, namely steady spherically

symmetric accretion. It captures a lot of the physics found in more complicated sit-

uations, despite its simplicity. We will then discuss accretion flow in a disk. One of

the limits is the thin disk, in which the thickness is much smaller than the radius.

This approximation allows one to greatly simplify the calculation of flow structure,

especially if one parametrizes the angular momentum transport with a single param-

eter. Although the thin disk model is simple and it has been successfully applied

to classical AGNs, it may not represent the physical conditions of accretion around

LLAGNs. We will also discuss the geometrically thick disk, which is more realistic in

slowly accreting systems such as Sgr A* and M87.

1.2.1 Spherical accretion

Let us consider an idealized situation in which an isolated central mass is surrounded

only by interstellar medium (ISM) that extends to infinity, and furthermore the ac-

cretion is independent of time. Any property that could lead to asymmetry—such as

spin of the central object, angular velocity of ISM with respect to the central mass,

and magnetic field—is assumed to be negligible. If the luminosity of the central mass

is smaller than the Eddington limit, at which the radiation force on the ISM ex-
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ceeds the gravitational pull, then the surrounding matter will fall towards the center.

While this scenario is simple, it may crudely model the accretion at large distance

from a supermassive black hole, and also provides some insights that are applicable

to non-spherical accretion flow.

The governing fluid equations of an accretion flow, like any fluid motion, are

the continuity equation, the Euler equation and the energy equation. They express

conservations of mass, momentum and energy respectively. The steady condition

means that the time derivatives in the equations are zero. Then the accretion flow

can be described by a 1D model such that all fluid variables are functions of radius R.

While the continuity and Euler equations are differential equations in R, the energy

equation is commonly replaced by the equation of state, which is parametrized by Γ

if a Γ-law gas, p = (Γ− 1)u, is assumed (here u is the internal energy).

This accretion problem is known as Bondi accretion because it was first solved by

Bondi [1952]. The details of solving the set of fluid equations can be found in Frank,

King, & Raine [2002]. Here we only review the major features of the flow structure.

The ISM at a large distance r from the central mass has velocity v = 0. As r decreases,

the gas is further down the gravitational well and v increases monotonically. Velocity

eventually becomes supersonic (v > cs(r) ≡ sound speed) inside the sonic point. The

mass accretion rate is Ṁ = πG2M2(ρ∞/c3
s,∞)f(Γ), whereas f(Γ) is a dimensionless

factor of order unity.

One of the lesson for accretion onto AGN is that Ṁ and in fact the flow structure

depend on the property of the gas. An isothermal (Γ = 1) accretion flow therefore is

different from an adiabatic (Γ = 5/3) flow, even if both flows have the same central

mass and initial conditions. Interaction of outgoing radiation with the accretion flow

can also modify Ṁ . Besides, to find a meaningful value of Ṁ of an AGN, one should

consider a large distance at which the gravitational influence of the central black hole

is unimportant. Finally, the accretion flow eventually becomes supersonic when the

inflowing matter is close enough to the black hole.

1.2.2 Accretion disk

While spherical accretion onto a central gravitating object could be a good approxima-

tion at large distance, the accreting matter in general has nonzero angular momentum

that prevents it from falling directly onto the central object. A disk-like structure is

formed as the gas and plasma spiral in. Although it is common to use the word disk,

the flow can actually have a height-to-radius ratio of order unity. Then instead of a
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pancake-like disk, the accretion flow forms a donut-like torus. The exact geometry

and structure of the disk depend on many factors such as the accretion rate and

properties of the accreting matter.

Before we move on with our discussion of disk models, notice that it is not just

a theoretical exercise, because accretion disks have been directly observed in many

vastly different systems. Examples range from protostars such as HH30 [Burrows et

al., 1996] and Cepheus A HW2 [Patel et al., 2005], to centers of elliptical galaxies

such as NGC 4261 [Jaffe et al., 1993], to centers of spiral galaxies such as NGC 4388

[Yoshida et al., 2002]. There are also other lines of evidence such as spatially resolved

maser emission from NGC 4258 [Herrnstein, Greenhill, & Moran, 1996, Herrnstein et

al., 2005] and spatially unresolved Fe Kα line from BLRG 4C 74.26 [Ballantyne &

Fabian, 2005]. There is no doubt that accretion disks are of great importance in the

understanding of many astronomical systems.

Thin accretion disk

We have already talked about Bondi accretion, in which a 1D model is sufficient to

solve the flow structure due to the symmetric property of the system. Now we go

to thin-disk limit, which allows one to treat the accretion flow as a 2D structure. A

steady, azimuthally-symmetric, thin disk is the situation that the disk is geometrically

thin, and the disk structure is independent of time. In such case the governing

equations reduce from differential equations to algebraic equations.

Here we first provide the conditions for “steadiness” and “thinness”, then we move

on to discuss the governing equations and a particular thin disk model. Matter drifts

towards the center due to angular momentum transport, which is often modeled as

turbulent transport within the disk by a “viscosity” ν. Therefore, disk structure

changes in the radial direction on the viscous timescale tvisc ∼ R2/ν, which depends

on the radius R and kinematic viscosity ν (not to be confused with frequency that is

also represented by ν in this thesis). A disk is steady if the evolution time scale is

longer than tvisc.

The condition for “thinness”, on the other hand, depends on the vertical structure.

A thin disk is formed when the matter has subsided vertically into the central plane.

Then hydrostatic balance implies

1

ρ

∂P

∂z
= −GM

R3
z = −Ω2z, (1.1)

where ρ is density, P is pressure, G is gravitational constant, M is the mass of central
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object, and Ω =
√

GM/R3 is the Keplerian angular velocity. The last equality in

equation (1.1) is only true for Keplerian disk, though it is commonly used as an

approximation when one does not have better knowledge about the angular velocity.

The scale height of the disk can then be defined as H = (1/P )∂P/∂z. Here we

assume the isothermal condition, otherwise equation (1.1) cannot be solved without

the energy equation. With the definition of isothermal sound speed c2
s = P/ρ, one

has
H

R
= cs

(
R

GM

)1/2

. (1.2)

A disk is thin if H/R ¿ 1. Then the thin disk condition can also be written as

cs ¿
(

GM

R

)1/2

. (1.3)

In other words, the disk has to be sufficiently cold in order to be thin.

The governing equations again include the time-independent forms of the fluid

dynamics equations such as equation (1.1). In addition, a radiative transport model is

needed to find temperature as a function of z. Finally a model for turbulent transport

of angular momentum is needed, because the aforementioned inward drifting of matter

is a result of the presence of kinematic viscosity ν in the equations. One popular recipe

is to parametrize ν as

ν = αcsH, (1.4)

which results in the famous α-disk model.

Now that we have the thin-disk condition, let us put our thin-disk discussions

into perspective. Luminosity is high (relative to Eddington) for classical AGNs, and

the accreting matter is cooled efficiently by radiating away the internal energy 2.

Therefore the disk is cold and a thin-disk approximation can be applied. However, as

one lowers the luminosity of an AGN, the more internal energy is “trapped” in the

gas and the temperature raises. At some point the thin-disk approximation breaks

down 3. This is exactly the case of a LLAGN. The disks of Sgr A* and M87 are

therefore geometrically thick (H/R is of order unity).

2This statement is not entirely true because the thin-disk condition breaks down near to the
black holes if mass accretion rate is large [Chen et al., 1995]. However, even for those cases, except
for the innermost region, the accretion disk can still be described by the thin-disk model.

3Besides thin-disk and thick-disk models, there are a branch of models that consider the case
that luminosity is comparable to the Eddington value [Bjoernsson et al., 1996, Chen et al., 1995].
Those are known as slim disks. We choose not to discuss those models to reduce complication in
the discussion.
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Thick accretion disk

Now we switch focus and discuss the thick accretion disk, or torus. In our previous

discussion of thin accretion disks, we have already briefly mentioned thick disk. Notice

that we have in fact made an implicit assumption that the disk is formed in an AGN,

but in fact it is possible for thick accretion disks to form around other astrophysical

objects (e.g. in massive star formation [Banerjee & Pudritz, 2007]). However, those

thick disks could have different properties compared to what we describe here (except

that H/R ∼ 1, by definition).

In this section, we summarize the properties of a thick disk. Then we discuss the

details of a type of theoretical models which can explain the geometry of the flow and

the emission properties.

As we now understand from previous sections, thick disks are underluminous in

terms of its Eddington value. In other words, the emission is only a small portion

of the energy in the accreting matter. Without a very low radiative efficiency, most

of the gravitational potential energy released by the accreting matter is converted

into heat. Therefore thick disk is very hot. At the event horizon, the temperature of

proton is Tp ∼ GMmp/(3kBR) = mpc
2/(6kB) ∼ 1012 K. The temperature of electron

is less certain. If the estimated densities around Sgr A* and M87 are to believed,

Coulomb collisions alone are not enough to equalize the temperatures of proton and

electron. However, plasma instabilities may equalize the temperatures. The exact

electron temperature also depends on whether shocks and magnetic reconnection are

important.

There are many attempts to construct theoretical models of thick accretion disks.

Due to their low luminosity, it is only natural that such models are called radiatively

inefficient accretion flows (RIAFs). One of the most popular models is an advection-

dominated accretion flow (ADAF), due to its relatively simple analytical form. The

name itself is a bit misleading because Bondi accretion and RIAFs are all advection-

dominated. In fact, ADAFs refer to models that include quasi-spherical flow structure,

rotation, α-viscosity, and a two-temperature plasma [Narayan, 2002].

ADAFs assume at least two parameters. The first one is the dimensionless vis-

cosity parameter α, which also enters Ṁ ∼ αṀB, where ṀB is the accretion rate in a

Bondi flow far away from the center. Typical value of α ∼ 0.1 leads to a small Ṁ in

the Eddington value. Another parameter, δ, is the fraction of the turbulent energy

heating of the electrons, is typically chosen to be ∼ 0.01 for quiescent models. Later

models introduced other parameters, such as one that allows the density scaling to

deviate from that for spherical accretion because of outflows. The choices of these
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parameters allow ADAFs to account for the broadband spectrum and the low lumi-

nosity of Sgr A*. The comparison of ADAFs with observation suggested that both

a low accretion rate and a low radiative efficiency are important to explain why Sgr

A* is very dim.

Despite the success of ADAFs and other analytic RIAF models, they are time-

independent by nature and could not explain the time variation observed in Sgr

A* and M87. They also do not contain information about the turbulent flow and

magnetic field structure, which could be important in the predicting the emission

from the accretion flow. Therefore there have been efforts in recent years to perform

global, time-dependent numerical simulations of thick disks.

Besides the progress of numerical method and improvement of computational

power in recent years, there are two major reasons why simulations of thick accretion

disks are feasible. First reason is that radiation is dynamically unimportant in the

system. This simplifies the calculation, and allows post-processing of accretion flow

simulation to produce spectra and images. Another reason is that the geometry al-

lows one to resolve the flow structure relatively easily. A thin disk with H ¿ R, on

the other hand, requires a large number of zones in the vertical direction.

1.3 Emission and radiative transfer

We have learned about how thick accretion disk models are applicable to the LLAGNs

such as Sgr A* and M87. Then the next questions are: How do we predict the

spectrum and image of the models? The answer consists of two closely related parts.

In this section, first we discuss how radiation is produced at the accretion disk by

various emission and absorption processes. Then we are going to answer the second

part of the question, namely, the details of how radiation is transported to us.

1.3.1 Synchrotron radiation

Thick accretion disk is relativistically hot and ionized. Magnetic field also exists nat-

urally in the system. Therefore synchrotron radiation, which is due to acceleration of

relativistic charged particles by magnetic field, is one of the major emission mecha-

nisms. Since electrons are much lighter than protons despite having the same charge,

most of the emission comes from electrons, unless electron temperature is much lower

than proton temperature in a particular disk model.

One of the ways to calculate synchrotron emission is to consider the classical
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Liénard-Wiechert potentials, as seem by a distant observer. By assuming a constant

energy loss rate from an accelerated electron, one can calculate the so-called single-

particle emissivity. In real life, electrons have a range of energy and direction (with

respect to magnetic field lines). The total emissivity is found by integrating the

single-particle emissivity over the electron distribution function.

For an electron with Lorentz factor γ, the synchrotron radiation is concentrated

in a narrow cone (with opening angle ∆θ ∼ 1/γ) in the direction of motion. Con-

sider a group of electrons moving in random direction, the emission will be linearly

polarized to a high degree because the net electric vector oscillates perpendicular to

the magnetic field line. This is a reason that magnetic field geometry in an accretion

disk is important in the prediction of polarized radiation.

For Sgr A*, it is found that power-law synchrotron emission from the extended

disk can account for the radio spectrum. The sub-mm bump, can be predicted

by synchrotron emission from thermal electrons in the innermost (within tens of

Schwarzschild radii) part of the disk.

1.3.2 Other emission mechanisms

Unlike synchrotron emission, bremsstrahlung does not depend on magnetic field in

the plasma. Bremsstrahlung, or free-free radiation, is produced when a charge is

accelerated by the Coulomb field of another particle. For Sgr A*, it is expected that

bremsstrahlung from the outer disk will produce X-ray emission, probably observable

during the quiescent state.

Another possible emission mechanism is pair production. When temperature is

very high, virtual photons can produce electron-positron pairs, which then collide and

produce gamma ray photons. It is unclear whether pair production is important in

the disk or the relativistic jet.

1.3.3 Radiative transfer

With an accretion disk model, and ways of calculating the emission, we are now

in a position to talk about how the radiation transports from the LLAGNs to the

observer. The radiative transfer (RT) equation is basically the Boltzmann equation.

The basic form of the RT equation, which consists of a source term describing emission
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of radiation, and a sink term describing absorption 4, can be written as

dIν

ds
= jν − ανIν , (1.5)

where Iν is the specific intensity, or radiation energy within a solid angle dΩ crossing

area dA in time dt and in frequency range dν, jν is the emissivity, and αν is the

absorption coefficient.

An important concept related to RT is optical depth τν . Consider the special case

of equation (1.5) that emissivity is zero, the specific intensity drops by an e-fold over

a distance l, when τν ≡ ανl = 1. Therefore τν > 1 is referred to as optically thick,

whereas τν < 1 is optically thin.

This concept has an important implication both to the observation, and to the

numerical calculation of Sgr A*. RIAF models predict a density that is optically thin

in radio and sub-mm, until very close to the central black hole. In fact, it is possible

to observe the image of Sgr A* in radio bands by VLBI, up to a scale comparable

to the Schwarzschild radius of the black hole. Numerically, in order to produce the

image and spectrum around sub-mm bump, it is possible to simulate only the disk

up to tens of Schwarzschild radii, and perform radiative transfer for the simulation

data.

Equation (1.5) is a simplification in two ways. First, due to the strong gravity

near to the black hole, relativistic form of equation (1.5) has to be used in the calcu-

lation. Effects such as gravitational redshift and ray bending are included naturally

in the relativistic RT equation. The so-called “silhouette” of the central black hole

is also produced by gravitational lensing, which is predicted by calculation using the

relativistic RT equation.

Second, Compton scattering is ignored in equation (1.5). For Sgr A*, scattering is

not important in the radio and sub-mm bands, but it can dominate the spectrum at

smaller wavelength. For Sgr A*, it is expected that Compton scattering of photons in

the sub-mm bump will produce a lower bump at ultraviolet. It is also possible that

Compton scattering contributes to the X-ray emission, especially in the flaring state.

Finally, if one wants to calculate the polarization from an accretion disk, one

needs to generalize equation (1.5) to the polarized RT equation. For nonrelativistic

calculation, instead of the total intensity, the Stokes parameters are needed to describe

the state of polarization.

4In general, there is also stimulated emission, which is not important in our application.
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1.4 Summary of the thesis

In the last few sections we first discussed the observational data of Sgr A* in par-

ticular, and LLAGNs in general. Then we developed the arguments suggesting the

thick-disk model is applicable to LLAGNs. We also explained the different ingre-

dients needed for a RT simulation of an accretion disk. Here we give a very brief

introduction of how different chapters in this thesis are related in this study.

In chapter 2 of this thesis, we describe an unpolarized RT calculation from a

general relativistic magnetohydrodynamic (GRMHD) simulation of an accretion disk,

with application to Sgr A*. Only thermal electrons are included in the study. We

provide simulated images of the disk, observed at different orientation angles. We also

compare our simulated spectra with observational data, which allow us to constrain

the spin and orientation of the system. We also analyze jets in our disk simulation.

Emissivity jν and absorptivity αν are needed in the RT calculation. For numerical

purpose, simple approximate equations are used. However, some of the equations from

the literature are not accurate enough for our study. Therefore, in order to estimate

the errors produced by the approximate equations, we perform the extra calculation

of jν and αν . We also find an improved approximate equation for thermal emissivity.

The efforts are described in chapter 3.

With the improved approximate equation, Mościbrodzka et al. [2009] calculated

the spectrum by RT, and performed a parameter survey to find the best-bet model of

the quiescent state of Sgr A*. Only thermal electrons were included in the calculation.

In chapter 4 we include nonthermal component to the electron distribution, in order

to explain a feature in the observed flaring spectrum. With a code that calculates the

exact jν and αν , we are able to test the accuracy of power-law approximate equations.

The next natural step is to use the polarized observations to constrain the accretion

flow at Sgr A*. In chapter 5 we describe a recipe of the relativistic polarized RT

equation. That would allow a future study of the polarized emission from Sgr A*.
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Chapter 2

Emission and Outflows from Black
Hole Accretion Disks

2.1 Introduction

One of the most attractive areas of astrophysics lies at the intersection of astronomy

and gravitational physics, in the rapidly growing observational and theoretical study

of black holes in their natural setting. Candidate black holes are found in binary

systems, with mass M ∼ 10 M¯, and in the nuclei of galaxies, with M ∼ 106 to

1010 M¯. Intermediate-mass candidates exist but are much less secure. Observational

facilities that operate across the electromagnetic spectrum are gathering a wealth of

new data about black hole candidates, primarily by observing radiation from a hot,

luminous plasma deep in the object’s gravitational potential [Ferrarese & Ford, 2005,

Remillard & McClintock, 2006]. In some cases this plasma is streaming outward

and will be observed as a collimated jet at large radius; in other cases the plasma is

believed to be moving inward, forming an accretion disk.1 Both the origin of the jet

and the structure of the disk are poorly understood, and new developments in the

theory of both are the subject of this paper.2

The massive dark object in the center of our galaxy, which coincides with the

radio source Sgr A∗, is one of the most interesting black hole candidates; from here on

we will dispense with the word candidate for Sgr A∗ as the evidence for a black hole

there is so strong as to make alternative models highly contrived; see, e.g. Broderick

& Narayan [2006]. At a distance of R ' 8kpc [Beloborodov et al., 2006, Eisenhauer et

al., 2005, Ghez et al., 2005], this M ' 4× 106 M¯ black hole has a larger angular size

than all candidate black holes, and therefore offers the best opportunity for directly

imaging the silhouette (or “shadow” [Falcke, Melia, & Agol, 2000]) of an event horizon.

However, its remarkably small bolometric luminosity of L ≈ 103L¯ ≈ 10−8Ledd—

where Ledd is the Eddington luminosity—provides a challenge for theoretical models.

1We use the term disk to mean any accretion flow with angular momentum. In some cases a
ring-like structure is directly observed (NGC 4258).

2This work was published in Classical and Quantum Gravity [Noble et al., 2007]. Reproduction
for this dissertation is authorized by the copyright holder IOPP.
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If one assumes that the accretion rate ṀX−rays ' 4 × 10−5 M¯yr−1 at r ≈ 0.1pc ≈
5.6 × 105GMc−2, based on a Bondi model and X-ray observations [Baganoff et al.,

2001, 2003], holds for all r and that accretion flow is a thin disk near the black hole,

then the observed luminosity is approximately

L ≈ 10−5

(
0.1

η

)
Lthin = 10−5

(
0.1

η

)
c2ṀX−rays , (2.1)

(η is the radiative efficiency) so either Ṁ varies with r, the thin disk model is irrele-

vant, or both. The spectral energy distribution (SED) shows no sign of the multitem-

perature black body distribution expected from a thin disk [e.g. Narayan, 2002]. Re-

cent millimeter and sub-millimeter polarimetry observations, folded through a model

of the accretion flow, require Ṁ . 10−7 − 10−9 M¯yr−1 [Macquart et al., 2006, Mar-

rone et al., 2006b] near the hole. All this suggests that Ṁ drastically diminishes as

r → 0.

Current popular theories of Sgr A∗ fall into two categories: jet models and radia-

tively inefficient accretion flow (RIAF) models. The former suppose that the most

luminous part of Sgr A∗ is a pair of relativistic jets of plasma propagating perpendic-

ular to the accretion flow that emit via synchrotron and/or synchrotron self-Compton

processes [Falcke et al., 1996, Falcke & Markoff, 2000]. The RIAF theories suggest that

the disk is quasi-spherical but rotating, and emits via synchrotron, bremsstrahlung

and Compton processes [Yuan, Quataert & Narayan, 2003]. In order to account for

the low luminosity, the RIAF disk is taken to be an inefficient emitter that retains

much of its heat and maintains a geometrically thick profile. Each of these models

are freely specified by a number of unknown parameters such as the radius of the

jet’s sonic point or the fraction of heat shared between electrons and protons in the

RIAF disk. With this considerable freedom, each model can predict the spectrum

quite well.

These two theories neglect GR effects and do not account for dynamical variations

of the spectrum self-consistently. General relativistic calculations of the emission have

been performed, though they have used RIAF solutions [Broderick & Loeb, 2006a]

or simple orbiting spheres of hot plasma [Broderick & Loeb, 2005, 2006b] as sources.

They also use an isotropic (angle-averaged) synchrotron emissivity. A radiative trans-

fer calculation based on Newtonian magnetohydrodynamic (MHD) simulation data

has been performed using the Paczynski-Witta potential to approximate the black

hole’s effect [Goldston, Quataert & Igumenshchev, 2005], but this cannot fully ac-

count for light-bending, gravitational redshift, and Doppler effects, particularly if the
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black hole is rapidly rotating.

Here we will present the first self-consistent optically thin calculations of Sgr A∗’s

image and spectrum at about λ = 1mm, near the peak of its SED. This band of

radiation is particularly interesting since it originates near the horizon and will, con-

sequently, be strongly affected by the hole’s curvature. Improvements in millimeter

and sub-millimeter Very Long Baseline Interferometry (VLBI) will soon permit fea-

tures at the scale of the horizon to be resolved [Doeleman & Bower, 2005]; this makes

the construction of accurate, detailed models that incorporate relativistic effects even

more pressing.

Another active subject relevant to accretion disks is the study of relativistic jets.

Whether they are black hole of a few solar masses [Fender & Belloni, 2004, Mirabel

& Rodŕıguez, 1999] or are extragalactic and supermassive [Ferrari, 1998, Harris &

Krawczynski, 2006], jets are observed emanating from them. Following the recent

surge of interest in general relativistic magnetohydrodynamic (GRMHD) simulations,

several groups have begun to investigate the outflows that appear spontaneously in

weakly radiative accretion disk simulations [De Villiers, Staff & Ouyed, 2005, Hawley

& Krolik, 2006, McKinney, 2006]. We contribute to this body of work by presenting

recent evolutions of jets launched from geometrically thick disks. We describe the

large-r scaling of the jet and explain its dependence on numerical parameters.

The outline of the paper is the following. We describe the theory and methodology

used for our GRMHD disk simulations in Section 2.2.1. These simulations serve as the

dynamic radiative source for our radiative transfer calculations, which are described in

Section 2.2.2. Images and spectra of Sgr A∗ for a variety of situations are presented in

Section 2.3. Section 2.4 describes our work on jets, and Section 2.5 gives a summary.

2.2 Theoretical Foundation

In many accreting black hole systems, the inner part of the material flow is well

explained by the ideal MHD approximation. We employ this assumption in our

dynamical evolutions of black hole accretion disks as described in the Section 2.2.1.

Emission from these simulations is calculated via a ray-tracing technique described

in Section 2.2.2.
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2.2.1 General Relativistic Magnetohydrodynamics

We present in this section an outline of the equations and methodology used to calcu-

late accretion disk evolutions. More thorough descriptions can be found in Gammie,

McKinney, & Tóth [2003], Noble et al. [2006], yet we repeat a few points here to

provide a context for the rest of the paper.

