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ABSTRACT

In this thesis, a robust adaptive control scheme is proposed in order to drive

an induction motor with high performance, even in the presence of unknown

machine electrical parameters. Magnetic saturation within an induction

motor results in nonlinear, changing flux dynamics. Also, rotor resistance

changes with temperature as the machine is heated due to normal use, re-

sulting in more parametric uncertainty. The proposed control scheme will

cause the motor to track a desired reference model behavior, even in the

presence of these unknown parameters. An adaptive control scheme known

as L1 adaptive control is used to ensure that this reference model behav-

ior is realistic, so that robustness may be maintained even with very fast

adaptation. This controller is limited by the flux observer used to provide

information about flux magnitude and direction.
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spent together in the lab. My thesis would not be possible without your

indispensable help and support in implementing my research. The entire

Power and Energy Systems Group has greatly helped increase my knowledge

of power systems.

I also want to thank all of my family for their love and support throughout

my time here at the University of Illinois. Specifically, I would like to thank

my parents Vince and Carrie Rancuret, my brother Keith Rancuret, and my

grandparents for all your belief in me. Not least among my family is my wife

Sarah Rancuret, who has been wonderfully understanding and helpful to me.

I would not be where I am today without her love and support.

Finally, I would like to show my gratitude towards all my friends, in-

cluding Taylor Johnson, Rakesh Gopchandani, Alan Gostin, Brian Proulx,

Seth Baker, Amanda Hartman, Bernhard Baur, Greer Williams, Jackson

Marusarz, Frances Jarret, Anna Reik, Allison Stefaniak, Helen Lau, Lourdes

Trunner, Melanie Meinzinger, Sanna Stegmaier, and many more. You have

all helped to make my life wonderful, and given me many happy memories.

iv



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . 3
2.1 Nonlinearity and Uncertainty of Induction Motors . . . . . . . 3
2.2 Control of Induction Motors . . . . . . . . . . . . . . . . . . . 6
2.3 Flux Observers for Induction Machines . . . . . . . . . . . . . 7
2.4 Adaptive Control of Induction Machines . . . . . . . . . . . . 9

CHAPTER 3 MODEL REFERENCE ADAPTIVE DIRECT FIELD-
ORIENTED CONTROLLER . . . . . . . . . . . . . . . . . . . . . 13
3.1 Dynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Overview of Model Reference Adaptive Control . . . . . . . . 17
3.3 Brief Overview of Field-Oriented Control . . . . . . . . . . . . 18
3.4 Development of MRAC for Induction Motor . . . . . . . . . . 19
3.5 Simulation of MRAC Controller . . . . . . . . . . . . . . . . . 37
3.6 Conclusions about MRAC Controller . . . . . . . . . . . . . . 45

CHAPTER 4 ROBUST L1 ADAPTIVE DIRECT FIELD-ORIENTED
CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1 Overview of L1 Controller . . . . . . . . . . . . . . . . . . . . 48
4.2 Development of L1 Controller . . . . . . . . . . . . . . . . . . 49
4.3 Simulation of L1 Controller . . . . . . . . . . . . . . . . . . . 66
4.4 Analysis and Conclusions . . . . . . . . . . . . . . . . . . . . . 75

CHAPTER 5 IMPLEMENTED INDIRECT FIELD-ORIENTED
L1 CONTROLLER . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.1 Basic Control Scheme Overview . . . . . . . . . . . . . . . . . 78
5.2 Development of L1 Adaptive IFOC Controller . . . . . . . . . 79
5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 88

CHAPTER 6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . 96

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

v



CHAPTER 1

INTRODUCTION

The induction machine is very commonly used in industry today, due to its

low price, high reliability, and good performance. However, it is relatively

hard to control, due to nonlinearity and coupling of flux and torque dynamics.

Field-oriented control is widely used as the preferred control method for

an induction machine, as it allows a decoupling of these torque and flux

dynamics. It is desirable to use feedback to linearize the system in such a

way that the dynamics mimic that of a simple DC motor.

Field-oriented control achieves its objective by representing all state vari-

ables in a new, two-axis reference frame. This reference frame is aligned with

the rotor flux vector, so that it rotates along with the rotor magnetic field.

Doing so simplifies the machine dynamics greatly, and allows for feedback

linearization.

The main problem that remains with induction machine control is uncer-

tainty of parameters. First of all, it is hard to precisely measure machine

electrical parameters such as rotor resistance, rotor inductance, mutual in-

ductance, etc. These are generally measured using tests on the machine

off-line. However, even if these measurements were perfectly accurate while

the machine is off-line, they change during operation of the machine. For ex-

ample, magnetic saturation of the machine adds extra terms in the relation

between current and flux, which could be viewed as a changing inductance.

Also, as the machine is operated, it heats up. This change in temperature

alone causes large variation in the rotor and stator resistances.

It is often convenient to also consider mechanical variables such as load

torque and rotational inertia as unknown parameters. In many applications,

the load on the machine changes very rapidly, and over a wide range.

These parameter variations greatly affect the accuracy of flux estimation

techniques and control techniques for the induction motor. In this thesis, it is

the control technique which is examined. Some flux observers which appear
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in the literature are discussed as examples of how to improve accuracy of flux

estimation techniques in lieu of parameter uncertainty. However, the primary

goal of this thesis is to address the performance of the actual control laws

under these uncertainties.

First, a field-oriented controller using the model reference adaptive control

(MRAC) scheme is proposed and tested in Chapter 3. It is shown that this

controller will cause the actual system to behave like a desired reference

system. However, this type of controller assumes that perfect cancellation

of the uncertain parameter estimation errors can occur. This is only the

case when the form of the machine model is perfectly accurate, albeit with

uncertain parameter values.

A more realistic approach is taken with the L1 controller proposed in Chap-

ter 4. The approach is very similar to the MRAC controller, except that the

model reference system is chosen as a more realistic model. This time, it is

only assumed that cancellation of error terms may occur at lower frequen-

cies, since there may be unmodeled fast dynamics in the system. Because

of this, the controller will not expend unnecessary control effort to compen-

sate for high frequency unmodeled dynamics. This results in a much more

robust system, and allows for arbitrarily fast tuning rates without sacrificing

robustness. Doing so allows the user to safely increase the performance of

the controller.

This L1 control scheme is then implemented on an induction motor system,

using an inverter to source the desired currents. It is shown that even with

fast tuning of unknown parameters, this adaptive controller produces smooth,

low frequency control inputs.
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CHAPTER 2

LITERATURE REVIEW

2.1 Nonlinearity and Uncertainty of Induction Motors

The induction machine has been studied widely, as it poses a challenging

and rewarding control problem. The induction machine is desirable due

to its rugged, inexpensive construction, and its performance. However, it

is nonlinear due to magnetic saturation, and difficult to control (at least

compared to a DC motor or synchronous machine).

In [1], Charles R. Sullivan and Seth R. Sanders develop a nonlinear π

model for an induction machine, which operates in magnetic saturation. The

basic form of this magnetic model of one tooth-pair is shown in Figure 2.1.

They claim this π model of induction motor magnetics is convenient for

field-oriented control designs which account for magnetic saturation. This

model assumes a nonlinear invertible symmetric monotonic curve for the B-

H characteristics of the induction motor core material, as seen in Figure 2.2.

First, a model is derived which describes the magnetic circuit of one tooth

pair between a stator and rotor. Next, a model of a smooth stator/rotor pair

is obtained by considering an infinite number of infinitesimally small teeth,

integrated around the circumference of the machine. Finally, the Blondel-

Park transformation is used (see [2]) to formulate a more complete model of

an induction motor, using the π model of nonlinear magnetics. This model

is verified by thorough testing on an actual motor.

In this thesis, the more standard T circuit model is used for the induction

motor. This model may be found in [3]. However, the model proposed by

Sullivan and Sanders could be used as well, in order to explicitly represent

saturation. As it turns out, the adaptive control scheme would be almost

identical in either case. The only difference would be that parameter values

would be different.
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Figure 2.1: π model of induction machine magnetics, as seen in [1]

Figure 2.2: B-H saturation characteristic as seen in [1]

Sullivan et al. have proposed control solutions for induction machines which

may operate in the saturation region in [4]. These control systems use the

π magnetic model of an induction machine, which is also described in [1].

This magnetic model is used, along with the Blondel-Park transformation

(see [2]), to develop machine electrical and torque dynamic equations, in the

same manner as in [4]. One control scheme which is approached in [4] is

field-oriented control, using the models derived from the π magnetic circuit.

An important thing to note about this model is that the inductances are

represented by linear parts, LS, LR, and Ll, and the nonlinear parts are

represented in parallel by a function FS(~λS). An example of this function

is given in [1]. With this control, the motor is modeled in the rotating

rotor flux frame. Flux vectors are used as state variables, with stator flux

being viewed as a control variable. In this arrangement, torque and rotor

flux control remain decoupled, even with the nonlinear magnetics model.

Rotor flux magnitude is controlled by adjusting the component of stator flux

aligned with rotor flux, while torque is regulated by adjusting the orthogonal

component of stator flux. The dynamic equations describing the induction
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motor which are used in field-oriented control, as described in [4], are
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θ̇ = ω (2.5)

In (2.1), ρ represents the angle of the rotor flux vector ~λsr with respect to the

stationary stator reference frame. The superscript e in any variable denotes

that it is in the rotor field-oriented reference frame. In the case of any flux

linkage λ, the subscript s or r tells whether it is a stator or rotor flux linkage,

the subscript q means it is the vector component orthogonal to the rotor flux

vector, and the subscript d means it is the vector component aligned with

the rotor flux vector. The function fr(·) is the function which approximates

the B-H characteristics of the rotor, with the function Fs(·) being a scaled

version of stator B-H curve fs(·). This scaling is defined by in [4] on page

143, and is given as

F (~λ) = f(‖~λ‖)
~λ

‖~λ‖
(2.6)

The effects of nonlinear magnetics are further approached by Hofmann et

al. in [5]. While most induction motor controllers assume linear magnetics for

simplicity, Hofmann et al. present a stator-flux-based vector control which

works well for machines operating in magnetic saturation, which cannot be

described by linear magnetics. Since this controller accounts for magnetic

saturation, higher transient torque can be achieved from the induction motor

by temporarily operating within saturation. First, a π model of the magnetic

circuit is developed using the methods outlined in [1]. Using this model, a

torque control is outlined which only requires knowledge of stator voltage,

stator current, and stator resistance. Then, torque limits are examined,

showing that this controller allows an induction motor to perform smoothly

at four times rated continuous torque. The controller is then implemented
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and tested experimentally.

2.2 Control of Induction Motors

Vector control, or field-oriented control, is widely used as the preferred

method of regulating speed and flux for an induction motor. This is due

to the fact that flux and torque control may be decoupled through the use

of field-orientation. Here, the machine states are represented in a coordinate

frame which rotates to maintain alignment with the rotor flux field.

In [6], W. Leonhard gives several methods for controlling an induction mo-

tor on pages 241-302. These methods follow the machine model developed on

pages 164-176. The complete mathematical model of a general symmetrical

AC machine is described on page 175 of [6]. The equations presented by

Leohnard are formulated with stator and rotor currents as the primary state

variables. In this thesis, however, the stator and rotor fluxes will be used as

the state variables, with the stator current being an input to the system.

The goal of field-oriented control then becomes to maximize the torque

produced by aligning the reference frame with the rotor flux field. Thus,

the reference frame rotation will force the rotor flux to be orthogonal to the

torque-producing component of the stator current. Once this field-orientation

is achieved, there are many different control laws which may be used to

achieve flux and torque regulation.

Kao and Liu analyze and test several different induction machine vector

control schemes in [7]. In that paper, a microcontroller-based system is

used to test and compare the different methods. The control methods used

are all field-oriented control schemes, similar to the one proposed in this

thesis. Namely, an H∞ control scheme is tested and validated. This control

method aims to reduce the sensitivity of the system to disturbance signals by

minimizing the L2 norm of the transfer function mapping these disturbances

to the output. In the case of the induction motor, this disturbance is generally

the load torque imposed on the machine.

In [8], a nonlinear control method is proposed in order to track a desired

reference speed with unknown torque input. This field-oriented controller

uses nonlinear, time-varying control gains to track the desired speed. This

controller has online estimation of the unknown load torque, but assumes the
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electrical parameters of the motor are exactly known.

2.3 Flux Observers for Induction Machines

In order to achieve the decoupling goal of field-orientation, it is necessary

to know information about the magnetic flux inside the machine. In prac-

tice, it is impractical to obtain an actual real-time measurement of this flux.

This would require putting magnetic sensors inside the induction machine,

which negates the desirable simplicity and robustness of the motor. There-

fore, observers are used in practice, in order to estimate the flux magnitude

and direction in real time. Methods of using flux observers in field-oriented

control are discussed in [9].

Perhaps the simplest type of flux observer is the flux simulator. This type

of observer is simply a real-time simulator of the machine flux dynamics, and

requires exact knowledge of the electrical parameters of the machine in order

to be accurate.

Verghese and Sanders examine flux estimation for induction machines from

the viewpoint of observer theory in [10]. Essential well known observer the-

ory is first presented, then compared with existing AC motor flux estimating

methods. Then, a method of observing flux is proposed which uses predic-

tion error, so that the observer can be measured and analyzed by its error

dynamics. They go on to show that this estimation scheme provides much

faster parameter convergence than methods which do not use prediction er-

ror as feedback, such as a simple flux simulator. Simulations are given which

compare this method to previously used methods of flux estimation. Further

work on this topic is done in [11] and [12].

Adaptation is used in many cases in order to greatly decrease the flux

observer’s sensitivity to error in estimated electrical parameters. This is

perhaps the greatest challenge to overcome when designing a flux observer.

Qinghua Zhang proposed a new method for designing adaptive observers

in [13]. He shows that it guarantees global exponential stability in the ab-

sence of noise, and bounded errors if the noise signals are bounded with zero

means. The paper focuses on multiple-input-multiple-output (MIMO) lin-

ear time-varying (LTV) systems. In order to adaptively estimate both the

unknown parameters and the system states, the system states are separated
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into portions affected by the unknown parameters, and portions affected by

known signals. The latter portion is easily estimated. Adaptive laws are

then derived to estimate the first portion of state, as well as the unknown

parameters. Robustness analysis is then performed showing system behavior

with noise, and a numerical example is given.

Further work on this principle has been done by Jadot et al. to present an

adaptive regulator for an induction motor in [14]. They claim this controller

guarantees robustness, while estimating the unknown electrical parameters of

a motor accurately. The regulator is based on field-oriented control, with the

exception that motor parameters are treated as unknowns, with adaptation

laws to determine their values. Two methods of adaptation are proposed.

The first method relies on slow adaptation, so that there is a time-scale

separation between system dynamics and adaptation dynamics. The second

method proposed, which follows the method in [13], allows for faster adap-

tation, but introduces extra states to the controller. A sensitivity analysis of

parametric adaptation is provided, which shows that under certain operating

conditions, the controller will remain robust.

An adaptive tuning controller is also developed in [15] and [16], which

accounts for unknown torque load and rotor resistance. The full seven-state

adaptive observer will converge to true values of torque and resistance, as

well as the true rotor fluxes, as long as the system satisfies the persistency of

excitation condition. This condition requires that the desired flux and speed

that the motor is tracking contain enough frequency components. Thus, if

the motor is tracking a constant speed and constant flux, the parameters

will not converge. Also, this system assumes that the machine will never be

operated near saturation. Lyapunov’s method is used to prove stability of

the system with this observer and control scheme. In this thesis, we do not

develop an adaptive flux observer, but only adapt the control scheme to get

uniform performance when flux is known, regardless of electrical parameters.

Thus, the presented controller here is limited only by the performance of the

flux observer. An adaptive flux observer such as the one proposed in [15]

and [16] could be used in conjunction with the control scheme proposed in

this thesis to achieve better performance.

