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Abstract

The availability of a wide variety of networked sensing devices in the form of everyday devices such as

smartphones, music players, smart residential power meters, sensor embedded gaming systems, and in-

vehicle sensing devices will result in the evolution of an embedded Internet. In this scenario, the main role

of the Internet and its applications will shift gradually from offering a mere communication medium between

end-points to offeringinformation distillationservices bridging the gap between the varied data feeds from

the sensing devices and human decision needs. In this thesis, we take a step towards the development of an

architecture and a data analysis toolset for realizing the above vision of the future Internet. In particular,

we focus on a category of sensing, called people centric sensing, where the sensing devices are owned by

individuals. We present various novel generic data analysis tools that are necessary to enable people centric

sensing applications. We take a systems approach and exemplify these tools by developing and implement-

ing prototypes of several people centric sensing applications. We also provide extensive data collection and

evaluation for each of the exemplified applications, which show the utility of our architecture.
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Chapter 1

Introduction

The integration of sensing and embedded computing devices at the edge of the Internet will result in the

evolution of anembeddedInternet. This evolution is fueled by the pervasive availability of networked

everyday sensing and computing devices such as smartphones(iPhone), music players (iPod + Nike), smart

residential (wireless) power meters, sensor embedded gaming systems (e.g. Wii), and in-vehicle sensing

(GPS, OBD-II) devices. These trends have been identified andshared by Internet pioneers such as David

Clark, the network’s former chief architect, in his motivational keynote speech at NSF’s FIND (Future

Internet Design) initiative [28]. In this scenario, the main role of the Internet and its applications will

shift gradually from offering a mere communication medium between end-points to offeringinformation

distillation services bridging the gap between the varied data feeds fromthe sensing devices and human

decision needs. The success of Google, built around the mission of organizing the world’s information

and making it universally accessible and useful, already attests to the increasing use of the Internet as

an information source. Some of the important research challenges in enabling this future Internet are the

identification and organization of various tools for the extraction, processing, and analysis of information

from sensory data feeds. This thesis is a step towards the development of an architecture and a data analysis

toolset for realizing the above vision of the future Internet. In particular, we focus on the tools required

for enablingpeople centric sensing, where the edge sensors and embedded computing devices are owned

by individuals (e.g. smartphones, GPS devices, cars). We can further categorize people-centric sensing

into two types: (i)personal sensingand (ii) community sensing. In personal sensing, individuals collect

sensor data and consume it for their own needs. For example, individuals keep track of the exercises they

do (using a smartphone) and monitor their health. On the other hand, in community sensing, individuals

collect sensor data and contribute towards a common goal, such as the computation of community statistics

or mapping of global phenomenon. For example, individuals measure theCO2 content of the air from their
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daily commutes and share the data (with anaggregationserver) to build a map of the carbon footprint in a

given area, which can be used to design strategies for improving air quality.

A key challenge that this thesis addresses is the identification, development, and analysis of a generic set

of tools required for enabling the efficient development of people centric sensing applications. These tools

are organized in the form of an architecture,PoolView, with standard APIs. PoolView is built as a collection

of these generic data analysis tools, which collectively form an application layer service of the Internet. The

PoolView architecture and toolset are exemplified through various real world deployments, which focus on

improving future healthcare and decreasing the consumption of non-renewable sources of energy on a global

scale (and thus reduce the carbon footprint).

PoolView adopts a client-server approach, where clients are individuals who collect sensor data from ev-

eryday devices such as smartphones, iPods, GPS, and cars andservers aggregate the sensor data contributed

by the individuals. With this in mind, we can be broadly classify the components of PoolView intopersonal

(client) andcommunity(server) categories. The personal or client side components include (i) Data format-

ters (ii) Data storage/retrieval, (iii) Activity identification, and (iv) Privacy firewall for sensor data sharing.

The community or server side components comprise (i) Data storage/retrieval, (ii) Community statistics

computation from shared sensor data, (iii) Community data modeling from shared sensor data, and (iv) Map

based application support tools. In what follows, we will discuss three major tools, personal monitoring,

privacy preservation and community statistics computation (the privacy preservation and community statis-

tics tools are related to each other, which we will discuss below), and community data modeling, as they

pose interesting research challenges. We will also discussthe choice of these tools and the corresponding

applications that exemplifies each of these tools.

1.1 Tool 1: Personal Monitoring

The first piece of my work focused on the distillation of sensor data feeds from wearable devices for the

purpose of personal consumption. Of particular interest isa category of services termed aspersonal mon-

itoring services. Personal monitoring services are software services that enable the monitoring of daily

human activities through the collection and analysis of sensor data from devices that interact with their user

on a daily basis. These services will find use cases in severalapplication domains, such as healthcare, social
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networking, entertainment, and personal record keeping. An example healthcare application is one in which

a patient needs to be monitored at home for a prolonged periodof time by a care-giver. An example social

networking application is where individuals share their activity information on social networking sites such

as Facebook. A personal record keeping application exampleis where individuals keep track of their exer-

cise records over the course of a month. The main challenge toenable such services is to develop a general

framework that can identify the activities performed by theuser. Although, human activity identification

has been extensively addressed in the past [41, 91, 92, 96], most of them have used specialized devices

or lab based environments to achieve human activity monitoring. Recently [47, 76, 46], everyday sensing

devices have been used to achieve activity identification. The use of specialized devices allows for tuning

of the hardware to achieve application specific optimization, whereas devices such as smartphones are not

optimized for identification of activities. Such devices are equipped with possibly low quality sensors or are

constrained by the device’s primary functionality. Further, an important goal is that of transparency to the

user, where the device monitors activities of the individual with minimal intervention to their daily lives.

We address these challenges by developing a novel frameworkfor the identification and monitoring of hu-

man activities using everyday sensing devices. Towards this end, we demonstrate this framework using two

real-world prototypes, one uses MicaZ motes embedded in a jacket and the second uses smartphones1.

1.2 Tool 2: Privacy Preservation and Community Statistics

The second aspect of my work focuses on community sensing, where individuals collect sensor data and

share it among themselves to map common phenomena or computecommunity statistics. Earlier community

sensing applications [22, 35, 61, 94] have focused on data collection and its analysis. Another important

aspect of these applications is the potentially sensitive nature of sensor data being shared. For example, GPS

sensor readings can be used to infer private information about the individual, such as the routes taken by the

individual during their daily commutes, their home location, their work location, and so on. On the other

hand, these GPS sensor readings (from daily commutes) shared within a larger community can be utilized

to map the traffic patterns in a given city by computing various statistics related to traffic scenarios. Hence,

an important aspect that needs to be addressed to enable suchcommunity applications is the data privacy

1Data collection from all experiments involving human subjects were approved by UIUC’s IRB (#06703 and #10092)
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of an individual. The importance of privacy in Internet based applications has been emphasized in [51], a

classic paper that motivated future privacy research. We are interested in agrassrootssolution that enables

the sharing of data (in a privacy preserving manner) in the absence of a trust hierarchy. Similar to the

Web, where any individual can create a webpage and share information, we wish to empower the common

person to be able to create new applications (that utilize sensor data collected by other individuals within

a community). Existing privacy approaches such as anonymization [100] are not useful in this scenario.

For example, anonymized GPS (location) sensor measurements can be used to infer the frequently visited

locations of the individual and derive their personal details (in many cases). Secure multiparty computation

approaches [52] on the other hand are compute intensive and are not scalable (require the generation and

maintenance of multiple keys). We adopt the approach of dataperturbation, the addition of noise to sensor

data before sharing it with the community to achieve privacy. The challenge in this scenario is to add noise in

such a manner that the privacy of the individual is preserved, but at the same time, it is possible to compute

the statistics of interest with a high accuracy. Data perturbation approaches [5, 4] have been repeatedly

shown [59, 66, 85] to be unable to preserve privacy under certain conditions (when the data being shared

are correlated). Hence, the main challenge arises due to thetime series nature of most sensor data, which

results in the sensor measurements being correlated with each other.

We develop a novel technique (this thesis only claims a partial contribution towards the development of

this privacy preservation algorithm) that allows for the sharing of time series sensor data in a privacy pre-

serving manner within a community and also the reconstruction of accurate community statistics. Specifi-

cally, this thesis applies the above privacy preserving technique to two applications, “Traffic Analyzer” and

“Weight Watchers”. In Traffic Analyzer, individuals recordGPS sensor readings from their daily commutes

and share the corresponding perturbed sensor measurementswith an aggregation server. These perturbed

sensor measurements are then used by the aggregation serverto correctly compute various traffic measures

within a given community (in this case, Urbana-Champaign).Individuals who use the Weight Watchers

application share their perturbed weight measurements with an aggregation server, which computes the

statistics of the community (e.g. average weight of individuals in the community, number of people above a

certain weight).
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1.3 Tool 3: Community Data Modeling

Typical community sensing applications [35, 61] have focused on the aspects of development of data col-

lection and its analysis. But, several of these applications require large amounts of data to compute or map

the phenomena of interest. For example, in order to obtain a complete traffic map (CarTel [61] deployments

are small scale and compute traffic statistics from only the data collected) of a large city (e.g. Chicago,

Seattle), individuals need to contribute a large number of traffic measurements within the city (in order to

obtain complete coverage). Typically, initial deployments will be sparse as the usefulness of the applica-

tion is realized. An important challenge in this scenario isto be able to generalize from relatively sparse

measurements of high-dimensional spaces to model the phenomena of interest. This is complicated by the

fact that such phenomena are complex and trivial modeling techniques (e.g. linear regression) will fail to

capture the entire phenomena. In this thesis, we will illustrate a solution methodology for the generalization

problem using a green navigation application, GreenGPS. GreenGPS is a GPS-based navigation service that

gives drivers the most fuel-efficient route for their vehicle as opposed to the shortest or fastest route. In

order to obtain the fuel-efficient routes, GreenGPS maps outthe fuel consumption of any car on any given

street. This is achieved through the combination of fuel consumption data collected by a few individuals

from their vehicles and a generalization framework that predicts the fuel consumption of an arbitrary car on

an arbitrary street.

1.4 Contributions

The generic contributions of this thesis can be categorizedas follows:

• This thesis proposes PoolView, the first architecture and toolset that enables easy and efficient devel-

opment and deployment of people centric sensing applications.

• We also develop the first activity identification framework that classifies progressively more complex

activities using multiple sensor inputs from everyday devices such as smartphones.

• This thesis claims partial contributions towards the development of a privacy preserving technique

that enables the sharing of time-series sensor data such that the privacy of an individual is preserved,
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while enabling the computation of community statistics accurately.

• This thesis claims partial contributions in the development of a generalization methodology that mod-

els large scale phenomena from relatively sparse measurements of high-dimensional spaces.

Further, the contributions of this thesis which are application specific are as follows:

• This thesis develops the first traffic analyzer application that enables the computation of traffic related

statistics accurately when individuals share perturbed GPS sensor readings. The perturbation of these

sensor measurements is applied in such a way that the privacyof an individual is preserved.

• This thesis develops the first green navigation application, that provides drivers with the fuel efficient

route (as opposed to fastest or shortest routes) between arbitrary points in a given city.

1.5 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 will present the architecture of PoolView and the

various interfaces between the tools. Chapter 3 presents the personal monitoring tool and the corresponding

real world deployments, smart jacket and smartphone. Chapter 4 discusses tools that preserve privacy while

sharing sensor data and compute accurate community statistics, which are exemplified by the Traffic Ana-

lyzer and Weight Watchers applications. Chapter 5 illustrates the modeling tools required for community

sensing applications, which is utilized by the GreenGPS application. We discuss related work in Chapter 6.

We conclude with lessons learned, impact of this thesis, anddirections for future work in Chapter 7.
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Chapter 2

PoolView Architecture

In this chapter, we will introduce the architecture of PoolView, its components, APIs, and their function-

alities. Before describing the architecture, we will motivate the need for one and the challenges in its

development. The wide variety of sensing and computing devices (e.g. smartphones, in-vehicle GPS de-

vices, wireless OBD-II scanners, wireless smart power meters) and a large number of applications (e.g.

GreenGPS, BikeNet, Traffic Analyzer, Smart Attire) that utilize the various sensing devices motivate the

need for a basic set of services organized in the form of an architecture which will ease the development of

applications. The goals of our architecture are: (i) Collection, storage, analysis, and sharing of the sensor

data, (ii) Plug-and-play support for a variety of sensing devices, (iii) Privacy preservation of individuals

sharing sensor data, (iv) Grassroots impact, and (v) Easy application development.

Our architecture should enable easy collection, storage, analysis, and sharing of sensor data generated

by everyday sensing devices. It should support plug-and-play of various sensing devices in an easy manner.

Further, we are interested in an architecture that will support wide deployment and one that can be utilized

by the common person, that is we want our architecture to havea grassrootsimpact. Since, sensor data can

reveal sensitive information about an individual (for example, GPS sensor data may reveal an individual’s

home, work place location and the times they are away from home), privacy preservation should be integral

to our architecture. Another goal that is of interest is easeof application development, our architecture

should empower developers by providing generic tools that can be used for composing new human centric

sensing applications.

The problem of designing a unifying architecture for human centric sensing applications has not been

addressed earlier. An initial approach towards participatory sensing has been presented inPartisans[86].

Although, this architecture is still in its design phase andhas not been implemented. Further, this work

addresses only data verifiability and assumes the presence of a trusted third party for achieving privacy.
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In contrast, we design and implement the first unifying architecture for supporting human centric sensing

applications and provide a set of generic tools that addressvarious challenges.

We adopt a client-server approach, where the clients are individuals collecting and sharing sensor data

(possibly perturbed). The (aggregation) server on the other hand aggregates data from multiple clients

and enables novel community sensing applications. This design is motivated by the wide success of the

Web, where servers host data and clientsdownloadit from the servers. Our approach extends this popular

technique by enabling the clients touploaddata to the servers.

The modules are collectively built as an Internet application layer service that utilizes several Web

application layer standards, such as XML and HTTP. The use ofstandards for the development of the

PoolView modules enables the ease of their deployment and integration with existing Internet applications.

The PoolView architecture with its various modules is illustrated in Figure 2.1.
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Figure 2.1: PoolView architecture (shaded modules are generic research challenges)

We note from Figure 2.1 that the architecture is divided intoclientandserverparts. The various modules

on the client side are: (i) Data formatters, (ii) Data storage/retrieval, (iii) Activity identification, and (iv)
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Privacy firewall. The modules on the server side are: (i) Datastorage/retrieval, (ii) Community statistics,

(iii) Community data modeling, and (iv) Application support tools. The parameters for various modules can

be controlled using the client and server control modules.

We will first give an overview of our architecture, both from the client side and the server side. On

the client side, an individual with various sensing devicesconnects them to the PoolView’s client side

interface and uploads the collected data, which is then formatted as a standard XML stream and stored in

the individual’s private storage. These sensor data may then be analyzed to identify the physical activities

performed by the individual and the identified activities may be stored back in the private storage. Finally,

the sensor data collected can be shared, possibly in a perturbed fashion, with one or more aggregation

servers.

On the server side, the sensor data shared by the individualsare stored on the aggregation server. These

sensor data can then be analyzed to obtain various communityrelated statistics. For example, the server

can obtain traffic statistics in a given city from GPS location data shared by several individuals. Another

example is where the server computes weight statistics of a population from shared measurement data.

When the phenomenon that needs to be captured is complex and the sensor data available are sparse, our

server provides prediction modeling techniques that can capture these complex phenomena. The server also

provides map based application development tools, which can be utilized to display the statistics (or the raw

sensor data) on maps.

2.1 Data Stream

The sensor data stream is a well-formed and valid XML [111] document. It describes a sensor data stream

(being generated by various devices) in a device independent format, thus standardizing the representation

of sensor data across multiple devices. XML is widely popular for sharing structured data across the Internet

and is an extensible language that allows users to define their own tags, hence we choose XML for PoolView

data stream’s message body.

In what follows, we will describe the data tags that are associated with a data stream or data item. The

primary goal of communication between various data sourcesand storage servers (client) or between the

client and the aggregation server is the exchange of structured sensor data streams (or sensor data items).
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The data fields that are superscripted with a∗ are optional data fields, and may be left empty. The data fields

that are superscripted with aψ are fields that may be left optional on a conditional basis. The conditions

under which these fields are optional are described at the endof this section.

userid

Unique string that identifies the user on the client side storage or aggregation server.

object type

The type of object that is generating the data item. For example, shirt, smartphone, car.

sensor locationψ

The location of the sensor. For example, on left arm, inside car, in left trousers pocket.

sensor modalityψ

The type of sensor. For example, GPS, accelerometer, temperature.

algorithm typeψ

The type of algorithm that was used to generate this data item. The algorithm type is applicable

only when the sensor data are processed. For example, a HMM based algorithm that takes input

as accelerometer data streams from multiple sensors and outputs the activity of the person (such as

walking, sitting, cooking, eating).

start time

The time at which the data item began to be acquired. This datafield indicates the start time for the

data item generated if the given data item was obtained over aduration of time.

end time∗

The time at which the data item was generated. This data field indicates the end time for the data item

generated if the given data item was obtained over a durationof time.

data value

The value of the data item.
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data unit

The unit associated with the data value.

sampling frequency∗

The rate at which an individual data item is being generated for a data stream.

latitude∗

Location latitude where the data item was generated.

longitude∗

Location longitude where the data item was generated.

privacy

Field which specifies the type of privacy preserving technique applied (can be null if no privacy

technique is applied).

how∗

Attributes associated with the data item. For example, walking fast and driving erratically.

confidence interval∗

A confidence interval that provides the accuracy of thedata value. For example, a 10% error in

the sensor data value generated by the accelerometer.

The fields that are marked as optional on a conditional basis distinguish raw sensor data from processed

high level data. Any data stream that is in its raw form must define the fields,sensor location and

sensor modality. Such a data stream may leave the fieldsalgorithm type anddata tag empty.

Further, a processed data stream must define the fields,algorithm type anddata tag. But, this type

of data stream may leave thesensor location andsensor modality fields empty.

2.2 Client - Data Formatters

The client data formatters module is responsible to standardize the sensor data generated by varied devices.

This module along with the standardized XML representation(Section 2.1) of the data stream abstract away
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the device specific data format, thus enabling varied devices to connect to PoolView without the application

developers being aware of the actual device itself. For example, developers simply query the data storage

module for GPS sensor data and do not worry about which device(e.g. in-car GPS devices, smartphones,

MicaZ motes) actually generated the sensor data. Each device has a specific sub-module that converts the

device specific formatted data to an XML data stream, described in Section 2.1. In our implementation,

an individual typically uploads sensor data collected using the PoolView’s client control interface (which

is a Web based interface) to their private storage server. During upload, the individual specifies the device

used for data collection. The private storage server first processes the uploaded data by instantiating the

correct sub-module (based on the device type) and generatesan XML data stream. This module and the

corresponding sub-modules are implemented in Java, each sub-module corresponds to a specific Javaclass.

The various devices connect to this module using the Internet combined with a PHP and CGI-Perl based

Apache module that instantiates the correct Java sub-module (depending on the type of the device chosen

by the user).

2.3 Client - Data Storage

The client data storage module is responsible for storing and retrieving sensor data, which is represented as

the standard XML data stream. This module enables individuals to keep a record of their sensor data, thus

enabling them to share or analyze sensor data as and when new applications become available. For example,

if a newer version of activity identification module become available that can identify activities better, it can

be easily integrated into PoolView. We implement the data storage module as amySQLserver, which is a

standard open source database service. One can also imaginethe mySQL server being replaced by a secure

and private cloud computing storage services, such as the ones provided by Amazon, IBM. The choice of a

standardized database service enables us not to reinvent the wheel and queries (simple and complex) can be

posed to our system using standard query languages such as SQL. These queries are encapsulated in an XML

request, which are interpreted by a thin layer on the mySQL server. The query encapsulation approach de-

couples the actual SQL server implementation from PoolView’s data storage/retrieval. For example, mySQL

can be replaced with any other popular implementation of SQL. It also gives us the flexibility of developing

complex requests for storing/retrieving sensor data streams, which could be inefficient using standard SQL
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queries.

2.4 Client - Activity Identification

As alluded to in the Introduction (Chapter 1), activity identification is an important problem in several appli-

cations that are human centric, where the goal is to identifythe physical activity performed by the individual

(carrying the sensing device). We dedicate the discussion on activity identification and the challenges en-

countered to Chapter 3. Here, we will describe the APIs and functionality of this module. The client activity

identification module is responsible for identifying the physical activities performed by individuals in their

everyday lives. These activities could besimplesuch as walking, running, and sitting orcomplexsuch as

cooking, eating, and hygiene. This module takes as input oneor more raw sensor data streams (from the

same type of sensor or multiple types of sensors) and identifies the corresponding physical activity per-

formed by the individual. Activity identification, as discussed in Section 1.1, is necessary to enable various

health care, entertainment, and personal record keeping applications. The current PoolView implementation

identifies simple activities such as walking, running, and sitting when accelerometer sensor data are input

(to the activity identification module). When microphone and accelerometer sensor data are input to this

module, it identifies complex activities such as cooking, eating, and hygiene. The output (of this module)

is a sensor data stream of time tagged physical activities, which is typically stored back in the database.

We discuss the details of the activity identification algorithms (challenges faced and solutions proposed) in

further detail in Chapter 3. This module is implemented in C with a Java based interface. The Java interface

allows for easy integration with the rest of the modules and the C implementation enables a faster execution

environment.

2.5 Client - Privacy Firewall

The client’s privacy firewall module is the center piece of our architecture, as it controls the release of a

user’s private data to the outside world. The basic functionof the privacy firewall is to screen or perturb user

data in such a manner as to preserve the privacy of the data streams that the user owns. The privacy firewall is

necessary as sensor data can reveal private information regarding individuals (when they share the data with
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third parties). One can opt to not share their data, but we assume that the individual wishes to share their data

to gain a certain value from it. As we have seen earlier in Chapter 1, privacy poses an interesting research

challenge, which will be addressed in detail in Chapter 4. Wewill now describe the functionality and the

implementation details of this module. Aprivacy tableis the central data structure of the firewall. It can

be thought of as a two dimensional array whose dimensions are(i) aggregation services and (ii) data types.

A cell corresponding to a given service and data type contains a pointer to the corresponding perturbation

model (currently, PoolView supports data perturbation forprivacy). We discuss the details of the nature of

perturbation to be applied in Chapter 4. The perturbation model is specified in a standard XML file. The

privacy firewall module is implemented in Java, which takes as input the XML file (perturbation model) and

XML formatted sensor data (generated by a query to the clientdata storage module) and generates as output

perturbed sensor data as an XML data stream.