Throughout this paper we follow standard notation [Misner, Thorne & Wheeler,

1970]. We work in a coordinate basis with metric components gµν and independent

variables t, x1, x2, x3. The quantity nµ = (−α, 0, 0, 0) is the dual of the 4-velocity

of a “normal observer” that moves orthogonal to constant t foliations of spacetime,

where α2 = −1/gtt is the square of the lapse. Greek indices refer to all spacetime

components, while Roman indices represent only spatial components. Geometrized

units are used so G = c = 1 unless otherwise noted.

The GRMHD equations of motion include the continuity equation,

∇µ (ρ◦uµ) = 0 , (2.2)

the equations of local energy conservation

∇µT
µ

ν = 0 , (2.3)

and Maxwell’s equations

∇ν
∗F µν = 0 . (2.4)

Here, ρ◦ is the rest-mass density, uµ is the fluid’s 4-velocity, T µ
ν is the MHD stress-

energy tensor, and the Maxwell tensor ∗F µν is the dual of the electromagnetic field

tensor F µν . The ideal MHD approximation,

uµF
µν = 0 (2.5)

eliminates three of the six degrees of freedom inherent in the electromagnetic field.

The remaining degrees of freedom can be represented by the three non-trivial com-

ponents of the magnetic field in the frame of the normal observer:

Bµ ≡ −nν
∗F µν . (2.6)

A convenient tensor related to Bµ is one proportional to the projection of the field
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into a space normal to the fluid’s frame:

bµ ≡ 1

γ
(δµ

ν + uµuν)Bν . (2.7)

Using these definitions, one can easily show that the MHD stress-energy tensor can

be expressed as

T µν =
(
ρ◦ + u + p + b2

)
uµuν +

(
p +

b2

2

)
gµν − bµbν , (2.8)

where p is the fluid’s pressure, u is the fluid’s internal energy density, and b2 ≡ bµb
µ.

Further, one can show that the GRMHD equations of motion can take the following

flux conservative form

∂tU(P) = −∂iF
i(P) + S(P) , (2.9)

where U is a vector of “conserved” variables, Fi are the fluxes, and S is a vector of

source terms. Explicitly, these are

U =
√−g

[
ρ◦ut, T t

t + ρ◦ut, T t
j,Bk/α

]T
(2.10)

Fi =
√−g

[
ρ◦ui, T i

t + ρ◦ui, T i
j,

(
biuk − bkui

)]T
(2.11)

S =
√−g

[
0, T κ

λΓ
λ

tκ, T
κ

λΓ
λ

jκ, 0
]T

, (2.12)

where Γλ
µκ is the metric’s associated affine connection coefficients. Note that Maxwell’s

equations are rewritten as the last three components of (2.9)—also known as the in-

duction equations—and a constraint equation

∂i

(√−gBi/α
)

= 0, (2.13)

which must be upheld during the evolution. Since the equations are solved in flux

conservative form, energy is conserved to machine precision. This means that small-

scale structures in the velocity and magnetic field are erased by numerical smoothing,

but that the associated kinetic and electromagnetic energy is captured as entropy.

We use the HARM code [Gammie, McKinney, & Tóth, 2003] to evolve axisym-

metric disks on a fixed background. Because of axisymmetry our numerical models

will fail to capture some aspects of the disk dynamics. For example, axisymmetric

MHD flows cannot sustain turbulence due to the anti-dynamo theorem and fail to

properly capture the dynamics of magnetic Rayleigh-Taylor instabilities. 3D models
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will eventually be required to include these effects.

A central, Lax-Friedrich-like flux method similar to that proposed by Kurganov

and Tadmor Kurganov & Tadmor [2000] is used. The Flux-CT method [Tóth, 2000]

is used to impose the “no-monopoles” constraint, and the monotonized central limiter

scheme is used to reconstruct at each cell interface. In order to calculate Fi we need to

invert the conserved variable definitions for the primitive variables. This is performed

using the “2D” method of Noble et al. [2006]. In all of the results shown here, the

equation of state

p = (Γ− 1) u (2.14)

is used with Γ = 4/3. Also, we use a grid that is uniformly spaced in a slightly

modified version of the usual spherical Kerr-Schild coordinates t, r, θ, φ, which are

regular on the horizon. The modifications concentrate numerical resolution toward

the event horizon and toward the midplane of the disk.

Our initial data consists of a torus in hydrodynamic equilibrium [Fishbone &

Moncrief, 1976]3 On top of this Fishbone-Moncrief torus we add a weak magnetic

field with vector potential Aφ = Max (ρ◦/ρmax − 0.2, 0) where ρmax is the maximum

of the disk’s rest-mass density. The magnetic field amplitude is normalized so that

the ratio of gas to magnetic pressure within the disk has a minimum of 100. With

the addition of the field the disk is no longer strictly in equilibrium, but because the

field is weak it is only weakly perturbed. The initial state is unstable to the MRI

[Balbus & Hawley, 1991], so turbulence develops in the disk and material accretes

onto the black hole. Since HARM is incapable of evolving a vacuum, we surround the

disk in an artificial atmosphere, or “floor” state, with ρ◦,atm = 10−4(r/M)−3/2 and

uatm = 10−6(r/M)−5/2. Whenever ρ◦ and u fall below the floor they are artificially

set to the floor.

2.2.2 General Relativistic Radiative Transfer

We consider non-polarized, optically thin emission from a thermal distribution of

electrons at wavelengths near the sub-millimeter peak in Sgr A∗’s spectrum. At these

wavelengths, the disk is expected to be optically thin and thermal synchrotron emis-

sion is expected to dominate. We include both synchrotron and bremsstrahlung,

confirming that the former dominates. Even though much of the disk is calculated

to be optically thin for frequencies of interest here, there are small regions where

3The Fishbone-Moncrief solution has a single key parameter uφut, which is by assumption con-
stant. In units where GM = c = 1, our solution is such that uφut = 4.28.
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absorption is important. For this reason, our calculations include absorption and the

radiative transfer equation is solved.

Numerical methods for calculating emission in curved spacetimes have become

more refined and sophisticated since their introduction decades ago. One of the first

calculations including light bending, lensing, gravitational redshifts and Doppler red-

shifts in general relativity was done by Cunningham [1975] through the use of the

so-called “transfer function,” which maps the specific intensity of a luminous source

to what would be observed at infinity4. Polarization transfer functions were imple-

mented in a Monte Carlo algorithm by Connors, Stark & Piran [1980], who modeled

polarized X-ray emission from geometrically thick clouds around Kerr black holes.

This method was later developed by Laor, Netzer & Piran [1990] to study the effects

of self-illumination on the emission from accretion disks [Cunningham, 1976]. An alge-

braic expression for the polarization transfer function in the Schwarzschild spacetime

was derived by Chen & Eardley [1991] to study the polarization of line emission from

thin disks. Time-dependent emission from accretion disk hot spots was calculated us-

ing a code by Karas, Vokrouhlicky & Polnarev [1992] that “compressed” and stored

geodesic curves as Chebyshev polynomials so that many transfer calculations could

be done without repeating the laborious geodesic integrations. An efficient and some-

what complicated semi-analytical way of integrating the geodesic equations in Kerr

spacetimes was developed by Rauch & Blandford [1994]. The variability from indirect

photons (i.e. those that follow highly curved geodesics) on Sgr A∗ IR emission was

estimated by Hollywood & Melia [1997]. Modern techniques for efficiently calculating

optically thin line emission from general sources and spacetimes have been developed

by a number of groups [e.g. Bromley, Chen & Miller, 1997, Beckwith & Done, 2005,

Dovčiak, Karas & Yaqoob, 2004]. The theory of polarized radiation propagation and

transfer through a magnetized plasma was derived and implemented in Broderick

& Blandford [2003, 2004]. This work and another [Fuerst & Wu, 2004] solves the

radiative transfer equations with absorption in covariant form. More recently, a ra-

diative transfer code that uses data from GRMHD disk simulations has been used to

investigate the presence of quasi-periodic oscillations in calculated thermal radiation

[Schnittman, Krolik & Hawley, 2006].

In our work, radiation is modeled as discrete bundles of photons that follow null

geodesics from the disk to a “camera” 8kpc from Sgr A∗ . The geodesic equation is

4An implementation of the algorithm described in Cunningham [1975] was written and made
publicly available by Speith, Riffert & Ruder [1995].
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solved in first-order form:

∂xµ

∂λ
= Nµ ,

∂Nµ

∂λ
= Γν

µηNνN
η , (2.15)

where Γν
µη are the connection coefficients, and Na =

(
∂
∂λ

)a
is the tangent vector along

the geodesic that is parametrized by the affine parameter λ. As usual [Broderick

& Loeb, 2006b, Bromley, Chen & Miller, 1997, Dovčiak, Karas & Yaqoob, 2004,

Schnittman & Bertschinger, 2004], the geodesics are calculated in reverse from a

camera pixel back through the simulation volume. We assume that the camera is a

static observer in our coordinates and is centered on the black hole. From the far ends

of the geodesic, the radiative transfer equations are integrated forward to obtain the

final specific intensity values. The initial intensities are set to zero since the bundles

either start at the event horizon or originate from past null infinity.

The equations of general relativistic radiative transfer naturally develop from a

generalization of Liouville’s theorem to non-inertial frames [Lindquist, 1966] (see also

Misner, Thorne & Wheeler [1970] and Mihalas & Weibel-Mihalas [1999]), which states

that the number of photons, dN , per phase space volume, dV , is invariant along the

photon trajectory in vacuum:

d

dλ

dN
dV ≡ df

dλ
= 0 ; (2.16)

here λ is the affine parameter of the geodesic that the bundle follows and f is the

photon distribution function. It is more common to describe the radiation field by the

specific intensity Iν ∝ ν3f at frequency ν, or with the invariant intensity I = Iν/ν
3.

When ionized matter is present, photons can be scattered in and out of the bundle,

converted to material degrees of freedom (absorbed) or can be added to the bundle

via spontaneous or induced emission. In the optically thin limit, scattering events are

rare and can be ignored. Since the rate of absorption is proportional to the bundle’s

intensity and the rate of emission is not, the frame-independent radiative transfer

equation takes the simple source/sink form:

dI
dλ

= J −AI , (2.17)

where J and A are the Lorentz invariant emissivity and absorption coefficient, re-

spectively, which are related to their frame-dependent counterparts jν and αν by

J =
jν

ν2
, A = ναν . (2.18)
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The dimensions of λ can be deduced by reducing equation (2.17) to the usual inertial-

frame version:
dIν

ds
= jν − ανIν , (2.19)

where ds = cdtν is the path length the photon traverses over time interval dtν as

measured in a frame in which the photon’s frequency is ν. For these to be equivalent

we must define λ so that the tangent vector appearing in the geodesic equation is

Nµ =
c

2π
kµ , (2.20)

and kµ is the photon wavevector.

In practice, using λ as an integration variable leads to loss of precision near the

horizon. We instead use dλ′ = dλ/n(r) where

n(r) =
r

rh

− 1 , (2.21)

and rh is the radius of the event horizon.

A single time slice of the disk evolution is used to calculate jν and αν . This

crude approximation will be accurate where the matter distribution varies slowly

compared to a light crossing time, as it is in the bulk of the disk. It will also be

accurate for observations over timescales longer than the light-crossing time; this

applies to VLBI observations of Sgr A∗. The primitive variables, {ρ, u, ũi,Bi}, from

the time slice are bilinearly-interpolated at each point along the geodesic and stored;

ũi ≡ (δi
µ + ninµ) uµ is the spacelike velocity perpendicular to nµ. The step size is a

tunable fraction of the local grid spacing so that the simulation data is well sampled.

The interpolated data is then used to integrate equation (2.17) using one or several

emission models. The Lorentz invariant emissivity J is calculated from the local

observer’s value of jν . We assume a thermal distribution function for the electrons

so that αν = jν/Bν where Bν is Planck’s distribution. We use an anisotropic, angle-

dependent approximation to jν taken from Wardziński & Zdziarski [2000]. We have

confirmed that this expression yields results to an accuracy no worse than any of our

other assumptions or approximations [Leung, Noble & Gammie, 2007].

2.3 Sgr A∗ Emission

Observations indicate that most of Sgr A∗ ’s radiation originates as optically thin

emission near the event horizon at a wavelength of . 1mm [e.g. Marrone et al.,
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2006b]. Even if the accreting plasma has very little angular momentum, it is expected

to have circularized in this region. If the magnetic field is weak at large radii, it is

expected to be amplified to near equipartition with the disk’s internal energy via the

magnetorotational instability (MRI) [Balbus & Hawley, 1991]. This makes previous

accretion disk simulations [McKinney & Gammie, 2004] suitable for our study since

they yield statistically steady flows within r . 12M .

The electrons are assumed to follow a thermal distribution which is consistent

with modern models that find a power-law distribution of electrons is needed to si-

multaneously match radio and X-ray observations, but that thermal electrons are the

dominant emitters at sub-millimeter/millimeter wavelengths [Yuan, Markoff & Fal-

cke, 2002, Yuan, Quataert & Narayan, 2003]. Further, we assume that the electrons

and ions are at the same temperature, although some successful models of Sgr A∗ ’s

spectrum and variability assume a two-temperature flow [Goldston, Quataert & Igu-

menshchev, 2005, Yuan, Quataert & Narayan, 2003]. Cooling times for synchrotron

and bremsstrahlung emission are long compared with the inflow time in our model, as

expected for the matter near Sgr A∗. Numerically integrated optical depths indicate

that that the disk is everywhere optically thin (i.e. optical depth is less than unity)

when λ . 1mm. We can therefore neglect the radiation’s effect on the the GRMHD

simulations for these wavelengths.

Table 2.1 Parameters for the accretion disk evolutions used to model Sgr A∗ emission.
All quantities are given in geometrized units unless explicitly stated otherwise. The
radii r1, r2 and rISCO are—respectively—the radius of the inner edge of the equilibrium
torus at t = 0, radius of the pressure maximum at t = 0, and the radius of the ISCO
for the given spacetime. Ṁ4Jy is the accretion rate resulting in a flux density of 4Jy
at Earth; this is used to set the scale of the rest-mass density. The quantities 〈Ṁ〉,
〈Ė〉, 〈L̇〉 are—respectively—the average accretion rates of the rest-mass, energy, and
angular momentum, taken over 1100M < t < 1500M .

a∗ r1 r2 rISCO Ṁ4Jy 〈Ṁ〉 〈Ė〉/〈Ṁ〉 〈L̇〉/〈Ṁ〉
(M) (M) (M) (M) (10−9 M¯yr−1)
0.0 6.4 15.05 6.00 7.34 0.88 0.95 3.01
0.5 6.0 13.02 4.23 3.60 0.75 0.94 2.58
0.75 6.0 12.35 3.16 2.05 0.41 0.90 2.15
0.88 6.0 12.10 2.48 1.15 0.30 0.89 1.96
0.94 6.0 12.00 2.04 0.82 0.23 0.86 1.62
0.97 6.0 12.00 1.75 1.23 0.33 0.86 1.65

The degrees of freedom of our model include the spin of the black hole (a∗),
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the accretion rate (Ṁscale), the inclination (angle iinc between the black hole angular

momentum vector and the line of sight to the black hole), and the time at which

we make the image (tpic). The spin and inclination are unknown for Sgr A∗, though

a recent periodicity in X-ray flux that has been seen may be evidence of a∗ & 0.22

[Belanger et al., 2006]. Disk simulations with different a∗ and initial disk distributions

are used and are tabulated in Table 2.1. Each simulation used 256×256 cells with the

algorithm described in Section 2.2.1. This resolution proves to be sufficient for our

purposes since higher resolution simulation data (using 512 × 512 and 1024 × 1024

cells) produced differences easily accounted for by time variability. We set r1 and

r2—the radii of the inner torus edge and the pressure maximum—so that all tori

have similar shapes and sizes initially. The density is scaled until the flux density at

1mm matches an observationally determined 4Jy [Marrone et al., 2006a]; this yields

an accretion rate we will call Ṁ4Jy . Finally, we find insignificant dependence on the

simulation’s floor model in our emission calculations since its flux is always many

orders of magnitude smaller than that of the rest of the flow.

It is interesting to note that Ṁ4Jy are always consistent with the observational

limits Ṁ . 10−7−10−9 M¯yr−1 [Macquart et al., 2006, Marrone et al., 2006b] obtained

by folding measurements of the rotation measure through a model for Faraday rotation

within the accretion source. Because they use a RIAF-like model the agreement with

the simulations may in part be coincidental; it would be very interesting to see self-

consistent calculations of the rotation measure from the numerical simulations.

An outstanding concern for future millimeter/sub-mmVLBI experiments is whether

there will be any observable effect from the black hole’s curvature. For this purpose,

we present images of a single snapshot (tpic = 1250M) of a simulation (a∗ = 0.94) at

λ = 1mm for different inclination angles in Figure 2.1. The raw images, in which each

pixel represents a unique ray, are shown next to their convolved counterparts. The

convolution is performed using a circular Gaussian beam to simulate the appearance

of an image taken with VLBI using a baseline 8000km at λ = 1mm [Doeleman &

Bower, 2005, Falcke, Melia, & Agol, 2000]. As expected, we find that the brightest

regions of the disk lie in the inner equatorial region of the flow where u and b2 are

largest. The part of the disk approaching the camera is brightest because of rela-

tivistic beaming. The brightest region is especially interesting since most, if not all,

of the geodesics that pass through it originate near the horizon and orbit the black

hole multiple times before reaching the camera. Please note that the asymmetry seen

in the iinc = 5◦ images is expected since the disk is slightly inclined to the viewer.

Even though it is much more noticeable in the convolved image, the asymmetry is
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Figure 2.1 Images of the accretion disk viewed at a wavelength of 1mm seen at incli-
nation angles of 5◦ (top), 30◦ (middle) and 90◦ (bottom). Each frame shows a view
40M wide in the plane of the singularity. Frames in the left column are “infinite”
resolution images, while those in the right column have been convolved with a sym-
metric Gaussian beam to simulate a 8000km baseline VLBI observation. The linear
colour map used is shown at the right of the images. Each image has been scaled by
its maximum intensity for illustrative purposes.
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Figure 2.2 Spectra taken at iinc = 30◦ using snapshots of the a∗ = 0.94 disk
at different points along its evolution. Lines A-G respectively represent tpic =
1150M, 1250M, 1326M, 1434M, 1500M, 1560M, 1666M .

also present in the high resolution image.

The black hole silhouette is obvious in the raw images at all inclinations, though

may only be observable in practice if iinc . 30◦. This does not necessarily mean that

other observables—such as variability and polarization fraction—are not sensitive to

relativistic effects at other inclinations.

We have also calculated spectra for a survey over tpic, a∗, and iinc, shown in

Figures 2.2 - 2.4. A standard model was used for comparison: tpic = 1250M , a∗ =

0.94, iinc = 30◦. The filled circles with error bars in these plots represent observed

flux values of Sgr A∗ during quiescence [Falcke et al., 1998, Hornstein et al., 2002,

Macquart et al., 2006, Marrone et al., 2006a, Serabyn et al., 1997, Zhao et al., 2003].

The red exes are found from flux measurements during flare events [Zhao et al., 2003],

and the arrows indicate upper limits at NIR/IR wavelengths [Serabyn et al., 1997].

Error bars indicate the measured errors quoted in the references. We calculate Lν

assuming isotropic emission.

Our calculations are most relevant in the vicinity of ν ' 3 × 1011Hz. At lower

frequencies the emission likely arises from plasma outside the computational domain,

and so we cannot model it. The absence of this material may explain why the cal-

culated luminosities are too large at ν ≈ 1011Hz. For ν & 1013Hz, both Compton

scattering and direct synchrotron emission from a power-law distribution of electrons
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Figure 2.3 Spectra taken at iinc = 30◦ and tpic = 1250M , but using simulation data
from evolutions with different black hole spins. Lines A-F respectively represent
a∗ = 0, 0.5, 0.75, 0.88, 0.94, 0.97.

Figure 2.4 Spectra taken at tpic = 1250M using a∗ = 0.94 simulation data at different
iinc. Lines A-C respectively represent iinc = 5◦, 30◦, 90◦.

32



may be important; these effects are not modeled here.

Temporal variations in the spectrum are small at ν ' 1011Hz. Near the peak,

the variation is comparable to current observational sensitivities and may be able to

account for some flares. The complexity of the radiative transfer calculation is evident

in the nonuniformity of the time variability with frequency.

The sensitivity of the spectrum to the time slice used to calculate the spectrum is

dwarfed by the sensitivity of the spectrum to the choice of black hole spin a∗. We find

a fairly uniform trend of increasing bolometric luminosity with spin (while holding

the 1mm flux at 4Jy); the a∗ = 0.75 and a∗ = 0.88 cases break this trend, but this

may just be the result of a temporary fluctuation. The variation of the spectrum

with a∗ may be attributable to an increase in relativistic beaming with spin, and an

increase in temperature and magnetic field strength near the horizon with spin. The

latter is not as strong an effect as the former since Ṁ4Jy at a∗ = 0 is about 7 times

the value at a∗ = 0.97.

The SED dependence on iinc is the most telling in that NIR/IR upper limits likely

rule out edge-on disks with large a∗. Assuming the same trend in iinc at comparable

values of a∗, the NIR/IR upper limits constrain our models to have iinc . 30◦ for

a∗ & 0.88 and any inclination for smaller spins. Coincidentally, iinc . 30◦ is also the

range in inclination angle that provides the best chance at observing the black hole’s

silhouette at λ = 1mm. Recently, the variability seen in flux and polarization angle at

NIR wavelengths has been shown to be consistent with emission from an orbiting hot

spot and ring inclined at & 35◦ [Meyer et al., 2006]. Our results with their constraint

on inclination angle then suggest that a∗ . 0.88. Future fits from numerical models

will more strongly constrain the inclination and spin.

2.4 Accretion Disk Jets

Jets are almost always seen in our accretion disk simulations. They produce very

little emission in the Sgr A∗ models considered earlier because they are nearly empty

of mass at small radii. As they mix with the surrounding material present at larger

radii, the jets may become more luminous. Since they play no significant role in our

calculation of Sgr A∗’s emission, they are considered separately in this section.

Our simulations of jets launched from accretion flows extend to distances of r ∼
103M . They are not dependent on the inner radial boundary condition since it is

causally disconnected from the rest of the numerical domain (i.e. it lies within the

event horizon), and we terminate their evolution before any matter reaches the outer
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boundary. These outflows are generated spontaneously by a combination of forces

very close to the black hole. They are interesting because they are easily observable,

and their large observed Lorentz factors were used as one of the first arguments for

relativistically strong gravitational fields in the engine that drives them.

Early attempts at studying jets with HARM were plagued by instabilities that we

have since cured by using a new set of coordinates that improve the resolution along

the symmetry axis. Specifically, we use

r = ex1

, θ = πx2 +
2h2

π
sin(2πx2) arctan

[
s
(
x1

0 − x1
)]

, (2.22)

which are different from the modified Kerr-Schild coordinates described in Gammie,

McKinney, & Tóth [2003]. Here x1
0 is a transition radius where the grid begins to focus

toward the axis, the parameter s controls how quickly this transition is made, and h2

controls the strength of the focusing. We set x1
0 = log(40), s = 2, and h2 = 0.35 so

that the cells become more focused along the axis at a radius beyond the bulk of the

disk.

Using these coordinates we performed a run using 568 × 256 cells (more cells

are needed to extend the grid radially). The same initial conditions were used as

in the a∗ = 0.94 run of Table 2.1. We present here data from t = 1500M , which

is near the end of the period of time-steady accretion. At this point the jet has

reached r ' 800M . Figure 2.5 shows snapshots of the Lorentz factor (γ ≡ αut),

rest-mass density (ρ◦), magnetic field density (b2) and the toroidal component of

the electromagnetic potential (Aφ). Notice that poloidal magnetic field lines follow

isosurfaces of Aφ. The jet is magnetically-dominated and remains well collimated for

at least the first 103M . The jet seems to be driven by Poynting flux near the poles,

and—further away from the axis—by a relativistic wind driven both thermally and

centrifugally.

