
CONTRIBUTIONS TO THE THEORY OF SYNTAX WITH BINDINGS
AND TO PROCESS ALGEBRA

BY

ANDREI POPESCU

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2010

Urbana, Illinois

Doctoral Committee:

Research Associate Professor Elsa Gunter, Chair and Director of Research
Professor Gul Agha
Associate Professor Grigore Roşu
Professor Amy Felty, University of Ottawa

Abstract

We develop a theory of syntax with bindings, focusing on:

- methodological issues concerning the convenient representation of syntax;

- techniques for recursive definitions and inductive reasoning.

Our approach consists of a combination of FOAS (First-Order Abstract Syntax) and HOAS

(Higher-Order Abstract Syntax) and tries to take advantage of the best of both worlds. The

connection between FOAS and HOAS follows some general patterns and is presented as a

(formally certified) statement of adequacy.

We also develop a general technique for proving bisimilarity in process algebra Our

technique, presented as a formal proof system, is applicable to a wide range of process

algebras. The proof system is incremental, in that it allows building incrementally an a

priori unknown bisimulation, and pattern-based, in that it works on equalities of process

patterns (i.e., universally quantified equations of process terms containing process variables),

thus taking advantage of equational reasoning in a “circular” manner, inside coinductive

proof loops.

All the work presented here has been formalized in the Isabelle theorem prover. The

formalization is performed in a general setting: arbitrary many-sorted syntax with bindings

and arbitrary SOS-specified process algebra in de Simone format. The usefulness of our

techniques is illustrated by several formalized case studies:

- a development of call-by-name and call-by-value λ-calculus with constants, including Church-

Rosser theorems, connection with de Bruijn representation, connection with other Isabelle

formalizations, HOAS representation, and contituation-passing-style (CPS) transformation;

- a proof in HOAS of strong normalization for the polymorphic second-order λ-calculus (a.k.a.

System F).

We also indicate the outline and some details of the formal development.

ii

to Leili R. Marleene

iii

Acknowledgments

I thank my adviser, Elsa Gunter. Professionally, she has inoculated me with the passion for

theorem proving. More personally, but also with a strong professional component, she has

provided me with one of the rare examples of people I could “safely” admire, without any

reserve.

I thank my good friend, Traian Şerbănuţă, who occasionally played the role of an Alyosha

Karamazov during turbid times.

I thank Grigore Roşu for his mentoring in the first half of this Ph.D., and for his continuous

support and friendship. I also thank him for his heroic (but unfortunately failed) attempt to

transform me into a morning person.

I thank my colleague Ayesha Yasmeen for encouraging me to develop and finish the work

reported here.

I thank Professor Amy Felty for being an active member in my dissertation committee,

and for her inspiring work on Higher-Order Abstract Syntax.

I thank Professor Gul Agha for the high intellectual standing of his course on concurrency

– taking this course had the effect of a Copernican revolution in the way I regard the topic.

I thank Dr. Tom Gambill, at whose courses I have been TAing for a large part of this

Ph.D.. He was a very reasonable and caring supervisor – this helped tremendously with my

time management.

I thank my parents, back home in Romania, to whom I also apologize for taking so long

to finish.

The research presented in this thesis was supported in part by the NSF Grant #0917218

TC: Small: Formalizing Operator Task Analysis.

iv

Table of Contents

Chapter 1 Context . 1
1.1 Introduction . 1
1.2 Background and some related work . 5
1.3 Conventions, notations and pointers to supporting scripts 9
1.4 Technical preliminaries . 11

Chapter 2 FOAS . 18
2.1 Introduction . 18
2.2 Induction . 20
2.3 Two problems of rigorous/formal reasoning 23
2.4 Intermezzo – solving a genuinely “ordinary” problem 26
2.5 Terms with bindings as an ordinary data type 31
2.6 More examples . 39
2.7 Pushing the Horn approach even further . 46
2.8 Variations of the Horn-based recursion principle 48
2.9 Generalization and formalization . 51
2.10 Related work . 80

Chapter 3 HOAS . 88
3.1 Introduction . 88
3.2 The λ-calculus reduction and the System F typing system recalled 91
3.3 HOAS view of syntax . 93
3.4 HOAS representation of inference . 98
3.5 The HOAS principles at work . 104
3.6 Formalization . 107
3.7 Conclusions and related work . 110

Chapter 4 Process algebra . 118
4.1 Introduction . 118
4.2 Syntax and operational semantics of processes 121
4.3 The raw coinductive proof system . 124
4.4 Deduction of universally quantified bisimilarity equations 127
4.5 The scope of our results . 134
4.6 More examples . 138
4.7 Details regarding the Isabelle formalization 142
4.8 Related work . 145

v

Chapter 5 Conclusions and future work . 148
5.1 Lessons learned from formal reasoning . 148
5.2 Future work . 150

References . 153

vi

Chapter 1

Context

1.1 Introduction

Given the ever increasing complexity of modern software systems, the need for convenient

theoretical frameworks for specifying, organizing, and reasoning about such systems has

become drastic.

(1) A salient feature of many of these systems is the presence of scoping and bindings at the

level of their syntax, reflected by higher-order functionals at the level of their mathematical

semantics. A sound and clean conceptual setting for the scoping and binding structure

typically facilitates a clean semantics and, consequently, the availability of insightful, intuitive

and easy to use reasoning mechanisms. In effect, it has been widely recognized in both

formal logic and programming language theory that the syntactic structure of formal systems

stays in a very tight relationship with the structure of inference, and that inference itself is

a process of building “generalized syntax”, with binding, scoping and substitution as the

main engines. Because of their highly intuitive nature, the subtleties of these engines are

too often treated rather non-rigorously in mathematical textbooks, with the expectation

that the reader will fill in the details. By contrast, an implementation or a formalization

(of a programming language or a logic) has to give a full formal account of these concepts

and consequently has to deal with a myriad of details (such as renaming variables to avoid

variable capture), which tend to become overwhelming and hinder the access to general ideas

or goals.

Relatively recently, quite a few logicians and computer scientists became interested in

taking these “details” more seriously and organizing them on sound formal principles having

in mind not only mathematical rigor, but also the possibility of their hassle-free manipulation

in definitions and proofs.

First-order abstract syntax (FOAS) is an already traditional methodology for describing

the syntax of logics and programming languages. Several recent approaches, notably Nominal

Logic and work based on functor categories1 are adapting/generalizing FOAS to give a

1To avoid loading the introduction with long lists of bracketed numbers, we do not to cite any paper in
this introduction, deferring citations to the more technical parts of the text.

1

deeper account of the notion of binding, thus going beyond the context-freeness limitation of

standard FOAS.

Another powerful methodology emerging from these efforts is the so called Higher Order

Abstract Syntax (HOAS) approach, which tries to identify (whenever possible) object-level

mechanisms with corresponding meta-level mechanisms from the underlying logic. Thus,

for instance, the presumptive λ-abstraction from the object system would be represented

by λ-abstraction in the meta-logic, so that object-level substitution becomes mere function

application – this avoids (or, better said, integrates into the meta-level layer) a great amount

of tedious details. One can notice from the above example that, in the context of the host logic

being a familiar logic for the development of mathematics such as higher-order logic where

bindings have a functional meaning, the HOAS approach may be regarded as an effort to

anticipate syntactically as much as possible from the semantics of a language. Indeed, under

HOAS, an abstract syntax tree is no longer pure syntax, but features semantic handles; thus,

a term λx.E is now represented as an honest-to-goodness function (as its semantics would

typically prescribe), able to take inputs and return a result via the substitution mechanism,

which now has become function application. (Therefore, the ability to accommodate part of

the intended semantics in advance into the syntax on one hand and the ability to perform

hassle-free reasoning on that syntax on the other appear as two faces of the same coin.)

The HOAS convenience comes with a price though: given that the object system is now

integrated in the meta layer, often desired facilities such as structural inductive reasoning

are no longer immediately available.

Recovering such facilities while retaining the advantages of HOAS is a subject of intensive

ongoing research in the HOAS community. This is also a main theme of this dissertation,

where HOAS is combined with, and based on, a FOAS representation and machinery.

(2) Another feature that becomes increasingly important these days is concurrent behavior,

which needs to be accommodated into essentially all modern software systems. Concurrency

refuses to obey many paradigms well-established for sequential functional systems, notably

domain theory. The gap between the rather straightforward description of concurrent systems

by Structural Operational Semantics (SOS) or other similar means and the actual intended

semantics, which needs to be filled in by rather elaborate notions of process equivalence

such as bisimilarity, testing equivalence or behavioral equivalence (with various flavors), is

one of the difficulties in dealing with concurrent systems on a formal basis. Model-checking

is a major approach to the formal analysis of concurrent systems, but has well-known

limitations given by its availability mainly for finite-space systems.2 Coalgebra theory is

another framework, developed purposely to handle concurrent behavior, and provides an

2Techniques for attempting to construct automatically finite abstractions of infinite systems are the
subject of very rapidly developing research, with significant results both for safety and for liveness – these
and other approaches around model checking fall out of the scope of our work, which will be instead oriented
towards theorem proving.

2

elegant setting for studying the various notions of behavior and behavioral equivalence of

concurrent systems. The foundations of (set-theoretic) coalgebra, less demanding than those

of domain theory, accommodate concurrent behavior naturally, with the final coalgebra

semantics allowing for capturing the notion of behavior in its essential determinations,

without the detour of factoring some not-yet-abstract items to a bisimilarity relation. In

this dissertation, we take advantage of certain coalgebraic insights for developing a powerful

conductive technique for systems in a general syntactic format and for arguing that many

systems can be cast into this format.

(3) The realm of interaction between bindings and concurrency brings into the highlight

new phenomena such as the (inter-related) ones of channel passing, scope extrusion, and

dynamic communication topology. These phenomena are already mainstream in many

process calculi and in some concurrent programming languages, and are also on the HOAS

agenda. Frameworks combining (weak) HOAS and denotational semantics, as well as more

syntax-oriented coinduction rules that take binding and substitution into account, have been

developed to model this interaction. Integrating our approach to representing syntax with

our coinductive techniques will be another goal of our thesis.

The work reported in this dissertation is concerned with the subject of points (1) and (2)

above. We also discuss some ideas concerning point (3) along the lines of our approach to

(1) and (2) and report some partial progress towards this goal, but the goal is left for future

work.

Concerning point (1), we have built a framework, consisting of a mathematical theory

and its formalization in Isabelle/HOL, for facilitating the specification of syntax and formal

systems involving binding and substitution mechanisms. It consists of:

• A first-order theory of terms with bindings, featuring recursive and inductive principles;

• A HOAS methodology, including representation and HOAS-specific induction and

recursion mechanisms; this methodology is developed within a HOAS layer on top of

the first-order layer (and is called “HOAS on top of FOAS”), offering an alternative,

higher-level type of access to the involved concepts.

We have worked out extensive formalized case studies based on this framework.

Concerning point (2), we have developed a general technique for proving bisimilarity

in process algebra. Our technique is presented as a formal proof system, formalized in

Isabelle/HOL, applicable to a large class of process algebras: those specifiable in the de

Simone SOS format. The proof system is incremental, in that it allows building incrementally

an a priori unknown bisimulation, and pattern-based, in that it works on equalities of process

patterns (i.e., universally quantified equations of process terms containing process variables),

thus taking advantage of equational reasoning in a “circular” manner, inside coinductive

proof loops. We also argue that important cases not traditionally regarded as fulfilling the de

3

Simone format, notably process algebras under weak bisimilarity, can be cast into it, hence

fall into the scope of our technique.

1.1.1 Outline of this dissertation

In the remainder of this chapter, we do the following:

- In Section 1.2, we go informally through the necessary background and review several

approaches and results relevant for, or related to, our work reported here.

- In Section 1.3, we establish mathematical notation and terminology, and describe general

conventions we follow throughout this dissertation.

- In Section 1.4, we discuss technical preliminaries on syntax with bindings and Horn theory.

The presentation of the contribution is divided in two parts, according to the two topics

of this dissertation: syntax with bindings and process algebra. The former is dealt with in

Chapters 2 and 3, and the latter in Chapter 4.

In Chapter 2, we discuss a first-order approach to syntax with bindings, i.e., one employing

a first-order abstract syntax (FOAS) representation. The focus here is on one of the main

difficulties encountered when working with syntax on a rigorous/formal basis: recursion

definitional principles. (This difficulty is essentially due to the non-injectiveness of the

binding constructs.) We propose such principles having a basis on Horn theory and initial

models, and illustrate their usefulness by a long series of examples. We also discuss the

formalization of a many-sorted theory that implements such principles, as well as other

features reflecting the state-of-the-art from the literature, notably induction principles with

freshness assumptions. We end the chapter by discussing some specific related work.

In Chapter 3, we present a higher-order approach to syntax with bindings, i.e., one

employing higher-order abstract syntax (HOAS). We build a HOAS machinery on top of

FOAS, that is to say, as a definitional extension of the FOAS framework discussed in the

previous chapter. This machinery consists of a HOAS view on the first-order syntax and

of a technique for HOAS representation of inductively defined relations, such as reduction

and typing. Unlike in the previous chapter, here we only consider one example – the syntax

and operational semantics of System F – which we subject thoroughly to our techniques,

culminating in a fairly simple proof of the Strong Normalization property. Again, in the end

we discuss formalization aspects and specific related work.

Chapter 4 contains Part II of our contribution: an incremental bisimilarity proof technique

for process algebra. We describe the general theory and, as we go, we illustrate it on a

working example: a mini-process calculus a la CCS. We also analyze the scope of our results,

showing how to capture features like recursion and weak bisimilarity. As before, discussions

of formalization aspects and related work end the chapter.

Chapter 5 draws conclusions and discusses plans for future work.

4

1.2 Background and some related work

Here we describe some existing work on the topic of this dissertation and position our own

contribution within this body of work. The discussion is phrased in general (and sometimes

vague) terms. More specific related work is discussed at the end of each of the main chapters

(2, 3 and 4).

1.2.1 First-order approaches to syntax representation

A first-order view on syntax with bindings is characterized by the consideration of binding

operators as first-order operations. Within first-order approaches, we can identify two main

variants.

First, one where, e.g., λ-abstraction is represented directly as an operator Lm : var→
term → term. The very definition of syntax (that is to say, the traditional definition)

already takes this view. The fact that terms are also identified modulo α-equivalence

does not impair the first order nature of binding operators, as, e.g., Lm still has the type

var → term → term even if terms are taken to be α-equivalence classes of “raw (quasi-

)terms”,3 but does impair the freeness of these operators, as they are no longer absolutely

free constructors – e.g., Lm x X = Lm y Y no longer implies (x,X) = (y, Y), but only implies

the existence of a fresh z such that X[z/x] = Y [z/y]. The fact that Lm considers variables

explicitly as arguments makes variables (to a large extent) first-class citizens, just like terms.

This “traditional” aspect of variables is rather counterintuitive, as bound variables should be

viewed as merely positions in terms, whose particular individuality is irrelevant. Of course,

α-equivalence is purposely targeted to “correct” this, but by itself is not able to blur all

the deeper inconveniences brought by the original commitment to bind specific variables.

In order to have a smooth treatment of syntax with bindings (which includes hassle-free

definitional and proof principles), one needs to put more effort in organizing, and indeed

in understanding this syntax. Nominal Logic [115] (also implemented in Isabelle [148]) is

one approach to achieving the above, and is based on the notion of equivariance of the

involved predicates, which essentially means that the predicates do not treat variables as

fully individual entities, and are thus invariant under variable permutations. A convenient

feature of the nominal setting is that producing a fresh variable (in a context that uses

only finitely many variables) has really the meaning of producing any fresh variable, the

choice being a priori established as immaterial. An approach that combines an α-equivalence

HOL axiomatization in [58] with ideas from Nominal Logic can be found in [104]. More

abstract approaches are based on functor categories [46, 67, 14], where the uniformity of

3Some prefer of speak of the second-order nature of terms when they are considered modulo α, in contrast
with the first-order nature of “raw (quasi-)terms”. Our terminology does not reflect this distinction, as it
refers strictly to the representation of the binding operator.

5

syntax transformers w.r.t. variables is captured by natural transformations.

Second, one where abstraction is encoded by other first-order operators, as in, e.g.,

combinatory logic [20] or de Bruijn-style representations [36] – these approaches are useful

for implementation purposes, since they avoid α-equivalence classes, but severely affect

readability and in general the good control over the ideas when manipulating terms manually

(e.g., in definitions and theorem proving).4 Approaches aimed at avoiding this problem (with

the expense of introducing more auxiliary operators) are mostly based on equational logic

and rewriting, and include the calculus with explicit substitutions [8] and rewriting logic [83].

There are also mixed approaches, notably Gordon’s [57], which use de Bruijn indexes for

bindings and concrete names for free variables, and also provide machinery for converting

between the two at the time of binding. Recent work [139, 118] (building on previous work

[82]) advocates the so-called locally-named approach, which avoids de Bruijn indexes as

well as α-classes altogether, by distinguishing between local variables and global variables.

Some HOAS approaches (namely, the ones using a general-purpose logic) typically need a

preliminary study and “taming” of FOAS syntax in the style of [57]. Moreover, regarded

through the abstract filter of category theory, a first-order approach based on de Bruijn

levels is essentially the same as a a so-called weak HOAS approach (see also Section 2.10.2).

1.2.2 The Higher-Order Abstract Syntax approach to syntax

representation

By contrast to a first-order view, a higher-order view regards λ-abstraction as a second-order

operation of some kind, such as Lm : (var → term) → term or Lm : (term → term) →
term – this is known as HOAS (Higher-Order Abstract Syntax). Traditionally, HOAS

is a methodology for representing formal systems (typically, logical systems or static or

dynamic semantics of programming languages or calculi), referred to as object systems, into

a fixed suitably chosen logic, referred to as the meta logic. HOAS prescribes that the object

system be represented in the meta logic so that variable-binding, substitution and inference

mechanisms of the former be captured by corresponding mechanisms of the latter.

Inspired by Church’s idea to represent all logical connectives and quantifiers using λ-

abstraction in simple type theory, HOAS originated more or less independently in [71, 111,

63, 108] and has ever since been extensively developed in frameworks with a wide variety

of features and flavors. We can distinguish two main (overlapping) directions in these

developments.

-(I) First, the employment of a chosen meta logic as a pure logical framework, used for

defining object systems for the purpose of reasoning inside those systems. A standard

example is higher-order logic (HOL) as the meta logic and first-order logic (FOL) as the

4Although the recent paper [106] argues otherwise.

6

object system. Thanks to affinities between the mechanisms of these two logics, one obtains

an adequate encoding of FOL in HOL by merely declaring in HOL types and constants and

stating the FOL axioms and rules as HOL axioms – then the mechanisms for building FOL

deductions (including substitution, instantiation, etc.) are already present in the meta logic,

HOL.

-(II) Second, the employment of the meta-logic to reason about the represented object

systems, i.e., to represent not only the object systems, but also (some of) their meta-theory.

(E.g., cut elimination is a property about Gentzen-style FOL, not expressible in a standard

HOAS-encoding of FOL into HOL.) While direction (I) has been quasi-saturated by the

achievement of quasi-maximally convenient logical frameworks (such Edinburgh LF [63] and

generic Isabelle [108]), this second direction undergoes these days a period of active research.

We distinguish two main approaches here:

-(II.a) The HOAS-tailored framework approach [142, 140, 80, 85, 146, 50, 2, 29, 113]. This is

characterized by the extension of the pure logical frameworks as in (I) with meta-reasoning

capabilities. The diad (object system, meta logic) from (I) becomes a triad: object system,

logical framework where this system is specified, meta-logical framework where one can

reason about the logical framework [110]. The challenge here is choosing suitable logical

and meta-logical frameworks that allow for adequate HOAS encodings, as well as enough

expressive meta-theoretic power. (The logical framework is typically chosen to be a weak

logic, e.g., an intuitionistic logic or type system as in (I), or linear logic.)

Somewhat complementary to the above work on HOAS-tailored meta-reasoning, [141, 40]

developed HOAS-tailored recursive definition principles in a logical framework distinguishing

between a parametric and a primitive-recursive function space.

-(II.b) The general-purpose framework approach [39, 38, 13]. This approach employs a

general-purpose setting for developing mathematics, such as ZF Set Theory, Calculus of

Constructions, or HOL with Infinity, as the logical framework, with object-level bindings

captured again by means of meta-level bindings, here typically functional bindings – this

means that terms with bindings from the object system are denoted using standard functions.

Here there is no need for the three-level architecture as in (II.a), since the chosen logical

framework is already strong enough, meta-theoretic expressiveness not being a problem.

However, the difficulty here is brought be the meta-level function space being wider than

desired, containing so-called “exotic terms”. Even after the function spaces are cut down

to valid terms, adequacy is harder to prove than at (II.a), precisely because of the logic’s

expressiveness.

7

1.2.3 Our own view on syntax representation and reasoning, in a

nutshell

We take a behavioral view, considering that the particular means of representing syntax

are only important through their outcome: the generality and usefulness of the resulted

definition and proof principles.

Indeed, all approaches, some of them admittedly more elegant than others, aim at

capturing adequately the same Platonic concept of syntax. The actual route of achieving

this is, in our opinion, not important in itself; however, it may suggest insightful definition

and proof principles, nothing though that cannot be imported into a formalization based

on any other approach (at least any based on a general-purpose framework)! Our own

“implementation” of terms with bindings is a standard one based on α-classes, on top of

which we define FOAS and HOAS machineries incorporating our own theoretical results, as

well as borrowing what we consider to be useful consequences of other approaches.

Above, by definition and proof principles, we mainly mean:

- principles of recursive definitions, on the structure of syntax, for functions (a.k.a. structural

recursion);

- principles of inductive reasoning, on the structure of syntax (a.k.a. structural induction);

- principles of definition and reasoning for inductively defined relations (a.k.a. rule induction).

Consequently, recursion and induction specific to (and convenient for) syntax with

bindings, coming in both FOAS and HOAS flavors, will be the main themes of the first part

of this dissertation.

1.2.4 Process algebra, coalgebra and behavioral logic

Process algebra debuted with Milner’s Calculus of Communicating Systems (CCS) [87] and

has ever since undergone a rapid development, receiving much attention from theoretical

computer scientists, notably by the Dutch school led by Jan Bergstra, as reported in the

monograph [17]. The inclusion of value-passing and channel-passing features (the latter

brought by Milner’s π-calculus [88]), have placed process algebra closer to real programming

languages, by the possibility to express complex behavior compactly and naturally [138].

Process algebra emphasizes the view that the behavior of processes (and programs) is best

described not by inductive means (like syntax is), but by the dual, coinductive means. The

notion of bisimilarity as process equivalence and the associated coinduction proof method are

central in process algebra. Work has been done in order to establish criteria for bisimilarity

to be well-behaved, allowing for powerful versions of coinduction proof rules. Some of these

criteria were stated for particular process calculi [138], while others were stated generally,

depending on syntactic conditions on the format of the SOS rules that describe the process

transitions – the latter pertain to the meta-theory of SOS specifications and are reviewed in

8

the recent monograph [97].

In some cases (for systems with bisimilarity being a congruence and with additional

modularity properties), one can consider the notion of abstract process behavior independently

of the syntax of processes, and then map processes to their denotation behaviors – this is

achieved by regarding transition systems as coalgebras [134] and modeling the universe of

behaviors as the final coalgebra (the most general cases being treated in [135] and [147]).

Working with processes up to bisimilarity and working in the final coalgebra of behaviors

are two faces of the same coin (both guaranteing modular reasoning), but sometimes the

coalgebraic view brings more insight to the situation.

Yet another framework, developed to a large extent independently from the coalgebra

theory, is hidden algebra and behavioral logic [56, 132], an extension of universal algebra

with hidden sorts and with a notion of behavioral equivalence that identifies two items of a

hidden sort if they yield the same results under all “experiments” of visible sort. A powerful

idea developed in this setting is that of incremental construction of the desired relation as a

coinductive argument, presented as circular reasoning [55] and recently (re)implemented as

the theorem prover CIRC [77]. Since this setting involves equations with open terms (i.e.,

terms with variables), the approach has certain similarities with those from process algebra

based on generic bisimilarity [37, 129, 26].

Our work can be regarded as an extension of the incremental-coinduction approach

to cope with concurrent systems and eventually with variable bindings as well, and an

Isabelle/HOL formalization of this approach. We have preferred to use a theorem prover for

the formalization instead of a rewrite engine such as Maude (as was done in [77]) for two

reasons:

- First, because we found that, in many concurrent process calculi (and also in concurrent

programming languages), the incremental unfolding of the processes yields non-trivial first-

order (or higher-order) side-conditions resulting either from the consideration of a more

complex notion of equivalence such as weak bisimilarity or from the composition of simpler

local side-conditions; many of these side-conditions can be automatically discharged by a

tool for automatic first-order reasoning such as Isabelle’s “blast” method.

- Second, for eventually being able to integrate coinduction into our planned overall package

for representing and reasoning about syntax and behavior.

1.3 Conventions, notations and pointers to supporting

scripts

We refer to all the involved collections as sets. We employ the lambda-abstraction symbol λ,

standing for functional abstraction, as well as the standard logical connectives and quantifiers

9

(¬ for negation, ∧ for conjunction, ∨ for disjunction, =⇒ for implication,⇐⇒ for equivalence

(i.e., bi-implication), ∀ and ∃ for the universal and existential quantifiers), only in the

meta-language of this paper, and not in the various formal languages that we discuss.

bool is the two-element set of booleans, {True, False}. IN , usually ranged over by m,n, i,

is the set of natural (i.e., non-negative integer) numbers. max m n is the maximum between

the numbers m and n. A×B is the cartesian product of A and B. A ∪B is the union of

A and B. Given a set of sets A,
⋃
A is the union of all the elements of A. A→ B is the

A-to-B function space.

P(A), P 6=∅(A) and Pf (A) are the A-powerset (i.e., the set of all subsets of A), the

set of non-empty subsets of A, and the set of finite subsets of A, respectively. ∅ is the

empty set. List(A) is the set of lists of elements from A. Nil or [] denotes the empty list.

When we consider typing contexts, which are lists of pairs of items, infixed “,” denotes list

concatenation. When thinking of lists as words, ε denotes the empty list and infixed #

denotes list concatenation.

We mostly consider operations and relations in the curried form, and mostly represent

relations as maps to bool. E.g., App : term → term → term is a binary operation, and

fresh : var→ term→ bool is a relation between variables and terms. For a (binary) relation

R : A → A → bool, R∗ is its reflexive-transitive closure. Given an n-ary relation R on

A and a1, . . . , an ∈ A, we say that “R a1 . . . an holds” if R a1 . . . an = True. However,

sometimes we regard relations as subsets of powersets rather than as maps to bool.

The mathematical statements (theorems, propositions, lemmas and corollaries) are

numbered using a common counter, and their number is prefixed by the number of the

chapter. For instance, Lemma 3.5 would indicate the 5th mathematical fact from Chapter 3,

which would happen to be a lemma. We only give sketches of proofs for the various stated

facts. The reader interested in more details about the proofs is referred to our Isabelle

formalization – details on the connection between this dissertation’s presentation and the

corresponding formalization are given toward the end of each chapter. We refer to both

sections or subsections as “sections”, e.g., “Section 2.3” refers to a section, and “Section

2.3.1” refers to a subsection.

Most of the constructions and theorems presented in this dissertation have been formalized

in Isabelle/HOL [103]. The formal scripts can be found at:

- [120, 121], for Chapter 2;

- [119], for Chapter 3;

- [122], for Chapter 4.

10

1.4 Technical preliminaries

In this section, we discuss technical prerequisites pertaining to syntax with bindings and

Horn theory.

1.4.1 Syntax with bindings

In this dissertation, we consider syntax with bindings under static scoping (meaning variable-

capture is not allowed in the substitution process). We assume from the reader familiarity

with the basics of syntax with bindings, such as α-equivalence and substitution. Below, we

briefly recall basic definitions pertaining to the paradigmatic syntax with bindings, namely,

the untyped λ-calculus. For more details, we refer the reader to [20] or [74]. These definitions

extend in the obvious way to any (possibly many-sorted) arbitrary syntax with bindings,

specified by indicating:

- the syntactic categories (i.e., the sorts);

- the constructors, together with an indication of whether their arguments are free or

variable-bound.

We fix an infinite set var, of variables, ranged over by x, y, z. We also fix an arbitrary

map pickDistinct : Pf (var) → var (intended to pick a variable not belonging to a given

set of variables), with the property that ∀ V ∈ Pf (var). pickDistinct V 6∈ V . (Such a map

obviously exists, by the infiniteness of var.)

Let qTerm, the set of λ-calculus quasi-terms, ranged over by P,Q, be given by the

following grammar:

P ::= qVar x | qApp P Q | qLm x P

where we think of qVar as the injection of variables into quasi-terms, of qApp as application

and of qLm as λ-abstraction; therefore, we think of x as intended to be bound in P within

qLm x P .

We define the relation qFresh : var→ qTerm→ bool (where qFresh x P says “x is fresh

for, i.e., does not appear free in, P”), by standard induction:

- x 6= z =⇒ qFresh z (qVar x);

- qFresh z P ∧ qFresh z Q =⇒ qFresh z (qApp P Q);

- (x = z ∨ qFresh z P) =⇒ qFresh z (qLm x P).

One can easily see that, for all P , the set {x. ¬ qFresh x P} is finite, which allows us

to define pickFresh : Pf (var) → Pf (qTerm) → var by pickFresh V W = pickDistinct (V ∪
{x. ∃P ∈W. ¬ qFresh z P}) and be sure that the following hold:

- pickFresh V W 6∈ V ;

- ∀P ∈W. qFresh (pickFresh V W) P .

We define the depth (a.k.a. height) operator, qDepth : qTerm → IN , by standard

11

recursion:

- qDepth (qVar x) = 1;

- qDepth (qApp P Q) = max (qDepth P) (qDepth Q);

- qDepth (qLm x P) = 1 + qDepth P .

We define the variable-swapping operator [∧]v : var→ var→ var→ var by

x[z1 ∧ z2]v =


z2, if x = z1

z1, if x = z2

x, otherwise.

We define the swapping operator [∧]q : qTerm → var → var → qTerm, where

P [z1 ∧ z2]q is the quasi-term obtained from P by swapping z1 with z2 everywhere in P , by

standard recursion:

- (qVar x)[z1 ∧ z2]q = qVar (x[z1 ∧ z2]v);

- (qApp P Q)[z1 ∧ z2]q = qApp (P [z1 ∧ z2]q) (Q[z1 ∧ z2]q);

- (qLm x P)[z1 ∧ z2]q = qLm (x[z1 ∧ z2]v)(P [z1 ∧ z2]q).

We define the substitution operator [/]q : qTerm→ qTerm→ var→ qTerm, where

P [R/z]q is the quasi-term obtained from P by substituting R for each free occurrence of z in

P in a capture-avoiding fashion, by standard recursion:

- (qVar x)[R/z]q =

{
R, if x = z

qVar x, otherwise;

- (qApp P Q)[R/z]q = qApp (P [R/z]q) (Q[R/z]q);

- (qLm x P)[R/z]q = qLm x′ (P [x′ ∧ x]q[R/z]q),

where x′ = pickFresh {z} {P}.
The α-equivalence (a.k.a. naming equivalence) relation 'α: qTerm→ qTerm→ bool,

can be standardly defined either inductively (as a relation) or recursively (as an operator) in

a variety of equivalent ways, the most traditional of which being the following inductive one:

- (1) qVar x 'α qVar x;

- (2) P 'α P ′ ∧ Q 'α Q′ =⇒ qApp P Q 'α qApp P ′ Q′ ;

- (3) qFresh y P ∧ qFresh y P ′ ∧ P [(qVar y)/x]q 'α P ′[(qVar y)/x′]q

=⇒ qLm x P 'α qLm x′ P ′.

Notice the special, “non-injective” treatment of the binding operator Lm. Equivalent

definitions include those obtained from the above by one of the folowing variations of clause

(3):

- A maximal-precondition variation:

— (3’) (∀ y. P [(qVar y)/x]q 'α P ′[(qVar y)/x′]q) =⇒ qLm x P 'α qLm x′ P ′;

Minimal-precondition and maximal precondition variations based on swapping (advocated

by Nominal Logic [115]):

— (3”) qFresh y P ∧ qFresh y P ′ ∧ P [y ∧ x]q 'α P ′[y ∧ x′]q =⇒ qLm x P 'α qLm x′ P ′;

— (3”’) (∀y. P [y ∧ x]q 'α P ′[y ∧ x′]q) =⇒ qLm x P 'α qLm x′ P ′.

12

It is well-known that 'α is indeed an equivalence and, moreover, compatible with the

syntactic constructs, freshness, depth, swapping and substitution. Let term, ranged over

by X,Y, Z, be the set of α-equivalence classes of quasi-terms, which we call terms. For a

quasi-term P , we write P for the term that is its α-equivalence class. Operators on terms

corresponding to the quasi-term syntactic constructs,

• Var : var→ term,

• App : term→ term→ term,

• Lm : var→ term→ term,

• depth : term→ IN ,

• fresh : var→ term→ bool,

• [∧] : term→ var→ var→ term,

• [/] : term→ term→ var→ term,

are defined standardly (knowing that 'α is compatible with everything):

• Var x = qVar x;

• App X Y = qApp P Q, for some P and Q such that X = P and Y = Q;

• Lm x X = qLm x P , for some P such that X = P ;

• depth X = qDepth P for some P such that X = P ;

• fresh x X = qFresh x P for some P such that X = P ;

• X[z1 ∧ z2] = P [z1 ∧ z2]q, for some P such that X = P ;

• X[Y/y] = P [R/y]q, for some P and R such that X = P and Y = R.

(Above, each time the choice of “some” quasi-term is immaterial.)

The set term therefore consists of the paradigmatic terms with bindings of the (untyped)

λ-calculus, considered “up to α-equivalence”. A brief way to indicate this set and its operators

is the following:

“The set term is given by the following grammar:

X ::= Var x | App X Y | Lm x X

where, within Lm x X, any occurrence of x in X is assumed bound.”

13

The implicit assumptions are that terms are identified modulo the notion of α-equivalence

standardly induced by the above bindings and that freshness, swapping and substitution are

the standard ones. We usually omit spelling the variable-injection operator x, writing x for

the term Var x. This is how we shall proceed with any other syntax with bindings considered

in this dissertation.

1.4.2 Horn theory

Standard Horn theory

We fix an infinite set FOvar, ranged over by u, v, w, of first-order variables (FO-variables,

for short). We also fix an FO-signature Σ = (F,R), where:

- F = (Fn)n∈IN is a family of ranked sets of operation symbols;

- R = (Rn)n∈IN is a family of ranked sets of relation symbols.

We shall loosely write F instead of
⋃
n∈IN Fn and R instead of

⋃
n∈IN Rn. To indicate

operation and relation symbols of FO-signatures, we shall always use boxed (meta)symbols,

such as f for an operation symbol and r for a relation symbol. Operation symbols of rank 0

(i.e., elements of F0) are called constant symbols.

The set FOterm, of FO-terms, ranged over by t, is defined inductively as usual:

- any FO-variable u is an FO-term;

- given n ∈ IN , FO-terms t1, . . . , tn and f ∈ Fn, f t1 . . . tn is again an FO-term.

An atomic formula (atom, for short) a is either a formal equality t ≡ t′ (i.e., a pair (t, t′)

for which we use a special notation) or a formal predicate atom r t1 . . . tn where r ∈ Rn.

A (Σ-)Horn clause has the form (&k
i=1ai) => b, with the ai’s and b atoms, i.e., a formal

implication between a formal conjunction of atoms and an atom. (Thus, “&” and “=>”

stand for formal conjunction and implication in the (FOL) Horn language.) If k = 0, a Horn

clause as above is merely an atom, b.

Σ-models (models, for short) are the usual first-order models. Namely, a model is a triple

(A, (f
A

)
f∈F

, (r
A

)r∈R), where:

- A is a set, called the carrier set of the model;

- for all n ∈ IN and f ∈ Fn, f
A

: Cur(An → A) is a (curried) n-ary operation on A;

- for all n ∈ IN and r ∈ Rn, r
A

: Cur(An → bool) is a (curried) n-ary relation on A.

Above, Cur(An → C) is the curried version of An → A, namely, A → . . . → A → C

(with A repeated n times).

When the operations are understood, we may write A for the whole model. A morphism

between two models A and B is a map h : A→ B that commutes with the operations and

preserves the relations, i.e., such that:

- for all n ∈ IN , f ∈ Fn, and a1, . . . , an ∈ A, h(f
A
a1 . . . an) = f

B
(h a1) . . . (h an);

14

- for all n ∈ IN , r ∈ Rn, and a1, . . . , an ∈ A, if r
A
a1 . . . an holds, then r

B
(h a1) . . . (h an)

also holds.

Notice that the notion of morphism treats relations not just like Boolean operations, but

fundamentally different from the way it treats operations: the condition for operations is

equality, corresponding to an “iff”, while that for relations is an “if”.

Satisfaction of a Horn clause by a model is the usual Tarskian satisfaction. Namely:

- First, given any model A and valuation ρ : FOvar→ A, we define the map Aρ : FOterm→
A by naturally extending ρ to terms, as follows:

— Aρ x = ρ x;

— Aρ (f t1 . . . tn) = f
A

(Aρ t1) . . . (Aρ t1).

- Then we define satisfaction of an atom by a model via a valuation, A |=ρ a, as follows:

— for formal equality atoms: A |=ρ t ≡ t′ iff Aρ t = Aρ t
′;

— for formal predicate atoms: A |=ρ r t1 . . . tn iff r
A

(Aρ t1) . . . (Aρ tn).

- Finally, we define satisfaction of a Horn clause by a model as follows:

— A |= ((&k
i=1ai) => b) iff ∀ρ : FOvar→ A. (∀i ∈ {1, . . . , k}. A |=ρ ai)⇒ A |=ρ b.

A Horn theory H is a collection of Horn clauses. A model A satisfies a Horn theory H,

written A |= H, iff it satisfies each of its clauses. A model A is (Σ,H)-initial iff the following

hold:

- A |= H;

- For all models B, if B |= H, then there exists a unique morphism h : A→ B.

The following is a well-known result:

Prop 1.1 Given a Horn theory H, there exists a (Σ,H)-initial model, which is unique up to

isomorphism.

We let IΣ,H denote the (Σ,H)-initial model.

Specifying/characterizing a data type as initial in a Horn theory yields standardly an

iteration principle for that data type. This principle’s “contract” reads as follows: give a

Σ-model satisfying H, and get back a compositional map (i.e., a morphism) h from IΣ,H to

A. Note that defining a model means essentially indicating the desired iterative behavior for

h.

Full recursion

It is well-known that full recursion5 can be reduced to iteration for absolutely free data types

(such as lists). It turns out that the same is true for full recursion modulo a Horn theory,

with a similar construction,6 as we show below.

5In this dissertation, all the recursion principles we discuss are “primitive”, reason for which we omit the
adjective “primitive” – so what we call “full recursion” is often called “primitive recursion” in the literature;
we use the adjective “full” to contrast it with the more restrictive variant given by iteration.

6This simple observation may be folklore, but we were not able to find a reference to it in the literature.

15

For the remainder of this section, we fix a signature Σ and a Horn theory H, and write I

for IΣ,H.

A full-recursion model (GR-model for short) is essentially an extension of a standard model

with extra arguments belonging to the initial model. Namely, it is triple (A, (f
A

)
f∈F

, (r
A

)r∈R,

where:

- A is a set, called the carrier set of the GR-model;

- for all n ∈ IN and f ∈ Fn, f
A

: Cur((I ×A)n → A) is a (curried) n-ary operation on A;

- for all n ∈ IN and r ∈ Rn, r
A

: Cur((I ×A)n → bool) is a (curried) n-ary relation on A.

Above, the Cur operator is assumed to curry everything, including all the occurrences

of the products I ×A; e.g., if f is a binary operation symbol (i.e., f ∈ F2), then f
A

has the

type I → A→ I → A→ A. Therefore, each standard argument (in A) comes in pair with

an argument from I.

Again, when the operations are understood, we may write A for the whole GR-model.

We shall only be interested in morphisms from I (as a standard model), to a GR-model,

which we call GR-morphisms. Given a GR-model A, a GR-morphism to A is a map h : I → A

such that the following hold:

- for all n ∈ IN , f ∈ Fn, and a1, . . . , an ∈ I, h(f
A
a1 . . . an) = f

B
a1 (h a1) . . . an (h an);

- for all n ∈ IN , r ∈ Rn, and a1, . . . , an ∈ A, if r
A
a1 . . . an holds, then r

B
a1 (h a1) . . . an (h

an) also holds.

Satisfaction of a Horn clause by a GR-model is defined similarly to that by a standard

model, but taking into account the extra I-arguments too. Namely:

- First, note that the carrier of I is a quotient of FOterm (and in fact the model I is a

quotient of the IΣ,∅, the absolutely initial model, whose carrier can be taken to be FOterm);

let π : FOterm→ I be the quotient map.

- Then, given any GR-model A and valuation ρ : FOvar → A, we define the map Aρ :

FOterm→ A by naturally extending ρ to terms, as follows:

— Aρ x = ρ x;

— Aρ (f t1 . . . tn) = f
A

(π t1) (Aρ t1) . . . (π tn) (Aρ tn).

- Then we define satisfaction of an atom by a GR-model via a valuation, A |=ρ a, as follows:

— for formal equality atoms: A |=ρ t ≡ t′ iff Aρ t = Aρ t
′;

— for formal predicate atoms: A |=ρ r t1 . . . tn iff r
A

(π t1) (Aρ t1) . . . (π tn) (Aρ tn).

- Finally, we define satisfaction of a Horn clause by a GR-model as follows:

— A |= ((&k
i=1ai) => b) iff ∀ρ : FOvar→ A. (∀i ∈ {1, . . . , k}. A |=ρ ai)⇒ A |=ρ b.

A GR-model A satisfies a Horn theory H, written A |= H, iff it satisfies each of its clauses.

Prop 1.2 Given a Horn-theory H and a GR-model B such that B |= H, there exists a

unique GR-morphism to B.

Proof sketch: First, note that the notion of GR-model behaves very much like a product

16

of I with a standard model, except that the results of the operations ignore the I-component

of the result. Moreover, valuations act on the I-component essentially as identity.

These remarks form the basis of the reduction of full recursion to iteration. Define the

model C as follows:

- The carrier set is C = I ×B;

- f
C

(a1, b1) . . . (an, bn) = (I f a1 . . . an, f
B
a1 b1 . . . an bn);

- r
C

(a1, b1) . . . (an, bn) = r
B
a1 b1 . . . an bn.

Then one can easily check the following facts:

- (1) C |= H;

- (2) Any morphism from I to C is, on the first component;

- (3) There exists a bijection between the set of GR-morphisms to A and the set of morphisms

between I and C. (The proof od this requires fact (2).)

Facts (1), (3) and Prop. 1.1 now give the desired result. �

17

Chapter 2

FOAS 1

2.1 Introduction

The main actor of this chapter is the data type of λ-calculus terms, term, with its construct

operators, Var, App and Lm (hence, under a “FOAS view”), and with freshness and substitution.

(All the involved notations are introduced in Section 1.4.1.) Note that a data type is not

merely a collection of values (as such, term would be just a countable set, which could

be taken to be IN), but it is a collection of values together with a collection of operations

on them. In what follows, we refer to the above type as termC,F,S with the three indexes

standing for “Construct”, “Freshness” and “Substitution”.

Our contribution is an improvement of the knowledge of this type (in a uniform way,

extendible to any syntax with static bindings). The contribution is formalized in Isabelle

and in general guided by theorem-proving goals.

But what does “knowing” a data type means?

- (1) Of course, it primarily means having a way to define or uniquely characterize it rigorously,

if possible in a clean mathematical way.

- (2) However, it also means understanding its structure, and being able to reason about it

and define functions on it, again as cleanly as possible.

While the first meaning may seem like a closed subject mathematically, it is not so, due

to its proviso about cleanness. Indeed, the standard definition based on α-equivalence (which

in fact comes in a myriad of “equally standard” equivalent variants) is not the cleanest

definition, as, e.g., it makes several choices later shown to be irrelevant – this is particularly

unpleasant when it comes to formalization. α-equivalence is often cited as an example of a

“messy” congruence relation.

Concerning the first meaning, we give a very simple characterization of termC,F,S as the

initial model of a Horn theory that does not involve any auxiliary operations, and contains a

minimal set of clauses representing natural and well-known facts for terms.

This characterization is, we believe, interesting in itself, because it shows the (quite

surprising) fact that termC,F,S is no special data type. Thus, it is a data type of the same

18

kind as those of finite sets and finite bags (multisets): one that can be specified by listing

some conditional clauses involving equations and atomic relations, and then letting standard

closure mechanisms do the rest (which is generating the type freely by these clauses). And

this is done without introducing any auxiliary operators.

More importantly however, this characterization proves useful w.r.t. the second meaning

(of “knowing” a data type), in that it enables a recursive definition principle featuring built-in

substitution compositionality, applicable to a large class of situations.

While the desire for substitution compositionality seems like a rather restrictive/specialized

desire (since a form of “substitution” then needs to be available on the target domain, which

is to be organized as a Horn model for the signature of termC,F,S), it, in fact, turns out to

be pervasive in syntax-with-bindings developments. Indeed, “substitutions” are everywhere,

and, moreover, relating substitutions by a compositionality property is usually a main fact

that needs to be proved about a recursively defined function. We illustrate this point by

many examples taken from the literature on syntax with bindings.

Back to (1), we also give an internal characterization of termC,F,S as a model of the

aforementioned Horn theory, with additional properties. This latter characterization is hardly

an exciting mathematical result, but its formalization opens up a useful methodology for

creating isomorphic bridges between different formal representations/implementations of

terms (having the characterization as a “canon”).

Here is an overview of the rest of this chapter.

In Section 2.2, we recall some known facts about induction principles tailored toward

handling bindings.

The next six sections contain our contribution to the theory of recursive definitions for

syntax with bindings. In Section 2.3, as motivation for the development to come, we present

two typical problems in formal reasoning: semantic interpretation and HOAS interpretation.

In Section 2.4, as a warm-up, we illustrate our Horn-based approach for a very simple

example: defining the cardinality of finite sets. In Section 2.5, we state our main result – a

freshness and substitution based recursion principle – and show how it solves the problems

with which we started. In Section 2.6, we give many other applications of our recursive

principles. In Section 2.7, we discuss the aforementioned internal characterization of the term

model. In Section 2.8, we present swapping-based variations of our recursion principle. Then

Section 2.9 describes a generalization and a formalization of our results. Finally, Section

2.10 discusses related work.

All throughout this section, unless otherwise specified, x, y, z range over variables (the

set var) and X,Y, Z over λ-calculus terms (the set term).

19

2.2 Induction

In this section, we briefly review the state of the art in FOAS induction for syntax with

bindings. While not including any of our original contribution to the theory of syntax, the

discussed principles are incorporated in our Isabelle formalization (presented in Section 2.9).

The two main subtopics here are:

- structural induction, discussed in Section 2.2.1,

- and rule induction, discussed in Section 2.2.2.

2.2.1 Structural induction

Since they are “constructed”, i.e., completely generated by the term constructs, the λ-calculus

terms are already subject to general-purpose structural induction:

Prop 2.1 To prove that ∀X. ψ X holds, it suffices to prove the following, for all x,X, Y :

- (1) ψ x;

- (2) ψ X ∧ ψ Y =⇒ ψ (App X Y);

- (3) ψ X =⇒ ψ (Lm x X).

Proof sketch. This follows from the structural induction principle for quasi-terms, together

with the fact that terms are obtained from quotienting quasi-terms. �

Another (completely standard) general-purpose form of induction available for terms is

the one based on depth:

Prop 2.2 To prove that ∀X. ψ X holds, it suffices to prove the following, for all X:

(∀Y. depth Y < depth X =⇒ ψ Y) =⇒ ψ X.

