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Abstract

The availability of a wide variety of networked sensing @ed in the form of everyday devices such as
smartphones, music players, smart residential power gjetensor embedded gaming systems, and in-
vehicle sensing devices will result in the evolution of arbedded Internet. In this scenario, the main role
of the Internet and its applications will shift graduallgifin offering a mere communication medium between
end-points to offeringnformation distillationservices bridging the gap between the varied data feeds from
the sensing devices and human decision needs. In this thestake a step towards the development of an
architecture and a data analysis toolset for realizing bwve vision of the future Internet. In particular,
we focus on a category of sensing, called people centridregnghere the sensing devices are owned by
individuals. We present various novel generic data analysils that are necessary to enable people centric
sensing applications. We take a systems approach and eRethpte tools by developing and implement-
ing prototypes of several people centric sensing apptinati We also provide extensive data collection and

evaluation for each of the exemplified applications, whiabvs the utility of our architecture.
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Chapter 1

Introduction

The integration of sensing and embedded computing devict® &dge of the Internet will result in the
evolution of anembeddednternet. This evolution is fueled by the pervasive avaliigbof networked
everyday sensing and computing devices such as smartp{iBhese), music players (iPod + Nike), smart
residential (wireless) power meters, sensor embeddedngasystems (e.g. Wii), and in-vehicle sensing
(GPS, OBD-II) devices. These trends have been identifiedshaced by Internet pioneers such as David
Clark, the network’s former chief architect, in his motieatal keynote speech at NSF’'s FIND (Future
Internet Design) initiative[[28]. In this scenario, the mable of the Internet and its applications will
shift gradually from offering a mere communication mediuatvbeen end-points to offerinigformation
distillation services bridging the gap between the varied data feeds thhensensing devices and human
decision needs. The success of Google, built around theéamisé organizing the world’s information
and making it universally accessible and useful, alreatlyst to the increasing use of the Internet as
an information source. Some of the important research extngdls in enabling this future Internet are the
identification and organization of various tools for theragtion, processing, and analysis of information
from sensory data feeds. This thesis is a step towards tledogement of an architecture and a data analysis
toolset for realizing the above vision of the future Intérnln particular, we focus on the tools required
for enablingpeople centric sensingvhere the edge sensors and embedded computing devicewrzed o
by individuals (e.g. smartphones, GPS devices, cars). \Wdw#her categorize people-centric sensing
into two types: (i)personal sensingnd (ii) community sensingln personal sensing, individuals collect
sensor data and consume it for their own needs. For exanmgligjduals keep track of the exercises they
do (using a smartphone) and monitor their health. On therdtaed, in community sensing, individuals
collect sensor data and contribute towards a common gadl, asithe computation of community statistics

or mapping of global phenomenon. For example, individusdaisare th€'O, content of the air from their



daily commutes and share the data (withaggregationserver) to build a map of the carbon footprint in a
given area, which can be used to design strategies for irmga@ir quality.

A key challenge that this thesis addresses is the idenidicadevelopment, and analysis of a generic set
of tools required for enabling the efficient development @bjple centric sensing applications. These tools
are organized in the form of an architectureplView with standard APIs. PoolView is built as a collection
of these generic data analysis tools, which collectivetynfan application layer service of the Internet. The
PoolView architecture and toolset are exemplified througtious real world deployments, which focus on
improving future healthcare and decreasing the consumpfioon-renewable sources of energy on a global
scale (and thus reduce the carbon footprint).

PoolView adopts a client-server approach, where cliemtsalividuals who collect sensor data from ev-
eryday devices such as smartphones, iPods, GPS, and casraeds aggregate the sensor data contributed
by the individuals. With this in mind, we can be broadly cifsthe components of PoolView intoersonal
(client) andcommunity(server) categories. The personal or client side compsereaiude (i) Data format-
ters (i) Data storage/retrieval, (iii) Activity identifation, and (iv) Privacy firewall for sensor data sharing.
The community or server side components comprise (i) Datagé/retrieval, (i) Community statistics
computation from shared sensor data, (iii) Community datdetfing from shared sensor data, and (iv) Map
based application support tools. In what follows, we willaliss three major tools, personal monitoring,
privacy preservation and community statistics computatibe privacy preservation and community statis-
tics tools are related to each other, which we will discudsevig and community data modeling, as they
pose interesting research challenges. We will also disitigssshoice of these tools and the corresponding

applications that exemplifies each of these tools.

1.1 Tool 1: Personal Monitoring

The first piece of my work focused on the distillation of sendata feeds from wearable devices for the
purpose of personal consumption. Of particular intereatéategory of services termed @ersonal mon-
itoring services. Personal monitoring services are software canthat enable the monitoring of daily
human activities through the collection and analysis ogeedata from devices that interact with their user

on a daily basis. These services will find use cases in seappditation domains, such as healthcare, social



networking, entertainment, and personal record keepimgexample healthcare application is one in which
a patient needs to be monitored at home for a prolonged pefitiche by a care-giver. An example social
networking application is where individuals share thethaty information on social networking sites such
as Facebook. A personal record keeping application exammplere individuals keep track of their exer-
cise records over the course of a month. The main challengeable such services is to develop a general
framework that can identify the activities performed by tleer. Although, human activity identification
has been extensively addressed in the past[41, 91,92, 98}, of them have used specialized devices
or lab based environments to achieve human activity mangorRecently [[47] 7€, 46], everyday sensing
devices have been used to achieve activity identificatidme Use of specialized devices allows for tuning
of the hardware to achieve application specific optimizgtishereas devices such as smartphones are not
optimized for identification of activities. Such devices aquipped with possibly low quality sensors or are
constrained by the device’s primary functionality. Furtren important goal is that of transparency to the
user, where the device monitors activities of the individuah minimal intervention to their daily lives.
We address these challenges by developing a novel framdaottke identification and monitoring of hu-
man activities using everyday sensing devices. Towardsetiil, we demonstrate this framework using two

real-world prototypes, one uses MicaZ motes embedded ickati@nd the second uses smartphanes

1.2 Tool 2: Privacy Preservation and Community Statistics

The second aspect of my work focuses on community sensingreanthdividuals collect sensor data and
share it among themselves to map common phenomena or coagpaeunity statistics. Earlier community
sensing application$_[22,135,161,1 94] have focused on ddlaction and its analysis. Another important
aspect of these applications is the potentially sensittane of sensor data being shared. For example, GPS
sensor readings can be used to infer private informationtahe individual, such as the routes taken by the
individual during their daily commutes, their home locatidheir work location, and so on. On the other
hand, these GPS sensor readings (from daily commutes)dshétien a larger community can be utilized

to map the traffic patterns in a given city by computing vasistatistics related to traffic scenarios. Hence,

an important aspect that needs to be addressed to enable@uamunity applications is the data privacy

IData collection from all experiments involving human suatgevere approved by UIUC’s IRB (#06703 and #10092)



of an individual. The importance of privacy in Internet béisgplications has been emphasized_id [51], a
classic paper that motivated future privacy research. \Weénderested in grassrootssolution that enables
the sharing of data (in a privacy preserving manner) in theeate of a trust hierarchy. Similar to the
Web, where any individual can create a webpage and shamnafion, we wish to empower the common
person to be able to create new applications (that utilins@edata collected by other individuals within
a community). Existing privacy approaches such as anoratioiz [100] are not useful in this scenario.
For example, anonymized GPS (location) sensor measursroantbe used to infer the frequently visited
locations of the individual and derive their personal detfih many cases). Secure multiparty computation
approached [52] on the other hand are compute intensiverangbascalable (require the generation and
maintenance of multiple keys). We adopt the approach of glatiaurbation, the addition of noise to sensor
data before sharing it with the community to achieve privade challenge in this scenario is to add noise in
such a manner that the privacy of the individual is preserisatiat the same time, it is possible to compute
the statistics of interest with a high accuracy. Data pbdtion approaches$l[b] 4] have been repeatedly
shown [59/ 66l 85] to be unable to preserve privacy undeaicedonditions (when the data being shared
are correlated). Hence, the main challenge arises due timbeseries nature of most sensor data, which
results in the sensor measurements being correlated vathather.

We develop a novel technique (this thesis only claims aglartintribution towards the development of
this privacy preservation algorithm) that allows for theushg of time series sensor data in a privacy pre-
serving manner within a community and also the reconstrnatif accurate community statistics. Specifi-
cally, this thesis applies the above privacy preservingrtiegie to two applications, “Traffic Analyzer” and
“Weight Watchers”. In Traffic Analyzer, individuals reco@PS sensor readings from their daily commutes
and share the corresponding perturbed sensor measurewiinen aggregation server. These perturbed
sensor measurements are then used by the aggregationtseteerectly compute various traffic measures
within a given community (in this case, Urbana-Champaigmdividuals who use the Weight Watchers
application share their perturbed weight measurements aitaggregation server, which computes the
statistics of the community (e.g. average weight of indnaild in the community, number of people above a

certain weight).



1.3 Tool 3: Community Data Modeling

Typical community sensing applicatioris [35] 61] have feclen the aspects of development of data col-
lection and its analysis. But, several of these applicati@yuire large amounts of data to compute or map
the phenomena of interest. For example, in order to obtaomgtete traffic map (CarTel 161] deployments
are small scale and compute traffic statistics from only thi aollected) of a large city (e.g. Chicago,
Seattle), individuals need to contribute a large numberadfit measurements within the city (in order to
obtain complete coverage). Typically, initial deploynsmtill be sparse as the usefulness of the applica-
tion is realized. An important challenge in this scenaritoi®e able to generalize from relatively sparse
measurements of high-dimensional spaces to model the ptesraof interest. This is complicated by the
fact that such phenomena are complex and trivial modeliognigues (e.g. linear regression) will fail to
capture the entire phenomena. In this thesis, we will latsta solution methodology for the generalization
problem using a green navigation application, GreenGP& @3PS is a GPS-based navigation service that
gives drivers the most fuel-efficient route for their vebies opposed to the shortest or fastest route. In
order to obtain the fuel-efficient routes, GreenGPS mapshautuel consumption of any car on any given
street. This is achieved through the combination of fuelscomption data collected by a few individuals
from their vehicles and a generalization framework thatljuts the fuel consumption of an arbitrary car on

an arbitrary street.

1.4 Contributions

The generic contributions of this thesis can be categodssillows:

e This thesis proposes PoolView, the first architecture aoléd that enables easy and efficient devel-

opment and deployment of people centric sensing applitatio

e We also develop the first activity identification framewadhlatt classifies progressively more complex

activities using multiple sensor inputs from everyday desisuch as smartphones.

e This thesis claims partial contributions towards the demelent of a privacy preserving technique

that enables the sharing of time-series sensor data sucthéharivacy of an individual is preserved,



while enabling the computation of community statisticsumately.

e This thesis claims partial contributions in the develophwéra generalization methodology that mod-

els large scale phenomena from relatively sparse measntemiehigh-dimensional spaces.
Further, the contributions of this thesis which are appilicaspecific are as follows:

e This thesis develops the first traffic analyzer applicatiat enables the computation of traffic related
statistics accurately when individuals share perturbe®8 &fhsor readings. The perturbation of these

sensor measurements is applied in such a way that the pafacyindividual is preserved.

e This thesis develops the first green navigation applicattoat provides drivers with the fuel efficient

route (as opposed to fastest or shortest routes) betwerragripoints in a given city.

1.5 Thesis Outline

The rest of this thesis is organized as follows. Chdgter Pprélsent the architecture of PoolView and the
various interfaces between the tools. Chalpter 3 presemseitsonal monitoring tool and the corresponding
real world deployments, smart jacket and smartphone. @Hdmliscusses tools that preserve privacy while
sharing sensor data and compute accurate community isitishich are exemplified by the Traffic Ana-
lyzer and Weight Watchers applications. Chapler 5 illdsrahe modeling tools required for community
sensing applications, which is utilized by the GreenGPSicgion. We discuss related work in Chagfér 6.

We conclude with lessons learned, impact of this thesis dimedtions for future work in Chaptéf 7.



Chapter 2

PoolView Architecture

In this chapter, we will introduce the architecture of PaelV, its components, APIs, and their function-
alities. Before describing the architecture, we will mater the need for one and the challenges in its
development. The wide variety of sensing and computingcgsvi{e.g. smartphones, in-vehicle GPS de-
vices, wireless OBD-II scanners, wireless smart power regtnd a large number of applications (e.g.
GreenGPS, BikeNet, Traffic Analyzer, Smart Attire) thatizii the various sensing devices motivate the
need for a basic set of services organized in the form of dnitaoture which will ease the development of
applications. The goals of our architecture are: (i) Coitet; storage, analysis, and sharing of the sensor
data, (ii) Plug-and-play support for a variety of sensingickss, (iii) Privacy preservation of individuals
sharing sensor data, (iv) Grassroots impact, and (v) Egdicapion development.

Our architecture should enable easy collection, storagaysis, and sharing of sensor data generated
by everyday sensing devices. It should support plug-aag-pl various sensing devices in an easy manner.
Further, we are interested in an architecture that will sufpwide deployment and one that can be utilized
by the common person, that is we want our architecture to gvassrootampact. Since, sensor data can
reveal sensitive information about an individual (for exden GPS sensor data may reveal an individual's
home, work place location and the times they are away frome)ppmivacy preservation should be integral
to our architecture. Another goal that is of interest is eafsapplication development, our architecture
should empower developers by providing generic tools thathe used for composing new human centric
sensing applications.

The problem of designing a unifying architecture for humantdc sensing applications has not been
addressed earlier. An initial approach towards particigasensing has been presentedPartisans[86].
Although, this architecture is still in its design phase &g not been implemented. Further, this work

addresses only data verifiability and assumes the presdrecdrasted third party for achieving privacy.



In contrast, we design and implement the first unifying decture for supporting human centric sensing
applications and provide a set of generic tools that addrassus challenges.

We adopt a client-server approach, where the clients areidindls collecting and sharing sensor data
(possibly perturbed). The (aggregation) server on therdibhed aggregates data from multiple clients
and enables novel community sensing applications. Thigulés motivated by the wide success of the
Web, where servers host data and cliaddg/nloadit from the servers. Our approach extends this popular
technique by enabling the clientsuploaddata to the servers.

The modules are collectively built as an Internet applaratiayer service that utilizes several Web
application layer standards, such as XML and HTTP. The usstasfdards for the development of the
PoolView modules enables the ease of their deployment dagration with existing Internet applications.

The PoolView architecture with its various modules is iltated in Figuré211.

Applications (e.g. Traffic
Analyzer, GreenGPS)

ol |

Application support tools

Privacy firewall

E Activity identification | (e.9. Map update tools) %
- bl ‘ <
2 | ] T | 0
o Data storage/retrieval Community| | Community S
= Lo Statistics Modeling g
3 T T || Algorithms Algorithms =
5 | T T 5
O Device specific data formatters | | | g"

T T e Data storage/retrieval ®

Data sources (e.g. GPS, car) | Client data
Client L Aggregation server

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

~ PoolView Architecture

Figure 2.1: PoolView architecture (shaded modules arergeresearch challenges)

We note from FigurE2]1 that the architecture is divided alientandserverparts. The various modules

on the client side are: (i) Data formatters, (ii) Data stefagfrieval, (iii) Activity identification, and (iv)



Privacy firewall. The modules on the server side are: (i) Btdaage/retrieval, (i) Community statistics,
(iii) Community data modeling, and (iv) Application supptwols. The parameters for various modules can
be controlled using the client and server control modules.

We will first give an overview of our architecture, both frofmetclient side and the server side. On
the client side, an individual with various sensing deviceanects them to the PoolView's client side
interface and uploads the collected data, which is thendtisd as a standard XML stream and stored in
the individual’s private storage. These sensor data may lleeanalyzed to identify the physical activities
performed by the individual and the identified activitiesynii@ stored back in the private storage. Finally,
the sensor data collected can be shared, possibly in a lpedtdashion, with one or more aggregation
servers.

On the server side, the sensor data shared by the individtalstored on the aggregation server. These
sensor data can then be analyzed to obtain various comnmefatiyed statistics. For example, the server
can obtain traffic statistics in a given city from GPS locatitata shared by several individuals. Another
example is where the server computes weight statistics afpallation from shared measurement data.
When the phenomenon that needs to be captured is complearsgnsor data available are sparse, our
server provides prediction modeling technigues that catuca these complex phenomena. The server also
provides map based application development tools, whiolbeautilized to display the statistics (or the raw

sensor data) on maps.

2.1 Data Stream

The sensor data stream is a well-formed and valid XML]11-uwhoent. It describes a sensor data stream
(being generated by various devices) in a device indeperidanat, thus standardizing the representation
of sensor data across multiple devices. XML is widely popfdasharing structured data across the Internet
and is an extensible language that allows users to definedtvaitags, hence we choose XML for PoolView
data stream’s message body.

In what follows, we will describe the data tags that are assed with a data stream or data item. The
primary goal of communication between various data souacesstorage servers (client) or between the

client and the aggregation server is the exchange of stecttsensor data streams (or sensor data items).



The data fields that are superscripted withaae optional data fields, and may be left empty. The data fields
that are superscripted withia are fields that may be left optional on a conditional basise ¢bnditions

under which these fields are optional are described at thefahds section.

useri d

Unique string that identifies the user on the client sidesgjeror aggregation server.

obj ect type

The type of object that is generating the data item. For elx@nshirt, smartphone, car.

sensor | ocati on?

The location of the sensor. For example, on left arm, insadeio left trousers pocket.

sensor _nmodal i tyY

The type of sensor. For example, GPS, accelerometer, tataper

al gorithmtype?
The type of algorithm that was used to generate this data. it€he algorithm type is applicable
only when the sensor data are processed. For example, a HMbtl elgorithm that takes input
as accelerometer data streams from multiple sensors apdtsuhe activity of the person (such as

walking, sitting, cooking, eating).

start tinme

The time at which the data item began to be acquired. Thisfadtaindicates the start time for the

data item generated if the given data item was obtained odaraion of time.

end_ti ne*

The time at which the data item was generated. This data fidldates the end time for the data item

generated if the given data item was obtained over a durafiGme.

dat a_val ue

The value of the data item.
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dat a_uni t

The unit associated with the data value.

sanpl i ng_frequency*

The rate at which an individual data item is being generabed tlata stream.

| ati tude*

Location latitude where the data item was generated.

| ongi t ude*

Location longitude where the data item was generated.

privacy
Field which specifies the type of privacy preserving techei@pplied (can be null if no privacy

technique is applied).

how*

Attributes associated with the data item. For example, inglkast and driving erratically.

confi dencel nterval *

A confidence interval that provides the accuracy ofdia¢ a val ue. For example, a 10% error in

the sensor data value generated by the accelerometer.

The fields that are marked as optional on a conditional bastismiguish raw sensor data from processed
high level data. Any data stream that is in its raw form mugingethe fieldssensor _| ocat i on and
sensor _nodal i t y. Such a data stream may leave the figldlgor i t hmt ype anddat a_t ag empty.
Further, a processed data stream must define the fadldsr i t hmt ype anddat a_t ag. But, this type

of data stream may leave teensor | ocat i on andsensor _nodal i t y fields empty.

2.2 Client - Data Formatters

The client data formatters module is responsible to stalmthe sensor data generated by varied devices.

This module along with the standardized XML representafi®ectior Z]1) of the data stream abstract away

11



the device specific data format, thus enabling varied deviweonnect to PoolView without the application
developers being aware of the actual device itself. For @@ndevelopers simply query the data storage
module for GPS sensor data and do not worry about which dégige in-car GPS devices, smartphones,
MicaZ motes) actually generated the sensor data. Eachalbeg a specific sub-module that converts the
device specific formatted data to an XML data stream, desdrib Sectio.Z]1. In our implementation,
an individual typically uploads sensor data collected gighre PoolView’s client control interface (which
is a Web based interface) to their private storage servernndupload, the individual specifies the device
used for data collection. The private storage server firstgsses the uploaded data by instantiating the
correct sub-module (based on the device type) and genexat¥dIL data stream. This module and the
corresponding sub-modules are implemented in Java, eketmedule corresponds to a specific Jalass
The various devices connect to this module using the Interombined with a PHP and CGI-Perl based
Apache module that instantiates the correct Java sub-maddepending on the type of the device chosen

by the user).