The jet is relativistic, occasionally reaching γ ∼ 10. But the maximum γ reached

is sensitive to the magnitude and profile of the floor. To quantify this dependence, we

performed three runs with 256×128 cells using the floor profiles: ρ◦min ∈ {0.2, 1, 5} 10−4

r−3/2, umin ∈ {0.2, 1, 5} 10−6 r−5/2. The maximum values of γ averaged over 0 < θ <

15◦ at t = 1500M are 6, 2.5, and 2—respectively—for these floors. Differences in the

density and pressure profiles are also present since the floor is reached throughout

the polar regions in all these instances. The lowest floor in this set is close to the

stability limit for HARM. By using a higher-order reconstruction method, McKinney

[2006] found that HARM can be extended to reliably evolve similar outflows with a
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Figure 2.5 From left to right are snapshots of γ, ρ◦, b2 and Aφ—whose isosurfaces
follow poloidal magnetic field lines—at tpic = 1500M for a run using 568× 256 cells.
The height of each image is 2000M . White (red in the colour version) represents the
maximum of the colour scale, and black (blue in the colour version) the minimum.
Logarithmic colour scales are used for ρ◦ ∈ [10−8, 1] and b2 ∈ [10−10, 10−3]. Linear
colour scales are used for γ ∈ [1, 3.5] and Aφ ∈ [0, 0.08].
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Figure 2.6 Profiles of ρ◦ (black solid line), p (blue long dashes) and b2/2 (red short
dashes) are shown in the top figure. The radial dependence of ṁ (black solid line),
ηM (blue long dashes), and ηEM (red short dashes) are shown in the bottom plot. All
quantities are calculated at t = 1500M using an opening angle of 15◦ from the axes.

floor which is sufficiently steep and that the floor is reached only near the base of

the jet. Comparisons between these results and ours further indicate how the floor

affects the jet; for example, our γ is almost a factor of 2 smaller.

The radial profiles of ρ◦, p and b2/2 averaged over ∆θ = 15◦ from both poles are

shown in Figure 2.6. The thinner lines in the figure are power-law fits to the data at

r > 10M . We find

ρ◦ ∼ r−0.9 , p ∼ r−0.6 , b2 ∼ r−1.6 . (2.23)

The ρ◦ fit agrees with that seen by McKinney [2006] for r < 120M , but is much

shallower than what they see for r > 120M . This is most likely attributable to the

jet accumulating matter from our larger floor.

Also plotted are the jet luminosity and mass flux efficiencies. The matter and

electromagnetic components of the jet’s luminosity efficiency are

ηM =
2π

ε〈Ṁ〉

∫

dθjet

(
−T̂ r

t − ρ◦ur
)√−gdθ , (2.24)

ηEM =
2π

ε〈Ṁ〉

∫

dθjet

−T̃ r
t

√−gdθ , (2.25)
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where dθjet represents the first 15◦ from both poles, T̂ r
t is the matter component of T r

t,

T̃ r
t is the electromagnetic part of T r

t, ε = 1−〈Ė〉/〈Ṁ〉 ' 0.13 is an effective radiative

efficiency, 〈Ṁ〉 ' 0.30 is the average mass accretion rate through the horizon over

1000M < t < 1500M , and 〈Ė〉 ' 0.26 is the average energy accretion rate through

the horizon over the same period. The mass flux efficiency is

ṁ =
Ṁjet

〈Ṁ〉 =
2π

〈Ṁ〉

∫

dθjet

ρ◦ur
√−gdθ . (2.26)

The electromagnetic luminosity component is significantly larger for r . 100M . The

increase in the luminosity fraction with radius is partially due to collimation effects;

the jet is wider than 15◦ at smaller radii and collimates further out. The similarity

in the matter luminosity fraction and mass flux fraction is most likely from the jet’s

accumulation of mass from the floor. We, however, still see the conversion of elec-

tromagnetic flux into matter energy flux seen by others [McKinney, 2006]. Let us

assume that the free energy in our jet at large r represents a reasonable estimate for

the ultimate power of the jet. We can then estimate the jet to have a luminosity of

Ljet ≈ 0.013Ṁc2 . (2.27)

This value is similar to that calculated in other studies [Hawley & Krolik, 2006,

McKinney, 2006], though each used different floor schemes.

2.5 Summary and Conclusion

We have presented numerical estimates of the optically thin emission from GRMHD

accretion disk simulations scaled to Sgr A∗ conditions and commented on the character

of the jet seen in similar runs.

Relativistic jets (γ . 10) are seen from our geometrically thick accretion disks that

remain collimated at large distances (r & 1000M). The energy flux is predominantly

electromagnetic at small distances, but equipartition with the matter component is

reached by r ∼ 100M . Our results are qualitatively similar to other studies [Hawley

& Krolik, 2006, McKinney, 2006].

The ray-traced images of Sgr A∗ predict that the black hole silhouette will only be

obvious near λ ' 1mm if the disk is inclined less than ∼ 30◦ to the line of sight. By

taking pictures of the disks at different frequencies, we were able to calculate spectra

for different inclinations, black hole spins and time slices. Significant SED variations
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were seen with respect to all these parameters, though degeneracies may exist for

certain combinations of parameters. For instance, increasing a∗ and iinc seemed to

increase the power at high frequencies, so a low spin hole with a large inclination

angle may have a similar SED as a high spin hole with a small inclination angle.

Since the SED varies with time slice, we intend to take time averages of spectra to

more accurately approximate real observations. In addition, we plan on adapting our

ray-tracing code to consistently calculate polarization through plasma on a curved

background. This will allow us to further constrain our model. Other improvements

we plan to implement in the near future include removing the “frozen fluid” approxi-

mation which uses data from a single time slice to calculate the SED, adding Compton

scattering and using 3D simulation data.
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Chapter 3

Numerical Calculation of
Magnetobremsstrahlung Emission
and Absorption Coefficients

3.1 Introduction

In many astronomical plasmas the electron distribution includes an approximately

thermal, mildly relativistic component. One such system of particular interest to us

is Sgr A*, the radio source that is likely sited in a plasma surrounding the black hole at

the galactic center. As theoretical models of such systems advance, it is useful to have

a fast, accurate scheme to calculate the magneto-bremsstrahlung (MBS), or cyclo-

synchrotron, spectra. It is particularly desirable to be able to evaluate the necessary

absorption and emission coefficients for polarized radiation from a general electron

distribution, since in the collisionless conditions common in low luminosity active

galactic nuclei electron distributions are unlikely to precisely follow the commonly

assumed thermal or power-law forms.1

Usually MBS spectra are calculated using emission and absorption coefficients de-

rived under an ultrarelativistic (synchrotron) approximation or, for mildly relativistic

electrons, using approximate fitting formulae. The fitting formulae are accurate over

a limited range in frequency ν, field strength B, observer angle θ (the angle between

the emitted or absorbed photon and the magnetic field vector B), or characteristic

Lorentz factor for the electrons. In this work we provide, test, and apply a general

scheme for calculating MBS emission and absorption coefficients. One potential ap-

plication of our methods is to generate new, more accurate, computationally efficient

fitting formulae over the range of interest.

Approximate calculations of MBS emission and absorption coefficients have a rich

history. In the ultrarelativistic limit, emission of an electron with Lorentz factor γ is

limited to a cone defined by the oscillating velocity vector of the electron, with angular

width 1/γ. This leads to an approximate expressions for dP/dν [Bekefi, 1966, Rybicki

& Lightman, 1979, Westfold, 1959], the power per unit frequency interval. However,

1This work were submitted in 2009 to ApJ [Leung, Gammie & Noble, 2009]. Reproduction for
this dissertation is authorized by the copyright holder.
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for γ ∼ 1, the approximation worsens, cyclotron line features begin to appear in the

spectrum, and the ultrarelativistic approximation must be abandoned.

For mildly relativistic electrons the emission is still mainly perpendicular to the

magnetic field. This fact can be used to develop approximate analytic expressions for

the emissivity. Petrosian [1981] used the method of steepest descent, and an asymp-

totic expansion of the Bessel functions, to find the emissivity of mildly relativistic

thermal electrons (see also Pacholczyk [1970]).

Robinson & Melrose [1984] and Dulk [1985] improved Petrosian [1981]’s calculation

for thermal electrons at temperature T by using more accurate asymptotic expansions

of the Bessel functions that appear in the exact expression for the emissivity, and some

interpolation formulae, to provide a thermal MBS emissivity that is valid over a wide

range in T, ν, θ, and B. Brainerd & Lamb [1987] calculate numerically emissivity

for various distributions and energy injection functions. Chanmugam et al. [1989]

compared several approximate equations with numerical results in the cyclotron limit

and concluded that Robinson & Melrose [1984] gave the best result. Mahadevan,

Narayan & Yi [1996] found approximate formulae for θ-averaged emission coefficient

by fitting to a direct numerical evaluation of the emissivity.

Wardzinski & Zdziarski [2000] combined the approximate equations in Petrosian

[1981] and Petrosian & McTiernan [1983] to find an approximate emissivity accurate

over a larger range of temperature. Their expressions contain a slight discontinuity,

however, because they joined two asymptotic limits without smoothing the interme-

diate regime. They also found an approximate θ-averaged emissivity.

For polarized light, Kawabata [1964] and Meggitt & Wickramasinghe [1982] gave

complicated but exact integral expressions for the specific emissivities in the Stokes

formalism, but they did not provide any easily evaluated approximations. Väth &

Chanmugam [1995] used the results of Robinson & Melrose [1984] to obtain the

approximate equations and compared the results with a direct numerical evaluation

of the emissivity in the cyclotron regime.

We began this work because, in attempting to calculate polarized emission spectra

for Sgr A*, we found we needed to evaluate the accuracy of earlier approximate

expressions in the regime of interest to us. Here we provide what we hope is a

transparent, well-documented procedure that will enable others to avoid our descent

into the minutiae of synchrotron theory. Our MBS calculator has a broad range of

validity (described in §3.4) and should therefore be useful for anyone seeking to obtain

or test approximate expressions in their domain of interest.

The main approximations we make are (1) (ν/νp)
2 À 1 and (2) (ν/νp)

2(ν/νc) À 1,
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where the electron plasma frequency

νp ≡
(

nee
2

πme

)1/2

= 8980n1/2
e Hz (3.1)

(we use Gaussian/cgs units throughout) and the electron cyclotron frequency

νc ≡ eB

2πmec
= 2.8× 106B Hz . (3.2)

When these conditions are violated the index of refraction is noticeably different from

1 and corrections must be made throughout our formalism.

The plan of this paper is as follows. In §3.2 we fix notation by writing down the

equations of polarized radiative transfer in Stokes and Cartesian polarization bases.

In §3.3 we discuss methods for calculating the emission and absorption coefficients for

a general distribution function. In §3.4 we recall the usual asymptotic expressions that

can be used as code checks. In §3.5 we describe our numerical code, called harmony.

In §3.6 we evaluate the accuracy of earlier work and provide a convenient fitting

formula for the total emissivity (and therefore absorptivity) of thermal electrons with

Θe ≡ kTe/(mec
2) & 0.5. Appendix A.1 briefly describes the distinction between

emitted and received power. Appendix A.2 describes an accurate and efficient scheme

for evaluating high order Bessel functions.

3.2 Radiative Transfer

We are concerned with electromagnetic wave propagation at frequency ν in the frame

of a magnetized, ionized plasma. The plasma may have a thermal electron component

with dimensionless temperature Θe; there may also be a nonthermal component in

the electron distribution.

In the regime of interest an electromagnetic wave can be written as a sum of the

magnetoionic modes of the plasma, the ordinary (O) and extraordinary (X) modes.

For a cold plasma these modes are nearly circularly polarized except for propagation

in a narrow range of angles perpendicular to the field. In general the modes are

elliptically polarized.

The polarization properties of the magnetoionic modes are described by a pair

of orthonormal basis vectors eO and eX . Let TO (TX) be the transverse component

of the polarization vector of the ordinary (extraordinary) mode, with |TX | ≤ 1. In

other words, |TO,X | are the axial ratios of the orthogonal polarization ellipses, so that
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TOTX = −1. Then

eO ≡ {eO1, eO2} =
1√

T 2
X + 1

{−1, iTX} (3.3)

and

eX ≡ {eX1, eX2} =
1√

T 2
X + 1

{TX , i} (3.4)

where {x, y} are the Cartesian components of a vector in the plane perpendicular to

the direction of propagation ẑ, and ŷ is perpendicular to the magnetic field so that

x̂× ŷ ≡ ẑ. The electric field of mode A is E = E eA exp(ikz− iωt). In writing these

equations we have assumed that the polarization modes are orthogonal, valid when

ν3/(νp
2νc) À 1.

3.2.1 Descriptions of Polarized Radiation

The polarized intensity is most familiarly described by the Stokes vector

IS = {I, Q, U, V } ; (3.5)

here all components have the usual intensity units, dE/dtd2xdνdΩ, i.e. energy per

unit time per unit area per unit frequency per unit solid angle.

The polarized intensity can also be described in terms of a polarization tensor

written in a Cartesian coordinate basis (∗ denotes complex conjugate):

Iij ≡ I

E2
〈EiE

∗
j 〉 =

1

2

(
I + Q U + iV

U − iV I −Q

)
(3.6)

where i, j ∈ {x, y} and the prefactor converts the tensor to intensity units.

Finally, the polarized intensity can be described by a polarization tensor in the

mode basis

IAB = e∗AieBjIij =
1

2

(
I −Q cos χ− V sin χ −V cos χ + Q sin χ− iU

−V cos χ + Q sin χ + iU I + Q cos χ + V sin χ

)
(3.7)

where A,B ∈ {O,X} and χ = tan−1 TX .
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3.2.2 Polarized Radiative Transfer

In the Stokes basis in a uniform plasma the radiative transfer equation is

d

ds
IS = JS −MST IT (3.8)

where JS = {jI , jQ, jU , jV }T contains the emission coefficients, which have units of

dE/dtdV dνdΩ, and the Mueller Matrix MST is

MST ≡




αI αQ αU αV

αQ αI rV −rU

αU −rV αI rQ

αV rU −rQ αI




. (3.9)

The parameters αi are the absorption coefficients and rQ, rU and rV are what we

will call Faraday mixing coefficients. jU , αU , rU are zeros for our choice of basis

vectors. Below, we will provide a scheme for evaluating the emission and absorption

coefficients.

In the Cartesian polarization tensor basis in a uniform plasma the transfer equa-

tion is
dIij

ds
= Jij − µijklIkl (3.10)

where the tensor µ describes absorption and Faraday rotation.

In the mode basis in a uniform plasma

dIAB

ds
= JAB − µABCDIAB . (3.11)

We define αA by
dIAA

ds
= −αAIAA , (3.12)

for radiation consisting of a single mode in the absence of emission and Faraday

rotation we use

3.3 Magnetobremsstrahlung Emission and

Absorption

We are now ready to calculate absorption and emission coefficients. These are frame-

dependent. We will evaluate them in the plasma center-of-momentum frame (the
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expressions given below do not assume this). The total emission and absorption

coefficients can be transformed using the Lorentz invariance of jν/ν
2 and ναν . The

transformation of the full absorption matrix will be discussed in future work.

3.3.1 Emissivity

A consistent procedure for calculating the emission and absorption coefficients can be

found in Melrose & McPhedran [1991]. Beginning with their Eq. (22.20), rotating the

velocity potentials Vi onto a basis where the z direction is aligned with the wavevec-

tor, and introducing appropriate leading constants, the emissivity in the Cartesian

polarization basis is

Jij =
2πe2ν2

c

∫
d3p f

∞∑
n=1

δ(yn) Kij (3.13)

where

Kxx = M2J2
n(z) , (3.14)

Kyy = N2J ′2n (z) , (3.15)

Kxy = −Kyx = −iMNJn(z)J ′n(z) , (3.16)

and

yn ≡ nνc

γ
− ν(1− β cos ξ cos θ) =

1

2π
(ω − nΩ− k‖v‖) (3.17)

is the argument of the δ function in the resonance condition, Ω = 2πνc/γ is the

relativistic electron cyclotron angular frequency, β ≡ v/c, v is the electron speed, ξ

is the electron pitch angle,

z ≡ νγβ sin θ sin ξ

νc

=
k⊥v⊥

Ω
(3.18)

M ≡ cos θ − β cos ξ

sin θ
, (3.19)

N ≡ β sin ξ , (3.20)

f ≡ dNe

d3xd3p
=

dne

d3p
(3.21)

is the electron distribution function, d3x and d3p are differential volumes in real space

and momentum space respectively. Subscripts ‖ and ⊥ refer to components of vectors

parallel and perpendicular to B.
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The emissivity in the Stokes basis can be found using the transformation implied

by equation (3.6):

JS =
2πe2ν2

c

∫
d3p f

∞∑
n=1

δ(yn) KS (3.22)

where

KI = M2J2
n(z) + N2J ′2n (z) , (3.23)

KQ = M2J2
n(z)−N2J ′2n (z) , (3.24)

KU = 0 (3.25)

and

KV = −2MNJn(z)J ′n(z) . (3.26)

In the mode basis

JAB =
2πe2ν2

c

∫
d3p f

∞∑
n=1

δ(yn)KAB (3.27)

where

KXX =
[MTXJn(z) + NJ ′n(z)]2

1 + T 2
X

, (3.28)

KOO =
[MJn(z)−NTXJ ′n(z)]2

1 + T 2
X

, (3.29)

and

KXO = KOX = − [MJn(z)−NTJ ′n(z)] [MTJn(z) + NJ ′n(z)]

1 + T 2
X

. (3.30)

In the cold plasma limit, the axial ratios are [e.g. Melrose, 1989]

TO,X ≡ T± ≈ 2ν cos θ

νc sin2 θ ∓
√

ν2
c sin4 θ + 4ν2 cos2 θ

for ν À νp . (3.31)

The polarized emissivities are related to the total emissivity by

jν ≡ JI = Jxx + Jyy = JOO + JXX ≡
∫

d3p f ην (3.32)

where

ην ≡ dE

dνdtdΩ
(3.33)

is the single-electron emissivity.
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3.3.2 Absorption coefficients

If the distribution function is thermal then the absorption coefficients follow from

Kirchhoff’s law. For a nonthermal plasma we must calculate the absorption coeffi-

cients directly.

If the plasma is weakly anisotropic (i.e. the anisotropic effect is perturbative)

then it is possible to simply relate the absorption coefficients to the anisotropic,

antihermitian part of the dielectric tensor. Starting with the dielectric tensor of

a magnetized plasma (Eq. (22.47) of Melrose & McPhedran [1991], corrected by a

factor of 4π/ω2, or Eq. (10-48) of Stix [1992], and using the Plemelj relation to find

the imaginary part of the integral over momentum space (and thus the antihermitian

part of the dielectric tensor) we find

µijkl =
ce2

ν

∫
d3p Df

∞∑
n=1

δ(yn)Kijkl (3.34)

where

Kxxxx = M2J2
n(z) , (3.35)

Kxxyx = Kxyxx = Kxyyy = Kyyyx = − i

2
MNJn(z)J ′n(z) , (3.36)

Kxxxy = Kyxxx = Kyxyy = Kyyxy =
i

2
MNJn(z)J ′n(z) , (3.37)

Kxyxy = Kyxyx =
1

2

[
M2J2

n(z) + N2J ′2n (z)
]

, (3.38)

Kyyyy = N2J ′2n (z) , (3.39)

all other components of K vanish, and the operator D is

Df ≡
(

ω − k‖v‖
v⊥

∂

∂p⊥
+ k‖

∂

∂p‖

)
f . (3.40)

In writing this equation we assume that the the energy of the absorbed photon is

small compared to the width of the distribution function, permitting us to replace

a difference with the derivative operator D. For a thermal distribution this requires

that hν/kTe ¿ 1.

In terms of p = |p| and cos ξ, the operator D is

Df =
2πν

cβ

(
∂

∂p
+

β cos θ − cos ξ

p

∂

∂ cos ξ

)
f , (3.41)
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and in terms of γ and cos ξ,

Df = 2πν

(
1

mec2

∂

∂γ
+

β cos θ − cos ξ

pβc

∂

∂ cos ξ

)
f . (3.42)

In the Stokes basis,

αS = −ce2

2ν

∫
d3p

∞∑
n=1

δ(yn) Df KS (3.43)

where subscript S is one of I, Q, U and V . In the mode basis

αA = −ce2

ν

∫
d3p

∞∑
n=1

δ(yn) Df KAA (3.44)

where subscript A is O or X.

Let us explicitly verify Kirchhoff’s law for a thermal distribution function in the

Stokes basis:

JS − αSBν = 0 (3.45)

where Bν = (2hν3/c2)[exp(hν/kTe) − 1]−1 is the Planck function. Using equa-

tions (3.22) and (3.43), and gathering like terms, this becomes

∫
d3p

∞∑
n=1

δ(yn)KS

(
2πe2ν2

c
f +

ce2

2ν
Df Bν

)
= 0 . (3.46)

If we make γ the nontrivial momentum space coordinate then f = N exp(−γ/Θe),

where N (Θe) is a normalization constant, and Df = −2πN ν exp(−γ/Θe)/(mec
2Θe).

This leaves

∫
d3p

∞∑
n=1

δ(yn)KS

(
2πe2ν2

c

)
N e−γ/Θe

(
1− hν/(kTe)

exp(hν/(kTe))− 1

)
= O

(
hν

kTe

)
.

(3.47)

This is consistent with the assumption that the energy of the absorbed photon is

small compared to the width of the distribution function; to lowest order in hν/kTe

Kirchhoff’s law is satisfied.

3.3.3 Electron Distribution Function

The electron distribution can be written using a variety of momentum space coordi-

nates, and this can be a source of some confusion. For example, with respect to the

auxiliary momentum coordinates γ, ξ and φ (the longitudinal coordinate), d3p can
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be expressed as m3
ec

3γ2βdγd(cos ξ)dφ and the distribution function as

f ≡ dne

d3p
=

1

m3
ec

3γ2β

dne

dγd(cos ξ)dφ
=

1

2πm3
ec

3γ2β

dne

dγd(cos ξ)
, (3.48)

where the final equality arises from assuming the distribution is independent of φ.

Equation (3.43) becomes

αS = −ce2

2ν

∫
dγd(cos ξ)

∞∑
n=1

δ(yn) γ2βD

[
1

γ2β

dne

dγd(cos ξ)

]
KS (3.49)

and similarly for the absorption coefficients in the mode basis.

The thermal (relativistic Maxwellian) distribution function is

dne

dγdΩp

≡ dne

dγdφd(cos ξ)
=

ne

4πΘe

γ(γ2 − 1)1/2

K2(1/Θe)
exp

(
− γ

Θe

)
; (3.50)

dΩp is a differential solid angle in momentum space and K2 is a modified Bessel

function of the second kind.

A useful nonthermal distribution function is the isotropic power-law distribution

dne

dγdΩp

=
nNT

e (p− 1)

4π(γ1−p
min − γ1−p

max)
γ−p for γmin ≤ γ ≤ γmax , (3.51)

where nNT
e is the number density of nonthermal electrons,

3.4 Ultrarelativistic Limit

For clarity it is helpful to record the emission and absorption coefficients for a thermal

electron distribution and for a power-law distribution of electrons in the ultrarelativis-

tic limit. These are well known but presented here in a consistent set of units and

notation so that we can check our numerical results.

The emissivity of a single ultrarelativistic electron can be reduced through a stan-

dard approximation [e.g. Ginzburg, 1970, Westfold, 1959]

∫
dΩpην '

√
3e3B sin θ

mec2
F

(
ν

νcr

)
(3.52)
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where νcr = (3/2)νc sin θγ2, and the synchrotron function

F (x) ≡ x

∫ ∞

x

dtK5/3(t) . (3.53)

The asymptotic expansions of F (x) are

F (x) =





22/3Γ(2/3)x1/3 + O(x) for x ¿ 1,(πx

2

)1/2

exp(−x)
(
1 + O(x−1)

)
for x À 1 .



