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Abstract

As the Web has evolved into a data-rich repository, with the standard “page view,” current search engines

are becoming increasingly inadequate for a wide range of query tasks. While we often search for various data

“entities” (e.g., phone number, paper PDF, date), today’s engines only take us indirectly to pages. In my

Ph.D. study, we focus on a novel type of Web search that is aware of data entities inside pages, a significant

departure from traditional document retrieval. We study the various essential aspects of supporting entity-

aware Web search. To begin with, we tackle the core challenge of ranking entities, by distilling its underlying

conceptual model Impression Model and developing a probabilistic ranking framework, EntityRank, that is

able to seamlessly integrate both local and global information in ranking. We also report a prototype system

built to show the initial promise of the proposal. Then, we aim at distilling and abstracting the essential

computation requirements of entity search. From the dual views of reasoning–entity as input and entity as

output, we propose a dual-inversion framework, with two indexing and partition schemes, towards efficient

and scalable query processing. Further, to recognize more entity instances, we study the problem of entity

synonym discovery through mining query log data. The results we obtained so far have shown clear promise

of entity-aware search, in its usefulness, effectiveness, efficiency and scalability.
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Chapter 1

Introduction

The immense scale and wide spread of the Web has rendered it an ultimate information repository– It contains

all kinds of data, much beyond the conventional page view of the Web as a corpus of “documents.” While

the richness of data represents a promising opportunity, it challenges us for effectively finding information

we need, beyond the traditional search paradigm of retrieving relevant documents.

On the other side, we have also noticed tremendous needs for data entities from the end users. Two

recent studies have revealed that a significant portion of all Web queries are about entities. Specifically,

Kumar et al. show that 52.9% of web search queries are entity-oriented queries [47]. And Guo et al. show

that about 71% of web search queries contain named entities [37].

Search today is mostly oblivious to data embedded in various pages– Can we build the awareness of

entities into large scale search over the Web to bridge the users’ need of entities with the rich set of data

entities on the Web?

Toward entity-aware search, to focus on the “stuff” we want, or data “entities,”, we have been developing

the concept and system for entity search, in the WISDM project (http://wisdm.cs.uiuc.edu) at the University

of Illinois. In entity search, the Web is conceptualized as a repository of data entities, which appear in various

linked documents. As Figure 1.1 shows, while traditional search views the Web as a collection of pages, and

finds pages by keywords, an entity-search system views the Web as a repository of (various types of) entities,

and searches these entities directly.

Traditional search paradigms view the Web as a document collection D of documents {d1, d2, . . . , dn}.

We take an entity view of the Web: we consider the Web as primarily a repository of entities (in addition to

the notions of pages): E = {E1, E2, . . . , EN}, where each Ei is an entity type. (e.g., E = {E1 : #phone, E2 :

#email}). We use a prefix # sign (e.g., #phone for phone entity) throughout the thesis to distinguish entities

from keywords. Further, each entity type Ei is a set of entity instances that are extracted from the corpus,

i.e., literal values of entity type Ei that occur somewhere in some document d ∈ D. We use ei to denote

an entity instance of entity type Ei. In the example of phone-number patterns, we may extract #phone =

{“800-2017575”, “244-2919”, . . .}

1



Traditional Search Entity Search

Figure 1.1: From Tradition Search to Entity Search

To motivate concretely, consider user Amy: She may be looking for the “phone number” of say, Ama-

zon.com’s customer service? When preparing seminar presentation, Amy wants to find papers that come

readily with presentations, i.e., a “PDF file” together with a “PPT file,” say from SIGMOD 2006? In these

scenarios, Amy is looking for particular entities of information, e.g., a phone number, a PDF, a PPT, etc..

To illustrate, our scenarios will lead to the following queries:

Q1: ow20(amazon service #phone)

Q2: uw (sigmod 2006 #pdf file #ppt file)

As input, users formulate queries to directly describe what they are looking for: She can simply specify

what her target entities are and what keywords may appear in the surrounding context with a right answer.

Each query is thus a context pattern of how the desired entity may occur with some keywords in its sur-

rounding context. Q1 says that the entity #phone will appear with these keywords in the pattern of ow20

or “ordered-window of 20 words” (and as close as possible).

As output, users directly get their desired entities. That is, as a query specifies the target entity types,

its results are those entity instances (or literal values) that match the query, in a ranked order by matching

scores. Figure 2.2 shows example results for Q1 and Q2. Here pages, unlike being the primary search target

in document search, become the supporting evidence for the entity results.

2
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hp.com0.2206-346-29924

xyz.com0.6 800-342-52833

Dell.com/supportors0.8800-988-08862

amazon.com/support.htm

myblog.org/shopping

0.9800-201-75751

urlsscorephone numberrank

……………

ms.com0.7surajit21.pptsurajit21.pdf2

db.com,sigmod.com0.8sigmod6.pptsigmod6.pdf1

urlsscorePPTPDFrank

Figure 1.2: Query Results of Q1 and Q2

1.1 Entity Search Problem Definition

We proposed the concept of “entity search” and formally defined the problem in [21]. We now introduce

the underlying data model we use, and present the definition of the entity search problem.

1.1.1 Data Model: Entity View

How should we view the Web as our database to search over? In the standard page view, the Web is a set

of documents (or pages) D = {d1, . . . , dn}. We assume flat set for discussion here; Chapter 2 will specialize

D as a set of linked documents.

In our data model, we take an entity view : We consider the Web as primarily a repository of entities

(in addition to the notions of pages): E = {E1, E2, . . . , En}, where each Ei is an entity type. For instance,

to support query Q1 as we motivated earlier in this chapter, the system might be constructed with entities

E = {E1 : #phone, E2 : #email}. Further, each entity type Ei is a set of entity instances that are extracted

from the corpus, i.e., literal values of entity type Ei that occur somewhere in some d ∈ D. We use ei to

denote an entity instance of entity type Ei. In the example of phone-number patterns, we may extract

#phone = {“800-201-7575”, “244-2919”, “(217) 344-9788, . . .}

In this work, we consider only entities that can be recognized offline before query-time, and the extracted

instances will be indexed for efficient query processing. The extraction can be done using simple pattern

3



Entity-Search Query.

• Given: Entity collection E = {E1, . . . , EN}, over

Document collection D = {d1, . . . , dn}.

• Input: Query q(〈E1, . . . , Em〉) = α(E1, . . . , Em, k1, . . ., kl),

where α is a tuple pattern, Ei ∈ E , and kj a keyword.

• Output: Ranked list of t = 〈e1, . . ., em〉, where ei ∈ Ei,

sorted by Score(q(t)), the query score of t.

Figure 1.3: The Entity Search Problem

matching or state-of-the-art entity extractors.

To facilitate query matching, we will record the “features” of each occurrence ei.

• Position ei.pos: the document id and word offset of this instance occurrence, e.g., instance e1 may occur

at (d2, 23).

• Confidence ei.conf : the probability estimation that indicates how this occurrence is regarded as an in-

stance of Ei.

With entities extracted and indexed, we transform the page view into our entity view. Note that the set

of supported entity types must be determined, depending on the actual application setting, much like the

“schema” of the system.

We stress that each of these entities are independently extracted from the corpus, and are only associated

by ad-hoc queries at query time. Thus, users may ask #phone with “ibm thinkpad” or “bill gates”, or they

ask to pair #phone with, say, #email for “white house”. Supporting such online matching and association is

exactly the challenge (and usefulness) of entity search.

1.1.2 Search Problem: Finding Entity Instances

We now state our entity search problem, as Figure 1.3 summarizes. First, for input, as queries, our entity

search system lets users search for entities by specifying target entity types and keywords together in a

tuple pattern α, which indicates users’ intention of what the desired entities are, and how they may appear

in D by certain patterns. We note that entity search is essentially search by context over the document

collection: As α intends to capture, our desired data often appear in some context patterns with other

keywords or entities, indicating how they together combine into a desired tuple by their textual occurrences.

4



A system will support, as its implementation decisions, a set of such patterns, e.g., doc (the same document),

ow (ordered window), uw (unordered window), and phrase (exact matching). A query can either explicitly

specify a pattern (e.g., Q1) or implicitly assume the system default pattern (e.g., Q2).

Second, for output, the results are a ranked list of m-ary entity tuples, each of the form t = 〈e1, . . .,

em〉, i.e., a combined instance of each ei as an instance of entity Ei desired in the query. A result tuple t

will be ranked higher, if it matches the query better. We denote this measure of how well t matches q by a

query score Score(q(t)), which should capture how t appears, by the desired tuple pattern α, across every

document dj in D, i.e.,

Score(q(t)) = Score(α(e1, . . . , em, k1, . . . , kl)).

We stress that, since the assessment of the query score defines the ranked list, it is the central function

of an entity search system. The objective of entity search is thus to find from the space of t ∈ E1 · . . . · Em,

the matching tuples in ranked order by how well they match q, i.e., how well entity instances and keywords

in tuple t associate in the desired tuple pattern.

1.2 Our Contributions

We summarize the contributions of our study as follows:

Problem: We are among one of the first to propose, formulate and study the entity search problem [21].

System: A system prototype built over real Web corpus [25] to concretely validate our ideas and designs.

Techniques: Systematic study of the search requirements and the design of a conceptual Impression model

and a concrete EntityRank ranking model [24] for entity retrieval effectiveness. Principled study of index

design, partition schemes and query processing to enable efficient and scalable entity search [22] at large

scale. Study of the entity synonym discovery problem for enabling entity resolution [23].

The rest of the thesis is organized as follows:

Chapter 2 focuses on search effectiveness by studying ranking models. With an effective ranking model

established, we next study Chapter 3 indexing design and parallelization schemes for high search efficiency

and scalability. We also study the entity synonym discovery problem in Chapter 4, to reveal the various

representations of an entity in the form of entity synonyms. Chapter 5 reviews the related systems and

Chapter 6 concludes the thesis.

5



Chapter 2

Entity Ranking: Searching Entities

Directly and Holistically

2.1 Introduction

The immense scale and wide spread of the Web has rendered it as an ultimate information repository– as

not only the sources where we find but also the destinations where we publish our information. These dual

forces have enriched the Web with all kinds of data, much beyond the conventional page view of the Web as

a corpus of HTML pages, or “documents.” Consequently, the Web is now a collection of data-rich pages, on

the “surface Web” of static URLs (e.g., personal homepages) as well as the “deep Web” of database-backed

contents (e.g., flights from aa.com), as Figure 2.1 shows. While the richness of data represents a promising

opportunity, it challenges us for effectively finding information we need.

With the Web’s sheer size, our ability to find “stuff” we want mainly relies on how search engines

respond to our queries. As current engines search the Web inherently with the conventional page view, they

are becoming increasingly inadequate for a wide range of queries. To focus on the “stuff” we want, or data

“entities”, this chapter studies the entity search problem, formulates the search framework, and in particular

addresses the central issue of entity ranking.

Motivating Scenarios: The Barriers

To begin with, we reflect: As users, what have we been looking for on the Web? The richness of data has

tempted us to search for various ”stuff”– Let us consider a few scenarios, for user Amy:

Scenario 1: Amy wants to call Amazon.com for her online purchase; how can she find the “phone number”

of their customer service? To begin with, what should be the right keywords for finding pages with such

numbers? Query “amazon customer service phone” may not work, as often a phone is simply shown without

keyword “phone” (e.g., customer service: (800) 717-6688). Or, “amazon customer service” could be too

broad to return many pages. Amy must sift through the returned pages to dig for the phone number.

This task can be time consuming, since some vendors may “hide” their service numbers (to reduce their

workload). Fortunately, such information might reside in other probably less authoritative (or lower ranked)

6



Cars.com

Amazon.com

AA.com

BN.com

Figure 2.1: The Current Web: Proliferation of Data-Rich Pages

pages, e.g., user forums, business reviews, and blogs. �

Scenario 2: Amy wants to apply for graduate schools; how can she find the list of “professors” in the

database area? She might have to go through all the CS department homepages (in the hope that there is a

page that lists professors by research areas), or look through faculty homepages one by one. This could be

a very laborious process. �

Scenario 3: As a graduate student, Amy needs to prepare a seminar presentation for her choice of some

recent papers; how can she find papers that come readily with presentations, i.e., a “PDF file” together with

a “PPT file,” say from SIGMOD 2006? �

Scenario 4: Done with the presentation, now Amy wants to buy a copy of Shakespeare’s Hamlet to read;

how can she find the “prices” and “cover images” of available choices from, say, Borders.com and BN.com

(She has seen the copy she likes before, so the cover page will be helpful to find out). She would have to

look at the results from multiple online bookstores one by one and compare the listed price of each. �

In these scenarios, like every user in many similar situations, Amy is looking for particular types of

information, which we call entities, e.g., a phone number, a book cover image, a PDF, a PPT, a name, a

date, an email address, etc. She is not, we stress, looking for pages as “relevant documents” to read, but

entities as data for her subsequent tasks (to contact, to apply, to present, to buy, etc.).

However, the current search systems, with their inherent page view of the Web, are inadequate for the

task of finding data entities, the focus of this chapter. There are two major barriers:
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First, in terms of the input and output, current engines are searching indirectly. 1) Users cannot directly

describe what they want. Amy has to formulate her needs indirectly as keyword queries, often in a non-trivial

and non-intuitive way, with a hope to hit “relevant pages” that may or may not contain target entities. For

Scenario 1, will “amazon customer service phone” work? (A good page may simply list the phone number,

without the word “phone.”) 2) Users cannot directly get what they want. The engine will only take Amy to

a list of pages, and she must scrutinize them to find the phone number. Can we help Amy to search directly

in both describing and getting what they want?

Second, in terms of the matching mechanism, current search engines are finding each page individually.

The target entities are often available in multiple pages. In Scenario 1, the same phone number of Ama-

zon.com may appear in the company’s Web site, online user forums, or even blogs. In this case, we should

collect, for each phone, all its occurrences from multiple pages as supporting evidences of matching. In

Scenario 2, the list of professors probably cannot be found in any single page. In this case, again, we must

look at many pages to come up with the list of promising names (and similar to Scenario 1, each name may

appear in multiple pages). Can we help users to search holistically for matching entities across the Web

corpus as a whole, instead of individual pages?

Our Proposal: Entity Search

Toward searching directly and holistically, for finding specific types of information, we propose to support

entity search.

First, as input, users formulate queries to directly describe what they are looking for: She can simply

specify what her target entities are, and what keywords may appear in the context with a right answer. To

distinguish between entities to look for and keywords in the context, we use a prefix #, e.g., #phone for the

phone entity. Our scenarios will naturally lead to the following queries:

Query Q1:ow(amazon customer service #phone)

Query Q2: (#professor #university #research=”database”)

Query Q3:ow(sigmod 2006 #pdf file #ppt file)

Query Q4: (#title=”hamlet” #image #price)

In these queries, there are two components: (1) Context pattern, how will the target entities appear?

Q1 says that the entity #phone will appear with these keywords in the pattern of ow or “ordered-window”,

i.e., in that order and as close in a window as possible. We may also omit the pattern, e.g., Q2 and Q4, in

which case the implicit default uw or “unordered-window” is used (which means proximity– the closer in a

window, the better). (The exact patterns depend on implementations. Section 2.4 will discuss the notion of
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Figure 2.2: Query Results of Q1 and Q3

such “recognition models.”) (2) Content restriction: A target entity will match any instances of that entity

type, subject to option restriction on their content values– e.g., Q1 will match every phone instance, while

Q2 will only match research area “database.” (In addition to equality “=”, other restriction operators are

possible, such as “contain.”)

Second, as output, users will directly get the entities that they are looking for. That is, as a query

specifies what entity types are the targets, its results are those entity instances (or literal values) that match

the query, in a ranked order by their matching scores. (We will discuss this matching next.) Figure 2.2

shows some example results for Q1 and Q3.

Third, as search mechanism, entity search will find matching entities holistically, where an instance will

be found and matched in all the pages where it occurs. For instance, a #phone 800-201-7575 may occur at

multiple URLs as Figure 2.2 shows. For each instance, all its matching occurrences will be aggregated to

form the final ranking– e.g., a phone number occurs more frequently at where “amazon customer service”

is mentioned may rank higher than those less frequent ones. (This ranking is our focus– See next.) Thus,

while our search target is entities, as supporting “evidences,” entity search will also return where each entity

is found. Users can examine these snippets for details.

We note that, the usefulness of entity search is three-fold, as the sample results in Figure 2.2 illustrate.

First, it returns relevant answers at top rank places, greatly saving search time and allowing users or

applications to focus on top results. Second, it collects all the evidences regarding the query in the form

of listing supporting pages for every answer, enabling results validation (by users) or program-based post-

processing (by applications). Third, by targeting at typed entities, such an engine is data-aware and can be
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integrated with DBMS for building novel information systems– imagine the results of Q1 to Q4 are connected

with SQL-based data.

Core Challenge: Ranking Entities

Toward building an entity search engine, we believe the core challenge lies in the entity ranking model–

Obviously, while promising, such a system is only useful if good entity results can be found at the top ranks,

much like today’s search engines that strive to achieve the central mission of ranking relevant pages high.

As our discussion has hinted, there are several unique requirements of entity search. Entity search is 1)

contextual, as it is mainly matching by the surrounding context; 2) holistic, entities must be matched across

their multiple occurrences over different pages; 3) uncertain, since entity extraction is imperfect in nature;

4) associative, entities can be associated in pairs, e.g., #phone and #email and it is important to tell true

association from accidental; and 5) discriminative, as entities can come from different pages, and not all

such “sources” are equivalent.

With these requirements, this chapter focuses on entity ranking: We build our foundation by propos-

ing the impression model, an “ideal” conceptual framework. With the conceptual guidance, we build the

EntityRank scheme, taking a principled probabilistic view for scoring and ranking: We conceptualize the

matching of a result as to estimate the probability how the entity instances are associated as a tuple, and

compare it to a null hypothesis to discriminate accidental associations. With a local recognition layer for

quantifying each instance occurrence, a global access layer for aggregating across pages, and a validation

layer for hypothesis testing, EntityRank materializes the conceptual impression model.

Our results show that EntityRank is effective: In our prototype indexing 2 TB of real Web corpus, for

Scenario 1, it consistently finds the right matches at top-3, for a sample of Fortune 500 companies, and

similarly for a systematic querying of SIGMOD 2007 PC members. Section 2.5 will demonstrate the results

for all four scenarios. We validate the seamless integration of local recognition and global access models–

without either, the results are significantly degraded– as well as the need for hypothesis testing.

We start in Section 2.2 to formalize entity search. Section 2.3 presents the ideal conceptual model and

Section 2.4 materializes it into the EntityRank scheme. We relate to existing studies in Section 4.5, and

Section 2.5 reports our prototype system and experiments.

Contributions

1. We study and define the characteristics and requirements of entity search as the guideline for sup-

porting effective ranking.
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Figure 2.3: Example Page: Amazon Customer Service #phone

2. We distill the conceptual model Impression Model, and develop a concrete EntityRank framework for

ranking entities.

3. We have implemented an online prototype with real Web corpus, and demonstrated the effectiveness

of entity search.

2.2 Problem and Requirements

To support entity-based querying, the system must be fundamentally entity-aware: That is, while current

search engines are built around the notion of pages and keywords, we must generalize them to support entity

as a first-class concept. With this awareness, as our data model, we will move from the current page view,

i.e., the Web as a document collection, to the new entity view, i.e., the Web as an entity repository. Upon

this foundation, we develop entity search, where users specify what they are looking for with keywords and

target entities, as Q1 – Q4 illustrated.

2.2.1 Entity Ranking: Requirements

For effective entity ranking, it is crucial to capture the unique characteristics of entity search. Let’s examine

a sample query: find the phone number of “Amazon Customer Service”; q = (Amazon Customer Service

#phone).