Proof sketch. Again, this follows from the corresponding fact from quasi-terms, together

with the preservation of depth by α-equivalence.

Prop. 2.2 is clearly more general than Prop. 2.1, but, as usual with the tradeoff between

generality and specificity, less convenient in concrete situations (in that, if Prop. 2.1 is

applicable, it typically yields shorter and more readable proofs). A principle intermediate

between the two, taking advantage of the abstract flexibility offered by Prop. 2.2 only when

it is usually needed most – in the Lm case – is given below.

Define the operator swapped : term→ P(term) by

swapped X = {X[z1 ∧ z′1] . . . [zn ∧ z′n]. n ∈ IN, z1, z
′
1, . . . , zn, z

′
n ∈ var}.

Prop 2.3 To prove that ∀X. ψ X holds, it suffices to prove the following, for all x,X, Y :

- (1) ψ x;

- (2) ψ X ∧ ψ Y =⇒ ψ (App X Y);

- (3) (∀Y ∈ swapped X. ψ Y) =⇒ ψ (Lm x X).

20

Proof sketch. Immediate from Prop. 2.2, given that ∀ Y ∈ swapped X. depth Y =

depth X < depth(Lm x X). �

The above is all fine, but practice in reasoning about bindings has shown that these principles

are not suitable/convenient for an important class of situations: those involving freshness

assumptions in the Lm-case (case (3) above). Making such freshness assumptions is known

as Barendregt’s variable convention, stated in [20] on page 26: ”If M1, . . . ,Mn occur in a

certain mathematical context (e.g., definition, proof), then in these terms all bound variables

are chosen to be different from the free variables.”

It turns out that this convention can be partly made rigorous by objectifying the

aforementioned proof context as an extra parameter for the predicate to be proved. This

insight, due to Urban and Tasson [153] (see also [105]), yields the following improved induction

principle:

Prop 2.4 Let param, ranged over by P,Q, be a set (whose elements we call parameters) and

let varsOf : param → Pf (var) be a function and ϕ : term → param → bool a predicate.

Then, to prove that ∀X P. ϕ X P holds, it suffices to prove the following, for all x,X, Y, P :

- (1) ϕ x P ;

- (2) (∀Q. ϕ X Q) ∧ (∀Q. ϕ Y Q) =⇒ ϕ (App X Y) P ;

- (3) x 6∈ varsOf P ∧ (∀Q. ϕ X Q) =⇒ ϕ (Lm x X) P .

Proof sketch. Apply Prop. 2.3, taking ψ = λX. ∀P. ϕ X P . For the only interesting case,

namely the Lm-case, the proof goes as follows: We assume that ∀Y ∈ swapped X. ∀P. ϕ Y P

and need to show ϕ (Lm x X) P . Pick a variable y fresh which is completely fresh (i.e.,

y 6= x, fresh y X and y 6∈ varsOf P), and let Y = X[y ∧ x]. Then we have Y ∈ swapped X,

and therefore, by the assumption, ∀P. ϕ Y P holds. Hence, by point (3) and the choice of

y, we have ϕ (Lm x X) P . But, again by the choice of y, we have Lm y Y = Lm x X, and

therefore ϕ (Lm x X) P holds, as desired. �

The main twist of Prop. 2.4 is Case (3), where the considered bound variable x is assumed

free “everywhere else”, i.e., in the proof context packed as parameter P .

2.2.2 Rule induction

Let us consider a standard inductively defined relation, β-reduction, : term→ term→
bool, given by the following clauses:

·
App (Lm x Y) X Y [X/x]

(Beta)
X Y

Lm z X Lm z Y
(Xi)

X Y

App X Z App Y Z
(AppL)

X Y

App Z X App Z Y
(AppR)

21

The following discussion applies not only to this relation, but to a large class of inductively

defined relations, as shown in [150] (see also [152]).

The default rule induction principle for , stating that any relation θ : term→ term→
bool satisfying the above clauses (with replaced by θ) includes , is not enough in

typical proofs, which again need to employ Barendregt’s convention. The following is an

improvement in this direction:

Prop 2.5 Let param, ranged over by P,Q, and varsOf be as in Prop. 2.4, and let ϕ :

term→ term→ param→ bool. Then, to prove that ∀X Y P. X Y =⇒ ϕ X Y P , it

suffices to prove the following, for all x, z,X, Y, Z, P :

- (1) x 6∈ varsOf P implies ϕ (App (Lm x Y) X) (Y [X/x]) P ;

- (2) z 6∈ varsOf P and X Y and ∀Q. ϕ X Y Q imply ϕ (Lm z X) (Lm z Y) P ;

- (3) X Y and ∀Q. ϕ X Y Q imply ϕ (App X Z) (App Y Z) P ;

- (4) X Y and ∀Q. ϕ X Y Q imply ϕ (App Z X) (App Z Y) P .

Proof sketch. The next fact follows by standard rule induction on using properties

(1)-(4):

X Y =⇒ (∀P, n, z1, z
′
1, . . . , zn, z

′
n. ϕ (X[z1 ∧ z′1] . . . [zn ∧ z′n]) (Y [z1 ∧ z′1] . . . [zn ∧ z′n]) P).

For the interesting cases, (1) and (2), the proof is based on the following properties of the

definitional clauses of , which form the basis for the generalization given in [150]:

- All the involved functions and side-conditions are equivariant, in that they commute with

swapping.

- All the involved variables are distinct, and all variables bound anywhere in a clause are

fresh for the conclusion of that clause. �

2.2.3 Case analysis and inversion rules

Case analysis and rule inversion are essentially trivial forms of structural induction and rule

induction, respectively. Consequently, “fresh” versions for them are available along the lines

of the results from Sections 2.2.1 and 2.2.2.

In the next two propositions, param, ranged over by P,Q, and varsOf are as in Prop.

2.4.

Prop 2.6 (Fresh case analysis) Let X ∈ term, P ∈ param and ϕ ∈ bool.2 Then, to

prove that ϕ holds, it suffices to prove the following:

- ∀x ∈ var. X = x =⇒ ϕ;

- ∀Y Z. X = App Y Z =⇒ ϕ;

- ∀y Y. y 6∈ varsOf P ∧ X = Lm y Y =⇒ ϕ.

2Typically, ϕ is a statement about X and P .

22

Proof sketch. Immediately, by Prop. 2.4. �

Prop 2.7 (Fresh rule inversion) Let U, V ∈ term, P ∈ param and ϕ ∈ bool.3 Assume

U V . Then, to prove that ϕ holds, it suffices to prove the following:

- (1) ∀x X Y. x 6∈ varsOf P ∧ U = App (Lm x Y) X ∧ V = Y [X/x] =⇒ ϕ;

- (2) ∀z X Y. z 6∈ varsOf P ∧ U = Lm z X ∧ V = Lm z Y =⇒ ϕ;

- (3) ∀X Y Z. U = App X Z ∧ V = App Y Z =⇒ ϕ;

- (4) ∀X Y Z. U = App Z X ∧ V = App Z Y =⇒ ϕ.

Proof sketch. Immediately, by Prop. 2.5. �

2.3 Two problems of rigorous/formal reasoning

We now embark on the presentation of our contribution – FOAS recursion principles. In this

section, we present two typical situations in formal reasoning about syntax with bindings –

interpretation in a semantic domain and HOAS representation – as motivation for the desire

to have convenient (conceptual and formal) tools for recursive definitions sensible to the

mechanisms of binding and substitution.

2.3.1 Problem I – Interpretation of syntax in semantic domains

Suppose we want to interpret terms in a semantic domain D (ranged over by d) endowed

with operators

• APP : D → D → D,

• LM : (D → D)→ D,

by matching the syntactic App and Lm with the semantic APP and LM, mapping syntactic

binders to functional binders. For this, we need the collection of valuations (of variables into

the domain), val = (var→ D), ranged over by ρ. Then, the definition of the interpretation,

[] : term→ val→ D, needs to proceed recursively on the structure of terms:

• [X] ρ = ρ x,

• [App X Y] ρ = APP ([X] ρ) ([Y] ρ),

• [Lm x X] ρ = LM (λd : D. [X] (ρ[x← d])),

where ρ[x← d] is the valuation ρ updated at x with d. Moreover, we usually wish to prove

the following:

3Typically, ϕ is a statement about U, V and P .

23

• The obliviousness of the interpretation to the values of variables fresh for the represented

term:

fresh x X ∧ ρ =x ρ
′ =⇒ [X] ρ = [X] ρ′,

where ρ =x ρ
′, read “ρ equals ρ′ everywhere but in x”, is defined to be ∀y 6= x. ρ y =

ρ′ y.

• Compositionality w.r.t. substitution versus environment update, a.k.a. the substitution

lemma, holds:

[Y [X/x]] ρ = [Y] (ρ[x← [X] ρ]).

Parenthesis. The above recursive definition and facts to be proved follow a canonical

pattern of interpreting syntax in denotational semantics and formal logic. To give another

well-known example, the semantics of FOL formulas ϕ is typically given as a relation M |=ρ ϕ,

read “M satisfies ϕ for the valuation ρ : var→M”; and the clause for the universal quantifier,

which we denote by All,4 is the following:

M |=ρ All x ϕ iff ∀m ∈M. M |=ρ[x←m] ϕ.

Despite the different notation, this clause if of the same nature as that for Lm, in that the

syntactic variable binding is captured in both cases by a semantic abstraction (functional

in one case, universal in the other) in conjunction with environment update. Moreover,

here (in FOL) we also wish to prove that the interpretation does not depend on the fresh

variables and that the substitution lemma holds. In fact, most of the basic properties of

FOL, including those necessary for the proof of the completeness theorem, rely on these two.

The problem and solution discussed below for λ-calculus applies equally to this FOL

example and to many others in the same category.

End of parenthesis.

The problem with the above definition of [] is that, at the Lm-clause, we have to show the

choice of the representatives x and X in Lm x X immaterial. In other words, this clause

proceeds as if Lm were a free construct on terms, while it is not (since there exist x,X, x′, X ′

such that (x,X) 6= (x′, X ′) and Lm x X = Lm x′ X ′). Here is another way, perhaps the most

rigorous one, to express the problem: if we replace, in the definition, terms with quasi-terms,

and the term constructs Var, App and Lm with the corresponding quasi-term constructs qVar,

qApp and qLm, we do have a valid definition of an operator on quasi-terms; however, to lift

this to an operator on terms, we need to prove that it preserves α-equivalence. This problem

is typically by-passed in informal texts, relying on “folklore”, but needs to be faced and

solved within a formalization.

4Remember our convention to use the symbols ∀ and λ only in the meta-language of dissertation.

24

The problem is actually more interesting and more challenging than may look at first.

We urge the reader to try to solve it before reading our solution.

2.3.2 Problem II – Compositional HOAS representation

Recall that HOAS (Higher-Order Abstract Syntax) prescribes the representation of formal

systems of interest, referred to as the object systems, into a fixed, but customizable logical

framework, a.k.a. the meta system, by capturing object-level features such as binding

mechanisms directly as corresponding meta-level features. While logical frameworks in

current use are typically more complex (LF [63], intuitionistic HOL [108], etc.), here we

restrict ourselves to the λ-calculus augmented with constants as the logical framework.5

Again, the reader may easily notice that our discussion is rather general, and in particular it

applies to the aforementioned more complex logical frameworks as well.

To augment the λ-calculus with constants, we fix const, ranged over by c, a set of (yet

unspecified) constants. We extend the syntax of λ-calculus with these constants as usual, so

that the new terms, which we call const-terms and whose set we denote by term(const),

are now:

- either (injections of) variables x, or applications App X Y , or λ-abstractions Lm x X (as

before),

- or injections of constants, Ct c.

Constants do not participate in bindings and are unaffected by substitution. Just like for

variables, we usually omit spelling the constant-injection Ct, writing c instead of Ct c.

We take term(const) as our logical framework. (A complete logical framework, of course,

also has judgement mechanisms, typically given by a type system in combination with a

reduction relation; for instance, in our case, reduction may be β or βη-reduction. In this

section, we ignore the largely orthogonal judgement aspect of HOAS and consider the syntax

representation aspect only.)

Say our object system is the λ-calculus itself (without constants). Its natural HOAS

representation into term(const) proceeds as follows:

• Instantiate const to a two-element set, {APP, LM}, to match the two syntactic constructs

App and Lm. (Note that one does not explicitly represent object-level variables and

their injection into terms, as they will be captured directly by the meta-level items.)

• Define the representation map rep : term→ term({APP, LM}) (with postfix superscript

notation) recursively on the structure of terms:

— (1) rep x = x,

5Already this simple λ-calculus with constants is a fairly standard HOAS framework; it is used in several
places in the literature, including in [14] and as part of the Hybrid HOAS framework in [13, 95].

25

— (2) rep(App X Y) = App (App APP (rep X)) (rep Y),

— (3) rep(Lm x X) = App APP (Lm x (rep X)).

In the more standard notation for λ-terms (which we avoid in order to prevent confusion

with the meta-language of this dissertation), this is how the above equations would look like:

• rep x = x,

• rep(X Y) = APP (rep X) (rep Y),

• rep(λ x.X) = LM (λ x. (rep X)).

Part of what makes a HOAS encoding very convenient is its compositionality w.r.t.

substitution:

- (4) rep(Y [X/x]) = (rep Y)[(rep X)/x],

and indeed this is the main fact that is typically proved informally, by “pen-and-paper”,

about a HOAS representation. Preservation of freshness is another fact that turns out to be

useful (see, e.g., [64], page 657), even though this is seldom acknowledged explicitly:

- (5) fresh x X =⇒ fresh x (rep X).

As before, the problem with the definition of rep and with the (usual) informal proof of

compositionality is the non-rigorous treatment of the Lm-case.

2.4 Intermezzo – solving a genuinely “ordinary”

problem

We have claimed in the introduction of this chapter that terms with bindings are no special

data types. Treating them “ordinarily” is the key to our proposed solution to Problems I

and II. As a warm-up, we consider the case of a non-trivial, but “ordinary” data type: finite

sets over a fixed universe of items. But first, we revisit the most ordinary situation of all –

that of the absolutely free constructs on lists.

For the rest of this section, we fix a set item, ranged over by i, j, whose elements we call

items.

2.4.1 Recursion on lists

Recall that List(item), which we let be ranged over by l, is the set of lists of items. Consider

the following standard definition of the list length:

• length Nil = 0,

• length (Cons i l) = length l + 1

26

The above is a valid iterative definition of a map length : List(item)→ IN . A well-known

alternative way to regard this definition is through the initiality of the algebra of lists, as

follows. Consider the algebraic signature ΣL consisting of:

• A constant symbol, Nil;

• For each i ∈ item, a unary operation symbol, Consi .

(Thus, the signature has one constant symbol and a number of unary operation symbols

equal to the number of items.) Then List(item) becomes a ΣL-algebra by interpreting

Nil as Nil and each Consi as Cons i. In fact, List(item) is the initial ΣL-algebra (in the

notation of Section 1.4.2, the initial (ΣL, ∅)-algebra), meaning that, for all ΣL-algebras

(A, Nil
A
, (Consi

A
)i∈item), there exists a unique morphism from List(item) to A, i.e., a

unique map H : List(item)→ A that commutes with the operations:

• H Nil = Nil
A

,

• H (Cons i l) = Consi
A

(H l) for all i ∈ item and l ∈ List(item).

In this light, the above definition of length can be viewed as (given by) a definition of a

ΣL-algebra structure on IN , namely:

• Nil
IN

= 0,

• Consi
IN
n = n+ 1 for all i ∈ item and n ∈ IN ,

and then taking length to be the unique ΣL-algebra morphism from List(item) to IN .

Summing up: to define a map from the set of lists to another set, it suffices to endow the

latter set with list-like operations (i.e., to some extent, to treat the latter set as if consisting

of “generalized lists”).

2.4.2 Recursion on finite sets

Recall that Pf (item), which we let be ranged over by s, is the set of finite sets of items. A

typical recursive definition of the operator card : Pf (item) → IN , giving the cardinal of a

finite set, goes as follows:

• card ∅ = 0,

• card ({i} ∪ s) = card s+ 1, if i 6∈ s.

To have this definition justified rigorously, we need to show that, at the second clause, the

choice of the representatives i and s for {i} ∪ s is irrelevant. This of course can be easily

27

worked around, but we are after a sufficiently general solution, that attacks the source of the

difficulty in general terms.

The most apparent difficulty is that the invoked constructs in the clauses are not free

(here, the operator sending (i, s) to {i} ∪ s is not injective). But even if they were free, we

would have a second difficulty: the condition “i 6∈ s” of the second clause would destroy

case-completeness (i.e., the definitional clauses would not cover all cases). Intuitively though,

these two difficulties are also two features supposed to work in tandem to resolve each other.

On our way towards a solution, we note that switching perspectives from recursion to

initiality leads to a powerful generalization in the style of algebraic specifications: although

the constructors may not be free, our data type may still be initial amongst all models of a

Horn theory; hence an iteration principle may still be available. (See Section 1.4.2.)

Unfortunately however, unlike for the free case, there may be many natural ways in which

a non-free data type could be characterized as initial, corresponding to different choices of

its “primitive” operations and relations (hence of the signature) and of the characterizing

clauses. Coming up with characterizations able to define functions of interest as the initial

morphisms therefore requires both mathematical creativity and experience with the use of

that data type, but can also be partly guided by investigating “desired” recursive equations

for given examples, as we shall explain shortly.

For instance, it is well-known that Pf (item) together with ∅ and ∪ is the free semi-lattice

over item, or, equivalently, it is initial among all models over the signature of ∅, ∪ and the

singletons {i} with i ∈ item. This indeed yields an iteration principle: to define a map

H : Pf (item)→ A,

• endow A with operations Emp
A
∈ A, Un

A
: A → A → A and Singli

A
∈ A for all

i ∈ item;

• show that (A, Emp
A
, Un

A
) is a semi-lattice, i.e., that Un

A
is associative, commutative

and idempotent and has Emp
A

as neutral element;

• take H to be the unique map that commutes with the operators, in that

– H ∅ = Emp
A

,

– H (s ∪ s′) = Un
A

(H s) (H s′),

– H {i} = Singli
A

for all i ∈ item.

Thus, for the non-free case, while the end product is still an iteration principle, one needs

to go further than writing the recursive equations and prove that the operators involved in

these equations (here, Emp
A

, Un
A

and Singli
A

) are well-behaved.

Of course, the initial semi-lattice characterization of Pf (item) does not help in justifying

the above definition of card, since the latter involves operators different than those for

28

semi-lattices. The question here is: What are the signature and the Horn theory that make

the definition of card go through? By analyzing the desired clauses for card, we first notice

the involved operations and relations:

• the constant ∅ ∈ Pf (item),

• a unary operation ({i} ∪) : Pf (item)→ Pf (item) for each i ∈ item,

• a unary relation (i 6∈) : Pf (item)→ bool for each i ∈ item.

Thus, we are suggested the following signature ΣS , consisting of operation and relation

symbols with associated ranks:

• a constant symbol, Emp ;

• for each i ∈ item, a unary operation symbol, Inserti ;

• for each i ∈ item, a unary relation symbol, freshi .

Pf (item) becomes a ΣS-model by interpreting Emp as ∅, Inserti as ({i} ∪), and freshi as

(i 6∈).

Can we find a suitable Horn theory HS for which our model Pf (item)? Yes, here it is:

1. freshi Emp , for each i ∈ item;6

2. freshi u => freshi (Insertj u), for each i, j ∈ item with i 6= j;

3. Inserti (Inserti u) ≡ u, for each i ∈ item;

4. Inserti (Insertj u) ≡ Insertj (Inserti u), for each i, j ∈ item with i 6= j;

Prop 2.8 Pf (item) is the initial (ΣS ,HS)-model.

Proof hint. The desired morphism can be defined as a relation and then showed to be

functional. See [102], page 389-390, for a proof of a very similar nature. �

We came up with the above clauses essentially as follows:

- separating the data type “primitive” constructs, here the operators Emp and ({i}∪), from

the “defined” operators and relations, here the relation (i 6∈)

- choosing definition-like clauses for the “defined” items: clauses 1,2.

- treating the desired notion of equality as a “defined” item too, and therefore choosing

definition-like clauses for it: clauses 3,4.

6That is to say, for each item i we consider one such Horn clause in the theory; and similarly below.

29

Now we are almost ready to justify the definition of card. One final obstacle is that

iteration is not enough, full recursion being needed – this is because, in the desired recursive

clause we started with,

card ({i} ∪ s) = card s+ 1, if i 6∈ s,

for a fixed i, the definition of card on {i}∪s depends not only on card s (i.e., on the recursively

computed result for the component), but also on s (i.e., on the component itself).

Here, what comes to our help is the Horn-based full recursion principle from Section

1.4.2 – indeed, the difficult part was to organize the source set Pf (item) as a suitable initial

model, since full recursion does follow automatically from iteration, according to Prop. 1.2.

Thus, we organize the target set IN as a ΣS-FR-model A = (A, Emp
A
, (Inserti

A
)i∈item,

(freshi
A

)i∈item) as follows:

• A = IN ;

• Emp
A

= 0;

• Inserti
A
s n =

{
n+ 1, if i 6∈ s,
n, otherwise;

• freshi
A
s n⇐⇒ i 6∈ s.

It is immediate to check that A satisfies the clauses from HS – the resulted unique

FR-morphism prescribed by Prop. 1.2 is therefore a map card : Pf (item)→ IN satisfying the

following properties, obtained by replacing in the FR-morphism conditions (of commuting

with the operations and preserving the relations) the actual definitions of the operations and

relations on A:

• card ∅ = 0;

• card (s ∪ {i}) =

{
card s+ 1, if i 6∈ s,
card s, otherwise;

which are (after we delete the vacuous information on one of the cases), precisely the desired

clauses.

We have started with a concrete problem – the definition of the cardinal map on finite

sets – whose analysis led to a recursion principle. The principle itself is of a general nature,

transcending the particular problem. Indeed, defining a map on finite sets using the empty

set and insertion of a fresh element as the constructors is very common practice. The

iteration principle helps this common practice by indicating in advance what needs to be

proved to make the definition go through. This avoids having to rely on ad-hoc “dynamic”

combinations of definition and proof that are typically employed in such definitions.

30

2.5 Terms with bindings as an ordinary data type

By “ordinary data type” we mean “data type specifiable as the initial model of a (classical,

first-order) Horn theory”, as is the finite set example from the previous section. So, are terms

ordinary? When answering this, we should not lose sight of the very purpose of the Horn

approach: enabling not any iteration/recursion principe, but a useful one. In particular, for

now we care about a principle that would provide solutions to Problems I and II.

2.5.1 Recursion for terms with bindings and substitution

Having the simpler case warm-up and the guidelines from the previous subsection, we proceed

directly with building a solution. The signature should contain the term constructs and

freshness and substitution operators, as they are directly involved in the desired clauses in

both problems.

We thus define the signature Σ to consist of the following:

• For each variable x, a constant symbol, Varx ;

• A binary operation symbol, App ;

• For each variable x, a unary operation symbol, Lmx ;

• For each variable x, a binary operation symbol, substx ;

• For each variable x, a binary relation symbol, freshx .

term becomes a Σ-model by interpreting:

- each Varx as x,

- App as App,

- each Lmx as Lm x,

- each substx as [/x],

- each freshx as fresh x.

We define the Horn theory H over the signature Σ to consist of the following:

- (1) Definition-like clauses for freshness (w.r.t. the syntactic constructs):

F1: freshz Varx ,

for each x, z ∈ var with x 6= z;7

F2: freshz u & freshz v => freshz (App u v),

for each z ∈ var;8

7That is to say: we take one such Horn clause for each combination of variables x and z (here, such that
x 6= z); and similarly below.

8As usual when one lists Horn clauses (or, in general, FO formulas), the involved FO-variables, here u
and v, are assumed to be fixed and distinct.

31

F3: freshz (Lmz u),

for each z ∈ var;

F4: freshz u => freshz (Lmx u),

for each x, z ∈ var;

-(2) Partial definition-like clauses for substitution (again, w.r.t. the syntactic constructs):9

S1: substz Varz w ≡ w,

for each z ∈ var;

S2: substz Varx w ≡ Varx ,

for each x, z ∈ var with x 6= z;

S3: substz (App u v) w ≡ App (substz u w) (substz v w),

for each z ∈ var;

S4: freshx w => substz (Lmx u) w ≡ Lmx (substz u w),

for each x, z ∈ var with x 6= z;

-(3) A clause, “Abstraction Renaming”, for renaming variables in abstractions:

AR: freshy u => Lmy (substx u Vary) ≡ Lmx u,

for each x, y ∈ var with x 6= y.

The fact that term satisfies the above clauses is well-known. For instance, the satisfaction

of S4 means:

∀x, z ∈ var, X, Z ∈ term. x 6= z ∧ fresh x Z =⇒ (Lm x X)[Z/z] = Lm x (X[Z/z])

which is the well-known property of substitution commuting with Lm under appropriate

freshness assumptions.

The choice of these clauses was based on the following technical goals, which in turn are

supposed to ensure that term is the initial model:

- Goal 1: Freshness and substitution need to be “reduced”, by definition-like clauses, to the

syntactic constructs.

- Goal 2: At the same time, α-equivalence needs to be enforced on (the terms built using)

the syntactic constructs.

- Goal 3: The above need to be achieved economically, i.e, not adding any auxiliary operators

and using as few and as weak clauses as possible.

Goals (1) and (2) are seen to be mandatory, if one recalls the standard construction of

the initial model of a Horn theory, by quotienting the absolutely free model (here, the model

9We call them “partial” because, in the Lm-case, they only cover the subcase where the bound variable is
conveniently fresh.

32

of quasi-terms). Goal (3) has a practical purpose: a convenient recursion principle should

employ a weak Horn theory, as the potential user of the recursion principle would have to

check its clauses to have the definition go through. The desire not to employ additional

operators led us to not attempt reducing completely (by Horn clauses) substitution in the

Lm-case; fortunately however, complete reduction of substitution does take place up to the

emerging notion of equality, which turns out to coincide with α-equivalence. The novelty of

our reduction technique thus consists in its loose character. In a way, the above Horn theory

defines substitution together with equality, hence allows itself indulging in some “laziness”

when reducing substitution, unlike in the standard approach. (The standard approach is

recalled in Section 1.4.1; since substitution is “eagerly” defined/reduced there, an arbitrary

pickFresh auxiliary operator is required.)

The above Horn theory does achieve the desired initiality:

Theorem 2.9 The model term is the initial (Σ,H)-model, i.e., is (isomorphic to) I(Σ,H).

Before sketching a proof of this theorem, let us spell it out more nicely, doing away

with the Horn boxed symbols. We define the following fresh-substitution models, which are

models for the signature Σ under a more convenient notation. Because they have operations

matching those for terms and are meant to satisfy clauses also satisfied by terms, we think of

the fresh-substitution models as being inhabited by term-like items, that we call generalized

terms, ranged by gX , gY , gZ . Their operators shall also be called generalized operators. (We

annotate all the names of generalized items by adding “g” as a prefix or as a superscript.)

For a fixed fresh-substitution model A, we shall write:

- gVar x, instead of Varx
A

;

- gApp gX gY , instead of App
A

gX gY ;

- gLm x gX , instead of Lmx

A
gX ;

- gFresh x gX , instead of freshx
A

gX ;

- gX [gY /y]g, instead of substy
A

gX gY .

Thus, a fresh-substitution-model (FSb-model for short) consists of a set A (ranged over by

gX , gY , gZ) together with operations and relation

• gVar : var→ A,

• gApp : A→ A→ A,

• gLm : var→ A→ A,

• [/]g : A→ A→ var→ A,

• gFresh : var→ A→ bool,

33

satisfying the following properties (assumed universally quantified over all their parameters):

F1: x 6= z =⇒ gFresh z (gVar x),

F2: gFresh z gX ∧ gFresh z gY =⇒ gFresh z (gApp gX gY),

F3: gFresh z (gLm z gX),

F4: gFresh z gX =⇒ gFresh z (gLm x gX),

S1: (gVar z)[gZ/z]g = gZ ,

S2: x 6= z =⇒ (gVar x)[gZ/z]g = gVar x,

S3: (gApp gX gY)[gZ/z]g = gApp (gX [gZ/z]g) (gY [gZ/z]g),

S4: x 6= z ∧ gFresh x gZ =⇒ (gLm x gX)[gZ/z]g = gLm x (gX [gZ/z]g),

AR: x 6= y ∧ gFresh y gX =⇒ gLm y (gX [(gVar y)/x]g) = gLm x gX .

Theorem 2.9 (rephrased) Let A be an FSb-model. Then there exists a unique map

H : term→ A commuting with the constructors, i.e.,

• H x = gVar x,

• H (App X Y) = gApp (H X) (H Y),

• H (Lm x X) = gLm x (H X).

Additionally, H commutes with substitution and preserves freshness, i.e.,

• H (Y [X/x]) = (H Y)[(H X)/x]g,

• fresh x X =⇒ gFresh x (H X).

We call the above map H the FSb-morphism to A.

The careful reader may have noticed that the above rephrasing also brings a small

strengthening of the theorem on the uniqueness part. Indeed, a pure rephrasing would

read “Then there exists a unique map H : term→ A commuting with the constructors and

commuting with substitution and preserving freshness”, while we stated the theorem noticing

that commuting with the constructs is enough to ensure uniqueness. Indeed, it is a standard

fact in universal algebra that a sufficiently complete set of operators, as are Var, App and Lm

here for term, are enough to ensure uniqueness [62]. Alternatively, once the existence part

of Th. 2.9 has been proved, the strengthening follows easily by induction on terms. This

34

strengthening is however a minor point, since in general one cares about the existence of a

recursor/iterator, not about the uniqueness of the conditions that define the recursive map.10

Proof sketch of Th. 2.9 (in the rephrased version notation).

I. Existence.

First of all, we should remark that, in the light of the technical goals (1) and (2) above,

the desired fact is rather intuitive, and can be proved in many different ways. This being

said, it is true that there are many basic facts about α-equivalence of quasi-terms that need

to be available for a proof to go through.

The first step in our proof is to remark the following: if H : term→ A is an (Var,App, Lm)-

morphism, i.e., if it commutes with the indicated operators, then it also commutes with

substitution and preserves freshness. This can be proved by induction on terms, using F1-F4,

S1-S4, and the fact that term itself satisfies the corresponding clauses. This fact allows us

to focus on the simpler task of finding a (Var,App, Lm)-morphism between term and A.

Let F : qTerm → A be the unique (Var,App, Lm)-morphism given by the absolute

initiality of qTerm. I.e., F is defined by standard recursion:

- F (qVar x) = gVar x;

- F (qApp P Q) = gApp (F P) (F Q);

- F (qLm x P) = gLm x (F P).

Using F1-F4, one can show by induction on quasi-terms that F preserves freshness,

namely:

(1) qFresh x P =⇒ gFresh x (F P).

Next, using (1), S1-S4, F1-F4 and AR, one can show by induction on quasi-terms

that, under an appropriate freshness assumption, F commutes with swapping versus unary

substitution, namely:

(2) qFresh y1 P =⇒ F (P [y1 ∧ y]q) = (F P)[(gVar y1)/z]g.

(Above, considering swapping on the left-hand side of the equality is much more convenient

than considering variable-for-variable substitution, as the latter is not well-behaved on

quasi-terms.)

Next, using (1), (2), S1-S4, F1-F4 and AR, S1-S4, one can show by induction on quasi-

terms that F respects α-equivalence, i.e.,

(3) P 'α Q implies F P = F Q.

Finally, (3), together with the definitional clauses of F and the fact that α is a congruence

on quasi-terms imply standardly (by the universal property of quotient FOL models) the

existence of a (Var,App, Lm)-morphism H : term→ A, as desired.

II. Uniqueness. By an easy induction on terms. �

10Most theorem provers supporting recursion neglect the uniqueness aspect. So do works on recursion for
syntax with bindings such as [148] and [104].

35

In most of the cases, the iteration principle from the previous theorem is enough. Oc-

casionally, however, one needs to employ full recursion, which we describe next in the

“rephrased” version directly:

A full-recursion-fresh-substitution-model (FR-FSb-model for short) consists of a set A

(ranged over by gX , gY , gZ) together with operations and relation

• gVar : var→ A,

• gApp : term→ A→ term→ A→ A,

• gLm : var→ term→ A→ A,

• (,)[(,)/]g : term→ A→ term→ A→ var→ A,

• gFresh : var→ term→ A→ bool,

satisfying the following properties (assumed universally quantified over all their parameters):

F1: x 6= z =⇒ gFresh z (gVar x),

F2: fresh z X ∧ gFresh z gX ∧ fresh z Y ∧ gFresh z gY =⇒ gFresh z (gApp X gX Y gY),

F3: gFresh z (Lm z X) (gLm z X gX),

F4: fresh z X ∧ gFresh z X gX =⇒ gFresh z (Lm x gX) (gLm x X gX),

S1: (Var z, gVar z)[(Z, gZ)/z]g = gZ ,

S2: x 6= z =⇒ (x, gVar x)[(Z, gZ)/z]g = gVar x,

S3: (App X Y, gApp X gX Y gY) [(Z, gZ)/z]g =

gApp (X[Z/z]) ((X, gX)[(Z, gZ)/z]g) (Y [Z/z]) ((Y, gY)[(Z, gZ)/z]g) ,

S4: x 6= z ∧ fresh x Z ∧ gFresh x Z gZ =⇒
(Lm x X, gLm x X gX) [(Z, gZ)/z]g = gLm x (X[Z/z]) ((X, gX)[(gZ , Z)/z]g),

AR: x 6= y ∧ fresh y X ∧ gFresh y X gX =⇒
gLm y (X[(Var y)/x]) ((X, gX)[(Var y, gVar y)/x]g) = gLm x X gX .

Theorem 2.10 Let A be a FR-FSb-model. Then there exists a unique map H : term→ A

commuting with the constructors, i.e.,

• H x = gVar x,

• H (App X Y) = gApp X (H X) Y (H Y),

36

• H (Lm x X) = gLm x X (H X).

Additionally, H commutes with substitution and preserves freshness, i.e.,

• H (Y [X/x]) = (Y,H Y)[(X,H X)/x]g,

• fresh x X =⇒ gFresh x X (H X).

We call the above map H the FR-FSb-morphism to A.

Proof sketch. FR-FSb-models are a rephrasing of the notion of Σ-FR-model, just like

FR-models are a rephrasing of the notion of Σ-model. Moreover, this theorem is a rephrasing

of the existence and uniqueness of a FR-morphism (in Σ).

All these mean that this theorem follows from Th. 2.9 by a general Horn argument,

namely, that from the proof of Prop. 1.2. �

2.5.2 Solutions for the two problems

We are finally ready to present the promised solutions. As prescribed by Section 2.5.1, we

organize the target sets as models for the discussed Horn theories; then we use Th. 2.9

(rephrased).

For Problem I. We let A, the set of semantic values, ranged over by s, t, be val→ D. We

organize A as an FSb-model. The desired recursive equations from Section 2.3.1 leave us no

choice about the generalized construct operators on A:

- gVar x = λρ. ρ x;

- gApp s t = λρ. APP (s ρ) (t ρ);

- gLm x s = λρ. LM (λd. s (ρ[x← d])).

Moreover, the desired freshness obliviousness property imposes that generalized freshness

on A be at least as strong as the following relation, and we choose to define it as precisely

this relation:

- gFreshx s = (∀ρ, ρ′. ρ =x ρ
′ =⇒ s ρ = s ρ′).

Finally, the desired substitution compositionality leaves us no choice about the definition

of generalized substitution on A:

- s[t/x]g = λρ. s (ρ[x← t ρ]).

Thus, saying that the clauses and desired facts listed in Section 2.3.1 hold is the same as

saying that the map [] is an FSb-morphism. For instance, substitution compositionality, i.e.,

∀X Y X ρ. [Y [X/x]] ρ = [Y] (ρ[x← [X] ρ])

means

∀X Y X. [Y [X/x]] = λ ρ. [Y] (ρ[x← [X] ρ]),

which means

37

∀X Y X. [Y [X/x]] = [Y] [[X]/x]g,

which means: [] commutes with substitution.

According to Th. 2.9 (rephrased), what remains to do in order to have Problem I resolved

is checking that A with the above structure is indeed an FSb-model, i.e., satisfies the clauses

F1-F4, S1-S4 and AR. It turns out that here, as well as in most of the examples we consider

later, checking these facts is trivial.

For instance, checking the most complex of them, AR, amounts to:

- fixing s, ρ, d, x, y,

- assuming ∀ ρ1 ρ2. ρ1 =y ρ2 =⇒ s ρ1 = s ρ2,

- and showing that s(ρ[y ← d][x← d]) = s(ρ[x← d]).

The latter fact follows immediately from the assumption, noticing that ρ[y ← d][x← d] =y

ρ[x← d].

For Problem II. We take A to be term({APP, LM}) (the set of λ-terms with two constants).

We organize A as an FSb-model.

Again, the generalized construct operators, the minimal notion of freshness, and the

generalized substitution on A are all pre-determined by the desired recursive equations:

- gVar x = x;

- gAppX Y = App (App APP X) Y ;

- gLm x X = App LM (Lm x X);

- gFresh = fresh;

- [/]g = [/].

Notice that gApp and gLm are different from App and Lm, while, to the contrary, gFresh

and [/]g are just regular freshness and substitution – a main point of HOAS is reusing

substitution. Again, it is immediate to check that A is an FSb-model, yielding, by Th.

2.9 (rephrased), the existence (and uniqueness) of a map rep : term → term({APP, LM})
satisfying the desired recursive equations and in addition preserving freshness and being

compositional w.r.t. substitution. (Our Isabelle formalization of this example is presented in

detail in Section 2.9.4.)

2.5.3 Bottom line to our solutions

There are two advantages in employing the described recursors instead of directly attempting

a representative-independent definition (perhaps proved to be so, dynamically, at definition-

time):

• Clear aprioric picture of what needs to be proved.

• Extra built-in compositionality results.

38

Concerning the first of these, the reader may wonder whether the proofs of the involved

Horn clauses are really necessary, and weather the aforementioned direct approach may not

in fact be faster. To get an answer to this, the reader should attempt such a direct proof –

he/she may find amusing contemplating the unavoidability of these (or very similar) clauses,

that we claim would have to be (re)discovered, possibly slowly and painfully, within the

direct approach.

2.6 More examples

Our Horn-based principle is (perhaps surprisingly) extremely general. We could not find in

the literature any example of a syntactic map supposed to feature compositionality (of some

kind) w.r.t. substitution and not falling in the scope of this principle. In this section we give

more examples.

As seen in the solutions for Problems I and II, listing all the desired clauses – those for

the term constructs, the minimal one for freshness, and the one for substitution – determines

a model automatically. Therefore, when discussing the next examples, we shall only spell

the clauses, leaving implicit the construction of the corresponding model. Unless otherwise

specified, the considered syntax is that of the untyped λ-calculus, term.

2.6.1 The number of free occurrences of a variable in a term

Given a variable z, the intended definitional clauses of the map noz : term → IN , taking

any term X to the number of free occurrences of z in X, are the following:

- noz x = if x = z then 1 else 0;

- noz(App X Y) = (nozX) + (noz Y);

- noz(Lm x X) = if x = z then 0 else noz X.

To make them into a rigorous definition, we need to ask: what is the desired/necessary

relationship between noz and freshness on one hand and noz and substitution on the other.

(In fact, an employment of this map in larger developments would typically need to ask these

questions anyway.)

The answer to the the first question is the simpler one:

- fresh z X =⇒ nozX = 0.

(The above happens to hold as an “iff”, but this is not needed for our purpose, where a

“preservation” clause suffices.)

To the substitution question however, we cannot answer for a fixed z, but need to consider

all noz’s at the same time, obtaining:

- noz(X[Y/y]) =

{
(noyX) ∗ (noz Y), if y = z

(nozX) + (noyX) ∗ (noz Y), otherwise

39

This of course suggests considering the simultaneous version of the map, no : term→
(var→ IN), where no X z now denotes what used to be nozX. We obtain:

- no x z = if x = z then 1 else 0;

- no (App X Y) z = (no X z) + (no Y z);

- no (Lm x X) z = if x = z then 0 else no X z.

- fresh z X =⇒ no X z = 0;

- no (X[Y/y]) z =

{
(no X y) ∗ (no Y z), if y = z

(no X z) + (no X y) ∗ (no Y z), otherwise

which do work as a Horn definition of no. (Checking the desired clauses is trivial arithmetic.)

2.6.2 A more technically involved example – connection with the

de Bruijn representation

De Bruijn indexes are a standard way to represent λ-calculus for efficient manipulation

/ implementation purposes. The set dB, of de Bruijn terms, ranged over by K,L,M , is

defined by the following grammar, where n ranges over IN :

K ::= VAR n | APP K L | LM K

There are no variable bindings involved – rather, the index n of a de Bruijn variable VAR n

indicates the “distance” between the given occurrence and its LM-binder (if any), i.e., the num-

ber of LM-operators interposed between that occurrence and its binder. Thus, e.g., the λ-term

Lm x (Lm y (App y x)) corresponds to the de Bruijn term LM (LM (APP (VAR 0) (VAR 1))).

As it stands, this correspondence is not perfect, since, on one hand, there are λ-terms

with free variables, and, on the other, there are de Bruijn terms with dangling indexes, i.e.,

indexes that fail to point to a valid binder (e.g., VAR 0, or LM (VAR 1)). A more serious

discrepancy is that the processes of binding variables in terms are different: using Lm, one

can choose any variable x to be bound, while using LM one binds the “default” de Bruijn

variables waiting to be bound, namely, those with dangling level 0.

A closer mathematical connection, allowing one to actually relate de Bruijn versions of

standard results with the “official” λ-versions (as is done, e.g., in [107]) can be achieved via

parameterizing by variable orderings, as discussed in [33].

We model such orderings as injective valuations of variables into numbers, i.e., injective

elements of val = (var → IN). Let sem, the set of semantic values, ranged over by s, be

{ρ ∈ val. inj ρ} → dB, where inj : val → bool is the predicate stating that a valuation is

injective. Then λ-terms are interpreted as de Bruijn terms by a map toDB : term→ sem,

read “to de Bruijn” as follows.

The clauses for variables and application are the obvious ones:

- (1) toDB x = λρ. VAR(ρ x);

40

- (2) toDB X Y = λρ. APP (toDB X ρ) (toDB Y ρ).

To interpret λ-abstraction, we first define mkFst : var→ val→ val, read “make first”:

- mkFst x ρ = λ y. if y = x then 0 else (ρ y + 1).

(Thus, x is “made first” by assigning it the first position, 0, in ρ, and by making room for it

through shifting the values of all the other variables.) Now, we set

- (3) toDB (Lm x X) = λρ. LM(toDB X (mkFst x ρ)).

(Thus, in order to map (Lm x)-abstractions to LM-abstractions, x is initially “made first”,

i.e., mapped to 0, the only value which LM “knows” how to bind.)

The above clauses are essentially Definition 2.3 on page 192 in [33] (under a slightly

different notation). There are some similarities between these clauses and those from Problem

I, but there are also some major differences, notably the interpretation of λ-abstractions and

the restricted space of valuations here, which prevent us from reducing one problem to the

other.

As usual, to make the definition rigorous, we ask the freshness and substitution questions.

What can we infer about x versus toDB X if we know that x is fresh for X? The answer

to this is similar to that from Problem I: we can infer obliviousness to x of the interpretation:

- (4) fresh x X =⇒ (∀ ρ ρ′. ρ =x ρ
′ =⇒ toDB X ρ = toDB X ρ′).

As for the substitution question, the answer is given by a lemma stated in loc. cit.:

- (5) toDB (X[Y/y]) = λρ. (toDB X) (mkFst y ρ) [(toDB Y ρ)/0]b,

where [/]b : dB→ dB→ IN → dB is de Bruijn substitution (i.e, plain FO-substitution):

— (VAR n)[M/m]b = if n = m then M else VAR n,

— (APP K L)[M/m]b = APP (K[M/m]b) (L[M/m]b),

— (LM K)[M/m]b = LM (K[M/m]b).

(Thus, the toDB treatment of substitution is similar to that of λ-abstraction: x is 0-indexed

and then 0 is de Bruijn-substituted.)

Again, to have clauses (1)-(3) rigorously justified and clauses (4), (5) proved, one needs

to check that the resulted model is an FSb-model. Unlike in the previous examples, here

there are some complications, in that some of the FSb-model clauses simply do not hold on

the whole space sem. Fortunately however, a technical closure condition fixes this problem.

Namely, if we take

sem′ = {s ∈ sem. ∀σ : IN → IN, ρ ∈ val. inj σ ∧ inj ρ =⇒ s (σ ◦ ρ) = G σ (toDB X ρ)},
where G : (IN → IN)→ dB→ dB is a map whose definition we give below, then sem′, with

the FSb-structure given by clauses (1)-(5), indeed turns out to be an FSb-model – checking

this is relatively easy, but does rely on some de Bruijn arithmetic.

The definition of G (having little importance beyond its technical role in the invariant

that helps defining toDB), goes as follows:

- G σ K = vmapDB (cut σ) 0 K, where

- vmapDB : (IN → IN → IN) → IN → dB → dB, read “variable map”, is the natural de

41

Bruijn analogue of, say, list map (also taking into account, like any “natural” de Bruijn

function, the LM-depth, recursively):

— vmapDB σ n (VAR i) = VAR (σ n i),

— vmapDB σ n (APP K L) = APP (vmapDB σ K) (vmapDB σ L);

— vmapDB σ (LM K) = LM (vmapDB σ (n+ 1) K);

- and cut : (IN → IN)→ IN → (IN → IN) is defined by

cut σ n i = if i < n then i else σ (i− n) + n.

For more details on the technical development which lead to the definition of toDB, see

Section 2.9.4 and theory C deBruijn from the (commented) formal scripts available at [121].

We conjecture that the difficulty we encountered with constructing an FSb-model for this

example would be matched by a corresponding difficulty in making the definitions go through

in an ad-hoc approach, where one would eventually have to discover a similar invariant (again,

compared to our approach, with the disadvantage of having to do this discovery by repeated

trial and error in the middle of inductive proofs, not knowing in advance what properties

need to hold). Unfortunately, we have no way of testing this conjecture, as ours seems to be

the first rigorous (let alone formal) treatment of this construction from the literature. In

[33], one employs quasi-terms rather than terms, and α-equivalence is not even defined until

after defining the above de Bruijn interpretation, and then its definition is non-standard:

α-equivalence is taken to be the very kernel of this interpretation. Moreover, the substitution

lemma is stated in op. cit. without a proof. (It would of course be interesting to see a

Nominal-Logic take on this example.)

2.6.3 A more subtle example – CPS transformation

Consider the task of defining the call-by-value to call-by-name continuation passing-style

(CPS) transformation as discussed in [117] in the context of λ-calculus. The transformation

goes recursively by the following clauses on the syntax of terms (where below we also let k

range over variables thought as continuations):

- cps x = Lm k (App k x), for some k 6= x;

- cps (Lm x X) = Lm k (App k (Lm x (cps X))),

for some fresh variable k;

- cps (App X Y) =

Lm k (App (cps X)

(Lm x (App (cps Y)

(Lm y (App (App x y) k))))),
for some fresh distinct variables k, x, y.

Above, the most specific clause is the one for App, which follows the usual sequential

interpretation of CPS. Namely, let X ′ and Y ′ be cps X and cps Y , i.e., the CPS-transformed

versions of X and Y . Then, given any continuation k, cps (App X Y) is evaluated as follows:

42

- X ′ is evaluated and the result is passed, as x, to the continuation starting with “Lm x”,

- which in turn evaluates Y ′ and passes the result, as y, to the continuation starting with

“Lm y”,

- which in turn evaluates App x y and finally passes the result to the original continuation, k.