 . (3.54)

For a thermal distribution with Θe À 1, so that K2(1/Θe) ' 2Θ2
e and

dne

dγdΩp

' neγ
2

8πΘ3
e

exp(−γ/Θe) . (3.55)

For ν ¿ νs ≡ (2/9)νcΘ
2
e sin θ, the small-x limit of equation (3.54) can be used, most

of the emission comes from electrons with γ ∼ Θe, and the emissivity is

jν ' 24/3π

3

nee
2νs

cΘ2
e

X1/3 (3.56)

where

X ≡ ν

νs

. (3.57)

For ν À νs the large-x limit of equation (3.54) applies. The integrand is proportional

to exp(−γ/Θe − ν/νcr), where νcr ∼ γ2, so the peak emission is from electrons with

γ ∼ (νΘe/(νc sin θ))1/3. Then

jν ' ne

√
2πe2νs

6Θ2
ec

X exp(−X1/3) , (3.58)

and the integral has been evaluated using the method of steepest descent [Petrosian,

1981].

For the isotropic power-law distribution of electrons the integration can be done

explicitly without using the asymptotic expansion for F (x) if p > 1. Most of the

emission comes from electrons with γ2 ∼ ν/νc, and the emissivity is [Blumenthal &

Gould, 1970]

jν = nNT
e

(
e2νc

c

)
3p/2(p− 1) sin θ

2(p + 1)(γ1−p
min − γ1−p

max)
Γ

(
3p− 1

12

)
Γ

(
3p + 19

12

)(
ν

νc sin θ

)−(p−1)/2

(3.59)
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for γ2
min ¿ ν/νc ¿ γ2

max. The absorptivity, famously, cannot be obtained from

Kirchhoff’s law, but can be evaluated using equation (3.43). The result is (see, e.g.,

Rybicki & Lightman for a discussion):

αν = nNT
e

(
e2

νmec

)
3(p+1)/2(p− 1)

4(γ1−p
min − γ1−p

max)
Γ

(
3p + 2

12

)
Γ

(
3p + 22

12

)(
ν

νc sin θ

)−(p+2)/2

(3.60)

again for γ2
min ¿ ν/νc ¿ γ2

max. Notice that this expression for the absorptivity

is proportional to nNT
e e2/(νmec). Since (nNT

e e2/me)
1/2 is a plasma frequency for

the nonthermal electrons, the absorption coefficient has the expected dimensions of

1/length.

3.5 Numerical Calculations

The emission and absorption coefficients all require the numerical evaluation of ex-

pressions of the following form:

∫ ∞

1

dγ

∫ 1

−1

d cos ξ

∞∑
n=1

δ(yn)I(n, ξ, γ) (3.61)

where I is some function, ξ is the electron pitch angle, γ is the electron Lorentz factor,

and n is the harmonic index (see, e.g., equation (3.22)), and the resonance condition

is

yn ≡ nνc

γ
− ν(1− β cos ξ cos θ) = 0 (3.62)

which involves all three independent variables γ, ξ, and n. Recall that the resonance

condition arises because each electron emits only at integer multiples of its own cy-

clotron frequency, Doppler shifted to the plasma rest frame.

3.5.1 Previous Work

Many have evaluated the absorption and emission coefficients numerically. Early

efforts include the calculation of jν(θ) by Takahara & Tsuruta [1982] for n up to

several hundred. Melia [1994] calculated the emissivity numerically for θ = π/2.

The emissivity is sharply peaked at particular ν; the integrand is not well-behaved.

Mahadevan, Narayan & Yi [1996] resolved the resulting numerical difficulty by re-

placing the δ function with a broadening function of adjustable frequency width and

evaluating the full three dimensional integral. Only an observer angle-averaged emis-
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sion coefficient, j̄ν ≡
∫ 1

0
jν(θ)d(cos θ), was found. The resonance condition was also

used to simplify the integral.

Marcowith & Malzac [2003] found the angle-averaged emission coefficient by two

methods. The first was similar to Mahadevan, Narayan & Yi [1996] except that a

different broadening function was used. Another method, “direct integration”, used

the resonance condition to select an observer angle.

Wolfe & Melia [2006] calculated the angle-averaged single-particle emissivity and

extended the summation to the 990th harmonic to increase the accuracy of the result.

The calculation was done by replacing the δ function with a broadening function, as

in Mahadevan, Narayan & Yi [1996]. The single-particle emissivity was then fitted

with > 1500 coefficients over the range −1 < log10(ν/νc) < 2 and 0.1 < β < 0.98.

For the thermal emissivity, they explicitly evaluated the γ integral for β < 0.97; for

β > 0.97 they used an approximation from Petrosian [1981]. They restricted their

calculation to −1 < log10(ν/νc) < 2; they did not offer an explicit control for the

accuracy of the n ≤ 990 approximation for a particular γ.

3.5.2 Numerical Procedure

We use the resonance condition (3.62) to eliminate cos ξ from (3.61). This is simpler

than eliminating γ (because the resonance condition is quadratic in β), and also

simpler than eliminating n (because n must take on integer values). The remaining

integral has the form

∫ γ+

γ−
dγ

∞∑
n=n−

(
1

νβ| cos θ|
)

I(n, ξ, γ) (3.63)

and the term in parentheses, |dyn/d cos ξ|−1, comes from integrating over the δ func-

tion. The range of integration is now restricted by the requirements that | cos ξ| < 1

and that γ be real.

The limits on the γ integration follow from | cos ξ| < 1. Write the resonance

condition

cos ξ =
γν − nνc

γνβ cos θ
, (3.64)

and set cos ξ = ±1 to find

γ± =
nνc/ν ± | cos θ|

√
(nνc/ν)2 − sin2 θ

sin2 θ
. (3.65)
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Notice that γ− reaches a minimum of 1 for nνc/ν = 1, so γ− ≥ 1.

The argument of the square root in equation (3.65) must be non-negative. This

restricts the range of n to

n ≥ n− =
ν

νc

| sin θ| . (3.66)

At n−, γ+ = γ−.

We need to choose an order to evaluate the integrals (sums) in equation (3.63).

If the sum is done first then the remaining integrand is a rapidly varying, comb-like,

function of γ for θ close to π/2. If the γ integration is done first the remaining

summand is a smooth function of n, and therefore more numerically tractable. We

therefore do the γ integration first.

3.5.3 Upper Limit of Summation

The summation in (3.63) extends to n = ∞, so for numerical summation we must

either map n onto a finite domain or else choose an upper limit n+ to the sum, beyond

which the integrand is negligible. We have taken the latter approach.

For the special case of a thermal electron distribution we set n+ = Cnpeak, where

the integrand peaks near npeak and C > 1 is a dimensionless constant. At ν ¿ νcΘ
2
e,

the integrand peaks when Jn(z) peaks, at z/n ' 1, i.e. near

n = npeak = γ
ν

νc

(1− β2 cos2 θ) . (3.67)

The thermal distribution is proportional to exp(−γ/Θe)/K2(1/Θe). This peaks at

γ ∼ 1 + Θe for all Θe, so

npeak ' (Θe + 1)(ν/νc)(1− β2 cos2 θ) (3.68)

is a good estimate for all Θe.

For ν À νcΘ
2
e we can use the asymptotic expression for the single electron

emissivity to estimate npeak (see §3.5). The peak is near the peak of the func-

tion exp[−γ/Θe − ν/(γ2νc)], so most of the emission comes from electrons with

γ = (2Θeν/νc)
1/3.

Combining the low-frequency and high-frequency estimates for npeak,

n+ = C

[
Θe + 1 +

(
2Θe

ν

νc

)1/3
]

ν

νc

(1− β2 cos2 θ) . (3.69)
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Typically C = 10 gives adequate accuracy.

For a nonthermal distribution we take an adaptive approach. We sum over succes-

sive intervals [n−, n−+∆n], [n−+∆n+1, 2(n−+∆n)], [2(n−+∆n)+1, 4(n−+∆n)],

etc., until the fractional contribution from the last interval is smaller than a preset

tolerance. This procedure yields fast convergence except for exotic electron distri-

bution functions. Some knowledge of the distribution is required, however, to set

∆n.

3.5.4 Numerical Considerations

Accurate, efficient evaluation of the Bessel function Jn(z) for n À 1 is essential

for our calculation. When n is small, any mathematical library gives an accurate,

efficient result. As n increases, however, standard mathematical libraries slow down,

become inaccurate, and fail. In our calculations the argument z and order n of the

Bessel functions can be large and are typically comparable in size (one can shown

that z/n < 1). Standard asymptotic expansions (see [Abramowitz & Stegun, 1970])

are unsatisfactory because they typically assume z À n or vice versa. We calculate

Jn using a special-purpose code based on asymptotic expansions discussed in Chishtie

et al. [2005], who divide the arguments into three regimes and provide asymptotic

expansions for each regime. Details of our scheme are discussed in Appendix A.2.

The summation over n is done as an explicit sum at small n and as an integral at

large n. The same approach was used by Takahara & Tsuruta [1982]. Approximating

the sum as an integral at large n increases both speed and, in many cases, accuracy.

The breakpoint, nI , between summation and integration is set heuristically. Typically

we use nI = 30 for the parameters of interest to us.

We integrate using the GNU Scientific Library’s QAG integrator, which is fast,

robust, and publicly available. One subtlety here is connected to the narrow extent

of the γ integrand when ν is large (this narrow extent permits one to use the method

of steepest descent in evaluating equation (3.58)). If the domain of integration is not

set correctly then the integrator can fail to resolve the peak and the emissivity, for

example, will be underestimated.

Finally, notice that equation (3.63) fails for θ = π/2 because the δ function does

not contain cos ξ and so cannot be used to eliminate the cos ξ integral. But since jν(θ)

is a smooth function of θ with a maximum at θ = π/2, we simply avoid evaluating

the emissivity at θ = π/2 by extrapolating from nearby θ. The error is of the same

order as a single integration because of the zero slope around the peak. The only
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penalty is that the time needed to find jν is doubled compared to the calculation at

other θ.

3.6 Verification of Calculation

3.6.1 Monoenergetic Electrons

The angle-averaged synchrotron emissivity of ultrarelativistic monoenergetic electrons

is

j̄ν(ν, γ) ' ne
1

2

∫ 1

−1

√
3e3B sin θ

4πmec2
F

(
ν

νcr

)
d(cos θ) ≡ neη̄ν . (3.70)

The single-particle emissivity can be approximated as [Crusius & Schlickeiser, 1986,

1988, Schlickeiser & Lerche, 2007]

η̄ν(ν, γ) ≈ πe2ν

2
√

3cγ2
CS

[
2ν

3νcγ2

]
, (3.71)

where the function CS(x) is given by

CS(x) =
x−2/3

0.869 + x1/3 exp(x)
. (3.72)

We compute an approximation to the emissivity of a monoenergetic distribution by

using a narrow Gaussian in energy; for small enough energy width ∆E the emissiv-

ity is independent of ∆E. Figure (3.1) compares equation (3.71) with the harmony

result and the ultrarelativistic limit equation (3.70). At high frequency, harmony un-

derestimates the emissivity because the integrand becomes too narrow to be resolved

numerically. Evidently equation (3.72) has a maximum error of order ≈ 20%.

Wolfe & Melia [2006] fit the angle-averaged single-particle emissivity and provide

a code that reproduces their fitting function. In Figure (3.2) compares results of

harmony with their code, with the same parameters as their Figure 3c. The rela-

tive error of their fitting formula, compared to our “exact” numerical calculation, is

somewhat larger than the error shown in their Figure 3c, perhaps due to our better

resolution of the cyclotron peaks.

3.6.2 Thermal Distribution

At large ν and Θe, our emissivity agrees with the ultrarelativistic limit; this is dis-

cussed in greater detail in §3.7.
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Figure 3.1 Upper panel: the angle-averaged single-particle emissivity η̄ν/B, in cgs
units, at β = 0.999. Solid line is result of harmony, and dashed line is calculated by
using the approximate equation (3.71). Lower panel: solid line is the relative differ-
ence of equation (3.71) and result of harmony, dotted line is the difference between
equation (3.71) and ultrarelativistic limit equation (3.70).
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Figure 3.2 Upper panel: the angle-averaged single-particle emissivity η̄ν/B, in cgs
units, at β = 0.86. Solid line is result of harmony, and dashed line is result of Wolfe
& Melia [2006] multiplied by a factor of π2 (which we cannot explain). Lower panel:
the relative difference of η̄ν . Difference compared to Wolfe & Melia [2006, Fig. 3]
seems to be due to better resolution of the cyclotron peaks in our calculation.
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At low ν and Θe, where cyclotron features are prominent, we have compared

our results with those in Väth & Chanmugam [1995] and Chanmugam et al. [1989]

and found good agreement. Notice that although the expressions presented in Chan-

mugam et al. [1989] and Väth & Chanmugam [1995] allow for refractive index 6= 1,

the deviation of the refractive index from 1 is small in our test examples, so we expect

good agreement.

First we calculate the absorption coefficients in the Stokes basis and compare with

Väth & Chanmugam [1995]. Figure (3.3) shows that αQ calculated with harmony

is within 0.2% of results of Väth & Chanmugam [1995]. αI and αV have similar

relative differences. We then calculate the absorption coefficients in the mode basis.

Figure (3.4) compares αO from Chanmugam et al. [1989] with the results of harmony.

Using the cold plasma approximation of TX (equation (3.31)) in harmony, the relative

differences of αO,X are ≤ 0.2% compared to results of Chanmugam et al. [1989].

As another check, at θ = π/2, we eliminate the γ integration using the δ function.

Since at θ = π/2 the β dependence of the resonance condition is eliminated we are

left with a single value for γ and a two-dimensional integral in cos ξ and n. This

integration gives the same result as the γ-n integration.

3.6.3 Angle-averaged Thermal Emission

Mahadevan, Narayan & Yi [1996] provides a fitting formula to calculate the observer

angle-averaged emissivity j̄ν for a thermal distribution. Coefficients of the fitting

formula are given for seven temperatures between 7× 108 K to 3.2× 1010 K, and the

fractional errors are given for each temperature. Figure (3.5) compares our calculation

with the fitting formula at 3.2× 1010 K. We find good agreement with their formula

and reproduce their maximum error.

3.6.4 Nonthermal Electron Distribution

For a power-law distribution in the ultrarelativistic limit our absorption and emission

coefficients agree with equations (3.59) and (3.60). Figures (3.6) and (3.7) show the

emission and absorption coefficients for p = 3, γmin = 1 and γmax = 1000, and θ = 60

deg. For γ2
min ¿ ν/νc ¿ γ2

max the relative errors in equations (3.59) and (3.60)

approach 10−3, while the errors diverge for smaller and larger ν/νc.

Our code can also handle an electron distribution with pitch-angle dependence.

One example is the anisotropic nonthermal emission calculated in Fleishman & Mel-

nikov [2003]. We reproduce their Fig. 1 in our Fig. (3.8). We do not have the
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Figure 3.3 Upper panel: the absorption coefficients αQ in cm−1 at kTe = 10.0 keV,
θ = 60 deg. The solid lines are from harmony, whereas the circles are data from
Table 4 in Väth & Chanmugam [1995]. Lower panel: relative difference of the the
data from Väth & Chanmugam [1995] and harmony. There is a trend of deviation
from the zero as ν increases. The trend is removed if harmony is run at kTe = 9.998
keV. Similar trends are also seen in the plots of other absorption coefficients in Väth
& Chanmugam [1995]. The maximum relative difference is 0.2% if the last two data
points are dropped.
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Figure 3.4 Upper panel: the absorption coefficients αO in cm−1 at kTe = 10.0 keV,
θ = 60 deg. The solid lines are from harmony with cold plasma TX in equation (3.31),
the circles are data from Table 6B in Chanmugam et al. [1989]. Lower panel: the
crosses are relative differences of the the data from Chanmugam et al. [1989] and
harmony with cold plasma TX .
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Figure 3.5 Upper panel: the angle-averaged thermal emissivity j̄ν/(neB) in cgs units,
at T = 3.2 × 1010 K, for harmony (solid line) and fitting formula in Mahadevan,
Narayan & Yi [1996] (dashed line). Lower panel: the relative difference of j̄ν .
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Figure 3.6 Upper panel: the emissivity jν/(neB), in cgs units, for p = 3, γmin = 1,
γmax = 1000 and θ = 60 deg. The solid line is the result of harmony, and dashed line
is calculated by using equation (3.59). Lower panel: the relative difference of jν . The
error is smallest for γ2

min ¿ ν/νc ¿ γ2
max. At smaller and larger frequencies, the error

diverges.
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Figure 3.7 Upper panel: the absorption coefficient ανB/ne, in cgs units, for p = 3,
γmin = 1, γmax = 1000 and θ = 60 deg. The solid line is the result of harmony,
and dashed line is calculated by using equation (3.60). Lower panel: the relative
difference of jν . The error is smallest for γ2

min ¿ ν/νc ¿ γ2
max. At smaller and larger

frequencies, the error diverges.
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Fleishman & Melnikov data, so we cannot make a quantitative comparison, but a

comparison by eye suggests that our results reproduce theirs quite well.

3.7 Approximate Equation

Motivated by the above discussion, and by the ultrarelativistic limit discussed above,

we introduce the following approximate expression for the thermal MBS emissivity

jν = ne

√
2πe2νs

3K2(1/Θe)c

(
X1/2 + 211/12X1/6

)2
exp

(−X1/3
)

. (3.73)

Equation (3.73) combines Eq. (26) of Petrosian [1981] and Eq. (3.56). All three

equations are shown in Figure (3.9), which shows that equation (3.73) is accurate

over a much larger range of frequency.

Figures (3.10) and (3.11) are contour plots of the accuracy of equation (3.73)

over a wide range of Θe and frequencies for θ = 30 deg and θ = 80 deg. These

plots verify that our scheme accurately reproduces the high frequency limit given by

equation (3.58), which coincides with equation (3.73). As a crude guide to the regime

of validity of equation (3.73), we estimate that the error becomes of order unity for

Θe ' (ν/(νc sin θ))−1/5.

3.8 Summary

We have described and verified an accurate, efficient scheme for evaluating magne-

tobremsstrahlung emission and absorption coefficients for polarized emission for an

arbitrary electron distribution function. The relationship between the coefficients in

the Stokes, Cartesian polarization, and mode polarization bases are given in §3.2.

For each coefficient we must evaluate a two-dimensional integral of the form (3.63).

We use a publicly available numerical integration method. The integrand depends

on Bessel functions of the first kind of high order n, so along the way we have devel-

oped an efficient method for evaluating high order Bessel functions. This method is

described in Appendix A.2.

We have used the numerical results to evaluate the accuracy of several approximate

analytic expressions that appear in the literature, and we have also verified earlier

numerical work (e.g. Mahadevan, Narayan & Yi [1996], Petrosian [1981], Robinson

& Melrose [1984]).
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Figure 3.8 This figure is a reproduction of the Fig. 1 in Fleishman & Melnikov [2003].
IX/(ν/νc)

3, IO(ν/νc)
3 and degree of polarization are plotted as functions of frequency.

Intensity IA is defined as jA/αA, where A is O (ordinary mode) or X (extraordinary
mode). Degree of polarization is defined as (IX − IO)/(IX + IO). The panels on
the left (right) are calculated with assumption that cos θ = 0.8(0.2). In both cases,
νp/νc = 0.4 and the exponent of the momentum power-law distribution is 5. Cold
plasma approximation of TX is used in the calculation using harmony.
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Figure 3.9 Upper panel: the emissivity jν/(neB), in cgs units, for Θe = 10, θ = 60
deg. The solid line is the result of harmony. The dashed line shows equation (26)
of Petrosian [1981], the dotted line shows equation (3.56). The dotted-dashed line
(which overlaps the solid line) shows the combined equation (3.73). Lower panel: the
relative difference of the approximate equations.
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Figure 3.10 Logarithm of relative error of the approximated equation (3.73) of emis-
sivity jν , at θ = 30 deg. The dotted lines are contours of negative integers, and the
solid lines are zero and positive integers up to 10. The lower-right corner is ignored
since the emissivity is too low (cutoff = 1× 10−250[cgs]).
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Figure 3.11 Logarithm of relative error of the approximated equation (3.73) of emis-
sivity jν , at θ = 80 deg. The dotted lines are contours of negative integers, and the
solid lines are zero and positive integers up to 10. The lower-right corner is ignored
since the emissivity is too low (cutoff = 1× 10−250[cgs]).
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Our code, called harmony, is available to the public from the web at

http://rainman.astro.illinois.edu/codelib.
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Chapter 4

Effects of Nonthermal Electrons on
Spectra of Accretion Flows onto
Supermassive Black Hole

4.1 Introduction

The observations of S stars near to the Galactic center [Eisenhauer et al., 2005, Ghez

et al., 2003, Schödel et al., 2002] have provided strong evidence that the Galactic

center harbors a supermassive black hole of ∼ 4 × 106M¯. The radio source Sgr

A* at the site is generally believed to be created from accretion activity onto the

black hole. Due to the subluminous nature of the source, efforts have been focused

on comparing simplified models of radiatively inefficient accretion flow (RIAF) with

the observation. Only recently are there numerical simulations that include more

complex flow structure and additional physics. The correct model needs to account

for the observed properties in the broadband spectrum.1

One of the observed properties is the spectral index in νLν during near infrared

(NIR) flaring event. Weak NIR flares appear to have negative spectral slope [Ghez et

al., 2005, Krabbe et al., 2006], which is predicted by calculations of quiescent state

with only thermal electrons (RIAF models: Narayan, Yi & Mahadevan [1995], Özel,

Psaltis & Narayan [2000]; computer simulations: Dexter et al. [2010], Mościbrodzka,

et al. [2009]). However, Hornstein et al. [2007] suggest that the spectral slope of

spectral energy distribution (SED) is 0.4± 0.2 for strong NIR flares (between 3.8 and

1.6 µm), which is difficult to explain by thermal synchrotron emission or Compton

scattering [Dodds-Eden et al., 2009]. It is always possible to construct a jet model

with suitable temperature and density to account for the positive spectral slope at

NIR, but no self-consistent computer simulation has produced such a feature.

If the simulated disk model is to believed, one then has to modify the emission

mechanism to explain the positive spectral slope in NIR flares. One possible way of

achieving this is by considering inverse Compton scattering of thermal synchrotron

photons at sub-millimeter (sub-mm) bump [Ohsuga, Kato & Mineshige, 2005]. Nev-

1This work will be submitted to ApJ [Leung et al., 2010]. Reproduction for this dissertation is
authorized by the copyright holder.
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ertheless, inverse Compton models with only thermal distribution require inner-region

density which is several orders of magnitude higher than the inferred value of Sgr A*

[Dodds-Eden et al., 2009]. Another possibility is model with self-Compton scatter-

ing of the NIR flaring photons, but this requires unrealistically strong magnetic field

strength in the accretion flow [Dodds-Eden et al., 2009]. For Sgr A*, bremsstrahlung

does not produce enough emission to explain the NIR flares. Then, a remaining pos-

sibility is model with nonthermal synchrotron emission, which we will consider in this

chapter.

It is natural to produce a positive spectral slope in the NIR bands by adding

nonthermal electrons, which are likely to exist in flaring events because electrons may

not have enough time to thermalize. In fact, transient events such as shocks and

reconnection are known to produce power-law electrons, both according to theory

and observation. Notice that the sub-mm peak of Sgr A* can be explained very well

with only thermal synchrotron emission from inner regions 2 of the accretion flow [e.g.

Mościbrodzka, et al., 2009, Narayan, Yi & Mahadevan, 1995, Özel, Psaltis & Narayan,

2000]. However, the quiescent fluxes are only constrained at the low-frequency side

of the sub-mm peak. This allows the freedom of adding power-law component to the

distribution that only contributes to emission at ν > 1012 Hz.

In this chapter, we discuss spectra of accretion disk simulations with both thermal

and power-law electrons, with application to Sgr A*. In §2 we briefly describe the

accretion disk simulation. In §3 we review the commonly used electron distribution

functions, and discuss details of implementing them in the calculation. In §4 we give

expressions for the emissivity and absorptivity for the distribution functions. We also

discuss the region of validity of the expressions. With the models of electron distri-

bution, and the equations of emission and absorption coefficient, the next ingredient

is a recipe for radiative transfer, which will be described in §5. In §6 we test our code

and demonstrate that our implementation is correct. In §7 we discuss the main result

and compare our calculation with previous works. In §8 we give a short summary.

