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Abstract

This thesis develops a new reduction-based analysis methodology for studying the worst-case end-to-end delay

and schedulability of real-time jobs in distributed systems. The main result is a simple delay composition

rule, that computes a worst-case bound on the end-to-end delay of a job, given the computation times of all

other jobs that execute concurrently with it in the system. This delay composition rule is first derived for

pipelined distributed systems, where all the jobs execute on the same sequence of resources before leaving

the system. We then derive the delay composition rule for systems where the union of task paths forms a

Directed Acyclic Graph (DAG), and subsequently generalize the result to non-acyclic task graphs as well,

under both preemptive and non-preemptive scheduling. The result makes no assumptions on periodicity and

is valid for periodic and aperiodic jobs. It applies to fixed and dynamic priority scheduling, as long as all jobs

have the same relative priority on all stages on which they execute. The delay composition result enables a

simple reduction of the distributed system to an equivalent hypothetical uniprocessor that can be analyzed

using traditional uniprocessor schedulability analysis to infer the schedulability of the distributed system.

Thus, the wealth of uniprocessor analysis techniques can now be used to analyze distributed task systems.

Such a reduction significantly reduces the complexity of analysis and ensures that the analysis does not

become exceedingly pessimistic with system scale, unlike existing analysis techniques for distributed systems

such as holistic analysis and network calculus. Evaluation using simulations suggest that the new reduction-

based analysis is able to significantly outperform existing analysis techniques, and the improvement is more

pronounced for larger systems.

We develop an algebra, called delay composition algebra, based on the delay composition results for

systematic transformation of distributed real-time task systems into single-resource task systems such that

schedulability properties of the original system are preserved. The operands of the algebra represent work-

loads on composed subsystems, and the operators define ways in which subsystems can be composed to-

gether. By repeatedly applying the operators on the operands representing resource stages, any distributed

system can be systematically reduced to an equivalent uniprocessor that can be analyzed later to determine

end-to-end delay and schedulability properties of all jobs in the original distributed system.
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The above reduction-based schedulability analysis techniques suffer from pessimism that results from

mismatches between uniprocessor analysis assumptions and characteristics of workloads reduced from dis-

tributed systems, especially for the case of periodic tasks. To address the problem, we introduce flow-based

mode changes , a uniprocessor load model tuned to the novel constraints of workloads reduced from dis-

tributed system tasks. In this model, transition of a job from one resource to another in the distributed

system, is modeled as mode changes on the uniprocessor. We present a new iterative solution to compute

the worst-case end-to-end delay of a job in the new uniprocessor task model. Our simulation studies suggest

that the resulting schedulability analysis is able to admit over 25% more utilization than other existing

techniques, while still guaranteeing that all end-to-end deadlines of tasks are met.

As systems are becoming increasingly distributed, it becomes important to understand their structural

robustness with respect to timing uncertainty. Structural robustness, a concept that arises by virtue of

multi-stage execution, refers to the robustness of end-to-end timing behavior of an execution graph towards

unexpected timing violations in individual execution stages. A robust topology is one where such violations

minimally affect end-to-end execution delay. We show that the manner in which resources are allocated to

execution stages can affect the robustness. Algorithms are presented for resource allocation that improves the

robustness of execution graphs. Evaluation shows that such algorithms are able to reduce deadline misses due

to unpredictable timing violations by 40-60%. Hence, the approach is important for soft real-time systems,

systems where timing uncertainty exists, or where worst-case timing is not entirely verified.

We finally show two contexts in which the above theory can be applied to the domain of wireless networks.

First, we developed a bandwidth allocation scheme for elastic real-time flows in multi-hop wireless networks.

The problem is cast as one of utility maximization, where each flow has a utility that is a concave function

of its flow rate, subject to delay constraints. The delay constraints are obtained from our end-to-end delay

bounds and adapted to only use localized information available within the neighborhood of each node. A

constrained network utility maximization problem is formulated and solved, the solution to which results in

a distributed algorithm that each node can independently execute to maximize global utility. Second, we

study the problem of minimizing the worst-case end-to-end delay of packets of flows in a wireless network

under arbitrary schedulability constraints. Using a coordinated earliest-deadline-first strategy, we show that

a worst-case end-to-end delay bound that has the same form as our delay composition results for distributed

systems can be obtained.

We discuss several avenues for future work that build on top of the theory developed in this thesis. We

hope that this thesis will provide the foundation to develop a more comprehensive and widely applicable

theory for the study of delay, schedulability, and other end-to-end properties in distributed systems.
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Chapter 1

Introduction

We propose a new reduction-based theory called delay composition theory for the analysis of delay and

schedulability of real-time jobs in distributed systems. The theory enables the systematic reduction of a

distributed system workload to an equivalent hypothetical uniprocessor workload, such that well known

uniprocessor schedulability analysis techniques can be used to analyze distributed system schedulability.

This reduction-based methodology significantly reduces the complexity of the analysis and tends to be much

less pessimistic than existing analysis techniques for large distributed systems.

Real-time applications are becoming increasingly more complex with respect to system scale and the

number of resources involved. With Moore’s law approaching saturation, and power and reliability issues

hampering the growth of multiprocessor systems, the emphasis is shifting towards distributed computation.

Avionics and ship-board computing clusters are heading towards increased automation, with several stages

of processing for various real-time tasks within a distributed computing environment. Automotive systems

have dozens of embedded processors, and tasks such as cruise control and traction control involve several

stages of distributed processing, subject to strict timing constraints. Each search query answered by Google,

typically goes through thirty different stages of computation, with the server farm comprising of thousands

of processors. Manufacturing plants in every industry have several specialized servers, producing hundreds of

parts that follow different routes through the system. Cyber-physical systems, as an umbrella term for various

personal and military applications, have gained a lot of momentum, with the NSF identifying it as a key

focus area for research. In a more abstract setting outside the realm of computing, multi-personnel projects

in any industry are also distributed real-time systems. A project typically consists of several sequential

tasks with dependencies and precedence constraints amongst them. Each sub-job of a sequential task may

be processed by one or a group of people. Here, skilled personnel act as the resources, and the goal of the

system is to complete all the tasks within the deadline for the project. Any delay in completing the project

directly translates into lost sales, cost overruns, and compromises in product quality. It is thus paramount

to have a concrete theoretical understanding of the timing behavior of distributed real-time systems.

Rigorous theory exists today for uniprocessor and multiprocessor systems, while only heuristics are used
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to analyze and design larger arbitrary-topology distributed systems. These heuristics are based on intuitions

and ideas developed from studying uniprocessor and multiprocessor systems, which tend to be insufficient

and on occasion even misinformed in the context of distributed systems. The goal of this thesis is to develop

a fundamental understanding of delay and the factors that affect it in distributed real-time systems. In

particular, we are interested in determining the worst-case end-to-end delay performance of such systems,

as this directly reflects on the extent of resource provisioning and cost involved in maintenance. We hope

that the ideas, intuition, and analysis methodology developed through this work will foster further research

towards developing a comprehensive theory, and aid in designing more efficient and robust performance-

sensitive real-time systems.

In uniprocessor and multiprocessor systems, the natural way to improve system throughput or efficiency,

is to make each processor faster (more efficient) and reduce the processing time for each job. Improving the

efficiency of a single processor in a multiprocessor system translates into overall improved system throughput

and reduced delay. This, however, is not the case in distributed systems. Improving the efficiency of a single

resource in the distributed system may not translate into an improvement in the overall system throughput or

delay. Consider for instance, a system consisting of five resources and a set of jobs that execute sequentially

on each of the five resources. Further, suppose that the third resource is the slowest, and jobs queue up at

that resource (there is minimal or no queuing at the other resources). Now, doubling the efficiency of the

first resource yields no appreciable improvement in the system throughput as the bottleneck resource is still

just as slow, and jobs will only have to wait longer before they get serviced at the third resource (in fact,

this increases any queuing/inventory costs). However, doubling the efficiency of the bottleneck resource

results in a significant reduction in the end-to-end delay. Therefore, identifying the bottleneck becomes

extremely important. This, however, is a very challenging problem for large systems with tasks following

different routes through the system, as the bottleneck can be different for each task. As we shall show more

formally in this thesis, the end-to-end delay of a task is largely a function of the worst-case delay on a single

’hypothetical bottleneck’ resource, rather than the cumulative worst-case delay of each resource on which it

executes.

Existing techniques for analyzing delay and schedulability of jobs in distributed systems can be broadly

classified into two categories: (i) decomposition-based, and (ii) extension-based. The decomposition-based

techniques break the system into multiple subsystems, analyze each subsystem independently using current

uniprocessor analysis techniques, then combine the results. The extension-based techniques explore ways

to extend current uniprocessor analyses to accommodate distributed tasks and resources. Both analysis

techniques tend to become increasingly complex and pessimistic with system scale. In contrast, we propose to
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use a third category of techniques for analyzing distributed systems that are based on reduction (as opposed

to decomposition or extension). Rather than breaking up the problem into sub-problems, or extending

uniprocessor analyses to more complex systems, we systematically reduce the distributed schedulability

problem to a single simple problem on a uniprocessor.

A reduction-based approach to system analysis has been devised in many contexts outside distributed

system scheduling. For instance, in control theory, there are rules to reduce complex block diagrams into

a single equivalent block, which can later be analyzed for stability and performance properties. In circuit

theory, laws such as Kirchoff’s laws enable complex circuits to be reduced to a single equivalent source

and impedance. Apart from reducing the complexity of the problem to that of a single component, such

reduction rules also provide fundamental insights into how key performance properties are affected by the

structure and arrangement of individual components in the system. The main contribution of this work is

to develop a new analysis methodology for distributed real-time systems by reducing them to an equivalent

hypothetical uniprocessor system for the purpose of analyzing the end-to-end delay of tasks.

We shall now describe the contributions made by this thesis.

1. Uniprocessor schedulability theory made great strides, in part, due to the simplicity of composing

the delay of a job from the execution times of higher-priority jobs that preempt it. There is no

such equivalent composition rule for distributed systems. We started by considering a very simple

distributed system, namely a pipelined system, that processes several classes of real-time tasks, where

each task executes on the same sequence of resources before exiting the system [38]. We derived a delay

composition rule that allows the worst-case delay of a task invocation to be expressed in terms of the

execution times of higher priority task invocations under prioritized preemptive scheduling. We showed

that the end-to-end delay is bounded by that of a single virtual bottleneck stage plus a small additive

component. This contribution effectively transformed the pipeline into a single stage system. The

wealth of schedulability analysis techniques derived for uniprocessors can then be applied to decide the

schedulability of the pipeline. By accurately accounting for the execution overlap between consecutive

stages in the pipeline, the analysis does not become increasingly more complex and pessimistic with

system scale, and significantly outperforms existing schedulability analysis techniques for distributed

systems.

2. We extended the above result to non-preemptive scheduling in [40]. In uniprocessor and multiprocessor

systems, preemptive scheduling always performs better than non-preemptive scheduling when the

preemption overhead is zero. However, we show that in distributed systems under certain situations,

non-preemptive scheduling in fact outperforms preemptive scheduling in terms of admissible system
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utilization, even when the preemption overhead is assumed to be zero. That is, preemption can result

in a lower system throughput than the same system under non-preemptive scheduling. This counter-

intuitive property has a big impact on the nature of scheduling policies that perform well for distributed

systems, making the problem of optimal distributed system scheduling extremely challenging.

3. In [42], we extended the delay composition rule to directed acyclic graphs, where different tasks can

enter and leave the system at different resource stages, such that the union of all task paths forms

a directed acyclic graph. We also describe how resources that are partitioned (e.g. TDMA) instead

of being scheduled in a prioritized manner can be handled, by considering them as a slower resource

scheduled using a prioritized scheduling policy.

4. We derived the first generalized closed form expression for schedulability analysis in distributed task

systems with non-acyclic flows in [43]. Prior approaches including network calculus and holistic schedu-

lability analysis are targeted towards acyclic task flows. They involve iterative solutions or offer no

solutions at all when flows are non-acyclic. This problem of estimating the end-to-end delay of tasks in

a non-acyclic system is inherently difficult due to the presence of cyclic dependencies. By considering

the system as a whole rather than analyzing it one node at a time, the bound accurately accounts

for the concurrency in the execution of different nodes, resulting in a less pessimistic bound on the

end-to-end delay.

5. Based on the above delay composition results, we developed an algebra in [39] called delay composition

algebra, which defines a set of simple operators for systematic transformation of distributed real-time

task systems into single-resource task systems such that schedulability properties of the original system

are preserved. Operands in the algebra represent workloads in composed sub-systems, and operators

such as PIPE and SPLIT are applied on the operands to compose sub-systems together to reduce

the distributed system to an equivalent hypothetical single resource for the purpose of schedulability

analysis. In [47], we introduced the LOOP operator to handle task graphs that may contain cycles.

6. The above reduction-based approaches to schedulability transform distributed system workloads into

equivalent uniprocessor workloads that can be analyzed using techniques borrowed from uniprocessor

literature. However, this approach suffers from pessimism that results from mismatches between as-

sumptions made in the uniprocessor analysis and characteristics of workloads reduced from distributed

systems, especially for periodic tasks. This motivates research on uniprocessor task models that better

match the peculiarities of task loads reduced from distributed systems. To address this problem, we

introduce flow-based mode changes [44], a uniprocessor load model tuned to the novel constraints of

4



workloads reduced from distributed system tasks. This is the first uniprocessor task model motivated

by the needs of reduction-based schedulability analysis techniques for distributed systems.

7. Large and complex distributed systems typically execute soft real-time applications, where there is

significant uncertainty in the execution times of tasks on individual resources, or the worst-case timing

is not entirely verified. An extremely important problem in such systems, is how do we optimize

the allocation of resources to individual execution stages of tasks (the topology of the system) to

minimize the effect that the uncertainties have on the end-to-end delay of tasks. In [46], we define

a metric called structural robustness that measures the robustness of the end-to-end timing behavior

of a systems task flow graph towards unexpected violations in the worst-case application execution

times on individual resources. We demonstrate that by efficiently allocating resources to execution

stages of end-to-end tasks, the flow paths of tasks can be optimized to improve the systems structural

robustness. We also present a simple hill climbing algorithm that can be used to explore the space of

all system configurations to determine a highly robust configuration.

8. The theory developed in this thesis lends itself to a wide range of applications. We adapted the delay

constraints developed above to the case of wireless networks. We consider a set of elastic real-time flows

in a multi-hop wireless network and consider the problem of distributed rate allocation for the flows,

such that all packet deadlines are met [41]. Due to the inherent difficulty of providing hard guarantees,

we formulate the problem as one of utility maximization, where the achieved utility depends on the

ability to meet deadlines. Using the delay composition theorem, we relate the end-to-end delay of

prioritized flows to flow rates and priorities, then impose end-to-end delay constraints that can be

expressed in a decentralized manner in terms of flow information available locally at each node. The

solution to the network utility maximization (NUM) problem yields a distributed rate control algorithm

that nodes can independently execute to collectively maximize global network utility, subject to delay

constraints.

9. We also generalize the fundamental results from delay composition theory to the case of wireless

networks under arbitrary schedulability constraints [45]. In particular, given a set of flows in a wireless

network with flow rates fi and an arbitrary set of interference constraints between links in the wireless

network, we obtain a scheduling policy such that the worst-case end-to-end delay of packets of flows

can be upper bounded as O(1/fi +Hi/linkrate), where Hi is the number of hops in the route followed

by flow i. Notice that such an upper bound in the end-to-end delay is better by a multiplicative factor,

than the end-to-end delay bound of O(Hi/fi) obtained using Weighted Fair Queuing (WFQ). This
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result will prove that regardless of the additional schedulability constraints, it is still possible to obtain

an end-to-end delay bound that is inversely proportional to the delay on one hop only (O(1/fi)), with

a constant delay for every successive hop, similar to our delay composition results.

The rest of this thesis is organized as follows. In Chapter 2, we discuss related work. We describe the

first delay composition result for real-time pipelines under preemptive and non-preemptive scheduling in

Chapter 3. We describe the extension of this result to Directed Acyclic Graphs in Chapter 4, and to non-

acyclic graphs in Chapter 5. In Chapter 6, we describe delay composition algebra. We present flow-based

mode changes, the uniprocessor model with mode-changes developed for the purpose of handling workloads

reduced from distributed systems in Chapter 7. We present our work on improving the structural robustness

of systems towards uncertainties in worst-case execution times in Chapter 8. We discuss applications of the

theory in the context of wireless networks in Chapter 9. We conclude this thesis with some directions for

future research in Chapter 10.
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Chapter 2

Related Work

Rigorous theory exists today for schedulability analysis of uniprocessors and multiprocessors, while mostly

heuristics are used to analyze larger arbitrary-topology distributed systems. We start by reviewing some of

the important work on analyzing delay and schedulability of real-time jobs in distributed systems. We then

review work in the area of analyzing delay in wireless networks.

2.1 Distributed Systems

Several scheduling algorithms have been proposed for statically scheduling precedence constrained tasks in

distributed systems [77, 94, 23]. Given a set of periodic tasks, such algorithms attempt to construct a schedule

of length equal to the least common multiple of the task periods. The schedule will accurately specify the

time intervals during which each task invocation will be executed. Needless to say, such algorithms have a

large time complexity and are clearly unsuitable for large and complex distributed systems, where simplicity

is of essence.

Analyzing the Worst Case Execution Times (WCET) of tasks in processor and memory pipeline architec-

tures is a well studied problem in the area of real-time operating systems ([96, 80] and references thereof).

Such algorithms execute in time that is exponential in the number of tasks in the system. Further, the

approach would be difficult to implement in a distributed setting and is more error-prone.

The system model considered by us in this thesis has been studied in the context of job fair scheduling.

For the case of pipelined distributed systems, polynomial-time algorithms have been proposed to construct

a feasible schedule of executing the jobs under special cases where the problem is tractable, and heuristic

scheduling algorithms are used to solve the general case ([9] and references thereof). In contrast, the problem

we study, is to test the schedulability of a given set of priority-ordered tasks scheduled according to a given

scheduling policy.

Offline schedulability tests have been proposed that divide the end-to-end deadline of tasks into per-

stage deadlines. The end-to-end task is then considered as several independent sub-tasks, each executing
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on a single stage in the system. Uniprocessor schedulability tests are then used to analyze if each stage

is schedulable. If all the stages are schedulable, the system is deemed to be schedulable. We refer to

this technique as traditional in our simulation studies. For instance, [50, 97] present techniques to divide

the end-to-end deadline into per-stage deadlines. While this technique does not incur any problems with

handling cycles in the task graph, it tends to be extremely pessimistic and does not accurately account for

the inherent parallelism in the execution of different stages. A distributed pipeline framework was presented

in [14], where a complex, heterogeneous, multi-resource system is decomposed into a set a single resource

scheduling problems. Each single resource scheduling problem corresponds to a stage in the multi-stage

pipelined distributed system.

Existing techniques to analyze distributed systems tend to become more pessimistic or offer no solutions

at all for large task graphs that contains cycles. The two main techniques to analyze delay in distributed

systems are holistic analysis [89] and network calculus [18, 19], and their various extensions.

Holistic analysis was first proposed in [89], and has since had several extensions such as [83, 68, 73] that

propose offset-based response time analysis techniques for EDF. In addition to the computation time and

period, tasks are characterized by two other parameters, namely the jitter and the offset. The jitter denotes

the maximum deviation for the arrival of an invocation of a task from the periodic arrival pattern, and the

offset denotes the minimum duration after which the task is activated and is ready to execute (the original

holistic analysis technique [89] does not use offset information). The jitter and offset information is used to

characterize the arrival pattern of tasks to each stage in the distributed system. The fundamental principle

behind holistic analysis and its extensions is that, given the jitter and offset information of jobs arriving at

a stage one can compute (in a worst-case manner) the jitter and offset for jobs leaving the stage, which in

turn becomes the arrival pattern for jobs to a subsequent stage. By successively applying this process to

each stage in the system, one can compute a worst-case bound on the end-to-end delay of jobs. However,

this technique works only in the absence of cycles in the task graph. In the presence of cycles, the jitter

and offset of jobs at a stage (that is part of the cycle) becomes directly or indirectly dependent on the jitter

and offset of jobs leaving the stage, resulting in a cyclic dependency. To overcome this problem, an iterative

procedure is described in [68, 73] which is shown to converge. This solution technique, however, becomes

tedious, complicated and quite pessimistic for large task graphs with dozens of nodes.

From the networking perspective, network calculus [18, 19] was proposed to analyze the end-to-end

delay of packets of flows. This was applied to the context of real-time systems, called Real-Time Calculus

first presented in [87], and has since been extended to handle different system models such as [49, 91]. In

approaches based on network calculus, the arrival pattern of jobs of flows is characterized by an arrival curve.
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Given a service curve for a node based on the scheduling policy used, one can determine the rate at which

jobs leave the node after completing execution, which in turn serves as the arrival curve for the next stage in

the flow’s path. For task graphs that contain cycles, we are faced with the same cyclic dependency problem.

In [19], a general solution to this problem is presented by setting up a system of simultaneous equations,

which becomes difficult or impossible to solve for large systems. Needless to say, there is no means by which

the solution can be efficiently automated for arbitrary task graphs.

A comparison of holistic analysis and network calculus was conducted in [52], where holistic analysis was

found to be less pessimistic than network calculus in general. We show in the evaluation section that both

of these techniques tend to become increasingly pessimistic with system scale. In contrast, in this thesis, we

derive a simple bound on the end-to-end delay of a job in terms of the computation times of higher priority

jobs that can delay it. It accurately accounts for parallelism in the execution of different stages, resulting in

a less pessimistic estimate of the end-to-end delay.

In order to determine the end-to-end delay of a particular task, both holistic analysis and network calculus

require complete information of the entire system, and may require the whole system to be analyzed. In

contrast, the analysis presented in this thesis only requires information along the path followed by the task

in question, and does not need global information.

A schedulability test based on aperiodic scheduling theory was derived in [34], for fixed priority schedul-

ing. Although this solution handles arbitrary-topology resource systems and resource blocking, it does not

consider the overlap in the execution of multiple stages in the pipeline, which is a fundamental cause of pes-

simism. We account for this overlap in our pipeline delay composition theorem, and reduce the schedulability

analysis of a multistage pipeline system to that of single stage systems. This largely increases schedulability,

and the performance of the system does not become poorer with increasing number of pipeline stages.

While a lot of work has concentrated on preemptive scheduling, only a few studies have looked at non-

preemptive scheduling. Complex response time analyses with exponential running time complexities are used

in [95, 48, 55, 72] to analyze systems with non-preemptive scheduling. In [52], an extension to holistic analysis

to account for resource blocking under non-preemptive scheduling has been presented. Network calculus-

based approaches can also be used to analyze non-preemptive systems. In contrast to such techniques, we

show a transformation of the distributed system under non-preemptive scheduling to an equivalent single

stage system scheduled using preemptive scheduling. This allows well known uniprocessor schedulability

analysis to be applied to analyze distributed systems under non-preemptive scheduling, resulting in less

pessimistic analysis.

In [64], several distributed scheduling policies for jobs that follow a single cyclic path through the system

9



are studied. The objective is to identify policies that reduce the mean delay as well as the variance in the

delay, in order to meet strict timing and buffer constraints. Unlike the system model considered in this

thesis, priorities are assigned to resource buffers (each time a job revisits a resource, it is placed in a different

buffer) rather than to jobs. The Last Buffer First Serve (LBFS) policy is shown to be stable and a delay

bound is calculated that resembles the pipeline delay composition theorem. The bound is a sum of two

terms, the first being additive over jobs and the second being additive across the resources visited, similar to

our delay composition theorem. It must be noted that the bound is for the mean end-to-end delay of tasks,

rather than the worst-case studied in this thesis. For systems with many job-types following different routes,

stable extensions of the policies studied are also presented. A tutorial account of some results in the field

are presented in [53]. Some scheduling policies of interest are also discussed. A manufacturing system with

many machines and several types of parts, each requiring execution at a different prescribed sequence of

machines is studied for stability properties in [54]. Manufacturing plants with additional complexities such

as variable transportation times, set-up times, and parts requiring assembly or disassembly are considered

in [75]. Scheduling policies are presented that ensure that the cumulative production of each part-type

trails the desired production by no more than a constant, ensuring bounded buffer requirements. This class

of work provides significant intuition into the kinds of scheduling policies that help reduce mean delay in

distributed systems. Yet, little is known with regard to optimal scheduling policies for distributed systems,

which continues to remain an open problem.

We next discuss work relating to handling unanticipated variations in the execution times of tasks in

distributed systems. Feedback control has been used in [84, 63, 62], to handle variations in the execution

times, where the deadline miss ratio of the tasks is the controlled variable and the CPU utilizations are the

manipulated variable. In [63], an End-to-end Utilization Control algorithm (EUCON) is presented which

features a feedback control loop that ensures bounded CPU utilizations and end-to-end timing guarantees

in the presence of unpredictable execution times of tasks, using online performance measurements. The

fluctuations in execution times are handled by varying the rates of the tasks within the system. Such online

techniques that adapt the rates of tasks can be used together with our offline technique to optimize the

routes of tasks to make them more robust to uncertainties in the computation times.

Resource reclaiming techniques have been proposed to deal with unpredictable task execution times [82,

12]. In [82], resources are reclaimed from tasks that complete ahead of time, which are then used to improve

the performance of the system by optimizing a feasible schedule. The technique presented in [12], determines

the set of rates for the different tasks that constitute the optimal system control performance under normal

conditions, and when a worst-case scenario arises, adopts an overrun management algorithm that jointly
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optimizes the rates of tasks as well as the task schedule. These resource reclaiming techniques typically

require modifications to specific scheduling algorithms in the operating system and may be difficult or

infeasible for certain applications. Where feasible, these online overrun management algorithms can be used

together with our task route optimization to improve the robustness of the system towards uncertainties in

the execution times.

The issue of handling uncertainties in design parameters including execution times of tasks in automobile

systems, is addressed in [27]. This work adopts an approach based on info-gap decision theory to system-

atically analyze the robustness of various schedules by constructing the greatest horizon of uncertainty that

still satisfies all the performance requirements of the system. While this work appears to be a good way to

estimate the robustness of a particular schedule, it provides no intuition as to how to modify the schedule

to improve its robustness. Further, the technique may prove too complex for large distributed systems.

Sensitivity analysis such as those presented in [11, 76], can be used to determine the sensitivity of the

end-to-end delay of tasks to particular execution times of tasks on stages. A generalized framework of

extensibility across multiple dimensions using sensitivity analysis, including, but not limited to execution

times, has been proposed in [32, 33]. While these techniques give us a good understanding of how the end-to-

end delay depends on individual execution times, it provides little intuition as to how to modify the system’s

task flow graph to reduce the sensitivity and improve the system’s structural robustness. Further, when

the system has a large number of resources and tasks, determining the sensitivity of each task’s end-to-end

deadline to each execution time in the system can be an extremely tedious process.

2.2 Wireless Networks

Over the last few years, there has been a lot of work on applying the Network Utility Maximization (NUM)

framework in wireless networks and several cross-layer optimization techniques have been proposed [15, 35,

56, 16]. A tutorial on the current state of research and open research issues is presented in [59].

The problem of network resource allocation in the presence of QoS constraints including delay has been

well studied in wireline networks [22, 90, 61, 28], but not in wireless networks. In [22, 90], the problem

of allocating rates along a single path (or a multicast tree) is considered. This approach overlooks the

contention caused by multiple intersecting flows and the intrinsic difficulties in resource allocation in such

scenarios. A technique to express the end-to-end average delay of flows as a function of link rates is presented

in [90], which is based on queuing theory, assuming FIFO queues and non-prioritized traffic. The study

in [22] considers more general scheduling policies, but considers heuristics to partition the end-to-end QoS
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requirement into per-hop requirements. Studies in [61, 28] also partition the end-to-end requirements into

per-hop requirements based on link cost metrics and load-balancing objectives, but do not consider prioritized

scheduling.

In [79], the problem of rate allocation in wireline networks in the presence of end-to-end bandwidth and

delay requirements is studied by formulating the problem as a NUM problem. The network partitions the

end-to-end delay into local per-link delays, and models links as M/G/1 queues. Expressions from queuing

theory for the delay at each link is then used to compute the average delay. In contrast, in our work we

directly characterize the worst case end-to-end delay of flows in terms of the rates of flows that interfere

with it. The constraints make no assumption on the arrival of packets (as against Poisson arrivals assumed

in [79]). Further, we consider multiple priority classes and prioritized scheduling to ensure more efficient

real-time resource allocation.
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Chapter 3

A Delay Composition Theorem for

Real-Time Pipelines

In this chapter, we present the first main result of delay composition theory. We are concerned with pipelined

systems that process several classes of real-time tasks, in which each task executes on all stages in sequence

and must exit the system within a specified end-to-end latency bound. We derive a delay composition rule

under preemptive as well as non-preemptive scheduling, that allows the worst-case delay of a task invocation

to be expressed in terms of the execution times of other task invocations. According to this rule, the delay

of a task in the pipeline has two components; (i) a job-additive component that is proportional to the

sum of invocation execution times on a single stage (but is not proportional to the number of stages), and

(ii) a stage-additive component that is proportional to the number of stages (but not the number of task

invocations). Observe that this expression is better by a multiplicative factor than one that does not account

for execution overlap (i.e., assumes that a task is preempted by all invocations of higher priority tasks on all

stages). The delay in that last case is proportional to the product of the two components above as opposed to

their sum. Consequently, our composition rule yields tight delay estimates that lead to good schedulability

results.

Our composition rule does not make assumptions on the scheduling policy other than that it assigns the

same priority to a task invocation at all stages. No assumption on periodicity of the task set is made. No

assumption is made on whether different invocations of the same task have the same priority. Hence, this rule

applies to static-priority scheduling (such as rate-monotonic), dynamic-priority scheduling (such as EDF) and

aperiodic task scheduling alike. The simple expression of end-to-end delay computed by the aforementioned

composition rule leads to a reduction of the multi-stage pipeline system to an equivalent single-stage system.

Using this transformation, it becomes possible to use the wealth of existing schedulability analysis techniques

on the new single-processor task set to analyze the original pipeline.

The remainder of this chapter is organized as follows. Section 3.1 briefly describes the system model.

We state the delay composition theorems under preemptive and non-preemptive scheduling in Section 3.2,

and develop some intuitions. In Section 3.3, this theorem is proved under the cases of preemptive and

non-preemptive scheduling. Section 3.4 constructs a transformation of the pipeline into a single stage
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system accounting for execution overlap among stages in the original pipeline. In Section 3.5, we provide

a numerical example illustrating the transformation and schedulability analysis under EDF scheduling. In

Section 3.6, we illustrate how to use single stage schedulability analyses to analyze pipelines, based on the

transformation, under preemptive as well as non-preemptive scheduling. In Section 3.7, we show results of

simulation experiments that demonstrate how our new transformation outperforms previous schedulability

analysis when end-to-end deadlines are small. Further, we show that under certain scenarios, non-preemptive

scheduling can outperform preemptive scheduling in pipelined systems.

3.1 System Model

Consider a multi-stage distributed data processing pipeline. Periodic or aperiodic tasks arrive at this system

and require execution on a set of resources (such as processors)1, each performing one stage of task execution.

For the sake of deriving a general delay composition theorem, we consider individual task invocations in

isolation, not to make any implicit periodicity assumptions. We call these invocations, jobs . In a given

system, many different jobs may have the same priority (e.g., invocations of the same task in fixed-priority

scheduling). However, there is typically a tie-breaking rule among such jobs (e.g., FIFO). Taking the tie-

breaker into account, we can assume without loss of generality that each individual job has its own priority.

This assumption will simplify the notations used in the derivations.

By definition of a pipeline, we assume that all the jobs require processing on all the stages and in the

same order. The priority of each job is assumed to be the same across all the stages of the pipeline. Let the

total number of stages be N . We number these stages from 1 to N , in the order visited by the jobs. Let Ai,j

be the arrival time of job Ji at stage j, where 1 ≤ j ≤ N . The arrival time of the job to the entire system,

called Ai, is the same as its arrival to the first stage, Ai = Ai,1. Let Di be the end-to-end (relative) deadline

of Ji. It denotes the maximum allowable latency for Ji to complete its computation in the system. Hence,

Ji must exit the system by time Ai + Di. The computation time of Ji at stage j, referred to as the stage

execution time, is denoted by Ci,j , for 1 ≤ j ≤ N . Finally, let Si,j , called the stage start time, be the time

at which Ji starts executing on a stage j, and let Fi,j , called the stage finish time, be the time at which Ji

completes executing on stage j.
1While we equate a resource to a processor, the same discussion applies to other resources such as network links and disks

as long as they are scheduled preemptively and in priority order. A resource pipeline can thus contain heterogeneous resources
that include processing, communication and disk I/O stages.
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3.2 Problem Statement

The main contribution of the work described in this chapter lies in deriving a delay composition theorem to

bound the delay experienced by any job as a function of the execution times of other jobs in the pipeline, for

both preemptive as well as non-preemptive scheduling. Based on certain crucial insights, we motivate why

under certain circumstances where the computation times of jobs are not too dissimilar, non-preemptive

scheduling can outperform preemptive scheduling in pipelined systems.

Let the job whose delay is to be estimated be J1, without loss of generality. Let S denote the set of all

jobs that have execution intervals in the pipeline between J1’s arrival and finish time (S includes J1). Let

S̄ ⊆ S denote the set of all jobs with higher priority than J1 and including J1, and let S
¯
⊂ S denote the set

of all jobs with lower priority than J1. Also, let the quantities Ci,max1 and Ci,max2, for any job Ji, denote its

largest and second largest stage execution times, respectively. The delay composition theorem for J1 under

preemptive scheduling is stated as follows:

Preemptive Pipeline Delay Composition Theorem. Assuming a preemptive scheduling policy with the

same priorities across all stages for each job, the end-to-end delay of a job J1 in an N -stage pipeline can be

composed from the execution parameters of jobs that preempt or delay it (denoted by set S̄) as follows:

Delay(J1) ≤
∑

Ji∈S̄

Ceqi
+

N−1
∑

j=1

max
Ji∈S̄

(Ci,j) (3.1)

Ceqi
= Ci,max1 + Ci,max2, if A1 < Ai

= Ci,max1, if A1 ≥ Ai

The delay composition theorem for J1 under non-preemptive scheduling is stated as follows:

Non-preemptive Pipeline Delay Composition Theorem. Assuming a non-preemptive scheduling pol-

icy with the same priorities across all stages for each job, the end-to-end delay of a job J1 in an N -stage

pipeline can be composed from the execution parameters of other jobs that delay it (denoted by set S) as

follows:

Delay(J1) ≤
∑

Ji∈S̄

Ci,max1 +

N−1
∑

j=1

max
Ji∈S̄

(Ci,j) +

N
∑

j=1

max
Ji∈S

¯

(Ci,j) (3.2)

Observe that, from the perspective of deriving the delay composition theorem, we are not concerned (for

the moment) with how to determine set S (or S̄). We are merely concerned with proving the fundamental

property of delay composition over any such set. From the perspective of schedulability analysis, however, it

is useful to estimate a worst case S to compute worst-case delay. Trivially, in the worst case, S would include
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all jobs Ji whose active intervals [Ai, Ai + Di] overlap that of J1 (i.e., overlap [A1, A1 + D1]). This is true

because a job Ji whose deadline precedes the arrival of J1 or whose arrival is after the deadline of J1 has no

execution time intervals between J1’s arrival time and deadline (in a schedulable system), and hence cannot

be part of S. The use of the delay composition theorem for schedulability analysis is further elaborated in

Section 3.4. Further, observe that the delay composition theorem addresses each job independently and is

not concerned with deadlines. It is therefore valid even when higher priority jobs do not meet their deadlines.

Let us for the moment concentrate on the preemptive version of the delay composition theorem. To

appreciate the significance of the theorem let us consider a numeric example. Consider a set of two periodic

tasks, T1 and T2, executing on a six-stage pipeline. Let the computation time of each task on each stage be

the same and equal to 1. Let T1 have a period of 9, equal to its end-to-end deadline. Let T2 have a period of

6, also equal to its end-to-end deadline. We further assume that the first job (i.e., invocation) of each task

arrives to the system at the same time. Figure 3.1 depicts the periods of invocations of the two tasks, and

shows that at most two invocations of T2 can preempt T1. Is the task set schedulable? Assume that EDF is

used on each stage.

T1

0 3 18151296

End-to-end deadline = Period = 9

T2

0 3 18151296

End-to-end deadline = Period = 6

Two invocations of T2 belong to set S
(have common execution intervals with

the invocation of T1 under consideration)

Figure 3.1: Figure illustrating example.

Ji J1

Ji J1

J1Ji

Stage 1

Stage 2

Stage 3

(i) Ji arrived before J1 (ii) Ji arrived after J1 and preempts

J1 Ji

Ji J1

J1Ji

Stage 1

Stage 2

Stage 3

Ji preempts J1 Unfinished part of J1

(iii) Ji arrived after J1, 
non-preemptive is good

J1 Ji

JiJ1

J1 Ji

Stage 1

Stage 2

Stage 3

Ji does not preempt J1

(iv) Ji arrived after J1, 
non-preemptive is poor

J1 Ji

JiJ1

J1 Ji

Stage 1

Stage 2

Stage 3

Ji does not preempt J1

Figure 3.2: Figure showing the possible cases of two
jobs in the system.

A common way to solve this problem is to partition the end-to-end deadline of each task into per-stage

deadlines then analyze the schedulability of each stage independently. In this example, since the load is

equal on all stages, we divide the end-to-end deadlines equally among stages, leading to a per-stage deadline

of 1.5 for T1 and 1 for T2. Note that, T2 has zero slack on each stage. It runs first and meets its per-stage

deadlines. However, T1 needs up to two time units to complete on a stage, which is larger than its 1.5 per-

stage deadline. For T1 to be guaranteed in this six-stage system, the above analysis requires its end-to-end

deadline to be at least 2 ∗ 6 = 12.

Now, let us apply Equation (3.1) to calculate the delay of an invocation of T1. Since, in this example,

invocations of T2 have a higher priority than those of T1 and we know that any invocation of T1 can be
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preempted by at most 2 invocations of T2 (as shown in Figure 3.1), the set S̄, in Equation (3.1), contains

only two invocations of T2 along with the invocation of T1 under consideration. Moreover, in any given

period of T1 only one of the two invocations of T2 satisfies A1 < A2 (leading to Ceq2
= 2 for one invocation

and 1 for the other). Ceq1
= 1. Hence, the first summation is equal to 2 + 1 + 1 = 4. The second summation

adds 5 leading to a total delay of 9 for T1. This is lower than 12 above and does not exceed T1’s end-to-end

deadline. The system is found schedulable. In other words, our results can lead to less pessimistic pipeline

schedulability analysis. The explanation is as follows.

The traditional analysis (i.e., breaking the end-to-end deadline into per-stage deadlines and performing

a single stage schedulability test) is pessimistic because it assumes a worst-case arrival pattern. In other

words, it assumes that an invocation of T1 and T2 arrive together, leading to a delay of 2 for T1. In reality,

this is not true of each stage. For example, if this arrival pattern was true at the first stage, T2 would

execute ahead of T1 on that stage and move on to the next. From then on, T1 would execute on each stage

n concurrently with the execution of T2 on stage n + 1. T1 would never wait for T2 again, since every time

T1 would advance to the next stage, T2 would leave it to the one after. It is important to account for this

execution overlap. Indeed, if T1 and T2 start together, T1 will take 2 time units on the first stage and one

of each subsequent stage, finishing in only 7 time units.2 Clearly, need arises to better account for the effect

of pipelining and execution overlap, which is what we purport to do.

The following question might then arise: is the common practice of partitioning end-to-end deadlines into

per-stage deadlines always pessimistic? The answer is no. For example, consider a task set with per-stage

deadlines equal to their periods. The set is schedulable using EDF at up to 100% utilization on each machine.

There is no room for improvement in this case. The difference between this and the previous example lies in

the ratio of task end-to-end deadlines to periods. In the current example, this ratio is equal to the number

of stages. In the previous example this ratio was 1. While the results of this work are general, they offer

improvement over the state of the art only in the case where the ratio of end-to-end deadlines to periods of

tasks is sufficiently smaller than the number of stages. In particular, the theory offers great improvements

for aperiodic tasks (where periods are “infinite” and hence satisfy the above condition).

Let us now compare the forms of the two delay composition theorems. The first term in the delay bound

expression under both theorems is a summation over all higher priority jobs, and is termed the job-additive

component of J1’s delay. Notice that the preemptive version considers two maximum stage execution times of

each higher priority job that arrives after J1, while the non-preemptive version considers just one maximum

stage execution time. The reason for this will be explained shortly. The second term in both cases is a

2We show later that this is not the worst case scenario, but the system is indeed schedulable.
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summation over all stages and is independent of the number of jobs in the system. Further, one maximum

stage computation time of a lower priority job is added at each stage to account for blocking under non-

preemptive scheduling (in the worst case J1 will be blocked by a lower priority job at each stage). The

second and third terms in the non-preemptive case, and the second term in the preemptive case, is called

the stage-additive component of J1’s delay.

Finally, it is interesting to note that preemption in pipelines can reduce execution overlap among stages

(which explains why Ceqi
, in the preemptive delay composition rule, depends on which job comes first). For

example, consider the case of a two-job pipeline system shown in Figure 3.2. In Figure 3.2(i), the higher-

priority job Ji arrives together with J1 and is given the (first-stage) CPU. When Ji moves on to the second

stage, J1 can execute in parallel on the first. However, as shown in Figure 3.2(ii), if Ji arrives after J1 and

preempts it, when Ji moves on to the next stage, only the unfinished part of J1 on the stage where it was

preempted can overlap with J1’s execution on the next stage. In other words, execution overlap is reduced

and J1 takes longer to finish than it did in the previous case. This is the reason why under preemptive

scheduling, two maximum stage execution times need to be considered for each higher priority job that

arrives after J1 to the system. For instance, in our six-stage example, presented above, the aforementioned

arrival scenario gives an actual delay of 8, not 7, for T1. Now let us consider the execution of the two jobs

under non-preemptive scheduling, shown in Figure 3.2(iii) for the same arrival times as in Figure 3.2(ii).

Notice that job J1 finishes much earlier under non-preemptive scheduling, and Ji is only marginally delayed.

Thus, the system can sustain a greater load (throughput) under non-preemptive scheduling. However, this

observation that non-preemptive scheduling can perform better than preemptive scheduling for distributed

systems, is true only when the execution times of jobs are relatively similar. For example, Figure 3.2(iv)

illustrates a scenario where the higher priority job Ji is blocked for a significantly long duration, waiting for

the lower priority job J1 to complete execution, resulting in Ji to possibly miss its deadline. This shows that

there are instances where non-preemptive scheduling can outperform preemptive scheduling in distributed

systems, and instances where the opposite is true. It would be interesting to mathematically quantify the

scenarios under which one will perform better than the other. In Section 3.7, we characterize through

simulations the space in which non-preemptive scheduling can perform better than preemptive scheduling.

With the intuitions explained above, we now prove the pipeline delay composition theorems under pre-

emptive and non-preemptive scheduling. In the proof below, we consider individual jobs and not tasks in

order to be general. By considering jobs we do not restrict the results to the special case of periodic arrivals.
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3.3 Delay Composition for Pipelined Systems

We first prove the preemptive version of the delay composition theorem in Section 3.3.1. For the sake of

brevity, we only show how this proof can be extended to the non-preemptive version in Section 3.3.2.

3.3.1 Proof for the Preemptive Case

The delay composition theorem can be proved by induction on task priority. We first prove the theorem

for a two-job scenario (Lemma 1). We then prove the induction step, where we assume that the delay

composition theorem is true for k − 1 jobs, k ≥ 3, add a kth job with highest priority, and prove that the

delay composition theorem still holds.

Lemma 1. When J1 and J2 are the only two jobs in the system, and J2 has a higher priority than J1, the

delay experienced by J1 is at most

Q =

2
∑

i=1

Ceqi
+

N−1
∑

j=1

maxi=1,2(Ci,j), (3.3)

where:
Ceqi

= Ci,max1 + Ci,max2, if A1 < Ai

= Ci,max1, if A1 ≥ Ai

Proof. We shall prove the lemma by considering two cases; J2 arrived before (or together with) J1, and J2

arrived after J1 (special cases where one task arrives after the other exits the system can be trivially shown

to satisfy the lemma as well).