2.6 Server - Data Storage

Similar to the client side data storage module, this module supports the storage and retrieval of sensor

data streams that are shared by individuals with the aggregation server. The main difference is that each

individual sensor data stream is tagged with the user credentials (e.g. a uniqueusernameassigned by the

aggregation server to individuals subscribing to it). Individuals share XML formatted sensor data (possibly

perturbed to preserve privacy) with the aggregation server, which tags the data with user credentials and

stores it in its data storage. The server side data storage isimplemented as a mySQL server with an XML

interface similar to the client side storage module. It is not hard to replace the mySQL storage services with

a secure and private cloud computing storage services (as discussed in the client’s data storage module).

Again, we note here that the existence of a storage module provides the flexibility for new applications to

evolve.

2.7 Server - Community Statistics

Participatory sensing applications rely on sensor data collection by individuals and sharing it among them-

selves to map common phenomena or compute community statistics. For example, individuals record GPS
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sensor readings from their daily commutes and share it within a community to compute traffic related statis-

tics (in the given city) [49, 61]. This module allows for the computation of various statistics from the shared

sensor data, even if the data are perturbed. As we will show later in Chapter 4, this module implements

a reconstruction algorithm that computes various community statistics when the sensor data is perturbed

(according to the algorithm that will be described in Chapter 4). The input to this module is sensor data

(possibly perturbed) in a standard XML format (which typically is provided by the data storage module on

the server) and the required statistics specified as a well formatted XML document. The output is XML

formatted data describing the results for the statistics (which were specified in the input). This module is

implemented in Java and Matlab with a Java based API.

2.8 Server - Community Data Modeling

In the previous Section, the community statistics module can compute various statistics related to sensor

data collected by individuals. Another important problem is when the data collected are sparse and we

are trying to capture a complex phenomenon. For example, in order to obtain a complete traffic map of a

large city, individuals need to contribute a large number oftraffic measurements within the city (in order to

obtain complete coverage). Typically, initial deployments will be sparse as the usefulness of the application

is realized. As discussed in Chapter 1, the research challenge is to generalize well from the sparse high-

dimensional sensor data to capture the complex phenomenon.We will discuss a solution approach to this

problem in Chapter 5. The function of this module is to generalize from sparse high-dimensional sensor

data to capture the complex phenomenon. The initial input tothis module is multi-dimensional sensor data,

various attributes that model the phenomena, and the model structure. It then builds prediction models using

the approach we will describe in Chapter 5, which can be used to predict the phenomenon where the data are

absent. The inputs are specified as well formatted XML files, the sensor data specified as per Section 2.1.

The output is also a well formatted XML file with the predictedsensor data. This module is implemented in

C++ and Matlab with a Java interface for easy integration with the rest of the modules.
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2.9 Server - Application Support Tools

A large number of participatory sensing applications rely on maps to achieve their functionality. For exam-

ple, CarTel [61] uses maps to achieve routing based on real-time congestion levels, Traffic Analyzer [49]

uses maps to display traffic information on Google maps, BikeNet [35] presents bike routes on maps,

CenceMe [76] maps individual’s location information, and GreenGPS [46] utilizes maps for computing fuel

efficient routes. Most of these applications rely on crude interfaces to existing map systems, such as Google

Maps, MapQuest for their functionality and are restricted by the APIs provided by these services. This re-

sults in extremely inefficient solutions [61, 46]. For example, routing algorithms are proprietary and lack an

API to modify the parameters used for routing, which translates into applications like CarTel and GreenGPS

being extremely hard to implement using existing map based services. We address this concern by providing

map based tools that empower the developer with APIs that allow for access to updating and modification of

the maps. The solution combines various open source software with APIs that were developed by us. The

map of a given area is maintained as anOpenStreetMap (OSM)[82]. OSM is the equivalent of Wikipedia for

maps, where data are collected from various free sources (such as the US TIGER database [103], Landsat

7 [78], and user contributed GPS data) and an editable streetmap of the given area is created in an XML

format. The OSM map is essentially a directed graph, which iscomposed of three basic object types,nodes,

ways, andrelations. A node has fixed coordinates and expresses points of interest (e.g. junction of roads,

Marriott hotel). A way is an ordered list of nodes with tags tospecify the meaning of the way, e.g. a road,

a river, a park. A relation models the relationship between objects, where each member of the relation has

a specific role. Relations are used in specifying routes (e.g. bus routes, cycle routes), enforcing traffic (e.g.

one way routes). We provide a Java based API that can add new relations (which can be used to specify

new statistics) or update them. For example, one can add a newrelation that specifies average speed on

different ways (streets), which can be used to compute fastest routes more accurately [61]. We will show in

Chapter 5.3 that these tools can be used to compute fuel efficient routes.

We also provide a Java based interface to geocoding tools that translate street address inputs into lati-

tude/longitude pairs. Geocoding is the process of finding corresponding latitude/longitude data given a street

address, intersection, or zipcode. The actual geocoding process is implemented in Perl.
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2.10 Conclusion

In this chapter, we developed an architecture and a set of modules that comprise PoolView. We showed

that PoolView is an Internet application service that utilizes several standards such as XML and HTTP. We

further described individual components, their functionalities and interfaces. The architecture provides sup-

port for the development of individual layers in an independent manner, thus allowing for easy extensibility.

Each layer abstracts away its functionality and provides a clean standardized interface to interact with it.

We envision that PoolView will provide a platform for futurehuman centric sensing applications. Table 2.1

describes various applications (Smart jacket, smartphone, traffic analyzer, weight watchers, and GreenGPS)

that were developed using PoolView and the corresponding components that were utilized.

Application Smart jacket Smartphone Traffic analyzer Weight watchers GreenGPS
C - Data storage X X X X X

C - Activity ident. X X

C - Privacy firewall X X X X

S - Data storage X X X

S - Comm. stats. X X

S - Comm. model X

S - App. supp. tools X X

Table 2.1: Applications and the corresponding PoolView components

We observe from Table 2.1 that several applications utilizemultiple overlapping components, thus ex-

emplifying the utility of PoolView and its generalizable nature. Note that, the smart jacket and smartphone

applications utilize only theclient portion of the modules, as they are personal sensing applications.
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Chapter 3

Human Activity Identification

This chapter presents the details of the client side activity identification module of PoolView along with

its use in in two different applications, asmart jacketembedded with MicaZ sensor nodes and asmart

phone. We are motivated by the widespread availability of sensingdevices in everyday lives of users, which

will give rise to a new category of services termed aspersonal monitoringservices. These services are

software services that enable the monitoring of daily humanactivities, in the long term, short term, and

real time. Such services monitor daily human activities through the collection and analysis of sensor data

from devices that interact with their user on a daily basis. Examples of such devices include cell phones

and clothes embedded with sensing devices. These services will find uses in several application domains,

such as healthcare, social networking, entertainment, andpersonal record keeping. An example healthcare

application is one in which a patient needs to be monitored athome for a prolonged period of time by a

care-giver. Safety of people can be improved by providing services which automatically notify health-care

providers in real-time during events of emergency (such as seizures, strokes, or accidents). Novel services

that maintain records of personal activities are feasible.For example, jogging enthusiasts can keep track of

their schedules and be able to answer short-term queries such as, “How much time did I spend jogging in the

past month?”. Such personal records can also help in providing medical care, such as detecting early onset

of diseases. Entertainment services that answer questionssuch as, “Where was I on the Christmas eve of

2005?” or “Was I in Olive Garden when I last visited New York?”are feasible. Further, sensor information

sharing can also be utilized to compute community-wide statistics. An example is where individuals share

their speed information to compute aggregate traffic statistics.

A major research challenge to enable personal monitoring services is to be able to identify the physical

activities (e.g. sitting, running, eating, cooking) performed by an individual. Human activity identification

has been extensively addressed in the past [41, 91, 92, 96]. Most of these use specialized devices or lab based
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environments to achieve human activity identification. Theuse of specialized devices allows for tuning of

the hardware to achieve application specific optimization,whereas devices such as smartphones are not

optimized for identification of activities. Such devices are equipped with possibly low quality sensors or are

constrained by the device’s primary functionality. Further, an important goal is that of transparency to the

user, where the device monitors activities of the individual with minimal intervention to their daily lives.

In this chapter, we develop a framework for identification ofactivities that utilize everyday existing devices

(e.g. smartphones, clothing embedded with embedded devices).

We will begin by providing a high level overview of how activity identification is achieved and then

provide details of its application to two different prototypes. Our activity identification framework com-

bines feature extractionwith Hidden Markov Models, a Bayesian learning technique to achieve activity

identification. Our framework can identify basic activities such aswalking, running, and typingwhen only

accelerometer sensor data are input. The fusion of accelerometer and microphone sensor data results in

the identification of complex activities such ascooking, eating, and hygiene. The basic idea in a Bayesian

learning approach is to build a model for each activity that we wish to identify usingtraining data for that

activity. The input to build models can be various features such as energy, peaks, and entropy of the sensor

data stream (in a particular time window). Once the models are built for each activity using the training

data, future sensor data streams are matched against each ofthe models and the best match is identified as

the activity corresponding to the input sensor data stream.The challenge in such an approach is to identify

the right set of features that would significantly differentiate the activities. Further, it is also important to

identify the right Bayesian learning approach. Several Bayesian learning approaches exist , such as clas-

sification tree, Naive Bayes, k-nearest neighbors [56] withvarying levels of complexity. Our approach is

to utilize a learning method that models time series, which naturally captures different activities (because

human activities are time based and modeling them using static techniques will not work, as we will show

later). This intuition justifies the choice of using Hidden Markov Models (HMMs), which is a natural choice

for time series modeling. We will first briefly describe HMMs followed by the implementation details of

each prototype and the evaluation of the activity identification framework.
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3.1 Hidden Markov Models

A Hidden Markov Model (HMM) is a statistical model where the system being modeled is assumed to be

a Markov process with unknown parameters, and the challengeis to determine the hidden parameters from

the observable parameters, based on this assumption.

A HMM, which is pictorially depicted in Figure 3.1 is characterized by the following parameters:

• N : The number of hidden states

• M : The number of distinct observation symbols per state

• AN×N : State transition probability distribution

• BN×M : Observation symbol probability distribution for each state

• ΠN×1: Initial state distribution

A23

A33

A13

A31

N = 1

A11

A21

A12

N = 2

A22

A32N = 3

Figure 3.1: Pictorial representation of a 3-state HMM

A HMM has two phases, alearning phase and atestingphase. We will describe these two phases in

further detail in the following two sections.
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3.1.1 HMM: Learning Phase

In the learning phase of HMM, given the observation symbols (in this case, the training data generated by the

sensor data for each activity), the problem is to efficientlycompute model parameters. More formally, the

model parameters,(A,B,Π), need to be adjusted to maximize the probability of the observation sequence.

There are several approaches to this estimation [89], but a popular approach is theBaum-Welchtechnique.

The Baum-Welch technique is an iterative method and is derived from the Expectation-Maximization (EM)

algorithm. The basic idea is to reestimate the model parameters in an iterative manner. At each stage, a

new model is derived and compared with the existing model based on how well it generates the observation

sequence. Details regarding the exact mathematical derivations can be found in [89].

3.1.2 HMM: Testing Phase

In the testing phase of HMM, given a model and observation sequence, the problem is to compute the

probability with which the given model generates the observation sequence. This can be thought of as a

scoring scheme, where we are trying to infer which of severalmodels generate a given observation sequence.

This relates to activity identification as follows, the sensor data stream generated (the activity corresponding

is unknown) is processed to extract features, which form theobservation sequence. This feature observation

sequence is then matched with several models (one for each activity) to identify the model (and the activity)

that generates the given sequence with maximum probability. The observation sequence probability, given

a model is computed using theForward-Backwardprocedure, which is explained in further detail in [89].

HMMs have been used in several machine learning and speech recognition applications [89]. In the

context of activity identification [77, 108], HMMs have beenused to identify complex wood workshop

activities. In contrast to this, our emphasis is on identifying a broader range of common every-day activities.

3.2 Smart Jacket

In this section, we will describe the development of smart jacket, a heavy winter jacket embedded with

MicaZ motes, which record human activities and location information using 2-axis accelerometers and GPS,

respectively. These measurements are stored locally (on the flash memory of MicaZ motes) until they can
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be uploaded (to a base mote, a MicaZ mote attached to a PC). A typical application scenario for the usage

of the smart jacket is as follows. An individual wearing the smart jacket goes about their normal daily

activities as usual over the course of a day. During that time, the jacket records sensory data pertaining to

the owner’s whereabouts and activities. When the system comes in the vicinity of the base mote, the logged

data is uploaded reliably to a private repository associated with the person. This record can potentially act

as a memory aid or help doctors in augmenting a patient’s clinical information. Figure 3.2 gives a typical

usage scenario of our system.

Figure 3.2: A typical operational scenario

We will briefly discuss the problems faced while implementing the smart jacket prototype and the cor-

responding solutions. The main research challenge that we face is to identify the human activities from the

acceleration sensor data, which we will discuss in Section 3.2.2

3.2.1 Problem Discussion and Implemented Solutions

The implementation issues can be classified as follows, (i) data collection and storage, (ii) data upload, (iii)

data synchronization, and (iv) power management. The majorresearch challenge is the identification of

basic human activities.
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Data Collection and Storage

In a typical operational scenario, the system will collect data periodically and store it in the flash memory.

A MicaZ mote has512 KB of flash memory, which is used for data recording purposes.Hence, we observe

that a single sensor sampling at the rate of30 Hz, generating 2 bytes per sample will consume the flash

memory in approximately four hours. Increasing the number of sensors used will consume the flash even

faster! A simple proposition to reduce the amount of flash consumed is to reduce the sampling rate, but this

would be inadequate as the data values recorded cannot be used to identify the activities. We conducted

simple experiments to identify an ideal sampling rate, and found that a sampling rate of25 Hz suffices for

activity identification. This sampling rate requirements calls for other methods to reduce the amount of flash

consumed in order to increase the disconnected time of operation of the system.

We propose two different methods to reduce the amount of flashused without loss of the precision of

data collected. Both are different data compression algorithms based on the observations we made during

the deployment of the system. The first method, termed thetruncate filteris based on the observation that,

for normal human activities, the least significant eight bits of the ten bit output is sufficient. This doubles

the disconnected time of operation of the system. The secondmethod takes advantage of the fact that we

do not need to record any data values when the clothing is still, as there is no activity taking place. Similar

to run-length encoding, at the end of a stillness interval, aspecial separator value is inserted in the log,

indicating that the jacket has been still and the number of samples for which it has been still is recorded.

This method is termed thestillness filter.

Data Upload

An important part of the system is to upload the data collected to a server through an base mote. Three

separate issues are to be addressed as part of the upload protocol, which are as follows:

• The rate at which the upload occurs, which directly affects the amount of flash available.

• The upload transparency, which relieves the user from the hassle of pressing a button or consciously

making a gesture to upload data.
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• Reliability of upload, Loss of data packets can lead to incorrect interpretation of activities or lack of

data for certain periods of time. As expected, when the user moves away from the base mote, the

packet reception probability goes down.

We develop a new protocol optimized for our application scenario, which meets the above goals.

Our protocol combines ideas from various data dissemination protocols likeDeluge [60] and PSFQ

[106]. It achieves the goal of reliable, transparent and fast upload. Transparency is achieved by using a

beaconingscheme. The base sends beacons periodically, which are ACKed by the motes in the system,

if the motes are in the range of the base. Reliability is achieved using a NACK scheme. We tweaked the

payload size in TinyOS and the number of packets sent every second, to come up with an optimal data rate

to send data as fast as possible. We use the CSMA MAC protocol which comes with the TinyOS networking

stack. Our protocol makes sure that only one mote is communicating with the base at a given time to

minimize collisions and increase throughput. This is ensured as follows. When the base gets replies from

the motes, it elects a single mote (mote X) on a First-Come-First-Serve basis and sends asenddatapacket

to this mote. After sending this packet, the base enters a state where it ignores further beacon replies. If it

does not receive any data packets from mote X within a specified timeout period, it resets its state to send

beacons.

The protocol also ensures a fair channel allocation mechanism, so that starvation does not occur. This

is ensured as follows. When the motes receive a beacon from the base, they start timers that are inversely

proportional to the time they have not won an election. Thus,the mote that has not won an election for the

longest time will (most likely) send a reply first to the base.

Packet received/
Send ACK to mote

              do nothing
No beacon reply/

Timeout/reset beacon state

reset beacon state
End of transmission/

Listen for
packets

Send Beacons

Send ACK to mote
Beacon reply received/

Figure 3.3: State diagram for the base
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Beacon

Send packet/

Beacon received/
Send beacon reply

Increment
packet counter

Send packets
in burst mode

           do nothing

Timeout/
reset beacon state

  ACK

Wait for

Listen for

No beacon received/

All packets sent/
send tx complete

ACK received/

Wait for ACK

Figure 3.4: State diagram for the motes on the person

Figures 3.3 and 3.4 summarize the upload protocol which we present in the form of state diagrams.

The annotations on each arrow have the formX/Y, where X indicates the event which has occurred and Y

describes the action to be performed on occurrence of this event.

Data Synchronization

We need a mechanism by which it is possible to correlate the activities recorded on different parts of the

body. This problem can be termed as thedata synchronizationproblem, where each data item collected

needs to be temporally correlated with data items collectedon other motes.

This problem has been addressed in [112]. The scheme presented in [112] needs a base station in

the vicinity of the data collection nodes, which SATIRE cannot use, and thus a new data synchronization

scheme is needed. Apart from the above scheme, there have been several time synchronization protocols

which synchronize the clocks on motes [73], [45]. However, recording absolute time values leads to a

considerable overhead in the flash. The periodic message exchanges contribute an additional overhead.

To maintain temporal correlation among the data values collected on different motes, aleader mote

sends out beacons which are used to synchronize data streamson the different motes in the network. Each

beacon is identified by a beacon number. When a beacon is received, the associated beacon number is

recorded in real-time in the flash mid-stream along with a separator, to differentiate them from data sample

25



values. On the PC, identically numbered beacons are alignedto the same time reference. The only overhead

in our method is that of recording the values of beacons in theflash. Beacons samples occur several orders

of magnitude less frequently than data, which makes their overhead acceptable.

Power Management

The typical lifetime of a mote which ison for the entire period of time is about seven days. With continuous

logging and radio communication, the lifetime may be further reduced. Replacement of batteries every week

is cumbersome and cost ineffective. Hence, a power management scheme is necessary to extend the lifetime

of the system. An acceptable design goal for a seasonal outergarment in our opinion is to last for about

three months (i.e., the entire season).

We propose to use a simple duty cycle based scheme. In this scheme, a mote goes tosleepafter it detects

a brief period of stillness. It wakes up aftern seconds and checks whether or not stillness continues. If the

mote determines that it is in motion, it starts logging data.Otherwise, it goes to sleep again. During this

cycle, the mote keeps track of the amount of time it has been sleeping and logs this information when the

stillness interval terminates.

In our current jacket prototype, we observed that the jacketwas still for 90% of the time. If we assume

a 5% duty cycle during low-power operation, the lifetime of the system can be extended seven times, as can

be seen from Equation 3.1. In Equation 3.1,Pd is the average power consumption when the mote operates

as described above,Pn is the average power consumption when the mote is active all the time, andd is the

duty cycle (in our case, it is 0.05). The power consumption ofthe mote in a low-power state is assumed to

be negligible. This gives usPd

Pn
to be about seven, which translates into an increase in the lifetime of the

jacket from one to about seven weeks. This is close to the season-long goal we set out for our smart jacket.

Pd = 0.1 × Pn + 0.9 × (d× Pn) (3.1)

As for the GPS mote, it draws a higher current than a normal sensor and will last for about half a day if

it is left on continuously. The GPS mote takes about seven seconds to obtain a fix (usually). In the active

state, the GPS mote obtains a fix every minute and sleeps for the rest of the minute. When the jacket is still,

it does not obtain a fix. In this scenario, the GPS mote lasts for seven weeks (60
0.1×7

× 0.5 days), which is
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close to our season-long goal.

3.2.2 Basic Human Activity Identification

Our goal in this section is to identify basic human activities, which includesitting, writing, typing, walking,

andcycling. We will first describe and evaluate a popular approach to human activity identification and

then show the drawbacks of this approach. We will then evaluate our HMM based activity identification

framework.

Feature Vector based Identification

A popular approach for the identification of basic human activities is a feature vector based approach, where

a set of features are extracted from the accelerometric signal and used to identify activities which are well

spread out in the feature space. An example of such an approach is described in [96], and we claim no

novelty in this regard. Feature vectors have also been used in speech recognition [98].

Several features of a signal have been introduced in [96] and[105] for the purpose of activity identifi-

cation. These features can be mapped onto a multidimensional feature space which can be used for activity

identification. An example of a feature is the energy of the difference signal of thex andy accelerometer

axes. Figure 3.2.2(a)-(f) plots a two-dimensional featurespace for different activities, where each dimension

is the energy of the difference signal of the corresponding accelerometer axis.

Figures 3.2.2(a)-(e) plot thex andy axis energy values for five motes placed on the lining of the jacket,

each for three activities, namelysitting, writing, andtyping. We observe that these activities have overlap-

ping regions in all the five motes. From our evaluation reported in [47], we observe that these activities are

not clearly discernible even when using several features. However, an activity such aswalking has a clearly

identifiable region in this two dimensional feature space, as shown in Figure 3.2.2(f).

The above graph plots the activities over two features only.Since, it is not viable to pictorially represent

an activity in more than 3 dimension space, we opt to show the activities in a two dimensional space. But, in

our implementation, the feature space consists of several other features such as average, standard deviation,

root mean square, range, integral,temporal variation, androtational direction. We showed in [47] that, even

though we use a large number of features, the accuracy of identification of the activities by the feature vector
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for mote 2 for sitting, typing and writing
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for mote 3 for sitting, typing and writing
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for mote 4 for sitting, typing and writing
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for mote 5 for sitting, typing and writing
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Figure 3.5: Figure showing average energies for various activities

based method is poor.

Temporal variation is the sum of absolute Euclidean distances between accelerometric vectors of any

two successive time instances. Rotational direction givesan idea of clockwise/anticlockwise rotational

movement during the activity [96].
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An activity is represented as a staticn-dimensional vector, wheren is the number of features, obtained

through representative training data. To identify a given activity, features are extracted from the raw ac-

celerometric data, and a least error match with the representative feature vectors is found.

HMM based Identification

We found that the accuracy of the feature vector approach waspoor when we used it to identify multiple

activities, as shown in the previous section. To overcome the drawback of using a static feature vector model,

we use a dynamic Hidden Markov Model (HMM) to solve the problem.

In our current implementation, the observation sequence that is used as input to the HMM is obtained

by calculating two features, namely the energy and range of the difference signal. We found this approach

of using features as input to the HMM to be more accurate than using just the raw accelerometric data. The

difference signal is defined as the signal obtained by takingthe difference between consecutive values of

the signal. Energy of the difference signal for each axis is the sum of squares of the values of the difference

signal for that axis, as shown in Equation 3.4. Range of the difference signal for each axis is the difference

between the maximum and minimum values of the difference signal for that axis, shown in Equation 3.4.