For each query, conceptually, an entity search system should analyze all pages available on the Web that
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contain the keywords “Amazon Customer Service” and a #phone instance. Figure 2.3 is a text snippet from

an example webpage that contains keywords “Amazon Customer Service” and #phone instances. There

could be many such pages. The first step, for such a page, is to match the keywords “Amazon Customer

Service” and identify the entity instances desired (#phone). Next, we must rank these entity instances

since there might be multiple phone numbers co-located with “Amazon Customer Service” in webpages.

The ranking function eventually will single out which phone number is associated with “Amazon Customer

Service” more strongly. An entity search system needs to take into account the following major factors (as

Section 3.1 briefly mentioned).

• R-Contextual : The probability of association between keywords and entity instances in various contexts

might be different. There are mainly two factors to consider:

a) Pattern: The association of keywords and entity instances sometimes formulates a regular pattern; e.g.,

a company’s name often appears before its phone number is mentioned. Given a text snippet ”Amazon

1-800-201-7575 eBay,” the phone number is more likely to associate with “Amazon” than “eBay”.

b) Proximity: The association between the keywords and the entity instances is not equally probable

with respect to how “tightly” they appear in the web page. Often, the association is stronger when

the occurrences are closer. Use Figure 2.3 as an example. Phone number e1 1-800-201-7575 is more

likely associated with Amazon than phone number e6 408-376-7400 as e1 appears in closer proximity to

keywords “Amazon Customer Service” than e6.

• R-Holistic: As a specific phone number instance may occur with “Amazon Customer Service” multiple

times in many pages, all such matchings must be aggregated for estimating their association probability.

• R-Uncertainty: Entity extraction is always not perfect, and its extraction confidence probability must be

captured.

• R-Associative: We must carefully distinguish true associations from accidental. Again use Figure 2.3

as an example. Phone number e10 1-800-555-1212 might occur very frequently with “Amazon Customer

Service”. However, this is just by random association since this phone number, being the general toll free

number for US, also appears with other companies frequently. It is thus important to make “calibration”

to purify the association we get.

• R-Discriminative: Intuitively, entity instances matched on more popular pages should receive higher scores

than entity instances from less popular pages. This characteristic is especially useful when the document

collection is of varying quality, such as the Web.
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< amazon customer service,            >: ??

... ... ...
< amazon customer service,            >: ??

... ... ...

Figure 2.4: Impression Model: Conceptual Illustration

2.3 Conceptually: Impression Model

Toward a principled ranking model, we start with developing the insights– What is the conceptual model

that captures the “ideal” behavior of entity search?

2.3.1 Impression Model

To begin with, assuming no resource or time constraints, we speculate, what is an ideal realization of entity

search, over the Web as D? To be concrete, consider query Q1 for finding tuple 〈“amazon customer service”,

#phone〉. As most users will probably do, we can access “amazon”-related pages (say, from a search engine),

browse their contents, and follow links to read more, until we are satisfied (or give up), and returning our

overall findings of promising #phone numbers.

Let’s cast this process into an ideal execution, a conceptual model which we call the Impression Model,

as Figure 2.4 shows. With unlimited time and resource, we dispatch an observer to repeatedly access the

Web D and collect every evidence for substantiating any potential answer. This observer will visit as many

documents and for as many times as he wishes. He will examine each such document d for any #phone that

matches Q1 (i.e., following and near “amazon customer service”) and form his judgement of how good the

matches are. With an unlimited memory, he will remember all his judgements– i.e., his impression. The

observer will stop when he has sufficient impression, according to which he will score and rank each phone

entity instance that occurs in D.

To formalize this impression model, we take a probabilistic view to capture the observer’s “impression.”

For a query q, given entity collection E over document collection D, Figure 2.5 sketches the impression
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The Observer’s Impression Model: Conceptual Execution of Entity Search.

Given: E = {E1, . . . , EN} over D = {d1, . . . , dn}. Let E = E1×. . .×Em.

Input: q = α(E1, . . . , Em, k1, . . ., kl).

0: τ = 1; /* time tick.

1: while (τ = τ + 1 and τ ≤ T ):

3: dτ = access document from D; /* access layer.

4: ∀t ∈ E: Score(q(t)|dτ ) = recognize p(q(t)|dτ ); /* recognizition layer.

5: ∀t ∈ E: output Score(q(t)) =

∑

T

τ=1
Score(q(t)|dτ

)

T
; /* average impression.

Figure 2.5: Impression Model: Basic Framework

framework. To execute entity search, at time τ , the observer accesses a document, which we denote dτ , from

D– Let’s abstract this mechanism as the access layer of the observer. Examining this dτ , he will recognize

if any potential tuple t occurs there. Let’s abstract this assessment function as the observer’s recognition

layer. Formally, this assessment results in the association probability p(q(t)|dτ )– i.e., how likely tuple q(t)

holds true given the “evidence” of dτ .

Eventually, at some time τ = T , the observer may have sufficient “trials” of this repeated document visits,

at which point his impression stabilizes (i.e., with sufficient sampling from D). To capture this convergence

statistically, let’s characterize the access layer by p(d), the access probability of document d, i.e., how likely

d may be drawn in each trial. Thus, over T trials, d will appear T · p(d) times. If T is sufficiently large,

the average impression (i.e., statistical mean) will converge– which we similarly refer to as the association

probability of q(t) over D:

p(q(t)|D) = lim
T→∞

∑T
τ=1 p(q(t)|dτ )

T
=

∑

d∈D

p(d) · p(q(t)|d) (2.1)

As this association probability characterizes how likely t forms a tuple matching q(t), when given the

entire collection D as evidence, it is the “query score” we are seeking. While we will (in Section 2.4) further

enhance it (with hypothesis testing), for now, we can view it as the final query score, i.e.,

Score(q(t)) = p(q(t)|D).

The impression model provides a conceptual guideline for the entity search task, by a tireless observer

to explore the collection for all potential entity tuples. While the framework is conceptually ideal, all the
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key component layers remain open. We start with a “naive” materialization to motivate our full design.

2.3.2 Baseline: Naive Observer

As a first proposal, we develop the impression model with a simple but intuitive observer behavior, which

uniformly treats every document in D and check if all entities and keywords are present. The final score is

the aggregation of this simple behavior.

• Access Layer : The observer views every document equally, with a uniform probability p(d) = 1
n
, ∀d ∈ D

(recall that |D| = n).

• Recognition Layer : The observer assesses p(q(t)|d) simply by the document “co-occurrence” of all the

entity instances ei and keywords kj specified in q(t): p(q(t)|d) = 1 if they all occur in d; otherwise 0.

• Overall : Filling the details into Eq. 2.1, we derive the score, or the expected impression, of a candidate

tuple t as follows:

Score(q(t)) =
∑

d∈D

1

n
·











1 if q(t) ∈ d

0 otherwise
=

1

n
C(q(t)), (2.2)

where C(q(t)) is the document co-occurrence frequency of q(t), i.e., the number of documents d in D such

that q(t) ⊆ d.

The naive impression model, while simple, intuitively captures the spirits of entity search– that of identi-

fying entities from each documents locally, by the recognition layer, and aggregates across the entire collection

globally, by the access layer. Overall, the naive approach results in using co-occurrence frequency of entities

and terms as the query score of tuple t– a simple but reasonable first attempt.

As a starting point, to build upon the naive observer for a full realization of the ideal impression model, we

ask: What are its limitations? As our checklist, we examine the five requirements as outlined in Section 2.2.

The naive observer does meet the holistic requirement, as it aggregates the impressions across all documents–

which is the essence of the impression model (and thus every materialization will satisfy). Systematically

over the requirement list, we identify three limitations.

Limitation 1: The access layer does not discriminate sources. As R-Discriminative states, not all doc-

uments, as sources of information, are equal. However, with a uniformly-picking access layer, the naive

observer bypasses R-Discriminative. It will thus not be able to leverage many document collections where
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intrinsic (e.g., link or citation structure) or extrinsic structures (e.g., user rating and tagging) exist to dis-

criminate documents as sources of information. How to enhance the access layer, so that documents are

properly discriminated?

Limitation 2: The recognition layer is not aware of entity uncertainty and conceptual patterns. As R-

Uncertain and R-Contextual mandate, entity instances are not perfectly extracted, and their matching

with the query depends on keywords and other entities in the surrounding context. However, with an

occurrence-only recognition layer, the naive observer does not respect either requirements. How to enhance

the recognition layer, so that the tuple probabilities at each document are effectively assessed?

Limitation 3: A validation layer is lacking. As R-Associative states, our search should distinguish “in-

tended” association of tuples from those “accidental” ones. The naive observer, however, believes in whatever

“impression” he saw from the documents, and thus can be fragile regarding R-Associative. As we take a

statistical view of the impression, we should equip the observer with statistical validation of his impression–

or his “hypothesis”– and assess its significance. Our impression model, and therefore the naive observer, is

missing such a critical validation layer.

2.4 Concretely: EntityRank

Upon the basic impression model (and the naive materialization), we now fully develop our entity-search

scheme: EntityRank.

Motivated by the limitations of the basic model, we begin with presenting the complete impression model

as Figure 2.6 shows. The full model completes the initial sketch in Figure 2.4 in two aspects: First, we add

a “virtual observer” (at the right side), who will perform the same observation job, but now over a “virtual”

collection D’ as a randomized version of D. Second, we add a new validation layer to validate the impression

of the real observer (over D) by comparing it with that of the virtual observer (over D’). Overall, our

impression model consists of three layers:

• (Section 2.4.1) As Limitation 1 motivated, the access layer defines how the observer picks documents, and

is thus responsible for globally aggregating tuple scores across the entire collection.

• (Section 2.4.2) As Limitation 2 motivated, the recognition layer defines how the observer examines a

document, and thus considers locally assessing tuple probabilities in each document visited.

• (Section 2.4.3) As Limitation 3 motivated, the validation layer statistically validates the significance of

the ‘impression” by comparing it with the null hypothesis from the virtual observer.
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Global Access Layer

Local Recognition Layer

Global Access Layer

Local Recognition Layer

Validation Layer

Collection E over D Virtual Collection E’ over D’

... ... ... ... ... ...

< amazon customer service,            >: ??

< amazon customer service,            >: ??
... ... ... ... ... ...

< amazon customer service,            >: ??

< amazon customer service,            >: ??

... ... ... ... ... ...

< amazon customer service,            >: ??

< amazon customer service,            >: ??

randomize

Figure 2.6: Impression Model: Complete Framework

This section will concretely materialize the three layers, to develop our EntityRank scheme. Figure 2.7

summarizes EntityRank. Overall, Equation (1) gives Score(q(t)), the scoring function of how tuple t matches

query q. Refer to our search task as Figure 1.3 defines, this scoring function determines the results of entity

search. While we will develop step by step, as a road map, our objective is to, first, derive p(q(t)|D) by

materializing Eq. 2.1– which requires that we concretely define p(d) and p(q(t)|d). Sections 2.4.1 and 2.4.2

will develop these two parts respectively, which will together combine into p(q(t)|D) given in Figure 2.7; we

call this the observed probability, or po for short. Section 2.4.3 will similarly derive the same probability

for the random collection, which we call the random probability and denote pr. Second, the final score

Score(q(t)) is determined by comparing po and pr, in terms of hypothesis testing, which Section 2.4.3 will

study.

While the EntityRank scheme satisfies all our “semantic” requirements of entity search– Is it admissible

to efficient implementation? After all, we are pursuing entity search in the context of building a novel search

engine, and efficiency is crucial for any online interactive search. Although query optimization techniques

are beyond the focus of this chapter, we summarize our overall EntityRank algorithm and its implementation

strategies in Section 2.4.4.
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• Query: q(〈E1, . . . , Em〉) = α(E1, . . . , Em, k1, . . ., kl) over D

• Result: ∀ t ∈ E1 × · · ·Em: Rank all t by computing Score(q(t)) as follows.

(1) Score(q(t)) = po · log
po

pr

,where

(2) po ≡ p(q(t)|D) =
∑

d∈D

PR[d] × max
γ

(
∏

ei∈γ

ei.conf × αB(γ) × p(s|γ))

(3) pr ≡ p(q(t)|D′) =

m
∏

j=1

(
∑

ej∈d,d∈D

p(d)) ×
l

∏

i=1

(
∑

ki∈d,d∈D

p(d)) ×
m
∏

j=1

ej .conf ×

∑

s p(q(t)|s)

|s|

Figure 2.7: EntityRank: The Scoring Function

2.4.1 Access Layer: Global Aggregation

The access layer defines how the observer selects documents, and is thus responsible for globally aggregating

tuple scores across the entire collection. This layer must determine p(d)– how likely each document d

will be seen by the observer (and thus how d will contribute to the global aggregation). As its objective

(by R-Discriminative), this probability should discriminate documents by their “quality” as a source of

information. The specific choice of an effective discriminative measure of quality depends on the document

collection– what intrinsic structure or extrinsic meta data is available to characterize the desired notion of

quality.

In the context of the Web, which is our focus, as a design choice, we decide to adopt the common notion

of popularity as a metric for such quality. As the Web is a hyperlinked graph, the popularity of a page can be

captured as how a page will be visited by users traversing the graph. Upon this view, we can materialize the

access layer by the random walk model, where p(d) can be interpreted as the probability of visiting a certain

page d in the whole random walk process. With its clear success in capturing page popularity, PageRank [12]

is a reasonable choice for calculating p(d) over the Web. That is, computing PR as the PageRank vector,

as the overall result of the access layer, we have

p(d) = PR[d]. (2.3)

For this choice, we make two remarks: First, like in a typical search engine setting, this page discrimi-

native metric can be computed offline. Second, unlike in a typical search engine, we are not using PR to

directly rank result “objects” by their popularity. Instead, we are using these popularity values as a discrim-

inative measure to distinguish each page as a source of information– For a tuple t, its score will aggregate,

by the impression model (Eq. 2.1), over all the pages di it occurs, each weighted by this p(di) value.
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We stress that, while we implement the access layer with “popularity” and in particular adopt PageRank,

there are many other possibilities. Recall that our essentially objective is to achieve source discrimination–

so that “good” pages are emphasized. First, such discrimination is not limited to link-based popularity– e.g.,

user or editorial rating, tagging and bookmarking (say, del.icio.us), and query log analysis. Second, such

discrimination may even be query-specific and controlled by users– say, to focus entity search on a subset

of pages. For instance, we may restrict query Q2 and Q3 to only pages within the .edu domain; or, we may

want to execute Q4 only for pages from amazon.com and bn.com. Such corpus restriction– with its access

focus, not only speeds up search but also isolate potential noises that may interfere with the results. In

general, our notion of the global access layer is to capture all these different senses of source discrimination.

2.4.2 Recognition Layer: Local Assessment

The recognition layer defines how the observer examines a document d, and thus accounts for locally assessing

tuple probabilities in each document visited. Given a document d, we are to assess how a particular tuple

t=〈e1, · · · , em〉 matches the query q(〈E1, . . . , Em〉) = α(E1, . . . , Em, k1, . . ., kl). That is, this layer is to

determine p(q(t)| d), i.e., how likely tuple q(t), in the form of α(e1, . . . , em, k1, . . ., kl), holds true, given

d as evidence. Consider Q1: Given d as the snippet in Figure 2.3, for t=〈e1=“800-201-7575”〉, the question

becomes asking: p(Q1(t)|d) = p(ow(amazon customer service e1) | d)=?

To begin with, we note that a query tuple q(t) = α(e1, . . . , em, k1, . . ., kl) may appear in d in multiple

occurrences, because each ei or kj can appear multiple times. For instance, in Figure 2.3, while e1=“800-201-

7575” occurs only once, “amazon customer service” appears two times– so they combine into two occurrences.

Let’s denote such an occurrence of (e1, . . . , em, k1, . . ., kl) in document d as γ = (o1, . . . , on), where n = m+l;

each oi is an object occurrence, i.e., a specific occurrence of entity instance ei or keyword instance kj in d.

E.g., Figure 2.3 shows (o1, . . ., o4) as one occurrence for the above example.

For each potential tuple t, the recognition of the association probability p(q(t)|d) must evaluate all its

occurrences, and “aggregate” their probabilities– because each one contributes to supporting t as a desired

tuple. For this aggregation, we take the maximum across all occurrences of t as its overall probability, i.e.,

p(q(t)|d) = max
γ is a tuple occurrence of q(t)

p(α(γ)) (2.4)

With this aggregation in place, we now focus on the assessment of each occurrence γ = {o1, . . ., on} for

p(α(γ))– i.e., how this tuple occurrence matches the desired context pattern. This task involves two largely

orthogonal considerations:
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• Extraction uncertainty: For each oi that represents an entity instance ei– Is it indeed an instance of type

Ei? As Section 2.2 discussed, after performing extraction on D to prepare our “entity view” E, this

probability p(ej ∈ Ej |d) is recoded in ei.conf .

• Association context: Do the occurrences of o1, . . ., on together match the pattern α that suggests their

association as a desired tuple for query q?

With the two orthogonal factors, given ei.conf , we can readily factor out the extraction uncertainty, and

focus on the remaining issue: defining pcontext– how t matches q in the context of d.

p(α(γ)) = (
∏

ei∈γ

ei.conf) · pcontext(α(γ))

To determine pcontext, this contextual analysis primarily consists of two parts, boolean pattern analysis

and fuzzy proximity analysis, as we motivated in Section 2.2. Boolean pattern analysis serves the purpose

of instantiating tuples, after which fuzzy proximity analysis serves the purpose of estimating in-document

association strength of tuples.

Context Operators α. We are to evaluate pcontext(α(γ)), to see how γ occurs in a way matching α, in

terms of the surrounding context. Recall that, as Section 2.2 defined, in entity search, a query q specifies a

context operator α, which suggests how the desired tuple instances may appear in Web pages.

As a remark, we contrast our usage of patterns in entity search with its counterparts in document search

(e.g, current search engines). On the one hand, such pattern restriction is not unique in entity search. In

typical document search, it is also commonly used– e.g., a user can put “” around keywords to specify

matching these keywords as a phrase. However, on the other hand, our entity search uses textual patterns

in a rather different way– a tuple pattern α describes the possible appearance of the surrounding context

of a desired tuple. In contrast, keyword patterns in document search are intended for the content within a

desired document.

In this study, we treat a Web page as a linear sequence of words. As Section 2.2 mentioned, in the entity

view, each entity or keyword occurrence oi is extracted with its positions at oi .pos . An operator shall match

on the order or proximity of objects: Each operator α applies to match an occurrence γ, i.e., of the form

α(o1, . . ., om). We will explain a few operators: doc, phrase, uw, ow.

We stress that, the context matching operator is for users (end-users or applications) to specify how the

desired tuple may appear in documents. As in any query language, it also involves the tradeoff of simplicity

(or ease of use) and expressiveness. We believe the exact balance of such tradeoff must depend on the actual

application settings– Note that, while we develop it as a generic system, the entity search system can be
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deployed in a wide range of settings, such as a general search engine for end users or a specialized vertical

application, as Section 3.1 motivated.

Therefore, we advocate a two-fold strategy to balance the tradeoff, with a set of system built-in operators:

On the one hand, for simplicity, while users may specify explicitly an α operator, the system must support

a default when omitted (i.e., order in our current system), as Section 3.1 shows (e.g., ,Q1). On the other

hand, for expressiveness, while an application may choose to use our supported operators, the system must

support a plug-in framework for applications to define their own specific context patterns.

In what follows, we explain some supported operators, each in the form of α(o1, . . ., om). Our purpose is

to demonstrate how an operator is defined, in order to be plugged into the recognition layer. Each operator

consists of two parts (as R-Contextual states), i.e., the pattern constraint αB and proximity function αP .