4.2 Accretion disk simulation

We assume a geometrically thick, optically thin, collisionless accreting flow onto

a spinning supermassive black hole with mass M . The spin of the black hole is

parametrized by a∗ = Jc/(GM2), where J is the spin angular momentum. In disk

2Up to around tens of Schwarzschild radii, depending on the details of the disk model.
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simulation, we assume that both ions and electrons have thermal distributions 3. The

ion-to-electron temperature ratio Ti/Te is kept constant in the disk. Γ−law equation

of state is used, with Γ = 13/9.

Numerical simulations are performed using the 2D version of the general relativis-

tic magnetohydrodynamic (GRMHD) code HARM [Gammie, McKinnney, & Tóth,

2003]. The code solves the GRMHD equations using a conservative shock-capturing

scheme. The ∇· ~B = 0 condition is maintained by constrained transport. We assume

axisymmetry in the simulation, therefore axis of the black hole is aligned with that

of the accretion disk. The simulation is started with a torus defined in Fishbone &

Moncrief [1976], with a weak poloidal concentric magnetic field. The inner boundary

of the torus is at 6GM/c2, and density is maximum at 12GM/c2.

We use modified Kerr-Schild coordinates in the simulation. The inner boundary

is set to 0.98(1 +
√

1− a2∗), which means the code follows the flow until it passes the

event horizon. The outer boundary is set to 40 GM/c2 = 1.8 AU. Outflow boundary

conditions are used at both boundaries. Polar boundary conditions are used at the

two poles in θ. The resolution of the simulation is 256 × 256, with denser grids

near to the black hole and on the plane of accreting flow. The simulation ends at

2000GM/c3 ' 12 hr.

There are 3 parameters in our disk model, namely black hole spin a∗, ion-to-

electron ratio Ti/Te, and observation orientation angle i. Mościbrodzka, et al. [2009]

perform a parameter survey and conclude that the best-bet model has a∗ = 0.94 and

Ti/Te = 3, and is observed at i = 80◦ (edge on).

4.3 Electron distribution

Two of the commonly-used electron distribution functions are thermal and power-

law distributions. In this section, we review the relative equations and define the

parameters in the calculation.

4.3.1 Thermal distribution

The relativistic thermal distribution is

dne

dγ
≡ nth(γ) =

Nthγ
2β exp(−γ/Θe)

ΘeK2(1/Θe)
, (4.1)

3It may seem to contradict with our inclusion of nonthermal component in the radiative transfer
calculation. However, we limit the energy fraction of power-law component at low level < 1%,
therefore the error introduced by this discrepancy is small.
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where the dimensionless electron temperature is defined as

Θe ≡ kBTe

mec2
, (4.2)

Nth is the thermal electron number density, γ is the electron Lorentz factor, β is the

electron speed in units of light speed, and K2 is the modified Bessel function of the

second kind.

The thermal energy density is [Özel, Psaltis & Narayan [2000, Eq. (5)]; Chan-

drasekhar [1957, Ch. X, Eq. (235)]]

uth = a(Θe)Nthmec
2Θe , (4.3)

where

a(Θe) ≡ 1

Θe

[
3K3(1/Θe) + K1(1/Θe)

4K2(1/Θe)
− 1

]
. (4.4)

Two simplified expressions for a(Θe) are [Gammie & Popham, 1998]

a(Θe) =
6 + 15Θe

4 + 5Θe

(max. rel. err. < 2%) (4.5)

and

a(Θe) =
12 + 45Θe + 45Θ2

e

8 + 20Θe + 15Θ2
e

(max. rel. err. < 7× 10−4) . (4.6)

4.3.2 Power-law distribution

There is a lot of freedom in defining a nonthermal distribution. To reduce the number

of parameters, we only consider two cases, namely, a power-law distribution with a

single power-law index (simple power-law), and the power-law distribution with a

cooling break (“broken” power-law). Both distributions are assumed isotropic. We

define η as the ratio of the energy in the nonthermal population to the energy in the

thermal population:

upl = ηuth , (4.7)

where upl is the power-law energy density, and uth is defined in equation (4.4).

Simple power-law distribution

The simple power-law distribution is

npl(γ) = Cpl,sγ
−p for γmin ≤ γ ≤ γmax , (4.8)
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where the normalization constant is

Cpl,s = Npl
p− 1

γ1−p
min − γ1−p

max

, (4.9)

Npl is the power-law electron number density and p is the power-law index. Özel,

Psaltis & Narayan [2000] consider the special case 4 that γmin = 1 and γmax = ∞, so

the normalization constant becomes Cpl,s = Npl(p − 1), consistent with equation (4)

in Özel, Psaltis & Narayan [2000].

The power-law energy density is

upl =

∫ γmax

γmin

dγ npl(γ) γmec
2

=

∫ γmax

γmin

dγ Cpl,sγ
−p γmec

2

= Cpl,s mec
2 γ2−p

min − γ2−p
max

p− 2
(4.10)

= Npl mec
2 p− 1

p− 2

γ2−p
min − γ2−p

max

γ1−p
min − γ1−p

max

. (4.11)

By equations (4.3), (4.7) and (4.11), the number density of the simple power-law

distribution is

Npl = Nthη a(Θe)Θe
p− 2

p− 1

γ1−p
min − γ1−p

max

γ2−p
min − γ2−p

max

. (4.12)

In the case that γmin = 1, γmax = ∞ and p > 2, equation (4.12) is Npl = Nthη a(Θe)Θe

(p − 2)/(p − 1), which has an extra factor of 1/(p − 1) compared to equation (8) in

Özel, Psaltis & Narayan [2000]. The seeming discrepancy is due to a difference in

the definition of upl. We choose to define upl as the total energy density in order to

simply the equation, whereas Özel, Psaltis & Narayan [2000] exclude the rest mass

energy from the equation

Broken power-law distribution

With particle injection and synchrotron cooling, the evolution of the distribution

function is governed by the Boltzmann equation [Kardashev, 1962]

∂n(γ, t)

∂t
+

∂

∂γ

[
dγ

dt
n(γ, t)

]
= Q(γ, t)− S(γ, t) , (4.13)

4In Özel, Psaltis & Narayan [2000], §3.2, they impose a maximum Lorentz factor γmax ∼ 103 for
p < 3 and when η > 0.05%.
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where dγ/dt ∝ γ2 for synchrotron emission, Q(γ, t) is the electron energy injection

rate which is proportional to the injected electron distribution, and S(γ, t) ≡ (~v ·∇)n

is the sink term. Assume that the injection distribution ∝ γ−p, and the cooling

distribution∝ γ−pc . The cooling power-law index is found by assuming an equilibrium

between the injection and cooling, which leads to

∂

∂γ
(γ2γ−pc) ∝ γ−p

=⇒ γ2γ−pc ∝ γ−p+1 + constant

=⇒ γ−pc ∝ γ−p−1 − γ−p+1
max γ−2 , (4.14)

where the constant is fixed by the fact that the cooling distribution goes to 0 at

γ = γmax. For p > 1, first term on the RHS dominates and pc = p + 1; for p < 1,

second term dominates and pc = 2. The latter situation is unlikely in the system that

we are interested in, therefore we focus on the p > 1 case.

On the other hand, if cooling is balanced by the sink, advection dominates and the

electrons are not cooled. That means the power-law index remains p. To calculate the

“cooling break” Lorentz factor γc which separates the original distribution and the

cooling distribution, one needs an expression for the sink term. A simplest expression

is S = n/tacc, where tacc is the accreting time scale. Then by assuming that n is a

slow-changing function of time, the equilibrium between the sink and cooling leads

to

∂

∂γ

[
dγ

dt
n(γ)

]
=

n(γ)

tacc

(4.15)

=⇒ tcool ≡ 1

γ

dγ

dt
=

3

4

8πmec

σTγcβ2B2
= tacc ≡ R

|vr| , (4.16)

where σT is the Thomson cross section, B is the magnetic field strength, R is the

radius from the central object, and vr is the radial accreting velocity. γc can be

calculated from equation (4.16) once details of the accretion flow are specified (either

by a RIAF model, or computer simulation),

With all these information, we are ready to define the broken power-law distribu-

tion as

npl(γ) =

{
Cpl,bγ

−p for γmin ≤ γ ≤ γc

Cpl,bγcγ
−p−1 for γc ≤ γ ≤ γmax,

(4.17)

where γmin, γmax and γc are the minimum, maximum and “cooling break” Lorentz
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factors respectively, and the normalization constants are

Cpl,b = Npl

(
γ1−p

min −
1

p
γ1−p

c − p− 1

p
γcγ

−p
max

)−1

(p− 1). (4.18)

The power-law number density is fixed by the equation upl = ηuth, where the

power-law energy density is

upl =

∫ γmax

γmin

dγ npl(γ) (γ − 1)mec
2

= Cpl,bmec
2

[
γ2−p

min − γ2−p
c

p− 2
+ γc

γ1−p
c − γ1−p

max

p− 1

]
. (4.19)

Therefore, the power-law number density is

Npl = Nthηa(Θe)Θe
1

p− 1

(
γ1−p

min −
1

p
γ1−p

c − p− 1

p
γcγ

−p
max

)

×
[
γ2−p

min − γ2−p
c

p− 2
+ γc

γ1−p
c − γ1−p

max

p− 1

]−1

, (4.20)

which reduces to equation (4.12) if γc = γmax.

Parameters in the power-law distributions

The power-law distribution is known to have many different breaks that correspond

to different physics [Kardashev, 1962], and each segment of the distribution has a

different power-law index. Besides, in more realistic situation, the power-law param-

eters likely vary in space. There is also time variation due to turbulence and shocks in

the disk. There are also other possibilities (e.g. injection, anisotropy) which further

complicate the situation. We therefore limit our discussion to two minimal power-law

distribution models.

Here we summarize the parameters of the two distributions. For simple power-

law, the parameters are power-law energy fraction η, index p, minimum gamma factor

γmin, maximum gamma factor γmax. For broken power-law, in addition to the previous

four parameters, there is also a gamma factor at cooling break γc.

Power-law number density is set by using η in our calculation. We also choose to

fix the total energy in all electrons according to the disk model, instead of fixing the

thermal electron number density, as in Özel, Psaltis & Narayan [2000].
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Joining thermal and power-law distributions

There are two scenarios about the sources of the power-law electrons. First case is

that the power-law electrons are independent from the thermal electrons. Then both

γmin and γmax are free parameters of the model, and normalization constant (and

thus Npl) is fixed by upl = ηuth. Second case is that the power-law electrons are

accelerated from the thermal electrons. Then one needs a recipe to join the thermal

and power-law distributions. In this section we discuss the details of the second

scenario.

The simplest way of fixing the parameters is to assume that the power-law distri-

bution starts at the thermal distribution. Then γmin and the normalization constant

are found by solving upl = ηuth and nth(γmin) = npl(γmin) simultaneously, and γmax

is treated as a free parameter. Generally a root finder is needed to solve the equa-

tions. Figure (4.1) shows an example of joining a broken power-law with a thermal

distribution, with γmin found by using GSL root finder [Galassi et al., 2006].

Figure 4.1 Example of joining a broken power-law distribution (dashed line) with a
thermal distribution (solid line). The model has Θe = 10, p = 3, η = 0.01, γc = 250,
γmax = ∞.

If one simply defines total electron density ne = nth + npl, as in Yuan, Quataert

& Narayan [2003], there would be a second peak at γ = γmin (or γmax if p < 2) in the

distribution function. This could lead to instability in the plasma 5. In our calcula-

5“Bump-on-tail” instability [see, e.g, Stix, 1992, p. 455].
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tion, the power-law energy fraction is kept to a low value, so the joined distribution

that we use is not very different from the smooth-out distribution. That allows us to

simplify the calculation a lot. If one wants to avoid the instability, one can define the

nonthermal component as

nnth(γ) = npl(γ)− nth(γ) . (4.21)

However, with such a definition, the normalization and thus the nonthermal electron

number density Nnth do not have analytic forms. Also this choice will not make much

difference to the spectrum.

To find a closed form for Npl, one can replace equation (4.1) by the ultrarelativistic

thermal distribution

n
(ultra)
th (γ) =

Nthγ
2 exp[(1− γ)/Θe]

Θe(1 + 2Θe + 2Θ2
e)

. (4.22)

The nonthermal distribution

nnth(γ) = npl(γ)− n
(ultra)
th (γ) (4.23)

can be integrated analytically to find the normalization constant [Chan et al., 2008].

The problem with this approach is that there is no analytic form for the nonthermal

emissivity and coefficient of absorption, and thus it lowers computational efficiency.

Also it is not a good approximation to use ultrarelativistic thermal distribution for

the temperature range that we are interested in. Therefore we do not pursue this

approach.

4.4 Emission and absorption coefficients

We have discussed the details of the electron distribution function. The next step

is to define the emission and absorption mechanisms. Bremsstrahlung is very weak

compared to the synchrotron radiation from the accreting flow onto Sgr A* [Yuan,

Quataert & Narayan, 2003], especially in the innermost region of the disk. Therefore

we focus on synchrotron emission and absorption coefficients in this section.

Emission and absorption coefficients can be calculated by integrating the single-

electron coefficient over the distribution function. Therefore the coefficients for ther-

mal distribution are different from those for power-law distribution. Unlike previous

calculations [Özel, Psaltis & Narayan, 2000, Yuan, Quataert & Narayan, 2003], we
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do not use angle-averaged coefficients. The “observer angle” θ, which is the angle

between the line of sight and magnetic field line, is kept as an independent variable

in the emissivity jν (which has units of dE/dtdV dνdΩ) and the absorption coefficient

αν (which has units of 1/length).

4.4.1 Relativistic thermal distribution

The exact formulae for emission and absorption coefficients involve multi-dimensional

integrations [Leung, Gammie & Noble, 2009], which are too computationally expen-

sive for calculating the spectrum. Therefore we use analytical formulae which provide

good approximation for the fluid variables of interest. Unlike previous calculations

of emission from accretion flow onto supermassive black hole, in which ultrarelativis-

tic approximation of thermal synchrotron emissivity is used [Chan et al., 2008, Özel,

Psaltis & Narayan, 2000, Yuan, Quataert & Narayan, 2003], we use an approximation

which is valid for a larger range of electron temperature. The emissivity is [Leung,

Gammie & Noble, 2009]

jν = ne

√
2πe2νs

3K2(1/Θe)c

(
X1/2 + 211/12X1/6

)2
exp

(−X1/3
)

, (4.24)

where νs ≡ (2/9)νcΘ
2
e sin θ, νc ≡ eB/(2πmec) is the electron cyclotron frequency, and

X ≡ ν/νs. The absorptivity is then provided by the Kirchhoff’s Law

αν = Bν/jν , (4.25)

where Bν is the Planck function.

At low frequency, equation (4.24) deviates from the exact value, as shown in

Leung, Gammie & Noble [2009]. That leads to over-estimation of emission at low-

frequency end of the spectrum. We find that we can simply set jν and αν to zero in

order to correct this problem.
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4.4.2 Power-law distribution

The synchrotron emission is [Blumenthal & Gould, 1970, Eqs. (4.57) and (4.58)]

dW

dνdt
=

√
3ke3B

4πmec2

∫
dΩθN(θ) sin θ

∫ γ2

γ1

dγγ−p ν

νcrit

∫ ∞

ν/νcrit

dξK5/3(ξ) (4.26)

≈
√

3ke3B

4πmec2

(
2πmecν

3eB

)−(p−1)/2

(p + 1)−1Γ

(
3p− 1

12

)
Γ

(
3p + 19

12

)

×
∫

dΩθ(sin θ)(p+1)/2N(θ) , (4.27)

where k is a constant in the distribution function, the critical frequency νcrit =

3eBγ2/(4πmec), θ is the angle between velocity ~v of electron and magnetic field
~B, N(θ) is the θ-dependent part in the distribution function, K5/3 is the modified

Bessel function of the second kind, Γ is the gamma function. The assumption from

the first to second line is that νcrit(γ = γ1) ¿ ν ¿ νcrit(γ = γ2). Then the limits on

the γ integration can be replaced by 0 and infinity.

N(θ) is defined in the power-law distribution function

N(γ, θ, ~r, t) = kγ−pN(θ)/(4π) for γ1 < γ < γ2 , (4.28)

where ~r are the position vector, t is time, k is normalization constant with no time

dependence. When there is no θ-dependence, the distribution is N(γ, ~r, t) = kγ−p.

For isotropic distribution, N(θ) = 1. The emissivity becomes [Blumenthal &

Gould, 1970, Eq. (4.59)]

dW

dνdt
=

4πke3B(p+1)/2

mec2

(
3e

4πmec

)(p−1)/2

a(p)ν−(p−1)/2 , (4.29)

where

a(p) =
2(p−1)/2

√
3

8
√

π

Γ[(3p− 1)/12]Γ[(3p + 19)/12]Γ[(p + 5)/4]

Γ[(p + 7)/4]
. (4.30)

For arbitrary γmin and γmax, the emissivity is

jν = npl

(
e2νc

c

)
3p/2(p− 1) sin θ

2(p + 1)(γ1−p
min − γ1−p

max)
Γ

(
3p− 1

12

)
Γ

(
3p + 19

12

)(
ν

νc sin θ

)−(p−1)/2

.

(4.31)

Similarly, the absorption coefficient is given by an integral which can be approximated

84



by

αν = npl

(
e2

νmec

)
3(p+1)/2(p− 1)

4(γ1−p
min − γ1−p

max)
Γ

(
3p + 2

12

)
Γ

(
3p + 22

12

)(
ν

νc sin θ

)−(p+2)/2

.

(4.32)

respectively. These two formulae are valid for γ2
min ¿ ν/νc ¿ γ2

max. Figure (4.2) shows

an example of the two formulae, and the exact calculation done by using the harmony

code [Leung, Gammie & Noble, 2009]. We find that it is a good approximation to

use the expression for γ2
min < ν/νc < γ2

max.

4.5 Radiative transfer

Radiative transfer (RT) is done by a modified version of grmonty [Dolence et al.,

2009], which is a relativistic, Monte Carlo, unpolarized RT code. The code includes

physics of thermal synchrotron emission and absorption, and Compton scattering. A

single-time slice of accretion flow simulation data is used to perform the Monte Carlo

RT calculation, which is equal to assuming that the light crossing time is comparable

to the dynamical time.

4.5.1 Adding emission of power-law electrons

The total electron number density Ntot is the sum of the thermal number density Nth

and the power-law number density Npl. Ntot is set to be the number density in the

disk model, which is from HARM simulation in our case. Özel, Psaltis & Narayan

[2000] and Yuan, Quataert & Narayan [2003], on the other hand, treated the electrons

in their RIAF models as thermal. Power-law electrons were added on top on the disk

model in their calculation.

Npl is needed for the power-law emissivity. For the simple power-law distribution,

Npl is given by equation (4.12). For the broken power-law distribution, there are two

cases. If p > 2, γmin is found by solving upl = ηuth and nth(γmin) = npl(γmin), and then

equation (4.18) gives the value of Cpl,b, which is related to Npl via equation (4.18).

Because emissivity is additive, the new total value is

jν,new = jν,th + jν,pl ≡ jν,old + jν,pl . (4.33)

Similarly, the new total absorption coefficient is the sum of the thermal and power-law

coefficients. This is a consequence of linearity of responses medium to an electromag-
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Figure 4.2 Upper panel: the emissivity in cgs units, for p = 2.2, γmin = 1, γmax = 103,
and angle θ = 60 deg. The dashed line is the approximate formula in equation (4.31),
and the solid line is the exact calculation done by using the harmony code [Leung,
Gammie & Noble, 2009]. The approximate equation is accurate for 1 ≡ γ2

min < ν/νc <
γ2

max ≡ 106. Lower panel: the absorptivity in cgs units, for the same parameters. The
dashed line is calculated by using equation (4.32), and the solid line is result of
harmony.

netic wave.
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4.5.2 Compton scattering cross section of power-law

electrons

The power-law electrons can also Compton scatter photons. We are usually interested

in situations where τcs ¿ 1 and η ¿ 1, so the Thomson depth of the power-law

electrons ∝ τcsη ¿ 1 and they are negligible. For completeness, however, we describe

an implementation of Compton scattering by power-law electrons.

The effective Compton total cross section can be found by averaging the total

Klein-Nishina cross section using a probability density function (PDF) in β [Canfield,

Howard & Liang, 1987]. In case of thermal distribution, nth(β)/Nth is the PDF for

selecting the value of β at a given Θe. Following Canfield, Howard & Liang [1987,

Eq. (4)], but in terms of γ, the effective Compton hot cross section (in units of

Thomson cross section) can be written as [Canfield, Howard & Liang, 1987, Eq. (4)]

σ(a, Θe) =

∫ ∞

1

dγ

∫ 1

−1

dµ
1− βµ

2

nth(γ)

Nth

σKN(a0) , (4.34)

where µ is the cosine of angle between photon and electron trajectories, a = hν/(mec
2)

is the initial photon energy (in units of electron rest mass energy), and a0 = γ(1−βµ)a

is the Doppler-shifted photon frequency in the frame of the electron, and σKN(ν0) is

the total Klein-Nishina cross section.

Now consider more than one species of electrons. Assume species i has distribution

function ni and number density Ni, and the total number density is Ntot =
∑

i Ni.

Like absorption coefficient, the scattering opacity is additive. Therefore

αscatt =
∑

i

[Niσi(a, Θe)] ≡
∑

i

[
Ni

∫ ∞

1

dγ

∫ 1

−1

dµ
1− βµ

2

ni(γ)

Ntot

σKN(a0)

]
. (4.35)

The last line defines the effective hot cross section σi for species i.

To minimize the changes in grmonty, we further rewrite the opacity as

αscatt = Ntotσ̄ , (4.36)

where the average cross section is

σ̄ ≡
∑

i

[
Ni

Ntot

∫ ∞

1

dγ

∫ 1

−1

dµ
1− βµ

2

ni(γ)

Ntot

σKN(a0)

]

=

∫ ∞

1

dγ

∫ 1

−1

dµ
1− βµ

2

∑
i

[(
Ni

Ntot

)2
ni(γ)

Ni

]
σKN(a0) . (4.37)
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4.5.3 Compton scattering sampling

In Monte Carlo simulation, the electron distribution is sampled in order to find out

the details about the scattered electron. For the energy of the electron, one can

sample γ, β or E by rewriting the electron distribution in terms of the corresponding

variable. We follow Dolence et al. [2009] to sample the distribution using β. Notice

that β and µ are sampled separately, as described by Dolence et al. [2009, §5.2]. The

β sampling scheme follows the procedure of Canfield, Howard & Liang [1987, p. 572].

The scheme is only correct for thermal distribution, so an additional sampling scheme

for power-law distribution is added.

Sampling scheme for power-law distribution: inversion

The PDF is the normalized distribution function N−1
pl npl. The cumulative distribution

function (CDF)

CDF(β) ≡
∫ β

0

PDF(β1)dβ1 =

∫ γ(β)

1

PDF(γ1)dγ1 (4.38)

can be used to sample β. If CDF(β) can be inverted, then the value of β is given by

CDF−1(x), where x ∈ [0, 1) is a uniform random number.

For the simple power-law distribution equation (4.8), the PDF are

PDFpl,s(β) dβ =





Cpl,s

Npl

γ3−pβ dβ =
p− 1

γ1−p
min − γ1−p

max

γ3−pβ dβ for γmin ≤ γ ≤ γmax

0 otherwise .

(4.39)

The CDF is

CDFpl,s(β) =





0 for γ < γmin

γ1−p
min − γ1−p

γ1−p
min − γ1−p

max

for γmin ≤ γ ≤ γmax

1 for γ > γmax

(4.40)

and the inverse is

CDF−1
pl,s(x) =

√
1− 1

γ̃2
, γ̃ =

[
(1− x)γ1−p

min + xγ1−p
max

]1/(1−p)
. (4.41)
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For the broken power-law distribution equation (4.17) with p > 1, the PDF is

PDFpl,b(β) dβ =





Cpl,b

Npl

γ3−pβ dβ for γmin ≤ γ ≤ γc

Cpl,b

Npl

γcγ
2−pβ dβ for γc ≤ γ ≤ γmax

0 otherwise ,

(4.42)

where Cpl,b is given by equation (4.18). The CDF is

CDFpl,b(β) =





0 for γ < γmin

Cpl,b

(p− 1)Npl

(
γ1−p

min − γ1−p
)

for γmin ≤ γ ≤ γc

Cpl,b

(p− 1)Npl

(
γ1−p

min − γ1−p
c

)
+

Cpl,b

pNpl

γc

(
γ−p

c − γ−p
)

for γc ≤ γ ≤ γmax

1 for γ > γmax .