2.3 Client - Data Storage

The client data storage module is responsible for storirratrieving sensor data, which is represented as
the standard XML data stream. This module enables indilgdizekeep a record of their sensor data, thus
enabling them to share or analyze sensor data as and wherppbkgations become available. For example,
if a newer version of activity identification module becomvaitable that can identify activities better, it can
be easily integrated into PoolView. We implement the datsaste module as mySQLserver, which is a
standard open source database service. One can also infagmgSQL server being replaced by a secure
and private cloud computing storage services, such as gemovided by Amazon, IBM. The choice of a
standardized database service enables us not to reineewhttel and queries (simple and complex) can be
posed to our system using standard query languages such.a3$€3e queries are encapsulated in an XML
request, which are interpreted by a thin layer on the myS@eseThe query encapsulation approach de-
couples the actual SQL server implementation from Pool\éeata storage/retrieval. For example, mySQL
can be replaced with any other popular implementation of StAlso gives us the flexibility of developing

complex requests for storing/retrieving sensor data stseavhich could be inefficient using standard SQL
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queries.

2.4 Client - Activity Identification

As alluded to in the Introduction (Chapfér 1), activity itiéoation is an important problem in several appli-
cations that are human centric, where the goal is to idetitéyphysical activity performed by the individual
(carrying the sensing device). We dedicate the discussioactivity identification and the challenges en-
countered to Chaptgl 3. Here, we will describe the APIs andtfonality of this module. The client activity
identification module is responsible for identifying theypltal activities performed by individuals in their
everyday lives. These activities could sienplesuch as walking, running, and sitting complexsuch as
cooking, eating, and hygiene. This module takes as inputoomeore raw sensor data streams (from the
same type of sensor or multiple types of sensors) and idemtifie corresponding physical activity per-
formed by the individual. Activity identification, as disssed in Sectiof1l.1, is necessary to enable various
health care, entertainment, and personal record keepplgatons. The current PoolView implementation
identifies simple activities such as walking, running, aittihg when accelerometer sensor data are input
(to the activity identification module). When microphonalaccelerometer sensor data are input to this
module, it identifies complex activities such as cookindingg and hygiene. The output (of this module)
is a sensor data stream of time tagged physical activitibschwis typically stored back in the database.
We discuss the details of the activity identification algoms (challenges faced and solutions proposed) in
further detail in Chaptdi 3. This module is implemented ini@\a Java based interface. The Java interface
allows for easy integration with the rest of the modules &edQd implementation enables a faster execution

environment.

2.5 Client - Privacy Firewall

The client’s privacy firewall module is the center piece of atchitecture, as it controls the release of a
user’s private data to the outside world. The basic funadidine privacy firewall is to screen or perturb user
data in such a manner as to preserve the privacy of the datarsdrthat the user owns. The privacy firewall is

necessary as sensor data can reveal private informatiandiag individuals (when they share the data with
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third parties). One can opt to not share their data, but waasshat the individual wishes to share their data
to gain a certain value from it. As we have seen earlier in @&p privacy poses an interesting research
challenge, which will be addressed in detail in Chapter 4. Wienow describe the functionality and the
implementation details of this module. gxivacy tableis the central data structure of the firewall. It can
be thought of as a two dimensional array whose dimension§)aggregation services and (ii) data types.
A cell corresponding to a given service and data type cositaipointer to the corresponding perturbation
model (currently, PoolView supports data perturbationgiavacy). We discuss the details of the nature of
perturbation to be applied in Chapfdr 4. The perturbatiodeh specified in a standard XML file. The
privacy firewall module is implemented in Java, which takesaut the XML file (perturbation model) and
XML formatted sensor data (generated by a query to the dliatat storage module) and generates as output

perturbed sensor data as an XML data stream.

2.6 Server - Data Storage

Similar to the client side data storage module, this modulgpsrts the storage and retrieval of sensor
data streams that are shared by individuals with the agtioegserver. The main difference is that each
individual sensor data stream is tagged with the user ctederfe.g. a uniqueisernameassigned by the
aggregation server to individuals subscribing to it). Wdlials share XML formatted sensor data (possibly
perturbed to preserve privacy) with the aggregation sewhich tags the data with user credentials and
stores it in its data storage. The server side data storagwiemented as a mySQL server with an XML
interface similar to the client side storage module. It ishrard to replace the mySQL storage services with
a secure and private cloud computing storage services gaasdied in the client’s data storage module).
Again, we note here that the existence of a storage moduledemthe flexibility for new applications to

evolve.

2.7 Server - Community Statistics

Participatory sensing applications rely on sensor daec@n by individuals and sharing it among them-

selves to map common phenomena or compute community tiBor example, individuals record GPS
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sensor readings from their daily commutes and share itmvaldiommunity to compute traffic related statis-
tics (in the given city)[[4B, 681]. This module allows for themaputation of various statistics from the shared
sensor data, even if the data are perturbed. As we will shtav ia Chaptef}4, this module implements
a reconstruction algorithm that computes various commusidtistics when the sensor data is perturbed
(according to the algorithm that will be described in Chafle The input to this module is sensor data
(possibly perturbed) in a standard XML format (which tyflicas provided by the data storage module on
the server) and the required statistics specified as a wellgfited XML document. The output is XML
formatted data describing the results for the statistidsidlvwere specified in the input). This module is

implemented in Java and Matlab with a Java based API.

2.8 Server - Community Data Modeling

In the previous Section, the community statistics module @ampute various statistics related to sensor
data collected by individuals. Another important problesnwihen the data collected are sparse and we
are trying to capture a complex phenomenon. For exampleidierdo obtain a complete traffic map of a
large city, individuals need to contribute a large numberaffic measurements within the city (in order to
obtain complete coverage). Typically, initial deployneenill be sparse as the usefulness of the application
is realized. As discussed in Chapiér 1, the research challento generalize well from the sparse high-
dimensional sensor data to capture the complex phenoméfierwill discuss a solution approach to this
problem in Chaptelf]5. The function of this module is to gelimearom sparse high-dimensional sensor
data to capture the complex phenomenon. The initial inpthitomodule is multi-dimensional sensor data,
various attributes that model the phenomena, and the mwdetwe. It then builds prediction models using
the approach we will describe in Chagdiér 5, which can be uspdedict the phenomenon where the data are
absent. The inputs are specified as well formatted XML files,sensor data specified as per Sedfioh 2.1.
The output is also a well formatted XML file with the predictsehsor data. This module is implemented in

C++ and Matlab with a Java interface for easy integratiom Wit rest of the modules.
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2.9 Server - Application Support Tools

A large number of participatory sensing applications refyntaps to achieve their functionality. For exam-
ple, CarTell[61] uses maps to achieve routing based onireal4¢ongestion levels, Traffic Analyzer 149]
uses maps to display traffic information on Google maps, B#te[35] presents bike routes on maps,
CenceMel[75] maps individual’s location information, ance€nGPS[[46] utilizes maps for computing fuel
efficient routes. Most of these applications rely on cruderfaces to existing map systems, such as Google
Maps, MapQuest for their functionality and are restrictgdhe APIs provided by these services. This re-
sults in extremely inefficient solutions [61,146]. For exdeppouting algorithms are proprietary and lack an
API to modify the parameters used for routing, which tratleslanto applications like CarTel and GreenGPS
being extremely hard to implement using existing map basedces. We address this concern by providing
map based tools that empower the developer with APIs thawdtir access to updating and modification of
the maps. The solution combines various open source seftwidin APIs that were developed by us. The
map of a given area is maintained agenStreetMap (OSN82]. OSM is the equivalent of Wikipedia for
maps, where data are collected from various free sourcel @ithe US TIGER databasge [103], Landsat
7 [[78], and user contributed GPS data) and an editable straptof the given area is created in an XML
format. The OSM map is essentially a directed graph, whiclomposed of three basic object typesdes
ways andrelations A node has fixed coordinates and expresses points of ih{grgs junction of roads,
Marriott hotel). A way is an ordered list of nodes with tagspecify the meaning of the way, e.g. a road,
a river, a park. A relation models the relationship betwelgjeas, where each member of the relation has
a specific role. Relations are used in specifying routes f®ig routes, cycle routes), enforcing traffic (e.g.
one way routes). We provide a Java based API that can add tetiome (which can be used to specify
new statistics) or update them. For example, one can add aeaiation that specifies average speed on
different ways (streets), which can be used to computedagiates more accurately 161]. We will show in
Chaptef’5.B that these tools can be used to compute fuekefficutes.

We also provide a Java based interface to geocoding todidrémeslate street address inputs into lati-
tude/longitude pairs. Geocoding is the process of findimgesponding latitude/longitude data given a street

address, intersection, or zipcode. The actual geocodimgeps is implemented in Perl.
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2.10 Conclusion

In this chapter, we developed an architecture and a set ofile®dhat comprise PoolView. We showed
that PoolView is an Internet application service that péi$i several standards such as XML and HTTP. We
further described individual components, their functidgigs and interfaces. The architecture provides sup-
port for the development of individual layers in an indepamtdnanner, thus allowing for easy extensibility.
Each layer abstracts away its functionality and providetearcstandardized interface to interact with it.
We envision that PoolView will provide a platform for futuneiman centric sensing applications. Tdblé 2.1
describes various applications (Smart jacket, smartpheaific analyzer, weight watchers, and GreenGPS)

that were developed using PoolView and the correspondingpooents that were utilized.

Application Smart jacket | Smartphone | Traffic analyzer | Weight watchers | GreenGPS
C - Data storage v v v v v
C - Activity ident. v v
C - Privacy firewall v v v v
S - Data storage v v v
S - Comm. stats. v v
S - Comm. model v
S - App. supp. tools v v

Table 2.1: Applications and the corresponding PoolView ponents

We observe from Table2.1 that several applications utilizdtiple overlapping components, thus ex-
emplifying the utility of PoolView and its generalizabletnee. Note that, the smart jacket and smartphone

applications utilize only thelient portion of the modules, as they are personal sensing afiplisa
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Chapter 3

Human Activity Identification

This chapter presents the details of the client side agtidiéntification module of PoolView along with
its use in in two different applications, smart jacketembedded with MicaZ sensor nodes andnaart
phone We are motivated by the widespread availability of sensliegjces in everyday lives of users, which
will give rise to a new category of services termedpassonal monitoringservices. These services are
software services that enable the monitoring of daily humetivities, in the long term, short term, and
real time. Such services monitor daily human activitiestigh the collection and analysis of sensor data
from devices that interact with their user on a daily basigar&ples of such devices include cell phones
and clothes embedded with sensing devices. These serviltdmavuses in several application domains,
such as healthcare, social networking, entertainmentpargbnal record keeping. An example healthcare
application is one in which a patient needs to be monitoreabate for a prolonged period of time by a
care-giver. Safety of people can be improved by providingises which automatically notify health-care
providers in real-time during events of emergency (sucte@iges, strokes, or accidents). Novel services
that maintain records of personal activities are feasibte.example, jogging enthusiasts can keep track of
their schedules and be able to answer short-term queriasasutHow much time did | spend jogging in the
past month?”. Such personal records can also help in prayigiedical care, such as detecting early onset
of diseases. Entertainment services that answer questimtsas, “Where was | on the Christmas eve of
20057?” or “Was | in Olive Garden when | last visited New York&'e feasible. Further, sensor information
sharing can also be utilized to compute community-widesties. An example is where individuals share
their speed information to compute aggregate traffic $iedis

A major research challenge to enable personal monitoringcss is to be able to identify the physical
activities (e.g. sitting, running, eating, cooking) perfied by an individual. Human activity identification

has been extensively addressed in the past[4L, 91,02, @6} dfithese use specialized devices or lab based
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environments to achieve human activity identification. Tlse of specialized devices allows for tuning of
the hardware to achieve application specific optimizatiwhereas devices such as smartphones are not
optimized for identification of activities. Such devices aquipped with possibly low quality sensors or are
constrained by the device’s primary functionality. Furtren important goal is that of transparency to the
user, where the device monitors activities of the individuah minimal intervention to their daily lives.
In this chapter, we develop a framework for identificatioraofivities that utilize everyday existing devices
(e.g. smartphones, clothing embedded with embedded d&&gvice

We will begin by providing a high level overview of how actiyiidentification is achieved and then
provide details of its application to two different protpgs. Our activity identification framework com-
binesfeature extractionwith Hidden Markov Modelsa Bayesian learning technique to achieve activity
identification. Our framework can identify basic activitisuch asvalking, running, and typingvhen only
accelerometer sensor data are input. The fusion of acoeéter and microphone sensor data results in
the identification of complex activities such esoking, eating, and hygien& he basic idea in a Bayesian
learning approach is to build a model for each activity thatwish to identify usingraining data for that
activity. The input to build models can be various featurgshsas energy, peaks, and entropy of the sensor
data stream (in a particular time window). Once the modedsbailt for each activity using the training
data, future sensor data streams are matched against ethehrobdels and the best match is identified as
the activity corresponding to the input sensor data strem.challenge in such an approach is to identify
the right set of features that would significantly diffeiate the activities. Further, it is also important to
identify the right Bayesian learning approach. SeveraleB@n learning approaches exist , such as clas-
sification tree, Naive Bayes, k-nearest neighbbrs$ [56] watying levels of complexity. Our approach is
to utilize a learning method that models time series, whiaturally captures different activities (because
human activities are time based and modeling them usinig s¢ghniques will not work, as we will show
later). This intuition justifies the choice of using HiddemiMov Models (HMMs), which is a natural choice
for time series modeling. We will first briefly describe HMMasllbwed by the implementation details of

each prototype and the evaluation of the activity identifocaframework.
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3.1 Hidden Markov Models

A Hidden Markov Model (HMM) is a statistical model where thestem being modeled is assumed to be
a Markov process with unknown parameters, and the challsnigedetermine the hidden parameters from
the observable parameters, based on this assumption.

A HMM, which is pictorially depicted in FigureZ3l1 is charadtzed by the following parameters:
e N: The number of hidden states
e M: The number of distinct observation symbols per state

Anwn: State transition probability distribution

By« i Observation symbol probability distribution for eachtsta

IIn«1: Initial state distribution

All

Figure 3.1: Pictorial representation of a 3-state HMM

A HMM has two phases, karning phase and gestingphase. We will describe these two phases in

further detail in the following two sections.

20



3.1.1 HMM: Learning Phase

In the learning phase of HMM, given the observation symhalthis case, the training data generated by the
sensor data for each activity), the problem is to efficientdynpute model parameters. More formally, the
model parameterg A, B, II), need to be adjusted to maximize the probability of the olagiem sequence.
There are several approaches to this estimalion [89], buopalar approach is thBaum-Welctiechnique.
The Baum-Welch technique is an iterative method and is dérikom the Expectation-Maximization (EM)
algorithm. The basic idea is to reestimate the model paemnat an iterative manner. At each stage, a
new model is derived and compared with the existing modeddas how well it generates the observation

sequence. Details regarding the exact mathematical tierigeacan be found ir_[&9].

3.1.2 HMM: Testing Phase

In the testing phase of HMM, given a model and observationuesecg, the problem is to compute the
probability with which the given model generates the ohbston sequence. This can be thought of as a
scoring scheme, where we are trying to infer which of sevaxalels generate a given observation sequence.
This relates to activity identification as follows, the sendata stream generated (the activity corresponding
is unknown) is processed to extract features, which fornobservation sequence. This feature observation
sequence is then matched with several models (one for eticiyado identify the model (and the activity)
that generates the given sequence with maximum probablihg observation sequence probability, given
a model is computed using tiverward-Backwardorocedure, which is explained in further detail(inl[89].
HMMs have been used in several machine learning and speeopnigon applications [89]. In the
context of activity identification[ 47, 108], HMMs have beased to identify complex wood workshop

activities. In contrast to this, our emphasis is on idemiiya broader range of common every-day activities.

3.2 Smart Jacket

In this section, we will describe the development of smarkgd, a heavy winter jacket embedded with
MicaZ motes, which record human activities and locationinfation using 2-axis accelerometers and GPS,

respectively. These measurements are stored locally éofiadsh memory of MicaZ motes) until they can
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be uploaded (to a base mote, a MicaZ mote attached to a PCpidatypplication scenario for the usage

of the smart jacket is as follows. An individual wearing theast jacket goes about their normal daily

activities as usual over the course of a day. During that,titme jacket records sensory data pertaining to
the owner’s whereabouts and activities. When the systenesamthe vicinity of the base mote, the logged

data is uploaded reliably to a private repository assodiatieh the person. This record can potentially act
as a memory aid or help doctors in augmenting a patient'scalimnformation. Figuré-3]2 gives a typical

usage scenario of our system.

Office

Base station Synchronize/reconstruct
activities

Upload data
collected

Log activities
remotely

Upload data
collected Home

Figure 3.2: A typical operational scenario

We will briefly discuss the problems faced while implemegtthe smart jacket prototype and the cor-
responding solutions. The main research challenge thaheeei$ to identify the human activities from the

acceleration sensor data, which we will discuss in Sefig#3

3.2.1 Problem Discussion and Implemented Solutions

The implementation issues can be classified as followsa{g dollection and storage, (ii) data upload, (iii)
data synchronization, and (iv) power management. The nraggarch challenge is the identification of

basic human activities.
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Data Collection and Storage

In a typical operational scenario, the system will colleatadperiodically and store it in the flash memory.
A MicaZ mote ha$12 KB of flash memory, which is used for data recording purpobesice, we observe
that a single sensor sampling at the rat88@fHz, generating 2 bytes per sample will consume the flash
memory in approximately four hours. Increasing the numbeseasors used will consume the flash even
faster! A simple proposition to reduce the amount of flastsaamed is to reduce the sampling rate, but this
would be inadequate as the data values recorded cannot te¢cugkentify the activities. We conducted
simple experiments to identify an ideal sampling rate, anohél that a sampling rate 86 H z suffices for
activity identification. This sampling rate requiremerai<for other methods to reduce the amount of flash
consumed in order to increase the disconnected time of ipe@E the system.

We propose two different methods to reduce the amount of fiaskl without loss of the precision of
data collected. Both are different data compression dlgos based on the observations we made during
the deployment of the system. The first method, termedrthrecate filteris based on the observation that,
for normal human activities, the least significant eighs loit the ten bit output is sufficient. This doubles
the disconnected time of operation of the system. The segwitod takes advantage of the fact that we
do not need to record any data values when the clothing isagtithere is no activity taking place. Similar
to run-length encoding, at the end of a stillness intervadpecial separator value is inserted in the log,
indicating that the jacket has been still and the number wipdas for which it has been still is recorded.

This method is termed th&illness filter

Data Upload

An important part of the system is to upload the data coltbttea server through an base mote. Three

separate issues are to be addressed as part of the uploachhrathich are as follows:
e The rate at which the upload occurs, which directly affelsésamount of flash available.

e The upload transparency, which relieves the user from thel@daf pressing a button or consciously

making a gesture to upload data.
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¢ Reliability of upload, Loss of data packets can lead to iredrinterpretation of activities or lack of
data for certain periods of time. As expected, when the useremaway from the base mote, the

packet reception probability goes down.

We develop a new protocol optimized for our application sci&n which meets the above goals.

Our protocol combines ideas from various data disseminatimtocols likeDeluge[60] and PSFQ
[10O€]. It achieves the goal of reliable, transparent and dgfoad. Transparency is achieved by using a
beaconingscheme. The base sends beacons periodically, which are dA6YKéhe motes in the system,
if the motes are in the range of the base. Reliability is agdeusing a NACK scheme. We tweaked the
payload size in TinyOS and the number of packets sent evepgndeto come up with an optimal data rate
to send data as fast as possible. We use the CSMA MAC protddohweomes with the TinyOS networking
stack. Our protocol makes sure that only one mote is comratingc with the base at a given time to
minimize collisions and increase throughput. This is eedwas follows. When the base gets replies from
the motes, it elects a single mote (mote X) on a First-Com&-Serve basis and sendsenddata packet
to this mote. After sending this packet, the base entersta wtaere it ignores further beacon replies. If it
does not receive any data packets from mote X within a spddifieeout period, it resets its state to send
beacons.

The protocol also ensures a fair channel allocation meshgrso that starvation does not occur. This
is ensured as follows. When the motes receive a beacon frerbase, they start timers that are inversely
proportional to the time they have not won an election. Tkt mote that has not won an election for the

longest time will (most likely) send a reply first to the base.