Another field-oriented controller is developed with on-line tuning of motor

electrical parameters in [17]. This control system uses a rotor flux simulator

for flux feedback in the controller. The reactive power being used to drive the
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machine is used in order to identify the leakage inductance. Also, equations

are given to identify the magnetizing inductance and rotor time constant in

real time using measurements of reactive power. These parameter estimates

are tuned using not an integrator-based tuning law, but rather an algebraic

equation. These real-time identified parameters are then used in a standard

indirect field-oriented controller. This differs greatly from the control scheme

proposed in this thesis, in which the parameter estimates are not directly

identified. In this thesis, a reference model behavior is given, and parameters

are tuned using integral tuning laws to ensure that the motor behavior tracks

that of the desired reference model. The flux simulator used in this thesis

is non-adaptive, so it will have error due to incorrect parameter estimates

there. Further work could be done to use the identifiers presented in [17] to

increase the accuracy of the flux observer used in this thesis.

Often, it is desirable to estimate speed as well as flux using an observer,

in order to eliminate the need for a speed sensor. A speed-sensorless field-

oriented controller is proposed in [18] which uses an adaptive flux and speed

observer. The flux observer is a full-state observer, which uses rotor and

stator resistance values from an adaptive identifier. The speed estimator

uses integral and proportional terms to converge to the true speed value.

The speed estimator is developed in more detail in [19]. These adaptive

schemes are proven to converge using Lyapunov analysis, and simulations

are given to verify the findings. The observers proposed in [18] could be

used to improve the control scheme proposed in this thesis. Here, a non-

adaptive flux simulator is used to estimate the rotor flux, which is prone to

estimation error when parameters are unknown. Additionally, the adaptive

speed observer proposed in [18] could be used to create a speed-sensorless

version of the controller proposed in this thesis.

2.4 Adaptive Control of Induction Machines

This thesis focuses on the use of adaptation in the control of the machine,

rather than in the accuracy of the flux observer. Several adaptive control

techniques have been proposed for this application.

For instance, work has been done on a simple yet robust adaptive controller

for field-oriented control of induction motors in [20] by Moreira et al. In that
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paper, rotor flux is estimated by examining the third harmonic, which is a

result of the flattening of the sine wave, due to magnetic saturation. This

estimation is used to measure rotor flux error and develop a slip frequency

correction factor using a deadbeat control model. This controller uses an

approximate inverse model of the induction machine to calculate the slip

correction. It is shown that when the controller is detuned (the model has

incorrect values for flux linkage), the estimated parameters are adjusted to

compensate for the model error. This adjustment happens as a function

of the error in d and q components of rotor flux. This controller is then

implemented and tested, showing excellent system response for a wide range

of operating speeds.

A very interesting output feedback control system for an induction motor

is proposed in [21]. In this scheme, output feedback from the three measur-

able states (direct and quadrature current, and speed) is used directly in a

nonlinear control system to regulate the speed of an induction machine. This

control system takes advantage of the natural stable modes of an induction

machine model to create a stable tracking closed-loop scheme. No state ob-

server is used in the control scheme proposed in [21]. In [22], that control

system is further developed in order to increase the convergence rate of the

system to the desired speed. Since the original control system relied on the

stable damping modes of the induction motor model, the convergence rate

was dependent on the rotor time constant of the machine. However, this

drawback is addressed in [22] by filtering the speed error signal, so that it is

possible to inject a mechanical damping term into the dynamics. Further, it

is shown that the standard indirect field-oriented controller is a special case

of the proposed control scheme. The concept of using a stable low-pass filter

in the control law for robustness is used in the L1 control system proposed

in [23]. However, the control schemes are quite different, since the adaptive

L1 controller has the goal of tracking a desired reference model, and uses a

flux observer instead of direct output feedback. Further work may be pos-

sible to improve the controller proposed in this thesis by using an output

feedback scheme similar to the one given in [21] and [22].

Adaptive control schemes have been designed and developed for other mo-

tor applications as well. In [24], an adaptive H∞ controller is developed for

permanent magnet synchronous motor drives. The PM synchronous motor is

simpler to control than the induction motor, since the rotor flux angle is fixed
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in relation to the rotor shaft angle. The H∞ control scheme involves mini-

mizing the L2 norm of the system which determines the effect of disturbance

signals on the output. In [24], the adaptive controller is made by running

a real-time simulation of the motor characteristics, where the electrical pa-

rameters are at their nominal values. Adaptive laws are developed to cause

the actual machine to behave like the model. The error between actual and

nominal electrical parameters is treated as a disturbance signal, along with

the error in load torque and inertia. The transfer function between these

errors and output error is then described, and its L2 norm is minimized. The

concept of adapting in order to achieve this nominal performance in lieu of

unknown parameters is similar to the adaptive controller proposed in this

thesis. However, the L1 adaptive controller proposed in this thesis addresses

robustness by relaxing the assumption that the system model is of the correct

form. Instead, the L1 controller only assumes the system model is accurate at

lower frequencies, allowing for high frequency unmodeled dynamics. Thus,

if there are unmodeled fast, stable high frequency dynamics in the actual

motor, the controller will not expend extra control effort (which may cause

destabilization) to correct for these unmodeled dynamics. One similarity be-

tween the H∞ and L1 control schemes is that they both minimize an induced

transfer function norm to prove stability.

In [25], a model reference adaptive control scheme is proposed for control

of an induction motor, based on direct field-oriented control. The algorithm

is separated into three adaptive loops: the speed control loop, the d-axis flux

loop, and the q-axis flux loop. Adaptive laws for each loop are derived and

analyzed using standard Lyapunov methods. Each adaptive law is composed

of both an integral and proportional adaptive term. With this scheme, a

reference model for desired behavior is given for each of the three control

loops. The Lyapunov methods for analyzing each control loop assume perfect

cancellation of parameter estimation errors, so that the reference model may

be followed exactly. This assumption may be relaxed using the L1 controller

proposed in this thesis, resulting in a more robust system.

Hovakimyan describes a new type of adaptive controller in [26]. This con-

troller, referred to as an L1 adaptive controller, is able to provide very fast

adaptation of unknown parameters while maintaining robustness. It relies on

a combination of Lyapunov-based analysis, along with the small gain theo-

rem (see [27]) to guarantee stability. This controller is unique because faster
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adaptation (increasing the adaptive gains in the adaptation laws) actually

improves robustness, unlike most adaptive controllers. In fact, the gain and

phase margins are shown to be bounded away from zero, which guarantees

robustness no matter how fast the adaptation takes place.

Cao and Hovakimyan propose and analyze the novel L1 robust adaptive

controller in [23]. It is shown that the L1 control strategy guarantees tran-

sient performance within explicit bounds, even with unmodeled dynamics

or nonlinearities. This thesis makes use of that control strategy in order to

achieve high performance without sacrificing robustness.
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CHAPTER 3

MODEL REFERENCE ADAPTIVE DIRECT
FIELD-ORIENTED CONTROLLER

In this chapter, an adaptive controller will be developed using a model refer-

ence adaptive controller (MRAC) for a current-fed induction motor model.

This general control procedure is well known in the literature, and estab-

lishes a basic adaptive control system with the goal of tracking desirable

dynamic behavior. In this chapter, the system is developed in detail in order

to provide a framework for further robustness analysis. Shortcomings of this

system will be discussed, so that they may be addressed in later chapters.

This proposed controller will use a direct field-oriented control method.

First, the dynamic model used for this control will be discussed. Then, the

MRAC controller will be developed, simulated, and discussed. Simulations

will be given to support claims about the proposed control method.

The MRAC approach to adaptive control has been used extensively in the

literature for many different applications. The approach taken in this chapter

closely resembles the form of controller proposed by Goléa and Goléa in [25].

In that paper, three separate adaptive control loops are used in order to

achieve field orientation, regulate the flux, and regulate the speed of the

motor. This thesis also uses three MRAC controllers to accomplish the same

goals, although each individual controller is developed slightly differently

than the corresponding one in [25]. Wang et al. also propose an MRAC

controller for an induction motor drive in [28]. However, the control system

proposed by Wang is used to address parameter uncertainty for a voltage

fed induction motor, in order to achieve good transient performance. In this

thesis, we use a current fed induction motor model, so that the voltage to

current dynamics are ignored.

The MRAC controllers developed in this thesis use an indirect1 MRAC ap-

1Note the use of the words “direct” and “indirect” in different contexts. The field
orientation method used in this chapter is a direct FOC scheme. The adaptive approach
used to regulate each control loop is an indirect MRAC scheme.
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proach. Each control loop closely follows the general case for indirect MRAC,

which is outlined in [26]. With indirect MRAC, the adaptive parameters are

tuned in order to estimate the values of each unknown parameter. These

estimates are then used in a control law which would stabilize the system

with the desired transient performance if the estimates are accurate. It is

important to note that it is not actually necessary that the tuned parameters

converge to the true values of the unknown parameters. They only need to

converge to values which cause the system to perform similarly to the spec-

ified reference dynamics. The approach taken in [25] is slightly different, as

it uses a direct MRAC scheme. This approach directly adapts the control

gains, rather than developing the control laws based on parameter estimates.

For better performance, Goléa uses both proportional and integral terms in

the control law, and adaptively adjusts the gains in order to track the desired

system performance.

The simulations presented in this chapter demonstrate the performance of

this control scheme under various conditions. It is shown that the system will

stabilize even with abrupt changes in the machine electrical parameters. The

conditions for these tests are the same as those used to test Goléa’s MRAC

system under electrical parameter changes in [25]. However, this thesis also

performs additional tests of the indirect MRAC controller with the presence

of fast, stable, unmodeled dynamics. These tests point out robustness issues

of the MRAC system which are not addressed in [25].

3.1 Dynamic Model

Consider the dynamics for an induction motor, as modeled by Krause in [3].

The equations used to model the motor are

ω̇m = −f
J
ωm +

1

J

{
3PLm
2Lr

(λdriqs − λqrids)− τload
}

(3.1)

λ̇dr =
−Rr

Lr
λdr + ωslλqr +

RrLm
Lr

ids (3.2)

λ̇qr =
−Rr

Lr
λqr − ωslλdr +

RrLm
Lr

ids (3.3)

λ̇ds = −Rsids + ωλqs + Vds (3.4)

λ̇qs = −Rsiqs − ωλds + Vqs (3.5)
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Table 3.1: State Variable Meanings

Variable Meaning

ωm rotor angular frequency [rad/sec]
λrd rotor d-axis flux [Wb-s]
λrq rotor q-axis flux [Wb-s]
iqs stator q-axis current [A]
ids stator d-axis current [A]
ωsl slip frequency (ω − Pωm) [rad/sec]
ω reference frame frequency [rad/sec]

Table 3.2: Parameter Meanings and Range of Values

Variable Meaning Nominal Range of Estimate Initial Guess

P number of pole pairs 2 P = 2 2
f rotor viscosity [N -m-s] 0.0003 1.5× 10−4 ≤ f ≤ 4.5× 10−4 3.2×10−4

J rotor inertia [kg-m2] 0.005 2.5× 10−3 ≤ J ≤ 7.5× 10−3 3.2×10−3

Rr rotor resistance [Ω] 3.3 1.65 ≤ Rr ≤ 4.95 2.5
Lr rotor inductance [H] 0.375 0.188 ≤ Lr ≤ 0.562 0.25
Lm mutual inductance [H] 0.34 0.17 ≤ Lm ≤ 0.51 0.3
a f/J 0.05 0.02 ≤ a ≤ 0.18 0.1
b 1/J 200 133 ≤ b ≤ 400 312.5
m 3

2PLm/Lr 2.72 0.9 ≤ m ≤ 8.15 3.6
τload load torque 5 −10 ≤ τload ≤ 10 2.24
µ bm 544 119.7 ≤ µ ≤ 3260 1125
σ −bτload -1000 −4000 ≤ σ ≤ 4000 -700
α time constant Rr/Lr 8.8 2.94 ≤ α ≤ 26.32 10
β αLm 2.992 0.5 ≤ β ≤ 13.42 3

See Table 3.1 for information about the meaning of each state variable, and

Table 3.2 for information about the meaning and range of values for each

parameter. Some reasonable bounds can be given a priori for the parameter

values.

These equations describe the equivalent circuit model of an induction mo-

tor as seen in Figure 3.1. In this figure,

Lls = Ls − Lm, L′lr = Lr − Lm, J =

[
0 1

−1 0

]
,

Vs =

[
vds

vqs

]
, V ′r =

[
vdr

vqr

]
, λs =

[
λds

λqs

]
, and λ′r =

[
λdr

λqr

]
.
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Figure 3.1: Equivalent T circuit model of induction motor

This is the most commonly used equivalent circuit to describe an induction

motor. Note that all values on the rotor side of the circuit are marked with

a prime.

Equations (3.4)–(3.5) give the dynamics for the stator flux with respect to

stator current. In this controller, we will assume a current-fed model. This

means that we use a fast actuator to force the current to its commanded

value, without worrying about stator flux. In practice, this is common and

achievable with the use of fast switching and a high DC bus voltage. Thus,

for Equations (3.1)–(3.3), we can treat the current values ids and iqs as inputs

to the system.

In this model, we will consider all the parameters f , J , τload, Lm, Lr, and

Rr as unknown, possibly slowly time-varying quantities. We can simplify our

model by ignoring Equations (3.4)–(3.5) and grouping the unknown quan-

tities together into new parameters. The new system representation then

becomes

ω̇m = −aωm + µ(λdriqs − λqrids) + σ (3.6)

λ̇dr = −αλdr + ωslλqr + βids (3.7)

λ̇qr = −αλqr − ωslλdr + βiqs (3.8)

The newly introduced parameters a, µ, σ, α, and β are related to the old

unknown parameters as shown in Table 3.2. These five parameters become

our unknown values in the system.
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Figure 3.2: Structure of model reference adaptive controller

3.2 Overview of Model Reference Adaptive Control

A very common and useful method for adaptive control of dynamic systems

is the model reference adaptive controller (MRAC). In [25], N. Goléa and A.

Goléa develop an MRAC controller very similar to the proposed controller

in this thesis.

The basic structure of an MRAC system can be seen in Figure 3.2. In

this scheme, the control engineer is faced with a dynamic model for the

plant with one or more unknown parameters. The engineer then specifies

a dynamic model which describes the behavior he wishes the plant to have,

called the reference model. The actual plant dynamics are then rewritten in

such a way that the the unknown parameters now represent the difference

between the plant and the reference model. The objective is to estimate these

unknowns in real time, and update the control laws in such a way that the

plant will behave dynamically the same as, or close to, the reference model.

Usually the reference model is a simple, stable linear system with a desirable

and reasonable convergence rate. In [27], H.K. Khalil develops and describes

the general MRAC problem well.

To achieve this, a so called “state predictor” is used to predict the state

response of the plant, essentially by running a real-time simulation of the

plant with unknown parameters replaced by the current guess of their values.
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This state prediction is denoted x̂ in Figure 3.2. Often, the state predictor is

referred to as a “state observer,” although this thesis avoids that terminology

since its role is very different from an observer in the more traditional sense.

An error signal e is then generated as the difference between the predicted

state and the measured (or observed) state of the actual plant. This error

signal, along with the plant state x and desired tracking input r, is used

by the tuning laws to generate a “guess” of the unknown parameters θ (the

parameter guesses are denoted θ̂ in Figure 3.2). The goal of this subsystem

is to create a “guess” for the unknown parameters which causes the tracking

error signal to diminish. This would indicate that the state predictor is

behaving similarly to the plant. Finally, the control law is developed to get

the state predictor model to mimic the desired reference model. Since the

state predictor model is known at all times (it depends on the parameter

guesses θ̂, rather than the actual unknown θ), this is a reasonable control

objective. As the state predictor and plant dynamics become similar enough

through the use of the tuning parameters, the actual plant dynamics will

eventually follow the desired reference behavior as well.