Thus, we can further define our context probability (of Eq. 2.5) as

pcontext(α(γ)) ≡ αB(o1, . . . , om) · αP (o1, . . . , om).

1. Boolean Pattern Qualification. As the first step, α will qualify, by a constraint αB that returns 1 or

0 (true or false), whether some pattern constraint on the order and adjacency of oi is satisfied.

• doc(o1, . . ., om): objects oi must all occur in the same document.

• phrase(o1, . . ., om): objects oi must all occur in exactly the same sequence (i.e., order and adjacency) as

specified.

• uw(n)(o1, . . ., om): objects oi must all occur in a window of no more than n words; n default as the

document length.

• ow(n)(o1, . . ., om): in addition to uw, oi must all occur in the order.

2. Probabilistic Proximity Quantification. As the second step, the operator α will quantify, by a

probability function αP , how well the proximity between objects match the desired tuple– i.e., how the

objects’ positions indicate their association as a tuple, once they are qualified (above). Essentially, each

operator will thus define a probabilistic distribution that assesses such association probabilities given object

positions.

We propose an intuitive and practical model, the span proximity model, to capture our basic intuition

that the closer they appear to each other, the more likely they are associated with each other. While our

system currently only supports the span proximity model, our experimental results show that it is effective

for a wide range of scenarios.

21



In the span model, we characterize the proximity strength of a tuple occurrence γ = (o1, . . . , om) as

depending on its span length– the shortest window that covers the entire occurrence, denoted by s. We

define the context association probability of γ, i.e., how ei and kj associate into a tuple, as solely determined

by span.

αP (γ) ≡ p(γ is a tuple|s), or simply p(γ |s)

Finally, we must estimate the distribution p(γ|s). We can “learn” this distribution by collecting some

true tuples (as our “labelled data”)– i.e., γ’s that are really tuples. With sufficient examples, we can obtain

an empirical distribution of, for real tuples, how their spans vary, i.e., p(s|γ). In our current implementation,

we obtain our span distribution as Figure 2.8 shows, using labelled tuples that are company names and their

phone numbers (e.g., “IBM”, “877-426-2223”) from the Web corpus. Finally, by Bayes’ theorem,

p(γ |s) =
p(γ)

p(s)
p(s|γ) ∝ p(s|γ),

where we remove the prior probabilities p(γ) and p(s): Note that, for practical implementation, as the priors

are hard to measure, we assume they are the same, for all different γ and s. Thus, these constant priors will

not affect ranking of entities.

Putting together the derivations so far back to where we started, i.e., Eq. 2.4, as the overall result of the

recognition layer, we obtain:

p(q(t)|d) = max
γ

∏

ei∈γ

ei.conf · αB(γ) · p(s|γ) (2.5)

As a related approach, Chakrabarti et al. [19] propose a discriminative model to measure the association

between an entity instance and keywords within a document. Our span proximity model is probabilistic–

it bridges the proximity between objects to their probability of associating into a tuple. By relating each

span with a probability, we can thus integrate our local recognition model with the global access model in

a probabilistic framework seamlessly.

Ideally, it would be best to learn such a span model for each kind of query– because different types tuples

may vary in their spans. However, it is impractical to do so due to the unpredictable and large number

of different queries. It is possible to classify queries into different categories and learn a approximate span

model for each category. In this chapter, we approximate this by using the one span model we learned in

Figure 2.8. Although our “span” model may not be as accurate as other more sophisticated local models,

such as the one presented in [19], we believe it still captures the basic insights of a local recognition model.
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Figure 2.8: The Span Proximity Model

We stress that our recognition layer is a general framework that can plug-in any pattern and proximity

models. Our current choice of basic patterns and the span model is just one reasonable possibility. They

are robust and easy to apply, which gives us fast online processing.

2.4.3 Validation Layer: Hypothesis Testing

As a new layer, the validation layer statistically validates the significance of the “impression.” Our approach

is by comparing it with the null hypothesis– simulating an observer over a virtual collection. We note that

the construction of a random collection D’ is only conceptual– it will derive a formula that can be efficiently

computed (Section 2.4.4) without materializing D’.

Since our impression model dispatches the observer (Figure 2.6) to collect his impression of entity asso-

ciations, we must ask– Are these associations significant? Recall from Eq. 2.1 that p(q(t)|D) is an average

impression, i.e., the statistical mean, over D. By taking a probabilistic view, we are now equipped with

principled statistical tools to “validate” if the impression of association, as our hypothesis to test, is signifi-

cant. As the null hypothesis, we suppose the associations are “unintended”– i.e., as the result of randomly

associating entities and keywords in a randomized collection D’. By contrasting observed probability po

with random probability pr, we will obtain a final score Score(q(t)) that captures the significance of our

hypothesis– i.e., intended tuple association.
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Null Hypothesis: Randomized Associations. As our null hypothesis, we suppose that the association

of t = (e1, . . . , em, k1, . . ., kl) is simply accidental– instead of semantically intended as a tuple. To simulate

the outcome of the null hypothesis, we must create D’ as a randomized version of D. In comparison, D’

should resemble D as much as possible, except that in D’ the associations of keywords and entities are purely

random. The creation of a random document d′ in D’ is as follows:

First, we will randomly draw entities and keywords into d′. Each ei or kj will be drawn independently,

with a probability the same as that of appearing in any document of D. We thus preserve the individual

entity/keyword probabilities from D, but randomize their associations. This probability can be derived as

below, which ensures that the probability of observing a keyword/entity instance in the process of visiting

the D’ through a uniform access layer will be the same as observing it in the original D.

p(ei ∈ d′) =
∑

ei∈d,d∈D p(d); p(kj ∈ d′) =
∑

kj∈d,d∈D p(d)

Further, if a keyword/entity instance is drawn to appear in virtual document d′, its position in the

document will also be randomly chosen. We also preserve the entity extraction probability of entity instances,

by using the average extraction probability ej .conf (the average over all the extraction probabilities of all

the occurrences of entity instance ej in D) of entity instance ej as the extraction probability of all the

occurrences of entity instance ej in D′.

Supposing we construct D’ with all such random documents d′, we ask: What will be the “average

impression” that our observer will perceive in this random collection? By Eq. 2.1, this average impression

is the summation over all documents. We can simplify it by noting that 1) if q(t) does not even appear in

d′, then p(q(t)|d′) = 0, 2) otherwise, p(q(t)|d′) has the same value– since we create all d′ in exactly the same

way. Consequently, we get:

p(q(t)|D′) =
∑

d′∈D′and q(t)∈d′ p(d′) · p(q(t)|d′)

= p(q(t)|d′) ·
∑

d′∈D′and q(t)∈d′ p(d′)

= p(q(t)|d′) · p(q(t) ∈ d′) (2.6)

Here, p(q(t) ∈ d′) is the probability of t appearing in some d′. As keywords and entity instances are

drawn independently into d′, this probability is simply the product of the probabilities of each keyword and

entity instances appearing in d′, i.e.,

p(q(t) ∈ d′) =
∏m

j=1 p(ej ∈ d′)
∏l

i=1 p(ki ∈ d′).
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Next, we derive the random association probability, p(q(t)|d′), of tuple t in document d′. As we discussed

in Section 2.4.2, it is the product of entity probability and contextual probability:

p(q(t)|d′) = (
∏m

j=1 ej.conf) · pcontext(q(t)|d
′).

The contextual probability pcontext(q(t)|d′) is dependent on the span of tuple t, as Section 2.4.2 discussed.

As keywords and entity instances appear randomly in d′, the possible spans of tuple t should also appear

randomly. This means different span values are equally likely. Thus, we can use the average of all the span

probabilities (e.g., as Figure 2.8 shows) for this probability estimation:

pcontext(q(t)|d′) = p(q(t)|s) =

∑

s
p(q(t)|s)

|s| ,

where |s| refers to the number of distinct span values.

Putting together these derivations back to Eq. 2.6, we will obtain p(q(t)|D′), which Figure 2.7 shows as

the random probability pr.

Hypothesis Testing: G-Test. To judge if the association of t is statistically significant, we should

compare the observed po versus the random pr, which we have both derived in Figure 2.7. We can use

standard statistics testing, such as mutual information, χ2, G-test [33], etc.. Our implementation adopts

G-test to check whether po indicates random association or not,

Score(q(t)) = 2(polog
po

pr

+ (1 − po)log
1 − po

1 − pr

) (2.7)

To interpret, we note that the higher the G-test score is, the more likely entity instances t together with

keywords k are truly associated. We take this score for the final ranking of the tuples. In practice, given a

large web page collection containing many keywords and entity instances, the chance that an entity instance

occurs in the collection is extremely small. Hence, po, pr ≪ 1, Eq. (2.7) can be simplified as:

Score(q(t)) ∝ po · log
po

pr

(2.8)

2.4.4 EntityRank: Implementation Sketch

We have developed EntityRank, as a concrete materialization of the impression model, and it satisfies all

our requirements (Section 2.2) of entity search– but, can it be efficiently implemented for online interac-

tive search– at a speed comparable to current page-oriented search engines? Our analysis of the scheme
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(Figure 2.7) shows that, in fact, the EntityRank framework can be easily built upon current engines, thus

immediately leveraging the impressive infrastructure and scalable efficiency already in place. While this

chapter focuses on the ranking scheme, and not query processing, we show how EntityRank can be effi-

ciently realized.

Why Feasible? Let’s examine how we may realize EntityRank. In Figure 2.7, Score(q(t)) has two compo-

nents, po and pr:

First, pr can mostly be pre-computed off-line (before query), and thus its cost is negligible. There are four

factors: Factors 1 and 2 are the “document frequencies” of entities ej and keywords ki. We can pre-compute

them for every term; when the query arrives, we simply lookup in a table. We can similarly handle factors

3 and 4.

Second, po boils down to “pattern matching,” which is a major function of today’s page-based search

engine. The first factor requires PageRank, which can be done off-line. The second factor requires matching

specific tuple occurrences γ (Section 2.4.2), which can only be executed when the query terms (e.g., “amazon”

and #phone) and patterns (e.g., ow) are specified. Nevertheless, such pattern matching is well supported in

current engines, by using inverted lists– our realization can build upon similar techniques.

Possible Implementation. To begin with, we assume that a document collection D has been transformed

by way of entity extraction into an entity collection E with entities {E1, E2, . . . , En}.

• Indexing: To support entity as a first-class concept in search, we index entities in the same way as indexing

keywords.

2d 71d12 6d 17 50

...

35

6d >< 8.0,123,23

...Amazon

#phone 59d... ...

Figure 2.9: A Snippet of Index

We use the standard inverted index for indexing keywords. We index the extracted entities similar

to keywords. To index an entity type Ei, our system will produce a list containing all the information

regarding the extracted instances of Ei. Specifically, the list records for each occurrence of entity instance

ei, the position ei.pos of the extraction in the documents, e.g. position 23 at document d6, the entity instance

ID ei.id, e.g. ID 123 for representing phone number “805-213-4545”, and the confidence of extraction ei.conf ,

e.g. 0.8. All the occurrence information of entity instances of a certain entity type is stored in an ordered

list according to document number as shown in Figure 2.9.
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The EntityRank Algorithm: Actual Execution of Entity Search.

Given: L(Ei), L(kj): Ordered lists for all the entity and keywords.

Input: q = α(E1, . . . , Em, k1, . . ., kl).

0: Load inverted lists: L(E1), . . . , L(Em), L(k1), . . . , L(kl) ;

/* intersecting lists by document number

1: For each doc d in the intersection of all lists

2: Use pattern α to instantiate tuples; /* matching

3: For each instantiated tuple t in document d

4: Calculate p(q(t)|d) ; /* Section 4.2

5: For each instantiated tuple t in the whole process

6: calculate p(q(t)|D) =
∑

d p(q(t)|d)p(d); /* observed probability

7: output Score(q(t)) = p(q(t)|D) log p(q(t)|D)
p(q(t)|D′) ; /* Section 4.3

Figure 2.10: The EntityRank Execution Framework

• Search: Figure 2.10 shows the pseudo code of our EntityRank algorithm for supporting entity search.

Let’s walk through the algorithm for query “ow(amazon #phone)” upon the index in Figure 2.9. We first

load the inverted list for keyword “Amazon” and entity type “#phone” (line 0). Then we iterate through

the two lists in parallel , checking the intersection of documents (line 1). In this example, the algorithm will

first report d6 as the intersecting document. Then the algorithm will further check the postings of keywords

and entity types to see if the specified query pattern “ow” is satisfied in d6 (line 2). In this case, entity

instance with ID “123” at position 23 is matched with keyword “Amazon” at position 17 (not position 50).

A tuple of entity instance with ID “123” is therefore instantiated, and its local association probability will be

calculated according to the local recognition layer 2.4.2 (line 3 and 4). All the instantiated tuples and their

local scores are stored for later on aggregation and validation purposes. Once the parallel scan of lists ends,

we can sum up all the local scores (multiplied by the popularity of document) into forming the observed

average association probability for each tuple t (line 6). As just discussed, the cost of pr is negligible.

Observe that the core of our EntityRank algorithm (line 1-4) is essentially sort-merge-join of ordered lists.

This only requires scanning through all the lists once, in parallel. Therefore, the algorithm is linear in nature

and could be run very efficiently. Moreover, this sort-merge-join operates on a document basis. This implies

that this procedure (line 1-4) can be fully parallelized, by partitioning the collection into sub-collections.

This parallelism allows the possibility of realizing entity search in very large-scale, supported by a cluster of

nodes. Our prototype system, to be discussed in Section 2.5.3, leverages such parallelism on a cluster of 34
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nodes.

2.5 Prototype and Experiments

This section first discusses the prototype system we built for supporting entity search. Then we describe

a few applications that could be easily built upon on system, which clearly show the usefulness of entity

search qualitatively. Finally, we use our large-scale experiment to quantitatively verify the effectiveness of

our ranking algorithm EntityRank, as compared to other ranking schemes.

2.5.1 System Prototype

We build our entity search system upon the Lemur IR Toolkit. We mainly morphed the indexing module

of the Lemur Toolkit to be able to index entities in addition to keywords and implemented our own query

modules for supporting EntityRank.

For getting data from the Web, we obtained our corpus from the Stanford WebBase Project, as our

“virtual” Web Crawler.

For entity extraction, we have implemented two types of entity extractors. First, our rule-driven extractor

tags entities with regular patterns– e.g., #phone entity and #email entity, etc. Second, our dictionary-driven

extractor works for entities whose domains, or dictionaries are enumerated– e.g., #university entity, #professor

entity, #research entity(as areas in CS), etc..

We discuss the architecture of our prototype entity search system, whose components could be divided

into two categories: offline processing and online processing (i.e. entity ranking). The core components are

shown in Figure 2.11.

Offline Processing

Entity extraction and indexing are the two main offline processing modules for entity search, as shown in

the dashed box in Figure 2.11.

Entity Extraction: Entity extraction, which has been extensively studied, aims to extract entity instances

from documents. It can be either straightforward, e.g. using regular expression for email address extraction,

or very sophisticated, e.g. using statistical classifiers for street address identification. As entity extraction

is inherently imperfect, which is unavoidable for complicated extraction tasks, our entity search must es-

sentially deal with uncertainty. By this offline extraction, we will recognize, for each entity instance ei, all
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Figure 2.11: System Architecture

its occurrences in the corpus. To facilitate query matching, we will record the “features” of each occur-

rence ei– These local occurrence features will facilitate our local scoring to quantify the strength of local

matchings.

• Position ei.pos: the document id and word offset of this instance occurrence, e.g. instance e1 may occur

at (d6, 23).

• Entity ID ei.id: the unique id that represents the string value of an entity instance, e.g. instance e1 with

ID 123.

• Confidence ei.conf : the estimated probability that shows how likely this entity instance occurrence is

regarded as an instance of entity type Ei, e.g. instance e1 with extraction confidence 0.80.

An important aspect in entity extraction is entity disambiguation, for instance, figuring out that two

phone numbers “213-4545” and “805-213-4545” actually refer to the same phone number. Entity disam-

biguation is beyond the scope of this study. We believe this is an orthogonal issue to the task of entity

search. However, relying on large scale document analysis where much redundancy exists, we can afford not

performing sophisticated entity disambiguation. For example, the phone number of “805-213-4545” appears

frequently on the Web and could provide enough evidence for ranking.
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Indexing: To support entity as a first-class concept in search, we index entities in the same way as indexing

keywords.

To index the extracted entity instances, the indexer builds an inverted index of entities, in addition to

the traditional keyword inverted index. Given an entity type Ei, the entity inverted index will return a list

containing all the information regarding the extracted instances of Ei. Specifically, the entity inverted index

records for each occurrence of entity instance ei, the position ei.pos of the extraction in the documents,

the entity instance ID ei.id, and the probability of extraction accuracy ei.conf , e.g. an occurrence of phone

instance “805-213-4545” as (d6, 23, 123, 0.8). Such information is stored in an ordered list according to

the document ID, similar to a keyword inverted index. All the occurrences of keywords and entity types

are recorded in their respective inverted indices. Therefore, given a query consisting of keywords and entity

types, our system only need to load and process the inverted lists for each keyword and each entity type,

respectively.

In addition to entity extraction and indexing, there are other tasks that need to done offline before online

queries are executed. For example, the popularity score of each document should be computed offline. The

individual frequency of keywords and entity instances in a corpus should also be computed in an offline

fashion.

Online Processing

In this subsection, we discuss the two main online processing modules corresponding to the local scoring and

global scoring of our ranking model, as shown in the solid box in Figure 2.11.

Local Query Processing:

First, we use a pattern matcher to instantiate tuples by matching pattern α(K1, . . ., Kl, E1, . . ., Em).

The matcher will retrieve the inverted lists of all the entity types Ei and keywords Kj , and then perform

one pass of “sort-merge join” to match tuples. That is, the matcher will iterate through all the lists in

parallel. For every document d in the intersection, the matcher will check the actual positions of every Ei

instance ei and keywords kj , to determine whether pattern α is satisfied. If it is, a tuple is instantiated and

its local score is calculated according to the extraction confidence of its entity instances and the contextual

relationship between its entity instances and keywords (more concretely their positions in the document).

Then the matched tuple, with its local score, is sent to the global query processing module for aggregation.

In terms of computation, in spirit, it is the same as what needs to be done in traditional document

retrieval. The operation, “sort-merge join”, used in answering almost all the document retrieval queries, is

well known to be easy to compute in a very fast manner due to its linear computational nature.
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This local query processing module operates on a document basis, and therefore could be fully parallelized

by partitioning the whole document collection into sub-collections. This query processing feature enables

supporting entity search in large-scale, by utilizing the power of disturbed computing.

Global Query Processing:

The global query processing module, upon getting a user’s entity search query, sends the query to

distributed local query processing nodes. It then waits for the local processing nodes to produce matched

tuples with their local scores. After receiving all the tuples with their local scores, it will perform global

aggregation, by considering factors such as the popularity of pages, the frequency of individual keywords

and entity instances, etc in the aggregation process. The goal is to derive a final score for each distinctive

tuple that truly captures the association between entity instances and keywords in the tuple. Finally the

tuples are ordered by their global score and output to the user. For concise presentation purposes, only

entity instances of each tuple need to be shown, as the keywords for every tuple are the same.

Standard network protocol could be used for the communication between the global processing unit and

the local processing units. It is worth noticing that almost all the expensive computations, the IO intensive

ones that access indices, are done locally. The global processing workload is light, given all the information

is readily available and simple aggregation could be performed very quickly.

For more details regarding the prototype system, please refer to our work [25] on the overall system

architecture for entity search.