No beacon reply/

do nothing Beacon reply received/
Send ACK to mote

T

Timeout/reset beacon state

Packet received/
Send ACK to mote

Listen for
packets

End of transmission/
reset beacon state

Figure 3.3: State diagram for the base
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No beacon received/
do nothing

All packets sent/
send tx complete

Listen for
Beacon

in burst mode

Beacon received/

Send beacon repl
Py Send packet/ ACK received/

Increment Wait for ACK
packet counter

Timeout/
reset beacon state

Figure 3.4: State diagram for the motes on the person

FiguresL 3B an@34 summarize the upload protocol which wegmt in the form of state diagrams.
The annotations on each arrow have the fotfv, where X indicates the event which has occurred and Y

describes the action to be performed on occurrence of thistev

Data Synchronization

We need a mechanism by which it is possible to correlate ttigitees recorded on different parts of the
body. This problem can be termed as thaa synchronizatiomproblem, where each data item collected
needs to be temporally correlated with data items collectedther motes.

This problem has been addressedlin [112]. The scheme pedsien{112] needs a base station in
the vicinity of the data collection nodes, which SATIRE cahnse, and thus a new data synchronization
scheme is needed. Apart from the above scheme, there haneséesral time synchronization protocols
which synchronize the clocks on motési[731.1[45]. Howeverording absolute time values leads to a
considerable overhead in the flash. The periodic messadpamges contribute an additional overhead.

To maintain temporal correlation among the data valuesctt on different motes, laader mote
sends out beacons which are used to synchronize data stogattnes different motes in the network. Each
beacon is identified by a beacon number. When a beacon ivedcdhe associated beacon number is

recorded in real-time in the flash mid-stream along with asspr, to differentiate them from data sample
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values. On the PC, identically numbered beacons are aligrnibe same time reference. The only overhead
in our method is that of recording the values of beacons irflt#sh. Beacons samples occur several orders

of magnitude less frequently than data, which makes th&rtmad acceptable.

Power Management

The typical lifetime of a mote which ignfor the entire period of time is about seven days. With cardirs
logging and radio communication, the lifetime may be furtiegluced. Replacement of batteries every week
is cumbersome and cost ineffective. Hence, a power managestieeme is necessary to extend the lifetime
of the system. An acceptable design goal for a seasonal gatarent in our opinion is to last for about
three months (i.e., the entire season).

We propose to use a simple duty cycle based scheme. In tlemggla mote goes gdeepafter it detects
a brief period of stillness. It wakes up afteseconds and checks whether or not stillness continuese If th
mote determines that it is in motion, it starts logging da@dherwise, it goes to sleep again. During this
cycle, the mote keeps track of the amount of time it has besapsilg and logs this information when the
stillness interval terminates.

In our current jacket prototype, we observed that the jasket still for 90% of the time. If we assume
a 5% duty cycle during low-power operation, the lifetimeud system can be extended seven times, as can
be seen from Equatidn_3.1. In Equatfonl 37,is the average power consumption when the mote operates
as described abové), is the average power consumption when the mote is activealimne, andi is the
duty cycle (in our case, it is 0.05). The power consumptiothefmote in a low-power state is assumed to
be negligible. This gives u% to be about seven, which translates into an increase inféterlie of the

jacket from one to about seven weeks. This is close to th@sdang goal we set out for our smart jacket.
Py = 01xP,+09x(dxPF,) (3.1)

As for the GPS mote, it draws a higher current than a normalmseand will last for about half a day if
it is left on continuously. The GPS mote takes about seveargiscto obtain a fix (usually). In the active
state, the GPS mote obtains a fix every minute and sleepseoesh of the minute. When the jacket is still,

it does not obtain a fix. In this scenario, the GPS mote lastsdween weekso{ffLX7 x 0.5 days), which is

26



close to our season-long goal.

3.2.2 Basic Human Activity Identification

Our goal in this section is to identify basic human actigtiehich includesitting, writing, typing, walking
andcycling We will first describe and evaluate a popular approach todmuactivity identification and
then show the drawbacks of this approach. We will then etaloar HMM based activity identification

framework.

Feature Vector based Identification

A popular approach for the identification of basic humanvit@s is a feature vector based approach, where
a set of features are extracted from the accelerometri@alsagmd used to identify activities which are well
spread out in the feature space. An example of such an appieatescribed in[126], and we claim no
novelty in this regard. Feature vectors have also been asgukiech recognition [98].

Several features of a signal have been introduceld in [96]EDt] for the purpose of activity identifi-
cation. These features can be mapped onto a multidimendeatare space which can be used for activity
identification. An example of a feature is the energy of tHéedince signal of the: andy accelerometer
axes. Figur&3.212(a)-(f) plots a two-dimensional feagyrace for different activities, where each dimension
is the energy of the difference signal of the correspondowelerometer axis.

Figured3.ZP(a)-(e) plot theandy axis energy values for five motes placed on the lining of thkgg
each for three activities, namedytting, writing, andt yping. We observe that these activities have overlap-
ping regions in all the five motes. From our evaluation regubit [47], we observe that these activities are
not clearly discernible even when using several featur@sventer, an activity such asalking has a clearly
identifiable region in this two dimensional feature spasesteown in Figur&3.2.2(f).

The above graph plots the activities over two features @ilyce, it is not viable to pictorially represent
an activity in more than 3 dimension space, we opt to showdtigities in a two dimensional space. But, in
our implementation, the feature space consists of sevidral teatures such as average, standard deviation,
root mean square, range, integtalnporal variation androtational direction We showed in(]4i7] that, even

though we use a large number of features, the accuracy dffidation of the activities by the feature vector
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Figure 3.5: Figure showing average energies for variousites

based method is poor.

Temporal variation is the sum of absolute Euclidean digarimetween accelerometric vectors of any

two successive time instances. Rotational direction garesdea of clockwise/anticlockwise rotational

movement during the activity [96].
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An activity is represented as a statiedimensional vector, where is the number of features, obtained
through representative training data. To identify a givetivdy, features are extracted from the raw ac-

celerometric data, and a least error match with the reptaten feature vectors is found.

HMM based Identification

We found that the accuracy of the feature vector approachpaaswhen we used it to identify multiple
activities, as shown in the previous section. To overcoraethwback of using a static feature vector model,
we use a dynamic Hidden Markov Model (HMM) to solve the prahle

In our current implementation, the observation sequenaeishused as input to the HMM is obtained
by calculating two features, namely the energy and rangbeoilifference signal. We found this approach
of using features as input to the HMM to be more accurate tsargyjust the raw accelerometric data. The
difference signal is defined as the signal obtained by tattiegdifference between consecutive values of
the signal. Energy of the difference signal for each axibéssum of squares of the values of the difference
signal for that axis, as shown in Equatfonl3.4. Range of tfierdnce signal for each axis is the difference

between the maximum and minimum values of the differenaeasifpr that axis, shown in EquatiénB.4.

(3

~
3

Energye = 3 (@0 —21-1)’ (3.2)
t=ti+1
Range, = maz) (z;) — mingD, (xy) (3.3)

where x is any axis, the window is (t;,t; + T)

Each value of the features, energy and range, is computeagavimdow of values of the difference signal.
We found that using the features, energy and range, we wéeet@lidentify activities with reasonable
accuracy. An exploration into other features that can bd tsé&urther improve the accuracy is needed.
These features are first extracted from the raw acceleranukita. For each feature, we use an em-
pirically observed range of values, and uniformly map valuéthin this range on to a set of observation
symbols unique to that feature and belonging to a fixed algthakhe size of this fixed alphabetig. For
each feature, we consider one second windows of obsengtiohols for each mote and axis. We then con-

catenate the corresponding one second windows (by timdjsafreation symbols across all motes and axes,
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and then across all features to obtain the observation segseWe thus obtain an observation sequence for
each second of activity. These observation sequencesedeagsnput to the hidden Markov models.

As discussed earlier, there are two phases to using a HMMiifelhés a training phase, where the HMM
for an activity learns the model parameters that maximieegptiobability of observing a representative data
set for that activity. A training set of observation sequenéor each human activity is used to learn the
HMM parameters that characterizes the given set with thiedsigprobability. The second is the inference
phase, where given the hidden Markov models for the a@&/aind an observation sequence to be classified,
the model which matches the given observation sequencehgthighest probability is inferred.

To solve the problem of human activity identification, we aseergodic (every state of the model can
be reached from every other state) and discrete observdiitivi. For details of the training and inference
techniques, the reader is referred[tal [89]. For each agtiwié have aV = 10 state HMM. We use a total
of 355 observation symbolsi{ = 355) per state. We use the well known Baum-Welch technique, lwisic
based on an Expectation Maximization (EM) algorithm, fairiing the HMM for each activity. To identify
an activity, we use a Forward-Backward procedure, whickem@a HMM model, estimates the probability
that the observation sequence is generated by that modehg thes procedure, the probability that the
observation sequence is generated by the HMM for each ofdfnti@s is calculated. The activity that

yields the highest probability is chosen as the activity@epnted by the observation sequence.

Evaluation Results

We classify the activities intow-energyandhigh-energy An activity is classified albw-energy when the
energy of the difference signal (as described in Se€fiodlBs2immed over a period of time is lower than a
threshold. Otherwise, the activity is classifiechégh-energy

We compare the accuracy of our HMM based approach with th#heoffeature vectors. In all our
activities, the data set was obtained by conducting eachtachree times, each for a period of five minutes.
A sample of one minute was used to train the HMM for each dgtiGround truth was verified by manually
recording the activity at a given time instant. Data setsevadatained for two different users.

FiguresI3.b an@3.7 plot the accuracy of detecting a set ekibw-energyand twohigh-energyac-

tivities using both the feature vector and the HMM approacher user 1 and user 2, respectively. The
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activities considered werst i | | ness,typi ng,wri ti ng,wal ki ng,andcycl i ng. The feature vec-
tor approach performed poorly when compared to the HMM agghroThis is due to the fact that the feature
vector approach does not consider the sequence in whichdtiemms performed, but rather relies on a set
of static features. The results in our experiments for theMibhsed approach were obtained by defining a
confidence metricFor a given input data, identification of the activity irve$ generating the probabilities
with which the different HMM models (one for each activityptoh this input, and choosing the model with
the highest probability match. Lgt be the probability that the input matches HMMI < i < n, wheren

is the number of HMM models (activities). Lgt be the highest probability. For a confidence metrid of

the given input is classified as belonging to mogef the following is true:
S L.
2 izt Di

If the above does not hold, the given input is classified agemignizable (shown as the activity |

dont know ' in Figure[338). In all our experimental results, we use a camite metric of = 0.8.
100

HMM  ——
Feature vector

80

60
40 |
20 |
" .

Figure 3.6: Accuracy of activity identification using HMMgedfeature vectors for user 1

Accuracy (%)

Figure[3.8 plots the activity over time for an experimentitas350 seconds by user 1. We observe from

this figure that the user wad i | | (sitting) for 150 seconds, after which he walked for abous@&8&onds.

He then started writing.

We then trained the HMM using one user’s data and tested theaxy of identifying the other user’s
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Figure 3.8: Activity vs. Time for an experiment by user 1

activities. This is plotted in Figule-3.9. We observe thataie activities have very high accuracy, for exam-
ple, user 1's data on user 2’s training set gives high acgumacsti | | ness,w i ti ng, andwal ki ng.
Whereas the activitiesy pi ng andcycl i ng fared poorly.

In such a case, a new user can use the jacket to identify a pe¢-tfained activities. To identify new
activities or to improve the accuracy of identification ofstxg activities, the user can specially train the

jacket to suit their needs.
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Location Tracking using GPS

The GPS mote can be used to track the location of the user wen $he is not occluded from the GPS
satellites. We conducted experiments to track the locaifanuser. For one such experiment, the location
details and the speed-time plots are shown in Figured 3.d&8dd, respectively. From these figures, we
were able to deduce that the user was walkin®égi on 1 (with an approximate speed of 1.5 m/s) and
was still for about 5 minutes iRegi on 2. At about a time of 60 seconds, we observe that the speed of the
user was 0 m/s. This was because the user was waiting to chosy aoad. The user’s speed was found to
fluctuate between 0 and 10 m/s during times 700 and 1150 sgcimdécating that the user was in a vehicle
that made frequent stops. In fact, this was found to be trileeasser was traveling in a campus bus, which

made frequent stops. From time 1150 seconds onwards, thevasdound to be walking at about 1.5 m/s.

3.3 Smartphone

A most common personal device that people own is a cellphdYi¢h the advent of sensing devices be-
ing integrated in smartphones, they are transforming interaonal sensing device. For example, today’s
smartphones are often equipped with micro-electromecbhbB(MEMS) sensors, in particular accelerome-
ters, which have a small form factor and low power consunmg(ibis is in addition to the traditional sensing

modalities of the cellphone, the microphone and cameradl rAast of the smartphones have GPS built-in.
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The growing popularity of smartphones and its multimodaktionalities makes the device an individual’s
personal proxy, a context aware device, an activity infeeetevice, and even a payment proxy_[107].

We develop a personal monitoring service using the smantpliloere, the smartphone is acting as an
activity inference device). In particular, we will extendrgrevious approach for activity identification in
two ways. One is to use multimodal sensing and the other isgaral the set of activities identified from a
basic set (e.g. walking, typing) to more complex activijeg. cooking, brushing teeth). In particular, we

are interested in the identification activities of daily living(ADL). Examples include cooking, desk work,
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brushing teeth, and so on.

Smartphones are quite prevalent these days and their Gdpalhiave also increased multifold in the past
few years. Examples of such smartphones equipped withusagensors include the Nokia N-series (N82,
N95, N96), Apple iPhone, and the BlackBerry. Many of thesardpmones are equipped with location,
motion, light, audio, and video sensors. Since Nokia prewid large number of smartphones that have a
common operating system and APIs, we choose to use the N@&&dadd our work.

We design and implement a general software architectutégourpose of data collection on the Nokia
N95 (which can be utilized to collect data from other Nokiapés that have the required hardware). The
N series of Nokia phones use a client-server based opersystgm, the Symbian OS5 [81], designed for
resource constrained mobile devices. Access to lower larelware is provided through a request callback

sequence, where servers (abstractions of lower level lsmejwespond to requests from clients.

Sensor data collection Flash | PoolView Datz
d filterin = read/write e
an 9 control | Formatters
Symbian OS

Control access to hardware

$

Hardware

Sensors (GPS, GSM) and Flash memory (SD card)

Figure 3.12: Figure depicting the various components ofsofitware design on the cellphone using Sym-
bian OS.

Figure[3:IP shows the components of our software archictuhich enables a generic and flexible
collection of data from various sensors. We can see fromrE[@UL2 that the components fall into three
categories, the lowest level includes the hardware of thephme (microphone, GPS, accelerometer), ab-
stractions of which are provided by the server componen&yaibian OS. The modules in the application
layer (top most) provide three main functionalities: (i)t®a&ollection from the server components, (ii)
Recording data collected from the sensors, and (iii) Repdata recorded from the flash for upload to a
PC for data analysis. Our architecture is modular, flexiahel extensible and enables data collection from
various sensors with ease. A snapshot of the data colleapplication that utilizes the above architec-

ture is shown in FigurEZ3113. The application allows for iagghe data streams being recorded with the
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corresponding activity (chosen by the user from the droprdiost).

: %h’ emor

Srartl( .
ooking
Stop A Desk work
1| Startt priving
Stop R Eating
Help Hygiene

About Meeting

Figure 3.13: Figure showing the application for activitgygang

Our current implementation records four different senstine microphone, accelerometer, GPS, and
GSM (GSM information is used to determine the user’s locatidien GPS signals are unavailable) for
offline analysis. While our current inference algorithmasgliy light-weight, the initial development focuses
on a proof-of-concept implementation of multisensor fadmr activity detection. In the future, we envision
a real-time activity inference technique on the phone. Alsoording the identified activity may be useful
for long-term trend analysis, as is showndyart attire[47]).

We developed a prototype that implements a data collecbétware on a popular smartphone (similar
to the smart attire prototype), which records the microghamnd accelerometer sensor data in the local flash
memory of the smartphone. These data are later uploadea tB8BGhof the user, which is then analyzed
using the HMM framework to identify the activity performeg the user. We will now describe the details

of identification of ADLSs.
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3.3.1 ADL Inference Algorithm

In this Section, we describe the identification of actiatief daily living (ADLs). We combine multi-
sensory data to identify complex actions of users in thely diges. In particular, we show that integrating
the data from the microphone and the acceleration sensoedael in a typical smartphone (Nokia N95)
is a promising approach for ADL monitoring. We utilize thafiere-space-combination approach described
at the beginning of this Chapterl, in which we extract infation from both sensors sampled at different
rates. This is accomplished by a synchronous feature éxinaapproach in which features from each
sensor are computed independently at the same, constanafrime rate. The extracted features are fed to
a computationally light-weight algorithm, suitable forplementation on a smartphone, such as the N95.

In our study, the user wears the phone on the waist. When gasgerms an activity such as cooking,
the data capturing routine within the smartphone is adtvatThe data collection module samples the
acceleration sensor at 7 Hz and the microphone at 8 kHz us@igbuilt sensor APIs. This forms the input
to a trained, ADL monitor within the activity identificatianodule of PoolView.

We conducted an empirical study to obtain the training astirtg data set for the automated classifier.
Eight distinct ADLs and instrumental activities of dailyitig (IADL), as shown in TablEZ3l1, are considered

in the present study.

Activity
Name Type Activity Description Reference
Aerobic Dynamic | Walking, running, lifting weights, etc.
Cooking Dynamic | Food preparation, heating, grilling, etc.
Desk Work | Static Typing, reading at desk.
Driving Static Driving in a car.
Eating Static Eating while seated or standing.
Hygiene Dynamic | Washing dishes, brushing teeth, etc.
Meeting Static Present in, or attend a meeting.
Watching TV | Static Watching TV while not performing any of the above activities

Table 3.1: Activities of daily living considered within thempirical study

These activities comprise of both static and dynamic aii/i An activity is “static’when there is no
significant acceleration signal detected at the waist wieldorming that activity. A “dynamic” activity, on
the other hand, contributes to significant acceleratioderdticomplishing the activity. These eight activities

are chosen as they form the basic ADLs and IADLS [79, 88]. NMua¢the activities in Table-3.1 can not be
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differentiated based on acceleration signals alone.

We use an hidden Markov Model (HMM), to model each activitinc® HMMs are well known models
of time series and have been used successfully to recogasze tuman activities (Secti@n3.P.2), we use it
in the present study to identify ADLs/IADLs based on the figsihe information from sensed accelerometer
and microphone data. The input to the HMMs consists of thievidhg features derived from the sensed
tri-axial acceleration data in overlapping time frames eébonds with a 1.67 seconds frame shift. The first
feature detects relative change in body orientation in pyane with respect to a calibration phase when the
user is presumed to be standing. The next feature is the 8ndilonal vector magnitude of acceleration.
The magnitude of the 3-dimensional acceleration is relaidlde energy expended in performing a particu-
lar physical activity such as walking. We also compute themsiess of the magnitude of the 3-dimensional
acceleration. Finally, we compute the entropy of the acaétm in the z-axis. Relative inclination helps in
distinguishing activities that depend on whether a persasitiing (e.g., “Eating”), standing (e.g., “Cook-
ing”) and lying-down (e.g., “Watching TV"). Energy expetulie, skewness, and entropy help distinguish
between dynamic activities (e.g., “Aerobic) and staticofeg., “Desk Work”).

The microphone data is also processed at the same framd leh§t seconds. We extract spectral
shape features that are related to the audio coriteht [7@cifgmally, the audio signal is first subjected to
a frequency analysis in each time frame. The resulting $pepectra are processed by a Mel-frequency
filterbank [70], comprising 26 triangle-shaped filters. Tbe frequency cut-off of the first filter is set
to 0 Hz and the high frequency cut-off of the last filter wastee000 Hz. A log compression is then
applied to the resulting spectra. Finally, the spectraffaments are converted to cepstral coefficients via the
discrete cosine transforin_[83]. These cepstral coeffisibalp in differentiating between different classes of
dynamic activities (e.g., “Cooking” and “Hygiene”), or féifent classes of static activities (e.g., “Meeting”
and “Driving”). We use the first 12 cepstral coefficients asthre known to be the most useful in describing

the content of an audio signal]70].

3.3.2 Evaluation Results

We now present the descriptive results of our empiricalys{ade Sectioh-3.3.1) in this section. We recruited

eight male participants between the age groups of 20-3& tegrarticipate as subjects for the empirical
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data collection experiments. We instructed the users tobgaitatheir regular routine and perform their
daily activities as naturally as possible and placed naictisins on the location or time of the day. Users
were encouraged to wear the device as much as possible foiod pé eight weeks in either their pocket
or a carrying pouch. We compensated each participant witt0agift card to a local movie theater. All
participants signed an user agreement that stated thaatireg to the collection and use of microphone,
acceleration, GPS (if available), and GSM (cell informatibat can be used to track location) data for
research purposes.