Energyx =

ti+τ∑
t=ti+1

(xt − xt−1)
2 (3.2)

Rangex = maxti+τt=ti
(xt) −minti+τt=ti

(xt) (3.3)

where x is any axis, the window is (ti, ti + τ)

Each value of the features, energy and range, is computed over a window of values of the difference signal.

We found that using the features, energy and range, we were able to identify activities with reasonable

accuracy. An exploration into other features that can be used to further improve the accuracy is needed.

These features are first extracted from the raw accelerometric data. For each feature, we use an em-

pirically observed range of values, and uniformly map values within this range on to a set of observation

symbols unique to that feature and belonging to a fixed alphabet. The size of this fixed alphabet isM . For

each feature, we consider one second windows of observationsymbols for each mote and axis. We then con-

catenate the corresponding one second windows (by time) of observation symbols across all motes and axes,

29



and then across all features to obtain the observation sequences. We thus obtain an observation sequence for

each second of activity. These observation sequences are used as input to the hidden Markov models.

As discussed earlier, there are two phases to using a HMM. Thefirst is a training phase, where the HMM

for an activity learns the model parameters that maximize the probability of observing a representative data

set for that activity. A training set of observation sequences for each human activity is used to learn the

HMM parameters that characterizes the given set with the highest probability. The second is the inference

phase, where given the hidden Markov models for the activities and an observation sequence to be classified,

the model which matches the given observation sequence withthe highest probability is inferred.

To solve the problem of human activity identification, we usean ergodic (every state of the model can

be reached from every other state) and discrete observationHMM. For details of the training and inference

techniques, the reader is referred to [89]. For each activity, we have aN = 10 state HMM. We use a total

of 355 observation symbols (M = 355) per state. We use the well known Baum-Welch technique, which is

based on an Expectation Maximization (EM) algorithm, for training the HMM for each activity. To identify

an activity, we use a Forward-Backward procedure, which given a HMM model, estimates the probability

that the observation sequence is generated by that model. Using this procedure, the probability that the

observation sequence is generated by the HMM for each of the activities is calculated. The activity that

yields the highest probability is chosen as the activity represented by the observation sequence.

Evaluation Results

We classify the activities intolow-energyandhigh-energy. An activity is classified aslow-energy, when the

energy of the difference signal (as described in Section 3.2.1) summed over a period of time is lower than a

threshold. Otherwise, the activity is classified ashigh-energy.

We compare the accuracy of our HMM based approach with that ofthe feature vectors. In all our

activities, the data set was obtained by conducting each activity three times, each for a period of five minutes.

A sample of one minute was used to train the HMM for each activity. Ground truth was verified by manually

recording the activity at a given time instant. Data sets were obtained for two different users.

Figures 3.6 and 3.7 plot the accuracy of detecting a set of three low-energyand twohigh-energyac-

tivities using both the feature vector and the HMM approaches, for user 1 and user 2, respectively. The
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activities considered werestillness,typing, writing, walking, andcycling. The feature vec-

tor approach performed poorly when compared to the HMM approach. This is due to the fact that the feature

vector approach does not consider the sequence in which the motion is performed, but rather relies on a set

of static features. The results in our experiments for the HMM based approach were obtained by defining a

confidence metric. For a given input data, identification of the activity involves generating the probabilities

with which the different HMM models (one for each activity) match this input, and choosing the model with

the highest probability match. Letpi be the probability that the input matches HMMi, 1 ≤ i ≤ n, wheren

is the number of HMM models (activities). Letpj be the highest probability. For a confidence metric ofθ,

the given input is classified as belonging to modelj, if the following is true:

pj∑i=n
i=1

pi
≥ θ

If the above does not hold, the given input is classified as notrecognizable (shown as the activity‘‘I

dont know’’ in Figure 3.8). In all our experimental results, we use a confidence metric ofθ = 0.8.
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Figure 3.6: Accuracy of activity identification using HMMs and feature vectors for user 1

Figure 3.8 plots the activity over time for an experiment lasting 350 seconds by user 1. We observe from

this figure that the user wasstill (sitting) for 150 seconds, after which he walked for about 75seconds.

He then started writing.

We then trained the HMM using one user’s data and tested the accuracy of identifying the other user’s
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Figure 3.7: Accuracy of activity identification using HMMs and feature vectors for user 2
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Figure 3.8: Activity vs. Time for an experiment by user 1

activities. This is plotted in Figure 3.9. We observe that certain activities have very high accuracy, for exam-

ple, user 1’s data on user 2’s training set gives high accuracy for stillness, writing, andwalking.

Whereas the activitiestyping andcycling fared poorly.

In such a case, a new user can use the jacket to identify a set ofpre-trained activities. To identify new

activities or to improve the accuracy of identification of existing activities, the user can specially train the

jacket to suit their needs.
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Location Tracking using GPS

The GPS mote can be used to track the location of the user when he or she is not occluded from the GPS

satellites. We conducted experiments to track the locationof a user. For one such experiment, the location

details and the speed-time plots are shown in Figures 3.10 and 3.11, respectively. From these figures, we

were able to deduce that the user was walking inRegion 1 (with an approximate speed of 1.5 m/s) and

was still for about 5 minutes inRegion 2. At about a time of 60 seconds, we observe that the speed of the

user was 0 m/s. This was because the user was waiting to cross abusy road. The user’s speed was found to

fluctuate between 0 and 10 m/s during times 700 and 1150 seconds, indicating that the user was in a vehicle

that made frequent stops. In fact, this was found to be true asthe user was traveling in a campus bus, which

made frequent stops. From time 1150 seconds onwards, the user was found to be walking at about 1.5 m/s.

3.3 Smartphone

A most common personal device that people own is a cellphone.With the advent of sensing devices be-

ing integrated in smartphones, they are transforming into apersonal sensing device. For example, today’s

smartphones are often equipped with micro-electromechanical (MEMS) sensors, in particular accelerome-

ters, which have a small form factor and low power consumption (this is in addition to the traditional sensing

modalities of the cellphone, the microphone and camera). And most of the smartphones have GPS built-in.
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Figure 3.10: Expt. 2: Location tracking using GPS
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Figure 3.11: Expt. 2: Speed vs. Time of user

The growing popularity of smartphones and its multimodal functionalities makes the device an individual’s

personal proxy, a context aware device, an activity inference device, and even a payment proxy [107].

We develop a personal monitoring service using the smartphone (here, the smartphone is acting as an

activity inference device). In particular, we will extend our previous approach for activity identification in

two ways. One is to use multimodal sensing and the other is to expand the set of activities identified from a

basic set (e.g. walking, typing) to more complex activities(e.g. cooking, brushing teeth). In particular, we

are interested in the identification ofactivities of daily living(ADL). Examples include cooking, desk work,
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brushing teeth, and so on.

Smartphones are quite prevalent these days and their capabilities have also increased multifold in the past

few years. Examples of such smartphones equipped with various sensors include the Nokia N-series (N82,

N95, N96), Apple iPhone, and the BlackBerry. Many of these smartphones are equipped with location,

motion, light, audio, and video sensors. Since Nokia provides a large number of smartphones that have a

common operating system and APIs, we choose to use the Nokia N95 for our work.

We design and implement a general software architecture forthe purpose of data collection on the Nokia

N95 (which can be utilized to collect data from other Nokia phones that have the required hardware). The

N series of Nokia phones use a client-server based operatingsystem, the Symbian OS [81], designed for

resource constrained mobile devices. Access to lower levelhardware is provided through a request callback

sequence, where servers (abstractions of lower level hardware) respond to requests from clients.

PoolView Data

Hardware

Sensors (GPS, GSM) and Flash memory (SD card)

Symbian OS

Control access to hardware

and filtering
Sensor data collection Flash

control
read/write

Formatters

Figure 3.12: Figure depicting the various components of oursoftware design on the cellphone using Sym-
bian OS.

Figure 3.12 shows the components of our software architecture, which enables a generic and flexible

collection of data from various sensors. We can see from Figure 3.12 that the components fall into three

categories, the lowest level includes the hardware of the cellphone (microphone, GPS, accelerometer), ab-

stractions of which are provided by the server components ofSymbian OS. The modules in the application

layer (top most) provide three main functionalities: (i) Data collection from the server components, (ii)

Recording data collected from the sensors, and (iii) Reading data recorded from the flash for upload to a

PC for data analysis. Our architecture is modular, flexible,and extensible and enables data collection from

various sensors with ease. A snapshot of the data collectionapplication that utilizes the above architec-

ture is shown in Figure 3.13. The application allows for tagging the data streams being recorded with the
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corresponding activity (chosen by the user from the drop down list).

Figure 3.13: Figure showing the application for activity tagging

Our current implementation records four different sensors: the microphone, accelerometer, GPS, and

GSM (GSM information is used to determine the user’s location when GPS signals are unavailable) for

offline analysis. While our current inference algorithm is fairly light-weight, the initial development focuses

on a proof-of-concept implementation of multisensor fusion for activity detection. In the future, we envision

a real-time activity inference technique on the phone. Also, recording the identified activity may be useful

for long-term trend analysis, as is shown bysmart attire[47].

We developed a prototype that implements a data collection software on a popular smartphone (similar

to the smart attire prototype), which records the microphone and accelerometer sensor data in the local flash

memory of the smartphone. These data are later uploaded to the PC of the user, which is then analyzed

using the HMM framework to identify the activity performed by the user. We will now describe the details

of identification of ADLs.
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3.3.1 ADL Inference Algorithm

In this Section, we describe the identification of activities of daily living (ADLs). We combine multi-

sensory data to identify complex actions of users in their daily lives. In particular, we show that integrating

the data from the microphone and the acceleration sensor embedded in a typical smartphone (Nokia N95)

is a promising approach for ADL monitoring. We utilize the feature-space-combination approach described

at the beginning of this Chapter1, in which we extract information from both sensors sampled at different

rates. This is accomplished by a synchronous feature extraction approach in which features from each

sensor are computed independently at the same, constant time-frame rate. The extracted features are fed to

a computationally light-weight algorithm, suitable for implementation on a smartphone, such as the N95.

In our study, the user wears the phone on the waist. When a userperforms an activity such as cooking,

the data capturing routine within the smartphone is activated. The data collection module samples the

acceleration sensor at 7 Hz and the microphone at 8 kHz using the inbuilt sensor APIs. This forms the input

to a trained, ADL monitor within the activity identificationmodule of PoolView.

We conducted an empirical study to obtain the training and testing data set for the automated classifier.

Eight distinct ADLs and instrumental activities of daily living (IADL), as shown in Table 3.1, are considered

in the present study.

Activity
Name Type Activity Description Reference
Aerobic Dynamic Walking, running, lifting weights, etc.
Cooking Dynamic Food preparation, heating, grilling, etc.
Desk Work Static Typing, reading at desk.
Driving Static Driving in a car.
Eating Static Eating while seated or standing.
Hygiene Dynamic Washing dishes, brushing teeth, etc.
Meeting Static Present in, or attend a meeting.
Watching TV Static Watching TV while not performing any of the above activities.

Table 3.1: Activities of daily living considered within theempirical study

These activities comprise of both static and dynamic activities. An activity is “static”when there is no

significant acceleration signal detected at the waist whileperforming that activity. A “dynamic” activity, on

the other hand, contributes to significant acceleration while accomplishing the activity. These eight activities

are chosen as they form the basic ADLs and IADLS [79, 88]. Notethat the activities in Table 3.1 can not be
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differentiated based on acceleration signals alone.

We use an hidden Markov Model (HMM), to model each activity. Since HMMs are well known models

of time series and have been used successfully to recognize basic human activities (Section 3.2.2), we use it

in the present study to identify ADLs/IADLs based on the fusing the information from sensed accelerometer

and microphone data. The input to the HMMs consists of the following features derived from the sensed

tri-axial acceleration data in overlapping time frames of 5seconds with a 1.67 seconds frame shift. The first

feature detects relative change in body orientation in xy-zplane with respect to a calibration phase when the

user is presumed to be standing. The next feature is the 3-dimensional vector magnitude of acceleration.

The magnitude of the 3-dimensional acceleration is relatedto the energy expended in performing a particu-

lar physical activity such as walking. We also compute the skewness of the magnitude of the 3-dimensional

acceleration. Finally, we compute the entropy of the acceleration in the z-axis. Relative inclination helps in

distinguishing activities that depend on whether a person is sitting (e.g., “Eating”), standing (e.g., “Cook-

ing”) and lying-down (e.g., “Watching TV”). Energy expenditure, skewness, and entropy help distinguish

between dynamic activities (e.g., “Aerobic) and static ones (e.g., “Desk Work”).

The microphone data is also processed at the same frame length of 5 seconds. We extract spectral

shape features that are related to the audio content [70]. Specifically, the audio signal is first subjected to

a frequency analysis in each time frame. The resulting speech spectra are processed by a Mel-frequency

filterbank [70], comprising 26 triangle-shaped filters. Thelow frequency cut-off of the first filter is set

to 0 Hz and the high frequency cut-off of the last filter was setto 4000 Hz. A log compression is then

applied to the resulting spectra. Finally, the spectral coefficients are converted to cepstral coefficients via the

discrete cosine transform [83]. These cepstral coefficients help in differentiating between different classes of

dynamic activities (e.g., “Cooking” and “Hygiene”), or different classes of static activities (e.g., “Meeting”

and “Driving”). We use the first 12 cepstral coefficients as they are known to be the most useful in describing

the content of an audio signal [70].

3.3.2 Evaluation Results

We now present the descriptive results of our empirical study (see Section 3.3.1) in this section. We recruited

eight male participants between the age groups of 20-37 years to participate as subjects for the empirical
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data collection experiments. We instructed the users to go about their regular routine and perform their

daily activities as naturally as possible and placed no restrictions on the location or time of the day. Users

were encouraged to wear the device as much as possible for a period of eight weeks in either their pocket

or a carrying pouch. We compensated each participant with a$20 gift card to a local movie theater. All

participants signed an user agreement that stated that theyagree to the collection and use of microphone,

acceleration, GPS (if available), and GSM (cell information that can be used to track location) data for

research purposes.

In order to collect data to train the classification algorithm and validate the results of classification, we

modified the data collection part of our software design to enable users to label their activities. Specifically,

we instructed the users to label the beginning and the end of each activity. Additionally, when the phone is

switched on, the user calibrated the acceleration axes by standing still for a period of 10 seconds. The start

and end of calibration was cued by making the device vibrate.

A total of 80 hours of tagged activity data was collected. A partial data set of 45 hours is used for

developing and training the automated classification algorithm. Eight activity-level HMMs are trained, one

for each activity listed in Table 3.1. All have 3 states, whose output distribution is modeled as a mixture of 8

Gaussians. The 3 state model is chosen to model the ‘transition-into’, the ‘steady state’, and the ‘transition-

out’ of each activity. Testing is performed on a 7 hour subsetof the remaining data (i.e., data not including in

training). The rest 28 hours of data is unusable because the users did not either calibrate the device or label

the activities correctly. An HMM toolkit, HTK [116], is usedfor training. During testing, we perform a

maximum-likelihood decoding to determine the most likely activity. This form of decoding could be viewed

as a single finite state model composed of individual HMMs with transitions between various activities

classes modeled as equally likely. We make this simplifyingassumption currently due to lack of a large

dataset to model transition between activities accurately. Note that recognition is user independent; the data

from all the users are used to construct the HMMs and the testing does not exploit the knowledge of the user

identity.

The results, in terms of accuracy of classification, are summarized in Table 3.2. Accuracy refers to

the portion of time windows in which the classified and labeled activities match. The results indicate that

the recognition accuracy is quite high for the following activities: “Aerobic,”“Cooking,” “Driving,” and
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“Hygiene’.’ We find that “Eating” is hard to distinguish from“Watching TV” because a majority of “Eating”

activity was performed when the user was “Watching TV” and hence the audio and acceleration features are

quite similar. One way to alleviate this would be allow for “N-best” outputs from the classifier, where “N”

refers to those outputs during decoding that exceed a threshold on their likelihoods. The low accuracy of

“Meeting” on the other hand is due to the availability of a limited amount of our data corresponding to

this class. Table 3.3 shows the results in terms of precisionand recall. We observe from Table 3.3 that

our precision results are also quite good, except for the “Meeting” class due to the limitation mentioned

above. Overall, the results in Table 3.2 and Table 3.3 show the potential of combining the information from

the acceleration sensor and the microphone for the identification of ADLs. However, further evaluation is

required to confirm the statistical validity and significance of these preliminary results.

Activity Accuracy (%) Accuracy (%) Accuracy (%)
3-state 1-state 5-state

Aerobic 82 79.3 83.1
Cooking 100 100 100
Desk Work 53 34 50
Driving 87.6 96 77
Eating 12.7 12.7 14
Hygiene 99 64 43
Meeting 12.7 12.7 14
Watching TV 88 87 88

Table 3.2: Performance of the automated ADL classifier

Activity Precision % Recall %
Aerobic 76.8 81.9
Cooking 76.4 100
Desk Work 50.8 53
Driving 100 87.6
Eating 51.2 12.7
Hygiene 65.6 99
Meeting 12.5 12.7
Watching TV 55.9 88

Table 3.3: Precision and recall of the classifier

We now present the confusion matrix in Table 3.4. As we mentioned earlier, our dataset consists of

people “Eating” while “Watching TV”, and hence both these activities were confused with each other. We
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also observe that “Desk Work” and “Meeting” are confused with each other due to the open space work

environment in which these data were collected.

Activity Aerobic Cook Desk Drive Eat Hygiene Meet TV
Aerobic 1197 145 0 0 120 0 0 0
Cooking 0 523 0 0 0 0 0 0
Desk Work 329 0 958 0 0 0 519 0
Driving 33 0 0 891 7 0 0 86
Eating 0 0 333 0 241 199 0 1117
Hygiene 0 0 0 0 4 380 0 0
Meeting 0 0 596 0 0 0 87 0
Watching TV 0 17 0 0 99 0 91 1523

Table 3.4: Table showing the confusion matrix

Finally, we provide an empirical justification regarding our choice of the 3-state HMM. Table 3.2 also

shows the accuracy results when using a Gaussian Mixutre Model (a 1-state HMM) or a 5-state HMM for

comparison. We can observe from Table 3.2 that in terms of theaverage accuracy, the 3-state HMM outper-

forms the 1-state and 5-state HMMs, thus supporting our choice of using the “transition-into”, “steady”, and

“transition-out” states. We conclude that our choice of discriminative acceleration and audio features and a

3-state HMM provide a promising approach to identifying ADLs.

3.4 Integration with Facebook

The activity identification module is integrated with Facebook, a popular social networking application.

Individuals can provide access to their activity log to friends on Facebook. This utilizes a simple privacy

module (of PoolView’s privacy firewall), one that checks if aperson accessing the individual’s activity log

is their Facebook friend. This access is implemented using the Facebook API combined with PHP code on

PoolView’s client side.

3.5 Conclusions

In this chapter, we presented a novel activity identification framework that identifies basic activities when

only accelerometer data are input and complex activities when accelerometer and microphone data are in-
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put. This framework forms the activity identification module of PoolView. We show the accuracy of this

approach using two different prototypes, one is a smart jacket embedded with MicaZ motes and the sec-

ond is a smartphone embedded with various sensors. We utilize a feature-space-combination approach in

conjunction with a time-series Bayesian learning technique, the Hidden Markov Models (HMMs). We also

showed through extensive evaluation results that our technique outperforms existing algorithms for activity

identification. We also developed a simple privacy module that integrates the activity log with Facebook, a

popular social networking application.
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Chapter 4

Privacy Preservation

In this chapter, we focus on enabling community sensing applications. Community sensing (also called as

participatory sensing, citizen sensing) is where individuals collect sensor data and share it among them-

selves to map common phenomena or compute community statistics. Earlier community sensing applica-

tions [22, 35, 61, 94] have focused on data collection and analysis aspects. An important aspect that was

not considered in these applications was privacy. In this chapter, we will summarize the mathematical foun-

dations (which was developed collaboratively) and developservice implementations to enablegrassroots

participatory sensing applications. We consider communities of individuals with sensors collecting streams

of private data for personal reasons. These data could also be of value if shared with the community for

fusion purposes to compute aggregate metrics of mutual interest. The main problem in such applications is

privacy, which motivates the work in this chapter.

We are interested in addressing privacy assurances in the absence of a trust hierarchy. We rely on data

perturbation at the data source to empower clients to ensureprivacy of their data themselves using tools that

perturb such data prior to sharing for aggregation purposes. Privacy approaches, including data perturbation,

are generally met with criticism for several good reasons. First, it has been repeatedly shown that adding

random noise to data does not protect privacy [66, 59]. It is generally easy to reconstruct data from noisy

measurements, unless noise is so large that utility cannot be attained from sharing the noisy data. Second,

anonymity (another approach to privacy) does not help either. Anonymized GPS data still reveals the identity

of the user. Withholding location data in a radius around home can be a solution, but opting to withhold,

in itself may reveal information. Moreover, in a sparsely deployed network, the radius would have to be

very large to truly anonymize the data. A third question is whether the assumption of lack of a centralized

trusted entity is justified. After all, we already entrust our cell phone providers with a significant amount of

information. It should not be difficult to provide added-value services that benefit from the current (fairly
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extensive) trust model.

Below, we address the aforementioned questions prior to presenting our approach. We address the prob-

lem of privacy in time-series data. The fundamental insightas to why perturbation techniques do not protect

privacy is correlation among different pieces of data or between data and context (e.g., identity of owner). In

what follows, we will present a technique that addresses theaforementioned problem of correlations within

a data stream. We show that with proper tools, non-expert users can generate appropriately-correlated

application-specific noise in the absence of trust, such that data of these individuals cannot be reconstructed

correctly, but community aggregates can still be computed with accuracy. We further explain how non-

expert users might be able to generate the appropriate application-specific noise without trusting external

parties related to that specific application. Observe that inability to reconstruct actual user data largely obvi-

ates the need for anonymity. Our solutions are not needed forscenarios where a hierarchy of trust exists. In

contrast to such scenarios, we are interested in providing away for individuals in the community to collect

information from their peers such as “how well does this or that diet or exercise routine work” or “what pat-

terns of energy use at home really worked for you to reduce your energy bill”? Obviating the requirement to

find a mutually trusted entity before data are collected is a way to encourage the proliferation of grassroots

participatory sensing applications.

PoolView’s client-server architecture is adopted, where clients share (perturbed) private sensory data

and servers (calledpools) aggregate such data into useful information made available to the community.

PoolView presents a simple API for individuals to set up new pools the way they might set up a Wiki or

discussion group. Simple APIs are also provided for clientsto subscribe to pools and export their data.