Case 1: J2 arrived before or together with J1 to the system

Since J2 is the highest-priority job in the system, it executes uninterrupted on all stages, completing each

stage k exactly after a time equal to C2,1 + ... + C2,k. Job J1 executes after J2 on the first stage. When J1

finishes some stage, it moves to the next, where it may encounter J2 (again) and must wait for it to finish.

If J2 had already cleared that stage, J1 can execute there immediately. Let stage L be the last stage where

J1 had to wait for J2. In this case, as shown in Figure 3.3-a, J1 completes the pipeline with a delay at most

equal to:

Delay(J1) ≤ C2,1 + ... + C2,L + C1,L + ... + C1,N (3.4)

Note that, C2,1 + ... + C2,L takes us to the completion time of J2 on stage L (where J1 last waited for J2).

C1,L + ... + C1,N is the additional time taken by J1 to execute on L and the remaining stages. The delay

expression in Inequality (3.4) has N +1 terms, each representing a per-stage job computation time. There is

exactly one per-stage computation in this expression from each stage, except stage L that contributes two.
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J2 J1

J2 J1

J1J2

Stage 1

Stage L

Stage N

J1J2Stage L+1

C   +C    +...+C

Last stage 
where J1 

waits for J2
J1J2Stage 2

2,1 2,2 2,L C   +C       +...+ C1,L 1,L+1 1,N

(a) J2 arrives before or together with J1

J1 J2

J2 J1

J1J2

Stage 1

Stage L

Stage N

J1J2

J2J1Stage 2

C   +C       +...+ C1,L 1,L+1 1,N

(b) J2 arrives after J1

J2J1Stage j J1

J2 J1

C   +C    +...+C1,1 1,2 1,j

C   +C      +...+C2,j 2 , j+1 2,L

Figure 3.3: Figure showing the delay for the two cases of Lemma 1.

To compute a delay bound, let us replace one per-stage computation time at each of the first N − 1 stages

by maxi=1,2(Ci,j) for that stage. Inequality 3.4 can now be re-written as:

Delay(J1) ≤
N−1
∑

j=1

maxi=1,2(Ci,j) + C2,L + C1,N (3.5)

Since the last two terms are at most Ceq2
= C2,max1 and Ceq1

= C1,max1 respectively, the expression in the

lemma is a valid upper bound.

Case 2: J2 arrived after J1 to the system

Let J2 preempt J1 on some stage j. Up to stage j − 1, the delay of J1 on each stage is simply its own

execution time. At stage j, J2 preempts J1 after the latter has executed for some time C∗
1,j < C1,j . As in

the case above, J1 executes after J2 on subsequent stages. Let L be the last stage where J1 waits for J2.

The delay of J1 is thus C1,1 + ... + C∗
1,j + C2,j + ... + C2,L + C1,L + ... + C1,N , as shown in Figure 3.3-b.

Following the same substitution as above, we can show that:

Delay(J1) ≤

N−1
∑

j=1

max
i=1,2

(Ci,j) + C2,j + C2,L + C1,N (3.6)

Since C2,j + C2,L ≤ Ceq2
and C1,N ≤ Ceq1

, the expression in the lemma is a valid upper bound in this case

as well. This completes the proof of the lemma.

We now prove the pipeline delay composition theorem by induction on job priority.

Preemptive Pipeline Delay Composition Theorem. Assuming a preemptive scheduling policy with

the same priorities across all stages for each job, the end-to-end delay of a job J1 of lowest priority in an

N-stage pipeline with n − 1 higher priority jobs is at most

Delay(J1) ≤
n

∑

i=1

Ceqi
+

N−1
∑

j=1

n
max
i=1

(Ci,j)
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where Ceqi
is as defined in Lemma 1.

Proof. Without loss of generality, we assume that a job Ji has a higher priority than a job Jk, if i > k, i, k ≤ n.

That is, Jn has the highest priority, and J1 has the least priority.

The basis step is the case when there are only two jobs in the system, J1 and J2. The delay composition

theorem for two jobs is precisely Lemma 1.

Assume that the result is true for n = k − 1 jobs, k ≥ 3. That is,

Delayk−1(J1) ≤

k−1
∑

i=1

Ceqi
+

N−1
∑

j=1

max
i≤k−1

(Ci,j) (3.7)

We need to show the result when a kth job Jk, with highest priority, is added. Let Lk be a pipelined

system with k jobs, with arbitrary arrival times for each of the jobs. Let Lk−1 be the system without job

Jk. The outline of the proof is similar to the proof of Lemma 1. We consider two cases, Jk arrived before

(or together with) J1 to the system, and Jk arrived after J1 to the system.

Case 1: Jk arrived before or together with J1 to system Lk.

Notice that, if there exists an idle time between the execution of Jk and J1 on some stage j, the delay of

J1 on stage j is independent of the execution time of Jk (and other jobs that execute before the idle time)

on stage j. Therefore, beyond the last stage j, where there is no idle time between the execution of Jk and

J1, Jk will not influence the delay of J1 (jobs that Jk preempts on a stage will also execute before the idle

period on that stage). After Jk completes execution on stage j, the delay of J1 in system Lk is at most its

worst case delay in system Lk−1 starting from stage j. As we make no assumption on the arrival pattern

of higher priority jobs, the delay composition theorem provides the worst case delay for any possible arrival

pattern of jobs. Although, adding job Jk does perturb the schedule, the worst case delay due to jobs J2

through Jk−1 as per the delay composition theorem accounts for any arrival pattern of J2 through Jk−1. We

can therefore apply induction assumption starting from stage j. Hence, the delay of J1 can be expressed as

the delay up to the time Jk completes execution on stage j (Fk,j), added to the worst case delay of J1 in

system Lk−1 starting from stage j (as shown in Equation 3.8). This is shown in Figure 3.4.

Delayk(J1) = F1,N − A1,1

= (F1,N − Fk,j) + (Fk,j − A1,1) (3.8)

As Jk arrived before J1 to the system, the duration between the arrival of J1 to the system (A1,1) and

the completion of Jk’s execution on stage j, is at most the time Jk takes to complete execution up to stage j
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(Fk,j−Ak,1) (Inequality 3.9). Jk is the highest priority job in the system, and does not wait to execute on any

of the stages. The time for Jk to complete execution up to stage j is (
∑j−1

t=1 Ck,t +Ck,j). In addition to this,

from induction assumption, the delay of J1 from stages j through N is
∑k−1

i=1 Ceqi
+

∑N−1
t=j maxi≤k−1(Ci,t)

(Inequality 3.10). Thus,

Jk J1Stage j+1

Jk J_l1 J_l2 J1Stage j

Last stage where
there is no idle time
between Jk and J1

J_l2 J_l3

J_l3

J_l1

System L_{k-1} start ing
from stage j

Delay of J1

JkStage 1

Jk arrives J1 arrives

C   +C   +.. .+C
k,1 k,2 k,j

i  = 1

k-1

Ceqi
+

t  =  j

N-1

C i ,ti
max(      ) 

Figure 3.4: Figure showing the delay of J1 for the
case when Jk arrived before J1.

Jk J1Stage j

Jk J_l1 J_l2 J1Stage j+1

Jk preempts J1

J_l2J_l1

J1 is delayed by at most
C(k,j) due to Jk up to stage j

From stage j+1, system similar
to case 1; Jk contributes at most
one stage execution time to the

job-additive component of J1’s delay

JkStage j-1 J1

J1JkStage N

Figure 3.5: Figure showing the case when Jk arrived
after J1 and preempts J1 at stage j.

Delayk(J1) ≤ (F1,N − Fk,j) + (Fk,j − A1,1)

≤ (F1,N − Fk,j) + (Fk,j − Ak,1), as Ak,1 < A1,1 (3.9)

≤ (

j−1
∑

t=1

Ck,t) + Ck,j +
k−1
∑

i=1

Ceqi
+

N−1
∑

t=j

max
i≤k−1

(Ci,t) (3.10)

≤

k
∑

i=1

Ceqi
+

N−1
∑

t=1

max
i≤k

(Ci,t) (3.11)

which proves the delay composition theorem.

Case 2: Jk arrived after J1 to the system.

Until the time Jk preempts J1, the delay of J1 is independent of Jk. Let Jk preempt J1 at stage j.

Beyond stage j, Jk arrives at each stage before J1. Therefore, the pipeline beyond stage j can be thought

of as one having N − j stages, and Jk arriving before J1. We can then apply the result from case 1.

The fact that Jk preempted some job at stage j (it is possible that Jk preempted some job, which in

turn had preempted J1), implies that there was a job executing when Jk arrived at stage j. Further, there

is no idle time between the executions of Jk and J1. Let Jl1 , Jl2 , . . ., Jls , be the jobs that execute between

Jk and J1 on stage j (Figure 3.5). Jl1 is delayed by Jk up to stage j by at most Ck,j . Similarly, irrespective

of previous stages, each of Jl2 , Jl3 , . . ., Jls , and J1 are delayed by an amount Ck,j due to Jk up to stage j.

Beyond stage j, as mentioned earlier the system is identical to case 1 (as Jk arrived before J1 to stage

j+1). From the result of case 1, the additional delay that Jk causes J1 is one maximum stage execution time

between stages j + 1 through N , apart from Jk’s contribution to the stage-additive component maxi(Ci,t),
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for j + 1 ≤ t ≤ N − 1 (from Inequality 3.10). Figure 3.5 shows this scenario. We showed that the delay due

to Jk up to stage j is at most Ck,j . Therefore, the total job-additive delay to J1 due to Jk is at most the

sum of the two maximum stage execution times of Jk, that is Ck,max1 + Ck,max2 = Ceqk
.

This proves the induction step. Using this together with Lemma 1, the theorem is proved.

3.3.2 Proof for the Non-Preemptive Case

We first prove the delay composition theorem in the presence of higher priority jobs alone. As this is similar

to the preemptive case, for the sake of brevity, we only outline this proof in Lemma 2. We then show how

the presence of lower priority jobs can be accounted for, and show that the delay due to resource blocking

in only proportional to the number of stages and is independent of the number of lower priority jobs.

Lemma 2. Assuming a non-preemptive scheduling policy with the same priorities across all stages for each

job, the end-to-end delay of a job J1 of lowest priority in a pipeline with n− 1 higher priority jobs is at most

Delay(J1) ≤

n
∑

i=1

Ci,max +
∑

t≤N−1

n
max
i=1

(Ci,t)

Proof. The proof of this lemma is very similar to the proof of the preemptive case (Section 3.3.1). However,

there is one main difference which needs to be carried forth throughout the proof. As motivated in Section 3.1,

while two maximum stage execution times of higher priority jobs are considered under preemptive scheduling,

a higher priority job can overtake J1 at most once, and can hence delay J1 by at most one maximum stage

execution time under non-preemptive scheduling. The stage-additive component is the sum of one maximum

stage execution time of any job accrued over all stages.

We now proceed to characterize the delay due to lower priority jobs and prove the theorem in its entirety.

Non-preemptive Pipeline Delay Composition Theorem. Assuming a non-preemptive scheduling pol-

icy with the same priorities across all stages for each job, the end-to-end delay of a job J1 in an N -stage

pipeline can be composed from the execution parameters of other jobs that delay it (denoted by set S) as

follows:

Delay(J1) ≤
∑

Ji∈S̄

Ci,max +
∑

j≤N−1

max
Ji∈S̄

(Ci,j) +
∑

j≤N

max
Ji∈S

¯

(Ci,j) (3.12)

Proof. Under preemptive scheduling lower priority jobs cause no delay to higher priority jobs. However,

under non-preemptive scheduling, a higher priority job may block on a resource while a lower priority job

is accessing it. In the worst case, a higher priority job may be delayed by at most one lower priority job at

every stage in the pipeline. Figure 3.6 illustrates such a scenario.
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before J1

Ji

Ji starts executing on stages 
2 and 3� just before J1 arrives

Execution of lower 
priority jobs

J1Ji

Figure 3.6: Figure illustrating how J1 can be delayed by one lower priority job at each stage of the pipeline.

In the worst case, the lower priority job Ji would start executing at stage j, just before J1 arrives at the

stage, causing J1 to wait for one complete stage execution time of Ji. Figure 3.6 illustrates such a scenario,

where lower priority jobs delay the execution of Ji until just prior to the arrival of J1 to stages 2 and 3.

Note that, J1 may be delayed by a different lower priority job at each stage of the pipeline. Thus, J1 is

delayed by at most one maximum stage execution time of any lower priority job at each stage which is the

third term in the delay bound as per the delay composition theorem. This delay is in addition to J1’s own

computation times on each of the N stages, which is accounted as one maximum stage execution time on

each of the first N − 1 stages (the second term in the delay expression), and one maximum stage execution

time of J1 (part of the first term).

In the proofs of Lemma 2, we assumed a worst case arrival pattern of higher priority jobs that cause a

worst case delay to job J1. This worst case arrival pattern of each higher priority job is independent of other

jobs in the system, and is therefore applicable in the presence of lower priority jobs too. A detailed proof is

omitted in the interest of brevity. This completes the proof sketch of the delay composition theorem for the

non-preemptive case.

3.4 Schedulability and Pipeline Reduction

In this section, we illustrate a systematic reduction of the pipeline schedulability problem to an equivalent

single stage problem using the delay composition theorem. Since delay predicted by the delay composition

theorem grows with set S, let us first define the worst-case (i.e., largest) set S, denoted Swc, of jobs that

delay or preempt J1. In this work, we suggest a very simple (and somewhat conservative) definition of set

Swc. We expect that future work can improve upon this definition using more in-depth analysis. In the

absence of further information, set Swc is defined as follows.

Definition: The worst-case set Swc of jobs that delay or preempt job J1 (hence, include execution intervals

between the arrival and finish time of J1) includes all jobs Ji whose intervals [Ai, Ai+Di] overlap the interval
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where J1 was present in the pipeline, [A1, A1 + Delay(J1)].

Observe that the above is a conservative definition. It simply excludes the impossible. In a schedulable

system, a job Ji that does not satisfy the above condition either completes prior to the the arrival of J1 or

arrives after its completion. Hence, it cannot possibly have execution intervals that delay or preempt J1.

Let S̄wc ⊆ Swc denote the set of all jobs with higher priority than J1 and including J1, and let S
¯wc ⊂ Swc

denote the set of all jobs with lower priority than J1. In Sections 3.4.1 and 3.4.2, we show how the reduction

of the pipeline to a single stage is carried out to analyze the schedulability of each task in the original system

under preemptive and non-preemptive scheduling, respectively.

3.4.1 Reduction of Pipeline to an Equivalent Single Stage Under Preemptive

Scheduling

Let us divide the set S̄wc into the subset S̄bef ⊆ S̄wc that contains those jobs with Ai ≤ A1, and a subset

S̄after ⊂ S̄wc that contains those jobs with Ai > A1. We can now rewrite the delay composition theorem,

separating its first summation into two; one for invocations that arrive before (or with) T1, and one for

those that arrive after. This allows us to substitute for Ceqi
accordingly in each summation, resulting in the

following:

Delay(J1) ≤
∑

Ji∈S̄bef

Ci,max1 +
∑

Ji∈S̄after

(Ci,max1 + Ci,max2) +

N−1
∑

j=1

max
i

(Ci,j) (3.13)

The reduction to a single stage system under preemptive scheduling is then conducted by (i) replacing each

pipeline job Ji in S̄bef by an equivalent single stage job (with the same priority and deadline) of execution

time equal to Ci,max1, (ii) replacing each pipeline job Ji in S̄after by an equivalent single stage job of

execution time equal to Ci,max1 + Ci,max2, and (iii) adding a lowest-priority job, J∗
e of execution time equal

to
∑N−1

j=1 maxi(Ci,j) (which is the last term in Inequality (3.13)), and deadline same as that of J1. By the

delay composition theorem, the total delay incurred by J1 in the pipeline is no larger than the delay of J∗
e on

the uniprocessor, since the latter adds up to the delay bound expressed on the right hand of Inequality (3.13).

For example, let us illustrate this transformation in the case of rate-monotonic scheduling of periodic

tasks with periods equal to end-to-end deadlines. Consider a set of periodic tasks arriving at a pipeline,

where each task Ti has a period Pi. As shown in Figure 3.7, there can be at most one invocation of each

higher-priority task Ti in set S̄bef . Similarly, the number of invocations of each task Ti that arrive after the

invocation of T1 (say J1) and delay it, is no larger than ⌈Delay(J1)
Pi

⌉. Following the reduction outlined above,

then aggregating jobs of the same period into single periodic tasks, the following periodic task set is reached:

• Task T ∗
e (of lowest priority), with a computation time

25



C∗
e =

∑

Ji∈S̄bef
Ci,max1 +

∑N−1
j=1 maxi(Ci,j). The task further has the same period and deadline as T1

in the original set.

• Tasks T ∗
i , each has the same period and deadline as one Ti in the original set, and has an execution

time equal to C∗
i = Ci,max1 + Ci,max2.

Arrivals of
task Ti

Arrival of
task T1

Not a member of S_{wc}
as its interval does not
overlap with that of T1

One invocation of Ti
that arrives prior to T1 is

part of S_{wc}

Delay(T1)/Pi invocations of 
Ti that arrive after T1 are

part of S_{wc}

time

Figure 3.7: Invocations in Swc.

Hence, if task T ∗
e is schedulable on a uniprocessor, so is J1 on the original pipeline. The transformation

is complete. In Section 3.6, we present pipeline schedulability expressions for deadline monotonic scheduling

based on the above task set reduction.

Likewise, the transformation to analyze the schedulability of T1 in the pipeline, for the same task set

under EDF scheduling, results in the following single stage task set (the set Sbef includes all invocations of

tasks that have an earlier arrival time to the system and higher priority than the invocation of T1 under

consideration):

• Task T ∗
e with a computation time C∗

e =
∑

Ji∈Sbef
Ci,max1

+
∑N−1

j=1 maxi(Ci,j). Note that under EDF one invocation of every other task can have an earlier

arrival time and end-to-end deadline (and higher priority) than that of the invocation of T1 (and hence

be part of Sbef ). This is in contrast to RM scheduling, where all invocations of a task have the same

priority, and only invocations of higher priority tasks were part of Sbef . T ∗
e further has the same period

and deadline as T1 in the original set.

• For each Ti that has a smaller relative deadline than T1 in the original task set, there is a corresponding

task T ∗
i , having the same period and deadline as Ti and execution time equal to C∗

i = Ci,max1+Ci,max2.

This is due to the fact that only tasks with a smaller relative deadline than T1 can arrive after the

invocation of T1 and have an earlier absolute deadline.

In Section 3.5, we provide a numeric example to illustrate the transformation and schedulability analysis

of a periodic task set under EDF scheduling.
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3.4.2 Reduction of Pipeline to an Equivalent Single Stage Under

Non-Preemptive Scheduling

In this section, we show how the schedulability analysis of a job in a pipeline scheduled using non-preemptive

scheduling can be reduced to that in an equivalent single stage system under preemptive scheduling. This

is performed by (i) replacing each job Ji in S̄wc by an equivalent single stage job of execution time

equal to Ci,max, and (ii) adding a lowest-priority job, J∗
e of execution time

∑

j≤N−1 maxJi∈S̄wc
(Ci,j) +

∑

j≤N maxJi∈S
¯wc

(Ci,j) (which are the last two terms in Inequality (3.2)), and deadline same as that of J1.

The delay due to blocking of resources by lower priority jobs is included as part of the execution time of

J∗
e . Further, note that in the above transformation, the constructed single stage system is scheduled using

preemptive scheduling, while the original pipeline system was scheduled using non-preemptive scheduling.

This is due to the fact that higher priority jobs can overtake J1 in the pipeline, which corresponds to the

equivalent higher priority jobs preempting J1 in the single stage system. It follows from the non-preemptive

delay composition theorem, that the end-to-end delay experienced by J1 in the pipelined system under

non-preemptive scheduling, is no larger than the delay experienced by J∗
e in the uniprocessor system under

preemptive scheduling.

Thus, if J∗
e is schedulable on the uniprocessor, so is J1 on the original pipelined system. The reduction

for periodic tasks can be conducted similar to the description under preemptive scheduling. In Section 3.6,

we show how well known uniprocessor schedulability analysis can be applied to the analysis of pipelines

scheduled under non-preemptive scheduling.

3.5 A Numeric Example

To illustrate the application of the above approach, consider a three stage pipeline traversed by four tasks

whose per-stage computation times, end-to-end deadlines, and periods are given in Table 3.1. Let the pipeline

be scheduled in an EDF manner. We assume a simple uniprocessor schedulability test that checks if the

sum of the ratios of computation times to deadlines of tasks is at most 1. This test is only a sufficient test

when deadlines can be lesser than the periods of tasks. In this section, we demonstrate how this task set is

transformed into single-stage schedulability problems and solved to determine if the pipeline is schedulable.

Task Ci,1 Ci,2 Ci,3 Deadline Period
T1 1 0.5 0.5 8 8
T2 0.5 1 1 10 12
T3 0.5 0.5 1 10 15
T4 1 1 0.5 12 15

Table 3.1: Task parameters used in the example.
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As there are four tasks in the system, four single stage systems need to be analyzed. While considering

the schedulability of task Ti, a task T ∗
e (Ti) is created in the corresponding hypothetical single stage system.

As the scheduling policy is EDF, T ∗
e (Ti)’s execution time is one maximum stage execution time of every task

(one invocation of every other task could be present in the system when Ti arrives) added to the maximum

stage execution times on the first two stages, for all i. Therefore, C∗
e (Ti) = 4 + 2 = 6 time units, for all

i. The deadline of T ∗
e (Ti) is the same as that of Ti. The other tasks that would be created in the four

single stage systems are T ∗
1 , T ∗

2 , T ∗
3 , and T ∗

4 . The execution time of task T ∗
i is the sum of the two largest

stage execution times of task Ti, and the deadline of T ∗
i is same as the deadline of Ti. Therefore, C∗

1 = 1.5,

C∗
2 = 2, C∗

3 = 1.5, and C∗
4 = 2.

Task T1: The corresponding single stage system will contain only the task T ∗
e (T1) (as invocations of other

tasks that arrive after T ∗
e (T1) would not execute ahead of it under EDF). By applying the uniprocessor test,

as 6
8 < 1, T1 is schedulable.

Task T2: The single stage system consists of two tasks T ∗
e (T2) and T ∗

1 . As 1.5
8 + 6

10 = 0.7875 < 1, T2 is

schedulable.

Task T3: The single stage system consists of three tasks T ∗
e (T3), T ∗

1 , and T ∗
2 . As 1.5

8 + 2
10+ 6

10 = 0.9875 < 1,

T3 is schedulable.

Task T4: The single stage system consists of four tasks T ∗
e (T4), T ∗

1 , T ∗
2 , and T ∗

3 . 1.5
8 + 2

10 + 2
10 + 6

12 =

1.0875 > 1. Therefore, T4 may not be schedulable.

However, T4’s schedulability can be analyzed by changing the schedulability test used. For example, by

calculating the actual number of invocations of T ∗
1 , T ∗

2 , and T ∗
3 that arrive after the invocation of T ∗

e (T4) and

preempt it, T4’s schedulability can be precisely determined. Under EDF, only one invocation each of T ∗
1 , T ∗

2 ,

and T ∗
3 would arrive after T ∗

e (T4), and have a deadline earlier than T ∗
e (T4). Therefore, the total worst case

delay to the invocation of T ∗
e (T4) (and hence of T4), is C∗

e (T4)+C∗
1 +C∗

2 +C∗
3 = 6+1.5+2+1.5 = 11 < 12.

Therefore, T4 is schedulable.

The delay composition theorem and the reduction can thus be used for a variety of scheduling policies

and schedulability tests.

3.6 Utility of Derived Result

The reduction of the analysis of a multistage system to that of single stage systems based on the two delay

composition theorems, enables the use of a wide range of single stage schedulability analyses, including the

well known Liu and Layland bound [60], the hyperbolic bound [10], and exact tests [8, 57], to test the

schedulability of tasks in multistage pipelined distributed systems. In this respect, this is indeed a ‘meta-
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schedulability test’. In fact, any single stage schedulability test can be used in the analysis of the multistage

pipeline as long as the underlying scheduling model is prioritized scheduling, and tasks do not block for

resources (except due to lower priority tasks under non-preemptive scheduling) on any of the stages (i.e.,

independent tasks). In the rest of this section, we concern ourselves with schedulability analysis for periodic

tasks under preemptive and non-preemptive deadline monotonic scheduling. We assume that task Ti has a

higher priority than task Tk, if i < k.

As examples, we show how the Liu and Layland bound [60] and the necessary and sufficient test based

on response time analysis [8] can be applied to analyze periodic tasks in a multistage pipeline. Other

uniprocessor schedulability tests can be adapted to analyze pipelines in a similar manner.

Let M be the number of periodic tasks in the system. Let Ci,max1 and Ci,max2 are the largest and second

largest stage execution times of Ti, and let Di be its end-to-end deadline. Under preemptive scheduling, let

C∗
e (i) =

∑i
k=1 Ck,max1 +

∑N−1
j=1 maxk≤i(Ck,j) and C∗

k = Ck,max1 +Ck,max2. For non-preemptive scheduling,

C∗
k = Ck,max1; C∗

e (i) =
∑

k≤i Ck,max1 +
∑

j≤N−1 maxk≤i(Ck,j) +
∑

j≤N maxk>i(Ck,j).

The Liu and Layland bound [60], applied to periodic tasks in a multistage pipeline is:

C∗
e (i)

Di
+

i−1
∑

k=1

C∗
k

Dk
≤ i(2

1
i − 1)

for each i, 1 ≤ i ≤ M . The time complexity of this analysis is O(MN), as M tests have to be performed (one

for each task), each of which has an O(N) complexity. This complexity analysis assumes that the values

Xi =
∑i

k=1 Ck,max1 and Yi =
∑i−1

k=1
C∗

k

Dk
are stored when performing the test for task Ti. Using Xi and Yi,

Xi+1 and Yi+1 can be computed in O(1) time and used in the test for task Ti+1, for 1 ≤ i ≤ M − 1.

The necessary and sufficient test for schedulability of periodic tasks under deadline monotonic scheduling

proposed in [8], used together with our meta-schedulability test, will have the following recursive formula

for the worst case response time Ri of task Ti:

R
(0)
i = C∗

e (i)

R
(k)
i = C∗

e (i) +
∑

j<i

⌈R
(k−1)
i

Pj

⌉

C∗
j

The worst case response time for task Ti is given by the value of R
(k)
i , such that R

(k)
i = R

(k−1)
i .

3.7 Simulation Results

To evaluate the actual performance of our delay composition rule and reduction to a single stage system,

we constructed a simulator that models a distributed pipelined system. In order to maintain real-time
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guarantees within the system, an admission controller is used. For periodic tasks, the admission controller

is based on a single stage schedulability test for deadline monotonic scheduling, such as the Liu and Layland

bound [60] or response time analysis [8], together with our reduction of the multistage system to a single

stage, as shown in Section 3.6. When a task arrives at the system, it is tentatively added to the set of tasks

in the system. The admission controller then tests whether the new task set is schedulable. The new task is

admitted if the task set is schedulable, and dropped if not. Although the simulation parameters assumed in

the evaluation do not reflect any realistic application, the range of values used serve as micro-benchmarks

to evaluate the performance of the admission controller.

In the rest of this section, we use the term utilization to refer to the average per-stage utilization. Each

point in the figures below represent average values obtained from 100 executions of the simulator, with each

execution running for 30000 task invocations. Each admission controller was allowed to execute on the same

100 task sets. End-to-end deadlines (equal to the periods) of tasks are chosen as 10xa simulation seconds,

where x is uniformly varying between 0 and DR (deadline ratio parameter), and a = 500 ∗ N , where N is

the number of stages in the system. Such a choice of deadlines enables the ratio of the longest task deadline

to the shortest task deadline to be as large as 10DR. If DR is chosen close to zero, tasks would have similar

deadlines. If DR is higher (for example DR = 3), deadlines of tasks would differ more widely. As will be

demonstrated later in this section, we observed from our simulations that the achievable utilization varied

significantly with the choice of DR. The default value for DR is taken to be 1. The execution time for

each task on each stage was chosen based on the task resolution parameter, which is a measure of the ratio

of the total computation time of a task over all stages to its deadline. The stage execution time of a task

is calculated based on a uniform distribution with mean equal to DT
N , where D is the deadline of the task

and T is the task resolution. The stage execution times of tasks were allowed to vary up to 10% on either

side of the mean. Task preemptions are assumed to be instantaneous, that is, the task switching time is

zero. Load is defined as the sum of computation times of all tasks that arrive during the simulation divided

by the duration of the experiment. Unless otherwise specified, we use the following default values - system

load of 100%, task resolution of 1 : 100, and 5 pipeline stages. The 95% confidence interval for all the

utilization values presented in this section is within 0.004 of the mean value, which is not plotted for the

sake of legibility.

We first consider the case of aperiodic tasks. Below, we refer to our new process of testing an “equivalent”

single-stage system a meta-schedulability test. Recall that, in this approach, the entire pipeline is transformed

into one single-stage system that takes the whole pipeline into account and is subjected to the original end-

to-end deadlines. This is in contrast, for example, to approaches that partition end-to-end deadlines into
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per-stage deadlines then apply uniprocessor analysis to each stage independently.

For aperiodic tasks, we transform the pipeline into a single stage, and then use in the meta-schedulability

test, the uniprocessor aperiodic utilization bound derived in [3]. We compare it with the pipeline bound

presented in [34], which is based on the same aperiodic task bound. As there are no previously known

techniques to study aperiodic tasks under non-preemptive scheduling, we evaluate the case of aperiodic

tasks only under preemptive scheduling. For both the above mentioned tests, while keeping other simulation

parameters constant, we varied the number of pipeline stages and measured the utilization, the results of

which are shown in Figure 3.8. The average per-stage utilization of the aperiodic pipeline bound presented

in [34] decreases linearly with the number of pipeline stages, as it does not account for the overlap in

the execution of different pipeline stages. Our meta-schedulability test is able to achieve nearly the same

utilization regardless of the number of pipeline stages. For the rest of this section, we shall concern ourselves

only with periodic tasks.

We compare our meta-schedulability test with holistic analysis [89], and two implementations of tradi-

tional pipeline schedulability tests, which divide the end-to-end deadline into equal individual single stage

deadlines. The first implementation, which we call ‘traditional’, tests for each stage if the sum of the ratios of

computation times to per-stage deadlines over all tasks is less than the Liu and Layland bound for periodic

tasks. Since this bound is pessimistic when per-stage deadlines are less than periods, our second imple-

mentation, which we call ‘traditional using RTA’, uses response time analysis based on deadline monotonic

scheduling to analyze the schedulability of each stage. In this analysis, if the response times on every stage

for all tasks are found to be less than their respective per-stage deadlines, then the task set is declared to

be schedulable. As explained in the example in Section 3.1, tests that partition end-to-end deadlines to per-

stage deadlines (and use single-stage analysis independently on each stage) may be pessimistic because they
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assume a worst-case arrival pattern at each stage. Holistic analysis avoids this problem. In holistic analysis,

the response time on one stage is considered as the jitter for the next change. The analysis does not divide

the end-to-end deadline into single stage deadlines. Nevertheless, by considering the previous stage response

time as the jitter, it considers possible that a job is delayed by the same higher priority job on every stage

of the pipeline. We compare the above approaches to the performance of our meta-schedulability test under

preemptive as well as non-preemptive scheduling. In the following figures, for curves labeled preemptive, the

scheduling was preemptive and the preemptive version of the test was used in admission control. Likewise,

for curves that are marked non-preemptive, the scheduling was non-preemptive and the non-preemptive

version of the test was used. In our meta-schedulability test, we use both the Liu and Layland bound

and response time analysis on the resulting single stage system. We did not evaluate the holistic analysis

technique applied to non-preemptive scheduling as described in [52], as this adds an extra term to account

for blocking due to lower priority jobs and tends to be more pessimistic than holistic analysis applied to

preemptive scheduling. The meta-schedulability test applied to non-preemptive scheduling was observed to

outperform holistic analysis applied to preemptive scheduling, which in turn, would sustain a higher utiliza-

tion than holistic analysis applied to non-preemptive scheduling as described in [52]. Likewise, for a similar

reason the traditional schedulability analysis was not analyzed under non-preemptive scheduling.

We conducted experiments to measure the average per-stage utilization for different number of pipeline

stages, when using admission controllers based on each of the above mentioned tests. In these experiments,

task periods were set equal to their end-to-end deadlines. Figure 3.9 plots this comparison. Notice that the

meta-schedulability test under non-preemptive scheduling using response time analysis as the single stage

test, significantly outperforms all other tests. As motivated in Section 3.1, preemption can reduce the overlap

in the execution of jobs on different stages, resulting in non-preemptive scheduling performing better than

preemptive scheduling in the worst case. We observe that the utilization for both the traditional pipeline

tests decrease proportionally with the number of stages in the pipeline system. Holistic analysis outperforms

both traditional tests, but its utilization nevertheless decreases with increasing number of pipeline stages.

In contrast, our meta-schedulability test sustains nearly the same utilization, regardless of the number of

pipeline stages. In other words, the pessimism in declaring task sets schedulable is not dependent on the

number of pipeline stages. This property is a result of our delay composition rule. Under preemptive

scheduling, the meta-schedulability test outperforms holistic analysis for pipelines longer than 5 stages.

We compared the utilization achieved under preemptive scheduling by our meta-schedulability test based

on RTA with holistic analysis, for two different deadline ratio parameters and for different number of pipeline

stages. Figure 3.10 plots this comparison. For both analysis techniques, trends similar to those in Figure 3.9
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are observed. It can be observed that as the deadline ratio parameter increases, the achievable per-stage

utilization significantly increases. For high deadline ratio parameter values, the deadlines of lower priority

tasks are very large compared to those of higher priority tasks (when DR = 3, the deadline ratio of the

highest to the lowest priority task can be as high as 1000). At most times, some of these lower priority

tasks exist in the system and can execute in the background, thereby providing high processor utilization.

This figure helps to suggest in some sense, that the worst case situation in terms of reducing the achievable

processor utilization, occurs when all tasks have very similar deadlines and stage execution times. Further,

the values specified as ‘simulation’ were the lowest utilization values at which deadline misses were observed

in the absence of any admission controller (for the same task parameters). This serves to indicate an upper

bound on the achievable utilization.

In order to precisely quantify the space in which non-preemptive scheduling performs better than pre-

emptive scheduling, we compare the performance of the meta-schedulability tests and holistic analysis by

varying the deadline ratio parameter DR, while keeping the other parameters equal to their default values.

Figure 3.11 plots this comparison for the meta-schedulability test under both preemptive and non-preemptive

scheduling, and holistic analysis under preemptive scheduling. Recall that a DR value of x indicates that the

end-to-end deadlines of tasks can vary by as much as 10x. As stage execution times of tasks are chosen pro-

portional to their end-to-end deadline, when the deadlines are very different, the lower priority tasks (with

large deadlines) have a large stage execution time. As DR increases, initially, the admitted utilization under

preemptive as well as non-preemptive scheduling increases. The reason for this is due to the fact that when

lower priority tasks have a larger computation time, they can execute in the background of higher priority

tasks leading to better system utilization. However, larger computation times for lower priority tasks imply

that higher priority tasks can now be blocked for longer durations under non-preemptive scheduling, which
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could lead to missed deadlines and consequently lower utilization sustained by the admission controller. For

DR values up to 2, non-preemptive scheduling results in better performance than preemptive scheduling.

For DR values greater than 2, the utilization under non-preemptive scheduling decreases, as higher priority

jobs are now blocked for longer durations.
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A criticism of the above results is that they favor our tests by setting end-to-end deadlines equal to periods.

As mentioned in Section 3.1, traditional tests that partition end-to-end deadlines work very well as long as

deadlines are large compared to periods. In order to characterize the break-even point after which our meta-

schedulability test under preemptive and non-preemptive scheduling outperforms traditional schedulability

analysis under preemptive scheduling, we compared the achievable utilization for different values of the ratio

between the end-to-end deadline and the task period, while maintaining the offered system load constant

(by proportionately changing the execution times of tasks). Response time analysis was used as the single-

stage schedulability test for both the techniques. Figures 3.12 and 3.13 plot this comparison for 5 and 8

pipeline stages, respectively. The x axis is plotted in log scale (base 2). Note that a ratio of 5 for 5 stages,

and 8 for 8 stages indicate that the period is equal to the per-stage deadline (for traditional schedulability

analysis). When the ratio of the end-to-end deadline to period is higher, the laxity available to jobs is larger,

and hence, the utilizations of both techniques are high. Under non-preemptive scheduling, apart from the

increased laxity that allows for higher utilizations, there is one other factor that determines the sustainable

utilization. As the DR value increases, the deadlines of jobs are larger, and as computation times are chosen

proportional to the deadlines, the computation times of jobs also increase. This causes high priority jobs

to be blocked for longer durations by lower priority jobs (similar to the trend observed in Figure 3.11),

reducing the sustainable utilization. These two opposing forces cause the utilization under non-preemptive

scheduling to increase up to a ratio of 2, then decrease until 5, and then increase again. For lower values
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of the ratio of the end-to-end deadline to the period, the meta-schedulability test under preemptive and

non-preemptive scheduling outperforms the traditional test under preemptive scheduling, while at higher

values of the end-to-end deadline, the traditional test performs better. The curve for the traditional test

under non-preemptive scheduling would always be lower than the curve under preemptive scheduling, and is

not plotted in the figure. The cross-over point, the largest value of the ratio of end-to-end deadline to period

where the meta-schedulability test outperforms the traditional test, is larger for non-preemptive scheduling

than for preemptive scheduling. Further, the cross-over point is higher for 8 stages than for 5 stages, showing

the pessimism of the traditional test with increasing number of pipeline stages.
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We varied the system load and measured the utilization for our meta-schedulability test under preemptive

scheduling together with the Liu and Layland bound for different number of pipeline stages, as shown in

Figure 3.14. The loads considered were 20%, 25%, 30%, 50%, 80%, and 100%. The load values represent

the load of all tasks presented to the system, and not the load of the admitted tasks. The utilization of the

system saturates at a load of about 25%.

We then considered task resolutions of 1:20, 1:40, 1:60, 1:80, and 1:100. For different pipeline stages,

we plot the utilization the meta-schedulability test under preemptive scheduling using the Liu and Layland

bound in Figure 3.15. Regardless of the number of pipeline stages, the utilization slightly increases with

smaller task execution times (with respect to the task deadline), for the same system load. This can be

attributed to the fact that the stage additive component is more for larger task execution times, which in

turn causes the utilization to be lower.
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Chapter 4

Delay Composition for Directed

Acyclic Systems

In this chapter, we extend the delay composition results to systems described by arbitrary Directed Acyclic

Graphs (DAGs). Informally, the question addressed is as follows: given a distributed task A in a distributed

task system of workload Wdist, can we systematically construct a uniprocessor task B and a uniprocessor

workload Wuni, such that if B is schedulable on the uniprocessor, A is schedulable on the distributed system?

We show that such a transformation is possible and that it is linear in the number of tasks on A’s path. A

wide range of existing schedulability analysis techniques can thus be applied to the uniprocessor task set, to

analyze the distributed system under both preemptive and non-preemptive scheduling. While the original

results apply to priority-based resource scheduling only, we demonstrate how the framework can trivially

accommodate resource partitioning (e.g., TDMA) as well.

This chapter is organized as follows. Section 4.1 briefly describes the system model. Section 4.2, gen-

eralizes previous pipeline delay composition results to the DAG case, and provides an improved bound for

the special case of periodic tasks. We show how partitioned resources can be handled in Section 4.3. In

Section 4.4, we present distributed system reduction to a single stage and show how well-known single stage

schedulability analysis techniques can be used to analyze acyclic distributed systems. In Section 4.5, we de-

scribe a flight control system as an example application, where the theory developed in this chapter can be

applied. In Section 4.6, we describe how the system model can be extended to include tasks whose sub-tasks

themselves form a DAG. In Section 4.7, we compare the performance of schedulability analysis based on our

delay composition theorem with holistic analysis. We describe a quick and dirty way of handling non-acyclic

systems, by relaxing cycles within the system in Section 4.8.

4.1 System Model

In this work, we consider a multi-stage distributed system that serves real-time tasks. The system model is

similar to the model assumed for pipelined systems. We assume that each task traverses a path of multiple

stages of execution and must exit the system within a specified end-to-end deadline. The combination of

all such paths forms a DAG. We then extend the above results to tasks whose sub-tasks themselves form a
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DAG.

We assume that all stages are scheduled in the same priority order. If some resources are partitioned

(e.g., in a TDMA fashion) with priorities applied within partitions, we consider each partition to be a slower

prioritized resource and add a delay (the maximum time a task waits for its slot). For example, partitioning

communication resources among senders using a TDMA or token-passing protocol is a common approach

for ensuring temporal correctness in distributed real-time systems.

4.2 Delay Composition for DAGs

For the purposes of distributed system transformation, let us view the system as seen from the perspective

of some job J1 of relative deadline D1 whose schedulability is to be analyzed. Job J1 traverses a multistage

path, Path1, in the system, where each stage is a single resource (such as a processor or a network link).

While the system may have other resources, we consider only those that J1 traverses. Let there be N such

resource stages, numbered 1, 2, . . . , N in traversal order, constituting Path1. Let the arrival time of any

job Ji to stage j of Path1 be denoted Ai,j . The computation time of Ji at stage j is denoted by Ci,j , for

1 ≤ j ≤ N . If a job Ji does not pass through stage j, then Ci,j is zero. Let Ci,max, denote Ji’s largest

stage execution time, on stages where both Ji and J1 execute. Observe that a job Ji (i 6= 1) may meet

with J1’s path and diverge several times. Let Mi be the number of times the paths of Ji and J1 meet (for a

sequence of one or more consecutive stages that ends with one job using a stage not used by the other). In

Sections 4.2.1 and 4.2.2, we derive the proofs for the preemptive and non-preemptive versions of the DAG

delay composition theorem, respectively. We then leverage it to present a transformation to an equivalent

uniprocessor.

4.2.1 The Preemptive Case

In this section, we bound the maximum delay of J1 as a function of the execution requirements of higher

priority jobs that interfere with it along its path. The pipeline result was proved assuming that all jobs

follow the same sequence of stages. However, in the system under consideration, each sub-job Jik
of Ji

executes only on a certain consecutive sequence of stages j through j′ (say) and does not execute on the

other stages. In order to use the pipeline result, we first prove a lemma that generalizes the pipeline delay

composition theorem.

For notational simplicity, let us renumber all higher-priority jobs Jik
so they are given a single index

increasing in priority order, and let Q̄ denote the set of all such jobs including J1. Further (also for notational

simplicity), let us assume that each job has a unique priority. Ties are broken arbitrarily (e.g., in a FIFO

37



manner).

Lemma 3. The pipeline delay composition theorem (Equation 3.1) provides a worst-case delay bound for

job J1 in the presence of higher priority jobs (denoted by set Q̄ with the inclusion of J1), each executing on

some arbitrary consecutive sequence of stages in the path of J1.

Delay(J1) ≤
∑

Ji∈Q̄

2Ci,max +
∑

j∈Path1,
j≤N−1

max
Ji∈Q̄

(Ci,j)

Proof. The proof is by induction on task priority. While carrying out the induction, we also successively

transform each added task, so that it executes on all stages 1 through N with zero execution times on stages

on which it did not execute previously. We show that this transformation does not invalidate the delay

bound as per the lemma.

The basis step of the lemma is when only J1 is present in the system. In this case,

Delay(J1) ≤ 2C1,max +
∑

j∈Path1,
j≤N−1

C1,j

which is trivially true.

Now, assume that the lemma is true for k − 1 jobs, k ≥ 2. We shall prove the lemma when a kth job Jk

of highest priority is added. To do so, we need to show that the additional delay due to the presence of Jk

is at most 2Ck,max, in addition to Jk’s contribution to the stage additive component of the delay (the sum

of maximum computation times over all jobs at each stage).

Let Jk execute between stages j and j′ in the path of J1. By adding a zero execution time requirement

for Jk on each stage beyond j′ in the path of J1, we do not change the execution intervals or the end-to-end

delay of J1. Now in the system with only k − 1 jobs, in the absence of Jk, let the delay of J1 from the time

of its arrival till the time it arrives at stage j be x, and the delay from the time it arrives at stage j till

the time it completes its execution in the system be y. The end-to-end delay of J1 is thus x + y, when the

system has k − 1 jobs. In the system with job Jk, let the delay of J1 from the time it arrives at stage j till

the time it completes execution on all stages be y + ∆ (∆ is the additional delay caused by Jk).