In order to collect data to train the classification algaritand validate the results of classification, we
modified the data collection part of our software design @bésusers to label their activities. Specifically,
we instructed the users to label the beginning and the endabf activity. Additionally, when the phone is
switched on, the user calibrated the acceleration axesaoglisty still for a period of 10 seconds. The start
and end of calibration was cued by making the device vibrate.

A total of 80 hours of tagged activity data was collected. Atiphdata set of 45 hours is used for
developing and training the automated classification &lgor Eight activity-level HMMs are trained, one
for each activity listed in TableZ3.1. All have 3 states, whostput distribution is modeled as a mixture of 8
Gaussians. The 3 state model is chosen to model the ‘tramsitio’, the ‘steady state’, and the ‘transition-
out’ of each activity. Testing is performed on a 7 hour sub$#te remaining data (i.e., data not including in
training). The rest 28 hours of data is unusable becausestits did not either calibrate the device or label
the activities correctly. An HMM toolkit, HTK[[116], is usefbr training. During testing, we perform a
maximume-likelihood decoding to determine the most likativaty. This form of decoding could be viewed
as a single finite state model composed of individual HMMshwiransitions between various activities
classes modeled as equally likely. We make this simplifyasgumption currently due to lack of a large
dataset to model transition between activities accurabbye that recognition is user independent; the data
from all the users are used to construct the HMMs and thengedtes not exploit the knowledge of the user
identity.

The results, in terms of accuracy of classification, are sarmed in Tabld_3]2. Accuracy refers to
the portion of time windows in which the classified and labedetivities match. The results indicate that

the recognition accuracy is quite high for the followingites: “Aerobic,”™Cooking,” “Driving,” and
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“Hygiene’.” We find that “Eating” is hard to distinguish frofiVatching TV” because a majority of “Eating”
activity was performed when the user was “Watching TV” anddesthe audio and acceleration features are
quite similar. One way to alleviate this would be allow for-hést” outputs from the classifier, where “N”
refers to those outputs during decoding that exceed a thicesim their likelihoods. The low accuracy of
“Meeting” on the other hand is due to the availability of ail@d amount of our data corresponding to
this class. Tabl€~3 3 shows the results in terms of precigrmhrecall. We observe from Talle 3.3 that
our precision results are also quite good, except for theetiig” class due to the limitation mentioned
above. Overall, the results in Talilel3.2 and Téble 3.3 shevpthiential of combining the information from
the acceleration sensor and the microphone for the ideaitdit of ADLs. However, further evaluation is

required to confirm the statistical validity and significaraf these preliminary results.

Activity Accuracy (%) | Accuracy (%) | Accuracy (%)
3-state 1-state 5-state

Aerobic 82 79.3 83.1

Cooking 100 100 100

Desk Work | 53 34 50

Driving 87.6 96 77

Eating 12.7 12.7 14

Hygiene 99 64 43

Meeting 12.7 12.7 14

Watching TV | 88 87 88

Table 3.2: Performance of the automated ADL classifier

Activity Precision % | Recall %
Aerobic 76.8 81.9
Cooking 76.4 100
Desk Work | 50.8 53
Driving 100 87.6
Eating 51.2 12.7
Hygiene 65.6 99
Meeting 12.5 12.7
Watching TV | 55.9 88

Table 3.3: Precision and recall of the classifier

We now present the confusion matrix in Tablel3.4. As we mestioearlier, our dataset consists of

people “Eating” while “Watching TV”, and hence both theséhaites were confused with each other. We
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also observe that “Desk Work” and “Meeting” are confusedhvaach other due to the open space work

environment in which these data were collected.

Activity Aerobic | Cook | Desk | Drive | Eat | Hygiene | Meet | TV
Aerobic 1197 145 |0 0 120| 0 0 0
Cooking 0 523 | 0 0 0 0 0 0
Desk Work | 329 0 958 |0 0 0 519 | O
Driving 33 0 0 891 |7 0 0 86
Eating 0 0 333 |0 241 | 199 0 1117
Hygiene 0 0 0 0 4 380 0 0
Meeting 0 0 506 |0 0 0 87 0
Watching TV | 0 17 0 0 9 |0 91 1523

Table 3.4: Table showing the confusion matrix

Finally, we provide an empirical justification regardingr @hoice of the 3-state HMM. Tabl[e=3.2 also
shows the accuracy results when using a Gaussian MixutreMadL-state HMM) or a 5-state HMM for
comparison. We can observe from Tabld 3.2 that in terms dditkeage accuracy, the 3-state HMM outper-
forms the 1-state and 5-state HMMs, thus supporting ourcehoi using the “transition-into”, “steady”, and
“transition-out” states. We conclude that our choice otdiminative acceleration and audio features and a

3-state HMM provide a promising approach to identifying ADL

3.4 Integration with Facebook

The activity identification module is integrated with Fagek, a popular social networking application.
Individuals can provide access to their activity log torids on Facebook. This utilizes a simple privacy
module (of PoolView’s privacy firewall), one that checks iperson accessing the individual's activity log
is their Facebook friend. This access is implemented usiadg-acebook APl combined with PHP code on

PoolView’s client side.

3.5 Conclusions

In this chapter, we presented a novel activity identifiaafi@mework that identifies basic activities when

only accelerometer data are input and complex activitieenndccelerometer and microphone data are in-

41



put. This framework forms the activity identification moduwf PoolView. We show the accuracy of this
approach using two different prototypes, one is a smartejaelnbedded with MicaZ motes and the sec-
ond is a smartphone embedded with various sensors. Weeudilfeature-space-combination approach in
conjunction with a time-series Bayesian learning techaiqbe Hidden Markov Models (HMMs). We also
showed through extensive evaluation results that our tqabroutperforms existing algorithms for activity
identification. We also developed a simple privacy modudg thtegrates the activity log with Facebook, a

popular social networking application.
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Chapter 4

Privacy Preservation

In this chapter, we focus on enabling community sensingiegmdns. Community sensing (also called as
participatory sensing, citizen sensing) is where indiglducollect sensor data and share it among them-
selves to map common phenomena or compute community issti€arlier community sensing applica-
tions [22,[35[ 61, 94] have focused on data collection andyaissaspects. An important aspect that was
not considered in these applications was privacy. In theptdr, we will summarize the mathematical foun-
dations (which was developed collaboratively) and develepice implementations to enalieassroots
participatory sensing applications. We consider comnesidf individuals with sensors collecting streams
of private data for personal reasons. These data could elsd Balue if shared with the community for
fusion purposes to compute aggregate metrics of mutuakstteThe main problem in such applications is
privacy, which motivates the work in this chapter.

We are interested in addressing privacy assurances in gamed of a trust hierarchy. We rely on data
perturbation at the data source to empower clients to eqsivacy of their data themselves using tools that
perturb such data prior to sharing for aggregation purpdegacy approaches, including data perturbation,
are generally met with criticism for several good reasorisst,Ft has been repeatedly shown that adding
random noise to data does not protect privacy [66, 59]. leisegally easy to reconstruct data from noisy
measurements, unless noise is so large that utility carsmatthined from sharing the noisy data. Second,
anonymity (another approach to privacy) does not help eithirgonymized GPS data still reveals the identity
of the user. Withholding location data in a radius around é@an be a solution, but opting to withhold,
in itself may reveal information. Moreover, in a sparselploged network, the radius would have to be
very large to truly anonymize the data. A third question isthler the assumption of lack of a centralized
trusted entity is justified. After all, we already entrust ogll phone providers with a significant amount of

information. It should not be difficult to provide added-walservices that benefit from the current (fairly
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extensive) trust model.

Below, we address the aforementioned questions prior &eptiag our approach. We address the prob-
lem of privacy in time-series data. The fundamental insaghtio why perturbation techniques do not protect
privacy is correlation among different pieces of data oweein data and context (e.g., identity of owner). In
what follows, we will present a technique that addresseafitiementioned problem of correlations within
a data stream. We show that with proper tools, non-expemsussn generate appropriately-correlated
application-specific noise in the absence of trust, sudhdiia of these individuals cannot be reconstructed
correctly, but community aggregates can still be computét accuracy. We further explain how non-
expert users might be able to generate the appropriatecappfi-specific noise without trusting external
parties related to that specific application. Observe tidiility to reconstruct actual user data largely obvi-
ates the need for anonymity. Our solutions are not needestéorarios where a hierarchy of trust exists. In
contrast to such scenarios, we are interested in providingyafor individuals in the community to collect
information from their peers such as “how well does this at tliet or exercise routine work” or “what pat-
terns of energy use at home really worked for you to reduce goergy bill"? Obviating the requirement to
find a mutually trusted entity before data are collected isag t8 encourage the proliferation of grassroots
participatory sensing applications.

PoolView’s client-server architecture is adopted, whdients share (perturbed) private sensory data
and servers (callegoolg aggregate such data into useful information made availadbkthe community.
PoolView presents a simple API for individuals to set up neelp the way they might set up a Wiki or
discussion group. Simple APIs are also provided for cligatsubscribe to pools and export their data.
Interactions between clients and servers rely on the comdidh based data-stream abstraction (Sec-
tion[Z1). The stream allows an individual to share a sequefdperturbed) data measurements such as
weight values or GPS coordinates (a logged trip). The gdatheoperturbation are: (i) to preserve the
privacy of application-specific data streams against comneoonstruction algorithms, (ii) to allow com-
putation of community aggregates within proven accuraaynds, and (iii) that perturbation (which may
be application-specific) can be applied by non-expert usélrout having to trust the application. Hence,
any person can propose a custom statistic and set up a poolléstoperturbed) data from non-expert

peers who can verify independently that they are applyied‘tight” (application-specific) perturbation to
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preserve their privacy before sharing their data.

As alluded to above, ensuring privacy of data streams vitugetion techniques is complicated by the
existence of correlation among subsequent data valuaa@deries data. Such correlations can, in general,
be leveraged to attack the privacy of the stream. For exansplaring a single data value representing
one’s weight perturbed by adding a random number betwedl0-20d 2000 pounds will usually not reveal
much about the real weight. On the other hand, sharing thremuweight value every day, perturbed by
a different random number, makes it possible to guess thghtvprogressively more accurately simply by
averaging the sequence to cancel out noise. Perturbingethesce by adding tteamerandom number
every day does not work either because it will reveal thedtiarweight measurements over time (e.g., how
much weight the individual loses or gains every day). Thd gb#he privacy preserving algorithm is to
hide both the actual value and trend of a given individuaditadseries, while allowing such statistics to be
computed over a community. Hence, for example, a communhityeaht watchers can record their weights
as measured on a particular diet, allowing weight-lossssizd (such as average weight loss and standard
deviation of loss) to be computed as a function of time on the d

To instantiate PoolView architecture’s privacy presegvaspect, we have implemented and deployed
two PoolView services (pools), one for computing averagégite(Weight Watchers) of a self-selected
community (e.g., all those on a particular diet), and andibrecomputing traffic statistics (Traffic Analyzer)
in a privacy-preserving fashion. We present data and sefwlin these two applications. The rest of this
chapter is organized as follows, we will first summarize thgyrbation technique that achieves privacy (as
described above). We will then utilize this privacy presegvechnique in the applications, Weight Watchers

and Traffic Analyzer, that highlight PoolView’s privacy gegving and community statistics modules.

4.1 Time Series Data Privacy

In this section, we will briefly describe the perturbationthwel and the reconstruction algorithm that was
developed in[[49]. The perturbation problem is defined dsvid. Perturb a user's sequence of data values
such that (i) the individual data items and their trend (itkeir changes with time) cannot be estimated
without large error, whereas (ii) the distribution of commity data at any point in time, as well as the

average community data trend can be estimated with highracygu

45



For instance, in the weight-watchers example, it may beae@$o find the average weight loss trend as
well as the distribution of weight loss as a function of timretbe diet. This is to be accomplished without
being able to reconstruct any individual’s weight and wetgbnd. For another example, it may be desired
to compute the average traffic speed on a given city stregtelhas the speed variance (i.e., the degree to
which traffic is “stop-and-go”), using speed data controLivy individuals without being able to reconstruct
any individual's speed and acceleration curves.

Examples of data perturbation techniques can be fourid i, [39]. The general idea is to add random
noise with a known distribution to the user’s data, afterchita reconstruction algorithm is used to estimate
the distribution of the original data. Early approachegetebn adding independent random noise, which
were shown to be inadequate. For example, a special teehb@sed on random matrix theory has been
proposed in[[66] to recover the user data with high accuraater approaches considered hiding individual
data values collected from different private parties,rigkinto account that data from different individuals
may be correlated I_Eiﬂ. However, they do not make assumptions on the model dasgrtheevolution
of data values from a given party over time, which can be uggedpardize privacy of data streams. This
section describes a perturbation technique that spedyficahsiders the data evolution model, where it is
shown that the technique is strong against attacks thaaxegularities in correlated data such as spectral
filtering [6€] and Principal Component Analysis (PCA)[59].

This technique perturbs data in such a manner that the privhtime-series data (measuring some
phenomenonp) can be preserved if the noise used to perturb the data I geseerated from a process
that approximately models the phenomenon. For instandkeimweight watchers example, we may have an
intuitive feel for the time scales and ranges of weight etwofuwhen humans gain or lose weight. Hence,
a noise model can be constructed that exports realistkidggparameters for both the direction and time-
constant of weight changes. We can think of this noise aspiss{bly scaled) output of\artual user. The
noise model generation and the trust implications are dgsmliin([[4D].

Once the noise model is available, its structure and préityadistributions of all parameters are shared
with the community. By choosing random values for thesepatars from the specified distribution, it is

possible, for example, to generate arbitrary weight cuofegrtual people showing weight gain or loss.

!Since the data correlation is across individuals of the fatjmn, we will not compare it with our work in the evaluatieaction
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A real user can then add their true weight curve to that of angeweral locally generated virtual users
obtained from the noise model. The actual model paramesad 10 generate the noise are kept private.
The resulting perturbed stream is shared with the pool wheran be aggregated with that of others in
the community. Since the distributions of noise model paans are statistically known, it is possible
to estimate the sum, average and distribution of added rfofsthe entire community) as a function of
time. Subtracting that known average noise time series frmsum of perturbed community curves will
thus yield the true community trend. The distribution of coumity data at a given time can similarly be
determined since the distribution of noise (i.e., data frartual users) is known. The estimate improves
with community size.

A useful refinement of the above technique is to separateciwittual user model parameters that are
inputsfrom those that express intrinsic properties of the modet. éxample, food intake may be an input
parameter of a virtual user model. Inputs can be time-vgryirhe perturbation algorithm allows changing
the values of input model parameters with time. Since thetifgd to the virtual users is not shared, it
becomes very hard to extract real user data from added n@sev{rtual user) curves.

One last question relates to the issue of trust. Earlier, wivated perturbation approaches in part by
the lack of a central trusted party that would otherwise Be &bprivately collect real unperturbed data and
compute the needed statistics. Given that non-expertsotd@nasked to program noise models for each
new application (or even be expected to know what these m@ie), and since they cannot trust the data
collection party, where does the noise (i.e., the virtuarumodel come from and how does a non-expert
client know that the model is not fake? Obtaining the noisel@hdrom an untrusted party is risky. If the
party is malicious, it could send a “bad” model that is, sagp@astant, or a very fast-changing function (that
can be easily separated from real data using a low-pas$,fatguerhaps a function with a very small range
that perturbs real data by only a negligible amount. Suckenniodels will not perturb data in a way that
protects privacy.

The answer comes from the requirement, stated earlier thiatoise added be an approximation of
the real phenomenon. Incidentally, observe that the abEyginrement does not mean that the noise curve
be similar to the user data curve. It only means that both ciwome a model of the same structure but

different parameters. Hence, in the weight example, itdde that the user is losing weight whereas the
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noise added is a curve that shows weight gain. Both curveg ¢am the same model structure (e.g., a first
order dynamic system that responds to food intake with a gaihtime-constant). The models would have
different parameters (a different gain, a different tinoestant, and importantly a different input modeling
the time-varying food intake).

With the above in mind, we allow the server (that is untrustét our private data) to announce the used
noise model structure and parameter distribution to thenconity of users. The model announced by the
server can be trusted by a user only if that user's own datll ¢@ve been generated from some parameter
instantiation of that model with a non-trivial probabilitfhis can be tested locally by a curve-fitting tool on
the user’s side the first time the user uses the pool. Sucheaadool is a part of the client-side PoolView’s
privacy preserving module. Informally, a noise model dtitee and parameter distributions are accepted
by a user only if (i) the curve fitting error for user’'s own dé&anot too large and (ii) the identified model
parameter values for user’s data (that result from cuniadittare not too improbable (given the probability
distributions of model parameters). The formal matherahtietails of the above technique can be found
in [49]. We will now discuss the application of this technégio Traffic Analyzer (Sectiofi4.2) and Weight
Watchers (Section4.3).

4.2 Traffic Analyzer

The traffic analyzer case study is motivated by the growingaenent of GPS devices that provide location
and speed information of the vehicles that they are deplaye&uch data can be used to analyze traffic
patterns in a given community (e.g., average speed on a giveet between 8am and 9am in the morning).
Analysis of patterns such as rush hour traffic, off-pealitradverage delays between different key points in
the city as a function of time of day and day of the week, andagespeeding statistics on selected streets
can shed light on traffic safety and traffic congestion stabik at a given point in time and historically over
a large time interval.

With the above in mind, we present a case study that eval@ateaffic analysis application in the
context of privacy preservation, where we study the peréoroe of the perturbation techniques (applied in
the context of traffic analysis). We picked two main streefmse traffic characteristics we would like to

study for illustration. To emulate a community of users, weve on these streets multiple times (in our
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experiments, five graduate students took turns drivingetségets at different times of day). We collected
data for a community of 30 users. We used a Garmin Lederd [P @evice to collect location data. The

device returns a track of GPS coordinates. The samplingiémcy used in our experiments was 1 sample
every 15 seconds. Each trip represented a different useufoexperimentation purposes. The stretch of
each of the two roads driven was about 1.3 miles. Data wasatetl in the morning between 10 am and 12
noon as well as in the evening between 4 pm and 6 pm.

In a more densely deployed system, the assumption is thetdihbe naturally available from different
users driving over the period of weeks on these city straetifarent times of day. Such data may then be
shared retroactively for different application purpodes: example, individuals interested in collecting data
on traffic enforcement might collect and share speedingsstat on different city streets or freeways they
travel (e.g., what percentage of time, where, and by how noegs traffic speed exceed posted signage).
Such statistics may come in handy when an individual traiels new destination. Since speeding is a
private matter, perturbation techniques will be appligdmtio sharing.

In our deployment, each user shares their data using Pegb/dient side interface. An individual col-
lects location and speed information using in-car GPS devie.g. Garmin nuvi, TomTom have GPS trace
recording capabilities). The recorded sensor data is ttearsfierred to a PC and uploaded to PoolView's
secure and private storage service. This data is then peduwaccording to the algorithm described in the
previous Section. The user also has an option of viewing #reugbed data in a graphical format and
comparing it with the original data. The user can then sHagetrturbed data with an aggregation server
(which provides the Traffic Analyzer service). The aggriEgaserver collects GPS sensor data from the 30
users. It divides city streets into small segments of eqrajth. The average speed on each segment is then

calculated from perturbed user data. We will first descritgertoise model and how it is generated.

Generating the Noise Model

In order to employ the perturbation scheme described eane need a noise model. Since the GPS data
is collected with a very low frequency (1 sample every 15 sdsp speed may change dramatically on
consecutive data points. Figuiesl4.1 shows the real speee afione user on Green street in the morning.

We model the speed curve of each user as the sum of seversbisialisignals (observe that any waveform
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can be expressed a sum of sinusoids by Fourier transformm)sifaplicity, we choose to use six sinusoids
that represent the common harmonics present in naturadl spemtions of city traffic. The noise model is

therefore as follows:

6

fk) =ag+ ) a;sin(b; * k + c;) (4.1)
=1

The speed model in Equation_(B.1) is characterized by 19 peters. Once the model for the speed
is obtained, we need to model the distribution of all 19 past@ms such that the speed stream generated
by this model has the same dynamics as the real speed curtessetvice developer will collect a few
speed measurements empirically (which is what we did), taaesmall number of real speed curves, and
use an MMSE curve fitting to find the range of each parameteis dpproach is used by us to obtain the
distribution of the parameters. The distribution of eachapeeter was then chosen to be a uniform within
the range obtained. A sample of speed curve is shown in Afgdire

Having produced an approximate noise model, the aggregséinver announces the model information
(structure and parameter distribution) to the users (Rewl\¢lients). Participating users use this infor-
mation to choose their private noise parameters and gentbrgit noise streams using client-side software
(which includes a generic function generator in the priveigwall). Each user’s individual speed data is
perturbed by the given noise and sent to the aggregatioersehen the user connects to the server. Typical

perturbed data is shown in Figure4.1.