Interactions between clients and servers rely on the commonXML based data-stream abstraction (Sec-

tion 2.1). The stream allows an individual to share a sequence of (perturbed) data measurements such as

weight values or GPS coordinates (a logged trip). The goals of the perturbation are: (i) to preserve the

privacy of application-specific data streams against common reconstruction algorithms, (ii) to allow com-

putation of community aggregates within proven accuracy bounds, and (iii) that perturbation (which may

be application-specific) can be applied by non-expert userswithout having to trust the application. Hence,

any person can propose a custom statistic and set up a pool to collect (perturbed) data from non-expert

peers who can verify independently that they are applying the “right” (application-specific) perturbation to

44



preserve their privacy before sharing their data.

As alluded to above, ensuring privacy of data streams via perturbation techniques is complicated by the

existence of correlation among subsequent data values in time-series data. Such correlations can, in general,

be leveraged to attack the privacy of the stream. For example, sharing a single data value representing

one’s weight perturbed by adding a random number between -2000 and 2000 pounds will usually not reveal

much about the real weight. On the other hand, sharing the current weight value every day, perturbed by

a different random number, makes it possible to guess the weight progressively more accurately simply by

averaging the sequence to cancel out noise. Perturbing the sequence by adding thesamerandom number

every day does not work either because it will reveal the trend in weight measurements over time (e.g., how

much weight the individual loses or gains every day). The goal of the privacy preserving algorithm is to

hide both the actual value and trend of a given individual’s data series, while allowing such statistics to be

computed over a community. Hence, for example, a community of weight watchers can record their weights

as measured on a particular diet, allowing weight-loss statistics (such as average weight loss and standard

deviation of loss) to be computed as a function of time on the diet.

To instantiate PoolView architecture’s privacy preserving aspect, we have implemented and deployed

two PoolView services (pools), one for computing average weight (Weight Watchers) of a self-selected

community (e.g., all those on a particular diet), and another for computing traffic statistics (Traffic Analyzer)

in a privacy-preserving fashion. We present data and results from these two applications. The rest of this

chapter is organized as follows, we will first summarize the perturbation technique that achieves privacy (as

described above). We will then utilize this privacy preserving technique in the applications, Weight Watchers

and Traffic Analyzer, that highlight PoolView’s privacy preserving and community statistics modules.

4.1 Time Series Data Privacy

In this section, we will briefly describe the perturbation method and the reconstruction algorithm that was

developed in [49]. The perturbation problem is defined as follows. Perturb a user’s sequence of data values

such that (i) the individual data items and their trend (i.e., their changes with time) cannot be estimated

without large error, whereas (ii) the distribution of community data at any point in time, as well as the

average community data trend can be estimated with high accuracy.
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For instance, in the weight-watchers example, it may be desired to find the average weight loss trend as

well as the distribution of weight loss as a function of time on the diet. This is to be accomplished without

being able to reconstruct any individual’s weight and weight trend. For another example, it may be desired

to compute the average traffic speed on a given city street, aswell as the speed variance (i.e., the degree to

which traffic is “stop-and-go”), using speed data contributed by individuals without being able to reconstruct

any individual’s speed and acceleration curves.

Examples of data perturbation techniques can be found in [5,4, 39]. The general idea is to add random

noise with a known distribution to the user’s data, after which a reconstruction algorithm is used to estimate

the distribution of the original data. Early approaches relied on adding independent random noise, which

were shown to be inadequate. For example, a special technique based on random matrix theory has been

proposed in [66] to recover the user data with high accuracy.Later approaches considered hiding individual

data values collected from different private parties, taking into account that data from different individuals

may be correlated [59]1. However, they do not make assumptions on the model describing theevolution

of data values from a given party over time, which can be used to jeopardize privacy of data streams. This

section describes a perturbation technique that specifically considers the data evolution model, where it is

shown that the technique is strong against attacks that extract regularities in correlated data such as spectral

filtering [66] and Principal Component Analysis (PCA) [59].

This technique perturbs data in such a manner that the privacy of time-series data (measuring some

phenomenon,P ) can be preserved if the noise used to perturb the data is itself generated from a process

that approximately models the phenomenon. For instance, inthe weight watchers example, we may have an

intuitive feel for the time scales and ranges of weight evolution when humans gain or lose weight. Hence,

a noise model can be constructed that exports realistic-looking parameters for both the direction and time-

constant of weight changes. We can think of this noise as the (possibly scaled) output of avirtual user. The

noise model generation and the trust implications are discussed in [49].

Once the noise model is available, its structure and probability distributions of all parameters are shared

with the community. By choosing random values for these parameters from the specified distribution, it is

possible, for example, to generate arbitrary weight curvesof virtual people showing weight gain or loss.

1Since the data correlation is across individuals of the population, we will not compare it with our work in the evaluationsection
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A real user can then add their true weight curve to that of one or several locally generated virtual users

obtained from the noise model. The actual model parameters used to generate the noise are kept private.

The resulting perturbed stream is shared with the pool whereit can be aggregated with that of others in

the community. Since the distributions of noise model parameters are statistically known, it is possible

to estimate the sum, average and distribution of added noise(of the entire community) as a function of

time. Subtracting that known average noise time series fromthe sum of perturbed community curves will

thus yield the true community trend. The distribution of community data at a given time can similarly be

determined since the distribution of noise (i.e., data fromvirtual users) is known. The estimate improves

with community size.

A useful refinement of the above technique is to separate in the virtual user model parameters that are

inputsfrom those that express intrinsic properties of the model. For example, food intake may be an input

parameter of a virtual user model. Inputs can be time-varying. The perturbation algorithm allows changing

the values of input model parameters with time. Since the input fed to the virtual users is not shared, it

becomes very hard to extract real user data from added noise (i.e., virtual user) curves.

One last question relates to the issue of trust. Earlier, we motivated perturbation approaches in part by

the lack of a central trusted party that would otherwise be able to privately collect real unperturbed data and

compute the needed statistics. Given that non-experts cannot be asked to program noise models for each

new application (or even be expected to know what these models are), and since they cannot trust the data

collection party, where does the noise (i.e., the virtual user) model come from and how does a non-expert

client know that the model is not fake? Obtaining the noise model from an untrusted party is risky. If the

party is malicious, it could send a “bad” model that is, say, aconstant, or a very fast-changing function (that

can be easily separated from real data using a low-pass filter), or perhaps a function with a very small range

that perturbs real data by only a negligible amount. Such noise models will not perturb data in a way that

protects privacy.

The answer comes from the requirement, stated earlier, thatthe noise added be an approximation of

the real phenomenon. Incidentally, observe that the above requirement does not mean that the noise curve

be similar to the user data curve. It only means that both comefrom a model of the same structure but

different parameters. Hence, in the weight example, it could be that the user is losing weight whereas the
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noise added is a curve that shows weight gain. Both curves come from the same model structure (e.g., a first

order dynamic system that responds to food intake with a gainand time-constant). The models would have

different parameters (a different gain, a different time-constant, and importantly a different input modeling

the time-varying food intake).

With the above in mind, we allow the server (that is untrustedwith our private data) to announce the used

noise model structure and parameter distribution to the community of users. The model announced by the

server can be trusted by a user only if that user’s own data could have been generated from some parameter

instantiation of that model with a non-trivial probability. This can be tested locally by a curve-fitting tool on

the user’s side the first time the user uses the pool. Such a general tool is a part of the client-side PoolView’s

privacy preserving module. Informally, a noise model structure and parameter distributions are accepted

by a user only if (i) the curve fitting error for user’s own datais not too large and (ii) the identified model

parameter values for user’s data (that result from curve fitting) are not too improbable (given the probability

distributions of model parameters). The formal mathematical details of the above technique can be found

in [49]. We will now discuss the application of this technique to Traffic Analyzer (Section 4.2) and Weight

Watchers (Section 4.3).

4.2 Traffic Analyzer

The traffic analyzer case study is motivated by the growing deployment of GPS devices that provide location

and speed information of the vehicles that they are deployedin. Such data can be used to analyze traffic

patterns in a given community (e.g., average speed on a givenstreet between 8am and 9am in the morning).

Analysis of patterns such as rush hour traffic, off-peak traffic, average delays between different key points in

the city as a function of time of day and day of the week, and average speeding statistics on selected streets

can shed light on traffic safety and traffic congestion statusboth at a given point in time and historically over

a large time interval.

With the above in mind, we present a case study that evaluatesa traffic analysis application in the

context of privacy preservation, where we study the performance of the perturbation techniques (applied in

the context of traffic analysis). We picked two main streets whose traffic characteristics we would like to

study for illustration. To emulate a community of users, we drove on these streets multiple times (in our
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experiments, five graduate students took turns driving these streets at different times of day). We collected

data for a community of 30 users. We used a Garmin Legend [50] GPS device to collect location data. The

device returns a track of GPS coordinates. The sampling frequency used in our experiments was 1 sample

every 15 seconds. Each trip represented a different user forour experimentation purposes. The stretch of

each of the two roads driven was about 1.3 miles. Data was collected in the morning between 10 am and 12

noon as well as in the evening between 4 pm and 6 pm.

In a more densely deployed system, the assumption is that data will be naturally available from different

users driving over the period of weeks on these city streets at different times of day. Such data may then be

shared retroactively for different application purposes.For example, individuals interested in collecting data

on traffic enforcement might collect and share speeding statistics on different city streets or freeways they

travel (e.g., what percentage of time, where, and by how muchdoes traffic speed exceed posted signage).

Such statistics may come in handy when an individual travelsto a new destination. Since speeding is a

private matter, perturbation techniques will be applied prior to sharing.

In our deployment, each user shares their data using PoolView’s client side interface. An individual col-

lects location and speed information using in-car GPS devices (e.g. Garmin nuvi, TomTom have GPS trace

recording capabilities). The recorded sensor data is then transferred to a PC and uploaded to PoolView’s

secure and private storage service. This data is then perturbed according to the algorithm described in the

previous Section. The user also has an option of viewing the perturbed data in a graphical format and

comparing it with the original data. The user can then share the perturbed data with an aggregation server

(which provides the Traffic Analyzer service). The aggregation server collects GPS sensor data from the 30

users. It divides city streets into small segments of equal length. The average speed on each segment is then

calculated from perturbed user data. We will first describe the noise model and how it is generated.

Generating the Noise Model

In order to employ the perturbation scheme described earlier, we need a noise model. Since the GPS data

is collected with a very low frequency (1 sample every 15 seconds), speed may change dramatically on

consecutive data points. Figures 4.1 shows the real speed curve of one user on Green street in the morning.

We model the speed curve of each user as the sum of several sinusoidal signals (observe that any waveform
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can be expressed a sum of sinusoids by Fourier transform). For simplicity, we choose to use six sinusoids

that represent the common harmonics present in natural speed variations of city traffic. The noise model is

therefore as follows:

f(k) = a0 +
6∑
i=1

ai sin(bi ∗ k + ci) (4.1)

The speed model in Equation (4.1) is characterized by 19 parameters. Once the model for the speed

is obtained, we need to model the distribution of all 19 parameters such that the speed stream generated

by this model has the same dynamics as the real speed curves. The service developer will collect a few

speed measurements empirically (which is what we did), takethat small number of real speed curves, and

use an MMSE curve fitting to find the range of each parameter. This approach is used by us to obtain the

distribution of the parameters. The distribution of each parameter was then chosen to be a uniform within

the range obtained. A sample of speed curve is shown in Figure4.1.

Having produced an approximate noise model, the aggregation server announces the model information

(structure and parameter distribution) to the users (PoolView clients). Participating users use this infor-

mation to choose their private noise parameters and generate their noise streams using client-side software

(which includes a generic function generator in the privacyfirewall). Each user’s individual speed data is

perturbed by the given noise and sent to the aggregation server when the user connects to the server. Typical

perturbed data is shown in Figure 4.1.

Reconstruction Accuracy

In order to compute the community average, noise distributions at each time instance,k, must be available

for the aggregation server. Obtaining the exact noise distribution at each time k given the parameterai, bi,

andci can be difficult. Therefore we approximate the noise distributions by generating a numbers of noise

curves (10000 samples) following the model in Equation 4.1 and compute normalized histograms of noise

values at each time instance. These histograms are approximations of noise distributions.

To show reconstruction accuracy using the community reconstruction method (refer to [49] for the math-

ematical details of reconstructing community data), the computed community average speed curve for each

street is presented in Figure 4.2. Even with a very small community population (17 users), the community
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Figure 4.1: Graph showing the real speed, noise, and perturbed speed curves for a single user
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Figure 4.2: Graph showing the reconstructed community average speed vs. distance for a population of 17
users

average reconstruction still provides a fairly accurate estimate (the average error at each point is1.94mph).

We also illustrate the PoolView’s Traffic Analyzer aggregation server interface that displays the average

speeds on two streets in Figure 4.3. This instantiation of PoolView’s aggregation server uses the map based

support tools (described in Section 2.9).

Next, we examine the reconstruction of the community speed distribution at a given location on Uni-
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Figure 4.3: Figure showing the traffic analyzer aggregationserver side interface

versity Avenue. Since our actual collected data was limited, we emulated additional user data by doing

random linear combinations of data from real users. The realcommunity speed distribution is shown in

Figure 4.4(a). The reconstruction method presented in [49]is used to estimate the community speed distri-

bution from the perturbed community data, with the result being shown in Figure 4.4(b). We note from both

these figures that the distributions are quite similar, showing that even with a small community of users (17

users), we can accurately reconstruct the entire distribution.

4.3 Weight Watchers

The Weight Watchers case study is motivated by the numerous weight watchers and diet communities that

exist today. An individual on a particular diet monitors herweight on a periodic basis, perhaps by taking a

weight measurement once a day. This individual would likelybe interested in comparing her weight loss to

that of other people on a diet in order to get a feedback regarding the effectiveness of the diet program she

is following. Although, the person would like to do it in sucha manner that her weight data remains private.

In the Traffic Analyzer application, to the extent of the authors’ knowledge, there is no good speed

model for a vehicle on a city road. Thus, the speed is modeled in a semi-empirical way. However, in many

other applications, accurate data models are well known andhence can be used to provide more privacy. The
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Figure 4.4: Figures showing the real (a) and reconstructed (b) community speed distributions for a popula-
tion of 200 users

Weight Watchers application is one such example. Several models for weight loss and dieting have been

proposed in existing literature [6, 23, 42, 75]. We adopt themodel proposed in [75], which is a non-linear

model, where the weight of a dieting user over time can be roughly approximated by three parameters:λk,

β, andW0. β is the body metabolism coefficient,W0 is the initial weight of the person right before dieting,

andλk is the average calorie intake of that person on dayk. The weightW (k) of a dieting user on dayk of

the diet is characterized by a non-linear equation:

W (k) = W (k − 1) + λk + βW (k − 1)3/4 (4.2)

W (0) = W0 (4.3)

The equations 4.2, 4.3 are used to generate the noise stream.

In our deployment, we recorded the weight of a single user over the course of sixty days, once each

day. We generate the parameters for a typical user based on the data from our deployment and use these to

emulate multiple users.

The parameters for this model includeλk, β andW0. The range ofλ andβ can be found in [75]. The

range of the initial weightW0 can be taken as the weight of a normal adult which is from 80 pounds to 210

pounds. The simplest distribution for these parameters is uniform within their respective ranges. Samples
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of the real weight data, noise and the perturbed data are shown in Figure 4.5.
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Figure 4.5: Graph showing real weight, noise, and perturbedweight of a single user

In this application, we demonstrate a different way of perturbing the user data, but use the same algo-

rithm to reconstruct the community distribution. Given thegenerated noisen, and the datax, the perturbed

data is generated as follows,y = Ax + Bn + C. In this type of perturbation,A, B andC are random

variables whose distributions are known to the aggregationserver and the users. The reconstruction of the

community distribution can be done in a two-step process:

• Reconstruct the distribution ofAx by consideringBn+ C as noise, then compute the distribution of

log(Ax).

• Becauselog(Ax) = log(A) + log(x), we could reconstruct the distribution oflog(x) using the distri-

bution of log(Ax) found above and the distribution oflog(A). Finally, compute the distribution ofx

from the distribution oflog(x).

Note that the transformation of random variables bylog andexp is trivial because both functions are

monotonic. The reconstruction method used in each step is the same as the method used in the Traffic

Analyzer application (Section 4.2). Figures 4.6(a) and 4.6(b) plot the original weight distribution and

the reconstructed weight distribution using the above method, respectively. In this experiment, we use the

same method described in the Traffic Analyzer application togenerate a big community (500 users). For
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simplicity, we chooseC = 0. A andB are drawn from uniform distribution between 0 and 10. We observe

from the figures that the reconstructed community distribution is very close to the real distribution.
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Figure 4.6: Figures showing real (a) and reconstructed (b) community weight distributions for one user

We observe from Figure 4.5 that the perturbed data contains anumbers of high frequency components,

thus it is common to ask if the user data can be revealed using filtering techniques? We apply the PCA

reconstruction method (same method used in the Traffic Analyzer application) to reconstruct an individual

user’s data. In order to employ PCA, we generated a virtual community containing 1000 users, where each

user sends their perturbed data to the aggregation server. Figure 4.7 shows the real weight data, perturbed

weight, and the reconstructed weight using PCA for a single user. The result shows that the reconstructed

curve fits in the same direction as the perturbed data. Thus the filtering techniques again do not work with

our perturbation scheme.

4.4 Conclusion

In this chapter, we presented a novel privacy preserving technique that utilizes data perturbation to achieve

stream privacy. It ensures the privacy of individual user data against common reconstruction attacks and al-

lows for the computation of statistics accurately. We demonstrated that the above algorithm can be utilized

in a grassroots manner, one where there is no necessity for a trusted third party to compute the statistics.

We also showed that the algorithm can be applied by non-expert users, individuals who are not experts at

statistics or modeling. We demonstrated the application ofthe above algorithm in two different applica-
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Figure 4.7: Graph showing the results of PCA reconstructionscheme on a single user

tions, Traffic Analyzer and Weight Watchers. These applications exemplify the privacy preserving nature of

PoolView and the algorithm is implemented as part of the privacy firewall module of PoolView.
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Chapter 5

Community Model Construction

Community sensing applications [22, 61, 76, 94] rely on individuals collecting sensor data and sharing it

within a community (of common interest). These collected sensor data are then used for mapping common

phenomena or computing community statistics. We discussedthe computation of community statistics in the

previous chapter (Chapter 4). Typically, large scale community sensing applications require a lot of data to

compute or map the phenomena of interest. For example, in order to obtain a complete traffic map or an air

quality map of a large city, individuals need to contribute alarge number of traffic/air quality measurements

within the area of interest. The challenge in such a scenariois to be able to generalize well from relatively

sparse measurements of high-dimensional spaces to model the phenomena of interest. This is complicated

by the fact that such phenomena are complex and trivial modeling techniques will fail to capture the entire

phenomena.

In what follows, we will develop a novel GPS-based navigation service, calledGreenGPS, that gives

drivers the most fuel-efficient route for their vehicle as opposed to the shortest or fastest route. We will use

GreenGPS to demonstrate a common problem in participatory sensing applications and present a solution

methodology which can be extended to generic applications too. GreenGPS relies on data collected by

individuals from their vehicles and a generalization framework that predicts the fuel consumption of an

arbitrary car on an arbitrary street.

GreenGPS is possible thanks to theOn-Board Diagnostic(OBD-II) interface, standardized in all vehi-

cles that have been sold in the United States after 1996. The OBD-II is a diagnostic system that monitors

the health of the automobile using sensors that measure approximately 100 different engine parameters.

Examples of monitored measurements include fuel consumption, engine RPM, coolant temperature, vehicle

speed, and engine idle time. A comprehensive list of measured parameters can be obtained from standard

specifications as well as manufacturers of OBD-II scanners [9]. Several commercial OBD-II scanner tools
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are available [3, 9, 10, 11], that can read and record these sensor values. Apart from such scanners, re-

mote diagnostic systems such as GM’s OnStar, BMW’s ConnectedDrive, and Lexus Link are capable of

monitoring the car’s engine parameters from a remote location (e.g. home of driver of the car).

GreenGPS utilizes a vehicle’s OBD-II system and a typical scanner tool in conjunction with PoolView’s

modules to enable data collection, upload, analysis, and mapping of fuel consumption data. In contrast to

traditional mapping and navigation tools, such as Google maps [53] and MapQuest [72], which provide

either the fastest or the shortest route between two points,GreenGPS collects the necessary information

to compute and answer queries on themost fuel-efficient route. The most fuel-efficient route between two

points may be different from the shortest and fastest routes. For example, a fastest route that uses a freeway

may consume more fuel than the most fuel-efficient route because fuel consumption increases non-linearly

with speed or because it is longer. Similarly, the shortest route that traverses busy city streets may be

suboptimal because of downtown traffic.

The motivation for GreenGPS does not need elaboration. GreenGPS users might be driven by bene-

fits such as savings on fuel or reducing CO2 emissions and the carbon footprint. With the increase in the

use of Bluetooth devices (e.g., cell-phones) and in-vehicle Wi-Fi, GreenGPS can be easily supported by

inexpensive OBD-II-to-Bluetooth or OBD-II-to-WiFi adaptors that can upload OBD-II measurements op-

portunistically, for example, to applications running on the driver’s cell phone [84]. It can also be supported

by scanning tools that read and store OBD-II measurements onstorage media such as SD cards. At the

time of writing, OBD-II Bluetooth adaptors, such as the ELM327 Bluetooth OBD-II Wireless Transceiver

Dongle, are available for approximately $50, together withsoftware that interfaces them to phones and

handhelds.

GreenGPS supports two types of users; members and non-members. Members are those who own

OBD-II adaptors or scanning tools and contribute their datato the GreenGPS repository from the OBD-II

sensors described above. They have GreenGPS accounts and benefit from more accurate estimates of route

fuel-efficiency, customized to the performance of their individual vehicles.

Non-members can use GreenGPS to query for fuel-efficient routes as well. Since GreenGPS does not

have measurements from their specific vehicles, it answers queries based on the average estimated perfor-

mance for their vehicle’s make, model, and year (or some subset thereof, as available).
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We make two application specific contributions. First, we demonstrate how to use participatory sensing

to develop a fuel-saving navigation service that relies on voluntary data collection by individuals to influence

their routing decisions. Second, we provide a brief experimental evaluation of the system, where users are

shown to save 6% in fuel on average over the shortest route and13% in fuel over the fastest.

A general participatory sensing applications related contribution is to demonstrate how sparse samples

of high-dimensional spaces can be generalized to develop models of complex nonlinear phenomena, where

one size (i.e., model) does not fit all. We develop predictionmodels that enable us to extrapolate from fuel-

efficiency data of some vehicles on some streets to the fuel consumption of arbitrary vehicles on arbitrary

streets. While, in this case, the utility of such extrapolation may be short-term (soon all cars will be able to

measure their own fuel-efficiency), the basic mechanisms and principles behind it can be used for a variety

of other participatory sensing applications that share theneed for generalizing from sparse data.