Consider the system starting from stage j and including all subsequent stages in the path of J1. All k

jobs execute on all the stages (the transformation has been performed for the other k − 1 jobs), and the

system is a pipelined system. We can now apply the pipeline delay composition theorem (Equation 3.1) to

this system. From the pipeline delay composition theorem, the worst case delay that Jk can induce J1, that

is the maximum value for ∆, is 2Ck,max, in addition to Jk contributing to the stage additive component

of the delay, which is one maximum stage execution time over all jobs for each stage. Thus, ∆ is bounded
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regardless of the value of x and y and the arrival times of the other jobs. Now, add a zero execution time

requirement for Jk on each stage prior to stage j on the path of J1. As Jk is the highest priority job in the

system, as soon as it arrives to the system it would complete its zero execution time requirement on each

stage and arrive at stage j instantaneously. Thus, when zero execution time requirements have been added

for Jk on stages prior to stage j and beyond stage j′, the delay that Jk causes J1 is still ∆, which is bounded

as described above regardless of the arrival times of the other jobs. This proves the induction step and each

higher priority job Jk inflicts a delay of at most 2Ck,max in addition to contributing to the stage additive

component.

The lemma is precisely Inequality 4.2 in Section 3.3.1. The same proof applies even for the case of

non-preemptive scheduling, except for invoking the non-preemptive pipeline delay composition theorem

(Equation 5.6 instead of the preemptive version of the theorem. Thus, under non-preemptive scheduling, ∆

is bounded by Ck,max (one maximum stage execution time for each higher priority job instead of two), and

an additional blocking term determines the delay due to lower priority jobs as shown in Section 4.2.2.

We now state and prove the delay composition theorem for directed acyclic task graphs.

Preemptive DAG Delay Composition Theorem. Assuming a preemptive scheduling policy with the

same priorities across all stages for each job, the end-to-end delay of a job J1 of N stages can be composed

from the execution parameters of jobs that delay it (denoted by set S̄) as follows:

Delay(J1) ≤
∑

Ji∈S̄

2Ci,maxMi +
∑

j∈Path1

j≤N−1

max
Ji∈S̄

(Ci,j) (4.1)

Proof. The proof of the preemptive DAG delay composition theorem for job J1 is accomplished by trans-

forming the system to a pipelined system in which the worst case delay of J1 is no lower than that in

the original system. The pipeline delay composition theorem can then be applied to derive a worst case

end-to-end delay bound for job J1.

Consider a job Ji whose path meets with the path of J1 in the distributed system then splits from it

multiple times. Every time the paths of Ji and J1 meet for one or more consecutive stages, we consider Ji’s

execution on those stages to be a new job Jik
as shown in Figure 4.1. In other words, we split each Ji into

Mi independent jobs, each of which has one or more consecutive common stages of execution with J1. The

transformation effectively relaxes the precedence relations that chain together the jobs Jik
in the original

system. The relaxation can only decrease the schedulability of J1 by making it possible to construct more

aggressive worst-case arrival patterns of the higher-priority jobs Jik
. Hence, if J1 is schedulable in the new
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system, it is schedulable in the original system. The new system, however, can be analyzed by the pipeline

result in Equation 3.1 and Lemma 3.
J ’s flow pathi
J ’s flow path

1

J i
1

J i
2

J i
3

Figure 4.1: Figure illustrating splitting job Ji into Mi independent sub-jobs.

Let set Q̄ denote the set of all higher priority jobs Jik
over all jobs Ji and including J1. We can now

apply the pipeline delay composition theorem to bound the worst case end-to-end delay of J1. We have:
Delay(J1) ≤

∑

Ji∈Q̄

2Ci,max +
∑

j∈Path1,
j≤N−1

max
Ji∈Q̄

(Ci,j) (4.2)

Since each job Ji gave rise to Mi sub-jobs Jik
, the summation over all jobs Jik

in set Q̄ (in the first

term of the bound above) can be rewritten as a double summation over jobs Ji in S̄ and their Mi sub-jobs.

Similarly, the maximization in the second term can also be broken into two as follows:

Delay(J1) ≤
∑

Ji∈S̄

Mi
∑

k=1

2Cik,max +
∑

j∈Path1,
j≤N−1

max
Ji∈S̄

(max
k≤Mi

(Cik,j))

This is equivalent to:

Delay(J1) ≤
∑

Ji∈S̄

2Ci,maxMi +
∑

j∈Path1,
j≤N−1

max
Ji∈S̄

(Ci,j) (4.3)

This proves the preemptive DAG delay composition theorem.

The above theorem presents a delay bound for J1 given any arbitrary set of higher priority jobs S̄. For the

special case where the higher priority jobs are invocations of periodic tasks, denoted by set R, an improved

delay bound can be derived based on the observation that not all sub-jobs of each invocation of task Ti ∈ R

contribute to the delay of J1. Let xi denote the number of invocations of task Ti that can potentially

contribute to the delay of J1 (the number of invocations of Ti that belong to set S̄). The following corollary

derives this improved bound for periodic tasks.

Corollary 1. Under preemptive scheduling, the end-to-end worst-case delay bound for a job J1 of a lowest

priority task T1, in the presence of higher priority periodic tasks (denoted by set R) is given by:

Delay(J1) ≤
∑

Ti∈R

2Ci,max(xi + Mi) +
∑

j∈Path1

j≤N−1

max
Ti∈R

(Ci,j) (4.4)

Proof. Each invocation of Ti has Mi sub-jobs, and there are xi such invocations in set S̄. The key observation
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is that not all xi ×Mi sub-jobs of Ti can delay J1, and by removing the sub-jobs that cannot delay J1 from

set Q̄, an improved delay bound can be obtained for periodic tasks. To see that, consider the delay of one

invocation J1 of the periodic task under consideration. This invocation makes forward progress along its

path and never revisits a stage. Hence, for example, if all Mi sub-jobs of one invocation of Ti delay J1, it

implies that J1 has already progressed past a certain stage on its path (specifically, past the last stage, say

g, where the paths of Ti and T1 meet). Therefore, sub-jobs of future invocations of Ti that may execute later

at those already traversed stages (i.e., stages prior to g) will not interfere with J1. Extending this argument,

if y1 ≤ Mi sub-jobs of the first invocation of Ti delay J1, then only y2 ≤ Mi − y1 + 1 sub-jobs of the second

invocation can delay J1. Likewise, only y3 ≤ Mi − (y1 + y2) + 2 sub-jobs of the third invocation can delay

J1. Therefore, the total number of sub-jobs of Ti that delay J1 is bounded by y1 + y2 + . . . + yxi
≤ xi + Mi.

Thus, to calculate the worst-case delay for J1, we can discard all but xi +Mi sub-jobs of Ti from set Q̄. This

new system, however, can be analyzed by the pipeline result as before. The corollary follows by grouping

all sub-jobs belonging to the same periodic task together.

Delay(J1) ≤
∑

Ji∈Q̄

2Ci,max +
∑

j∈Path1,
j≤N−1

max
Ji∈Q̄

(Ci,j) ≤
∑

Ti∈R

2Ci,max(xi + Mi) +
∑

j∈Path1

j≤N−1

max
Ti∈R

(Ci,j)

4.2.2 The Non-Preemptive Case

Next, we bound the maximum delay of J1 under non-preemptive scheduling. Unlike the previous case, here

J1 might also be delayed by lower-priority jobs, collectively denoted by set S. In particular, it may be

delayed by up to one such job on each stage. The following theorem states the new delay bound.

Non-preemptive DAG Delay Composition Theorem. Assuming a non-preemptive scheduling policy

with the same priorities across all stages for each job, the end-to-end delay of a job J1 of N stages can be

composed from the execution parameters of other jobs that delay it (denoted by set S) as follows:

Delay(J1) ≤
∑

Ji∈S̄

Ci,maxMi +
∑

j∈Path1

j≤N−1

max
Ji∈S

(Ci,j) +
∑

j∈Path1

max
Ji∈S

(Ci,j) (4.5)

Proof. To bound the worst case delay for a job J1 under non-preemptive scheduling, we first transform the

task set by removing all lower-priority jobs, and instead adding to the computation time of J1 on each stage

i the maximum blocking delay due to jobs in S. Let us call the adjusted computation time, C1′,j . Hence,

C1′,j = C1,j + maxJi∈S(Ci,j). This results in a system of only J1 and higher-priority jobs. Observe that if

the new system is schedulable so is the original one because we extended J1’s computation time by the worst

case amount of time it could have been blocked by lower priority jobs. We then cut each higher-priority job
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Ji into Mi sub-jobs as we did in the preemptive case, and let Q̄ denote the set of all such sub-jobs including

J1. The resulting system is a task pipeline to which the non-preemptive pipeline delay composition theorem

(Equation 3.2) applies. According to this theorem:

Delay(J1) ≤
∑

Ji∈Q̄

Ci,max +
∑

j∈Path1,
j≤N−1

max
Ji∈Q̄

(Ci,j)

≤
∑

Ji∈S̄

Mi
∑

k=1

Cik,max +
∑

j∈Path1,
j≤N−1

max(max
Ji∈S̄,
k≤Mi

(Cik ,j), C1′,j)

≤
∑

Ji∈S̄

Ci,maxMi +
∑

j∈Path1,
j≤N−1

max(max
Ji∈S̄

Ci,j , C1′,j)

≤
∑

Ji∈S̄

Ci,maxMi +
∑

j∈Path1,
j≤N−1

max
Ji∈S̄

(Ci,j) +
∑

j∈Path1

max
Ji∈S

(Ci,j) (4.6)

Inequality 4.6 follows by replacing C1′,j by C1,j + maxJi∈S(Ci,j) and making the delay due to lower

priority jobs a separate term. This proves the non-preemptive DAG delay composition theorem.

For the special case of periodic tasks, an improved bound can be derived as before. Let the set of all

periodic tasks be denoted by R. Let R̄ denote the set of higher priority tasks including T1 and R denote the

set of lower priority tasks.

Corollary 2. Under non-preemptive scheduling, the end-to-end delay bound for a job J1 of task T1, in the

presence of other periodic tasks (denoted by set R) is given by:

Delay(J1) ≤
∑

Ti∈R̄

Ci,max(xi + Mi) +
∑

j∈Path1,
j≤N−1

max
Ti∈R̄

(Ci,j) +
∑

j∈Path1

max
Ti∈R

(Ci,j) (4.7)

Proof. The proof is similar to the preemptive case, and we do not repeat the proof in the interest of

brevity.

4.3 Handling Partitioned Resources

The delay composition theorem described so far, is only applicable to systems where resources are scheduled

in priority order. However, resources such as network bandwidth are often partitioned among jobs, for

example, using a TDMA protocol. In such a partitioned resource, a job may access the resource only during

its reserved time-slot. Multiple jobs can share a time-slot and be scheduled in priority order within it.

Consider a stage j that is a partitioned resource. Let job Ji be allocated a slice that is served for Bslice

time units every Btotal time units. As shown in Figure 4.2, this is no worse than having a dedicated resource
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Figure 4.2: Illustration of conversion of a partitioned resource into a prioritized resource.

that is slower by a factor Bslice/Btotal and that introduces an access delay of at most Btotal − Bslice.

Figure 4.2 illustrates the service received by a set of tasks over time for the original partitioned resource

and for its corresponding dedicated prioritized resource, when Bslice = 4ms and Btotal = 10ms. Note that

the service received under the prioritized resource will always be less than in the partitioned resource, causing

tasks to be delayed longer. Hence, this transformation is safe in that if the tasks in the transformed system

are schedulable, so are the tasks in the original system.

When analyzing the end-to-end delay of J1, the computation time of J1 on the new prioritized resource j

can be taken as C1,j ×
Btotal

Bslice
+ (Btotal −Bslice) (the additional delay is subsumed in the computation time).

The computation time of all other jobs in the same slice would be Ci,j ×
Btotal

Bslice
.

Once this transformation is conducted for all partitioned resources that J1 encounters in the system, the

delay composition theorem can be directly applied to compute the worst case end-to-end delay of J1.

4.4 Transforming Distributed Systems

The preemptive and non-preemptive DAG delay composition theorems derived in Section 4.2, can be used

to reduce a given distributed acyclic system to an equivalent single stage system, similar to the reduction

performed for pipeline systems in Chapter 3. Let Swc denote the worst-case set of jobs that can potentially

delay J1.

In Sections 4.4.1 and 4.4.2, we briefly show how an equivalent uniprocessor system can be created to

analyze schedulability of the original system under preemptive and non-preemptive scheduling, respectively.

When the system consists of partitioned resources, we assume that the transformation described in Section 4.3

has already been performed.

4.4.1 Preemptive Scheduling Transformation

The form of the DAG delay composition theorem suggests a reduction to a uniprocessor system in which

the lowest-priority uniprocessor job suffers the delay stated by the theorem. This reduction to a single

stage system is conducted by (i) replacing each higher priority job Ji in S̄wc by a single stage job J∗
i of

execution time equal to 2Ci,maxMi, and (ii) replacing J1 with a lowest-priority job, J∗
1 of execution time
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equal to 2C1,max +
∑

j∈Path1,j≤N−1 maxi(Ci,j) (the second term is the stage-additive component), and

deadline same as that of J1. The delay of J∗
1 on the hypothetical uniprocessor adds up to the delay bound

as expressed in the right hand side of Inequality 4.1. By the delay composition theorem, the total delay

incurred by J1 in the acyclic distributed system is no larger than the delay of J∗
1 on the uniprocessor. Thus,

if J∗
1 completes prior to its deadline in the uniprocessor, so will J1 in the acyclic distributed system.

4.4.2 Non-Preemptive Scheduling Transformation

Under non-preemptive scheduling, we reduce the DAG into an equivalent single stage system that runs

preemptive scheduling as before. This is achieved by (i) replacing each job Ji in S̄wc by a single stage job

J∗
i of execution time equal to Ci,maxMi, and (ii) replacing J1 by a lowest-priority job, J∗

1 of execution

time equal to C1,max +
∑

j∈Path1,j≤N−1 maxJi∈S̄wc
(Ci,j) +

∑

j∈Path1
maxJi∈S(Ci,j) (which are the last two

terms in Inequality (4.5)), and deadline same as that of J1. Note that the execution time of J∗
1 includes

the delay due to all lower priority tasks. Further, in the above reduction, the hypothetical single stage

system constructed is scheduled using preemptive scheduling, while the original DAG was scheduled using

non-preemptive scheduling. This is because we only care to match the sum of the delay experiences by J1

and J∗
1 in their respective systems. By the delay composition theorem, the total delay incurred by J1 in

the acyclic distributed system under non-preemptive scheduling is no larger than the delay of J∗
1 on the

uniprocessor under preemptive scheduling, since the latter adds up to the delay bound expressed on the

right hand of Inequality (4.5).

4.5 A Flight Control System Example

In this section, we describe a practical problem faced in flight control systems and explicate how the theory

developed in this work can efficiently solve the problem. In order to keep the example simple and illustrative,

we have modified certain attributes of the system. We also show how network scheduling (as a partitioned

resource) can easily be handled within the assumed system model. The purpose of the example is to illustrate

how the theory developed in this chapter can be applied, and is not intended as a comparison with existing

theory on schedulability analysis for distributed systems. Such a comparison is presented in the evaluation

section.

A flight control system (with some sub-systems excluded for simplicity) is shown in Figure 4.3(a). The

Flight Guidance System (FGS) receives periodic sensor readings from the Attitude and Heading Reference

System (AHRS) and the Navigation Radio (NAV RADIO). The sensory information gets processed by the

FGS and the Auto-Pilot (AP), and the elevator servo component performs the actuation. The Flight Control
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Figure 4.3: (a) Example flight control system (b) The different flows in the system, with the bus abstracted
as a separate stage of execution

Processor (FCP) is responsible for input commands from the pilot and display settings. Commands from

the FCP need to be processed by the FGS, and display information needs to be transmitted to the Primary

Flight Display (PFD). The actual flight control system uses dedicated buses to carry information from one

unit to another. However, in order to illustrate how network scheduling can be handled, we assume the

presence of a common bus connecting the FGS to the various units that feed into it. Further, we assume a

simple TDMA protocol for bus access, which is a common approach to temporal isolation in avionics.

The various tasks that constitute the system are shown in Figure 4.3(b). Task T3, the highest priority

task, carries periodic sensory information from AHRS to the FGS. The FGS then processes this information,

the AP generates commands, and the Servo performs the actuation (adjusts the pitch). Task T2 carries

sensor readings from the NAV RADIO to the FGS periodically. Commands from the FCP are routed to

the PFD through the FGS and AP in task T1 and is the lowest priority task in the system. T3 belongs

to a separate class on the bus, and T2 and T1 belong to a single class. The TDMA protocol on the bus

employs a period of 10ms, and allots the first 4ms to the AHRS, the next 6ms to the NAV RADIO (T2) and

FCP (T1). Scheduling of tasks at each stage is preemptive and prioritized. Worst case computation times

(hypothetical) for the tasks at different stages, their periods and deadlines, are shown in Table 4.1 (all values

in milli-seconds). A hyphen denotes that the task does not execute on the corresponding stage. The value

shown for the tasks under ‘Bus’ denotes the time taken to carry the periodic information on the bus to the

FGS.

For brevity, we analyze schedulability of T1 only. Schedulability of other tasks can be analyzed similarly.

We first need to transform the partitioned bus, into a prioritized resource as described in Section 4.3. T1 and

T2 together have a time slot of 6ms every 10ms. The partitioned bus is no worse than a dedicated prioritized

resource providing service to T1 and T2 at a rate slower by a fraction 6
10 , and causing an additional delay of
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T1 T2 T3

AHRS - - 10
NAV - 10 -
FCP 15 - -
FGS 10 20 15
AP 15 - 20

Servo - - 10
PFD 10 - -

Period 500 250 100
Deadline 450 200 100

Bus 15 6 4

Table 4.1: Task characteristics (in ms)

10−6 = 4ms. The computation time of T1 on the transformed bus can be taken as 15× 10
6 +(10−6) = 29ms.

The computation time of T2 on the bus is 6× 10
6 = 10ms. From the computation times provided in Table 4.1,

we can obtain C3,max = C2,max = 20ms and C1,max = 29ms (on the bus); SM3,1 = SM2,1 = SM1,1 = 0.

As shown in Section 4.4.1, the reduction for this system scheduled preemptively can be conducted by (i)

replacing T3 and T2 by equivalent single stage tasks T ∗
3 and T ∗

2 , with execution times C∗
3 = 2C3,max = 40ms

and C∗
2 = 2C2,max = 40ms, and periods P ∗

3 = 100ms and P ∗
2 = 250ms; (ii) adding a lowest priority

task T ∗
e with computation time C∗

e = C3,max + C2,max + C1,max +
∑

j=FCP,Bus,FGS,AP maxi(Ci,j), i.e.,

C∗
e = 20+20+29+15+29+20+20 = 153ms and having a deadline of 450ms. Applying the response time

analysis test [8], we obtain the worst case delay of T ∗
e in the single stage system as 393ms, which is less than

the deadline. As T ∗
e is schedulable on the hypothetical uniprocessor system, from the delay composition

theorem, T1 is schedulable in the flight control system.

An important requirement in such time-critical systems is to have complete knowledge of dependencies

and to be able to determine how changes in the timing properties of one task would affect the schedulability

of the system. This is especially true for a flight control system, given its complexity in the number of

interacting components (the example provided here is a much simplified version of the actual problem). The

analysis developed in this work can be applied on the fly to test schedulability, when the timing properties

of individual tasks change during the design and development of the system. For example, consider the case

where changes in packet format or size causes an increase in the computation time of T3 at the FGS and

AP to 20ms and 25ms, respectively. Schedulability analysis can be easily performed as before, to test if

the system is still schedulable. For brevity, we only show the schedulability of T1. We obtain C∗
3 = 50ms,

C∗
2 = 40ms, and C∗

e = 205ms. Analyzing the new hypothetical single stage system, we obtain the worst

case delay for T ∗
e as 485ms. As T ∗

e is still schedulable, T1 is guaranteed to complete before its end-to-end

deadline in the distributed system.
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4.6 Handling Tasks whose Sub-Tasks Form a DAG

In the discussion so far, we have only considered tasks whose sub-tasks form a path in the Directed Acyclic

Graph. In this section, we describe how this can be extended to tasks whose sub-tasks themselves form a

DAG. We shall refer to such tasks as DAG-tasks. Figure 4.4(a) shows an example task, whose sub-tasks

form a DAG. Edges in the DAG, as before, indicate precedence constraints between sub-tasks and each

sub-task executes on a different resource. A sub-task s can execute only after all sub-tasks which have edges

to sub-task s have completed execution. In the task shown in the figure, sub-task 5 can execute only after

sub-tasks 2 and 3 have completed execution. We call this a ‘merger’ of sub-tasks. Note that a split, that

is, edges from one sub-task s to two or more sub-tasks indicate that once sub-task s completes, it spawns

multiple sub-tasks each executing in parallel. It can be observed from the example in Figure 4.4(a), that

once sub-task 1 completes, it spawns sub-tasks 2 and 3 that can execute in parallel on different stages.

1

3 5

6

42

7

1 42

1 53

1 52

6 7

(a) (b)

Figure 4.4: (a) Figure showing an example of a DAG-task (b) Different parts of the DAG-task that need to
be separately analyzed to analyze schedulability of the DAG-task.

As the delay composition theorem only addresses tasks which execute in sequential stages (that is, the

sub-tasks form a path in the DAG) and does not consider DAG-tasks, we need to break the DAG-task

into smaller tasks which form a path of the DAG. This is carried forth as follows. Similar to traditional

distributed system scheduling, artificial deadlines are introduced after each merger of sub-tasks. Each split

in the DAG creates additional paths that need to be analyzed (the number of additional paths is one less

than the fan-out). In the example DAG-task, an artificial deadline is imposed after sub-task 5. Sub-tasks 6

and 7 are analyzed independently using any single stage schedulability test. As there are two splits within

sub-tasks 1 through 5, there are 3 paths that need to be analyzed as shown in Figure 4.4(b). The path

1-2-4 is analyzed independently using the meta-schedulability test and this sequence of sub-tasks need to

complete within the end-to-end deadline of the DAG-task. The paths 1-2-5 and 1-3-5 can be independently

analyzed using the meta-schedulability test, with their deadline set as the artificial deadline. Sub-tasks 6

and 7 need to complete in a duration at most equal to the end-to-end deadline of the DAG-task minus the

artificial deadline set for sub-task 5. If all the parts of the DAG-task are determined to be schedulable, then
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the DAG task is deemed to be schedulable.

As observed in [38], imposing artificial deadlines add to the pessimism of the schedulability analysis. The

use of the delay composition theorem reduces the need to impose artificial deadlines to only stages in the

execution where two or more sub-tasks merge. This is in contrast to traditional distributed schedulability

analysis, that imposes artificial deadlines after each stage of execution, causing the pessimism to quickly

increase with system scale.

4.7 Simulation Results

In this section, we evaluate the preemptive and non-preemptive schedulability analysis techniques based

on our DAG delay composition theorems. We enhance our custom-built simulator to model a distributed

system with directed acyclic flows. We consider only periodic tasks, and further assume that partitioned

resources within the system have been transformed into resources scheduled in priority order as described

in Section 4.3, and focus this evaluation on prioritized resources. An admission controller based on our

reduction of the multistage distributed system to a single stage is built.

Although the meta schedulability test derived in this work is valid for any fixed priority scheduling

algorithm, we only present results for deadline monotonic scheduling due to its widespread use. Each point

in the figures below represents average utilization values obtained from 100 executions of the simulator, with

each execution running for 80000 task invocations. When comparing different admission controllers, each

admission controller was allowed to execute on the same 100 task sets.

The default number of nodes in the distributed system is assumed to be 8. Each task on arrival requests

processing on a sequence of nodes (we do not consider DAG tasks in this evaluation), with each node in

the distributed system having a probability of NP (for Node Probability) of being selected as part of the

route. The task’s route is simply the sequence of selected nodes in increasing order of their node identifier.

The default value of NP is chosen as 0.8. Other simulation parameters are chosen similar to the parameters

in Section 3.7. The default value for DR is 0.5. We used a task resolution of 1/100. The 95% confidence

interval for all the utilization values presented in this section is within 0.02 of the mean value, which is not

plotted for the sake of legibility.

We first study the achievable utilization of our meta-schedulability test using both the Liu and Layland

bound and response time analysis, for both preemptive as well as non-preemptive scheduling. We compare

this with holistic analysis [89], applied to preemptive scheduling, for different number of nodes in the DAG,

the results of which are shown in Figure 4.5. While extensions to holistic analysis have been proposed

(such as [69]), we use holistic analysis as a comparison as these extensions are targeted to handle offsets
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(we do not consider offsets in our analysis). Further, they suffer from similar drawbacks as holistic analysis

such as poor scalability and requiring global knowledge of all tasks in the system. For meta-schedulability

test curves that are marked preemptive, the scheduling was preemptive and the preemptive version of the

test was used in admission control. Likewise, for the meta-schedulability test curves that are marked non-

preemptive, the scheduling was non-preemptive and the non-preemptive version of the test was used. We

only evaluated holistic analysis applied to preemptive scheduling as presented in [89], as the non-preemptive

version presented in [52] adds an extra term to account for blocking due to lower priority tasks and tends to

be more pessimistic than the preemptive version, and the corresponding curve would always be lower than

the curve for preemptive scheduling.

It can be observed from Figure 4.5, that even for an eight node DAG, non-preemptive scheduling an-

alyzed using our meta-schedulability test significantly outperforms preemptive scheduling analyzed using

both holistic analysis and our meta-schedulability test. As the utilization curve for holistic analysis applied

to non-preemptive scheduling would be lower than the curve for the preemptive scheduling version of holistic

analysis, non-preemptive scheduling analyzed using our meta-schedulability test would also outperform the

non-preemptive version of holistic analysis. A drawback of holistic analysis is that it analyzes each stage

separately assuming the response times of tasks on the previous stage to be the jitter for the next stage.

It therefore assumes that every higher priority job will delay the lower priority job at every stage of its

execution, ignoring possible pipelining between the executions of the higher and lower priority jobs. This

causes holistic analysis to become increasingly pessimistic with system size when periods are of the order

of end-to-end deadlines (as opposed to per-stage deadlines). As motivated in [40], preemption can reduce

the overlap in the execution of jobs on different stages, resulting in non-preemptive scheduling performing

better than preemptive scheduling in the worst case.
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In order to estimate when deadlines are actually being missed, and to evaluate the pessimism of the

admission controllers, we conducted simulations to identify the lowest utilization at which deadlines are

missed. The curve labeled ‘Simulation’ in Figure 4.5 presents the results from simulations of the lowest

utilization at which deadline misses were observed for different number of nodes in the system when non-

preemptive scheduling was employed. The corresponding curve for preemptive scheduling, was within 0.02

of those of non-preemptive scheduling, and we don’t show the values here for the sake of clarity (the reader

must bear in mind that task sets were generated randomly, and that the task sets do not represent worst

case scenarios). Each point for the simulation curve was obtained from 500 executions of the simulator in

the absence of any admission controller, with each execution considering a workload with utilization close

to where deadline misses were being observed. We observe that the meta-schedulability test curves degrade

only marginally with increasing scale, while the performance of holistic analysis degrades more rapidly.

To precisely evaluate the scenarios under which non-preemptive scheduling performs better than pre-

emptive scheduling in distributed systems, we conducted experiments varying the deadline ratio parameter

(DR) while keeping the other parameters equal to their default values. Figure 4.6 plots a comparison of the

meta-schedulability test under both preemptive as well as non-preemptive scheduling, with holistic analysis

for different DR values ranging between 0.5 and 3.0. A DR value of x indicates that the end-to-end deadlines

of tasks can differ by as much as 10x. As stage execution times are chosen proportional to the end-to-end

deadline, when the end-to-end deadlines of tasks are widely different, the lower priority tasks (those with

large deadlines) have a large stage execution time. Initially, as DR increases, the utilization for both preemp-

tive as well as non-preemptive scheduling increases, as lower priority tasks can execute in the background

of higher priority tasks resulting in better system utilization. Up to DR = 2, non-preemptive scheduling

(together with the non-preemptive version of the meta-schedulability test) results in better performance than

preemptive scheduling (together with the preemptive version of the test). However, for values of DR greater

than 2, that is, the end-to-end deadlines vary by over two orders of magnitude, preemptive scheduling per-

forms better than non-preemptive scheduling. The achievable utilization under non-preemptive scheduling

decrease beyond a DR value of 2, as higher priority tasks can now be blocked for a longer duration under

non-preemptive scheduling, leading to a greater likelihood of deadline misses.

We conducted a similar comparison of the three admission controllers as in the previous experiment,

but for different values of the Node Probability (NP) parameter, which is the probability with which each

node in the system is chosen as part of the route of each task. This comparison is shown in Figure 4.7,

for different NP parameter values ranging between 0.2 to 1.0 in steps of 0.2. Note that the NP parameter

of 1.0 denotes a perfectly pipelined system, where each task executes sequentially on all the nodes in the
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distributed system. For small values of NP , the number of stages on which each task executes is low, and

as observed in Figure 4.5, holistic analysis performs better than the meta-schedulability test. However, for

larger values of NP , each task traverses more stages in the distributed system, causing holistic analysis to

become more pessimistic in its worst case delay bound. The meta-schedulability test using non-preemptive

scheduling performs the best for NP values greater than 0.6.

The above results have all been obtained by setting the end-to-end deadlines equal to the periods of

tasks. Figure 4.8 plots a comparison of the meta-schedulability test under preemptive and non-preemptive

scheduling with holistic analysis for different ratios of the end-to-end deadlines to the periods. When the

ratio of the end-to-end deadline to period is higher, the laxity available to jobs is larger, and hence, the

utilization of all the three analysis techniques are high. The meta-schedulability test under non-preemptive

scheduling consistently outperforms preemptive scheduling analyzed using either the meta-schedulability

test or holistic analysis. As holistic analysis applied to non-preemptive scheduling (curve not shown) would

perform worse than the preemptive scheduling version of holistic analysis, it would also perform worse than

the meta-schedulability test applied to non-preemptive scheduling. Similar to Figure 4.5, the curve labeled

as ‘simulation’ plots the lowest utilization at which deadline misses were observed obtained from simulations

under non-preemptive scheduling in the absence of any admission controller. The corresponding values for

preemptive scheduling were close to those obtained for non-preemptive scheduling and are not presented

here for the sake of clarity. We observe that our analysis tends to be less pessimistic for larger values of the

ratio between the end-to-end deadline and the period.
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4.8 Handling Non-Acyclic Systems

A key step in deriving the DAG delay composition theorems was to split each higher priority job Ji into

Mi sub-jobs Jik
, each executing on one or more consecutive common stages with J1. The precedence

constraints in the arrival times of the different sub-jobs can be relaxed by assuming that each sub-job arrives

independently of the others. This independence assumption can only result in a more pessimistic delay

analysis for J1. The same transformation of splitting jobs into sub-jobs and assuming independent arrivals

for sub-jobs, can also be conducted for non-acyclic higher priority jobs (jobs that visit a stage more than

once). Each visit to a stage can be considered as an independent arrival of a sub-job. In the case where J1

(the job under consideration) itself has loops in its path, then J1 can be split into sub-jobs each of which

is acyclic. The DAG delay composition theorem can then be used to determine the worst-case delay for

each sub-job, and the worst-case delay for J1 can be estimated as the sum of the worst-case delays of each

of its sub-jobs. Even with only one loop in the task path, there may be multiple ways in which the loop

can be broken. For example, suppose that a task traverses stages 1, 2, 3, and then revisits stage 1. This

loop 1-2-3-1 can be broken as either (1, 2-3-1) (one sub-job on stage 1 and another that executes along the

path 2-3-1), (1-2, 3-1), or (1-2-3, 1). This choice becomes an art of design, and the choice that maximizes

pipelining and minimizes the number of independent sub-jobs would typically yield the best delay bound.

A better characterization of the precedence constraints between sub-jobs (instead of assuming them to be

independent) could yield a more accurate delay bound for non-acyclic task systems, which we describe in

the next chapter.
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Chapter 5

End-to-End Delay Analysis of

Arbitrary Distributed Systems

In this chapter, we significantly extend the scope of applicability of our delay composition results by intro-

ducing the first reduction-based schedulability analysis technique that applies to distributed systems with

non-acyclic task graphs. Informally, a task graph is non-acyclic if task flows in the underlying distributed

system include cycles. Most common types of traffic do, in fact, have non-acyclic behavior. For example,

request-response traffic in client-server systems includes flows (of requests) from client machines to server

machines and flows (of responses) in the reverse direction. Hence, analysis of end-to-end latency entails

analysis of a non-acyclic task flow. Reliability mechanisms that transmit and process acknowledgments, as

well as token passing mechanisms are other examples of systems with non-acyclic task flows.

The fundamental problem in handling task graphs that contain cycles is that the arrival pattern of jobs

to a particular node in the system is directly or indirectly dependent on the rate at which jobs exit the node

downstream, but that downstream pattern is in turn dependent on the load of the node under consideration

and hence on this node’s arrival pattern. This is a cyclic dependency. As described in Chapter 2, existing

schedulability analysis techniques become too pessimistic or complicated for non-acyclic task systems.

Being a reduction-based approach to schedulability analysis [42], the derived end-to-end delay bound

provides a means by which the schedulability analysis of tasks in a distributed system with cycles can

be reduced to that of analyzing an equivalent hypothetical uniprocessor. Thus, well-known uniprocessor

analysis techniques can be used to analyze the schedulability of tasks in arbitrary distributed systems.

The rest of this chapter is organized as follows. We briefly describe the system model in Section 5.1 and

state and prove the end-to-end delay bound for jobs in non-acyclic systems in Section 5.2. In Section 5.3,

we briefly describe how the end-to-end delay bound can be used to reduce the schedulability problem of

tasks in distributed systems to that of analyzing an equivalent hypothetical uniprocessor. We illustrate the

advantage of using the analysis technique presented in this chapter using an example in Section 5.4 and

through simulation studies in Section 5.5.
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5.1 System Model

Our model of non-acyclic distributed processing consists of a distributed system of N nodes and a set of

real-time periodic or aperiodic jobs. Each node is a resource, which is anything that is allocated to jobs in

priority order. For instance, the resource could be a processor or a point-to-point communication link. A

given job, Jk, has the same relative priority across all resources in the distributed system. Different jobs

require processing at a different sequence of nodes in the distributed system, and may have different start

and end nodes.

Since jobs may revisit nodes, it is useful to differentiate between nodes and stages visited by a job. A

stage is simply an instance of visiting a node. For example, a job that visits nodes 1, 2, then 1 is said to

have a sequence of three stages, during which it visits the aforementioned nodes. Let the sequence of stages

traversed by job Jk be called its path, pk. In a departure from our previously published models [38, 42, 39],

the union of paths traversed by all jobs may contain loops . For example, a job can revisit a node, or two

jobs can visit two nodes in different orders. We therefore say that the path of job Jk contains one or more

folds . A fold of Jk starting at node i is the largest sequence of nodes (in the order traversed by job Jk) that

does not repeat a node twice. The first fold on path pk starts with the first node that Jk visits. We denote

the xth fold of job Jk by Jx
k . For instance, if Jk has the path (1, 2, 3, 1, 5, 6, 2), it is said to have two folds,

namely (1, 2, 3) and (1, 5, 6, 2), denoted by J1
k and J2

k respectively. If the path of a job is acyclic, then it has

only one fold that contains the whole path. The intuition for defining folds is that when jobs revisit a node

multiple times, they may delay other jobs more than once on the same stage. In contrast, a single fold (of

a job) can delay other jobs at most once per stage. Hence, folds will simplify the presentation of our proof.

We denote the set of all folds of job Jk by Qk.

Each job Jk must complete execution on all stages along its path pk within its prespecified end-to-end

deadline. The union of all the job paths forms a task graph. An arc in the task graph represents the direction

of execution flow of a job, yielding a precedence constraint between the execution of the sub-jobs at the head

and tail nodes of the arc. Observe that the task graph may contain cycles even if all jobs had one fold each.

For example, consider a system of two jobs that traverse a sequence of nodes in opposite directions, such as

the one shown in Figure 1. The task graph for this system contains a loop, as shown in Figure 5.1, even

though individual jobs do not. Hence, loops in the task graph capture cyclic dependencies that may involve

one or more jobs.

Let Ck,j denote the worst-case execution time of job Jk on stage j in its path, and let Dk denote the

relative end-to-end deadline of job Jk.
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Figure 5.1: An task graph with a cycle

5.2 Delay in Non-Acyclic Task Graphs

In this section, we present the derivation of a worst-case end-to-end delay bound for a job in a distributed

system with loops in the task graph under preemptive scheduling. This derivation enables construction of

compact schedulability tests to determine if the system is schedulable. Towards the end of this section, we

state the delay bound when the scheduling is non-preemptive, and omit the proof in the interest of brevity.

Let all jobs be numbered in priority order such that larger integers denote higher priority. When analyzing

the delay of a job, since scheduling is preemptive and there is no blocking in our model, lower priority jobs

can be ignored. Hence, without loss of generality, let the job whose end-to-end delay we wish to bound be

denoted by J1. This job executes along a path p1 in the system, where p1 may contain one or more folds.

We ignore the precedence constraints between successive folds of each higher priority job Ji, where i > 1.

Thus, each fold of a higher priority job Ji becomes an independent job. We denote the xth fold of job Ji

by (job) Jx
i . We call this process unfolding. Observe that unfolding does not eliminate cycles in the task

graph because different folds of the same or different jobs can still visit nodes in different orders. Unfolding

ensures, however, that job J1 is delayed by any one higher priority fold at most once per J1’s stage.

It is easy to show that unfolding cannot decrease the delay of job J1. Hence, if J1 is schedulable after

unfolding, then it is schedulable in the original job set. This is because unfolding merely removes some of the

(precedence) constraints between stages of higher priority jobs. Hence, it increases the set of feasible higher-

priority task arrival patterns that one needs to consider. A bound on J1’s delay computed by maximization

over the larger set of possible arrival patterns can only be larger than one computed by maximization over

the subset that respects the removed constraints (thus erring on the safe side). In the following, we therefore

consider the unfolded job set when analyzing the delay of J1.

Note that, a fold Jx
i can only preempt or delay J1 when it shares a common execution node or a common

sequence of nodes with J1. Let us define a job segment Jx,s
i as Jx

i ’s execution on a sequence of consecutive

nodes on the path of Jx
i that is also traversed by J1 either in the same order or exactly in reverse order. Let

Segx
i be the set of all such segments for Jx

i . For example, if J1 has the path (1,2,1,3,8,11,13) and Jx
i has the

path (1,3,19,13,11,8), then Segx
i = {Jx,1

i , Jx,2
i }, where Jx,1

i is the part of Jx
i that executes on nodes (1, 3),

and Jx,2
i is the part of Jx

i that executes on nodes (13, 11, 8).

Consider J1 and the job segments (segments for short) that delay or preempt its execution. Each such
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segment falls in one of three categories:

• Forward flow segments: Those are segments that share a consecutive set of stages with J1 and traverse

them in the same direction.

• Reverse flow segments: Those are segments that share a consecutive set of stages with J1 and traverse

them in the opposite direction.

• Cross flow segments: Those are segments composed of only one node. For example, such a segment

may result from intersection of the path of J1 with the path of another job in one node.

Figure 5.2 shows an example where the path of J1 traverses five stages. Higher-priority job segments

that share parts of that path are indicated by arrows that extend across the stages they execute on, pointing

in the direction of the flow of the segment. Cross-flow segments are indicated by vertical arrows at the node

they execute on.

Figure 5.2: Three segment types Figure 5.3: An execution trace

Consider the interval of time starting from the arrival time of J1 to the system, until the finish time of

J1 on its last stage. The length of this interval is the end-to-end response time of J1, which we wish to

bound. Let us now define a busy execution trace, to mean a sequence of contiguous intervals of continuous

processing on successive stages of path p1 that collectively add up to the end-to-end delay of J1. The intervals

are contiguous in the sense that the end of a processing interval on one stage is the beginning of another

processing interval on the next stage of path p1. There may be many execution traces that satisfy the above

definition. To reduce the number of different possibilities we further constrain the definition by requiring

that each processing interval in the trace end at a job boundary (i.e., when some job’s execution on that

stage ends, which we shall call the job’s finish time at that stage). Hence, the definition of a busy execution

trace is as follows:

Definition 1: A busy execution trace through path p1 is a sequence of contiguous intervals starting with
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the arrival of J1 on stage 1 and ending with the finish time of J1 on the last stage of p1, where (i) each

interval represents a stretch of continuous processing on one stage, j, of path p1, (ii) the interval on stage j

ends at the finish time of some job on stage j, (iii) successive intervals are contiguous in that the end time

of one interval on stage j is the start time of the next interval on stage j + 1, and (iv) successive intervals

execute on consecutive stages of path p1.

Figure 5.3 presents examples of execution traces. In this figure, J1, whose execution is indicated in

black, traverses four stages, while being delayed and preempted by other jobs. The arrival time of J1 to the

first stage and its finish time on the last stage are indicated by J1 in and J1 out, respectively. Traces are

depicted as staircase lines where the horizontal parts represent busy intervals at successive stages of p1, and

the vertical parts represent traversals to the next stage. Trace A and Trace B , in the figure, are examples of

valid busy execution traces by our definition. Trace C does not satisfy the definition because it ends (i.e.,

runs into idle time) before the finish time of J1 on the last stage. Remember that a busy execution trace,

by definition, cannot contain idle time, since it is composed of contiguous intervals of continuous processing,

ending with the finish time of J1 on its last stage. In the following, we shall bound the length of a valid

busy trace, hence, bounding the end-to-end response-time of J1.

Observe that given work-conserving scheduling on all nodes, at least one busy execution trace always

exists. Namely, it is the trace composed of the waiting intervals of J1 on successive stages. This trace is

indicated by Trace A in Figure 5.3. We call this trace the trace of last traversal because it ends its intervals

on each stage at the finish time of the last (i.e., lowest priority) job. Let us now define the trace of earliest

traversal as follows.

Definition 2: A trace of earliest traversal is a busy execution trace in which the end of an interval on stage

j coincides with the finish time of the first job segment on stage j that (i) moves on to stage j +1 next, and

(ii) shares at least one future stage k > j with J1, where both execute in the same busy period (or is J1).

The second condition in the definition prevents construction of invalid traces, such as Trace C in Fig-

ure 5.3, that run into idle time before the completion of J1 on the last stage. Because of that condition,

one can show by induction that if starting at the first stage, there exists any valid execution trace from the

current point on (which is always the case), then no stage traversal in the earliest traversal trace leads to a

point that invalidates that property. Consequently, the trace of earliest traversal is always a valid trace.

Bounding the end-to-end delay of J1 is equivalent to bounding the length of the trace of earliest traversal.

First, we bound the amount of execution time that each types of job segments may contribute to the earliest

traversal trace. For the purpose of expressing the aforementioned bound in a compact manner, it is convenient

at this point to define Cx,s
i,max to denote the maximum single-stage execution time of segment Jx,s

i over its
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joint path with J1, and define Nodej,max to denote the maximum stage execution time of all job-segments

Jx,s
i on node j. The three lemmas below bound delays due to the three types of segments depicted in

Figure 5.2; namely, the forward flow segments, reverse flow segments and cross segments. We start with the

most obvious ones first.

Lemma 1: A cross-flow segment, Jx,s
i , contributes at most one stage computation time to the length of the

earliest traversal trace (bounded by Cx,s
i,max).

Proof. The lemma is trivially true since cross traffic segments, by definition, have only one stage.

Lemma 2: A reverse-flow segment, Jx,s
i , contributes at most one stage computation time to the length of

the earliest traversal trace (bounded by Cx,s
i,max).

Proof. The lemma is true because reverse flow segments execute on the nodes of the system in the reverse

order from J1. Since the earliest traversal trace follows the path of J1, if Jx,s
i was included in the interval

of the trace at stage j, then it must have departed stage j + 1 before the beginning of the interval of the

trace on stage j + 1. Similarly, it will arrive at stage j − 1 after the end of the interval of the trace on stage

j − 1.