Consequently, call-by-value behavior is achieved with call-by-name mechanisms. In fact, it is

achieved independently of whether call-by-name or call-by-value are assumed as underlying

mechanisms on the host syntax – this is known as “indifference” (see Th. 1 on page 148 in

op. cit.).

As before, the problem is making the above definition rigorous. Now, trying to approach

this directly using our Horn machinery for the term syntax does not work for the following

reason: the desired transformation does not commute with arbitrary substitution, but only

with substitution of values for variables, where a value is a term which is either a variable

or a Lm-abstraction. I.e., as shown in op. cit. (Lemma 1 on page 149), cps (X[Yvl/y]) =

(cps X) [(cps Yvl)/y] does hold for all values Yvl , but not for arbitrary terms. Interestingly,

the solution lays here in recognizing the proper granularity of the syntax suggested above.

Indeed, the aforementioned restricted substitution compositionality, as well as all the rest of

the call-by-value theory developed in op. cit., requires that, under call-by-value, the syntactic

categories should emphasize value terms. Namely, we are better off if we work with the

following variation of term, split in two syntactic categories:

- termfl, of full terms, ranged over by X,Y ,

- termvl, of value terms, (or, simply, values), ranged over by Xvl ,Yvl ,

defined mutually recursively by the following grammar:

X ::= InVl Xvl | App X Y

Xvl ::= x | Lm x X

Thus, (termfl, termvl) is term with values singled out as a separate category (InVl

being the injection of values into full terms). Here, only substitution of values for variables

makes sense, “institutionalizing” the following semantic remark from op. cit. on page 135:

”free variables should be thought of as ranging over values and not arbitrary terms”. In

this two-sorted context, the corresponding version of our iteration principle does the job

of defining the mutually recursive maps cps : termfl → term and cpsvl : termvl → term,

together with the (proved) statements of their freshness and substitution preservation, by

the clauses:

- (1) cpsvl x = x;

- (2) cpsvl (Lm x X) = Lm x (cps X);

- (3) cps(InVl Xvl) = Lm k (App k (cpsvl Xvl)), for some fresh variable k;

- (4) cps(App X Y) = 〈same as before〉

43

- (5) fresh y X =⇒ fresh y (cps X);

- (6) fresh y Xvl =⇒ fresh y (cpsvl Xvl);

- (7) cpsvl (Xvl [Yvl/y]) = (cpsvl Xvl) [(cpsvl Yvl)/y];

- (8) cps (X[Yvl/y]) = (cps X) [(cps Yvl)/y].

Notice that the originally intended behavior for variables and Lm-abstractions now follows

from the above, by inlining cpsvl, for InVl-wrapped values:

- cps (InVl x) = Lm k (App k x), for some k 6= x;

- cps (InVl (Lm x X)) = Lm k (App k (Lm x (cps X))), for some fresh variable k.

Checking the necessary clauses for the definition to work is again routine, provided several

basic properties of freshness and substitution are available. There is of course the question

whether it is worth “storing” call-by-value λ-calculus in a different data type from standard

λ-calculus, or should one rather define values inside standard λ-calculus and work with these.

This is an engineering, not a mathematical question, since the two approaches are of course

equivalent. If one opts for a different data type, then the isomorphism between termfl and

term is yet another (trivial) application of our iteration principle.

2.6.4 An example employing full recursion – freshness of a

constant for a term

Here we work with the syntax of λ-calculus with constants. The predicate ctFresh : const→
term(const)→ bool, where ctFresh c X states that c is fresh for (i.e., does not occur in) X,

is given recursively by the clauses:11

- (1) ctFresh c x = True;

- (2) ctFresh c d = (c 6= d);

- (3) ctFresh c (App X Y) = (ctFresh c X ∧ ctFresh c Y);

- (4) ctFresh c (Lm x X) = ctFresh c X.

Here, posing our usual freshness and substitution questions brings up two interesting

phenomena.

What can we infer about x versus (the truth value of) ctFresh c X knowing that x is fresh

for X? Absolutely nothing! This is OK, since, in the corresponding FR-FSb-model, we can

just set gFresh to be vacuously True, thus implementing the uninformative clause:

- (4) fresh x X =⇒ True.

This vacuousness w.r.t. freshness of course suggests we are using a perhaps too complex

machinery for a simple case, which here is true. But it also suggests that the impossibility

11As with most predicates, this is a case where an inductive definition would perhaps be more natural
than recursion; however, we define it recursively since this is a rare occasion to illustrate full recursion.

44

to infer anything from freshness is not an impediment in making our style of definitions go

through. In fact, this holds in general, as a simple consequence of the extra flexibility offered

by relations (compared to operations): Let us call Sb-model a structure as in the definition of

FSb-models (preceding Th. 2.9 (rephrased)), but without any generalized freshness operator

gFresh, and satisfying S1-S3 and [S4 and AR with gFresh removed]. Then a fresh-ignoring

version of Th. 2.9 (rephrased) holds for it. The reason is that any Sb-model can be made into

an FSb-model by just defining gFresh to be vacuously true. And similarly for FR-FSb-models

and Th. 2.10.

Now, how can we express ctFresh c (X[Y/y]) in terms of ctFresh c X and ctFresh c Y ?

(Notice that, unlike freshness, substitution is treated as an operation, with which the

morphism needs to commute; therefore, being able to answer the “substitution question” is

mandatory for our technique to work – see also Section 2.6.6.) Well, we really cannot, unless

we are able to test whether y is fresh for X. This means that, in the clause for substitution,

namely

- (5) ctFresh c (X[Y/y]) = (ctFresh c X ∧ (fresh y X ∨ ctFresh c Y)),

we need to rely not only on the recursively computed results ctFresh c X and ctFresh c Y , but

also on one of the original values, here, X. In other words, we need full recursion, i.e., Th.

2.10.

This may look a little surprising, since the clauses for the syntactic constructs, (1)-(3),

traditionally regarded as “the definition”, are purely iterative, only the “extra fact” (5)

relaying on a full-recursion-like mechanism. This situation reminds one that what should be

properly considered as the definitional clauses include the “extra facts” for freshness and

substitution. Indeed, (1)-(3) do not make a definition before (4) and (5) are stated (and

some properties are proved).

2.6.5 Other examples

These include the CPS transformation in the opposite direction (from call-by-name to call-

by-value) from [117] and the translation of the LF syntax into untyped λ-calculus (meant to

be subsequently Curry-style typed) employed in the proof of strong normalization for the

LF reduction [63, 19]. The reader is invited to try our technique on his/her own examples

pertaining to syntax with bindings – again, we believe it is very likely to work provided a

substitution lemma of some kind is in sight.

2.6.6 Non-examples

Of course, not everything one wants to define is compositional w.r.t. substitution. Such cases

fall out of the scope of our definitional principle. These include, e.g., the depth operator –

an immediate symptom showing why our principle cannot handle this example is the fact

45

that we cannot compute the depth of X[Y/y] based on the depths of X and Y ;12 in other

words, we cannot answer the substitution question. So this example is problematic because

it is, in some sense, syntactically under-specified, as it “ignores” substitution. An example

problematic because of a somewhat opposite reason is the so-called complete development,

introduced in [145] as a means to simplify the proof of the Church-Rosser theorem (and of

other results). This map, cdev : term→ term, is given by the clauses:

- (1) cdev x = x;

- (2) cdev (Lm x X) = Lm x (cdev X);

- (3) cdev (App X Y) = App (cdev X) (cdev Y), if App X Y is not a β-redex (i.e., if X does

not have the form Lm y Z);

- (3’) cdev (App (Lm y X) Y) = (cdev X)[(cdev Y)/y].

cdev reduces all the (arbitrarily-nested) β-redexes in a term. It does not commute with

substitution, mainly because it is not a “purely syntactic” map, but incorporates some

operational semantics. Note however that, even if the codomain consists of terms, our

technique does not require that substitution on the domain of terms be mapped to standard

substitution on the codomain, but rather to some well-behaved notion of “generalized

substitution”. We therefore could define a non-standard substitution (on standard terms)

that will eventually yield preservation of substitution, but this would be unnecessarily

complicated and artificial. Our principle is not intended to have its users work hard to have

their definitions go through; rather, it is aimed at situations where the issues of preservation

of freshness and substitution appear naturally as further desired properties. In Section 2.8,

we present a work-around that handles the cdev operator by a variation of our approach that

renounces the substitution compositionality goal, replacing it with the less ambitious one of

swapping compositionality.

2.7 Pushing the Horn approach even further

Our Horn approach defines maps as morphisms on an extension of syntax, in particular

infers about the defined maps some extra information: compositionality w.r.t. freshness and

substitution. Can we infer even more? The answer is: yes, if we prove more things about

the constructed model.

Next we consider criteria for three commonly encountered properties:

- (1) reflection of freshness;

- (2) injectiveness;

- (3) surjectiveness.

As usual, we present these criteria on the syntax of the untyped λ-calculus, term.

12Not even if we are allowed to use X and Y in the restrictive manner of full recursion, as we did in Section
2.6.4.

46

(1) An FSb-model is said to be fresh-reversing if the following facts (converse to clauses

F1-F4 from the definition of FSb-models), hold for it:

F1r: gFresh z (gVar x) =⇒ x 6= z,

F2r: gFresh z (gApp gX gY) =⇒ (gFresh z gX ∧ gFresh z gY),

F3-4r: gFresh z (gLm x gX) =⇒ (z = x ∨ gFresh z gX).

Theorem 2.11 If an FSb-model A is fresh-reversing, then the iterative map H : term→ A

from Th. 2.9 (rephrased) also reflects freshness (in addition to preserving it), in that the

following holds:

- fresh x (H X) = fresh x X.

Proof sketch. Routine induction on X. �

(2) An FSb-model is said to be construct-injective if its construct operators are mutually

injective, i.e., if the following hold

• gVar x, gApp X Y and gLm z Z are mutually distinct for all x, y,X, Y, Z;

• gVar, gApp (regarded as an uncurried binary operation) and gLm x (for each x) are

injective.

Theorem 2.12 If an FSb-model A is construct-injective, then the iterative map H : term→
A from Th. 2.9 (rephrased) is injective.

Proof sketch. One can show that ∀Y. H X = H Y =⇒ X = Y by induction on X. �

(3) An FSb-model A is said to be inductive if the following induction principle holds for it

for all ϕ : A→ bool: If the following are true:

• ∀x. ϕ (gVar x),

• ∀ gX gY . ϕ gX ∧ ϕ gY =⇒ ϕ (gApp gX gY),

• ∀x gX . ϕ gX =⇒ ϕ (gLm x gX),

then ∀gX . ϕ gX is also true.

Theorem 2.13 If an FSb-model A is inductive, then the iterative map H : term→ A from

Th. 2.9 (rephrased) is surjective.

47

Proof sketch. By the inductiveness property, taking ϕ to be λ gX . ∃X. gX = H X �

Thus, the above theorems integrate even more facts as “built-in”-s of the recursive definition.

Examples include:

- the HOAS representation operator from Section 2.3.2 is freshness-reflective and injective;

- the “number of free occurrences” operator from Section 2.6.1 is freshness-reflecting;

- the CPS transformation operator from Section 2.6.3 is freshness-reflective and injective.

Putting together the above theorems, we obtain the following internal characterization of

the term model,13 up to a (freshness reflecting and preserving and substitution preserving)

isomorphism:

Theorem 2.14 If an FSb-model A is fresh-reversing, construct-injective and inductive, then

the iterative map H : term→ A from Th. 2.9 is an isomorphism of FSb-models (where the

notion of isomorphism is the standard notion for first-order models).

Fresh-reversing, construct-injective, inductive FSb-models can be taken as a clean math-

ematical incarnation of what we previously called “the Platonic notion of syntax with

bindings”, i.e., the notion that any correct representation is supposed to capture. The basis

for this proposal is straightforward:

- on one hand, the properties involved in this specification should clearly be satisfied by

λ-terms;

- on the other, these properties characterize an abstract data type uniquely.

The above internal abstract characterization of term is certainly not the first one from

the literature – see Section 2.10. However, it appears to be the first one expressed in terms

of the essential ingredients only, namely, the syntactic constructs, freshness and substitution,

and also the first to be “taken seriously”, i.e., formalized and put to use (see Section 2.9.5).

2.8 Variations of the Horn-based recursion principle

Here, we present some variations of the Horn-based recursion principles from Section 2.5,

obtained by generalizing the swapping operator, aimed at capturing some of our “non-

examples” too.

We have exiled this Horn-based recursion variations towards the end of this chapter for

two reasons:

- (1) we are not completely sure of the significant usefulness they add to the already presented

principles;

- (2) we did not want to clutter the presentation of the theory with a zoo of variations.

13It is internal, in that it does not rely on things from “outside” the model itself (such as morphisms and
other models), as does, for instance, the characterization as initial Horn model.

48

We shall only discuss the iterative versions of these variations. The extension from

iteration to full recursion can be done standardly, as discussed in Section 1.4.2 and already

illustrated by the transition from FSb-models to FR-FSb-models from Section 2.5.1.

2.8.1 Swapping-based variations

Built-in compositionality w.r.t. substitution is one of the main conveniences of our recursion

principle. However, as shown in Section 2.6.6, sometimes such compositionality simply does

not hold, or does not even makes sense. In such cases, we can seek other means of having

the definition go through. Compositionality w.r.t. swapping can be one of these means, as

discussed below.

A fresh-swap-model (FSw-model for short) consists of a set A (ranged over by gX , gY , gZ)

together with operations and relation

• gVar : var→ A,

• gApp : A→ A→ A,

• gLm : var→ A→ A,

• [∧]g : A→ var→ var→ A,

• gFresh : var→ A→ bool,

satisfying the following properties (assumed universally quantified over all their parameters):

F1-F4: These are the same clauses as in the definition of FSb-models from Section 2.5.1.

Sw1: (gVar z)[z1 ∧ z2]g = gVar(z[z1 ∧ z2]v),14

Sw2: (gApp gX gY)[z1 ∧ z2]g = gApp (gX [z1 ∧ z2]g) (gY [z1 ∧ z2]g),

Sw3: gFresh x gZ =⇒ (gLm x gX)[z1 ∧ z2]g = gLm (x[z1 ∧ z2]v) (gX [z1 ∧ z2]g),

CSw: y 6∈ {x, x′} ∧ gFresh y gX ∧ gFresh y gX ′ ∧ gX [y ∧ x]g = gX ′[y ∧ x′]g

=⇒ gLm x gX = gLm x′ gX ′.

Above, the name “CSw” of the last clause stands for “Congruence for Swapping”.

Theorem 2.15 Let A be an FSw-model. Then there exists a unique map H : term → A

commuting with the constructors, i.e.,

• H x = gVar x,

• H (App X Y) = gApp (H X) (H Y),

14Recall from Section 1.4.1 that [∧]v is swapping on variables.

49

• H (Lm x X) = gLm x (H X).

Additionally, H commutes with swapping and preserves freshness, i.e.,

• H (Y [z1 ∧ z2]) = (H Y)[z1 ∧ z2]g,

• fresh x X =⇒ gFresh x (H X).

.

We call the above map H the FSw-morphism to A.

Proof sketch. Quite similar to the proof of Th. 2.9 (rephrased), except that:

- it employs the swapping-based alternative definition of α-equivalence (rather than the

substitution-based one) – see Section 1.4.1;

- it is simpler, since swapping interacts with bindings more straightforwardly than substitution.

�

The complete development operator cdev from Section 2.6.6 is indeed compositional w.r.t.

swapping, and clauses (1), (2), (3), (3’) from there, together with clauses for freshness and

swapping,

- (4) fresh x X =⇒ fresh x (cdev X),

- (5) cdev (X[z1 ∧ z2]) = (cdev X)[z1 ∧ z2],

turn out to be form a valid definition (by full recursion) using the aforementioned fresh-swap

Horn theory.

Interestingly, yet another swapping-based variation, employing a larger theory, can be

recognized by a “Horn reading” of work done by Norrish in [104] – this is detailed in Section

2.10.2.

2.8.2 Other variations

A principle with built-in compositionality w.r.t. (freshness and) both substitution and

swapping can be achieved in at least two ways, both including the freshness, substitution and

swapping clauses F1-F4, S1-S4 and Sw1-Sw3. Then we can choose to incorporate either the

substitution-based abstraction renaming clause AR (from the definition of FSb-models from

Section 2.5.1), or CSw, the above congruence-for-swapping clause; in a concrete situation,

the user should of course choose the one that is easier to check on the given target domain

of the definition – the outcome would be the same, namely, a map commuting with the

syntactic constructs, freshness, substitution and swapping.

A moderately interesting question is whether it would be possible to exclude both swapping

and substitution, or both freshness and substitution, or both freshness and swapping, from

50

the recursive clauses (while staying first-order, i.e., not getting into second-order issues such

as finiteness of the support, as in Nominal Logic). Indeed, recall that the original goal is

really to have the definitional clauses on the syntactic constructs go through – w.r.t. this

“pure” goal, freshness, substitution and swapping are just subsidiaries. (Although we have

argued that considering these subsidiaries, especially the first two, is often meaningful in its

own right, as it proves useful lemmas “at definition time”.) And indeed, freshness can be

trivially eliminated from the target models, both in the swapping and the substitution cases,

as briefly discussed in Section 2.6.4 – however, the applicability of the resulted principles

does not look very attractive.

2.9 Generalization and formalization

In this section, we first describe a (technical, but rather obvious) general setting for an

arbitrary syntax with bindings, and then our Isabelle formalization of this setting. Then

we discuss the formalization of the examples presented in Section 2.6, and some larger

developments that use these examples. Finally, we show how we have employed the term

characterization given in Th. 2.14 to create bridges, on which one may transport formal

constructions and results, between different Isabelle formalizations of terms with bindings.

2.9.1 General setting – arbitrary syntax with bindings

So far, we described Horn-based iteration and recursion for the particular syntax of untyped

λ-calculus, with the understanding that the results can be straightforwardly generalized to

any many-sorted syntax with bindings. In fact, we even implicitly employed variants of these

results for λ-calculus with constants (in Section 2.3.2) and for λ-calculus with emphasized

values (in Section 2.6.3).

Next we describe what notion of many-sorted syntax with bindings we have in mind, in a

manner that is close to our Isabelle formalization we discuss later. But before we do this,

let us slightly rephrase the λ-calculus quasi-terms and terms (introduced in Section 1.4.1).

We distinguish a new syntactic category, that of quasi-abstractions, as the set qAbs, ranged

over by qA, qB , qC , defined mutually recursively with the set qTerm of quasi-terms, ranged

over by qX , qY , qZ , as follows:

qX ::= qVar x | qApp qX qY | qLam qA

qA ::= qAbs x qX

Within qAbs x X, x is thought as being bound in x. This yields again a standard notion

of α-equivalence, this time coming under the form of two relations, one on quasi-terms and

one on quasi-abstractions. (Note that the previous λ-abstraction operator qLm : var →

51

qTerm → qTerm can be recovered as the composition of qLam and qAbs: qLm x qX =

qLam (qAbs x qX).) As before, α-equivalence brings up the notions of term (the set term,

ranged over by X,Y, Z) and abstractions (the set abs, ranged over by A,B,C) as α-classes

of quasi-terms and quasi-abstractions, which can be briefly specified by the grammar:

X ::= Var x | App X Y | Lam A

A ::= Abs x X

together with an indication that Abs binds x in X. All the standard operators – freshness,

swapping, substitution – come in pairs now: one for terms and one for abstractions (and

we use the same notation for both). Mirroring the situation for quasi-items, Lm : var →
term→ term, the previous binding operator, can be recovered as Lm x X = Lam (Abs x X).

The separation between terms and abstractions is a standard procedure for syntax with

bindings, going back at least to Milner’s treatment of the π-calculus [88]. It has the advantage

of being more flexible thanks to the higher granularity, and in general of being also economical

thanks to the possibility of reusing abstractions.

In order to appreciate these features, one should consider syntaxes richer than that of

untyped λ-calculus. For example, let us specify the syntax of the Edinburgh LF [63] – while

doing this, we try to point out the necessary ingredients required to specify a syntax with

bindings, preparing our generalization.

This time, we skip the presentation of the quasi-items, and discuss directly the items

obtained after one has factored to α-equivalence.

We first need to know what are the syntactic categories (which we shall call sorts): we

have object families, type families and kinds. Among these, however, only the first two have

associated categories of variables (we do not have kind variables). In other words, we have

three sorts of terms, say o, t, k, among which o, t are also sorts of variables. We let var be a

fixed infinite set of variables. We are not going to have multiple sets of variables, but simply

inject into terms different copies of var as many times as necessary (in this case, twice).

We shall let terms denote the set of terms of sort s, namely:

- termo, ranged over by X,Y, Z, shall be the set of object-family terms;

- termt, ranged over by tX , tY , tZ , shall be the set of type-family terms;

- termk, ranged over by kX , kY , kZ , shall be the set of kind terms.

Next, we need to indicate the term constructs, two of which are already given by the

above inclusion of variable sorts in term sorts:

- Varo : var→ termo,

- Vart : var→ termt.

Let us now establish what categories of abstractions we need, i.e., which sorts of variables

are bound in which sorts of terms. We shall allow abstracting a sort of variables in a sort of

terms only provided one of the desired operators requires such an abstraction. Anticipating

52

a bit, it will turn out we only need to bind o-variables in all types of terms. Therefore we

have:

- abso,o, ranged over by A,B,C,

with the associated constructor Abso,o : varo → termo → abso,o;

- abso,t, ranged over by tA, tB , tC ,

with the associated constructor Abso,t : varo → termt → abso,t;

- abso,k, ranged over by kA, kB , kC ,

with the associated constructor Abso,k : varo → termk → abso,k.

This concludes the issue of binding: all the above Abs-constructors bind in the same

way and are assumed to act, as before, modulo α. This separation of concerns is one of the

advantages of employing the intermediate notion of abstraction.

The remaining term constructs map tuples of terms or abstractions to terms and do not

introduce any bindings, hence are injective (free) constructs:

- App : termo → termo → termo (object application),

- Lam : termt → abso,o → termo (object lambda),15

- Tapp : termt → termo → termt (type application),

- Tlam : termt → abso,t → termt (type lambda),

- Tprod : termt → abso,t → termt (type product),

- Type : termk (the “type” kind),

- Kprod : termt → abso,k → termk (kind product).

This concludes the specification of the LF syntax. Compactly, we can write:

A ::= Abso,o x X

tA ::= Abso,t x tX

kA ::= Abso,k x kX

X ::= Varo x | App X Y | Lam tX A

tX ::= Vart x | Tapp tX Y | Tlam tX tA | Tprod tX tA

kX ::= Type | Kprod tX kA

with the understanding that the abstraction constructors are binders.

Summing up, we needed to indicate:

- the sorts of terms, and among these the sorts of variables (or, alternatively, the sorts of

variables, the sorts of terms, and an injection between them);

- the rest of the syntactic constructs, taking tuples of terms and abstractions into terms

(from the arities of which we can find out what are the needed abstractions and associate

corresponding constructors for them).

15E.g., in standard mixfix notation for LF, Lam tX (Abs x Y) would be written λx : tX . Y .

53

We now proceed with the generalization. As before, we fix an infinite set of variables, var,

ranged over by x, y, z. Given any two sets I and A, we let Input(I, A) be the set of partial

functions from I to A, which we call I-indexed A-inputs; elements of Input(I, term) (for some

sufficiently large set I) will be used as inputs (i.e., families of arguments) to the operations of

the binding signature. Given f ∈ Input(I, A) and g ∈ Input(I,B), we write sameDom f g,

read “f and g have the same domain”, for ∀ i ∈ I. (f i defined)⇐⇒ (g i defined).

A binding signature Σ is a tuple (index,bindex,varSort, sort,opSym, asSort, arOf, barOf),

where:

- index, ranged over by i, j, is the set of indexes (meant to be used for building families of

free arguments for the operators);

- bindex, also ranged over by i, j, is the set of binding indexes (bindexes for short) (meant

to be used for building families of bound arguments for the operators);

- varSort, ranged over by xs, is the set of variable sorts (varsorts for short) (representing

the various syntactic categories of variables);

- sort, ranged over by s, is the set of sorts (representing the various syntactic categories of

terms);

- opSym, ranged over by δ, is the set of operation symbols;

- asSort : varSort→ sort is an injective map (this is the aforementioned inclusion/injection

of varsorts “as sorts”);

- stOf : opSym→ sort, read “the (result) sort of”;

- arOf : opSym→ Input(index, sort), read “the (free) arity of”;

- barOf : opSym→ Input(bindex,varSort× sort), read “the bound arity of” (“barity of”,

for short).

We fix a signature Σ as above. We define the predicate isInBar : varSort× sort→ bool,

read “is in a bound arity”, by isInBar(xs, s) ⇐⇒ (∃δ i. barOf δ i = (xs, s)). Thus, isInBar

singles out the useful abstractions, the only ones we shall build.

The following sets:

- for each s ∈ sort, the set qTerm(Σ, s), of Σ-quasi-terms of sort s, ranged over by

qX , qY , qZ ,

- for each xs ∈ varSort and s ∈ sort such that isInBar(xs, s), the set qAbs(Σ, (xs, s)), of

Σ-quasi-abstractions of type (xs, s), ranged over by qA, qB , qC ,

- for each δ ∈ opSym, the set qinp(Σ, δ), of (well-sorted) Σ-quasi-inputs for δ, ranged over

by qinp,

- for each δ ∈ opSym, the set qbinp(Σ, δ), of (well-sorted) Σ-quasi-[bound inputs] (Σ-quasi-

binputs for short) for δ, ranged over by qbinp,

are defined mutually recursively by the following clauses:

- (1) qVar xs x ∈ term(Σ, asSort xs);

- (2) if qinp ∈ qinp(Σ, δ) and qbinp ∈ qbinp(Σ, δ), then qOp δ qinp qbinp ∈ qTerm(Σ, stOf δ);

54

- (3) if isInBar(xs, s) and qX ∈ term(Σ, s), then qAbs xs x qX ∈ qAbs(Σ, (xs, s));

- (4) if sameDom (arOf δ) qinp and ∀ i. qinp i defined =⇒ qinp i ∈ qTerm(Σ, arOf δ i), then

qinp ∈ qinp(Σ, δ);

- (5) if sameDom (barOf δ) qbinp and ∀ i. qbinp i defined =⇒ qbinp i ∈ qAbs(Σ, barOf δ i),

then qbinp ∈ qbinp(Σ, δ);

Here are some explanations:

- Clauses (1) and (2) are for constructing terms:

— (1) by injecting variables x of various varsorts xs , using a constructor that we called “qVar”;

— (2) by applying operations from the signature to quasi-inputs and quasi-binputs, using

a generic constructor that we called “qOp”, taking an operation symbol as first argument;

thus, qOp δ is the operation on quasi-terms corresponding to the operation symbol δ; this

operation is applied to a free input (i.e., a family of quasi-terms) and to a bound input (i.e.,

a family of quasi-abstractions) according to the (free) arity and bound arity of δ, obtaining

a quasi-term having as sort the result sort of δ;

- Clause (3) is for building quasi-abstractions from variables x of various varsorts xs and

quasi-terms, using a constructor that we called “qAbs”;

- Clause (4) is for building quasi-inputs as families of quasi-terms.

- Clause (5) is for building quasi-binputs as families of quasi-abstractions.

All the above constructions are performed with respecting the varsort-to-sort injections,

and the sorts, arities and barities of operation symbols as prescribed by the signature Σ.

Thus, e.g., clause (4) can be spelled in “mathematical English” as follows: for a quasi-input

qinp to be well-sorted w.r.t. an operation symbol δ, qinp should be defined precisely where

the arity of δ is defined, and, if defined on an index i, the corresponding term should have

the corresponding sort.

α-equivalence is defined again standardly considering the fact that, in a quasi-abstraction

qAbs xs x X, (xs, x), i.e., the variable x thought of as being of varsort xs, is bound in X.

Factoring to α-equivalence, we obtain the following sets:

- for each s ∈ sort, the set term(Σ, s), of Σ-terms of sort s, ranged over by X,Y, Z,

- for each xs ∈ varSort and s ∈ sort such that isInBar(xs, s), the set abs(Σ, (xs, s)), of

Σ-abstractions of sort (xs, s), ranged over by A,B,C,

- for each δ ∈ opSym, the set inp(Σ, δ), of (well-sorted) Σ-inputs for δ, ranged over by inp,

- for each δ ∈ opSym, the set binp(Σ, δ), of (well-sorted) Σ-[bound inputs] (Σ-binputs for

short) for δ, ranged over by binp.

We can state the definition of terms and abstractions compactly as follows, where

- we use superscripts s and (xs, s) to indicate membership to term(Σ, s) and abs(Σ, (xs, s)),

- we write inputs and binputs as indexed families,

- we inline the definitions of well-sorted inputs and binputs,

55

- and we state side-conditions in square brackets:

A(xs,s) ::= Abs xs x Xs [isInBar(xs, s)]

XasSort xs ::= Var xs x

XstOf δ ::= Op δ
(if arOf δ i defined then some XarOf δ i else undefined)i∈index

(if barOf δ i defined then some AbarOf δ i else undefined)i∈bindex

again, with the understanding that the abstraction constructor Abs is a binder.

The freshness, swapping and substitution operators are all standard (defined similarly to

those from the particular case of λ-terms from Section 1.4.1). We have:

- for each ys ∈ varSort

— and each s ∈ sort, a freshness operator for ys-variables in s-terms,

freshys,s : var→ term(Σ, s)→ bool;

— and each (xs, s) ∈ varSort× sort with isInBar(xs, s), a freshness operator for ys-variables

in (xs, s)-abstractions,

freshys,(xs,s) : var→ abs(Σ, (xs, s))→ bool;

- for each ys ∈ varSort

— and each s ∈ sort, a swapping operator for ys-variables in s-terms,

[∧]ys,s : var→ var→ term(Σ, s)→ term(Σ, s);

— and each (xs, s) ∈ varSort× sort with isInBar(xs, s), a swapping operator for ys-variables

in (xs, s)-abstractions,

[∧]ys,(xs,s) : var→ var→ abs(Σ, (xs, s))→ abs(Σ, (xs, s));

- for each ys ∈ varSort

— and each s ∈ sort, a substitution operator for ys-variables (with (asSort ys)-terms) in

s-terms,

[/]ys,s : term(Σ, asSort ys)→ var→ term(Σ, s)→ term(Σ, s);

— and each (xs, s) ∈ varSort×sort with isInBar(xs, s), a substitution operator for ys-variables

(with (asSort ys)-terms) in (xs, s)-abstractions,

[/]ys,(xs,s) : term(Σ, asSort ys)→ var→ abs(Σ, (xs, s))→ abs(Σ, (xs, s)).

In addition, it is often useful to consider parallel substitution, in environments. Given the

sets A and B, let A9 B be the set of partial functions between A and B having finite domain.

The set env, of environments, consists of families (ρxs : var 9 term(Σ, asSort xs))xs∈var, i.e.,

families of finite-domain partial functions mapping, for each varsort xs , variables (thought of

as xs-variables) to terms of the corresponding sort, asSort xs. The intention is that, for each

xs , the xs-variable x (appearing as Var xs x in a given term or abstraction) be substituted in

a capture-free manner by ρxs x if the latter is defined. This is achieved,

- for each s ∈ sort, by the s-parallel substitution operator,

[] : term(Σ, s)→ env→ term(Σ, s),

- and for each (xs, s) ∈ varSort× sort with isInBar(xs, s), by the (xs, s)-parallel substitution

56

operator,

[] : abs(Σ, (xs, s))→ env→ abs(Σ, (xs, s)).

The above finite-domain assumption is meant to integrate environments (hence parallel

substitution) into the fresh-induction mechanisms from Section 2.2.

Parallel substitution is heavily used in the adequacy proofs from our “HOAS on top of

FOAS” development presented in Chapter 3.

Note that our notion of binding signature is not as general as one could reasonably

imagine. Restrictions include the following:

- (1) There is no “native” concurrent binding of multiple variables. Thus, a binding construct

such as, e.g., case Z of (u : U, y : Y) ⇒ X (the destructor for dependent sums), meant to

bind u in [Y and X] and y in X, would need to be modeled here employing two operators,

say ∆1 and ∆2, as something like: ∆1 U (Abs u (∆2 Y (Abs y X))). This is adequate, but

perhaps not as direct as one may wish.

- (2) There are no variable sorts without corresponding term sorts. Consequently, if one wants

such “independent” categories of variables, as, e.g., the channel names in the π-calculus

[88], one has to embed them into terms having no other constructors. (Note however that

embedding variables into terms may pay off in the end, if one eventually decides to add some

constructs on the given syntactic category, as in the polyadic π-calculus [138]).

On the other hand, our setting is more general than one would typically expect, in an

unconventional direction: since inputs to term constructs are [index and bindex]-families

and index and bindex are not required to be finite, we can model infinitary syntax (featuring

infinitarily-branching terms), which may prove convenient in situations where one wishes to

import bits and pieces of simple semantics into the syntax, so that one can focus on more

complex features. For example, a standard presentation of CCS [87] employs potentially

infinite indexed summations
∑
i∈I Pi as part of the syntax of process terms – while it is true

that most of the useful examples could be captured within an alternative finitary syntax by

index variables x and a binding operator
∑

x : I. P (x), there is little point in introducing

scoping and variable-capture mechanisms for this simple phenomenon of indexing; instead,

the previous “semantic scoping” allowed into syntax seems more natural. Likewise, if we

have a concurrent programming language whose processes may pass around numbers, the

input of a number may be syntactically a binding Lm x : IN. P (x), or alternatively it may be

the application of an infinitary operator Inp (Pn)n∈IN .

(One may ask whether other notions of binding can be replaced by infinitary operations

as above. The answer to this happens to be relevant to the topic of this dissertation. Above,

the main point of writing Inp (Pn)n∈IN instead of Lm x : IN. P (x) was to anticipate all

possible substitutions for the bound variable, here, obtaining all possible outcomes Pn of

replacing x with a number n in P (x). For a less trivial case, such as λ-calculus, this means

replacing abstractions Abs y X with infinitary families (X[Y/y])Y ∈term – but this is HOAS!)

57

This concludes our presentation of the general setting. Generalizations of our Horn-based

iteration and recursion theorems that we stated for the untyped λ-calculus, namely Theorems

2.9, 2.10, 2.11, 2.12, 2.13 and 2.14, are conceptually straightforward, but notationally quite

tedious, without bringing any new insight. We therefore omit stating them here. (But in

Section 2.9.3 we point to the precise locations in our Isabelle scripts where we state and

prove these theorems, in a fairly readable format.)

2.9.2 Instantiating the general setting to particular cases

For the terms of the untyped λ-calculus. We take the following binding signature Σ:

- since we have only one syntactic category of variables and one of terms,

— varSort is a singleton set, say {vlm};
— sort is a singleton set, say {lm};
— asSort : varSort→ sort maps vlm to lm;

- opSym is taken to contain symbols for application and λ-abstraction, namely, opSym =

{app, lam};
- index is taken to contain slots for each sort in the arity of each operation symbol, here

index = {Iapp1, Iapp2};
- bindex is taken to contain slots for each pair varsort-sort in the barity of each operation

symbol, here bindex = {Ilam};
- stOf : opSym→ sort is defined by:

— stOf app = lm;

— stOf lam = lm;

- arOf : opSym→ Input(index, sort) is defined by:

— arOf app i = lm;

— arOf lam i = undefined;

- barOf : opSym→ Input(bindex,varSort× sort) is defined by:

— barOf app i = undefined;

— barOf lam i = lm.

Now, term(Σ, lm) and abs(Σ, (vlm, lm)) are precisely the terms and abstractions of

untyped λ-calculus discussed at the beginning of this section (with Op app being precisely

App, etc.)

For the LF syntax. We take the following binding signature Σ:

- since we have two syntactic categories of variables and three of terms,

— varSort is a two-element set, say {vo, vt};
— sort is a singleton set, say {o, t, k};
— asSort : varSort→ sort maps vo to o and vt to t;

58

- opSym = {app, lam, tapp, tlam, tprod, type, kprod};
- index = {Iapp1, Iapp2, Ilam, Itapp1, Itapp2, Itlam, Itprod, Ikprod};
- bindex = {Ilam, Itlam, Ikprod}
(Notice that, e.g., since lam is meant to take one free argument and one bound argument, it

gets one slot in index and one slot in bindex.)

- stOf : opSym→ sort is defined by:

— stOf app = o; stOf lam = o;

— stOf tapp = t; stOf tlam = t; stOf tprod = t;

— stOf type = k; stOf kprod = k;

- arOf : opSym→ Input(index, sort) is defined by:

— arOf app i = if i ∈ {Iapp1, Iapp2} then o else undefined;

— arOf lam i = if i = Ilam then t else undefined;

— arOf tapp i = if i = Itapp1 then t elseif i = Iapp2 then o else undefined;

— arOf tlam i = if i = Itlam then t else undefined;

— arOf tprod i = if i = Itprod then t else undefined;

— arOf type i = undefined;

— arOf kprod i = if i = Ikprod then t else undefined;

- barOf : opSym→ Input(bindex,varSort× sort) is defined by:

— barOf app i = undefined;

— barOf lam i = if i = Ilam then (vo, o) else undefined;

— barOf tapp i = undefined;

— barOf tlam i = if i = Itlam then (vo, t) else undefined;

— barOf tprod i = if i = Itprod then (vo, t) else undefined;

— barOf type i = undefined;

— barOf kprod i = if i = Ikprod then (vo, k) else undefined;

Note that isInBar(xs, s) holds iff (xs, s) ∈ {(vo, o), (vo, t), (vo, k)}, and therefore we have

three categories of abstractions. Now,

- term(Σ, o), term(Σ, t) and term(Σ, k) are what we previously denoted by termo, termt

and termk, respectively;

- abs(Σ, (vo, o)), abs(Σ, (vo, t)) and abs(Σ, (vo, k))

are what we previously denoted by abso,o, abso,t and abso,k, respectively.

2.9.3 Formalization of the general theory

The general setting for syntax with bindings sketched in Section 2.9.1 has been formalized in

Isabelle/HOL. The Isabelle scripts presented in browsable html format can be downloaded

from [120]. These scripts are fairly well documented by text inserted at the beginning of

each theory/section and often at the beginning of subsections too. Next we give an outline

59

of this formalization. The relevant part of the theory structure is shown in Figure 2.1.

Figure 2.1: The Isabelle theory structure for general syntax with bindings

The theories StableCardinals and EquivRelation2 contain some preliminaries on cardinals

and equivalence relations required for the development of the general theory of syntax

(the former for dealing with possibly infininitary operators, the latter for factoring to

α-equivalence).

Formalization of terms. The theories QuasiTerms Swap Fresh, QuasiTerms PickFresh Alpha

and QuasiTerms Environemnts Substitution deal with quasi-items (i.e., quasi-terms, quasi-

abstractions, etc.). They are introduced and studied in an unsorted format, by the following

inductive definition:16

- Any quasi-term qX is:

— either a variable injection, qVar xs x;

— or an operation applied to a quasi-input and a quasi-binput, qOp δ qinp qbinp.

- Any quasi-abstraction qA has the form qAbs xs x qX ;

- A quasi-input qinp is a partial function from indexes to quasi-terms;

16In the Isabelle scripts, for as long as we do not have “the true items” defined yet, we do not prefix the
quasi-item meta-variables by “q”, and thus write X,Y, Z for quasi-terms, etc.

60

- A quasi-binput qbinp is a partial function from bindexes to quasi-abstractions.

(In the scripts, the above comes as a datatype definition, at the beginning of the theory

QuasiTerms Swap Fresh.)

Notice that so far the difference between the formalization and the definition of Σ-quasi-

items from Section 2.9.1 is that the former are not classified according to sorts. In fact,

the Isabelle types of quasi-terms and quasi-abstractions are not (and actually, due to the

Isabelle type system, cannot be) parameterized by a signature Σ, but merely by the various

types required to build “raw” (i.e., unsorted) quasi-items: index, bindex, varSort, var

and opSym. The reason why we were not eager to “sort” in our formalization was the desire

to keep the complexity as low as possible for as long as possible – indeed, part of the theory

of syntax can be performed on unsorted items17 in such a way that it will be immediately

transported to sorted items.

α-equivalence on quasi-items is defined in the theory QuasiTerms PickFresh Alpha. In order

for the necessary properties of α to hold (including the very fact that it is an equivalence),

we had to make three assumptions, included as part of the Isabelle locale FixVars,18 defined

as the beginning of the mentioned theory:

- (1) the set var of variables is infinite;

- (2) the cardinality of var is stable;

- (3) there are fewer variable sorts than variables.

Above, assumption (1) is standard. Assumption (2) has to do with our desire to allow

for infinitary operators too. Stability is a generalization of the notion of countability – the

cardinal of the set IN of natural numbers is stable because a finite union of finite sets if

again finite. In general, a cardinal c is stable iff, for all families (Ai)i∈I where the cardinality

of I and that of each Ai are less than c, it holds that the cardinality of
⋃
i∈I Ai is also less

than c. (See theory StableCardinals from [120] for more details.) Assumption (3) is needed

for ensuring the right behavior of parallel substitution. If a signature has a finite number of

sorts and has all its operation symbols finitary (as do most signatures of interest in syntax

with bindings), then taking var to be a copy of IN satisfies the assumptions (1)-(3).

In the above context, good quasi-terms are defined to be essentially terms whose branching

at each Op node are smaller than the cardinality of variables. This ensures that they do

not exhaust all the variables, hence that it is possible to pick fresh variables for them. The

theory of α-equivalence is then developed for good quasi-terms.

The theory Transition QuasiTerms Terms “transits” from quasi-terms and quasi-abstractions

to terms and abstractions by defining the latter as α-equivalence classes of the former. More

precisely, we have good terms and good abstractions as α-equivalence classes of good quasi-

terms and good quasi-abstractions. Therefore, we have the following:

17More precisely, on what we call “good” items – see below.
18In Isabelle, a locale is a persistent context where one can fix several parameters and assumptions about

them, and prove facts following from these assumptions.

61

- Any good term X is:

— either a variable injection, Var xs x;

— or an operation applied to a good input and a good binput, Op δ inp binp.

- Any good abstraction A has the form Abs xs x X;

- A good input inp is a partial function from indexes to terms whose domain is smaller than

var;

- A good binput binp is a partial function from bindexes to abstractions whose domain is

smaller than var;

- Everything is “up to α”, considering that, within Abs xs x X, (xs, x) is bound in X.

In the theory Terms we develop a rich mathematical theory for good terms and their the

standard operations: freshness, swapping, (unary) substitution and parallel substitution. A

useful particular case of substitution, variable-for-variable substitution, is also defined.

The theory Well Sorted Terms finally introduces sorting of terms according to a signature.

Well-sorted terms are defined in a locale, FixSyn, which is an extension of the previous locale

FixVars with the following:

- we fix a binding signature Σ (the notion of binding signature is faithfully the one introduced

in Section 2.9.1);

- we make several assumptions about its components, namely:

— (1) the map asSort : varSort→ sort is injective;19

— (2) the domain of each arity arOf δ is smaller than var;

— (3) the domain of each barity barOf δ is smaller than var;

— (4) the type sort of sorts is smaller than var.

(Again, these very general assumptions are satisfied by most syntaxes in current use.)

In the above context, well-sorted terms, abstractions, inputs and binputs are introduced

as the predicates

- wls : sort→ term→ bool,

- wlsAbs : varSort× sort→ abs→ bool,

- wlsInp : opSym→ Input(index, term)→ bool,

- wlsBinp : opSym→ Input(bindex,abs)→ bool,

defined mutually inductively as follows:

- wls (asSort xs) (Var xs x);

- if wlsInp δ inp and wlsBinp δ binp, then wls (stOf δ) (Op δ inp binp);

- if isInBar(xs, s) and wls s X, then wlsAbs (xs, s) (Abs xs x X);

- if sameDom (arOf δ) inp and ∀ i X s. arOf δ i = Some s ∧ inp i = Some X =⇒ wls s X,20

then wlsInp δ inp;

- if sameDom (barOf δ) binp and ∀ i A xs s. barOf δ i = Some (xs, s) ∧ binp i = Some A =⇒
19This assumption is also part of the definition of signature from Section 2.9.1.
20In Isabelle, partial functions to a type T are modeled as total functions to the type Option(T), which

consists of copies Some t of the elements t of T and of the “undefined” value called None.

62

wlsAbs (xs, s) A, then wlsBinp δ binp.

Therefore, the set term(Σ, s) from Section 2.9.1 is the same as the set {X. wls s X} in

our formalization, and similarly for:

- abs(Σ, (xs, s)) versus {A. wlsAbs (xs, s) A},
- inp(Σ, δ) versus {inp. wlsInp δ inp},
- binp(Σ, δ) versus {binp. wlsBinp δ binp}.

A technical note – lifting operators. To keep statements about inputs (and binputs)

concise, we define the following polymorphic operators for lifting functions and predicates to

inputs:

- lift : (A→ B)→ Input(I, A)→ Input(I,B),

by lift f inp i = case inp i of Some a ⇒ Some (f a) | None ⇒ None;

- liftAll : (A→ bool)→ Input(I, A)→ bool,

by liftAll ϕ inp i = (∀i, a. inp i = Some a =⇒ ϕ a);

- liftAll2 : (A→ B → bool)→ Input(I, A)→ Input(I,B)→ bool,

by liftAll2 ϕ inp inp′ i = (∀i, a, b. inp i = Some a ∧ inp′ i = Some b =⇒ ϕ a b).

Thus, lift is the expected “map” for inputs, liftAll checks if a predicate holds for all values

of an input, and liftAll2 checks if a binary predicate holds for all synchronized values of two

inputs. These operators are omnipresent throughout our scripts. For instance, the condition

- ∀ i X s. arOf δ i = Some s ∧ inp i = Some X =⇒ wls s X

from a previous definition is written compactly as liftAll2 wls (arOf δ) inp.

Formalization of induction principles. In the absence of a depth operator (our terms

being allowed to be infinitely branching), we base our induction principles on an operator

giving the so-called “skeleton” of a term, which is a well-founded tree retaining only the

branching information from the original term.21

We have structural induction principles with various flavors:

- Generalizations of Prop. 2.3, including the following theorems:

— wls induct from theory Well Sorted Terms, employing, for the abstraction case, either of

the skeleton, or the swapped relation, or variable-for-variable substitution (whatever the user

finds convenient for a given situation);

— wls induct depth from theory Extra Assumptions, a version of the above replacing the skeleton

with the (at this point available) depth operator.

- Generalizations of Prop. 2.5 (“fresh” induction), including the following theorems from

theory Well Sorted Terms:

— wls templateInduct fresh; this is the most general form, employing a general notion of

parameter and also featuring a skeleton-preserving relation again for maneuvering in the

21See also the presentation of theory Extra Assumptions later in this section.

63

abstraction case;

— wls rawInduct fresh, a version of the above without the extra relation;

— wls induct fresh, a version with the notion of parameter customized to consist of lists of

variables, abstractions, terms and environments.22

Formalization of the recursion principles. The theories Iteration and Recursion formalize

the arbitrary-syntax generalization of the results pertaining to Horn-based iteration and

recursion with built-in substitution from Sections 2.5.1 and 2.7, as well as their variations

from Section 2.8.

We use the prefix “g” for generalized items from the theory Recursion, and the longer

prefix “ig” (where “i” stands for “iteration”) for the generalized items from the theory

Iteration. Moreover, what we call in the scripts fresh-substitution and fresh-swap models are

actually their full-recursive variants; for the simpler, iterative variants, we use in the scripts

the term “imodel”. We prefer the shorter terminology and notation for full recursion since,

being more general, is the only one we “keep” with us. (But iteration is used to infer full

recursion in first place, as indicated in the proof sketch for 2.10.)