GreenGPS utilizes prediction models, developed in this chapter, to abstract vehicles and routes by a set

of parameters such that fuel efficiency can be computed simply by plugging in the parameters of the right

car and route. Using Dijkstra’s algorithm, the minimum-fuel route can then be computed. An experimental

study is performed over the course of three months using sixteen different cars with different drivers (and a

total of over 1000 miles driven) to determine the accuracy ofprediction models. It is shown that a prediction

accuracy of 1% is attainable.

The rest of this chapter is divided into eight sections. Section 5.1 presents a feasibility study that inves-

tigates the amount of fuel savings that can be achieved by using GreenGPS and by following fuel-efficient

routes. The details of GreenGPS system are described in Section 5.2. Models for estimating fuel consump-

tion are presented in Section 5.3. Implementation details and evaluation results are presented in Section 5.5

and Section 5.6, respectively. Section 5.7 discusses the results and lessons learned. Finally, we conclude

with directions for future work in Section 5.8.

5.1 A Feasibility Study

In this Section, we present a feasibility study that provides the reader with a proof of concept estimate of

fuel savings that can be achieved by driving on the most fuel efficient routes.

We compute fuel consumption between landmarks in Urbana-Champaign for three different cars (and
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drivers) and compare these values across multiple routes between the same pairs of landmarks. The land-

marks chosen were frequently visited destinations such as the Siebel Center, Walmart, and the football

stadium The shortest and fastest routes were obtained usingMapQuest [72]1. In Figure 5.1, we plot the fuel

consumption for the shortest route, the fastest route, and the route that consumes the least fuel (as computed

from our models) for the aforementioned landmarks.
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Figure 5.1: Figure showing fuel consumption for multiple routes between multiple selected landmarks for
different cars and drivers

We observe from Figure 5.1, that in the first experiment, the fastest route is also the most fuel-efficient

route. In the second experiment, the shortest route consumes the least amount of fuel. In the third exper-

iment, the most fuel-efficient route is different from both the shortest and the fastest routes. We conclude

from the above observations that simply choosing the shortest or the fastest route will not always be fuel-

optimal.

For example, if the user always chooses the fastest route, their extra fuel consumption compared to

taking the optimal route is 0%, 24%, and 10% for the three landmarks, respectively (an average of about

11% overhead). Similarly, if the user always chooses the shortest route, their average extra fuel consumption

is about 11.5%. Hence, following the fuel-optimal route cantranslate (at the current national average gas

1Google maps provides only the shortest route. MapQuest provides both fastest and shortest routes. Hence, we use MapQuest
to get route information.
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price, which at the time of writing this paper was USD 2.86 [1]) into savings of at least 30 cents per gallon,

which is not bad for “cash back”.

The above results are only a proof of concept. They simply show that there may exist situations where

using a fuel-optimal route can save money. A more extensive study of route models and savings is presented

in the evaluation section.

To estimate the amount of savings that can be achieved on a global scale, we provide back of the envelope

calculations based on data from the Environmental Protection Agency (EPA) [36]. An estimated 200 million

light vehicles (passenger cars and light trucks) are on the road in the US. Each of them is driven, on an

average, 12000 miles in a year. The average mile-per-gallon(mpg) rating for light vehicles is 20.3 mpg.

Even if 5% of these vehicles adopted GreenGPS and 10% fuel savings were achieved on only a quarter of

the routes traveled by each of these vehicles, the amount of overall fuel savings is nearly 177 million gallons

of fuel ((12000/20.3)∗0.3∗(0.05∗200M)∗0.1). This translates into nearly half a billion dollars in savings

at the pump (based on the current national average pump prices for a gallon of gasoline). We consider the

above prospective savings acceptable.

5.2 The GreenGPS System

The service provided by GreenGPS is similar to a regular map application, such as Google maps [53] or

MapQuest [72]. Google maps and MapQuest provide the shortest or fastest routes between two points,

whereas GreenGPS computes the most fuel-efficient route. A snapshot of the Web-based GreenGPS’s user

interface, which was created using PoolView is shown in Figure 5.2 along with the most fuel efficient route

between two points for a user with a Toyota Celica, 2001. In the following subsections, we will discuss the

GreenGPS concept followed by how individuals use PoolView for data collection and data sharing and the

specifics of the hardware used for the purpose of data collection.

5.2.1 The GreenGPS Concept

Individuals who want to compute the most fuel-efficient route between two points enter the source and des-

tination address via the interface provided by GreenGPS. Members of GreenGPS (i.e., those individuals

who contributed participatory data) can register their vehicles that were used for data collection. Hence,
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Figure 5.2: Figure showing the user interface of GreenGPS with the most fuel efficient route between two
points on the map for a Toyota Celica, 2001.

GreenGPS can compute the route specifically for the registered vehicle. Other users may enter their ve-

hicle’s make, model, and year of manufacture. Since different vehicles have different fuel consumption

characteristics, these car details are used to compute the most fuel-efficient route for the given vehicle

brand. The advantage for the users who contribute data is that the system provides better estimates of the

most fuel-efficient routes to these individuals, thus allowing them to have higher savings.

Currently, it is impractical to assume that GreenGPS members will measure all city streets and cover

all vehicle types. Instead, measurements of GreenGPS members are used to calibrate generalized fuel-

efficiencyprediction models. These models, discussed in Section 5.3, show that the fuel consumption on an

arbitrary street can be predicted accurately from a set ofstaticstreet parameters (e.g., the number of traffic

lights and the number of stop signs) and a set ofdynamicstreet parameters (such as the average speed on the

street or the average congestion level), plus of course the vehicle parameters (e.g., weight and frontal area).

It is the mathematical model describing the relation between these general parameters and fuel-efficiency

that gets estimated from participant data. Hence, the larger and more diverse is the set of participants, the

better the generalized model.

For most streets, static street parameters can be readily obtained from traffic databases. For example,
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the number of traffic lights and the number of stop signs on streets can be obtained from the red light

database [54]. Dynamically changing parameters such as thecongestion levels or average speed are more

tricky to obtain. In larger cities, real-time traffic monitoring services can supply these parameters [101].

Many GPS device vendors, such as TomTom, also collect and provide congestion information. Finally, our

participatory sensing service, Traffic Analyzer, developed earlier in Chapter 4 has the potential to provide

congestion and speed data.

In our deployment, speed information is obtained from the collected data using the hardware described

in the next section. The speed data is aggregated for different city blocks, based on the GPS location

information. Thus, given a street name (or the latitude/longitude of a location), GreenGPS provides the

average speed information for the corresponding block.

5.2.2 GreenGPS Implementation using PoolView

Our architecture, PoolView, is used to implement GreenGPS.It facilitates the storage and sharing of OBD-

II sensor data. We implemented GreenGPS by writing our aggregation server for PoolView. An individual

who wants to share their OBD-II sensor data uses PoolView’s client side interface to upload their data to the

GreenGPS aggregation server. The aggregation server uses these data to calibrate models that relate street

and vehicle parameters to fuel-efficiency and offers the GreenGPS query interface for fuel-efficient routes.

Individuals who wish to contribute OBD-II data to GreenGPS install, in their vehicle, a commercial

OBD-II scanner along with a GPS unit. In our deployment, we use one such off-the-shelf device for data

collection purposes, called DashDyno [9], shown in Figure 5.3. The DashDyno’s OBD-II scanner is in-

terfaced to a Garmin eTrex Legend GPS [50] to get location data. The DashDyno records trip data (in-

cluding Garmin’s GPS location) on an SD card that the user later uploads it to the GreenGPS server (using

PoolView).

A total of 16 parameters are obtained from the car and the GPS,the most important of them being

instantaneous vehicle speed, total fuel consumption, rateof fuel consumption, latitude, longitude, and time.
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Figure 5.3: Hardware used for data collection

5.3 Generalizing from Sparse Data

In this section, we demonstrate the foundations of one of thekey mechanisms in participatory sensing

applications that are tolerant to conditions of sparse deployment; namely, the generalization from sparse

multidimensional data. Such generalization is complicated by the fact that, in high-dimensional data sets,

one size does not fit all. Hence, for example, developing a single regression model to represent all data is

highly suboptimal. In the case of GreenGPS, the lack of widespread availability of OBD-II scanner tools

suggests that the data contributed by users of our participatory sensing application will be a sparse sampling

of routes and cars. Hence, we aim to use data collected by a smaller population to build models capable of

predicting the fuel consumption characteristics of a larger population. Admittedly, the conditions of sparse

deployment are typically temporary (in the case of GreenGPS), making the above contribution short-lived

in nature. Nevertheless, it solves a key problem at a critical phase of most newly deployed systems, which

makes it important. Before we explain the details of the generalization mechanism, we will provide a brief

description of our data collection for the purpose of developing models.
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5.3.1 Data Collection

The vision for GreenGPS, when fully deployed, is to collect data from everyday users, which can be em-

ployed to update and refine predictions of fuel consumption when such users (or others with similar vehicles)

embark on new itineraries. In this chapter, we conducted a limited proof-of-concept study involving sixteen

users (with different cars) over the course of three months.A total of over 1000 miles were driven by our

users to construct the initial models. Figure 5.4 shows a partial map of the paths on which data were col-

lected. The details of the car make, model, year, and the number of miles of data collected for each car are

summarized in Table 5.1.

Figure 5.4: Coverage map for the paths on which data were collected

In the aforementioned experiments, each user was asked to drive among a specific set of landmarks in the

city. We split each drive into smallersegmentsto capture the variation in the fuel consumption on individual

streets. These segments were the “samples” used to capture the variables affecting fuel consumption and

develop initial prediction models.
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Car make Car model Car year Miles driven
Ford Taurus 2001 135

Toyota Solara 2001 45
BMW 325i 2006 70
Toyota Prius 2004 140
Ford Taurus 2001 136
Ford Focus 2009 95

Toyota Corolla 2009 45
Honda Accord 2003 102
Ford Contour 1999 22

Honda Accord 2001 18
Pontiac Grand Prix 1997 25
Honda Civic 2002 11

Chevrolet Prizm 1998 16
Ford Taurus 2001 10

Mazda 626 2001 9
Toyota Celica 2001 120

Hyundai Santa Fe 2008 22

Table 5.1: Table summarizing the cars used and the amount of data collected
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Figure 5.5: Figure showing the real mpg distribution for allthe sixteen users

5.3.2 Derivation of Model Structure

The first part of data generalization is to derive a model structure. The structure describes how various

parameters are related, but does not evaluate the various constants and proportionality coefficients. In this

66



case, we derive the structure of fuel prediction models fromphysical analysis.

To motivate the need for modeling, we plot the distribution of miles per gallon (mpg) for all the data

collected in Figure 5.5. We observe from this figure that the distribution is nearly uniform with the mpg

values varying between 5 and 50. The standard deviation of the mpg distribution is 9.12 mpg, which is

pretty high. Hence, an appropriate model is needed to estimate the fuel consumption on various segments.

The inputs to our prediction model include segment parameters and car parameters. We do not consider

driver factors in the model because the sample size of drivers was small in our dataset. Note that, we

are interested in predicting long-term fuel consumption only. While actual savings of a user on individual

commutes to work may vary, the user might be more concerned with their net long-term savings. Hence, it

is important to capture only the statistical averages of fuel consumption. As long as the errors have near zero

mean, the savings are accurate in the long term. As a given user drives more segments, a value of interest

is the total end-to-end prediction error that results (which improves over time as the individual positive

and negative segment errors cancel out). We call that end-to-end error thecumulative error. It is useful to

normalize that error to the total distance driven. We call the resultcumulative percentage error. It represents

how far we are off in our estimate of total fuel consumption.

5.4 Model Structure Derivation

We will derive the model structure for fuel consumption fromthe basic principles of physics. Many such

models exist in prior literature [20, 40, 102], which simplifies the task. We divide the parameters that affect

fuel consumption into (i)static segment parameters, namely, numbers of stop signs (ST ), numbers of traffic

lights (TL), distance traveled (∆d) and slope (θ), (ii) dynamic segment parameters, namely, average speed

(v̄), andcar specific parameters, namely, weight of the car (m) and car frontal area (A).

Assuming that the engine RPM isωs−1, the torque generated by the engine isΓ(ω), the final drive ratio

isG, thek−th gear ratio isgk, and the radius of the tire isr, thenFengine is given by the following equation:

Fengine =
Γ(ω)Ggk

r
(5.1)

The frictional forceFfriction is characterized by the gravitational force acting on the car, given by
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mgcos(θ), wherem is the mass of the vehicle andg is the gravitational acceleration and the coefficient of

friction, crr. The equation for frictional force is:

Ffriction = crrmgcos(θ) (5.2)

The gravitational force,Fg, due to the slope is given by the following equation:

Fg = mgsin(θ) (5.3)

Finally, the force due to air resistance,Fair, is given by the following equation:

Fair =
1

2
cdAρv

2 (5.4)

In the above equation,cd is the coefficient of air resistance,A is the frontal area of the car,ρ is the air

density, andv is the current speed of the car.

Assuming that the car is on an upslope, the final force acting on the car is given by the following

equation:

Fcar = Fengine − Ffriction − Fair − Fg (5.5)

In order to obtain a relation between the fuel consumed and the above forces, we note that the fuel

consumed is related to the power generated by the engine at any instance of time,t. If fr is the fuel rate

(fuel consumption at a given time instance) andP is the instantaneous power, thenfr ∝ P . Power is

related to the torque function,Γ(ω), and engine RPM,ω as follows: P = 2πΓ(ω)ω. Hence, we obtain

fr = βΓ(ω)ω.

In the above equation,β is a constant. Further, we also have the relationshipv = rω from rotational

dynamics. From the above equations, we obtain the fuel consumption rate as a function of the forces acting
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on the car shown below:

Fcar = ma

=
frGgk
rωβ

− crrmgcos(θ) −
1

2
cdAρv

2 −mgsin(θ) (5.6)

mav = β′fr − crrmgcos(θ)v −
1

2
cdAρv

3 −mgvsin(θ) (5.7)

fr = k1mav + k2mvcos(θ) + k3Av
3 + k4mvsin(θ) (5.8)

Finally, we can obtain the equation for the fuel consumed,fc by integrating the rate of fuel consumption

with respect to time. We obtain the following equation:

fc =

∫ t2

t1

fr(t) dt

=

∫ t2

t1

(k1mav + k2mvcos(θ) + k3Av
3 + k4mvsin(θ)) dt (5.9)

In order to further derive a model that can be used for regression analysis, we will detail the various

components that are part of the fuel consumption of a car. As shown in the above equation, a moving car at

a constant speed on a straight road which does not encounter any stop lights or traffic will only need to over-

come the frictional forces caused by the road, the air, and gravity. These are represented by
∫ t2
t1
k2mvcos(θ),∫ t2

t1
k3Av

3, and
∫ t2
t1 k4mvsin(θ), respectively. On the other hand, the first component

∫ t2
t1
k1mav can be bro-

ken down further into two components, one is the extra fuel consumed due to encountering stop signs (ST)

and traffic lights (TL) and the second one is the extra fuel consumed due to congestion. Hence, the previous

equation now becomes the following:

fc =

∫ t2

t1

(k11mav(ST + νTL) + k12mav) + k2mvcos(θ) + k3Av
3 + k4mvsin(θ)) dt (5.10)

If we replacev with v̄, the average speed, assume thatθ remains constant, and we knowa = dv/dt, we

can further simplify the above integral to the following:

fc = k11mv̄
2(ST + νTL) +

k12mv̄
2

2
+ k2m∆dcos(θ) + k3Av̄

3∆t+ k4m∆dsin(θ) (5.11)
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In the above equation,∆d is the distance traveled and∆t is the time traveled. Dividing the above

equation by∆d gives us the metricfuel consumed per mile (gpm), which is appropriate for our analysis

purposes. Hence, our final model will now be (replacing the constants byk1, k2, k3, k4 andk5:

gpm = k1mv̄
2 (ST + νTL)

∆d
+ k2m

v̄2

2∆d
+ k3mcos(θ) + k4Av̄

2 + k5msin(θ) (5.12)

We plot the distributions for various parameters (for individual segments) in Equation 5.12 for the data

that we collected in Figure 5.6. In the next section, we show that the coefficients of our model,k1, k2, k3, k4
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(a) Traffic light distribution
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(b) Stop sign distribution
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(c) Average speed distribution

Figure 5.6: Figures showing the distributions of number of traffic lights, stop signs, and average speed

andk5 differ among different vehicles making it harder to generalize from vehicles we have data for to those

we do not.

5.4.1 Model Evaluation: One Size Fits All?

Regression analysis is a standard technique for estimatingcoefficients of models with known structure. In

this section, we demonstrate that a single regression modelis a bad fit for our data. Said differently, while

a regression model that accurately predicts fuel consumption can be found for each car from data of that

one car, the model found from the collective data pool of all cars is not a good predictor for any single

vehicle. Hence, in a sparse data set (where data is not available for all cars); it is not trivial to generalize.

We illustrate that challenge by first evaluating the performance of car models obtained from their own data

(which is good), then comparing it to the trivial generalization approach: one that finds a single model based

on all car data then uses it to predict fuel consumption of other cars. A solution to the challenge is presented

in the next section.
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One should add that while the generalization challenge is common to many participatory sensing appli-

cations, our evaluation is not intended to be a definitive study on vehicular fuel consumption. For example,

we evaluate fuel consumption in Urbana-Champaign only, which is quite flat. Hence,θ = 0 is a good ap-

proximation. (We therefore set the last term,k5msin(θ), of our physical model to zero, sok5 is no longer

needed.) Furthermore, the city is rarely congested. Moreover, the range of cars used in the study is rather

skewed towards sedans, and hence not representative of the diversity of cars on the streets. Fortunately, even

this rather homogeneous data set is sufficient to show that generalization is hard.

First, we determine the length of the segment empirically. We vary the segment length from 0.5 miles

to 2 miles in increments of 0.5 miles and evaluate the accuracy of our model in each of these cases. We

observed that the accuracy of the model is best when the segment length is 1 mile. Hence, we fix the

segment length to be 1 mile in the rest of our experiments. We evaluate the accuracy of models derived from

vehicle data using a cross validation approach. We choose a random data point (i.e., a givensegmentof a

street driven by some car) to predict fuel consumption for. We then use other points to train a model. We

distinguish models based on other segments of the same car from models based on data from other cars in

predicting the fuel consumption of the one segment. The 4th and 5th columns of Table 5.2 summarize the

resulting errors, respectively, for a fraction of the used cars.

Car make Car model Car year Ind. cumulative error% General cumulative error%
Hyundai Santa Fe 2008 2.89 23.63
Honda Accord 2003 0.89 15.3
Ford Contour 1999 0.83 91.4
Ford Focus 2009 0.12 27.35
Ford Taurus 2001 0.75 24.85

Toyota Corolla 2009 0.61 89.97
Ford Taurus 2001 0.56 6.9

Table 5.2: Table summarizing the cumulative percentage errors for the individual car models and the gener-
alized case when all the data (except one car) is used to obtain the model

We also plot the error distribution for individual segments(for one car) in Figure 5.7. We observe that

this distribution is near normal and the mean is near zero (0.26%). We observe a similar distribution for

other cars too.

We also observe from the Table 5.2 that the cumulative percentage error for individual car models are
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Figure 5.7: Figure showing the segment error distribution for one car

quite good. Most of them are below 2%. On the other hand, when we predict one car’s consumption using

data from other cars, the errors are quite high. This suggests the existence of non-trivial bias in error that

does not cancel out by aggregation. In the next section, we propose a way to mitigate this problem based on

grouping cars into clusters, such that prediction can be done based on othersimilar cars by some metric of

similarity.

5.4.2 Model Clustering

The above suggests a need for better generalization over vehicle data. Different car types behave differently.

Even though the model is parameterized by factors such as carweight and frontal area, they are not enough

to account for differences among cars. This is a common problem in high-dimensional data sets collected in

participatory sensing applications. The question becomes, if we cannot generalize over the whole set, can

we generalize over a subset of dimensions?

We propose a solution that utilizes a popular approach from data mining literature,data cubes[55].

Data cubes are structures for Online Analytical Processing(OLAP) that are widely used for multidimen-

sional data analysis. They group data using multiple attributes and extract similarities within each group.

For example, previous work showed how to efficiently construct regression models for various subsets of
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data [26]. The data cube framework can thus help compute the optimal generalization hierarchy in that it

can help generalize data based on those dimensions that results in the minimum modeling error.

We consider three major attributes (data dimensions) of a given car:make, year, andclass. Based on

these three attributes, data can be grouped in eight ways. Atone extreme, all cars may be grouped together,

thus producing a single regression model (which we have shown is not acceptable). At the other extreme,

cars can be partitioned into clusters based on their (make, year, class) tuple. A separate model is derived

for each cluster. Therefore, a2001 compact Ford is modeled differently from a2001 mid-size Ford, a2002

compact Ford or a2001 compact Toyota.
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Figure 5.8: Cumulative error percentage of the models obtained from various clustering approaches

Between these two extremes, to find out which clustering scheme gives the best accuracy, we obtain the

cumulative percentage error for each scheme. The results, summarized in Figure 5.8, show that different

generalizations have different quality. These generalizations are somewhat better than using all car data

lumped together. While our data set is too small to make general conclusions (from only 16 cars), as more

data are collected in a deployed participatory sensing application (e.g., say deployment reaches 100s of

cars), progressively better generalizations can be attained.

To use results of Figure 5.8, one would build models for each pair of make and year (the lowest error
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clustering scheme). If a car is encountered for which we do not have data on its (make, year) cluster, we go

one level up and use (make) clusters or (year) clusters as generalizations for the (make, year) cluster. If there

are no models corresponding to either make or year of a given car, we have no recourse but to go one level

up and use the model computed from all data. Figure 5.9 depicts the generalization process among various

model clusters.

Make Year

All

Make, Year

Figure 5.9: Model generalization from fine grained clusters

Car make Car model Car year Cumulative error %
Hyundai Santa Fe 2008 0.73
Honda Accord 2003 1.01
Ford Contour 1999 1.42
Ford Focus 2009 2.7
Ford Taurus 2001 3.38

Toyota Corolla 2009 1.28

Table 5.3: Table showing the cumulative error percentage for each individual car when model clustering is
used

We evaluate the performance of our model clustering technique by measuring how accurately an indi-

vidual car can be modeled using the data from cars with similar make or year. Specifically, we construct

the model cluster while removing data of a certain car type. We use the model cluster to estimate the fuel

consumption for a given car. The resulting cumulative errorpercentage is presented in Table 5.3.