(4.43)

The inverse is

CDF−1
pl,b(x) =

√
1− 1

γ̃2
,

γ̃ =





[
γ1−p

min −
x(p− 1)Npl

Cpl,b

]1/(1−p)

for x ≤ CDFpl,b(βc)
{

γ−p
c −

[
Npl(p− 1)

Cpl,b

x− γ1−p
min + γ1−p

c

]
p

(p− 1)γc

}−1/p

for x > CDFpl,b(βc) .

(4.44)

Sampling scheme for power-law distribution: rejection

In general, one can choose β by rejection method. The simplest envelope function

is the maximum of PDF(β). Choose two uniform random numbers x1, x2 ∈ [0, 1).

If x1 < PDF(x2), accept x2 as β; otherwise, choose two new random numbers and

repeat the process.

In practice, we find that we can ignore the effect of power-law electron in Compton

scattering due to two reasons. First, we only add a small amount (less than 1% in

terms of energy) of power-law electron to the calculation, so the effect of power-law

electron is very small. Second, introduction of power-law electrons lead to increasing

in high-energy photons which have negligible cross section, because Klein-Nishina

cross section ∝ ln ε/ε.
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4.5.4 Sampling Klein-Nishina cross section

The addition of power-law distribution leads to more photons at high energy. Because

Klein-Nishina cross section is very small when photon energy is high, the sampling

becomes very inefficient compared to calculation with only thermal distribution. Here

we explain how to make the calculation more efficient.

Klein-Nishina formula

The Klein-Nishina formula is [Heitler, 1954, Eq. (22.39)]

dσKN

dΩ
=

r2
0

2

a2
s

a2

(
a

as

+
as

a
− sin2 θ

)
, (4.45)

where Ω is the solid angle, r0 is the classical electron radius, a = hν/(mec
2) is the

initial photon energy (in units of electron rest mass energy), as is the scattered photon

energy, and θ is the scattering angle. By conservation of momentum and energy, the

scattering energy can be expressed as [Heitler, 1954, Eq. (22.4)]

as =
a

1 + a(1− cos θ)
≡ a

1 + a(1− µ)
, (4.46)

which ranges from as,min ≡ a/(1 + 2a) at θ = π (backward scattering), to as,max ≡ a

at θ = 0 (no scattering). Eliminating θ in equation (4.45) by using equation (4.46),

one has
dσKN

dΩ
=

r2
0

2

a2
s

a2

[
a

as

+
as

a
+

(
1 +

1

a
− 1

as

)2

− 1

]
. (4.47)

The differential Klein-Nishina cross section can be written as

dσKN

das

=

(∫ 2π

0

dφ

)
· dσKN

dµdφ
· dµ

das

= 2π · dσKN

dΩ
· 1

a2
s

= πr2
0

1

a2

[
a

as

+
as

a
+

(
1 +

1

a
− 1

as

)2

− 1

]

= σT
3

8a2

[
a

as

+
as

a
+

(
1 +

1

a
− 1

as

)2

− 1

]
, (4.48)

where σT = (8π/3)r2
0 is the Thomson cross section. Canfield, Howard & Liang [1987,

Eq. (2)] misses a factor of a2 compared to equation (4.48). In fact, the missing factor
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a2 can be obtained by comparing their equations (2) and (3).

The total Klein-Nishina is

σKN =

∫ a

a/(1+2a)

das
dσKN

das

= σT
3

4a2

[
2 +

a2 + a3

(1 + 2a)2
+

a2 − 2a− 2

2a
ln(1 + 2a)

]
, (4.49)

which is the same as Rybicki & Lightman [1979, Eq. (7.5)], Heitler [1954, Eq. (22.45)]

and Canfield, Howard & Liang [1987, Eq. (3)].

4.5.5 Sampling differential Klein-Nishina cross section

To find the frequency and direction of the scattered photon in the electron frame, one

has to sample the differential Klein-Nishina cross section [Canfield, Howard & Liang,

1987, §A.IV, step 4]. As we can see in this section, when the initial photon energy is

high, the sampling efficiency of rejection using a simple capping function is very low.

This is not a problem if only thermal electrons are considered, because the tail in the

distribution drops off so fast that not many electrons can emit high-energy photon.

Test-runs with HARM data show that even the up-scattered photon would not cause

much trouble.

The situation is different for the relatively flat power-law distribution. Even a

small amount of power-law electrons can raise the high-frequency end of the spectrum,

especially when power-law index p is small. The lack of efficiency can be a problem.

Therefore here we consider a more efficient sampling method.

The function for sampling is

fKN(a, as) =
8

3σT

dσKN

das

=
1

a2

[
a

as

+
as

a
+

(
1 +

1

a
− 1

as

)2

− 1

]
. (4.50)

Recall that as,min ≤ as ≤ as,max with as,min ≡ a/(1 + 2a) and as,max ≡ a.

The envelope function can be a power-law function

fp(a, as) = c(a) ap(a)
s , p(a) = 1− ln(1 + 2a + 2a2)

ln(1 + 2a)
, c(a) = 2a−p(a)−2 (4.51)

and a linear function

flin(a, as) = m(a) as + b(a) , m(a) = − 2

a2
, b(a) =

2(1 + a)

a2
. (4.52)
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Both fp and flin join the two end points of fKN. A third choice is a “flat” function

fflat(a, as) = fKN(a, as,min) =
2 + 4a + 4a2

a2 + 2a3
(4.53)

which equals the maximum value of fKN.

Figure (4.3) shows the envelope functions for different values of a. When a is small,

the three functions are similar. As a increases, fp follows the fKN much more closely

compared to the other two functions, and thus the efficiency of rejection method using

fKN is a lot higher. Considering the fact that fp is more computationally expensive

to calculate, a sensible rejection method is to use fp only when a > 10. Otherwise,

fflat is used.

To do rejection using fp, we need the integrated function

Fp(a, as) =

∫ as

as,min

fp(a, x)dx =
c(a)

p(a) + 1

(
ap(a)+1

s − a
p(a)+1
s,min

)
(4.54)

and the inverse

F−1
p (a, x) =

(
p(a) + 1

c(a)
x + ap+1

s,min

)1/[p(a)+1]

. (4.55)

The rejection procedure is

(1) Choose a uniform random number x1 ∈ [0, Fp(a, as,max)). Calculate as,1 =

F−1
p (a, x1).

(2) Choose a uniform random number x2 ∈ [0, fp(a, as,1)).

(3) If x2 < fKN(a, as,1), accept as,1 as as; otherwise go back to step (1).

4.6 Code test

The grmonty code with only thermal distribution has been tested rigorously [Dolence

et al., 2009]. Therefore we decide to first test our modification against the original

code. As the power-law energy fraction decreases, the spectrum is expected to con-

verge to the spectrum with only thermal distribution. Figure (4.4) shows an example

for η = 1 × 10−10. We have tested the code for different power-law parameters. All

of them show the same result (within statistical error).

The power-law emissivity equation (4.31) is proportional to ν−(p−1)/2. Therefore

when the power-law synchrotron radiation is the dominant emission mechanism at

a particle frequency, we expect the slope in the SED, or a νLν spectrum, to be

−(p − 1)/2 + 1 = (3 − p)/2. Figure (4.5) shows that the code produces a spectrum
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Figure 4.3 Envelop functions for sampling differential Klein-Nishina for different val-
ues of a. Solid line is fKN(a, as). The efficiencies are for rejection method using fp

(blue dashed line), flin (red dotted line) and fflat (black dotted-dashed line) respec-
tively.

with correct slope for p = 2.5 and 3. For p = 3.5 and 4, the power-law synchrotron

contribution is “buried” among the thermal synchrotron and Compton scattering

contribution. Because we keep the total energy in all electron distributions, the

addition of power-law species lowers the thermal electron number density. The effect

is clear for p = 4, at which most of the power-law electrons have low energy and thus

do not contribute to emission in mm and infrared (IR) bands, therefore the SED of

p = 4 case is lower than the SED with only thermal electrons.

To further test our calculation, we compare Figure (4.5) with a similar calculation

in Özel, Psaltis & Narayan [2000]. Özel, Psaltis & Narayan [2000] calculate the

spectra up to IR frequency because there is no Compton scattering in their model.

We use the same energy fraction η and power-law indices p. The two figures show that

the slopes and the normalization (compared to the sub-mm bump) are similar in both

calculations. Even though there are resemblance in the two plots comparison, notice

that we do not rescale the curves in Figure (4.5) because exact comparison between
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Figure 4.4 Spectra of a single slice of accretion disk data, adjusted to fit the flux of
Sgr A* at 1.3 mm. Disk parameters are a∗ = 0.94, Ti/Te = 3, and orientation i = 85◦.
Solid line is calculation with only thermal electron. Dashed line is calculation with
power-law energy fraction η = 1× 1010, γmin = 1, γmax = 1000, p = 2.2.

Figure (4.5) and Figure 3b of Özel, Psaltis & Narayan [2000] is not meaningful due

to the numerous differences in the two calculations. We leave the discussion of the

differences to section 4.7.

We test the implementation of broken power-law in Figure (4.6), we increase γc

gradually to make sure that spectrum would converge to that of a simple power-law.

We are also able to verify the expected decrease of the spectral slope of a broken

power-law after the cooling break. This is also confirmed by the calculation by Yuan,

Quataert & Narayan [2003].
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Figure 4.5 Synchrotron spectra for thermal distribution (solid line), and models with
both thermal and power-law distributions. The dotted-dashed line, dashed line, dot-
ted line and long dashed line refer to model with p = 2.5, 3, 3.5 and 4 respectively.
Other parameters in the power-law distribution are η = 0.01, γmin = 1, γmax = ∞.
Disk parameters are a∗ = 0.94, Ti/Te = 3, orientation i = 85◦. All the models are cal-
culated assuming the same accretion rate. A single time-slice of accretion simulation
is used in the calculation.

4.7 Results

4.7.1 Agreement with flaring data

The calculation of SED is very expensive. To get good signal-to-noise in the SED, a

lot of photons are used in the Monte Carlo radiative transfer. One needs to repeat the

calculation for each time slice of accretion disk model. Many time slices are needed
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Figure 4.6 Convergence of broken power-law spectrum to simple power-law spectrum.
γmin = 1, γmax = 10000 in all calculations. At 1015 Hz, the four lines from the bottom
to the top are broken power-law calculation with γc = 10, 100, 1000, 3000. The top
line is simple power-law distribution.

to get an average spectrum. Besides, the spectrum changes non-linearly with the

change of mass accretion rate. Therefore, one has to redo the calculation in order

to match the spectrum to the observational constraints. In our previous parameter

survey with only thermal electrons [Mościbrodzka, et al., 2009], it takes a long time

to do the calculation even though only three model parameters are considered (black

hole spin, orientation angle, and ion-to-electron temperature ratio).

The parameter space in the calculation is vastly increased after the implementation

of power-law electron. Even though we limit our calculation to only simple and broken

power-law distributions, and require both distribution to be isotropic, the number of
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parameters is still too large for a complete survey. The problem is also not well

constrained if one allows any kind of power-law distribution, especially because there

are no observational data between IR and X-ray frequencies. The large number of

parameters mean that there are many degeneracies among them.

Our way of tackling this problem is twofold. First we add power-law electrons to

the best-bet model in Mościbrodzka, et al. [2009], to check whether it is possible to

satisfy observational constraint of spectral slope of NIR flares, without violating other

observational constraints. Second, to justify why we do not do a fitting or a parameter

survey, we demonstrate that it is possible to turn the parameters to satisfy all the

observations. The degeneracies in the parameters prevent us to make meaningful

statement about the exact power-law models. However, it is clear that some kinds of

power-law distribution are needed to satisfy the current data, especially because all

other possible emission mechanisms are ruled out, as discussed in section 4.1.

Mościbrodzka, et al. [2009] calculates the spectrum of Sgr A* by averaging the

spectra of 200 time slices of accretion disk simulation. By performing a survey with

three parameters, the best-bet accretion disk model is found to have ion-to-electron

temperature ratio Ti/Te = 3, black hole spin a∗ = 0.94, and disk orientation angle i =

85◦ (nearly edge-on). Besides, the best-bet model satisfies the image size constraint

set by VLBI at radio frequencies. We therefore add a use small fraction of power-law

electrons (η < 0.01) so that the radio emission essentially does not change after we

have matched the flux at 1.3 mm. The images of our models are therefore the same as

the thermal models. However, it is possible that certain models with large power-law

energy fraction could also satisfy the image size constraint, though it is not our goal

to find a new best-bet model.

A power-law distribution with index p produce spectrum with spectral slope (3−
p)/2. The spectrum will be shallower at frequency near to γc (for broken power-law)

or γmax (for both simple and broken power-law). Therefore, in order to produce a

spectral slope of 0.4± 0.2 between 3.8 and 1.6 µm (7.9× 1015 to 1.9× 1016 Hz), the

spectral index is at most 2.6. Figure (4.7) shows an example of how we can predict

the correct slope at NIR, which is not possible when there are only thermal electrons

in the model.

Notice that the X-ray emission Figure (4.7) is higher than the lower “bow tie”.

Unlike Mościbrodzka, et al. [2009], here we use the flaring emission (instead of the

quiescent emission) as the upper limit at X-rays, because the NIR spectral index

observations that motivate our calculation are flaring events. One may try to fit the

X-ray flares (upper bow tie), as in Yuan, Quataert & Narayan [2003] and Dodds-Eden
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Figure 4.7 Adding 0.03% of power-law to the best-bet model in [Mościbrodzka, et al.,
2009]. Power-law index p = 2.1, orientation angle is 85◦. Quiescent data from the
left to the right are from An et al. [2005], Falcke et al. [1998], Marrone et al. [2006] at
radio bands, Genzel et al. [2003] at NIR and Baganoff et al. [2003] at X-rays. Upper
limits at NIR are from Hornstein et al. [2007], Melia & Falcke [2001], Schödel et al.
[2007]. Flaring data are from from Dodds-Eden et al. [2009], Genzel et al. [2003] at
NIR, and Baganoff et al. [2001] at X-ray.

et al. [2009]. However, it is not clear whether the X-ray flares are produced directly

by synchrotron emission, thus there is a freedom of how to use the observational data

at X-rays. We choose not fitting the X-ray flaring data also because the large freedom

of power-law models do not allow us to constrain the parameters in any meaningful

way. While it is reasonable to predict the power-law spectrum over a small range of

frequencies at NIR, it is overstretching to use the model to predict the spectrum all
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the way up to X-ray.

Another reason of discouraging us to fit the X-ray flaring data with power-law

synchrotron emission is the cooling time of high-energy electrons which can produce

X-rays is of order seconds to tens of seconds. The observed X-ray flares, on the

other hand, last for tens of minutes. There has to be an injection mechanism that

continues to pump energy into the power-law electrons in order to produce X-ray flares

directly by synchrotron emission. That further complicates the power-law models and

introduces even more parameters.

Figures (4.8) to (4.10) are examples of how different set of power-law parameters

can all produce spectrum that satisfies all the observational constraint. We are able

to produce the correct spectrum for a wide range of parameters. For example, there

is freedom in choosing γmax. An increase in γmax moves the peak at IR towards

ultraviolet, without essential no change in the spectral slope at NIR and the overall

normalization. Besides simple power-law, broken power-law calculations can also

produce satisfied models for p < 1.6. It is therefore not possible to constrain the

parameters in the system.

There are several attempts in the literature to model the spectrum of Sgr A* by

including power-law synchrotron emission. In this section we discuss the improve-

ments and differences of our calculation, compared to the previous ones. We also

discuss the conclusion that we can draw from our calculation.

4.7.2 Comparison with Özel, Psaltis & Narayan [2000]

We mention in section 4.6 that our calculation resemble the result of Özel, Psaltis

& Narayan [2000]. However, there are a lot of differences in the calculation and the

underlying assumption. Özel, Psaltis & Narayan [2000] use an ADAF disk model

whereas we use data from an MHD accretion disk simulation. Their disk model

extends to a very large radius, at which the emission contributes to the right of the

sub-mm bump. On the other hand, our disk model only extends to 20 Schwarzschild

radii. Therefore we have less emission at radio wavelength and the slope below ∼ 1011

Hz in our calculation is not correct.

Özel, Psaltis & Narayan [2000] use pitch-angle-averaged emissivity and absorp-

tivity. Since we have detailed information about direction of magnetic field in the

simulation, we choose to keep the angle dependence in the synchrotron emission.

Another improvement that we have made is to include Compton scattering in the

radiative transfer. We can calculate the spectrum from radio wave to X-ray, while
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Figure 4.8 Spectrum of power-law model, with p = 2.2, η = 0.1%, γmin = 1, γmax =
4000. Disk model is Ti/Te = 3 and a∗ = 0.94, observed at i = 45◦. Sources of data
are cited in caption of Figure (4.7).

Özel, Psaltis & Narayan [2000] had to limit their calculation to the region around the

sub-mm bump due to the lack of Compton scattering.

There are further differences in the assumption about the electron distribution.

As mentioned before, when we add power-law electrons, we decrease the thermal

number density so that the total energy is fixed. Özel, Psaltis & Narayan [2000]

instead keep the thermal number density fixed. Besides, while their distribution is

equivalent to the simple power-law distribution in our calculation, they limit their

calculation to a smaller range of frequency, such that their spectra do not show the

peak that corresponds to γmax. The final major difference is that their spectra are
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Figure 4.9 Spectrum of power-law model, with p = 2.1, η = 0.03%, γmin = 1, γmax =
4000. Disk model is Ti/Te = 3 and a∗ = 0.94, observed at i = 45◦. Sources of data
are cited in caption of Figure (4.7).

averaged over orientation angle whereas orientation is a parameter in our model. They

also do not change the thermal electron number density when they add power-law

electron, whereas we lower the thermal electron number density to keep the total

energy constant.

Despite the vastly different assumptions and details, our spectra show similar

features compared to those in Özel, Psaltis & Narayan [2000]. Location of the sub-

mm peak in their simulation is the same as ours. Both calculations obtain the correct

slopes of the power-law tails. The normalization of the power-law contribution to the

spectrum, relative to the thermal bump, is also similar in both calculations.
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Figure 4.10 Spectrum of power-law model, with p = 2.01, η = 1%, γmin = 1, γmax =
4000. Disk model is Ti/Te = 3 and a∗ = 0.94, observed at i = 45◦. Sources of data
are cited in caption of Figure (4.7).

4.7.3 Comparison with Yuan, Quataert & Narayan [2003]

Yuan, Quataert & Narayan [2003] also assume an ADAF disk model. However, they

have an extra parameter compared to Özel, Psaltis & Narayan [2000], so that the

density profile can deviate from that of a spherical Bondi flow. They use non-angle-

averaged emissivity (but angle-averaged absorptivity), a simple model of Compton

scattering, and also a broken power-law distribution that starts from the thermal

distribution. Because Yuan, Quataert & Narayan [2003] have a smooth disk model

that provides synchrotron cooling rate and matter accretion rate as a function of

radius r, they are able to make γc = γc(r). We decide to use a fixed cooling break,
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estimated using the accretion rate near to innermost stable circular orbit (ISCO), due

to the large fluctuation of fluid variables in our simulated disk model. It is justified

by the fact that most emission originates from regions near to the ISCO [Beckwith,

Hawley & Krolik, 2008].

Besides the way that the cooling break is calculated, the difference in in the disk

model also prevent a direct comparison between our calculation and that in Yuan,

Quataert & Narayan [2003]. Due to variation between the fluid variables among time

slices of our accretion disk simulation, the cooling break varies for at most two orders

of magnitude. Yuan, Quataert & Narayan [2003], on the other hand, have a steady

disk model. However, we still find the same change of slope in the power-law tails

compared to Yuan, Quataert & Narayan [2003, Figure 4].

Yuan, Quataert & Narayan [2003] also fit the flaring X-ray data with power-law

synchrotron emission. As we have discussed above, we choose not to do such a fitting.

4.8 Conclusion

We have performed a relativistic RT calculation with GRMHD accretion flow simu-

lation. By adding a small power-law component to the mostly thermal distribution,

we are able to create spectra that produce a positive spectral slope for NIR flares, as

reported by Hornstein et al. [2007] and Dodds-Eden et al. [2009].

Due to our small change in electron distribution in the best-bet accretion flow

model of Mościbrodzka, et al. [2009], the modified best-bet model still agrees with

all the observational constraints. However, we make no claim that the old best-bet

model provide the best fit if flaring data are taken into account. In fact, we argue

that it is not possible to further constrain the problem, both due to the large number

of parameters in the power-law models, and the degeneracy among the parameters.
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Mościbrodzka, M., Gammie, C. F., Dolence, J. C., Shiokawa, H., & Leung, P.

K. 2009, ApJ, 706, 497
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Chapter 5

A Formalism for Covariant
Polarized Radiative Transport by
Ray Tracing

5.1 Introduction

Polarization data is now available at many wavelengths for Sgr A*, the radio, mil-

limeter, infrared, and X-ray source at the galactic center. Polarization characteristics

have already provided interesting constraints on models that site the source in a hot

plasma surrounding a 4×106M¯ black hole [Aitken et al., 2000, Marrone et al., 2006,

2007], and may provide more constraints with the aid of appropriate models. We

set out to model the polarization of Sgr A*, and in the process have developed the

argument below that describes a procedure for solving the polarized radiative transfer

equation in a curved spacetime. There are many other possible applications of this

work, however, including neutron star atmospheres, pulsar magnetospheres, other

galactic nuclei, and even cosmological problems.1

Work on covariant unpolarized radiative transport began with Lindquist [1966],

although there were earlier studies of the Boltzmann equation in covariant form. Later

work by Anderson & Spiegel [1972], and then by Thorne [1981], extended this to a

formalism in which the angular (momentum space) structure of the radiation field is

described by a moment formalism, again for unpolarized radiation.

Work by Connors, Piran & Stark [1980] transported polarized radiation from its

origin on the surface of a thin disk near a black hole through vacuum to an observer

at large radius by parallel transporting the polarization vector along a geodesic (more

recent works by, e.g., Schnittman & Krolik [2009], Dovčiak et al. [2008] and Li et al.

[2005], use a similar procedure, although Schnittman & Krolik [2009] include Compton

scattering).

The first clear description of fully relativistic polarized radiative transport that

we are aware of is by Bildhauer [1989a,b], who wrote down a transport equation for

a vector potential polarization tensor (we will use the same procedure); Bildhauer

1This work will be submitted to ApJ [Gammie & Leung, 2010]. Reproduction for this dissertation
is authorized by the copyright holder.
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[1989a,b]’s work built on earlier work by Dautcourt & Rose [1978]. Later polarized

transport equations were written down in a cosmological context by Kosowsky [1994,

1996], Challinor [2000], and Weinberg [2008, Appendix]. More recently, Broderick &

Blandford [2004, hereafter BB04] have developed an elegant formalism for treating

transport along a ray, and this has been applied by, e.g., Broderick, Loeb & Narayan

[2009] and Huang et al. [2009] to models of Sgr A*.

If a covariant polarized transport formalism exists, why are we revisiting the is-

sue? Most earlier work describes the polarized radiation field in terms of dependent

variables, like the invariant Stokes parameters Q/ν3, U/ν3, V/ν3, which are frame de-

pendent. The way these variables change along a geodesic depends on how the chosen

frame changes along the geodesic. In many applications this is unobjectionable; there

is a natural choice of frames (e.g., in cosmology) that varies slowly along the geodesic.

In accretion flow problems, however, the natural (plasma) frame fluctuates rapidly

along the geodesic because of turbulence in the underlying flow. The Stokes pa-

rameters can then fluctuate, even if there is no interaction between the plasma and

the radiation field. This seems unsatisfactory. The procedure we describe below is

manifestly frame independent and avoids this issue.

A second motivation is that the widely used BB04 formalism is written down from

physical arguments but not derived. It was not clear (to us) that all relativistic effects

were properly included in BB04’s treatment. Here we derive BB04’s equations starting

from the firm ground of Maxwell’s equations and the Liouville-Vlasov equation.