2.5.2 Qualitative Analysis: Case Studies

This subsection studies some of the possible applications that could be built upon entity search to show its

promise qualitatively.

Question Answering: Scenario 1

Entity search could be a good candidate as the core search component for supporting question answering

tasks. By using existing techniques, such as removing stop words, identifying the entity type for the question,

we could effectively turn a lot of questions into entity search queries supported by our system.

Towards this goal, we built a yellowpage application with the following setting:

• Entity collection: E = {#phone, #email}

• Document collection: D = the Web

Such a system addresses our motivating query Q1, finding the Costumer Service number of Amazon, in

Section 3.1.
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Chris Clifton Purdue Univ Data Mining
Sunil Prabhakar Purdue Univ Database Systems
Jiawei Han UIUC Data Mining
David J. Dewitt Univ of Wisc Database Systems

Table 2.1: Professors in DB-related Areas (Partial)

sigmod04-040611.pdf sigmod04-040617.ppt
URL: http://www.cs.ucsb.edu/∼su/tutorials/sigmod2004.html
publications/tr-db-01-02.pdf publications/sigmod2001.ppt
URL: http://www.ics.uci.edu/∼iosif/index.html

Table 2.2: Pairs of PDF and PPT Files for SIGMOD (Partial)

Relation Discovery: Scenario 2&3

Our query primitive and ranking algorithm for entity search could afford more than one entity at a time.

Such queries, containing multiple entities, could be viewed as relational discovery queries.

Towards this goal, we built an application on Computer Science domain with the following setting:

• E = {#professor, #research, #university, #pdf file, #ppt file,#phone, #email}

• D = a collection of computer science related webpages

This application could answer user queries Q2 and Q3 we raised in scenario 2 and 3 in Section 3.1. Partial

results are shown in Table 2.1 for query Q2 and in Table 2.2 for query Q3 respectively.

Information Integration: Scenario 4

Entity search could also be a good candidate for supporting ad-hoc on-the-fly information integration,

whose goal is to assemble different attributes (entities) together into one relation.

Towards this goal we built an online book shopping application based on the query results returned from

multiple deep web sources in the Book Domain.

• E = {#title, #author#date, #price, #image}

• D = result pages returned from deep Web sources regarding book queries

Users can ask queries regarding possible combinations of keywords and the entity types. Figure 2.12

shows the result for a query that tries to find images of books with keyword “Hamlet” in title, motivated by

query Q4 we discussed in Section 3.1.

For all the four scenarios, we have built applications with different datasets and witnessed great usefulness

of entity search in all of them. In particular, we will systematically evaluate Scenario 1 because it has a large

realistic corpus. For all other scenarios, the results were also clearly promising: For instance, for queries
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Figure 2.12: Images of Books with “Hamlet” in Title (Partial)

finding relations 〈professor, research〉 and 〈professor, email〉, when counting the top-match research area

and email for each professor, the result achieves between 80% - 90% precision and recall.

2.5.3 Quantitative Systematic Evaluation

In order to demonstrate the effectiveness of our ranking algorithm EntityRank for supporting entity search,

we have build a large scale, distributed system on a real Web corpus. In this subsection, we will first briefly

discuss the setup of our system. Then, we will use typical query sets to show the accuracy of our ranking

model over other ranking schemes.

Experiment Setup

To empirically verify that our ranking model is effective for supporting entity search, we decide to use the

Web, the ultimate information source, as our corpus. Our corpus, a general Web crawl in Aug, 2006, is

obtained from the WebBase Project. The total size is around 2TB, containing 48974 websites and 93 million

pages.

To process such terabyte-sized data set, we ran our indexing and query processing modules on a cluster

of 34 machines, each with Celeron 2.80GHz CPU, 1 GB memory and 160 GB of disk. We evenly distribute

the whole corpus across these nodes.

On this corpus, we target at two entity types: phone and email. They are extracted based on a set of
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regular expression rules. We extracted around 8.8 million distinctive phone entity instances and around 4.6

million distinctive email entity instances.

Accuracy Comparison

To get a first feeling of our ranking model, we tested a few finding-phone-number and finding-email-address

queries, that are similar to our motivating scenario 1 in Section 3.1.

In addition to analyzing the results returned by EntityRank, we also try to compare our results with the

following five approaches:

• N (Naive Approach): Tuples are ranked according to the percentage of documents in which they are

matched.

• L (Local Model Only Approach): Tuples are solely ranked using their highest observed local association

probability.

• G (Global Aggregation Only Approach): Tuples are ranked according to the summation of the score of

documents in which they are matched. Pagerank score is used as the document score.

• C (Combination of Local Model and Global Aggregation Approach): Tuples are ranked according to the

summation of the local association probabilities from matched documents.

• W (EntityRank Without G-test): Tuples are ranked according to their observed association probability,

without performing the G-test for validation. The purpose of testing this approach is to see the effect of

hypothesis test in the ranking framework.

Query Telephone ER L N G C W

Citibank Customer Service 800-967-2400 1 4 7 43 1 1

New York DMV 800-342-5368 2 2 213 882 5 3

Amazon Customer Service 800-201-7575 1 1 52 83 1 1

Ebay Customer Service 888-749-3229 1 7 859 118 2 13

Thinkpad Customer Service 877-338-4465 5 12 249 127 19 4

Illinois IRS 800-829-3676 1 1 157 697 3 2

Barnes & Noble Customer Service 800-422-7717 1 2 2158 1141 7 1

Figure 2.13: Telephone Number Queries

The results of executing motivating queries using different ranking models are shown in Figure 2.13 and

2.14. The first column lists keywords used in the query. The second column lists the correct entity instance

returned for each query (manually verified). The third, fourth, fifth, sixth and seventh columns list the rank

of the correct phone number in results by the various approaches described above respectively.
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Query Email ER L N G C W

Bill Gates bgates@microsoft.com 4 44 2502 376 21 23

Oprah Winfrey oprah@aol.com 2 6 745 80 4 3

Elvis Presley elvis@icomm.com 5 56 1106 267 20 8

Larry Page larrypage@google.com 8 24 9968 26932 12 11

Arnold Schwarzenegger governor@governor.ca.gov 4 45 165 169 5 6

Figure 2.14: Email Queries

As we can see, EntityRank (ER) consistently outperforms other ranking methods. Almost all the right

answers are returned within top 3 for finding phone numbers and more than half of the right answers are

returned within top 4 for finding email addresses.

To study the performance of our method in a more systematical way, we use the following ways to come up

with typical queries for each query types. Query Type I (phone): We use the names of top 30 companies

in Fortune 500, 2006 as part of our query, together with phone entity type in the query. Query Type II

(email): We use the names of 88 PC members of SIGMOD 2007 as part of our query, together with email

entity type in the query. 37 out of the 88 names that don’t have any hit with any email entity instance are

excluded. This is due to the reason that our corpus is not complete (2TB is only a small proportion of the

whole Web).

To measure the performance, we use the mean reciprocal rank (MRR) as our measure. This measure

essentially calculates the mean of the inverse ranks of the first relevant answer according to queries. The

value of this measure lies between 0 and 1, and the higher the better. As it is time consuming to manually

check all the returned results to identify the first relevant tuple in each result, especially given the fact that

in lots of the results the first related entity tuple appears very high in rank. We come up with the following

two approximate methods for estimating the rank where the first related entity tuple is returned.

In evaluation method 1, we first manually go through the result returned by our EntityRank algorithm,

finding the first related tuple (usually within top 5). Then, we look up the place where this tuple appears

using other ranking algorithms. Although this method is biased towards our EntityRank algorithm, it

still makes sense as intuitively the related tuple (manually verified) returned by EntityRank should also be

ranked high using other methods. At minimum, this evaluation method gives a meaningful lower bound of

the MRR, referred as ⌊MRR⌋, of the first relevant tuple.

Evaluation method 2 is a much more conservative evaluation method. We manually check the top 10

entries of the results returned by each ranking algorithm. If a relevant tuple is found within top 10 entries,

we will record the rank, otherwise, we will just use rank 10. The intuition of using this method is that

35



10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank

P
er

ce
nt

ag
e

 

 

EntityRank
N
L
G
C
W

(a) Query Type I
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(b) Query Type II

Figure 2.15: Satisfied Query Percentage under Various Ranks

normally the top 10 results (in the first pages) are most important for users. This evaluation method gives

a meaningful higher bound of the MRR, referred as ⌈MRR⌉, of the first relevant tuple.

Figure 2.15 shows the percentage of queries returning relevant answers within various top K ranks for

the two query types respectively. The x axis represents various top K ranks, ranging from 1 to 1600 in log

scale. The y axis reports the percentage of the tested queries returning relevant answers under a certain

rank. Evaluation method 1 is used for getting the rank of relevant answers of queries.

Table 2.3 and 2.4 give comparison of the six ranking algorithm, on Query Type I and II respectively

using ⌊MRR⌋ and ⌈MRR⌉.

Measure EntityRank L N G C W
⌊MRR⌋ 0.648 0.047 0.037 0.050 0.266 0.379
⌈MRR⌉ 0.648 0.125 0.106 0.138 0.316 0.387

Table 2.3: Query Type I MRR Comparison

Measure EntityRank L N G C W
⌊MRR⌋ 0.659 0.112 0.451 0.053 0.573 0.509
⌈MRR⌉ 0.660 0.168 0.454 0.119 0.578 0.520

Table 2.4: Query Type II MRR Comparison

As we can see from all the results, our EntityRank algorithm is highly effective with MRR around

0.65, outperforming all the other algorithms. “Ordered Window” pattern “ow” is used in our EntityRank

algorithm for evaluating those queries.
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Query C3 Query R4
P R P R

Illinois 54
59 = .92 54

54 = 1.0 45
53 = .85 45

54 = .83

Indiana 20
25 = .80 20

30= .67 25
27 = .93 25

30 = .83
Wisconsin 36

41 = .88 36
37 = .98 31

38 = .82 31
37 = .84

Overall 110
125 = .88 110

121 = .91 101
118 = .86 101

121 = .83

Figure 2.16: Accuracy: Precision and Recall for C3 and R4

Recall Comparison

While it is viable to evaluate precision by manually checking the returned results, measuring recall of the

returned results is a much harder task. For some queries (e.g., professors related with database research), it

is very difficult, if not impossible, to get the complete set of correct results.

Our effort to measure the recall of query results specifically focuses on a small domain related with

computer science departments in US, where we can readily figure out all the possible answers.

We created query C3 for finding 〈#professor, #email, #university〉 for three universities: Indiana University,

Illinois, and Wisconsin. Let D be our discovered relation (as a set of discovered tuples) and T be the “truth”

relation (as a set of correct tuples). As standard metrics, we use precision P = |D∩T |
|D| and recall R = |D∩T |

|T | .

As the “truth,” We manually collected the correct tuples for all CS professors at the three universities.

As Figure 2.16 reports, we obtained an overall P=.88 and R=.91 – which is rather satisfactory as a result

of automatic mining. Specifically, Illinois showed very high recall and precision, while Indiana and Wisconsin

are somewhat lower. This difference can be explained, in part, due to the fact that email addresses are often

disguised (for “anti-robot” extraction) on Indiana and Wisconsin pages, by not showing an @ sign or domain

names. In spite of this, the accuracy numbers are still quite high, showing the promise of ER discovery at a

large scale.

We also created query R4, for finding 〈#prof, #univ, #research〉. As the “truth” to compare to, we note

that each #prof has a unique #univ but often has multiple #research areas– thus we compare to their top

three areas (manually compiled). Overall, we obtained P = .86 and R = .83, as Figure 2.16 summaries in

the detail. These results are particularly impressive, because the associations between all three entities must

be correct.

Although the focus of this chapter is on the effectiveness of entity search, we have also carried out some

preliminary study on the efficiency of our system, in terms of space and time.

First, in terms of space consideration, supporting entity search only incurs minimal index overhead. Our

current entity search system, by indexing email and phone entities, only incurs less than 0.1% overall space

overhead in the size of indices.
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Second, in terms of time consideration, our system adds negligible overhead in offline indexing time and

performs online entity search rather efficiently. Indexing entities could be done at the same time as we index

keywords. Similar to the space overhead it creates, the time overhead in indexing entities in addition to

keywords is almost negligible. For online query processing, as the nature of the query processing is linear as

discussed in Section 2.4.4, query processing is rather efficient. For our examples queries listed in Figure 2.13

and 2.14, the average query response time is 2.45 seconds.

Observations and Discussions

We now analyze why the other five approaches perform not as well as our EntityRank algorithm.

In the local model only approach (L), as long as there is some false association where keywords and

entities appear very close to each other, the tuple will be ranked high. Our global aggregation of the local

scores is more robust, as the results are collective from many sources across the web and such false association

is not likely to appear in lots of web pages. The results for the local model only approach may get improved

by having more accurate local models, however, it doesn’t solve the problem from the root as we analyzed.

It is necessary to conduct global aggregation upon local analysis.

On the other extreme, using pure global aggregation without any local constraint, e.g. the N and G

ranking methods, performs poorly as our result shows. This is because without local constraint, lots of

false associations will be returned, which leads to the aggregation of false information. Local model helps in

reducing such noises, generating high quality information for later on aggregation.

Experiments show that both a simple combination of the local scores with global aggregation and per-

forming EntityRank without hypothesis testing perform worse than EntityRank. This validates our analysis

on the important factors for entity search in that the lacking of any factor, in this case the discriminative

and associative factors, would result in significant reduction in effectiveness.

Finally, we would like to point out an intriguing merit of EntityRank in that it performs holistic analysis

, by leveraging the scale of the corpus, together with effective local analysis. Therefore, the larger the corpus

size, the more information (evidence) we can aggregate, and therefore the more effective the ranking. Other

simple methods, especially the local model only approach, may suffer from such situations as the larger the

corpus the more the noise.
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2.6 Related Work

The objective of our system is to build an effective and efficient entity-aware search framework, with a

principled underlying ranking model, to better support many possible search and mining applications. Our

previous work [21] formulates the problem of entity search and emphasize its application on information

integration (i.e., Scenario 4 in Section 2.5.2), while this work focuses on the core entity ranking problem.

To the best of our knowledge, we did not witness any similar exploration of combining local analysis, global

aggregation and result verification in a principled way, especially over a network of documents of varying

quality. Our work is related with the existing literature in three major categories: information extraction

(i.e., IE), question answering (i.e., QA) and emerging trend on utilizing entity and relation for various search

tasks. We now study these categories one by one.

First, our system on one hand relies on IE techniques to extract entities; on the other hand, our system

could be regarded as online relation extraction based on association. There have been many comprehensive

IE overviews recently ( [27], [30], [4]) summarizing the state of the art. On the special Web domain, there

have been many excellent IE works (e.g., SemTag [34], KnowItAll [35], AVATAR [41]) Furthermore, many

open source frameworks that support IE (e.g., GATE [1], UIMA [2]) are readily available. While most IE

techniques extract information from single documents, our system discovers the meaningful association of

entities holistically over the whole collection.

Second, our system can be used as a core component to support QA more directly and efficiently. Unlike

most QA works (e.g., [3], [11], [48], [49]), which retrieve relevant documents first and then extract answers,

our work directly builds the concept of entity into the search framework. While many QA systems’ focus

is on developing interesting QA system framework, most of them have adopted simple measures for ranking

and lack a principled conceptual model and a systematic study of the underlying ranking problem. The

SMART IR system [3] and the AskMSR QA system [11] mainly use the entity occurrence frequency for

ranking. The Mulder system [48] ranks answer candidates mainly according to their closeness to keywords,

strengthened by clustering similar candidates for voting. The Aranea system [49] mainly uses the frequency

of answer candidates weighted by idf of keywords in the candidates as the scoring function.

Finally, we are recently witnessing an emerging research trend towards searching with entity and rela-

tionship over unstructured text collection (such as [18] and [67] advocate).

Towards enriching keyword query with more semantics, AVATAR [43] semantic search tries to interpret

keyword queries for the intended entities and utilize such entities in finding documents.

There has been plenty of work on supporting search over semi-structured data such as XML documents,

and structured data such as relational databases. Studies on using keyword search over XML documents,

39



such as [38], [39], focus on finding and ranking XML documents, while we aim at finding and ranking more

fine-granularity objects: entities.

Towards searching over fully extracted entities and relationships from the Web, ExDB [15] supports

expressive SQL-like query language over an extracted database of singular objects and binary predicates,

of the Web; Libra [59] studies the problem of searching web objects as records with attributes. Due to the

different focus on information granularity, its language retrieval model is very different from ours. While

these approaches rely on effective entity and relationship extraction for populating an extraction database,

our approach only assumes entity level extraction and replies on large-scale analysis in the ranking process.

Towards searching over typed entities in or related with text documents, BE [13] develops a search engine

based on linguistic phrase patterns and utilizes a special index for efficient processing. It lacks overall system

support for general entity search with a principled ranking model. Its special index, “neighborhood index”,

and query language, “interleaved phrase” query, are limited to phrase queries only; Chakrabarti et al. [19]

introduce a class of text proximity queries and study scoring function and index structure optimization for

such queries. Its scoring function primarily uses local proximity information, whereas we investigate effective

global aggregation and validation methods, which we believe are indispensable for robust and effective

ranking in addition to local analysis. Our query primitive is also more flexible in allowing expressive patterns

and multiple entities in one query; ObjectFinder [17] views an “object” as the collection of documents that

are related with it and therefore scores an “object” by performing aggregation over document scores. In

contrast, our approach views an entity tuple as all its occurrences over the collection. Therefore, its score

aggregates over all its occurrences, where we consider uncertain, contextual factors other than the document

score. In addition, while their focus is more on the query efficiency side, by exploiting Top-K queries using

early termination approach, our work is primarily on the query effectiveness side.
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Chapter 3

Efficient, Scalable Entity Search with

Dual-Inversion Index

3.1 Introduction

The immense scale and widespread of the Web has rendered it as our ultimate repository and enriched it

with all kinds of data. With the diversity and abundance of “things” on the Web, we are often looking

for various information objects, much beyond the conventional page view of the Web as a corpus of HTML

pages, or documents. The Web is now a collection of data objects, where pages are simply their “containers.”

The page view has inherently confined our search to reach our targets “indirectly” through the containers,

and to look at each container “individually.”

With the pressing needs to exploit the rich data, we have witnessed several recent trends towards finding

fine granularity information directly and across many pages holistically. This chapter attempts to distill these

emerging search requirements, abstract the function of underlying search, and develop efficient computation

for its query processing. Such requirements arise in several areas:

Web-based Question Answering (WQA) Question answering has moved much towards Web-based:

Many recent efforts (e.g., [11, 49, 70]) exploited the diversity of the Web to find answers for ad-hoc questions,

and leverage the abundance to find answers by simple statistical measures (instead of complex language

analysis). As requirements, to answer a question (e.g., “where is the Louvre Museum located?”), WQA

needs to find information of certain type (a location) near some keywords (“louvre museum”), and examine

as many evidences (say, counting mentions) to determine the final answers.

Web-based Information Extraction (WIE) Information extraction, with the aim to identify information

systematically, has also naturally turned to Web-based, for harvesting the numerous “facts” online—e.g.,

to find all the 〈museum, location〉 pairs (say, 〈Louvre, Paris〉). Similar to WQA, Web-based IE exploits

the abundance for its extraction: correct tuples will appear in certain patterns more often than others, as

testified by the effectiveness of several recent WIE efforts (e.g., [35, 13, 54]). As requirements, WIE thus

needs to match text with contextual patterns (e.g., order and proximity of terms) and aggregate matching

across many pages.
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Type-Annotated Search (TAS). As the Web hosts all sorts of data, as motivated earlier, several efforts

(e.g., [19, 13, 24]) proposed to target search at specific type of information, such as person names near

“invent” and “television.” As requirements, such TAS, with varying degrees of sophistication, generally

needs to match some proximity patterns between keywords and typed terms and to combine individual

matchings into an overall ranking.