To put the above results in perspective, the reader is reminded that the nature of the landscape in Urbana-
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Champaign limits our study in that we do not have data on hillyterrain. The study would have been more

interesting if conducted on uneven grounds, where changes in incline modulate fuel consumption. We

expect that future data collected will be used to evolve our current model by considering the terrain (θ in

Equation 5.12) parameter. Further, new data collected willbe used to update the model. Another limitation

of our modeling approach arises from the class of cars for which data has been collected. We observe from

Table 5.1 that the majority of the cars are sedans (with the exception of one SUV). We observe that the

generalization tree (Figure 5.9) does not use theclassof the car. This generalization tree is specific to the

dataset collected. The point of this section is to illustrate an approach to improve prediction in the temporary

but important conditions of sparse deployment. Ultimately, when all cars have their own OBD-II readers

supplying data to drivers’ cell-phones, we shall not need the generalization scheme described above.

5.5 Implementing GreenGPS

The GreenGPS server is implemented as an aggregation serverin PoolView (data is collected by the server

from individual users is described in Section 5.2). The server utilizes various PoolView modules, which

include the storage (server), community model construction, and map based application support tools.

GreenGPS uses an instance of the map-based application support tools to obtain the fuel efficient routes.

It maintains the street variables affecting fuel consumption as additional parameters in the OSM map. This

information is stored as a tag/value pair in the way object (of the OSM map), where tag is a street parameter

and value is the corresponding value of the parameter. Further, the car parameters are maintained in a

separate database, stored in the data storage component of the GreenGPS aggregation server. The model to

compute fuel consumption on a given way (for a given car and driver) queries these databases and computes

the fuel consumption on the way.

The OBD-II data shared by individuals is used to compute regression models that predict the fuel con-

sumption on specific streets given the car details (e.g. make, model, age). The regression variables which

are street specific are stored in the OSM map database, whereas the car specific variables are stored in a

similar database.
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Figure 5.10: Figure depicting the various modules of GreenGPS

5.5.1 Model Clustering Implementation

GreenGPS model clustering is implemented as an instance of the community data modeling module of

PoolView. First, this module takes as input the model structure (as derived in Section 5.3), the clustering

parameters, and the collected data and creates the generalization hierarchy. Once the hierarchy has been

established, this module can then be queried by providing asinput the model structure parameters (such as

number of stop signs, traffic signals, average speed, and carweight). The output of such a query will be the

fuel consumed by the given car on the queried road segment.

5.5.2 Routing in GreenGPS

Routing is achieved in GreenGPS by customizing the open source routing software, Gosmore [80]. Gosmore

is a C++ based implementation of a generic routing algorithmthat provides shortest and fastest routes
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between two arbitrary end-points. Gosmore uses OSM XML map data for doing routing. Gosmore’s routing

algorithm is a heuristic that by default computes the shortest route. This routing algorithm can be thought of

as a weighted Dijkstra’s algorithm on the OSM map, where the nodes of the graph are OSM nodes and the

edges of the graph are OSM ways and the weights of the edges arethe lengths (distance) of the ways. The

fastest route is computed by multiplying the distance by an inverse speed factor (thus giving lower weights

to faster ways). Our fuel-optimal routing algorithm multiplies the distance by an inverse mpg (miles per

gallon) metric that results in lower weights for fuel-optimal ways.

5.5.3 Other Implementation Issues

Street address inputs provided by the user are translated into latitude/longitude pairs using PoolView’s

geocoding module.

The GUI frontend to display the fuel-optimal route (shown inFigure 5.2) utilizes Microsoft Bing maps.

Routes are color coded and rendered aspolylineson Bing maps. For example, the fuel-optimal route is a

“green” color polyline.

When a query is posed to GreenGPS for the fuel-optimal route between the start address and destination

address, the addresses are first geocoded into their corresponding latitude and longitude pairs using the

geocoder module. The latitude and longitude pairs of the start and destination addresses are then fed to the

routing module which computes the fuel-optimal route (along with the shortest and fastest routes) using the

OSM XML database and the prediction models of fuel consumption on streets (computed from the OBD-II

sensor data contributed by users). The computed routes are then displayed on the Bing maps based GUI

frontend.

5.6 Evaluation

We evaluate the performance of GreenGPS in two stages. First, we evaluate the performance of our model

by using it to predict the end-to-end fuel consumption for long routes. Second, we evaluate the potential

fuel savings of an individual using GreenGPS.
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5.6.1 Model Accuracy

We first evaluate the accuracy of our prediction model in estimating fuel consumption on long routes. These

routes are continuous sequences of segments that individuals drove. Only six cars are used in this experiment

2 because the data from the rest of the cars did not include multiple paths (and hence we would not be able

to do path-based cross validation, where data collected on one path is used to predict fuel consumption on

another). We consider the path error as the end-to-end prediction error for the given path (which is the metric

used for evaluation in Section 5.3). For cross validation, we remove the data points associated with a given

path and obtain a model for the car, then obtain the error in predicting fuel consumption for this path based

on the computed model. We repeat the above for all the paths.

The entire path error distribution corresponding to the above experiment when prediction for each car

is used based on data of the same car (on other paths) is shown in Figure 5.11. We observe that the path

error distribution is nearly normal and that the mean of thisdistribution is near zero (<1%). We conduct a

similar experiment to derive the path error distribution that is achieved by employing clustering such that

fuel consumption of cars is predicted from that of other carsin the nearest cluster. To experiment with

prediction accuracy of clusters, we remove the data points for each car (as if that car was not known to the

system) and cluster the rest of data points, as described in Section 5.4.2, based on make, year, and both.

Fuel consumption of the removed car is then predicted using the nearest cluster. Namely, we first check if a

cluster exists with the same car make and year. If no such cluster exists, we check for a cluster of the same

make or the same year, respectively. Finally, a model based on all car data is used if all the previous steps

fail. The prediction error for each path is computed as before and the distribution is presented in Figure 5.12.

Again, a normal distribution of the path errors is observed with near zero mean (<4%).

In order to understand how path errors vary with path lengths, we bin the paths based on their length

and compute the average of the absolute path errors as a function of path length. We repeat this experiment

for the case where models are derived for each car individually and the case where models are derived for

clusters and the nearest cluster is used. We plot the mean of the absolute path errors for varying path lengths

in Figure 5.13.

We observe from Figure 5.13 that the error decreases with increasing path length for both the individual

2Ford Focus, 2009; Ford Taurus 2001; Toyota Corolla, 2009; Ford Taurus, 2001, Honda Accord, 2001; and Ford Taurus, 2001.
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Figure 5.11: Distribution of path error percentages when training is done using individual cars
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Figure 5.12: Distribution of path error percentages for theclustering approach

and cluster based models. As expected, models based on the owner’s car do better than models based on the

nearest cluster, but the cumulative error continues to decrease with distance driven, which is what we want.

We have not explored if this holds true when the commutes havelarge dynamics in speeds, such as in larger

cities. The current data set is limited in that it was collected in a fairly quiet town.
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Figure 5.13: Mean path error when path length is varied for individual car models and cluster based models

From the perspective of building participatory sensing applications, the above suggests the importance

of finding models that do not havebiased error. Since the models often try to predict aggregate or long-term

behavior (such as long term exposure to pollutants, annual cost of energy consumption, eventual weight-loss

on a given diet, etc), if the error in day-by-day predictionsis normally distributed with zero mean, the long-

term estimates will remain accurate. Hence, rather than worrying about exact models, GreenGPS attempts

to find unbiasedmodels, which is easier.

5.6.2 Fuel Savings

In this section, we evaluate the fuel savings achieved when using the GreenGPS system. To evaluate fuel

savings, we chose landmarks in the city of Urbana-Champaignthat are visited by the drivers in our study

from their daily commutes, such as work, gym, frequently visited restaurants, and shopping complexes. To

eliminate subjective choice of routes between the selectedlandmarks, we selected a pair of landmarks then

looked up both the shortest route and fastest route between these landmarks on MapQuest. The person then

drove eight round trips (of approximately 20-40 minutes each) between their selected pair of landmarks;
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four on the shortest route and four on the fastest route, recording actual fuel consumption for each round

trip. The landmarks together with the shortest and fastest routes are shown in Figure 5.14. We then used

the GreenGPS system to predict which of the two compared routes for each pair of landmarks is the better

route, which it did correctly in every case.

The fuel consumption data for each roundtrip on the shortestand fastest routes for all the cars in this

experiment are shown in Table 5.4.

Car Landmarks Route Fuel consumption GreenGPS Savings %
type type (gallons) prediction

Honda Accord 2001
H1 to Mall

Shortest 0.19 0.16 0.19 0.16
Shortest 31.4

Fastest 0.22 0.23 0.25 0.22

H1 to Gym
Shortest 0.19 0.20 0.19 0.18

Shortest 19.7
Fastest 0.21 0.23 0.22 0.25

Ford Taurus 2001 H2 to Rest.
Shortest 0.24 0.23 0.23 0.22

Shortest 26
Fastest 0.3 0.28 0.29 0.29

Toyota Celica 2001 H2 to Work
Shortest 0.18 0.16 0.18 0.17

Fastest 10.1
Fastest 0.17 0.14 0.16 0.15

Nissan Sentra 2009 H3 to CUPHD
Shortest 0.14 0.15 0.15 0.15

Fastest 8.4
Fastest 0.13 0.13 0.14 0.14

Honda Civic 2002 H4 to Work
Shortest 0.33 0.32 0.33 0.3

Fastest 18.7
Fastest 0.25 0.28 0.27 0.24

Table 5.4: Table showing fuel consumptions for the various roundtrips between different landmarks

We observe from Table 5.4 that the fuel-optimal route for destinations of the Honda Accord and Ford

Taurus was the shortest route, whereas, for the other three destinations it was the fastest route. Hence,

picking the shortest or fastest routes consistently is not optimal. To confirm that the differences in fuel

consumption between the compared routes are not due to measurement noise, we tested the statistical sig-

nificance of the difference in means using the two pairedt-test. The test yielded that the differences are

statistically significant with a confidence level of at least90%. The average savings (by choosing the correct

route over the alternative) for each pair of landmarks and car are summarized in Table 5.4.

Comparing the total fuel consumed on the optimal route to theaverage of that consumed on the shortest

route and fastest route (assuming the driver guesses at random in the absence of GreenGPS), the savings

achieved are roughly 6% over the shortest path and 13% over the fastest, which is consistent with data we

reported earlier in the feasibility study.3. This is by no means statistically significant, since only a handful

3The feasibility study used different routes from those reported above
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Figure 5.14: Figure showing the landmarks and corresponding shortest and fastest routes

of routes were used in the experiments above, but it nevertheless shows promise as a proof of concept.
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5.7 Lessons Learned

This section presents, in its two respective subsections, abrief discussion of our experiences with the

GreenGPS service and the limitations of the current study.

5.7.1 Experiences with GreenGPS

Several lessons were learned from GreenGPS, as an example ofparticipatory sensing applications. First,

we observed that data cleaning is an important problem and isapplication dependent. We had several

occasions when several fields were missing from the data. Forexample, the GPS sometimes failed to

communicate with the DashDyno and the location fields were then empty. A simple scheme (integrated with

the DashDyno specific data formatter module of PoolView) wasused to filter complete datasets from those

that were missing values. Another data-related issue was the presence of noise in the data. For example, in

our setup, we observed that (in some car models) whenever theGPS communicated with the DashDyno, the

fuel ratemeasurement had a large spike. This was likely due to improper use of sensor IDs, which led to data

overwriting. Solutions have to be developed that filter the noise at the source. For example, we developed

a simple filter (integrated with the data formatter module ofPoolView) that removes outliers from the data

before storing it. An application-specific challenge was observed due to the slight variations in the OBD-

II standards among different cars. For example, we observedthat the Toyota Prius (by default) outputs

the speed and fuel measurements in the metric system, ratherthan the Imperial system (which happens

to be the default for the remaining cars in our dataset). It isharder to propose generic solutions to such

problems. They suggest, however, that unlike small embedded systems, participatory sensing applications

involve a much larger number of heterogeneous components (e.g., different car types in GreenGPS). As such

components interact with each other or with aggregation services, subtle compatibility problems will play

an increasing role. Troubleshooting techniques are neededthat are good at identifying problems resulting

from unexpected or bad interactions among different individually well-behaved components. This is to be

contrasted, for example, with debugging tools that attemptto find bugs in individual components.

Finally, another lesson learned relates to the initial experimental deployment of participatory sensing

systems. A major hurdle in getting participatory sensing systems off the ground is to provide the right

incentives to the individuals (who are part of the system) [93]. We believe that the initial deployment, which
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tends to be sparse, should be carefully designed in order to provide incentives for larger adoption. It should

therefore be useful from the very early stages.

5.7.2 Limitations of Current Study

Apart from the limitations arising from the small size of thedata set, discussed earlier, we also make the

following observations. As expected, the main factors affecting fuel consumption of a vehicle on a path are

the average speed, the speed variability (estimated by averaging the speed squared), and the engine idle time

(estimated from the number of stop signs and stop lights on the path). A limitation of the study is that we did

not explore the use of real-time traffic conditions for purposes of fuel estimation. Rather, we opted to use

statistical averages of speed, speed variability and idle time. It is easy to see how such statistical averages

can be computed for different hours of the day and different days of the week given a sufficient amount of

historical data, yielding expected fuel consumption (in the statistical sense of expectation). The outcome

is that individual trips may differ significantly from the statistical expectation. However, by consistently

following routes that have a lower expected fuel consumption, savings will accumulate in the long term.

Drivers may think of GreenGPS as a long-term investment. Short-term results may vary, but long-term

expectations should tend to come true.

A limitation of the study, as discussed in Section 5.3, is that the selection of cars used in our current

study (mostly compact and mid-sized sedans) result in a generalization hierarchy that ignores the carclass

(currently incorporates only car make and year). Future deployments will consider a broader range of

vehicles, such as SUVs, minivans, and light trucks. The datafrom these deployments will be used to

recompute a better generalization hierarchy.

In order to achieve the next level of optimization, a next generation of GreenGPS can take into account

the real-time situation. Our experience reveals, not surprisingly, that the degree of congestion plays the

largest role in accounting for fuel consumption variationsamong individual trips of the same vehicle. On

lightly-utilized streets, another main factor is the degree to which traffic lights are synchronized. Lack of

synchronization accounted for up to a 50% increase in fuel consumption in our measurements.

Another limitation of the current service is that it does notproperly account for turns. Turns on the

path add fuel consumption, often because delays in the turn lane differ from those in the through lane. In
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particular, our measurements show that left turns may add a considerable amount of delay to a path. Hence,

routing should account for the type of turn as well.

Finally, we expect that fuel savings in larger cities will behigher than those reported in our evaluation,

both due to the larger variability in traffic conditions thatcould be taken advantage of, and because of

the larger connectivity which offers more alternatives in the choice of route. With the above caveats, we

believe that the study remains of interest in that it explores problems typical to many participatory sensing

applications, such as overcoming conditions of sparse deployment, adjusting to heterogeneity, and living

with large day-to-day errors towards estimating cumulative properties. The GreenGPS study could therefore

serve as an example what to expect in building similar services, as well as a recipe for some of the solutions.

5.8 Conclusions

In this chapter, we developed a solution approach for initial participatory sensing application deployments,

when the data collected are sparse and high-dimensional andmodeling the complex phenomenon poses

a challenge. We illustrated a solution approach using a novel navigation service, called GreenGPS, that

computes fuel efficient routes. This service relies on OBD-II data collected and shared by a set of users

via PoolView. Lessons were described that extrapolate fromexperiences with this service to broad issues

with participatory sensing service design in general. We also show that significant fuel savings can be

achieved by using GreenGPS, which not only reduces the cost of fuel, but also has a positive impact on

the environment by reducing CO2 emissions. An important issue addressed was surviving conditions of

sparse deployment. GreenGPS achieves this by using a hierarchy of models developed in this Chapter to

estimate the fuel consumption, and shooting for models thatare unbiased, if not accurate. Our future work

will address the challenges associated with real-time prediction, as well as experiences from a longer-term

deployment.
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Chapter 6

Related Work

We divide the related work section into three parts, the firstpart will summarize the literature in human

activity identification. In the second part, we will look at various participatory sensing applications and

finally review privacy related work.

6.1 Human Physical Activity Identification

We will first describe the related work for identification of basic human activities, such as walking, running,

and writing. Then, we will describe the related work corresponding to identification of activities of daily

living (ADLs).

6.1.1 Basic Human Activity Identification

There has been considerable work on activity identificationusing wearable computers. We discuss a repre-

sentative few in this section. We present a few accelerometer based wearable computers that identify human

activities. We will then examine wearable computers that use other sensors.

A wearable jacket and a sensor badge have been developed in [41] which sense perambulatory activities

for context awareness in a human. The jacket uses knitting techniques to form stretch sensors positioned to

measure upper limb and body movement. The sensor badge uses 2-axis accelerometers to identify different

postures of the human -standing, sitting, lying, walkingand running. The data from the accelerometer

is sampled at 20 samples/second to differentiate between the above postures. The sensor jacket is used

to detect the posture and movements of the user by usingknitted stretch sensorsand knitted conductive

tracking. Feature vector based activity identification using accelerometers to identify activities such as

standing, walkingandrunninghas been presented in [92]. Acyberjacketusing context sensors incorporating
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a tourist guide application has been built in [91]. A crossbow [30] ADXL202 2-axis accelerometer is used

to analyze the user’s behavior and classify them into different states, such assitting and walking. The

application program could register an interest in the eventthat the users activity changes from walking to

sitting. This could trigger the main processor and display relevant information to the user. A system with

accelerometers on pants attached to the laptop to interpretthe raw sensor data using Kohonen maps and

machine learning techniques for learning the user’s activities is presented in [69]. The system consists of

ADXL05 Analog devices two-axis accelerometers connected to a PIC microprocessor, which sends data

to a laptop via. the serial port. They were able to distinguish between various classes of movements,

such aswalking, sitting, running, jumping, climbing stairs, descending stairsandriding a bicycle.A wrist

worn fall detector for elderly individuals has been developed in [32]. The wrist device uses a three-axial

accelerometer to measure the acceleration and based on the norm of the acceleration measurements, the

fall is detected. A method to translate gesticulation into musical performance to express the performer’s

emotion is presented in [96]. The system consists of three dimensional acceleration sensors, a MIDI sound

source and a computer. This system controls the musical system directly by human gesture. Techniques

for processing data from accelerometers which enable the wearable computer to determine user’s activity

are presented in [90]. They use a clustering algorithm - a neural network to infer what the user is doing.

Magnetic field, angular rate and gravity sensors (MARG sensors) are used in [12] and [13] to determine the

posture of an articulated body. In the system, orientation relative to an earth-fixed reference frame of each

limb segment is individually determined through the use of an attached MARG sensor. Orientations are used

to set posture of an articulated body model. An inertial gesture recognition framework composed of 3 parts

is presented in [17]. The first is a set of six-axis wireless inertial measurement unit to fully capture the three-

dimensional motion. The second is a gesture recognition algorithm for analyzing data and categorizing them

axis-by-axis as simple motions with magnitude and duration. The third allows an application designer to

combine recognized gestures both concurrently and consecutively to create specific composite gestures that

can be set to trigger output routines. A real time motion tracking system using sensors built from tri-axis

microelectromechanical accelerometers, rate gyros, and magnetometers is presented in [119]. A Kalman

filter based fusion algorithm was applied to obtain dynamic orientations and further positions of segments

of the subject’s body. In [14], a low-cost/low-power wearable motion tracking system is developed, based
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on integrated accelerometers, called MOCA (motion capturewith accelerometers). The system is composed

of sensing units connected to a control/acquisition board,responsible for reading and preprocessing data,

and a mobile terminal running the recognition algorithm.

Our work on the smart jacket introduces the next generation of wearable computing systems in which

wired networks and centralized processing are replaced with wireless sensors individually equipped with

their own microprocessors, memory, and radio devices. Thisdecentralization offers more flexibility, scal-

ability, and independence within the computing platform. It also allows for disconnected operation of the

smart attire, where the user need not be in a specialized environment. The wireless nature of our system and

its added flexibility allow subsystems of sensors from articles of clothing (such as pants, shirts, and shoes) to

communicate and form a single sensor group with the purpose of providing additional functionality. Further,

the algorithm that we develop outperforms the existing approaches (which are feature vector based).

6.1.2 Identification of Activities of Daily Living

In the previous section (Section 6.1.1), we have introducedseveral papers that have developed techniques for

identifying basic activities, such as walking, running, sitting, and lying [41, 92, 91, 96, 90]. In this section,

we will focus on related work that is concerned with identification of a broader set of high level activities,

such as cooking, driving, and eating. As we have seen earlier, these activities are termedactivities of daily

living.

A Gaussian Mixture Model (GMM) based approach combined witha finite state machine was devel-

oped in [63] for the purpose of identification of early morning bathroom activities, such as washing face,

brushing teeth, and shaving. The sensor data input used for the identification of the above activities was an

accelerometer strapped to the wrist. In their previous work[62], the authors describe an integrated system

that combines sensors embedded in home as well as wearable sensors for the collection of data for activity

identification and labeling of the collected data. We identify a broader set of activities and use an existing

device, i.e. the cell phone for identifying these activities.

In [87], RFIDs were used to identify ADLs. A system called Proact was built that uses inputs from

RFIDs attached to various objects and a reader attached to a glove. These inputs were used to create models

usingdynamic Bayesian networks, that are then used for the identification of the activities.An approach
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that augments the use of RFIDs with an accelerometer mountedon the glove with the RFID reader was

presented in [99]. In the paper, RFID tag readings were used to narrow down the set of activities based on

the type of object being used. Then, features were extractedfrom the accelerometer data, after which three

different approaches for classification were used, namely Naive Bayes, Hidden Markov Models, and Joint

Boosting. In contrast to the above paper, our work uses existing sensors from cell phones and avoids the use

of cumbersome devices like a glove with an RFID reader attached and does not take input from the sensors

embedded in the environment.

An approach to identify a minimal set of sensors for the purpose of identification of eating and meal

preparation was presented in [71]. In the paper, the adaptive boosting (AdaBoost) classifier was used for

separating eating and associated tasks from other activities. Our work addresses the identification of a larger

set of activities with a limited set of sensors that are available on the cell phone.

State change sensors installed on various household objects such as doors, drawers, and refrigerators are

used to collect sensor data for the purpose of the identification of activities of daily living, such as cooking,

shopping, washing, and bathing in [117]. A self-adaptive neural network called Growing Self-Organizing

Maps is used for the purpose of activity identification. In contrast to our work, the above paper used inputs

from objects tagged with state change sensors.

A specialized device that records various sensor readings,such as the microphone, light, accelerome-

ter, and barometer was developed in [27]. An on-device inference algorithm that identifies activities such

as walking, sitting, climbing stairs, and brushing teeth was also presented. Our work on the other hand

identifies a broader set of activities and does not require a specialized device to be used.

6.2 Participatory Sensing

In this section, we will discuss various participatory sensing applications followed by a few architectures

that were proposed for participatory sensing and fuel efficiency related applications.