Next we only discuss the formalization of (full-recursion) models from the theory Recursion,

but most of the discussion applies to the imodels from Iteration as well. We have four kinds

of models:

- FSb-models, formalizing the concept described in Section 2.5.1;

- FSw-models, formalizing the swapping-based variation described in Section 2.8.1;

- FSbSw-models and FSwSb-models, formalizing the two substitution-swapping combinations

described in Section 2.8.2.

For economy reasons, all these kinds of models share a common Isabelle record type, featuring

operators for the syntactic constructs, freshness, swapping and substitution – such a record

is called a “raw” model. The involved clauses, such as F1-F4, S1-S4 and AR for FSb-models,

stated as predicates on raw models, make such a raw model a specific model of one of the 4

kinds; if a certain feature is not needed for a certain kind of model (such as swapping for

FSb-models), the corresponding operator is left undefined.

More precisely, reflecting our general setting for terms (including the distinction between

terms and abstractions), a (raw) model, defined at the beginning of theory Recursion, is a

record, depending on the types index, bindex, varSort, sort, opSym, var, as well as on

the types gTerm and gAbs of generalized terms and abstractions (the latter representing the

carriers), and consisting of the following Isabelle constants:

- Well-sortedness predicates:

— gWls : sort→ gTerm→ bool;

22The last three theorems are listed in the decreasing order of their generality; remember that the goal in
formal development is to state not only the most general facts, but also facts that are convenient to use;
some less general facts are more convenient (if applicable).

64

— gWlsAbs : varSort× sort→ gAbs→ bool.

- Generalized term and abstraction constructs:

— gVar : varSort→ var→ gTerm;

— gAbs : varSort→ var→ term→ gTerm→ gAbs;

— gOp : opSym→ Input(index, term)→ Input(index,gTerm)→ Input(bindex,abs)→
Input(bindex,gAbs)→ gTerm;

- Generalized freshness, swapping and substitution operators:

— gFresh : varSort→ var→ term→ gTerm→ bool;

— gFreshAbs : varSort→ var→ abs→ gAbs→ bool;

— gSwap : varSort→ var→ var→ term→ gTerm→ gTerm;

— gSwapAbs : varSort→ var→ var→ abs→ gAbs→ gAbs;

— gSubst : varSort→ term→ gTerm→ var→ term→ gTerm→ gTerm;

— gSubstAbs : varSort→ term→ gTerm→ var→ abs→ gAbs→ gAbs.

Then the four types of models are introduced by the predicates wlsFSb, wlsFSw, wlsFSbSw,

wlsFSbSw, read “well-structured FSb-model” etc., which are conjunctions of the necessary

clauses. Thus, e.g., given a raw model MOD, wlsFSb MOD is defined to be a conjunction of

six predicates:

- gWlsAllDisj MOD, stating that the carriers of the model (given by gWls and gWlsAbs) are

disjoint for distinct sorts;

- gWlsAbsIsInBar MOD, a technical condition stating that only carriers of meaningful ab-

stractions (namely, those for pairs (xs, s) for which the predicate isInBar(xs, s) holds) are

non-empty;

- gConsPresGWls MOD, stating that the generalized syntactic constructs preserve (i.e., are

well-defined on) the carriers;

- gSubstPresGWlsAll MOD, stating carrier preservation by generalized substitution;

- gFreshCls MOD, stating ”the fresh clauses” (generalizing F1-F4 from Section 2.5.1);

- gSubstCls MOD, stating ”the substitution clauses” (generalizing S1-S4 from Section 2.5.1);

- gAbsRen MOD, stating ”the abstraction-renaming clause” (generalizing AR from Section

2.5.1).

The expected notions of morphism from the term model to a model of each of the four kinds

(generalizing the notion of FR-morphism from Section 2.5.1 and the corresponding ones for

the variations) is given by the predicates termFSbMorph, termFSwMorph and termFSwSbMorph

(there are only three of them, since the notions of morphisms for FSbSw and FSwSb

models coincide), stating preservation of well-sortedness, freshness and of substitution and/or

swapping, depending on the kind.

Given a FSb-model MOD as above, the associated recursive morphism from the term

model comes as two maps rec MOD : term→ gTerm and recAbs MOD : abs→ gAbs. These

are defined as prescribed in the proof sketch for Th. 2.10, based on the iterator (dealt with

65

in the previous theory Iteration). The recursion theorems are then stated:

- The generalization of Th. 2.10, split in two:

— existence, as theorem wlsFSb recAll termFSbMorph (note that H from Th. 2.10 is given

here by rec MOD and recAbs MOD);

— uniqueness, as theorem wlsFSb recAll unique presCons (saying that (rec MOD, recAbs MOD)

is the only pair of construct-preserving maps from terms and abstractions to the target

model).

And similarly for the other three kinds of models.

Generalizations of the criteria for extra morphism properties from Section 2.7 have also

been formalized:

- Th. 2.11, as theorem wlsFSb recAll reflFreshAll,

- Th. 2.12, as theorem wlsFSb recAll isInjAll,

- Th. 2.13, as theorem wlsFSb recAll isSurjAll.

And again, similarly for the other three kinds of models.

A difference between the presentation in Section 2.7 and the formalizated theorems

pointed in the previous paragraph is that for the latter we use full-recursion models instead of

iterative models – this is because later, in case-studies, we only wish to employ the notion of

full-recursion models (iterative models being a particular case, while not more convenient to

use). Consequently, in the surjectiveness criterion, theorem wlsFSb recAll isSurjAll, we need

an extra hypothesis saying that the given full-recursion model has its syntactic constructs

“indifferent” to the concrete-term (and concrete-abstraction) arguments, in other words, that

the model under-behaves (w.r.t. the syntactic constructs) like an iterative model.

Some notes on engineering many-sortedness for iteration. As mentioned, we mainly

care about the content of theory Iteration (iteration principles) in order to obtain full recursion,

and then (beyond inferring semantic-domain interpretation – see below) we forget about it.

However, the “hard work” behind the end-product recursion principles lays in this theory.

In order to build the desired map to the target model MOD, we have essentially followed the

path indicated in the proof sketch of Th. 2.9:

- (1) Start with the standard initial map (commuting with the syntactic constructs) from

the free structure of quasi-terms to (the carrier of) MOD – this map, called qInit MOD in the

scripts (and having qInitAbs MOD as its abstraction counterpart),23 is given for free by the

Isabelle datatype recursion mechanism.

- (2) Then prove the necessary preservation facts (of freshness, α-equivalence, etc.).

- (3) Finally, construct a map from terms (i.e., α-classes) to MOD by the universal property

of quotients. This map, called iter MOD in the scripts, is the desired morphism, i.e., the

desired iterator.

23In what follows, we shall omit mentioning the abstraction counterparts of the various maps.

66

There was a difficulty with step (3) in the above path. Recall that we have α as a

congruence not only on well-sorted terms, but also on the (unsorted) good terms. Since using

a many-sorted version of the universal property of quotients would be tedious to formalize

(and such a formalization would have to take into account congruence issues too), we of

course preferred to take advantage of the above flexibility of α and use the unsorted version

of the aforementioned universal property. But the Horn axiomatization of models is sorted –

e.g., a clause such as freshAbs xs x (gAbs xs gX) is not supposed to hold for any raw gX , but

only for those of sort asSort xs . Indeed, being sort-flexible for concrete terms is harmless (and

in fact helpful), but for axiomatizing models such flexibility works against us, as it triggers

unnecessarily general facts that the user needs to prove to have an iterative definition go

through. So for models we had to be “sort-strict”, implying that step (3) would not go

through w.r.t. unsorted good terms.

The solution was to introduce an intermediate, sort-flexible axiomatization, consisting of

what we called in the scripts “the strong clauses”, which are versions of the original clauses

making no sort hypotheses. Then, starting with a model MOD for the original axiomatization,

we constructed a model for the strong clauses, called errMOD MOD, by introducing an error

element ERR on which we dumped all the results of applying operators to sort-violating

arguments (for the case of the freshness relation, we dumped all such results onto True).

The function check : errMOD MOD → MOD, mapping all the non-error elements (called

“OK-elements” in the scripts) to themselves and mapping ERR no matter where (i.e., to an

arbitrary element called undefined in Isabelle) is a morphism of models. Moreover, for the

“strong model” MOD′ = errMOD MOD, step (3) works w.r.t. good terms, and in particular we

obtain a morphism, called iterSTR MOD′, from well-sorted terms to this model. Finally, the

composition of check and iterSTR MOD′ is our desired morphism, iter MOD.

Formalization of semantic-domain interpretations. Due to its importance and gener-

ality, the semantic interpretation example (or, rather, class of examples) discussed in Section

2.3.1 as motivational Problem I has also been included in the general development (for

an arbitrary syntax) – this is the topic of theory Semantic Domains. A “well-structured”

semantic domain (predicate wlsSEM) consists essentially of a type sTerm, of semantic values

(called “semantic terms” in the scripts’ comments), and of an interpretation of the operation

symbols from a signature, where abstractions are treated as functions (thus the operations

have second-order arguments to match bindings in the syntax, as for LM versus Lm at

Problem I). A compositional interpretation map (predicate compInt in the scripts) is a map,

via valuations, of syntax to the semantic domain which is compositional with the syntactic

constructs and with substitution and oblivious to freshness, as is [] in Problem I. The

main theorem, semIntAll compInt, states that, for any given semantic domain SEM, the pair

(semInt SEM, semIntAbs SEM), defined using the fresh-substitution-swapping (FSbSw) iterator

67

from theory Iteration, is indeed such a compositional interpretation map.24

Extra assumptions. Our binding signatures are quite general, e.g., as we have already

mentioned, they allow infinitary operations. (Recall that, in our general theory, the role

of justifying induction and recursion, standardly belonging to depth, is played by the

aforementioned “skeleton” operator.) This generality is too much for most cases, and

it also denies us access to some useful operators and facts. Therefore, in the theory

Extra Assumptions we have defined various locales extending our base locale FixSyn, where

we make more commitments and prove some consequences of these commitments. Namely,

we consider combinations of the following extra assumptions:

- (1) finite arities for the operation symbols;

- (2) finite number of sorts;

- (3) fewer operation symbols than variables;

- (4) varsorts the same as sorts.

The most important one is (1), which allows us to define the depth. Moreover, the

combination of (1) and (3) allows us to infer some useful cardinality facts, such as not having

more terms than variables (theorem wls ordLeq var).

2.9.4 Formalization of the examples and larger developments

All of the examples listed explicitly in this chapter have been formalized. As mentioned, our

first example, namely, semantic interpretation (appearing as Problem I in Section 2.3.1),

has been included as a “built-in” in the general theory.25 The rest of the examples are

formalized in roughly the same syntax in which they were presented in this chapter (usually

in a slightly more general format, allowing an unspecified number of constants too besides

variables, application and λ-abstraction).

Many of the examples appear in the formal scripts as parts of larger developments, the

largest one being a formalization of a significant part of Plotkin’s classic paper [117]. In all

such cases, we claim that the overall development benefits highly from the possibility to

define the map with the desired properties and move on, provided by our recursion principles,

as opposed to trying to make the definition work by ad hoc bases.

Next we give an overview of the various λ-calculus constructions and results we have

formalized, with an emphasis on the places where we used our recursion principles. The

formal scripts, including all the theories we discuss below, as well as all the underlying

general theory described in Section 2.9.3 and available separately at [120] (in other words,

24We preferred to employ the richer FSbSw-iteration, instead of just FSb-iteration as discussed in Section
2.5.2, since semantic domains also have a natural and potentially useful notion of swapping with which the
interpretation commutes.

25But its concrete instance for the λ-calculus can be seen in the theory L described below.

68

all the formal scripts pertaining to the first part of this dissertation) are available at [121].

Again, all these scripts are well-documented by text inserted at the beginning of each theory

and often at the beginning of each theory subsection too.

Instances of the general theory for particular syntaxes. So far, we have considered

the following two instances:

- (1) The syntax of the untyped λ-calculus with constants, with terms X,Y, Z ∈ term and

abstractions A,B ∈ abs:

X ::= Var x | Ct c | App X Y | Lam A

A ::= Abs x X

We let Lm x X denote Lam (Abs x X).

- (2) The two-sorted value-based variation of the above, with full terms X,Y, Z ∈ termfl,

value terms Xvl ,Yvl ,Zvl ∈ termvl and abstractions (of value variables in full terms) A,B ∈
abs(vl,fl):

X ::= InVl Xvl | App X Y

Xvl ::= Var x | Ct c | Lam A

A ::= Abs x X

where InVl is the injection of value terms into full terms. (Recall that this value-based

variation is discussed in Section 2.6.3.) Here, too, we let Lm x X denote Lam (Abs x X).

Notice that here we only have value variables, hence it only makes sense to substitute value

terms for variables.

The theories L1 and L are performing the instantiation of the general theory to the above

syntax (1), and LV1 and LV do the same for (2). The instantiation process is performed in a

completely uniform manner and will be eventually be automated, but currently it is done by

hand.

Next we describe the contents of L1 and L (that of LV1 and LV being similar). L1 is

essentially taking the actions described in Section 2.9.2:

- (a) defining the particular signature needed here, i.e., instantiating the locale FixSyn;

- (b) checking that the FixSyn assumptions are satisfied.

These steps are rather immediate, and they indeed give us the theory of the untyped

λ-calculus. However, for the sake of convenience of reasoning for the given concrete syntax,

we also take a third step, which requires more work:

- (c) transporting all the structure and theorems from the general-purpose format involving

operation symbols and inputs as families to a more Isabelle-“native” setting involving:

— separate Isabelle types for each syntactic category (here, just two: terms and abstractions);

69

— concrete n-ary operators on terms, e.g., App : term→ term→ term, so that we can write

App X Y instead of Op app inp, where inp is the two-element partial family containing X

and Y .

While, to some extent, the above transport could have been performed by some abbrevia-

tions instead of actually defining new types and operations, we preferred the latter approach

because of the higher degree of integration into the Isabelle typing system. (To help this

tedious process of transport, we have prepared the general theory, by considering “in advance”

some of the most encountered arities for concrete syntactic operators and replacing, for

such cases, the input notation with the more convenient n-ary operation notation (without

sacrificing generality though) – this is done in the “interface” theories Inter and Inter.)

Theory L contains all the facts one needs to know about the λ-calculus instance of the

theory, including:

- (1) basic facts about freshness, substitution and swapping;

- (2) induction principles;

- (3) the Horn-based recursion principles.

All these facts, especially those pertaining to (3) are very well documented by comments

inserted in between the formal scripts. Note that, in order to comprehend and use this

theory, no knowledge of the formalization of the general theory is needed, since everything

has been transported (in L1) to this specific syntax.

The theory of call-by-name λ-calculus. This is the content of the theories CBN and

CBN CR. We mainly follow Section 5 of [117].

In theory CBN, we introduce all the necessary relations pertaining to βδ-reduction26

– one-step left reduction, one-step reduction, parallel reduction, their reflexive-transitive

closures, the associated CBN equational theory, etc. – as inductive definitions, and then

prove several basic facts about them, such as fresh induction and inversion rules. (Note

that some of the facts we prove by hand about these relations, namely those of the kind

discussed in Section 2.2.2, would be available quasi-automatically if defined with the Nominal

Package.) In proving these properties, we did not have in mind economy (i.e., proving only

the necessary facts for our goal), but rather exhaustiveness (so to offer a “maximal” set of

handles to these relations for any future development based on them).

The number-of-free-occurrences operator no : term → var → IN discussed in Section

2.6.1 plays an important role in the development, where a measure based on it needs to be

assigned to parallel reduction (this measure roughly indicates the number of redexes available

in parallel in one step).

In theory CBN CR, we prove the call-by-name Church-Rosser theorem (which is a

prerequisite for the results from [117]). We use the elegant method of Takahashi [145], based

26δ refers to the presence of the so-called δ rules for reducing constants application.

70

on the complete development operator cdev : term→ term described in Section 2.6.6 (and

resolved at the end of Section 2.8.1). Notice that our formalization is rather faithful to [145],

in that cdev is indeed defined recursively as a function on terms. By contrast, other formal

proofs of Church-Rosser based on complete development, including the Twelf [6] and Abella

[4] proofs (available from their websites indicated in our citations) and the Isabelle Nominal

proof (available in the Nominal directory of the Isabelle distribution) define cdev as a binary

relation between terms, which complicates the simple proof presented in [145].

The theory of call-by-value λ-calculus. This is the content of the theories CBV and

CBV CR.We mainly follow Section 4 of [117], and the development has a similar structure to

the one for call-by-name λ-calculus.

HOAS representation of λ-calculus into itself. This is the content of the theory HOAS.

The first part of this theory deals with the representation of syntax; this is where we apply

our recursion principle, as discussed in Sections 2.3.2 and 2.5.2.

To give the readers not interested in inspecting our Isabelle scripts an idea on how the

formalization of such recursive definitions proceeds, we next list almost exhaustively the

screenshots of this formal definition, and comment them. We work in a setting slightly more

general than that mentioned in Section 2.3.2. Namely, recalling that term(const) denotes

the syntax of the lambda-calculus over a set of constants const, we have the following:

- The object syntax is term(const).

- The meta syntax is term(metaConst), where the set metaConst, of meta-constants,

consists of copies Const c of elements c ∈ const and of the new constants APP and LM.

We use the prefixes “Obj” and “Meta” for operators pertaining to the object syntax

and to the meta syntax, respectively. Moreover, we write [/o] and [/m] for the object

level and meta level substitutions, respectively. The definition of the desired model, called

rep MOD, is the following:

definition rep_MOD ::

(’const, ’const metaConst term, ’const metaConst abs)model

where rep_MOD ==

gWls_lm = % mX. True,

gWls_lm_lm = % mA. True,

gVar_vlm = Meta_Var,

gAbs_lm_lm = % y X mX. Meta_Abs y mX,

gCt = % c. Meta.Ct (Const c),

gApp = % X mX Y mY. Meta.App (Meta.App (Meta.Ct APP) mX) mY,

gLam = % A mA. Meta.App (Meta.Ct LM) (Meta.Lam mA),

gFresh_vlm_lm = % y X mX. Meta_fresh y mX,

71

gFresh_vlm_lm_lm = % y A mA. Meta_freshAbs y mA,

gSwap_vlm_lm = undefined,

gSwap_vlm_lm_lm = undefined,

gSubst_vlm_lm = % Y mY y X mX. mX [mY /m y],

gSubst_vlm_lm_lm = % Y mY y A mA. mA [mY /m y]

Explanations for the above:

- The type of rep MOD (indicated on the second line) is the record type of “models for the

term(const) syntax”, hence the first (actual) parameter const; the other two parameters

from this type represent the carriers of the model, which are the meta-terms and meta-

abstractions.

- The lines starting from the fourth one define the components of the record, i.e., the

“generalized operators” on the model.

- % is a notation for the Isabelle functional abstraction.27

- X,Y,A refer to object terms and abstractions, and mX ,mY ,mA to meta terms and

abstractions.

- The various “lm” and “vlm” suffixes from the generalized-operators’ names are a reminiscence

of the many-sorted setting: they refer to the only varsort and (term) sort for the particular

syntax term(const).

- The two “gWls” operators are the well-structuredness predicates for terms and abstractions,

allowing one to select only part of either of these types as the carriers for the model; the

flexibility offered by these operators is not needed here, so we take them to be vacuously

true.

- Remember that we use one single record type, of “raw” models, for holding different kinds

of models, featuring swapping and/or substitution operators. Here, we wish to employ

FSb-models, not caring about swapping, hence we leave the latter undefined.

Modulo these explanations, and modulo the distinction we make between terms and

abstractions in our formalization, the reader should now recognize the definition from the

second part of Section 2.5.2. For instance, the above definition of gAbs lm lm corresponds to

the following HOAS-specific recursive clause:

- repAbs (Obj.Abs x X) = Meta.Abs x (rep X),

where rep denotes, as in Sections 2.3.2 and 2.5.2, the representation map on terms, and

repAbs is its abstraction counterpart. Note that, since we employ full-recursion models, the

object-syntax argument X is also available in definition of gAbs lm lm, but not used, since

iteration suffices for this example.

In each of the Isabelle facts listed below, after the keyword “lemma”,

- first comes the name of the lemma,

27λ is an alternative notation, but we preferred using ASCII symbols only to obtain the screenshot.

72

- then the actual statement in double quotes,

- and finally the proof.

Once the model is defined, we need to check that it is indeed a “well-structured” FSb-

model, i.e., that it satisfies the involved clauses for freshness and substitution. In this case,

Isabelle is able to check these automatically28 (after we unfold the definitions):

lemma wlsFSb_rep_MOD:

"wlsFSb rep_MOD"

unfolding wlsFSb_defs by auto

This is all we needed to check to have our recursive definition go through. However, we wish

to infer some further facts for our morphism, in this case freshness reflection and injectiveness.

For these, Ths. 2.11 and 2.12, appearing in theory L1 as “wlsFSb rec refl freshAll” and “wlsFSb

rec is injAll”, respectively (which in turn are λ-calculus instances of the general theorems

from theory Recursion, wlsFSb recAll reflFreshAll and wlsFSb recAll isInjAll, respectively) tell

us that it suffices that the reversed fresh clauses hold and that the generalized constructs be

injective. Again, Isabelle discharges these goals automatically:

lemma gFresh_cls_rev_rep_MOD:

"gFresh_cls_rev rep_MOD"

unfolding gFresh_cls_rev_defs by simp

lemma gCons_inj_rep_MOD:

"gCons_inj rep_MOD"

unfolding gCons_inj_defs by simp

This concludes the creative part of the development. The rest is only “bureaucracy”, and

goes in the same way for all our recursive definitions. As mentioned, we call rep and repAbs

the associated recursive maps, between object terms and abstractions to the meta terms and

abstractions:

definition rep where

"rep X == rec_lm rep_MOD X"

definition repAbs where

"repAbs A == rec_lm_lm rep_MOD A"

28Of course, “Isabelle” is not alone in this – our rich collection of simplification rules from theory L
contribute the automation. Note, however, that these simplification rules are not tailored to solving a specific
problem for a specific syntax, but are instances of facts holding for an arbitrary syntax.

73

It now remains to apply the actual recursion theorems, relating the desired properties of

the recursive map with the facts we already proved about the model, obtaining that the pair

(rep, repAbs) is a morphism which is additionally freshness reflecting and injective:

lemma term_FSb_morph_rep:

"term_FSb_morph rep repAbs rep_MOD"

unfolding rep_def_raw repAbs_def_raw

using wlsFSb_rep_MOD by(rule "wlsFSb rec term_FSb_morph")

lemma refl_freshAll_rep:

"refl_freshAll rep repAbs rep_MOD"

unfolding rep_def_raw repAbs_def_raw

using wlsFSb_rep_MOD gFresh_cls_rev_rep_MOD by(rule "wlsFSb rec refl_freshAll")

lemma is_injAll_rep:

"is_injAll rep repAbs"

unfolding rep_def_raw repAbs_def_raw

using wlsFSb_rep_MOD gCons_inj_rep_MOD by(rule "wlsFSb rec is_injAll")

Unfolding the involved definitions, we can see the desired facts in familiar format:

lemma rep_simps[simp]:

"rep (Obj_Var x) = Meta_Var x"

"rep (Obj.Ct c) = Meta.Ct (Const c)"

"rep (Obj.App X Y) = Meta.App (Meta.App (Meta.Ct APP) (rep X)) (rep Y)"

"rep (Obj_Lm y X) = Meta.App (Meta.Ct LM) (Meta_Lm y (rep X))"

using term_FSb_morph_rep unfolding term_FSb_morph_defs by simp_all

lemma rep_subst[simp]:

"rep (X [Y /o y]) = (rep X) [(rep Y) /m y]"

using term_FSb_morph_rep unfolding term_FSb_morph_defs by simp_all

lemma rep_preserves_fresh:

"Obj_fresh y X ==> Meta_fresh y (rep X)"

using term_FSb_morph_rep unfolding term_FSb_morph_defs by simp_all

lemma rep_reflects_fresh:

"Meta_fresh y (rep X) ==> Obj_fresh y X"

using refl_freshAll_rep unfolding refl_freshAll_defs by simp

74

corollary rep_fresh[simp]:

"Meta_fresh y (rep X) = Obj_fresh y X"

using rep_reflects_fresh rep_preserves_fresh by blast

lemma rep_inj[simp]:

"(rep X = rep Y) = (X = Y)"

using is_injAll_rep unfolding is_injAll_defs by auto

Thus,

- lemma rep simps corresponds to clauses (1)-(3) from Section 2.3.2;

- lemma rep subst is clause (4) from Section 2.3.2;

- corollary rep fresh and rep inj are some extra “built-ins” of the definition: preservation and

reflection of freshness and injectiveness.

NB: Above, we have presented the whole formal development for defining the representation

and proving its syntactic adequacy, except for a lemma, rep MOD simps (appearing in the

scripts immediately after the definition of the model), which merely declares the definitions

of the different components of the record as simplification rules. In particular, we did not

omit listing any formal proofs – this is to give an idea of the degree of automation inherent

in our recursion theorems.

The second part of the theory HOAS deals with the adequate representation of op-

erational semantics (and has nothing to do with our recursion principles). We consider

term(metaConst) as a logical framework which normalizes modulo βδ (i.e., according to

the βδ-reduction from [117]) on the background. This is close to the behavior of LF [63],

except that:

- current implementations of LF consider η too in the normalization;

- LF reduction is guaranteed to reach a normal form, not the case for term(metaConst);

however, the images through rep of object-level terms are normal forms; in fact, they are

strong normal forms, meaning they are normal forms and stay so after substituting their

variables with any normal forms.

As operational semantics for the object system we have chosen the call-by-name big-step

reduction (as defined, e.g., in [117] on page 145, using the function EvalN) – this is defined

in our theory CBN as the relation Bredn : Obj.term→ Obj.term→ bool, with concrete

syntax ==>n , where the index n is not a number, by a reminder of the “by name” style of

reduction. (The choice was not important, we could have chosen any other reduction relation.)

This relation is represented in the usual HOAS, LF-style fashion. The difference from LF

though is that the simple logical framework considered here, term(metaConst), does not

have judgement mechanisms of its own, and therefore we use the inductive mechanism of

Isabelle, which is here the “meta-meta level”. Thus, we represent Bredn by an inductively

75

defined relation MetaBredn : Meta.term → Meta.term → bool, with concrete syntax

==>nM , where the index “nM” stands for “by name, Meta”. E.g., the β-clause in the

definition of Bredn, namely,

X ==>n Obj.Lm y Z ′ Z ′[Y/y] ==>n U
′′

Obj.App X Y ==>n U ′′

is captured by the clause

mX ==>nM Meta.App LM mV ′ Meta.nf (Meta.App mV ′ mY) ==>nM mU ′′

Meta.App (Meta.App APP mX) mY ==>nM mU ′′

where, as usual, we omitted spelling the meta-constant injection operator, Meta.Ct, and where

Meta.nf : Meta.term→Meta.term associates to each meta-level term its βδ-normal form

if such a normal form exists and is undefined otherwise.

Notice that the meta-level rule does not involve any bindings – this was the whole

purpose, to capture the involved bindings implicitly, by the meta-level mechanisms. The

object-level action of substituting in Z ′ a previously bound variable (as Z ′[Y/y]) is matched

by meta-level application Meta.App mV ′ mY in conjunction with normalization – since in

this correspondence Meta.App LM mV ′ will be the representation of Obj.Lm y Z ′, mV ′ will

itself be a (meta-level) Lm-abstraction; the purpose of normalizing Meta.App mV ′ mY is

therefore taking care of the resulting meta-level β-redex.

For this sample representation, we have chosen to normalize “on the fly”, since this

matches most faithfully the practice of logical frameworks. (For instance, in (generic) Isabelle

[155], (λ x. X) Y is a volatile entity, being instantaneously replaced by X[Y/y], the latter

being what the user sees.) Another approach would be not normalizing (i.e., not including

Meta.nf in the above rule), but then stating the adequacy referring to normal forms – the

latter is more common in the LF literature on adequacy [63, 6]. Yet another, newer approach,

surveyed in [64], is to normalize at substitution time, via a notion of hereditary substitution.

These approaches are equivalent, and they reflect the semantic intuition that the β (or βδ,

βη, etc.) equational theory is acting as the meta-level equality.

The semantic adequacy of the representation is stated as two theorems:

- rep preserves Bredn: If X ==>n X
′, then rep X ==>nM rep X ′.

- rep reflects Bredn: If rep X ==>n mX ′, then there exists X ′ such that X ==>n X
′ and

rep X ′ = mX ′.

In particular, these theorems imply:

- corollary rep Bredn iff: rep X ==>nM rep X ′ holds iff X ==>n X
′ holds.

Pure terms. Pure terms are terms not containing any constants. They form are a useful

subset, since many λ-calculus developments ignore constants. The theory Pure defines them,

76

employing the function ctFresh from Section 2.6.4.

Connection with the de Bruijn representation. This is the content of the theory

C deBruijn. The scripts follow quite closely the notations we used in Section 2.6.2. We import

theory Lambda, the existing formalization of the de Bruijn representation from the Isabelle

library. Then we develop some de Bruijn arithmetics facts, after which we proceed with the

interpretation map toDB by means of the model toDB MOD. (This naming convention, having

the name of the model be the name of the desired map followed by “ MOD” is observed in all

our formalized examples.) This time, since there are some nontrivial computations involved

in the verification of the clauses, we prefer to first define the model components separately

(operators ggWls, ggVar etc. in the scripts). Lemmas toDB simps, toDB preserves fresh and

toDB subst are the end-products of the definition, i.e. correspond to clauses (1)-(5) from

Section 2.6.2. (For these end-products, we also observe the same naming pattern, as seen

here and in the HOAS case, for all our examples.)

CPS transformation of call-by-value to call-by-name. This is the content of the

theory CPS. It includes formalization of the discussion from Section 2.6.3. CPS imports the

theory Embed, where the two-sorted value-based syntax is embedded in the (single-sorted)

standard syntax.

Here, the main technical overhead was somewhat orthogonal to the usual problems with

recursive definitions involving bindings, and it was about the choice of the fresh variables for

the continuation combinators, choice itself not involved in the recursive mechanism. Thus,

for the clauses listed at the beginning of Section 2.6.3, in [117] one simply decides to isolate

the necessary fresh names, k, x, y, requiring that they never be used in the source terms.

Then, e.g., in the clause

- cps (Lm x X) = Lm k (App k (Lm x (cps X))),

variable-capture is not a problem, since k is from a different universe than x and X. Suddenly

deciding to single out some variables is reasonable in an informal mathematical discussion,

but not in a formalization, especially since this non-uniform step is not really necessary.

Indeed, a clause such as the above makes perfect sense for a regular fresh variable k, and,

moreover, does not depend on the choice of k. In the scripts, we have defined the two

involved combinators,

- combIC : term→ term, read “the identity-continuation combinator”,

- combAC : term→ term→ term, read “the application-continuation combinator”,

corresponding to the right-hand sides of the clauses (3) and (4) from the end of Section

2.6.3, by making choices of fresh variables (via the Isabelle Hilbert choice) and then showing

that these choices are irrelevant. Thus, the aforementioned clauses appear in the scripts (in

lemma cps simps) as:

77

- (3) cps(InVl Xvl) = combIC (cpsvl Xvl)),

- (4) cps (App X Y) = combAC (cps X) (cps Y).

The “built-in” freshness reflection and injectiveness of the morphism are also formalized,

as lemmas with names following our naming convention: cps reflects fresh and cps inj.

The theory More on CPS then formalizes the results from the first part (call-by-value to

call-by name) of Section 6 in [117] culminating with the theorems 1-3 listed on page 146 in

op. cit.: Indifference, Simulation and Translation.

2.9.5 Certifying and relating various implementations of terms

The literature on λ-calculus theory and theorem proving abounds in approaches for repre-

senting syntax with bindings, such as α-classes [20], de Bruijn levels [36], de Bruijn indexes

[36], locally nameless [57, 58, 13], locally named [139, 118], proper weak-HOAS functions

[38, 61], partial functions [148] (to list only a few).

These representations have various merits: of being more or or less efficient, or more or

less easy to implement, or more or less insightful w.r.t. definition and proof principles, etc.

However, all these approaches are aimed at capturing the same notion of syntax. So what

makes them correct? Typically, work proposing such a new implementation/representation

justifies its correctness by showing it isomorphic to a more standard representation, or to

one that has been used many times and has a high degree of trustability. This justification

may be left informal, as in [148], where the new partial-function based representation of

λ-terms from the Nominal package is proved isomorphic to the α-class-based one. But it

may also be carried out formally, as is the case with the locally named representation from

[118], justified by a formal isomorphism to the nominal representation.

Why should one trust a new representation? It is actually the case that we, personally, do

trust the aforementioned representations, but this is not mainly because they were related to

other, “clearly trustworthy” ones, but rather because, perhaps while building this relationship

or as lemmas for different tasks, the authors have proved enough familiar facts about their

own representation. This seemingly vague intuition can actually be made rigorous, and

indeed formal, by characterization theorems such as our Th. 2.14, “enough familiar facts”

meaning: a collection of facts that should clearly hold for the correct terms and should

identify uniquely any model with the fundamental operators on it. In our opinion, there

are two lists of candidates for these fundamental operators (at least as far as first-order

operators go):29

- one includes the syntactic constructs, freshness and substitution;

- the other also includes swapping.

An argument for excluding swapping from the fundamental list is that the specification

29An extended list would also include HOAS operators.

78

of the relevant systems (typing systems, reduction systems etc.), as well as the (statements

of) their main theorems, do not employ this operator. An argument for including swapping

is that it is a very useful auxiliary operator in proofs. We have formalized (and experimented

with) both options, by the characterizations of the FSb-, FSw-, FSbSw- and FSwSb- models30

from Th. 2.7 (for FSb-models) and the like, formalized in the general theory as discussed in

Section 2.9.3. To illustrate the usefulness of this formalization effort (which took a sensible

amount of extra work beyond the strict purpose of having recursion principles), we have

used it to certify formalizations of the λ-calculus different than ours.

While the fact that these formalizations would “pass our tests” was quite expected, there

was a useful consequence of submitting them to these tests (along the lines of the traditional

approach to certifying terms reviewed above): we obtained isomorphisms between our

representation and theirs, thus creating a formal bridge on which results can be “borrowed”

across different formalizations (much like it is prescribed in [28]). By “isomorphism”, we

mean a term-construct and substitution preserving, freshness [preserving and reflecting] (and

perhaps also swapping preserving) bijection between our terms and theirs, based of course

on a bijection between our variables and theirs. We have established such bridges between

our representation and each of the following:

- (1) the Nominal representation [148];

- (2) the locally nameless representation underlying the Hybrid system [13, 92, 95, 43];

- (3) the so-called locally named representation from recent work [139, 118].

(1) The connection with Nominal is formalized in the theory C Nominal. We connect

the λ-terms from the theory Lam funs (located in the Nominal directory in the Isabelle

distribution) with our pure λ-terms. The latter are λ-terms without constants, defined in our

theory Pure. (We need to use pure terms, since the terms in the aforementioned Nominal

theory do not include constants.) First, we establish a bijection toNA, read “to Nominal

atom” between our variables and the Nominal atoms, called “names” here – this is immediate,

since both collections are countable. Then we proceed to organize the Nominal terms as an

FSbSw-model with the required additional properties, yielding an isomorphism toN, read

“to Nominal”, between our pure terms and their terms. Checking the facts necessary for

obtaining this isomorphism was immediate, given that Lam funs and the underlying Nominal

package provide a rich pool of basic facts.

To give an example of the potential usefulness of the above isomorphism, for both parties:

- our rich theory of substitution (including the recursion principles themselves) are now

available for this Nominal theory, which does not excel in handling substitution, an operator

external to the package;

- advanced Nominal techniques pertaining to rule induction are now available in our λ-calculus

30These four (highly overlapping) notions of models are still in an experimental stage w.r.t. their usefulness.
It is probable that, after considering more case studies, we’ll stick to only one of the above.

79

theory, which lacks at this aspect.

(2) For the connection with the Hybrid terms, we imported the theory Expr from the

Hybrid scripts available online at http://hybrid.dsi.unimi.it. On top of Expr, Hybrid has

several other HOAS layers – however, we were only interested in this very basic implementation

layer. The connection, developed in our theory C Hybrid, took a little more work, given the

fact that the Hybrid representation is not FOAS-oriented, but HOAS-oriented. Consequently,

we had to define ourselves a FOAS binding operation on Hybrid terms, LM. Then the Hybrid

terms were organized as an FSb-model, yielding the desired isomorphism between our terms

with constants and their terms with constants.

(3) The locally named representation from [118] is perhaps the most efficient one from the

literature (in that it needs the smallest overhead in order to obtain the set of terms and its

relevant operators). It is based on a distinction between parameters (or global variables), and

(local) variables, only the latter being allowed (and required) to be bound. (More details can

be found in [118], as well as in our commented scripts.) As mentioned, this representation has

already been proved isomorphic to the Nominal one discussed above, by defining a relation and

showing it to be total and deterministic, yielding a function – recall that a main motivation

of our approach is to avoid the roundabout route of defining a function first as a relation.

The connection is developed in the theory C Sato Pollack (named after the two authors

of the approach), importing a couple of theories from the scripts associated to the paper

[118], available from the first author’s home page: http://homepages.inf.ed.ac.uk/rpollack.

Similarly to before, we define a bijection toP between our variables and their parameters,

and then organize their terms as an FSb-model, yielding an isomorphism, toCLN, read “to

canonically named term” (this is the authors’ terminology for their representation) between

our pure terms and their terms. Again, proving the desired facts goes very smoothly, given

that the authors have proved enough syntactic facts about terms.

2.10 Related work

Here we discuss some work related mainly to our main contribution in this chapter: Horn-

based recursion for syntax with bindings.

2.10.1 On Horn recursion for finite sets

This topic is of course only tangent to that of our dissertation (and by no means are we trying

to be exhaustive here). Yet, the work we refer to next is relevant because it explores a problem

similar to ours and reaches similar conclusions. [102] discusses folding operators for finite

sets in some detail (the context is Isabelle formalization, but the mathematical discussion is

formalization-free). Their justification of the various presented principles is partly algebraic,

80

referring to algebraic signatures, which are Horn signatures without relation symbols. They

distinguish two algebraic signatures, corresponding to two standard approaches to defining

functions on finite sets (on page 387 in op. cit.): that of (∅, {−},∪)-algebras, and that of

(∅, insert)-algebras – the former is the signature of semilattices that we reviewed briefly in

Section 2.4.2, and the latter is the algebraic part of the FOL signature ΣS we discussed in

more detail when defining card in the same section.

Among the considered examples are sums (and, similarly, products) over finite sets,

setsum : (item → IN) → Pf (item) → IN , with setsum f {i1, . . . , in} being computed by

folding + over {i1, . . . , in}, i.e., as f i1 + . . . + f in (if all i1, . . . , in are distinct). In the

conclusion of op. cit., the authors comment that the setsum and set product examples

“are not homomorphisms, but still definable”. Interestingly, the only pieces missing from

the puzzle in order to regard such cases, and, indeed, all the examples from op. cit., as

(homo)morphisms too (and thus subsume them to a common uniform principle) are the extra

bits of generalization advocated in this chapter:

- from universal algebra to Horn theory on one hand;

- from standard models to full-recursion models on the other.

Indeed, if one switches from (∅, insert)-algebras to our ΣS-FR-models, then the clauses:

- setsum f ∅ = 0,

- setsum f ({i} ∪ s) = (setsum f s) + 1, if i 6∈ s
can be seen as defining setsum f as the unique FR-morphism to a corresponding FR-model

(the Emp- and Inserti - operators are defined in the obvious way to match the above clauses,

and the relation freshi is defined similarly to the case of card).

(It is also possible to extend the signature and algebraic theory of (∅, {−},∪)-algebras to

a Horn theory and base the definition of setsum on it, but this would be less convenient than

the above.)

2.10.2 On recursion for syntax with bindings

Nominal Logic. This is a very influential FOAS approach to syntax with bindings [115].

More specifically to the topic of this chapter, [116] is a fairly recent detailed account of

Nominal induction and recursion principles in Nominal Logic. Nominal Logic is originally a

non-standard logic, parameterized by various categories of atoms (a.k.a. names, or variables);

there are built-in notions of swapping (primitive) and freshness of an atom for an object

(derived) and an underlying assumption of finite support, essentially saying that, for each

object, all but a finite number of atoms are fresh for it; all the expressible predicates have

a property called equivariance (invariance under swapping). This non-standard logic is

discussed, e.g., in [49]. On the other hand, the nominal approach can also be developed

in a standard logic such as classic HOL, as shown by the Isabelle/HOL Nominal Package

81

[153, 149, 148].

Next, we follow [116] and [148] to recall the Nominal approach in more technical terms.

([148] poses conditions slightly more general than [116], required for working with classical

logic.) As usual, we consider the syntax of the untyped λ-calculus, term, based on the fixed

set of variables (atoms) var. Let perm, ranged over by p, be the set of permutations, which

are simply lists of pairs of variables. All the sets S involved in the following discussion are

required to come equipped with a swapping operator []K : K → perm → K, subject to

some expected properties of permutation swapping, where, given k ∈ K, we think of k[p]K

as k with all the pairs in p swapped in it consecutively. We shall write k[p] instead of k[p]K .

If p is a singleton list [(z1, z2)], we write k[z1 ∧ z2] instead of k[p]. Standard set constructs

have canonical ways to extend the swapping operator. For instance, given f : K → L,

f [p] : K → L is λk. f(k[prev])[p], where prev is the reverse of p. By the properties assumed

for swapping, [z1 ∧ z2] and its reverse, [z2 ∧ z1], are actually the same operator. A specific

feature of Nominal is the definability of freshness by swapping. The support of an item k ∈ K,

written supp k, is the following subset of var: {x. finite {y. k[x ∧ y] 6= k}}. “Support” is the

Nominal terminology for “the set of free variables”; thus, “generalized freshness”, gFresh x k

(written x # k in Nominal jargon) is taken to mean x 6∈ supp k.

The Nominal recursor employs the syntactic constructs Var, App and Lm, as well as the

above notion of permutation swapping. All the operators involved in the recursive clauses in

a presumptive definition with target domain A (assumed to have a notion of permutation

swapping on it, as discussed above), in our notation gVar : var → A, gApp : term → A →
term → A → A and gLm : var → term → A → A, are required to have finite support.

Moreover, the following Freshness Condition for Binders (FCB) is required to hold for all

x ∈ var, X ∈ term and a ∈ A:

- gFresh x gLm ∧ finite (supp a) =⇒ gFresh x (gLm x X a).

Under the above conditions, we obtain an operator H : term → A which is “almost a

morphism” w.r.t. the syntactic constructs, in that it commutes with Var and App in the

usual sense and commutes with Lm for fresh names only, namely:

- H (Lm x X) = gLm x X (H X) provided gFresh x gVar, gFresh x gApp and gFresh x gLm hold.

(Commuting for “fresh names only” is not a restriction of the above combinator, but rather

a feature that matches standard practice in syntax with bindings – see Section 6 in [148].)

Compared to our main substitution-based recursion combinator (henceforth abbreviated

SRC), the above Nominal recursion combinator (henceforth abbreviated NRC) has the

advantage of uniformity and economy of structure (only swapping is primitive, and everything

is based on it). Moreover, the consideration of the aforementioned “almost morphisms” as

targets of definitions, w.r.t. which freshness for parameters may be assumed, provides extra

generality to the NRC (this can also be made available in our setting, but we have not

formalized it yet). On the other hand, the conditions that ARC requires to be checked by

82

the user are simpler than those required by NRC, the latter involving a certain quantifier

complexity, notably when considering the support of functions (although, like hours, often

these conditions can be checked automatically, as shown by the various examples considered

by work using the Nominal Package). Moreover, there is some benefit in staying first-order as

in our Horn approach, and not getting into the second-order issue of finiteness of support. For

example, as soon as one deals with more semantic situations, such as our semantic-domain

interpretation from Section 2.3.1, the finite support conditions are no longer satisfied, but

a complex combination of induction and recursion is need to have a Nominal definition

eventually go through, as shown in [116] (on page 492) for this very example. (On the

other hand, it is true that as far as denotational-like semantics is concerned, any approach

may incur difficulties, as was our case with the de Bruijn example from Section 2.6.2.)

Another main difference between NRC and SRC is of course the presence in SRC of built-in

compositionality, which relates to the user as both an obligation and a reward.

Michael Norrish’s work. This is perhaps the approach most related to hours. [104]

introduces a recursor for λ-calculus involving swapping and the free-variable operator FV,

and also considers parameters a la Nominal. If we ignore the largely orthogonal extra

generality of op. cit. w.r.t. parameters, and replace the use of FV : term→ Pf (var) with

the (complementary) use of fresh : var→ term→ bool, we obtain something equivalent to

the Horn theory consisting of the following:

- all the clauses from our swapping-based variation from Section 2.8.1, except for CSw;

- additionally, the following clauses (included in the predicate swapping defined in op. cit. on

page 249):

— X[z ∧ z] = X,

— X[x ∧ y][x ∧ y] = X,

— fresh x X ∧ fresh y X =⇒ X[x ∧ y] = X,

— fresh x (X[z1 ∧ z2]) = fresh (x[z1 ∧ z2]v) X,

and the given recursor being the associated Horn recursor. Therefore, [104] did in fact

propose a Horn-like recursive principle for syntax with bindings. Interestingly, op. cit.

also contemplates considering substitution, but renounces in favor of swapping because

“permutations move around terms much more readily than substitution” (op. cit., page 248).

However, as we have shown in this chapter, the (indeed harder) task of having substitution

“move around terms” results in a recursion principle which is not harder to apply (from the

user’s perspective), while bringing the significant reward of substitution compositionality.

Abstract internal characterization of terms with bindings. Such characterizations,

similar to ours given in Th. 2.14, can be found in [58], [105] and [79].

The characterization from (the already classic paper) [58] employs essentially the follow-

83

ing:

- our clauses for freshness preservation and reflection, F1-F4 and F1r-F4r (Axiom 1 in op.

cit.);

- our clauses for substitution, S1-S4, together with the clause (Lm y X)[Y/y] = Lm y X

(Axiom 2 in op. cit.);

- our clause AR (Axiom 3 in op. cit.);

- an auxiliary weak-HOAS-like operator ABS : (var → term) → term, together with

a statement of its relationship with Lm via variable-for-variable substitution, namely:

ABS (λy. X[y/x]) = Lm x X (Axiom 4 in op. cit.);

- the natural weak-HOAS-like iteration principle based on Var, App and ABS (Axiom 5 in op.

cit.) – see also Prop. 3.4 in the next chapter.

The characterization from [105] employs the syntactic constructs, free variables and the

notion of permutation from Nominal Logic.

The characterization from [79] achieves (a certain degree of) abstractness by the datatype

mechanism of the underlying specification language (Maude [31]), even though it operates

along the lines of the concrete recipe for quasi-terms sketched in Section 1.4.1. Namely,

substitution is defined fully, as if on quasi-terms, employing an arbitrary pickFresh function

to rename the bound variables while traversing bindings. However, equations defining

α-equivalence, as if “after the fact”, are actually interpreted by Maude as “working” in

parallel with those for substitution, making all the involved equations operating on terms (not

quasi-terms) as an abstract data type. The arbitrary choice behind pickFresh still accounts

for the “concrete” nature of the specification though. (But a purely equational version of our

Horn-based results, taking fresh as a Boolean-valued operation, and thus working two-sortedly

essentially with freshness-reflecting models by default, is easily implementable in Maude.)