Reconstruction Accuracy

In order to compute the community average, noise distobstiat each time instanck, must be available
for the aggregation server. Obtaining the exact noiseibligion at each time k given the parametegy b;,
andc; can be difficult. Therefore we approximate the noise digtitims by generating a numbers of noise
curves (10000 samples) following the model in Equalioh 4#d eompute normalized histograms of noise
values at each time instance. These histograms are aptiois of noise distributions.

To show reconstruction accuracy using the community recactson method (refer td._[49] for the math-
ematical details of reconstructing community data), thmgoted community average speed curve for each

street is presented in Figure¥.2. Even with a very small canity population (17 users), the community
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Figure 4.2: Graph showing the reconstructed communitya@esspeed vs. distance for a population of 17
users

average reconstruction still provides a fairly accuraterese (the average error at each point.&t mph).

We also illustrate the PoolView's Traffic Analyzer aggregatserver interface that displays the average
speeds on two streets in Figlirel4.3. This instantiation of\Rew’s aggregation server uses the map based
support tools (described in Section]2.9).

Next, we examine the reconstruction of the community spestiltlition at a given location on Uni-
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Figure 4.3: Figure showing the traffic analyzer aggregasienver side interface

versity Avenue. Since our actual collected data was limiteed emulated additional user data by doing
random linear combinations of data from real users. Theaeamunity speed distribution is shown in
Figure[4.4(d). The reconstruction method presented inif4@3ed to estimate the community speed distri-
bution from the perturbed community data, with the resulbi@shown in Figur€ 4.4{b). We note from both
these figures that the distributions are quite similar, shguhat even with a small community of users (17

users), we can accurately reconstruct the entire disioitout

4.3 Weight Watchers

The Weight Watchers case study is motivated by the numereightwvatchers and diet communities that
exist today. An individual on a particular diet monitors megight on a periodic basis, perhaps by taking a
weight measurement once a day. This individual would likedyinterested in comparing her weight loss to
that of other people on a diet in order to get a feedback rayatte effectiveness of the diet program she
is following. Although, the person would like to do it in suahmanner that her weight data remains private.
In the Traffic Analyzer application, to the extent of the aw# knowledge, there is no good speed
model for a vehicle on a city road. Thus, the speed is modeladsemi-empirical way. However, in many

other applications, accurate data models are well knowrnande can be used to provide more privacy. The
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Figure 4.4: Figures showing the real (a) and reconstrudiedgmmunity speed distributions for a popula-
tion of 200 users

Weight Watchers application is one such example. Severdetador weight loss and dieting have been
proposed in existing literaturel[b,123,142] 75]. We adoptriwel proposed ir [5], which is a non-linear
model, where the weight of a dieting user over time can behlyugpproximated by three parameteig;,
6, andWjy. G is the body metabolism coefficiert/ is the initial weight of the person right before dieting,
and )\ is the average calorie intake of that person on klayhe weightlV (k) of a dieting user on daj of

the diet is characterized by a non-linear equation:

W(k) = W(k—1)+ M\ + W (k—1)%* (4.2)

wWo) = W, (4.3)

The equationE41£,4.3 are used to generate the noise stream.

In our deployment, we recorded the weight of a single user the course of sixty days, once each
day. We generate the parameters for a typical user basea atath from our deployment and use these to
emulate multiple users.

The parameters for this model includg, 5 andWW,. The range of\ and/ can be found in[75]. The
range of the initial weight¥; can be taken as the weight of a normal adult which is from 8Ghgsto 210

pounds. The simplest distribution for these parametersifenum within their respective ranges. Samples
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of the real weight data, noise and the perturbed data arersimoiigure[4.b.
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Figure 4.5: Graph showing real weight, noise, and pertuvbeidht of a single user

In this application, we demonstrate a different way of pdaing the user data, but use the same algo-
rithm to reconstruct the community distribution. Given tfenerated noise, and the data;, the perturbed
data is generated as followg,= Az + Bn + C'. In this type of perturbationd, B andC' are random
variables whose distributions are known to the aggrega@wer and the users. The reconstruction of the

community distribution can be done in a two-step process:

¢ Reconstruct the distribution ofz by consideringBn + C' as noise, then compute the distribution of
log(Ax).

e Becausdog(Ax) = log(A) + log(x), we could reconstruct the distribution log () using the distri-

bution oflog(Ax) found above and the distribution bfg(A). Finally, compute the distribution of

from the distribution ofog(z).

Note that the transformation of random variablesldyy andexp is trivial because both functions are

monotonic. The reconstruction method used in each steprisdime as the method used in the Traffic

Analyzer application (Sectioh4.2). Figures 4.p(a) and(B).@lot the original weight distribution and

the reconstructed weight distribution using the above outhespectively. In this experiment, we use the

same method described in the Traffic Analyzer applicatiogeierate a big community (500 users). For
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simplicity, we choos&’ = 0. A andB are drawn from uniform distribution between 0 and 10. We plese

from the fiaures that the reconstructed community distidiouis verv close to the real distribution.
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Figure 4.6: Figures showing real (a) and reconstructeddimneunity weight distributions for one user

We observe from Figurle4.5 that the perturbed data contamsrders of high frequency components,
thus it is common to ask if the user data can be revealed udtagry techniques? We apply the PCA
reconstruction method (same method used in the Traffic Aealgtpplication) to reconstruct an individual
user’s data. In order to employ PCA, we generated a virtualnsanity containing 1000 users, where each
user sends their perturbed data to the aggregation serngeneELY shows the real weight data, perturbed
weight, and the reconstructed weight using PCA for a singk.uThe result shows that the reconstructed
curve fits in the same direction as the perturbed data. ThuSltbring techniques again do not work with

our perturbation scheme.

4.4 Conclusion

In this chapter, we presented a novel privacy preservingnigae that utilizes data perturbation to achieve
stream privacy. It ensures the privacy of individual useéadeyainst common reconstruction attacks and al-
lows for the computation of statistics accurately. We destrated that the above algorithm can be utilized
in a grassroots manner, one where there is no necessity fastad third party to compute the statistics.
We also showed that the algorithm can be applied by non-exggers, individuals who are not experts at

statistics or modeling. We demonstrated the applicatiothefabove algorithm in two different applica-
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Figure 4.7: Graph showing the results of PCA reconstruditireme on a single user

tions, Traffic Analyzer and Weight Watchers. These appboatexemplify the privacy preserving nature of

PoolView and the algorithm is implemented as part of thegairewall module of PoolView.
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Chapter 5

Community Model Construction

Community sensing applications [22,] 61] 76} 94] rely onvidlials collecting sensor data and sharing it
within a community (of common interest). These collectedsse data are then used for mapping common
phenomena or computing community statistics. We discugecomputation of community statistics in the
previous chapter (Chapter 4). Typically, large scale comitgisensing applications require a lot of data to
compute or map the phenomena of interest. For example, er twdbtain a complete traffic map or an air
quality map of a large city, individuals need to contributerge number of traffic/air quality measurements
within the area of interest. The challenge in such a scematmbe able to generalize well from relatively
sparse measurements of high-dimensional spaces to medehé&momena of interest. This is complicated
by the fact that such phenomena are complex and trivial nmagletchniques will fail to capture the entire
phenomena.

In what follows, we will develop a novel GPS-based navigatservice, calledsreenGPSthat gives
drivers the most fuel-efficient route for their vehicle apoged to the shortest or fastest route. We will use
GreenGPS to demonstrate a common problem in participatrgirsg applications and present a solution
methodology which can be extended to generic applications GreenGPS relies on data collected by
individuals from their vehicles and a generalization fraraek that predicts the fuel consumption of an
arbitrary car on an arbitrary street.

GreenGPS is possible thanks to tha-Board DiagnostidOBD-II) interface, standardized in all vehi-
cles that have been sold in the United States after 1996. Hig-IDis a diagnostic system that monitors
the health of the automobile using sensors that measurexdpyately 100 different engine parameters.
Examples of monitored measurements include fuel consomptingine RPM, coolant temperature, vehicle
speed, and engine idle time. A comprehensive list of medgumeameters can be obtained from standard

specifications as well as manufacturers of OBD-Il scanrflts§everal commercial OBD-Il scanner tools
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are available[13,19, 10, 11], that can read and record thes®s®alues. Apart from such scanners, re-
mote diagnostic systems such as GM’s OnStar, BMW's CondBetee, and Lexus Link are capable of
monitoring the car’s engine parameters from a remote loggg.g. home of driver of the car).

GreenGPS utilizes a vehicle’s OBD-Il system and a typicahser tool in conjunction with PoolView’s
modules to enable data collection, upload, analysis, armabimng of fuel consumption data. In contrast to
traditional mapping and navigation tools, such as Googlpsna3] and MapQuesi [72], which provide
either the fastest or the shortest route between two pdBrsenGPS collects the necessary information
to compute and answer queries on thest fuel-efficient routeThe most fuel-efficient route between two
points may be different from the shortest and fastest roliesexample, a fastest route that uses a freeway
may consume more fuel than the most fuel-efficient route imxéuel consumption increases non-linearly
with speed or because it is longer. Similarly, the shortester that traverses busy city streets may be
suboptimal because of downtown traffic.

The motivation for GreenGPS does not need elaboration. @& users might be driven by bene-
fits such as savings on fuel or reducing £€missions and the carbon footprint. With the increase in the
use of Bluetooth devices (e.g., cell-phones) and in-vehitl-Fi, GreenGPS can be easily supported by
inexpensive OBD-lI-to-Bluetooth or OBD-II-to-WiFi adapt that can upload OBD-Il measurements op-
portunistically, for example, to applications running ae triver’s cell phone [84]. It can also be supported
by scanning tools that read and store OBD-Il measurementtasage media such as SD cards. At the
time of writing, OBD-II Bluetooth adaptors, such as the ELM3Iluetooth OBD-Il Wireless Transceiver
Dongle, are available for approximately $50, together gitftware that interfaces them to phones and
handhelds.

GreenGPS supports two types of users; members and non-membkembers are those who own
OBD-II adaptors or scanning tools and contribute their datdne GreenGPS repository from the OBD-II
sensors described above. They have GreenGPS accountsrexiid foem more accurate estimates of route
fuel-efficiency, customized to the performance of theiivitlial vehicles.

Non-members can use GreenGPS to query for fuel-efficiertesoas well. Since GreenGPS does not
have measurements from their specific vehicles, it answersas based on the average estimated perfor-

mance for their vehicle’s make, model, and year (or someetuhsereof, as available).
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We make two application specific contributions. First, wendastrate how to use participatory sensing
to develop a fuel-saving navigation service that reliesauontary data collection by individuals to influence
their routing decisions. Second, we provide a brief expenital evaluation of the system, where users are
shown to save 6% in fuel on average over the shortest routé2dn fuel over the fastest.

A general participatory sensing applications related rifmution is to demonstrate how sparse samples
of high-dimensional spaces can be generalized to develaeisiof complex nonlinear phenomena, where
one size (i.e., model) does not fit all. We develop predictrardels that enable us to extrapolate from fuel-
efficiency data of some vehicles on some streets to the fueduroption of arbitrary vehicles on arbitrary
streets. While, in this case, the utility of such extrapolaimay be short-term (soon all cars will be able to
measure their own fuel-efficiency), the basic mechanisndspainciples behind it can be used for a variety
of other participatory sensing applications that sharentredl for generalizing from sparse data.

GreenGPS utilizes prediction models, developed in thiptenato abstract vehicles and routes by a set
of parameters such that fuel efficiency can be computed gitmpplugging in the parameters of the right
car and route. Using Dijkstra’s algorithm, the minimumifraute can then be computed. An experimental
study is performed over the course of three months usingesixtlifferent cars with different drivers (and a
total of over 1000 miles driven) to determine the accuragyrefliction models. It is shown that a prediction
accuracy of 1% is attainable.

The rest of this chapter is divided into eight sections. i8a@.] presents a feasibility study that inves-
tigates the amount of fuel savings that can be achieved Img BieenGPS and by following fuel-efficient
routes. The details of GreenGPS system are described imnSBCE. Models for estimating fuel consump-
tion are presented in Sectibnb.3. Implementation detaillsexaluation results are presented in Sedfioh 5.5
and Sectiof 516, respectively. Sectlon] 5.7 discusses sudtseand lessons learned. Finally, we conclude

with directions for future work in Sectidn 3.8.

5.1 A Feasibility Study

In this Section, we present a feasibility study that prositlee reader with a proof of concept estimate of
fuel savings that can be achieved by driving on the most fifieient routes.

We compute fuel consumption between landmarks in Urbare¥@haign for three different cars (and
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drivers) and compare these values across multiple routesebe the same pairs of landmarks. The land-
marks chosen were frequently visited destinations sucthhasSitebel Center, Walmart, and the football
stadium The shortest and fastest routes were obtained MsipQuest([7 2. In Figurd 5.1, we plot the fuel
consumption for the shortest route, the fastest route, l@doute that consumes the least fuel (as computed

from our models) for the aforementioned landmarks.
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Figure 5.1: Figure showing fuel consumption for multipleites between multiple selected landmarks for
different cars and drivers

We observe from Figure 3.1, that in the first experiment, &stefst route is also the most fuel-efficient
route. In the second experiment, the shortest route corstimdeast amount of fuel. In the third exper-
iment, the most fuel-efficient route is different from boltte tshortest and the fastest routes. We conclude
from the above observations that simply choosing the s$iodiethe fastest route will not always be fuel-
optimal.

For example, if the user always chooses the fastest rowe, dktra fuel consumption compared to
taking the optimal route is 0%, 24%, and 10% for the threeraalts, respectively (an average of about
11% overhead). Similarly, if the user always chooses theessiroute, their average extra fuel consumption

is about 11.5%. Hence, following the fuel-optimal route t@mslate (at the current national average gas

1Google maps provides only the shortest route. MapQuesigesboth fastest and shortest routes. Hence, we use MapQues
to get route information.
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price, which at the time of writing this paper was USD 2.89 jh{o savings of at least 30 cents per gallon,
which is not bad for “cash back”.

The above results are only a proof of concept. They simplyghat there may exist situations where
using a fuel-optimal route can save money. A more extensiy of route models and savings is presented
in the evaluation section.

To estimate the amount of savings that can be achieved ombalglcale, we provide back of the envelope
calculations based on data from the Environmental Prateétgency (EPA)IL36]. An estimated 200 million
light vehicles (passenger cars and light trucks) are ondhd in the US. Each of them is driven, on an
average, 12000 miles in a year. The average mile-per-gétigog) rating for light vehicles is 20.3 mpg.
Even if 5% of these vehicles adopted GreenGPS and 10% fuielgsawere achieved on only a quarter of
the routes traveled by each of these vehicles, the amouneodlbfuel savings is nearly 177 million gallons
of fuel ((12000/20.3) %0.3 (0.05x200M ) x0.1). This translates into nearly half a billion dollars in a5
at the pump (based on the current national average pumgsgdce gallon of gasoline). We consider the

above prospective savings acceptable.

5.2 The GreenGPS System

The service provided by GreenGPS is similar to a regular npgfication, such as Google maps|53] or
MapQuest[[72]. Google maps and MapQuest provide the shartefgstest routes between two points,
whereas GreenGPS computes the most fuel-efficient rout@apsfiot of the Web-based GreenGPS’s user
interface, which was created using PoolView is shown in FEffu2 along with the most fuel efficient route
between two points for a user with a Toyota Celica, 2001. énfttlowing subsections, we will discuss the
GreenGPS concept followed by how individuals use PoolViemdata collection and data sharing and the

specifics of the hardware used for the purpose of data cialfect

5.2.1 The GreenGPS Concept

Individuals who want to compute the most fuel-efficient eobietween two points enter the source and des-
tination address via the interface provided by GreenGPSniddgs of GreenGPS (i.e., those individuals

who contributed participatory data) can register theiricles that were used for data collection. Hence,
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Please enter the start and end addresses.
Start Address: Street: 2889 Beringer cir | City: |urbana | State: [ |v

End Address: Street: [201 N goodwin ave | City: [urbana | state: [IL_|v]

Vehicle Details: Make: .Tayf.:(a v Model:_céhca v [Year: | 2001 v | | Find Route

o \ ,"( Route types

7

‘o AR [ shortest

X Ll fastest
fuelOptimal

Couny Road 1600 &
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15 ey §

W Flarida Ave 0.6 miles

Figure 5.2: Figure showing the user interface of GreenGR the most fuel efficient route between two
points on the map for a Toyota Celica, 2001.

GreenGPS can compute the route specifically for the regidteehicle. Other users may enter their ve-
hicle’s make, model, and year of manufacture. Since diffexehicles have different fuel consumption
characteristics, these car details are used to compute disé foel-efficient route for the given vehicle
brand. The advantage for the users who contribute datatishbaystem provides better estimates of the
most fuel-efficient routes to these individuals, thus alfapthem to have higher savings.

Currently, it is impractical to assume that GreenGPS mesdl measure all city streets and cover
all vehicle types. Instead, measurements of GreenGPS merabe used to calibrate generalized fuel-
efficiencyprediction modelsThese models, discussed in Secfion 5.3, show that thednslLienption on an
arbitrary street can be predicted accurately from a setatic street parameters (e.g., the number of traffic
lights and the number of stop signs) and a setyafamicstreet parameters (such as the average speed on the
street or the average congestion level), plus of coursedhiele parameters (e.g., weight and frontal area).
It is the mathematical model describing the relation betwibese general parameters and fuel-efficiency
that gets estimated from participant data. Hence, thedangeg more diverse is the set of participants, the
better the generalized model.

For most streets, static street parameters can be readdjnet from traffic databases. For example,
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the number of traffic lights and the number of stop signs oeesér can be obtained from the red light
database[ [54]. Dynamically changing parameters such asottgestion levels or average speed are more
tricky to obtain. In larger cities, real-time traffic moniilmg services can supply these parametersi[101].
Many GPS device vendors, such as TomTom, also collect andgroongestion information. Finally, our
participatory sensing service, Traffic Analyzer, devetbparlier in Chapterl4 has the potential to provide
congestion and speed data.

In our deployment, speed information is obtained from théected data using the hardware described
in the next section. The speed data is aggregated for diffarigy blocks, based on the GPS location
information. Thus, given a street name (or the latitudgtiae of a location), GreenGPS provides the

average speed information for the corresponding block.

5.2.2 GreenGPS Implementation using PoolView

Our architecture, PoolView, is used to implement GreenGiH&cilitates the storage and sharing of OBD-
Il sensor data. We implemented GreenGPS by writing our ggdgien server for PoolView. An individual
who wants to share their OBD-Il sensor data uses PoolVielgatcside interface to upload their data to the
GreenGPS aggregation server. The aggregation serverhesesdata to calibrate models that relate street
and vehicle parameters to fuel-efficiency and offers thee@®&PS query interface for fuel-efficient routes.

Individuals who wish to contribute OBD-Il data to GreenGRStall, in their vehicle, a commercial
OBD-II scanner along with a GPS unit. In our deployment, we ase such off-the-shelf device for data
collection purposes, called DashDyrd [9], shown in Fidui& 5The DashDyno’s OBD-Il scanner is in-
terfaced to a Garmin eTrex Legend GPS|[50] to get locatioa.d@he DashDyno records trip data (in-
cluding Garmin’s GPS location) on an SD card that the user lIgploads it to the GreenGPS server (using
PoolView).