Lemma 3: The total contribution of all forward-flow segments, Jx,s
i , to the length of the earliest traversal

trace is bounded by:
∑

segments

Cx,s
i,max +

∑

forward−flow
segments

Cx,s
i,max +

∑

j∈p1

Nodej,max (5.1)

Proof. Let us define the end stage of a forward-flow job segment as either its last stage or the stage after

which it is always separated by idle time from J1 (and hence need not be considered further), whichever

comes first. It is convenient to partition the contribution of forward-flow segments to the length of the trace

into (i) the total length due to stage execution times of segments at their end stages, denoted by Cff1
, (ii)

the total length due to stage execution times of segments that preempt other segments and execute ahead of

lower priority segments that arrived earlier at the stage, denoted by Cff2
, and (iii) the total length of stage

execution times of segments not at their end stages, and that do not preempt another segment, denoted by

Cff3
.

To bound Cff1
, the total length due to stage execution times of segments at their end stages, note that

each forward-flow segment, Jx,s
i , has only one end stage. Its length is at most Cx,s

i,max. The total of all

end-stage computation times over all segments is thus given by:

Cff1
≤

∑

forward−flow
segments

Cx,s
i,max (5.2)
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To bound, Cff2
, note that, each segment can preempt another segment at most once along the earliest

traversal trace. Consider a segment Jx,s
i that preempts another segment in the earliest traversal trace at

stage j. By definition of the earliest traversal trace (see Definition 2), starting from the time this preemption

occurs, no segment of lower priority than Jx,s
i can be a part of the earliest traversal trace until the end stage

of Jx,s
i . Therefore, Jx,s

i will not preempt any other segment in the earliest traversal trace. Thus, the total

length of stage execution times of segments in the earliest traversal trace that preempt and execute ahead

of lower priority segments that arrived earlier is bounded by:

Cff2
≤

∑

segments

Cx,s
i,max (5.3)

To bound Cff3
, observe that, there exists at most one execution time of a segment at each stage of the

earliest traversal trace that is not an end stage of a segment and that does not execute ahead of a lower

priority segment that arrived earlier in the earliest traversal trace (that is, not bounded by Cff1
or Cff2

).

Let us assume the contrary and suppose that there are two execution times of segments Ji and Jk at a stage

j in the earliest traversal trace that are not included in Cff1
or Cff2

. Without loss of generality, let us

also assume that Ji arrives at stage j before Jk. Now, Jk cannot be a higher priority segment that arrives

after Ji and completes execution before Ji (covered under Cff2
). Thus, Jk can start executing on stage j

only after Ji completes execution. As stage j is not the end stage of Ji, by definition, the portion of the

earliest traversal trace on stage j should end with the execution of Ji and cannot include the execution of

Jk, resulting in a contradiction. Therefore, there exists at most one execution time of a segment at each

stage of the earliest traversal trace that is not bounded under Cff1
or Cff2

. Thus,

Cff3
≤

∑

j∈p1

Nodej,max (5.4)

Adding up Cff1
, Cff2

and Cff3
, given by Equations (5.2), (5.3), and (5.4), the lemma follows.

Consider all jobs Ji, each made of a set of folds, denoted by Qi, where each fold Jx
i ∈ Qi gives rise to

one or more segments, Jx,s
i , collectively called set Segx

i . The following theorem presents the delay bound on

J1 in the system.

Preemptive Delay Composition Theorem. For a preemptive, work-conserving scheduling policy that

assigns the same priority across all stages for each job, and a different priority for different jobs, the end-

to-end delay of a job J1 following path p1 can be composed from the execution parameters of higher priority

jobs that delay or preempt it as follows:
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Delay(J1) ≤
∑

i

∑

Jx
i ∈Qi

∑

Jx,s
i ∈Segx

i

2Cx,s
i,max +

∑

j∈p1

Nodej,max (5.5)

Proof. The theorem follows trivially from Lemma 1, 2, and 3, by adding the contributions of all cross-flow,

reverse-flow, and forward-flow segments to the trace.

We shall now state the theorem under non-preemptive scheduling, but omit its proof. Let Nodej,all max

denote the maximum computation time of any job (not just higher priority jobs) on stage j, and let

Nodej,lower max denote the maximum computation time of any lower priority job that joins the path of

J1 on stage j.

Non-preemptive Delay Composition Theorem. For a non-preemptive scheduling policy that assigns

the same priority across all stages for each job, and a different priority for different jobs, the end-to-end

delay of a job J1 following path p1 can be composed from the execution parameters of jobs that delay it as

follows:

Delay(J1) ≤
∑

i

∑

Js
i ∈Qi

∑

Jx,s
i ∈Segx

i

Cx,s
i,max +

∑

j∈p1

Nodej,all max +
∑

j∈p1

Nodej,lower max (5.6)

The above delay bound for any job can be calculated in O(MN) time, where N is the number of stages

in the system and M is the number of tasks. Each higher priority task’s path can be broken down into

various segments and the maximum computation time for the task on each of its segments can be calculated

in O(N) time. This has to be repeated for at most M tasks. Likewise, the maximum computation time of

higher priority tasks on a stage, Nodej,max, can be calculated in O(M) time and this needs to be repeated

for at most N stages. Therefore, the net complexity of calculating the delay bound is O(MN). In contrast,

existing techniques to calculate the end-to-end delay bound for tasks such as holistic analysis and network

calculus, have a pseudo-polynomial time complexity as they involve an iterative solution until convergence

is reached.

5.3 Schedulability Analysis

Using the end-to-end delay bound for non-acyclic systems derived in the previous section, we can reduce

the schedulability analysis of tasks in a distributed system with cycles to that of analyzing an equivalent

hypothetical uniprocessor, similar to the technique presented in Section 3.4. To analyze the schedulability

of a job J1, the transformation is carried forth as follows:
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• Each higher priority job-segment Jx,s
i in the distributed system, is replaced by a uniprocessor job Jx,s∗

i

with computation time equal to 2Cx,s
i,max and same deadline as Ji;

• Job J1 is replaced by a uniprocessor job J∗
1 with computation time equal to C1,max +

∑

j∈p1
Nodej,max

and deadline same as J1

Hence, if the uniprocessor job J∗
1 is schedulable, so is job J1 in the original distributed system. In the case

of periodic tasks, uniprocessor jobs which are invocations of the same periodic task can be grouped together

to form a periodic task on the uniprocessor. When the end-to-end deadlines of tasks are larger than the

period, then for each higher priority task Ti we need to account for the task invocations that can be present

in the system when J1 arrives, which can be bounded by ⌈Di/Pi⌉. Further, if the task T1 being analyzed

has cycles in its path, then earlier invocations of T1 may delay invocations that arrive later. Therefore, T1

also needs to be included in the set of higher priority tasks. When the end-to-end deadline of tasks is lesser

than the period, then T1 need not be included as a higher priority task when analyzing its schedulability.

The end-to-end delay bound for non-acyclic systems derived in this chapter, thus enables any uniprocessor

schedulability test to be used to analyze the schedulability of jobs in the distributed system. If tests such as

the Liu and Layland test [60] for periodic tasks is used as the uniprocessor test, then closed-form expressions

can be derived for analyzing the schedulability of tasks in distributed systems that contain cycles.

5.4 An Illustrative Example

In this section, we shall illustrate using a simple example, as to how the bound derived in this chapter can

result in tighter end-to-end delay estimates for non-acyclic task systems. We consider a system consisting of

four nodes or stages, namely S1, S2, S3, and S4. We consider two tasks, T1 and T2, with T2 having a higher

priority than T1. Let the period equal to the end-to-end deadline of T2 be 10 units, and that of T1 be 12

units. Task T2 follows the path S1 −S2 −S3 −S4, and T1 follows the path S1 −S2 −S3 −S4 −S3 −S2 −S1,

as shown in Figure 5.4. Let the sub-job of T2 executing on stage j be denoted as T2,j. The sub-jobs of

T1 are denoted as T1,1, T1,2, . . . , T1,7 in the order in which they execute. For simplicity, let us assume that

the computation times for each task on every stage is one unit. The objective is to estimate the end-to-end

delay and schedulability of T1.

Let us first analyze the system using holistic analysis [89]. The response time for each sub-task is at

least as large as the computation time. So, the initial response times R0
1,j = 1, and the jitter for all

sub-jobs is set to zero J0
1,j = 0. We now start the iterative process of estimating new response times,

and updating the response times based on the jitter values. In the first iteration, each sub-job of T1 is

delayed by one invocation of T2. Also, T1,1 and T1,7 interfere with each other as they execute on the
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Figure 5.4: Figure showing the paths followed by the tasks T1 and T2 in the example

same node (likewise, T1,2 and T1,6, T1,3 and T1,5 interfere with each other). Let us assume that a sub-

job with a lower index has a higher priority. We therefore obtain R1
1,1 = R1

1,2 = R1
1,3 = R1

1,4 = 2, and

R1
1,5 = R1

1,6 = R1
1,7 = 3 (these sub-jobs are delayed by T2 and the lower index sub-job of T1). We now

update the jitter values as the sum of the jitter and response-time of the sub-job executing on the previous

stage. That is, J1
1,1 = 0, J1

1,2 = 2, J1
1,3 = 4, J1

1,4 = 6, J1
1,5 = 8, J1

1,6 = 11, J1
1,7 = 14. We need to follow this

iterative process until convergence, but even at the first iteration the end-to-end response time of T1 exceeds

its end-to-end deadline, and T1 is declared unschedulable. One can see that this process will quickly lead to

the end-to-end response time to blow up for large systems.

Improvements to holistic analysis have been presented in [68, 73], that use the notion of offset instead of

jitter. One problem with holistic analysis is that by assuming the response time at a stage to be the jitter

for the next stage, the jitter values increase with longer path lengths. To overcome this problem, [68, 73]

set the response time at a stage to be the offset for the next stage. The offset value denotes the minimum

time after which the sub-job is activated. This makes the analysis more accurate, but more complicated as

well. Using this analysis, we can obtain the response times for the sub-jobs of T1 in the first iteration as

R1,j = 2, for j = 1..7. Here again we need to perform an iterative process until convergence, but just the

first iteration tells us that the end-to-end response time estimate of 14 units for T1 from this analysis also

exceeds the end-to-end deadline of 12 units.

The fundamental problem with the above analysis is that T2 delays a sub-job of T1 at every stage along

its path from stage S1 to S4 (the response time of each sub-job is calculated as 2 units). However, in reality

this is not the case. When an invocation of T2 delays an invocation of T1 at stage S1, as it has the highest

priority, it will execute on future stages without waiting and hence will never delay T1 on the remaining

stages. By analyzing the system one stage at a time, existing analysis techniques fail to accurately account

for the parallelism in the execution of different stages in the distributed system. Now, let us analyze the

schedulability of T1 based on the end-to-end delay bound derived in this chapter. As the end-to-end deadline

of T1 is not larger than the period, we do not have to include T1 in the set of higher priority tasks. So, T2
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is the only higher priority task and has only one segment with T1. We therefore create a uniprocessor task

T ∗
2 with a computation time of 2 units (twice the maximum stage execution time) and period of 12 units.

We construct a task T ∗
1 with a computation time of 1 + 7 = 8 time units (its own computation time of 1

unit and the sum of the maximum execution times of any job at each of the seven stages along the path of

T1). Using the response time analysis test for the hypothetical uniprocessor [8], we obtain the worst-case

end-to-end response time of T1 as 8 + 2 = 10 units. Thus, T1 is found to be schedulable in the original

distributed system. By analyzing the system as a whole, the end-to-end delay bound derived in this chapter

is able to provide a more accurate bound on the end-to-end delay of tasks in distributed systems with cycles

in the task graph.

5.5 Evaluation

In this section, we evaluate the end-to-end delay bound for non-acyclic systems using simulation studies

for periodic tasks. We compare it with three other analysis techniques. We call the first the traditional

test, that breaks the end-to-end deadline of each task into per-stage deadlines and analyzes each stage

independently. If all per-stage deadlines are met then the system is deemed to be schedulable. The second

test is holistic analysis applied to non-acyclic systems [89], that uses an iterative procedure to converge to

worst-case response time values at each stage for every task. The third test is based on our own previous work

for acyclic systems, by cutting any cycles in the system and relaxing precedence constraints (as discussed

in Section 4.8). We do not compare with network calculus [18, 19] or its extensions such as [49], as the

solution to handle cycles in the task graph requires that a system of simultaneous equations be constructed,

and it may be difficult or even impossible to obtain delay bounds for certain scenarios. Further, previous

comparisons such as [52] have found holistic analysis to perform better than network calculus approaches.

For each test we construct an admission controller that would admit as many tasks as it can deem feasible,

and measure the average per stage (resource) utilization achieved.

The schedulability test used is assumed to be deadline monotonic scheduling. We consider two types of

non-acyclic traffic. The first reflects request-response type traffic, where the request follows a sequence of

execution nodes, and the response follows the same set of nodes but in the opposite direction. The second

traffic type emulates web server requests, where each task follows a sequence of nodes from S1 to Sn and

returns in the opposite direction from Sn−1 to S1. Thus, each task executes twice at each stage except Sn,

once in the forward direction and once in the reverse direction. Note that in the second traffic type, each

task’s path contains cycles, whereas in the first scenario, the task paths are acyclic, but with tasks going in

opposite directions. The larger jitter values due to the presence of cycles in each task’s paths causes holistic
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analysis to perform worse in the second scenario (as observed in our simulation studies below), although the

two traffic types are seemingly similar to one another.

Simulation parameters are chosen similar to those in Section 3.7. The default value of the deadline ratio

parameter, DR, is assumed to be 2.0. The default value of the task resolution parameter, T , is chosen

as 1/50. The response time analysis technique presented in [8] is used as the schedulability test for the

composed hypothetical uniprocessor.

Each point in the figures below represent average values obtained from 100 executions, with each execution

consisting of 80000 task invocations. For the purpose of comparing different admission controllers, each

admission controller was allowed to execute on the same 100 task sets. The 95% confidence interval for all

the values presented is within 1% of the mean value, and is not plotted for the sake of legibility.
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In Figure 5.5, we compare the average per-stage utilization of the four schedulability tests for different

number of nodes in the system for request-response type traffic. So, for each task there are other tasks that

traverse the system in the same direction as well as in the opposite direction. The end-to-end delay bound

presented in this chapter is able to ensure nearly the same per-stage utilization regardless of the number of

stages in the system. In contrast, all the other tests become increasingly pessimistic with system scale. The

acyclic bound after cutting loops performs poorly as for each job that traverses the system in the opposite

direction, the cycles are broken by cutting the job at every link creating N independent sub-jobs. These

sub-jobs can therefore arrive independently of each other in a worst-case manner so as to delay the lower

priority job at every stage. Holistic analysis and the traditional test analyze the system one stage at a time

and fail to accurately account for the parallelism in the execution of different stages. For large systems, the

jitter for downstream sub-jobs becomes large as the jitter increases with increasing number of nodes in the

task path, causing holistic analysis to perform poorly for large system sizes.
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For the same traffic pattern, for a system of 10 stages, we vary the deadline ratio parameter and plot

the results in Figure 5.6. A larger value of the deadline ratio parameter implies that the range of deadline

values is larger. This allows lower priority tasks with large deadlines to execute in the background of higher

priority tasks with shorter deadlines, increasing the overall utilization of the system. This trend is observed

for all the four schedulability tests. The new bound significantly outperforms the other tests for all deadline

ratio parameter values.
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For web server type traffic, where each task traverses the stages in the system in the forward direction and

then in the reverse direction, we plot the average per stage utilization for increasing number of stages in the

system in Figure 5.7. As observed in Figure 5.5, the new bound is able to achieve nearly the same per stage

utilization regardless of system size. Also note that holistic analysis and the traditional test perform poorly

for this traffic scenario compared to their achieved utilization under request-response type traffic shown in

Figure 5.5. For holistic analysis, the jitter values increase considerably due to the presence of cycles in the

task path and the large path length causing the analysis to be extremely pessimistic. The traditional test

breaks the end-to-end deadline into per-stage deadlines, which works poorly when the path length is long,

as the delay experienced by tasks at different stages is not uniform.

Figure 5.8, presents a comparison of the four schedulability tests for different deadline ratio parameter

values for the web server type traffic scenario in a system with 10 stages. As observed in Figure 5.7, holistic

analysis and the traditional test perform poorly for this traffic scenario. The utilization values are observed

to increase with increasing deadline ratio parameter values, as low priority jobs with large deadlines are

able to execute in the background of higher priority jobs with short deadlines, thereby increasing the overall

utilization of each stage. The new bound significantly outperforms the other schedulability tests for such

systems with long path lengths.
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Chapter 6

Delay Composition Algebra

In this chapter, we present an algebra for schedulability analysis of distributed real-time systems. The algebra

reduces the distributed system workload to an equivalent uniprocessor workload that can be analyzed using

uniprocessor schedulability analysis techniques to infer end-to-end delay and schedulability properties of each

of the original distributed jobs. The reduction is carried out for all the jobs in the system simultaneously,

without having to repeat the reduction using the delay composition theorem to analyze the schedulability of

each job. The rest of this chapter is organized as follows. We present the algebra and the intuition behind it

in Section 6.1. In Section 6.2, we formally prove the correctness of the algebra. In Section 6.3, we evaluate

the performance of our algebraic framework through simulation studies.

6.1 Delay Composition Algebra

The main goal of the delay composition algebra is to allow schedulability analysis of distributed jobs by

reducing them to a uniprocessor workload. Given a graph of system resources, where nodes represent

processing resources and arcs represent the direction of job flow, our algebraic operators systematically

“merge” resource nodes, composing their workloads per rules of the algebra, until only one node remains.

The workload of that node represents a uniprocessor job set. Uniprocessor schedulability analysis can then

be used to determine the schedulability of the set. In this section, we provide a detailed description of the

algebra and its underlying basic intuition.

We consider arbitrary non-acyclic systems (the system model being similar to Section 5.1). We further

augment the DAG with an arc from each end node of a job to a single virtual “finish” node, f . The

execution time of any job Ji on the finish node f , Ci,f , is set to zero, so as to not affect schedulability. This

augmentation ensures that the graph is never partitioned and hence can be reduced to a single node using

our algebraic operators. The question we would like to answer is whether each job is schedulable (i.e., can

traverse its path through the system by its deadline).

We provide the intuition leading to our algebra in Section 6.1.1. In Section 6.1.2, we describe the basic

operand representation and show how to translate a system into operands of the delay composition algebra.
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The operators of the algebra and a proof of liveness are described in Section 6.1.3. In Section 6.1.4, we show

how end-to-end delay and schedulability of jobs are determined from the final operand matrix. Finally, we

conclude with an illustrative example, in Section 6.1.5.

6.1.1 Intuition for a Reduction Approach

To answer the schedulability question, we reduce the distributed system to a single node. Our reduction

operators simplify the resource graph progressively by breaking forks into chains and compacting chains by

merging neighboring nodes, producing an equivalent workload for the resulting merged node. Workload of

any one node (that may represent a single resource or the result of reducing an entire subsystem) is described

generically by a two-dimensional matrix stating the worst-case delay that each job, Ji, imposes on each other

job, Jk, in the subsystem the node represents. Let us call it the load matrix of the subsystem in question.

Observe that if jobs are invocation instances of periodic or sporadic tasks (which we expect to be the

most common use of our algebra), we include in the load matrix only one instance of each task. We need

to consider only one instance of each task because all individual invocation instances of the same task have

the same parameters and thus will impose the same delay on a lower priority instance. It is therefore

enough to compute this delay once. We are able to get away with this because our algebra is only concerned

with job transformation. It is not concerned, for example, with computing the number of invocations of

one task that may preempt another. This is the responsibility of uniprocessor schedulability analysis that

we apply to the resulting uniprocessor task set. The algebra simply reduces a distributed instance into a

uniprocessor instance. This decoupling between the reduction part and the analysis part is a key advantage

of the reduction-based approach. Hence, in the following, when we mention a job, it could either mean an

aperiodic job or a single representative instance of a periodic or sporadic task. For periodic or sporadic task

sets, the dimension of the load matrix is therefore n × n, where n is the finite number of tasks in the set.

Observe that, on a node that represents a single resource j, any job Ji, that is of higher priority than job

Jk, can delay the latter by at most Ji’s worst-case computation time, Ci,j , on that resource. This allows one

to trivially produce the load matrix for a single resource given job computation times, Ci,j , on that resource.

Element (i, k) of the load matrix for resource j, denoted qj
i,k (or just qi,k where no ambiguity arises) is equal

to Ci,j as long as Ji is of (equal or) higher priority than Jk. It is zero otherwise.

The main question becomes, in a distributed system, how to compute the worst-case delay that a job

imposes on another when the two meet on more than one resource? The answer decides how delay components

of two load matrices are combined when the resource nodes corresponding to these matrices are merged using

our algebraic operators. Intuitions derived from uniprocessor systems suggest that delays are combined
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additively. This is not true in distributed systems. In particular, as shown in Chapter 3, delays in pipelines

are sub-additive because of gains due to parallelism caused by pipelining. More specifically, the worst-case

delay imposed by a higher priority job, Ji, on a lower priority job, Jk, when both traverse the same set of

stages, varies with the maximum of Ji’s per-stage computation times, not their sum (plus another component

we shall mention shortly).

The delay composition algebra leverages the aforementioned result. Neighboring nodes in the resource

graph present an instance of pipelining, in that jobs that complete execution at one node move on to execute

at the next. Hence, when these neighboring nodes are combined, the delay components, qi,k, in their load

matrices are composed by a maximization operation. In our algebra, this is done by the PIPE operator.

It reduces two neighboring nodes to one and combines the corresponding elements, qi,k, of their respective

load matrices by taking the maximum of each pair. For this reason, we call qi,k the max term.

It could be, however, that two jobs travel together in a pipelined fashion1 for a few stages (which we call

a pipeline segment), then split and later merge again for several more stages (i.e., another pipeline segment).

Figure 6.1 demonstrates such a scenario for a job Jk and a higher priority job, Ji. In this case, the max terms

of each of the pipeline segments (computed by the maximization operator) must be added up to compute

the total delay that Ji imposes on Jk. It is convenient to use a running counter or “accumulator” for such

addition. Whenever the jobs are pipelined together, delays are composed by maximization (kept in the

max term) as discussed above. Every time Ji splits away from Jk, signaling the termination of one pipeline

segment, the max term (i.e., the delay imposed by Ji on Jk in that segment) is added to the accumulator. Let

the accumulator be denoted by ri,k. Hence, ri,k represents the total delay imposed by Ji on a lower priority

job Jk over all past pipeline segments they shared. Observe that jobs can split apart only at those nodes

in the DAG that have more than one outgoing arc. Hence, in our algebra, a SPLIT operator is used when

a node in the DAG has more than one outgoing arc. SPLIT updates the respective accumulator variables,

ri,k, of all those jobs Jk, where Jk and a higher priority job Ji part on different arcs. The update simply

adds qi,k to ri,k and resets qi,k to zero.

In summary, in a distributed system, it is useful to represent the delay that one job Ji imposes on another

Jk as the sum of two components qi,k and ri,k. The qi,k term is updated upon PIPEs using the maximization

operator (the max term). The ri,k is the accumulator term. The qi,k is added to the ri,k (and reset) upon

SPLITs, when Ji splits from the path of Jk. PIPE and SPLIT are thus the main operators of our algebra.

In the final resulting matrix, the qi,k and ri,k components are added to yield the total delay that each job

1The term pipelined execution has also been used in the literature to refer to the situation where an invocation of a task can
start before the previous invocation has completed, when deadlines are larger than task periods. We do not intend the term
pipelined execution in this context.
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Figure 6.1: Figure showing the components of the delay that Ji causes Jk, and how the composition of stages
works

imposes on another in the entire system.

The final matrix is indistinguishable from one that represents a uniprocessor task set. In particular,

each column k in the final matrix denotes a uniprocessor set of jobs that delay Jk. In this column, each

non-zero element determines the computation time of one such job Ji. Since the transformation is agnostic

to periodicity, for periodic tasks, Ji and Jk simply represent the parameters of the corresponding periodic

task invocations. Hence, for any task, Tk, in the original distributed system, the final matrix yields a unipro-

cessor task set (in column k), from which the schedulability of task Tk can be analyzed using uniprocessor

schedulability analysis.

Finally, the above discussion omitted the fact that the results in Chapter 3 also specified a component

of pipeline delay that grows with the number of stages traversed by a job and is independent of the number

of higher priority jobs. We call it the stage-additive component, sk. Hence, the load matrix, in fact, has an

extra row to represent this component. As the name suggests, when two nodes are merged, this component

is combined by addition. With the above background and intuition in mind, in the following subsections,

we describe the algebra more formally, then prove it.

6.1.2 Operand Representation

In order to represent a task set on a resource for the purpose of analyzing delay and schedulability, we

represent the delay that each job (or periodic task invocation) causes every other job in the system. As

mentioned above, we represent this as an n × n array of delay terms, with the (i, k)th element denoting the

delay that job Ji causes job Jk. Each element (i, k) is represented as a two-tuple (qi,k, ri,k), where the first

term in the tuple qi,k denotes the max-term, and the second term ri,k denotes the accumulator-term. The

operand matrix has an additional row in which the kth element, sk (that we shall define shortly), represents

the delay of job Jk that is independent of the number of jobs in the system, and is additive across the stages
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on which Jk executes. An operand A, represented as an (n + 1) × n matrix is shown below:

A=













































J1 J2 . . Jn

J1 (qA
1,1, r

A
1,1) (qA

1,2, r
A
1,2) . . (qA

1,n, rA
1,n)

J2 (qA
2,1, r

A
2,1) (qA

2,2, r
A
2,2) . . (qA

2,n, rA
2,n)

. .

. .

Jn (qA
n,1, r

A
n,1) (qA

n,2, r
A
n,2) . . (qA

n,n, rA
n,n)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sA
1 sA

2 . . sA
n




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



































Let us now construct the matrix for a single stage j, the basic operand. Let us first assume that the

scheduling is preemptive. Without loss of generality, let jobs be indexed in order of priority and i < k

imply that Ji has a higher priority than Jk. Consider a job Jk and the column corresponding to it. The

accumulator term ri,k is set to zero, for all i. If Jk does not execute at stage j, then qi,k and sk are set to

zero, for all i. If Jk executes at stage j, but a job Ji does not or if it has a lower priority than Jk, then qi,k is

set to zero. If Ji executes on stage j exactly once, then qi,k is set to Ci,j . If Ji visits stage j multiple times,

then qi,k is set to the maximum computation time of Ji over all its visits to stage j. The stage-additive

component, sk is defined as the maximum computation time of any higher priority job on stage j, counted

as many times as Jk visits the stage. Suppose that Jk visits the stage p times, then sk = p × maxi≤k Ci,j .

An example operand matrix for a stage j in a system with four jobs, of which only J1, J2 and J4 execute

on the stage, is shown below:












































J1 J2 J3 J4

J1 (C1,j , 0) (C1,j , 0) (0, 0) (C1,j , 0)

J2 (0, 0) (C2,j , 0) (0, 0) (C2,j , 0)

J3 (0, 0) (0, 0) (0, 0) (0, 0)

J4 (0, 0) (0, 0) (0, 0) (C4,j , 0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C1,j max(C1,j , C2,j) 0
max(C1,j ,

C2,j , C4,j)
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







Under non-preemptive scheduling, the matrix is constructed in a very similar manner, except for the stage-

additive component sk, which is defined as the sum of two terms. The first term is the maximum computation

time of any job (not just higher priority jobs) on stage j, and the second term is the maximum computation
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time of any lower priority job on stage j, each counted p times. That is, sk = p(maxi Ci,j + maxi>k Ci,j).

An example matrix for a stage j under non-preemptive scheduling, for the same 4-job system as before is

shown below:

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







































J1 J2 J3 J4

J1 (C1,j , 0) (C1,j , 0) (0, 0) (C1,j , 0)

J2 (0, 0) (C2,j , 0) (0, 0) (C2,j , 0)

J3 (0, 0) (0, 0) (0, 0) (0, 0)

J4 (0, 0) (0, 0) (0, 0) (C4,j , 0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C1,j+ max(C1,j ,
0
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6.1.3 Operators of the Algebra

We describe the two operators, namely PIPE and SPLIT. These operators ensure that every term (qi,k, ri,k)

in the resultant operand matrix correctly represents the max-term and accumulator-term of the delay that

Ji can cause Jk over all the stages that the operand represents.

j
1

j
2

PIPE
j

(a)

j
SPLIT j1

j 2(b)

Figure 6.2: Figure showing the operators and the equivalent stages they result in (a) PIPE (b) SPLIT

The PIPE Operator

The PIPE operator merges two neighboring nodes in the resource graph (as shown in Figure 6.2(a)). Each

of the two nodes being merged may themselves be resulting from the composition of multiple nodes. PIPE

can be applied to any two nodes connected by an arc as long as the node at the tail of the arc (i.e., the

upstream node) has only one outgoing arc. If the node has more than one outgoing arc, it must be split first

as described in the SPLIT operator.

Let C = A PIPE B, where A, B, and C are matrices of the form described in Section 6.1.2. The

result of the PIPE operation (qC
i,k, rC

i,k) is obtained by taking the maximum of corresponding elements qi,k

and ri,k from the two operand matrices A and B. As we shall show later in Section 6.2, only the first (i.e.,

upstream) of the elements ri,k from the two operand matrices can be non-zero, so the max operation on the

ri,k elements essentially copies the upstream value of ri,k onto matrix C. The stage-additive component, sC
k ,

on the other hand is additive across stages, and hence the corresponding stage-additive components from

the two operand matrices are added. The PIPE operator can formally be defined as follows:

71



Definition 1: PIPE Operator. For any two neighboring nodes in the resource graph, represented by

operand matrices A and B, if the upstream node has exactly one outgoing arc, the two nodes can be

composed into a single node represented by matrix C using the PIPE operator, C = A PIPE B, as follows:

1. ∀i, k: qC
i,k = max(qA

i,k, qB
i,k)

2. ∀i, k: rC
i,k = max(rA

i,k, rB
i,k)

3. ∀k: sC
k = sA

k + sB
k

For instance, when jobs J1 and J2 execute on stages 1 and 2 (represented as matrices A and B, respec-

tively), the PIPE operation between the two stages can be denoted as:
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J1 (qB
1,1, r

B
1,1) (qB

1,2, r
B
1,2)

J2 (0, 0) (qB
2,2, r

B
2,2)

. . . . . . . . . . . . . . . . . . . .

sB
1 sB

2

























=







































J1 J2

J1

(max(qA
1,1, q

B
1,1), (max(qA

1,2, q
B
1,2),

max(rA
1,1, r

B
1,1)) max(rA

1,2, r
B
1,2))

J2 (0,0)
(max(qA

2,2, q
B
2,2),

max(rA
2,2, r

B
2,2))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sA
1 + sB

1 sA
2 + sB

2







































The SPLIT Operator

The SPLIT operator can be used when a node j in the resource graph has more than one outgoing arc.

Further, an individual outgoing arc l can be split (creating a separate node) as long as all the jobs traversing

the arc in question have node j as their start node (they should not be traversing any incoming arc of node

j). Outgoing arcs from node j that do not satisfy this condition cannot be split. The load matrix A of node

j is split into two matrices, one for node j and one for the new node j′ that is created. The resultant matrix

for the new node j′ is obtained by replicating matrix A and zeroing out all columns corresponding to jobs

that do not traverse arc l, and the matrix for node j is obtained by zeroing out all columns corresponding to

jobs that traverse arc l. Further, for any job Jk and a higher priority job Ji, if the two jobs follow different

outgoing arcs from node j, the accumulator term of Jk (in the output matrix containing Jk) is updated

by replacing the element (qi,k, ri,k) with (0, qi,k + ri,k). Figure 6.2(b) shows the SPLIT operation, and two

hypothetical stages are created after the operation. We formally define the SPLIT operator as follows:

Definition: SPLIT Operator. Let matrix A denote node j and let l be an outgoing arc of node j, such

that all jobs X1 traversing arc l have node j as their start stage. Let X2 denote the set of jobs that do not

traverse arc l. The resultant matrices Ax, x = 1, 2, are obtained as follows:

∀Jk:
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1. if Jk ∈ Xx: sAx

k = sA
k ; ∀i: if Ji ∈ Xx: qAx

i,k = qA
i,k, rAx

i,k = rA
i,k, else qAx

i,k = 0, rAx

i,k = qA
i,k + rA

i,k.

2. if Jk /∈ Xx: sAx

k = 0; ∀i: qAx

i,k = 0, rAx

i,k = 0.

The LOOP Operator

Any situation where a PIPE or SPLIT operation cannot be applied to any arc in the graph, implies that a

loop exists in the task graph (this follows from the liveness property for the PIPE and SPLIT operations).

Consider an outgoing arc l from a node j that is part of a loop. Let X denote the set of jobs that traverse

arc l. If the set of jobs that traverse the other outgoing arcs from node j is a subset of X , then the LOOP

operator can be applied to arc l. This condition ensures that there is no job whose path is splitting away

from the jobs traversing arc l on which the LOOP operator is applied. Like the PIPE operator, the LOOP

composes the two nodes A and B at the ends of link l together into a single node. It takes the maximum of

corresponding max-terms and the sum of the corresponding accumulator terms in the two operand matrices.

If composing the two nodes marks the end of a higher priority task segment, say for task i (all other arcs in

the segment have been composed together), then the corresponding resultant max-term qi,k is added to the

accumulator ri,k, and the max-term is reset to the maximum computation time of Ji on the stage (A or B)

from which its next segment starts. Further, if the higher priority task Ji traverses both the forward and

the reverse link (that is, traverses the link from A to B as well as the link from B to A), then we add twice

the resultant max-term to the accumulator term to account for the interference due to both the forward and

reverse flow segments. If a loop is traversed by two tasks Ji and Jk p times (the same sequence of links),

then we account for p times the delay component to be added to the accumulator term.

Definition. LOOP Operator. When a PIPE or a SPLIT operation cannot be performed, and node j has

an outgoing arc l that is part of a loop, such that the set of all jobs that traverse other outgoing arcs from

node j is a subset of the set of jobs that traverse the outgoing arc l from node j, then the LOOP operator

can be applied to arc l. Let A and B represent the operand matrices of the nodes that arc l connects, and

let C be the resultant operand matrix. C = A LOOP B, is obtained as follows:

1. ∀i, k: qC
i,k = max(qA

i,k, qB
i,k); rC

i,k = rA
i,k + rB

i,k

2. ∀i, k: If end of higher priority segment of Ji (Ji and Jk traverse loop p times):

2.1 If Ji traverses both the arc from A to B as well as the arc from B to A, then rC
i,k = rC

i,k +2p× qC
i,k

else rC
i,k = rC

i,k + p × qC
i,k
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2.2 If Ji has outgoing arc from node corresponding to A, then qC
i,k = qA

i,k

else if Ji has outgoing arc from node corresponding to B, then qC
i,k = qB

i,k

else qC
i,k = 0

3. ∀k: sC
k = sA

k + sB
k

The CUT Operator

When the LOOP operator cannot be performed as well, then the CUT operator as defined in Section 4.8

needs to be performed to break a loop in the task graph. Such a situation might arise as the LOOP operator

can only be applied to a link l if the set of jobs traversing link l is a superset of the set of jobs traversing

other outgoing arcs from the node at the head of link l.

The CUT operation breaks each job traversing the arc being cut into two independent jobs, one for the

part before the cut and one for the part after. This operation only relaxes constraints on the arrival times of

jobs, allowing jobs to arrive in a manner that can cause worst-case delay (an adversary has greater freedom

in choosing the arrival times of jobs to cause a worst-case delay). This decreases the schedulability of the

task set and performs a transformation that is safe.

Definition: CUT Operator. When the directed resource graph contains a cycle and when a PIPE, SPLIT,

or LOOP operation cannot be performed, a CUT operation can be performed on one of the arcs forming

the cycle. Each job crossing that arc is thereby replaced by two independent jobs; one for the part before

the cut and one for the part remaining. Each new job will have a separate row and column in the operand

matrices for stages on which they execute.

Observe that, for a system with n jobs, every operand matrix has n + 1 rows and n columns. Any

job that does not execute at a stage has a column with all its elements set to zero. It is possible to

optimize this representation by removing all zero-element columns and having operand matrices of variable

dimensions. Row and column indices would have to be represented explicitly (rather than the implicit global

job-numbering assumed in the above exposition).

The definition of the operators are the same regardless of whether the scheduling is preemptive or non-

preemptive. By successively applying the operators of the algebra, the distributed system can be reduced to

a single equivalent uniprocessor. Note that as the max and sum operations are commutative and associative,

the PIPE and LOOP operators are commutative and associative as well.

Proof of Liveness and Algorithm Complexity

Given the operator definitions described above, we now prove the following theorem:
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Theorem: The delay composition algebra always reduces the original resource graph (augmented with the

extra finish node) to a single node.

Proof: For simplicity, we prove the theorem only for the case of Directed Acyclic Graphs, using the PIPE

and SPLIT operators. The proof of the theorem for the LOOP and CUT operators included follows trivially.

To prove the theorem, observe that we defined the following rules for applying the algebraic operators: (i)

a PIPE can only be applied to a pair of nodes if the upstream node has exactly one outgoing arc, and (ii) a

SPLIT can only be applied to a node if it has no incoming arcs and multiple outgoing arcs.

Hence, a PIPE can always be performed unless we are left only with those nodes that have multiple

outgoing arcs (and their immediate downstream neighbors). However, in such a case, a SPLIT can always

be performed on the earliest of these nodes. This is because (i) this node does not have incoming arcs from

earlier nodes (that would contradict it being earliest), and (ii) it has multiple outgoing arcs (since only

such nodes are left together with their downstream neighbors but the earliest node, by definition, is not

downstream from another). Hence, at any given time, either a PIPE or a SPLIT can always be performed

until no arcs are left.

It is left to show that the graph always remains connected, and hence when no arcs are left only one

node remains. We prove it by induction. First note that the initial DAG is connected, and the virtual finish

node f is downstream from every node. This is because each node j is either an end node of some job, in

which case it is connected directly downstream to the virtual finish node, f , or is not an end node, in which

case it must have a downstream path to the end node of some job, and the latter is connected downstream

to the virtual finish node. Hence, the finish node can be reached from any node by a downstream path and

the graph is connected. Next, we prove the induction step, showing that applying a PIPE or SPLIT does

not disconnect the graph and keeps f downstream from every node. For a PIPE, this is self-evident, since

it only merges nodes. For a SPLIT, assume that the graph before the SPLIT was applied was connected

and each node had a downstream path to the virtual finish node. SPLIT takes a node j with an immediate

downstream neighbor set Nj and replaces it with multiple nodes, each inheriting a downstream arc to one of

these neighbors. Thus, since neighbors in set Nj are connected to the virtual finish node by a downstream

path, so will be each of the newly created nodes. The induction hypothesis is maintained. By induction,

the graph is never disconnected by PIPEs or SPLITs, and the finish node is always downstream from every

node. Hence, when the algebra has removed all arcs, the DAG is reduced to a single node.

A PIPE operation can be performed in O(n2) time, where n is the number of jobs in the system, and

each PIPE operation reduces the number of arcs in the graph by one. The time complexity for a SPLIT

operation involving k arcs is O(kn2), and each of these k arcs can be eliminated through PIPE operations
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in the next step. Hence, the complexity for eliminating each arc is O(n2), and the net complexity of the

algebra to reduce a graph to a single node is O(|E|n2), where |E| is the number of arcs in the original

resource graph.

6.1.4 Task Set Transformation

Once the system is reduced to one node, the end-to-end delay and schedulability of any job Jk can be inferred

from the node’s load matrix. Remember that in periodic or sporadic task systems, Jk stands for an instance

of task Tk. We shall use the task notation in this section, since we expect the algebra to be applied mostly

for periodic or sporadic task sets. Once the system is reduced to one node, the max-term for each element

in the final matrix is first added to the accumulator term, that is, (qi,k, ri,k) is replaced by (0, qi,k + ri,k).

To analyze the schedulability of any task Tk in the original distributed system, an equivalent uniprocessor

task set is obtained from column k of the final load matrix as follows:

• Each task Ti, i 6= k in the original distributed system is transformed to task T ∗
i on a uniprocessor,

with a computation time C∗
i = ri,k, if scheduling is non-preemptive, or C∗

i = 2ri,k, if scheduling is

preemptive (the reason for which is explained in Section 6.2). The period Pi (if Ti is periodic) or

minimum inter-arrival time (if it is sporadic) remains the same (i.e., P ∗
i = Pi).

• Task Tk, for which schedulability analysis is performed, is transformed to task T ∗
k with C∗

k = rk,k plus

an extra task of computation time sk. The period or minimum inter-arrival time for both, remains

that of Tk.

We prove in Section 6.2 that if T ∗
k meets its deadline on the uniprocessor when scheduled together with

this task set, then Tk meets its deadline in the original distributed system. Any uniprocessor schedulability

test can be used to analyze the schedulability of T ∗
k . Note that a separate test is needed per task. First,

however, we present an example.

6.1.5 An Illustrative Example

We now illustrate how the algebra can be applied to a distributed system to reduce it to a single equivalent

hypothetical uniprocessor for the purpose of analyzing the end-to-end delay and schedulability of jobs in the

original distributed system. We consider a system of four resource stages shown in Figure 6.3(a), and three

periodic tasks T1, T2, and T3, in decreasing priority order. T1 follows the path S1 − S2 − S3 − S1 − S4, T2

follows S1−S2−S3−S4, and T3 follows S1−S2−S4. Each task invocation requires one unit of computation

time at each resource along its path, and the relative end-to-end deadline is assumed to be the same as the

task period. T1 has a period of 10 units, and T2 and T3 have a period of 20 units. We do not need to create

a virtual finish node as all task routes end at the same finish node (S4).
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Figure 6.3: (a) Example system to be composed (b) Composed system after step 1 (c) Composed system
after step 2 (d) After step 3 (e) After step 4 (f) After step 5

Let Ai denote the operand matrix for stage Si. The initial operand matrices are constructed as shown

below. As task T1 executes twice on stage S1, the stage-additive component s1 of A1 is two, while all other

stage-additive component values are one.

A1 =

































T1 T2 T3

T1 (1, 0) (1, 0) (1, 0)

T2 (0, 0) (1, 0) (1, 0)

T3 (0, 0) (0, 0) (1, 0)

. . . . . . . . . . . . . . . . . . . .

2 1 1

































, A2 = A4 =

































T1 T2 T3

T1 (1, 0) (1, 0) (1, 0)

T2 (0, 0) (1, 0) (1, 0)

T3 (0, 0) (0, 0) (1, 0)

. . . . . . . . . . . . . . . . . . . .

1 1 1

































, A3 =

























T1 T2

T1 (1, 0) (1, 0)

T2 (0, 0) (1, 0)

. . . . . . . . . . . . .

1 1

























All nodes have 2 out-going arcs, and no PIPE or SPLIT operations can be performed. A loop exists, and

we apply the LOOP operator to arc S1 − S2.

Step 1: A1 LOOP A2 = A1′

We take the maximum of the corresponding max-terms and the sum of the corresponding accumulator

terms and the stage-additive components. The arc under consideration does not mark the end of T1’s

segment when considering the delay of T2. But, it marks the end of the segment of T1 that interferes with

T3. As T3 executes on only one of the arcs and does not traverse an arc from S2 to S1, it contributes only

one unit of delay, which is added to the accumulator term.

The resultant task graph is as shown in Figure 6.3(b). Now, stage S1′ is the start stage for T3, and T3

is the only job that traverses the arc from S1′ to S4 (note that T1 traverses a different arc from S1′ to S4).

We can therefore apply the SPLIT operator to split T3 along that arc creating nodes S11 and S12, whose

operand matrices are as follows:

Step 2: SPLIT (S1′, {T3}) => A11, A12
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A1′ =

































T1 T2 T3

T1 (1, 0) (1, 0) (1, 1)

T2 (0, 0) (1, 0) (1, 0)

T3 (0, 0) (0, 0) (1, 0)

. . . . . . . . . . . . . . . . . . . .

3 2 2
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



























, A11 =

































T1 T2

T1 (1, 0) (1, 0)

T2 (0, 0) (1, 0)

T3 (0, 0) (0, 0)

. . . . . . . . . . . . .

3 2
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





























, A12 =

































T3

T1 (0, 2)

T2 (0, 1)

T3 (1, 0)

. . . . .

2












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













Figure 6.3(c) shows the updated task graph. S12 can now be piped with S4 to give S4′ .

Step 3: A12 PIPE A4 = A4′

The resultant task graph is shown in Figure 6.3(d). Again nodes have more than one out-going arc and

no PIPE or SPLIT operations can be performed. We perform a LOOP operation on the arc S11 − S3 to

merge the nodes into a single node S3′ . This operation marks the end of the task segment of T1 that delays

T2, and T1 traverses the arc from S11 to S3, as well as the arc from S3 to S11. T1 can delay T2 both in the

forward as well as reverse directions, and we need to account for two units of delay, which is added to the

accumulator term.