What distinguishes our characterization among the above ones is its minimality: no

(permutation) swapping, pickFresh, or other auxiliaries. The only operators are the essential

ones: the constructs, freshness and substitution. While the clauses that compose this

characterization are of course well-known, the fact that these clauses are sufficient to

characterize terms seems to be a new result. In fact, our very insistence on, and formalization

of, uniqueness (up to isomorphism), as well as the consideration of parts of this uniqueness

(in Theorems 2.11, 2.13 and 2.12) with the purpose of improving facts about the recursor

seem to form a path so far unexplored in the world of theorem proving.

Non-standard-model approaches to syntax. These include the work based on functor

categories from [46, 67] and the more elementary approach from [14] (the latter also motivated

by some functor category mathematics). These approaches add more structure to terms,

regarding them as terms in contexts – this is inspired by the method of de Bruijn levels [36],

and consists conceptually in “turning the free-variable function FV : term→ P(var) into

84

extra structure on terms” ([46], page 3). Here, there is no single set of terms, but rather

terms form a family of sets indexed by the “contexts”, with additional categorical structure

(i.e., as sheafs). The flexibility of moving between different contexts allows one to overcome

the typical problems with recursive definitions on syntax.

[14] proposes a weak HOAS representation (modeling binders as functions between

variables and terms, and then ruling out the so-called “exotic terms”) in conjunction with

considering terms in infinite contexts. The latter set, of terms (or expressions) in infinite

contexts, denoted eic, is thus (IN → var)→ exp, where exp is the set of weak HOAS terms.

The outcome is an iterator which, given any target set A, has type (var→ A)→ (A→ A→
A)→ (A→ A)→ eic→ A, with var→ A, A→ A→ A and A→ A above corresponding to

the recursive cases of variable injection, application and λ-abstraction, respectively. The type

of this iterator is precisely the one for de Bruijn terms (with λ-abstraction a unary operator,

not introducing any binders). However, because of the more involved type eic, the treatment

of terms offers flexibility for dealing properly with standard bindings. Interestingly, eic is

essentially the type of the “semantic” interpretation toDB of λ-terms as de Bruijn terms that

we discussed in Section 2.9.4, and the equations for the above iterator (Th. 2 on page 6

in op. cit.) are essentially referring to the image of toDB – this constitutes an alternative

explanation for the FOAS type of this weak-HOAS based iterator.

[67] and [46] take (independently) very similar approaches. Let Fω be the category

of natural numbers, regarded as sets, and functions between them. Each number n =

{0, . . . , n− 1} is to be thought as the context consisting of the first n variables (given a fixed

ordering on var, i.e., a bijection (xi)i∈IN), {x0, . . . , xn−1}. A presheaf is a functor from Fω to

Set, the category of sets. Let Sh be the category of presheaves and natural transformations.

This category has products and sums, taken componentwise, and is cartesian-closed. Let us

denote by ⊕, ⊗ and ⇒ the sum, the product and its adjoint, respectively, in Sh.

The variables are organized as a presheaf Var by taking:

- For each n, Varn to be {x0, . . . , xn−1};
- For each f : m→ n and xi ∈ Varm, (Varn f) xi to be xf i.

Moreover, the λ-calculus terms are organized as a presheaf Term by taking:

- For each n, Termn to be {X ∈ term. ∀m ≥ n. fresh xm X};
- For each f : m→ n and X ∈ Termm, (Termn f) X to be the term obtained from X by

substituting each xi with xf i.

An interesting feature of ⇒ is that, for any sheaf K, Var⇒ K is isomorphic to δ K, the

shift (or context extension) of K, defined as follows:

- For each n, (δ K) n = K (n+ 1);

- For each f : m→ n and k ∈ (δ K) n, (δ K) f k = K (λ i < m+ 1. if i < m then f i else

n+1) k.

In what follows (more specifically, in clause (3) below), we assume the isomorphism is an

85

equality, i.e., (Var⇒ K) = δ K.

Now, we define the Sh-endofunctor T by T = λK. Var ⊕ (K ⊗K) ⊕ (Var ⇒ K) and

the following natural transformations, organizing Term as a T -algebra:

- VAR = (VARn)n∈IN : Var→ Term, by VARn x = Var x;

- APP = (APPn : (Term⊗Term)n = Termn ×Termn → Termn)n∈IN ,

by APPn X Y = App X Y ;

- LM = (LMn : (Var⇒ Term)n = (δ Term)n = Termn+1 → Term)n∈IN ,

by LMn X = Lm xn+1 X.

(Notice again the weak-HOAS-like type for the λ-case.)

It turns out that that Term is the initial T -algebra, which yields iteration and recursion

principles in the category Sh.

Compared to the more elementary settings discussed previously (which include our own),

the non-standard model approach has the advantage of “syntactic purity” (as only the term

constructs are involved) and mathematical elegance and generality,31 but does have a couple

of disadvantages too. Thus, it is harder to formalize in a standard theorem prover, due to

the fancy category theory involved (although this is more of a (solvable) problem for the

implementor, not for the user). More importantly, it seems rather tedious to employ in order

to define concrete operators. Indeed, the target domain would have to be organized each time

as an algebra for the above functor T , which means that a lot of structure and verifications

would need to be provided and performed by the user. On the other hand, a category theorist

may argue that all this effort would not go in vain, as the extra structure will be helpful

later in proofs – and this is much like our argument in favor of “built-in” substitution made

in this chapter. Concerning the latter, both [67] and [46] show how to define substitution

using the above iterator. Moreover, [46] goes further and integrates substitution in the

algebraic structure, inferring a version of recursion with a built-in substitution lemma, which

is essentially what we do in this chapter in a more standard setting. Interestingly, it is

shown that incorporating unary substitution is essentially the same as incorporating parallel

substitution (the resulted categories, of monoids and clones, are equivalent), corresponding

to the intuition that parallel substitution brings nothing essentially new beyond unary

substitution – this type of mathematical insight obtained by climbing to a more abstract

level can also be counted as an advantage of categorical approaches.

Explicit substitution. In a way, our substitution-based recursion pushes an agenda, similar

to that of the λσ-calculus (with explicit substitution) from [8], of considering substitution

a first-class citizen. However, op. cit. focusses on more (operational-) semantic issues like

reduction confluence and termination, while we focus on syntax.

31However, note that, although more abstract, it certainly does not capture the discussed elementary
approaches as particular cases - the latter employ the standard topos of sets, while the former employ a
non-standard sheaf topos tailored to handle bindings uniformly.

86

Efficient representation of terms. This subject is not strictly related to our contribution.

As mentioned, our view is behavioral, meaning we care less about the route than about the

end-product. However, any development of very large size such as ours needs to take the

issue of efficiency into account at some point, especially if it keeps on growing with new facts

and features (as does ours). Our formalization based on α-classes is faithful to the standard

theory, but is perhaps less efficient than one of the following approaches:

- a de Bruijn-based one;

- one that tries to make the best of de Bruijn while still retaining “named” variables, such as

[43] or [139, 118];

- one based on partial functions, as in the Nominal Package [148, 149].

In the future, we may rewrite our underlying implementation of terms using one of these

approaches.

Formalized examples and case studies. Norrish has formalized his swapping-based

recursion principle for the syntax of untyped λ-calculus and has included it in the distribution

of the HOL4 system [7].

The Nominal package [151] has been used in several formal developments, including proofs

of Church-Rosser and Standardization for λ-calculus – the classic latter result, presented, e.g.,

in Barendregt, is different than the call-by-name and call-by-value standardization theorems

from [117] that we have formalized, in that the latter deals with more programming-oriented

strategies, not allowing rewrites under λ-abstractions.

In spite of the extensive (and growing) interest in HOAS as a formal means of specification

and verification and in its associated adequacy proofs, our adequacy proof discussed in Sections

2.3.2, 2.5.2 and 2.9.4 seems to be the first reported in the literature.32 Even though it is

performed for a fairly simple (albeit standard) logical framework, λ-calculus with constants,

the actual proof technique works for more complex frameworks such as LF too. Some of the

meta-theory of LF has been formalized using the Nominal package, but we are not aware of

actual representations and adequacy proofs performed in this setting.

32Here we refer to the traditional, LF-style HOAS encodings and adequacy. We also have a formalized
notion of adequacy in Chapter 3, but there we change the traditional roles for the actors: object system,
logical framework and meta-logical framework.

87

Chapter 3

HOAS 1

3.1 Introduction

In this chapter, we advocate a variant of the HOAS approach (II.b) described in Section

1.2.2, namely, the general-purpose framework approach, highlighting an important feature,

apparently not previously explored in the HOAS literature: the capability to internalize,

and eventually automate, both the representation map and the adequacy proof.

Let us illustrate this point by an example. Say we wish to represent and reason about

λ-calculus and its associated β-reduction (as we actually do in this chapter). Therefore, the

object system is a “standalone”, Platonic mathematical notion, given by a collection of items

called λ-terms, with operators on them, among which the syntactic constructs, free variables

and substitution, and with an inductively defined reduction relation – typically, these are

initially (informally) FOAS-specified, as in Chapter 2.

In the HOAS-tailored framework approach, for representing this system one defines a

corresponding collection of constants in the considered logical framework, say LF, and then

does an informal (but rigorous) pen and paper proof of the fact that the syntax representation

is adequate (i.e., the existence of a compositional bijection between the λ-terms and normal

forms of LF terms of appropriate types) and of a corresponding fact for β-reduction [109].

In the general-purpose framework approach, one can define the original system itself (here

λ-calculus) in the meta-logical framework (say, HOLω, Higher-Order Logic with Infinity) in

such a way that accepting this definition as conforming to the mathematical definition is

usually not a problem (for one who already accepts that HOLω is adequate for representing

the mathematical universe (or part of it)), since the former definitions are typically almost

verbatim renderings of the latter – in HOLω, one can define inductively the datatype of

terms, perhaps define α-equivalence and factor to it, then define substitution, reduction, etc.

Moreover, one can also define in HOLω a system that is a HOAS-style representation of (the

original) λ-calculus, i.e.: define a new type of items, call them HOAS-terms, with operators

corresponding to the syntactic constructs of the original terms, but dealing with bindings

via higher-order operators instead. In particular, the constructor for λ-abstraction will

88

have type (HOAS-terms # HOAS-terms) → HOAS-terms, where one may choose the type

constructor # to yield a restricted function space, or the whole function space accompanied

by a predicate to cut down the “junk”, etc. Once these constructions are done, one may

also define in HOLω the syntax representation map from λ-terms to HOAS-terms and prove

adequacy. (And a corresponding effort yields the representation of λ-term reduction.) Now, if

the above are performed in a theorem prover that implements HOLω, such as Isabelle/HOL,

then HOAS-terms become a formally certified adequate representation of the (original)

λ-terms, not available in the existent HOAS-tailored approaches. Moreover, in many cases

the construction of the HOAS-terms, the proofs of their basic properties and the adequacy

proof can be automated, being essentially the same for all syntaxes with bindings.

One may argue that, on the other hand, the above HOAS-terms do not retain all the

convenience of a genuine HOAS encoding. Thus, when various standard relations need

to be defined on HOAS-terms, certain context-free clauses specific to the HOAS-tailored

frameworks (within the so-called HOAS-encoding of judgements) are no longer available here.

E.g., a rule like
∀X. X : S =⇒ AX : T

Lam(A) : S → T

(typing rule for λ-abstractions – =⇒ is logical implication and A a map from terms to terms)

cannot act as a definitional clause in HOLω for a typing relation : , due to non-monotonicity.

The short answer to this objection is agreeing that general-purpose frameworks do bring their

expressiveness with the price of not allowing the cleanest possible HOAS. A longer answer is

given in this chapter, where we argue that developing suitable general-purpose-framework

concepts accommodates non-monotonicity and impredicativity flavors that make “pure”

HOAS so attractive.

We develop HOAS concepts and techniques pertaining to the general-purpose framework

approach. Here, the general-purpose framework could be regarded as being the mathematical

universe (given axiomatically by any standard formalization of mathematics). All the involved

systems, including the original systems and their representations, dwell in this mathematical

universe, and are thus discussed and related via standard-mathematics concepts and theorems.

Our HOAS case study is a proof of the strong normalization result for System F (a.k.a. the

polymorphic second-order λ-calculus) [53]. In the context of the (general-purpose) HOAS

concepts introduced in this chapter, the statement of the strong normalization problem and

the natural attempt to start proving it brings one quickly into the heart of the problem and,

to a degree, suggests its resolution.

Apart from this introduction, Section 3.2 recalling some basic facts about reduction

and typing, Section 3.6 giving some pointers to our Isabelle formal scripts, and Section

3.7 discussing related work, this chapter has two main parts. In the first part, consisting

of Sections 3.3 and 3.4, we discuss some general HOAS techniques for representing and

89

reasoning about syntax and inductively defined relations (i.e., a HOAS take on main themes

of Chapter 2), illustrated on the λ-calculus and System F. The HOAS “representation” of

the original first-order syntax will not be a representation in the usual sense (via defining

a new (higher-order) syntax), but will take a different view of the same syntax. Recall

from the beginning of Section 2.9.1 that abstractions have the form Abs x X, i.e., are

essentially pairs (x,X) variable-term modulo α-equivalence, and of that the Lam-operator

takes abstractions as arguments. Under the higher-order view, abstractions A are no longer

constructed by variable-term representatives, but are analyzed/”destructed” by applying

them (as functions), via substitution, to terms. Namely, given a term X, A X, read “A

applied to X”, is defined to be Y [X/x], where (x, Y) is any variable-term representative for

A. This way, the collection of abstractions becomes essentially a restricted function space

from terms to terms, as in strong HOAS. (The [strong HOAS]–[weak HOAS] dichotomy is

revisited in Section 3.7.) Although this change of view is as banal as possible, it meets its

purpose: the role previously played by substitution now belongs to function-like application.

The latter of course originates in substitution, but one can forget about its origin. In fact,

one can (although is not required to!) also forget about the original first-order binding

constructor and handle terms entirely by means of the new, higher-order destructor. Moving

on to the discussion of recursive-definition principles for syntax, we perform an analysis of

various candidates for the type of the recursive combinator, resulting notably in a novel

“impredicative” principle in the spirit of (strong) HOAS.

Then we discuss HOAS representation of inductively defined relations, performed by a

form of transliteration following some general patterns. These patterns are illustrated by the

case of the reduction and typing relation for System F, and it appears that a large class of

systems (e.g., most of those from the monographs [18, 60, 90, 114]) can be handled along

these lines. For typing, we also present a “purely HOAS” induction principle, not mentioning

typing contexts. Once our formalization will be fully automated (see Section 5.2), it will

have a salient advantage over previous HOAS approaches: adequacy will need not be proved

by hand, but will follow automatically from general principles.

In the second part, Section 3.5, we sketch a proof of strong normalization for System

F within our HOAS framework. We make essential use of our aforementioned definitional

principle and typing-context-free induction principle to obtain a general criterion for proving

properties on typable terms (which is in principle applicable to properties other than

strong normalization, including confluence and type preservation). Unlike previous proofs

[54, 144, 91, 51, 19, 12, 22, 75, 41], our proof does not employ data or type environments and

semantic interpretation of typing contexts – a virtue of our setting, which is thus delivering

the HOAS-prescribed service of clearing the picture of inessential details.

90

3.2 The λ-calculus reduction and the System F typing

system recalled

The two systems, β-reduction for λ-calculus and the typing system for System F, are

standardly defined employing FOAS. We later refer to them as “the original systems”, to

contrast them with their HOAS representations.

3.2.1 The (untyped) λ-calculus under β-reduction

We shall consider the abstraction-based variant of the λ-calculus syntax which we described

at the beginning of Section 2.9.1. Thus, we fix set var, of variables, ranged over by x, y, z.

The sets term, of terms, ranged over by X,Y, Z, and abs, of abstractions, ranged over by

A,B, are given by:

X ::= Var x | App X Y | Lam A

A ::= Abs x X

where we assume that, within Abs x X, x is bound in X (and terms and abstractions are

identified modulo α-equivalence). For brevity, we shall write x.X instead of Abs x X. (Notice

that, in Section 2.9.1, we wrote Lm x X as a shorthand for Lam(Abs x X), i.e., for what in

this chapter shall be written as Lam(x.X) – the latter notation is more convenient for the

abstraction-oriented approach from this chapter.)

Also, recall our habit to keep implicit the injective map Var : var→ term, and pretend

that var ⊆ term (this omission will be performed directly for the syntax of System F below).

Recall that we write:

- fresh : var→ term→ bool, for the predicate indicating if a variable is fresh in a term;

- [] : term→ env→ term, for the parallel substitution, where env, the set of environ-

ments, ranged over by ρ, consists of partial functions of finite domain from var to term (thus,

X[ρ] is the term obtained from X by (capture-free) substituting each of its free variables x

with ρ x if the latter is defined);

- [/] : term→ term→ var→ term, for substitution.

We employ the same notations for abstractions: fresh : var → abs → bool, [] : abs →
env→ abs, etc.

The one-step β-reduction : term→term→bool is defined inductively by the following

rules:
·

App (Lam(x.Y)) X Y [X/x]
(Beta)

X Y

Lam(z.X) Lam(z.Y)
(Xi)

X Y

App X Z App Y Z
(AppL)

X Y

App Z X App Z Y
(AppR)

X is called strongly normalizing if there is no infinite sequence (Xn)n∈IN with X0 = X

91

and ∀n. Xn Xn+1.

3.2.2 System F

It was introduced independently by Jean-Yves Girard in [53] in the context of proof theory

and by John Reynolds in [130] for the study of programming language polymorphism. We

describe this system as a typing system for λ-terms without type annotations, in a Curry

style (see [18]).

Its syntax consists of two copies of the untyped λ-calculus syntax – one for data and one

for types. (Of course, β-reduction will only be meaningful for data.) More precisely, we fix

two infinite sets, dvar, of data variables (dvars for short), ranged over by x, y, z, and tvar,

of type variables (tvars for short), ranged over by tx , ty , tz . The sets dterm and dabs, of

data terms and abstractions (dterms and dabstractions for short), ranged over by X,Y, Z

and A,B,C, and tterm and tabs, of type terms and abstractions (tterms and tabstractions

for short), ranged over by tX, tY, tZ and tA, tB, tC, are defined by the following grammar,

again up to α-equivalence:

X ::= x | App X Y | Lam A

A ::= x.X

tX ::= tx | Arr tX tY | Al tA

tA ::= tx .tX

Above, App and Lam stand, as in Section 3.2.1, for “application” and “lambda”, while Arr

and Al stand for “arrow” and the “for all” quantifier (also interpreted as product). Since

dterms do not have type annotations, indeed both the abstract syntax of dterms and that of

tterms are that of λ-calculus (from Section 3.2.1), just that for tterms we write Arr and Al

instead of App and Lam.

All concepts from Section 3.2.1 apply to either syntactic category, separately. Let denv,

ranged over by ρ, be the set of data environments, and tenv, ranged over by ξ, that of type

environments. For any items a and b, we may write a :b for the pair (a, b). A well-formed

typing context (context for short) Γ ∈ ctxt is a list of pairs dvar-tterm, x1 : tX 1, . . . , xn : tX n,

with the xi’s distinct. The homonymous predicates fresh : dvar → ctxt → bool and

fresh : tvar→ ctxt→ bool (indicating if a dvar or a tvar is fresh for a context) are defined

as expected:

- fresh y [] = True;

- fresh y (Γ, (x : tX)) = (fresh y Γ ∧ y 6= x);

- fresh ty [] = True;

- fresh ty (Γ, (x : tX)) = (fresh ty Γ ∧ fresh ty tX).

The type inference relation (` :) : ctxt → dterm → tterm → bool is defined

92

inductively by the clauses:

·
Γ, x : tx ` x : tx

(Asm)

[fresh x Γ]

Γ ` X : tx

Γ, y : tY ` X : tx

(Weak)

[fresh y Γ]

Γ, x : tx ` Y : tY

Γ ` Lam(x.Y) : Arr tx tY

(ArrI)

[fresh x Γ]

Γ ` Y : tY

Γ ` Y : Al(tx .tY)

(AlI)

[fresh tx Γ]

Γ ` X : Arr tY tZ Γ ` Y : tY

Γ ` App X Y : tZ
(ArrE)

Γ ` Y : Al(tx .tY)

Γ ` Y : tY [tx/tx]
(AlE)

We write ` X : tX for [] ` X : tX . A term X is called typable if Γ ` X : tX for some Γ

and tX .

3.3 HOAS view of syntax

Here we present a HOAS approach to the syntax of calculi with bindings. We describe our

approach for the paradigmatic particular case of the untyped λ-calculus, but our discussion

is easily generalizable to terms generated from any binding signature (as in Section 2.9.1).

We do not define a new higher-order syntax, but introduce higher-order operators on the

original syntax – hence we speak of a HOAS view rather than of a HOAS representation.

3.3.1 Abstractions as functions

Throughout the rest of this section, we use the concepts and notations from Section 3.2.1, and

not the ones from Section 3.2.2. Given A ∈ abs and X ∈ term, the functional application of

A to X, written A X, is defined to be Y [X/x] for any x and Y such that A = (x.Y). (The

choice of (x, Y) is easily seen to be immaterial.) The operator is extensional, qualifying

the set of abstractions as a restricted term-to-term function space, and preserves freshness.

Thus, abstractions are no longer regarded as pairs var-term up to α-equivalence, but as

functions, in the style of HOAS. Under this higher-order view, abstractions can be destructed

by application, as opposed to constructed by means of var-term representatives as in the

original first-order view. But does the higher-order view suffice for the specification of

relevant systems with bindings? I.e., can we do without “constructing” abstractions? Our

answer is threefold:

- (1) Since the higher-order view does not change the first-order syntax, abstractions by

representatives are still available if needed.

- (2) Many relevant systems with bindings employ the binding constructors within a par-

ticular style of interaction with substitution and scope extrusion (e.g., all variables appear

either bound, or substituted, or [free in the hypothesis]) which makes the choice of binding

representatives irrelevant. This phenomenon, to our knowledge not yet rigorously studied

93

mathematically for a general syntax with bindings, is really the basis of most HOAS represen-

tations from the literature. In Section 3.4, we elaborate informally on what this phenomenon

becomes in our setting.

- (3) The previous point argued that relevant systems specifications can do without con-

structing abstractions. Now, w.r.t. proofs of meta-theoretic properties, one may occasionally

need to perform case-analysis and induction on abstractions. HOAS-style case-analysis and

induction are discussed below, after we introduce 2-abstractions.

3.3.2 2-abstractions

These are for abstractions what abstractions are for terms. 2-abstractions A ∈ abs2 are

defined as pairs x.A variable-abstraction up to α-equivalence (just like abstractions are pairs

variable-term up to α). (Alternatively, they can be regarded as triples x.y.Z, with x, y ∈ var

and Z ∈ term, again up to α.) Next we define two application operators for 2-abstractions.

If A ∈ abs2 and X ∈ term, then A 1X and A 2X are the following elements of abs:

- A 1X = A[X/x], where x,A are such that A = (x.A);

- A 2X = (y.(Z[X/x])), where y, Z are such that y 6= x, fresh y X and A = (y.(x.Z)).

(Again, the choice of representatives is immaterial.) Thus, essentially, 2-abstractions are

regarded as 2-argument functions and applied correspondingly.

Now we can define homonymous syntactic operations for abstractions lifting those for

terms:

- Var : var→ abs, by Var x = (y.x), where y is such that y 6= x;

- App : abs → abs → abs, by App A B = (z. (App X Y)), where z,X, Y are such that

A = (z.X) and B = (z.Y).

- Lam : abs2→ abs, by Lam A = (x. (Lam A)), where x,A are such that A = (x.A).

(The definitions are correct, in that the choice of representatives is possible2 and irrelevant.)

If we also define id ∈ abs to be (x.x) for some x, we can case-analyze abstractions by the

above four (complete and non-overlapping) constructors:

Prop 3.1 Given an abstraction A, one and only one of the following holds:

- A = id;

- ∃x. A = Var x;

- ∃B,C. A = App B C;

- ∃A. A = Lam A.

Proof sketch. By simple verification. �

Functional application satisfies the expected exchange law,

2The issue of possibility is only raised for the App-case, where the representatives for A and B need to be
synchronized on z.

94

- (A 1X) Y = (A 2Y) X,

and commutes with abstraction versus terms constructors (below, on the left we have the

abstraction constructs, and on the right the term constructs):

- (Var x) X = x,

- (App A B) X = App (A X) (B X),

- (Lam A) X = Lam(A 1X).

Moreover, it commutes with parallel substitution,

- (A X)[ρ] = ((A[ρ]) (X[ρ])),

and in particular with substitution:

- (A X)[Y/y] = ((A[Y/y]) (X[Y/y])).

Notice that substitution (of a term for an explicitly indicated variable) is a first-order

feature, abandoned when switching to the HOAS view. However, the above commutativity

suggests that the FOAS and HOAS layers may be combined smoothly in proofs.

3.3.3 Induction principles for syntax

The following is the natural principle for terms under the HOAS view. Notice that it requires

the use of abstractions.

Prop 3.2 Let ϕ : term→ bool be such that the following hold:

- ∀x. ϕ x;

- ∀X,Y. ϕ X ∧ ϕ Y =⇒ ϕ(App X Y);

- ∀A. (∀x.ϕ(A x)) =⇒ ϕ(Lam A).

Then ∀X. ϕ X.

Proof sketch. By easy induction on the depth of X. �

Likewise, a HOAS induction principle for abstractions requires the use of 2-abstractions.

The 2-place application in the inductive hypothesis for Lam in Prop. 3.3 offers “permutative”

flexibility for when reasoning about multiple bindings – the proof of Prop. 3.13 from Section

3.5 illustrates this.

Prop 3.3 Let ϕ : abs→ bool be such that the following hold:

- ϕ id;

- ∀x. ϕ(Var x);

- ∀A,B. ϕ A ∧ ϕ B =⇒ ϕ(App A B);

- ∀A. (∀x. ϕ(A 1x) ∧ ϕ(A 2x)) =⇒ ϕ(Lam A).

Then ∀A. ϕ A.

Proof sketch. By easy induction on the depth of A. �

95

3.3.4 Recursive definition principles for syntax

This is known as a delicate matter in HOAS. One would like that, given any set C, a map

H : term→ C be determined by a choice of the operations cInV : var→ C, cApp : C → C → C,
and cLam (whose type we do not yet specify) via the conditions:

(I) H x = cInV x.

(II) H(AppX Y) = cApp (HX) (H Y).

(III) An equation (depending on the type of cLam) with H(Lam A) on the left.

(Here, we only discuss iteration, not full recursion.)

Candidates for the type of the operator cLam are:

(1) cLam : (term → C) → C, suggesting the equation H(Lam A) = cLam(λX.H(A X)) –

this is problematic as a definitional clause, due to its impredicativity;3

(2) A weak-HOAS-like [38, 58] variable-restriction of (1), namely, cLam : (var → C) → C,
yielding the equation

(IIIw): H(Lam A)=cLam(λx.H(A x))

and a recursive principle:

Prop 3.4 There exists a unique map H : term→ C such that equations (I), (II), and (IIIw)

hold.

Proof sketch.

Existence: Let whTerm, the set of “weak-HOAS terms”, ranged over by P,Q, be given by

the following grammar, where f denotes elements of var→ whTerm:

P ::= whVar x | whApp P Q | whLam f

Then there is an embedding of term into whTerm, which commutes with the constructs.

Our desired map H is the composition between the map whTerm→ C obtained by standard

iteration and this embedding.

Uniqueness: By easy induction on term. �

(3) cLam : (C → C) → C. Then there is no apparent way of defining the equation (III) in

terms of Lam and cLam without parameterizing by valuations/environments in var→ C, and

thus getting into first-order “details” (at least not in a standard setting such as ours – but

see [141, 40] for a solution within a modal typed λ-calculus).

3Here, we call a definitional clause of a function “impredicative” if it is not guaranteed to avoid self-
reference. Standard (set-theoretic, not domain-theoretic!) recursive definitions are predicative because for
them there exists a well-founded relation w.r.t. which the arguments for their recursive calls are smaller.

96

(4) A “flattened” version (collapsing some type information) of both (1) and (3), namely,

cLam : P6=∅(C)→ C. This may be regarded as obtained by requiring the operator from (1) or

(3) to depend only on the image of its arguments in term→ C or C → C, respectively. The

natural associated (valuation-independent) condition (III) would be

- H(Lam A) = cLam({H(A X). X ∈ term}).
Unfortunately, this condition is still too strong to guarantee the existence of H. But

interestingly, if we have enough variables, the existence of a compositional map holds:

Theorem 3.5 Assume card(var) ≥ card(C) and let cApp : C → C → C and cLam : P6=∅(C)→
C (where card is the cardinal operator). Then there exists H : term→ C such that:

(I) H(App X Y) = cApp (H X) (H Y) for all X,Y .

(II) H(LamA) = cLam({H(A X). X ∈ term}) for all A.

Proof sketch. We employ the notion of interpretation in a semantic domain (from Section

2.3.1) for the domain C with operators APP = cApp and LM : (C → C) → C defined by

LM f = cLam {f c. c ∈ C}, obtaining a map [] : term→ val→ C (where val = (var→ C))

such that:

- (a) [App X Y] ρ = cApp ([X] ρ) ([Y] ρ);

- (b) [Lam (y.X)] ρ = cLam {[X] (ρ[y ← c]). c ∈ C}.
Let now ρ ∈ val be a surjective valuation, whose existence is ensured by our cardinality

hypothesis. We have the following:

- (c) {[X] (ρ[y ← c]). c ∈ C} = {[X[Y/y]] ρ. Y ∈ term}.
Indeed, let L and R be the lefthand and righthand sides of the desired equation, and let M

be {[X] (ρ[y ← ρ Y]). Y ∈ term}. By the substitution lemma, we have M = R. Moreover,

we have the following chain of equalities and inclusions:

L = {[X] (ρ[y ← ρ x]). x ∈ var} (by the surjectiveness of ρ)

⊆M (since var ⊆ term)

⊆ L (by properties of sets).

Ultimately, L = R, as desired.

We define H by H X = [X] ρ. Then:

- (I) follows from (a);

- (II) follows from (b) and (c), recalling that each A has the form (y.X) and, for all Y ,

A X = X[Y/y]. �

Th. 3.5 is looser than a definition principle, since it does not state uniqueness of H. In effect,

it is a “loose definition” principle, which makes no commitment to the choice of interpreting

the variables. (Though it can be proved that H is uniquely determined by its action on

variables. As a trivial example, the identity function on terms is uniquely identified by its

97

action on variables and by equations (I) and (II). Other functions, such as term-depth, do not

fall into the cardinality hypothesis of this proposition, but of course can be defined using Prop.

3.4.) Note the “impredicative” nature of equation (II): it “defines” H on LamA in terms of

the “HOAS-components” of A, where a “HOAS component” is a result of applying A (as a

function) to a term X and can of course be larger than A. Note also that the type of cLam

is rather restricted, making cLam instantiable only to commutative infinitary operators such

as the logical quantifiers. This proposition can be useful in situations where the existence

of a compositional map is the only relevant aspect, allowing to take a shortcut from the

first-order route of achieving compositionality through interpretation in environments – our

proof of Strong Normalization from Section 3.5 takes advantage of this.

Conclusion: While the above preparations for HOAS on top of FOAS do require some

work, this work is uniformly applicable to any (statically-scoped) syntax with bindings,

hence automatable. Moreover, once this definitional effort is finished, one can forget about

the definitions and work entirely in the comfortable HOAS setting (meaning: no more

α-representatives, variable capture, etc.), as illustrated next.

3.4 HOAS representation of inference

This section deals with the HOAS representation of inductively defined relations, such

as typing and reduction. Given an inductively defined relation on the first-order syntax

employing the first-order operators, we transliterate it through our HOAS view, roughly as

follows:

(I) abstractions constructed by terms with explicit dependencies become “plain” abstractions

(used as functions);

(II) terms with implicit dependencies become abstractions applied to the parameter they

depend on;

(III) substitution becomes functional application;

(IV) unbound arbitrary variables become arbitrary terms;

(V) scope extrusion is handled by universal quantification.

(We explain and illustrate these as we go through the examples, where the informal notions

of implicit and explicit dependency will also be clarified.)

Our presentation focuses on a particular example, the typing and reduction of System

F, but the reader can notice that the approach is rather general, covering a large class of

reduction and type systems.

At this point, the reader should recall the definitions and notations pertaining to System F

from Section 3.2.2. Notations, in a nutshell: lowercases x, y, z for dvars, uppercases X,Y, Z for

dterms, uppercases A,B for dabstractions, calligraphic uppercases A,B for 2-dabstractions;

98

for the type versions of the above, we prefix everything by “t”. All the discussion from

Section 3.3 duplicates for the two copies of the λ-calculus that make the syntax of System

F. In particular, we have data-abstraction-lifted operators App : dabs → dabs → dabs,

Lam : dabs2→ dabs, etc. (where dabs2 is the set of data 2-abstractions).

3.4.1 Representation of reduction

We define : dterm→ dterm→ bool inductively, by the following clauses:

·
App (Lam A) X A X

(HBeta)
∀Z. A Z B Z

Lam A Lam B
(HXi)

X Y

App X Z App Y Z
(HAppL)

X Y

App Z X App Z Y
(HAppR)

Adequacy of the reduction representation is contained in:

Prop 3.6 The following are equivalent:

- (1) X Y .

- (2) X Y .

- (3) ∀ρ ∈ denv. X[ρ] Y [ρ].

Proof sketch.

(1) implies (3): By fresh induction, i.e., Prop. 2.5 from Section 2.2.2, taking the parameter

to be ρ.

(3) implies (2): Immediately, taking ρ to be the identity environment.

(2) implies (1): By induction on the definition of . �

Remember that our HOAS representation dwells in the same universe as the original system,

i.e., both the original relation and the representation relation act on the same syntax –

they only differ intensionally in the way their definition manipulates this syntax: the former

through bindings and substitution, the latter through abstractions-as-functions and function

application. Looking for the incarnations of the general HOAS-transliteration patterns

(I)-(V) listed at the beginning of this section, we find that:

- The definition of is obtained by modifying in only the clauses involving binding and

substitution: (Beta), (Xi);

- In (Beta) and (Xi), Lam(x.Y), Lam(z.X) and Lam(z.Y) become Lam A, Lam A and Lam B,

according to (I);

- In (Beta), Y [X/x] becomes A X, according to (III);

- In (Xi), regarded as applied backwards, we have the extrusion of the scope of z, as z is

bound in the conclusion and free in the hypothesis – by pattern (V), this brings universal

quantification over an arbitrary term Z in the hypothesis, as well as the acknowledgement of

99

an implicit dependency on z (now having become Z) in the X and Y from the hypothesis,

making them become, by (II), abstractions applied to the implicit parameter, A Z and

B Z.

(Note that this example does not illustrate pattern (IV), since all variables appearing in the

definition of are bound.)4

The infinitary clause (HXi) from the definition of (whose premise quantifies over all

dterms Z) is convenient when proving that is included in another relation, as it makes a

very strong induction hypothesis, much stronger than that given by (Xi) for . This is also

true for rule inversion, where from Lam A Lam B we can infer a good deal of information

compared to the first-order case. However, when proving that includes a certain relation,

it appears that a HOAS clause matching (Xi) more closely may help. Such a clause can be

extracted from (Xi):

Prop 3.7 is closed under the following rule:

fresh z A fresh z B A z B z

Lam A Lam B
(HXi’)

Proof sketch. Assume that z is fresh for A and B and that A z B z. By the freshness

of z, we obtain X and Y such that A = (z.X) and B = (z.Y). Then A z = X and B z = Y ,

and therefore the desired fact, Lam A Lam B, follows from adequacy together with the

closedness of under (Xi). �

(Since turns out to preserve freshness, the above proposition can actually be strengthened

by renouncing the fresh z B hypothesis; but in this presentation we focus on facts that follow

from the HOAS style of representation and adequacy, and not from specifics of the given

relation.)

Note that (HXi’) is stronger than (HXi) (but stronger as a rule means weaker as an

induction-principle clause). A rule such as (HXi’) should be viewed as a facility to descend,

if necessary, from the HOAS altitude into “some details” (here, a freshness side-condition).

This fits into our goal of encouraging HOAS definitions and proofs, while also allowing access

to details on a by-need basis.

Since, by Prop. 3.6, the relations and coincide, hereafter we shall use only the

symbol “ ”.

3.4.2 Representation of inference

A HOAS context (Hcontext for short) ∆ ∈ Hctxt is a list of pairs in dterm × tterm,

X1 : tX 1, . . . , Xn : tX n. Note that ctxt ⊆ Hctxt.

4What we discuss here, in the context of the aforementioned patterns, are not the inductively defined
relations, but the inductive definitions themselves; and what we loosely refer to as “variables” and “terms”
appearing in these definitions are really variable and term meta-variables.

100

For Hcontexts, freshness, fresh : dvar → Hctxt → bool and fresh : tvar → Hctxt →
bool, and parallel substitution, [,] : Hctxt → tenv → denv → Hctxt are defined

recursively as expected:

- fresh y [] = True;

- fresh y (∆, (X : tX)) = (fresh y ∆ ∧ fresh y X);

- fresh ty [] = True;

- fresh ty (∆, (x : tX)) = (fresh ty ∆ ∧ fresh ty tX);

- [] [ξ, ρ] = [];

- (∆, (X : tX)) [ξ, ρ] = (∆[ξ, ρ], (X[ρ] : tX [ξ])).

We represent type inference by the relation (Ì :) : Hctxt→ dterm→ tterm→ bool,

called HOAS typing (Htyping for short), defined inductively by the following clauses:

·
∆, X : tX Ì X : tX

(HAsm)
∆ Ì X : tX

∆, Y : tY Ì X : tX
(HWeak)

∀X. ∆, X : tX Ì A X : tY

∆ Ì Lam A : Arr tX tY
(HArrI)

∀tX . ∆ Ì Y : tA tX

∆ Ì Y : Al tA
(HAlI)

∆ Ì X : Arr tY tZ ∆ Ì Y : tY

∆ Ì App X Y : tZ
(HArrE)

∆ Ì Y : Al tA

∆ Ì Y : tA tX
(HAlE)

Prop 3.8 (Adequacy) The following are equivalent:

- (1) Γ ` X : A.

- (2) Γ Ì X : A. (Note: contexts are particular Hcontexts.)

- (3) Γ[ξ, ρ] Ì X[ρ] : A[ξ] for all ξ ∈ tenv and ρ ∈ denv.

Proof sketch. Similarly to Prop. 3.6 �

It follows from Prop. 3.8 that Ì is a conservative extension (from contexts to Hcontexts) of

`. Thus, unlike with reduction, our HOAS representation of typing, Ì , does not manipulate

the same items as the original relation `, but extends the domain – essentially, the new

domain is the closure of the original domain under parallel substitution. Hereafter we write

Ì for either relation, but still have Γ range over ctxt and ∆ over Hctxt.

The only pattern from (I)-(V) exhibited by our HOAS- transliteration of typing that is

not already present in the one for reduction is (IV), shown in the transliterations of (Asm),

(Weak) and (ArrI) – there, we have the variables x and y becoming terms X and Y in

(HAsm) (HWeak) and (HArrI). At (ArrI), (IV) is used in combination with (V), because x is

also extruded back from the conclusion to the hypothesis, thus becoming in the hypothesis of

(HArrI) a universally quantified term X. Another phenomenon not exhibited by reduction is

the presence of freshness side-conditions (in the original system), whose effect is to prevent

dependencies – e.g., the side-condition fresh y Γ from (Weak) says that Γ does not depend

on x, meaning that, when transliterating (Weak) into (HWeak), (II) is not applicable to Γ.

(Otherwise, to represent this we would need Hcontext-abstractions!)

101

Note that and coincide, while Ì is only a conservative extension of ` – this is

because our HOAS transliteration method always closes under parallel substitution, and ,

unlike `, is already closed. The presence of unbound variables in the first-order definition,

requiring modification (IV), is a precise indicator of non-closedness.

3.4.3 Induction principle for type inference

By definition, Ì offers an induction principle: If a relation R : Hctxt→ dterm→ tterm→
bool is closed under the rules defining Ì , then ∀∆, X, tX . ∆ Ì X : tX =⇒ R ∆ X tX .

A HOAS technique should ideally do away (whenever possible) not only with the explicit

reference to bound variables and substitution, but with the explicit reference to inference

(judgment) contexts as well. Our inductive definition of Htyping achieves the former, but not

the latter. Now, trying to naively eliminate contexts in a “truly HOAS” fashion, replacing,

e.g., the rule (HArrI) with something like:

∀X. typeOf X tX =⇒ typeOf (A X) tY

typeOf (Lam A) (Arr tX tY)
(∗)

in an attempt to define non-hypothetic typing (i.e., typing in the empty context) directly as

a binary relation typeOf between dterms and tterms, we hit two well-known problems:

-(I) The contravariant position of typeOf(X, tX) prevents the clause (*) from participating

at a valid inductive definition.

-(II) Even if we “compromise” for a non-definitional (i.e., axiomatic) approach, but would like

to retain the advantages of working in a standard logic, then (*) is likely to not be sound, i.e.,

not capture correctly the behavior of the original system. Indeed, in a classical logic it would

allow one to type any LamA to a type Arr tX tY for some non-inhabited type tX . Moreover,

even we restrict ourselves to an intuitionistic setting, we still need to be very careful with

(and, to some extent, make compromises on) the foundations of the logic in order for axioms

like (*) to be sound. This is because, while the behavior of the intuitionistic connectives

accommodates such axioms adequately, other mechanisms pertaining to recursive definitions

are not a priori guaranteed to preserve adequacy – see [67, 81].

So what can one make of a clause such as (*) in a framework with meta-reasoning

capabilities? As already discussed in the introduction, the HOAS-tailored framework’s

solution is axiomatic: (*) would be an axiom in a logic L (hosting the representation of the

object system), with L itself is viewed as an object by the meta-logic; in the meta-logic then,

one can perform proofs by induction on derivations in L. Thus, HOAS-tailored frameworks

solve the problems with (*) by stepping one level up to a meta-logic. Previous work in

general-purpose frameworks, after several experiments, eventually proposed similar solutions,

either of directly interfering with the framework axiomatically [94] or of employing the

102

mentioned intermediate logic L [92].

Our own solution has an entirely different flavor, and does not involve traveling between

logics and/or postulating axioms, but stays in this world (the same mathematical universe

where all the development has taken place) and sees what this world has to offer: it turns

out that clauses such as (*) are “backwards sound”, in the sense that any relation satisfying

them will include the empty-context Htyping relation. This yields “context-free” induction:

Theorem 3.9 Assume θ : dterm→ tterm→ bool such that the following hold:

∀X. θ X tX =⇒ θ (A X) tY

θ (Lam A) (Arr tX tY)
(ArrIθ)

∀tX. θ Y (tA tX)

θ Y (Al tA)
(AlIθ)

θ Y (Arr tX tZ) θ X tX

θ (App Y X) tZ
(ArrEθ)

θ Y (Al tA)

θ Y (tA tX)
(AlEθ)

Then Ì X : tX implies θ X tX for all X, tX. (In other words, θ includes the non-hypothetic

Htyping relation.)

Proof sketch. We take R : Hctxt→ dterm→ tterm→ bool to be

- R ∆ X tX = ((∀ (Y : tY) ∈ ∆. θ Y tY) =⇒ θ X tX).

Then R satisfies the clauses that define Ì , hence, in particular, for all X, tX , Ì X : tX

implies R [] X tX , i.e., θ X tX . �

Interestingly, a simple adaptation of this “context-free” technique works for proving contextual

properties too, if we remember that the contexts we really care about in the end are the

original contexts ctxt, not the HOAS contexts Hctxt: (Indeed, having formulated adequacy

in the same meta-logic where we specified the object system helps us keep in mind that

HOAS contexts are a more general, but merely auxiliary notion.)

Theorem 3.10 Assume θ : dterm→ tterm→ bool satisfies the conditions from Th. 3.9,

and, in addition, has the property that θ x tX holds for all x ∈ dvar and tX ∈ tterm.

Then Γ Ì X : tX implies θ X tX for all Γ, X, tX.

Proof sketch. We take R as in the proof of Th. 3.9. Then again R satisfies the clauses

that define Ì , hence it includes Ì , and in particular the following holds for all Γ, X, tX :

- Γ Ì X : tX ∧ (∀ (y : tY) ∈ Γ. θ y tY) =⇒ θ X tX ,

which means, using the extra hypothesis, that

- Γ Ì X : tX =⇒ θ X tX ,

as desired �

Viewing relations as nondeterministic functions, we can rephrase the last two theorems in a

manner closer to the intuition of types as sets of data, with a logical predicate [143] flavor:

103

Theorem 3.9 (rephrased) Assume θ : dterm→ P(tterm) such that:

∀X. X ∈ θ tX =⇒ (A X) ∈ θ tY

(Lam A) ∈ θ (Arr tX tY)
(ArrIθ)

∀tX. Y ∈ θ (tA tX)

Y ∈ θ (Al tA)
(AlIθ)

Y ∈ θ (Arr tX tZ) X ∈ θ tX

(App Y X) ∈ θ tZ
(ArrEθ)

Y ∈ θ (Al tA)

Y ∈ θ (tA tX)
(AlEθ)

Then Ì X : tX implies X ∈ θ tX for all X, tX.

Theorem 3.10 (rephrased) Assume θ : dterm → tterm → bool satisfies the condi-

tions from Th. 3.9 (rephrased), and, in addition, has the property that x ∈ θ tX holds for all

x ∈ dvar and tX ∈ tterm.

Then Γ Ì X : tX implies X ∈ θ tX for all Γ, X, tX.

3.5 The HOAS principles at work

In this section we give a proof of strong normalization for System F within our HOAS

representation using the developed definitional and proof machinery.

Remember that when introducing System F in Section 3.2.2 we fixed infinite sets of

type and data variables, dvar and tvar, without making other assumption about their

cardinalities. But now we commit to such an assumption, asking that we have much more

type variables than data variables, namely, that tvar has a cardinality greater than or equal

to that of P(dvar). (This assumption is needed for obtaining a compositional map via

Th. 3.5.) One can easily see that this assumption does not affect the generality of the

result, since once strong normalization has been proved for some fixed infinite cardinalities

of the variable sets, then it can be inferred that it holds for any other infinite cardinalities –

moreover, this also seems to be the case for most of the interesting properties considered for

typing systems in the literature. Note also that this cardinality assumption has an intuitive

reading in Cantorian set theory: think of types as sets of data, identify types with tterms

and data with dterms; then, saying that card(tvar) = card(P(dvar)) is the same as saying

that card(tterm) = card(P(dterm)), i.e., that types are indeed (in bijection with) sets of

data.

3.5.1 An effective proof principle for typable terms

Before going after a proof of a particular property of System F, we first analyze how we

could hypothetically employ our HOAS machinery in a potential proof.

104

A typical property ϕ that needs to be proved for typable terms is of course of the

same (meta)type as the typing relation ` itself, namely ctxt→ dterm→ tterm→ bool.

However, many relevant properties ϕ Γ X tX are oblivious to the context Γ, and some even

to the tterm tX . For instance:

- Strong normalization: ϕ : dterm→ bool, ϕ X = “X is strongly normalizing”;

- Church-Rosser: ϕ : dterm→ bool, ϕ X = (∀Y1, Y2. X Y1 ∧X Y1 =⇒ (∃Z. Y1 Z ∧
Y2 Z)).

(Considering the latter property w.r.t. the typed terms is of course only interesting in cases

where it does not hold for untyped terms already, e.g., Church-style type systems versus

βη-reduction.) For such cases, our HOAS machinery comes very handy, as we show below.