3.3 Brief Overview of Field-Oriented Control

In this thesis, we will use adaptive control in a field-oriented control setting

for an induction motor. The goal of field-oriented control is to simplify the

machine dynamics and control by aligning the d-q frame axis with the rotor

flux. Thus, the rotor flux vector is only present in the direct axis as λdr,

leaving the quadrature axis rotor flux λqr = 0. This results in dropping the

−λqrids term of (3.1), which would have had a negative impact on torque pro-

duction. Thus, the direct axis stator current ids may be used as an input to

control the rotor flux λdr using the dynamics in Equation (3.2), without hav-

ing any direct effect on torque production. Effectively, this decouples torque

or speed control from flux control, allowing the controller much more flex-

ibility. Several different examples of field-oriented controllers can be found

in [3].

It is important to note that the controllers developed in this section are

based on the direct field-oriented control technique. This means that the

stator and rotor fluxes are treated as measurable, known states, and that
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they are available signals to use in control. In reality, it seldom makes sense

to use a magnetic flux sensor inside an induction machine. This means that in

practice, one must use a flux observer to obtain these states for use in control.

For simulation purposes, the controllers in this section use flux states directly

from the machine model.

3.4 Development of MRAC for Induction Motor

For the induction motor system, recall Equations (3.6)–(3.8). Here, we will

have three separate control loops to regulate the dynamics of each of these

three equations. For the first loop, we treat the slip frequency ωsl as an input

to the dynamics in Equation (3.8), with the objective of regulating λqr to

zero. This gives us our field-orientation. In the next control loop, the direct

axis stator current ids is used as an input to the flux dynamics (3.7), with the

objective of regulating λdr to some desired value. This value can be used to

optimize the efficiency of the machine, or to make it possible for the machine

to produce extra torque. Note that as long as we have λqr −→ 0, the slip

frequency ωsl does not affect the direct rotor flux dynamics in steady state.

Finally, our last control loop will use the quadrature axis stator current iqs

as an input to (3.6) in order to regulate the speed or torque to some desired

value. Again, since we have λqr = 0, the −λqrids term in (3.6) drops out,

maximizing torque production and simplifying control. Note that iqs also

enters (3.8). In that control loop, iqs will be treated as a known disturbance

signal multiplied by an unknown parameter.

3.4.1 Quadrature Axis Rotor Flux Control Loop

Recall the quadrature axis rotor flux dynamics as given in Equation (3.8) on

page 16. Our goal is to develop a controller which will regulate λqr to zero

by commanding the slip frequency ωsl with an adaptive feedback law. Our

unknown parameters are α and β. For this controller, we will treat λdr and

iqs as known disturbance signals, since they can be measured.2

2λdr is generally not directly measured in practice. However, a good estimate may be
obtained in real-time using a flux observer. See section 2.3 for more details.
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We desire the flux λqr to asymptotically converge to zero. Thus, a simple

stable linear system is chosen as the reference model, and is given as

λ̇qr,m = αmλqr,m. (3.9)

Here, αm is the rate of exponential convergence, and must be a negative

number for the model reference system to be stable. Now, we can rewrite

the actual dynamics as follows:

λ̇qr = αmλqr − (αm + α)λqr − ωslλdr + βiqs (3.10)

Here, we have simply added and subtracted the term αmλqr in order to

have our desired dynamics appear in the actual dynamic equation. Finally,

by denoting the difference in real and desired convergence rates as θq =

−(αm + α), we can simplify the dynamics to the following form:

λ̇qr = αmλqr − ωslλdr + βiqs + θqλqr (3.11)

Now, the dynamics have been written in a form which assigns the unknown

parameters to represent the differences between our actual dynamic system

and our desired reference model. It is very important to note that this can

only be done if the desired reference model shares a common form with the

actual system. For instance, if the dynamic system was of second order, it

would be impossible to represent the difference between that system and our

first order desired system with any constant parameter. Thus, a matching

assumption has been made, requiring that there exists a value θq which causes

the rewritten system to match the original dynamic system. In the case

that the dynamics in (3.8) are exactly correct, then this assumption is valid.

However, in the presence of unmodeled dynamics (such as ignored higher

order terms) the matching assumptions are no longer valid [29].

With the system rewritten, one can easily find the control law which would

produce the desired behavior if all parameters were known. For a moment,

consider the situation where we do know all parameters. If this was the case,

we could choose the nominal feedback law

ωsl,nom =
1

λdr
(βiqs + θqλqr) (3.12)
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Substituting this feedback law into the system dynamics in (3.11) cancels

all right-hand terms other than αmλqr, leaving us with our desired reference

behavior, as given in (3.9).

Unfortunately, we cannot directly use this control law, since the parameter

values β and θq are unknown. Instead, we must try our own best guess of pa-

rameters which will result in a working control, and update these parameters

in real-time until they succeed in causing the system to track the reference

behaviors. We will denote our guess of β as β̂q and our guess of θq as θ̂q. In

order to track how well these adaptive parameters are working, we will use

the state predictor

˙̂
λqr = αmλ̂qr − ωslλdr + β̂qiqs + θ̂qλqr (3.13)

This state predictor is exactly the same as the system dynamics from Equa-

tion (3.11) except that the unknown parameters are replaced by their respec-

tive estimates, and the predicted state is denoted λ̂qr in the state predictor.3

The difference between the predicted and measured (or observed) quadrature

flux state is denoted eq, and is given

eq = λ̂qr − λqr (3.14)

The state predictor represents what the estimated dynamic behavior of

the system should be based on the current estimate of unknown parameters.

If we are able to update the estimated parameters in such a way that the

state predictor tracks the actual system dynamics, we can then consider a

new intermediate control objective of regulating the state predictor using a

feedback control law. Thus, if the state predictor is a good model of the true

plant dynamics, the actual system will be regulated with the same control

input as the state predictor.

Regulating the state predictor to behave as the model reference system is

a simple task compared to regulating the unknown plant. If we replace the

unknown parameters in our nominal control law from Equation (3.12) with

3Note that the measured/observed state λqr is used in the last term of Equation (3.13),
not the predicted state λ̂qr.
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their respective estimates, we get the implementable4 control law

ωsl =
1

λdr
(β̂qiqs + θ̂qλqr) (3.15)

To ensure that this control law remains bounded, steps must be taken to

ensure that λdr never approaches zero. In reality, this flux never would be

zero, because there is remnant flux inside the machine. Thus, the initial

condition will be bounded away from zero. Additionally, in order to produce

torque, the desired flux λdr will always be non-zero. It is therefore possible

to implement a small bound away from zero for the flux λdr in this control

law, ensuring that ωsl always remains bounded. Substituting Equation (3.15)

into the state predictor in Equation (3.13) yields exactly the reference model

dynamics given in Equation (3.9).5

Now that it is known how to get the state predictor model to behave

exactly as the reference model, we are left with the more difficult task of

making the state predictor track the behavior of the actual unknown plant

dynamics. In short, our goal is to get eq −→ 0, while guaranteeing that all

other signals remain bounded. We denote the parameter estimation errors

β̃q and θ̃q as shown in

β̃q = β̂q − β (3.16)

θ̃q = θ̂q − θq (3.17)

Note that it is not necessary that these parameter estimation errors con-

verge to zero; it is only necessary that they remain bounded. In [30] it is

shown that such parameter estimates do converge to stabilizing values, even

if they do not converge to the correct values. To find tuning laws for the pa-

rameter estimates which will satisfy our goals, we will use Lyapunov’s direct

4This new control law (Equation (3.15)) is implementable because it only contains
estimates of parameters, instead of using the actual unknown parameter values.

5For this reason, it is possible in practice to run a real-time simulation of the reference
model and use its state as λ̂qr instead of using a state predictor.
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method. Taking the derivative of the error eq in Equation (3.14) yields

ėq =
˙̂
λqr − λ̇qr

= αmλ̂qr − ωslλdr + β̂iqs + θ̂qλqr

− αmλqr + ωslλdr − βiqs − θqλqr
= αmeq + β̃qiqs + θ̃qλqr (3.18)

Before we can continue with the adaptive control design, we must be sure

that a solution will even exist for the dynamic system in question. A con-

dition which guarantees the existence and uniqueness of a solution is the

Lipschitz continuity condition. If, for a system

ẋ(t) = f(t, x(t)), x(0) = x0,

the function f(t, x(t)) is said to be locally Lipschitz, then a unique solution is

guaranteed to exist for the system [27]. Definition 1 describes the Lipschitz

continuity condition, and may also be found in [27].

Definition 1 (Locally Lipschitz Function). A function f(t, x(t)) is said to

be locally Lipschitz if for any δ > 0, there exists Lδ > 0 and B > 0 such that

|f(t, x(t))− f(t, y(t))| ≤ Lδ‖x(t)− y(t)‖∞, |f(0, t)| ≤ B,

for all ‖x(t)‖∞ ≤ δ and ‖y(t)‖∞ ≤ δ uniformly in t.

In the special case of a scalar system, this condition is satisfied if the

function f(t, x(t)) always has a uniformly bounded derivative with respect

to time, uniformly in t. For our system, the plant dynamics in Equa-

tion (3.11), state predictor model of Equation (3.13), and error dynamics

in Equation (3.18) are all represented by Lipschitz functions as long as the

derivatives ˙̃βq,
˙̃θq, ω̇sl, λ̇dr, and i̇qs remain bounded. Since all of the dy-

namic equations in question thus far are time-invariant, the uniformity in t

condition is guaranteed.

Equation (3.18), along with the dynamics for β̃q and θ̃q, form the error

dynamics of the system. Now, we are free to choose the tuning laws
˙̂
βq

and
˙̂
θq in such a way that the error dynamics become stable. With the

assumption that the unknown parameters are constant or slowly varying in
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time, we may take the derivative of the parameter estimation errors from

Equations (3.16) and (3.17) to get

˙̃βq =
˙̂
βq − β̇ =

˙̂
βq (3.19)

˙̃θq =
˙̂
θq − θ̇q =

˙̂
θq (3.20)

since the derivatives β̇ and θ̇q equal zero.6 Consider the following candidate

Lyapunov function:

V (eq, β̃q, θ̃q) =
1

2
e2
q +

1

2γ
(β̃2

q + θ̃2
q) (3.21)

Here, γ > 0 is an arbitrary positive constant. Taking the derivative

of (3.21) with respect to time and substituting in (3.18)–(3.20) gives

V̇ (eq, β̃q, θ̃q) = eqėq +
1

γ
(β̃q

˙̃βq + θ̃q
˙̃θq)

= αme
2
q + β̃qiqseq + θ̃qλqreq +

1

γ
(β̃q

˙̂
βq + θ̃q

˙̂
θq)

= αme
2
q + β̃q(iqseq +

1

γ
˙̂
βq) + θ̃q(λqreq +

1

γ
˙̂
θq) (3.22)

Now, the tuning laws are chosen as follows:

˙̂
βq = −γProj(iqseq) (3.23)

˙̂
θq = −γProj(λqreq) (3.24)

Here, the operator Proj(·) is used to indicate that projection-based adap-

tation is used. This operation ensures that the estimates stay within the

reasonable bounds known a priori (see Table 3.2 for the bounds used in this

case). Whenever the estimates β̂q and θ̂q are within the specified bounds,

the projection operation has absolutely no effect. However, if the estimates

reach the boundary, the projection operation will change the tuning law tem-

porarily so that the estimates do not stray outside the bound. In this case,

the projection operation simply turns off adaptation temporarily whenever

the estimate is at the boundary and being driven in a direction outside the

6In the event that these parameters are slowly time-varying, the effects of β̇ and θ̇q are

negligible compared to ˙̂
βq and ˙̂

θq under fast enough adaptation.
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boundary. This may be accomplished using an integrator with saturation,

since each unknown parameter is a scalar in our case. For more information

on projection-based adaptation, see [31]. Several other types of tuning law

modification techniques are discussed in [32].

The positive constant γ is used here as the tuning rate. This provides

some flexibility of the controller to adjust how fast the adaptation will take

place. Increasing the tuning rate will cause the estimates to converge more

quickly, hence increasing performance of the controller. However, increasing

γ comes with a heavy cost. It will be shown that increasing the tuning rate

also results in a significant decrease in robustness.

Substituting the tuning laws (3.23) and (3.24) results in the following three

cases:

(i) Both β̂q and θ̂q are within the specified bounds and the tuning law will

not immediately force either of them outside their respective bounds.

(ii) Either β̂q or θ̂q (or both) is at the specified upper bound, and the tuning

law (if no projection was used) would cause the value to increase.

(iii) Either β̂q or θ̂q (or both) is at the specified lower bound, and the tuning

law (if no projection was used) would cause the value to decrease.

In case (i), the projection operation will have no effect. Thus, the tuning

laws in (3.23) and (3.24) may be substituted into (3.22) with the Proj(·)
operation ignored. This substitution results in cancellation of both the term

containing β̃q and the term containing θ̃q, leaving us with

V̇ (eq, β̃q, θ̃q) = αme
2
q ≤ 0 (3.25)

For case (ii), let us assume without loss of generality that β̂q is at its

upper bound and would be increasing without projection, while θ̂q is within

its bounds. Thus, the projection operation can be ignored for θ̂q, while the

tuning laws for β̂q become
˙̂
βq = 0. Substituting these tuning laws into (3.22)

causes the term containing θ̃q to be cancelled as before, but not the term

containing β̃q. In this case, the derivative of our candidate Lyapunov function

becomes

V̇ (eq, β̃q, θ̃q) = αme
2
q + β̃qiqseq
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Since the estimate β̂q is at the upper bound of its possible values, we know

that

β̂q ≥ β

Thus, from (3.16) we know that

β̃q ≥ 0

Since this case involves the situation where the tuning laws would cause β̂q

to increase without projection, we also know from Equation (3.23) that

˙̂
βq = −γiqseq ≥ 0

and hence that

iqseq ≤ 0

since γ > 0. We can now combine the inequalities to conclude that

β̃qiqseq ≤ 0

For case (ii), the resulting derivative of our candidate Lyapunov function now

becomes

V̇ (eq, β̃q, θ̃q) = αme
2
q + β̃qiqseq︸ ︷︷ ︸

≤0

≤ αme
2
q ≤ 0 (3.26)

Case (iii) becomes very similar to case (ii) except the signs are reversed.

Again, without loss of generality, assume that β̂q is at its lower bound and

would be decreasing without projection, while θ̂q is within its bounds. We

now know that

β̃q ≤ 0

since β̂q is at its lower bound. Also, it is known that

˙̂
βq = −γiqseq ≤ 0

since the tuning law would cause the parameter estimation to decrease in the

absence of projection. Thus, we have

iqseq ≥ 0⇒ β̃qiqseq ≤ 0
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Similarly to the previous case, we can now substitute the tuning laws given

in (3.23) and (3.24) into (3.22), with the Proj(·) operation ignored in the θ̂q

tuning law, and the tuning law for β̂q forced to zero due to projection. Now,

for case (iii), the derivative of the candidate Lyapunov function becomes

V̇ (eq, β̃q, θ̃q) = αme
2
q + β̃qiqseq︸ ︷︷ ︸

≤0

≤ αme
2
q ≤ 0 (3.27)

Examining the results from all three cases, it becomes clear from Equa-

tions (3.25)–(3.27) that even with the projection-based adaptation, we are

always guaranteed to have a negative semidefinite derivative for the candi-

date Lyapunov function. Combining the results of all three cases gives the

following final bound on V̇ :

V̇ (eq, β̃q, θ̃q) ≤ αme
2
q ≤ 0 (3.28)

Now, recall Lyapunov’s famous theorem, which may be found in [27], along

with a proof. We may now use Lyapunov’s theorem to show stability of the

error dynamics, which are represented by the three states eq, β̃q, and θ̃q.