Step 4: A11 LOOP A3 = A3′

This leaves us with two nodes S3′ and S4′ with two arcs connecting them, one traversed by T1 and the

other by T2, as shown in Figure 6.3(e). We can now split node S3′ into two nodes S31 and S32 one for each

of the out-going arcs from S3′ .

Step 5: SPLIT (S3′, {T1}) => A31, A32

A4′ =

































T1 T2 T3

T1 (1, 0) (1, 0) (1, 2)

T2 (0, 0) (1, 0) (1, 1)

T3 (0, 0) (0, 0) (1, 0)

. . . . . . . . . . . . . . . . . . . .
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




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








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
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
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
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












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T1 T2

T1 (1, 0) (1, 2)

T2 (0, 0) (1, 0)

T3 (0, 0) (0, 0)

. . . . . . . . . . . . .
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




























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





























T1

T1 (1, 0)

T2 (0, 0)

T3 (0, 0)

. . . . .

4

































, A32 =

































T2

T1 (0, 3)

T2 (1, 0)

T3 (0, 0)

. . . . .

3

































This leaves us with the task graph shown in Figure 6.3(f). We can now independently PIPE S31 and S32

with S4′ , to get Sfinal.

Step 6: A31 PIPE A4′ = A4′′ , A32 PIPE A4′′ = Afinal
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Afinal =

































T1 T2 T3

T1 (1, 0) (1, 3) (1, 2)

T2 (0, 0) (1, 0) (1, 1)

T3 (0, 0) (0, 0) (1, 0)

. . . . . . . . . . . . . . . . . . . .

5 4 3

































=

































T1 T2 T3

T1 (0, 1) (0, 4) (0, 3)

T2 (0, 0) (0, 1) (0, 2)

T3 (0, 0) (0, 0) (0, 1)

. . . . . . . . . . . . . . . . . . . .

5 4 3

































With this final equivalent single stage matrix, we can construct a uniprocessor task set and use any

uniprocessor schedulability test to analyze the schedulability of a task in the distributed system. The

reduction process and schedulability analysis is similar to the description in [39], and is omitted in the

interest of brevity.

6.2 Proof of Correctness

In this section, we prove the correctness of the delay composition algebra. By correctness, we mean that if a

job is schedulable in the resulting uniprocessor task set, it is schedulable in the original distributed system.

Below, we show the proof for preemptive systems. The proof for non-preemptive systems is similar and is

thus omitted. Consider a job Jk that executes along a path pk in the original directed acyclic graph. It is

desired to determine the schedulability of Jk. Consider a higher-priority job Ji (i 6= k) that executes along

path pi. Let paths pk and pi intersect in some set Segi,k of sequences of consecutive (i.e., directly connected)

nodes. For example if Jk has the path (1, 2, 5, 8, 11, 13) and Ji has the path (9, 1, 2, 16, 8, 11, 10) then

Segi,k = {(1, 2), (8, 11)}. Each member of this set is a shared path segment between Jk and Ji. Let the part

of Ji that executes on segment s in set Segi,k be called sub-job Js
i . In the above example, J1

i is the part

of Ji that executes on the path segment (1, 2) and J2
i is the part of Ji that executes on the path segment

(8, 11). Note that sub-jobs Js
i are the only parts of Ji that may delay Jk since they are the only parts that

share (part of) Jk’s path. Let the maximum execution time of sub-job Js
i over its path be Cs

i,max. Let the

maximum execution time of all jobs Js
i on node j be Nodej,max. The delay composition theorem applied

to a job Jk and the set S of higher priority job-segments Js
i that share a sequence of consecutive common

execution stages with Jk is as follows:

Delay(Jk) ≤
∑

i

∑

Js
i ∈S

2Cs
i,max +

∑

j∈pk

Nodej,max (6.1)

The above inequality can be rewritten as follows:
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Delay(Jk) ≤
∑

i

2r∗i,k + s∗k (6.2)

r∗i,k =
∑

Js
i ∈S

Cs
i,max; s∗k =

∑

j∈pk

Nodej,max (6.3)

Let rM
i,k denote the (i, k)th element in the final single stage matrix derived using the algebra. Since delays

due to higher priority jobs are additive on a uniprocessor, the delay that the transformed job Jk, called J∗
k ,

experiences on the hypothetical uniprocessor is precisely Delay(J∗
k ) =

∑

i 2rM
i,k + sM

k (after multiplying rM
i,k

by 2 as per rules in Section 6.1.4). If rM
i,k = r∗i,k and sM

k = s∗k, it follows that Delay(Jk) ≤ Delay(J∗
k ). Thus,

if J∗
k is schedulable on the uniprocessor, so is Jk in the original distributed system. In the case of periodic

tasks, as observed in [39], finding the actual number of invocations, Invoci, for each higher priority periodic

task, Ti, that delays Jk, is not the responsibility of the algebra or the reduction process. This is handled

by the uniprocessor analysis used. The number of invocations, Invoci, as determined by the uniprocessor

analysis will at least be as large as the number of actual invocations of Ti that delay Jk in the distributed

system. The reason is because, every invocation of T ∗
i that arrives before J∗

k completes execution will delay

J∗
k on the uniprocessor, but the corresponding invocations of Ti may never catch-up with Jk to preempt it

in the distributed system, as they may be executing on different resources.

We shall now show that in the final matrix, rM
i,k = r∗i,k and sM

k = s∗k. It is safe to assume that all necessary

CUT operations are performed first, as any CUT operation only relaxes precedence constraints and performs

a safe transformation of the system that does not improve schedulability. Now, consider the entire sequence

of PIPE, SPLIT, and LOOP operations performed to reduce the distributed system to a single node. Let

us denote each arc using an unique identifier, and let the set of all arcs in the original distributed system be

denoted by L0. Note that SPLIT operations neither add nor remove arcs from L0. PIPE operations remove

precisely one arc from L0, and LOOP operations may remove at most two arcs (connecting the same two

nodes) from L0.

In order to compute rM
i,k, consider the path of Jk. Let L0

k denote the subset of arcs in L0 that lie on

the path of Jk (including arcs in the opposite direction as Jk). As in the proof presented in [39], all PIPE

operations can be classified under three categories: path PIPEs (applied to an arc in L0
k), incident PIPEs

(applied to an arc that shares one node with an arc in L0
k), and detached PIPEs (applied to an arc that shares

no nodes with arc in L0
k). SPLIT operations can be classified into two categories: path SPLITs (applied to

a node with an arc in L0
k) and detached SPLITs (the rest). Likewise, LOOP operations can be classified

into path, incident, and detached LOOPs. Trivially, only path PIPEs, path SPLITs, and path LOOPs affect
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elements in column k of the operand matrices, that is, the components of the delay of job Jk.

Consider a job Ji of higher priority than Jk. Let us denote the set of arcs in Segi,k (those arcs traveled by

both Ji and Jk as L0
i,k. Path PIPEs and path LOOPs that reduce arcs not traveled by Ji simply propagate

qi,k of the downstream node, and the sum of the ri,k’s of the upstream and downstream nodes to the resultant

matrix. This is because, as Ji does not travel the reduced arc it does not execute on the upstream node and

qi,k of the upstream node must be zero. The ri,k values in the upstream and downstream nodes denote the

delay of independent job-segments of Ji which need to be added together. Further, SPLITs of nodes with no

arcs traveled by Ji do not alter qi,k and ri,k, since Ji could not have parted Jk at the split node. Hence, we

now need to only consider PIPE, LOOP, and SPLIT operations involving arcs traveled by both jobs (that

is, in Segi,k).

Consider a segment s ∈ Segi,k. Let Es be the last node in the segment. Initially, each node j ∈ s has qi,k

set to the maximum computation time of Ji over all its visits to stage j. To reduce each arc in the segment,

a PIPE or LOOP operation must have been performed, producing qi,k to be equal to the maximum of all

the computation times of Ji over all the stages in the segment. Recall that a LOOP operation is performed

on an arc only when the set of jobs that traverse the arc is a super set of the set of jobs that traverse other

outgoing arcs from the node. This ensures that there are no jobs that split from the path of jobs following

the arc on which the LOOP operation is performed. Further, note that for each stage, by taking qi,k to

be the maximum computation time of Ji over all its visits to the stage, we overestimate the delay of Jk

as compared to the delay composition theorem. This is essential, as there is no information stored in the

operand matrix with regard to which visit of Ji corresponds to the current segment, and it is safe to consider

the maximum computation time over all the visits to the stage. Any SPLIT operation performed on nodes

j ∈ s, other than the last node and involving Ji, does not affect qi,k or ri,k, as Jk and Ji did not part ways

at stage j. Only LOOP and SPLIT operations involving Es affect the value of ri,k.

A LOOP operation that involves Es and marks the end of the segment s (i.e., removes the last arc that

is part of segment s from the task graph), causes ri,k to be updated by adding qi,k to it, which by now

equal to the maximum of all the computation times of Ji over all the stages in the segment. If Ji traverses

both the forward and reverse arc between the two nodes, then Ji could potentially delay Jk twice, and twice

the value of qi,k needs to be added to ri,k. If Ji loops back and a new segment begins at one of the two

nodes involved, then qi,k is reset to denote the maximum computation time of Ji on that node. At node

Es, any SPLIT operation that splits Ji from Jk can be performed only when there is no incoming arc into

Es that is traversed by Ji. This implies that all PIPE and LOOP operations have been applied over all the

other nodes in the segment. Hence, at Es, qi,k ≥ Cs
i,max (qi,k may be larger than Cs

i,max as the maximum
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computation time of Ji over all visits on all stages is taken for each stage operand matrix). The SPLIT

would then add qi,k to ri,k. As noted before, subsequent operations propagate ri,k to the result node. When

all the segments have been reduced, Cs
i,max for each segment s is added on to ri,k, resulting in

∑

Cs
i,max

over all job-segments Js
i . In other words, rM

i,k = r∗i,k. (Observe that, if Jk and Ji have the same end node,

there would be no SPLIT for the last segment and its max-term would still be stored in qi,k; this is why we

need to compensate for the missing SPLIT and manually add qM
i,k and rM

i,k at the end.)

Similarly, to compute sM
k , observe that initially for each node j on path pk, sj

k = Nodej,max. Since SPLITs

do not affect sk and PIPEs and LOOPs add it, when all arcs on L0
k are reduced, sM

k =
∑

j∈pk
Nodej,max =

s∗k.

6.3 Evaluation

In this section, we evaluate the accuracy and tightness of the delay composition algebra in estimating the end-

to-end delay and schedulability of jobs, for the case of directed acyclic graphs. Our custom-built simulator

that models periodic tasks executing in a distributed acyclic system is used. An admission controller based

on the delay composition algebra is used to guarantee the deadlines of tasks in the system. The analysis is

meant as a design-time capacity-planning tool and hence the need for global knowledge by the admission

controller is not a problem.

We consider two measures of performance. First, we estimate the average ratio of the end-to-end delay

of tasks to their computed worst-case end-to-end delay bound. This metric shows how pessimistic the theo-

retically computed worst-case is (as per each approach) compared to the average case. Second, we consider

the average per-stage utilization of tasks admitted into the system and is a measure of the throughput of

the system. Utilization of a resource is defined as the fraction of time the resource is busy servicing a task.

We compare our analysis using the delay composition algebra with holistic analysis [89] and network calcu-

lus [18, 19], under both preemptive and non-preemptive scheduling. We use the result from [52], for holistic

analysis under non-preemptive scheduling. We build an admission controller for each analysis technique

(delay composition algebra, holistic analysis, and network calculus) and compare the conservatism of the

various analyses with respect to admission control.

Simulation parameters are chosen similar to the evaluation in previous chapters. The default value of

the Node Probability parameter, NP , is 0.8. The default value for the Deadline Ratio parameter, DR, is

2.0. The default value for the task resolution parameter, T , is 1/20.

First, we ascertain that the performance does not significantly drop with increasing system size. We

measured the average ratio of end-to-end delay of jobs to the calculated upper bound on the worst-case
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delay, as a function of system size. The results are shown in Figure 6.4.
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For the delay composition algebra, under both preemptive and non-preemptive scheduling, the ratio

remains nearly the same regardless of system size, showing that the pessimism in analysis does not increase

with system scale. However, holistic analysis tends to be increasingly pessimistic with system scale, and the

ratio drops with increasing number of nodes in the system. The ratio is lower for non-preemptive scheduling,

as there are several low priority jobs that finish well before their worst-case delay estimate as they are not

preempted by higher priority jobs and therefore encounter only a smaller fraction of all higher priority jobs

during their execution (on an average) than under preemptive scheduling.

For the same experiment, Figure 6.5 plots the average per-stage utilization of admitted tasks. Note that,

the drop in average utilization is faster for holistic analysis and network calculus than for our algebraic

analysis with increasing system size. Holistic analysis consistently outperforms network calculus for all

system sizes.
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α
Compositional Analysis Holistic Analysis
NP P NP P

1 0 0 0 0
2 0.003 0 0.009 0
3 0.018 0 0.037 0
5 0.072 0 0.108 0
10 0.151 0 0.145 3 × 10−6

20 0.150 0 0.151 3.3 × 10−5

50 0.150 6 × 10−6 0.152 1.56 × 10−4

Table 6.1: Fraction of deadlines missed for different values of the deadline scaling factor α

We next varied the size of jobs by adjusting the task resolution parameter T . A large value for T (e.g.,

1:5) denotes a system with a small number of large tasks, and a small value of T (e.g., 1:50) denotes a large

number of small tasks. We measured the ratio of the end-to-end delay to the delay bound for the three

analysis techniques under both preemptive and non-preemptive scheduling, and the results are shown in

Figure 6.6. Delay composition algebra tends to be the least pessimistic under preemptive as well as non-

preemptive scheduling. As the number of tasks in the system increases (as T decreases), jobs encounter a

smaller fraction of higher priority jobs, and therefore the average end-to-end delay significantly differs from

the worst-case delay. Under non-preemptive scheduling, when task sizes are large (T is large) the blocking

penalty for higher priority jobs is also high, although on an average jobs are not blocked for the estimated

worst-case period. This causes the ratio under non-preemptive scheduling to be lower than under preemptive

scheduling.

In the previous experiments, we measured the average ratio of the end-to-end delay to the estimated

worst-case delay bound. However, this provides no insight into the variance. In other words, are there jobs

whose delay is very close to their worst-case delay, while other jobs finish well ahead of their delay bound?

To answer this question, we scaled the deadlines of tasks in the admission controller by a factor α ≥ 1. Thus,

the admission controller would admit more tasks than deemed feasible by the analysis, and we measured the

fraction of deadlines that were missed. For different values of α, Table 6.3 presents the average fraction of

deadlines missed for the compositional analysis as well as holistic analysis.

Under non-preemptive scheduling, it is observed that deadlines are missed more frequently and for smaller

values of α, than under preemptive scheduling. The reason for the more frequent deadline misses is that

higher priority jobs have a much higher ratio of average delay to worst-case delay than lower priority jobs

(not shown in the results), under non-preemptive scheduling. So, when the deadline values are scaled in the

admission controller, the higher priority jobs immediately miss their deadlines. This is confirmed by the fact

that the fraction of deadlines missed saturates at about 15% when α is increased beyond 10, as the lower

priority jobs have a very low average delay and do not miss their deadlines even if the deadline values are
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scaled up in the admission controller. On the other hand, the variance in the ratio of average delay to the

worst-case delay bound is much lower under preemptive scheduling. Therefore, although deadlines are scaled

by up to a factor of 20, admitting several more tasks, no deadline misses are observed (in the average case).

From Figure 6.4, the end-to-end delay bound is about 3 times the average delay of jobs under preemptive

scheduling (ratio value of 0.35). An alternate way of interpreting the results in Table 6.3 is that, under

preemptive scheduling, increasing the average delay by a factor of 3, increases the worst-case delay by a

factor of 20-50. This suggests that for systems where worst-case delay is critical, non-preemptive scheduling

is perhaps a better choice. In contrast, for systems where only the average delay is of interest, preemptive

scheduling would work well.
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Chapter 7

Flow-based Mode Changes: Virtual

Uniprocessor Models for

Reduction-based Analysis

In this chapter, we develop a new task model for uniprocessors, motivated by the needs of reduction-based

schedulability analysis techniques for distributed real-time systems. The resulting uniprocessor workloads

constructed by reducing distributed system workloads are subject to additional constraints not previously

considered in uniprocessor literature. The current practice has been to ignore these constraints (on worst-

case load), resulting in needlessly pessimistic worst cases, and hence in pessimistic schedulability estimates

for workloads reduced from distributed systems. The problem motivates new uniprocessor workload models

that serve the needs of reduction-based schedulability analysis literature.

The fundamental idea of workload transformation in reduction-based schedulability analysis is to show

that when two periodic distributed tasks execute together on a sequence of machines (called stages) in a

distributed system, each invocation of the higher-priority task delays an invocation of the lower-priority

task by a bounded total amount in the entire system. This bounded amount is computed and becomes the

transformed execution time of an equivalent periodic higher-priority task on a virtual uniprocessor. Analyz-

ing the schedulability of the lower priority task subject to all such transformed higher-priority uniprocessor

periodic tasks then determines the schedulability of the former in the original distributed system.

The source of pessimism arises due to the fact that once all tasks have been reduced to a single periodic

uniprocessor task set, uniprocessor analysis assumes that these tasks execute together “all the time”, whereas

in fact they may share a machine only for part of their execution in the original distributed system. Hence,

the number of interfering invocations of higher-priority tasks may be overestimated.

We address the pessimism in current reduction-based schedulability analysis techniques by introducing

flow-based mode changes , a novel model for uniprocessor workloads featuring mode changes that mimic

what happens when a distributed task moves from one processor to another in a distributed system. A key

distinction of our model as compared to the classical literature on mode changes, such as [81, 88, 78, 74], is

that we do not precisely know when the mode changes will occur, as we do not know when exactly the task

changes machines. However, we have constraints on mode change timing that stem from bounds on task

delays on different machines. Therefore, the problem is one of estimating the response time of a task for the
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worst-case scenario of mode changes subject to new mode change constraints.

We present an iterative solution to solve the above problem, providing significantly tighter estimates

on the number of higher priority task invocations that delay the task under consideration. The solution

converges to a delay bound that never underestimates the worst-case delay of the corresponding task in the

distributed system. Our simulations demonstrate that the presented analysis provides an improvement in

performance of over 25% compared to existing techniques, in terms of admissible utilization.

The rest of the chapter is organized as follows. In Section 7.1, we describe the new multi-modal uniproces-

sor system model proposed. We present an iterative solution to determine the response time of a task under

consideration in such a system in Section 7.2. In Section 7.3, we show the reduction of a distributed system

to such a multi-modal uniprocessor system for the purpose of schedulability analysis. We also present an ex-

ample to illustrate the advantage of the proposed solution over previous reduction based analysis techniques

for distributed systems. We evaluate the technique through simulation in Section 7.4.

7.1 Multi-Modal Uniprocessor System Model

In this section, we present the new multi-modal uniprocessor system model of interest in this work. This

model is motivated by the needs of reduction-based schedulability analysis in distributed systems. It is thus

important to first highlight the relation between distributed task execution models and the model below.

Reduction-based schedulability analysis addresses scenarios where tasks execute on a sequence of ma-

chines in a distributed system and must each finish within its end-to-end deadline. Consider a distributed

system, running fixed priority scheduling, where tasks T1, T2, . . . , Tm, are executed, indexed in decreasing

priority order. Task Ti executes on a sequence of ni machines. It therefore comprises of a sequence of ni

jobs Ti,1, Ti,2, . . . , Ti,ni
, each running on the corresponding machine. Job Ti,j+1 becomes ready to execute as

soon as Ti,j completes execution, at which point task Ti is said to have switched to the next machine on its

path. The model fits a pipelined execution scenario, where a task is broken up into a number of sequential

stages that must execute in some given order.

It is now possible to plot the execution of task Ti from its entry to the system to its exit from the system

on a single time line. This time line will comprise one busy period (i.e., a period with no idle time) composed

of intervals when the task was delayed or preempted by others on some machine as well as intervals where

it was executing. The finish time of each job Ti,j in that time line corresponds to a time when Ti switches

machines and starts competing with a different task set. Assume we are able to accurately bound the delay

that each invocation of a higher priority task Tj, j < i, imposes on Ti in that time line (which is what

reduction-based schedulability analysis literature does). One will then need only to bound the maximum
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number of invocations of each Tj that may delay Ti in order to bound Ti’s end-to-end response time. This is

not straightforward, however, because Ti competes with potentially different subsets of higher priority tasks

on each machine, and the exact times it changes machines are not known accurately as they depend on the

relative timing of task arrivals. To bound the delay of Ti, schedulability analysis of this time line can then

benefit from a uniprocessor model where “mode changes” occur at Ti,j’s completion times. The objective of

that model is to come up with the worst-case timing for “more changes” that maximize Ti’s response time

(e.g., letting Ti spend longer on machines with heavier load).

Note that, the above maximization problem does not simply amount to the sum of Ti’s worst-case response

times on each machine. This would be needlessly pessimistic. For example, if Ti and the higher-priority

tasks followed the same path, arriving at the first machine together (a worst-case arrival scenario on the first

machine), then they will arrive to the next machine staggered by their execution times on the first (which is

not a worst-case arrival scenario). Below, we present a multi-modal uniprocessor model that achieves a much

tighter response-time bound, and then describe how it can be used for analysis of distributed workloads.

Consider a uniprocessor that uses fixed priority preemptive scheduling. We consider a set of m tasks

T ∗
1 , T ∗

2 , . . . , T ∗
m, in decreasing priority order. Task T ∗

m, the lowest priority task whose worst-case response

time we wish to estimate, comprises of a sequence of n jobs T ∗
m,1, T

∗
m,2, . . . , T

∗
m,n, with computation times

C∗
m,1, C

∗
m,2, . . . , C

∗
m,n, respectively. The jobs are such that T ∗

m,j+1 is ready to execute as soon as T ∗
m,j

completes execution, for 1 ≤ j ≤ n − 1. Job T ∗
m,1 is ready to execute at time zero. The time instant of

completion of each of the jobs T ∗
m,j denotes a mode change in the system, where one of the other m−1 tasks

may arrive or leave the system. Tasks T ∗
i , i ≤ m−1 are periodic tasks with period Pi and computation time

C∗
i . Each task T ∗

i arrives at the system at either time zero, or during one of the mode changes in the system

(time instants of completion of T ∗
m,j, for some j < n), and leaves the system at one of the mode changes or

when T ∗
m,n completes execution. Thus, each periodic task executes during some consecutive subset of modes

in the system and does not undergo any change within this subset of modes until it leaves the system. The

subset of modes in which a task executes is assumed to be known. Hence, during each mode modej , j ≤ n

of execution, some pre-defined subset of periodic tasks Lj is present in the system.

We assume that task preemptions and mode changes are instantaneous. We also assume that the cumu-

lative utilization of all the tasks executing during any mode is at most 100%. The objective is to estimate a

worst-case bound on the response time of T ∗
m,n starting from time zero, over all possible scenarios of mode

changes. Note that, unlike traditional multi-modal analysis, we are not interested in the schedulability of

all tasks in the system, but are interested only in that of T ∗
m,n. As each task in the distributed system could

have a different worst-case scenario, the analysis is conducted one task at a time and a different multi-modal
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uniprocessor system is constructed and analyzed each time. We later show in Section 7.3, how a distributed

task set can be reduced to such a multi-modal uniprocessor, and how the computed bound for T ∗
m,n also

bounds the end-to-end delay of the corresponding task in the distributed system.

7.2 Schedulability Analysis

In Section 7.2.1, we present an algorithm to determine the worst-case response time of T ∗
m in the multi-modal

uniprocessor system (we use T ∗
m and T ∗

m,n interchangeably to denote the entire task invocation or its last

stage when analyzing completion time). We illustrate the algorithm using an example in Section 7.2.2. We

comment on the time complexity of the algorithm in Section 7.2.3.

7.2.1 Algorithm Description

Consider Figure 7.1 that demonstrates the execution of task T ∗
m, the (yet to be determined) instances of

mode changes, and the arrival and departure of higher priority tasks. The completion of the sub-task T ∗
m,j

denotes the completion of modej , for each j. Let the set of tasks that execute in modej be denoted by Lj .

T
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Figure 7.1: Example demonstrating the instants of mode changes and the arrival and departure of higher
priority tasks

Let RT (s, s + q), s ≥ 0, q ≥ 1, denote the maximum possible duration between the completion of modes

and the completion of modes+q. For notational simplicity, we consider time zero (the arrival of task T ∗
m) to

be the “completion” of a fictional mode0. Therefore, we are interested in computing RT (0, n), which denotes

the worst-case response time of T ∗
m,n.

Given the set of tasks Ls that execute at each mode modes, we can apply response time analysis [8]

to compute the maximum response time, RT (s, s + 1) for each mode taken independently. Adding up

these worst-case single-mode response times for s = 0, ..., n− 1 would give us an upper bound on RT (0, n).

However, such an upper bound will be unduly pessimistic. To appreciate the reason for pessimism, consider

a task T ∗
i that executes in modes modes and modes+1 (e.g., task T ∗

3 in Figure 7.1 that executes in mode3

and mode4). Let the period of T ∗
i be larger than the total length of the two modes combined (remember
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that the end of each modes is defined as the instant when T ∗
m,s ends, and hence is not necessarily aligned

with periods of other tasks). Since there can only be one invocation of T ∗
i in each period, this invocation

will execute either in modes or modes+1 but not both. The worst-case response time computed for each

mode separately will have to account for this invocation of T ∗
i . However, adding these worst-case response

times will erroneously double-count this invocation. Hence, in general:

RT (s, s + 2) ≤ RT (s, s + 1) + RT (s + 1, s + 2)

In order to compute a less pessimistic estimate, RT (0, n), of the worst-case completion time of T ∗
m, we cast

the problem as one of dynamic programming, as shown in Table 7.1. In this table, the first column computes

the worst-case single-mode durations, RT (s, s + 1). The qth column computes the worst-case durations of

all possible sequences of q consecutive modes, RT (s, s + q), using data from the previous columns, while

avoiding double-counting as we shall explain shortly. Observe that there are n − q + 1 rows in column q.

The last column yields RT (0, n), which is the solution to our problem.

1 2 . q . n
RT(0,1) RT(0,2) . RT(0,q) . RT(0,n)
RT(1,2) RT(1,3) . RT(1,q+1) .
RT(2,3) RT(2,4) . RT(2,q+2) .

. . .

. . RT(n-q,n)

. .
RT(n-2,n-1) RT(n-2,n)
RT(n-1,n)

Table 7.1: Table illustrating the values computed using dynamic programming

Trivially, the first column can be computed from response time analysis [8], as follows:

RT (s, s + 1) = C∗
m,s+1 +

∑

T∗

i ∈Ls+1

⌈RT (s, s + 1)

Pi

⌉

C∗
i

The above equation assumes that all higher-priority tasks are strictly periodic. Hence, in an interval of

length t, there can be at most ⌈t/Pi⌉ invocations of task T ∗
i . According to reduction-based schedulability

analysis [38, 42, 43], the uniprocessor tasks that result from reduction of distributed systems are strictly

periodic if they arrive strictly periodically to the first shared stage with Tm (whose schedulability is being

analyzed). In general, task T ∗
i may have jitter Ji defined as the worst-case delay in its arrival time past

the nominal beginning of its period. Thus, during a time interval, t, there may be as many as ⌈(t + Ji)/Pi⌉

invocations, as shown in Figure 7.2.

The maximum response time (i.e., the content of the first column of Table 7.1) is therefore more generally
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(a)

Any interval of length t can have
ceil(t/Pi) invocations

(b)

Any interval of length t can have
ceil((t+Ji)/Pi) invocationst

tPi
Ji

Figure 7.2: (a) System without jitter, (b) System with jitter

written as:

RT (s, s + 1) = C∗
m,s+1 +

∑

T∗

i ∈Ls+1

⌈RT (s, s + 1) + Ji

Pi

⌉

C∗
i

Each subsequent column q in the dynamic programming table is computed from:

RT (s, s + q) =
∑

s<j≤s+q

C∗
m,j +

∑

T∗

i

⌈RT (ini, outi) + Ji

Pi

⌉

C∗
i

where ini is the larger of s and the mode after which task T ∗
i enters the system, and outi is the lower of s+ q

and the mode after which T ∗
i exits. In other words, for each task T ∗

i , we compute the maximum number

of invocations that can potentially delay T ∗
m between (the ends of) modes and modes+q. Note that, since

ini ≥ s and outi ≤ s + q, as defined above, all terms RT (ini, outi) will have been computed from previous

iterations, except the term RT (s, s+ q), leaving the above equation a function of RT (s, s+ q) on both sides,

which can be solved recursively. When the dynamic programming algorithm terminates (at q = n), RT (0, n)

is returned as the final answer.

We summarize the algorithm in Figure 7.3. Let arri denote the mode after which T ∗
i enters the system

and executes together with T ∗
m, and leavei denote the mode after which T ∗

i leaves the system. In step 1

of the algorithm, we consider each mode independently and apply response time analysis to determine the

maximum duration of each mode. In step 2, we consider q consecutive modes taken together, for increasing

values of q, and determine the maximum duration of RT (s, s + q) for all s ≤ n − q, given the values of

RT (in, out), for all out− in < q. Finally, the value RT (0, n) computes the worst-case response time of T ∗
m,n.

The correctness of the algorithm follows trivially from the fact that Equation (1) and Equation (2) never

underestimate the number of invocations of higher-priority tasks that preempt T ∗
m in the time intervals under

consideration, and hence never underestimate the computed time intervals, including the solution RT (0, n).

7.2.2 Example to Illustrate the Algorithm

We now illustrate the above algorithm using a simple example. Consider a uniprocessor system with flow-

based mode changes. Let the system have 5 modes and 7 periodic tasks T1, T2, . . . , T7, in decreasing priority

order (the corresponding distributed system is shown in Figure 7.4. We are interested in computing the
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Algorithm

1 For s = 0 to n − 1

1.1 Set RT (s, s + 1)(0) = C∗
m,s+1, k = 0

1.2 Repeat: Increment k

RT (s, s + 1)(k) = C∗
m,s+1 +

∑

T∗

i ∈Ls+1

⌈RT (s, s + 1)(k−1) + Ji

Pi

⌉

C∗
i (7.1)

Until RT (s, s + 1)(k) = RT (s, s + 1)(k−1)

1.3 Let RT (s, s + 1) = RT (s, s + 1)(k)

2 For q = 2 to n

2.1 For s = 0 to n − q

2.2 Set RT (s, s + q)(0) =
∑

s<j≤s+q C∗
m,j , k = 0

2.3 Repeat: Increment k

RT (s, s + q)(k) =
∑

s<j≤s+q

C∗
m,j +

∑

T∗

i

⌈RT (ini, outi) + Ji

Pi

⌉

C∗
i , (7.2)

where ini = max(s, arri), and outi = min(s + q, leavei)
Until RT (s, s + q)(k) = RT (s, s + q)(k−1)

2.4 Let RT (s, s + q) = RT (s, s + q)(k)

End for

End for
3 Return RT (0, n)

Figure 7.3: Algorithm for analysis of a uniprocessor with flow-based mode changes

response time of the lowest priority task T7. Tasks T6 and T7 operate during all modes. Tasks T1, T2, . . . , T5,

each execute at one of the 5 modes. In particular, modej , 1 ≤ j ≤ 5, has tasks Tj , T6, and T7. For simplicity,

let us assume that all tasks are strictly periodic and have no input jitter. Let all the higher priority tasks,

T1, T2, . . . , T6, have a unit execution time per period, and let T7 have an execution time of 0.5 in each mode.

Let the period (equal to the deadline) of T6 be 100 units, T7 be 200 units, and T1, T2, . . . , T5 be 5 units. The

above task set is summarized in the table below.

Task Ci Pi Mode
T1 1 5 1
T2 1 5 2
T3 1 5 3
T4 1 5 4
T5 1 5 5
T6 1 100 All
T7 0.5/mode 200 All

Table 7.2: An example task set

We first compute RT (s, s + 1), for every s, using response time analysis. We obtain RT (s, s + 1) = 2.5,
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Figure 7.4: Example system

for every s, as 2.5 = 0.5 + ⌈2.5/5⌉ + ⌈2.5/100⌉. Next, we consider two consecutive modes taken together.

For every s:

RT (s, s+2) = 0.5 + 0.5 +
⌈2.5

5

⌉

+
⌈2.5

5

⌉

+
⌈RT (s, s+2)

100

⌉

Solving, we get RT (s, s + 2) = 4. Similarly:

RT (s, s + 3) = 0.5 + 0.5 + 0.5 +
⌈2.5

5

⌉

+
⌈2.5

5

⌉

+
⌈2.5

5

⌉

+
⌈RT (s, s + 3)

100

⌉

Solving, we get RT (s, s + 3) = 5.5. Proceeding similarly, we obtain RT (s, s + 4) = 7, and RT (0, 5) = 8.5.

Therefore, the end-to-end response time of T7 is computed as 8.5. In this simple example, the bound is

tight. Indeed, T7 has a total execution time of 2.5 over the five modes, and can be preempted by at most

one invocation of each higher-priority task (of 1 unit of execution time each). This adds up to 8.5 units. In

general, our bound is not tight. Pessimistic estimates are possible.

7.2.3 Time Complexity of the Algorithm

The time complexity of the algorithm is certainly pseudo-polynomial. For an n stage pipeline, the number

of RT (in, out) terms that need to be computed is n+(n−1)+(n−2)+ . . .+1 = n(n−1)/2, with each term

requiring a recursive computation until convergence. This is the price we pay for the improved accuracy in

determining the end-to-end response time of tasks. However, it must be noted that the iterative algorithm

needs to be executed for only one equivalent hypothetical uniprocessor, unlike techniques such as [93, 23] that

attempt to construct the entire schedule for all the stages in the distributed system, in order to determine

the worst-case end-to-end response time.

7.3 End-to-End Delay Analysis of Distributed Tasks

In this section, we show how the end-to-end delay analysis of a distributed task can be reduced to that of

analyzing a hypothetical multi-modal uniprocessor, modeled in Section 7.1. First, in Section 7.3.1, we briefly

describe the distributed task model considered in this work. We present the transformation and show how
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it works in Section 7.3.2.

7.3.1 Distributed System Model

The distributed system model considered in this work is similar to the model assumed in [43], and we

describe it briefly here for convenience. The system running fixed priority preemptive scheduling, consists

of N resource nodes S1, S2, . . . , SN , and a set of M periodic tasks, T1, T2, . . . , TM , ordered by decreasing

priority. Each task requires service at some sequence of resources and must complete execution on all

resources before a pre-specified end-to-end deadline. Task paths can be cyclic, that is, a task can revisit a

resource multiple times before leaving the system.

T ’s flow path
i

T  ’s flow path
m

T i
1

T i
2

T i
4

T i
2

Relax precedence 
constraints

between segments

T i
3

(a) (b)

Figure 7.5: (a) Example system showing tasks Ti and TM , (b) After relaxing constraints between different
segments of Ti

Let TM be the task whose end-to-end delay is to be estimated. Note that, a task Ti can delay TM only

along execution nodes it shares in common with TM . As in Chapter 5, we define a task segment T x
i as Ti’s

execution on a sequence of consecutive nodes along its path that is also traversed by TM either in the same

order or exactly in reverse order. We ignore the precedence constraints between different segments of each

higher priority task Ti, and consider each segment as an independent task. This procedure is illustrated in

Figure 7.5.

Let Ci,j denote the worst-case execution time of an invocation of Ti on stage j, and let Di and Pi

denote the end-to-end deadline and invocation period of Ti, respectively. Let Ci,max denote the maximum

computation time of Ti across all the stages on which it executes, and let Nodej,max denote the maximum

computation time over all tasks that execute on stage j. We assume that Di ≤ Pi, for all i.

7.3.2 Distributed System Transformation to an Equivalent Uniprocessor with

Mode Changes

As mentioned in Section 7.3.1, we consider each higher priority task segment as independent. After relaxing

the precedence constraints, the system can now be thought of as having an arbitrary set of m − 1 higher

priority tasks (m ≥ M , as we are breaking each task into multiple independent task segments), each executing
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on a sequence of consecutive common stages with the lowest priority task Tm, whose worst case end-to-end

delay is to be estimated. According to the delay composition theorem, each higher priority task segment T x
i

contributes a delay of at most twice its maximum stage computation time, i.e., 2Ci,max to the end-to-end

delay of Tm. Apart from the per-task delay, Tm also experiences a delay component that is additive across

the stages on which it executes. For each stage on which it executes, it experiences a delay that is bounded

by the maximum computation time of any task on that stage, namely Nodej,max. Let Segi denote the set

of all task segments of task Ti. The end-to-end delay of a job Jm is bounded as:

Delay(Jm) ≤
∑

i

∑

Jx
i ∈Segi

2Cx
i,max +

∑

j∈pm

Nodej,max (7.3)

Let n denote the number of stages in the path of Tm. For simplicity, we renumber the stages on which Tm

executes as S1, S2, . . . , Sn. The reduction of the distributed system to a multi-modal uniprocessor system is

conducted as follows:

• Corresponding to each of the stages on which Tm executes, we create a sequence of n jobs T ∗
m,1, T

∗
m,2, . . . ,

T ∗
m,n on the uniprocessor with the same priority as Tm, with computation times equal to Nodej,max,

for j ≤ n − 1, and equal to Cm,max, for the nth stage. T ∗
m,j is ready to execute on the uniprocessor

right when T ∗
m,j−1 completes execution, for j ≥ 2. T ∗

m,1 is ready to execute at time zero.

• Corresponding to each higher priority task Ti that executes between stages Sj and Sk, we create a

uniprocessor task T ∗
i with the same priority and period as Ti, and with computation time equal to

2Ci,max, which is twice the maximum stage computation time of Ti. T ∗
i is ready to execute when

T ∗
m,j−1 completes execution (or at time zero if j = 1) and is removed from the uniprocessor system

when T ∗
m,k completes execution.

Thus, time instants where T ∗
m,j, j < n, complete execution, act as instants of mode change in the system.

A set of tasks may leave the system at this instant, and a new set of tasks may enter. Let Lj denote the set

of higher priority tasks that execute together with T ∗
m,j on the uniprocessor during modej (these are the set

of tasks that execute together with Tm on stage Sj in the distributed system). From when the system starts

execution at time zero, we are interested in the worst case time at which T ∗
m,n completes execution. We

presented an iterative solution that was shown to converge to an upper bound on the worst-case response

time of T ∗
m,n, in Section 7.2. We shall now show that this indeed provides an upper bound to the worst-case

end-to-end delay of Tm in the distributed system.

According to the delay composition theorem, Tm experiences a delay component of Nodej,max, the

maximum computation time of any task on stage j, for each stage on which it executes. Further, in addition
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to this stage-additive component, each invocation of a higher priority task segment Ti delays Tm by at

most twice its maximum stage computation time, i.e., 2Ci,max. Observe that, invocations of Ti can delay

Tm only on stages where both Ti and Tm execute. Corresponding to the stage-additive component of the

Tm’s delay, each mode in the uniprocessor concludes with the execution of the lowest priority task in the

mode, namely T ∗
m,j, with computation time Nodej,max. Each of the busy execution intervals Ij of Tm (for

stage j) consists of a set of higher priority task executions. The set of higher priority tasks that execute

on stage j in the distributed system is the same as Lj on the uniprocessor. The duration of higher priority

executions on Ij is upper bounded by the executions of tasks in Lj on the uniprocessor. We therefore have,

RT (0, j) ≥
∑

k≤j length(Ik), for all j ≥ 1. The worst-case response time of T ∗
m,n on the uniprocessor, thus

provides an upper bound on the worst-case end-to-end delay of Tm.

7.3.3 An Example

In this section, we illustrate the advantage of using the analysis presented in this chapter over previous

reduction based analysis techniques, using an example. By reducing the distributed system to a single static

set of periodic tasks on the uniprocessor, our earlier analysis assumed that each higher priority periodic

task interferes with a lower priority task throughout its execution. However, in the original distributed

system, they interfere only at stages where both tasks execute together. Thus, for the case of periodic tasks,

this reduction is pessimistic as it does not take into account the set of stages where a task Ti can delay

Tm. Therefore, by modeling stage transitions of a task in the distributed system as mode changes in the

equivalent uniprocessor, we enhance the system model with information regarding when each higher priority

task Ti interferes with a lower priority task Tm under consideration.
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Figure 7.6: Example system

For instance, consider the example system shown in Figure 7.6. It consists of five resource stages S1..S5

and three tasks T1..T3 in decreasing priority order. T1 executes on S1 and S2, T2 executes on S3 and S4,

and T3 executes on all five stages. For simplicity, let us assume that the computation times of all tasks on

all stages is equal to one time unit, and the end-to-end deadline of all tasks is equal to their period. Let

T1’s period (same as its deadline) be 5 time units, that of T2 be 10 time units, and that of T3 be 12 time

units. According to the reduction presented in [43], T ∗
3 has a computation time of 5 units, and T ∗

1 and T ∗
2
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have a computation time of 2 units. T ∗
1 has a period of 5 units, and all invocations of T ∗

1 that arrive before

T ∗
3 completes execution of 5 time units, delay T ∗

3 in the uniprocessor.
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Figure 7.7: (a) Worst-case execution on S1 and S2 in distributed system, (b) 3 invocations of T ∗
1 delay T ∗

3

on the uniprocessor

As T1 and T3 are the only tasks that execute on S1 and S2 in the distributed system, T3 will complete

execution on stage S2 no later than 4 time units (2 for executing T1 and 2 for executing T3) after T3 arrives

at stage S1. Thus, at most one invocation of T1 may delay T3 in the distributed system. This is shown in

Figure 7.7(a). In contrast, in the hypothetical uniprocessor, in fact, 3 invocations of T ∗
1 are accounted as

delaying T ∗
3 , thus significantly overestimating the worst-case delay (see Figure 7.7(b)). Using the analysis

presented in this chapter, T ∗
1 leaves the system after mode2. The worst case response times of mode1 and

mode2 taken independently, namely RT (0, 1) and RT (1, 2) are first calculated as 3 time units each. Next,

RT (0, 2) is calculated as 1 + 1 + 2⌈RT (0, 2)/5⌉ = 4 time units. By accurately estimating the maximum

duration for which T ∗
1 executes together with T ∗

3 , only one invocation of T ∗
1 is accounted for as delaying T ∗

3 .

7.4 Evaluation

In this section, we evaluate the performance of the end-to-end delay analysis technique for distributed

systems proposed in this chapter. We compare with three other existing analysis techniques, namely, holistic

analysis [89], network calculus [18, 19], and the meta-schedulability test presented in Chapter 5. The response

time analysis technique presented in [8], is used as the uniprocessor test for the meta-schedulability test.

We use a custom-built simulator with an admission controller for each of the four schedulability analysis

techniques.

We consider an acyclic distributed system consisting of N resource stages. As we are interested in the

performance of large systems, the default value of N is assumed to be 20. We assume periodic tasks scheduled

using a deadline monotonic scheduling policy. Simulation parameters are chosen similar to previous chapters.
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The default value of node probability parameter, node prob, is 0.8. The default value of the deadline ratio

parameter, DR, is 2.0. We used a value of T = 1/20 for the task resolution parameter. In this evaluation,

we assume that the initial jitter for all tasks is taken to be zero.