So, given ϕ : dterm → bool, how would one go about proving that Γ Ì X : tX

implies ϕ X for all Γ, X, tX ? It will be more convenient to replace ϕ with its associated

set G = {X. ϕ X}, and therefore the question becomes: Given G ∈ P(dterm), how

would one go about proving that Γ Ì X : tX implies X ∈ G for all Γ, X, tX ? A “first

reflex” is to use the HOAS-induction principle from Th. 3.10 (rephrased), that is, search

for θ : tterm → P(dterm) with ∀tX . θ tX ⊆ G, ∀tX , X. X ∈ θ tX =⇒ ϕ X, i.e.,

θ : tterm → P(G), satisfying the clauses from there. Then Th. 3.5 suggests a HOAS-

recursive definition of θ. After some investigation, we are naturally led to a general criterion

justifiable by the combination of HOAS induction and recursion (in what follows, we let Zs

range over lists of terms and take AppL : dterm→ List(dterm)→ dterm to be defined by

AppL X [] = X and AppL X (Z,Zs) = AppL (App X Z) Zs; moreover, given a list Zs and a

set G, we loosely write Zs ⊆ G to indicate that all terms from Zs are in G):

Prop 3.11 Assume that G ⊆ dterm such that the following hold:

Zs ⊆ G
AppL y Zs ∈ G

(VClG)
∀x. App Y x ∈ G

Y ∈ G
(AppClG)

X ∈ G Zs ⊆ G AppL (A X) Zs ∈ G
AppL (App (Lam A) X) Zs ∈ G

(ClG)

Then Γ Ì X : tX implies X ∈ G for all Γ, X, tX.

Proof sketch. Consider the following clauses, expressing potential properties of subsets

S ⊆ dterm (assumed universally quantified over all the other parameters):

- (VClS): if Zs ⊆ G, then AppL y Zs ∈ S;

- (ClS): if X ∈ G, Zs ⊆ G and AppL (A X) Zs ∈ S, then AppL (App (Lam A) X) Zs ∈ S.

Let C = {S ⊆ G. (VClS) and (ClS) hold}. We define cArr : C → C → C and cAl :

P6=∅(C)→ C by cArr S1 S2 = {Y. ∀X ∈ S1.App Y X ∈ S2} and cAl K =
⋂
K.

(Checking that these operations are well-defined is routine – note that, while for cAl well-

definedness follows simply by the fact that (VClS) and (ClS) are in the Horn format, the

105

actual content of these clauses is crucial for the well-definedness of cArr.)

By Th. 3.5, there exists a map θ : tterm→ C that commutes with cArr and cAl, i.e.:

-(I) θ(Arr tX tZ) = {Y. ∀X ∈ θ tX . App Y X ∈ θ tZ}.
-(II) θ(Al tA) =

⋂
tX∈tterm θ(tA tX).

Now, (II) is precisely the conjunction of the clauses (AlIθ) and (AlEθ) from Th. 3.9

(rephrased), while the left-to-right inclusion part of (I) is a rephrasing of (ArrEθ). Finally,

(AlEθ) holds because (ClS) holds for all S ∈ C. Thus, the hypotheses of Th. 3.9 (rephrased)

are satisfied by θ : tterm → C (regarded as a map in tterm → P(dterm)). Hence,

∀X, tX . Ì X : tX =⇒ X ∈ θ tX . And since ∀tX . θ tX ⊆ G, we get ∀X, tX . Ì X : tX =⇒ X ∈
G. �

We call a subset G ⊆ dterm type-closed (terminology taken from [89]) if it satisfies the

hypotheses of Prop. 3.11.

3.5.2 Proof of strong normalization for System F

We let SN be the set of all strongly normalizing dterms.

Prop 3.12 (Strong Normalization) If Γ Ì X : tX, then X ∈ SN .

Proof. One can verify that SN is type-closed – the verification goes smoothly (provided

one has proved the substitution lemma indicated below), but is tedious. Then, the result

follows from Prop. 3.11. �

The latter proposition employs the following lemma, whose proof occasions the usage of the

argument-permutative induction from Prop. 3.3:

Prop 3.13 If X ∗ X ′, then A X ∗ A X ′.

Proof. First, we note that fresh z A∧A z ∗ A′ z =⇒ Lam A ∗ Lam A′, from which

we get (∀z. A z ∗ A′ z) =⇒ Lam A ∗ Lam A′ (**)

Now, we employ the principle from Prop. 3.3, performing induction on A. For the only

interesting case, assume A has the form Lam A. We know from IH that ∀z. (A 1 z) X

 ∗ (A 1 z) X ′ ∧ (A 2 z) X ∗ (A 2 z) X ′. The second conjunct gives

∀z.(A 1X) z ∗ (A 1X ′) z, hence, with (**), Lam(A 1X) ∗ Lam(A 1X ′), i.e.,

(LamA) X ∗ (LamA) X ′. (We also used the exchange and commutation laws from

Section 3.3.2.) �

The above proof reveals an interesting phenomenon: in a HOAS setting, where bindings

are kept implicit and substitution is mere function application, in some proofs one may

106

need to perform a permutation of the “placeholders” for function application (requiring

2-abstractions), whereas in a first-order framework one would be able to proceed more

directly.

Indeed, consider a first-order version of Prop. 3.13, stating that ∗ is substitutive:

X ∗ X ′ implies Y [X/x] ∗ Y [X ′/x]. Its proof goes by fresh induction (Prop. 2.5)

on Y with x,X,X ′ as parameters (thus taking param to be var × term), treating the

case of abstraction as follows: Assume Y = Lam(z, Z) and z is fresh for x,X,X ′. By IH,

Z[X/x] ∗ Z[X ′/x]. By (Xi) (iterated), Lam(z.(Z[X/x])) ∗ Lam(z.(Z[X ′/x])), hence

(since z is fresh), Lam(z.Z)[X/x] ∗ Lam(z.Z)[X ′/x], as desired.

Here, the proof of the first-order version of the fact is more direct than that of the HOAS

version because under the first-order view a term Y allows substitution at any position,

i.e., at any of its free variables, while under the HOAS view an abstraction A has only one

particular position “prepared” for substitution. Therefore, whenever “multi-substitutive”

reasoning is necessary, e.g., in the appearance of Z above with both x and z to be substituted

during the analysis of the inductive case, under the HOAS view we need 2-abstractions, like

A in the proof of Prop. 3.13, and employ the permutative “ 2” application. Our definitional

framework accommodates both the first-order and the HOAS proofs, since the object syntax

is the same, being only subjected to two distinct views.

3.6 Formalization

While we have insisted on the general pattern followed by our HOAS constructions and

results, they have not been developed mathematically or formally in a general context such

as the one for our FOAS theory (arbitrary syntax with bindings, etc.). Currently, we have

only formalized precisely the results stated, for their particular syntax.

The diagram in Figure 3.1 shows the relevant part of our theory structure in Isabelle. In

fact, the part consisting of the theories D and T and the ones below them matches quite

faithfully the sectionwise structure of this chapter and is conceptually self-contained.

Theories D and T instantiate, as usual, our general FOAS theory from Chapter 2 to

the two copies of λ-calculus that make the syntax of System F. Thus, these two theories

correspond to the first part of the Section 3.2.

The theories HOAS View D and HOAS View T formalize the HOAS view of the syntax of

dterms and tterms, respectively, thus matching Section 3.3. Next we refer to HOAS View D

only (since HOAS View T is similar). The definitions of abstraction application and the other

operators described informally in this text and claimed to be independent of representatives

are first given in Isabelle by picking some representatives. E.g. the operators varOfAbs and

termOfAbs pick together a representative (x, Y) for an abstraction A, and then A X is defined

to be Y [X/x]; then, “the real definition”, not committing to any particular such pair, is

107

Generics

T1

T

D1

D

InferenceHOAS_View_T HOAS_View_D

HOAS_Rep_Inference

HOAS_at_Work

[. . . .]

[HOL]

Figure 3.1: The relevant part of the theory structure in Isabelle

108

stated as a lemma: “A X = Y [X/x] for all x, Y such that A = (x.Y)”. (Note that in the

scripts we write Dabs x Y for (x.Y).) While the induction principles from Section 3.3.3 are

rendered verbatim in the scripts, the formalizations of the recursive definition principles from

Section 3.3.4 have a slightly different form, reflecting Isabelle’s distinction between a type

and a set. E.g., to obtain a flexible Isabelle version of Th. 3.5, we have the domain C from

there represented not merely by a type, but by a type c together with a “well-structured-ness”

predicate cWls : c → bool. Then a compositional map H as in Th. 3.5 is called there a

“HOAS-morphism”; the existence of such a map is stated in the scripts as Th. ex HOASmorph,

and then rephrased as Th. ex comp , which matches Th. 3.5 more closely.

The theory HOAS Rep Inference formalizes the HOAS representation of inference, dis-

cussed in Section 3.4. The three subsections of this theory match those of Section 3.4. Our

HOAS inference employs infinitary inductive clauses, but these are unproblematic in Isabelle,

both definition-wise and proof-wise (of course, it is their uniformity that makes them unprob-

lematic proof-wise). While in this chapter we assume ctxt ⊆ Hctxt, in the formalization we

have an explicit injection asHctxt : ctxt → Hctxt, and a predicate isCtxt : Hctxt → bool

representing its image. As a “psychological” note, Isabelle is able to figure out automatically

the proof of facts like Ths. 3.9 and 3.10 once we indicate the relation R, while for the human

mind this is somewhat difficult to grasp, as is any statement whose justification involves

implications nested on the left, as in (ϕ⇒ χ)⇒ ψ, and finally we prove the result.

The theory HOAS at Work formalizes the strong normalization proof, corresponding to

Section 3.5. Here is the content of this theory. First we prove the type-closedness criterion,

Prop. 3.11. Then we prove Prop. 3.13 – we actually give two alternative proofs of this

(FOAS and HOAS), reflecting our discussion following that proposition. Then we make

further preparations for the proof of Prop. 3.12 in terms of some variations of the notion of

reduction-simulation. Finally, we prove the result.

Our Isabelle scripts can be downloaded from [119]. The document SysF.pdf from that

(zipped) folder contains a detailed presentation of the relevant theories. These theories can

also be browsed in html format in the folder SysF Browse (note that the browsable format

shows also all the background (FOAS) theories needed for our HOAS work).

Here is a list of further differences between the text and the Isabelle scripts:

- freshAbs and freshEnv (instead of fresh) are used for the freshness operators on abstractions

and environments, respectively.

- Dabs x X and Dabs2 x A (instead of x.X and x.A) are used for the first-order dabstraction

and 2-dabstraction constructs.

- Similarly, Tabs x tX and Tabs2 x tA (instead of x.tX and x.tA) are used for the first-order

tabstraction and 2-tabstraction constructs.

- In theories T and T1, since there is no overlap (yet) with data items, we do not prefix the

variable names by “t”.

109

- In the Isabelle scripts we have three kinds of notations for substitutions: arbitrary substitu-

tion in environments, X[ρ], unary substitution (“usubst”) X[Y/y], and variable-for-variable

unary substitution (“vusubst”) X[x//y]; we also have (variable-for-variable) swapping, writ-

ten X[x ∧ y].

- While in this chapter we keep some injections implicit, in Isabelle we represent them

explicitly:

— dVar : dvar→ dterm, the injection of dvars as dterms;

— tVar : tvar→ tterm, the injection of tvars as tterms;

— asHctxt : ctxt→ Hctxt, the injection of contexts as Hcontexts;

— isCtxt : Hctxt→ bool, the predicate checking if an Hcontext is (the image of) a ctxt.

3.7 Conclusions and related work

A goal of this chapter was to insist on, and bring technical evidence for, the advantage of

using a general-purpose framework for HOAS, or, in other words, to employ HOAS within

standard mathematics. We showed that our general-purpose framework offers access to some

of the HOAS advanced conveniences, such as impredicative and context-free representations

of (originally context-based) type systems.

Another goal was to bring, via an extensive HOAS exercise, more evidence to a belief

seemingly shared by the whole HOAS community (beyond the large variety of proposed

technical solutions), but not yet sustained by many examples in the literature (apart from

those from [15]): that a HOAS representation of a system is in principle able not only to

allow hassle-free manipulation and study of a system, but also to actually shed more light on

the deep properties of a system. We believe that our general-purpose HOAS machinery does

simplify and clarify the setting and justification of a notoriously hard result in type theory.

3.7.1 Work on HOAS

HOAS-tailored approaches. The HOAS-tailored framework approach yielded several

theorem provers and functional programming environments (some of them already mature and

with an extensive case-study record), including several extensions of LF – Twelf [6], Delphin

[2], ATS [29], Beluga [113] – and Abella [4], a HOAS-specialized prover based on definitional

reflection. is based on an extension of LF, where one can express certain ∀∃ statements, the

so-called totality assertions – here, the ∀∃ extension is the meta-logical framework and LF

is the logical framework. Beluga [113] is based on similar principles as Twelf. In Abella,

the meta-logical framework is a (quasi) higher-order logic with definitional reflection and

induction, and the meta-logic varies according to the need (variants of intuitionistic or linear

higher-order or second-order logic being considered).

110

Hybrid. The Hybrid package [13], coming in an Isabelle/HOL and a Coq variant, is a

successful realization of the general-purpose framework approach. Later versions of this

system [92, 95, 43, 44] also import the three-level architecture idea from the HOAS-tailored

framework approach.

Hybrid uses a representation of the λ-calculus very similar to ours. In the description

below, we use the recent paper [43]. The collection of λ-terms is given there by the

type expr, together with a predicate proper : expr → expr. (I.e., terms form the set

{X ∈ expr. proper X}.)
The usual non-binding first-order operators are provided:

- VAR : var→ expr, for variable-injection,

- APP : expr→ expr→ expr, for application,

- CON : const → expr, for constant injection (where const is an unspecified type of

constants, as, e.g., in our Section 2.3.2).

All these operators are well-defined on λ-terms, i.e., preserve properness. Now, ab-

stractions are defined as particular functions from expressions to expressions (predicate

abstr : expr → expr), and a strong-HOAS binding operator lambda : (expr → expr) →
expr is introduced. Their set of abstractions, {f : expr → expr. abstr f} can be seen to

be isomorphic to our set abs of abstractions, by the bijection mapping any A ∈ abs to

λX. A X. Moreover, this bijection commutes with our Lam versus lambda. All these mean

that our HOAS view is essentially the same as the Hybrid HOAS representation, the only

difference being that we use first-order abstractions as functions, while they use an actual

(restricted) space of functions.

After this point our approach and the Hybrid approach go different ways. For us, λ-

calculus is an example of an object system, for which HOAS view and its various developed

definition and proof principles are samples of the way in which any other object system

would be treated. In Hybrid, the above λ-calculus encoding is not the typical encoding of an

object-system, but part of a logical framework in its own right, aimed at representing object

systems (see below).

Consequently, we pay λ-calculus more attention as an object system, i.e., w.r.t. reasoning

mechanisms on its syntax. While

- our Prop. 3.2 is the same as the Hybrid MC-Theorem 6 from page 11 in op. cit.

- and our Prop. 3.4 being essentially the Gordon-Melham induction principle [58], is implicit

in the Hybrid representation,

we go beyond these and provide:

- (1) support for inductive reasoning about abstractions – Prop. 3.3;

- (2) a strong-HOAS primitive recursor – Th. 3.5.5

5But see also the discussion of a primitive recursion principle introduced in [27].

111

(For instance, (1) was inspired by the need to perform variable-permutative reasoning about

the object system, as in the proof of Prop. 3.13.) Moreover, at this “raw” mathematical

level (the same where the λ-calculus syntax was defined and HOAS-represented), we discuss

methodologies for HOAS-representing inference systems, reasoning about them and proving

the adequacy of these representations.

On the other hand, within Hybrid one defines a second logical framework (besides, and

inside, Isabelle itself), consisting of the following:

- Syntax (if we ignore the “False” connective ⊥, which does not seem needed in any HOAS

encoding):

— an unspecified set atm of atoms – these are supposed to be eventually instantiated with

(first-order) statements about the terms of λ-calculus and (second-order) statements about

abstractions, all determined by the syntactic constructs of the particular object system (to

be encoded);

— the set oo, of goals, which are essentially conjunctions of Horn clauses over the atoms

(thinking of the Horn clauses as including the outermost universal quantification);

— the set of clauses, which are essentially sets of universally quantified implications between

goals and atoms (and are implicitly represented as pairs atom-goal).

(Thus, the clauses are a fragment of the Hereditary Harrop formulas [84]; these formulas are

also considered in [126, 119], where they are called Horn2 formulas.)

- Inference: natural-deduction intuitionistic rules, starting with a set of clauses as a fixed

theory and inferring goals in contexts consisting of atomic assumptions (atoms).

(A linear-logic variation of the SL is also considered in [43], tailored for cases where the

structural rules of weakening and contraction are not present in the object system, hence

undesired at the meta-level either.)

Note that both Hybrid levels involve HOAS representations:

- (1) the representation of the λ-calculus terms with constants and of the SL logic over these

terms in Isabelle;

- (2) the encoding of a given object system in SL.

An encoding as at (2) proceeds by indicating:

- some λ-calculus constants corresponding to the syntax of the object system;

- a set of clauses, essentially a Prolog program, as the aforementioned fixed theory for the SL

inference, corresponding to the inference relations (such as typing, reduction etc.) of the

object system.

The presence of these two levels allows for LF-style of encodings and proofs (while keeping

the advantage of staying completely definitional – no axioms involved), with the proviso that

the extra level of indirection needs to be “tamed” and kept on the background as much as

possible – this is achieved by some Isabelle tactics. (The recent paper [45] compares Hybrid

with HOAS-tailored LF-based systems.)

112

Back to level (1) though (which is essentially where we have been working in this chapter),

[43] actually contemplates staying at this level, but concludes (on page 21) that this would be

inconvenient, a main reason being the difficulty of keeping contexts implicit (as in LF) and,

at the same time, having the necessary relations defined inductively. In Section 3.4.3, we have

argued that this is, to some extent, possible, in that the relation can be defined inductively

while a context-free version of induction can be extracted from this definition. Our Ths.

3.9 and 3.10 from there are stated for a particular typing system, but their pattern is quite

general. As another instance of this pattern, consider the formal-verification case study

employing an older version of Hybrid reported in [93]. It is about formalizing an instance of

the method from [69] for proving applicative (bi)simulations to be (pre)congruences.

Let clterm be the set of closed terms, i.e., those for which all variables are fresh; an

environment ρ : var→ term will be called closed if its image consists of closed terms. The

base relation is � : clterm → clterm → bool, the applicative simulation for the lazy

λ-calculus, whose particular definition is not relevant to the next discussion (see [9, 69, 93]).

The open applicative simulation, �o : term → term → bool is defined as the (closed-

)substitutive coclosure of � :

- (X �o Y) = (∀ρ closed. X[ρ] � Y [ρ]).

Then the following inductive relation is introduced, which we define, following [93], as

a contextual relation (` �•) : ctxt → term → term → bool, where the contexts

Γ ∈ ctxt are here non-repetitive lists of variables. Since we are concerned with formally

certified adequacy as well, we first give the contextual version of the relation in its original,

FOAS format (as defined in [69]):

x �o X ′

Γ ` x �• X ′
(Var)

Γ ` X �• X ′ Γ ` Y �• Y ′ App X ′ Y ′ �o Z ′′

Γ ` App X Y �• Z ′′
(App)

Γ, x ` Y �• Y ′ Lam(x.Y ′) �o Z ′′

Γ ` Lam(x.Y) �• Z ′′
(Lam)

[fresh x Γ]

(This relation is called the precongruence candidate. As explained in [69] on page 105,

Γ ` X �• X ′ should be read intuitively as: X ′ can be obtained from X via one bottom-up

pass of replacements of subterms by terms that are larger under �o .)

In [93], the Hybrid encoding of this relation is given as a HOAS relation based on the

same notion of context as list of variables. However, one can go further w.r.t. HOAS and use

what we called “HOAS contexts” ∆ ∈ Hctxt, here, lists of terms, obtaining the following

relation (Ì �•) : Hctxt→ term→ term→ bool:

X �o X ′

∆ Ì X �• X ′
(HVar)

∆ Ì X �• X ′ ∆ Ì Y �• Y ′ App X ′ Y ′ �o Z ′′

∆ Ì App X Y �• Z ′′
(HApp)

∀X. ∆, X Ì A X �• A′ X Lam A �o Z ′′

∆ Ì Lam A �• Z ′′
(HLam)

113

The obvious adaptation of our adequacy result stated in Prop. 3.8 holds here too (crucial

being the fact that the parameter of this definition, �o , is itself closed under substitution),

implying that (Ì �•) is a conservative extension to HOAS contexts of (` �•). The

above still uses contexts, but a context-free version of our Th. 3.10 holds here with a similar

proof:

Assume θ : term→ term→ bool such that the following hold:

X �o X ′

θ X X ′
(Varθ)

θ X X ′ θ Y Y ′ App X ′ Y ′ �o Z ′′

θ (App X Y) Z ′′
(Appθ)

∀X. θ (A X) (A′ X) Lam A �o Z ′′

θ (Lam A) Z ′′
(Lamθ)

Then Γ Ì X �o X ′ implies θ X X ′ for all Γ, X,X ′.

Again, this (partly) fulfills the HOAS-purity goal of context-freeness discussed in our Section

3.4.3 and also in [43] (on page 21) and [93] (on page 7). (Although one can see that, unlike

for the case of typing from Section 3.4.3, for have contexts have been slightly overused, as

they do not hold information with “negative occurrences”. Therefore we could have used

non-contextual variants of (` �•) and (Ì �•) and a version of Prop. 3.6 to the same

effect.)

Weak versus strong HOAS. A standard classification of HOAS approaches is in weak

versus strong HOAS. Both capture object-level bindings by meta-level functional bindings;

“weak” refers to the considered functions mapping variables to terms, while “strong” refers to

these functions mapping terms to terms. Weak HOAS approaches are taken in [38, 68, 131, 61],

including in category-theoretic form (with a denotational-semantics flavor) in [46, 67, 14, 47].6

Our work in this chapter, the above HOAS-tailored approaches, as well as [39], the work on

Hybrid [13, 92, 95, 43], as well as parametric HOAS [30], parametricity-based HOAS [70],7

and de-Bruijn-mixed-HOAS [66], fall within strong HOAS.

In weak HOAS, some of the convenience is lost, since substitution of terms for variables

is not mere function application, as in strong HOAS. On the other hand, weak HOAS is

easier to define directly inductively. However, as illustrated in this paper and in previous

work [39, 13], in a general-purpose setting having strong HOAS (perhaps on top of weak

HOAS as in [39], or directly on top of the first-order syntax as here) is only a matter of some

definitional work. Because variables are particular terms, strong HOAS can accommodate

weak induction and recursion principles, and in fact in most situations only such weak

6Among these, the work on π-calculus [131, 47], although claimed as participating to weak HOAS, is in
fact also strong HOAS, since channel terms coincide there with channel variables/names.

7The import of the notion of parametricity into HOAS was apparently pioneered by [141, 40].

114

principles are available due to the need of well-foundedness – Props. 3.2 and 3.3 are examples

of “weak” principles within strong HOAS.

Our Th. 3.5 is a “strong” iteration principle, because it computes the value on Lam A

in terms of the values of A X (for all terms X), and thus treats A as if is a function from

term→ term, as in strong HOAS. A “strong” iterator is also introduced in [27] (within a

preliminary Coq-based version of one-level Hybrid). There, one works with de Bruijn terms

as in Hybrid (described above), but unlike in Hybrid terms are allowed to have dangling

references (the predicate that cuts them down does not prevent this) – let us denote their

set by termd. Working with termd rather than term allows one to define:

- tbody : (termd → termd) → termd, such that, for each function f : termd → termd

representing an actual abstraction A, tbody f (the “body” of f) is essentially the body of A

with the bound variable replaced by the index 0;

- funt : (termd → termd) → (termd → termd), “normalizing” any function to one

representing an abstraction – the only relevant property of funt is that, if f : termd → termd

represents an abstraction A, then funt f = f ;

- Fun : (termd → termd)→ termd – this is the higher-order binding operator, essentially

lambda from the above discussion on Hybrid.

A recursor is then defined, whose associated iterator,8 which we shall call Iter, has type

(given the target domain B) (var → B) → (IN → B) → (B → B → B) → (B → B) →
(termd → B) – this is the same as the type of the (locally nameless) first-order de Bruijn

iterator. What makes it strong HOAS is the equation for the abstraction case (when defining

a presumptive F : termd → B), where the de-Bruijn-required element is produced using

tbody:

- F (Fun f) = Blam (tbody f).

Thus, a strong-HOAS function f : termd → termd appears on the left-hand side,

although this higher order type is not reflected in the structure on the target domain. This

approach has some similarities with the one from [14], discussed in Section 2.10 – like

there, one combines an essentially first-order iterator with the advantage of a higher-order

“notation”; the difference is that here one has strong HOAS, not weak HOAS. Compared to

our own iterator from Th. 3.5, Iter does not have to deal with the problem of impredicativity,

since a reduction to the standardly well-defined de Bruijn iteration is performed explicitly

via tbody. The flip side is that no impredicative flavor is given back either, and therefore,

e.g., the environment-free definition of our type interpretation θ from the proof of Prop. 3.11

is not covered by Iter. On the other hand, Iter does cover cases that our rather restricted

and specialized Th. 3.5 does not – w.r.t. coverage, Iter seems to have a large overlap with

the more widely applicable weak HOAS principle from Prop. 3.4 (the latter also appearing

8We restrict the discussion to iteration, in order to compare with our principle. In op. cit., one actually
defines a recursor, not merely an iterator, and for the abstraction case one normalizes using funt for the
“full-recursive” argument from termd → termd.

115

in other places, as discussed above). [27] also discusses an induction principle following a

similar line with Iter: the abstraction case considers arbitrary functions in termd → termd,

and uses their tbody in the induction hypothesis.

Built-in structural rules. The discussion of structural-like properties reveals a limitation

of our HOAS approach compared to others. In HOAS-tailored approaches, provided the

represented system is similar to the logical framework, the proofs of some of its properties

becomes simple (some, e.g., weakening, even following directly from adequacy).

For instance, consider our running examples, β-reduction and the typing system of

Curry-style System F (from Sections 3.2) and consider the task of proving type preservation

for it:

- Γ ` X : tX and X X ′ implies Γ ` X ′ : tX .

Regardless of the representation, the proof needs to go by induction on X X ′, and uses

inversion rules for `. For the inductive case of (Beta) being the last applied rule, a FOAS

proof would require the following substitution lemma, henceforth called SL (see, e.g., [19]):

- If Γ, x : tX ,Γ′ ` Y : tY and Γ ` X : tX , then Γ,Γ′ ` Y [X/x] : tY .

(Note that SL is really a combination between a substitutivity and a cut rule.)

In a Twelf encoding (and similarly in other settings, including two-level Hybrid), one can

dispense of SL, handling it simply by instantiating a universally quantified variable and by

function application.9 In our “one-level” setting, since we are really extracting HOAS from

the implicit meta-language of classical mathematics (as opposed to an explicit intuitionistic

language, as in Twelf and two-level Hybrid), we would still need to prove the “cut” part

of SL, obtaining only the substitutivity part for free. Namely, we would need to prove the

following (about our HOAS relation Ì):

- If ∆, X : tX ,∆′ Ì Y : tY and ∆ ` X : tX , then ∆,∆′ ` Y : tY .

(The proof goes through by trivial induction.) Note also that neither for this property, nor

for type-preservation, can we employ the context-free induction principles from Ths. 3.9

and 3.10, since the conclusion of the fact to be proved involves contexts. Moreover, a clause

such as (ArrIθ) from these theorems cannot be used as an inversion rule, as with traditional

inductive definitions.

3.7.2 Strong normalization proofs for System F

The first proof of strong normalization for System F was given in Girard’s Ph.D. thesis

[53], the very place where (a Church-typed version of) the system was introduced. All the

proofs that followed employed in one way or another Girard’s original idea of reducibility

candidates, in later papers by different authors called (under slightly different technical

9See also [112] for an illustration of another such LF-specific proof shortcut in the context of the POPLmark
challenge [5].

116

conditions) saturated sets – Section 11 in [51] gives an overview. Variations in these proofs

include the employment of terms that may or may not bear type annotations and technical

adjustments on the “candidates”. Our own proof follows Girard’s idea as well, but brings a

twofold improvement over previous proofs:

(1) It delves more directly into the heart of the problem – our general-purpose HOAS

induction principle10 expressed by Th. 3.10 “invites” one to seek a notion of candidate.

(2) It does away with the notions of typing context, and type or data environment, which are

employed in all the previous proofs as “auxiliaries” to the main proof idea. Indeed, previous

proofs define a variant of our type evaluation map θ (required to apply Th. 3.10) that is

parameterized by type environments, i.e., by maps from tvars to tterms. Instead, we employ

our compositionality criterion (Th. 3.5) to obtain a lightweight, non-parameterized θ directly,

verifying what is known as “Girard’s trick” (namely, proving that it has its image in the

set of candidates) in a more transparent fashion. Then, previous proofs define a notion of

semantic deduction in contexts, universally quantifying over type environments and/or data

environments, and prove the typing relation sound w.r.t. it – this step is not required by our

proof; more precisely, this routine issue of logical soundness has been recognized as a general

phenomenon pertaining to HOAS and has already been dealt with in the proof of Th. 3.5.

On the formalization side, we are only aware of the LEGO [3] formalization from [12],

and of the ATS [29] formalization from [41], both following [54]. The former uses de Bruijn

encoding of the syntax, while the latter employs LF-style, axiomatic HOAS for data terms

and de Bruijn indices for type terms. It appears that potential ATS variants of some of our

results (mainly Ths. 3.9, 3.10 and 3.5) could have been used to “HOASify” (and simplify)

the proof from [41] – in particular, our employment of Th. 3.5 seems to answer the following

question raised in op. cit., on page 120: ”[can one] prove strong normalization using a

higher-order representation for types[?]”. On the other hand, due to the partly axiomatic

approach, the adequacy of the HOAS representation from op. cit. (i.e., variants of our Props.

3.6 and 3.8) cannot be formally established in that setting.

10“General-purpose”, in that it is not an ad hoc principle aimed at proving the particular strong normal-
ization result, but a general one derived by mere syntactic analysis of the typing system; analogous principles
are possible for a large class of typing systems.

117

Chapter 4

Process algebra 1

4.1 Introduction

This chapter contains the second part of this dissertation’s contribution: a formalized

incremental coinductive proof system for bisimilarity in process algebra.

Bisimilarity is arguably the most natural equivalence on interactive processes. Assuming

process transitions are labeled by (observable) actions a, processes P and P ′ are bisimilar iff:

(I) whenever P can a-transit to a process Q, P ′ can also a-transit to some process Q′ such

that P ′ and Q′ are again bisimilar; (II) and vice versa; (III) and so on, indefinitely (as in

an infinite game).

The above informal description of the bisimilarity relation can of course be made rigorous

by defining bisimilarity to be the largest bisimulation, i.e., the largest relation θ for which

(I) and (II) hold (with “bisimilar” replaced by “in θ”). But the largest-fixpoint description

loses (at least superficially) the game-theoretic flavor of the intuitive description, so we stick

to the latter for a while. How would one go about proving that P and Q are bisimilar?

Well, if one were allowed an infinite proof, one could try to show that each transition of

P is matched by a transition of Q so that the continuations P ′ and Q′ are (claimed to

be) bisimilar (and vice versa), and then prove the bisimilarity claims about all pairs of

continuations P ′ and Q′, and so on. This way, one would build an infinite tree whose nodes

contain bisimilarity claims about pairs of processes. Now assume that, while expanding

the tree, one encounters a repetition of a previous claim (that appeared on an ancestor

node). A reasonable “optimization” of the infinite proof would then be to stop and “seal”

that node, because the bisimilarity argument for its ancestor can be repeated ad litteram.

In other words, one may take the (yet unresolved!) goal of the ancestor as a hypothesis,

which discharges the repetitive goal – this is the upside of trying to build an infinite proof:

non-well-foundedness (i.e., circularity) works in our advantage. Assume now one finds such

repetitions on all paths when building the tree. Then our bisimilarity proof is done! In terms

of the fixpoint definition, we have proved that the pair (P,Q) of processes located at the

root are bisimilar by coinduction, i.e., by exhibiting a bisimulation that contains (P,Q). In

118

terms of proof engineering however, the needed bisimulation did not appear out of nowhere,

but was built incrementally from the goal, essentially by an exploration that discovered a

regular pattern for an infinite proof tree. In fact, coinductive proofs are intuitively all about

discovering regular patterns.

This chapter provides formal support for this intuition. Here is an illustration of our

approach, for a mini process calculus. Fix a set of actions act with a given silent action

τ ∈ act and a map on act \ {τ}, a 7→ a, such that a = a for all a ∈ act. The processes P

are generated by the grammar:

P ::= 0 | a.P | P |Q | !P

Thus, we have idle process, action prefix, parallel composition, and replication. “!” binds

more strongly than “|”. The behavior of processes is specified by the following labeled

transition system:

·
a.P

a
 P

(PREF)
P0

a
 Q0

P0|P1
a
 Q0|P1

(PARL)
P1

a
 Q1

P0|P1
a
 P0|Q1

(PARR)

P0
a
 Q0 P1

a
 Q1

P0|P1
τ
 Q0|Q1

(PARS)
P

a
 Q

!P
a
 !P |Q

(REPL)
P

a
 Q0 P

a
 Q1

!P
τ
 !P |(Q0|Q1)

(REPLS)

We may wish to prove in this context that parallel composition is associative and commutative

and that replication absorbs self-parallel composition, i.e., that

- (P0|P1)|P2 = P0|(P1|P2),

- P0|P1 = P1|P0, and

- P |!P = !P

for all processes P0, P1, P2, P , where we write “=” for strong bisimilarity. In fact, assume we

already proved the first two facts and are left with proving the third, P |!P = !P . For this,

we first check to see if the equations we already know so far (associativity and commutativity

of |) imply this new one by pure equational reasoning – no, they don’t. This means we

cannot discharge the goal right away, and therefore we need to perform unfoldings of the

two terms in the goal. We unfold P |!P and !P until we reach hypotheses involving only

process meta-variables. The upper side of Figure 4.1 contains all possible derived rules

(i.e., compositions of primitive rules in the system, all the way down to non-decomposable

hypotheses) that can be matched by P |!P in order to infer a transition from P |!P . And,

similarly, the lower side for the term !P – in this latter case, the matched derived rules

coincide with the matched primitive rules. To see how the derived rules are obtained, the

figure shows whole derivation trees, but we only care about the leaves and the roots of these

trees.

Next, we try to pair these derived rules (upper versus lower), by the accordance of their

hypotheses and their transition labels. The only valid pairing possibilities are: (1) with (5),

119

P
a
 Q

P |!P a
 Q|!P

(PARL) (1)

P
a
 Q

!P
a
 !P |Q

(REPL)

P |!P a
 P |(!P |Q)

(PARR) (2)

P
a
 Q0 P

a
 Q1

!P
τ
 !P |(Q0|Q1)

(REPLS)

P |!P τ
 P |(!P |(Q0|Q1))

(PARR) (3)
P

a
 Q0

P
a
 Q1

!P
a
 !P |Q1

(REPL)

P |!P τ
 Q0|(!P |Q1)

(PARS) (4)

P
a
 Q

!P
a
 !P |Q

(REPL) (5)
P

a
 Q0 P

a
 Q1

!P
τ
 !P |(Q0|Q1)

(REPLS) (6)

Figure 4.1: The matching derived rules for P |!P and !P

(2) with (5), (3) with (6), and (4) with (6). The targets of the conclusions of the rules in

these pairs yield four new goals:

- Q|!P = !P |Q;

- P |(!P |Q) = !P |Q;

- P |(!P |(Q0|Q1)) = !P |(Q0|Q1);

- Q0|(!P |Q1) = !P |(Q0|Q1).

The original goal, P |!P = !P , is replaced by the above four goals, and is also henceforth

taken as a hypothesis. Notice that our goals are generic, i.e., universally quantified over

the occurring process meta-variables, P,Q,Q0, Q1. Now, equational reasoning (by standard

equational rules, including substitution) with hypothesis P |!P = !P together with the already

known lemmas (P0|P1)|P2 = P0|(P1|P2) and P0|P1 = P1|P0 is easily seen to discharge each

of the remaining four goals, and the proof is done.

Why is this proof valid, i.e., why does it represent a proof of the fact that, for all process

terms P , P |!P and !P are bisimilar? The rigorous justification for this is the topic of

this chapter. But the short answer has to do with our previous discussion on discovering

patterns: the above is really a proof by coinduction (on universally quantified equalities of

terms up to equational closure), which builds incrementally the relation representing the

coinductive argument. Notice the appearance of circular reasoning: a goal that cannot be

locally discharged is expanded according to the SOS definition transition relation and becomes

a hypothesis. In this particular example, the proof is finished after only one expansion, but

the process of expanding the goals with taking them as hypotheses may in principle continue,

obtaining arbitrarily large proof trees.

We show that deductions such as the above are sound for a wide class of process algebras

– those specifiable by SOS rules in the de Simone format [37]. Our results have been

given a formalization in Isabelle/HOL [103], with the potential of leading to a (certified)

implementation of a coinductive tool.

Here is an outline of this chapter. In Section 4.2, we discusses a representation of

the de Simone format. Sections 4.3 and 4.4 contain our original theoretic contribution:

incremental proof systems for bisimilarity – Section 4.3 for standard bisimilarity, Section

120

4.4 for universally quantified bisimilarity equations. In Section 4.5, we show how recursion

and weak bisimilarity fall in the scope of our results. In Section 4.6, we give more technical

examples illustrating our results. As usual, discussions of formalization and related work, in

Sections 4.7 and 4.8, end the chapter.

4.2 Syntax and operational semantics of processes

Process variables, terms and substitution. We fix the following sets: param, of

parameters, ranged over by p; opsym, of operation symbols (opsyms for short), ranged over

by f, g; var, of (process) variables, ranged over by X,Y, Z – this latter set is assumed to be

infinite. The set term, of (process) terms, ranged over by P,Q,R, T, S, U, V , is defined as

follows, where ps and Ps range over lists of parameters and lists of terms, as follows:

P ::= Var X | Op f ps Ps

Thus, a term can have any opsym at the top, applied to any list of parameters and any

list of terms (of any length), without being subject to further well-formedness conditions.

Hence an opsym f does not have an a priori associated numeric rank (m,n) (indicating that

f takes m parameters and n terms). Rather, we allow in term the whole pool of all possible

terms under all possible rankings of the operation symbols. This looseness w.r.t. terms is

admittedly a formalization shortcut (fitting nicely the Isabelle simply-typed framework),

but is completely unproblematic for the concepts and results of this chapter: while an SOS

specification of a transition system will of course employ only certain (possibly overloaded)

ranks for the opsyms, the unused ranks will be harmless, since they will not affect transitions

or bisimilarity.

σ and τ will range over var→ term. We consider the operators:

- vars : term→ P(var), giving the set of variables occurring in a term.

- [] : term→ (var→ term)→ term, such that (as usual) T [σ] is the term obtained from

T by substituting all its variables X by σX.

Next we represent the meta-SOS notion of a transition-system specification [59, 97]. Given

any set A, the set Ftrans(A), of formal A-transitions, consists of pairs, written k l, with

k, l ∈ A, where k is called the source and l the target. We fix a set act, of actions, ranged

over by a, b.

Rules syntax. The set rule, of (SOS-)rules, ranged over by rl , is defined consist of triples

(hyps, cnc, side), where:

- hyps ∈ List((Ftrans(var))), read “hypotheses”;

- cnc ∈ Ftrans(term), read “conclusion”;

121

- side : (IN → act)→ act→ bool, read “side-condition”.

The hypotheses and the conclusions of our rules are therefore formal transitions between

variables, and between terms, respectively. I.e., for any rule rl :

- hyps rl has the form [XX 0 Y0, . . . ,XX n−1 Yn−1], with XX j , Yj variables;

- cnc rl has the form S T , with S and T terms.

One can visualize rl as

XX 0 Y0, . . . ,XX n−1 Yn−1

S T
[λ as, b. side rl as b]

where as : IN → act and b : act. Actually, we think of rl as follows:

XX 0
as 0
 Y0 , . . . ,XX n−1

as (n−1)
 Yn−1

S
b
 T

[side rl as b]

Note however that the side condition side rl is (for now) allowed to take into consideration

the whole function as , and not only its first n values as 0, . . . , as (n−1), as one would expect

– this is corrected below by “saneness”.

Given a rule rl with hyps rl and cnc rl as above, we write:

- theXXs rl , for the variable list [XX 0, . . . ,XX n−1];

- theYs rl , for the variable list [Y0, . . . , Yn−1];

- theS rl , for the term S;

- theT rl , for the term T .

A rule rl is said to be sane if the following hold:

-(1) theYs rl is nonrepetitive;

-(2) set(theXXs rl) ⊆ vars(theS rl);

-(3) vars(theS rl) ∩ set(theYs rl) = ∅;
-(4) vars(theT rl) ⊆ vars(theS rl) ∪ set(theYs rl);

-(5) ∀as, as ′. (∀i < length(theYs rl). as i = as ′ i) =⇒ side rl as = side rl as ′.

A rule rl is said to be amenable if theS rl has the form Op f ps [Var X0, . . . ,Var Xm−1],

where f is an opsym, ps a list of parameters, and [X0, . . . , Xm−1] a nonrepetitive list of

variables. Given an amenable rule rl as above, we write:

- thef rl for f ,

- theps rl for ps,

- theXs rl for [X0, . . . , Xm−1].

Saneness expresses a natural property for well-behaved SOS rules: Think of a term S

as a generic composite process, built from its unspecified components (its variables) by

means of opsyms. Then a sane rule is one that describes the behavior of the composite S

in terms of the behavior of (some of) its components: condition (2) says that indeed the

hypotheses refer to the components, (1) and (3) that the hypotheses only assume that some

122

components transit “somewhere” (without any further information), (4) that the resulted

continuation of the composite depends only on the components and their continuations, and

(5) that the side-condition may only depend on the action labels of the hypotheses and of

the conclusion. In addition, amenability asks that the composite process S be obtained by

a primitive operation f applied to unspecified components. The conjunction of saneness

and amenability is precisely the de Simone format requirement [37], hence we call a rule de

Simone if it is sane and amenable.

Running example. We show what the example in the introduction becomes under our

representation. Assume that act is an unspecified set with constants − : act → act and

τ ∈ act such that a = a for all a 6= τ . Define the relation sync : act→ act→ act→ bool

by sync a b c = (a 6= τ ∧ b 6= τ ∧ a = b ∧ c = τ). We take opsym to be a three-element set

{Pref,Par,Repl} and param to be act. For readability, in our running example (including

throughout the future continuations of this example), for all X ∈ var, S, T ∈ term and

a ∈ act, we use the following abbreviations:

- X for Var ∈ X;

- a.S for Op Pref [a] [S];

- S |T for Op Par Nil [T, S];

- !S for Op Repl Nil [S].

Rls consists of the rules {PREFa. a ∈ act} ∪ {PARL,PARR,PARS,REPL,REPLS} listed

below, where X,Y,X0, X1, Y0, Y1 are fixed distinct variables.

·

a.X
b
 X

(PREFa)

[a = b]

X0
as 0
 Y0

X0 | X1
b
 Y0 | X1

(PARL)

[as 0 = b]

X0
as 0
 Y0

X1 | X0
b
 X1 | Y0

(PARR)

[as 0 = b]

X0
as 0
 Y0 X1

as 1
 Y1

X0 | X1
b
 Y0 | Y1

(PARS)

[sync (as 0) (as 1) b]

X
as 0
 Y

!X
b
 !X | Y

(REPL)

[as 0 = b]

X
as 0
 Y0 X

as 1
 Y1

!X
b
 !X | (Y0 | Y1)

(REPLS)

[sync (as 0) (as 1) b]

For listing the rules, we employed the previously discussed visual representation. E.g., the

formal description of PARS is (| hyps = [X0 Y0, X1 Y1]; cnc = (X0 | X1 Y0 | Y1);

side = (λ as, b. sync (as 0) (as 1) b) |). All the rules in this example are easily seen to be de

Simone.

Rules semantics. We fix Rls, a set of de Simone rules. The one-step transition relation

induced by Rls on terms is a (curried) ternary relation step : term→ act→ term→ bool,

where we write P
a
 Q instead of step P a Q, defined inductively by the following clause:

- if rl ∈ Rls, σ((theXXs rl)!j)
as j
 σ((theYs rl)!j) for all j < length(theYs rl), and side rl as b

holds, then (theS rl)[σ]
b
 (theT rl)[σ]

123

(where σ : var→ term, as : IN → act, and b ∈ act).

The above definition is the expected one: each (generic) rule in Rls yields, for each

substitution of the variables in the rule and for each choice of the actions fulfilling the

side-condition, an inference of the instance of the rule’s conclusion from the instances of the

rule’s hypotheses.

Bisimilarity. We write rel for P(term× term), the set of relations between terms, ranged

over by θ, η, ξ. The (monotonic) retract operator Retr : rel→ rel, named so because it maps

each θ to a relation retracted (w.r.t. transitions) back from θ, is defined by:

- Retr θ = {(P,Q). (∀a, P ′. P a
 P ′ =⇒ (∃Q′. (P ′, Q′) ∈ θ∧Q a

 Q′))∧(∀a,Q′. Q a
 Q′ =⇒

(∃P ′. (P ′, Q′) ∈ θ ∧ P a
 P ′))}.

The bisimilarity relation, bis ∈ rel, is the greatest fixed point of Retr.

Notice that we defined bisimilarity for open terms (i.e., terms possibly containing variables),

while often in the literature both transition and bisimilarity are defined for closed terms only

(with step and Retr defined by the same conditions as above, but acting on closed terms and

relations on closed terms, respectively). However, for the de Simone format of our rules (as

well as for more general formats, e.g., well-founded pure tyft [59]), transition does not bring

any variables (in the sense that, if P
a
 P ′ , then the free variables of P are among those

of P ′) implying that two closed terms are bisimilar according to our definition iff they are

bisimilar according to the aforementioned “closed” version.

Because of the particular format of the rules, bis is a congruence on terms. This is in fact

true for rule formats more expressive than the one considered here [24, 59, 135]. However, we

shall need to exploit a stronger property specific to the de Simone format, namely: whenever

θ is a congruence, it follows that θ ∩ (Retr θ) is also a congruence. Let, for any relation θ,

congCl θ be its congruence closure. From the above, we infer a powerful “up to” coinduction

rule (that is, up to bisimilarity and up to arbitrary contexts), due to de Simone [37] and

Sangiorgi [137], improving on traditional coinduction:

Theorem 4.1 For all θ ∈ rel, if θ ⊆ Retr(congCl(θ ∪ bis)), then θ ⊆ bis.

4.3 The raw coinductive proof system

We now present the core of our original theoretical contribution: defining an incrementally-

coinductive proof system for bisimilarity and proving it sound. We define the raw deduction

relation Ì : rel→ rel→ bool (with infix notation) inductively by the clauses:

·
θ Ì θ′

(Ax)

[θ′ ⊆ congCl(θ ∪ bis)]

∀θ′ ∈ Θ. θ Ì θ′

θ Ì
⋃

Θ

(Split)

[Θ 6= ∅]
θ′ ∪ θ Ì θ′′

θ Ì θ′
(Coind)

[θ′ ⊆ Retr θ′′]

124

θ Ì θ′ is eventually intended to mean: “θ implies θ′ modulo bisimilarity and congruence

closure”. Here is the intuitive reading of the rules (thinking of them as being applied

backwards for expanding or discharging goals). (Ax) allows to deduce θ′ from θ right away.