The function V (eq, β̃q, θ̃q) as given in (3.21) is positive definite and continu-

ously differentiable, with a negative semidefinite derivative as seen in Equa-

tion (3.28). Therefore, the conditions in Lyapunov’s theorem are satisfied,

and the system is said to be stable. By definition of stability, we now have

that the states eq, β̃q, and θ̃q all remain bounded for all time.

It is important to note that, since the error system has three states, and

the bound given in (3.28) only involves one of the states, V̇ is not negative

definite, but only semidefinite.7 Therefore, we cannot say whether or not

eq −→ 0 asymptotically using Lyapunov’s theorem at this point.

In order to show asymptotic convergence of eq, we may use the La-Salle-

Yoshizawa theorem, given below. Theorem 1 may be found in [27], along

with its proof.

Theorem 1 (La-Salle-Yoshizawa). Let x = 0 be an equilibrium point of the

system

ẋ(t) = f(t, x(t)), x(0) = x0 (3.29)

Let V (x(t)) be a positive definite, continuously differentiable, and radially

7This is because V̇ = 0 whenever eq = 0, even when β̃q 6= 0 or θ̃q 6= 0.
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unbounded function such that the derivative

V̇ (x(t)) =
∂V

∂x
·f(t, x(t)) ≤ −W (x(t)) ≤ 0, ∀t ≥ 0, ∀x ∈ Rn (3.30)

where W (x(t)) is continuous. Then all solutions of the system given by (3.29)

are uniformly bounded and satisfy

lim
t→∞

W (x(t)) = 0 (3.31)

Additionally, if W (x(t)) is positive definite, then the equilibrium x = 0 of the

system given by (3.29) is globally uniformly asymptotically stable.

In this case, we have

V̇ ≤ −W (eq, β̃q, θ̃q) = αme
2
q ≤ 0

Invoking Theorem 1 yields

lim
t→∞

αme
2
q = 0 =⇒ lim

t→∞
eq = 0

We have now shown that the error eq will asymptotically converge to zero

as t → ∞ using the tuning laws (3.23) and (3.24), control law (3.15), and

state predictor (3.13). However, since the state predictor is fed with a con-

trol law which exactly reduces its form to the model reference system, it is

unnecessary to fully implement the state predictor. Instead, we may just use

a model of the reference system itself. The final form of the MRAC controller

for the quadrature axis flux loop is shown in Figure 3.3.

3.4.2 Direct Axis Rotor Flux Control Loop

The direct axis flux control loop is very similar to the quadrature axis loop,

with the exception that the goal is now to track a desired non-zero flux value,

rather than to regulate it to zero. Recall the direct axis flux dynamics in

Equation (3.7) on page 16. Here, wsl and λqr are treated as external known

disturbance signals. Now, ids is the input to the system, used to regulate λdr

to the desired value. Again, α and β are unknown.

Again, a simple stable linear system is chosen as the model reference sys-
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Figure 3.3: Final form of MRAC controller for q-axis flux loop

tem. We choose

λ̇dr,m = αmλdr − αmλdr,ref (3.32)

We now have an input, λdr,ref , which we are trying to track with the system.

Now, we may rewrite the system dynamics from Equation (3.7) as follows:

λ̇dr = αmλdr + ωslλqr + βids − (αm + α)λdr

= αmλdr + ωslλqr + βids + θdλdr (3.33)

Here, we have labeled the new unknown parameter θd = −(αm + α). Notice

that this has exactly the same meaning as the parameter θq from the q-

axis flux control loop. However, we still have each control loop run separate

estimates. This is because the tuning laws are not meant to accurately

estimate the true values; the goal is only to converge to values which make

each respective controller achieve its goals.

Now, we choose the state predictor

˙̂
λdr = αmλ̂dr + ωslλqr + β̂dids + θ̂dλdr (3.34)

where β̂d and θ̂d are estimates of β and θd, respectively. As before, a control

law is chosen to make the state predictor behave exactly like the desired

model reference system. We choose

ids =
1

β̂d
(−αmλdr,ref − ωslλqr − θ̂dλdr) (3.35)
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To ensure that the control law remains bounded, it is necessary to know that

β̂d > 0 strictly, for all time. Since we know a priori that β is strictly greater

than zero, it is possible to enforce a lower bound on the estimate β̂d in order

to achieve this goal. Projection based adaptation will be used to ensure that

β̂d is never zero. Now, it is clear that the state predictor in (3.34) will behave

exactly like the desired reference model (3.32), when fed with the input ids

from the control law in (3.35). The parameter estimates β̂d and θ̂d must be

chosen in such a way that the state predictor will also follow the behavior of

the actual plant.

With the d-axis flux error and parameter estimation errors defined as

ed = λ̂dr − λdr (3.36)

β̃d = β̂d − β (3.37)

θ̃d = θ̂d − θd (3.38)

the error dynamics of this system can be found by taking the derivative of

ed and substituting (3.34) and (3.33) as follows:

ėd =
˙̂
λdr − λ̇dr

= αmλ̂dr + ωslλqr + β̂dids + θ̂dλdr

− αmλdr − ωslλqr − βids − θdλdr
= αmed + β̃dids + θ̃dλdr (3.39)

Since all terms of (3.39) are assumed to have bounded derivative, the error

dynamics are locally Lipschitz, as defined in Definition 1. Notice that we once

again have the relation between the derivative of the parameter estimation

error and the tuning laws as follows:

˙̃βd =
˙̂
βd − β̇ =

˙̂
βd (3.40)

˙̃θd =
˙̂
θd − θ̇d =

˙̂
θd (3.41)

since β and θd are assumed to be constant or very slowly time varying.

Now, consider the candidate Lyapunov function

V (ed, β̃d, θ̃d) =
1

2
e2
d +

1

2γ
(β̃2

d + θ̃2
d) (3.42)
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where γ > 0 is an arbitrary constant that may later be used to adjust the

tuning rate. Taking the derivative of this function and substituting Equa-

tions (3.39)-(3.41) yields

V̇ (ed, β̃d, θ̃d) = edėd +
1

γ
(β̃d

˙̂
βd + θ̃d

˙̂
θd)

= αme
2
d + β̃didsed + θ̃dλdred +

1

γ
(β̃d

˙̂
βd + θ̃d

˙̂
θd)

= αme
2
d + β̃d(idsed +

1

γ
˙̂
βd) + θ̃d(λdred +

1

γ
˙̂
θd) (3.43)

The tuning laws
˙̂
βd and

˙̂
θd are chosen as follows:

˙̂
βd = −γProj (idsed) (3.44)

˙̂
θd = −γProj (λdred) (3.45)

The Proj(·) operation is used again to ensure that the parameters remain

within a priori known bounds, as described on page 24. The projection

operation has no effect as long as the parameter estimates remain inside the

bounds, resulting in cancellation of the unknown terms in Equation (3.43).

As before, the three cases on page 25 may be applied to show that

β̃d(idsed +
1

γ
˙̂
βd) ≤ 0

and

θ̃d(λdred +
1

γ
˙̂
θd) ≤ 0

even when the projection operation is affecting the tuning law. The time

derivative of our candidate Lyapunov function then has the upper bound as

follows:

V̇ (ed, β̃d, θ̃d) ≤ αme
2
d ≤ 0 (3.46)

We may now apply Theorem 1 directly to conclude that

lim
t→∞

αme
2
d = 0 =⇒ lim

t→∞
ed = 0

It has now been shown that the error between the state predictor output

and actual system output will converge to zero. With the control input from

Equation (3.35), the state predictor (3.34) assumes the exact same dynamics
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Figure 3.4: Final form of MRAC controller for d-axis flux loop

as the model reference system in (3.32). Thus, the actual system dynamics

will track the desired model behavior, when also fed the control input from

Equation (3.35).

As before, since the state predictor dynamics (3.34) become exactly the

same as the desired reference model when the control input (3.35) is used,

it is unnecessary to actually run the state predictor. Instead, the desired

reference model may be used in its place, with the input λdr,ref . The final

form of the d-axis flux control loop may be seen in Figure 3.4.

3.4.3 Speed Control Loop

The speed control loop is slightly different from the flux control loops, but

the approach is the same. Recall the speed dynamics given in Equation (3.6)

on page 16. This system has three unknown parameters: a, µ, and σ. The

unknown parameter µ is known to be strictly greater than zero. Also, the

direct axis flux λdr will be regulated to a non-zero value. Thus, iqs may be

used as the input to the system. The quadrature flux λqr will be regulated

to zero, so it will not affect the system at steady state.

While iqs is the actual input to this system, the adaptive portion of this

controller will define and consider

u = λdriqs − λqrids (3.47)

as the input to the system. Since all three signals λdr, λqr, and ids are known,
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it is a simple matter to calculate what iqs should be given the u generated

by the adaptive controller.

A stable linear system

ω̇mod = amωmod − amωref (3.48)

with convergence rate am is chosen as the reference model which we want to

track. The speed command ωref is the input to this system.

Now, the system dynamics (3.6) may be rewritten as follows:

ω̇m = amωm + µu+ σ − (a+ am)ωm

= amωm + µu+ σ + θωm (3.49)

Here, the new parameter θ = −(a+am) is introduced. Next, a state predictor

is defined, again using the exact same form as these rewritten dynamics. This

state predictor becomes the following:

˙̂ωm = amω̂m + µ̂u+ σ̂ + θ̂ωm (3.50)

The hat symbol over the unknown parameters again indicates that an esti-

mate of the parameter is used, since its true value is unknown.

The control law

u = − 1

µ̂
(σ̂ + θ̂ωm + amωref ) (3.51)

will cause the dynamics of the state predictor to behave exactly the same as

the dynamics of the desired reference model given in (3.48). In order for this

control law to remain bounded, it is important that µ̂ never approaches zero.

However, as Table 3.2 shows on page 15, we know a priori that the actual

parameter µ is always greater than zero. Thus, we will again use projection-

based adaptation to ensure that µ̂ never falls below this minimum value, and

never approaches zero.
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Now, the state predictor error and estimation errors are defined as

eω = ω̂m − ωm,

θ̃ = θ̂ − θ,

σ̃ = σ̂ − σ,

and µ̃ = µ̂− µ.

The speed error dynamics are found by taking the derivative of eω, and

substituting the state predictor and actual dynamics from Equations (3.50)

and (3.49), as follows:

ėω = ˙̂ωm − ω̇m
= amω̂m + µ̂u+ σ̂ + θ̂ωm

− amωm − µu− σ − θωm
= ameω + µ̃u+ σ̃ + θ̃ωm (3.52)

The objective is now to tune the adaptive parameters µ̂, σ̂, and θ̂ in such a

way that their errors remain bounded, and the error eω converges to zero.

Again, it is noted that as long as the parameter errors remain bounded, the

speed error dynamics of Equation (3.52) remain bounded, and the function

is Lipschitz by Definition 1. With fast adaptation and very slow changing

unknown parameters, we have the following relationships:

˙̃µ = ˙̂µ− µ̇ = ˙̂µ

˙̃σ = ˙̂σ − σ̇ = ˙̂σ

˙̃θ =
˙̂
θ − θ̇ =

˙̂
θ

Now, we may examine stability of the speed error dynamics by considering

the following candidate Lyapunov function:

V (eω, µ̃, σ̃, θ̃) =
1

2
e2
ω +

1

2γ
(µ̃2 + σ̃2 + θ̃2) (3.53)

Again, γ > 0 is a constant, which can be adjusted to change the rate of

adaptation. Taking the derivative of this function and substituting Equa-
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tion (3.52) yields

V̇ (eω, µ̃, σ̃, θ̃) = eωėω +
1

γ
(µ̃ ˙̂µ+ σ̃ ˙̂σ + θ̃

˙̂
θ)

= ame
2
ω + µ̃eωu+ σ̃eω + θ̃eωωm +

1

γ
(µ̃ ˙̂µ+ σ̃ ˙̂σ + θ̃

˙̂
θ)

= ame
2
ω + µ̃(eωu+

1

γ
˙̂µ) + σ̃(eω +

1

γ
˙̂σ) + θ̃(eωωm +

1

γ
˙̂
θ) (3.54)

All the terms with parameter estimation errors in (3.54) may be cancelled

(or forced to be less than zero) using the tuning laws

˙̂µ = −γProj(eωu) (3.55)

˙̂σ = −γProj(eω) (3.56)

˙̂
θ = −γProj(eωωm) (3.57)

Once again, the Proj(·) operation is used to ensure that the parameters

remain within a priori known bounds, as described on page 24. While the

unknown parameters are within their bounds, the Proj(·) operation has no

effect, resulting in cancellation of the unknown terms in Equation (3.54). As

before, the three cases on page 25 may be applied to show that

µ̃(eωu+
1

γ
˙̂µ) ≤ 0,

σ̃(eω +
1

γ
˙̂σ) ≤ 0,

and θ̃(eωωm +
1

γ
˙̂
θ) ≤ 0

even when the projection operation is affecting the tuning law. The time

derivative of our candidate Lyapunov function then has the upper bound as

follows:

V̇ (eω, µ̃, σ̃, θ̃) ≤ ame
2
ω ≤ 0 (3.58)

Once again, we may directly apply Theorem 1 to show that

lim
t→∞

ame
2
ω = 0 =⇒ lim

t→∞
eω = 0

Additionally, we know that since the derivative of the candidate Lyapunov

function is non-positive, all error states remain bounded. Thus, the param-
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Figure 3.5: Final form of MRAC controller for speed control loop

eter estimation errors µ, σ, and θ are bounded. Most importantly, since we

know that eω → 0 as t → ∞, the state predictor (3.50) will converge to

the same behavior as the actual system of Equation (3.49). Since the state

predictor is forced to behave exactly as the desired reference model, we know

that the actual plant will converge to the desired reference behavior given

in (3.48).

When fed with the control law (3.51), we know that the state predictor

will assume the exact same dynamics as the desired reference model (3.48).

Thus, instead of running a real-time state predictor, it is possible to simply

run the reference model dynamics, with the speed command ωref directly as

the input, and use the resulting output as the state predictor output ω̂m.

The final form of the model reference adaptive speed control loop is shown

in Figure 3.5.

The overall MRAC system comprises of all three control loops acting si-

multaneously. This thesis has now developed the new control system based

on the common design procedures as outlined in [27], for each control loop.

The overall structure of this control system is very similar to the structure

proposed in [25]. However, the MRAC system in this thesis is more basic.

Goléa proposes the use of both proportional and integral terms when rep-

resenting the error between the current and optimal control gains. There,

the controller gains are tuned directly, rather than adjusting the parameter

estimates which govern the control law.
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Figure 3.6: MRAC performance with γ = 100 and no parameter change,
x axis in seconds

3.5 Simulation of MRAC Controller

In this section, the model reference adaptive control system is evaluated using

simulations. Table 3.2 shows the unknown parameter values used, and the

a priori known bounds used for each parameter. In the case of the speed

reference model, the convergence rate am = −40 is used, while a faster desired

convergence of αm = −100 is used for the q and d axis flux control loops.

These simulation results are very similar to those in [25], as Goléa also uses

model reference adaptive control in three separate control loops there. In [25],

the tuning rates γ are set to particular values for each tuning law. However,

the same γ value is used for each tuning law in this thesis. They have used

the appropriate tuning rate to get the best performance and robustness from

each tuning law. However, it may be argued that the necessity to adjust a

controller by finding the best tuning rate for each adaptive law somewhat

reduces the attractiveness of an adaptive controller. Ideally, one would want

to have the fastest tuning rates possible, to ensure fast convergence. As this

thesis will discuss later, increasing the tuning rate too much would result in
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Figure 3.7: MRAC performance with γ = 10, 000 and no parameter change,
x axis in seconds

a loss of robustness of the system for a model reference adaptive controller.