We believe these emerging trends all consistently call for, as their requirements agree, a non-traditional

form of search—which we refer to as entity search [24]. Such search targets at various typed unit of infor-

mation, or entities, unlike conventional search finding only pages. In this chapter, we use #-prefixed terms

to refer to entities of a certain type, e.g., #location or #person. Observing from WQA, WIE, and TAS, we

note the unanimous requirements following the change of targets from pages to typed entities:

• Context matching: Unlike documents which are searched by keywords in its content, we now match the

target type (say #location) by keywords (e.g., “louvre museum”) that appear in its surrounding context,

in certain desired patterns (e.g., within 10 words apart and in order).

• Global aggregation: Unlike documents which appear only once, we match an entity (say, #location = Paris)

for as many times as it appears in numerous pages, which requires us to globally aggregate overall scores.

While the requirements for entity search have emerged, we have not tackled the computational challenges

for efficiently processing such queries. Recent works have focused on effective scoring models mostly (e.g., [19,

24]). For query processing, a widely adopted form (as in many WQA works [11, 49, 70]) is to “build upon”

page search—to first find matching pages by keywords, and then scan each page for matching entities. This

“baseline” (Sec. 3.3), much like sequential scan, is hard to scale, and thus it may work only by limiting to

top-k pages— which will impair ranking effectiveness (Sec. 3.2).

As the main theme of this chapter, for efficient and scalable entity search, we must index entities as

first-class citizen, and we identify the “dual-inversion” principle for such indexing. We recognize the concept

of inversion from the widely-used inverted lists. To index entities, we thus parallel the standard keyword-

to-document inversion in dual perspectives: From the input view, we see entity as keyword, from which we

develop “document-inverted” index. From the output view, we see entity as document, from which we derive

“entity-inverted” index. The dual-inversions can coexist, and form the core of our solution.

For parallel query processing upon such indexes, we see the challenge in the interplay of join and aggregate:

By viewing entity indexes as relations, we capture entity search as, in nature, an aggregate-after-join query—

a particular type of groupby-join query that is hard to parallelize. Intuitively, the needs for context matching

lead to complex join between relations, while global aggregation leads to group by and aggregate. We design

data partition and query processing for the dual-inversion framework.
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Finally, we evaluate our methods over a real Web crawl of 150 million pages (3 TB), with a diverse

set of 21 entity types. To be realistic, we designed two concrete application scenarios (“Yellowpage” and

“CSAcademia”), which together have 176 queries in four benchmark sets. Our experiments reveal that

both types of inversions can dramatically speed up entity search—with “entity-inverted” at 2-4 orders

of magnitude difference and “document-inverted” at 1-3 orders. The space overhead of indexing is quite

acceptable: “document-inverted” tends to slightly increase index size from standard keyword indexing, while

“entity-inverted” implies reasonable space overhead (and sometimes can even result in smaller size based on

different domains). Overall, this chapter makes the following contributions:

• We distill and abstract the essential computation requirements for entity search.

• We systematically derive and propose novel dual-inversion indexing and partition schemes for efficient and

scalable query processing.

• We verify our design over a realistic, large-scale Web corpus with concrete applications.

3.2 Abstraction & Challenges

Towards designing a framework for entity search, we start with characterizing its functions and challenges.

Functional Abstraction. An entity search system provides search over a set of supported entity types

{E1, . . ., En}, which we informally consider as the schema. E.g., our CSAcademia application in Sec. 3.5

has schema (#university, #professor, . . .). Each type Ei is a set of entity instances that are pre-extracted from

the corpus (e.g., “201-7575” ∈ #phone). As the requirements indicate (Sec. 3.1), we abstract entity search

as follows:

Entity Search (ES) Problem: Give a document collection D, for a query α(k1, . . ., km, E) with keywords ki

(e.g., “database systems”) and entity type E (e.g., #professor), ES will find entity instances e ∈ E and rank

them by score(e) which matches context pattern α and aggregates all matching occurrences across D.

To illustrate, from our prototype (Sec. 3.5), Fig. 3.1 shows the screenshot for query Qdb “database systems

#professor” (with default α as “order, 20-word window” written as ow20), for the first 5 results and supporting

pages (where each answer appears). Notice, typically top results are supported by more than 1 page, as the

ranking relies on aggregation. Fig. 3.1 shows one support page for each result just for conciseness.

We observe that, functionally, entity search (ES) is a generalization of page search (PS) in several ways:

• Entity as first class citizen: Unlike PS assuming page as the entity, ES can support any recognizable entity.
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Figure 3.1: Result: “database systems #prof”

• Set as output: Unlike PS targeting at only a few top relevant results, an ES query can generally require

a set of answers; e.g., the above example (Fig. 3.1) can return tens or hundreds of relevant professors.

• Holistic aggregate: Unlike PS assuming each page as “unique,” ES must generally handle entities occurring

multiple times. Finding and returning such supporting evidences is crucial for applications, such as WQA,

to actually determine the correct answers.

Computational Requirements. The objective of ES, as just abstracted, is to rank entity e (as instance

of the target type E) by a scoring function score(e). The choice of scoring function will directly impact

the quality (or “relevance”) of the ranked results. However, as this chapter focuses on the computation

framework, we will identify the key components of such ranking functions (Sec. 3.3 will give example scoring

functions). Our previous work [24] addresses the quality of search results.

As the requirements of ES, as Sec. 3.1 identifies, a reasonable scoring function should capture both context

matching and global aggregation. Consider scoring an entity e. For our discussion, let o〈doc, pos〉 denote an

occurrence of e in some page doc at word position pos (recall that an entity instance can occur many times

in corpus D). Similarly, we use κj〈doc, pos〉 as an occurrence of keyword kj .

1. Context matching: The first step in scoring is to match the occurrences of ki and e to the desired context

pattern α. We assume a local matching function Lα. Given occurrences κi for keywords ki and o for entity
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e, Lα will assess how well the positions match α by some similarity function sim(·), if the occurrences are in

the same page.

Lα(κ1, . . . , κm, o) =















0, if κi.doc and o.doc differ;

sim(α, κ1.pos, . . . , o.pos), else.

(3.1)

2. Global aggregation: The second step is to aggregate all the occurrences across pages. Here some function

G aggregates the local scores globally into the total score, across all occurrences o in D.

Thus, to summarize, the essential computation to calculate the score, score(e), is generally of the form:

score(e) = G(κ1,...,κm,o)∈d,d∈D[Lα(κ1, . . . , κm, o)], (3.2)

Challenges. Document search has often relied on a small number of high quality documents for pruning, and

therefore avoiding the need to scan full inverted lists (e.g., [51]) for high efficiency. Such pruning techniques,

however, are not directly applicable to entity search, with the mandate on processing comprehensive corpus

due to the following two major reasons:

First, since entity search relies on global aggregation, comprehensive corpus is needed to generate stable

aggregative statistics. Second, many entity queries are naturally looking for set output of comprehensive

results over the entire corpus (e.g., “#professor in DB” as in Qdb or “#city in California”). Figure 3.2(a)

and 3.2(b) show the accuracy (measuring top 5 results) of 5 typical queries of finding the phone number of

companies (represented by the y axis), by varying the number and percentage of top documents (returned

by issuing keyword queries against a document search engine) used respectively (represented by the x axis).

Evidently, different queries converge to accuracy 100% at very different points, indicating that it is nontrivial

to determine which “top k” value to stop for different queries. Moreover, queries generally require a significant

portion (over 40%) of all the relevant documents for stable results.

Given these two points, this work assumes processing query over the entirety of the corpus, without

considering pruning. We believe studying approximate query answering by performing intelligent dynamic

pruning is itself an interesting research problem. However, such study is beyond the scope of this work.

Overall, we thus recognize two essential challenges in building an efficient framework, which goes much

beyond traditional document search:

Complex Join: As we see from the problem abstraction of entity search, each query involves at least one

entity. Unlike keywords, entities, comprised of many entity instances, tend to appear frequently across the

45



00 . 20 . 40 . 60 . 8 11 . 2
T o p2 0 T o p5 0 T o p1 0 0 T o p2 0 0 T o p4 0 0 T o p8 0 0 T o p1 6 0 0 T o p3 2 0 0 T o p6 4 0 0

E x x o n M o b i lW a l M a r tG e n e r a l M o t o r sC h e v r o nF o r d M o t o r
(a) Absolute Page Count

00 . 20 . 40 . 60 . 8 11 . 2 E x x o n M o b i lW a l M a r tG e n e r a l M o t o r sC h e v r o nF o r d M o t o r
(b) Page Percentage Count

Figure 3.2: Top K Comparison for Point Queries

entire corpus. Figure 3.3(a) shows the comparison of keyword frequency (i.e., the number of times a keyword

appears in corpus) with entity frequency (i.e., the number of times an entity type, say #phone, appears in

corpus), with x axis in log scale representing keywords/entities under comparison, and y axis representing

their respective frequencies. As seen from the figure, entities clearly appear much more frequently (by orders

of magnitude) than most of the keywords, with frequency comparable to the top 20 most frequent keywords.

Therefore, it is computationally expensive to load/check those many occurrences of entities for pattern

matching. In addition, as discussed in the characteristics of entity search, it has to rely on in-document

contextual pattern matching. Such computation is also more expensive, compared to the traditional simple

document intersection checking in document search.
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(b) Selectivity of Keywords

Figure 3.3: Keyword and Entity

On the other hand, we also see potential opportunities to reduce computation. With respect to a specific

query, only a small fraction of the entity occurrences are actually related to the query, due to the selectivity

of keywords. Figure 3.3(b) shows the frequency of entity alone, as compare to the frequency of entity

when combined with keywords. 5 random entity types together with 3 random keywords are used in the

experiment. As we can see, given a keyword, most of the entity instance occurrences are irrelevant. This
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observation opens up room for expediting processing, which we will exploit further in our solution.

Global Aggregation: As we discussed in the characteristics in Sec. 3.1, entity search has to rely on holistic

aggregation over comprehensive corpus to tap the rich redundancy of the Web. This is an online processing

layer that is non-existent in traditional document search. Being able to support aggregating information

over large-scale corpus in an online fashion is another essential computation requirement for entity search.

How can we parallelize such online large-scale aggregation for scaling up?

The challenge of this work is thus to deal with the essential computation requirements of entity search,

towards an efficient and scalable framework to support entity search.

3.3 Baseline & Running Example

To set the stage of discussion, let’s use Fig. 3.4 as a running example throughout the chapter, which we

call the YellowPage scenario, as it provides search for contact information (e.g., #phone, #email). As a

toy dataset, the corpus D has 100 documents D = {d1, . . . , d100}; we show three documents d6, d9, d97

as examples. We will assume a simple query for finding the phone number of Amazon service Q1 in the

following form:

Q1: ow20(amazon service #phone)

During offline processing, we recognize the position of keywords (e.g., keyword “amazon” appears at

position 17 of document d6) in the corpus (via tokenization). Entities are also extracted offline, with their

entity instances identified and positions recognized. E.g., we extract phone number 800-201-7575 as phone

instance p8 at position 19 of document d6 as shown in Fig. 3.4. Notice, there may be additional properties

related with the extracted entity occurrences, e.g., the extraction confidence. We exclude such information

in this chapter for the ease of discussion.

For our concrete discussion, let’s assume a simplistic scoring function, BinarySum, in our running exam-

ple.

Example 1. [Scoring Function: BinarySum] Let’s define scoring scheme BinarySum, which instantiates

Eq. 3.2 by:

Lα(e) = 1, if e matches α; 0 otherwise.

G = Sum
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Figure 3.4: A Running Example: YellowPage

These definitions lead to a rather simplistic scheme, which scores entity instance e by simply counting

the total number of times it occurs in a way matching the α-pattern. While BinarySum may not be effective

in ranking, it is sufficient as a concrete example for discussing the essential computation.

To execute the general form of Eq. 3.2, as an entity-centric system is currently lacking, many related works

(e.g., [3, 11, 48, 49, 70]) have relied on keyword-based search engines to zoom into a subset of documents

and then apply local matching by scanning documents and global analysis. Considering example Q1, the

baseline goes as follows:

1. Look up by keywords (e.g., “amazon service” for Q1) in a keyword-based search engine for retrieving

documents matching these keywords. From the running example in Fig. 3.4, documents d6, d9 and d97

will be returned as matching documents.

2. Scan each matching document to execute local matching Lα to match candidate entities. Notice, as

keywords and entities are all identified offline, only pattern matching (by pattern α) needs to be performed.

In the example for instance, p8 will be matched from document d6 with local matching score of 1 by

BinarySum.

3. Perform aggregation to assemble the produced matchings. In the example, p8 will have an aggregate score

of 2 from d6 and d97 using BinarySum.

In order to handle large-scale dataset, it is common practice to partition the corpus into sub-corpses, and

distribute the sub-corpses. Over the baseline, step 1&2 can be processed over the partitioned sub-corpse in
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parallel, while step 3 aggregates the results generated from the sub-corpses.

Our discussion will assume a parallel setting of “p + 1” nodes with two processing layers, with p nodes

assigned for storing indexes and local processing, and 1 node assigned for global processing. We choose this

“p + 1” setting to focus on indexing, partition, and parallel processing over the p local nodes. The global

processing layer, which can also be parallelized using multiple nodes, is simplified to one node.

The keyword-based baseline, while not meeting the requirement of entity search as it needs to perform

expensive document scan, and rely on central aggregation, has been popularly used for QA tasks over the

Web–The lack of efficiency and scalability, and the popularity nonetheless, indicate a clear demand for a

true entity search system.

3.4 Solutions: Dual-Inversion Index

We now develop the solutions for supporting entity search. Our key issue, as just motivated is—How to

design an index to facilitate query processing? In this section, we will reason the design to derive two types

of indexes that work well together—which we call the “dual-inversion” index.

To begin with, we recognize that, for text retrieval, the key principle of indexing is inversion– an efficient

data structure for mapping from query input values to output objects. In a standard text search scenario,

users give keywords as input values and expect documents as output objects; i.e., we are searching in a

database of documents by keywords. Thus, the standard inversion that powers up today’s text retrieval is

mapping from keywords, as input values, to document as candidates for output objects. Since text databases

are not optimized for real-time updates, an index does not need to be “dynamic,” (unlike database indexes

such as B-tree) and thus the most efficient data structure is simply a sequential list of such mappings, called

inverted list—one list for each keyword—where each posting is one document ID and the positions in the

document where k occurs. Such lists can be efficiently loaded from disk into memory by sequential read, or

compressed and cached in memory [72].

We can express this standard inversion—mapping a keyword k to a document collection D—as the

following (one to many) mapping from k to those documents in D whose content contains k, as follows:

D(k) : k → {〈doc, pos〉| doc.content[pos] = k; d ∈ D}. (3.3)

We will develop our indexing based on the principle of inversion. Thus, our question becomes, what

inversions shall we develop to support entity search? Why?

49



2d 12 6d 17

...

6d ]8.0,,23[ 8p

I(a)=I(amazon):

I(#p)=I(#phone): 9d

...

9d 366d 18I(s)=I(service):

9d 34

56d 56 200

]9.0,,323[ 10p ...

6d ]0.1,,27[ 81eI(#e)=I(#email): 99d ...

257 56d 55 64d 5

68d 56

97d 45

75d 56 97d 47

]9.0,,45[ 86p 97d ...]8.0,,50[ 8p

35d ...

Figure 3.5: Document-Inverted Index Example

3.4.1 Document-Inverted Index

The first proposal naturally parallels keyword inversion D(k): Just like keywords for document search, entity

type serves as input for entity search.

Indexing: Document Inverted. In the functional form, entity search takes as input both keywords and

entity types: Given an entity-search query α(k1, . . ., km, E), since the entity type E is part of the input,

just like keywords ki, can we build a mapping for E in the same way as ki—because they are both input?

We consider as the first inversion D(E) which, given entity type E, maps to the documents where entity of

type E occurs. As the target of inversion is documents, we refer to this scheme as document-inverted index,

or D-Inverted index for short.

To realize this analogous concept, however, there is a slight complication: Unlike keywords which are

literal, E is an “abstract” type– which can have different instance values. Thus the mapping should record,

in addition to document d and position p, the specific entity instance entity of type E, for each occurrence.

D(E) : E → {〈doc, pos, entity〉| d.content[pos] = entity; entity ∈ E; d ∈ D}. (3.4)

Fig. 3.5 shows the layout of the inverted lists D(a), D(s) and D(#p) for keywords “amazon”, “service”,

and entity type “#phone” respectively.

For further development for query processing, we can conceptualize each inverted list as a relation: As

Exp. 3.3 and 3.4 show, each list is simply a set of postings of the same structure—or “tuples”—and thus

D(k) is a relation with schema 〈doc, pos〉 and D(E) a relation with schema 〈doc, pos, entity〉. Note that

the relational view is conceptual, allowing us to understand the operations, and we do not necessarily use a

DBMS to store and process the lists.

Computation Analysis. With this document-based inversion in place, we now capture the computation

for query processing. Given the document-inverted lists D(ki) and D(E), how do we process them to answer
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the query α(k1, . . ., km, E)? We are starting from the D-Inverted lists as base relations D(k1), . . . , D(km)

and D(E).

Specifically, we can now use relational operations to describe the essential operations. Starting from the

base relations, our objective is to score every entity instance e by Eq. 3.2 and sort all the instances by their

scores. First, to find all the qualifying entity occurrences, we perform join between the relations D(k1), . . . ,

D(km) and D(E). We call such join context join as it evaluates a context pattern α over the occurrences

of k1, . . ., km, and some entity occurrence of E. It checks whether the occurrences match the pattern α

and scores how well a matching is by the local scoring function Lα—thus, strictly speaking, it is a ”fuzzy”

join that returns scores. Second, we need a groupby operator G to group entity occurrences according to

their instances, i.e., D(E).entity, and use global aggregation function G to calculate the final score for each

instance. Finally, a sort operator Sscore sorts the entity instances. We show the overall computation in

Exp. 3.5.

Sscore[(D(E).entity)GG(⋊⋉Lα
[D(k1), . . . , D(km), D(E)])] (3.5)

Written in SQL, in this view, entity search is to execute the following query QES1.

SELECT D(E).entity, G(mscore) AS score

FROM D(k1), . . . , D(km), D(E)

WHERE Lα(D(k1).doc, D(k1).pos, . . .,

D(km).doc, D(km).pos, D(E).doc, D(E).pos) AS mscore

GROUP BY D(E).entity

ORDER BY score (QES1)

The query is an instance of aggregate-join query, which has the following general form in SQL:

SELECT R1.G1, . . ., Rn.Gn, Agg(R1.A1, . . ., Rn.An)

FROM R1, . . ., Rn

WHERE Join(R1.J1, . . ., Rn.Jn)

GROUP BY R1.G1, . . ., Rn.Gn

HAVING/ORDER BY ...

Such aggregate-join queries connect tuples from base relations and organize them into groups for aggre-

gation, i.e., with the following two parts:
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• Join: It joins relations R1, . . ., Rn, through an expression, denoted Join, of join conditions (which include

selections), upon join attributes J1, . . ., Jn. Each Ji can be an attribute or multiple attributes of Ri.

• Group-By: It then groups the joined tuples over group-by attributes G1, . . ., Gn, and then aggregates

each group with some function Agg over aggregate attributes A1, . . ., An.