Each point presented in the figures below are average values obtained from 100 executions, with each

execution running for 80000 task invocations. In order to ensure that the comparison is fair, the admission

controllers for each of the four schedulability analysis techniques are allowed to run on the same 100 task

sets. The 95% confidence interval of the values presented are within 1% of the mean, and are not shown in

the figures for the sake of legibility.
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Figure 7.8: Comparison of average per stage utiliza-
tion for different number of stages in the system
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Figure 7.9: Comparison of average per stage utiliza-
tion for different probabilities of node being part of
a task’s route

First we compare the four schedulability tests for the admissible utilization for different number of nodes

in the system, the results of which are shown in Figure 7.8. We consider system sizes ranging from 5 nodes

to 25 nodes. Both network calculus and holistic analysis perform poorly when the system size increases, and

the drop in their admissible utilization is steeper than for the meta-schedulability test and the multi-modal

analysis presented in this chapter. We note that for small system sizes (up to 10 nodes), holistic analysis

in fact, performs better than the multi-modal analysis. The reduction from the distributed system to the

multi-modal uniprocessor assumes that each higher priority task invocation delays the lowest priority task at

two stages (according to the delay composition theorem). However, not all higher priority task invocations

interfere at two stages, and some cause a delay less than what is quantified by the delay composition theorem

as the worst-case. For small system sizes, holistic analysis is able to determine the number of invocations of

higher priority tasks that delay the lowest priority task under consideration more accurately. However, for

large systems (more than 15 nodes), holistic analysis becomes extremely pessimistic and the multi-modal

analysis performs better. The multi-modal analysis is able to admit about 25% more tasks than the next

best analysis technique for large systems.
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We next varied the probability with which a node is chosen to be part of a task’s route (the value

node prob), and present the results in Figure 7.9. As the value of node prob increases, task routes become

longer, and both holistic analysis and network calculus become more pessimistic and their admissible utiliza-

tion drops. The meta-schedulability test and its extension presented in this chapter perform well for tasks

with long routes, as the number of precedence constraints between successive stages of tasks that are relaxed

become lower. For tasks with short routes, a larger fraction of the total number of constraints are relaxed

leading to poorer performance. Thus, for both these tests, it is the fraction of precedence constraints that

are relaxed that affects performance and not the length of task routes, unlike holistic analysis and network

calculus. Further, when the node prob value is small and tasks have short routes through the system, the

problem with the meta-schedulability test explained in Section 7.3.3 becomes exacerbated. Higher priority

periodic tasks delay a lower priority task only at a few stages. However, in the hypothetical uniprocessor

system, the corresponding tasks are assumed to delay the lower priority task throughout its execution. This

problem is overcome by the multi-modal uniprocessor model presented in this chapter. In fact, for short

task routes, the extension allows almost twice as many tasks to be admitted as compared to the meta-

schedulability test. For strict pipelines (a node prob value of 1), the analysis in this chapter admits more

than twice as many tasks as holistic analysis or network calculus admits. The test accurately estimates the

parallelism in the execution of successive stages in the pipelined distributed system, and is able to perform

significantly better than holistic analysis.
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Figure 7.10: Comparison of average per stage uti-
lization for different deadline ratio parameter values
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Figure 7.11: Comparison of average per stage uti-
lization for different ratios of task periods to end-to-
end deadlines

Next, we compare the schedulability tests for different deadline ratio parameter values. For small values

of DR, the computation times of all the tasks are comparable. For larger values of DR (closer to 3), the

computation times of tasks are widely varying and lower priority tasks manage to execute in the background

of higher priority tasks. This allows busy periods to be longer and the utilization of the system to be higher
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for all the schedulability tests. The analysis presented in this work achieves an increase of 20-50%, compared

to the admissible utilization using holistic analysis.

All the experiments conducted so far assumed that the task periods are equal to their end-to-end deadline.

We allowed the end-to-end deadlines to be progressively tighter and considered ratios of task periods to end-

to-end deadlines to be 1.33, 1.5, 2.0, and 2.5, while keeping the task periods the same. As expected the

admissible utilization of all the four analysis techniques dropped with increasing ratio values (decreasing

end-to-end deadlines). Yet, the multi-modal analysis significantly outperforms existing analysis techniques

for all values of the ratio of task periods to end-to-end deadlines.
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Figure 7.12: Comparison of average per stage utilization for different task resolution parameter values

Finally, we conducted experiments that varied the task resolution parameter values, that is, the ratio of

the computation times of tasks to their end-to-end deadline. The average per stage utilization for the four

admission control tests for task resolution parameter values of 1/20, 1/40, 1/60, 1/80, and 1/100 are shown

in Figure 7.12 (note that the x-axis shows 1/task resolution). The task resolution parameter does not affect

the performance of the various tests, showing that the tests are not sensitive to the size of the tasks. This

is due to the preemptive nature of scheduling. A task resolution parameter of 1/100 would approximately

have five times as many tasks admitted as a task resolution parameter of 1/20, but each task would be five

times smaller in terms of computation time, overall resulting in approximately the same interference to the

lowest priority task.
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Chapter 8

Structural Robustness of Distributed

Real-Time Systems Towards

Uncertainties in Service Times

With applications becoming more complex and requiring larger system capacity to function, the emphasis

is shifting towards increasing distribution. Real-time applications are growing in scale, both in terms of the

number of tasks involved as well as the number of resources. Such large and complex distributed systems

typically execute soft real-time applications, where there is significant uncertainty in the execution times

of tasks on individual resources, or the worst-case timing is not entirely verified. An extremely important

problem in such systems with uncertainties in the worst-case execution times of tasks, is how do we optimize

the allocation of resources to individual execution stages of tasks (the topology of the system) to minimize

the effect that the uncertainties have on the end-to-end delay of tasks. The problem applies to systems where

tasks are described as flow paths with end-to-end time constraints. Each flow path is made of sub-tasks

called stages with presumed per-stage worst-case computation times, that can potentially be violated.

Towards addressing this problem, in this chapter, we define a metric called structural robustness that

measures the robustness of the end-to-end timing behavior of a system’s task flow graph towards unexpected

violations in the worst-case application execution times on individual resources. We demonstrate that by

efficiently allocating resources to execution stages of end-to-end tasks, the flow paths of tasks can be opti-

mized to improve the system’s structural robustness. Given a particular system configuration, the structural

robustness metric computes a notion of end-to-end weighted task lateness with respect to individual worst-

case execution times of tasks on stages. We also present a simple hill climbing algorithm that can be used

to explore the space of all system configurations to determine a highly robust configuration. We show using

simulations that this algorithm is able to reduce the number of deadline misses by over 50% by finding robust

system configurations in the presence of unexpected execution time violations.

Our algorithm to improve the structural robustness of systems builds on our delay composition results

derived in earlier chapters, which show that not all executions of tasks on individual stages affect the worst-

case end-to-end delays of tasks. By altering the topology of the system, we reduce the number of stage

executions of tasks that affect the end-to-end delay of other tasks in the system, thereby reducing the

sensitivity of the end-to-end delays of tasks to individual task executions on stages.
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There may be several reasons for unanticipated variations in application execution times on individual

stages. First, in applications such as automobile systems, it is extremely difficult to accurately determine

the worst-case execution times of tasks, especially early in the design life cycle, and there could be errors

in estimation. Second, in settings such as wireless networks, variations in link quality and interference

effects could significantly impact the worst-case packet transfer times (execution times). Third, in many

systems, the worst-case execution times could be significantly higher than the most common case and may

occur extremely rarely (possibly due to faults within the system). For such systems, in order to improve

performance it might be more prudent to consider lower, more common estimates of the execution times for

end-to-end delay calculations, and have mechanisms to cope with uncertainties in the execution times.

The rest of the chapter is organized as follows. In Section 8.1, we formally define the structural robustness

metric. We describe the system model in Section 8.2. We provide an overview and intuition for how we

optimize the system topology using the structural robustness metric in Section 8.3. In Section 8.4, we

describe how the structural robustness metric is calculated, and how it can be easily recomputed for a single

change in the system configuration. We also describe the hill climbing algorithm to improve the robustness

of a given system towards unanticipated violations in the worst-case stage execution times of tasks. We

evaluate our proposed technique using simulations in Section 8.5.

8.1 Structural Robustness

The robustness of a system is mainly affected by the degree of interactive complexity between tasks in

the system. In order to measure the structural robustness of a system, we seek to quantify the degree of

interactive complexity between tasks. As we are interested in ensuring that end-to-end timing constraints of

tasks are not violated, we specifically study the complexity of temporal interactions within the system. In

other words, we are interested in estimating the extent to which task execution times on individual stages

affect the worst-case end-to-end delays of tasks.

We consider systems with tasks described as flow paths (a path may consist of just one resource). Tasks

require execution at a sequence of resources along its path (each called a stage execution) and the end-to-

end execution must complete within certain pre-specified time constraints. Resources may be complex and

represent entire subsystems. Each stage execution of a task consists of the task’s execution on one such

resource. We assume that the worst-case extent to which the execution of task i on resource j affects the

end-to-end delay of any task in the system is known as Xi,j . The worst-case delay Xi,j is a function of the

worst-case execution time Ci,j of task i on resource j, and will depend on how the resource is scheduled. For

instance, when the resource consists of only one resource scheduled in priority order, Xi,j may be equal to
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Ci,j . If the resource serves tasks based on a TDMA schedule, then Xi,j may be larger than Ci,j , as it may

take several TDMA cycles before the execution of task i completes on the resource j. If parallelism exists

in the execution of tasks within the resource, Xi,j may be lesser than Ci,j . Further, it is possible for these

worst-case delay estimates to be violated. Let the number of resources in the system be N , and the number

of tasks be M . Let Qk denote the set of tuples (i, j), such that an infinitesimal increase in the worst-case

execution time of task i on resource j would result in the worst-case end-to-end delay of task k to increase

(task i can be the same as task k).

In order to determine a single structural robustness metric for the entire system, we first estimate

the extent of temporal interactions within the system. This is estimated by computing the effect that a

particular stage execution of a task i has on the worst-case end-to-end delay of a task k, Xi,j , weighted by

the importance of task k, and accumulated across all tasks i and k. Although two tasks i and k both execute

at a resource, it is possible that they do not affect each other’s worst-case end-to-end delays. As we are

interested in the extent of temporal interactions within the system, we normalize the above computed value

with respect to the product of the total of all Xi,j ’s and the total of all I(k)’s of tasks. As a larger value

for the extent of temporal interactions within the system reflects a lower level of robustness, we compute

the structural robustness metric by considering one minus the above normalized value. We formally define

structural robustness as follows:

Definition: Given an importance vector I that denotes the relative importance of a task with respect to

other tasks in the system, the structural robustness of a particular system’s task flow graph is defined as:

ω = 1 −

∑

k≤M

∑

(i,j)∈Qk
Xi,jI(k)

∑

k≤M I(k)
∑

(i,j) Xi,j
(8.1)

Let us take a closer look at the structural robustness metric defined in Equation 8.1. Note that, the

definition of structural robustness is particularly concerned with task executions on individual stages that

contribute towards the worst-case end-to-end delays of other tasks. Individual stage executions of tasks that

affect the worst-case end-to-end delays of a larger number of tasks or those that affect more important tasks

are weighted more. For instance, a stage execution of a task A that affects the worst-case end-to-end delay

of one other task, contributes less towards reducing the structural robustness of the system than a stage

execution of a task B that affects several other tasks. Further, a stage execution of a task A that affects

the worst-case end-to-end delay of another task by X , contributes less towards reducing the structural

robustness of the system than a stage execution of a task B that affects another task by, say 10X (the

temporal interaction is more due to task B than due to task A in both instances). This explains why the

metric accumulates the effect that stage executions have on the end-to-end delays of other tasks.
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The importance vector is specified by the application and reflects whether missing a deadline for one task

is more tolerable than missing a deadline for another task. For instance, for tasks that are homogeneous, a

simple importance vector could be to assign an equal importance to all the tasks (a value of 1 for each entry

of the vector). Alternatively, the importance of each task could be assigned to be inversely proportional to

its deadline. In essence, the value associated to each task reflects its importance towards the application’s

correctness and performance.

The problem we address in this chapter is to assign tasks to resources so as to maximize the above defined

structural robustness metric. Such an optimized system would be less sensitive to unanticipated delays in

particular stage executions of tasks and would minimize the number of deadline misses, as it reduces the

extent of temporal interactions within the system. In Section 8.2, we define the particular system model we

consider in this chapter. We envision that future work will enhance the scope of systems that are optimized

for structural robustness to unanticipated delays in stage execution times.

8.2 System Model

We consider a distributed system comprising of N different kinds of resources, R1, R2, . . . , RN . Each resource

Ri has ri ≥ 1 identical instances of the resource available within the system. A resource can be anything

that serves tasks in a fixed priority preemptive scheduling order (e.g., processor, communication link). Let

Ntot denote the total number of all instances of resources present in the system, and let the instances be

arbitrarily named S1, S2, . . . , SNtot
. The system serves M end-to-end soft real-time tasks, T1, T2, . . . , TM ,

ordered by decreasing priority. Each task Ti requires execution on a pre-specified sequence of resources and

must complete execution on all resources before a pre-specified end-to-end deadline. The relative priority

of each task remains the same across all the resources on which it executes. When multiple instances of

a resource are available, any one of the instances can be assigned to serve a task requesting that resource.

Each resource instance at which a task executes is referred to as a stage. For ease of exposition, we assume

that the union of all task paths forms a Directed Acyclic Graph (DAG). Later, in Section 8.4.2, we show how

our technique can be easily extended to handle cycles in the task paths (tasks can revisit resources multiple

times). Tasks may be periodic or aperiodic.

Let Ci,j denote the estimated worst-case execution time of an invocation of Ti on a resource instance j,

and is the same regardless of which instance of the resource is assigned to serve it. Each resource group has

only one resource, and hence the extent of the delay that the execution of a task Ti on resource j can cause

another task, Xi,j , is the same as Ci,j . Although we have an estimate of the worst-case execution time, we

consider it possible for tasks to exceed this estimate. Let Dk denote the end-to-end deadline of Tk.
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Given such a system, the objective is to assign tasks to resource instances as per their resource require-

ments, so as to minimize the number of deadline misses within the system in the presence of unanticipated

delays in execution times. The algorithm presented in this work achieves this objective by reducing the

sensitivity of the end-to-end timing behavior of the system’s task flow graph to specific execution times and

not allowing any spikes in the execution times to propagate to the worst-case end-to-end delay.

A particular assignment of tasks to instances of resources requested by it, is termed as a configuration.

The sequence of stages followed by a task Ti in a configuration C, is denoted by PathC
i . Let Ci,max denote

the maximum computation time of Ti across all the stages on which it executes, and let Nodej,max denote

the maximum computation time over all tasks that execute on a resource instance j.

Note that, a task Ti can delay Tk only along execution stages it shares in common with Tk. We define a

task segment T x
i (the segments are indexed) as Ti’s execution on a sequence of consecutive resource instances

along its path that is also traversed by Tk either in the same order or exactly in reverse order. Let Cx
i,max

be the maximum computation time of Ti across all stages in segment T x
i , and let resource instance j be the

stage corresponding to the maximum computation time, also referred to as the max-stage of the segment.

We ignore the precedence constraints between different segments of each higher priority task Ti, and consider

each segment as an independent task. As explained in Chapter 4, note that this does not decrease the end-

to-end delay of Tk as we only remove certain precedence constraints, thereby increasing the set of possible

arrival patterns of tasks to stages. Thus, our delay bound estimate errs on the safe side.

8.3 Solution Overview

In this section, we present the main idea and intuition behind optimizing the task paths to improve the

structural robustness of the system towards unanticipated delays in the execution times of tasks. By changing

how tasks are assigned to resource instances, we reduce the sensitivity of the worst-case end-to-end delays

of tasks to the individual execution times. That is, we ensure that each higher priority task execution on a

stage affects the worst-case end-to-end delay of fewer lower priority tasks.

We first need to reflect on our earlier work on quantifying the worst-case end-to-end delay of a job in

terms of the computation times of higher priority jobs that execute together with it. As it is extremely

difficult to accurately quantify the actual delay of tasks, we work with worst-case end-to-end delay bounds

of tasks for the purposes of studying the structural robustness of systems. The delay composition theorem

provides such an end-to-end delay bound.

Recall that, according to the theorem, for each higher priority task segment, only the maximum stage

execution time over all stages belonging to the segment contributes to the worst-case end-to-end delay bound.
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This maximum stage execution time is referred to as a delay term and the corresponding stage is referred to

as a max-stage. Further, for each stage j, a maximum computation time across all higher or equal priority

jobs executing on that stage, Nodej,max, figures in the delay expression. This term is referred to as the

stage-additive component as it is additive across the stages on which J1 executes and is independent of the

number of jobs in the system. Thus, unanticipated delays for jobs in such non-maximum stages do not affect

the worst-case end-to-end delay of lower priority jobs (as long as they do not exceed the maximum stage

computation time).

Thus, due to the distributed nature of computation and the overlap in the execution of different stages,

the system naturally has a certain tolerance towards unanticipated delays as long as these delays do not occur

at the stage executions that feature in the delay terms of the delay composition theorem. The objective of the

robustness optimization we perform, is to reduce the number of such terms in the end-to-end delay bounds

of jobs. This can be done in multiple ways. First, moving a task from one resource instance to another,

could eliminate interference due to a higher priority job segment to a lower priority job. Figure 8.1(a)

illustrates this scenario. Either the higher priority or the lower priority task can be moved away to avoid

the interference.

(a)

One segment

Two segments

Higher priority task route

Lower priority task route

(b)

(c)

Two segments One segment
(d)

(e)

Figure 8.1: Example system showing two tasks and how various transformations can reduce the number of
terms in the worst-case end-to-end delay bounds

It is however very likely, as shown in Figure 8.1(b), that when a task is moved from an instance j to

another instance j′ of the same resource, a different set of tasks are scheduled to execute on j′. Thus,

moving a task from j to j′ can cause some interferences to be removed at stage j and other new ones

involving a different set of tasks to be created at stage j′. The importance vector as defined in Section 8.1,
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enables us to estimate and compare the structural robustness of the system under different configurations.

In Section 8.4, we discuss in further detail how the structural robustness of different system configurations

can be quantitatively estimated using the importance vector.

Moving a task from one resource instance to another could reduce the number of delay terms in other

ways. As shown in Figures 8.1(c) and 8.1(d), it could combine multiple segments into a single segment.

When segments are combined into one, only one delay term for the entire combined segment needs to be

accounted for in the delay bound, as against a delay term for each of the original segments.

Moving tasks between different instances of resources can help load balancing the system. Moving a task

from one instance to a less utilized instance, could reduce the delay for a large number tasks at the expense

of increasing the delay for a few tasks which are well within their deadline stipulations. Load balancing the

system will improve the system’s robustness, as fewer tasks will be affected by unanticipated delays in the

executions at a particular resource instance.

Finally, as illustrated in Figure 8.1(e) for tasks that may contain cycles in their path, the number of

segments can be reduced by relaxing the loops. In the example shown, as the higher priority task revisits a

node, two segments of the higher priority task delay the lower priority task. Once the loop is relaxed, only

one segment of the higher priority task delays the lower priority task.

Thus, by intelligently moving tasks around between instances of resources we can reduce the sensitivity

of the worst-case end-to-end delays of tasks to the individual stage execution times. When there are unan-

ticipated delays at certain executions, they are then much less likely to propagate to affect the worst-case

end-to-end delays.

8.4 Methodology to Improve Structural Robustness of the

System

In this section, we present our methodology and algorithm to improve the structural robustness of distributed

systems to unanticipated delays in the stage execution times. In Section 8.4.1, we describe the general

algorithm targeted towards execution graphs that are directed and acyclic. In Section 8.4.2, we show how

the algorithm can be easily extended to task paths that contain cycles.

8.4.1 General Algorithm

We first describe how we compute the structural robustness metric and how we can easily recompute the

metric when the configuration is changed by moving a task executing on one resource instance onto another
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instance belonging to the same resource type. Then, we describe a simple hill climbing algorithm to explore

the search space of system configurations to find a highly robust configuration.

For each feasible configuration C, we define a 3-dimensional matrix [WC
i,j,k]M×Ntot×M , to store the terms

in the end-to-end delay bound as per the delay composition theorem for each job Jk. We call this the delay

matrix. All entries in the matrix are initially assigned to zero. For each job Jk and each higher priority job

segment of a job Ji, there is a delay term equal to twice Ji’s maximum stage computation time over all stages

in that segment. Suppose, the maximum occurs at a stage j. Then, WC
i,j,k is assigned to 2Ci,j . Further,

for each stage j on which Jk executes, there is a delay term equal to one maximum stage computation

time of any higher priority job that executes on it. If this maximum corresponds to a task i, then WC
i,j,k

is incremented by Ci,j . Note that, if jobs Ji and Jk don’t both execute on a stage j, or if Ji has a lower

priority than Jk, then the entry WC
i,j,k will remain zero regardless of the system configuration.

S1 S3 S5

S2 S4 S6

T1 T1

T3 T3 T3 T3

T2,T4 T2,T4T4 T4

T2
T2

Figure 8.2: Example system with four tasks, three resource types, and two instances of each resource

Through the rest of this section, we shall use a running example of a system with three resource types

R1, R2, and R3. There are two instances of each resource available: S1 and S2 of type R1, S3 and S4 of

type R2, S5 and S6 of type R3. The system comprises of four tasks T 1, T 2, T 3, and T 4, in decreasing

priority order, with their task paths as shown in Figure 8.2. Task T 1 executes only on instance S4, T 2

executes along the path S2−S3−S6, T 3 has the path S1−S3−S5, and T 4 has the path S2−S4−S6. For

simplicity, let us assume that each task requires one unit execution time at each stage on which it executes.

Let us denote this system configuration as C.

Let us now calculate the delay matrix for this system configuration. Task T 1 executes only on instance

S4, and hence delays only task T 4. Two segments of task T 2 delay task T 4, at resource instances S2 and S6,

respectively. Task T 2 also delays task T 3 at resource instance S3. Tasks T 3 and T 4 execute on mutually

disjoint stages and hence do not interfere with each other. Each of the above delay terms have a value

of twice the maximum stage computation time of the higher priority task segment, which is 2 time units.

Further, each task experiences a delay of one maximum stage computation time across all tasks for each

stage on which it executes, which equals one unit. As all the computation times of tasks are equal, this delay

is accounted for as the delay to the task due to itself. The matrices for each resource instance is constructed
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as follows (ith row, kth column, denotes the delay term that task i causes task k):

WC
S1 =



















0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0



















, WC
S2 =



















0 0 0 0

0 1 0 2

0 0 0 0

0 0 0 1



















, WC
S3 =



















0 0 0 0

0 1 2 0

0 0 1 0

0 0 0 0



















,

WC
S4 =



















1 0 0 2

0 0 0 0

0 0 0 0

0 0 0 1



















, WC
S5 =



















0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0



















, WC
S6 =



















0 0 0 0

0 1 0 2

0 0 0 0

0 0 0 1



















Note that the particular entries in the matrix depend on which stages contribute to the maximum

computation times for each segment, which in turn depends on the system configuration and the higher

priority job segments for each job. By combining segments together, by creating segments that affect fewer

lower priority jobs, or by removing loops in the task graph (as explained in Section 8.3), it is possible to

reduce the number of terms in the delay bounds of all the tasks.

Note that, the structural robustness metric can be calculated based on the delay matrix as follows:

ωC = 1 −

∑

i,j,k WC
i,j,k × I(k)

∑

k≤M I(k)
∑

(i,j) Ci,j
(8.2)

A configuration that has a higher value for this metric ω is deemed to be more robust to unanticipated

delays as the dependence of the worst-case end-to-end delays of tasks on individual stage computation times

is lower. Let us now compute the structural robustness metric for our example system configuration. For

simplicity, let us assume that the importance vector has a value of one for each task (all tasks have the same

relative importance). The numerator of the fractional part of the structural robustness metric is simply the

sum of all the entries in the delay matrix, which comes to 18 units. The sum of importance vectors is 4 and

the sum of all Xi,js is 10, so the denominator of the fractional part is computed as 4×10 = 40 units. Hence,

the structural robustness of the system configuration is 1 − 18
40 = 0.55.

When a task i is moved from instance j to another instance j′ of the same resource leading to a new

configuration C′, multiple changes occur in the delay matrix. Task i no longer interferes with any lower

priority tasks at instance j, and itself does not experience any interference from higher priority tasks.

Therefore, all entries corresponding to the row and column of task i at instance j are set to zero. For each

lower priority task k that executes at instance j, we need to check how the segment of task i that included

instance j in configuration C (say, Segx
i ) has changed due to the move. The possible cases of how Segx

i

changes are illustrated in Figure 8.3. First, if instance j was the only stage belonging to Segx
i , then this
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(a)

Higher priority task route

Lower priority task route

(b)

(c)

j j

j j

jj

Seg
i
x

Seg
i
x Seg

i
x

Seg
i
x Seg i

x1
Seg i

x2

Figure 8.3: Figure illustrating the possible cases when a higher priority job is moved out of a resource
instance j

segment no longer exists, as shown in Figure 8.3(a). Second, if instance j was either the first or the last

stage of the segment, then the segment remains with the removal of instance j, as shown in Figure 8.3(b).

If instance j was the max-stage of the original segment, we need to determine the max-stage of the modified

segment. Suppose the max-stage is instance l, we need to set WC′

i,l,k to 2Ci,l. If instance j was not the

max-stage in the original segment, then no changes need to be made. Third, if instance j was neither the

first nor the last stage of the segment (was an intermediate stage), then the move causes Segx
i to be split into

two segments, as shown in Figure 8.3(c). We need to determine the max-stages for both the new segments of

task i, and update the delay matrix entries for them, if either of them wasn’t the max-stage of the original

segment Segx
i . The above procedure for updating the delay matrix when a higher priority job i is moved

out of an instance j is presented as procedure RemoveTaskFromSegment(WC′

, i, j, k).

Similarly, for each higher priority task that executes at instance j, its interference to task i at instance

j has been removed (set to zero). We need to check each higher priority task segment that originally

included instance j, to see if the segment is removed, reduced by one stage, or split into two segments. The

actions that need to be taken for each case are similar to the description above, and is executed by invoking

RemoveTaskFromSegment(WC′

, k, j, i).

As task i is moved to instance j′, additional interferences need to be accounted for at instance j′. For

each lower priority task k that executes at j′, we need to consider the segment of task i that includes j′ (say,

Segx
i ) in the new configuration. The possible cases of how Segx

i changes due to the move are illustrated in

Figure 8.4. First, if Segx
i consists of just the instance j′, then we need to set the value of WC′

i,j′,k to 2Ci,j′

(this is a new segment, as shown in Figure 8.4(a)). Second, if instance j′ now becomes the first or last stage

of an already existing segment, as shown in Figure 8.4(b), we need to check if task i’s computation time

on j′ is larger that on the current max-stage l of the segment. If so, we need to set WC′

i,j′,k to 2Ci,j′ and
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(a)

Higher priority task route

Lower priority task route

(b)

(c)
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x1 Seg i
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Figure 8.4: Figure illustrating the possible cases when a higher priority job is moved in to execute at instance
j′

decrement WC′

i,l,k by 2Ci,l. Third, task i executing on instance j′ could combine two existing segments of task

i as shown in Figure 8.4(c). In this case, we need to determine the new maximum stage computation time of

task i on the combined segment. If the max-stage is j′, we need to increment the delay matrix entry WC′

i,j′,k

by 2Ci,j′ . We then need to decrement the delay matrix entry for the stage or stages that are no longer the

max-stage of the segment. The above procedure for updating the delay matrix when a higher priority job i

is moved in to execute at an instance j is presented as procedure AddTaskToSegment(WC′

, i, j′, k).

Similarly, for each higher priority task k that executes at j′ its interference to task i needs to be accounted

for. We need to check each higher priority task segment, to see if a new segment is added, an existing segment

is augmented by one stage (instance j′), or if two segments have been combined together. The actions that

need to be performed for each case are similar to the corresponding cases described above, and is executed by

invoking AddTaskToSegment(WC′

, k, j′, i). Finally, the stage additive component, which is the maximum

computation time across all jobs with higher or equal priority to task i at instance j′ (say, due to task k)

needs to be updated by incrementing WC′

k,j′ ,i by Ck,j′ .

The algorithm to determine the changes in the system topology and the delay matrix when the configu-

ration is altered by moving a task i from one instance j to another instance j′ is described by the algorithm

UpdateTopology(WC, i, j, j′).

RemoveTaskFromSegment(WC , i, j, k)

Comment: Updates WC′

with respect to lower priority task k, when task i is moved out of instance j

1. If task i’s segment consists only of instance j, then continue

2. If j was either the first or last stage of task i’s segment and was the max-stage

then find the new max-stage, instance l
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Increment WC′

i,l,k by 2Ci,l

3. If j was an intermediate stage of task i’s segment

then find max-stages, l and l′, of the two new segments

let lold be the max-stage of the original segment

If lold 6= j, then decrement WC′

i,lold,k by 2Ci,lold

Increment WC′

i,l,k by 2Ci,l and WC′

i,l′,k by 2Ci,l′

AddTaskToSegment(WC , i, j′, k)

Comment: Updates WC′

with respect to lower priority task k,

when task i is moved in to execute at instance j′

1. If task i’s segment consists only of instance j′, then set WC′

i,j′,k = 2Ci,j′

2. If j′ is either the first or last stage of task i’s segment

If l was the previous max-stage and Ci,j′ > Ci,l

then set WC′

i,j′,k = 2Ci,j′ , decrement WC′

i,l,k by 2Ci,l

3. If j′ combines two segments of task i

then find max-stages, l and l′, of original segments; find max-stage, lnew, of combined segment

increment WC′

i,lnew,k by 2Ci,lnew
; decrement WC′

i,l,k by 2Ci,l and WC′

i,l′,k by 2Ci,l′

UpdateTopology(WC , i, j, j′)

Output: WC′

, for configuration C′, where task i executes on instance j′ instead of j

Initialize WC′

= WC

Stage j:

1. WC′

i,j,k = WC′

k,j,i = 0, for every k.

2. For each task k of lower priority than task i: RemoveTaskFromSegment(WC, i, j, k)

3. For each task k of higher priority than task i: RemoveTaskFromSegment(WC, k, j, i)

Stage j′:

1. For each task k of lower priority than task i: AddTaskToSegment(WC, i, j′, k)

2. For each task k of higher priority than task i: AddTaskToSegment(WC, k, j′, i)

3. Find task x such that Cx,j′ ≥ Ck,j′ for all higher or equal priority tasks k executing at j′

Increment WC′

x,j′,i by Cx,j′
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The complexity of the above algorithm is O(MNtot), which is the product of the number of tasks and

the number of resource instances in the system. At each of the instances j and j′ we need to consider all the

other tasks executing on that instance, and need to update the segments that are altered by the move. As

each segment is at most as long as the number of instances in the system, the complexity of the algorithm

is bounded as O(MNtot).

S1 S3 S5

S2 S4 S6

T1 T1

T3 T3 T3 T3

T2,T4 T2,T4
T2,T4 T2,T4

Figure 8.5: Configuration C′ after moving task T 2 from S3 to S4

Let us go back to our example system and see how we can improve the structural robustness metric by

moving a task from one instance to another. First, let us move task T 2 from S3 to S4, and let the new

configuration be C′, as shown in Figure 8.5. We need to first update the delay matrix to reflect the move.

Task T 2 no longer delays task T 3 at S3. All terms in the row and column corresponding to task T 2 at S3

are set to zero. Since, S3 was the only stage in the segment of task T 2 that interfered with task T 3, the

segment is now removed. At S4, task T 1 has a higher priority than task T 2 and therefore interferes with it.

As S4 is the only stage on which T 1 executes, the segment has only one stage. We therefore set WC′

T1,S4,T2

to 2 units. Task T 4 has a lower priority than task T 2. Task T 2 executing on S4 causes two segments of T 2

to be combined into a single segment. As all the computation times of T 2 are equal to one, let us choose

the maximum to be S2. As S6 is no longer the max-stage of a segment of T 2, the term WC′

T2,S6,T4 is set to

zero. Finally, the stage-additive component for T 2 needs to be set at S4 and WC′

T2,S4,T2 is set to 1 unit. The

updated matrices for each resource instance for the new configuration C′ are as follows:

WC′

S1 =



















0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0



















, WC′

S2 =



















0 0 0 0

0 1 0 2

0 0 0 0

0 0 0 1



















, WC′

S3 =



















0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0



















,

WC′

S4 =



















1 2 0 2

0 1 0 0

0 0 0 0

0 0 0 1



















, WC′

S5 =








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


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0 0 0 0
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















, WC′

S6 =



















0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1



















With the new delay matrix, we can now recompute the structural robustness metric according to Equa-

tion 8.2. The numerator of the fractional part is computed as 16 units. The structural robustness metric
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is computed as 1 − 16/40 = 0.6, suggesting that this is a good move to perform to improve the structural

robustness of the system.

S1 S3 S5

S2 S4 S6

T3 T3 T3 T3

T2,T4 T2,T4T2,T4 T2,T4

T1
T1

Figure 8.6: Configuration C′′ after moving task T 1 from S4 to S3

Next, let us move task T 1 from instance S4 to S3, and let the new configuration be denoted as C′′ as

shown in Figure 8.6. All the row and column entries for task T 1 on S4 are set to zero as T 1 no longer

executes on S4. As T 1 executed only on S4, for each lower priority task, the segment of T 1 that interfered

with it consisted of only one stage, and these segments are now removed. At S3, T 1 delays task T 3 and the

term WC′′

T1,S3,T3 is set to 2 units. Finally, the stage-additive component for task T 1 is set as WC′′

T1,S3,T1 = 1.

The updated matrices for each instance for the new configuration C′′ are computed as follows:

WC′′

S1 =



















0 0 0 0

0 0 0 0
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
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






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S2 =


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
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,

WC′′

S4 =




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


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


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


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









, WC′′
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








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





0 0 0 0

0 0 0 0
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


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








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, WC′′

S6 =




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
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
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0 1 0 0

0 0 0 0
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

















Notice that, the numerator of the fractional part of the structural robustness metric is now further

reduced to 14 units. The structural robustness of the system is increased to 1 − 14/40 = 0.65. This was

because we moved a higher priority task from one instance to another, such that the number of lower priority

tasks that are affected is reduced, as illustrated in Figure 8.1(b).

Now that we know how to update the structural robustness metric when we change configurations, we

need efficient ways to explore the space of all configurations to determine those that are more robust. We

adopt a simple hill climbing algorithm that works as follows. We start with a random configuration and

arbitrarily pick a task and resource instance and move it to another arbitrary instance of the same resource.

If the metric for the new configuration is found to be higher than that for the current configuration, then

we retain the new configuration. Otherwise, we discard it and try a new arbitrary change in configuration.

Thus, the hill climbing algorithm will always proceed towards configurations that improve the value of the
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structural robustness metric. The hill climbing algorithm can be easily modified to allow a limited number

of steps that decrease the metric. This will allow the algorithm to explore a larger portion of the search

space and to step out of local maxima.

8.4.2 Handling Tasks with Cyclic Paths

In this section, we extend our technique to tasks that may have cyclic paths, similar to our work in Chapter 5.

When the path of a job Tk revisits a resource instance more than once, we say that it contains one or more

folds . A fold of Tk starting at instance j is defined as the longest sequence of stages (in the order traversed

by Tk) that does not repeat a resource instance twice. The first fold on PathC
k starts with the first resource

that Tk visits. If the path of a task is acyclic, then it has only one fold that contains the whole path. We

shall assume that each fold of a task is assumed independent of one another, and will be treated as separate

higher priority jobs. The intuition behind defining folds is that each fold may delay a lower priority job at

most once per stage.

Similar to our earlier definition, we can define task segments for each fold. The delay composition

theorem that bounds the worst-case end-to-end delays of tasks is valid for tasks with cyclic paths as well.

Each segment of each fold of a higher priority job causes a delay of at most two maximum stage execution

times on a lower priority job. The rest of our discussion on improving the structural robustness of systems

follows as before, using the delay composition theorem for tasks that may contain cyclic paths.

8.5 Evaluation

In this section, we evaluate through simulations the structural robustness of the system to unanticipated

delays in the execution times of tasks. We first measure the number of deadline misses in the system in the

absence of unanticipated delays. We then introduce unanticipated delays in the execution times by varying

the fraction of sub-tasks that are delayed, as well as the extent to which they are delayed. We measure the

end-to-end deadline misses before and after applying our algorithm to improve the robustness of the system,

and show that the algorithm is able to reduce the number of deadline misses by around 50%.

The default system consists of 8 resource types and three instances of each resource. The system is

assumed to operate close to the capacity. This is ensured by admitting enough tasks into the system, such

that very few deadlines are missed in the absence of unanticipated delays in the worst-case stage execution

times. Task routes are chosen by first choosing a path length at random, and then randomly picking a

resource for each hop. Task routes can have cycles. Based on the sequence of resources for each task,

we assign particular instances of resources to determine the task’s path within the system. Each resource
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instance serves tasks using a deadline monotonic scheduling policy. Other simulation parameters are chosen

similar to previous chapters. The default value of the deadline ratio parameter, DR, is assumed to be 1.0.

The default value of the task resolution parameter, T , is chosen as 0.1. The execution time at each stage is

chosen within a range of 10% on either side of the mean.

Unexpected delays are introduced into the system, by picking a certain fraction of the sub-tasks, denoted

as DelayedTasks, to experience unanticipated delays. The default value of DelayedTasks is 0.25. The

delay experienced by each sub-task thus chosen, is also varied as a parameter DelayAmt. The parameter

DelayAmt represents the ratio of the unanticipated delay to the original estimate of the worst-case execution

time of the sub-task. Unless otherwise specified, the value of DelayAmt is taken as 0.75.We consider two

importance vectors for the tasks. The first assigns equal importance to all the tasks and the second assigns

an importance to each task inversely proportional to its end-to-end deadline. As the results from both

importance vectors are similar, we only plot the values for the case where the importance of all tasks are

equal. We run our hill climbing algorithm for 500 steps, at each step picking a task to move from one

instance to another, and retaining the new configuration if its structural robustness is found to be better

than that of the current configuration.

Each point in the figures below represent the average value of 100 independent executions, with each

execution consisting of 80000 task invocations (of all tasks taken together). The 95% confidence interval for

all the values presented are within 1% of the mean value, and is not plotted for the sake of legibility.
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We first varied the DelayAmt for each unanticipated delay and estimated the number of deadline misses

before applying are algorithm to improve robustness (labeled as random) and after (labeled as robust). The

results are plotted in Figure 8.7. Note that a value of zero for DelayAmt represents the system without any

unanticipated delays. As expected, the number of deadline misses experienced by the baseline randomized
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system increases with the value of DelayAmt. As the value of DelayAmt is increased from 0 to 1, the

number of deadline misses of the baseline system increases from almost zero to about 300. For each value of

DelayAmt, applying our robustness algorithm to the task paths reduces the number of deadline misses by

over 50%. This can be extremely useful to improve the overall performance of soft real-time systems, where

estimations of worst-case computation times can be erroneous.

We next varied the fraction of tasks that experience unanticipated delays by varying the parameter

DelayedTasks from 0 to 0.5 and measured the number of deadline misses. The results of this experiment

are plotted in Figure 8.8. Here again, a value of zero for the DelayedTasks parameter denotes a system

without unanticipated delays. The robustness algorithm is able to achieve more than a 60% reduction in the

number of deadline misses for all values of DelayedTasks up to 0.35, and achieves around 40% reduction

when DelayedTasks is 0.5.
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Figure 8.9 plots the number of deadline misses for different number of instances available for each resource

type (there are 8 types of resources). For each system, the number of tasks admitted is varied to ensure

that the system operates close to its capacity when there are no unanticipated delays. This is ensured by

admitting as many tasks to cause very few deadline misses (less than 10 for each execution). The label

’random without delays’ represents the average number of deadline misses for the baseline system. The

label ’robust without delays’ represents the same when the robustness algorithm is applied. Unanticipated

delays are introduced into the system with 25% of the sub-tasks experiencing delay (DelayedTasks = 0.25)

and each such sub-task being delayed for 75% additional time (DelayAmt = 0.75). The labels ’random’

and ’robust’ denote the number of deadline misses in the system with unanticipated delays before and after

applying our robustness algorithm. We are able to achieve a 40-60% reduction in the number of deadline

misses, with the reduction being larger for systems with more number of instances of each resource. This
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is because, as more instances are available, the algorithm is able to perform better by finding more robust

assignments of sub-tasks to stages.

Figure 8.10 plots the number of deadline misses for different number of types of resources. Similar to

the previous experiment, the number of admitted tasks is varied to admit as many tasks as possible without

exceeding 10 deadline misses for each execution of the system. The value of DelayedTasks is set as 0.25

and that of DelayAmt is set to 0.75. Here again the robustness algorithm is able to achieve a 35-50%

reduction in the number of deadline misses, with the reduction being more pronounced for larger systems,

as the algorithm has a greater potential to find better assignments of sub-tasks to stages.
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Chapter 9

Application to Wireless Networks

The theory developed in this thesis can be applied to a wide range of application scenarios. It applies to any

distributed system of resources that are scheduled in a prioritized manner. An important class of systems

where the theory can be applied is in wireless networks. Wireless networks are becoming ubiquitous, ranging

from mission-critical multi-hop ad hoc networks to urban mesh and personal networks. A large volume of the

load carried by these networks are audio and video traffic with real-time requirements. In this chapter, we

describe two extensions of our theory to the domain of wireless networks. The first, described in Section 9.1,

applies to bandwidth allocation of real-time flows in wireless networks so as to maximize a notion of network

utility in the presence of delay and capacity constraints. The second, described in Section 9.2, derives a

scheduling mechanism that provides low and bounded end-to-end delay guarantees for packets of flows in a

wireless network with arbitrary topology and arbitrary interference constraints.

9.1 Bandwidth Allocation for Elastic Real-Time Flows in

Multi-hop Wireless Networks Based on Network Utility

Maximization

We consider mission-critical cyber-physical wireless communication networks. These networks are dominated

by audio and video traffic (e.g., voice communication among members and remote surveillance data from

camera sensors). It is impossible to guarantee meeting all flow deadlines because of the unpredictable

demand, dynamically changing network topology, variable levels of interference, and lack of strict priority-

based resource allocation, resulting in collisions and out of order transmissions. Given these limitations,

the goal of supporting real-time flows is approached by casting the problem as one of utility maximization,

where utility depends on meeting deadlines. This problem then becomes a generalization of schedulability

maximizing resource allocation, in which we seek an allocation of network resources to flows such that the

most utility is achieved from meeting flow deadlines. Resource allocation is indirectly achieved by controlling

flow rates while maintaining resource constraints. Fortunately, multimedia flows are especially amenable to
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rate adaptation, which makes rate control mechanisms meaningful in this environment.

We formulate the problem as one of constrained Network Utility Maximization (NUM) of prioritized

elastic flows, where priorities are set according to the delay constraints of flows. We assume that there is no

utility in delivering a data item after its delay constraint is violated. When these constraints are met (or if

no delay constraints are specified), the utility depends on the rate of the flow in question.

We adopt the worst-case delay bound obtained for Directed Acyclic Graphs [42] to derive a worst-case

bound on the end-to-end delay of prioritized flows as a function of link flow rates. We then show how the

constraints on delay and link capacity can be expressed purely based on variables that are known locally in

the neighborhood of each node. This is done by defining a new variable at each hop i, to denote the ratio

of the delay starting from the ith hop and including all future hops to the deadline of the flow. Neighboring

nodes periodically exchange values of all variables that are maintained. Therefore, the variable at the ith

hop is updated based on the value obtained from node at the (i + 1)st hop and the estimate of the delay at

the ith hop.

We formulate a NUM problem using utilities of flows defined as concave functions of the flow rate, which

has been a popular assumption in previous literature [59]. The solution to the NUM problem results in a

distributed rate allocation algorithm which can be executed independently at each node. The algorithm

converges to a rate allocation that maximizes utility, and at the same time guarantees that all flows meet

their delay requirements. Results from simulations demonstrate that the algorithm is able to achieve a

lower deadline miss ratio and a higher utility, in the presence of real-time traffic, compared to a rate control

algorithm based on the traditional NUM formulation without delay constraints [59]. Further, we show that

using the utility function, it is possible to differentiate between a flow’s urgency (the priority is set according

to the flow’s urgency) and its importance in terms of the fraction of bandwidth requested. Therefore, it is

possible to have short high-urgency flows, and prioritized treatment of such flows does not adversely affect

important high-bandwidth non-realtime flows.

The rest of this section is organized as follows. In Section 9.1.1, we describe the system model, the

problem, and notations used. The NUM problem formulation is presented in Section 9.1.2. A decentralized

solution to the NUM and the resulting distributed algorithm are presented in Section 9.1.3. Issues in

implementing the algorithm in a wireless network are discussed in Section 9.1.4. Section 9.1.5 presents

results from simulations.
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9.1.1 System Model and Problem Description

Consider a snapshot in time in the life of a cyber-physical multihop wireless network of nodes (such as

soldiers and sensors) with wireless communication links, forming a particular topology. Each link l has an

average capacity of ζl units that is roughly constant at the time scales of algorithm convergence. The links

are to carry a possibly dynamic set of elastic end-to-end flows S. Each flow s ∈ S is characterized by a path

Paths, from its source to its destination (as determined by the routing layer), and, optionally, an end-to-end

latency requirement Ds, within which packets of the flow need to reach the destination. The subset of

flows with latency requirements is denoted by the set S′. Each flow s also has a utility which is a concave

function, fs of its flow rate, xs. Flows are assigned fixed priorities, and fixed priority scheduling is assumed

at each intermediate node. Although the theory derived in this chapter is independent of how priorities are

assigned, it would be prudent to assign priorities such that flows with tighter latency requirements have a

higher priority during scheduling. Flows with no latency requirements are served at the lowest priority. In

Section 9.1.4, we discuss how prioritized scheduling can be achieved in a distributed wireless scenario. In

scenarios where nodes are mobile, we expect the algorithm presented in this chapter to still work, if the time

frame at which routes change is much larger than the iteration interval of the distributed algorithm.