Figure 3.6 shows the simulated performance of the MRAC controller when

all unknown parameters in the machine are kept at their nominal values seen

in Table 3.2, with a relatively slow adaptation of γ = 100. Note that while

the machine parameters are at their nominal values, the adaptive controller

is still initialized with the incorrect guesses shown in the right-most column

of Table 3.2. This tuning rate is fast enough to cause the flux control loops to

very closely track the desired model reference behavior. However, the speed

control loop takes a while before it behaves similarly to the desired reference

model.

Now, if we increase the rate of adaptation to γ = 10, 000, the tuned param-

eter estimates will have much faster convergence rates, as seen in Figure 3.7.

Now, even the speed loop tracks the desired reference model fairly well.

Again, the true values of each parameter remain unchanged at the nominal

values given in Table 3.2.

There is a trade-off between performance and robustness when changing
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Figure 3.8: MRAC performance with torque change from 5 to 10 Nm,
x axis in seconds

the tuning rate with evidence in Figures 3.6 and 3.7. Higher convergence

rates of the parameter estimates mean that the actual plant dynamics will

perform closer to the desired model reference behavior in less time. However,

this will also cause high frequency behavior in the input to the plant, which

may lead to a loss of stability. Notice that in Figure 3.7, the control inputs

ids and iqs have much higher spikes.

Now, we will examine the response of this controller when the unknown

parameters change. For the rest of these simulations, fast adaptation (γ =

10, 000) is used. First, the controller is tested when the load torque changes

from 5 to 10 Nm. From the results in Figure 3.8, it is apparent that the speed

response only varies by less than 0.3% during this step change in torque.

Also, the flux loops are almost completely unchanged. Still, the parameter

estimation values do not converge to the true parameter values. However, as

mentioned before, it is unnecessary for the parameters to converge to their

true values. We only require that they remain bounded.

Next, the drive response will be tested for different inertias. Figure 3.9

shows the speed response and required quadrature axis current for different

values of inertia, with slower adaptation (γ = 100). More control effort is

required when the inertia is greater, but the speed tracking remains relatively

consistent. This is apparent in Figure 3.9 by the fact that the quadrature
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Figure 3.10: MRAC performance with Rr abruptly changed by −50%,
x axis in seconds

axis current iqs has much higher peak values when there is more inertia.

When the inertia is eight times larger than nominal, there is some overshoot

which causes a brief surge of current at over 30 A. The very fast adaptation

(γ = 10, 000) case is not shown because with very fast tuning, all three inertia

values resulted in almost identical speed tracking.

Perhaps the most important test of the adaptive controller is under varia-

tion of electrical parameters, namely the rotor resistance, rotor inductance,

and mutual inductance. Figures 3.10 and 3.11 show the direct axis flux re-

sponse, control inputs, and flux parameter estimates when Rr is abruptly

changed by −50% and +100%, respectively. Simulations of decreasing and

increasing rotor inductance Lr may be seen in Figures 3.12 and 3.13, respec-

tively. The controller’s performance with abrupt changes in mutual induc-

tance Lm is given in Figures 3.14 and 3.15. All of these simulations are done

with fast adaptation (γ = 10, 000).

Figures 3.10–3.15 give evidence that changes in the electrical characteris-

tics of the machine have a significant impact on the system’s performance.
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Figure 3.11: MRAC performance with Rr abruptly changed by +100%,
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Figure 3.12: MRAC performance with Lr abruptly changed by −50%,
x axis in seconds
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Figure 3.13: MRAC performance with Lr abruptly changed by +100%,
x axis in seconds
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Figure 3.14: MRAC performance with Lm abruptly changed by −50%,
x axis in seconds

42



2.95 3.2

139
140
141
142
143

ω
m

 (solid) and ω
mod

 (dashed) [rad/sec]

2.95 3.2

1.16

1.18

λ
dr

 (solid) and λ
dr,ref

 (dashed) [V−s]

2.95 3.2

1

2

3

i
ds

 (solid) and i
qs

 (dotted)

2.95 3.2
90

92

θ
d,est

 (solid), θ
q,est

 (dashed), and θ
true

 (dotted)

2.95 3.2

4

6

β
d,est

 (solid), β
q,est

 (dashed), and β
true

 (dotted)

2.95 3.2

500

1000

µ

Figure 3.15: MRAC performance with Lm abruptly changed by +100%,
x axis in seconds

Table 3.3: MRAC Error Due to Change in Electrical Parameters

Parameter Variation Speed error [%] d-axis flux error [%]

Rr
−50% negligible 1.29
+100% negligible 1.47

Lr
−50% 2.14 1.55
+100% 1.43 1.34

Lm
−50% 1.57 1.12
+100% 2.21 1.64

In these figures, the electrical parameters are abruptly changed, and the sys-

tem outputs are given. The errors caused by these instantaneous changes in

electrical parameters are summarized in Table 3.3. However, the response

due to these changes is much better than most non-adaptive controllers. In-

creasing the tuning rate γ will result in even faster convergence of the error

dynamics, so that the results shown could be improved even more, at the

cost of robustness.

Thus far, all the simulations done have assumed that the machine is mod-

eled correctly, with uncertainty of parameters. Now, it is important to show

the characteristics of the system when any unmodeled dynamics are intro-

duced. The next simulation conducted involves adding a single stable pole
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Figure 3.16: MRAC performance unmodeled fast pole and slow tuning,
x axis in seconds

between the controller and the machine. This pole is at −800 in the complex

plane, so it is also much faster than the modeled dynamics of the machine

(hence, its effect should disappear very quickly).

Figure 3.16 shows the response of the MRAC controller with this fast

unmodeled pole present, with slow tuning of γ = 100. In this case, the un-

modeled pole does not seem to have affected the performance of the controller

compared to the response in Figure 3.6, where all the dynamics are modeled.

Now, the effects of turning up the tuning rate in an attempt to get better

performance will be examined. In this case, the response with an unmodeled

pole is shown in Figure 3.17. Now, it is apparent that this response is much

different than the response without the unmodeled pole from Figure 3.7.

Comparing the two figures, it is evident that with the unmodeled pole, the

system is closer to instability. This can be seen by the oscillations in the

adaptive parameters σ and µ, which cause oscillations in the current iqs,

which in turn results in undesirable ripple in the speed response.
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Figure 3.17: MRAC performance unmodeled fast pole and fast tuning,
x axis in seconds

3.6 Conclusions about MRAC Controller

From the above figures, the model reference adaptive controller generally

works well when the system is modeled well.8 It has been well established in

the literature that the MRAC scheme may be used to control an induction

motor. However, this chapter has shown that the control system is only reli-

able when there are no unmodeled dynamics in the system. This assumption

is unrealistic in real world applications, as it is well known that high order

harmonics and fast dynamics are present in most systems. The convergence

rate of this controller may be increased with faster tuning rates, but with

the heavy cost of less robustness.

As long as the unknown parameters are modeled and matched with esti-

mations in the control design, the system is very robust to changes in the

unknown parameter values. Table 3.3 summarizes how such changes cause

instantaneous error in the speed and flux responses, under fast adaptation.

This performance is much better than a conventional non-adaptive controller.

Also, note that in all simulations, the controller was initialized with incorrect

guesses of the unknown parameters. This shows that the system does in fact

work well with parameter uncertainty.

8It is the form and order of the model which is important in this sense, rather than the
accuracy of any parameter values.
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In cases where there are unmodeled dynamics, such as the fast stable

pole in the simulation case, the controller is no longer guaranteed to main-

tain stability. Recall page 20 when the matching assumption is discussed as

necessary in order for stability to be guaranteed with the model reference

adaptive controller. For the simulation in Figures 3.16 and 3.17, the extra

pole at −800 in the complex plane affects iqs and ids between the controller

and motor. In this case, the dynamics in Equations (3.6)–(3.7) would have

two extra states, as follows:

i̇ds = −800ids + 800ids,cmd (3.59)

i̇qs = −800iqs + 800iqs,cmd (3.60)

Here, ids,cmd and iqs,cmd are the desired system inputs as manipulated by

the controller. The addition of these two extra states violates the matching

assumptions. On page 20, the system dynamics were re-written in a form

which could be made to exactly match the desired reference model if the

unknown parameter terms were cancelled out. However, if the system were

modeled with the extra pole, there is no way it could be matched to the

desired reference system by cancelling the unknown parameters. It is only

possible to have partial cancellation of these terms at certain frequencies

when the system order is mismatched between the actual dynamics and the

desired reference model. The Lyapunov analysis is no longer valid for the

model reference adaptive controller.

With fast tuning, as in Figure 3.17, there will be high frequency oscillations

in the parameter estimates. With the control laws given in Equations (3.15),

(3.35), and (3.51), these high frequency oscillations will directly enter the

control input to the system. This can be seen in Figure 3.17 by examining

the control commands for iqs and ids. In a real-world situation, these high

frequency spikes could cause destabilization of the system.

This behavior was examined by Rohrs et al. in [33], spurring much discus-

sion and debate about what causes this lack of robustness. In his paper, a

famous counterexample is given showing loss of stability in the presence of

certain unmodeled dynamics. Further analysis on these factors which desta-

bilize adaptive controllers may be found in many papers. An example of

a parameter estimate which may destabilize an adaptive control system is

given by Townley in [34]. In [35], Anderson further discusses the problems
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shown in the Rohrs counterexample. He contends that the reasoning for

loss of stability given in [33] is illogical, and describes the issues in terms

of other well-known adaptive control problems. One such issue is referred

to as “bursting,” in which a closed loop adaptive system will unexpectedly

begin oscillating at high magnitude, and then die away again. Anderson and

Dehghani further discuss the causes of bursting and other instability issues

in [36].

The Rohrs counterexample is also further examined by Åström in [37].

There, some of the actual instability mechanisms for adaptive control (large

command signals, high frequency command signals, and measurement noise)

are studied explicitly in order to show how to avoid the problems that can

arise from them. Åström further analyzes the effects of unmodeled dynamics

on an adaptive control system in [38]. In order to address this issue of

instability in the presence of unmodeled dynamics, Ioannou and Kokotovic

propose a modified adaptive law in [39].
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CHAPTER 4

ROBUST L1 ADAPTIVE DIRECT
FIELD-ORIENTED CONTROL

This chapter develops a more robust adaptive controller, known as an L1

adaptive controller, for the purpose of an induction machine drive. The L1

controller has been used recently in the literature for many aerospace ap-

plications. For instance, a NASA flight test vehicle was controlled using an

L1 adaptive scheme in [40]. However, it has not been used in the context of

motor drives before this thesis. The objective is to apply the robust adap-

tive control theory presented in [23] to a motor drive application. This will

address some of the shortcomings of a model reference adaptive controller.

Namely, the L1 controller will allow very high tuning rates for high perfor-

mance tracking, without a loss of robustness.

First, a general overview of the theory used to develop the L1 controller will

be discussed, with heuristic justifications for how the controller can achieve

its goals. Later on, an L1 control scheme is developed for the same machine

as modeled in Chapter 3. Simulations will then be performed to verify the

claims about this controller. Conclusions will then be drawn, and compar-

isons made between the performance of this L1 controller and the model

reference adaptive controller developed in Chapter 3.

4.1 Overview of L1 Controller

The L1 adaptive controller is designed to address performance and robustness

issues inherent in the design of a model reference adaptive control system.

Namely, the fact that the tuning rate of the MRAC controller is chosen

based on a tradeoff between performance and robustness is undesirable. The

reason for this loss of robustness when the tuning rate is increased is that

doing so results in high frequency oscillations in the control channel. At the

heart of the proposed L1 controller, this is addressed with a low-pass filter in
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the control law, so that high frequency oscillations which may occur in the

parameter estimates do not enter the control channel [26].

The addition of a low-pass filter in the control law allows the controller

to enforce desired transient performance by increasing the tuning rate ar-

bitrarily large [23]. However, with the addition of a filter, more analysis is

necessary to prove stability of the closed loop system. The filter dynamics

cause a higher order desired reference model that the controller is tracking,

so that the standard Lyapunov analysis (as performed in sections 3.4.1–3.4.3)

is not enough to guarantee stability.

With the L1 controller, a new closed-loop reference system is defined, which

includes the filter, and allows for better characterization of the system’s tran-

sient performance. With a properly designed low-pass filter, arbitrarily fast

tuning is enabled, allowing for very good transient performance without loss

of robustness [23]. The very high tuning rate in this situation does not result

in a high-gain control law with large control efforts, as is the case with an

MRAC controller.

Compared to the MRAC controller, it will be shown that the L1 controller

has a more realistic objective, since it relaxes the assumption that the system

is modeled accurately at all frequencies. The L1 only assumes that the model

is accurate at low frequencies, and therefore that the effects of unknown

parameters may only be cancelled out at lower frequencies. This means

that the overall system is much more robust to unmodeled dynamics at high

frequencies, provided that these unmodeled dynamics are stable. It is very

common in most real-world systems to have fast, stable dynamics which are

not represented in the model used for control.

4.2 Development of L1 Controller

The L1 controller developed in this section is used as a direct field-oriented

controller for an induction machine, with the same strategy as the MRAC

system developed in section 3.4. Recall (3.6)–(3.7), which represent the dy-

namics of an induction machine. For each of these three dynamic equations,

a separate control loop is used to get the desired behavior. Here, the pa-

rameters a, µ, σ, α, and β are unknown, time varying quantities. All three

control loops in this chapter are based on the L1 controller presented in [41].
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First, a control loop is used on the q-axis flux dynamics of Equation (3.8).

The goal of this loop is to regulate the quadrature axis rotor flux to zero,

by manipulating the slip frequency wsl. Doing so ensures that the reference

frame with which the machine variables are described is in line with the

rotor flux vector. This is the fundamental approach of field-oriented control,

and it reduces the decoupling between torque and flux, so that they may

be regulated independently. More information about field-oriented control

may be found in [3], [6], or in most textbooks on modern electric machines

and drives. The L1 adaptive controller we develop in this section adapts to

compensate for the unknown parameters α and β.

Second, a control loop is closed around the d-axis flux dynamics (3.7) to

achieve the desired flux level. In various operating conditions, it is desirable

to use different flux levels in the machine to get the best efficiency. This

control loop will manipulate the d-axis current going to the machine in order

to get the desired direct axis rotor flux λdr. Note that when the quadrature

axis flux is regulated to zero, all of the flux magnitude is present in the

direct axis, so that ‖λr‖ = |λdr|. Again, this L1 adaptive controller adapts

to compensate for the unknown parameters α and β.

Finally, a third control loop is used to regulate the machine’s speed dy-

namics, seen in Equation (3.6). This adaptive controller manipulates the

q-axis stator current iqs in order to achieve the desired speed, despite the

unknown parameters a, µ, and σ.

4.2.1 Quadrature Axis Flux Control Loop

Recall the quadrature axis rotor flux dynamics as given in Equation (3.8) on

page 16. The goal in this section is to develop a controller which will regulate

λqr to zero by commanding the slip frequency ωsl with an adaptive feedback

law. Our unknown parameters are α and β. For this controller, we will treat

λdr and iqs as known disturbance signals, since they can be measured.1

The development of this controller is very similar to that of the model

reference adaptive controller at first. The same linear desired reference model

is used at first, seen in (3.9) on page 20. The dynamics of the actual system

are then re-written to the form shown in (3.11) on page 20, where θq =

1λdr is generally not directly measured in practice. However, a good estimate may be
obtained in real-time using a flux observer. See section 2.3 for more details.
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−(αm + α).