Such aggregate-join queries impose particular issues in parallel query processing—which arise in our

specific situation. To explain and contrast the issues, let’s use the following query Qbank over a typical

“bank” scenario. Consider two relations Customers(cid, name, address) and Accounts(accountno, cid, branch,

balance). Query Qbank finds those customers having more than $50000 as total balance across all their

accounts.

SELECT C.name, Sum(A.balance) as TotalBal

FROM Customers C, Accounts A

WHERE C.cid = A.cid

GROUP BY C.cid

HAVING TotalBal > 50000 (Qbank)

As the query form involve both join and aggregate, can we push group-by and aggregate to be performed

before join? While such transformation is desired, to reduce the expensive join cost, and possible in some

cases, it is not feasible in our scenario. For instance, consider Qbank; suppose Accounts has 10000 tuples

but only 100 distinct cid values. We can perform Group-By on Accounts first to result in 100 cid-groups,

and perform Having over the groups. This transformation will reduce the number of Accounts tuples to join

with Customers from 10000 to only the less-than-100 cid-groups after grouping and filtering. Unfortunately,

this transformation is not possible for entity search. Consider QES1. Observe that the global scoring

function G requires mscore as computed by the local scoring function Lα for every tuple combination from

D(k1), . . . , D(km), D(E)—by comparing their doc and pos to match pattern α. That is, the overall aggregate

function G ◦ Lα (composition of G and Lα) needs aggregate attributes from all the relations, unlike Qbank

only needs balance from Accounts. Thus, for Qbank, Group-By (and aggregate) must happen after join, or

we do not have all the aggregate attributes. While we explain intuitively, a full analysis of the feasibility of

transformations is discussed in [71].

Data Partition: Document Space. To process entity search queries, now that we need to process

aggregate after join, how to partition the relations for parallel query processing? To scale up entity search

over a large corpus, we must partition data somehow over the p worker nodes. Our particular form of
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aggregate-join query is tricky for parallelization, because the join and group-by are over a different set of

attributes—i.e., in terms of the general form, Ji 6= Gi. To contrast, for Qbank, since both the join and

aggregate are over attribute cid, we can simply partition Customers and Accounts by the same cid ranges,

and each worker node can execute both join and aggregate.

Unfortunately, when join and group-by are over different attributes, as in our situation, no schemes

can fully partition the corpus for both join and aggregate without significant replication of communication.

Naturally, we can partition on either join or aggregate attributes, as observed in [63, 64]. We next discuss

these choices:

As the first choice, we may partition relations by their group-by attributes, which turned out to be

infeasible for entity search. Referred to as APM [63], this aggregation partition method will partition each

relation Ri by Gi. If Ri does not appear as part of Group-By (i.e., Gi = ∅), then the entire Ri needs to

be broadcast to all the nodes at run time (or otherwise every Ri needs to be replicated to every node). For

entity search, as offline data partitioning, we partition D(E) by D(E).entity into sub-relations, D1(E), . . .,

Dp(E), for the p local worker nodes; i.e., records of the same entity instance will distribute to the same

node. At runtime processing, for query α(k1, . . ., km, E):

1. Broadcast D(k1), . . ., D(km) to every local node.

2. Each local node z will join Dz(E) with D(k1), . . ., D(km), group-by entity, aggregate for each group, and

send the results to the global node.

(Dz (E).entity)GG(⋊⋉Lα [D(k1), . . . , D(km), Dz(E)]) (3.6)

3. The global node unions and sorts all the p result sets, to produce the overall ranking of the entity instances.

Clearly, this scheme is infeasible, with the run time cost to broadcast the inverted lists of the queried

keywords to worker nodes (Step 1). Or, we may simply replicate every keyword lists, i.e., D(k) for every

possible k to each node. Given the numerous keywords possible in any corpus, replication is again prohibitive.

Thus, aggregate-based partition will not work.

As the other choice, thus, we will partition by the join attributes. Referred to as JPM (join partition

method) in [63], this method will partition each relation Ri by Ji. For entity search QES1, we are matching

pattern α by the context-join ⋊⋉Lα
over the keyword and entity relations on their doc and pos attributes. To

determine the partition, we must examine— What are the conditions that these tuples from each relation

are “joinable”—i.e., Lα(D(k1).doc, D(k1).pos, . . ., D(km).doc, D(km).pos, D(E).doc, D(E).pos) > 0? Since
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we are matching entities and keywords from each document, any joinable occurrences must be at least from

the same document. More formally, by the definition of Lα as Eq. 3.1 gives, the context join between D(k1),

. . ., D(km), D(E) must require that

D(k1).doc = · · · = D(km).doc = D(E).doc.

Thus, with the principle of join-based partition, we will partition the D-Inverted relations by the document

space—i.e., to distribute the tuples of D(k) and D(E) by the document IDs they are from, or their doc

attributes. We will apply this partitioning to every base relation: D(k)〈doc, pos〉 and D(E)〈doc, pos, entity〉,

for all keywords k and for all entity types E supported by the system. For each relation, we will distribute

the postings with the same doc to the same local nodes—As discussed above, these are postings that are

“joinable.” Specifically, first, we partition the “document space” D into p disjoint subsets—one for each

local node—i.e., D1, . . ., Dp, such that D1∪ . . .∪Dp = D and Di∩Dj = ∅. With respect to the p document

sub-spaces, we then distribute each D-Inverted index to the p local nodes, as follows:

Dz(k) = {x|x ∈ D(k), x.doc ∈ Dz}

Dz(E) = {x|x ∈ D(E), x.doc ∈ Dz}

Each local node will host the corresponding sublist for each keyword, and entity. For instance, the

document-inverted index of entity #phone in Fig. 3.5 will be split into p sublists, and the i-th sublist will be

located on the i-th local node. For the YellowPage scenario, assuming we have 10 local processing units, we

can partition the dataset containing 100 document into 10 subset, each containing 10 documents as shown

in Fig. 3.6. This implies the inverted index will be partitioned into sublists. For instance, D(a) in Fig. 3.5

will be partitioned into 10 sublists, D1(a), ..., D10(a) respectively.

Parallel Query Processing. The local processing module, having all the information of a subset of the

documents, will be able to compute all the context joins and output all the matching entity occurrences.

Exp. 3.7 formulates this procedure, where the matching entity occurrences are put into Lz and will be sent

over to the global processing module for further processing. This step implements the context join operation

in Exp. 3.5 in parallel across local nodes.
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Figure 3.6: Partition by Document Space

Local Node z: : ∀z ∈ [1..p]

Lz〈entity, mscore〉 = πentity,mscore ⋊⋉Lα as mscore [Dz(k1), . . . , D
z(km), Dz(E)] (3.7)

The local matching algorithm D-Local in Fig. 3.7 loads the document-inverted index for the specified

keywords, and entity into memory (step 2). As the lists are sorted based on document id, merge-join can be

performed over the lists to instantiate any possible matchings (step 3-10). If a matching entity occurrence

is found, we will use local scoring function L to compute the score, and output (step 5-8).

To answer query Q1, we will execute the query on each of the local nodes as shown in Fig. 3.6. Local

node 1 will produce two matchings for phone instance p8 matched in document d6 and p86 matched in

document d9 by joining sublists D1(a), D1(s) and D1(#p). Local node 10 will produce one matching for

phone instance p8 matched in document d97.

With the entity occurrences and local scores produced, we are ready to perform holistic aggregation over

them. The global processing module takes care of both aggregation and sorting over all the matching entity

occurrences in L1, . . . , Lp collected from all the local nodes, as shown in Exp. 3.8:
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Algorithm D-Local:

Local Processing with D-inverted Index, for Node z.

• Input: Query α(k1, . . . , km, E).

• Output: Lz〈entity , mscore〉.

1: Lz = ∅
2: load lists Dz(k1), . . . , D

z(km), Dz(E)
3: for merge-join over the loaded lists do

4: if Dz(k1).doc = . . . = Dz(E).doc then

5: if Dz(k1).pos, . . . , Dz(E).pos match α then

6: mscore = Lα (Dz(k1).pos, . . . , Dz(E).pos)
7: add (Dz(E).entity, mscore) to Lz

8: end if

9: end if

10: end for

11: return Lz

Figure 3.7: Algorithm D-Local

Global Node: :

Sscore[(entity)GG(mscore) as score(L1 ∪ · · · ∪ Lp)] (3.8)

The global aggregation algorithm D-Global in Fig. 3.8 goes through all the input matched entity oc-

currences, and aggregates all the scores of a specific instance together. As shown in Fig. 3.6, the global

processing layer receives the matching occurrences from the local nodes, and performs aggregation and

ranking. For instance, the local scores for p8 are aggregated into the final score of 2, resulting the ranking

of p8 at the first place.

3.4.2 Entity-Inverted Indexing

Our second proposal parallels keyword inversion in an “opposite” way. While our first inversion, D-Inverted

indexing, views entity type E as input and maps it to documents, we now consider entities as output— the

target of search.

Indexing: Entity Inverted In the functional form, entity search finds entity instances as output from

keywords as input: Given query α(k1, . . ., km, E), we are looking for entities e of type E, such that keywords

56



Algorithm D-Global:

Global Processing with D-inverted Index.

• Input: Lz〈entity , mscore〉, ∀z ∈ [1..p].

• Output: ranked list of 〈entity , score〉.

1: Result = ∅
2: for each 〈entity , mscore〉 in L1, . . ., Lp do

3: if entity not in Result then

4: add entity to Result

5: end if

6: update Result[entity ].score with mscore by G

7: end for

8: sort Result by score; return Result

Figure 3.8: Algorithm D-Global

ki appear in the context of e in a way that matches pattern α. E.g., in our example, we are given “amazon

service” to search for entity #phone that are mentioned with these keywords around it (in that sequential

pattern).

With this view, we again seek to parallel the traditional inversion. We observe that traditional document

search builds upon keyword inversion D(k), as Exp. 3.3 shows, which maps each keyword k as query input

to documents in D as output. For entity search, we shall map each keyword k to entities ∈ E, denoted E(k).

As the inversion targets to entities, we call E(k) an entity-inverted index, or E-Inverted index for short.

To realize this analogous concept, however, we again face some interesting complications— While a

document only occurs once (or we do not capture duplicates in document search), each entity can occur

multiple times in the text corpus at different documents or different positions. Thus, while building E-

Inverted index, as the target of mapping, we must specify to the level of a specific occurrence, rather than

just an entity instance. To specify an occurrence, denoted o, we will specify the document and position where

an entity occurs—thus the tuple o〈doc, epos, entity〉. With this notation, we build an E-Inverted index for

each keyword k by mapping k to the context of some entity occurrence o where k appears. Each “posting”

record will be of the form 〈o〈doc, epos, entity〉, pos〉, which means k appears, with position pos in the context

of entity occurrence o〈doc, epos, entity〉.

E(k) : k → {〈o〈doc, epos, entity〉, pos〉| o.context[pos] = k; entity ∈ E}. (3.9)
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As the second issue, we also must define what context means—i.e., how far from an entity occurrence

shall we consider as within its context? We note that, for our first document-based inversion, the content

of a document is well defined. Here, to define the “context” of an entity occurrence o, we are essentially

considering the question—How far apart between k and o do we consider them as no longer “semantically

associated”? Clearly, larger the distance is, the less likely they are associated, and most entity-oriented

search efforts (e.g., [19, 24]) leverage this insight in ranking. Thus, in our indexing, we can choose some

maximal window distance to consider as context. In our implementation, we use 200-word window as the

context—i.e., the context of an entity occurrence extends between 100 words to its left and 100 to its right.

Fig. 3.9 shows the layout of the entity-inverted index using our example.

6dI(a)#p=I(amazon)#phone: ]8.0,,23,17[ 8p

6dI(s)#p=I(service)#phone: ]8.0,,23,18[ 8p

6dI(a)#e=I(amazon)#email: ]0.1,,27,17[ 81p

6dI(s)#e=I(service)#email: ]0.1,,27,18[ 81p

9d ]9.0,,45,34[ 86p 97d ]8.0,,50,45[ 8p

9d ]9.0,,45,36[ 86p 97d ]8.0,,50,45[ 8p

Figure 3.9: Entity-Inverted Index Example

Thus, with entity-inverted indexing, as we store the mapping of keywords to entities, we have as base

relations the entity-inverted lists E(k) with schema 〈doc, epos, entity, pos〉.

Computation Analysis.

Starting from these base relations, in contrast to Exp. 3.5, we can express the computation of entity

search for α(k1, . . ., km, E) as:

Sscore[(D(k1).entity)GG(⋊⋉Lα
[E(k1), . . . , E(km)])] (3.10)

Written in SQL, in this view, entity search is to execute the following query QES2.

SELECT E(k1).entity, G(mscore) AS score

FROM E(k1), . . . , E(km)

WHERE Lα(E(k1).doc, E(k1).epos, E(k1).entity, E(k1).pos, . . .,

E(km).doc, E(km).epos, E(km).entity, E(km).pos)

AS mscore
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GROUP BY E(k1).entity

ORDER BY score (QES2)

We have QES2, again, as an instance of aggregate-join query. First, like QES1, the query must also handle

aggregate after join— The overall aggregate function G◦Lα needs aggregate attributes from all the relations

to get pos attributes for matching α. Second, however, unlike QES1, this query based on entity-inversion

relations has the same attributes—the entity attributes of each relation—for both aggregate and join.

With this key difference, the entity-inversion view allows us to simultaneously parallelize both join and

aggregate, since now join and aggregate attributes are consistent.

Data Partition: Entity Space.

To partition along the entity groups, we make sure the same instances of E will be allocated at the same

local node, which means we must divide E into disjoint subsets. Specifically, we partition E to p nodes,

i.e., E = ∪(E1, . . ., Ep) and Ei ∩ Ej = ∅. With respect to the p entity sub-spaces, we can distribute each

E-Inverted index to the p local nodes, as follows:

Ez(k) = {x = 〈o, pos〉|x ∈ E(k), o.entity ∈ Ez}

Again in our example setting, using the same 10 local processing units, we could partition dataset as

shown in Fig. 3.10 such that local node 1 is responsible for phone entity instances p1, . . . , p10. Take the list

E(a) in Fig. 3.9 as an example. This list will be split into two nonempty sublists. Local node 1 will hold

sublist E1(a) with entries d6 : [23, p8, 17] and d97 : [50, p8, 45] and local node 9 will hold sublist E9(a) with

entry d9 : [45, p86, 34].

Parallel Query Processing. Upon the entity space partition scheme, the local processing module can

perform the joining operation, as well as the aggregation operation. In other words, Exp. 3.10 can be fully

realized at each local node (except for the final ranking part):

Local Node z: : ∀z ∈ [1..p]

Lz〈entity, score〉 = πentity,score (Ez(k1).entity)GG(mscore) as score(⋊⋉Lα as mscore [Ez(k1), . . . , E
z(km)]) (3.11)

We illustrate the local matching&aggregation algorithm in Algorithm E-Local in Fig. 3.11. It loads the

entity-inverted index for the specified keywords with regard to the input entity (step 2). As the lists are
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Figure 3.10: Partition by Entity Space

Algorithm E-Local:

Local Processing with E-inverted Index, for Node z.

• Input: Query α(k1, . . . , km, E).

• Output: Lz〈entity , score〉.

1: Lz = ∅
2: load lists Ez(k1), . . . , E

z(km)
3: for merge-join over the loaded lists do

4: if Ez(k1).o = . . . = Ez(km).o then

5: let o be the entity occurrence in common
6: if Ez(k1).pos, . . . , Ez(km).pos, o.epos match α then

7: mscore = Lα (Ez(k1).pos, . . . , Ez(km).pos, o.epos)
8: if o.entity not in Lz then

9: add o.entity to Lz; initialize score to 0
10: end if

11: update entity ’s score with mscore by G

12: end if

13: end if

14: end for

15: return Lz

Figure 3.11: Algorithm E-Local
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Algorithm E-Global:

Global Processing with E-inverted Index.

• Input: Lz〈entity , score〉, ∀z ∈ [1..p].

• Output: ranked list of 〈entity , score〉.

1: Result = L1 ∪ · · ·Lp

2: sort Result by score

3: return Result

Figure 3.12: Algorithm E-Global

sorted based on document id, merge-join can be performed over the lists to instantiate any possible matchings

(step 3-14). If a matching entity occurrence is found, we will use local scoring function L to compute the

score (step 6-7). This score will be immediately aggregated with the produced occurrences (step 8-11).

To answer the same query, the query will be issued on each local node as shown in Fig. 3.10. As the

entity-inverted index is still ordered by document id, the same sort-merge join algorithm can be applied.

In this setting, the two matchings of phone instance p8 will both be produced from local node 1 by joining

sublists E1(a) and E1(s). Unlike in the document partition based approach, these matching can already be

grouped and aggregated on the local nodes. In this example, the final query score of phone instance p8 is

calculated on node 1 and that of p86 is calculated on node 9.

Given that the local processing module produces aggregated results, the global processing module only

has to take care of the ranking step in Exp. 3.10 of all the aggregated results from L1, . . . , Lp, a very

light-weight task as shown in Exp. 3.12 and algorithm E-Global in Fig. 3.12:

Global Node: : Sscore[L
1 ∪ · · · ∪ Lp] (3.12)

3.4.3 Together: Dual-Inversion Index

We summarize the pros and cons of D-Inverted and E-Inverted proposals in terms of the computation

requirements we listed in Sec. 3.2, pattern join, aggregation, as well as the space requirement, in the following

table:

Pattern Matching: Baseline is slow as it performs pattern matching by scanning documents returned

from keyword search. D-Inverted and E-Inverted schemes are fast in utilizing indexes for efficient pattern

matching. However, the E-Inverted scheme is more efficient, as it deals with much shorter index lists, whereas
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Baseline D-Inverted E-Inverted
Pattern Join slow fast faster
Aggregation central central distributive
Space standard minimal overhead large

Table 3.1: Comparison of the Two Indexes

the D-Inverted scheme has to load and read long D-Inverted lists for entities.

Aggregation: E-Inverted scheme allows the aggregation to be fully distributed in parallel to local nodes.

The baseline and the document-inverted index schemes, on the other hand, have to rely on a central layer

for aggregation.

Space: The space overhead for the D-Inverted scheme is rather minimal, as it only creates one D-Inverted

list per entity. The entity-inverted index scheme could often incur more significant space cost, as we combine

entity with every keyword.

As the two schemes are highly complementary to each other, we ask: can the two types of index coexist

to reach a nice balance point? Fortunately, the two types of indexes can indeed coexist, as each contains

complete information with respect to the entity. This offers us the opportunity to create entity-inverted

index for a selected set of entity types, while the rest of the entity types can be supported by document-

inverted index. Generally, entity-inverted index should be created for entities that are queried more often

and take less space, whereas document-inverted index should be created for the rest of entities which are

queried less frequently and require more space. We name such a framework, with the coexistence of the two

types of indexes, the dual-inversion index framework.

3.5 Experiments

To empirically evaluate our dual-inversion approaches for entity search, for its efficiency over a large scale

corpus and diverse types of entities, in a range of realistic benchmark scenarios, we built a distributed

prototype on a real Web corpus of a 3TB general Web crawl (collected in January 2008) with 150 million

pages. Like the “p+1” setting described in Sec. 3.3, we ran the system on a cluster of 15 local worker nodes

(p=15) and one global node, totally 16 machines, each with a dual AMD Athlon 64 X2 3600+ CPU, 1 GB

memory and 1TB of disk.

On this large corpus, we annotated a wide range of various entity types—21 entities total—in order to

understand different application scenarios. We used the GATE system [1] for entity annotation. As Table 3.2

lists, we selected our entities covering the three major extraction methods: using dictionaries, rules, and
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classifiers (machine learning).