The objective of this formulation is to identify a distributed algorithm that can maximize a global (given)

utility function, while still operating within the feasible region defined by capacity and delay constraints.

Formulating and solving this as a NUM problem helps achieve this objective, and identifies the algorithm

that sources and intermediate nodes should execute. Table 9.1 presents the notation that will be used in the

rest of this chapter. We define CCi
s′,s, the contention count of flow s′ at the ith hop of flow s, as the number

of transmission hops of flow s′ that interfere with the ith hop transmission of flow s.

Ci
Maximum time taken to process and forward
a packet of flow i

Ns Number of nodes in the route of flow s
Ds Latency requirement of flow s
xs Rate of flow s
~x (xs, s ∈ S), other vectors defined likewise
fs Utility function of flow s

Paths Path followed by flow s

SMi,j
Number of times flow i’s route splits from
and then merges onto flow j’s route.

ζl Capacity of link l

Table 9.1: Notations used

121



9.1.2 Problem Formulation Based on Network Utility Maximization

In this section, we first derive the delay constraints on the rates of flows in the network, which are dependent

on global information about the network. We show how decentralized capacity and delay constraints can

be derived, each of which is based on variables that are local to a single node. This eliminates the need

to maintain any global information. Note that delay constraints only apply to flows in set S′ which have

end-to-end delay requirements, whereas capacity constraints involve all the flows in the network, namely the

set S. These decentralized constraints are then used in the NUM formulation, the solution of which leads

to a distributed rate control algorithm.

Deriving the Delay Constraints

We adapt our delay composition result to wireless networks to obtain an end-to-end delay bound of a

flow, in terms of the rates of other concurrent flows in the network. For convenience, we reproduce the

non-preemptive delay composition theorem from Chapter 4 here. The theorem is targeted towards a multi-

stage distributed system that processes several classes of real-time tasks. Each task requires processing at a

sequence of resource stages, which forms a path in the distributed system. The theorem assumes deterministic

knowledge of the execution parameters of all jobs that execute concurrently in the system. However, unlike

queuing theory or network calculus, it does not make any assumptions on the arrival pattern (or distribution)

of jobs, and computes the delay bound for a job assuming a worst-case arrival pattern for the given set of

concurrent jobs. In deriving the worst-case end-to-end delay bound, it is shown that the delay that a higher

priority job (a task invocation) causes a lower priority job is dependent on the number of times the paths of

the two jobs split and merge with one another. The net end-to-end delay of a job is expressed as a sum of

the delay due to interference from higher priority jobs and the delay incurred due to path length.

The theorem assumes the following notation: Ci,j is the computation time of job Ji at stage j, Ci,max is

the maximum computation time of job Ji over all stages, S̄ is the given set of jobs with higher priority than

job J1, SMi,1 is the number of times the path of job Ji splits from and then merges onto the path of job J1,

and M1(j) is the set of jobs with lower priority than job J1 whose paths merge with the path of J1 at stage

j. Based on the non-preemptive delay composition theorem, the end-to-end delay of job J1 executing on N

stages can be obtained as,

Delay(J1) ≤
∑

i∈S̄

Ci,max(1 + SMi,1) +
∑

j∈Path1

j≤N−1

max
i∈S

(Ci,j) +
∑

j∈Path1

max
i∈M1(j)

Ci,max (9.1)

Informally, the first term in the delay bound can be thought of as the delay due to interference from
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higher priority jobs, the second term is a hop penalty for each hop traversed by the job, and the third term

is a blocking penalty due to lower priority jobs. While the theorem assumes prioritized scheduling, which

is impossible to achieve exactly in wireless networks, solutions such as the emerging 802.11e standard [1]

for the Enhanced Distributed Coordination Function (EDCF), have been developed to support approximate

prioritized scheduling. More effective solutions to the prioritized scheduling problem at the MAC layer would

result in better performance of our proposed algorithm. We discuss this problem further in Section 9.1.4

and describe the solution we adopted.

Let L be the size of a maximum sized packet. The time taken to process such a packet at a link j is

L
ζj

. We can now derive the delay constraint for each flow s from the delay composition theorem as follows

(k < s denotes that flow k has a higher priority than flow s):

∑

Packets of
flow k, k≤s

Ck(1 + SMk,s) +
∑

j<Ns

L

ζj
+

∑

j<Ns

max
i∈Ms(j)

Ci ≤ Ds (9.2)

The blocking penalty (the third term) can be considered to be negligible as it is at most the processing

time of one lower priority packet at each hop (the higher priority packet will be transmitted ahead of the

next lower priority packet). (1 + SMk,s) denotes the number of times flow k merges onto the route of flow

s. Inequality 9.2 can be rewritten as,

∑

j≤Ns

∑

Packets of flows k
merging with flow s

at stage j, k≤s

Ck,j +
∑

j<Ns

L

ζj
≤ Ds (9.3)

where Ck,j is the interference that a packet of flow k causes a packet of flow s at hop j. In a fully schedulable

system, each packet of flow s is present in the network for at most Ds time units. A packet of flow s can

encounter packets of flow k that arrived to the system Dk units before it, as well as packets that arrived Ds

units after it arrived to the system (for flows that do not have end-to-end delay requirements, Dk can be the

time-to-live for the packet in the network). It can therefore encounter packets of flow k whose inception was

within a duration of Ds + Dk time units. Further, at the jth hop of flow s, CCj
k,s transmission hops of flow

k interfere with flow s. Let us define additional variables XLi
s
, denoting the forwarding rate of flow s at hop

i, with XL0
s

= xs (Li
s is the link carrying the ith hop of flow s). Then, the total delay at hop j due to all

packets of flow k whose inception was within a duration of Ds +Dk time units is Ck,j = (Ds +Dk)
X

Li
k

CCj

k,s

ζ
Li

k

.

Constraint 9.3 can now be written as,

(

∑

j≤Ns

∑

Flows k at hop i
merging with flow s

at hop j, k≤s

XLi
k
CCj

k,s

ζLi
k

(1 +
Dk

Ds
)
)

+
1

Ds

∑

j<Ns

L

ζj
≤ 1 (9.4)
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Deriving Localized Capacity and Delay Constraints

In order to decentralize the solution and design a distributed algorithm, all constraints need to be expressed

in terms of local variables only. Let tuple (s, i) denote the ith hop of flow s. Let Q(l) denote the set of tuples

(s, i) that pass through the neighborhood of link l, that is, interfere with transmissions on link l. Note that

in Q(l), each flow may be represented multiple times based on the number of hops of flow s that interfere

with transmissions along link l. Conversely, let Q̄(s, i) denote the set of links with which the ith hop of flow

s interferes. The capacity constraints can now be written as:

∑

(s,i)∈Q(l)

XLi
s
≤ ζl, ∀ l ∈ L

Further, to ensure that the output rate at each hop is at least as large as the input rate,

XLi
s
≤ XLi+1

s
, ∀ i, s ∈ S

In order to localize the delay constraint (9.4), we define additional variables YLi
s
, denoting the sum of

the terms in constraint 9.4, starting from the ith hop and including all future hops of flow s. YLi
s

represents

the ratio of the sum of the delays on all hops starting from the ith hop, to the deadline of the flow. The

delay constraint now becomes,

YL0
s
≤ 1, ∀ s ∈ S′

Let Li
s be the link l = (e, f), and let Li−1

s be the link (d, e) (for i > 0). The following constraint governs

YLi
s

for all (s, i),

YLi
s
≥ YLi+1

s
+

1

Ds

L

ζl
+

∑

s′,i′ : s′<s;

Li′

s′
=(x,e),x 6=d

X
Li′+1

s′

CCi
s′,s

ζ
Li′+1

s′

(1 +
Ds′

Ds
) +

∑

s′ : s′≤s;
L0

s′
=(e,x),∀ x

XL0

s′
CCi

s′s

ζL0

s′

(1 +
Ds′

Ds
)

The summations on the RHS of the previous constraint adds up all the flow rates of higher priority flows

that merge with flow s at the ith hop, or have their source at the ith hop of flow s. Let l′ = (g, h) be the last

link of flow s. YLNs
s

should be at least as large as the sum of terms due to higher priority flows that merge

with flow s at its destination. That is,

YLNs
s

≥
∑

s′,i′ : s′<s;

Li′

s′
=(x,h),x 6=g

X
Li′+1

s′

CCNs

s′,s

ζ
Li′+1

s′

(1 +
Ds′

Ds
) +

∑

s′ : s′<s;
L0

s′
=(h,x),∀ x

XL0

s′
CCNs

s′,s

ζL0

s′

(1 +
Ds′

Ds
)
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NUM Formulation

The constraints derived above define a feasible region within which the network should operate in order to

ensure that packets of flows do not exceed their latency requirements or are dropped due to lack of bandwidth

in the network. To identify the utility maximizing point within this feasible region we can formulate the

NUM with completely local constraints as,

Maximize
∑

s∈S

fs(xs), subject to

∑

(s,i)∈Q(l)

XLi
s
≤ ζl, ∀ l ∈ L (9.5)

XLi
s
≤ XLi+1

s
, ∀ i, s ∈ S (9.6)

YL0
s
≤ 1, ∀ s ∈ S′ (9.7)

YLi
s
≥ YLi+1

s
+

1

Ds

L

ζl
+

∑

s′,i′ : s′<s;

Li′

s′
=(x,e),x 6=d

X
Li′+1

s′

CCi
s′,s

ζ
Li′+1

s′

(1 +
Ds′

Ds
) +

∑

s′ : s′≤s;
L0

s′
=(e,x),∀ x

XL0

s′
CCi

s′,s

ζL0

s′

(1 +
Ds′

Ds
), ∀ i, s ∈ S′; Li

s = (e, f) (9.8)

YLNs
s

≥
∑

s′,i′ : s′<s;

Li′

s′
=(x,h),x 6=g

X
Li′+1

s′

CCNs

s′,s

ζ
Li′+1

s′

(1 +
Ds′

Ds
) +

∑

s′ : s′<s;
L0

s′
=(h,x),∀ x

XL0

s′
CCNs

s′,s

ζL0

s′

(1 +
Ds′

Ds
), ∀ s ∈ S′; LNs−1

s = (g, h) (9.9)

Constraint 9.5 ensures that the capacity requirement around the interference neighborhood of any link

is within the capacity of the link. Constraint 9.6 ensures the continuity of each flow, that is, the rate of each

flow out of a node should be at least as large as the rate of flow into that node. Constraints 9.7, 9.8, and

9.9 jointly constitute the delay constraints. Constraint 9.7 ensures that the end-to-end delay is less than the

latency requirement for each flow and is maintained at the source of the flow. Constraint 9.8 implemented

by intermediate nodes in the route of any flow, maintains an estimate of the interference due to higher

priority flows on all subsequent nodes in the route of this flow. Finally, Constraint 9.9 is implemented by

the destination of each flow, and accounts for the interference due to flows at the destination. Thus, the

interference due to higher priority flows is accumulated along the backward route from destination to source,

so that the net end-to-end delay to latency requirement ratio (YL0
s
) can be estimated at the source.
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9.1.3 Decentralized Solution and Distributed Algorithm

In this section, we solve the NUM problem using Lagrangian decomposition. A tutorial on decomposition

methods for NUM can be found in [70]. We first construct the Lagrangian, and then differentiate the

Lagrangian with respect to each of the variables to obtain the update equations for the respective variables.

Finally, we present a distributed algorithm based on the derived update equations. The algorithm, when

executed independently by each node, collectively assigns rates to flows to maximize global network utility,

while ensuring that the latency requirements of all flows are met. The Lagrangian can now be defined as:

U =
∑

s∈S

fs(xs) +
∑

l∈L

λl

(

1 −
1

ζl

∑

(s,i)∈Q(l)

XLi
s

)

+
∑

s∈S

Ns−1
∑

i=0

µs,i

(

XLi+1
s

− XLi
s

)

+
∑

s∈S′

δs

(

1 − YL0
s

)

+
∑

s∈S′

Ns−1
∑

i=0,
Li−1

s =(d,e)

l=Li
s=(e,f)

γs,i

(

YLi
s
− YLi+1

s
−

1

Ds

L

ζl
−

∑

s′,i′ : s′<s;

Li′

s′
=(x,e),x 6=d

X
Li′+1

s′

CCi
s′,s

ζ
Li′+1

s′

(1 +
Ds′

Ds
) −

∑

s′ : s′≤s;
L0

s′
=(e,x),∀ x

XL0

s′
CCi

s′,s

ζL0

s′

(1 +
Ds′

Ds
)
)

+
∑

s∈S′

ǫs

(

YLNs
s

−
∑

s′,i′ : s′<s;
l′=(g,h)

Li′

s′
=(x,h),x 6=g

X
Li′+1

s′

CCNs

s′,s

ζ
Li′+1

s′

(1 +
Ds′

Ds
) −

∑

s′ : s′<s;
L0

s′
=(h,x),∀ x

XL0

s′
CCNs

s′,s

ζL0

s′

(1 +
Ds′

Ds
)
)

Differentiating with respect to xs and setting ∂U
∂xs

= 0,

f ′
s(xs) =

∑

l∈Q̄(s,0)

λl

ζl
+

∑

s′,i′ : s′>s;

Li′

s′
=(source(s),x)

γs′,i′CCi′

s,s′

ζL0
s

(1 +
Ds

Ds′

) +
γs,0

ζL0
s

+ µs,0 +
∑

s′ : s′>s;
dest(s′)=source(s)

ǫs′CC
Ns′

s,s′

ζL0
s

(1 +
Ds

Ds′

) (9.10)

In the above equation, the gammas and epsilons are summed over lower priority flows with which flow s

interferes at its source (for flows that do not have delay constraints, δ, γ, and ǫ are assumed to be zero).

Differentiating with respect to XLi
s
, i > 0, we obtain the update equation for XLi

s
using the gradient

method [70] as,

XLi
s
(t + 1) =

[

XLi
s
(t) + α1(t)

(

−
∑

l∈Q̄(s,i)

λl − µs,i + µs,i−1

−
∑

s′>s,Li−1
s =(x,e),

Li′−1

s′
=(d,e),x 6=d

γs′,i′CCi′

s,s′

ζLi
s

(1 +
Ds

Ds′

) −
∑

s′>s,Li−1
s =(x,h),

L
N

s′
−1

s′
=(g,h),x 6=g

ǫs′CC
Ns′

s,s′

ζLi
s

(1 +
Ds

Ds′

)
)]+

(9.11)

In the above equation, the gammas and epsilons are summed over lower priority flows with which flow s

merges (interferes) at its ith hop.

Differentiating with respect to YL0
s
, the update equation for YL0

s
is obtained as,
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YL0
s
(t + 1) =

[

YL0
s
(t) + α2(t)

(

− δs + γs,0

)]+

(9.12)

Differentiating with respect to YLi
s
, Ns > i > 0,

YLi
s
(t + 1) =

[

YLi
s
(t) + α2(t)

(

γs,i − γs,i−1

)]+

(9.13)

Differentiating with respect to YLNs
s

,

YLNs
s

(t + 1) =
[

YLNs
s

(t) + α2(t)
(

ǫs − γs,Ns−1

)]+

(9.14)

Differentiating with respect to λl,

λl(t + 1) =
[

λl(t) − α3(t)
(

1 −
1

ζl

∑

(s,i)∈Q(l)

XLi
s

)]+

(9.15)

The update equations for the other dual costs (~µ,~δ,~γ,~ǫ) can similarly be written down directly from the

respective constraints they represent as follows:

µs,i(t + 1) = µs,i(t) − α4(t)
(

XLi+1
s

− XLi
s

)

(9.16)

δs(t + 1) =
[

δs(t) − α5(t)
(

1 − YL0
s

)]+

(9.17)

γs,i(t + 1) =
[

γs,i(t) − α6(t)
(

YLi
s
− YLi+1

s
−

1

Ds

L

ζl

−
∑

s′,i′ : s′<s;

Li′

s′
=(x,e),x 6=d

X
Li′+1

s′

CCi
s′,s

ζ
Li′+1

s′

(1 +
Ds′

Ds
) −

∑

s′ : s′≤s;
L0

s′
=(e,x),∀ x

XL0

s′
CCi

s′,s

ζL0

s′

(1 +
Ds′

Ds
)
)]+

(9.18)

ǫs(t + 1) =
[

ǫs(t) − α7(t)
(

YLNs
s

−
∑

s′,i′ : s′<s;
l′=(g,h)

Li′

s′
=(x,h),x 6=g

X
Li′+1

s′

CCNs

s′,s

ζ
Li′+1

s′

(1+
Ds′

Ds
)−

∑

s′ : s′<s;
L0

s′
=(h,x),∀ x

XL0

s′
CCNs

s′,s

ζL0

s′

(1+
Ds′

Ds
)
)]+

(9.19)

Note that the above update equations can be implemented by each node based purely upon information

available to it from its neighbors. A node does not require any knowledge of flows outside its neighborhood.

Based on these update equations, we obtain the following rate allocation algorithm:

Algorithm DeadlineAwareRateAllocation:

Initialize ~X,~Y ,~λ,~µ,~δ,~γ,~ǫ

Repeat the following four steps

indefinitely:

1. Based on current values of X’s,Y ’s,
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update values for dual costs ~λ,~µ,~δ,~γ,~ǫ

using Equations 9.15, 9.16, 9.17, 9.18, and 9.19

2. Exchange values for the dual costs

with neighboring nodes

3. Recompute new values for X’s and Y ’s

based on the current dual costs using

Equations 9.11, 9.12, 9.13, and 9.14

4. Update source rates using Equation 9.10

5. Exchange values for X’s and Y ’s with

neighboring nodes

For the initialization step of the algorithm, all dual costs ~λ, ~µ, ~δ, ~γ, and ~ǫ can be set to zero. X for

each flow can be initialized to a constant flow rate at which all flows begin. Y for each hop of every flow

can be initialized to the right hand side of Inequalities 9.7, 9.8, or 9.9 as applicable. Note that the periodic

communication steps 2 and 5 of the algorithm can be executed asynchronously with the local computation

steps 1, 3, and 4. The rate of sending updates can then be decreased to reduce the algorithm overhead.

This would then cause nodes to use old values for the different variables. As the values for the different

variables only change slightly during each iteration of the algorithm, reducing the rate of sending updates

can significantly reduce overhead while not appreciably compromising performance. Also, updates can be

piggy-backed on regular messages to reduce the need for update messages. The number of update messages

required by the deadline aware rate allocation algorithm is the same as that of the rate allocation algorithm

based on the traditional NUM formulation without delay constraints [59], and each update requires only a

few extra bytes for the additional variables introduced by the delay constraints.

9.1.4 Implementation Considerations

In this section, we discuss several issues in implementing the algorithm described in Section 9.1.3. The

non-preemptive delay composition theorem, used in deriving the delay constraint 9.4 assumes prioritized

scheduling at each intermediate node. As exact prioritized scheduling is impossible to achieve in a dis-

tributed wireless network, we implement approximate prioritized scheduling as follows. Each node maintains

independent queues for packets of each priority class and always chooses to transmit a packet of higher pri-

ority before transmitting a packet of lower priority. Further, in order to prioritize packet scheduling across

neighboring nodes, we allow packets of higher priorities to have a smaller minimum contention window size

compared to packets of lower priority. In our simulations, we support eight priority levels. This implemen-
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tation is similar to the emerging 802.11e standard [1] for the Enhanced Distributed Coordination Function

(EDCF), except that the queues do not act as virtual terminals, and packets from higher priority queues

are always picked ahead of packets from lower priority queues. Prioritized scheduling can also be achieved

using MAC protocols such as [30]. This problem has been addressed in past literature and is orthogonal to

the problem we address. Better solutions to MAC layer prioritization will enhance the performance of our

algorithm.

Note that the update equations for the algorithm require that nodes are aware of the dual costs and values

for X ’s and Y ’s computed by nodes in their interference neighborhood, and not just the communication

neighborhood (for example, the capacity constraint ensures that the sum of all flow rates in the interference

neighborhood of each link is at most as large as the capacity of the link). This behooves the presence

of a protocol at the network layer that can obtain this information. Identifying nodes that lie within

interference range of a given node is a challenging problem that has been addressed in prior literature in

wireless networks (such as [98]). We empirically measured the interference range to be 440m for each link

when the communication range was 200m, and used this value in our simulations.

The NUM formulation assumes concave utility functions for the flows, and the optimization objective

is to maximize the sum of utilities of all flows in the network. Utility functions serve as a measure of user

satisfaction, and can also be used to control the trade-off between efficiency and fairness. For example, [65]

defines a family of utility functions targeted at fairness. As the problem of choosing utility functions has

been dealt with in literature, we keep our theoretical framework general and not dependent on any particular

utility function. In our simulations, we consider two simple logarithmic utility functions to be used with the

NUM formulation. In the first utility function, the utility is assumed to be proportional to priority:

fs(xs) = (Max Priority − Ws + 1) log xs, (9.20)

where Ws is the priority of flow s (higher value implies lower priority), and Max Priority is the maximum

permissible priority value. Remember, however, that priority in our framework is set according to urgency,

which in general, may not be proportional to utility. Hence, we also consider a utility function that is

orthogonal to priority (i.e., urgency), where all flows have the same importance:

fs(xs) = log xs, (9.21)

As mentioned earlier, the above utility functions are true only when delay constraints are met. If delay

constraints are violated, the utility is zero. In practice, however, applications such as video streaming can

tolerate some deadline misses. Hence, in the evaluation section, rather than dropping utility to zero abruptly,
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we drop it linearly in the miss ratio as follows:

App Utility = fs(xs) ∗ (1 − 10 ∗ DMR), DMR < 0.1

= 0, otherwise (9.22)

where fs(xs) is defined as in Equations (9.20) or (9.21), and DMR is the deadline miss ratio for the flow.

Note that the above application utility function reduces to fs(xs), when no deadline misses occur. As

the NUM-based algorithms operate within the feasible region where no deadline misses occur, the optimal

solution also lies within this feasible region. At the optimal solution (and at all points within the feasible

region), the value of the above application utility function would be the same as that of fs(xs). Hence, the

operation of the NUM-based algorithm remains the same regardless of how utility is defined outside the

feasible region. We therefore use fs(xs) defined as per Equations (9.20) or (9.21) as the utility function

for the NUM-based algorithms, but use the application utility defined in Equation (9.22) as a metric of

performance in our evaluations in Section 9.1.5.

Finally, the update equations are based on update parameters α. For the update equation for λ, we

used a value of 0.5 (α3 = 0.5). For µ, we used a value of 0.2. For all the other update equations we used a

value of 1.0. While we observed that changing these values affect the rate of convergence, for most values

of the update parameters, the flow rates converged within 100 iterations of the algorithm. Convergence of

a number of NUM problems has been studied in the past [15, 35]. Theoretically studying the convergence

and stability properties of the algorithm will be a useful future work.

9.1.5 Simulation Results

In this section, we present results from simulations on ns2 [67]. Our default system consists of 50 nodes

placed uniformly at random. We assume that nodes are stationary. The MAC layer protocol is assumed to

be 802.11, with prioritized scheduling as described in Section 9.1.4. We consider a default of 5 elastic flows

in the system, whose sources and destinations are chosen uniformly at random. The average hop length of

the flows was between 3 and 4. The routing protocol is assumed to be DSDV. Link bandwidth is assumed to

be 1 Mbps. One iteration of the rate allocation algorithm executes every 0.5 seconds. The flows are assumed

to transmit at a constant bit rate chosen by the rate allocation algorithm. For traffic that is bursty, such

as video, application-level buffers can be used to smoothen the burst and transmit at the average (roughly

constant) rate. Prior theory such as [21] can be used to bound the delay due to buffering as a function of

the original burstiness. While the end-to-end delay of a packet is the sum of this buffering delay and the

network delay, in this work, we concern ourselves only with the network delay. The buffering delay can be
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estimated as discussed in prior work [21].

In our evaluation, we compare the proposed deadline-aware rate allocation algorithm (which we call ‘NUM

with Delay Constraints’), with four other algorithms. The first is a rate allocation algorithm determined

by the traditional NUM formulation without the delay constraints [59, 51], that maximizes utility in the

presence of capacity constraints alone. This algorithm uses prioritized scheduling at the MAC layer and is

referred as ‘NUM without Delay Constraints’. In order to demonstrate that prioritized scheduling broadens

the space of acceptable flow rates, we choose the second algorithm to be the same as the first except that

scheduling at the MAC layer is FIFO. We call this ‘NUM w/o Delay Constraints w/o Prioritized Scheduling’.

For the third algorithm, we simulate prioritized scheduling at the MAC layer, in the absence of any rate

control (called ‘No Rate Control’). Here, each source of flow is assumed to transmit at the application-

specified maximum packet generation rate. This serves as a baseline to analyze the advantages of applying

rate control. Finally, to show that our algorithm can work with any prioritized MAC protocol, we evaluate

the deadline-aware rate allocation algorithm with 802.11e as the MAC layer protocol (we call this ‘NUM

with Delay Constraints with 802.11e’). Table 9.2 shows the differences between the different algorithms. For

the rate allocation algorithms based on the NUM formulations with and without the delay constraints, we

evaluated both utility functions specified in Section 9.1.4 under Equations (9.20) and (9.21). The results

when all flows have the same utility function (Equation (9.21)) are labeled with the suffix ‘Eq. Util. Flows’.

The results when the utilities of flows are directly proportional to their priority (Equation 9.20) do not have

this suffix. The above algorithms are compared in terms of the achieved throughput and deadline miss ratio

for each priority class.

Algorithm
Rate Delay Prior.

Control Constr. Sched.
No rate control No No Yes
NUM w/o delay Yes No Yes
NUM w/o delay

Yes No No
w/o prioritization
NUM with delay Yes Yes Yes

NUM with delay,802.11e Yes Yes 802.11e

Table 9.2: The different algorithms being compared

All values presented are averaged over 50 simulation runs each lasting for 100 seconds. For each run,

results were collected after a duration long enough to ensure that the rate control algorithm had stabilized.

Y error bars indicate 95% confidence intervals.

Audio and video flows are typically governed by a maximum traffic generation rate. We imposed different

maximum application traffic generation rates that would act as a ceiling for the transmission rates for each

flow. We considered traffic generation values equal to 25, 50, 75, 100, 125, and 200 Kbps. A traffic generation
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Figure 9.1: Deadline miss ratio, high priority flows
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Figure 9.2: Throughput, high priority flows
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Figure 9.3: Deadline miss ratio, medium priority
flows
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Figure 9.4: Throughput, medium priority flows

rate of 200 Kbps was observed to be nearly the same as not imposing any limit on the application traffic

generation rate. We considered three priority levels for the flows, with end-to-end latency requirements of 2,

4, and 7 seconds. These values reflect typical requirements in military communications and hence were given

specific attention. The number of flows of each priority was in the ratio 1:2:4, that is, there were four times

as many low priority flows as there were high priority flows. The deadline miss ratios and average achieved

throughput were measured for the different algorithms for each priority class. Figures 9.1 and 9.2 plot the

comparison for high priority flows. Likewise, Figures 9.3 and 9.4 show the results for medium priority flows,

and Figures 9.5 and 9.6 show the results for low priority flows. For all the three priority classes, the algorithm

based on the NUM formulation with delay constraints, was able to ensure a deadline miss ratio of less than

5% of the packets, regardless of how the utility functions of flows are defined. In contrast, the algorithm

based on the NUM formulation without delay constraints suffered a much higher deadline miss ratio for all

priority classes especially at high load scenarios. The deadline miss ratio was observed to be the highest

when no rate control was imposed. Further, for the NUM formulation without delay constraints, when

prioritized scheduling was replaced by FIFO scheduling, more deadline misses were observed for medium
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Figure 9.5: Deadline miss ratio, low priority flows
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Figure 9.6: Throughput, low priority flows

and high priority flows, demonstrating the importance of prioritized scheduling. Finally, using 802.11e as

the MAC layer protocol the deadline miss ratio and throughput values were found to be similar to when

higher priority packets were always transmitted ahead of lower priority packets (instead of the virtual node

concept of 802.11e), suggesting that our rate control algorithm would work well with any prioritized MAC

protocol.

It can be observed from Figures 9.2, 9.4, and 9.6, that when the utilities of flows are proportional to their

priority (for both the NUM with delay constraints and the NUM without delay constraints), the throughput

of high priority flows is higher than that of low priority flows. However, when flows have the same utility

function regardless of their priority, the throughput of all three priority classes are nearly equal. This

conforms with theory suggesting that the throughput (or bandwidth share) that each flow obtains is only

dependent on its importance as defined by the utility function, and is independent of the flow priorities.

Thus, in a network with both real-time and non-real-time flows, the presence of delay constraints for some

flows will not adversely affect the throughput of important non-real-time flows that may operate at the

lowest priority. The utilities thus provide a mechanism to specify the importance of different flows in the

network, and allocate bandwidth according to their importance.

The rate control algorithm based on the NUM with delay constraints is able to achieve a throughput

within 20% of the throughput achieved by the NUM without delay constraints (for both utility function

choices). This throughput penalty for imposing and ensuring that the latency constraints of flows are met

is acceptable, as receiving a smooth video at low resolution is typically better than a high resolution video

that often keeps freezing.

For the same experiment, we measured the application utility defined in Equation 9.22 as follows. In order

to distinguish short bursty packet deadline misses and losses from prolonged poor performance, we measured

the application utility for every 5 second interval and computed the average across all such intervals and
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Figure 9.7: Average utility of high
priority flows
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Figure 9.8: Average utility of
medium priority flows
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Figure 9.9: Average utility of low
priority flows

simulation runs. This is presented for the different algorithms in Figures 9.7, 9.8 and 9.9, for high, medium,

and low priority flows, respectively. For the deadline-aware rate control algorithm, the degradation in utility

is only marginal with increase in traffic generation rate. In contrast, the other algorithms suffer a significant

utility degradation for real-time flows except when the network is underloaded.
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Figure 9.10: Deadline miss ratio achieved by the
deadline-aware rate control algorithm when the de-
lay constraint is relaxed
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Figure 9.11: Throughput achieved by the deadline-
aware rate control algorithm when the delay con-
straint is relaxed

In order to estimate how accurate or pessimistic the delay constraint is, we progressively relaxed the

delay constraint and measured the deadline miss ratio and throughput for different priority classes for the

algorithm based on the NUM formulation with delay constraints (shown in Figures 9.10 and 9.11). When

the delay constraints were relaxed by 10%, the throughput increased by about 5%, but the deadline miss

ratio nearly doubled. This shows that the delay constraints derived in this chapter are reasonably accurate.

In order to study the stability of the algorithm under dynamic load conditions, we conducted experiments

where we allowed flows to enter and leave the network during the course of the experiment. Flows start

with a transmission rate of 50 Kbps, and the deadline aware rate control algorithm is then used to adjust

the transmission rate of flows. The transmission rates of flows and total utility (individual flow utilities

were assumed to be proportional to their priority as defined in Equation (9.20)) are plotted versus time in

Figure 9.12 for this experiment. At time 0, there were three flows in the network, flows 1, 2, and 3, with
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Figure 9.12: Transmission rate and total utility vs.
time for a dynamic set of flows in the network
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Figure 9.13: Transmission rate and total utility vs.
time for a dynamic set of flows in the network

priority values 4, 7, and 4 (flow deadlines were same as the priority value in seconds). Fifty seconds into

the experiment, flows 4 and 5, with priority values 2 and 7 were started. Note the drop in transmission rate

for the first three flows and the increase in utility at time 50. At time 100, flows 1 and 2 leave the network.

Note the increase in transmission rates for the other three flows at time 100. The algorithm was observed

to stabilize within 10 seconds of each instance of flows entering or leaving the network.

In order to show that the NUM formulation in the presence of delay constraints does not discriminate

against non-realtime flows, we conducted an experiment in the presence of both real-time and non-realtime

flows. For this experiment, the lowest priority flows (with priority value 7) were made non-real-time flows.

The high and medium priority flows were real-time flows with priority values 2 and 4 (equal to their respective

deadlines). In order to demonstrate that the throughput allocated to each flow is only determined by its

importance defined in the utility function, and not so much by its priority, all flows were assigned the same

utility function. The throughput for each priority level for different traffic generation rates is plotted in

Figure 9.13. The plot shows that all three priority levels receive nearly the same throughput regardless

of their priority. Thus, the importance in the utility function can be adjusted to differentially allocate

bandwidth to different flows regardless of whether they have delay constraints.
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Figure 9.14: Deadline miss ratio
of high priority flows for different
mobility rates
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Figure 9.15: Deadline miss ratio
of medium priority flows for dif-
ferent mobility rates
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Figure 9.16: Deadline miss ratio
of low priority flows for different
mobility rates
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Figure 9.17: Throughput received
by high priority flows for different
mobility rates
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Figure 9.18: Throughput received
by medium priority flows for dif-
ferent mobility rates
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Figure 9.19: Throughput received
by low priority flows for different
mobility rates
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Figure 9.20: Average utility of
high priority flows
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Figure 9.21: Average utility of
medium priority flows
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Figure 9.22: Average utility of low
priority flows

We next evaluate the performance of the different algorithms when nodes are mobile, which is a typical

scenario for mission critical cyber-physical wireless networks of nodes. We used a simple mobility model,

wherein each node picks a destination at random, and move towards it at a uniform random speed (limited by

a specified maximum speed). Upon reaching the destination, the node will pick another random destination

and repeat this loop forever. We considered maximum speed values of 1,3,5, and 10 m/s. These values

reflect speeds ranging from the typical walking speed of people to the speed of fast moving vehicles. The

deadline miss ratios of the various algorithms for this experiment are shown in Figures 9.14, 9.15, and 9.16,

for the three priority classes, respectively. The average achieved throughput is shown in Figures 9.17, 9.18,

and 9.19. The total utility over all the flows for each priority class is plotted in Figures 9.20, 9.21, and 9.22

(the utility was computed over 5 second intervals, as described before).

At low mobility values (1 and 3 m/s maximum speeds) the throughput of the algorithms were found to

actually increase. A possible reason is that mobility causes any congestion in the network to clear up and

congestion never lasts for a long time. Since communication radius is about 200 m, it takes a significant

amount of time (longer than the time required for algorithm convergence) for nodes to move out of range and

the topology to change. At higher mobility values, there are a lot of packet losses causing the throughput

to drop. Also the deadline miss ratio increases for high mobility values causing the utility to drop.
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9.2 Minimizing End-to-End Delay in Wireless Networks Using a

Coordinated EDF Schedule

In this section, we consider the problem of scheduling data in wireless networks such that the end-to-end

delay is small. There has been a significant amount of work in recent years looking at scheduling a network

such that throughput optimality is maintained, i.e., to ensure that the network always supports any set of

flow rates that lie in the schedulable region. A common tool for this problem is the well-known backpressure

protocol of Tassiulas and Ephremides [86]. However, much less attention has been paid to the problem of

analyzing the end-to-end delay of a distributed wireless schedule.

Our approach to the delay minimization problem combines results from delay-based scheduling in wireline

networks with results for throughput maximization in wireless networks. In particular, consider a set of flows

passing through a wireline link. For simplicity, we shall focus on the case in which time is slotted and each

link can transmit one packet per slot. We assume a leaky bucket model, with burst parameter for flow i

assumed to be σi and the rate parameter to be ρi, i.e., the number of packets that arrive for flow i in a

time interval of length t is at most σi + ρit. We focus our attention on flow-based schedulers, since non-flow

based schedulers such as FIFO are not throughput optimal [5] and do not provide protection for a flow from

misbehaving flows. One of the most commonly studied flow-based protocols is the Weighted Fair Queuing

(WFQ) protocol, that maintains a virtual Generalized Processor Sharing (GPS) protocol in the background

to divide service among the flows according to the flow rates. WFQ always serves the packet that would

finish earliest under the GPS protocol, assuming that no more packets arrive. Parekh and Gallager [71, 2]

showed that the end-to-end delay for WFQ has the form σi+Ki

ρi
, where Ki is the path length.

Another body of work looking at delay scheduling in wireline networks considers the Earliest Deadline

First (EDF) schedule, where each packet has a deadline and the scheduler always picks the packet with the

earliest deadline. For a single link in isolation, [25, 58] showed that, if each interval is locally schedulable,

in the sense that for each interval [s, t) the total amount of data injected after time s and with a deadline

before time t is at most t− s, then EDF will schedule all the packets so that deadlines are met. For the case

of networks with many links, [26] showed how to choose deadlines so as to match the σi+Ki

ρi
delay bound of

WFQ.

One feature of both the above delay bounds is that they contain a term of the form Ki

ρi
. Although, it

is not hard to show that Ki and σi

ρi
are both lower bounds on delay that cannot be overcome, there is no

reason why the term Ki

ρi
is intrinsically necessary, i.e., a flow does not have to experience delay 1/ρi at every

hop. In [7], a Coordinated Earliest Deadline First (CEDF) protocol was presented, that had a much better
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delay bound, namely a bound of the form Õ(σi

ρi
+ Ki) (where the Õ(·) hides logarithmic factors). The most

important aspect of this bound is that it does not contain a term of the form Ki/ρi, i.e., flow i does not

need to experience delay 1/ρi at every hop.

Similar results have been obtained in the context of real-time scheduling in distributed systems. For

instance, in [64] certain scheduling policies were shown to have “pipeline-like” behavior, where the mean

end-to-end delay of non-acyclic flows was shown to be inversely proportional to the flow rates at a single hop

along the flow’s path, plus a constant delay for the remaining hops in the path (similar to O(1/ρi + Ki)).

Our delay composition results provide similar bounds (delay inversely proportional to the rate on one hop

plus a constant per-hop delay on future hops) for worst-case end-to-end delay of flows in a distributed system

scheduled under preemptive or non-preemptive prioritized scheduling.

In general, wireless scheduling is a much more complicated problem since we are unable to schedule each

link independently due to interference. Many models have been considered to characterize interference. For

example, in the unit disk graph model, two transmitters can transmit only if they are more than a unit

distance apart. In the primary interference model, we are given an interference graph and two links can

transmit if they do not share any endpoints. In the secondary interference model, two links can transmit if

neither of the end points of one link is equal or adjacent to either of the end points of another link. Other

work considers a more physical model, in which a link can transmit if and only if its signal-to-noise-ratio is

above a certain threshold.

The major problem addressed by most work in wireless scheduling is how to achieve throughput optimality.

A schedule is said to be throughput-optimal, if it can service any set of flow rates that can be served by the

optimal schedule. The work of Tassiulas and Ephremides [86] provides an algorithm that achieves throughput

optimality regardless of the set of feasible links. This algorithm is sometimes known as the Max-Weight or

Backpressure algorithm, and it operates by maintaining queues of data for each possible flow at each node.

The urgency of a queue is then defined to be the size of a queue together with the size of the corresponding

queue at the next hop along the flow path. The backpressure algorithm always tries to serve the set of

queues that maximizes the aggregate urgency.

The main result of Tassiulas and Ephremides is that the backpressure algorithm is throughput-optimal

in the following sense. If the (slightly augmented) flow rates (1 + ε)ρi lie in the schedulability region, then

the backpressure algorithm will keep the queues stable, if data is injected into flow i at rate ρi.

With regards to the delay performance of wireless schedulers, Jagabathula and Shah [37] show that under

the primary interference model, if the traffic is injected according to a Poisson process in each flow, then

the average end-to-end delay for flow i is at most 5Ki/ε, as long as the flow rates ρi lie in the schedulability
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region scaled down by a factor of 5. For secondary interference constraints, a similar result holds with the

factor “5” replaced by ∆2, where ∆ is the maximum number of links that can interfere with any given

link. They also show that arbitrary traffic can be Poissonized by running it through a scheduler that injects

packets according to a Poisson process. However, this Poissonizer could potentially add another term of 1/ρi

to the delay. Our results differ from [37], in that we are concerned with the worst-case delay of flows that

lie close the boundary of the schedulability region.

There is also a large body of work that analyzes delays in a random wireless network with random

mobility and random traffic patterns, for example [29, 24, 17, 66]. This is distinct from our work since we

are concerned with a given network topology with given set of traffic flows.

In this work, we study the end-to-end delay bounds that can be obtained by combining the CEDF

scheduler with a wireless link scheduling algorithm. Before we can present our results in more detail we

must describe our model.

The Model

We consider the problem of minimizing the end-to-end delay experienced by data flows in a wireless data

network with n nodes and N wireless links. Each flow i consists of a path pi of Ki hops through the network.

The traffic for flow i has rate ρi and burst parameter σi, i.e., if Ai(s, t) is the amount of data injected into

flow i during the time interval (s, t] then Ai(s, t) ≤ σi + ρi(t − s).

A key concept in our analysis will be the concept of a schedulable region. We say that a binary N -vector

χ is feasible, if all links for which χl = 1 can simultaneously transmit without interfering with one another

(χl is the lth entry of χ). Our results will apply to any set of interference constraints that satisfy some

regularity conditions. In particular, we assume that there is some distance δ such that two links do not

interfere if their endpoints are at least a distance δ apart. For simplicity, we normalize distances so that

δ = 1. In addition, we assume that there is some constant γ, such that for any square of side L, the maximum

number of links in the square that can transmit simultaneously is at most γL.

We assume that time is slotted. A link schedule consists of a sequence of feasible vectors, one for each

time slot. If χ is scheduled during slot t, then each link for which χl = 1 can transmit one packet during

the slot. We define the link schedulability region to be the set of link rates that can be utilized under some

scheduling algorithm, i.e., a rate vector r is schedulable, if and only if there exist non-negative numbers

φ1, φ2, . . ., and feasible vectors χ1, χ2, . . ., such that r ≤
∑

k φkχk (the inequality is component-wise) and

∑

k φk = 1.

We assume that the flows in the network generate link rates that lie strictly within the schedulability

region. That is, we assume that flow routes are fixed and we let Fl be the set of flows i that pass through
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the link l. If we let rl =
∑

f∈Fl
ρi, then we assume that there is some vector r′ that is schedulable, such

that rl ≤ (1 − ǫ)(r′)l for all l and for some constant ǫ.

Consider the packets injected into each flow. Our aim is to schedule these packets in such a way that

the end-to-end delay remains low. We use the term complete schedule to refer to a link schedule combined

with a specification of which packets cross each link in each time slot.

Results

• In Section 9.2.1, we show that by using a centralized algorithm to determine the link schedule, and

CEDF to determine the packets to be transmitted along each link for every time slot, a worst-case

end-to-end delay of approximately σi

ρi
+

∑

l∈pi

N
rl

can be achieved for every flow i. The key features of

this delay bound are that each packet waits for time roughly σi/ρi to access the channel at the first

hop. Thereafter it only waits for time roughly N/rl at each subsequent link l.

• The above result uses a centralized scheme to find a feasible set of links to transmit at each time step.

In Section 9.2.2, we show how to convert this into a distributed algorithm by decomposing the scenario

using a set of L2 grids for some L = O(1/ǫ).

• The above delay bounds were found using link scheduling algorithms that rely on an optimal de-

composition of any link rate vector into a set of schedulable link sets. For cases where this is not

feasible, we also examine the delay bounds that can be achieved if we use the Max-Weight algorithm

for constructing the link schedules (but not the individual packet schedules).

• For wireline networks, if we look at each link in isolation, it is known that if the naive schedulability

condition holds for each time interval taken in isolation then all the deadlines can be met (using

an Earliest-Deadline-First schedule). In Section 9.2.4, we examine the wireless counterpart to that

statement and show that for wireless networks it does not hold in general.

• In Section 9.2.5, we briefly describe a simulation scenario to demonstrate the benefits of our approach.

We conclude in Section 9.2.6, by showing how the theoretical algorithms discussed in this section can

be used to motivate more practical schemes based on random access.