Recall that for model reference adaptive control, a state predictor is de-

fined with the same form as the actual plant, but with unknown parameters

replaced with guesses. Then, there are two major goals to achieve in or-

der to get the desired outcome. First, a control law (which depends on the

parameter guesses) is developed which will cause this state predictor to ex-

actly match the behavior of the desired reference model. Then, the second

major goal of the MRAC controller is to develop tuning laws to adjust the

parameter estimates in such a way that the state predictor converges to the

same behavior as the actual plant, when the same input is fed to each. With

these two goals accomplished, the actual plant will track the desired reference

model behavior.

Again, we will use the same state predictor as defined for the q-axis flux

loop in Equation (3.13). For the L1 controller, the second goal of causing

the state predictor to track the actual plant dynamics is the same as in the

MRAC case, and accomplished in the same way. The same adaptive laws

from (3.23) and (3.24) will be used. The Lyapunov analysis performed on

pages 23–28 remains exactly the same. Thus, we can conclude that the state

predictor and plant dynamics will track one another as t→∞.

The paradigm shift in design of the L1 controller occurs at the first men-

tioned objective, which is to develop a control law which causes the state

predictor to mimic the desired reference behavior. Recall the control law in

Equation (3.15). When this equation is substituted into the state predictor

equation, it causes complete cancellation of all terms involving the unknown

parameter estimates, so that the state predictor then has the same dynamics

as the desired reference model from Equation (3.9). With the L1 control

strategy, we will relax the assumption that perfect cancellation can occur

here. Instead, a stable low-pass filter will be used in the control law. This

results in only partial cancellation of the unknown terms at low frequencies.

The control law that will be used for the L1 controller, represented in the

frequency domain, is

ωsl(s) = C(s)
1

λdr(s)

(
β̂q(s)iqs(s) + θ̂q(s)λqr(s)

)
(4.1)

Here, C(s) is the low pass filter that we have yet to design.

Substituting the control law (4.1) into the state predictor (3.13) results in
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the new closed-loop system

˙̂
λqr = αmλ̂qr(s)− C(s)

(
β̂q(s)iqs(s) + θ̂q(s)λqr(s)

)
+ β̂q(s)iqs(s) + θ̂q(s)λqr(s)

= αmλ̂qr(s) + (1− C(s))
(
β̂q(s)iqs(s) + θ̂q(s)λqr(s)

)
(4.2)

Notice that if C(s) were equal to one, all the right-hand terms except the

first would cancel, resulting in the desired reference model dynamics. At

lower frequencies, the low-pass filter C(s) will be very close to one, so these

cancellations will partially occur.

Now we have taken a much more realistic and relaxed assumption that our

model is valid only at lower frequencies, and that the parameter estimates

are good enough to cancel the unknown lower frequency dynamics of the

system. The high frequency dynamics of the system are assumed to be

unmodeled now, so we do not try to use control effort to correct for the high

frequency behavior.2 The low pass filter ensures that we do not have a high

gain feedback system for high frequency dynamics, even if very fast tuning

is used.

It must now be shown that the new reference model which the system

will be tracking is stable. As described in [41], we now consider the new

closed-loop reference system with control signal defined in

λ̇qr,ref (t) = αmλqr,ref (t)− ωsl,ref (t)λdr(t) + βiqs(t) + θqλqr,ref (t) (4.3)

λqr,ref (0) = λq0 (4.4)

ωsl,ref (s) = C(s)
1

λdr(s)
(βiqs(s) + θqλqr,ref (s)) (4.5)

Also, we define Gq(s) and rq0(s) for the purpose of analysis in

Gq(s) =
1− C(s)

s− αm
(4.6)

rq0(s) =
λq0

s− αm
(4.7)

The closed-loop reference system may then be rewritten by describing

2It is this high gain control effort at high frequencies which resulted in lack of robustness
for the MRAC controller.
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Figure 4.1: Closed-loop reference system for q-axis flux control

the system (4.3)–(4.4) in the frequency domain and substituting in Equa-

tions (4.5)–(4.7). The resulting system,

λqr,ref (s) = G(s) (βiqs(s) + θqλqr,ref (s)) + rq0(s) (4.8)

has the form of its first terms shown in Figure 4.1. Notice that the extra term

rq0(s) is only the stable response due to non-zero initialization of the reference

model. Since αm is negative and λq0 is finite, it is clear from Equation (4.7)

that the L-infinity norm ‖rq0‖L∞ is finite.

The small gain theorem must be defined and used in order to show that

the system (4.8) is stable. A proof of Theorem 2 below may be found in [27].

Also, Definition 3, which may be found in [41], gives the L1 norm of a stable,

proper single input, single output system. This definition, along with the use

of the small-gain theorem, is the backbone for proving stability of the aptly

named L1 controller.

Definition 2. A transfer function is said to be proper if the degree of its

numerator is less than the degree of its denominator.

Definition 3. The L1 norm of a stable, proper single-input single-output

system G(s) is defined as

‖G(s)‖L1 =

∫ ∞
0

|g(t)|dt

where g(t) is the impulse response of G(s)

Theorem 2 (Small-Gain Theorem). The interconnected system

x(s) = G1(s) (u(s)−G2(s)x(s))
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Figure 4.2: Interconnected systems

shown in Figure 4.2, is stable if the L1 norms of each individual system satisfy

‖G1(s)‖L1‖G2(s)‖L1 < 1

The feedback terms of the closed-loop reference system in (4.8) have the

same form as the interconnected system described in Theorem 2. The un-

known parameter −θq plays the role of G2(s), and Gq(s) plays the role of

G1(s). By the small-gain theorem, the closed-loop reference system is stable

if the condition

‖Gq(s)‖L1L < 1 (4.9)

is met, where

L = max
θ∈Θ
|θq| (4.10)

Here, Θ is the set of all possible values of θq, based on the a priori known

bounds.

In this controller, the bounds in Table 3.2 were used again, with αm =

−100. Since the smallest possible value we know α can be is 2.94, we have

L = 97.06. Thus, in order to satisfy the condition in Equation (4.9), we must

have

‖Gq(s)‖L1 < 0.01 (4.11)

Finding a filter C(s) which satisfies the L1 norm condition for stability can

often be difficult. In this case, however, it is possible to use a simple first

order low pass Butterworth filter. Recently, a MATLAB toolbox has been

developed and discussed in [42] which aids with the selection of this filter for

an L1 controller in many situations. The form of this filter that will be used
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is given as

C(s) =
ωnq

s+ ωnq
(4.12)

Here, ωnq is the filter cutoff frequency and must be selected so that the L1

norm condition of Equation (4.9) is satisfied. With this simple filter, it is

then easy to find analytically the impulse response gq(t) corresponding to the

system Gq(s). This impulse response is given as

gq(t) =
100
e100t − ωnq

eωnqt

ωnq − 100
(4.13)

It has been verified by obtaining the absolute value of the impulse response

|gq(t)| and integrating as described in Definition 3 that, with a cutoff fre-

quency of ωnq = 100 radians per second, the L1 norm becomes ‖Gq(s)‖L1 =

0.0076, which is small enough to satisfy the condition in (4.11).

Now, we have verified via the L1 norm condition that the new reference

tracking system is stable. The final form of this control loop is depicted in

Figure 4.3. Note that this is very similar to the MRAC scheme of Figure 3.3,

except that the control law is different, and the state predictor must be used

with the control input. This is unlike the MRAC controller, which was able

to run the desired reference model and use its output as the state predictor.

The new control law which is used is given in (4.1). This control law

will cause the state predictor in (3.13) to track the new closed loop reference

system (4.8), rather than trying to exactly track the original desired reference

model (3.9). Again, this controller uses the adaptive laws given in (3.23)

and (3.24) in order to ensure that the state predictor tracks the actual plant

dynamics.

4.2.2 Direct Axis Flux Control Loop

The analysis used to develop the L1 controller for the direct axis flux loop

is very similar, but slightly more complicated than the previous analysis for

the q-axis controller due to the fact that we now want to track a reference

flux, rather than regulate to zero. The electric machine dynamics for the

direct axis flux are given in (3.7). The proposed L1 controller will adapt

to compensate for the unknown (and possibly time-varying) parameters α

and β. Similarly to the d-axis flux control loop in the MRAC case, we will
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Figure 4.3: Final form of L1 controller for q-axis flux loop

treat the signals wsl and λqr as known disturbance signals. However, if the

quadrature axis control loop is performing as expected, this term should

decay very quickly, and will not affect this control loop. The direct axis

stator current ids is the manipulated input to the induction machine, which

is used to regulate the d-axis flux λdr to the desired value.

Once again, the development of this controller begins by specifying a

desired reference model, and re-writing the dynamics of the system to in-

clude similar terms to those in the desired model. The desired reference

model will again be the stable linear system given in Equation (3.32), where

αm = −100. The d-axis flux dynamics of the machine are then re-written as

seen in (3.33) to include the αmλdr term. There, the new unknown parameter

θd = −(αm + α) is introduced.

Next, the state predictor

˙̂
λdr = αmλ̂dr + ωslλqr + β̂dids + θ̂dλdr + σ̂d (4.14)

is defined. Once again, this state predictor has almost the same form as the

actual plant dynamics, except that the unknown parameters are replaced

with estimates, denoted by the hat symbol above the parameter.

Notice that this time, an extra term σ̂d is added to the state predictor.

This term accounts for the nonlinear disturbance added by nonlinearity of

the rotor inductance due to saturation. In essence, instead of considering the

rotor time constant α as one slowly time-varying constant (accounted for in

θd), this state predictor considers it as a two-part unknown. First, the linear

portion of the inductance contributes to the unknown α as before. Then, it

56



considers the nonlinear effects of rotor saturation as a separate disturbance

signal σd. The reason this approach was not taken with the q-axis flux loop is

that λqr is regulated to zero, so the nonlinear effects of saturation do not have

nearly as much effect on that loop, and it works fine without the σd term.

However, if λdr,ref is high enough, the d-axis dynamics will be significantly

affected by saturation.

To cause the state predictor to track the actual machine behavior, the

same adaptive laws from (3.44) and (3.45) will be used to tune the estimates

θ̂d and β̂d. The Lyapunov analysis performed on pages 30–32 remains exactly

the same for those terms, except that an extra term is added to the candidate

Lyapunov function to include the error σ̃d = σ̂d−σd. The candidate Lyapunov

function used in this case is

V (ed, β̃d, θ̃d, σ̃d) =
1

2
e2
d +

1

2γ
(β̃2

d + θ̃2
d + σ̃2

d) (4.15)

Here, all error term definitions are the same as seen before in Equations (3.36)–

(3.38) on page 30.

Taking the derivative of this Lyapunov function and substituting the sys-

tem dynamics (including the new unknown σd as part of the actual dynamics)

results in the following:

V̇ (ed, β̃d, θ̃d, σ̃d) = αme
2
d + β̃d(idsed +

1

γ
˙̂
βd)

+ θ̃d(λdred +
1

γ
˙̂
θd) + σ̃d(ed +

1

γ
˙̂σd) (4.16)

Now, the tuning laws in (3.45) and (3.44) are used for θ̂d and β̂d, with the

newly introduced tuning law

˙̂σd = −γProj(ed) (4.17)

used for the estimate σ̂d.

Once again, the Proj(·) operation only has any effect when the estimate

would go outside a priori known bounds on the parameter. In this case,

these bounds are reasonable limits on how much saturation will affect the

flux. These tuning laws result in the bound on V̇ given below.

V̇ (ed, β̃d, θ̃d, σ̃d) ≤ αme
2
d ≤ 0 (4.18)
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Theorem 1 may now be applied to guarantee that all error signals remain

bounded, and that ed →∞ as t→∞. Thus, we can conclude that the state

predictor and plant dynamics will track one another as t→∞.

To track the desired reference behavior with the state predictor, a new

control law is proposed. Once again, a stable low-pass filter will be used

in the control law to prevent high frequency control efforts. These high-

frequency dynamics often lie in the realm of unmodeled dynamics for the

system, so it is best to avoid high gain control over these unknown dynamics

for reasons of robustness.

A slightly different approach will be taken for the d-axis flux loop compared

to the L1 controller for the q-axis loop, for two reasons. First, the control

input to this system, ids, is directly multiplied by the unknown parameter β.

Secondly, we desire to track the desired flux value λdr,ref , rather than just

regulating it to zero. The procedure for this control loop is based on the

controller presented in [43].

The control laws used by the d-axis flux L1 control loop are

ids(s) = −kdDd(s)rdu(s) (4.19)

rdu = β̂dids + θ̂dλdr + σ̂d + αmλdr,ref + ωslλqr (4.20)

The transfer function Dd(s) is a strictly proper stable system yet to be de-

signed, along with a strictly positive gain kd. Notice that this control law

has internal feedback, since ids appears appears in rdu, which affects the con-

trol law for itself in (4.19). This control law may also be re-written in the

frequency domain by solving for ids as seen in

ids(s) = −Ĉd(s)
β̂d

(
θ̂d(s)λdr(s) + σ̂d(s) + αmλdr,ref (s) + ωsl(s)λqr(s)

)
(4.21)

where Ĉd(s) is given below:

Ĉd(s) =
kdβ̂dDd(s)

1 + kdβ̂dDd(s)
(4.22)

Substituting this control law into the state predictor (4.14) results in the
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following dynamic behavior for the state predictor:

˙̂
λdr = αmλ̂dr +

(
1− Ĉd(s)

)
(θ̂dλdr + σ̂d + ωslλqr)− Ĉd(s)αmλdr,ref (4.23)

Notice that if Ĉd(s) were equal to one, the middle term of Equation (4.23)

would be cancelled, so that the state predictor would exactly assume the

dynamics of the originally suggested reference system of Equation (3.32) on

page 29. However, Ĉd(s) will be a low pass filter, so that this cancellation

does occur partially at lower frequencies.

Now, a new closed-loop reference model will be defined to analyze the

stability of the system with the above control law. Equations (4.24)–(4.26)

give the resulting closed loop reference system, along with its feedback input:

λ̇dr,mod(t) = αmλdr,mod(t) + ωsl(t)λqr(t) + βids(t) + θdλdr,mod(t) (4.24)

λdr,mod(0) = λd0 (4.25)

ids,mod = −Cd(s)
β

(θdλdr,mod + σd + αmλdr,ref + ωslλqr) (4.26)

Also, we define Hd(s), Gd(s), Cd(s), and rd0(s) for the purpose of analysis as

Hd(s) =
1

s− αm
(4.27)

Gd(s) = Hd(s)(1− Cd(s)) (4.28)

Cd(s) =
kdβDd(s)

1 + kdβDd(s)
(4.29)

rd0(s) = Hd(s)λd0 (4.30)

The closed-loop reference system may then be written by representing the

open loop system (4.24)–(4.25) in the frequency domain and substituting the

feedback law (4.26), along with the transfer functions from Equations (4.27)–

(4.30). This results in the new reference system shown in

λdr,mod(s) = Gd(s) (θdλdr,mod(s) + σd(s) + ωsl(s)λqr(s))

− αmHd(s)Cd(s)λdr,ref (s) + rd0(s) (4.31)

Here, there are three terms for this system. The extreme right-hand term,

rd0(s), is simply a linearly decaying effect of nonzero reference model initial-
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Figure 4.4: First term of d-axis reference system

ization. If it is nonzero, it will decay quickly since this term is stable. The

middle term, −αmHd(s)Cd(s)λdr,ref (s), is also a stable system, as long as

Cd(s) is a proper stable transfer function. Since Dd(s) will be chosen to be

a proper stable function, it is clear that Cd(s) will also be stable, by its def-

inition in Equation (4.29). Since −αm is just a positive constant, and λdr,ref

is bounded (since it is the desired flux value), this middle term will always

remain bounded. The first term, Gd(s) (θdλdr,mod(s) + σd(s) + ωsl(s)λqr(s)),

must now be shown to be stable as well in order to prove that the closed-loop

reference system is stable.