A total of 16 parameters are obtained from the car and the @&RSnost important of them being

instantaneous vehicle speed, total fuel consumptionpfdtesl consumption, latitude, longitude, and time.
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Figure 5.3: Hardware used for data collection

5.3 Generalizing from Sparse Data

In this section, we demonstrate the foundations of one ofkéyemechanisms in participatory sensing
applications that are tolerant to conditions of sparseaepént; namely, the generalization from sparse
multidimensional data. Such generalization is complitdte the fact that, in high-dimensional data sets,
one size does not fit all. Hence, for example, developing glesiregression model to represent all data is
highly suboptimal. In the case of GreenGPS, the lack of vpdEsd availability of OBD-Il scanner tools
suggests that the data contributed by users of our pattizipaensing application will be a sparse sampling
of routes and cars. Hence, we aim to use data collected by lEesmpapulation to build models capable of
predicting the fuel consumption characteristics of a lagmpulation. Admittedly, the conditions of sparse
deployment are typically temporary (in the case of GreenGmRaking the above contribution short-lived
in nature. Nevertheless, it solves a key problem at a criibase of most newly deployed systems, which
makes it important. Before we explain the details of the gaimation mechanism, we will provide a brief

description of our data collection for the purpose of depiglg models.
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5.3.1 Data Collection

The vision for GreenGPS, when fully deployed, is to colleatadfrom everyday users, which can be em-
ployed to update and refine predictions of fuel consumptibamsuch users (or others with similar vehicles)
embark on new itineraries. In this chapter, we conductethidd proof-of-concept study involving sixteen
users (with different cars) over the course of three monghtotal of over 1000 miles were driven by our
users to construct the initial models. Figlitel 5.4 shows agbanap of the paths on which data were col-
lected. The details of the car make, model, year, and the aunfhmiles of data collected for each car are

summarized in Tabled.1.
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Figure 5.4: Coverage map for the paths on which data wereatetl

In the aforementioned experiments, each user was askegléatnong a specific set of landmarks in the
city. We split each drive into smallsegmentso capture the variation in the fuel consumption on indigidu
streets. These segments were the “samples” used to capturariables affecting fuel consumption and

develop initial prediction models.
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Car make | Car model | Car year | Miles driven
Ford Taurus 2001 135
Toyota Solara 2001 45
BMW 325i 2006 70
Toyota Prius 2004 140
Ford Taurus 2001 136
Ford Focus 2009 95
Toyota Corolla 2009 45
Honda Accord 2003 102
Ford Contour 1999 22
Honda Accord 2001 18
Pontiac | Grand Prix 1997 25
Honda Civic 2002 11
Chevrolet Prizm 1998 16
Ford Taurus 2001 10

Mazda 626 2001 9

Toyota Celica 2001 120
Hyundai Santa Fe 2008 22

Table 5.1: Table summarizing the cars used and the amountafdllected
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Figure 5.5: Figure showing the real mpg distribution forthé sixteen users

5.3.2 Derivation of Model Structure

The first part of data generalization is to derive a modelcsting. The structure describes how various

parameters are related, but does not evaluate the varimssaots and proportionality coefficients. In this
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case, we derive the structure of fuel prediction models fptiysical analysis.

To motivate the need for modeling, we plot the distributidmmles per gallon (mpg) for all the data
collected in Figuré5]5. We observe from this figure that tisribution is nearly uniform with the mpg
values varying between 5 and 50. The standard deviationeofripg distribution is 9.12 mpg, which is
pretty high. Hence, an appropriate model is needed to etgtitha fuel consumption on various segments.

The inputs to our prediction model include segment parammeted car parameters. We do not consider
driver factors in the model because the sample size of driwexrs small in our dataset. Note that, we
are interested in predicting long-term fuel consumptioly.oWhile actual savings of a user on individual
commutes to work may vary, the user might be more concerntdtieir net long-term savings. Hence, it
is important to capture only the statistical averages dfdaesumption. As long as the errors have near zero
mean, the savings are accurate in the long term. As a giverduges more segments, a value of interest
is the total end-to-end prediction error that results (Whimproves over time as the individual positive
and negative segment errors cancel out). We call that erddoerror thecumulative error It is useful to
normalize that error to the total distance driven. We calréssultcumulative percentage erroft represents

how far we are off in our estimate of total fuel consumption.

5.4 Model Structure Derivation

We will derive the model structure for fuel consumption freine basic principles of physics. Many such
models exist in prior literaturé [20, 40, 102], which sinfigls the task. We divide the parameters that affect
fuel consumption into (iytatic segment parametersamely, numbers of stop signST), numbers of traffic
lights (I'L), distance traveledXd) and slope {), (i) dynamic segment parameteraamely, average speed
(v), andcar specific parametersmiamely, weight of the cam{) and car frontal areaA).

Assuming that the engine RPMds !, the torque generated by the enginé'{s), the final drive ratio
is G, thek —th gear ratio iy, and the radius of the tire is thenF.,,, ;... is given by the following equation:

I'(w)Ggg

T

Fengine = (5 1)

The frictional force Fy,;.ion IS characterized by the gravitational force acting on the gaven by
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mgcos(6), wherem is the mass of the vehicle ands the gravitational acceleration and the coefficient of

friction, ¢,... The equation for frictional force is:
Firiction = ¢rrmgcos(6) (5.2)
The gravitational forcel}, due to the slope is given by the following equation:
F, = mgsin(0) (5.3)
Finally, the force due to air resistandg,;,, is given by the following equation:
Fuir = geadpv? (5.4)

In the above equatiory is the coefficient of air resistancd, is the frontal area of the cap,is the air
density, and is the current speed of the car.

Assuming that the car is on an upslope, the final force actimghe car is given by the following
equation:

Fear = Fengine - Ffriction — Foir — FQ (55)

In order to obtain a relation between the fuel consumed aadbove forces, we note that the fuel
consumed is related to the power generated by the enging/amstance of timet. If f,. is the fuel rate
(fuel consumption at a given time instance) aRds the instantaneous power, th¢n o« P. Power is
related to the torque functior;(w), and engine RPMy as follows: P = 27['(w)w. Hence, we obtain
fr =BT (w)w.

In the above equationj is a constant. Further, we also have the relationship rw from rotational

dynamics. From the above equations, we obtain the fuel copson rate as a function of the forces acting
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on the car shown below:

Feor = ma
_ JrG gk 1 2 .
= B crrmgeos(0) 2chpv mgsin(0) (5.6)
mav = (' f, — crmgeos(0)v — %chpv?’ — mgvsin(0) (5.7)
fr = kimav + kymucos(9) + ks Av® + kymusin() (5.8)

Finally, we can obtain the equation for the fuel consunygdhy integrating the rate of fuel consumption

with respect to time. We obtain the following equation:

to
fe = t fr(t) dt

to
= / (kymav + kamuvcos(6) + k3 Av® + kymusin(0)) dt (5.9)

t1

In order to further derive a model that can be used for regnesanalysis, we will detail the various
components that are part of the fuel consumption of a carh&g/s in the above equation, a moving car at
a constant speed on a straight road which does not encoumytstap lights or traffic will only need to over-
come the frictional forces caused by the road, the air, aadtyr These are represented ﬁ? kamucos(0),

Ji2 ks Av®, and [!2k4musin(6), respectively. On the other hand, the first compornféfit;mav can be bro-
ken down further into two components, one is the extra fuebaomed due to encountering stop signs (ST)
and traffic lights (TL) and the second one is the extra fuesoomed due to congestion. Hence, the previous

equation now becomes the following:

to
fe = / (kjymav(ST + vTL) 4 kiamav) + kymucos(0) + ks Av® 4 kymusin(6)) dt  (5.10)

t1

If we replacev with v, the average speed, assume thegmains constant, and we knaw= dv/dt, we

can further simplify the above integral to the following:

k12m172

fo = kyumo*(ST +vTL)+ + kamAdcos(0) + ks ATPAt + kymAdsin(9)  (5.11)
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In the above equation/)\d is the distance traveled anft is the time traveled. Dividing the above
equation byAd gives us the metriéuel consumed per mile (gpmyhich is appropriate for our analysis

purposes. Hence, our final model will now be (replacing thestants bk, k-, ks, k4 andks:

g =k (ST +vTL) v?

) .
A4 + ka—2Ad + ksmcos(0) + ks Av® + ksmsin(6) (5.12)

We plot the distributions for various parameters (for indidal segments) in Equatién5]12 for the data

that we collected in Figuled.6. In the next section, we st the coefficients of our model;, ko, k3, ks
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Figure 5.6: Figures showing the distributions of numberraific lights, stop signs, and average speed

andks differ among different vehicles making it harder to genigeafrom vehicles we have data for to those

we do not.

5.4.1 Model Evaluation: One Size Fits All?

Regression analysis is a standard technique for estimatiafficients of models with known structure. In
this section, we demonstrate that a single regression nimddbad fit for our data. Said differently, while
a regression model that accurately predicts fuel conswmpmtan be found for each car from data of that
one car, the model found from the collective data pool of aisds not a good predictor for any single
vehicle. Hence, in a sparse data set (where data is not laleaftar all cars); it is not trivial to generalize.
We illustrate that challenge by first evaluating the perfange of car models obtained from their own data
(which is good), then comparing it to the trivial generdiiaa approach: one that finds a single model based
on all car data then uses it to predict fuel consumption ofiotlars. A solution to the challenge is presented

in the next section.
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One should add that while the generalization challengenseon to many participatory sensing appli-
cations, our evaluation is not intended to be a definitivelystan vehicular fuel consumption. For example,
we evaluate fuel consumption in Urbana-Champaign onlyckvis quite flat. Hence? = 0 is a good ap-
proximation. (We therefore set the last terkginsin(6), of our physical model to zero, 3¢ is no longer
needed.) Furthermore, the city is rarely congested. Maedke range of cars used in the study is rather
skewed towards sedans, and hence not representative avéngity of cars on the streets. Fortunately, even
this rather homogeneous data set is sufficient to show tmergkzation is hard.

First, we determine the length of the segment empiricallg WAty the segment length from 0.5 miles
to 2 miles in increments of 0.5 miles and evaluate the acguphour model in each of these cases. We
observed that the accuracy of the model is best when the sedergyth is 1 mile. Hence, we fix the
segment length to be 1 mile in the rest of our experiments. VAtiate the accuracy of models derived from
vehicle data using a cross validation approach. We chooaadom data point (i.e., a givesegmenbf a
street driven by some car) to predict fuel consumption foe ttAén use other points to train a model. We
distinguish models based on other segments of the sameocamfiodels based on data from other cars in
predicting the fuel consumption of the one segment. The Ath5ah columns of Table’3.2 summarize the

resulting errors, respectively, for a fraction of the usarsc

Car make | Car model | Car year | Ind. cumulative error% | General cumulative error%
Hyundai Santa Fe 2008 2.89 23.63
Honda Accord 2003 0.89 15.3
Ford Contour 1999 0.83 91.4
Ford Focus 2009 0.12 27.35
Ford Taurus 2001 0.75 24.85
Toyota Corolla 2009 0.61 89.97
Ford Taurus 2001 0.56 6.9

Table 5.2: Table summarizing the cumulative percentagesfor the individual car models and the gener-
alized case when all the data (except one car) is used toxab&imodel

We also plot the error distribution for individual segme(fts one car) in Figur€hl7. We observe that
this distribution is near normal and the mean is near ze2680). We observe a similar distribution for
other cars too.

We also observe from the Tallle k.2 that the cumulative p&agererror for individual car models are
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Figure 5.7: Figure showing the segment error distributmmohe car

quite good. Most of them are below 2%. On the other hand, whepnedict one car's consumption using

data from other cars, the errors are quite high. This sugdkstexistence of non-trivial bias in error that

does not cancel out by aggregation. In the next section, a@oge a way to mitigate this problem based on
grouping cars into clusters, such that prediction can be dased on othesimilar cars by some metric of

similarity.

5.4.2 Model Clustering

The above suggests a need for better generalization ovietevelata. Different car types behave differently.
Even though the model is parameterized by factors such ageight and frontal area, they are not enough
to account for differences among cars. This is a common erolih high-dimensional data sets collected in
participatory sensing applications. The question becorhgse cannot generalize over the whole set, can
we generalize over a subset of dimensions?
We propose a solution that utilizes a popular approach frata dining literaturedata cubedb5].

Data cubes are structures for Online Analytical Proces@IgAP) that are widely used for multidimen-
sional data analysis. They group data using multiple afte® and extract similarities within each group.

For example, previous work showed how to efficiently cordtregression models for various subsets of
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data [26]. The data cube framework can thus help computeptimal generalization hierarchy in that it
can help generalize data based on those dimensions thhs ieshe minimum modeling error.

We consider three major attributes (data dimensions) of@ngtar: make year, andclass Based on
these three attributes, data can be grouped in eight wayaneiéxtreme, all cars may be grouped together,
thus producing a single regression model (which we have shiswot acceptable). At the other extreme,
cars can be partitioned into clusters based on their (madaa, glass) tuple. A separate model is derived
for each cluster. Therefore, 2801 compact Ford is modeled differently from2801 mid-size Ford, 2002

compact Ford or @001 compact Toyota.

Average cumulative error percentage

4.
<9,{_®/

Q

Clustering

Figure 5.8: Cumulative error percentage of the models nbthfrom various clustering approaches

Between these two extremes, to find out which clusteringreelhgives the best accuracy, we obtain the
cumulative percentage error for each scheme. The resultsnarized in Figur€hl8, show that different
generalizations have different quality. These genenidiza are somewhat better than using all car data
lumped together. While our data set is too small to make @géwenclusions (from only 16 cars), as more
data are collected in a deployed participatory sensingicgijun (e.g., say deployment reaches 100s of
cars), progressively better generalizations can be atfain

To use results of Figule 3.8, one would build models for eaih gf make and year (the lowest error
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clustering scheme). If a car is encountered for which we ddawve data on its (make, year) cluster, we go
one level up and use (make) clusters or (year) clusters asaerations for the (make, year) cluster. If there
are no models corresponding to either make or year of a gimerme have no recourse but to go one level
up and use the model computed from all data. Figure 5.9 deghietgeneralization process among various

model clusters.

Make, Year

Figure 5.9: Model generalization from fine grained clusters

Car make | Car model | Car year | Cumulative error %
Hyundai Santa Fe 2008 0.73
Honda Accord 2003 1.01
Ford Contour 1999 1.42
Ford Focus 2009 2.7
Ford Taurus 2001 3.38
Toyota Corolla 2009 1.28

Table 5.3: Table showing the cumulative error percentagedoh individual car when model clustering is
used

We evaluate the performance of our model clustering tectenity measuring how accurately an indi-
vidual car can be modeled using the data from cars with similake or year. Specifically, we construct
the model cluster while removing data of a certain car type. Uk the model cluster to estimate the fuel
consumption for a given car. The resulting cumulative epencentage is presented in Tald 5.3.

To put the above results in perspective, the reader is readititht the nature of the landscape in Urbana-

74



Champaign limits our study in that we do not have data on kdiyain. The study would have been more
interesting if conducted on uneven grounds, where changésciine modulate fuel consumption. We
expect that future data collected will be used to evolve auremt model by considering the terraifh i
Equatio 5. 1R) parameter. Further, new data collectedbeilised to update the model. Another limitation
of our modeling approach arises from the class of cars fochvtiata has been collected. We observe from
Table[5.1 that the majority of the cars are sedans (with tleemion of one SUV). We observe that the
generalization tree (Figufe.9) does not usedlassof the car. This generalization tree is specific to the
dataset collected. The point of this section is to illugttat approach to improve prediction in the temporary
but important conditions of sparse deployment. Ultimataliien all cars have their own OBD-II readers

supplying data to drivers’ cell-phones, we shall not needgbneralization scheme described above.

5.5 Implementing GreenGPS

The GreenGPS server is implemented as an aggregation seReolView (data is collected by the server
from individual users is described in Sectionl5.2). The eentilizes various PoolView modules, which
include the storage (server), community model constractmd map based application support tools.

GreenGPS uses an instance of the map-based applicatioorstgads to obtain the fuel efficient routes.
It maintains the street variables affecting fuel consumpts additional parameters in the OSM map. This
information is stored as a tag/value pair in the way objecti® OSM map), where tag is a street parameter
and value is the corresponding value of the parameter. &urthe car parameters are maintained in a
separate database, stored in the data storage componbat@fdenGPS aggregation server. The model to
compute fuel consumption on a given way (for a given car aneggrqueries these databases and computes
the fuel consumption on the way.

The OBD-II data shared by individuals is used to computeaggion models that predict the fuel con-
sumption on specific streets given the car details (e.g. nmakeel, age). The regression variables which
are street specific are stored in the OSM map database, whteaar specific variables are stored in a

similar database.
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Figure 5.10: Figure depicting the various modules of Grde8G

5.5.1 Model Clustering Implementation

GreenGPS model clustering is implemented as an instandeeofdmmunity data modeling module of
PoolView. First, this module takes as input the model stmec{as derived in Sectidn’b.3), the clustering
parameters, and the collected data and creates the geatoalihierarchy. Once the hierarchy has been
established, this module can then be queried by providirigpag the model structure parameters (such as
number of stop signs, traffic signals, average speed, andaight). The output of such a query will be the

fuel consumed by the given car on the queried road segment.

5.5.2 Routing in GreenGPS

Routing is achieved in GreenGPS by customizing the opertegouting software, Gosmore |80]. Gosmore

is a C++ based implementation of a generic routing algorithat provides shortest and fastest routes
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between two arbitrary end-points. Gosmore uses OSM XML nadg fr doing routing. Gosmore’s routing

algorithm is a heuristic that by default computes the sksbrtaute. This routing algorithm can be thought of
as a weighted Dijkstra’s algorithm on the OSM map, where tides of the graph are OSM nodes and the
edges of the graph are OSM ways and the weights of the edgésediengths (distance) of the ways. The
fastest route is computed by multiplying the distance bynaarse speed factor (thus giving lower weights
to faster ways). Our fuel-optimal routing algorithm muligs the distance by an inverse mpg (miles per

gallon) metric that results in lower weights for fuel-opéihways.

5.5.3 Other Implementation Issues

Street address inputs provided by the user are translatedaititude/longitude pairs using PoolView’s
geocoding module.

The GUI frontend to display the fuel-optimal route (showrrigure[5.2) utilizes Microsoft Bing maps.
Routes are color coded and renderegalylineson Bing maps. For example, the fuel-optimal route is a
“green” color polyline.

When a query is posed to GreenGPS for the fuel-optimal roette@den the start address and destination
address, the addresses are first geocoded into their condieg latitude and longitude pairs using the
geocoder module. The latitude and longitude pairs of thet aitel destination addresses are then fed to the
routing module which computes the fuel-optimal route (glarith the shortest and fastest routes) using the
OSM XML database and the prediction models of fuel consumnpbn streets (computed from the OBD-II
sensor data contributed by users). The computed routei@medisplayed on the Bing maps based GUI

frontend.

5.6 Evaluation

We evaluate the performance of GreenGPS in two stages, Wistvaluate the performance of our model
by using it to predict the end-to-end fuel consumption fargooutes. Second, we evaluate the potential

fuel savings of an individual using GreenGPS.
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5.6.1 Model Accuracy

We first evaluate the accuracy of our prediction model imeating fuel consumption on long routes. These
routes are continuous sequences of segments that indwidiweve. Only six cars are used in this experiment
H because the data from the rest of the cars did not includepteufiaths (and hence we would not be able
to do path-based cross validation, where data collectecherpath is used to predict fuel consumption on
another). We consider the path error as the end-to-endagbie@derror for the given path (which is the metric
used for evaluation in Secti@n®.3). For cross validatioe remove the data points associated with a given
path and obtain a model for the car, then obtain the erroradipting fuel consumption for this path based
on the computed model. We repeat the above for all the paths.

The entire path error distribution corresponding to thevabexperiment when prediction for each car
is used based on data of the same car (on other paths) is shdviguire[5.TIL. We observe that the path
error distribution is nearly normal and that the mean of tliéribution is near zero{1%). We conduct a
similar experiment to derive the path error distributioattis achieved by employing clustering such that
fuel consumption of cars is predicted from that of other déarthe nearest cluster. To experiment with
prediction accuracy of clusters, we remove the data poimtedch car (as if that car was not known to the
system) and cluster the rest of data points, as describedadtio8[5.4.P, based on make, year, and both.
Fuel consumption of the removed car is then predicted usiagéarest cluster. Namely, we first check if a
cluster exists with the same car make and year. If no suckeclagists, we check for a cluster of the same
make or the same year, respectively. Finally, a model basedl car data is used if all the previous steps
fail. The prediction error for each path is computed as leeémd the distribution is presented in Figure b.12.
Again, a normal distribution of the path errors is observdith wear zero mean{4%).

In order to understand how path errors vary with path lengtliesbin the paths based on their length
and compute the average of the absolute path errors as @funtipath length. We repeat this experiment
for the case where models are derived for each car individaald the case where models are derived for
clusters and the nearest cluster is used. We plot the mehr absolute path errors for varying path lengths
in Figure[5.1B.