9.2.1 Centralized Scheduling to Minimize End-to-End Delay

The problem of minimizing the end-to-end delay of packets in a wireless network comprises of two sub-

problems. The first, called the link schedule, determines a feasible set of links on which to transmit packets

at each time slot. In the second sub-problem, called the packet schedule, each link determines which packets

should be transmitted at any given time slot.
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We first describe the general service guarantee that any link scheduling algorithm needs to provide for

each link in the network, in order to support delay guarantees. We then assume the presence of an oracle that

provides a decomposition of the rate vector into a convex combination of feasible vectors, where each vector

denotes a set of independent links that can transmit simultaneously within the network (this oracle could be

realized via linear programming; in Section 9.2.2, we show how to realize the oracle in a distributed manner

with an arbitrarily small loss in achievable rate). We present a centralized algorithm to determine the link

schedule. The packet scheduling is performed in a localized and distributed manner. We subsequently derive

the delay guarantee for each packet.

Objective of the Link Schedule

In order to provide delay guarantees, we need to schedule the links such that for any arbitrary interval [s, t),

the service received by each link does not deviate unboundedly from its average rate. If Cl(t) is the service

received by link l up to time t, then the service guarantee for any interval [s, t), in general, can be expressed

as,

Cl(t) − Cl(s) ≥ rl(t − s) − sl (9.23)

where rl is the rate of link l. The objective of the link scheduling algorithm is then to minimize sl, across all

the links in the network. In this section, we consider a centralized link scheduling algorithm with a bounded

value for sl, and in subsequent sections discuss distributed alternatives to the link scheduling problem.

A Centralized Link Scheduling Algorithm

For an input-buffered crossbar switch, given a decomposition of the rate matrix, r, into a convex combination

of permutation matrices χk, as r ≤
∑κ

k=1 φkχk, Chang et. al. [13] used the Weighted Fair Queuing algo-

rithm to schedule the crossbar switch. This algorithm approximately ensures that the amount of time the

connection pattern of the crossbar switch is set according to the permutation matrix χk, is proportional to

φk. According to this algorithm, tokens are generated for each permutation matrix and the virtual finishing

times for the lth token of permutation matrix k is set as l/φk. The tokens are served in the increasing order

of their virtual finishing times, setting the crossbar’s connection pattern according to permutation matrix χk

when serving a token belonging to χk. Based on this algorithm, minimum and maximum service guarantees

are derived for each link l within the crossbar switch for any arbitrary time interval [s, t). Let Cl(t) denote

the service received by link l up to time t. Let El denote the subset of {1, 2, . . . , κ} such that for every

k ∈ El, the permutation matrix χk has a nonzero element corresponding to link l. The service guarantees
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derived in [13] for each link l are,

∑

k∈El

φk(t − s) − sl ≤ Cl(t) − Cl(s) ≤
∑

k∈El

φk(t − s) + sl (9.24)

where sl = min(κ, |El| +
∑

k∈El
φk(κ − 1)) (by the theory of linear programming, κ is bounded by N , the

number of links in the network).

This result was presented for crossbar switches, where all input ports are connected to all output ports.

The only constraints on scheduling are that each port can either transmit or receive at most one packet per

time slot. In contrast, we are interested in a feasible link schedule with similar guarantees on service for

each link, under arbitrary schedulability constraints. Towards this end, we start by assuming an oracle that

provides a decomposition of the rate vector into a feasible set of vectors, such that the links activated under

each vector can be simultaneously scheduled (we show how such an oracle can be achieved using a distributed

algorithm in the next section). The result in [13] holds even when the we use link rate vectors rather than

permutation matrices, and hence can be applied to our wireless setting (there exists a decomposition into

κ ≤ N feasible vectors).

Packet Scheduling along Each Link: Coordinated Earliest Deadline First

Given the link schedule, we next need to determine how each link schedules individual packets so as to

minimize the worst-case end-to-end delay. We adopt a Coordinated Earliest Deadline First (CEDF) scheme,

similar to [7]. The scheme combines randomization and coordination with EDF to guarantee an end-to-end

delay bound of O(1/ρi +
∑

l∈pi

1
rl

) with high probability, under arbitrary wireless schedulability constraints.

Let rl denote the rate at which packets can be transmitted across a link l, that is rl =
∑

k∈El
φk. We

assume the following condition on the flow rates through link l:

∑

i∈Fl

ρi ≤ (1 − ǫ)rl

∑

k∈El
φkGl − sl

Gl
(9.25)

for some ǫ > 0, where Gl provides a bound on the maximum delay incurred by any packet at link l (more

details follow). Note that the factor Ul =
∑

k∈El
φkGl − sl, quantifies the minimum amount of time link l

is scheduled to transmit in any interval of length Gl. Therefore, rl
Ul

Gl
denotes the minimum effective rate of

link l, achieved using the link scheduling algorithm described above. The parameter (1− ǫ) represents a link

utilization factor, that plays a crucial role in allowing us to meet packet deadlines with high probability.

The Coordinated-EDF schedule works as follows. Each packet p of flow i is assigned deadlines D1, D2, . . .,

DKi
, for each link along p’s path. The deadlines of packets along link l are based on the parameter Gl,

which is independent of the individual rates of flows through the link. The deadline for the first hop D1 is
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defined as randi + Gl1 time after p’s injection into the network, where randi is a random number chosen

proportional to 1/ρi. This randomness serves to spread out the deadlines on future hops so that packets

don’t all arrive at a node together. The deadlines of subsequent hops are set as Dk+1 = Dk + Glk+1
. CEDF

chooses the packet with the earliest deadline to schedule at each time slot, and ties are broken arbitrarily.

Thus, each packet suffers a delay proportional to σi/ρi at the first hop, and then suffers a smaller delay at

all subsequent hops.

The random number randi used to assign deadlines is chosen from an interval of size Ti. When Ti is

as large as 2/ǫρi, we find that the deadlines are chosen far enough apart with high probability. We define

another parameter M to denote the cycle period of the deadlines, such that once the deadlines are chosen

within an interval of length M , the same deadlines can be repeated on future periods as well. We define a

set of parameters as follows:

Ti = 2
⌈log2

2
ǫρi

⌉
; M = max

i
Ti; Si = Tiρi(1 +

ǫ

2
) (9.26)

Note that such a definition of Ti’s ensures that M is an integral multiple of the Ti’s. Also, note that

Si/Ti is defined to be slightly larger than ρi.

Let N be the number of links in the network and r∗ denote the maximum rate of any link. We define

Gl, the amount by which deadlines are incremented for each link l as,

Gl =
sl + α

r∗
loge

(

NMr∗ǫ
)

∑

k∈El
φk

; Ul =
α

r∗
loge

(

NMr∗ǫ
)

(9.27)

where α = O(ǫ−3 loge
1

1−psuc
), and psuc is the desired success probability of the protocol (refer proof of

Lemma 4).

Deadlines are chosen using tokens. For each flow i, we choose numbers τ1, τ2, . . . , τM/Ti
uniformly at

random from intervals [0, Ti), [Ti, 2Ti), . . . , [M −Ti, M), respectively. A flow-i token appears at each of these

time instants, τl, l ≤ M/Ti, which is repeated for each period of length M (a token is released at time

instants τl + yM , for l ≤ M/Ti and y = 0, 1, 2, . . .). Each token of flow i services at most Si packets, and

each packet needs to obtain a token and consume one unit of its capacity. Note that the notion of tokens is

entirely for the purposes of accounting and assigning deadlines, and the network does not have to physically

support tokens. Consider a packet p of flow i, that is injected at time tinj . Suppose that the flow-i packet

injected immediately prior to packet p, obtained its token at time tprev. Then, packet p obtains the first

flow-i token after time τ = max(tinj , tprev) that has enough capacity to serve one packet. The deadlines

of packet p are defined as D1 = τ + Gl1 , Dj = Dj−1 + Glj . Given the deadlines of all the packets at each

hop, each link chooses the packet with the earliest deadline to serve at any given time slot on which it is
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scheduled to transmit.

Deriving the Delay Bound

We shall now prove that all deadlines are met with high probability using the coordinated EDF scheme, and

derive the worst-case delay bound of O( 1
ρi

+
∑

l∈pi

1
rl

) for a packet of flow i. The proof is similar to the

proof in [7] for end-to-end delay in wireline networks.

Consider a link l and a time interval I. Let x packets of link l have a deadline within the interval I.

In this case, we say that I services x packets at link l. Recall that the link schedule is determined by a

centralized oracle that ensures that whenever link l is scheduled to transmit, it suffers no interference from

other simultaneous transmissions within the network.

Lemma 4. For a link l and an interval I = [t − Gl, t], where t is a potential deadline for some packet at

link l, I services at most [
∑

k∈El
φkGl − sl] packets at link l, with high probability.

Proof. Let Xi denote the number of packets of flow-i that I services at link l. Tokens are placed randomly

in the intervals [0, Ti), [Ti, 2Ti), etc. Each token services at most Si packets. Therefore, in expectation, any

interval I of length Gl services at most Si

Ti
Gl packets, that is, E[Xi] = Si

Ti
Gl. Adding the expected values

across all flows along link l, by linearity of expectation,

E[
∑

i∈Fl

Xi] ≤
∑

i∈Fl

Si

Ti
Gl ≤ (1 −

ǫ

2
)rl(

∑

k∈El

φkGl − sl)

≤ (1 −
ǫ

2
)Ul

A Chernoff-type argument can be used to show that Pr[
∑

i∈Fl
Xi ≥ Ul] is small. In particular,

Pr[
∑

i∈Fl

Xi ≥ Ul] ≤ e−ǫ3(1−ǫ)Ul/48

Due to the periodic nature of token placement, we need to only analyze a period of length M . For any

link l, there exists at most M/Ti intervals I = [t−Gl, t], such that t is a deadline for a flow-i packet in that

time period. The total number of such intervals I can be bounded as,

N
∑

i

M

Ti
≤ N

∑

i

Mǫρi

2
≤

NMr∗ǫ

2

Recall the definitions of Gl and Ul from Equation 9.27. The probability that link l services at least Ul

packets during any interval I is at most,

(NMr∗ǫ

2

)(

eǫ3(1−ǫ)Ul/48
)

≤
(NMr∗ǫ

2

)( 1

NMr∗ǫ

αǫ3(1−ǫ)/48)

≤ 1 − psuc
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for α = 48
ǫ3(1−ǫ) loge(

1
1−psuc

). We can suitably choose psuc, the success probability of the algorithm, to be

close to 1.

Lemma 5. If Lemma 4 holds, then every packet of every flow meets all its deadlines.

Proof. Assume the contrary. Let D be the first deadline to be missed. Let p be the packet that misses this

deadline at link l. Since packet p meets all its previous deadlines, it must have arrived for transmission at

link l by time D − Gl. As packet p misses its deadline, it must be the case that link l is busy transmitting

other packets whenever it is chosen to transmit by the link schedule during the interval [D − Gl, D − 1/r∗].

Let p′ be such a packet transmitted along link l before packet p. As the scheduling is performed according

to EDF, p′ must have a deadline D′ ≤ D. Further, as packet p is the first packet to miss its deadline,

D′ ≥ D − Gl. Based on the construction of the link schedule, it is guaranteed that link l is scheduled to

transmit for at least a duration of
∑

k∈El
φkGl − sl in any interval of length Gl. Therefore, the total length

of all packets that have deadlines in [D − Gl, D] is at least (
∑

k∈El
φkGl − sl) (one packet is served during

each time slot for which a link is scheduled). This contradicts the assumption that Lemma 4 holds.

Lemma 4 and Lemma 5 imply that every packet of each flow i reaches its destination by time at most

τ +
∑Ki

j=1 Glj . We now upper-bound τ as follows.

Lemma 6. For each packet p of flow i, injected at time tinj , τ ≤ tinj + σi

ρi
+ 4

ǫρi
.

Proof. Let t0 be the last time before tinj when no flow-i packet is waiting to obtain a token. During the

interval (t0, τ) every flow i token must consume a packet injected during (t0, tinj), and each token must have

consumed at least Si − 1 of its capacity. Otherwise, either p would obtain a token before time τ or the

interval (t0, tinj) would contain a time when no flow-i packet is waiting to be transmitted.

The total number of flow-i tokens during (t0, tinj) is at least τ−t0−Ti

Ti
, with each token consuming at least

Si−1 of its capacity. The total number of packets of flow i injected during (t0, tinj) is at most σi+(tinj−t0)ρi.

We therefore have the bound,

τ − t0 − Ti

Ti
(Si − 1) ≤ σi + (tinj − t0)ρi

⇒
τ − t0 − Ti

ρiTi
(ρiTi + 1 − 1) ≤

σi

ρi
+ (tinj − t0)

⇒ τ ≤ tinj +
σi

ρi
+

4

ǫρi

Theorem 1. With a link scheduling algorithm that guarantees a rate ρl for each link l and a latency in

service of at most sl, using CEDF to schedule packets along each link, the worst-case end-to-end delay of
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packets of each flow i following path pi can be bounded as,

σi

ρi
+

4

ǫρi
+

∑

l∈pi

N + α loge

(

NMr∗ǫ
)

rl

Proof. The proof follows directly from sl ≤ κ ≤ N and Lemmas 4, 5, and 6.

Link scheduling via the Max-Weight algorithm

The above algorithm performed the link scheduling by calculating the φk values using a linear program and

then scheduling the feasible sets χk using [13]. We can also perform link scheduling using the Max-Weight

algorithm of Tassiulas and Ephremides [86] in the following manner. Suppose that we have a token buffer ql

that is fed with tokens at rate rl and decreased by 1 whenever link l is served. The Max-Weight algorithm

will always serve the set of links S for which
∑

l∈S ql is maximum. The standard stability analysis of Max-

Weight can also be used to show that the value of sl for this schedule is at most 2N/ε (we omit the details

here for reasons of space). We can therefore use the analysis of the previous section to obtain an end-to-end

delay bound of,

σi

ρi
+

4

ǫρi
+

∑

l∈pi

2N
ǫ + α loge

(

NMr∗ǫ
)

rl

9.2.2 Distributed Solution based on Decomposition

In this section, we examine how to construct the link schedule in a distributed manner. We recall that the

maximum distance at which links can interfere is at most 1 and the maximum number of links that can be

simultaneously active in any square of side L is at most γL2 (for example, for the unit disk graph model we

have γ = 1/π).

Our algorithm is extremely simple and is motivated by the algorithm for Maximum Independent Set in

unit-disk graphs of Hunt et al. [36]. While the discussion in Section 9.2.1 works for any arbitrary interference

model, in this section we assume a geometric graph model. At a high-level the algorithm works as follows.

We decompose the network into a sequence of grids of squares. In each grid there is a guard band around

each square to make sure that the different squares do not interfere with each other. Each grid is offset from

the previous one so that every link appears within a square, for all but a constant number of the grids. We

remark that many of the ideas we use have already appeared in the literature on Max Weight Independent

Set calculation in wireless networks.
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Grid decomposition

We divide the whole region of the network into squares of side 1. Note that any link can lie in at most 4

such squares. We now define an arrangement of large squares of side L = 5/ǫ. Grid (u, v) consists of a set

of large squares whose corner points can be written as (k1L + u, k2L + v), ((k1 + 1)L + u − 1, k2L + v),

(k1L+ u, (k2 + 1)L + v − 1), ((k1 +1)L +u− 1, (k2 + 1)L+ v− 1) for some integers k1 and k2. A link is said

to belong to a grid, if both its endpoints are contained in one of the large squares that make up the grid.

Figure 9.23: One grid (u, v).

A grid-schedule for grid (u, v) consists of a schedule for all the links that belong to the grid. Recall that

each square can be scheduled independently, since there is no interference between neighboring squares in

the grid.

Let S(u,v)(t) be the set of links scheduled by the schedule for grid (u, v) at time slot t. We create

our schedule for the entire network by interleaving the schedules for the different grids. In particular, our

complete schedule is given by,

S(0,0)(0), S(1,1)(0), . . . , S(L−1,L−1)(0)

S(0,1)(0), S(1,2)(0), . . . , S(L−1,0)(0)

...

S(0,L−1)(0), S(1,0)(0), . . . , S(L−1,L−2)(0)

S(0,0)(1), S(1,1)(1), . . . , S(L−1,L−1)(1)

...

S(0,L−1)(1), S(1,0)(1), . . . , S(L−1,L−2)(1)

S(0,0)(2), S(1,1)(2), . . . , S(L−1,L−1)(2)

...

S(0,L−1)(2), S(1,0)(2), . . . , S(L−1,L−2)(2)

...

147



Lemma 7. If the service guarantee sl for each link l in each grid schedule S(u,v)(·) is at most ∆, then the

service guarantee in the final schedule S(·) is at most L2∆.

Proof. For each constituent schedule, we have that the amount of service given to the link in any interval of

length t′ is at least rℓ(t
′ − ∆).

In every row of the complete schedule shown above, link l belongs to at least L − 2 of the L grids.

Consider any time interval of length t. There are x1 = t mod L2 schedules S(u,v)(·), that specify service in

⌊t/L2⌋+ 1 of these time slots. Of these schedules, at least x1 − 2⌈x1/L⌉ will contain the link l. In addition,

there are x2 = L2 − (t mod L2) schedules, that specify service in ⌊t/L2⌋ time slots. Of these schedules, at

least x2 − 2⌈x1/L⌉ will contain the link l.

Hence, the total amount of service given to link l in an interval of length t is at least,

(x1 − 2⌈x1/L⌉)rl(⌊t/L2⌋ + 1 − ∆)

+(x2 − 2⌈x2/L⌉)rl(⌊t/L2⌋ − ∆)

≤ (((x1 + x2)(1 − (2/L)) − 4)rl(
t

L2
− ∆)

= (1 −
2

L
−

4

L2
)rl(t − L2∆)

Note that, the service rate for each link has decreased by a factor (1 − 2
L − 4

L2 ) ≥ (1 − ǫ
2 ). This is not

a problem, since we assumed that the flow rates scaled by a factor 1/(1 − ǫ) still lie in the schedulability

region. Hence, we can simply scale up rl by a factor 1/(1 − ǫ
2 ).

Creating the schedule S(u,v)

It remains to devise a schedule for each individual grid. We assume that the link rates within any square

are computed in a distributed manner. Recall that, in any square of side L, the maximum number of links

that can be active in any feasible schedule in any time slot is at most βL2, for some constant β. Therefore,

the total number of feasible vectors χ is at most NβL2

. Note that, β, ǫ, and hence, L, are all assumed to

be constant. Hence, for any square, we can in polynomial time, use linear programming to locally compute

a decomposition of the rate vector for the links in the square (the decomposition is local since each link

does not need to communicate outside the square). We can then use [13] to create a schedule for the

square. Since the square has at most N links, the service guarantee sl for each link can be bounded by N .

Hence, by Lemma 7, the service guarantee for the entire schedule is at most L2N and hence we can apply

a similar analysis to Section 9.2.1 to show that the end-to-end delay for the entire schedule is bounded by

σi

ρi
+ 4

ǫρi
+

∑

l∈pi

L2N α
r∗

loge

(

NMr∗ǫ
)

rl
. Alternatively, we can use the Max-Weight algorithm to create a link
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schedule for each individual square, in which case the service guarantees can be bounded by 2L2N/ǫ and

the end-to-end delay can be bounded by σi

ρi
+ 4

ǫρi
+

∑

l∈pi

2L2N
ǫ

α
r∗

loge

(

NMr∗ǫ
)

rl
.

9.2.3 Improved Delay Bounds Through Randomized Link Schedules

The algorithm presented in [13] to construct the link schedule, gives us a delay bound of O(sl/rl) for each link

l. This bound, however, assumes the worst case wherein a packet for link l arrives just when its transmission

slot is over, and has to wait a worst case duration before the link is scheduled for transmission again. This

delay bound can be improved using randomized probabilistic techniques such as those presented in [6]. In

this section, we describe how one such randomized algorithm can be adapted to execute within each square

in our distributed link scheduling framework (other algorithms can likewise be applied). We assume that

for each square in the network, the decomposition of the rate matrix into a set of feasible independent link

transmissions for links within the square is available, that is, R =
∑κ

k=1 φkPk.

The randomized algorithm simply schedules the feasible link matrices in a random order, such that each

matrix Pk appears with a rate φk. We assume that for some frame length η, we can find integers lk, such

that φk = lk/η. lk tokens are generated for each matrix Pk, and tokens are chosen randomly from the set

of all tokens. The matrices are scheduled according to the order in which tokens are chosen. It was shown

in [6] that, with a probability of 1− ǫ, the delay in service, sl, for a link l can be bounded as,

sl → rl

√

A(
1

rl
− 1)η (9.28)

for η → ∞, where A < 1+10ǫ
4 . The algorithm can be executed independently for each square in the

distributed link scheduling framework, with different frame lengths for each square. As each link l is served

at a rate rl within each square to which it belongs, the probability that a link l is chosen for transmission

can be assumed to be uniform across all the squares to which it belongs. For a length η taken as the

maximum frame length of any square on any grid within the network, the service latency sl can be bounded

by Equation 9.28 above. For grid selections to which a link does not belong, the rate achieved for the link

is zero. As η → ∞, this delay can be assumed to be negligible, as there exist only 2 grids where the link is

not included in the schedule for every η grids. The delay bound for this randomized algorithm tends to be

significantly better than the bound provided in [13], due to the presence of the square root.

Let S(r,s)(t) denote the set of links scheduled under grid (r, s) at time slot t. Let η(r,s) denote the LCM

of the frame lengths for the schedules at each of the squares under grid (r, s). Let Π denote a random

permutation of the set {0, 1, 2, . . . , η(r,s)} (the random permutation can be different for each square within

each grid (r, s), but for simplicity of notation, we drop the superscripts for Π). The complete schedule under
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the random permutation scheme is then given by,

S(0,0)(Π(0)), S(1,1)(Π(0)), . . . , S(L−1,L−1)(Π(0))

S(0,1)(Π(0)), S(1,2)(Π(0)), . . . , S(L−1,0)(Π(0))

S(0,2)(Π(0)), S(1,3)(Π(0)), . . . , S(L−1,1)(Π(0))

...

S(0,L−1)(Π(0)), S(1,0)(Π(0)), . . . , S(L−1,L−2)(Π(0))

S(0,0)(Π(1)), S(1,1)(Π(1)), . . . , S(L−1,L−1)(Π(1))

S(0,1)(Π(1)), S(1,2)(Π(1)), . . . , S(L−1,0)(Π(1))

S(0,2)(Π(1)), S(1,3)(Π(1)), . . . , S(L−1,1)(Π(1))

...

S(0,L−1)(Π(1)), S(1,0)(Π(1)), . . . , S(L−1,L−2)(Π(1))

S(0,0)(Π(2)), S(1,1)(Π(2)), . . . , S(L−1,L−1)(Π(2))

S(0,1)(Π(2)), S(1,2)(Π(2)), . . . , S(L−1,0)(Π(2))

S(0,2)(Π(2)), S(1,3)(Π(2)), . . . , S(L−1,1)(Π(2))

...

S(0,L−1)(Π(2)), S(1,0)(Π(2)), . . . , S(L−1,L−2)(Π(2))

...

Note that each link needs to know this random permutation apriori to know when it is scheduled to transmit.

With the above randomized link scheduling algorithm and the coordinated earliest deadline first algorithm

to schedule packets at each link, we can bound the worst-case end-to-end delay of packets of flows through

the following corollary of Theorem 1.

Corollary 3. Using a random permutation of the link schedules within each square, and using the coordinated

earliest deadline first algorithm to schedule the packets at each link, packets of a flow i following a path pi

has with high probability a worst-case end-to-end delay of

σi

ρi
+

4

ǫρi
+

∑

l∈pi

rl

√

A( 1
rl

− 1)η+ α
r∗

loge

(

NMr∗ǫ
)

rl

A is the positive solution of
∑

k≥1(4k2A − 1)e−2k2A = ǫ.
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Likewise, the random-phase periodic competition scheduler [6] can be used to schedule the links within

each square, wherein tokens are generated for each matrix with period 1/φk and with a random phase

shift of Vk/φk, where Vk is a random number between 0 and 1. Here again, a bound of sl → |El| + rl(2 +
√

2κln(2η + 1)) can be obtained for η denoting the maximum frame length of any square within the network.

The non-frame-based schedulers from [6] can also be adapted to apply to each of the individual squares.

9.2.4 Local vs. Global Schedulability in Wireless Networks

In this section, we present an example to demonstrate that in wireless networks (unlike wireline networks),

local schedulability of deadlines in every neighborhood does not necessarily guarantee that there exists a

feasible global schedule of all the packets. We show an example, wherein for every sub-interval, there exists

a feasible schedule that ensures that the packets whose arrival time and deadline lie within the sub-interval,

all meet their respective deadlines. Likewise, for any subset of the nodes, there exists a schedule such that

packets originating at those nodes whose arrival time and deadline lie within the interval, all meet their

respective deadlines. In addition, there exists a global schedule for the entire interval that ensures that all

packets are transmitted within the interval (not necessarily meeting all packet deadlines). Yet, we show that

there does not exist a global schedule that meets all the deadlines of packets. Further, we show that the

tardiness of packets (the minimum amount of time by which some packet in the network is delayed beyond

it deadline), grows as a function of the number of packets each node has to transmit.
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G2

B1G1

(b)

Packet of B2 has tardiness of s/2

2s + s/2 + 1

B2B1

s/2 − 1

B2

B1
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B1 B2
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Figure 9.24: Figure illustrating the example

We consider a 4 node network of transmitters, as shown in Figure 9.24 (for concreteness, we can assume

that each transmitter is transmitting to a receiver that is close by). The interference relationships between

transmitters are also shown. A solid edge between two nodes denotes that the two nodes interfere with each
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other and cannot simultaneously transmit in the same time slot. A dashed edge between two nodes denotes

that the two nodes may simultaneously transmit. Each node has s packets that it needs to transmit. All

packets arrive at time zero. Packets from nodes G1 and G2 have a deadline of s time slots, and those at B1

and B2 have a deadline of 2s time slots. A node can transmit at most one packet during any given time slot.

Observe that, all packets within the network can be scheduled within 2s time slots, if deadlines of

packets are disregarded. This is achieved by first transmitting packets of G1 and B1 simultaneously during

the first s slots, and then transmitting packets of G2 and B2 during the next s time slots. This is shown in

Figure 9.24(b). Next, we show that for each sub-interval, all packets whose arrival and deadline lie within

the sub-interval can be scheduled within that sub-interval. Packets within the interval [0, s] (all smaller

intervals do not contain any packets), namely packets from G1 and G2 can be simultaneously transmitted.

Other intervals of size larger than s starting at time zero, contain the same set of packets, and are therefore

schedulable in s slots.

Next, consider any subset of nodes in the system. For the subset {G1, G2, B1}, G1 and G2 can transmit

during the first s slots and B1 can transmit during the next s slots (similarly for the subset {G1, G2, B2}).

For the subset {G1, B1, B2}, G1 and B1 can be transmitted during the first s slots and B2 can transmit

during the next s slots (a similar schedule exists for the subset {G2, B1, B2}). Schedules for all smaller

subsets of nodes can be constructed from these schedules.

Finally, let us consider the entire interval [0, 2s]. Nodes G1 and G2 need to transmit their s packets in

the first s slots in order to meet their deadlines. However, B1 and B2 cannot simultaneously transmit, and

therefore require 2s time slots to transmit all their packets, implying that s packets will miss their deadline

at time 2s. This is shown in Figure 9.24(c).

Further, we show that the tardiness of packets grows as a function of s.

Lemma 8. For the above example, tardiness smaller than ⌈ s
2⌉ for every packet cannot be achieved.

Proof. To prove this, let us assume the contrary. Suppose there exists a schedule where all the packets have

a tardiness of at most ⌈ s
2⌉ − 1 time slots. Packets of G1 and G2 have at most this tardiness, so they need

to be scheduled by time s + ⌈ s
2⌉ − 1. Therefore, on at least ⌊ s

2⌋+ 1 time slots, G1 and G2 need to transmit

simultaneously. Packets of B1 and B2 can accompany packets of G1 and G2, whenever G1 and G2 are not

transmitting simultaneously. After such transmissions from B1 and B2, there are at least ⌊ s
2⌋ + 1 packets

of each of B1 and B2 still to be transmitted at time s + ⌈ s
2⌉ − 1. Therefore, the time taken to transmit all

packets is at least s+ ⌈ s
2⌉− 1+2(⌊ s

2⌋+1) = 2s+ ⌊ s
2⌋+1. As ⌊ s

2⌋+1 > ⌈ s
2⌉− 1, some packet has a tardiness

of at least ⌈ s
2⌉, yielding a contradiction.
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The above lemma implies that the tardiness of packets can be made to grow with the number of packets

each node has to transmit. Alternatively, if each node has at most one packet to transmit, then the above

example can be transformed into an example where the tardiness grows with the number of nodes in the

network. Given the graph G above, one can construct the graph G′ as follows. Each node with s packets in

G, can be thought of as clique of s nodes (each node interfering with every other node in the clique) each

having only one packet to transmit. A link between two nodes in G is replaced with links between every

pair of nodes in the two cliques corresponding to the two nodes in G′. In G′ as in G, the tardiness grows as

a function of s.

9.2.5 Evaluation

We conduct our experiments on two simple network scenarios, each with one long flow whose end-to-end

packet delay is measured, and several short interfering flows. For each scenario, the link schedule is con-

structed using either Chang’s algorithm [13] or using the Max-Weight algorithm. Both these algorithms

are approximate, as in our implementation we only consider a fixed number of independent sets of links

on which to transmit at each time slot, and do not consider all possible independent sets of links. For the

packet schedule, the coordinated EDF scheme is compared against Weighted Fair Queuing at each link. We

use a simplified version of the CEDF scheme, similar to [7]. The deadline for the first hop is chosen from

the interval [tinj , tinj + 1
ρi

], where tinj is the time when the packet is injected. For every future hop, the

deadline is set as one packet service time more than the deadline at the previous hop. Each link serves the

packet with the earliest deadline at each time step.

The link speed is assumed to be 1 Mb/s and all packets are of size 1000 bits. Therefore, each link takes

1ms to service a packet. Buffers are large enough that no packet is dropped in any of the experiments. In our

interference model, two links are said to interfere, if either of the endpoints on one link is equal or adjacent

to either of the end points of the other link. We study the average end-to-end delay of packets (service

time and queuing time at each link along its path) belonging to the long session. The plots for 98-percentile

end-to-end delay were similar and are not shown here due to space constraints.

Short 1−hop flow
Long flow

Figure 9.25: Network 1

The first network we consider is shown in Figure 9.25. It consists of one long flow through the longest

path in the network, and short single-hop flows along each link. We vary the rate ρ0 of the long flow, and
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choose the rate of each of the short flows as 0.3 − ρ0. We plot the mean end-to-end delay of the packets of

the long flow as a function of the number of hops on its path, for different values of ρ0. Figure 9.26 shows

the plot for WFQ and Figure 9.27 shows the plot for CEDF.
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Figure 9.27: Average delay of long session under
CEDF for network 1

We observe that the delay of the long flow under CEDF is in accordance with and has the same form as

our analytical results. The delay increases as O(1/ρ0 +K0), where K0 is the number of hops of the long flow

(the slope of the curves are independent of the flow rate). In contrast, for WFQ, the delay is observed to

increase as O(K0/ρ0) (the slope of the curves increases with decreasing flow rate). Further, the performance

of the Max-Weight algorithm is observed to be similar to that of the Chang algorithm.
Long flow
Short 1−hop flow

Figure 9.28: Network 2

The second network we consider is shown in Figure 9.28. This network has additional interference links,

two from each node, with short 1-hop sessions along each link. The rate ρ0 of the long flow is varied, and

the rate of each of the 1-hop flows is assumed as 0.15 − ρ0. Figure 9.29 and 9.30 plot the mean end-to-end

delay of the long flow as a function of the flow length and rate, for WFQ and CEDF, respectively.

The results are more pronounced under this network scenario. WFQ incurs significantly larger delay

compared to CEDF for larger network sizes. Also, Max-Weight performs better than the Chang algorithm

for link scheduling, for both packet scheduling algorithms.

We also implemented Max-Weight to perform both the link and packet scheduling, by considering a

separate queue for each flow along every link. For both network scenarios, the delay for the long flow (not
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Figure 9.30: Average delay of long session under
CEDF for network 2

shown here due to space constraints) was observed to be marginally poorer than the corresponding values

obtained when using the Max-Weight algorithm for the link schedule and WFQ for the packet schedule.

9.2.6 Implementation Issues

In this work, our primary goal has been to determine what delay bounds are theoretically possible in the

wireless setting. We believe that this type of study has value, since it indicates the type of delay performance

that one should aim for when designing practical network protocols for delay-constrained traffic. However,

some of our proposed techniques, such as the grid decomposition for the distributed algorithm may be difficult

to implement in hardware. Hence, in this section, we briefly describe ways in which we could implement

a scheduler with a small delay bound in a manner that is consistent with practical schedulers for mobile

ad-hoc networks.

We first remark that the practicality of the proposed approach is only really an issue for the link scheduling

algorithm. The packet scheduling component the CEDF algorithm can be implemented extremely simply

in a distributed manner. We simply have to assign a delay at the first hop of the flow to create an initial

deadline and thereafter add a locally computed amount to the deadline at each hop.

As already discussed, for link scheduling it may be difficult to reliably carry out the grid decomposition

and the optimal feasible scheduling in a distributed manner. Hence we propose that the Max-Weight

algorithm based on token buffers ql be used for the link scheduling component, since recent work have shown

ways in which the Max-Weight algorithm can be approximated using a distributed algorithm. Moreover,

Section 9.2.5 indicates that the performance of Max-Weight is similar to that of the approach based on

Chang et al.

We now briefly outline some of the methods that have been proposed for practical implementation of the

Max-Weight algorithm in ad-hoc networks. In [20], Eryilmaz et al. provide a fully distributed implementation

of a pick-and-compare approximation to Max-Weight. Pick-and-compare algorithms were introduced by
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Tassiulas [85] and operate by continually picking a random feasible set and then only switching from the

current feasible set to the new feasible set if the aggregate weight of the new set is more than the current

set. It is known that as long as there is a non-zero probability of picking the Max-Weight set then such

algorithms retain the throughput-optimality property. In [20], Eryilmaz et al. show how both the “pick”

and “compare” phases of the algorithm can be realized by a fully distributed gossiping protocol.

Such a technique could also be used in our context for finding the Max-Weight subset. However, we

remark that the delay performance is unlikely to be very good, since it could take a long time for the “pick”

phase to find a new feasible set that is better than the old one and so the induced link delay for this protocol

could be large during the times that a link is not in the current feasible set.

The remaining approaches are all variants of the random access mechanism used by the 802.11 protocol.

In [31], Gupta et al. propose a random access scheme, which in our setup would cause each link to access

the channel with probability f(ql)/W , where f(·) is an increasing function and W is a parameter that

increases/decreases depending on whether or not previous transmissions have been successful. The fact that

the access probability depends on ql ensures that links with a large buffer are more likely to transmit, and

so the scheme approximates Max-Weight. In [31] it is shown that, if W is updated correctly then the access

probabilities converge to the “correct” values for the current level of network congestion.

The next two protocols work directly with the 802.11 backoff mechanism, where each node1 has a backoff

counter, which counts down whenever the node senses that the channel is idle. When the counter hits zero

then the node transmits. If the transmission is successful, then the counter is reset to a random amount

between 1 and some fixed parameter cwmin. If the previous transmission was not successful, then the range

for the subsequent counter selection is doubled in size from the range that was previously used.

The standard 802.11 implementation does not have any mechanism for adapting the procedure according

to any measure of urgency such as ql. However, recent work has demonstrated that simple changes can

make the protocol reflect urgency in an effective manner. For example, [4] Akyol et al. looked at ways to

implement backpressure protocols in the 802.11 framework and proposed a scheme, in which the value of

cwmin for a node was reduced whenever the node determined that its urgency weight was larger than the

urgency weights of nodes in its immediate neighborhood. In [92], Warrier et al, considered an alternative

approach in which cwmin was reduced whenever the urgency was larger than a fixed threshold.

1The standard 802.11 protocol has a separate counter for each node. However, it is easy to adapt this to the case where
each node has a separate counter for each of its adjacent links.
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Chapter 10

Conclusion and Future Work

In this thesis, we have developed a new reduction-based methodology for analyzing the end-to-end delay

and schedulability of real-time jobs in distributed systems. We have derived a simple delay composition

rule, that determines the end-to-end delay of a job in terms of the computation times of all other jobs that

execute together with it. Having derived the delay composition theorem for pipelined distributed systems,

we have extended it to Directed Acyclic Graphs and non-acyclic graphs as well, under both preemptive and

non-preemptive scheduling. The result makes no assumptions on periodicity and is valid for periodic and

aperiodic jobs. It applies to fixed and dynamic priority scheduling, as long as all jobs have the same relative

priority on all stages on which they execute. The delay composition result enables a simple reduction of

the distributed system to an equivalent hypothetical uniprocessor that can be analyzed using traditional

uniprocessor schedulability analysis to infer the schedulability of the distributed system. Such a reduction

significantly reduces the complexity of analysis and ensures that the analysis does not become exceedingly

pessimistic with system scale, unlike existing analysis techniques for distributed systems such as holistic

analysis and network calculus.

We developed an algebra based on the reduction-based analysis methodology. The operands of the alge-

bra represent workloads on composed subsystems, and the operators such as PIPE and SPLIT define ways in

which subsystems can be composed together. By repeatedly applying the operators on the operands repre-

senting resource stages, any distributed system can be systematically reduced to an equivalent uniprocessor

that can be analyzed to determine end-to-end delay and schedulability properties of all jobs in the original

distributed system.

While the above reduction-based techniques reduce the distributed system to an equivalent uniprocessor,

it suffers from pessimism that arises due to the mismatch in the constraints of the distributed workload

and the assumptions made by the uniprocessor task model, for the case of periodic tasks. To overcome

this problem, we developed a new uniprocessor system model with mode changes, which we call, flow-based

mode changes, motivated by the novel constraints of distributed workload transformation. In this model,

transition of a job from one resource to another in the distributed system, is modeled as mode changes on

157



the uniprocessor. We presented a new iterative solution to compute the worst-case end-to-end delay of a job

in the new uniprocessor task model. Reducing the distributed system to a uniprocessor with mode changes,

enables much tighter schedulability analysis as demonstrated by our simulation studies.

We presented a new concept of structural robustness, which refers to the robustness of the end-to-end

timing behavior of tasks in a distributed system towards unexpected timing violations in individual execution

stages. We quantitatively defined the structural robustness metric with respect to the individual execution

times of tasks on resources. We showed how the structural robustness of an execution graph can be improved

by efficiently allocating resources to individual execution stages, thereby reducing the sensitivity of the worst-

case end-to-end delays of tasks to unpredictable timing violations. Evaluation showed that our algorithm

was able to reduce the number of deadline misses due to unpredictable violations in the worst-case execution

times of tasks on individual stages by 40-60%. This approach will be extremely important for soft real-time

systems with timing uncertainties and systems where worst-case timing is not entirely verified. We hope

that future work will apply the concept of structural robustness to other systems outside the scope of the

model assumed in this work.

The theory developed in this thesis was adapted to the context of wireless networks. We developed a

bandwidth allocation scheme for elastic real-time flows in multi-hop wireless networks. The problem is cast

as one of utility maximization, where each flow has a utility that is a concave function of its flow rate, subject

to delay constraints. A flow obtains no utility if its delay constraints are violated. The delay constraints are

obtained from our end-to-end delay bounds and adapted to only use localized information available within

the neighborhood of each node. A constrained network utility maximization problem is formulated and

solved, the solution to which results in a distributed algorithm that each node can independently execute to

maximize global utility.

We also extended the end-to-end delay results obtained for distributed systems to the context of multi-

hop wireless networks in the presence of arbitrary schedulability constraints. We considered the problem of

minimizing end-to-end worst-case delay bounds in wireless networks and showed that by using a Coordinated

EDF strategy we could ensure that a packet from flow i only needs to experience a delay of roughly σi

ρi
at

its initial hop. Thereafter, it only needs to experience delays at its subsequent hops for which the dominant

factor is N
rl

(independent of the flow’s rate, similar to our delay composition results). The extent to which

worst-case end-to-end delay can be minimized in wireless networks under arbitrary schedulability constraints

still remains an open problem.

We hope that the results developed in this thesis will aid in the development of a general theory for the

analysis of delay in distributed systems. While there has been a lot of work on studying scheduling policies

158



for uniprocessor and multiprocessor systems, little is known with regard to which scheduling policies work

well for distributed real-time systems. Our delay composition results provide insights into when preemptive

scheduling performs better than non-preemptive scheduling and vice-versa. We need to gather a much

more comprehensive understanding of various classes of scheduling policies including preemptive versus non-

preemptive scheduling, fixed versus dynamic priority scheduling, and prioritized versus partitioned (each job

has a reserved partition during which it executes) scheduling. We believe that the theory we have developed

so far, presents the groundwork towards making crucial breakthroughs towards solving this problem.

In our study, we have predominantly considered only work-conserving scheduling policies. While non-

work conserving policies tend to increase the delay incurred by a task, they are nonetheless important from

the perspective of system safety and in the ability to verify that the system will always execute within states

that are deemed safe. Thus, it is also important to study a mix of work conserving and non-work conserving

scheduling policies.

In many distributed systems, especially in server farms and in networks, jobs could potentially traverse

one of several valid routes through the system. The routing policy determines the sequence of resources

through which the job is routed, and presents an additional level of complexity that was not present in

uniprocessor or multiprocessor systems. The theory can be extended to optimize the routes followed by jobs.

Further, in this thesis we assume that jobs require only a single resource at any given time (although they may

need different resources at different times). We do not consider jobs that simultaneously require two or more

resources. In order to handle systems that have tasks that require two or more resources simultaneously,

we hope to develop an AND primitive as part of the algebra. Many different semantics are possible for

simultaneous resource consumption. Semaphores and blocked execution is a well studied model outside

the realm of real-time computing. Alternatively, it is possible that the scheduling at both resources are

preemptive in nature (e.g., a Graphics Processing Unit and a generic processor, both scheduled preemptively),

or that one resource is preemptively scheduled, while the other is scheduled in a non-preemptive manner.

We currently still do not have the insights to develop analysis techniques that can handle such generic task

and resource models efficiently. Nevertheless, this is certainly a very important, interesting, and challenging

problem that the research community needs to address in the future.

The analysis methodology developed in this work applies a test for the schedulability of each task in the

system. Thus, the test needs to be repeated separately for every task in the system, in order to determine

that the entire system is schedulable. An alternative methodology is to obtain a single test that determines

the schedulability of all tasks in the system. Utilization bounds are an example of such analyses, wherein a

single bound, if satisfied, guarantees that all the tasks in the system are schedulable. While such utilization
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bounds tend to be more pessimistic than per-task tests, they are easier to apply and are better suited to

quickly determine the schedulability of large systems. More efficient per-task tests can later be conducted

in order to obtain tighter bounds, or deeper insights into the functioning of the system, and to determine

potential guidelines as to how the system design can be improved.

It would also be interesting to combine the advantages of delay composition theory with other generic

analysis techniques such as network calculus. Delay composition theory tends to be much less pessimistic

than network calculus, but is not as general. For instance, network calculus admits any scheduling policy to

be used at each node in the distributed system. Combining the tightness of the delay composition results

with a network calculus-type system model to leverage its generality, would significantly improve the scope

of applicability of the theory.

The philosophy of compositional reduction-based analysis can be extended to other end-to-end properties

such as throughput, stability, robustness, security, and functional correctness as well. If feasible, this can

provide a much deeper understanding of these properties, while providing efficient and accurate ways of

analyzing them.

Finally, the applicability of the theory can be extended to areas outside computing as well, such as

project management. Any industrial project involves several jobs, each of which need to be completed

within time constraints and involve processing by a sequence of resources. Each resource typically involves

a combination of people, machines, and raw materials that need to be available simultaneously. Problems of

admission control, resource provisioning, performance optimization, robustness, and cost minimization are

typical in project management, just as in any distributed system. Some of the theory that we have developed

so far and the problems that we still face apply in the context of project management as well. The reduction-

based theory that we have developed would be immensely valuable in providing crucial insights and simple

analyses during the design and management of large and complex projects. We envision that this cross-

cutting research between computing and management will impact the way large organizations, irrespective

of their business discipline, deal with their projects.

In the financial sector, quantitative analysis is a field that functions at the intersection of finance and

distributed system computing. Thousands of bytes of data streams need to be processed by a sequence of

computing units, each performing very specialized measurement, estimation, and prediction tasks, as in a

distributed system. The data streams are extremely time sensitive with millions of dollars at stake. These

are high-end, computationally intensive and time critical real-time applications that can greatly benefit from

theoretical insights and design principles such as those initiated by this thesis.
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