The first term of (4.31) takes exactly the same form as the interconnected

system described in Theorem 2. In this case, the form of the first term,

Gd(s) (θdλdr,mod(s) + σd(s) + ωsl(s)λqr(s)), can be seen in Figure 4.4. Thus,

by Theorem 2, the closed-loop reference system will be stable as long as the

condition

‖Gd(s)‖L1Ld < 1 (4.32)

is met, with the definition of Ld as

Ld = max
θd∈Θ
|θd| (4.33)

The terms σd(s) and ωsl(s)λqr(s) are all bounded. Here, the set Θ is the set

of all possible values of θd, based on the a priori known bounds.

To ensure that Gd(s) satisfies the L1 norm condition, the transfer function

Dd(s) and the constant gain kd must be designed accordingly. In this case, the

form of Gd(s) is too complicated to easily compute analytically. Therefore,

Dd(s) was chosen to be a stable, first order, low pass Butterworth filter, and

the impulse response of the resulting Gd(s) was simulated for varying cutoff

60



Figure 4.5: Final form of L1 controller for d-axis flux loop

frequencies and gains kd. The final form of Dd(s) is chosen as

Dd(s) =
ωnd

1 + ωnd
(4.34)

It was determined via simulation that selecting the cutoff frequency ωnd = 20

radians per second, and feedback gain kd = 7 results in an L1 norm of

‖Gd(s)‖L1 ≤ 0.0072 over all possible values of β. Again, we have Ld = 97.06

in this case. Multiplying the L1 norm of Gd(s) by Ld results in a product of

0.6988 < 1, so the condition for Theorem 2 is met.

Now, we have verified via the L1 norm condition that the new reference

tracking system is stable. The final form of this control loop is depicted in

Figure 4.5. Note that this is very similar to the MRAC scheme of Figure 3.4,

except that the control law is different, and the state predictor must be used

with the control input, rather than just running the original desired reference

model. Also note that the adaptive estimates β̂d, θ̂d, and σ̂d are used by the

state predictor.

The new control law which is used is given in Equations (4.19) and (4.20).

This control law will cause the state predictor (4.14) to track the new closed

loop reference system (4.31), rather than trying to exactly track the original

desired reference model (3.32). Again, this controller uses the adaptive laws

given in Equations (3.44), (3.45), and (4.17) in order to ensure that the state

predictor tracks the actual plant dynamics.

61



4.2.3 Speed Control Loop

The L1 adaptive controller for the speed control loop is very similar to the

controller devised in the last section for the d-axis flux control loop. Recall

again the speed dynamics for an induction machine, given in (3.6). The goal

of this controller will be to track a desired speed by manipulating the torque.

The unknown parameters of this system are a, µ, and σ. Since we know

that µ and λdr are strictly greater than zero (the d-axis flux loop is meant

to regulate the flux to a positive value), we may use iqs as an input to this

system. Positive µ and λdr are necessary to ensure controllability.

As done before with the MRAC speed control loop, we will consider

u = λdriqs − λqrids

as the input to the system for the control design. Then, the actual input iqs

may be calculated based on this u(t), along with the signals λdr, λqr, and ids.

The first step taken toward the design of this controller is to specify the

desired nominal reference model. The stable linear system in Equation (3.48)

on page 33 will be used once again for this purpose. Equation (3.49) then

shows a re-written version of the system dynamics, which introduces the new

parameter θ = −(a + am). For the L1 controller, the same state predictor

will also be used as in the MRAC controller. This state predictor is given

in (3.50) on page 33.

To cause the state predictor to track the actual system behavior, the same

adaptive laws from (3.55)–(3.57) will be used. The Lyapunov analysis per-

formed on pages 34–36 remains exactly the same. Thus, we can conclude that

the state predictor and plant dynamics will track one another as t→∞.

The control law is where the speed loop L1 controller differs from the

MRAC controller. Instead of trying to cause the state predictor to perfectly

match the desired reference model behavior with complete cancellation of es-

timation terms, a low-pass filter will be used so that only partial cancellation

of terms is assumed. Because of this, the controller will not try to expend

control effort to try and track very high frequency dynamics, which may be

unmodeled anyway. This is how the L1 controller achieves robustness. The

control law presented here closely follows the scheme proposed in [43]. This
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control law is expressed as

u(s) = −kD(s)
(
µ̂u+ θ̂ωm + σ̂ + amωref

)
(4.35)

where k > 0 is a feedback gain, and D(s) is a stable proper transfer function

to be designed.

As in the d-axis flux control law, this control law has internal feedback,

since u(s) also appears on the right-hand side of the equation. This control

law may be rewritten and described as in

u(s) = −Ĉ(s)
1

µ̂

(
θ̂ωm + σ̂ + amωref

)
(4.36)

where Ĉ(s) is defined in

Ĉ(s) =
kD(s)µ̂(s)

1 + kD(s)µ̂(s)
(4.37)

Substituting this control law into the state predictor that is used in this

controller, given in (3.50), results in the following dynamic equations for the

closed loop state predictor:

˙̂ωm = amω̂m + (1− Ĉ(s))
(
θ̂ωm + σ̂

)
− Ĉ(s)amωref (4.38)

This equation illustrates the fact that at low frequencies, the L1 controller

will achieve partial cancellation of terms to behave like the desired reference

model. Notice that if Ĉ(s) = 1, the state predictor would reduce to the

desired reference model. Instead, it now tracks a new closed-loop reference

model, which is a more realistic goal.

The new closed-loop reference model that the state predictor will track,

along with its feedback input, is

ω̇m,mod(t) = amωm,mod(t) + µu(t) + σ(t) + θωm,mod(t) (4.39)

ωm,mod(0) = ωm0 (4.40)

umod(s) = −C(s)
1

µ
(θωm,mod(s) + σ(s) + amωref (s)) (4.41)
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Figure 4.6: First term of speed tracking reference system

Also, we define H(s), G(s), C(s), and r0(s) for purposes of analysis as

H(s) =
1

s− am
(4.42)

G(s) = H(s) (1− C(s)) (4.43)

C(s) =
kD(s)µ

1 + kD(s)µ
(4.44)

r0(s) = H(s)ωm0 (4.45)

As before, we may now re-write the closed-loop reference system dynam-

ics in the frequency domain by substituting the feedback law (4.41) and the

transfer functions (4.42)–(4.45) into a frequency domain version of the refer-

ence system. The new resulting closed-loop is

ωm,mod = G(s) (θωm,mod(s) + σ(s))

− amH(s)C(s)ωref (s) +H(s)ωm0 (4.46)

Now, we must prove that this system is stable. The extreme right-hand

term, H(s)ωm0, is simply a stable response due to any possible nonzero ini-

tialization error. This term will rapidly decay, since H(s) is stable. The

middle term of (4.46), −amH(s)C(s)ωref (s), is also bounded. This is be-

cause D(s) will be chosen so that C(s) is stable and proper, and H(s) is

stable and proper, along with the fact that the desired speed tracking input

ωref is bounded. All that remains is to show that the term with G(s) in it is

stable as well.

In order to show that the term G(s) (θωm,mod(s) + σ(s)) in (4.46) is stable,

we will again use the small-gain theorem, shown in Theorem 2. This term

is shown graphically in Figure 4.6. The form of this term coincides perfectly

with the interconnected systems described in Theorem 2. Thus, we may
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conclude that the closed-loop reference system (4.46) is stable if the condition

‖G(s)‖L1Lω < 1 (4.47)

is met, where Lω is defined as

Lω = max
θ∈Θω

|θ| (4.48)

Now, in order to ensure that this condition is met, we must choose the

feedback gain k and the transfer function D(s). In this case, we can use the

simplest choice of

D(s) =
1

s

for the transfer function D(s). In order to proceed with the design, the

impulse responses of G(s) were then simulated for a range of gain values

for k, and integrated to find the L1 norm ‖G(s)‖L1 . It was determined via

simulation using MATLAB that a feedback gain of k = 0.6 results in the

following bound:

‖G(s)‖L1 ≤ 0.014

For this controller, the desired speed loop convergence rate was chosen to be

am = −40. Thus, even if the unknown parameter is arbitrarily small, theta

cannot be greater than 40, so Lω = 40 in our case. Multiplying the norm

‖G(s)‖L1 with Lω results in 0.56, so the condition in Theorem 2 is met.

Now, we have once again verified via the L1 norm condition that the new

reference tracking system is stable. The final form of this control loop is

depicted in Figure 4.7. Note that this is very similar to the MRAC scheme

of Figure 3.5, except that the control law is different, and the state predictor

must be used with the control input, rather than just running the original

desired reference model. Also note that the adaptive estimates µ̂, θ̂, and σ̂

are used by the state predictor.

The new control law which is used is given in Equation (4.35). This control

law will cause the state predictor (3.50) on page 33 to track the new closed

loop reference system (4.46), rather than trying to exactly track the original

desired reference model (3.48). Again, this controller uses the adaptive laws

given in (3.55)–(3.57) in order to ensure that the state predictor tracks the
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Figure 4.7: Final form of L1 controller for the speed loop

actual plant dynamics. Finally, the actual input iqs is calculated using

iqs =
1

λdr
(u+ λqrids) (4.49)

This equation is simply achieved by solving the u Equation (3.47) for iqs.

Since the d-axis flux loop ensures that λdr never approaches zero, iqs will

remain bounded.

4.3 Simulation of L1 Controller

In this section, the L1 adaptive control system is evaluated using simulations.

Table 3.2 on page 15 shows the unknown parameter values used, and the a

priori known bounds used for each parameter. For comparison purposes,

these are the same parameters as used in the MRAC controller. Again, in

the case of the speed reference model, the convergence rate am = −40 is

used, while a faster desired convergence of αm = −100 is used for the q and

d axis flux control loops.

Since the L1 controller has a filter in the control law, very high frequency

components of the tuned parameter estimates will not enter the control chan-

nel. Because of this, it is acceptable to increase the tuning rate as high as

possible, without losing robustness. In fact, faster tuning is now better for

robustness, since the low-pass filter will get rid of oscillations most at the

highest frequencies. Thus, all the simulations in this section (except for the

first one) will be done with very fast tuning, at γ = 1× 105. This will result
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in an increase in both performance and robustness.

Figure 4.8 shows the simulated performance of the L1 controller when all

unknown parameters in the machine are kept at their nominal values seen

in Table 3.2, with a slow adaptation rate of γ = 100. Note that while the

machine parameters are at their nominal values, the adaptive controller is

still initialized with the incorrect guesses shown in the right-most column of

Table 3.2. This tuning rate is fast enough to cause the flux control loops

to very closely track the desired model reference behavior. However, the

speed control loop takes almost 0.1 seconds before it behaves similarly to

the desired reference model. This response is very similar to the response of

the MRAC controller in Figure 3.6. This is because with slow tuning, the

adaptive estimates have mostly low-frequency components, which will pass

through the filter.

Now, if we increase the rate of adaptation to γ = 1×105, the tuned param-

eter estimates will have much faster convergence rates, as seen in Figure 4.9.

Now, both the speed and flux loops track their closed-loop reference system

very accurately. Even from the very start of the simulation, the error between

the reference system and output is less than 1%. Again, the true values of

each parameter remain unchanged at the nominal values given in Table 3.2.

Recall that with the MRAC controller, the fast adaptation resulted in

very large high frequency oscillations in the current commands ids and iqs.

This time, however, the control effort is much more smooth, resulting in a

smoother system response. However, the system still tracks the closed-loop

reference system. The trade-off this time is that the closed-loop reference

system is no longer the first order linear system defined in (3.48). Now, the

controller is tracking a more realistic, albeit slightly more complicated sys-

tem. The big advantage is that this system is tracked much more accurately

than the one before, with a much more robust control effort.

Now, we will examine the response of this controller when the unknown

parameters change. For the rest of these simulations, fast adaptation (γ =

1× 105) is used. First, the controller is tested when the load torque changes

from 5 to 10 Nm. From the results in Figure 4.10, the speed response varies

by less than 0.96% during this step change in torque. The flux control loops

track their reference system as well. However, the reference system is not

as ideal as the one before. This time, the quadrature flux does have a small

instantaneous error when the load is changed. This error is a response by
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Figure 4.8: L1 performance with γ = 100 and no parameter change, x axis
in seconds
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Figure 4.9: L1 performance with γ = 1× 105 and no parameter change,
x axis in seconds
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Figure 4.11: L1 performance varying inertia: solid line, J ; dashed line, 4J ;
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the reference system itself, which is being tracked.

Next, the drive response will be tested for different inertias. Figure 4.11

shows the speed response and required quadrature axis current for different

values of inertia. Here, more control effort is required when the inertia is

greater, but the speed tracking remains relatively consistent. This result is

very similar to that of the MRAC controller in Figure 3.9.

The next series of tests will simulate the L1 controller’s response to changes

in machine electrical parameters, namely the rotor resistance, rotor induc-

tance, and mutual inductance. Figures 4.12 and 4.13 show the direct axis flux

response, control inputs, and flux parameter estimates when Rr is abruptly

changed by −50% and +100%, respectively. Simulations of decreasing and

increasing rotor inductance Lr may be seen in Figures 4.14 and 4.15, respec-

tively. Finally, the controller’s performance with abrupt changes in mutual
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Figure 4.12: L1 performance with Rr abruptly changed by −50%, x axis in
seconds
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Figure 4.13: L1 performance with Rr abruptly changed by +100%, x axis in
seconds

inductance Lm is given in Figures 4.16 and 4.17. All of these simulations are

done with fast adaptation (γ = 1× 105).

From Figures 4.12–4.17, it is apparent that changes in the electrical char-

acteristics of the machine have an impact on the system’s performance. How-

ever, the response due to these changes is much better than most non-

adaptive controllers. Table 4.1 summarizes the maximum instantaneous

speed and flux errors resulting from the electrical parameter changes de-

scribed above. These results look similar to the instantaneous errors of the

MRAC controller summarized in Table 3.3. The flux error is 8.87% greater

for the L1 controller when Rr is increased. Also, the L1 controller has 4.92%

greater error when Lr is decreased. However, this is because that error is

present in the slightly more complicated reference model. It is also clear
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Figure 4.14: L1 performance with Lr abruptly changed by −50%, x axis in
seconds
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Figure 4.15: L1 performance with Lr abruptly changed by +100%, x axis in
seconds
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Figure 4.16: L1 performance with Lm abruptly changed by −50%, x axis in
seconds
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Figure 4.17: L1 performance with Lm abruptly changed by +100%, x axis
in seconds
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Table 4.1: L1 Error Due to Change in Electrical Parameters

Parameter Variation Speed error [%] d-axis flux error [%]

Rr
−50% negligible 0.94
+100% negligible 10.34

Lr
−50% 1.07 6.47
+100% 1.64 1.62

Lm
−50% 1.75 1.81
+100% 1.29 .82

from these figures that the L1 controller does have some small steady-state

error in the d-axis flux controller. This error is also due to the fact that

the new closed-loop reference system has some steady state error. This may

be corrected by using an integral term in the reference system, and will be

discussed later.

Thus far, all these L1 simulations have assumed that the machine is mod-

eled correctly, with uncertainty of parameters. Now, it is important to show

the characteristics of the system when any unmodeled dynamics are intro-

duced. The next simulation conducted involves adding a single stable pole

between the controller and the machine. This pole is at −800 in the complex

plane, so it is also much faster than the modeled dynamics of the machine

(hence, its effect should damp out very quickly). This test is the same as

the test with unmodeled dynamics performed on the MRAC controller. Re-

call that with fast tuning, the MRAC controller demonstrated undesirable

robustness characteristics due to oscillations in the control channel. Here,

we will also use fast tuning (γ = 1× 105).

In this case, the response with an unmodeled pole is shown in Figure 4.18.