Method Supported Entities

dictionary- 14 entities: Country, City, State,
based Province, Region, Sea, Company,

Title, Drug, Month, University,
ResearchArea, Professor, Religion

rule-based 4 entities: Email, Phone, Zipcode, Year
classifier-based 3 entities: Person, Location, Organization

Table 3.2: Supported Entity Types: 21 Entities

For our comparison, we implemented all the three approaches discussed: the keyword-based Baseline

(Sec. 3.3) and the dual-inversion: D-Inverted and E-Inverted index (Sec. 4.3). As Table 3.3 summarizes,

all the three methods, including Baseline, had the entities pre-extracted offline. As indexes, the Baseline

used standard keyword inverted lists D(k), and D-Inverted added D(E) in addition, while E-Inverted used

only keyword-to-entity inversion E(k). (We will compare the space requirements later.) All the methods

are parallelized across the same (p+1)-node cluster, by partitioning the index data as we discussed.

Method Extraction Indexes Built

Baseline offline D(k), ∀ keyword k

D-Inverted offline D(k), ∀ keyword k;
D(E), ∀ entity E

E-Inverted offline E(k), ∀ keyword k

Table 3.3: Indexes Built for Each Method

Experiment Setup. To extensively and realistically study the performance, we configured two concrete

applications. We evaluated 4 benchmark sets, for totally 176 queries of varying parameters. Each query

has the form α(k1, . . ., km, E), as Sec. 3.2 defines, for keywords ki and entity type E. We use “ow20”

for pattern α— ordered 20-word window— for all queries. As scoring function, we use the “EntityRank”

model [24], which is of the common form of G ◦ Lα as Sec. 3.2 defines. We stress that the actual function

affects “only” ranking preciseness. For our focus of efficiency, all functions with the join-then-aggregate (Lα

then G) abstraction are computationally similar.

Application 1 (Yellowpage) for finding yellowpage-like information, with entities (#email, #phone, #state,

#location, #zipcode).

• Benchmark 1A Phone Number Search: 30 queries of the form “company name #phone”, e.g., “general

motors #phone”, which finds the phone number related to General Motors. We generated 30 queries using

top 30 company names in 2006 Fortune 500.

• Benchmark 1B Location Search: 20 queries of the form “city #location”, e.g., “springfield #location”,

which finds locations related with Springfield. We generated 20 queries using Illinois city names.

63



Application 2 (CSAcademia) for information of the computer science academia, with entities (#university,

#professor, #research, #email, #phone).

• Benchmark 2A Email Search: 88 queries of the form “researcher #email”, e.g., ‘Anastassia Ailamaki

#email”, which finds emails related to the researcher. We generated 88 queries using PC members of

SIGMOD 2007.

• Benchmark 2B Professor Search: 38 queries of the form “area #professor”, e.g., “database systems

#professor”, which finds professors related to the area. We generated 38 queries using CS areas like data

mining, compiler, etc..

We chose these benchmark queries not only because of their practical usefulness but also their diversity:

First, they contain both set answers (1B, 2B) and single points (1A, 2A). Second, they differ in the selectivity

of keywords. Benchmark 1A and 1B have keywords (e.g., “IBM”, “Chicago”, etc.) that are far less selective

than 2A and 2B (e.g., “Ailamaki”, “HCI”). Third, they cover entities extracted with different methods

(Table 3.2).

While we focus on efficiency, we note that the usefulness of entity search is also revealing through

these benchmarks. E.g., As Sec. 3.2 mentioned, Fig. 3.1 shows the screenshot for “database systems”

#professor with supporting pages. Such queries, with page search, would require us to comb through numerous

page results to collect answers. Entity search expands our ability to directly find fine grained information

holistically across many pages.

Performance Evaluation. We focus on search efficiency, and evaluate each component: processing at the

p local nodes, network transfer, and processing at the global node, with the following metrics. M1: overall

local processing time. M2 : max local processing time. M3: overall transfer time. M4: max transfer time.

M5: global processing time. When involving local nodes, we measure both overall as the sum of all nodes

(which indicates throughput), and max as the maximum (which indicates response time).

Fig. 3.13 shows the local times for 1A (queries are sorted by overall local processing time in Baseline).

Both D-Inverted and E-Inverted incur much less overall and max local processing time than Baseline, and

E-Inverted performs faster than the D-Inverted. As the graphs are in log scale, we observe rather signifi-

cant speedup–generally two orders of magnitude: E-Inverted ranges around 102ms, D-Inverted 104ms, and

Baseline 106ms. Furthermore, the times for D-Inverted and E-Inverted are more uniform than the Baseline,

which has high variance in the number of documents needed to scan after keyword lookup.

Fig. 3.14 shows the transfer times for 1A. Notice, the cost for Baseline and D-Inverted are the same

(thus the points collapsed together), since they send the same partial “after-join” results to the global node.
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(a) M1: Overall Local Processing.
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(b) M2: Max Local Processing.

Figure 3.13: Local Processing: Benchmark 1A

We observe that E-Inverted can save significantly in network transfer cost, as results are already “after-

aggregation.” The difference is, again, significant–at about two orders of magnitude. Notice, in the case

of only outputting top-k results, E-Inverted scheme can further save transfer cost, as at most top-k results
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(a) M3: Overall Network Transfer.
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(b) M4: Max Network Transfer.

Figure 3.14: Network Transfer: Benchmark 1A

from each local node need to be sent for final ranking.

Fig. 3.15 shows the global times for 1A. E-Inverted requires much less global processing time compared
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Figure 3.15: Global Processing (M5): Benchmark 1A

with the Baseline and D-Inverted (which have the same global costs). The difference is about one order of

magnitude.

Overall, we observe similar results for all the benchmarks, 1A, 1B, 2A, and 2B, in both applications.

Table 3.4 summarizes the median cost of all the M1 to M5 metrics. We consistently observe, from Table 3.4,

across the four benchmarks of totally 176 queries, the significant speedup of the dual-inversion approaches,

for all the processing components M1 to M5. Both E-Inverted and D-Inverted are much faster than the

Baseline– which use keyword indexes to look up pages for entity search.

We conclude by comparing the time efficiency and space overhead for our dual-inversion approaches.

Table 3.5 summarizes the average (across all the queries in each benchmark set) total execution times for

all the three methods. To compare the dual-inversions to Baseline, we also compute the speedup for each

category in the parentheses; e.g., for benchmark 1A (30 queries), E-Inverted has an average speedup of

2.5E+4 or 2.5 ·104. Across the categories, we see rather significant speedup from 1 to 4 orders of magnitude.

The speedup comes at the cost of indexing entities—recall index configuration in Table 3.3. Table 3.5

also compares the various index sizes of the two application settings. First, we observe that, since D-Inverted

relies on D(E) in addition to standard keywords D(k), it always requires larger index size than Baseline–

However, the addition is actually quite small, resulting in 1% and 0.1% size increase in Application 1 and

2, respectively. Second, we observe that, with its entity-primary indexing on E(k), E-Inverted can require

varying indexing sizes, depending on the actual entities indexed. In Application 1, E-Inverted requires 89.7%
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Metric in Median Baseline D-Inverted E-Inverted

1A

M1 (s) 527.5 1.14 0.04
M2 (s) 62.8 0.119 0.003
M3 (kb) 58 58 24.4
M4 (kb) 8.2 8.2 1.95
M5 (ms) 6.41 6.41 1.55

1B

M1 (s) 6075 25.44 2.23
M2 (s) 570.5 3.26 0.44
M3 (kb) 5687 5687 127
M4 (kb) 648 648 9.5
M5 (ms) 579.43 579.43 98.24

2A

M1 (s) 46.5 1.13 0.01
M2 (s) 12 0.096 0.002
M3 (kb) 0.558 0.558 0.306
M4 (kb) 0.144 0.144 0.036
M5 (ms) 0.047 0.047 0.0003

2B

M1 (s) 61 1.14 0.002
M2 (s) 12 0.1 0.0002
M3 (kb) 0.732 0.732 0.336
M4 (kb) 0.144 0.144 0.036
M5 (ms) 0.06 0.06 0.0003

Table 3.4: Summary of Metrics

more space, while it actually save space in Application 2 with a reduction of 80.7% index size. The variation

comes from varying selectivity of an entity: Some entities are very frequent, such as #location in Application

1, which result in long entity-inverted indexes. Other more “specialized” entities are much less frequent,

such as #university in Application 2.

Baseline D-Inverted E-Inverted
Average 1A 245.61 0.16 (1.5E+3) 0.01 (2.5E+4)
Time 1B 1348.20 3.88 (3.4E+2) 2.21 (6.1E+2)
(sec) 2A 3.14 0.11 (2.9E+1) 0.01 (3.1E+2)

2B 2.03 0.12 (1.7E+1) 0.01 (2.0E+2)
Space App 1 1.45 1.47 (101.0%) 2.75 (189.7%)
(TB) App 2 1.45 1.46 (100.1%) 0.28 (19.3%)

Table 3.5: Overall: Time and Space

Overall, the experiments conclude that both types of inversions can significantly speed up entity search,

while keeping space overhead acceptable. The dual-inversions, D-Inverted and E-Inverted, also present inter-

esting tradeoff: D-Inverted generally requires minimal space addition, while E-Inverted constantly achieve

higher speedup. As Sec. 4.3 discussed, both types of inversion can coexist, to balance the tradeoff– E.g., in

a system supporting both Application 1 and 2, we may use D-Inverted for Application 1 and E-Inverted for

Application 2, resulting in small space overhead and large speedup.
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3.6 Related Work

We are now witnessing an emerging research trend on using entities and relationships to facilitate various

search and mining tasks [18, 19, 67, 46, 43, 13, 15, 17, 59, 70, 24, 73].

Our work is most related with the works on indexing unstructured documents. Inverted index [74]

has been widely used in search engines for answering keywords queries. Although it is general and can

support many different query types, it is not optimized for queries such as phrase queries, proximity based

queries, etc.. Cho [26] builds a multigram index over a corpus to support fast regular expression matching.

A multigram index is essentially building a posting list for selective multigrams. It can help to narrow

down the matching scope. It is not optimized for phrase or proximity queries and still require full scan of

candidate documents. Nextword index [69] is a structure designed to speed up phrase queries and to enable

some amount of phrase browsing. It does not consider more flexible proximity based queries and does not

consider types other than keywords. Indexing keyword pairs to speed up document search is studied in

[52]. Our motivation to speed up entity search is different from their goal and therefore the frameworks

also differ. Our index design considers entities beyond keywords, where we introduce the unique entity

space partition scheme. BE [13] develops a search engine based on linguistic phrase patterns and utilizes a

special “neighborhood index” for efficient processing. Although BE considers indexing types such as noun

phrases other than keywords, its index is limited to phrase queries only. Chakrabarti et al. [19] introduce a

class of text proximity queries and study scoring function and index structure optimization for such queries.

Their study on index design is more on reducing the redundancy and the index is used for performing local

proximity analysis without considering global aggregation and multi-node parallelization. Comparing with

our own work [73] on supporting content querying with the design of content query language (CQL), this

work focuses on the principles and foundation for the index design for facilitating efficient entity search.

Moreover, this work also studies distributive computation with parallelization schemes.

There are many existing optimization techniques in IR, such as caching ([55, 52]), pruning ([60, 51]), etc.,

to improve the efficiency of document search. Such techniques are either orthogonal to our problem, e.g.,

caching, or can not be directly applied in our setting which requires processing over comprehensive corpus

as we discussed in Sec. 3.2, e.g., pruning. It is the unique computation requirements of entity search, which

distinguish it from document search, that motivate us to develop novel solutions.

Since our entity search query can be viewed as “aggregate-join query” from the DB perspective, our

work is also naturally related with DB literature on handling such queries ([71, 63, 64]). Such techniques are

mainly designed for a small number of relations under DB setting. Our work innovates upon these works in

a rather different setting: an IR setting of inverted indexes where there are almost uncountable number of
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keywords.

A recent work [31] studies the indexing problem on dataspace. While this work also tries to exploit the

relationship between keyword and structure, its angle from dataspace is very different from that of ours.

Therefore, its index design is also very different from our schemes.
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Chapter 4

Entity Synonym Discovery

4.1 Introduction

Recently, Web search has evolved into an advanced answering mechanism returning relevant facts or content,

instead of just links of web pages. For example, a query such as ’Indy 4 near San Fran’, when posed on a

major search engine like Bing, produces results for showtimes for the movie ’Indiana Jones and the Kingdom

of the Crystal Skull ’ near the city of ’San Francisco’. Using only free text to answer such queries can be

problematic. On the other hand, structured data sources (e.g., movie databases) often contain appropriate

information for this purpose.

Effective usage of such structured data sources requires a fast and accurate match between the various

query parts and the underlying structured data. However, there is often a gap between what end users

type and how content creators describe the actual data values of the underlying structured entities. Content

creators tend to use high-quality and formal descriptions of entities, whereas end users prefer a short, popular,

and informal ‘synonymous’ representation. For example, a movie database lists the full title of ‘Indiana Jones

and the Kingdom of the Crystal Skull ’, whereas Web users may type ‘Indy 4 ’. This phenomenon exists across

virtually all domains. Apple’s ‘Mac OS X ’ is also known as ‘Leopard ’. The digital camera ‘Canon EOS

350D ’ is also referred as ‘Digital Rebel XT ’.

Existing approaches are not always successful in automatically finding such synonymous strings. Dictio-

nary based approaches, such as Thesaurus or WordNet [58], are insufficient when looking at the semantic

alterations necessary for movies, products or company names. Substring matching based approaches work

well for some cases (‘Madagascar 2 ’ from ‘Madagascar: Escape 2 Africa’), fall short in others (‘Escape

Africa’ would also be considered incorrectly for ‘Madagascar: Escape 2 Africa’) and are hopeless for the rest

(‘Canon EOS 350D ’ with ‘Digital Rebel XT ’). Manual effort based approaches, such as Wikipedia redirect

or disambiguation pages, can be of high quality, but are rather limited to only very popular entries, as we

will show in Section 4.4.

The same gap between users and content creators exists in typical Web search. There it is alleviated by
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the efforts of some content creators, who resort to including known alternative forms within the content of a

Web page so as to facilitate a textual match by a search engine. End users resort to trying different queries

until they find some Web page that satisfies them. Due to the scale of the Web, there is enough Web page

content produced that when considered in unison can handle most of the different query variations.

In this chapter, we propose a fully automated solution that can enrich structured data with synonymous

or alternative strings. To achieve this goal we leverage the collective wisdom generated by Web page content

creators and end users towards closing the above-mentioned gap. At a high level, we use a multi-step data

driven approach that relies on query and click logs to capture the Web wisdom. We first retrieve relevant

Web page urls that would be good surrogates or representatives of the entity. We then identify the union

of all queries that have accessed at least one of these urls by following the edges of a url-query click graph.

We qualify which queries are more likely to be true synonyms by inspecting click patterns and click volume

on a large subset of such urls.

We formulate the synonym finding problem in Section 4.2, and present our approach in Section 4.3. In

Section 4.4, we perform a comprehensive experimental study to validate the proposed method on large-scale

real-life data sets.

4.2 Problem Definition

In this section, we will first give our formal definitions of synonym, hypernym, and hyponym, before defining

the synonym finding problem.

4.2.1 Synonym, Hypernym, and Hyponym

Let E be the set of entities over which the synonyms are to be defined. An entity is an object with distinct

and separate existence from other objects of the same type (those having similar attributes). For example,

“Indiana Jones and the Kingdom of the Crystal Skull” is an entity of type Movie.

Let S be the universal set of strings, where each string is a sequence of one or more words. We assume

that there exists an oracle function F(s, E) → E, which is an ideal mapping from any string s ∈ S that users

may think of in order to refer to the very subset of entities E ⊆ E .

We now put forward our definitions of synonym, hypernym, and hyponym in the context of entities of a

specific domain.

Definition 1 (Synonym). A string s1 ∈ S is a synonym of another string s2 ∈ S over the set of entities

E if and only if F(s1, E) = F(s2, E). For example, t1 = “Indiana Jones IV” is a synonym of t2 = “Indiana

Jones 4” since they both cover the same set of entities in the movie domain.

72



Definition 2 (Hypernym). A string s1 ∈ S is a hypernym of another string s2 ∈ S over the set of

entities E if and only if F(s1, E) ⊃ F(s2, E). For example, t3 = “Indiana Jones series” is a hypernym of t1,

since t1 only maps to a subset of the entities covered by t3.

Definition 3 (Hyponym). A string s1 ∈ S is a hyponym of another string s2 ∈ S over the set of entities

E if and only if F(s1, E) ⊂ F(s2, E). For example, t1 is a hyponym of t3.

4.2.2 Synonym Finding Problem

Synonym Finding Problem. Formally, our formulation of the synonym finding problem is as follows.

As input, we are given a set of entities E (e.g., movies) and a set of homogeneous strings (e.g., movie

names) U ⊆ S. As output, we would like to produce for each string u ∈ U , its set of synonyms Vu = {v ∈

S | F(u, E) = F(v, E)}.

In the problem formulation above, we do not assume that F is a given. This is because, while we assume

that such an oracle function exists (if only abstractly), we do not claim it is obtainable in practice. True

F exists only in the collective minds of all users. Hence, the equality F(u, E) = F(v, E) that underlies

Definition 1 cannot be determined exactly.

To resolve this, we propose to relax Definition 1, and instead approximate the equality F(u, E) = F(v, E)

using real-life data. We identify the following real-life Web based data sets as especially relevant for this

approach:

Search Data A consists of a set of tuples, where each tuple a = 〈q, p, r〉 denotes the relevance score r

of a Web page url p for the search query q ∈ S. For simplicity, in this chapter, we assume r is the relevance

rank of p, with rank 1 being the most relevant. A captures the “relevance” relationship between a query

string and a Web page as determined by a search engine.

Click Data L is a set of tuples, where each tuple l = 〈q, p, n〉 denotes the number of times n ∈ N+

that users click on p after issuing query q ∈ S on a search engine. L captures the “relevance” relationship

between a query string and a Web page as determined by search engine users.

How these data sets may be used to find synonyms can be summarized as follows. Let P be the union

of all Web pages, and Q be the union of all query strings, in A and L. Since both A and L represent some

form of relationship between query strings and Web pages, we can learn from A and L respectively, two

functions GA(q,P) → P and GL(q,P) → P , which map a query string q ∈ Q to the subset of relevant Web

pages P ⊆ P . Assuming that for any entity e ∈ E , there always exist Web pages that are appropriate and

representative surrogates of e (which is a reasonable assumption given the scope of the Web), we consider it

probable that two query strings q1 and q2 are synonyms if GA(q1,P) ≈ GL(q2,P).
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Definition 4 (Web Synonym). A string s1 ∈ S is a Web synonym of another string s2 ∈ S over the

set of Web pages P (keeping in mind the actual reference set of entities E) if GA(s1,P) ≈ GL(s2,P).

Web Synonym Finding Problem. In this chapter, our specific problem formulation is as follows.

As input, we are given a set of homogeneous strings U ; the data sets A and L; and the reference set of

entities E . As output, we would like to produce for each string u ∈ U , its set of Web synonyms Wu = {w ∈

S | GA(u,P) ≈ GL(w,P)}.

4.3 A Bottom-Up Solution

To solve the Web synonym finding problem, we propose a two-phase solution, consisting of candidate gen-

eration and candidate selection.

4.3.1 Candidate Generation

To quickly zoom into synonym candidates for a given u, we propose to generate candidate in two steps.

First, we seek the Web pages that are good representation for entities referenced by u. We term these Web

pages surrogates of u. Second, we find out how users refer to these surrogates.