We observe from Figule 5113 that the error decreases withasig path length for both the individual

2Ford Focus, 2009; Ford Taurus 2001; Toyota Corolla, 2008] Faurus, 2001, Honda Accord, 2001; and Ford Taurus, 2001.
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Figure 5.11: Distribution of path error percentages whaiming is done using individual cars
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Figure 5.12: Distribution of path error percentages fordlustering approach
and cluster based models. As expected, models based on tieg'®ear do better than models based on the
nearest cluster, but the cumulative error continues toedeser with distance driven, which is what we want.

We have not explored if this holds true when the commutes lasge dynamics in speeds, such as in larger

cities. The current data set is limited in that it was cobielcin a fairly quiet town.
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Figure 5.13: Mean path error when path length is varied fdividual car models and cluster based models

From the perspective of building participatory sensingliappons, the above suggests the importance
of finding models that do not havmased error Since the models often try to predict aggregate or longx-ter
behavior (such as long term exposure to pollutants, anmshlod energy consumption, eventual weight-loss
on a given diet, etc), if the error in day-by-day predictimaormally distributed with zero mean, the long-
term estimates will remain accurate. Hence, rather thamyimng about exact models, GreenGPS attempts

to find unbiasedmodels, which is easier.

5.6.2 Fuel Savings

In this section, we evaluate the fuel savings achieved wiserguhe GreenGPS system. To evaluate fuel
savings, we chose landmarks in the city of Urbana-Champihiginare visited by the drivers in our study

from their daily commutes, such as work, gym, frequentiyteds restaurants, and shopping complexes. To
eliminate subjective choice of routes between the seldatatinarks, we selected a pair of landmarks then
looked up both the shortest route and fastest route betvinese tandmarks on MapQuest. The person then

drove eight round trips (of approximately 20-40 minutesh@dmetween their selected pair of landmarks;
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four on the shortest route and four on the fastest routedewp actual fuel consumption for each round
trip. The landmarks together with the shortest and fastages are shown in Figuie5l14. We then used
the GreenGPS system to predict which of the two compare@sdot each pair of landmarks is the better
route, which it did correctly in every case.

The fuel consumption data for each roundtrip on the shogmedtfastest routes for all the cars in this

experiment are shown in Tallleb.4.

Car Landmarks Route Fuel consumption GreenGPS| Savings %
type type (gallons) prediction
1 to Mall Shortest| 0.19| 0.16 | 0.19| 0.16 Shortest 31.4

Fastest| 0.22| 0.23| 0.25| 0.22

Shortest| 0.19]| 0.20] 0.19] 0.18
HLo Gym et 0211 023 022 0.25| Srortest 19.7

Shortest| 0.24 | 0.23| 0.23| 0.22
Ford Taurus 2001 H2 to Rest. Fasiesi 03 1028 0291 0.29 Shortest 26

: Shortest| 0.18 | 0.16 | 0.18 | 0.17
Toyota Celica 2001, H2 to Work Fastest| 017 0141 016 0.15 Fastest 10.1

: Shortest| 0.14 | 0.15| 0.15] 0.15
[¢
Nissan Sentra 2009 H3 to CUPHD Fastest| 01310131 0.14 1 0.14 Fastest 8.4

. Shortest| 0.33| 0.32| 0.33| 0.3
Honda Civic 2002 H4 to Work Fastest 0951 028 | 0571 0.24 Fastest 18.7

Honda Accord 2001

Table 5.4: Table showing fuel consumptions for the varimusdtrips between different landmarks

We observe from Tabled.4 that the fuel-optimal route fortidations of the Honda Accord and Ford
Taurus was the shortest route, whereas, for the other tlastindtions it was the fastest route. Hence,
picking the shortest or fastest routes consistently is ptin@l. To confirm that the differences in fuel
consumption between the compared routes are not due to regast noise, we tested the statistical sig-
nificance of the difference in means using the two pairégbt The test yielded that the differences are
statistically significant with a confidence level of at [e88%. The average savings (by choosing the correct
route over the alternative) for each pair of landmarks amémsummarized in Table’.4.

Comparing the total fuel consumed on the optimal route t@tleeage of that consumed on the shortest
route and fastest route (assuming the driver guesses aimamdthe absence of GreenGPS), the savings
achieved are roughly 6% over the shortest path and 13% oeda#itest, which is consistent with data we

reported earlier in the feasibility sttu.This is by no means statistically significant, since onlyaadful

3The feasibility study used different routes from those reggbabove
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Figure 5.14: Figure showing the landmarks and correspgrstiortest and fastest routes

of routes were used in the experiments above, but it nedeghshows promise as a proof of concept.
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5.7 Lessons Learned

This section presents, in its two respective subsectiortsried discussion of our experiences with the

GreenGPS service and the limitations of the current study.

5.7.1 Experiences with GreenGPS

Several lessons were learned from GreenGPS, as an exampéetiofpatory sensing applications. First,
we observed that data cleaning is an important problem amgbptication dependent. We had several
occasions when several fields were missing from the data. ekample, the GPS sometimes failed to
communicate with the DashDyno and the location fields wee #mpty. A simple scheme (integrated with
the DashDyno specific data formatter module of PoolView) used to filter complete datasets from those
that were missing values. Another data-related issue veagrfsence of noise in the data. For example, in
our setup, we observed that (in some car models) whenev&RIsecommunicated with the DashDyno, the
fuel ratemeasurement had a large spike. This was likely due to impregeeof sensor 1Ds, which led to data
overwriting. Solutions have to be developed that filter these at the source. For example, we developed
a simple filter (integrated with the data formatter modul®oblView) that removes outliers from the data
before storing it. An application-specific challenge wasehed due to the slight variations in the OBD-
Il standards among different cars. For example, we obseivaidthe Toyota Prius (by default) outputs
the speed and fuel measurements in the metric system, thterthe Imperial system (which happens
to be the default for the remaining cars in our dataset). kagler to propose generic solutions to such
problems. They suggest, however, that unlike small emhkdgstems, participatory sensing applications
involve a much larger number of heterogeneous componeuts déferent car types in GreenGPS). As such
components interact with each other or with aggregationices, subtle compatibility problems will play
an increasing role. Troubleshooting techniques are nettddchre good at identifying problems resulting
from unexpected or bad interactions among different imfdiglly well-behaved components. This is to be
contrasted, for example, with debugging tools that attamfind bugs in individual components.

Finally, another lesson learned relates to the initial @rpental deployment of participatory sensing
systems. A major hurdle in getting participatory sensingteyns off the ground is to provide the right

incentives to the individuals (who are part of the syster].[9Ve believe that the initial deployment, which
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tends to be sparse, should be carefully designed in ordeptade incentives for larger adoption. It should

therefore be useful from the very early stages.

5.7.2 Limitations of Current Study

Apart from the limitations arising from the small size of ttiata set, discussed earlier, we also make the
following observations. As expected, the main factorsciifig fuel consumption of a vehicle on a path are
the average speed, the speed variability (estimated bgagiveythe speed squared), and the engine idle time
(estimated from the number of stop signs and stop lights epdth). A limitation of the study is that we did
not explore the use of real-time traffic conditions for pueg® of fuel estimation. Rather, we opted to use
statistical averages of speed, speed variability and idile.tlt is easy to see how such statistical averages
can be computed for different hours of the day and differaysdf the week given a sufficient amount of
historical data, yielding expected fuel consumption (ie atistical sense of expectation). The outcome
is that individual trips may differ significantly from theadistical expectation. However, by consistently
following routes that have a lower expected fuel consunmptgavings will accumulate in the long term.
Drivers may think of GreenGPS as a long-term investment. rt8bom results may vary, but long-term
expectations should tend to come true.

A limitation of the study, as discussed in Sectlon] 5.3, i¢ the selection of cars used in our current
study (mostly compact and mid-sized sedans) result in arglregion hierarchy that ignores the adass
(currently incorporates only car make and year). Futurdayepents will consider a broader range of
vehicles, such as SUVs, minivans, and light trucks. The fata these deployments will be used to
recompute a better generalization hierarchy.

In order to achieve the next level of optimization, a nextegation of GreenGPS can take into account
the real-time situation. Our experience reveals, not singly, that the degree of congestion plays the
largest role in accounting for fuel consumption variati@msong individual trips of the same vehicle. On
lightly-utilized streets, another main factor is the degte which traffic lights are synchronized. Lack of
synchronization accounted for up to a 50% increase in fuss@mption in our measurements.

Another limitation of the current service is that it does povperly account for turns. Turns on the

path add fuel consumption, often because delays in the ame differ from those in the through lane. In
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particular, our measurements show that left turns may adehsiderable amount of delay to a path. Hence,
routing should account for the type of turn as well.

Finally, we expect that fuel savings in larger cities will luigher than those reported in our evaluation,
both due to the larger variability in traffic conditions thaguld be taken advantage of, and because of
the larger connectivity which offers more alternativeshie thoice of route. With the above caveats, we
believe that the study remains of interest in that it exg@greblems typical to many participatory sensing
applications, such as overcoming conditions of sparseogigm@nt, adjusting to heterogeneity, and living
with large day-to-day errors towards estimating cumuéagixoperties. The GreenGPS study could therefore

serve as an example what to expect in building similar sesyias well as a recipe for some of the solutions.

5.8 Conclusions

In this chapter, we developed a solution approach for Iniaticipatory sensing application deployments,
when the data collected are sparse and high-dimensionaimaeling the complex phenomenon poses
a challenge. We illustrated a solution approach using alnmmadgation service, called GreenGPS, that
computes fuel efficient routes. This service relies on OBDBaka collected and shared by a set of users
via PoolView. Lessons were described that extrapolate egperiences with this service to broad issues
with participatory sensing service design in general. Vé¢® ahow that significant fuel savings can be
achieved by using GreenGPS, which not only reduces the ¢daeb but also has a positive impact on
the environment by reducing GGmissions. An important issue addressed was survivingitomsl of
sparse deployment. GreenGPS achieves this by using adtigraf models developed in this Chapter to
estimate the fuel consumption, and shooting for modelsareatnbiased, if not accurate. Our future work
will address the challenges associated with real-timeigtied, as well as experiences from a longer-term

deployment.
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Chapter 6

Related Work

We divide the related work section into three parts, the pest will summarize the literature in human
activity identification. In the second part, we will look anous participatory sensing applications and

finally review privacy related work.

6.1 Human Physical Activity Identification

We will first describe the related work for identification afdic human activities, such as walking, running,
and writing. Then, we will describe the related work cormgging to identification of activities of daily

living (ADLS).

6.1.1 Basic Human Activity Identification

There has been considerable work on activity identificatisimg wearable computers. We discuss a repre-
sentative few in this section. We present a few accelerarbeteed wearable computers that identify human
activities. We will then examine wearable computers thatather sensors.

A wearable jacket and a sensor badge have been developel] imHith sense perambulatory activities
for context awareness in a human. The jacket uses knittacigntques to form stretch sensors positioned to
measure upper limb and body movement. The sensor badge-ases&celerometers to identify different
postures of the humanstanding, sitting, lying, walkingind running The data from the accelerometer
is sampled at 20 samples/second to differentiate betweemlibve postures. The sensor jacket is used
to detect the posture and movements of the user by ugiitted stretch sensorand knitted conductive
tracking. Feature vector based activity identification using acoahaters to identify activities such as

standing, walkingandrunninghas been presented in[92].c&berjacketusing context sensors incorporating
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a tourist guide application has been builtinl[91]. A crosglBd] ADXL202 2-axis accelerometer is used
to analyze the user’'s behavior and classify them into diffeistates, such astting and walking The
application program could register an interest in the etleait the users activity changes from walking to
sitting. This could trigger the main processor and dispklgvant information to the user. A system with
accelerometers on pants attached to the laptop to intetipeataw sensor data using Kohonen maps and
machine learning techniques for learning the user’s ditvis presented in_[69]. The system consists of
ADXLO05 Analog devices two-axis accelerometers connected PIC microprocessor, which sends data
to a laptop via. the serial port. They were able to distingugtween various classes of movements,
such aswalking, sitting, running, jumping, climbing stairs, desding stairsandriding a bicycle. A wrist
worn fall detector for elderly individuals has been develdpn [32]. The wrist device uses a three-axial
accelerometer to measure the acceleration and based owrtineof the acceleration measurements, the
fall is detected. A method to translate gesticulation intesioal performance to express the performer’s
emotion is presented i [P6]. The system consists of threekisional acceleration sensors, a MIDI sound
source and a computer. This system controls the musicamydirectly by human gesture. Techniques
for processing data from accelerometers which enable tlagalble computer to determine user’s activity
are presented in_[90]. They use a clustering algorithm - aaheetwork to infer what the user is doing.
Magnetic field, angular rate and gravity sensors (MARG sesoe used i [12] and[13] to determine the
posture of an articulated body. In the system, orientat@ative to an earth-fixed reference frame of each
limb segment is individually determined through the userchtiached MARG sensor. Orientations are used
to set posture of an articulated body model. An inertial g@stecognition framework composed of 3 parts
is presented ir [17]. The firstis a set of six-axis wirelegstial measurement unit to fully capture the three-
dimensional motion. The second is a gesture recognitiooritgn for analyzing data and categorizing them
axis-by-axis as simple motions with magnitude and duratibhe third allows an application designer to
combine recognized gestures both concurrently and cotrgelguo create specific composite gestures that
can be set to trigger output routines. A real time motionkirag system using sensors built from tri-axis
microelectromechanical accelerometers, rate gyros, aghetometers is presented in [119]. A Kalman
filter based fusion algorithm was applied to obtain dynanmieraations and further positions of segments

of the subject’s body. I [14], a low-cost/low-power wedeatmotion tracking system is developed, based
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on integrated accelerometers, called MOCA (motion capiutteaccelerometers). The system is composed
of sensing units connected to a control/acquisition boagshonsible for reading and preprocessing data,
and a mobile terminal running the recognition algorithm.

Our work on the smart jacket introduces the next generatiomearable computing systems in which
wired networks and centralized processing are replaced wiiteless sensors individually equipped with
their own microprocessors, memory, and radio devices. dédientralization offers more flexibility, scal-
ability, and independence within the computing platformal$o allows for disconnected operation of the
smart attire, where the user need not be in a specializedomment. The wireless nature of our system and
its added flexibility allow subsystems of sensors from &$sof clothing (such as pants, shirts, and shoes) to
communicate and form a single sensor group with the purpigs®weiding additional functionality. Further,

the algorithm that we develop outperforms the existing apgines (which are feature vector based).

6.1.2 Identification of Activities of Daily Living

In the previous section (Sectibn 6l1.1), we have introdseseral papers that have developed techniques for
identifying basic activities, such as walking, runningdtisg, and lying [41[ 9P, 91, 96. 90]. In this section,
we will focus on related work that is concerned with idenéfion of a broader set of high level activities,
such as cooking, driving, and eating. As we have seen edhiese activities are termexdttivities of daily
living.

A Gaussian Mixture Model (GMM) based approach combined wifinite state machine was devel-
oped in [63] for the purpose of identification of early momgpibathroom activities, such as washing face,
brushing teeth, and shaving. The sensor data input usetidadéntification of the above activities was an
accelerometer strapped to the wrist. In their previous 624, the authors describe an integrated system
that combines sensors embedded in home as well as wearableséor the collection of data for activity
identification and labeling of the collected data. We idigrdi broader set of activities and use an existing
device, i.e. the cell phone for identifying these actigtie

In [87], RFIDs were used to identify ADLs. A system called &bwas built that uses inputs from
RFIDs attached to various objects and a reader attacheddwve g hese inputs were used to create models

using dynamic Bayesian networkthat are then used for the identification of the activitids approach
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that augments the use of RFIDs with an accelerometer mowmntdtie glove with the RFID reader was
presented in[€9]. In the paper, RFID tag readings were uwsedirow down the set of activities based on
the type of object being used. Then, features were extrdaiedthe accelerometer data, after which three
different approaches for classification were used, nameailyé\Bayes, Hidden Markov Models, and Joint
Boosting. In contrast to the above paper, our work usesiegisensors from cell phones and avoids the use
of cumbersome devices like a glove with an RFID reader attd@mnd does not take input from the sensors
embedded in the environment.

An approach to identify a minimal set of sensors for the psepof identification of eating and meal
preparation was presented in[71]. In the paper, the adgaptwosting (AdaBoost) classifier was used for
separating eating and associated tasks from other agsividur work addresses the identification of a larger
set of activities with a limited set of sensors that are aiddé on the cell phone.

State change sensors installed on various household skjadh as doors, drawers, and refrigerators are
used to collect sensor data for the purpose of the identdicalf activities of daily living, such as cooking,
shopping, washing, and bathing [n [117]. A self-adaptivaraknetwork called Growing Self-Organizing
Maps is used for the purpose of activity identification. Imirast to our work, the above paper used inputs
from objects tagged with state change sensors.

A specialized device that records various sensor readsgd) as the microphone, light, accelerome-
ter, and barometer was developed[inl[27]. An on-device @mfeg algorithm that identifies activities such
as walking, sitting, climbing stairs, and brushing teettsva#so presented. Our work on the other hand

identifies a broader set of activities and does not requipeaialized device to be used.

6.2 Participatory Sensing

In this section, we will discuss various participatory segsapplications followed by a few architectures

that were proposed for participatory sensing and fuel efficy related applications.

6.2.1 Participatory Sensing Applications

Participatory sensing applications have recently beenritesl as an important emerging category of fu-

ture sensing systemis! [2]. Several applications have bessiaged and deployed, some examples include a
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participatory sensor network to search and rescue hikeroimtains|[|5B], vehicular sensor networks (cars
with sensor nodes) such as CarTell [61], that deployed semgt®s in cars, and sensor networks embedded
in individuals attire [[4¥], cyclist networks (BikeNef) [Bxellphone camera networks for sharing diet re-
lated images (ImageScapt) [94], cellphone networks forargtaring (MMM2) [31], sensor networks for
parking space monitorin¢ [74], and image search using ragtibnes{[113]. In this thesis, we focus on the
general data analysis tools required for the developmepdticipatory sensing applications, as opposed to

developing a specific application.

6.2.2 Participatory Sensing Architectures

An architecture for participatory sensing, calledrtisans has been proposed in_I86]. In that paper, the
main challenges addressed are those of data verifiabildypamacy. In contrast to our work, the approach
assumes a trusted third party. A similar trust model wasmasdun [68]. Recently, an architecture and a
set of tools for data collection and analysis from weathaters are being developed by CASA]29]. These
architectures do not consider privacy of the sensor dategbshared (or assume the presence of a trusted
third party). Further, they assume that data density is (@tihough, we have shown that initial participatory

sensing deployments will be sparse and the data densitpavithw).

6.2.3 Fuel Efficiency Related Applications

A comprehensive study that provides optimal route choioekfvest fuel consumption is presented(inl[37].
In the paper, fuel consumption measurements are made thtbagxtensive deployment of sensing devices
(different from the OBD-II) in experimental cars. Theselfobensumption measurements are then used to
compute the lowest fuel consumption route. In contrastéontbrk in [37], we use a sparse deployment to
build mathematical models for predicting fuel consumpfionother streets and cars. [n]21], the influence
of driving patterns of a community on the exhaust emissionsfael consumption were studied. Feedback
was provided to the community regarding the driving pagemcut back on the fuel consumption and ex-
haust. A driver support tool, FEST, was developed.in [33]SFEses sensors installed in the car along with
a software to determine the driving behavior of the drived provide real-time feedback to the individual

for the purpose of reduction in fuel consumption. An extendio FEST that includes more experiments
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and further evaluation can be found In_[104]. A feedback ratigorithm was developed in [97] that de-
termines speed of automobiles on highways with varyingtero achieve minimal fuel consumption. An
extension to the work in_[97] was developedlinl[57]. [Inl[57ggestions of driving style to minimize fuel

consumption were made for varying road and trip types (exgstant grade road, hilly road). The problem
was formulated using a control theoretic approach.

UbiGreen[[44] is a mobile tool that tracks an individual'ssmnal transportation and provides feedback
regarding their C@emissions.

In a separate study [54], it was shown that rising obesity nagynificant impact on the total fuel
consumption in the US. Models were developed that studiedntipact of obesity on the amount of fuel
consumed in passenger vehicles.

Our work in Chaptefl5 represents the first participatory isgnservice that aims at improving fuel
consumption. Using data collected from volunteer paréiotp, models are built and continuously updated

that enable navigation on the minimum-fuel route.