(Split) allows for splitting the goal according to a chosen partition of its conclusion. (Coind)

is the interesting rule, and is the actual engine of the proof system. To get an intuitive grasp

of this rule, let us first assume that θ = ∅ (i.e., that θ is empty). Then the goal is to show θ′

included in congCl bis, i.e., in bis. For this, it would suffice that θ′ ⊆ Retr(θ′); alternatively, we

may “defer” the goal by coming up with an “interpolant” θ′′ such that θ′ ⊆ Retr(θ′′) and θ′

implies θ′′ modulo bisimilarity and congruence. (As we shall see in the next section, working

symbolically with open terms provides natural interpolant candidates.) In case θ 6= ∅, θ
should be thought of temporally as the collection of auxiliary facts gathered from previous

coinductive expansions.

Note that, for the aforementioned intention of the proof system, (Coind) is not sound by

itself : regarded as applied backwards to a goal, it moves the conclusion θ′ to the hypotheses,

creating a circularity. In other words, of course it is not true that the conjunction of

θ′′ ⊆ congCl(θ′ ∪ θ ∪ bis) and θ′ ⊆ Retr θ′′ implies θ′ ⊆ congCl(θ ∪ bis) for all θ, θ′, θ′′. Yet, the

proof system as a whole is sound in the following sense:

Theorem 4.2 If ∅ Ì θ, then θ ⊆ bis.

In the remainder of this section, we outline the proof of this theorem.

(I) In order to gain more control on the proof system, we objectify it in a standard fashion,

by considering proofs (i.e., proof trees) explicitly, at the object level (as opposed to merely

implicitly as they appear in the inductive definition of Ì). For this, we pick a sufficiently

large set index, ranged over by i, and define the set prf, of proof trees, ranged over by Pf ,

with constructors mirroring the clauses in the definition of Ì , as follows (where Pfs ranges

over index→ prf and θ, θ′ over rel):

Pf ::= Ax θ θ′ | Split Pfs θ θ′ | Coind Pf θ θ′

The pair of relations that a proof tree Pf “proves”, which is (θ, θ′) when Pf has the one of

the forms Ax θ θ′, Split Pfs θ θ′, or Coind Pf θ θ′, is denoted by proves Pf . The conclusion-

hypothesis dependencies and the side-conditions of the clauses defining Ì are captured by

the predicate correct : prf→ bool, defined recursively as expected:

- correct (Ax θ θ′) = (θ′ ⊆ congCl(θ ∪ bis));

- correct (Split Pfs θ θ′) = ((∀i. correct(Pfs i)∧ fst(proves(Pfs i)) = θ)∧
⋃
i. snd(proves(Pfs i)) =

θ′);

- correct (Coind Pf θ θ′) = (correct Pf ∧ fst(proves Pf) = θ′ ∪ θ ∧ θ′ ⊆ Retr(snd(proves Pf))).

125

It is immediate that θ Ì θ′ holds iff ∃Pf . correct(Pf) ∧ proves(Pf) = (θ, θ′).

(II) Thus, it suffices to show that θ ⊆ bis whenever there exists a correct proof tree Pf

such that proves(Pf) = (θ, θ′). For showing the latter, we introduce a couple of auxiliary

concepts. Given Pf , a label in Pf is a pair (θ, θ′) “appearing” in Pf – formally, we define

labels : prf→ P(rel× rel) by:

- labels (Ax θ θ′) = {(θ, θ′)};
- labels (Split Pfs θ θ′) = {(θ, θ′)} ∪

⋃
i. labels(Pfs i);

- labels (Coind Pf θ θ′) = {(θ, θ′)} ∪ labels Pf .

We let Left Pf denote the union of the lefthand sides of all labels in Pf , and Right Pf the

union of the righthand sides of all labels in Pf .

Lemma 4.3 If Pf is correct, then Right Pf ⊆ congCl((Left Pf) ∪ bis).

Lemma 4.4 If Pf is correct and fst(proves Pf) ⊆ Retr(Right Pf), then Left Pf ⊆ Retr(Right Pf).

Lemma 4.3 follows by an easy induction on proof trees. By contrast, Lemma 4.4 requires

some elaboration – before getting into that, let us show how the two lemmas imply our

desired fact. Assume that Pf is correct and proves Pf = (∅, θ). Then the hypotheses of

both lemmas are satisfied by Pf , and therefore (since also Retr is monotonic) Left Pf ⊆
Retr(Right Pf) ⊆ Retr(congCl((Left Pf) ∪ bis)), implying, by Theorem 4.1, Left Pf ⊆ bis. With

Lemma 4.3, we obtain Right Pf ⊆ congCl(bis), which means (given that bis is a congruence)

Right Pf ⊆ bis. And since θ ⊆ Right Pf , we obtain θ ⊆ bis, as desired.

It remains to prove Lemma 4.4. This lemma states a property of proof trees that depends

on a hypothesis concerning their roots (i.e., the pair (θ, θ′) that they “prove”). The task of

finding a strengthening of that hypothesis so that a direct proof by structural induction goes

through seems rather difficult, if not impossible. We instead take the roundabout route of

identifying an invariant satisfied on backwards paths in the proof trees whose roots satisfy

our hypothesis. First, we define the notion of a path (independently of proof trees): a list

[(θ0, θ
′
0), . . . , (θm−1, θ

′
m−1)] is called a path if the following is true for all n < m− 1: either

θn+1 = θn, or θn+1 ⊆ Retr(θ′n+1) ∪ θn. Then one can verify the following:

-(a) Fix ξ ∈ rel. If [(θ0, θ
′
0), . . . , (θm−1, θ

′
m−1)] is a path, θ0 ⊆ Retr ξ and ∀n < m. θ′n ⊆ ξ,

then ∀n < m. θn ⊆ Retr ξ. (By easy induction on n.)

-(b) If Pf is correct, proves(Pf) = (θ, θ′), and (η, η′) is a label in Pf , then there exists a path

[(θ0, θ
′
0), . . . , (θm−1, θ

′
m−1)] consisting of labels in Pf (i.e., such that (θn, θ

′
n) are labels in

Pf for all n < m) and connecting (θ, θ′) with (η, η′) (i.e., such that (θ0, θ
′
0) = (θ, θ′) and

(θm−1, θ
′
m−1) = (η, η′)). (By induction on Pf .)

With these preparations, we can prove Lemma 4.4: Assume proves(Pf) = (θ, θ′) and

θ ⊆ Retr(Right Pf). Fix a label (η, η′) in Pf . According to (b), there exists a path connecting

126

(θ, θ′) with (η, η′) and going through labels in Pf only. Then the hypotheses of (a) are

satisfied by the aforementioned path and ξ = Right Pf , and therefore all the lefthand sides

of the pairs in this path are included in Retr(Right Pf). In particular, η ⊆ Retr(Right Pf).

Since the choice of the label (η, η′) was arbitrary, it follows that Left Pf ⊆ Retr(Right Pf), as

desired.

Remarks. (1) The soundness of Ì was established not locally (rule-wise), as is customary

in soundness results, but globally, by analyzing entire proof trees. What the potential

backwards applications of the clause (Coind) do is to improve the candidate relation for the

coinductive argument. In the end, as shown by the proof of Theorem 4.2, the (successful)

relation is synthesized by putting together the righthand sides of all labels in the proof tree.

(2) The proof system represented by Ì is not a typical syntactic system, but contains

semantic intrusions – in effect, the system is complete already by its axiom (Ax), which allows

for an instantaneous “oracle proof” that the considered relation is included in bisimilarity.

But of course, the realistic employment of this system will appeal to such instantaneous

proofs only through the available (already proved) lemmas. (Thus, the purpose of including

bis in the side-condition of (Ax) was not to ensure completeness (in such a trivial manner),

but to allow the usage of previously known facts about bisimilarity.) A more syntactic and

syntax-driven system for terms (also featuring oracles though, for the same reason as this

one) will be presented in the next section.

4.4 Deduction of universally quantified bisimilarity

equations

Next we introduce a deduction system for term equalities, where, as before, we interpret

equality as bisimilarity, but now we interpret the occurring variables as being universally

quantified over the domain of terms.

Universal bisimilarity, ubis ∈ rel, is defined as follows: (U,U ′) ∈ ubis iff (U [τ], U ′[τ]) ∈ bis

for all substitutions τ : var→ term.

Thus, e.g., given distinct variables X and Y and an opsym f ,

- (Op f Nil [Var X,Var Y], Op f Nil [Var Y,Var X]) ∈ ubis

is equivalent to

- ∀U, V ∈ term. (Op f Nil [U, V],Op f Nil [V,U]) ∈ bis.

Matched derived rules. Derived rules appear by composing primitive rules (i.e., the de

Simone rules in Rls) within maximal composition chains. I.e., they come from considering,

127

in the SOS system, derivation trees that are completely backwards-saturated (in that their

leaves involve only variables as sources and targets) and then forgetting the intermediate

steps in these trees. A derived rule may not be amenable (hence not de Simone), but will

always be sane. We shall let drl denote derived rules, keeping the symbol rl for primitive

rules.

We are interested in constructing all derived rules that are matched by a given term U in

such a way that U becomes the source of the conclusion of the derived rule; in doing so, we

also care about avoiding any overlap between the freshly generated variables (required to build

the rules) and the variables of another given term V (that we later wish to prove universally

bisimilar with U). We thus introduce the operator mdr : term → term → P(rule), read

“matched derived rules”, such that, given U, V ∈ term, mdr V U is the set of all the derived

rules with U as the source of their conclusion and with “the Ys” fresh for V . We write

mdr V U instead of mdr V U .

The definition of mdr is both intuitive and standard (and was already sketched in the

pioneering paper [37]), but its formalities are very technical, due to the need to avoid name

overlapping and compose side-conditions.2 mdr : term → term → P(rule) is defined

recursively on the second argument as follows:

(I) mdr V (Var X) consists of a single rule:
X

as 0
 Y

Var X
b
 Var Y

[b = as 0], where Y is a choice

of a variable fresh for X and V . (Thus, an “identity” rule.)

(II) mdr V (Op f ps [U0, . . . , Um−1]) contains one rule (that we later refer to as “the promissed

rule”) for each rl ∈ Rls, n ∈ IN and [drl0, . . . , drln−1] ∈ List(rule) satisfying the following

two conditions:

— rl has the form
XX 0

as 0
 Y0 , . . . ,XX n−1

as (n−1)
 Yn−1

Op f ps [Var X0, . . . ,Var Xm−1]
b
 T

[side as b].

(Thus, rl has n hypotheses and the source of its conclusion has the opsym f and the parameter

list ps at the top, and has precisely m immediate subterms which, by the de Simone format

requirement, have to be distinct variables.)

— Given σ : var→ term defined by X0 7→ U0, . . ., Xm−1 7→ Um−1 (and with all the other

variables mapped by σ no matter where), it holds that drl j ∈ mdr V (σ XX j) for all j < n.

(Note also that σ XX j = Ui, where i is the unique k ∈ {0, . . . ,m− 1} such that Xk = XX j .)

Given rl and [drl0, . . . , drln−1] as above, we construct the promised rule. Write drl j as

XX j
0

asj 0
 Y j0 , . . . ,XX j

kj−1

asj (kj−1)
 Y jkj−1

Sj
bj

 T j
[sidej asj bj]. We first perform (if necessary)

2In [24, 10], where what we call “matched derived rules” are called “ruloids”, mdr is not even defined,
but rather the existence of such an operator satisfying suitable properties (essentially our below soundness
and completeness) is proved.

128

renamings of some of “the Ys” in the rules drlj obtaining “copies” drl ′j verifying certain

conditions (see below). Each drl ′j will have the form

XX j
0

asj 0
 Y ′

j
0 , . . . ,XX j

kj−1

asj (kj−1)
 Y ′

j
kj−1

Sj
bj

 T ′
j

[sidej asj bj]

(Thus, “the XXs”, “the S”, and the side conditions do not change from drl j to drl ′j .) The

aforementioned conditions satisfied by drl ′j are the following:

-(i) for all j < n, drl ′j is also sane (like drl j was);

-(ii) for all j1, j2 < n with j1 6= j2, theYs drl ′j1 is disjoint from theYs drl ′j2 , from vars(theS drl ′j2),

and from vars V ;

-(iii) for all j < n, T ′
j

= T j [Y ′0
j
/Y j0 , . . . , Y

′
kj−1

j
/Y jkj−1], where Y ′0

j
/Y j0 , . . . , Y

′
kj−1

j
/Y jkj−1 is

the map sending each Y ′l
j

to Var Yl
j .

Now, let τ : var → term update σ with Y0 7→ T ′
0
, . . ., Yn−1 7→ T ′

n−1
. Then our

promised rule should be something like:

XX 0
0

as0 0
 Y ′

0
0 , . . . ,XX 0

k0−1

as0 (k0−1)
 Y ′

0
k0−1

...

XX n−1
0

asn−1 0
 Y ′

n−1
0 , . . . ,XX n−1

kn−1−1

asn−1 (kn−1−1)
 Y ′

n−1
kn−1−1

Op f ps [X0, . . . , Xm−1]
b
 T [τ]

[?]

thus having a number of k0 + k1 + . . . + kn−1 hypotheses. We have not indicated its

side-condition yet. Intuitively, it should be the relational composition of side (the side-

condition of rl) with the sidej-s (the side-conditions of the drlj-s). This requires the standard

linearization of the array of indexes (j, l)j<n,l<kj into a list, mapping each (j, l) to (εj + l),

where εj =
∑
j′<j kj′ . Also, we need the operator shift : IN → (IN → act) → (IN → act),

defined by shift n as = λ i. as(n+ i). Then the side-condition of our promised rule, call it

pside, is defined as follows: pside as c = (∃ bs. side bs c ∧ (∀j < n. sidej (shift εj as) (bs j))).

Our promised rule is therefore:

(| hyps = [XX 0
0 Y ′

0
0, . . . ,XX 0

k0−1 Y ′
0
k0−1, . . . , XX n−1

0 Y ′
n−1
0 , . . . ,XX n−1

kn−1−1

Y ′
n−1
kn−1−1];

cnc = Op f ps [X0, . . . , Xm−1] T [τ];

side = pside |),
and we are finally done with the definition of mdr.

Running example (continued). We again assume that all the variables X,Y etc. that
we refer to below are fixed distinct variables.
- mdr !X(X | !X), the set of derived rules matched by X | !X and with “the Ys” avoiding the
variables of !X, consists of {DRL1,DRL2,DRL3,DRL4} (see below);
- mdrX | !X(!X), the set of derived rules matched by !X and with “the Ys” avoiding the
variables of X | !X, consists of {DRL5,DRL6} (given below).

129

X
as 0
 Y

X | !X b
 Y | !X

(DRL1)

[as 0 = b]

X
as 0
 Y

X | !X b
 X | (!X | Y)

(DRL2)

[∃c. as 0 = c ∧ c = b]

X
as 0
 Y0 X

as 1
 Y1

X | !X b
 X | (!X | (Y0 | Y1))

(DRL3)[
∃c. sync (as 0) (as 1) c

∧ c = b

] X
as 0
 Y0 X

as 1
 Y1

X | !X b
 Y0 | (!X | Y1)

(DRL4)[
∃c. as 1 = c ∧

sync (as 0) c b

]
X

as 0
 Y

!X
b
 !X | Y

(DRL5)

[as 0 = b]

X
as 0
 Y0 X

as 1
 Y1

!X
b
 !X | (Y0 | Y1)

(DRL6)

[sync (as 0) (as 1) b]

Remarks. (1) Because the term !X has only depth 1, the matched derived rules DRL5,DRL6

are essentially the primitive rules REPL,REPLS. Moreover, DRL1 was obtained by a single

(backwards) application of the rule PARL.
(2) Each of DRL2,DRL3,DRL4 arises from the composition of two primitive rules. For

example, DRL3 is obtained by applying PARR, and then applying REPLS to the resulted
hypothesis:

X
as 0
 Y0 X

as 1
 Y1

!X
c
 !X|(Y0 | Y1)

(REPLS)

[sync (as 0) (as 1) c]

X | !X b
 X | (!X | (Y0 | Y1))

(PARR)

[c = b]

The side-condition of DRL3 is obtained by composing (essentially as relations) the two

side-conditions, of PARR and REPLS, yielding existential quantification over c. Of course, the

side-conditions of DRL2,DRL3,DRL4 can be readily simplified to the equivalent forms as 0 = b,

sync (as 0) (as 1) b and again sync (as 0) (as 1) b, but eliminating the existential quantifiers

may not be possible in general – recall that side-conditions are arbitrary predicates.

The only property we care about concerning elements drl of mdr V U w.r.t. V is that

theYs(drl) are all distinct from the variables of V . On the other hand, concerning the

relationship between mdr V U and U , we have the crucial facts of soundness and completeness

w.r.t. transition:

- For all drl ∈ mdr V U , drl is sound, i.e.: for all τ : var→ term, as : IN → act, and b ∈ act,

if τ((theXXs drl)!j)
as j
 τ((theYs drl)!j) for all j < length(theYs drl) and side drl as b holds,

then (theS drl)[τ]
b
 (theT drl)[τ] .

- mdr V U is complete for inference of transitions with sources that match U , i.e.: for all

τ : var → term, b ∈ act and Q ∈ term such that U [τ]
b
 Q , there exist drl ∈ mdr V U ,

τ ′ : var→ term and as : IN → act such that:

— τ ′ coincides with τ on vars U (hence U [τ] = U [τ ′]);

— τ ′((theXXs drl)!j)
as j
 τ ′((theYs drl)!j) for all j < length(theYs drl);

— side drl as b holds;

— (theT drl)[τ ′] = Q (and also, remember that theS drl = U).

Deduction of universal bisimulation. An equation will be simply a pair of terms, written

U ∼= V , and we write equation for the set of equations. (Note that rel is the same as

P(equation).) Our goals will consist of pairs (set of equations) – equation, where all

equations shall be thought of as being universally quantified. We shall mostly use S, T, U, V

130

for terms thought of as patterns, and P,Q,R for terms thought of as instances.

Given U,U ′ ∈ term, G : mdrU ′ U → mdrU U
′, and g :

∏
drl∈mdrU′ U

{0, . . . , length(theXXs(G drl))−
1} → {0, . . . , length(theXXs drl) − 1}, we define the predicate simul U U ′ G g, read “U is

(one-step-)simulated by U ′ via G and g”, to mean that, for all drl ∈ mdrU U
′, the following

holds: Assume drl has the form

XX 0
as 0
 Y0 , . . . ,XX n−1

as (n−1)
 Yn−1

S
b
 T

[side drl as b] (∗)

and drl ′ = G drl has the form

XX ′0
as 0
 Y ′0 , . . . ,XX ′n′−1

as (n′−1)
 Y ′n′−1

S′
b
 T ′

[side drl ′ as b] (∗∗)

(and therefore g drl : {0, . . . , n′ − 1} → {0, . . . , n− 1}) Then:

- (1) XX g drl j = XX ′j (i.e., syntactically equal, as variables) for all j < n′.

- (2) ∀as : IN → act, b ∈ act. side drl as b =⇒ side (G drl) (as ◦ (g drl)) b.

Given the rules drl , of the form (∗), and drl ′, of the form (∗∗), and given h : {0, . . . , n′ −
1} → {0, . . . , n− 1}, we define newGoal drl drl ′ h to be the equation T ∼= T ′[(Y ′j /Yh j)j<n′],

where (Y ′j /Yh j)j<n′ is a substitution that maps each variable Y ′j to the variable Yh j (more

accurately, to the term Var Yh j).

simul and newGoal will work in tandem in our deduction system as follows: Given a goal

U ∼= U ′, we wish to prove U and U ′ universally bisimilar. For this, we should show that, for

any continuation of an instance of U , there exists a bisimilar continuation of an instance of

U ′ (and vice versa, but next we ignore the “vice versa” part). By the completeness of mdr,

any transition of an instance of U is given by a derived rule drl in mdrU ′ U . By the soundness

of mdr, for finding a transition of an instance of U ′ that simulates that of U , it would suffice

to find for drl a derived rule in drl ′ which is possible whenever drl is possible. Thus, we first

need a map G : mdrU ′ U → mdrU U
′ (giving the drl ′ for each drl ∈ mdrU ′ U), and then, for

each drl , a justification of the possibility of G drl in terms of that of drl . Now, possibility of

(a transition along) a derived rule is given by its (formal) hypotheses and its side conditions.

Hence, a justification of the possibility of G drl in terms of the possibility of drl can be given

by a map from the hypotheses of G drl to those of drl that preserves the sources (which are

variables) and yields an implication between the side conditions – this is formally achieved by

a function g :
∏

drl∈mdrU′ U
{0, . . . , length(theXXs(G drl))−1} → {0, . . . , length(theXXs drl)−1}

that, together with G, satisfies the conditions defining simul U U ′ G g. Moreover, we have to

prove that, for each combination (drl , G drl), the resulted continuations of the presumptive

instances of U and U ′ are again bisimilar – we obtain a newGoal drl (G drl) (g drl) for each

such combination (note that generating this new goal has to take into consideration the

131

dispatching of formal hypotheses performed by g drl , meaning that we also have to substitute

some “Ys”). Finally, the incremental nature of our coinduction (inherited from the previous

section) shows up: for proving each of the new goals, we may assume the old goal, U ∼= U ′.
We are led to the deduction relation ` : P(equation)→ equation→ bool (with infix

notation), defined inductively by the following clauses:

·
θ ` U ∼= U ′

(Eqnl)

[θ ∪ bis `eq U ∼= U ′]

∀drl ∈ mdr U′ U. θ ∪ {U ∼= U ′} ` newGoal drl (G drl) (g drl)

∀drl ′ ∈ mdr U U
′. θ ∪ {U ∼= U ′} ` newGoal drl ′ (G′ drl ′) (g′ drl′)

θ ` U ∼= U ′

(Coind)[
simul U U ′ G g

simul U ′ U G′ g′

]
In the side-condition at (Eqnl), `eq is standard equational-logic deduction. We include

bis among the hypotheses, because we wish to allow any known facts about bisimilarity to

“help” `-deduction, including facts obtained by means other than `. Again, due to circularity

(moving goals to the hypotheses), a rule like (Coind) cannot be sound in itself, but again we

have global soundness:

Theorem 4.5 If ∅ ` U ∼= U ′, then (U,U ′) ∈ ubis.

Proof sketch. We use the soundness of Ì (Theorem 4.1) together with the rules defining `
being simulated by those defining Ì . Namely, we show, by induction on `, that θ ` U ∼= U ′

implies sstvsmCl(θ) Ì sstvsmCl({(U,U ′)}), where sstvsmCl : rel→ rel gives the substitutive and

symmetric closure of a relation, i.e., sstvsmCl(ξ) = {(S[σ], T [σ]). σ : var→ term, (S, T) ∈
ξ ∨ (T, S) ∈ ξ}.

If θ ` U ∼= U ′ followed by an application of (Eqnl), then sstvsmCl(θ) Ì sstvsmCl({(U,U ′)})
follows applying the Ì -clause (Ax), since the equational closure coincides with the substitutive

symmetric closure of the congruence closure.

Assume now θ ` U ∼= U ′ followed by (Coind), meaning that there exist G, g,G′, g′ such

that: (i) simul U U ′ G g; (ii) ∀drl ∈ mdrU ′ U. θ ∪ {U ∼= U ′} ` newGoal drl (G drl) (g drl);

(iii) simul U ′ U G′ g′; (iv) ∀drl ′ ∈ mdrU U
′. θ ∪ {U ∼= U ′} ` newGoal drl ′ (G′ drl ′) (g′ drl′).

Then, by the induction hypothesis:

- ∀drl ∈ mdrU ′ U. sstvsmCl(θ ∪ {U ∼= U ′}) Ì sstvsmCl({newGoal drl (G drl) (g drl)}).
- ∀drl ′ ∈ mdrU U

′. sstvsmCl(θ ∪ {U ∼= U ′}) Ì sstvsmCl(newGoal drl ′ (G′ drl ′) (g′ drl′)).

Let θ′ = sstvsmCl({(U,U ′)}) and let θ′′ = {newGoal drl (G drl) (g drl). drl ∈ mdrU ′ U} ∪
{newGoal drl ′ (G′ drl ′) (g′ drl′). drl ′ ∈ mdrU U

′}. The crucial thing to notice is that, since

simul U U ′ G g and simul U ′ U G′ g′ hold, sstvsmCl({(U,U ′)}) ⊆ Retr θ′ also holds – and the

paragraph right before introducing ` can be regarded as an informal justification for why

this is true. Therefore, θ′′ is an “interpolant” for applying the Ì -clause (Coind). Indeed,

applying the Ì -clause (Split) to (1) and (2), we obtain θ′ ∪ θ Ì θ′′ and then, by the Ì -clause

(Coind), we obtain θ Ì θ′, as desired. �

132

Running example (finished). We are now ready to make rigorous the proof of ∀P ∈
term. (P |!P, !P) ∈ bis presented in the introduction. Consider the following four proof trees
of depth 0 (later referred to as Pf 1,Pf 2,Pf 3,Pf 4) where we list the side-conditions for (Eqnl)
as hypotheses:

{X|!X ∼= !X} ∪ bis `eq Y |!X ∼= !X|Y
{X|!X ∼= !X} ` Y |!X ∼= !X|Y

(Eqnl)

{X|!X ∼= !X} ∪ bis `eq X|(!X|Y) ∼= !X|Y
{X|!X ∼= !X} ` X|(!X|Y) ∼= !X|Y

(Eqnl)

{X|!X ∼= !X} ∪ bis `eq X|(!X|(Y0|Y1)) ∼= !X|(Y0|Y1)

{X|!X ∼= !X} ` X|(!X|(Y0|Y1)) ∼= !X|(Y0|Y1)
(Eqnl)

{X|!X ∼= !X} ∪ bis `eq Y0|(!X|Y1) ∼= !X|(Y0|Y1)

{X|!X ∼= !X} ` Y0|(!X|Y1) ∼= !X|(Y0|Y1)
(Eqnl)

Then our final proof (tree) is:

Pf 1 Pf 2 Pf 3 Pf 4
∅ ` X|!X ∼= !X

(Coind)

Explanations. At (Coind), we took:

- G to map DRL1 and DRL2 to DRL5, and to map DRL3 and DRL4 to DRL6;

- g DRL1 and g DRL2 to be the identity on {0}, and g DRL3 and g DRL4 to be the identity on

{0, 1};
- G′ to map DRL5 to DRL1, and to map DRL6 to DRL3;

- g′ DRL5 to be the identity on {0}, and g′ DRL6 to be the identity on {0, 1}.
(Note that any function G′ mapping DRL5 to either DRL1 or DRL2 and DRL6 to either DRL3

or DRL4 together with g′ as above would lead to a valid proof.)

Here is why we end up with the above four proof tasks after applying (Coind):

newGoal DRL1(GDRL1)(gDRL1) = newGoal DRL1 DRL5(λi. i) = Y |!X ∼= !X|Y ;

newGoal DRL2(GDRL2)(gDRL2) = newGoal DRL2 DRL5(λi. i) = X|(!X|Y) ∼= !X|Y ;

newGoal DRL3(GDRL3)(gDRL3)=newGoal DRL3DRL6(λi. i)=X|(!X|(Y0|Y1))∼=!X|(Y0|Y1);

newGoal DRL4(GDRL4)(gDRL4) = newGoal DRL4 DRL6(λi. i) = Y0|(!X|Y1) ∼= !X|(Y0|Y1);

newGoal DRL5(G′DRL5)(g′DRL5) = newGoal DRL5 DRL1(λi. i) = Y |!X ∼= !X|Y ;

newGoal DRL6(G′DRL6)(g′DRL6)=newGoal DRL6DRL3(λi. i)=X|(!X|(Y0|Y1))∼=!X|(Y0|Y1).

The side-conditions of (Coind) are immediately checkable. E.g., for simul (X|!X) (!X) G g,

we need to check the following trivial facts:

- w.r.t. condition (1) (in the definition of simul): that X = X.

- w.r.t. condition (2): that each of the following are pairwise equivalent:

— as 0 = b and as 0 = b;

— ∃c. as 0 = c ∧ c = b and as 0 = b;

133

— ∃c. sync (as 0) (as 1) c ∧ c = b and sync (as 0) (as 1) b;

— ∃c. as 1 = c ∧ sync (as 0) c b and sync (as 0) (as 1) b.

At (Eqnl) in all the four immediate subtrees of the main proof tree, we considered the fact

(assumed previously proved) that {X|Y ∼= Y |X, (X|Y)|Z ∼= X|(Y |Z)} ⊆ bis, hence what

we really used was equational-logic deduction from {X|!X ∼= !X, X|Y ∼= Y |X, (X|Y)|Z ∼=
X|(Y |Z)}, which easily discharges the equational side-conditions of the axioms, finalizing

the proof.

The above proof does not display any non-trivial “dispatch” function g in the (Coind)

rule application. In general however, it is not guaranteed that the formal hypotheses of two

obtained derived rules (from the two terms of the goal) that one wishes to pair come in the

same order, nor that these rules have the same number of hypotheses. (See the proof of

commutativity of “|” from Section 4.6.)

Moreover, one may wonder why do we employ in the (Coind) rule for goal U ∼= U ′ the non-

symmetric technique of showing how to simulate rule-wise first U by U ′, and then U ′ by U ,

while in this example it seems that a rule-wise “bi-simulation” relation between the two sets

of matched derived rules, namely one consisting of the pairs {(DRL1,DRL5), (DRL2,DRL5),

(DRL3,DRL6), (DRL4,DRL6)} is equally successful to, while more compact than, the two maps

G and G′. The answer to this is that employing two maps is strictly more general than

employing a relation, since in the former case one is not bound to prove that, for two chose

rules, the conditions guaranteeing their possibilities are equivalent. However, we have not

found yet interesting cases where this would count. Of course, from our “two-map” rule one

can derive the simpler “one-relation” rule.

4.5 The scope of our results

As mentioned, our technique is applicable to process algebras in the de Simone format. While

this format is fairly general, it is traditionally considered to exclude important cases, such as

recursion and weak bisimilarity. Of course, one can ask whether our results can be extended

to cope with more general formats, covering the latter cases too. While this is a legitimate

question, here we explore a different one, starting from the assumption that de Simone is

really the ideal format for exploring coniduction arguments incrementally: can we instead

cast the above cases to (a perhaps minor variation of) de Simone? The answer is partially

positive, as we briefly argue below.

134

4.5.1 Adding guarded recursion

We consider the following syntax for process terms, extending with a recursion operator the

one given at the beginning of Section 4.2:

P ::= Var X | Op f ps Ps | rec X. P

Just like in Section 4.2, we fix Rls, a set of de Simone rules (not involving rec), together

with the following standard collection of rules for guarded recursion:

P [(rec X. P)/X]
a
 P ′

rec X. P
a
 P ′

(Rec)

[X guarded in P]

where the guardedness assumption means: any occurrence of X in P is under an operator

f which is an Rls-guard, the latter meaning that the rules rl ∈ Rls with thef rl = f (i.e.,

having f on the left of their conclusion) are axioms (i.e., have an empty list of hypotheses).

This is a generalization of CCS guardedness [87], taken from [16] – according to this general

definition, the only guards in CCS are 0 (which is useless, since, being a constant, cannot

“guard” anything) and the prefix operators. [16] also shows that (Rec) can be replaced

(without affecting derivability) by the following more amenable rule, which takes advantage

of guardedness:

P
a
 P ′

rec X. P
a
 P ′[(rec X. P)/X]

(Rec2)

[X guarded in P]

(Intuitively, this is because, thanks to guardedness, the term P [(rec X. P)/X] from the

hypothesis of (Rec) will not involve the “rec X. P” part in any (one-step) transition, and

therefore substituting rec X. P for X before the transition, as in (Rec), has the same effect

as substituting it after the transition, as in (Rec2) – see op. cit.)

(Rec2) is in a de-Simone-like format, since it does express the behavior of rec X. P in

terms of that of its (strictly smaller) component P , and our results from Sections 4.3 and

4.4 could be easily extended to cope with Rls ∪ (Rec2). In fact, it falls under the obvious

generalization of de Simone for syntax with bindings. (And it appears that all our results

from this chapter can be easily generalized to cope with this.)

4.5.2 Considering weak bisimilarity

Here we do not attempt a general answer as we did for guarded recursion. Instead, following

[123], we sketch on a particular case an approach seemingly generalizable to a more abstract

setting.

135

Let us consider our running example, the mini-CCS described in the introduction and

defined more rigorously in Section 4.2. Thus, the syntax is:

P ::= 0 | a.P | P |Q | !P

and the rules are (PREF), (PARL), (PARR), (PARS), (REPL) and (REPLS).

Recall that a weak simulation is a relation θ ⊆ term× term such that the following hold

for all (P,Q) ∈ θ:
- if P

τ
 P ′ for some P ′, then there exists Q′ such that Q

τ∗

 Q′ and (P ′, Q′) ∈ θ;
- if P

a
 P ′ for some P ′ and a ∈ act, then there exists Q′ such that Q

τ∗aτ∗

 Q′ and

(P ′, Q′) ∈ θ.
(where τ∗ means 0 or more τ -transitions, and therefore τ∗aτ∗ means: 0 or more τ -transitions,

followed by an a-transition, followed by 0 or more τ -transitions). A weak bisimulation is a

simulation such that its converse is also a simulation, and weak bisimilarity is the largest

weak bisimulation. Note that the usual bisimilarity relation bis (a.k.a. “strong bisimilarity”),

is included in weak bisimilarity.

We wish to express weak bisimilarity as (strong) bisimilarity in another system in de

Simone format (over the same syntax). For this, the usual technique of adding τ -rules

for reflexivity and transitivity does not work, as the lookahead introduced by transitivity

cuts all the bridges with the de Simone format. Instead, we employ the following chain of

thought from [123], relevant for both a presumptive denotational semantics and a presumptive

compositional operational semantics for weak bisimilarity (the latter being essentially our

goal):

- to capture weak bisimilarity, we need to keep track of the (process) continuations along

arbitrarily long traces of τ -actions;

- to keep track of the latter (in a manner compositional w.r.t. operators such as parallel

composition), we need to also keep track of continuations along arbitrary traces of actions

(of any kind).

This leads to a trace-based version of the system. In what follows, a ranges over loud

actions (i.e., actions different from τ), w ranges over lists of loud actions, # denotes list

concatenation and ε the empty list. Knowing how single actions interact, and following the

interleaving semantics from the rules for the | operator, we obtain the following recursive

definition of the parallel composition (or synchronized shuffle) of action traces, | : List(act)×
List(act)→ P(List(act)):

• ε|ε = {ε};

• (a#w1)|(b#w2) = a#(w1|(b#w2)) ∪ b#((a#w1)|w2), if a 6= b;

• (a#w1)|(b#w2) = a#(w1|(b#w2)) ∪ b#((a#w1)|w2) ∪ w1|w2, if a = b.

136

(Above, we overloaded # in the usual fashion, to denote both # : List(act)×List(act)→
List(act) and its componentwise extension to List(act) × P(List(act)) → P(List(act)),

given by w # S = {w # w′. w′ ∈ S}.)
Now, we define the following transition system, whose labels are sequences of actions:

·
P

ε
 P

(Silent)
P

w
 P ′

a.P
a#w
 P ′

(PrefT)

P
w1 P ′ Q

w2 Q′

P |Q w
 P ′|Q′

(ParT)

[w ∈ w1|w2]

P
w1 Q′1 . . . P

wn Q′n

!P
w
 (!P)|Q′1| . . . |Q′n

(ReplT)

[w ∈ w1| . . . |wn]

The above rules were produced by taking the reflexive-transitive closure of the rules of the

original system, i.e., by composing that system with itself horizontally an indefinite number

of times. In the process, we also made sure that zero or more τ actions were identified with

the empty trace ε, and in particular we have added the rule (Silent).

One can then show that two processes are weakly bisimilar in the original system iff they

are (strongly) bisimilar in the trace-based system – see [123]. Moreover, the latter system

has only de Simone rules, plus the rule (Silent), which is reducible to the de Simone format

by simply traversing the terms recursively for each term construct:

·
0

ε
 0

(Silent0)
P

ε
 P ′

a.P
ε
 a.P ′

(Silenta)

etc.

4.5.3 Combining guarded recursion with weak bisimilarity?

Note that the amenable example from Section 4.5.2 already contains a restrictive form of (π-

calculus like) recursion. Unfortunately however, general guarded recursion does not interact

well with weak bisimilarity, in that guardedness is ineffective when observing arbitrarily long

traces.

Thus, although the recursion rule (Rec) (even without assuming guardedness) can be

soundly made, by the technique from Section 4.5.2, into an (identically-shaped) trace-based

rule

P [(µX.P)/X]
w
 P ′

µX.P
w
 P ′

(RecT)

the technique for reducing recursion to guarded recursion from Section 4.5.1 (crucial for

converting to de Simone) does not work, or, more precisely, is vacuous for the trace-based

system. Indeed, in the latter system, the rule for prefix no longer being an axiom, the prefix

operators are no longer guards.

137

4.6 More examples

This section presents more examples (in full technical detail) illustrating the use of our

coinductive proof system.

4.6.1 The proofs of commutativity and associativity of | in the

mini process calculus

Here we work in the context of the running example from this chapter.

Commutativity. The proof of ∀P,Q ∈ term. (P |Q,Q|P) ∈ bis, i.e., of ∅ ` X0|X1
∼=

X1|X0, goes as follows (where again we list the side-conditions for (Eqnl) as hypotheses, and
where the three (Eqnl)-rooted proof trees are subtrees of the main, (Coind)-rooted proof
tree):

{X0|X1
∼= X1|X0} ∪ bis `eq Y0|X1

∼= X1|Y0
{X0|X1

∼= X1|X0} ` Y0|X1
∼= X1|Y0

(Eqnl)

{X0|X1
∼= X1|X0} ∪ bis `eq X0|Y1 ∼= Y1|X0

{X0|X1
∼= X1|X0} ` X0|Y1 ∼= Y1|X0

(Eqnl)

{X0|X1
∼= X1|X0} ∪ bis `eq Y0|Y1 ∼= Y1|Y0

{X0|X1
∼= X1|X0} ` Y0|Y1 ∼= Y1|Y0

(Eqnl)

∅ ` X0|X1
∼= X1|X0

(Coind)

Explanations: Each of the (Eqnl) rules discharges the goal immediately by (trivial) equational-

logic reasoning.

We have that:

- mdrX1|X0
(X0|X1) = {DRL1,DRL2,DRL3} and

- mdrX0|X1
(X1|X0) = {DRL4,DRL5,DRL6}, where:

X0
as 0
 Y0

X0 | X1
b
 Y0 | X1

(DRL1)

[as 0 = b]

X1
as 0
 Y1

X0 | X1
b
 X0 | Y1

(DRL2)

[as 0 = b]

X0
as 0
 Y0 X1

as 1
 Y1

X0 | X1
b
 Y0 | Y1

(DRL3)

[sync (as 0) (as 1) b]

X1
as 0
 Y1

X1 | X0
b
 Y1 | X0

(DRL4)

[as 0 = b]

X0
as 0
 Y0

X1 | X0
b
 X1 | Y0

(DRL5)

[as 0 = b]

X1
as 0
 Y1 X0

as 1
 Y0

X1 | X0
b
 Y1 | Y0

(DRL6)

[sync (as 0) (as 1) b]

(Since the terms X|Y and Y |X consist of an operation applied to distinct variables, the

matched derived rules of either of them are, up to a renaming, (PARL), (PARR) and (PARS).

But of course this does not mean that the terms are a priori bisimilar, since the renamings

matter. E.g., if the mini calculus lacked (PARR), the two terms would not be bisimilar.)

At (Coind), we took:

- G to map DRL1 to DRL5, DRL2 to DRL4, and DRL3 to DRL6;

- g DRL1 and g DRL2 to be the identity map on {0}, and g DRL3 to be λi : {0, 1}. 1− i;
- G′ to map DRL4 to DRL2, DRL5 to DRL1, and DRL6 to DRL3;

138

- g′ DRL4 and g′ DRL5 to be the identity map on {0}, and g DRL6 to be λi ∈ {0, 1}. 1− i.
(Note that g DRL3 and g DRL6 are cases of nontrivial “dispatch” maps.)

Here is why we end up with the above three proof tasks after applying (Coind) backwards:

- newGoal DRL1 (GDRL1) (gDRL1) = newGoal DRL1 DRL5 (λi ∈ {0}. i) = Y0|X1
∼= X1|Y0;

- newGoal DRL2 (GDRL2) (gDRL2) = newGoal DRL2 DRL4 (λi ∈ {0}. i) = X0|Y1 ∼= Y1|X0;

- newGoal DRL3 (GDRL3) (gDRL3) = newGoal DRL3 DRL6 (λi ∈ {0, 1}. 1− i) = Y0|Y1 ∼= Y1|Y0;

- newGoal DRL4 (G′DRL4) (g′DRL4) = newGoal DRL4 DRL2 (λi ∈ {0}. i) = X0|Y1 ∼= Y1|X0;

- newGoal DRL5 (G′DRL5) (g′DRL5) = newGoal DRL5 DRL1 (λi ∈ {0}. i) = Y0|X1
∼= X1|Y0;

- newGoal DRL6 (G′DRL6) (g′DRL6) = newGoal DRL6 DRL3 (λi ∈ {0, 1}. 1− i) = Y0|Y1 ∼= Y1|Y0.

The side-conditions of (Coind) are verified as follows:

- simul (X0|X1) (X1|X0) G g amounts to the following:

— as 0 = b ←→ as 0 = b, trivial;

— sync (as 0) (as 1) b ←→ sync (as (g DRL3 0)) (as (g DRL3 1)) b, i.e.,

sync (as 0) (as 1) b ←→ sync (as 1) (as 0) b, which follows by the definition of sync and the

assumption that ∀a ∈ act. a = a.

- similarly, simul (X1|X0) (X1|X0) G g amounts to the following:

— as 0 = b ←→ as 0 = b, trivial;

— sync (as 0) (as 1) b ←→ sync (as (g′ DRL6 0)) (as (g′ DRL6 1)) b, i.e., again,

sync (as 0) (as 1) b ←→ sync (as 1) (as 0) b.

Associativity. The proof of ∀P,Q,R ∈ term. ((P |Q)|R,P |(Q|R)) ∈ bis, i.e., of ∅ `
(X0|X1)|X2

∼= X0|(X1|X2)), goes as follows (where again we list the side-conditions for
(Eqnl) as hypotheses, and where the six (Eqnl)-rooted proof trees are subtrees of the main,
(Coind)-rooted proof tree):

{(X0|X1)|X2
∼= X0|(X1|X2)} ∪ bis `eq (Y0|X1)|X2

∼= Y0|(X1|X2)

{(X0|X1)|X2
∼= X0|(X1|X2)} ` (Y0|X1)|X2

∼= Y0|(X1|X2)
(Eqnl)

{(X0|X1)|X2
∼= X0|(X1|X2)} ∪ bis `eq (X0|Y1)|X2

∼= X0|(Y1|X2)

{(X0|X1)|X2
∼= X0|(X1|X2)} ` (X0|Y1)|X2

∼= X0|(Y1|X2)
(Eqnl)

{(X0|X1)|X2
∼= X0|(X1|X2)} ∪ bis `eq (Y0|Y1)|X2

∼= Y0|(Y1|X2)

{(X0|X1)|X2
∼= X0|(X1|X2)} ` (Y0|Y1)|X2

∼= Y0|(Y1|X2)
(Eqnl)

{(X0|X1)|X2
∼= X0|(X1|X2)} ∪ bis `eq (Y0|X1)|Y2 ∼= Y0|(X1|Y2)

{(X0|X1)|X2
∼= X0|(X1|X2)} ` Y |!X ∼= (Y0|X1)|Y2 ∼= Y0|(X1|Y2)

(Eqnl)

{(X0|X1)|X2
∼= X0|(X1|X2)} ∪ bis `eq (X0|Y1)|Y2 ∼= X0|(Y1|Y2)

{(X0|X1)|X2
∼= X0|(X1|X2)} ` (X0|Y1)|Y2 ∼= X0|(Y1|Y2)

(Eqnl)

{(X0|X1)|X2
∼= X0|(X1|X2)} ∪ bis `eq (X0|X1)|Y2 ∼= X0|(X1|Y2)

{(X0|X1)|X2
∼= X0|(X1|X2)} ` (X0|X1)|Y2 ∼= X0|(X1|Y2)

(Eqnl)

(X0|X1)|X2
∼= X0|(X1|X2)

(Coind)

Explanations: Each of the (Eqnl) rules discharges the goal immediately by (trivial) equational-

139

logic reasoning.
We have that:

- mdrX0|(X1|X2)((X0|X1)|X2) = {DRL1,DRL2,DRL3,DRL4,DRL5,DRL6},
where:

X0
as 0
 Y0

(X0|X1)|X2
b
 (Y0|X1)|X2

(DRL1)[
∃c. as 0 = c

∧ c = b

] X1
as 0
 Y1

(X0|X1)|X2
b
 (X0|Y1)|X2

(DRL2)[
∃c. as 0 = c

∧ c = b

]

X0
as 0
 Y0 X1

as 1
 Y1

(X0|X1)|X2
b
 (Y0|Y1)|X2

(DRL3)[
∃c. sync (as 0) (as 1) c

∧ c = b

] X0
as 0
 Y0 X2

as 1
 Y2

(X0|X1)|X2
b
 (Y0|X1)|Y2

(DRL4)[
∃c. as 0 = c ∧

sync c (as 1) b

]

X1
as 0
 Y1 X2

as 1
 Y2

(X0|X1)|X2
b
 (X0|Y1)|Y2

(DRL5)[
∃c. as 0 = c ∧

sync c (as 1) b

] X2
as 0
 Y2

(X0|X1)|X2
b
 (X0|X1)|Y2

(DRL6)

[as 0 = b]

- mdr(X0|X1)|X2
(X0|(X1|X2)) = {DRL7,DRL8,DRL9,DRL10,DRL11,DRL12}, where:

X0
as 0
 Y0

X0|(X1|X2)
b
 Y0|(X1|X2)

(DRL7)

[as 0 = b]

X1
as 0
 Y1

X0|(X1|X2)
b
 X0|(Y1|X2)

(DRL8)[
∃c. as 0 = c

∧ c = b

]

X0
as 0
 Y0 X1

as 1
 Y1

X0|(X1|X2)
b
 Y0|(Y1|X2)

(DRL9)[
∃c. as 0 = c ∧

sync (as 0) c b

] X0
as 0
 Y0 X2

as 1
 Y2

X0|(X1|X2)
b
 Y0|(X1|Y2)

(DRL10)[
∃c. as 1 = c ∧

sync(as 0) c b

]

X1
as 0
 Y1 X2

as 1
 Y2

X0|(X1|X2)
b
 X0|(Y1|Y2)

(DRL11)[
∃c. sync (as 0) (as 1) c

∧ c = b

] X2
as 0
 Y2

X0|(X1|X2)
b
 X0|(X1|Y2)

(DRL12)[
∃c. as = c

∧ c = b

]

At (Coind), we took:

- G to map each DRLi, with i ∈ {1, . . . , 6}, to DRLi+6;

- all the g DRLi, with i ∈ {1, . . . , 6}, to be identity maps;

- G′ to map each DRLj , with j ∈ {7, . . . , 12}, to DRLj−6;

- all the g′ DRLj , with j ∈ {7, . . . , 12}, to be identity maps.