Finding Surrogates. The Web has inarguably become the largest open platform for serving various

kinds of data. It is almost certain that entities we have in our entity set E would have some representation

on the Web. This representation (or surrogates) come mostly in the form of Web pages. For a particular

digital camera (e.g., Canon EOS 350D), its surrogates may include a page in the manufacturer’s site listing

its specifications, an eBay page selling it, a Wikipedia page describing it, a page on a review site critiquing

it, etc..

Moreover, data appears in various forms on the Web. For instance, a seller on eBay may explicitly list

some of the alternative ways to access the data to help increase the chances of her item being retrieved, e.g.,

“Digital REBEL XT” and “350D”. Data, once appearing on the Web, gets enriched in various ways, which

enables alternative paths for people to access the same information.

We use the Search Data A to find Web page surrogates for a given u. A is derived by issuing each u ∈ U

as a query to the Bing Search API and keeping the top-k results. Based on A, we can define the mapping

function GA(u,P) between u to the set of top-k pages, as Eq 4.1 shows.

GA(u,P) = {a.p | a ∈ A, a.q = u ∧ a.r ≤ k} (4.1)

Definition 5 (Surrogate). A Web page p ∈ P is a surrogate for u if p ∈ GA(u,P).
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It may also be possible to use Click Data in place of Search Data, whereby a Web page is a surrogate if

it has attracted many clicks when the entity’s data value is used as a query. However, clicks are not always

available for this purpose, as the entities’ data values usually come in the canonical form (e.g., the full title

name of a movie), and therefore may not be used as queries by people.

Referencing Surrogates. Having identified u’s surrogates, we next find out how users access those

surrogates. Remember that these surrogates are Web pages available for access by the general public. Again,

search engine is the primary channel people use for accessing information on the Web. We can therefore

regard the queries issued to get to these surrogate pages as the various ways users refer to the entities

represented by these pages. Consequently such queries are good synonym candidates for u.

Click data L offers us the mapping from candidates to surrogates. Based on L, we can define the mapping

function GL(w′,P) between a potential synonym candidate w′ to the set of clicked pages, as shown in Eq 4.2.

GL(w′,P) = {l.p | l ∈ L, l.q = w′ ∧ l.n ≥ 1} (4.2)

Definition 6 (Web Synonym Candidate). A string w′ is a synonym candidate for u if and only if

GA(u,P) ∩ GL(w′,P) 6= ∅.

Based on Definition 6, we regard w′ as a Web synonym candidate for u if at least one surrogate of u

has been clicked when w′ is issued as a query. Therefore, the candidate set for u is W ′
u = {w′ | GA(u,P) ∩

GL(w′,P) 6= ∅}.

4.3.2 Candidate Selection

To estimate the likelihood that a candidate w′ is a Web synonym of the input value u, we identify two

important measures that can be captured from search data A and click data L. The two measures respectively

capture the strength and exclusiveness of the relationship between a candidate w′ and the input value u.

Intersecting Page Count (IPC). Here, we seek to measure the strength of relatedness between an

input value u and a candidate w′. In the candidate generation phase, we look for u’s candidates by looking

at queries (w′) for which the following holds: GA(u,P) ∩ GL(w′,P) 6= ∅. In Eq 4.3, we derive the IPC(w′, u)

as the size of this intersection. Intuitively the higher the IPC, the larger the size of the intersection is, the

more common pages have been referred to using u and w′, and therefore the more likely u and w′ would be

related to one another.

IPC(w′, u) = |GL(w′,P) ∩ GA(u,P)| (4.3)
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(a) Synonym (b) Hypernym (c) Hyponym (d) Not Equivalent

Figure 4.1: Venn Diagram Illustration

Intersecting Click Ratio (ICR). Another indicator for the strong relationship between w′ and u is

if a majority of the clicks resulting from w′ as a query land on u’s surrogate pages more often than on

non-surrogate pages. The click ratio measure ICR(w′, u) is determined as shown in Eq 4.4. The higher is

ICR(w′, u), the more exclusive is the relationship between w′ and u, and the more likely w′ would be a Web

synonym of u.

ICR(w′, u) =

∑

l∈L, l.p∈GL(w′,P)∩GA(u,P) l.n
∑

l∈L, l.p∈GL(w′,P) l.n
(4.4)

We use a Venn diagram illustration in Figure 4.1 to describe how the above two measures work in selecting

the best Web synonyms. Consider the example where the input value u is the movie title “Indiana Jones

and Kingdom of the Crystal Skull”. Figure 4.1(a) illustrates the case where a candidate w′ (e.g., “Indiana

Jones 4”) is a likely Web synonym of u. The sets denote the Web pages that are retrieved by u (GA(u,P))

and are clicked on for query w′ (GL(w′,P)) respectively. In this case, the size of the intersection of the two

sets is large, indicating a high IPC value. For the set GL(w′,P), the darkly shaded (resp. lightly shaded)

area indicates the subset of pages getting the most clicks (resp. fewer clicks). In this case, most of the clicks

fall within the intersection, as opposed to outside of the intersection, indicating a high ICR value. Thus, w′

is likely a Web synonym of u.

Both IPC and ICR also help to weed out candidates that are related, but not synonyms. Figure 4.1(b)

illustrates the case of a hypernym (e.g., “Indiana Jones”). Since a hypernym considers a broader concept, it

may be used to refer to many more pages (e.g., concerning other Indiana Jones movies), and consequently

most of the clicks fall outside of the intersection (low ICR). A hyponym concerns a narrower concept,

where there might be more specific pages about the concept outside of the intersection that receive the most

clicks (Figure 4.1(c)). Finally, a candidate such as “Harrison Ford” is only related, with low IPC and ICR

(Figure 4.1(d)).

We produce the final Web synonym by applying threshold values β and γ on IPC and ICR respectively.
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Figure 4.2: IPC Precision and Coverage Increase

4.4 Experiments

Our data sets are: D1) the titles of the top 100 movies of 2008 Box office and D2) a collection of 882 canonical

camera names crawled from MSN Shopping [57]. All experiments were done on a single windows 2003 server

workstation with 8GB RAM and 2TB disk space. We used query and click logs from Bing Search (July to

November 2008).

4.4.1 Parameter Sensitivity

In this section we evaluate the effect of Intersecting Page Count (IPC) and Intersecting Click Ratio

(ICR) thresholds on Precision, Weighted Precision and Coverage Increase:

Precision # of true synonyms over all synonyms generated
Weighted Precision Weighted by synonym frequency in query log
Coverage Increase Percentage increase in coverage of queries

We use a precision/recall style figure to show the precision and coverage increase at different thresholds,

with x axis for coverage increase, and y axis for precision.

Result for (D1) movies dataset is shown in Figure 4.2, where IPC threshold β decreases from left to right

on the curves from 10 to 2. We see the higher the IPC, the higher the synonym (Syns) precision is. This

effect is a bit weaker in weighted precision. Coverage increase reduces as we increase IPC. Yet, even at high

IPC value 10, coverage increase is at 120%, more than doubling the original coverage.

To test the combination of IPC and ICR, we used the threshold values of β ∈ {2, 4, 6} for IPC, with ICR
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γ decreasing from left (0.9) to right (0.01) on the curves, as shown in Figure 4.3 on (D1) dataset. To simplify

the figures, we focus on the weighted precision. We see when we increase the ICR parameter, the synonym

precision goes up (Syns W 2,4,6). This figure also suggests interesting IPC values around 4, and ICR values

(0.1, 0.4, 0.7) acting as local maxima with good balance between precision and coverage increase.

4.4.2 Other Approaches to Synonyms

To measure our solution Us (thresholds IPC 4, ICR 0.1) against other approaches, we looked at Wikipedia

and random walk on the click graph to produce synonyms. We focus on Hit Ratio and Expansion Ratio:

Hit Ratio Percentage of entries producing at least 1 synonym
Expansion Ratio Sum of synonyms and orig entries over orig entries

Wikipedia. We use redirection and disambiguation pages in Wikipedia for producing synonyms (e.g.,

the entry for ‘LOTR’ redirects to ‘Lord of The Rings’). As shown in Table 4.1, Wikipedia performs poorly

for less popular entries (e.g., cameras). Our approach consistently creates more synonyms (expansion) and

for more entries (hit) for both datasets.

Orig Hits Ratio Synonyms Expansion
Movies Us 100 99 99% 437 537%
Movies Wiki 100 96 96% 270 370%
Movies Walk(0.8) 100 100 100% 229 329%
Cameras Us 882 767 87% 4286 586%
Cameras Wiki 882 101 11.5% 576 165%
Cameras Walk(0.8) 882 479 54% 697 179%

Table 4.1: Hits and Expansion

Random Walk on a Click Graph. We used the random walk solution in [36] to evaluate the potential

of generating synonyms with default parameters. We see in Table 4.1 that the random walk has low hit

ratio on cameras, since the random walk operates completely on the click graph. So if a query has not been

asked then no synonym will be produced.

4.5 Related Work

WordNet’s [58] synset (synonym set) feature provides synonyms for a given word or phrase. WordNet

synonyms are fundamentally different from the kind of Web synonyms that we are interested in. WordNet

synonyms are for common English words, such as those that would be found in dictionaries and thesauri.

Thus WordNet will not be able to provide synonyms for movie titles, digital camera names, etc.. However,
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Figure 4.3: ICR Precision and Coverage Increase for IPC 2,4,6

WordNet synonyms can still be useful for enhancing recall in information retrieval [50, 66] when properly

applied on the query words that are common English words.

Wikipedia is another online resource that has been proposed to help measure the semantic similarity

between a pair of words or phrases. One way to do that is by looking at whether the pair of queries

tend to retrieve pages that fall under the same Wikipedia categories [61]. Another way is to exploit the

redirection relationship between article titles [40]. Unlike WordNet, Wikipedia does cover some entities

(movies, musicians, etc.). However, Wikipedia is much smaller than the Web, and therefore the former’s

coverage of entities are severely limited to only a very small number of the most popular ones, as has been

shown in Section 4.4. This limitation motivates us to leverage on the massive data available from the Web

and query logs.

[20] is a recent work on finding synonyms by leveraging Web search. Their work focuses on a specific

kind of synonym, the ones that are substrings of given entity names. Our focus is more generic in generating

many different classes of entity synonyms. Our work relies more on the Web user aspect, in exploiting the

alternative ways a user may want to refer to an entity. Another work [53] addresses a related problem, which

is to turn a query (e.g., “lord rings”) into a displayable form (e.g., “Lord of the Rings”) by word reordering,

modifier addition, and capitalization. In a way, we can see it as a complementary problem, going in the

reverse direction from our work (canonical forms into synonyms), but limited only to those synonyms with

significant text similarity to canonical form.

Our work is related to reference reconciliation or record matching techniques ([29, 32, 10, 9]), which
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try to resolve different references or records in a dataset to the same real world entity. They are closely

related with our work, since we are trying to find the difference references in the form of entity synonyms

for a set of given entities. However, there are a few differences from our work. First, they normally assume

the “references” are given, while we have to generate the candidate “references” ourselves. Second, such

approaches usually rely on multiple attributes to be present to produce high quality results(e.g., name, age,

gender for person record). Yet, Web queries normally lack multi-attribute semantic context.

Entity recognition or entity extraction often refers to the problem of identifying mentions of specific

entity types (e.g.person, location, etc.) from unstructured data. [30] and [65] provides a comprehensive

overview covering the various information extraction techniques and systems respectively. However, they

are different from the problem we are solving in terms of both input and output. Our input is a list of

specific entity values. Our output are the alternative names (what we call Web synonyms) for each input

value. Entity recognition normally takes input a description of entity type (e.g., a dictionary, patterns or a

language model) and aiming at identifying the mentions of the entity type from text.

There are previous works to measure similarity between queries [68] by using Web data, for various

purposes such as document ranking [28], semantic relation discovery [7], keyword generation for adver-

tisement [36] and query suggestion ([42, 5]). These similarity based approaches do not work well for our

problem for several reasons. First, they may discover many pairs of related queries that are not synonyms

(e.g., “Windows Vista” and “PC”). Second, the input for which we seek to derive synonyms are generally

well-formed strings as full movie titles or digital camera names, which real users seldom use and may not

appear frequently as queries.

Another application for query similarity is query suggestion, which attempts to provide a search engine

user with an alternative to the user’s current query. For example, for the ambiguous query “jaguar”, the

search engine may make query suggestions such as “Jaguar Animal”, “Jaguar Cars”, “Jaguar Cat”, etc.

There are several ways to derive these suggestions. [42] is based on typical reformulations or substitutions

that users make to their queries. [5] further considers whether the query substitutions lead to user clicks on

the same ads, while [56] considers whether they lead to clicks on the same webpages. [6] also looks at the

similarity of the clicked pages’ text content. As previously explained, the notion of similarity used by query

suggestion covers a much broader set of relations (not just synonyms), and thus using these techniques to

generate synonyms will lead to many false positives.
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Chapter 5

Related Work

Given we have reviewed related work for each individual tasks in their corresponding chapters, this chapter

mainly aims at giving an overview of related systems and contrasting to our effort towards entity-aware

search. Our entity search system has a unique focus to enable flexible keyword querying over entities by

leveraging the redundancy of the Web, requiring only the extraction of entities.

Towards enriching keyword query with more semantics, AVATAR [43] semantic search tries to interpret

keyword queries for the intended entities and utilize such entities in finding documents. Our proposal directly

searches over entities and returns promising entities as output.

Towards searching over fully extracted entities and relationships from the Web, ExDB [15, 14] supports

expressive SQL-like query language over an extracted database of singular objects and binary predicates,

of the Web; Libra [59] studies the problem of searching web objects as records with attributes. Due to the

different focus on information granularity, its language retrieval model is very different from ours; NAGA [45]

builds a semantic graph based on relationships extracted from webpages, proposes a graph-based query

language and studies the underlying ranking problem; Ming [44] further performs mining over the knowledge

graph to find out informative subgraphs. While these approaches rely on effective entity and relationship

extraction for populating an extraction database, our approach only assumes entity level extraction and

replies on large-scale analysis in the ranking process. All the contexts of entities are maintained, which is

key to enabling flexible keyword querying.

Towards searching over typed entities in or related with text documents, BE [13] develops a search engine

based on linguistic phrase patterns and utilizes a special index for efficient processing. It lacks overall system

support for general entity search with a principled ranking model. Its special index, “neighborhood index”,

and query language, “interleaved phrase” query, are limited to phrase queries only; Chakrabarti et al. [19]

introduce a class of text proximity queries and study scoring function and index structure optimization for

such queries. Its scoring function primarily uses local proximity information, whereas we investigate effective

global aggregation and validation methods, which we believe are indispensable for robust and effective

ranking in addition to local analysis. Our query primitive is also more flexible in allowing expressive patterns
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and multiple entities in one query; ObjectFinder [17] views an “object” as the collection of documents that

are related with it and therefore scores an “object” by performing aggregation over document scores. In

contrast, our approach views an entity tuple as all its occurrences over the collection. Therefore, its score

aggregates over all its occurrences, where we consider uncertain, contextual factors other than the document

score. Bautin et al. [8] propose the idea of concordance document for enabling retrieval of entities. Each

entity is represented as a concordance document, which is comprised of all the sentences where the entity is

mentioned. This approach could lead to significant blow up of index size, and present difficulty in proximity

matching and aggregation which are important for effective entity retrieval.

Our system on one hand relies on information extraction (IE) techniques to extract entities; on the other

hand, our system could be regarded as online relation extraction based on association. There have been

many comprehensive IE overviews recently ( [27], [30], [4]) summarizing the state of the art. On the special

Web domain, there have been many excellent IE system (e.g., SemTag [34], KnowItAll [35], AVATAR [41],

SOFIE [62], NELL [16]) Furthermore, many open source frameworks that support IE (e.g., GATE [1],

UIMA [2]) are readily available. While most IE techniques extract information from single documents, our

system discovers the meaningful association of entities holistically over the whole collection.

Many question answering (QA) systems have resorted to the Web for generating answers. While many

QA systems’ focus is on developing interesting QA system framework, most of them have adopted simple

measures for ranking and lack a principled conceptual model and a systematic study of the underlying ranking

problem. The SMART IR system [3] and the AskMSR QA system [11] mainly use the entity occurrence

frequency for ranking. The Mulder system [48] ranks answer candidates mainly according to their closeness

to keywords, strengthened by clustering similar candidates for voting. The Aranea system [49] mainly uses

the frequency of answer candidates weighted by idf of keywords in the candidates as the scoring function.

Unlike most QA works (e.g., SMART IR system [3], AskMSR QA system [11], Mulder system [48], Aranea

system [49]), which retrieve relevant documents first and then extract answers, our work bypasses the need

of retrieving documents and directly builds the concept of entity into the search framework and is therefore

more efficient and flexible. Our system can be used as a core component to support QA more directly and

efficiently.
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Chapter 6

Conclusion

The richness of the Web with virtually all kinds of entities, is much beyond the traditional perception of it

being a collection of pages. We firmly believe it is an exciting and challenging research area to make the

search engines aware of data entities inside pages, and leverage such information to improve users’ search

experience. Inspired by the success and popularity of keyword based search over documents, my thesis

proposes and studies the interesting problem of entity search, by enabling search over entities using flexible

keywords.

To begin with, we first deal with the core challenge of effective ranking. To make entity search efficient

and scalable, we tackle the challenge of index design and query processing over entities. We further study

a related problem of entity synonym discovery to help us discover more entity instances, an important step

for supporting the recognition of entities on the Web.

This thesis aims at tackling these challenges towards the goal of enabling entity-aware search. We now

summarize the main insights that enable us to conquer these challenges.

First, for effective retrieval of entities, this thesis distills its underlying conceptual model Impression

Model and develops a probabilistic ranking framework EntityRank. Our main insight is the seamlessly

integration of both local and global information in the overall ranking process. We systematically distill

a set of key characteristics of entity search, Contextual, Holistic, Uncertain, Associative, Discriminative,

which distinguish it from the traditional document search. Our conceptual model thus captures these key

characteristics. Our ranking algorithm concretizes these aspects into computation. Experiments show that

capturing these various characteristics is key to the high effectiveness of entity retrieval results.

Second, to meet the requirement of online querying over entities, this thesis studies how to enable efficient

and scalable entity search. Our key insight is to treat entity as first class citizen in both indexing design, and

query processing. In indexing design, we are mainly inspired by the concept of inverted index. We study

the problem from the dual views of reasoning: entity-as-keyword and entity-as-document. With entity as

the first class citizen, we thus consider the inversion from entity to document, as well as the inversion from

keyword to entity as indexing principle. This dual indexing principle leads to two index structures, both with
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their pros and cons. To achieve high scalability, we exploit the dimension of entity space data partitioning,

in addition to the traditional document space data partitioning, for distributing indexes. Naturally, entity

search query processing takes advantage of the indexing structures and partition schemes to achieve the

requirement of online querying. Our study shows that a synergistic combination of the two index structures

and partition schemes lead to nice balance between query efficiency and index space overhead.

Third, to recognize the various instances of entities, this thesis studies the problem of entity synonym

discovery. The key insight here is to leverage the wisdom of crowds (both content creators, and end users)

on the Web. We notice that content creators, while creating webpages of entities, often try to explicitly

spell out the synonyms of entities in order to attract more traffic. At the same time, end users often type in

various entity synonyms in order to search for a specific entity and then naturally land on such webpages.

We therefore propose to first identify webpages about an entity, and mine over the queries clicked on these

webpages for identifying entity synonyms.

In summary, this thesis studied a set of core problems for enabling entity-aware search, proposed novel

techniques and systematically evaluated the proposed approaches on large-scale datasets. Through this

thesis, we show that enabling entity-aware search is not only an interesting but also a promising direction

to enrich the search experience of end users.
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