6.2.1 Participatory Sensing Applications

Participatory sensing applications have recently been described as an important emerging category of fu-

ture sensing systems [2]. Several applications have been developed and deployed, some examples include a
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participatory sensor network to search and rescue hikers inmountains [58], vehicular sensor networks (cars

with sensor nodes) such as CarTel [61], that deployed sensornodes in cars, and sensor networks embedded

in individuals attire [47], cyclist networks (BikeNet) [35], cellphone camera networks for sharing diet re-

lated images (ImageScape) [94], cellphone networks for media sharing (MMM2) [31], sensor networks for

parking space monitoring [74], and image search using mobile phones [113]. In this thesis, we focus on the

general data analysis tools required for the development ofparticipatory sensing applications, as opposed to

developing a specific application.

6.2.2 Participatory Sensing Architectures

An architecture for participatory sensing, calledPartisans, has been proposed in [86]. In that paper, the

main challenges addressed are those of data verifiability and privacy. In contrast to our work, the approach

assumes a trusted third party. A similar trust model was assumed in [68]. Recently, an architecture and a

set of tools for data collection and analysis from weather centers are being developed by CASA [29]. These

architectures do not consider privacy of the sensor data being shared (or assume the presence of a trusted

third party). Further, they assume that data density is high(although, we have shown that initial participatory

sensing deployments will be sparse and the data density willbe low).

6.2.3 Fuel Efficiency Related Applications

A comprehensive study that provides optimal route choices for lowest fuel consumption is presented in [37].

In the paper, fuel consumption measurements are made through the extensive deployment of sensing devices

(different from the OBD-II) in experimental cars. These fuel consumption measurements are then used to

compute the lowest fuel consumption route. In contrast to the work in [37], we use a sparse deployment to

build mathematical models for predicting fuel consumptionfor other streets and cars. In [21], the influence

of driving patterns of a community on the exhaust emissions and fuel consumption were studied. Feedback

was provided to the community regarding the driving patterns to cut back on the fuel consumption and ex-

haust. A driver support tool, FEST, was developed in [33]. FEST uses sensors installed in the car along with

a software to determine the driving behavior of the driver and provide real-time feedback to the individual

for the purpose of reduction in fuel consumption. An extension to FEST that includes more experiments
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and further evaluation can be found in [104]. A feedback control algorithm was developed in [97] that de-

termines speed of automobiles on highways with varying terrain to achieve minimal fuel consumption. An

extension to the work in [97] was developed in [57]. In [57], suggestions of driving style to minimize fuel

consumption were made for varying road and trip types (e.g. constant grade road, hilly road). The problem

was formulated using a control theoretic approach.

UbiGreen [44] is a mobile tool that tracks an individual’s personal transportation and provides feedback

regarding their CO2 emissions.

In a separate study [64], it was shown that rising obesity hasa significant impact on the total fuel

consumption in the US. Models were developed that studied the impact of obesity on the amount of fuel

consumed in passenger vehicles.

Our work in Chapter 5 represents the first participatory sensing service that aims at improving fuel

consumption. Using data collected from volunteer participants, models are built and continuously updated

that enable navigation on the minimum-fuel route.

6.3 Privacy

Privacy is an important problem in Internet based applications, as pointed out in [51]. Several privacy

approaches and algorithms have been developed, which span various fields of computer science. In this

section, we will provide a comprehensive summary of relatedwork with respect to sensor data (it is outside

the scope of this thesis to survey all aspects of privacy). Welook at privacy techniques in the data mining

literature (also called as privacy preserving data mining), as it is most closely related to our work.

We classify past work into four broad categories: (i) Data anonymization, (ii) Random perturbation (iii)

Randomized response, and (iv) Secure multi-party computation. These techniques presented below can be

leveraged in future incarnations of our architecture.

6.3.1 Data Anonymization

The concept of data anonymization is one where individuals share the data without revealing their true

identity. A typical approach is one ofk-anonymity, where the model is that the data released by an individual

cannot be distinguished from at leastk − 1 other individuals. This k-anonymity model was introduced
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in [100] and it was shown that it can protect against certain types of attacks (e.g. unsorted matching attack,

complementary release attack, and temporal attack). An optimal and practical k-anonymity approach is

presented in [15], which extends existing approaches such as [110, 95]. The work in [15] presents a k-

anonymity approach that hides minimal data from a given dataset (for an individual) using a tree-based

pruning technique. Privacy preservation using k-anonymity techniques for pattern mining is proposed in [8],

which was extended to support mining frequent itemsets in a privacy preserving manner in [7]. A real-time

k-anonymity based approach for social network data sharingis presented in [16]. Recently, k-anonymity

techniques have been extended to address location privacy (in particular) [19, 18, 43, 118]. The concept

of mix zoneswith trusted middleware was used in [19, 18, 43] to achieve location privacy. A distributed

k-anonymity based protocol for location privacy was proposed in [118].

The k-anonymity approach has a drawback, in that, it may still reveal certain private information regard-

ing the individual (sharing data). For example, consider anonymized GPS data. Anonymized GPS data may

still reveal the identity of the user (e.g. Identifying the home location and work location can narrow down

the identity of the individual and in many cases reveal it too). Approaches such as [19, 18, 118] rely on

trusted middleware, which in our approach is absent.

6.3.2 Randomized Perturbation Based Techniques

The general idea behind these techniques is to perturb the individual data being shared in such a manner

so that single data items “appear” to be random values to the data miner and an external entity cannot

draw inferences about individual private data with a certain degree of confidence. One of the first such

approaches was proposed in [5]. In this paper, each client has a numerical data itemxi, and an external

server wants to compute the distribution of the data items over all clients. The clients randomize their data

items by adding a random numberri drawn independently from a known distribution such as a uniform or

Gaussian distribution, where the mean of the distribution is known. The server collects the valuesxi + ri

and reconstructs the distribution ofxi’s using the Bayes’ rule to estimate a posterior distribution function.

Further, the authors’ of [5] provide a method to quantify privacy. This method is based on how closely the

original values of a modified attribute can be estimated. If the original valuex can be estimated with ac%

confidence that it lies in the interval[x1, x2], then the interval width(x2 − x1) is defined as the amount of
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privacy atc% confidence interval.

The work in [5] was extended by the authors’ of [4]. In [4], a reconstruction algorithm was proposed

that converges to the maximum likelihood estimate of the original distribution. The reconstruction algorithm

is based on the Expectation Maximization (EM) algorithm. Further, metrics are developed that quantify

privacy and information loss based ondifferential entropy.

Several papers, [39, 66, 58], extended the technique presented in [5]. These papers show that privacy

breaches occur under certain conditions, when the randomized perturbation approach of [5] is used. They

then develop solutions to prevent such breaches. In [39], ithas been shown that the technique of [5] is

vulnerable when a set of items are shared (instead of a singlevalue). Arandomized operatorwas developed

that prevents privacy breaches when itemsets are shared. The privacy preserving properties of [5] were

studied in [66] and it was shown that, in certain cases, the data perturbation technique of [5] fails to preserve

privacy. The paper uses the properties of random matrices and spectral filtering techniques to retrieve the

original data from the distorted data set. Although, the paper fails to mention the “conditions” under which

such breaches happen. Further studies in [58] revealed thata key factor that leads to privacy breaches of the

technique in [5] is based on data correlations. They proposea Principal Component Analysis (PCA) based

technique to estimate the original data given the distorteddata. Then, they propose a scheme that perturbs

the data with random noises which are “similar” to the original data. This scheme is proven to be privacy

preserving when their technique of PCA is used to reconstruct the original data.

Our privacy preservation scheme differs from the above approaches in that we consider time-series sen-

sor data, which are correlated (in the time dimension). The correlations in time-dimension can be exploited

to infer the trends or estimate the original sensor data stream (using techniques like PCA). Hence, using

techniques that do not take into account the correlation of sensor data in the time dimension will not work.

On the lines of the above additive random data perturbation approach, multiplicative data perturbation

approaches have been developed, [67, 25]. In [67], two multiplicative data perturbation schemes were

proposed to do privacy preserving data mining. One approachis to generate random numbers which have

a mean of one and a small variance, and then multiplying the original data by this noise. The second

approach is a bit more complicated. This technique uses a logarithmic transformation on the data, combined

with the computation of a covariance matrix of the transformed data. A random number with a covariance
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similar to that of the transformed data is generated. The transformed data item and the random noise are

added and an antilog of the result is shared. These techniques were used in masking the income data

from the 1990 Internal Revenue Service (IRS) 1040 Income TaxReturn file! A geometric rotation based

approach fordata classificationis presented in [25], that preserves certain geometric properties of datasets

when transforming them. This transformed dataset is sharedwith external entities. As certain properties

of the dataset are preserved, it is possible to obtain classifiers from the perturbed datasets. Three different

geometric transformation techniques are presented for dataset transformation.

The above multiplicative based data perturbation approaches also do not consider the correlations in the

time domain. Our approach utilizes additive methods, but itmay be possible to use a multiplicative approach

(that considers the correlations within the sensor data stream).

6.3.3 Randomized Response Based Techniques

The randomized response technique was first introduced by Warner [109] as early as 1965. It was introduced

to solve a survey problem, which can be stated as follows: to find an estimate of the percentage of people

in a given population that has a sensitive attributeX. Two models were proposed in [109] that estimate

the above percentage without revealing the answer to whether an individual has the sensitive attribute. One

model asks each respondent two related questions1, which are as follows: (i) Do you have the sensitive

attributeX? (ii) Do you not have the sensitive attributeX? Note that, the answers to the questions are

opposites of each other. A randomizing device is designed that chooses the first question with probabilityθ

and the second with1 − θ. The external entity only learns the answer to the question,i.e. a “yes” or a “no”

and not the question that was answered. The estimate of the percentage of people who have the attributeX

is obtained by solving the following equations:

P ∗(X = yes) = P (X = yes) × θ + P (X = no) × (1 − θ)

P ∗(X = no) = P (X = no) × θ + P (X = yes) × (1 − θ)

In the above equations,P ∗(X = yes) is the proportion of the “yes” responses from the survey, and

1We refer you to the paper for the discussion on the second model
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P (X = yes) is the estimated proportion of the “yes” responses to the actual sensitive questions. This

idea was extended in [38] to preserve privacy while mining categorical data (instead of numerical data).

The main idea in the paper is to use a class ofrandomization operators. The randomized response scheme

of Warner [109] was extended to a multiple-attribute data set in [34]. This means that instead of a single

sensitive attributeX, there are multiple sensitive attributes,X1,X2, · · ·Xn. The solution approach is a

straight forward extension to the randomized response scheme presented in [109].

Such randomized response approaches are not useful in computing community statistics from arbitrary

time-series sensor data. Our goal is to accurately compute community statistics from arbitrary time-series

sensor data while preserving the privacy of an individual.

6.3.4 Secure Multi-party Computation

The general idea behind this class of techniques is to use cryptographic methods to achieve privacy. A

comprehensive treatise on the basic results of secure multi-party computation are presented in [52]. Several

protocols that work under reasonable assumptions and theircorresponding proofs are presented in this work.

A general secure two-party function evaluation technique was developed in [115]. This technique is based

on expressing the functionf(x, y) as a circuit and encrypting the gates for secure evaluation.These secure

computation techniques have been used in [65] for developing methods for privacy preserving distributed

mining ofassociation rules. Association rules reflect frequent data items that areassociatedwith each other,

[56]. By this we mean that the data items occur together frequently. A cryptographic approach that uses

the property of exponentials was proposed in [114] for the classification of customer data. The proposed

approach achieves the classification without any loss of accuracy. The main idea of this approach is to use

the mathematical properties of exponentiation in a cryptographic setting, that allows a data miner to combine

encrypted results received from customers to calculate thedesired result.

The problem with this approach is its significant overhead that requires a large number of pairwise

exchanges between users in the community. Such exchanges donot scale when users are not available

simultaneously for purposes of completing the computation, or when the number of users involved changes

dynamically.
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Chapter 7

Conclusions

In this chapter, we will first summarize the conclusions of this thesis, then describe the lessons learned, the

impact of this work, and the directions for future work.

7.1 Conclusions

In conclusion, this thesis is a step towards the future embedded Internet. We designed and developed a novel

architecture and data analysis toolset for human centric sensor networks and illustrated it with five different

applications,smart jacket, smart phone, traffic analyzer, weight watchers, andGreenGPS. Our architecture

builds on existing standard Internet tools that allow for easy deployment of various applications. It allows

for individuals to easily collect sensor data from their everyday devices (e.g. smart phones, in-car GPS

devices), analyze these data to identify various day-to-day activities and share these collected data in a

larger community without breaching privacy (of the individual sharing data). These shared data can then be

used to compute phenomena of common interest (e.g. air quality of cities).

In the course of the development of the PoolView architecture, we addressed various generic research

challenges. These include (i) human activity identification, (ii) privacy preservation (while being able to

compute accurate community statistics), and (iii) community data modeling. Human activity identification

is a centerpiece for several personal application domains such as healthcare, social networking, entertain-

ment, and personal record keeping. We show that existing algorithms are inadequate for the identification of

activities using everyday sensing devices (e.g. smartphones). We developed a novel activity identification

framework that can recognize activities of varying complexity. This framework combines a feature extrac-

tion library with HMMs (a Bayesian learning framework) to achieve activity identification. It can identify

simple activities (such as walking, writing, typing) when only accelerometer sensor data are used and com-
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plex activities (such as eating, cooking) when microphone sensor data are fused with the accelerometer

sensor data. We demonstrated this framework using two prototypes, the smart jacket and the smartphone

which utilize sensing devices that are available commercially.

The remaining two research challenges arise from the community sensing aspect of our architecture,

where individuals share the data collected within a larger community (towards a common purpose). We

observe that an important research challenge when sharing sensor data is to be able to preserve the privacy

of the individual (sharing data). Further, addressing these privacy concerns in the absence of a trust hierarchy

will enable the grassroots deployment of community sensingapplications. We developed a novel privacy

preserving technique (using data perturbation) that allows for individuals to share time series sensor data

within a community such that their privacy is preserved against common reconstruction attacks, whereas

it is possible to accurately reconstruct the community statistics. We applied this algorithm in the context

of two applications, traffic analyzer that computes traffic related statistics from perturbed GPS sensor data

shared by individuals and weight watchers which computes weight related statistics from perturbed weight

data shared by individuals

Finally, we show that in a lot of community sensing applications, a common problem is the lack of

sufficient sensor data to map phenomena of interest. We proposed a novel method to model phenomena of

interest from relatively sparse sparse measurements of high-dimensional spaces. We illustrated this method

using a novel navigation application, GreenGPS, that computes fuel efficient routes for vehicles.

7.2 Lessons Learned

In this section, we will first describe a few lessons learned from this thesis and then the limitations of

the current architecture and the corresponding tools. Overthe course of the development of PoolView’s

architecture and the corresponding applications, we observed that the amount of raw sensor data required to

bridge the gap between human decision needs and the data increases exponentially with the complexity of

the needs. For example, the identification of activities of asingle individual (using the smart jacket) requires

much lesser data than computing a fuel efficient route for a given car (using GreenGPS). This necessitates

the development of a data collection framework that is automated and decentralized (allowing data collection

from multiple devices across a large population).
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Another important lesson that we learned from our deployments is that of incentives during initial de-

ployments of participatory sensing applications. As typical participatory sensing applications require a large

amount of data to realize the utility of the application, theright incentives have to be provided to individuals

(who are part of the system).

Another lesson learned relates to the heterogeneity of the devices that are used for data collection.

We observed from our deployments that different types of heterogeneity exist. First, the same sensor can

have different characteristics. For example, an accelerometer can be manufactured by different companies

and may have different characteristics, such as sensitivity, accuracy, precision, and errors. Second, the

same sensor can behave differently depending on the interactions with other components in a system. For

example, even though the accelerometers in MicaZ motes and the Nokia N95 are very similar in their

characteristics, it is not possible to sample the accelerometer on Nokia N95 at a constant rate. Finally,

sensing devices can interact differently in different environments. For example, a Honda Accord outputs

OBD sensor measurements in the Imperial system, whereas theToyota Prius outputs it in the metric system.

There are several limitations to the work done in this thesis. First, PoolView architecture assumesdata

verifiability. Data verification is the process where data are checked for accuracy and inconsistencies. As

sensor data are generated in an automated manner, data verification needs to be an integral part of PoolView.

In the current version of PoolView, simple data filtering techniques are integrated to denoise the raw sensor

data. Further, PoolView does not address energy related issues. Energy (for sensing and collection of data)

will be of primary importance, when the bottleneck to sense apiece of data is the energy consumed per

sensed bit (as opposed to the computation power or the precision of the sensor).

A limitation of the current activity identification framework is that when multiple activities are per-

formed together, it fails to differentiate the activities.For example, eating and watching TV were confused

by our activity identification framework because they are typically performed together. This limitation can

be addressed in two ways, one is to extend the HMM approach by adding further information in the model.

For example, we do not consider the location information in the model, which can be used to narrow the

types of activities being performed at a given location (e.g. A graduate student is more likely to cook at

home than in her workplace). Second, we believe that HMMs have fundamental limitations in modeling an

activity and that a completely different technique is required to achieve activity identification. For example,
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data mining techniques such as the Apriori or the Prefix span algorithms [56] may be useful to mine the raw

sensor data to identify human activities.

In Chapter 3, we observed that a lot of data is required to identify activities accurately. A question that

needs to be addressed is if it would be possible to develop a generic model for an activity (using a small

amount of data) and then evolve these models in such a way thatthey adapt to an individual. An approach

to this problem is through the use ofsemi-supervisedlearning [24].

A generic limitation of current activity identification frameworks (including the one we developed) is

that they need to be adapted to a specific user. The learning frameworks (e.g. Bayesian) rely on “training”

data to build models, which are then used to identify an activity. Activities across different users may be

significantly different and in some cases, they are different for the same individual (over time). For example,

an individual who hurt her leg will have different gait from when she was normal. The broader question

then is - “How do we develop an activity identification framework that does not utilize a learning based

algorithm?”

Another limitation is with regard to the perturbation technique used for privacy preservation. Our algo-

rithm protects against common reconstruction techniques such as PCA and spectral filtering. There are no

fundamental guarantees provided on the privacy of the data being shared.

A space that we have not yet explored is when the noise models used for data perturbation are dynamic

(continuously evolving). For example, consider a social network graph, where a single model does not

suffice to describe the graph. In such a case, how does an individual perturb the data and how are community

statistics reconstructed?

Finally, the modeling technique that we proposed in this thesis will not work well when data are per-

turbed. The error in modeling will be significantly higher when the data are perturbed. This means that we

need a different privacy preservation algorithm which doesnot rely on data perturbation.

Yet another limitation of the modeling technique is when individuals (sharing data) are lying about

the data being shared. Techniques such as comparing with spatio-temporal correlated community sensor

data [86] will not work in this case. Since, the data are sparse, it becomes hard to validate the data. Further,

our modeling technique assumes linear regression models (to compute the model coefficients) and simple

categorical parameters to split the data into sub-cubes (e.g. car make, year, class).
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7.3 Impact

The work in this thesis has been published at various top systems conferences such as MobiSys and SenSys.

The human activity identification frameworks were published and presented at MobiSys [47] and BSN [46].

The privacy work presented in Chapter 4 was published and presented at SenSys [49]. Finally, GreenGPS

was published and presented at MobiSys [48].

I have beeninvited to give talks on smart attire to various health care related workshops (WSNHC 2007,

WAST 2008) and industrial labs (Motorola labs). At WAST 2008, a workshop organized for bringing to-

gether caregivers and computer science researchers, my work has been described as anawesometechnology

designed to improve the lives of older adults. My work featured in blog articles on Crossbow, was used

as teaching material in courses at various universities such as Dartmouth (CS88/188), Duke (ECE256), and

Washington University St. Louis (CS537s). In collaboration with Motorola, I developed a novel health care

monitoring framework which was showcased at the Continua Health Alliance (an industry consortium of

smart healthcare technologies) summit in 2008. The smartphone work was done as part of my internship

at Robert Bosch research center in Pittsburgh and has been published as an internal report. A patent in this

regard has been filed at the United States patent office.

For the work on GreenGPS, I have been awarded theSiebel Scholar Fellowshipfor 2009-2010, which

is awarded annually for academic excellence and demonstrated leadership to the top 80 students from the

world’s leading graduate schools. It featured as the main news article on the homepages of the CS depart-

ment, College of Engineering, and the Illinois InformaticsInstitute at UIUC. The work on traffic analyzer

has been integrated with Microsoft research’s SensorMap. The privacy work is being used as course material

at various universities, such as Portland State (CS410) andUNM (CS591).

7.4 Future Work

There are three major directions of future work which arise out of this thesis, the first pertains to personal

sensing in the healthcare domain, the second is to extend GreenGPS, and the third relates to building infras-

tructure for the pervasive availability of community sensing.
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Sensing meets Healthcare:The success of smart attire, especially in the healthcare related workshop

naturally leads to the first part of future work, which is to extend and generalize the personal monitoring

services developed in the beginning of this thesis. In this regard, we are currently collaborating with the

College of Applied Health Sciences and the Coordinated Science Laboratory at the University of Illinois,

Urbana-Champaign to integrate the personal monitoring services with real healthcare applications. Our

initial aim is to investigate the correlation between the blood glucose levels of Diabetes patients with their

physical activity levels. Modeling the relationship between the glucose and physical activity levels will

enable future medical devices to provide insulin injectionreminders to the individual at appropriate times.

The broader challenges from a Computer Science perspectiveare to develop a set of middleware services

that enable multiple sensing devices to interact with each other, discover and manage resources efficiently,

and collectively monitor the health of an individual. We envision that such personal monitoring services and

the corresponding middleware infrastructure developed incollaboration with medical researchers will have

a wide ranging impact on the current healthcare industry andwill usher in the era of a sensor networked

platform for healthcare.

GreenGPS:We believe that GreenGPS holds a promising direction for future research as a participatory

sensing application. We have shown that individuals can gain an average of 10% savings in fuel consumption

by using GreenGPS (through the means of a preliminary deployment). As discussed in Section 5.7 of

Chapter 5, there are several lessons and limitations that welearned from GreenGPS and its deployment. We

wish to explore these as part of our future work and envision that GreenGPS will bring about a revolution in

navigation.

Sensor Enabled Internet: Data generated from sensing devices is usually automated and can result

in an exponential explosion of content on the Web, which begsthe question of a clever way of organizing

data. Data mining solutions will play a major role in this regard. Consider the GreenGPS application, where

data collected by individuals is used to create models for predicting fuel efficiency on different streets. A

generalization of this problem is one where a generic model is to be constructed given a sparse dataset and

different parameters. Another interesting problem is thatof search, unlike the current search engines which

rely on indexing the Web pages and searching for keywords to obtain relevant information, the low-level

nature of sensor data will require the distillation of information, possibly involving multiple data sources
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spanning wide geographical regions. Our vision is to build upon the current research (in this thesis) and lead

the next generation infrastructure for a sensor rich Web.