6.3 Privacy

Privacy is an important problem in Internet based appbeesti as pointed out in_[51]. Several privacy
approaches and algorithms have been developed, which spaus fields of computer science. In this
section, we will provide a comprehensive summary of relatetk with respect to sensor data (it is outside
the scope of this thesis to survey all aspects of privacy).labk at privacy techniques in the data mining
literature (also called as privacy preserving data miniag)it is most closely related to our work.

We classify past work into four broad categories: (i) Datargimization, (ii)) Random perturbation (iii)
Randomized response, and (iv) Secure multi-party computal hese techniques presented below can be

leveraged in future incarnations of our architecture.

6.3.1 Data Anonymization

The concept of data anonymization is one where individublresthe data without revealing their true
identity. A typical approach is one &fanonymitywhere the model is that the data released by an individual

cannot be distinguished from at ledst- 1 other individuals. This k-anonymity model was introduced
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in [100] and it was shown that it can protect against certgaes of attacks (e.g. unsorted matching attack,
complementary release attack, and temporal attack). Aimepand practical k-anonymity approach is
presented in[]15], which extends existing approaches sadild),[95]. The work in[]15] presents a k-
anonymity approach that hides minimal data from a givensdgatéfor an individual) using a tree-based
pruning technique. Privacy preservation using k-anonyeithniques for pattern mining is proposed.in [8],
which was extended to support mining frequent itemsets invagy preserving manner inl[7]. A real-time
k-anonymity based approach for social network data shasimgesented in_[16]. Recently, k-anonymity
techniques have been extended to address location prirapaiticular) [19/1B[ 43, 118]. The concept
of mix zonewwith trusted middleware was used in_[19] L8] 43] to achiewation privacy. A distributed
k-anonymity based protocol for location privacy was pragubs [118].

The k-anonymity approach has a drawback, in that, it malyrstieal certain private information regard-
ing the individual (sharing data). For example, considemgmized GPS data. Anonymized GPS data may
still reveal the identity of the user (e.g. Identifying thenfe location and work location can narrow down
the identity of the individual and in many cases reveal if)toApproaches such as 119,118, 118] rely on

trusted middleware, which in our approach is absent.

6.3.2 Randomized Perturbation Based Techniques

The general idea behind these techniques is to perturb tiddnal data being shared in such a manner
so that single data items “appear” to be random values to &t& whiner and an external entity cannot
draw inferences about individual private data with a caréegree of confidence. One of the first such
approaches was proposed lin [5]. In this paper, each clienhaumerical data item;, and an external
server wants to compute the distribution of the data itenes all clients. The clients randomize their data
items by adding a random numberdrawn independently from a known distribution such as aaumifor
Gaussian distribution, where the mean of the distribut®kniown. The server collects the values+ r;
and reconstructs the distribution ©f's using the Bayes' rule to estimate a posterior distribufionction.
Further, the authors’ of [5] provide a method to quantifyady. This method is based on how closely the
original values of a modified attribute can be estimatedhéfdriginal valuer can be estimated with &%

confidence that it lies in the intervat,, x5}, then the interval widtl{zs — x;) is defined as the amount of
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privacy atc% confidence interval.

The work in [5] was extended by the authors’ Of [4]. [n [4], @@astruction algorithm was proposed
that converges to the maximum likelihood estimate of thginal distribution. The reconstruction algorithm
is based on the Expectation Maximization (EM) algorithm.rtker, metrics are developed that quantify
privacy and information loss based differential entropy

Several papers|_[89, 66,158], extended the technique fgesbén[5]. These papers show that privacy
breaches occur under certain conditions, when the ran@ohgerturbation approach ofl [5] is used. They
then develop solutions to prevent such breaches| _In [3%lastbeen shown that the techniquelaf [5] is
vulnerable when a set of items are shared (instead of a sraljle). Arandomized operatowas developed
that prevents privacy breaches when itemsets are sharegl.pfiMacy preserving properties ofi [5] were
studied in[[66] and it was shown that, in certain cases, tkeglerturbation technique afi[5] fails to preserve
privacy. The paper uses the properties of random matriceésjectral filtering techniques to retrieve the
original data from the distorted data set. Although, thegpdigils to mention the “conditions” under which
such breaches happen. Further studies ih [58] revealed #et factor that leads to privacy breaches of the
technique in[I5] is based on data correlations. They propd@encipal Component Analysis (PCA) based
technique to estimate the original data given the distatietd. Then, they propose a scheme that perturbs
the data with random noises which are “similar” to the ordgdjidata. This scheme is proven to be privacy
preserving when their technique of PCA is used to reconsthecoriginal data.

Our privacy preservation scheme differs from the aboveaaares in that we consider time-series sen-
sor data, which are correlated (in the time dimension). Treetations in time-dimension can be exploited
to infer the trends or estimate the original sensor datastr@ising techniques like PCA). Hence, using
techniques that do not take into account the correlatiomie$ar data in the time dimension will not work.

On the lines of the above additive random data perturbatpgmoach, multiplicative data perturbation
approaches have been developéd] [67, 25].[Ih [67], two plighitive data perturbation schemes were
proposed to do privacy preserving data mining. One appr@&tthgenerate random numbers which have
a mean of one and a small variance, and then multiplying tiggnat data by this noise. The second
approach is a bit more complicated. This technique usesaaitbqnic transformation on the data, combined

with the computation of a covariance matrix of the transfednalata. A random number with a covariance
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similar to that of the transformed data is generated. Thesfoamed data item and the random noise are
added and an antilog of the result is shared. These techmigees used in masking the income data
from the 1990 Internal Revenue Service (IRS) 1040 IncomeReturn file! A geometric rotation based
approach fodata classificatioris presented in_[25], that preserves certain geometricgstigs of datasets
when transforming them. This transformed dataset is shaitbdexternal entities. As certain properties
of the dataset are preserved, it is possible to obtain Gkssfrom the perturbed datasets. Three different
geometric transformation techniques are presented fasdatransformation.

The above multiplicative based data perturbation appesmalso do not consider the correlations in the
time domain. Our approach utilizes additive methods, butiy be possible to use a multiplicative approach

(that considers the correlations within the sensor da¢aist}.

6.3.3 Randomized Response Based Techniques

The randomized response technique was first introduced loya/VA09] as early as 1965. It was introduced
to solve a survey problem, which can be stated as follows:ntbdn estimate of the percentage of people
in a given population that has a sensitive attribite Two models were proposed in_[109] that estimate
the above percentage without revealing the answer to whathimdividual has the sensitive attribute. One
model asks each respondent two related quegtiomkich are as follows: (i) Do you have the sensitive
attribute X? (ii) Do you not have the sensitive attribufdé? Note that, the answers to the questions are
opposites of each other. A randomizing device is designaidctiooses the first question with probability
and the second with — 6. The external entity only learns the answer to the questiena “yes” or a “no”
and not the question that was answered. The estimate of therpage of people who have the attribtie

is obtained by solving the following equations:

P*(X =yes) = P(X =yes) x 0+ P(X =no) x (1 —0)

P*(X =no) = P(X =no) x 0+ P(X =yes) x (1 —0)

In the above equationg?*(X = yes) is the proportion of the “yes” responses from the survey, and

1We refer you to the paper for the discussion on the secondimode
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P(X = yes) is the estimated proportion of the “yes” responses to theahdensitive questions. This
idea was extended in_[B8] to preserve privacy while miningegarical data (instead of numerical data).
The main idea in the paper is to use a claseoflomization operatorsThe randomized response scheme
of Warner [109] was extended to a multiple-attribute datarsg34]. This means that instead of a single
sensitive attributeX, there are multiple sensitive attributeX;, X, --- X,,. The solution approach is a
straight forward extension to the randomized responsenseipeesented in [109].

Such randomized response approaches are not useful in Gaghpammunity statistics from arbitrary
time-series sensor data. Our goal is to accurately compmuntenzinity statistics from arbitrary time-series

sensor data while preserving the privacy of an individual.

6.3.4 Secure Multi-party Computation

The general idea behind this class of techniques is to uggagsaphic methods to achieve privacy. A
comprehensive treatise on the basic results of secure-pautyy computation are presented[ini[52]. Several
protocols that work under reasonable assumptions anddbeesponding proofs are presented in this work.
A general secure two-party function evaluation technigas developed ir [115]. This technique is based
on expressing the functiofi(z, y) as a circuit and encrypting the gates for secure evalualibase secure
computation techniques have been used_in [65] for devajopiathods for privacy preserving distributed
mining ofassociation rulesAssociation rules reflect frequent data items thaeasociatedvith each other,
[56]. By this we mean that the data items occur together #atiy A cryptographic approach that uses
the property of exponentials was proposediin [114] for tlesgification of customer data. The proposed
approach achieves the classification without any loss afracg. The main idea of this approach is to use
the mathematical properties of exponentiation in a cryatplgic setting, that allows a data miner to combine
encrypted results received from customers to calculatedeseed result.

The problem with this approach is its significant overheaat tequires a large number of pairwise
exchanges between users in the community. Such exchangest dcale when users are not available
simultaneously for purposes of completing the computationvhen the number of users involved changes

dynamically.
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Chapter 7

Conclusions

In this chapter, we will first summarize the conclusions @ thesis, then describe the lessons learned, the

impact of this work, and the directions for future work.

7.1 Conclusions

In conclusion, this thesis is a step towards the future enhxbthternet. We designed and developed a novel
architecture and data analysis toolset for human centnissenetworks and illustrated it with five different
applicationssmart jacketsmart phonetraffic analyzey weight watchersandGreenGPSOur architecture
builds on existing standard Internet tools that allow fasyedeployment of various applications. It allows
for individuals to easily collect sensor data from their rgday devices (e.g. smart phones, in-car GPS
devices), analyze these data to identify various day-joatdivities and share these collected data in a
larger community without breaching privacy (of the indivad sharing data). These shared data can then be
used to compute phenomena of common interest (e.g. aityjobkities).

In the course of the development of the PoolView architegture addressed various generic research
challenges. These include (i) human activity identifigati¢ii) privacy preservation (while being able to
compute accurate community statistics), and (iii) comnyudata modeling. Human activity identification
is a centerpiece for several personal application domaials as healthcare, social networking, entertain-
ment, and personal record keeping. We show that existirggitigns are inadequate for the identification of
activities using everyday sensing devices (e.g. smargsjoriWe developed a novel activity identification
framework that can recognize activities of varying comilexThis framework combines a feature extrac-
tion library with HMMs (a Bayesian learning framework) tohe&ve activity identification. It can identify

simple activities (such as walking, writing, typing) whemlyaccelerometer sensor data are used and com-
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plex activities (such as eating, cooking) when microphogreser data are fused with the accelerometer
sensor data. We demonstrated this framework using two types, the smart jacket and the smartphone
which utilize sensing devices that are available commkiycia

The remaining two research challenges arise from the contynsensing aspect of our architecture,
where individuals share the data collected within a largenmunity (towards a common purpose). We
observe that an important research challenge when shaispsdata is to be able to preserve the privacy
of the individual (sharing data). Further, addressingehm&/acy concerns in the absence of a trust hierarchy
will enable the grassroots deployment of community senapyjications. We developed a novel privacy
preserving technique (using data perturbation) that allfav individuals to share time series sensor data
within a community such that their privacy is preserved agiacommon reconstruction attacks, whereas
it is possible to accurately reconstruct the communityidtes. We applied this algorithm in the context
of two applications, traffic analyzer that computes traffilated statistics from perturbed GPS sensor data
shared by individuals and weight watchers which computaghweelated statistics from perturbed weight
data shared by individuals

Finally, we show that in a lot of community sensing applicai, a common problem is the lack of
sufficient sensor data to map phenomena of interest. We gedpa novel method to model phenomena of
interest from relatively sparse sparse measurements lfdilgensional spaces. We illustrated this method

using a novel navigation application, GreenGPS, that cdeggiwel efficient routes for vehicles.

7.2 Lessons Learned

In this section, we will first describe a few lessons learnenfthis thesis and then the limitations of
the current architecture and the corresponding tools. @eercourse of the development of PoolView’s
architecture and the corresponding applications, we gbdéahat the amount of raw sensor data required to
bridge the gap between human decision needs and the datasesrexponentially with the complexity of
the needs. For example, the identification of activities sifigle individual (using the smart jacket) requires
much lesser data than computing a fuel efficient route fovargcar (using GreenGPS). This necessitates
the development of a data collection framework that is aatechand decentralized (allowing data collection

from multiple devices across a large population).
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Another important lesson that we learned from our deploymenthat of incentives during initial de-
ployments of participatory sensing applications. As tgpjmarticipatory sensing applications require a large
amount of data to realize the utility of the application, tiglnt incentives have to be provided to individuals
(who are part of the system).

Another lesson learned relates to the heterogeneity of ¢vecek that are used for data collection.
We observed from our deployments that different types oérogeneity exist. First, the same sensor can
have different characteristics. For example, an acceletentan be manufactured by different companies
and may have different characteristics, such as sengiti@itcuracy, precision, and errors. Second, the
same sensor can behave differently depending on the ititaraavith other components in a system. For
example, even though the accelerometers in MicaZ motes lendNokia N95 are very similar in their
characteristics, it is not possible to sample the acceleteimon Nokia N95 at a constant rate. Finally,
sensing devices can interact differently in different emwiments. For example, a Honda Accord outputs
OBD sensor measurements in the Imperial system, wheredsyloga Prius outputs it in the metric system.

There are several limitations to the work done in this thdsisst, PoolView architecture assumgsta
verifiability. Data verification is the process where data are checkeccéuracy and inconsistencies. As
sensor data are generated in an automated manner, dateatienifineeds to be an integral part of PoolView.
In the current version of PoolView, simple data filteringheitjues are integrated to denoise the raw sensor
data. Further, PoolView does not address energy relatadss&nergy (for sensing and collection of data)
will be of primary importance, when the bottleneck to sengeeage of data is the energy consumed per
sensed bit (as opposed to the computation power or the mmecitthe sensor).

A limitation of the current activity identification framewlois that when multiple activities are per-
formed together, it fails to differentiate the activitidsor example, eating and watching TV were confused
by our activity identification framework because they amdslly performed together. This limitation can
be addressed in two ways, one is to extend the HMM approachkldipg further information in the model.
For example, we do not consider the location informatiorhim tnodel, which can be used to narrow the
types of activities being performed at a given location .(éAggraduate student is more likely to cook at
home than in her workplace). Second, we believe that HMMg ardamental limitations in modeling an

activity and that a completely different technique is regdito achieve activity identification. For example,
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data mining techniques such as the Apriori or the Prefix sfgorithms [56] may be useful to mine the raw
sensor data to identify human activities.

In ChapteiCB, we observed that a lot of data is required tdtiiesctivities accurately. A question that
needs to be addressed is if it would be possible to develomerigemodel for an activity (using a small
amount of data) and then evolve these models in such a wathtatdapt to an individual. An approach
to this problem is through the use sémi-supervisetearning [24].

A generic limitation of current activity identification fn@eworks (including the one we developed) is
that they need to be adapted to a specific user. The learrdngefrorks (e.g. Bayesian) rely on “training”
data to build models, which are then used to identify an #gtiActivities across different users may be
significantly different and in some cases, they are diffef@nthe same individual (over time). For example,
an individual who hurt her leg will have different gait fromhen she was normal. The broader question
then is - “How do we develop an activity identification frana that does not utilize a learning based
algorithm?”

Another limitation is with regard to the perturbation teitjue used for privacy preservation. Our algo-
rithm protects against common reconstruction techniquel as PCA and spectral filtering. There are no
fundamental guarantees provided on the privacy of the dataishared.

A space that we have not yet explored is when the noise modetsfor data perturbation are dynamic
(continuously evolving). For example, consider a socidiwek graph, where a single model does not
suffice to describe the graph. In such a case, how does aidudierturb the data and how are community
statistics reconstructed?

Finally, the modeling technique that we proposed in thisigvill not work well when data are per-
turbed. The error in modeling will be significantly higher evhthe data are perturbed. This means that we
need a different privacy preservation algorithm which doaisrely on data perturbation.

Yet another limitation of the modeling technique is whenividials (sharing data) are lying about
the data being shared. Technigues such as comparing witlo-sp@poral correlated community sensor
data [86] will not work in this case. Since, the data are spatbecomes hard to validate the data. Further,
our modeling technique assumes linear regression modeto(hpute the model coefficients) and simple

categorical parameters to split the data into sub-cubgs ¢ar make, year, class).
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7.3 Impact

The work in this thesis has been published at various togsystonferences such as MobiSys and SenSys.
The human activity identification frameworks were publdlaed presented at MobiSys [47] and BSNI[46].
The privacy work presented in Chaplér 4 was published arskpted at SenSys [49]. Finally, GreenGPS
was published and presented at MobiSys [48].

| have beerinvitedto give talks on smart attire to various health care relateckshops (WSNHC 2007,
WAST 2008) and industrial labs (Motorola labs). At WAST 20@8workshop organized for bringing to-
gether caregivers and computer science researchers, riyna®been described asanesoméechnology
designed to improve the lives of older adults. My work featlin blog articles on Crossbow, was used
as teaching material in courses at various universitiel asd®artmouth (CS88/188), Duke (ECE256), and
Washington University St. Louis (CS537s). In collabomatimith Motorola, | developed a novel health care
monitoring framework which was showcased at the ContinualtHélliance (an industry consortium of
smart healthcare technologies) summit in 2008. The smamplvork was done as part of my internship
at Robert Bosch research center in Pittsburgh and has bédisld as an internal report. A patent in this
regard has been filed at the United States patent office.

For the work on GreenGPS, | have been awardedbibbel Scholar Fellowshigfor 2009-2010, which
is awarded annually for academic excellence and demoadtteadership to the top 80 students from the
world’s leading graduate schools. It featured as the maiwsragticle on the homepages of the CS depart-
ment, College of Engineering, and the lllinois Informatinstitute at UIUC. The work on traffic analyzer
has been integrated with Microsoft research’s SensorMbp.pfivacy work is being used as course material

at various universities, such as Portland State (CS410Uatd (CS591).

7.4 Future Work

There are three major directions of future work which arigead this thesis, the first pertains to personal
sensing in the healthcare domain, the second is to exterehGRS, and the third relates to building infras-

tructure for the pervasive availability of community segsi
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Sensing meets HealthcareThe success of smart attire, especially in the healthcdageteworkshop
naturally leads to the first part of future work, which is tdemnd and generalize the personal monitoring
services developed in the beginning of this thesis. In thgard, we are currently collaborating with the
College of Applied Health Sciences and the Coordinatedr8eid¢.aboratory at the University of lllinois,
Urbana-Champaign to integrate the personal monitoringices with real healthcare applications. Our
initial aim is to investigate the correlation between thedol glucose levels of Diabetes patients with their
physical activity levels. Modeling the relationship beemethe glucose and physical activity levels will
enable future medical devices to provide insulin injectieminders to the individual at appropriate times.
The broader challenges from a Computer Science perspectvid develop a set of middleware services
that enable multiple sensing devices to interact with edbbrpdiscover and manage resources efficiently,
and collectively monitor the health of an individual. We ision that such personal monitoring services and
the corresponding middleware infrastructure developembilaboration with medical researchers will have
a wide ranging impact on the current healthcare industryveitidisher in the era of a sensor networked
platform for healthcare.

GreenGPS:We believe that GreenGPS holds a promising direction farr&utesearch as a participatory
sensing application. We have shown that individuals cam @aiaverage of 10% savings in fuel consumption
by using GreenGPS (through the means of a preliminary demay). As discussed in Sectiénb.7 of
Chaptefb, there are several lessons and limitations thi#ameed from GreenGPS and its deployment. We
wish to explore these as part of our future work and envidian GreenGPS will bring about a revolution in
navigation.

Sensor Enabled Internet: Data generated from sensing devices is usually automaiédam result
in an exponential explosion of content on the Web, which lthggjuestion of a clever way of organizing
data. Data mining solutions will play a major role in thisaed, Consider the GreenGPS application, where
data collected by individuals is used to create models fedipting fuel efficiency on different streets. A
generalization of this problem is one where a generic madil be constructed given a sparse dataset and
different parameters. Another interesting problem is ttigearch, unlike the current search engines which
rely on indexing the Web pages and searching for keyword$tairo relevant information, the low-level

nature of sensor data will require the distillation of infation, possibly involving multiple data sources
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spanning wide geographical regions. Our vision is to bugdruthe current research (in this thesis) and lead

the next generation infrastructure for a sensor rich Web.
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