Here is why we end up with the above six proof tasks after applying (Coind) backwards:

- newGoal DRL1 (GDRL1) (gDRL1) = newGoal DRL1 DRL7 (λi. i) = (Y0|X1)|X2
∼= Y0|(X1|X2);

- newGoal DRL2 (GDRL2) (gDRL2) = newGoal DRL2 DRL8 (λi. i) = (X0|Y1)|X2
∼= X0|(Y1|X2);

- newGoal DRL3 (GDRL3) (gDRL3) = newGoal DRL3 DRL9 (λi. i) = (Y0|Y1)|X2
∼= Y0|(Y1|X2);

- newGoal DRL4 (G′DRL4) (g′DRL4) = newGoal DRL4 DRL10 (λi. i) = (Y0|X1)|Y2 ∼= Y0|(X1|Y2);

- newGoal DRL5 (G′DRL5) (g′DRL5) = newGoal DRL5 DRL11 (λi. i) = (X0|Y1)|Y2 ∼= X0|(Y1|Y2);

- newGoal DRL6 (G′DRL6) (g′DRL6) = newGoal DRL6 DRL12 (λi. i) = (X0|X1)|Y2 ∼= X0|(X1|Y2).

Moreover, we have newGoal DRLj (G′ DRLj) (g′ DRLj) = newGoal DRLj−6 (GDRLj) (g DRLj)

for all j ∈ {7, . . . , 12}, and therefore the above six new goals are all the new goals.

The side-conditions of (Coind), namely simul ((X0|X1)|X2) (X0|(X1|X2)) G g and

simul (X0|(X1|X2)) ((X0|X1)|X2) G g, state precisely that, for all i ∈ {1, . . . , 6}, the side

condition of DRLi is equivalent with that of DRLi+6, facts that are trivial to check.

140

4.6.2 A deterministic example

Here we show how our setting can handle deterministic situations such as the ones from

[136, 77]. The case we consider is that of formal series (i.e., infinite polynomials) of natural

numbers.

We take act and param to be IN , and opsym to be a three-element set, {Cons,Plus,Times}.
We use the following abbreviations:

- X, for Var X.

- a.S, for Op Cons [a] S;

- S + T , for Op Plus [] [S, T];

- S ∗ T , for Op Times [] [S, T].

(We assume ∗ binds more strongly than +.)
We take Rls to be {CONS a. a ∈ act} ∪ {PLUS,TIMES}, where:

·

a.X
b
 X

(CONS a)

[a = b]

X0
a0 Y0 X1

a1 Y1

X0 + Y0
b
 X1 + Y1

(PLUS)

[as 0 + as 1 = b]

X0
a0 Y0 X1

a1 Y1

X0 ∗ Y0
b
 X0 ∗ Y1 + Y0 ∗X1

(TIMES)

[as 0 ∗ as 1 = b]

The above system is syntactically deterministic in the following sense: each operation

has at most one rule with the source of the conclusion containing that operation. As a

consequence, for each terms U and U ′, mdrU ′(U) has at most one element. Hence, during

`-deduction, we have at most one choice for the functions G, g,G′, g′, meaning that our

`-rule (Coind) becomes entirely syntax-directed, and therefore can be applied automatically.

Semantic determinism is a consequence of the syntactic determinism: ∀P,Q,Q′ ∈ term, a ∈
act. P

a
 Q ∧ P a

 Q′ → Q = Q′.

In the the following `-proofs, we do not indicate G, g,G′, g′ (as they shall be the only

possible ones).

(1) Commutativity of +. The proof of ∀P,Q ∈ term. (P + Q,Q + P) ∈ bis, i.e., of
∅ ` X0 +X1

∼= X1 +X0, goes as follows:

{X0 +X1
∼= X1 +X0} ∪ bis `eq Y0 + Y1 ∼= Y1 + Y0

{X0 +X1
∼= X1 +X0} ` Y0 + Y1 ∼= Y1 + Y0

(Eqnl)

∅ ` X0 +X1
∼= X1 +X0

(Coind)

(Where discharging the side-conditions for (Coind) requires commutativity of natural-number

addition.)

(2) Associativity of +. The proof of ∀P,Q,R ∈ term. ((P +Q) +R,P + (Q+R)) ∈ bis,
i.e., of ∅ ` (X0 +X1) +X2

∼= X0 + (X1 +X2), goes as follows:

{(X0 +X1) +X2
∼= X0 + (X1 +X2)} ∪ bis `eq (Y0 + Y1) + Y2 ∼= Y0 + (Y1 + Y2)

{(X0 +X1) +X2
∼= X0 + (X1 +X2)} ` (Y0 + Y1) + Y2 ∼= Y0 + (Y1 + Y2)

(Eqnl)

∅ ` (X0 +X1) +X2
∼= X0 + (X1 +X2)

(Coind)

141

(Where discharging the side-conditions for (Coind) requires associativity of natural-number

addition.)

(3) Commutativity of ∗. The proof of ∀P,Q ∈ term. (P ∗ Q,Q ∗ P) ∈ bis, i.e., of
∅ ` X0 ∗X1

∼= X1 ∗X0, goes as follows:

{X0 ∗X1
∼= X1 ∗X0} ∪ bis `eq X0 ∗ Y1 +X1 ∗ Y0 ∼= X1 ∗ Y0 +X0 ∗ Y1

{X0 ∗X1
∼= X1 ∗X0} ` X0 ∗ Y1 +X1 ∗ Y0 ∼= X1 ∗ Y0 +X0 ∗ Y1

(Eqnl)

∅ ` X0 ∗X1
∼= X1 ∗X0

(Coind)

(Where (Eqnl) uses that, by point (1), (X0 +X1
∼= X1 +X0) ∈ bis, and where discharging

the side-conditions for (Coind) requires commutativity of natural-number multiplication.)

(4) Distributivity of ∗ w.r.t +. The proof of ∀P,Q,R ∈ term. (P ∗(Q+R), P ∗Q+P ∗R) ∈
bis, i.e., of ∅ ` X0 ∗ (X1 +X2) ∼= X0 ∗X1 +X0 ∗X2, goes as follows:

{X0 ∗ (X1 +X2) ∼= X0 ∗X1 +X0 ∗X2} ∪ bis `eq
X0 ∗ (Y1 + Y2) + Y0 ∗ (X1 +X2) ∼=
X0 ∗ Y1 +X1 ∗ Y0 +X0 ∗ Y2 +X2 ∗ Y0

{X0 ∗ (X1 +X2) ∼= X0 ∗X1 +X0 ∗X2} `
X0 ∗ (Y1 + Y2) + Y0 ∗ (X1 +X2) ∼=
X0 ∗ Y1 +X1 ∗ Y0 +X0 ∗ Y2 +X2 ∗ Y0

(Eqnl)

∅ ` X0 ∗ (X1 +X2) ∼= X0 ∗X1 +X0 ∗X2
(Coind)

(Where (Eqnl) uses that, by points (1) and (3), {X0+X1
∼= X1+X0, X0∗X1

∼= X1∗X0} ⊆ bis,

and where discharging the side-conditions for (Coind) requires distributivity of multiplication

w.r.t. addition for natural numbers.)

(5) Associativity of ∗. The proof of ∀P,Q,R ∈ term. ((P ∗Q) ∗R,P ∗ (Q ∗R)) ∈ bis, i.e.,
of ∅ ` (X0 ∗X1) ∗X2

∼= X0 ∗ (X1 ∗X2), goes as follows:

{(X0 ∗X1) ∗X2
∼= X0 ∗ (X1 ∗X2)} ∪ bis `eq

X0 ∗X1 ∗ Y2 +X2 ∗ (X0 ∗ Y1 +X1 ∗ Y0) ∼=
X0 ∗ (X1 ∗ Y2 +X2 ∗ Y1) +X1 ∗X2 ∗ Y0

{(X0 ∗X1) ∗X2
∼= X0 ∗ (X1 ∗X2)} `

X0 ∗X1 ∗ Y2 +X2 ∗ (X0 ∗ Y1 +X1 ∗ Y0) ∼=
X0 ∗ (X1 ∗ Y2 +X2 ∗ Y1) +X1 ∗X2 ∗ Y0

(Eqnl)

∅ ` (X0 ∗X1) ∗X2
∼= X0 ∗ (X1 ∗X2)

(Coind)

(Where (Eqnl) uses that, by points (3) and (4), {X0 ∗X1
∼= X1 ∗X0, X0 ∗ (X1 + X2) ∼=

X0 ∗X1 +X0 ∗X2} ⊆ bis, and where discharging the side-conditions for (Coind) requires

associativity of natural-number multiplication.)

4.7 Details regarding the Isabelle formalization

The main results of this chapter, namely, those from Sections 4.3 and 4.4, have been formalized

in Isabelle/HOL. The formal scripts can be found at [122], where:

- document.pdf contains all theories with full formal proofs of the theorems,

- outline.pdf contains the theories with the proofs omitted,

142

- index.html is the entrance to a browsable presentation of the theories.

Triv Terms

Closures Rules_Syntax

Rules_Semantics

Bisimilarity

Raw_Deduction

Derived_Rules

Deduction

[. . . .]

[HOL]

Figure 4.2: The essential part of the theory structure in Isabelle

Figures 4.2 and 4.3 present the hierarchy of our theories – the difference between Figure

4.2 and Figure 4.3 is that the former leaves out some inessential auxiliary theories, namely

My Nats and My Lists. Here is a short description of the “essential” theories:

• Terms introduces the notion of a term and proves basic properties of substitution and

occurring variables.

• Closures deals with standard closure operators on relations between terms, notably the

equivalence closure, the congruence closure and the equational closure.

• Rules Syntax introduces the notions of rule, sane rule, amenable rule, and de Simone

rule, and defines the selectors “theXXs”, “theXs”, “theYs” etc.

• Rules Semantics defines the operational semantics for a set of rules, i.e., the step

operator.

• Bisimilarity introduces the retract functor Retr, defines the bisimilarity relation, bis, as

its greatest fixpoint, and discusses various “up to” coinduction principles.

143

Triv My_Nats Char_ord

My_Lists

Terms

Closures Rules_Syntax

Rules_Semantics

Bisimilarity

Raw_Deduction

Derived_Rules

Deduction

[. . . .]

[HOL]

Figure 4.3: The full theory structure in Isabelle

144

• Derived Rules discusses the “matched derived rule” operator, mdr.

• Raw Deduction introduces and proves sound the raw deduction system (for bisimilarity),

referred in this chapter as Ì .

• Deduction introduces and proves sound the deduction system for universal bisimilarity,

referred in this chapter as `.

Here are some further guidelines concerning the correspondence between the text and

the scripts:

• This chapter’s Section 4.2 corresponds to the theories Terms, Rules Syntax,

Rules Semantics and Bisimilarity. In the scripts, the unspecified types opsym, param

and act are type variables, while var is the type of strings of ASCII characters.

Therefore, the type term is parametrized by opsym and param, and the type rule

is parametrized by opsym, param and act. The “up-to” coinduction Theorem 4.1

from this chapter is Lemma cong bis coinduct in the theory Bisimilarity.

• This chapter’s Section 4.3 corresponds very faithfully to the theory Raw Deduction. As

a matter of notation, the text uses for raw deduction the infix Ì , while the scripts

call the operator “rded”. Lemmas 4.3 and 4.4 and Theorem 4.2 from this chapter are

Lemmas Right Left and Left Right and Theorem rded sound in the scripts.

• This chapter’s Section 4.4 corresponds to the theories Derived Rules and Deduction. As

a matter of notation, the text uses for deduction the infix `, while the scripts call the

deduction operator “ded”. The deduction relation is slightly stronger in the scripts,

since it also offers the possibility to exclude inconsistent derived rules, i.e., ones that

have non-realizable side-condition – in the chapter’s text, we omitted this extra twist

in order to ease the presentation. Moreover, remember that in the text an equation

P ∼= Q is merely the pair (P,Q) – in the scripts, we use the pair notation. Theorem

4.5 from this chapter is Theorem ded sound in the theory Deduction.

• The notion of working in the context of a fixed set Rls of de Simone rules is captured

by an Isabelle locale [73], named deSimone Rls, used in the theories Rules Semantics,

Bisimilarity, Derived Rules, Raw Deduction and Deduction.

4.8 Related work

Unique fixpoint induction for CCS and its variants [86, 65, 96] is an early notion of proof-

theoretic circularity for coinduction applicable to situations where circularity is explicit in the

SOS by means of (guarded) fixpoint equations. We conjecture that unique fixpoint induction

in an instance of our incremental coinduction.

145

We had two major sources of inspiration in this chapter. First, the idea of circular

coinduction (CC for short) in the context of algebraic specifications. It was introduced in [55]

in the behavioral specification language BOBJ [1], and then also implemented axiomatically

in Isabelle under the “supervision” of the CoCASL specification language [35] and in Maude

[31] as the circular coiductive prover CIRC [77, 76, 133]. A comparison of our proof system

with CC is somewhat difficult to sketch, as it has to deal with different technical settings and

to balance the advantages of both generality and specialization. To simplify the discussion,

we shall implicitly assume a back-and-forth translation between SOS specifications and the

coalgebraic and behavioral specifications required by the CC settings. Our proof system is

in a sense more general and in a sense more specialized.

It is more general in that it applies to nondeterministic processes, not handled by CC

(e.g., the running example in this chapter is not approachable in CC, not even interactively).

On the other hand, CIRC, based on rewriting logic, could take advantage of the results

presented here in order to extend CC with nondeterminism.3 Also, CoCASL as a specification

language has the expressive power required to deal with process algebra and nondeterminism,

hence to support a version of CC for nondeterministic systems. Moreover, it is precisely the

determinism of CC that allows for partial automation, admirably illustrated by CIRC. (Our

formalized system, once fine-tuned into a tool, will also allow automation for deterministic,

and even finitely-branching cases – see below the discussion on future work.)

It is more specialized in that the deterministic instances of our setting are more restricted

than what CC can handle (in particular, e.g., deterministic lookahead, not approachable here,

is unproblematic in CC). On the other hand, our powerful coinduction “up to”, underneath

arbitrary contexts (not supported by CC) is possible precisely because of this restriction.

Finally, our coinductive technique is presented in a logical form, as a proof system, like

in [133], and not as an algorithm like in the other cited works on CC. In [133], logical form

is achieved through the introduction of so-called freezing operators, which are and hard to

justify logically – with this respect, our proof system has the advantage of “purity”.4 (Here

we should also remark some less related work: circular systems in logical form were also

developed in [25, 34] for first-order logic and the µ-calculus, respectively.)

The second major source of inspiration was the notion of coinduction proofs up to

bisimilarity and arbitrary contexts, introduced in [37, 87] and developed in [137, 138]. This

idea also appears in a general coalgebraic setting in [21] and is illustrated by extensive

examples in, e.g., [136]. The convenience of performing unrestricted equational reasoning

relies essentially on the “up to” coinduction principle, Theorem 4.1.

3Which is not to say our proof system is a minor variation of CC – nondeterminism (technically, the
interplay between our rules (Split) and (Coind) from Section 4.3) represented the main difficulty in our
soundness proof.

4In a sense, what these freezing operators do is to guard against coinduction up-to, not sound in general.
So again, our logical system achieves convenience because of specialization.

146

Other related work includes frameworks for bisimilarity of open terms in [129, 26, 10]

(also building on the seminal work from [37]), where open terms are considered universally

quantified, as we do in this chapter for universal bisimilarity. Our soundness result for ` w.r.t.

universal bisimilarity, Theorem 4.5, could have been more sharply phrased: on one hand, as

a soundness result w.r.t. the notion of bisimulation under formal hypotheses from [37, 129];

on the other, w.r.t. to the relation from [10] (which is essentially universal bisimilarity in

any conservative extension of the SOS system). Finally, [154] discusses bisimilarity proofs

in a mildly specialized Gentzen system for FOL. All works cited in this paragraph discuss

non-incremental proof systems, where the desired bisimulation relation needs to be fed by

the user.

Descriptions of more or less automatic software tools for proving bisimilarity in process

algebra abound in the literature – see [72, 78] for overviews. While most of these tools

are dedicated to (and optimized for) particular process algebras (and many to finite-state

systems), ECRINS [42] is based precisely on generic process algebra in de Simone format,

meaning that the results of this chapter on incremental coinduction apply directly to that

setting (and, interestingly, a form of coinduction that “attempts to add more couples to

the [previously specified] relation” is indicated in [42] as a direction for future research,

to our knowledge not pursued so far). Finally, in Coq [23], the interaction between its

general-purpose support for building proofs and its coinductive types (as illustrated, e.g., in

[52]) also leads to a form of incremental coinduction whose relationship with our approach is

yet to be understood.

147

Chapter 5

Conclusions and future work

In this final chapter we draw some conclusions about formalization aspects and discuss plans

for future work.

5.1 Lessons learned from formal reasoning

HOAS is not always an alternative to FOAS. First, the obvious, often overlooked:

any HOAS representation is based on a preliminary FOAS theory. E.g., LF is introduced in

[63] employing FOAS (including α-equivalence and such1); and all the (informal) adequacy

proofs about LF representations are FOAS proofs – if one is to make the adequacy proofs

themselves formal (the only way to qualify a result obtained by HOAS as fully certified),

one needs to use FOAS (as in, e.g., the formalization of LF from [151]).

Second, the explicit presence of variables in a FOAS binder such as Lm x X, as inconvenient

as it may be to manipulate, is nevertheless a fundamental operator. Thus, certain types

of constructions and statements refer explicitly to this (non-injective) FOAS operator, and

there is no HOAS alternative for them. For example, our motivational Problem I from

Section 2.3.1 requires that the interpretation of Lm x X in a semantic domain be performed

by assigning x different values in the given valuations. This is an irreducible phenomenon,

not only mathematically, but also pragmatically: syntax is available to its users (e.g., the

programmers) by means of FOAS binding operators, since of course particular names of

variables are chosen when writing concrete programs or proofs in a formal system such as

a programming language or a theorem prover; and any denotational-semantics map has to

account for this.

These being said, it is true that HOAS, when it works, it rocks. Thus, when irreducibly

first-order aspects are not important in themselves, but only as auxiliaries in achieving a

different goal, HOAS alternatives can simplify and clean-up reasoning – this was the case of

our proof of Strong Normalization for System F from Section 3.5, where this very issue of

semantic interpretation was bypassed. (And, of course, there are many other illustrations of

1Which is not to say that α-equivalence has to be employed in the basic definition. But the first-order
operators have to be there.

148

the benefits of HOAS in the literature.)

The above are the main reasons for our mixed approach to syntax with bindings, which

could be summarized as follows: FOAS when necessary, HOAS when possible. The fact that

HOAS comes definitionally “on top of FOAS” makes it easy to switch between the two.

Formalizing patiently avoids formalizing painfully.2 When starting the work reported

here, the author of this dissertation was a pure “pen and paper” mathematician, and regarded

formalization as only the “necessary evil” needed to illustrate or apply some ideas. Eventually

though, formalization revealed itself as a great tool for better understanding the involved

concepts. The only prerequisite for this, which can make the difference between formalization

as pain and formalization as pleasure, is, in our opinion, observing “religiously” the following

principle:

When a concept (no matter how simple) is formalized, it should be related, by means of

lemmas, to each and every other concept in its vicinity, in all possible obvious ways. E.g.,

assuming parallel substitution is defined in a context where operators such as swapping,

freshness etc. already exist, all the simple lemmas pertaining to the interaction of substitution

with these operators (commutation, preservation, special interaction with the syntactic

constructs in the presence of freshness, interaction with environment update, etc.) should be

proved.

This may launch combinatorial mini-explosions of lemmas and thus may seem like a delay

in the development, but we have noticed a phenomenon rather curious by its pervasiveness:

every time we decided to leave such an obvious connection lemma unstated (not anticipating,

at that point, any future use of it), eventually we have discovered we need that fact. And

having the hard combinatorial work done early, when proving conceptually trivial facts, is

way better3 than facing it later, in more complex proof situations.4 For the latter situations,

it is crucial to allow ourselves following higher-level ideas, as in informal mathematical

proofs. In fact, by observing the mentioned principle, and adding many basic facts into

the working background by means of simplification rules, we were often able to proceed

even more “informally” than one would expect from a rigorous pen-and-paper proof.5 For

example, many informal proofs by induction with several occurring cases, proceed with

an “we only prove the interesting case (or cases)” disclaimer. This is hardly accepted as

2The whole discussion here is essentially a restatement of the classic benefits of modularity – however,
there are some specific nuances.

3From all points of view: time, space, clarity, maintainability.
4An analogy that comes to mind is category theory. Contrary to what it is sometimes claimed, an

approach based on category theory to solve a concrete problem is not avoiding the consideration of low-level
details. It just handles these details, typically by means of tons of routine verifications, in an early stage,
e.g., when organizing the given concrete items as categories, functors, natural transformations etc.. The
reward is an abstract, “detail-free” setting later, when it is most needed: in the non-trivial phase of the
problem-solving task.

5Of course, the advanced facilities of Isabelle-Isar [101] did have a say here.

149

a rigorous pen-and-paper proof, but Isabelle can be convinced that the chosen cases are

indeed the only interesting ones (full automation discharging the rest). Again, the key here

is some preliminary (admittedly, tedious) work at customizing Isabelle to accept “without

questioning” roughly everything we consider obvious on a given topic.

5.2 Future work

In this dissertation, we have pursued two separate themes:

- an inductive (and recursive) theme, of representing and reasoning about syntax with

bindings;

- a coinductive theme, of representing and reasoning about behavior of processes.

These themes correspond to the standard duality between the (static) structure and

(dynamic) behavior of programming languages. Important aspects our approaches to these

two themes have in common are (for most of the work) the generality of the setting:

- arbitrary syntax with bindings in the first case;

- arbitrary signature for processes and arbitrary set of SOS rules in a general format, in the

second.

This generality is reflected in our corresponding Isabelle formalizations.

We plan to eventually integrate induction and coinduction in a single comprehensive

Isabelle package where one can specify and reason about λ-calculi, process calculi and

programming languages. There is long way to go, but the outcome is in sight. Next we

describe the steps we plan to take towards this goal.

Generalization of the HOAS constructios. The constructions and results from Section

3.3 can be straightforwardly generalized to an arbitrary many-sorted syntax with bindings.

Moreover, the constructions and adequacy proofs from Section 3.4 seem to work for a large

class of inductively defined inference systems in whose clauses the migration of variables

between scopes satisfies a few general conditions, allowing the sound application of trans-

formations (I)-(V) discussed in Section 3.4. We are currently working on determining such

suitably general conditions.

Full automation of the FOAS and HOAS constructions. Although most of our

results have been formalized in a general setting, we have not yet taken full advantage of the

ample possibilities for automatically building the involved FOAS and HOAS apparatuses.

We shall implement (the general versions of) all our results presented in Chapters 2 and 3 as

a definitional package in Isabelle/HOL. Our system will require the user to give a binding

signature and a number of inference system specifications on the terms of this signatures (for

various desired relations: typing, operational semantics, etc.). From the binding signature,

150

the system will produce the terms (one Isabelle type of terms for each syntactic category), as

well as all the standard operators on them (substitution, free variables etc.) and prove the

standard lemmas about them. Moreover, a recursor shall be provided, based on our work

from Chapter 2. (Thus, essentially, all the FOAS results we have gathered “by hand” in

the theory L from [121] for the syntax of λ-calculus shall be provided automatically for the

indicated syntax.)

From the inference system specifications, the system will produce the actual inductive

definitions of the intended relations. Then the system will construct, along the lines of

Chapter 3, the HOAS view of syntax (defining new higher-order operators on terms and

proving their properties) and the representation of inference, which will be automatically

proved adequate. General versions of the propositions in Sections 3.3 and 3.4 shall also be

proved (automatically). All in all, based on a very compact input from the user, our system

will produce:

- (i) the intended object system with all its FOAS constructions;

- (ii) a HOAS representation formally certified as adequate.

Merging the formalizations of induction and coinduction. The missing link with

the coinductive work lays in the fact that currently our syntax for processes does not involve

any bindings. However, our process algebra formalization is quite modular, so that switching

to a syntax with bindings for processes (and thus capturing important cases such as the

π-calculus and real concurrent programming languages) should be in principle realizable

without major changes to the coinductive engine. This way, the package will also include:

- (iii) a (customized) proof system for coinduction automatically inferable from an SOS

specification of the intended behavior.

There are of course several design decisions that need to be made towards a coherent

inductive-coinductive package – e.g., one needs to establish what counts for a system for

which it makes sense to extract a coinductive notion of behavior from an inductive SOS

specification.

Relaxing bisimilarity. Relaxing the notion of bisimilarity to variants that consider issues

such as divergence, asynchronous communication, fairness [48] and combinations of these

such as the guarantee of message delivery [32, 11] is an important step for being able to

model behavior of real programming languages and systems. While traditionally fairness is

connected to trace-based rather than bisimilarity-based semantics, our discussion in Section

4.5.2 about weak bisimilarity shows that modular treatment of this complex equivalence is

actually achieved by a mixture of traces and coinduction. Also, recent work [98, 100, 99]

has demonstrated that weak-bisimilarity-based process algebra is closer to programming

languages than one may initially expect. Moreover, asynchrony can be achieved by certain

151

syntactic restrictions on processes [138].

152

References

[1] BOBJ. http://cseweb.ucsd.edu/groups/tatami/bobj.

[2] Delphin. http://cs-www.cs.yale.edu/homes/carsten/delphin.

[3] LEGO. http://www.dcs.ed.ac.uk/home/lego.

[4] The Abella Theorem prover, 2009. http://abella.cs.umn.edu/.

[5] The POPLmark challenge, 2009. http://fling-l.seas.upenn.edu/ plclub/cgi-
bin/poplmark/.

[6] The Twelf Project, 2009. http://twelf.plparty.org/.

[7] The HOL4 Theorem prover, 2010. http://hol.sourceforge.net/.

[8] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. J. Funct.
Program., 1(4):375–416, 1991.

[9] S. Abramsky and C.-H. L. Ong. Full abstraction in the lazy lambda calculus. Inf.
Comput., 105(2):159–267, 1993.

[10] L. Aceto, M. Cimini, and A. Ingólfsdóttir. A bisimulation-based method for proving
the validity of equations in gsos languages. CoRR, abs/1002.2864, 2010.

[11] G. Agha. Actors: a model of concurrent computation in distributed systems. MIT
Press, Cambridge, MA, USA, 1986.

[12] T. Altenkirch. A formalization of the strong normalization proof for System F in
LEGO. In TLCA, pages 13–28, 1993.

[13] S. Ambler, R. L. Crole, and A. Momigliano. Combining Higher Order Abstract Syntax
with tactical theorem proving and (co)induction. In TPHOLs, pages 13–30, 2002.

[14] S. J. Ambler, R. L. Crole, and A. Momigliano. A definitional approach to primitive
recursion over Higher Order Abstract Syntax. In MERLIN, 2003.

[15] A. Avron, F. Honsell, I. A. Mason, and R. Pollack. Using typed λ-calculus to implement
formal systems on a machine. J. of Aut. Reasoning, 9(3):309–354, 1992.

[16] E. Badouel and P. Darondeau. On guarded recursion. Theor. Comput. Sci., 82:403–408,
1991.

153

[17] J. Baeten and W. Weijland. Process Algebra. Cambridge University Press, 1990.

[18] H. Barendregt. Introduction to generalized type systems. J. Funct. Program., 1(2):125–
154, 1991.

[19] H. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science. Oxford University Press,
1992.

[20] H. P. Barendregt. The Lambda Calculus. North-Holland, 1984.

[21] F. Bartels. Generalised coinduction. Math. Struct. Comp. Sci., 13(2):321–348, 2003.

[22] M. Berger, K. Honda, and N. Yoshida. Genericity and the pi-calculus. Acta Inform.,
42(2):83–141, 2005.

[23] Y. Bertot and P. Casteran. Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Springer, 2004.

[24] B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can’t be traced. J. ACM,
42(1):232–268, 1995.

[25] J. Brotherston. Cyclic proofs for first-order logic with inductive definitions. In
TABLEAUX’05, pages 78–92, 2005.

[26] R. Bruni, D. de Frutos-Escrig, N. Mart́ı-Oliet, and U. Montanari. Bisimilarity con-
gruences for open terms and term graphs via tile logic. In CONCUR, pages 259–274,
2000.

[27] V. Capretta and A. P. Felty. Combining de Bruijn indices and higher-order abstract
syntax in Coq. In TYPES, pages 63–77, 2006.

[28] M. Cerioli and J. Meseguer. May I borrow your logic? (Transporting logical structures
along maps). Theoretical Computer Science, 173(2):311–347, 1997.

[29] C. Chen and H. Xi. Combining programming with theorem proving. In ICFP, pages
66–77, 2005.

[30] A. J. Chlipala. Parametric higher-order abstract syntax for mechanized semantics. In
ICFP, pages 143–156, 2008.

[31] M. Clavel, F. J. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. F.
Quesada. The Maude system. In P. Narendran and M. Rusinowitch, editors, Proceedings
of the 10th International Conference on Rewriting Techniques and Applications (RTA-
99), volume 1631 of Lecture Notes in Computer Science, pages 240–243, Trento, Italy,
July 1999. Springer-Verlag. System Description.

[32] W. Clinger. Foundations of actor semantics. Mathematics Doctoral Dissertation. MIT,
1981.

[33] P.-L. Curien. Categorical combinators. Information and Control, 69(1-3):188–254,
1986.

154

[34] M. Dam and D. Gurov. µ-calculus with explicit points and approximations. J. Log.
Comput., 12(2):255–269, 2002.

[35] T. M. Daniel Hausmann and L. Schrder. Iterative circular coinduction for cocasl in
isabelle/hol. In Fundamental Approaches to Software Engineering 2005, Lecture Notes
in Computer Science, page pp. 341356, 2005.

[36] N. de Bruijn. λ-calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser theorem. Indag. Math,
34(5):381–392, 1972.

[37] R. de Simone. Higher-level synchronizing devices in meije-sccs. Theor. Comput. Sci.,
37:245–267, 1985.

[38] J. Despeyroux, A. P. Felty, and A. Hirschowitz. Higher-order abstract syntax in Coq.
In TLCA, pages 124–138, 1995.

[39] J. Despeyroux and A. Hirschowitz. Higher-Order Abstract Syntax with induction in
Coq. In LPAR, pages 159–173, 1994.

[40] J. Despeyroux and P. Leleu. Recursion over objects of functional type. Mathematical
Structures in Computer Science, 11(4):555–572, 2001.

[41] K. Donnelly and H. Xi. A formalization of strong normalization for simply-typed
lambda-calculus and system F. Electron. Notes Theor. Comput. Sci., 174(5):109–125,
2007.

[42] G. Doumenc, E. Madelaine, and R. de Simone. Proving process calculi translations in
ECRINS: The pureLOTOS → MEIJE example. Technical Report RR1192, INRIA,
1990. http://hal.archives-ouvertes.fr/inria-00075367/en/.

[43] A. P. Felty and A. Momigliano. Hybrid: A definitional two-level approach to reasoning
with Higher-Order Abstract Syntax. CoRR, abs/0811.4367, 2008.

[44] A. P. Felty and A. Momigliano. Reasoning with hypothetical judgments and open
terms in hybrid. In PPDP, pages 83–92, 2009.

[45] A. P. Felty and B. Pientka. Reasoning with higher-order abstract syntax and contexts:
A comparison. In ITP, pages 227–242, 2010.

[46] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding (extended
abstract). In LICS, pages 193–202, 1999.

[47] M. P. Fiore, E. Moggi, and D. Sangiorgi. A fully-abstract model for the π-calculus. In
LICS, pages 43–54, 1996.

[48] N. Francez. Fairness. Springer-Verlag, 1986.

[49] M. J. Gabbay. A theory of inductive definitions with α-equivalence. Ph.D. thesis.
University of Cambridge, 2001.

[50] A. Gacek, D. Miller, and G. Nadathur. Combining generic judgments with recursive
definitions. In F. Pfenning, editor, LICS, pages 33–44, June 2008.

155

[51] J. Gallier. On Girard’s candidats de reductibilite. In Logic and Computer Science,
pages 123–203. Academic Press, 1990.

[52] E. Giménez. An application of co-inductive types in Coq: Verification of the alternating
bit protocol. In TYPES’95, pages 135–152, 1995.

[53] J.-Y. Girard. Une extension de l’interpretation de Gödel a l’analyse, et son application
a l’elimination des coupure dans l’analyse et la theorie des types. In 2nd Scandinavian
Logic Symposium, pages 63–92, 1971.

[54] J.-Y. Girard. Proofs and Types. Cambridge University Press, 1989.

[55] J. Goguen, K. Lin, and G. Roşu. Circular coinductive rewriting. In Proceedings of
Automated Software Engineering 2000, pages 123–131. IEEE, 2000.

[56] J. Goguen and G. Malcolm. A hidden agenda. Theoretical Computer Science, 245(1):55–
101, August 2000.

[57] A. D. Gordon. A mechanisation of name-carrying syntax up to alpha-conversion.
In HUG ’93: Proceedings of the 6th International Workshop on Higher Order Logic
Theorem Proving and its Applications, pages 413–425, 1994.

[58] A. D. Gordon and T. F. Melham. Five axioms of alpha-conversion. In TPHOLs ’96:
Proceedings of the 9th International Conference on Theorem Proving in Higher Order
Logics, pages 173–190, 1996.

[59] J. F. Groote and F. Vaandrager. Structured operational semantics and bisimulation as
a congruence. Inf. Comput., 100(2):202–260, 1992.

[60] C. A. Gunter. Semantics of Programming Languages. Structures and Techniques. The
MIT Press, 1992.

[61] E. L. Gunter, C. J. Osborn, and A. Popescu. Theory support for weak Higher Order
Abstract Syntax in Isabelle/HOL. In LFMTP, pages 12–20, 2009.

[62] J. V. Guttag and J. J. Horning. The algebraic specification of abstract data types.
Acta Inf., 10:27–52, 1978.

[63] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In LICS, pages
194–204. IEEE, Computer Society Press, 1987.

[64] R. Harper and D. R. Licata. Mechanizing metatheory in a logical framework. J. Funct.
Program., 17(4-5):613–673, 2007.

[65] M. Hennessy and H. Lin. Proof systems for message-passing process algebras. Formal
Asp. Comput., 8(4):379–407, 1996.

[66] J. Hickey, A. Nogin, X. Yu, and A. Kopylov. Mechanized meta-reasoning using a
hybrid HOAS/de Bruijn representation and reflection. In ICFP, pages 172–183, 2006.

[67] M. Hofmann. Semantical analysis of higher-order abstract syntax. In LICS, page 204,
1999.

156

[68] F. Honsell, M. Miculan, and I. Scagnetto. An axiomatic approach to metareasoning on
nominal algebras in HOAS. In ICALP, pages 963–978, 2001.

[69] D. J. Howe. Proving congruence of bisimulation in functional programming languages.
Inf. Comput., 124(2), 1996.

[70] D. J. Howe. Higher-order abstract syntax in classical higher-order logic. In LFMTP,
pages 1–11, 2009.

[71] G. P. Huet and B. Lang. Proving and applying program transformations expressed
with second-order patterns. Acta Inf., 11:31–55, 1978.

[72] P. Inverardi and C. Priami. Automatic verification of distributed systems: The process
algebra approach. Formal Methods in System Design, 8(1):7–38, 1996.

[73] F. Kammüller, M. Wenzel, and L. C. Paulson. Locales - a sectioning concept for
Isabelle. In TPHOLs’99, pages 149–166, 1999.

[74] J. L. Krivine. Lambda-calculus, types and models. Ellis Horwood, 1993.

[75] R. Loader. Normalization by calculation. Unpublished note, 1995.
http://homepages.ihug.co.nz/ suckfish/papers/normal.pdf.

[76] D. Lucanu, E.-I. Goriac, G. Caltais, and G. Roşu. CIRC: A behavioral verification
tool based on circular coinduction. In CALCO’09, pages 433–442, 2009.

[77] D. Lucanu and G. Rosu. CIRC: A circular coinductive prover. In CALCO’07, volume
4624 of LNCS, pages 372 – 378, 2007.

[78] E. Madelaine. Verification tools from the CONCUR project. http://www-
sop.inria.fr/meije/papers/concur-tools.

[79] N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic framework.
Electr. Notes Theor. Comput. Sci., 4, 1996.

[80] R. McDowell and D. Miller. Reasoning with higher-order abstract syntax in a logical
framework. ACM Transactions on Computational Logic, 3(1):80–136, 2002.

[81] R. C. McDowell. Reasoning in a logic with definitions and induction. PhD thesis,
University of Pennsylvania, 1997.

[82] J. McKinna and R. Pollack. Pure type systems formalized. In TLCA, pages 289–305,
1993.

[83] J. Meseguer. Conditional Rewriting Logic as a Unified Model of Concurrency. Theo-
retical Computer Science, pages 73–155, 1992.

[84] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundation
for logic programming. Ann. Pure Appl. Logic, 51(1-2):125–157, 1991.

[85] D. Miller and A. Tiu. A proof theory for generic judgments. ACM Transactions on
Computational Logic, 6(4):749–783, 2005.

157

[86] R. Milner. A complete inference system for a class of regular behaviours. J. Comput.
Syst. Sci., 28(3):439–466, 1984.

[87] R. Milner. Communication and concurrency. Prentice Hall, 1989.

[88] R. Milner. Communicating and mobile systems: the π-calculus. Cambridge, 2001.

[89] J. C. Mitchell. A type-inference approach to reduction properties and semantics of
polymorphic expressions (summary). In LISP and Functional Programming, pages
308–319, 1986.

[90] J. C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.

[91] J. C. Mitchell and A. R. Meyer. Second-order logical relations (extended abstract). In
CLP, pages 225–236, 1985.

[92] A. Momigliano and S. Ambler. Multi-level meta-reasoning with higher-order abstract
syntax. In FoSSaCS, pages 375–391, 2003.

[93] A. Momigliano, S. Ambler, and R. L. Crole. A hybrid encoding of howe’s method for
establishing congruence of bisimilarity. Electr. Notes Theor. Comput. Sci., 70(2), 2002.

[94] A. Momigliano, S. J. Ambler, and R. L. Crole. A comparison of formalizations of
the meta-theory of a language with variable bindings in isabelle. Technical report,
Supplemental Proceedings of TPHOL’01, 2001.

[95] A. Momigliano, A. J. Martin, and A. P. Felty. Two-level Hybrid: A system for reasoning
using Higher-Order Abstract Syntax. Electron. Notes Theor. Comput. Sci., 196:85–93,
2008.

[96] R. Monroy, A. Bundy, and I. Green. On process equivalence = equation solving in ccs.
J. Autom. Reasoning, 43(1):53–80, 2009.

[97] M. R. Mousavi, M. A. Reniers, and J. F. Groote. Sos formats and meta-theory: 20
years after. Theor. Comput. Sci., 373(3):238–272, 2007.

[98] K. Nakata and T. Uustalu. Trace-based coinductive operational semantics for while.
In TPHOLs, pages 375–390, 2009.

[99] K. Nakata and T. Uustalu. A hoare logic for the coinductive trace-based big-step
semantics of while. In ESOP, pages 488–506, 2010.

[100] K. Nakata and T. Uustalu. Resumptions, weak bisimilarity and big-step semantics
for while with interactive i/o: An exercise in mixed induction-coinduction. CoRR,
abs/1008.2112, 2010.

[101] T. Nipkow. Structured Proofs in Isar/HOL. In TYPES, pages 259–278, 2003.

[102] T. Nipkow and L. C. Paulson. Proof pearl: Defining functions over finite sets. In
TPHOLs, pages 385–396, 2005.

[103] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-order Logic. Springer, 2002.

158

[104] M. Norrish. Recursive function definition for types with binders. In TPHOLs, pages
241–256, 2004.

[105] M. Norrish. Mechanising lambda-calculus using a classical first order theory of terms
with permutations. Higher-Order and Symbolic Computation, 19(2-3):169–195, 2006.

[106] M. Norrish and R. Vestergaard. Proof pearl: De Bruijn terms really do work. In
TPHOLs, pages 207–222, 2007.

[107] H. Ohtsuka. A proof of the substitution lemma in de Bruijn’s notation. Inf. Process.
Lett., 46(2):63–66, 1993.

[108] L. C. Paulson. The foundation of a generic theorem prover. J. Autom. Reason., 5(3),
1989.

[109] F. Pfenning. Logical frameworks. In Handbook of Automated Reasoning. Elsevier
Science, 1999.

[110] F. Pfenning. Logical frameworks - a brief introduction. In Paris Colloqvium on
Programming, volume 62 of NATO Science Series II, pages 137–166. Kluwer Academic
Publishers, 2002.

[111] F. Pfenning and C. Elliot. Higher-order abstract syntax. In PLDI, pages 199–208,
1988.

[112] B. Pientka. Proof pearl: The power of higher-order encodings in the logical framework
lf. In TPHOLs, pages 246–261, 2007.

[113] B. Pientka. Beluga: Programming with dependent types, contextual data, and contexts.
In FLOPS, pages 1–12, 2010.

[114] B. C. Pierce. Types and Programming Languages. The MIT Press, 2002.

[115] A. M. Pitts. Nominal logic: A first order theory of names and binding. In TACS, pages
219–242, 2001.

[116] A. M. Pitts. Alpha-structural recursion and induction. J. ACM, 53(3), 2006.

[117] G. D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput.
Sci., 1(2):125–159, 1975.

[118] R. Pollack and M. Sato. A canonical locally named representation of binding. To
appear in Journal of Automated Reasoning.

[119] A. Popescu. HOAS on top of FOAS formalized in Isabelle/HOL. Technical report
http://hdl.handle.net/2142/15449. Department of Computer Science, University of
Illinois at Urbana-Champaign, 2010.

[120] A. Popescu. The Isabelle formalization of a general theory of syntax with bindings. Tech.
Rep., Univ. of Illinois at Urbana-Champaign, 2010. http://hdl.handle.net/2142/17423.

[121] A. Popescu. The Isabelle formalization of a general theory of syntax with bindings, with
λ-calculus case studies included. Tech. Rep., Univ. of Illinois at Urbana-Champaign,
2010. http://hdl.handle.net/2142/17424.

159

[122] A. Popescu. The Isabelle formalization of an incremental coniductive proof system. Tech.
Rep., Univ. of Illinois at Urbana-Champaign, 2010. http://hdl.handle.net/2142/14857.

[123] A. Popescu. Weak bisimilarity coalgebraically. In CALCO’09, pages 157–172, 2009.

[124] A. Popescu and E. Gunter. Incremental pattern-based coinduction for process algebra
and its Isabelle formalization. Technical report http://hdl.handle.net/2142/14858.
Department of Computer Science, University of Illinois at Urbana-Champaign, 2010.

[125] A. Popescu and E. L. Gunter. Incremental pattern-based coinduction for process
algebra and its Isabelle formalization. In FOSSACS’10, 2010.

[126] A. Popescu, E. L. Gunter, and C. J. Osborn. Strong normalization of System F by
HOAS on top of FOAS. In LICS, pages 31–40, 2010.

[127] A. Popescu and G. Roşu. Term-generic logic. In WADT, pages 290–307, 2008.

[128] A. Popescu and G. Roşu. Term-generic logic. Technical Report UIUCDCS-R-2009-3027.
Department of Computer Science, University of Illinois at Urbana-Champaign, 2009.

[129] A. Rensink. Bisimilarity of open terms. Inf. Comput., 156(1-2):345–385, 2000.

[130] J. Reynolds. Towards a theory of type structure. In Paris Colloqvium on Programming,
volume 19 of Lecture Notes in Computer Science, pages 408–425. Springer-Verlag, 1974.

[131] C. Röckl and D. Hirschkoff. A fully adequate shallow embedding of the [pi]-calculus in
Isabelle/HOL with mechanized syntax analysis. J. Funct. Program., 13(2):415–451,
2003.

[132] G. Roşu. Hidden Logic. PhD thesis, University of California at San Diego, 2000.
http://ase.arc.nasa.gov/grosu/phd-thesis.ps.

[133] G. Roşu and D. Lucanu. Circular coinduction: A proof theoretical foundation. In
CALCO’09, pages 127–144, 2009.

[134] J. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science,
249:3–80, 2000.

[135] J. J. M. M. Rutten. Processes as terms: Non-well-founded models for bisimulation.
Math. Struct. Comp. Sci., 2(3):257–275, 1992.

[136] J. J. M. M. Rutten. Elements of stream calculus (an extensive exercise in coinduction).
Electr. Notes Theor. Comput. Sci., 45, 2001.

[137] D. Sangiorgi. On the bisimulation proof method. Math. Struct. Comp. Sci., 8(5):447–
479, 1998.

[138] D. Sangiorgi and D. Walker. The π-calculus. A theory of mobile processes. Cambridge,
2001.

[139] M. Sato and R. Pollack. External and internal syntax of the lambda-calculus. Journal
of Symbolic Computation, 45:598–616, 2010.

160

[140] C. Schurmann. Automating the meta-theory of deductive systems. PhD thesis, Carnegie
Mellon University, 2000.

[141] C. Schurmann, J. Despeyroux, and F. Pfenning. Primitive recursion for higher-order
abstract syntax. Theor. Comput. Sci., 266(1-2):1–57, 2001.

[142] C. Schurmann and F. Pfenning. Automated theorem proving in a simple meta-logic
for LF. In CADE, pages 286–300, 1998.

[143] R. Statman. Logical relations and the typed lambda-calculus. Information and Control,
65(2/3):85–97, 1985.

[144] W. Tait. A realizability interpretation of the theory of species. In Logic Colloquium,
pages 240–251. Springer, 1975.

[145] M. Takahashi. Parallel reductions in lambda-calculus. Inf. Comput., 118(1):120–127,
1995.

[146] A. Tiu. A Logical Framework for Reasoning about Logical Specifications. PhD thesis,
Penn State University, 2004.

[147] D. Turi and G. Plotkin. Towards a mathematical operational semantics. In Proceedings,
Twelfth Annual IEEE Symposium on Logic in Computer Science, pages 280–291,
Warsaw, Poland, 29 June–2 July 1997. Institute of Electrical and Electronics Engineers
Computer Society Press.

[148] C. Urban. Nominal techniques in Isabelle/HOL. J. Autom. Reason., 40(4):327–356,
2008.

[149] C. Urban and S. Berghofer. A recursion combinator for nominal datatypes implemented
in isabelle/hol. In IJCAR, pages 498–512, 2006.

[150] C. Urban, S. Berghofer, and M. Norrish. Barendregt’s variable convention in rule
inductions. In CADE, pages 35–50, 2007.

[151] C. Urban, J. Cheney, and S. Berghofer. Mechanizing the metatheory of lf. In LICS,
pages 45–56, 2008.

[152] C. Urban and M. Norrish. A formal treatment of the Barendregt variable convention
in rule inductions. In MERLIN, pages 25–32, 2005.

[153] C. Urban and C. Tasson. Nominal techniques in isabelle/hol. In CADE, pages 38–53,
2005.

[154] M. van Weerdenburg. Automating soundness proofs. Electr. Notes Theor. Comput.
Sci., 229(4):107–118, 2009.

[155] M. Wenzel, L. C. Paulson, and T. Nipkow. The isabelle framework. In TPHOLs, pages
33–38, 2008.

161

	Chapter 1 Context
	Introduction
	Background and some related work
	Conventions, notations and pointers to supporting scripts
	Technical preliminaries

	Chapter 2 FOAS
	Introduction
	Induction
	Two problems of rigorous/formal reasoning
	Intermezzo – solving a genuinely ``ordinary" problem
	Terms with bindings as an ordinary data type
	More examples
	Pushing the Horn approach even further
	Variations of the Horn-based recursion principle
	Generalization and formalization
	Related work

	Chapter 3 HOAS
	Introduction
	The -calculus reduction and the System F typing system recalled
	HOAS view of syntax
	HOAS representation of inference
	The HOAS principles at work
	Formalization
	Conclusions and related work

	Chapter 4 Process algebra
	Introduction
	Syntax and operational semantics of processes
	The raw coinductive proof system
	Deduction of universally quantified bisimilarity equations
	The scope of our results
	More examples
	Details regarding the Isabelle formalization
	Related work

	Chapter 5 Conclusions and future work
	Lessons learned from formal reasoning
	Future work

	References