102



References

[1] AAA. National average gas prices. http://www.fuelgaugereport.com/, April 2010.

[2] T. Abdelzaher et al. Mobiscopes for human spaces.IEEE Pervasive Computing, 6(2):20–29, 2007.

[3] Actron. Elite autoscanner. http://www.actron.com/product category.php?id=249.

[4] D. Agrawal and C. C. Aggarwal. On the design and quantification of privacy preserving data mining
algorithms. InProc. of ACM Principles of Database Systems, pages 247–255, 2001.

[5] R. Agrawal and R. Srikant. Privacy preserving data mining. In Proc. of ACM Conf. on Management
of Data, pages 439–450, May 2000.

[6] S. S. Alpert. A two-reservoir energy model of the human body. The American Journal of Clinical
Nutrition, 32(8):1710–1718, 1979.

[7] M. Atzori, F. Bonchi, F. Giannotti, and D. Pedreschi. Blocking anonymity threats raised by frequent
itemset mining. InICDM, pages 27–30, 2005.

[8] M. Atzori, F. Bonchi, F. Giannotti, and D. Pedreschi. k-anonymous patterns. InPKDD, pages 10–21,
2005.

[9] Auterra. Dashdyno. http://www.auterraweb.com/dashdynoseries.html.

[10] AutoTap. Autotap reader. http://www.autotap.com/products.asp.

[11] AutoXRay. Ez-scan. http://www.autoxray.com/product category.php?id=338.

[12] E. R. Bachmann, R. B. McGhee, X. Yun, and M. J. Zyda. Inertial and magnetic posture tracking for
inserting humans into networked virtual environments. InProc. of the ACM symposium on virtual
reality software and technology, pages 9–16. ACM, November 2001.

[13] E. R. Bachmann, X. Yun, and R. B. McGhee. Sourceless tracking of human posture using small
inertial/magnetic sensors. InProceedings 2003 IEEE International symposium on computational
intelligence in robotics and automation, pages 822–829, Kobe, Japan, July 2003. IEEE.

[14] R. Barbieri, E. Farella, L. Benini, B. Ricco, and A. Acquaviva. A low-power motion capture system
with integrate accelerometers (gesture recognition applications). InProc. of the IEEE consumer
communications and networking conference, pages 418–423. IEEE, January 2004.

[15] R. J. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. InICDE ’05: Pro-
ceedings of the 21st International Conference on Data Engineering, pages 217–228, 2005.

103



[16] A. Beach, M. Gartrell, and R. Han. Social-k: Real-time k-anonymity guarantees for social network
applications. InPerCom, pages 600–606, 2010.

[17] A. Y. Benbasat and J. A. Paradiso. An inertial measurement framework for gesture recognition and
applications. InRevised papers from the international gesture workshop on gesture and sign lan-
guages in human-computer interaction, pages 9–20, 2001.

[18] A. R. Beresford and F. Stajno. Location privacy in pervasive computing.IEEE Pervasive Computing,
2(1):46–55.

[19] A. R. Beresford and F. Stajno. Mix zones: User privacy inlocation-aware services. InSecond IEEE
Conference on Pervasive Computing and Communications Workshops, page 127, 2004.

[20] D. M. Bevly, R. Sheridan, and J. C. Gerdes. Integrating ins sensors with gps velocity measurements
for continuous estimation of vehicle sideslip and tire cornering stiffness. InProc. of American Control
Conference, pages 25–30, 2001.

[21] K. Brundell-Freij and E. Ericsson. Influence of street characteristics, driver category and car perfor-
mance on urban driving patterns.Transportation Research, Part D, 10(3):213–229, 2005.

[22] J. Burke et al. Participatory sensing. Workshop on World-Sensor-Web, co-located with ACM SenSys,
2006.

[23] C. Carson and H. Kevin. The dynamics of human body weightchange.PLOS Computational Biology,
4(3):1000045, March 2008.

[24] O. Chapelle, B. Schölkopf, and A. Zien, editors.Semi-Supervised Learning. MIT Press, Cambridge,
MA, 2006.

[25] K. Chen and L. Liu. Privacy preserving data classification with rotation perturbation. InProc. of
IEEE International Conference on Data Mining, pages 589–592, 2005.

[26] Y. Chen et al. Regression cubes with lossless compression and aggregation.IEEE Transactions on
Knowledge and Data Engineering, 18(12):1585–1599, 2006.

[27] T. Choudhury et al. The mobile sensing platform: An embedded activity recognition system.IEEE
Pervasive Computing, 7(2):32–41, April-June 2008.

[28] D. Clark. Internet meets sensors: Should we try for architecture convergence? Presented at the
Networking of Sensor Systems (NOSS) Principal Investigator and Informational Meeting, October
2005.

[29] Collaborative Adaptive Sensing of the Atmosphere. http://www.casa.umass.edu/.

[30] Crossbow Technologies. http://www.xbow.com/.

[31] M. Davis et al. Mmm2: Mobile media metadata for media sharing. In CHI Extended Abstracts on
Human Factors in Computing Systems, pages 1335–1338, 2005.

[32] T. Degen, H. Jaeckel, M. Rifer, and S. Wyss. Speedy: a fall detector in a wrist watch. InProc. of the
IEEE International Symposium on Wearable Computers, pages 184–187. IEEE, October 2003.

104



[33] V. der Voort. Fest - a new driver support tool that reduces fuel consumption and emissions.IEE
Conference Publication, 483:90–93, 2001.

[34] W. Du and Z. Zhan. Using randomized response techniquesfor privacy-preserving data mining. In
Proc. of ACM SIGKDD Conf., pages 505–510, 2003.

[35] S. B. Eisenman et al. The bikenet mobile sensing system for cyclist experience mapping. InProc. of
SenSys, November 2007.

[36] EPA. Emission facts: Greenhouse gas emissions from a typical passenger vehicle.
http://www.epa.gov/OMS/climate/420f05004.htm.

[37] E. Ericsson, H. Larsson, and K. Brundell-Freij. Optimizing route choice for lowest fuel consumption
- potential effects of a new driver support tool.Transportation Research, Part C, 14(6):369–383,
2006.

[38] A. Evfimievski. Randomization in privacy preserving data mining. ACM SIGKDD Explorations
Newsletter, 4(2):43–48, December 2002.

[39] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy preserving data
mining. InProceedings of the SIGMOD/PODS Conference, pages 211–222, 2003.

[40] J. Farrelly and P. Wellstead. Estimation of vehicle lateral velocity. InProc. of IEEE Conference on
Control Applications, pages 552–557, 1996.

[41] J. Farringdon, A. J. Moore, N. Tilbury, J. Church, and P.D. Biemond. Wearable sensor badge and
sensor jacket for context awareness wearable sensor badge and sensor jacket for context awareness. In
Proc. of the IEEE international symposium on wearable computers, pages 107–113. IEEE, October
1999.

[42] G. B. Forbes. Weight loss during fasting: Implicationsfor the obese. The American Journal of
Clinical Nutrition, 23(9):1212–1219, September 1970.

[43] J. Freudiger, R. Shokri, and J.-P. Hubaux. On the optimal placement of mix zones.Privacy Enhancing
Technologies, 5672:216–234, 2009.

[44] J. E. Froehlich et al. Ubigreen: Investigating a mobiletool for tracking and supporting green trans-
portation habits. InIn Proc. of Conference on Human Factors in Computing, pages 1043–1052,
2009.

[45] S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-sync protocol for sensor networks. InProc.
of ACM SENSYS, November 2003.

[46] R. Ganti, S. Srinivasan, and A. Gacic. Multisensor fusion in smartphones for lifestyle monitoring. In
In Proc. of BSN ’10, June 2010.

[47] R. K. Ganti, P. Jayachandran, T. F. Abdelzaher, and J. A.Stankovic. Satire: a software architecture
for smart attire. InProc. of ACM MobiSys, pages 110–123, 2006.

[48] R. K. Ganti, N. Pham, H. Ahmadi, S. Nangia, and T. Abdelzaher. Greengps: A participatory sensing
fuel-efficient maps application. InIn Proc. of MobiSys, pages 151–164, June 2010.

105



[49] R. K. Ganti, N. Pham, Y.-E. Tsai, and T. Abdelzaher. Poolview: Privacy in grassroots participatory
sensing. InProc. of SenSys, pages 281–294, November 2008.

[50] Garmin eTrex Legend. www8.garmin.com/products/etrexlegend.

[51] I. Goldberg, D. Wagner, and E. Brewer. Privacy-enhancing technologies for the internet. InCOMP-
CON ’97: Proceedings of the 42nd IEEE International Computer Conference, page 103, 1997.

[52] O. Goldreich. Secure multi-party computation (draft). Technical report, Weizmann Institute of Sci-
ence, 2002.

[53] Google. Google maps. http://maps.google.com.

[54] GPS POI. Red light database. http://www.gps-poi-us.com/.

[55] J. Gray et al. Data cube: A relational aggregation operator generalizing group-by, cross-tab and
sub-totals.Data Mining and Knowledge Discovery, 1(1):29–54, 1997.

[56] J. Han and M. Kamber.Data Mining: Concepts and Techniques. Morgan Kaufmann, second edition,
2006.

[57] J. N. Hooker. Optimal driving for single-vehicle fuel economy. Transportation Research, Part A,
22A(3):183–201, 1988.

[58] J.-H. Huang, S. Amjad, and S. Mishra. Cenwits: a sensor-based loosely coupled search and rescue
system using witnesses. InProc. of SenSys, pages 180–191, 2005.

[59] Z. Huang, W. Du, and B. Chen. Deriving private information from randomized data. InProc. of ACM
SIGMOD Conference, pages 37–48, June 2005.

[60] J. W. Hui and D. Culler. The dynamic behavior of a data dissemination protocol for network pro-
gramming at scale. InProc. of ACM SENSYS, November 2004.

[61] B. Hull et al. Cartel: a distributed mobile sensor computing system. InProc. of SenSys, pages
125–138, 2006.

[62] N. F. Ince, C.-H. Min, and A. H. Tewfik. Integration of wearable wireless sensors and non-intrusive
wireless in-home monitoring system to collect and label thedata from activities of daily living. In
Proceedings of EMBS Annual Conference, pages 28–31, 2006.

[63] N. F. Ince, C.-H. Min, and A. H. Tewfik. A feature combination approach for the detection of early
bathroom activities with wireless sensors. InProceedings of HealthNet’07, pages 61–63, 2007.

[64] S. H. Jacobson and L. A. McLay. The economic impact of obesity on automobile fuel consumption.
Engineering Economist, 51(4):307–323, 2006.

[65] M. Kantarcioglu and C. Clifton. Privacy-preserving distributed data mining of association rules on
horizontally parititoned data.IEEE Transactions on Knowledge and Data Engineering, 16(9):1026–
1037, September 2004.

[66] H. Kargutpa, S. Datta, Q. Wang, and K. Sivakumar. On the privacy preserving properties of random
data perturbation techniques. InProc. of the IEEE International Conference on Data Mining, pages
99–106, 2003.

106



[67] J. J. Kim and W. E. Winkler. Multiplicative noise for masking continuous data. Technical Report
Statistics #2003-01, Statistical Research Division, U.S.Bureau of the Census, Washington D.C.,
April 2003.

[68] A. Krause, E. Horvitz, A. Kansal, and F. Zhao. Toward community sensing. InProc. of IPSN, 2008.

[69] K. V. Laerhoven and O. Cakmakci. What shall we teach our pants? InProc. of the IEEE International
Symposium on Wearable Computers, pages 77–83. IEEE, October 2000.

[70] D. Li, I. Sethi, N. Dimitrova, and T. McGee. Classification of general audio data for content-based
retrieval.Pattern Recognition Letters, 22(5):533–544, 2001.

[71] B. Logan and J. Healey. Sensors to detect the activitiesof daily living. In Proceedings of EMBS
Annual Conference, pages 5362–5365, 2006.

[72] MapQuest. http://www.mapquest.com.

[73] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The floodingtime synchronization protocol. InProc.
of ACM SENSYS, Novemeber 2004.

[74] S. Mathur, T. Jin, N. Kasturirangan, J. Chandrasekaran, W. Xue, M. Gruteser, and W. Trappe. Parknet:
drive-by sensing of road-side parking statistics. InMobiSys ’10: Proceedings of the 8th international
conference on Mobile systems, applications, and services, pages 123–136, June 2010.

[75] R. E. Mickens, D. N. Brewley, and M. L. Russell. A model ofdieting. SIAM Review, 40(3):667–672,
September 1998.

[76] E. Miluzzo et al. Sensing meets mobile social networks:The design, implementation and evaluation
of the cenceme application. InProc. of SenSys, November 2008.

[77] D. Minnen, T. Starner, J. A. Ward, P. Lukowicz, and G. Troster. Recognizing and discovering human
actions from on-body sensor data. InProc. of the IEEE International Conference on Multimedia and
Expo, July 2005.

[78] National Aeronautics and Space Administration (NASA). Landsat data.
http://landsat.gsfc.nasa.gov/data/.

[79] New York State Office of the Aging - Toolkit for Caregivers.
http://www.aging.ny.gov/Caregiving/Toolkit/
7CaringforYourParentsFactSheetsinEnglish/
ChecklistofActivitiesofDailyLiving.pdf.

[80] Nic Roets. Gosmore. http://wiki.openstreetmap.org/wiki/Gosmore.

[81] Nokia S60 SDK. http://www.forum.nokia.com/.

[82] OpenStreetMap. Openstreet map. http://wiki.openstreetmap.org/.

[83] A. V. Oppenheim, R. W. Schafer, and J. R. Buck.Discrete-time signal processing (2nd ed.). Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1999.

[84] Owen Brotherwood. Symbtelm. http://sourceforge.net/apps/trac/symbtelm/.

107



[85] S. Papadimitriou, F. Li, G. Kollios, and P. S. Yu. Time series compressibility and privacy. InIn Proc.
of VLDB ’07, pages 459–470, September 2007.

[86] A. Parker et al. Network system challenges in selectivesharing and verification for personal, social,
and urban-scale sensing applications. InProceedings of HotNets-V, pages 37–42, 2006.

[87] M. Philipose, K. P. Fishkin, M. Perkowitz, D. J. Patterson, D. Fox, H. Kautz, and D. Hahnel. Inferring
activities from interactions with objects.IEEE Pervasive Computing, 3(4):10–17, October-December
2004.

[88] Polisher Research Institute
. http://www.abramsoncenter.org/PRI/documents/IADL.pdf.

[89] L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition.
Proc. of the IEEE, 77(2):257–286, February 1989.

[90] C. Randell and H. Muller. Context awareness by analysing accelerometer data. InFourth Interna-
tional Symposium on Wearable Computers, pages 175–6, Atlanta, GA, October 2000. IEEE.

[91] C. Randell and H. L. Muller. The well mannered wearable computer. InProc. of Personal and
Ubiquitous computing, volume 6, pages 31–36, February 2002.

[92] N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman. Activity recognition from accelerometer data.
In Proc. of the Innovative Applications Conference on Artificial Intelligence, pages 1541–1546, July
2005.

[93] S. Reddy, D. Estrin, and M. Srivastava. Recruitment framework for participatory sensing data collec-
tions. InTo Appear in Proc. of Intnl. Conference on Pervasive Computing, 2010.

[94] S. Reddy et al. Image browsing, processing, and clustering for participatory sensing: Lessons from
a dietsense prototype. InProceedings of Embedded Networked Sensors, EmNets ’07, pages 13–17,
2007.

[95] P. Samarati and L. Sweeney. Generalizing data to provide anonymity when disclosing information
(abstract). InPODS ’98: Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART sympo-
sium on Principles of database systems, page 188, 1998.

[96] H. Sawada and S. Hashimoto. Gesture recognition using an acceleration sensor and its application to
musical performance control.Electronics and Communications in Japan, 80(5):452–459, 1997.

[97] A. B. Schwarzkopf and R. B. Leipnik. Control of highway vehicles for minimum fuel consumption
over varying terrain.Transportation Research, 11(4):279–286, 1977.

[98] S.-A. Selouani, H. Tolba, and D. O’Shaughnessy. Auditory-based acoustic distinctive features and
spectral cues for robust automatic speech recognition in low-snr car environments. InProc. of the
American Chapter of the Association for Computational Linguistics on Human Language Technology,
pages 91–93, 2003.

[99] M. Stikic, T. Huynh, K. V. Laerhoven, and B. Schiele. Adlrecognition based on the combination of
rfid and accelerometer sensing. InProceedings of Pervasive Health, pages 258–263, 2008.

108



[100] L. Sweeney. k-anonymity: A model for protecting privacy. International Journal on Uncertainty,
Fuzziness and Knowledge-based Systems, 10(5):557–570, 2002.

[101] Traffic. Real-time traffic conditions. http://www.traffic.com/.

[102] H. E. Tseng. Dynamic estimation of road bank angle.Vehicle System Dynamics, 36(4-5):307–328,
2001.

[103] US Census Bureau. Tiger database. http://www.census.gov/geo/www/tiger/.

[104] M. van der Voort, M. S. Dougherty, and M. van Maarseveen. A prototype fuel-efficiency support tool.
Transportation Research, Part C, 9(4):279–296, 2001.

[105] P. H. Veltink, H. B. J. Bussmann, W. de Vries, W. L. J. Martens, and R. C. V. Lummel. Detection
of static and dynamic activities using uniaxial accelerometers. IEEE Transactions on Rehabilitation
Engineering, 4:375–385, December 1996.

[106] C.-Y. Wan, A. T. Campbell, and L. Krishnamurthy. Psfq:A reliable transport protocol for wireless
sensor networks. InProc. of the ACM International Workshop on Wireless Sensor Networks and
Applications, September 2002.

[107] R. Want. You are your cell phone.IEEE Pervasive Computing, 7(2):2–4, April–June 2008.

[108] J. A. Ward, P. Lukowicz, G. Troster, and T. E. Starner. Activity recognition of assembly tasks using
body-worn microphones and accelerometers.IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(10):1553–1567, October 2006.

[109] S. L. Warner. Randomized response: A survey techniquefor eliminating evasive answer bias.Journal
of the American Statistical Association, 60(309):63–69, March 1965.

[110] W. E. Winkler. Using simulated annealing for k-anonymity. Technical report, U. S. Census Bureau,
2002.

[111] XML REC. http://www.w3.org/tr/rec-xml/.

[112] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, and D. Estrin. A wire-
less sensor network for structural monitoring. InSenSys ’04: Proceedings of the 2nd international
conference on Embedded networked sensor systems, pages 13–24, 2004.

[113] T. Yan, V. Kumar, and D. Ganesan. Crowdsearch: exploiting crowds for accurate real-time image
search on mobile phones. InMobiSys ’10: Proceedings of the 8th international conference on Mobile
systems, applications, and services, pages 77–90, 2010.

[114] Z. Yang, S. Zhong, and R. N. Wright. Privacy-preserving classification of customer data without loss
of accuracy. InProceedings of SIAM International Conference on Data Mining, pages 92–102, 2005.

[115] A. C. Yao. How to generate and exchange secrets. InProceedings of the IEEE Symposium on
Foundations of Computer Science, pages 162–167, 1986.

[116] S. Young, D. Kershaw, J. Odell, V. Valtchev, and P. Woodland. The HTK Book (for HTK Version 3.0).
Microsoft Corporation, Redmond, WA, USA, 2000.

109



[117] H. Zhen, H. Wang, and N. Black. Human activity detection in smart home environment with self-
adaptive neural networks. InProceedings of IEEE International Conference on Networking, Sensing,
and Control, pages 1505–1510, 2008.

[118] G. Zhong and U. Hengartner. A distributed k-anonymityprotocol for location privacy. InIEEE
Conference on Pervasive Computing and Communications, pages 1–10, 2009.

[119] R. Zhu and Z. Zhou. A real-time articulated human motion tracking using tri-axis inertial/magnetic
sensors package.IEEE Transactions on neural systems and rehabilitation engineering, pages 295–
302, June 2004.

110



Author’s Biography

Raghu Kiran Ganti was born in a tiny town in India and was brought up in Hyderabad. He graduated with

a B.Tech. in Computer Science and Engineering from Indian Institute of Technology, Madras in May 2003.

He then joined the University of Virginia and started his Ph.D. in Computer Science. He transferred to the

University of Illinois, Urbana-Champaign in August 2005 and obtained his M.S. in Computer Science from

UIUC in August 2006. He continued on with his Ph.D. in Computer Science at UIUC from August 2006

until August 2010. He is the recipient of the Siebel scholar fellowship for the year of 2010, which is awarded

to the top 80 students across the world’s leading graduate schools of Computer Science and Business. He is

a member of the IEEE.

111


	List of Tables
	List of Figures
	Chapter 1 Introduction
	Tool 1: Personal Monitoring
	Tool 2: Privacy Preservation and Community Statistics
	Tool 3: Community Data Modeling
	Contributions
	Thesis Outline

	Chapter 2 PoolView Architecture
	Data Stream
	Client - Data Formatters
	Client - Data Storage
	Client - Activity Identification
	Client - Privacy Firewall
	Server - Data Storage
	Server - Community Statistics
	Server - Community Data Modeling
	Server - Application Support Tools
	Conclusion

	Chapter 3 Human Activity Identification
	Hidden Markov Models
	HMM: Learning Phase
	HMM: Testing Phase

	Smart Jacket
	Problem Discussion and Implemented Solutions
	Basic Human Activity Identification

	Smartphone
	ADL Inference Algorithm
	Evaluation Results

	Integration with Facebook
	Conclusions

	Chapter 4 Privacy Preservation
	Time Series Data Privacy
	Traffic Analyzer
	Weight Watchers
	Conclusion

	Chapter 5 Community Model Construction
	A Feasibility Study
	The GreenGPS System
	The GreenGPS Concept
	GreenGPS Implementation using PoolView

	Generalizing from Sparse Data
	Data Collection
	Derivation of Model Structure

	Model Structure Derivation
	Model Evaluation: One Size Fits All?
	Model Clustering

	Implementing GreenGPS
	Model Clustering Implementation
	Routing in GreenGPS
	Other Implementation Issues

	Evaluation
	Model Accuracy
	Fuel Savings

	Lessons Learned
	Experiences with GreenGPS
	Limitations of Current Study

	Conclusions

	Chapter 6 Related Work
	Human Physical Activity Identification
	Basic Human Activity Identification
	Identification of Activities of Daily Living

	Participatory Sensing
	Participatory Sensing Applications
	Participatory Sensing Architectures
	Fuel Efficiency Related Applications

	Privacy
	Data Anonymization
	Randomized Perturbation Based Techniques
	Randomized Response Based Techniques
	Secure Multi-party Computation


	Chapter 7 Conclusions
	Conclusions
	Lessons Learned
	Impact
	Future Work

	References
	Author's Biography