A third motivation is that the use of preferred observers seems inelegant. It ought

to be possible to define a tensor quantity to represent the polarized radiation field

and then write the basic equations in a coordinate and frame independent way at the

outset. One manifestly covariant description of a polarized radiation field is

Qαβγδ = 〈FαβF ∗
γδ〉, (5.1)

where Fαβ is the electromagnetic field tensor and ∗ denotes complex conjugate. This

unwieldy fourth-rank polarization tensor has 21 real (not complex) degrees of freedom,

most of which are redundant due to the radiative character of the electromagnetic

field. A simpler but still covariant description of the radiation field is

Nαβ = 〈AαA∗
β〉, (5.2)

where Aµ is the four-vector potential, with Fαβ = ∂αAβ − ∂βAα. This is the funda-

mental description of the radiation field used by Bildhauer [1989a,b]. Some of the
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components of Nαβ have a natural interpretation as a photon phase space density and

obey a simple equation along photon trajectories. Other components represent extra

(gauge) degrees of freedom that can be clearly identified and that are eliminated when

a final physical measurement is made by projecting Nαβ onto an appropriate tetrad

basis.

A final motivation is pedagogical: we want to make the transition from familiar

territory—Maxwell’s equations—to a covariant polarized transfer equation with a

minimum of technical overhead.

We adopt the standard notation of Misner, Thorne & Wheeler [1973, hereafter

MTW] including a signature for the metric of {−, +, +, +}. We set c = 1 except where

specifically noted otherwise. It may help to recall that, if xµ is a set of coordinate

and kµ is a wave four-vector then the following are coordinate invariant: d3k/(
√−gkt)

(here g is the determinant of gµν); d3x
√−gkt; d3xd3k (phase space volume). Here

d3k = dk1dk2dk3 and d3x = dx1dx2dx3, where 1, 2, 3 are spacelike coordinates.

Our paper is organized as follows. In §2 we review the properties of WKB so-

lutions for electromagnetic wavetrains in a vacuum spacetime. In §3 we give an

explicit expression for an orthonormal tetrad frame and define a polarization tensor

for wavetrains. In §4 we discuss WKB solutions for a WKB wavetrain in a dilute

test (nonself-gravitating) plasma. In §5 we make the transition to an ensemble of

wave packets (photons) from a wavetrain and write a Boltzmann equation for the

polarization tensor Nµν that accounts for absorption and emission. In §6 we describe

how to connect Nµν to Stokes parameters. In §7 we explain how our emission and

absorption tensors relate to more familiar emissivities and absorptivities, and relate

it to expressions in Leung, Gammie & Noble [2009] and Shcherbakov [2008]. In §8 we

explicitly demonstrate that the resulting evolution of the invariant Stokes parameters

(Stokes parameters/ν3) are gauge invariant. In §9 we write the polarization equation

in a tetrad basis and define a set of rotation coefficients. In §10 we explicitly demon-

strate that our equation is consistent with the formalism given by BB04. In §11 we

describe strategies for integrating the Boltzmann equation along a ray. In §12 we give

a brief summary.

5.2 WKB wavetrain review

Consider a single electromagnetic wavetrain given by

Aµ(xν) = aµ(xν) exp(ikαxα) (5.3)
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where aµ is an amplitude and kα = ∂αθ (θ is the phase) is, as usual in WKB, the

wavevector.2 The Lorenz gauge condition ∇µA
µ = 0 implies to leading order in WKB

that

kµa
µ = 0. (5.4)

The Lorenz gauge does not fix Aµ uniquely, since we can always send Aµ → Aµ +

φ(xν)kµ.

Maxwell’s equations in the Lorenz gauge imply (MTW, Eq. (22.19d))

∇α∇αAµ + Rµ
αAα = 4πJµ. (5.5)

where Jµ is the current (see Jackson [1975, p. 551] for covariant form in Gaussian

units) and Rµν is the Ricci tensor. If the plasma is diffuse (a “test plasma”) then the

stress-energy tensor T µν ≈ 0 and Einstein’s equations give Rµν ≈ 0. Suppose for now

that Jµ = 0; then

∇α∇αAµ = 0. (5.6)

In the WKB approximation this yields at lowest order (MTW §22.5)

kµkµ = 0 (5.7)

or, in nonrelativistic language, ω2 = c2k2. Rewriting Eq. (5.7) as ∇µθ∇µθ yields after

taking the gradient and interchanging indices

kµ∇µk
ν = 0. (5.8)

To next order in WKB one obtains an evolution equation for the vector Fourier

amplitudes:

kµ∇µa
ν +

1

2
aν∇µk

µ = 0. (5.9)

The amplitude evolution equation can be decomposed into an equation for the scalar

amplitude a = (aµa
µ)1/2 and for the polarization unit vector fµ = aµ/a:

kµ∇µa +
1

2
a∇µk

µ = 0. (5.10)

and

kµ∇µf
ν = 0. (5.11)

2The sign convention for kµ is opposite that in Melrose [2008, 2009]; we use signature − + ++
for the metric instead of Melrose’s +−−−.
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The scalar amplitude equation can be rewritten

∇µ(kµa2) = 0 (5.12)

i.e. as a conservation equation for a2.

How are physical measurements made from aµ? First, the electromagnetic field

tensor is

Fµν = ∂µAν − ∂νAµ (5.13)

which to lowest order in WKB is 3

Fµν = i(kµaν − kνaµ). (5.14)

This can be decomposed into an E and B field in a particular frame uµ. The electric

field four-vector is

Eµ ≡ uνF
µν = i(kµ(aνu

ν)− aµ(kνu
ν)), (5.15)

This definition is consistent with the Lorentz force duα/dτ = (q/m)uβFαβ. The

magnetic field four-vector is

Bµ = uν
∗F νµ (5.16)

where
∗F µν =

1

2
εµνκλFκλ (5.17)

and

εµνκλ = − 1√−g
[µνκλ], (5.18)

and [µνκλ] is the permutation symbol (1 for even permutations of 0123, −1 for odd

permutations, zero otherwise). Eµ and Bµ reduce to the usual E and B fields in an

orthonormal tetrad that is at rest in the uµ frame. They are both orthogonal to

Kµ = (gµ
ν + uµuν)k

ν = kµ + uµ(uνk
ν) (5.19)

which is the spatial part of kµ.

The stress-energy tensor for a wavetrain is (MTW):

T µν
WT =

1

8π
a2kµkν (5.20)

3Again, the sign is opposite Melrose [2008, 2009].
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from which we see that in a particular coordinate frame the energy density

T tt =
1√−g

dE

d3x
=

1

8π
ktkta2 (5.21)

and, since photon number dE = ~ktdN the photon number density is

1√−g

dN

d3x
=

1

8π~
kta2 (5.22)

(again MTW p. 580), which implies that the invariant photon number density is

1√−gkt

dN

d3x
=

a2

8π~
, (5.23)

since
√−gktd3x is invariant.

5.3 Polarization Tensors

We first erect a tetrad frame—which we will refer to as the plasma basis—to simplify

the discussion of polarization tensors.

5.3.1 Plasma tetrad

It is natural to erect a tetrad that moves with the plasma, eα
(t) = uα and has one basis

vector eα
(K) parallel to Kα. The other basis vectors are then fixed up to a rotation. For

radiative transfer in a magnetized plasma it is natural to use the magnetic field four-

vector bµ to uniquely specify the orientation of the remaining basis vectors (BB04),

but any trial spacelike four-vector bµ not aligned with Kα will do.

Gram-Schmidt orthogonalization yields the following explicit expressions for the

spatial basis vectors:

eα
(K) =

Kα

√
KµKµ

= −
(

kα

kµuµ
+ uα

)
(5.24)

eα
(‖) =

bα + kνbν

kµuµ eα
(K)

(b2 − ((kλbλ)/(kκuκ))2)1/2
(5.25)

eα
(⊥) = εαβγδe

(t)
δ e(K)

γ e
(‖)
β =

εαβγδuδkγbβ

(b2(kκuκ)2 − (kλbλ)2)1/2
(5.26)

Notice that eα
(t)aα = aβuβ and eα

(K)aα = −aβuβ. It is straightforward to confirm that
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eα
(a)e

(b)
α = δ

(b)
(a). This basis is identical to that given in BB04.

5.3.2 Polarization tensors

The usual electric polarization tensor is

P µν = EµE∗ν , (5.27)

but this does not obey a simple transport equation (see, e.g., the discussion of

Portsmouth & Bertschinger 2004). Let us calculate P (a)(b), the polarization tensor in

the plasma basis. Since

eα
(t)Eα = 0, (5.28)

which follows from Eq. (5.15), or directly from the antisymmetry of F µν ,

eα
(K)Eα = 0, (5.29)

which follows from Eq. (5.15) and the Lorenz gauge condition;

eα
(‖)Eα = i (kβuβ) eα

(‖)aα (5.30)

which follows from eα
(K)Eα = 0; and

eα
(⊥)Eα = i (kβuβ) eα

(⊥)aα. (5.31)

Therefore the only nonzero components of the electric field are perpendicular to Kµ

and uµ.

We now introduce the notation (A) (capitalized roman index in parentheses) for

a tetrad component normal to both uµ and kµ, here either (⊥) or (‖). Then

P (A)(B) = e(A)
µ e(B)

ν P µν = (kβuβ)2e(A)
µ e(B)

ν aµa∗ν . (5.32)

This motivates the definition of the polarization tensor

Nµν = 〈aµa∗ν〉. (5.33)

which is independent of the frame uµ. From §2 it is apparent that Nµ
µ is proportional

to the photon phase space density for a wavetrain. If aµ is expressed in gauss-cm,

then the photon number density is Nµ
µ /(8π~c).
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Nµν is gauge dependent; sending aµ → aµ+φkµ doesn’t change any measurements.

This final gauge freedom can be eliminated by setting uµaµ = 0 at any point along

the ray and then parallel transporting aµ.

5.4 Wavetrain in a plasma

Now consider the wave equation for a wavetrain in a plasma. The wave equation in

the presence of a test-plasma (one that does not contribute to the gravitational field,

so that Rµν = 0) is (MTW)

∇µ∇µAα = 4π(Jα
ind + Jα

ext), (5.34)

where Jα
ind and Jα

ext are the “induced” and “extraneous” 4-currents (corresponding to

absorption and generalized Faraday rotation, and emission respectively). The linear

response tensor Π is

Jα
ind ≡ Πα

βAβ. (5.35)

The response tensor is gauge independent since Eµ = i(kµuν − (kβuβ)gµν)aν , and the

induced current is uniquely related to the electric field.

The wave equation, at lowest order in WKB and without the extraneous 4-current,

is now

−2ikβ∇βaα − iaα∇βkβ = 4πΠα
βaβ (5.36)

or (multiplying by i)

2kβ∇βaα + aα∇βkβ = 4πiΠα
βaβ. (5.37)

or

kβ∇βaα = −1

2
aα∇βkβ + 2πiΠα

βaβ. (5.38)

Now expand ∇µ(kµaαa∗β)

∇µ(kµaαa∗β) = a∗βkµ∇µa
α + aαkµ∇µa

∗β + aαa∗β∇µk
µ (5.39)

and evaluate it using the wave equation:

∇µ(kµaαa∗β) = 2πi
(
a∗βΠα

µaµ − aαΠ∗β
µ a∗µ

)
(5.40)

which we rewrite as

∇µ(kµaαa∗β) = Hαβκλaκa
∗
λ (5.41)
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with

Hαβκλ ≡ 2πi
(
gβλΠακ − gακΠ∗βλ

)
. (5.42)

Contracting over α and β,

∇µ(kµa2) = 2πi(Πλκ − Π∗κλ)aκa
∗
λ. (5.43)

Since a2 is proportional to the photon number density, this shows that absorption is

encoded in the anti-hermitian part of Π.

5.5 Ensemble of waves: a2
k

We now want to make the transition from WKB wave trains, which are approximately

a δ function in momentum space, to a transport equation for a distribution of photons

in momentum space.

Consider a small, invariant spatial volume ∆V = ∆3x
√−gkt and a small, invariant

momentum space volume ∆Vk = ∆3k/(
√−gkt). Populate the phase space volume

∆V ∆Vk with an ensemble of wave packets labeled by i, and model each packet as a

wave train with definite amplitude ai.

Define the photon distribution function

f ≡ dN

d3xd3k
≈ 1

∆Vk

∑
i

1√−gkt

dNi

d3x
(5.44)

This is invariant since d3k/(
√−gkt) is invariant (here d3k = dk1dk2dk3, i.e. indices

are down). The distribution function is recovered in the limit ∆Vk → 0.

The photon number density is quadratic in Aµ. Recall that

Aµ =
∑

j

ajµe
ikjνxν

(5.45)

so

AµA
∗
ν =

∑
ij

aiµa
∗
jνe

i(kiν−kjν)xν

. (5.46)

If the phases of the wave packets are uncorrelated (the radiation is incoherent) the

cross terms vanish and

〈AµA
∗
ν〉 =

∑
i

〈aiµa
∗
iν〉 (5.47)

where the 〈〉 is a suitable average (Bildhauer [1989a] makes this step carefully using
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Wigner transforms). From now on we drop the explicit 〈〉.
The wavetrain analysis implies that

1

∆Vk

∑
i

1√−gkt

dNi

d3x
=

1

∆Vk

∑
i

a2
i

8π~c
. (5.48)

This motivates the definition of power spectrum

a2
k ≡

1

∆Vk

∑
i

a2
i . (5.49)

Then

f =
a2

k

8π~
, (5.50)

and so (reinserting the correct powers of c)

Iν =
h4ν3

c2
f =

h4ν3

c2

a2
k

8π~c
=

ε3

c3

a2
k

4
(5.51)

where ε = hν is the individual photon energy. One of the factors of 2 here comes

from averaging over a wavelength.

Now invoke the Liouville-Vlasov equation, which for photons in vacuo implies

df

dλ
= 0 ⇒ d(Iν/ν

3)

dλ
= 0, (5.52)

or
da2

k

dλ
= kµ∇µ a2

k = 0 (5.53)

and demand consistency with Maxwell’s equations. Recasting in terms of the wave

amplitudes

kµ∇µ

(
1

∆Vk

∑
i

a2
i

)
= 0, (5.54)

and expanding,

∑
i

(
1

∆Vk

(kµ∇µ)a2
i −

a2
i

∆V 2
k

(kµ∇µ)∆Vk

)
= 0. (5.55)

Applying the wave equation to this gives

−a2
k (∇µk

µ + kµ∇µ ln ∆Vk) = 0 (5.56)
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The first term in parentheses is the fractional rate of change of the invariant three-

volume ∆V = ∆3x
√−gkt occupied by a group of photons in the wave (exercise 22.1

of MTW), i.e. it is d ln ∆V/dλ = (kµ∇µ) ln ∆V . Then

kµ∇µ ln ∆V + kµ∇µ ln ∆Vk ∝ d

dλ
(∆V ∆Vk) = 0, (5.57)

that is, along a photon trajectory the phase space volume ∆V ∆Vk occupied by the

group of photons is constant.

Maxwell and Liouville permitted us to evaluate d∆Vk/dλ, which in turn implies

(kα∇α)〈akµa
∗
kν〉 = 0 (5.58)

in vacuum. Define the (Hermitian) polarization tensor

Nµν = 〈aµ
ka
∗ν
k 〉, (5.59)

where from now on we will drop the explicit k subscript. Then

(kα∇α)Nµν = 0 (5.60)

in vacuum. This result is identical at lowest order to Bildhauer [1989a]’s, although

for Bildhauer [1989a] the independent variables are xµ, kµ rather than λ.

The classical wave equation in a plasma can then be used to write a polarized

transport equation with absorption and Faraday rotation:

kα∇αNµν = HµνκλNκλ. (5.61)

If we add back the source terms the Boltzmann equation becomes

kα∇αNµν = Jµν + HµνκλNκλ, (5.62)

Eq. (5.62) is a covariant polarized radiative transfer equation. Scattering may likewise

be accounted for by adding a scattering tensor to the right hand side.
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5.6 Stokes from Nµν

How does Nµν related to Stokes I, Q, U, V ? We know that Iν = ε3a2
k/(4c

3). Then in

the plasma basis the four components of N (A)(B) are

N (A)(B) = e(A)
µ e(B)

ν Nµν =
2c3

ε3

(
I + Q U + iV

U − iV I −Q

)
. (5.63)

Thus I ∝ N (⊥)(⊥) + N (‖)(‖), Q ∝ N (‖)(‖) − N (⊥)(⊥), U ∝ N (⊥)(‖) + N (‖)(⊥), and

V ∝ −i(N (⊥)(‖) −N (‖)(⊥)).

What scalars can be formed from Nµν = N∗νµ? If we separate N into symmetric

(real) and antisymmetric (imaginary) parts, the trace of the symmetric part is pro-

portional to I, the term by term square is proportional to (I2 + Q2 + U2), the trace

of the antisymmetric part is zero (of course!), and the term by term square of the

antisymmetric part is proportional to V 2. There are no other scalars. No invariant

procedure can allow us to separately determine Q and U or the sign of V , as these

are manifestly coordinate-dependent quantities.

5.7 Emission and absorption

5.7.1 Response tensor

The response tensor Παβ can be constructed from the response 3-tensor by identifying

the corresponding terms in the tensor and using the charge-continuity and gauge-

invariance conditions [Melrose, 2008, §1.5.8]. Another way to proceed is to decompose

the response tensor into the hermitian (h) and antihermitian (a) parts, such that

Παβ = Παβ
h + Παβ

a (5.64)

where

Παβ
h =

1

2
(Παβ + Π∗βα) , Παβ

a =
1

2
(Παβ − Π∗βα). (5.65)

The hermitian part conserves total energy in the wave whereas the antihermitian part

causes dissipation. It is then natural to rewrite Eq. (5.42) as

Hαβκλ = Aαβκλ + Rαβκλ (5.66)
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where the absorption part

Aαβκλ ≡ 2πi(gβλΠακ
a − gακΠλβ

a ) ≡ 1

2
(gβλAακ − gακAλβ) (5.67)

contains the dissipative terms, and the generalized Faraday rotation part

Rαβκλ ≡ 2πi(gβλΠακ
h + gακΠλβ

h ) ≡ 1

2
(gβλRακ + gακRλβ) (5.68)

contains the non-dissipative terms. Due to the symmetry properties, Aαβκλ has 4

degrees of freedom while Rαβκλ has 3 degrees of freedom.

In flat space, one can write the radiative transfer equation as

d

ds
IS = JS −MST IT , (5.69)

where IS = {I, Q, U, V } contains the Stokes parameters, JS = {jI , jQ, jU , jV } contains

the emission coefficients, which have units of dE/dtdV dνdΩ, and the Mueller Matrix

MST is

MST ≡




αI αQ αU αV

αQ αI rV −rU

αU −rV αI rQ

αV rU −rQ αI




. (5.70)

The parameters αi are the absorption coefficients and rQ, rU and rV are the Faraday

mixing coefficients. By comparing the terms in Eqs. (5.69) and (5.62) in a tetrad

basis eµ
(t), eµ

(‖), eµ
(⊥) and eµ

(K), one can write

A(a)(b) ≡ ε




0 0 0 0

0 αI + αQ αU + iαV 0

0 αU − iαV αI − αQ 0

0 0 0 0




(5.71)

and

R(a)(b) ≡ −iε




0 0 0 0

0 rQ rU + irV 0

0 rU − irV −rQ 0

0 0 0 0




. (5.72)

Expressions for magnetobremsstrahlung absorption coefficients can be found in Eq. (48)

Leung, Gammie & Noble [2009], and formulae for the Faraday mixing coefficients in
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Eq. (33) 4 of Shcherbakov [2008].

5.7.2 Emissivity tensor

The emissivity tensor can be written in Stokes basis as

J (i)(j) ≡ 2c3

ε2




0 0 0 0

0 jI + jQ jU + ijV 0

0 jU − ijV jI − jQ 0

0 0 0 0




, (5.73)

Expressions for the magnetobremsstrahlung emissivities are given by Eq. (28) of Le-

ung, Gammie & Noble [2009].

5.8 Gauge Invariance

Here we show by explicit calculation that the gauge freedom φ does not affect N (A)(B)

where as before (A), (B) are the components of N projected into the space perpen-

dicular to the observer four-velocity uµ and wavevector kµ. N (A)(B) are quantities

that can be measured. Along the way we explicitly identify and count the degrees

of freedom in Nµν . We also show that inconsistent definition of the gauge freedom φ

from frame to frame do not affect the measured Stokes parameters.

First construct an explicit expression for the N (a)(b). Consider a Cartesian tetrad

attached to an observer with velocity vµ. The tetrad components are e(K) and e(t)

are defined just as for the plasma frame; the other two components e(x) and e(y) are

only defined up to a rotation. Let a(a) = {φK, ax, ay, φK} and k(a) = K{1, 0, 0, 1},
consistent with the Lorenz gauge condition kµaµ = 0. In this frame

Nµν =





K2〈φφ∗〉 K〈φa∗x〉 K〈φa∗y〉 K2〈φφ∗〉
K〈axφ

∗〉 〈axa
∗
x〉 〈axa

∗
y〉 K〈axφ

∗〉
K〈ayφ

∗〉 〈aya
∗
x〉 〈aya

∗
y〉 K〈ayφ

∗〉
K2〈φφ∗〉 K〈φa∗x〉 K〈φa∗y〉 K2〈φφ∗〉





, (5.74)

where the average is over many wave packets in an infinitesimal volume of phase

space. Since the wave packets can have different φ, the correlations involving φ are

nontrivial, so, e.g., 〈φφ∗〉〈axa
∗
y〉 need not equal 〈φa∗y〉〈axφ

∗〉, just as 〈aya
∗
x〉〈axa

∗
y〉 need

4Note the sign difference in Eq. (32) of Shcherbakov [2008] compared to our equations.
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not equal 〈axa
∗
x〉〈aya

∗
y〉 and I2 need not equal Q2 + U2 + V 2.

Nµν is Hermitian and so has 16 real degrees of freedom. Four of these are the

Stokes parameters, contained in N (A)(B). There are four additional degrees of freedom

in 〈φa∗x〉 and 〈φa∗y〉. The remaining eight degrees of freedom are eliminated by the

four complex conditions kµN
µν = 0.

How does N (A)(B) transform to another tetrad? Consider a second tetrad attached

to an observer with four-velocity uµ; the basis vectors are ēµ
(t) ēµ

(x) ēµ
(y), and ēµ

(K).

Recall that ēµ
(t) = uµ and ēµ

(K) = −[kµ/(kαuα) + uµ]. Writing out the transformation

explicitly,

N̄(A)(B) = ēµ
(A)ē

ν
(B)e

(c)
µ e(d)

ν N(c)(d). (5.75)

Expanding,

ēµ
(A)e

(c)
µ N(c)(d) = ēµ

(A)

(
e(t)

µ N(t)(d) + e(K)
µ N(K)(d) + e(x)

µ N(x)(d) + e(y)
µ N(y)(d)

)
(5.76)

= ēµ
(A)

(
−vµN(t)(d) − (

kµ

kαvα
+ vµ)N(K)(d) + e(x)

µ N(x)(d) + e(y)
µ N(y)(d)

)
; (5.77)

since ēµ
(A)kµ = 0,

= ēµ
(A)

(−vµ(N(t)(d) + N(K)(d)) + e(x)
µ N(x)(d) + e(y)

µ N(y)(d)

)
. (5.78)

Expanding again,

= ēµ
(A)

(
−vµ(eα

(t)e
β
(d)Nαβ + eα

(K)e
β
(d)Nαβ) + e(x)

µ N(x)(d) + e(y)
µ N(y)(d)

)
. (5.79)

= ēµ
(A)

(
−vµ(eα

(t) + eα
(K))e

β
(d)Nαβ + e(x)

µ N(x)(d) + e(y)
µ N(y)(d)

)
. (5.80)

but

(eα
(t) + eα

(K))Nαβ = (vα − (kα/(kλk
λ) + vα))Nαβ = 0 (5.81)

since kαNαβ = 0. Then

ēµ
(A)e

(c)
µ N(c)(d) = ēµ

(A)e
(B)
µ N(B)(d) (5.82)

Assembling the entire expression

N̄(A)(B) = ēµ
(A)ē

ν
(B)e

(C)
µ e(D)

ν N(C)(D) (5.83)

that is, the change of frame simply interchanges components in the spatial plane
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perpendicular to Kα. Since Q2 + U2, V 2, and I are invariant, this transformation

corresponds to a rotation that interchanges Q and U (or changes the sign of V if the

handedness of the tetrad is allowed to change).

For completeness, express the transformation of the Stokes parameters in terms

of eµ
(A) and ēµ

(A) via:

Q̄ = Q cos 2θ − U sin 2θ (5.84)

Ū = U cos 2θ + U sin 2θ (5.85)

where cos θ ≡ ēµ
(x)e

(x)
µ and sin θ ≡ ēµ

(x)e
(y)
µ .

Evidently no measurement depends on the correlations 〈φa∗i 〉. At a single event

we can change frames at will, resetting φ to zero in any frame we choose. We cannot

set φ = 0 while transporting Nµν along a ray.

5.9 Polarized transport in a tetrad basis

What is the transport equation in a tetrad basis? Project the right hand side of

Eq. (5.62) onto the tetrad basis:

J (a)(b) + H(a)(b)(c)(d)N(c)(d). (5.86)

The left side is

e(a)
µ e(b)

ν kα∇α

(
N (c)(d)eµ

(c)e
ν
(d)

)
=

dN (a)(b)

dλ
+ e(a)

µ e(b)
ν N (c)(d)kα∇α

(
eµ
(c)e

ν
(d)

)
. (5.87)

The final term can be rewritten

N (c)(d)
(
δa
c e(b)

ν kα∇αeν
(d) + δb

d e(a)
µ kα∇αeµ

(c)

)
≡ N (a)(d)c

(b)
(d) + N (c)(b)c

(a)
(c) . (5.88)

This defines the rotation coefficients c
(a)
(b) . The full transport equation in a tetrad basis

is then
dN (a)(b)

dλ
+ N (a)(d)c

(b)
(d) + N (c)(b)c

(a)
(c) = J (a)(b) + H(a)(b)(c)(d)N(c)(d) (5.89)

Differentiating e
(a)
µ eµ

(b) = δ
(a)
(b) , we conclude that e

(a)
ν (kα∇α)eν

(b) = −e
(b)
ν (kα∇α)eν

(a), so

c
(a)
(b) is antisymmetric.

In the plasma basis, then, c
(⊥)
(‖) = −c

(‖)
(⊥) (recall that indices are raised and lowered

in the tetrad basis using the Minkowski metric). For a tetrad basis that is parallel

transported along the ray, kα∇αeν
(a) = 0 and the rotation coefficients vanish.
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5.10 Equivalence to Broderick & Blandford

[2004] formalism

We can now derive Eqs. (17) and (18) of BB04. Notice that BB04’s NQ = C(N (‖)(‖)−
N (⊥)(⊥)) where C is a constant. Then

dNQ

dλ
= C

(
dN (‖)(‖)

dλ
− dN (⊥)(⊥)

dλ

)
(5.90)

and, assuming J = H = 0 (vacuum),

dNQ

dλ
= C

(
−N (‖)(a)c

(‖)
(a) −N (a)(‖)c(‖)

(a) + N (⊥)(a)c
(⊥)
(a) + N (a)(⊥)c

(⊥)
(a)

)
. (5.91)

Expanding the first term,

N (‖)(a)c
(‖)
(a) = N (‖)(t)c(‖)

(t) + N (‖)(‖)c(‖)
(‖) + N (‖)(⊥)c

(‖)
(⊥) + N (‖)(K)c

(‖)
(K). (5.92)

Antisymmetry implies c
(‖)
(‖) = 0. Notice that

N (‖)(t) = N (‖)(K) (5.93)

since k(a) = {−K, 0, 0, K} and k(a)N
(a)(b) = 0, so

N (‖)(a)c
(‖)
(a) = N (‖)(t)

(
c
(‖)
(t) + c

(‖)
(K)

)
+ N (‖)(⊥)c

(‖)
(⊥). (5.94)

The term in parentheses is

e(‖)
µ (kα∇α)

(
eµ
(t) + eµ

(K)

)
= e(‖)

µ (kα∇α)

(
− kµ

kνuν

)
= e(‖)

µ kµ(kα∇α)

(
− 1

kνuν

)
= 0

(5.95)

where the penultimate equality follows from (kα∇α)kµ = 0 and the final equality

follows from e
(‖)
µ kµ = 0. Then N (‖)(a)c

(‖)
(a) = N (‖)(⊥)c

(‖)
(⊥). Similar considerations for the

other terms in Eq. (5.91) yield

dNQ

dλ
= C

(
−N (‖)(⊥)c

(‖)
(⊥) −N (⊥)(‖)c(‖)

(⊥) + N (⊥)(‖)c(⊥)
(‖) + N (‖)(⊥)c

(⊥)
(‖)

)
(5.96)
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Identify our c(⊥)(‖) with −dφ/dλ of BB04 (substitute λ for τ in BB04 Eq. (17)), and

set BB04’s NU = C(N (‖)(⊥) + N (⊥)(‖)) to find

dNQ

dλ
= −2

dφ

dλ
NU , (5.97)

which is the first of the two equations (18) in BB04; the second follows from a very

similar calculation. The term dφ/dλ accounts for interconversion of Stokes Q and U

due to rotation of the basis vectors around the Kα axis.

The sign of V is coordinate dependent since it can change if the handedness of

the coordinate system changes. The plasma basis used here (identical to that used by

BB04) has a definite handedness and so the sign of V does not change sign if the sign

of bµ changes; this is the only other possible frame dependent change in the invariant

Stokes parameters along the ray.

5.11 Numerical approaches

Strategies for integrating the transport equation numerically can be classified accord-

ing to the choice of dependent variables. Almost every integration strategy will require

calculating the emissivity tensor J and the absorptivity tensor H in the plasma basis

and transforming it to whatever basis is being used for N ; this requires constructing

the plasma basis at each point along the ray.

5.11.1 Nµν in a coordinate basis

The conceptually simplest approach is to directly integrate Nµν (16 real degrees of

freedom) in the coordinate frame.

Procedure: (1) at each point along the ray construct a plasma tetrad eµ
(a); (2)

calculate J and H (or Π) in the plasma frame; (3) transform J and H to the coordinate

frame; (4) calculate Γκ
αβ (coordinate frame); (5) step the radiative transfer equation:

kα∇αNµν =
dNµν

dλ
+ Γµ

αβNανkβ + Γν
αβNµαkβ = Jµν + HµνκλNκλ; (5.98)

Final measurement (at large radius) is done by casting Nµν onto a tetrad basis, then

converting (if desired) to Stokes parameters.

A disadvantage of this scheme is that all tensors in the above equation are full

four-dimensional tensors.
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5.11.2 N (A)(B) in the plasma tetrad

This is equivalent to BB04’s elegant approach in which the dependent variables are

the invariant intensities for each of the Stokes parameters (e.g. NQ ∝ Q/ν3).

Procedure: (1) construct the plasma tetrad; (2) calculate J and H in the plasma

tetrad; (3) calculate Γκ
αβ; (4) evaluate the rotation coefficient dφ/dλ; (5) step the

radiative transfer equation

dN (A)(B)

dλ
= J (A)(B) + H(A)(B)(C)(D)N(C)(D) + R(A)(C)R(B)(D)N(C)(D) (5.99)

forward (R(A)(B) accounts for interconversion of Stokes Q and U due to rotation of

the basis vectors along the photon trajectory). The indices (A) indicate that only the

(x) and (y) components of each tensor are required.

A potential weakness of this approach is that it may be difficult to evaluate dφ/dλ

accurately when the velocity and magnetic field are specified numerically. If fluc-

tuating magnetic and velocity fields cause the basis vectors to rotate rapidly then

truncation error may be enhanced, leading to spurious interconversion of Stokes Q

and U and ultimately inaccurate polarization angles.

5.11.3 N (A)(B) in a parallel transported tetrad

Again there are four dependent variables for the radiation field. Any orthonormal

tetrad basis can be parallel transported along the ray, but a natural choice is the

observer tetrad. In practice only two basis vectors are needed (e(x) and e(y)), so there

are a total of twelve dependent variables.

Procedure: (1) construct the plasma tetrad; (2) calculate J and H in the plasma

tetrad; (3) calculate Γκ
αβ; (4) step the needed components of the orthonormal tetrad

forward; (5) project J and H onto the tetrad basis; (6) step the radiative transfer

equation:
dN (A)(B)

dλ
= J (A)(B) + H(A)(B)(C)(D)N(C)(D) (5.100)

forward. Final measurement is trivial.

This approach simplifies some aspects of the transport equation at the cost of

introducing another set of dependent variables (the tetrad basis vectors) that must

be parallel transported along the ray. This tetrad does not depend on the fluid

variables, however, so it will rotate smoothly along the ray.
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5.12 Summary

We have described a framework for covariant polarized radiative transport. The

basic object that describes the polarization is the polarization tensor Nµν , defined

in Eq. (5.59). Given absorption, Faraday rotation, and emission coefficients in the

plasma frame, one can then calculate absorption and emission tensors in the coordi-

nate frame (see §7). The transport equation (5.62) can then be integrated directly in

the coordinate basis, or in an orthonormal tetrad.
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Appendix A

A.1 Additional Doppler factor in emissivity

There is some confusion in the literature about the expression for the single-electron

emissivity, which can be calculated directly from Maxwell’s equations [see Bekefi,

1966]. This confusion is connected to discussions of the distinction between received

and emitted power first noted by Ginzburg & Syrovatskii [1968] and by Pacholczyk

[1970], and discussed by Scheuer [1968], Rybicki & Lightman [1979, §6.7] and very

clearly by Blumenthal & Gould [1970, §4.3, 4.4]. So, for example, Wardzinski &

Zdziarski [2000, Sec. 2.1] state that an additional Doppler factor (1 − βµ cos θ)−1

should have appeared in their expression for the single-electron emissivity ην (see

their equation 1), but that this factor “disappears in the case of an electron moving

chaotically.” Here we show there is no such factor.1

To find the emissivity for a distribution of electrons we need to integrate the

single-electron emissivity against the distribution function over momentum space:

jν =

∫
d3pe

dNe

d3ped3x
ην(pe) (A.1)

where pe is the electron momentum. To evaluate jν , we need ην for an electron

with nonzero momentum parallel to B, measured in the plasma rest frame. This can

be calculated directly [see, e.g., Bekefi, 1966]. Here we start with the single-electron

emissivity for an electron with zero momentum parallel to B and show explicitly that,

by Lorentz boosts, one obtains the usual expression for the single-electron emissivity

for an electron with nonzero momentum parallel to B. The emissivity of a distribution

of electrons in frames other than the fluid (plasma center-of-momentum) frame can

then be obtained using the Lorentz invariance of jν/ν
2.

Here is our strategy: identify the wavevector and electron four-momentum in

the fluid frame (denoted [FF]), then transform these to a frame comoving with the

electron’s guiding center (denoted [GCF], and also denoted by primes) and use the

resulting expressions for the photon wavevector and electron four-velocity to obtain

ην in the guiding center frame. Finally, transform ην back to the fluid frame.

1Appendices A.1 and A.2 were originally parts of chapter 3, which was submitted in 2009 to ApJ
[Leung, Gammie & Noble, 2009]. Reproduction for this dissertation is authorized by the copyright
holder.
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The photon wavevector is (ω = 2πν)

kµ[FF] = {ω, ω sin θ, 0, ω cos θ} (A.2)

in a coordinate frame t, x, y, z. We assume, without loss of generality, that the

wavevector lies in the x-z plane and the magnetic field is aligned with ẑ. The electron

four-velocity is

uµ[FF] = {γ, γβ sin ξ, 0, γβ cos ξ} (A.3)

where ξ is the electron pitch angle. As the time-averaged emission is invariant under

rotations about ẑ, we have chosen an instant of time at which the electron’s velocity

is (spatially) coplanar with kµ and the magnetic field.

Now apply a Lorentz boost parallel to the magnetic field, transforming into the

frame comoving with the electron guiding center:

Λ =




γg 0 0 −βgγg

0 1 0 0

0 0 1 0

−βgγg 0 0 γg




(A.4)

where βg is the guiding center speed along the field line, which is β cos ξ; the corre-

sponding Lorentz factor is γ−2
g = 1− β2 cos2 ξ.

The boosted wavevector is

kµ[GCF] = ω{γg(1− βg cos θ), sin θ, 0, γg(cos θ − βg)} (A.5)

from which we deduce that

ν ′ = νγg(1− βg cos θ) (A.6)

(the prime denotes the value in the [GCF]) and

sin θ′ =
sin θ

γg(1− β cos ξ cos θ)
(A.7)

and

cot2 θ′ = γ2
g

(
β cos ξ − cos θ

sin θ

)2

. (A.8)
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The boosted four-velocity is

uµ[GCF] = γ{γg(1− ββg cos ξ), β sin ξ, 0, 0} (A.9)

from which we conclude that

γ′ =
γ

γg

(A.10)

and

β′ = βγg sin ξ . (A.11)

In the guiding center frame the single-electron emissivity is [Schott, 1912]

ην [GCF] ≡ dE ′

dt′dΩ′dν ′
=

2πe2ν ′2

c

∞∑
n=1

δ(y′n)
[
cot2 θ′J2

n(z) + β2J ′2n (z)
]

(A.12)

where

y′n ≡
nνc

γ′
− ν ′ , (A.13)

z =
ν ′β′γ′

νc

sin θ′ , (A.14)

and dΩ′ is the differential solid angle in [GCF].

We can evaluate all the arguments of ην [GCF] in terms of [FF]quantities:

y′n =
nνc

γ′
− ν ′ = γg

(
nνc

γ
− ν(1− β cos ξ cos θ)

)
= γgyn , (A.15)

since the field strength (and therefore νc) is the same in both frames and yn is defined

in equation (3.17). Now

δ(y′n) = δ(γgyn) =
1

γg

δ(yn) . (A.16)

Also (after substitution),

z =
ν ′β′γ′

νc

sin θ′ =
νβγ

νc

sin θ sin ξ , (A.17)

which recovers equation (3.18). We have evaluated ην [GCF] in terms of quantities
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measured in the fluid frame:

ην [GCF] =
2πe2ν ′2

c

∞∑
n=1

1

γg

δ(yn)

[
γ2

g

(
cos θ − β cos ξ

sin θ

)2

J2
n(z) + β2 sin2 ξγ2

gJ
′2
n (z)

]

(A.18)

and we now need to find ην [FF].

Since

ην =
dE

dtdΩdν
= hν2 dN

νdtdΩdν
(A.19)

and νdΩdν, dN are invariant, then

η′ν
ν ′2

dt′ =
ην

ν2
dt . (A.20)

Since dt′/dt = 1/γg (exercise for the reader), we are left with

ην [FF] =
2πe2ν2

c

∞∑
n=1

δ(y′n)

[(
cos θ − β cos ξ

sin θ

)2

J2
n(z) + β2 sin2 ξJ ′2n (z)

]
(A.21)

which is the usual expression, as given by Wardzinski & Zdziarski [2000] and Bekefi

[1966], obtained by transformation rather than direct calculation.

A.2 Efficient Bessel Function Calculator

In order to evaluate the accuracy of approximate formulae for the synchrotron emis-

sivity we must compare them to the exact expression (3.32), which includes the Bessel

function of the first kind Jn(z) [Abramowitz & Stegun, 1970]. The function is a so-

lution of the differential equation

[
z2 d2

dz2
+ z

d

dz
+

(
z2 − n2

)]
Jn = 0 (A.22)

and has the series representation

Jn(z) =
(z

2

)n
∞∑

k=0

(−1)k (z/2)2k

k! Γ(n + k + 1)
. (A.23)

In our application, the order of the Bessel function is set by the resonance condition

(3.17). Both z and n vary from 102 to ∼ 1013 for our target application [Noble et

al., 2007]. Since our evaluation of jν(θ) requires us to evaluate a two-dimensional

131



integral repeatedly, many evaluations of Jn(z) are required. Further, the number

of Jn(z) calculations needed for the two-dimensional integral and the run-time per

Jn(z) evaluation using standard packages increases with ν/νc. This study therefore

demanded we use an efficient Jn(z) calculator accurate enough so that the final error

in jν(θ) is less than the error of our approximate expressions.

Facing the same computational hurdle as us, Chishtie et al. [2005]—who require

large order calculations of Jn(z) to high precision for Fourier transforming gravita-

tional wave signals from pulsars—expanded further previously known approximate

expansions for Jn(z) in various limits. We demonstrate here for the first time that

these expressions can be pieced together to form a continuous approximation for Jn(z)

up to n ∼ 1055. We do not use the more recent method described in Chishtie et al.

[2008]—which is said to work over all limits in z/n—since it requires evaluating the

Airy function and its derivative. The expressions given in Chishtie et al. [2005] satisfy

our needs, were straightforward to implement, and relieved us from searching for a

robust, efficient Airy function routine.

Our method uses three different approximate expansions, which we will call “Ex-

pansions 1-3”, for three different domains: z < n− d1, z ∼ n, and z > n + d2, where

d1,2 are functions of n given below. Expansions 1 and 3 use two-order extensions made

by Chishtie et al. [2005] to expansions derived originally by Meissel (see Chishtie et al.

[2005] for references to original works on the various series representations of Jn(z)).

Specifically, we use equations (10-12) of Chishtie et al. [2005] for Expansion 1, and

equations (12-14) of Chishtie et al. [2005] for Expansion 3. Expansion 2 is used in

the so-called transition region, z ∼ n, and is a five-term extension of Debye’s “ε

expansion” given in equations (21-22) of Chishtie et al. [2005].

The extensions made by Chishtie et al. [2005] were essential to being able to match

the expansions together for all n. We empirically found the locations—i.e. z(n)—at

which an expansion starts to deviate by more than 0.1% from trusted values2 over

100 < n < 107. These locations z(n) fit the following functions well:

z− = n (1− b−na−) for z < n (A.24)

z+ = n (1− b+na+)−1 for z > n (A.25)

with a± and b± being different constants for each expansion. We found that each

expansion’s region of validity (to 0.1% level) overlaps with another expansion’s valid

2The routine used to calculate the trusted values was the jn routine found in the GNU C com-
piler’s math library [GNU Compiler Collection].
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range, suggesting that at least one out of the three expansions is valid for any n, z.

The boundaries dictating which expansion to use were finally chosen to be curves

centered between neighboring methods’ curves of validity. The curve marking the

boundary between the first and second domains is

z12 = z− : (a−, b−) ' (−0.66563, 1.8044) (A.26)

and the curve separating the second and third domains is

z23 = z+ : (a+, b+) ' (−0.65430, 1.8708) . (A.27)

One can show that, with 32-bit double precision floating-point arithmetic, these curves

are numerically indistinguishable from the curve z = n for n & 1023; at these orders

Expansion 2 is used only when z = n. For n & 1026, Jn(z < n) is numerically

equivalent to zero for any z numerically different from n since the function Jn(z < n)

becomes narrower as n increases. One may, however, resolve this issue by working in

higher precision environments. Fortunately, our applications do not require us to do

so since we are only interested in n < 1014.

We have written a routine in the C programming language called my Bessel J

that controls when to use which expansion and efficiently evaluates the appropriate

expansion3. It has been extensively tested against a number of other routines, which

we list in Table A.1. All tests were performed on an Intel 3.06GHz Xeon machine

with the Intel C++ Compiler for Linux Version 8.0 and the GNU C Compiler Version

3.3.2.

Table A.1 Routines for Evaluating the Bessel Function Jn(z). nmax is the approximate
maximum value of n a outine can calculate Jn(n) to within 10% of the value from
my Bessel J.

Name Reference nmax

my Bessel J This paper, [Chishtie et al., 2005] —
bessjy [Press et al., 1992] 1016

gsl sf bessel Jn [Galassi, 2006] 105

jn [GNU Compiler Collection] 109

s17dec [NAG C Library] 109

3Our routine and an example program are available to the public under the GNU Public License
from the web at http://rainman.astro.uiuc.edu/codelib/.
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Our first comparison attempts to measure the maximum value of n for which a

routine can reliably calculate the Bessel function. In Table A.1, we list the order of

magnitude of n at which each method’s evaluation of Jn(n) begins to significantly

deviate from our method’s values at certain n. For small order we are confident in

our method since all methods agree with each other. At orders n > 109, however,

only one other method is reliable (bessjy) and so the comparison is biased. At

their limits, each method “fails” to return with a reasonable answer in different ways.

Some return with obviously wrong values like Jn(n) < 0 (gsl sf bessel Jn and

jn), another reports that there is a loss of precision and returns with a null answer

(s17dec), while the last reports that the calculation requires too many iterations and

gives an inaccurate approximation (bessjy). Note that we are not confident in our

method for n > 1055 since this is when Expansion 2 evaluates Jn(n) = 0.

This survey shows that there is an existing method, bessjy, that can reliably

calculate Jn(n) at orders well above our requirements. Unfortunately, as we see

in Figure (A.1), it is costly and scales as a power-law with n. jn has a steeper

power-law scaling, while the others are practically independent of the Bessel func-

tion’s order4. All but gsl sf bessel Jn are significantly slower than our routine;

gsl sf bessel Jn, however, has the smallest domain of validity and cannot evaluate

Jn(z) at the values of n we need.

In Figure (A.2) we compare Jn(z) at n = 109 to see how the three best methods

compare with each other at large order over a wide range in argument. The fact

that my Bessel J agrees better with s17dec than does bessjy gives credence to

our method. The imperfectness of the transitions from one expansion to another

exhibits itself by narrow peaks in the relative error between my Bessel J and the

other methods. These peaks lie immediately about the transition points, which are

indicated by the dashed vertical lines. As z increases past n, round-off errors lead

to significant phase errors. my Bessel J and s17dec both follow the asymptotically

sinusoidal trend at large z, but bessjy eventually returns with 0 and indicates that

it has reached its reliable limit.

To measure the accuracy at even larger order, we employ the recurrence relation

2n

z
Jn(z) = Jn−1(z)− Jn+1(z) (A.28)

4The runtime for s17dec is constant up to n ∼ 104, after which it is a larger constant.
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Figure A.1 The logarithm of the time per Jn(n) execution in seconds versus n using
the methods listed in Table A.1. A method’s execution time was only measured up
to its nmax. Note that the execution time of my Bessel J remains steady through
n = 1055; the plot was truncated for illustrative purposes.
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Figure A.2 Comparison between Jn(z) evaluations when n = 109. Top row:
Jn(z) using my Bessel J (circles), bessjy (triangles), and s17dec (exes). Bottom
row: the logarithm of the relative error between my Bessel J and bessjy (circles),
my Bessel J and s17dec (triangles), and bessjy and s17dec (exes). The plots on
the left are shown for z < n, while those on the right are shown for z > n. The
vertical dashed lines in the left and right plots indicate, respectively, z− and z+ at
n = 109.
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and calculate the normalized deviation from it:

Rn(z) =

∣∣∣∣
1

Jn(z)

(
2n

z
Jn(z)− Jn−1(z)− Jn+1(z)

)∣∣∣∣ (A.29)

which should be identically zero. We calculate Rn(z) for three different arguments

over a wide range of n in Figure (A.3). Each curve uses one of the three expansions.

The errors in Expansion 1 and 3 both diminish with n, except when round-off errors

lead to significant phase errors in Expansion 3 for n & 108. Expansion 2, however,

always satisfies the recurrence relation to within 32-bit double precision for all n.

For even higher orders n → 1055, we have made sure that my Bessel J satisfies the

well-known upper bounds [Abramowitz & Stegun, 1970]:

Jn(n) <
[2/(9n)]1/3

Γ(2/3)
, |Jn(z)| ≤ (z/2)n

Γ(n + 1)
, |Jn(nε)| ≤

∣∣∣∣∣
εn exp

[
n
√

1− ε2
]

(
1 +

√
1− ε2

)n

∣∣∣∣∣ .

(A.30)
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Figure A.3 The logarithm of the normalized residual of the recurrence relation for
z = (1− ε) z− (solid curve), z = n (squares), and z = (1 + ε) z+ (dashes), which—
respectively—use Expansions 1-3, where ε = 10−13. Please see equation (A.29) for
the definition of Rn(z).
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