Now, it can be seen that this response is much different than the response

without the unmodeled pole from Figure 3.17. Comparing the two figures, it

is clear that with the unmodeled pole, the L1 system is much more stable. It

does take longer for the flux response to settle to the desired value, but it is

still very fast. However, since a smooth, low frequency current command for

iqs and ids is used, the system is much more robust to model uncertainties.
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Figure 4.18: L1 performance unmodeled fast pole, x axis in seconds

4.4 Analysis and Conclusions

The above figures show that the L1 controller works well, even when the

system is not modeled perfectly. The tuning rate γ may be increased as

much as the controller is capable of calculating with an increase in both

performance and robustness.

As summarized in Table 4.1, it is clear that the control system can handle

changes in the unknown parameter values. Also, since the simulations were

performed with incorrect initial guesses of the unknown parameters, we can

conclude that the L1 controller works well with parameter uncertainty.

Even in case where an unmodeled pole is added to the plant dynamics, the

L1 controller maintains stability. This is due to the fact that the matching

assumptions are more relaxed. Recall page 20, where this matching assump-

tion is discussed for the case of the MRAC controller. In that case, perfect

cancellation was assumed, so that the controller could directly track the de-

sired reference model. In the L1 case, a new, realistic closed-loop reference

system is tracked. This time, the matching assumption only assumes that
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cancellation can occur at lower frequencies. Therefore, the stability analysis

is valid even with high frequency unmodeled dynamics.3

For the simulation in Figure 4.18 the extra pole at −800 in the complex

plane affects iqs and ids between the controller and motor. In this case,

the dynamics in (3.6)–(3.7) would have two extra states, as shown in (3.59)

and (3.60), where ids,cmd and iqs,cmd are the desired system inputs as manip-

ulated by the controller. Now, even though there are high magnitude, high

frequency oscillations in the adaptive parameter estimates, these oscillations

do not enter the control channel. Therefore, they do not cause interference

with the unmodeled fast pole.

In [33], several counterexamples are given showing how a traditional MRAC

system may become unstable in the presence of unmodeled dynamics. These

destabilizing factors have been further studied in [36]– [34]. However, these

issues are addressed with the L1 controller. E. Xargay directly revisits these

benchmark problems in [44], and shows how the L1 control addresses them.

One major advantage of the L1 controller is the ability to quantify its per-

formance and robustness using various metrics. In [41], performance bounds

are given, which guarantee that the error between the system dynamics and

closed-loop reference system will remain within a specific bound. This bound

may be made arbitrarily small by increasing the tuning rate γ.

The L1 controller may also be analyzed with specific measures of robust-

ness. In [45], the robustness of the L1 controller is studied using stability

margin analysis. Namely, the time-delay margin may be used to give a quan-

titative bound on how much time delay can exist between the controller and

plant without loss of stability. The time-delay margin for a nonlinear system

is analogous to phase margins of a linear system. In [46], various adaptive

controllers are studied, and their robustness is compared as well.

In summary, the L1 controller is introduced for the first time to a motor

drive application, with the objective of achieving better performance and

robustness, even in the presence of unmodeled dynamics. The control scheme

used in this chapter follows the general case of an L1 controller as described

in [23]. Simulations have been given in this chapter to demonstrate that

this scheme is feasible for use in a motor drive application, and has several

advantages over the MRAC control scheme which has been used before in

3Of course, this is only true when the unmodeled dynamics are stable, as discussed in
section 4.1.
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motor drive applications such as [25] and [28]. Namely, the L1 control scheme

allows for arbitrarily fast parameter estimation without loss of robustness in

the presence of unmodeled dynamics.
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CHAPTER 5

IMPLEMENTED INDIRECT
FIELD-ORIENTED L1 CONTROLLER

In this chapter, an implementable version of the L1 controller for an in-

duction machine drive application is developed, and tested experimentally.

First, a brief overview of the concepts involved with indirect field-oriented

control (IFOC) will be given, along with any other necessary considerations

for implementing an induction machine control system. Then, the actual

control laws will be developed. Experimental tests are then performed to

verify the claims about this controller, and show that it can be implemented.

Finally, the actual switching methods used to actuate the current to the

desired values will be discussed.

5.1 Basic Control Scheme Overview

This controller will use an IFOC strategy to regulate the speed and flux of

the machine. The speed control loop is a PID controller. The control loop

which regulates the machine flux is an L1 adaptive controller. It is much

more important to show the performance of the L1 controller in the flux

loop, because those dynamics will be affected the most by any variations or

uncertainty of electric parameters.

Instead of assuming that λdr and λqr are known, we must now include

the flux observer into the design of this controller. In the IFOC case, this

is done by estimating only the magnitude of the rotor flux, rather than

each component λdr and λqr individually. A separate estimator is used to

estimate the angle ρ at which this rotor flux is pointing. When the d-q frame

is aligned with this angle ρ, the flux will be in the direct component λdr.

Thus, this forces the quadrature axis flux λqr to be zero, as long as the angle

ρ is accurate. An estimator is designed to ensure that ρ converges to the

true value very quickly. As demonstrated in [47], this indirect strategy for
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estimating the rotor flux magnitude and angle is stable and robust, even with

some parameter uncertainty.

With the quadrature axis flux forced to zero, the system dynamics for

an induction motor become more manageable, and linearization is possible.

This is the basis for field-oriented control in general. More information about

input-output linearization of an induction motor via field-oriented control

may be found in [48].

This controller is based on the model of an induction motor given in (3.1)–

(3.5). As with the direct field-oriented control scheme proposed in Chapter 4,

the system is considered to be current-fed rather than voltage-fed. Thus,

only (3.1)–(3.3) are used. The voltage to current dynamics given in (3.4)–

(3.5) are fast, so it is possible to rapidly enforce the desired current with a

large enough voltage input.

5.2 Development of L1 Adaptive IFOC Controller

In this section, each individual component of the implemented IFOC con-

troller with L1 adaptive flux regulation is developed. First, the reference

frame calculation which is used to convert three phase values to d-q refer-

ence frame quantities and back is discussed. Next, the equations used to

estimate the rotor flux magnitude and direction will be given and discussed.

For this control scheme, we are not assuming that the rotor flux vector can

be measured, so we must discuss this estimation technique. The PID con-

trol law used to regulate motor speed will be given as well. Finally, the L1

adaptive controller responsible for regulating the rotor flux magnitude will

be developed and discussed.

5.2.1 Reference Frame Calculation

To represent the machine state variables in the rotor flux frame, it is first

necessary to define some important transformations. First, the three-phase

stator current measurements must be transformed into two their representa-
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tion in the new d-q rotating reference frame using

[
ids

iqs

]
=

2

3

[
sin (ρ) sin

(
ρ− 2π

3

)
sin
(
ρ+ 2π

3

)
cos (ρ) cos

(
ρ− 2π

3

)
cos
(
ρ+ 2π

3

) ]
 ias

ibs

ics

 (5.1)

Here, ρ is the angle of the reference frame, ias, ibs, and ics are the three-phase

stator current measurements, and ids and iqs are the direct and quadrature

axis stator currents, respectively. This transformation, known as the Park

transformation, is valid whenever the three currents are balanced, and can be

found in [3]. Once the controller has determined the desired input currents,

these must be transformed back from d-q coordinates into the original three-

phase stator representation. This inverse Park transformation is represented

as  ias

ibs

ics

 =

 sin (ρ) cos (ρ)

sin
(
ρ− 2π

3

)
cos
(
ρ− 2π

3

)
sin
(
ρ+ 2π

3

)
cos
(
ρ+ 2π

3

)
[ ids

iqs

]
(5.2)

and may also be found in [3]. This new d-q reference frame will be referred

to as the rotor flux frame or the ρ frame, since the direct axis is at an angle

ρ from the stationary frame, and in line with the rotor flux vector.

5.2.2 Rotor Flux Magnitude and Angle Estimation

Now, we must get an estimate of the rotor flux magnitude and direction in

order to establish the IFOC controller. The strategy taken by the indirect

field-oriented controller (as opposed to the direct field-oriented controller) is

to assume from the start that the quadrature rotor flux λqr = 0. With this

assumption, the machine dynamics can be simplified. Recall the d-axis flux

dynamics of Equation (3.2) on page 14. If λqr = 0, this equation may be

simplified to the following form:

λ̇dr =
−Rr

Lr
λdr +

RrLm
Lr

ids (5.3)

This equation may be used to run a real-time simulation of rotor flux mag-

nitude in the controller, with the d-axis current as the input. The rotor flux
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magnitude estimator used by this controller is

˙̂
λdr =

−R̂r

L̂r
λ̂dr +

R̂rL̂m

L̂r
ids (5.4)

where R̂r, L̂r, and L̂m are estimates of the corresponding electric machine

parameters. These estimates are measured off-line, and are not tuned adap-

tively in the controller. It is proven in [47] that the IFOC controller with

this simple flux estimation will remain stable even with incorrect parameter

estimates. However, if the estimates are wrong, there will be some steady

state error between the estimated flux magnitude and actual flux magnitude.

Now, we must estimate the direction that the rotor flux is pointing with

respect to the stationary frame. Again, with the assumption that λqr = 0,

this task becomes easier. Recall the quadrature axis flux dynamics of (3.3).

With λqr equal to zero, these dynamics may be simplified to the algebraic

constraint given in

0 = −ωslλdr +
RrLm
Lr

ids (5.5)

Since ωsl = ρ̇−Pωm, this constraint can be further expanded and solved for

ρ̇, to give the following dynamic equation for rotor flux angle:

ωsl = ρ̇− Pωm =
1

λdr

RrLm
Lr

ids

ρ̇ = Pωm +
1

λdr

RrLm
Lr

ids (5.6)

Equation (5.6) may be used to define the rotor flux angle estimator. The

resulting estimator, with the same parameter estimates mentioned before,

becomes

˙̂ρ = Pωm +
1

λ̂dr

R̂rL̂m

L̂r
ids (5.7)

This very simple estimator will track the actual flux angle very well as long

as the parameter estimates are accurate. Once again, if these parameters are

inaccurate, there will be some steady state error in the system.
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5.2.3 Speed PID Control Loop

In order to keep this overall control scheme computationally simple, a PID

controller is used to regulate the speed of the machine. Recalling (3.1) with

λqr = 0, the speed dynamics may be influenced with the current input iqs,

independent of the direct axis current ids. The control law for the speed loop

is defined as

iqs(t) = kpe(t) + ki

∫ t

0

e(τ)dτ + kd
de(t)

dt
(5.8)

Here, kp > 0 is the proportional gain, ki > 0 is the integral gain, and kd ≥ 0

is the derivative gain. The error e is defined as

e(t) = ωref (t)− ωm(t) (5.9)

For this controller, the following gains are used:

kp = 0.4, ki = 5× 10−4, kd = 0.3

5.2.4 L1 Adaptive Flux Control Loop

The L1 adaptive controller used to regulate the flux magnitude is very similar

to the L1 controller developed in section 4.2.2. Now, it is slightly simplified

due to the fact that we are going to assume λqr is forced to be zero. Therefore,

the term ωslλqr does not enter the flux dynamics.

The dynamics of the rotor flux used for this controller are

λ̇dr(t) = −αλdr(t) + βids(t) + σd(t) (5.10)

where α and β are unknown constant parameters, and σd(t) is an unknown

time-changing disturbance due to nonlinearity. In the original flux dynam-

ics (3.2) are assumed to be linear, so the σd term is not present. Now,

however, we will assume that nonlinearity may be present. Thus, α and β

represent the linear parameters, while σd is added to compensate for effects

of nonlinearity.
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An ideal reference model system is given as

λ̇dr,m(t) = αmλdr,m(t)− αmλdr,ref (t)

− kif
∫ t

0

(λdr,m(τ)− λdr,ref (τ)) dτ (5.11)

The objective of the adaptive controller is to mimic the behavior of this

system. This time, the reference model system is second order, due to the

inclusion of an integral term. This integral term serves to eliminate steady

state error of the L1 controller. As mentioned before, the L1 system will

track a closed-loop reference system similar to this desired model reference

system, but not exactly the same. This new system is much more realistic,

but could have some steady state error. The extra integral term in this

open-loop reference model eliminates this problem. The values αm = −60

and kif = 80 are used in the implementation of this controller.

The d-axis flux dynamics of the machine are now re-written as

λ̇dr(t) = αmλdr(t) + βids(t) + θdλdr(t) + σd(t) (5.12)

to include the αmλdr term. There, the new unknown parameter θd = −(αm+

α) is introduced. Next, a state predictor is defined with the exact same

dynamics as the actual system, except that the unknown parameters are

replaced with estimates, denoted with the hat symbol:

˙̂
λdr = αmλ̂dr + β̂dids + θ̂dλdr + σ̂d (5.13)

The goal of causing the state predictor to track the actual machine behav-

ior is accomplished using the same tuning laws as the L1 controller described

in section 4.2.2. Here, the unknown parameters β̂d and θ̂d are tuned using

the tuning laws given in (3.44) and (3.45) on page 31. The parameter σ̂d

is tuned using the law in Equation (4.17) on page 57. The Lyapunov anal-

ysis performed on pages 30–32 remains exactly the same for the first two

unknown parameters, except that an extra term is added to the candidate

Lyapunov function to include the error σ̃d = σ̂d − σd. This candidate Lya-

punov function is shown in (4.15) on page 57. Once again, all the errors

are defined in (3.36)–(3.38) on page 30. The derivative of solutions along

this Lyapunov function is given in (4.16) on page 57. With the tuning laws
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mentioned above, this enforces the bound on the derivative of the Lyapunov

function given in Equation (4.18) on page 57.

Now, Theorem 1 may be applied to guarantee that all error signals remain

bounded, and that ed →∞ as t→∞. Thus, we can conclude that the state

predictor and plant dynamics will track one another as t→∞.

The control law for this L1 controller is almost identical to the one in sec-

tion 4.2.2. The control laws used by the L1 flux control loop are represented

as

ids(s) = −kD(s)
(
ru(s) + β̂dids

)
(5.14)

ru(t) = θ̂d(t)λdr(t) + σ̂d(t) + αmλdr,ref (t)

+ kif

∫ t

0

(λdr(τ)− λdr,ref (τ)) dτ (5.15)

The transfer function D(s) is a strictly proper stable system yet to be de-

signed, along with a strictly positive gain k.

Once again, this control law has internal feedback. This is because ids

appears appears in the right-hand side of (5.14). This control law may also

be re-written in the frequency domain by solving for ids as seen in

ids(s) = −Ĉ(s)

β̂d
ru(s) (5.16)

where Ĉ(s) is

Ĉ(s) =
kβ̂dD(s)

1 + kβ̂dD(s)
(5.17)

Substituting this control law into the state predictor (5.13) on page 83

results in the following dynamic behavior for the state predictor:

sλ̂dr(s) = αmλ̂dr(s) +
(

1− Ĉ(s)
)

(θ̂d(s)λdr(s) + σ̂d(s))

− Ĉ(s)

[
αmλdr,ref (s) + kif

1

s
(λdr(s)− λdr,ref (s))

]
(5.18)

Notice that if Ĉ(s) were equal to one, the middle term of Equation (5.18)

would be cancelled, so that the state predictor would assume the dynamics

of the originally suggested reference system of Equation (5.11). However,

Ĉd(s) will be a low pass filter, so that this cancellation does occur partially
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at lower frequencies.

Since there is only partial cancellation of terms, the system is now tracking

a different reference system than the suggested system of Equation (5.11).

We now define a closed-loop reference system, which will actually be tracked.

The resulting closed loop reference system, along with its feedback input, is

λ̇dr,mod(t) = αmλdr,mod(t) + βids(t) + θdλdr,mod(t) + σd (5.19)

λdr,mod(0) = λd0 (5.20)

ids,mod(s) = −C(s)

β
ru,mod(s) (5.21)

ru,mod(s) = θdλdr,mod(s) + σd(s) + αmλdr,ref (s)

+ kif
1

s
(λdr,mod(s)− λdr,ref (s)) (5.22)

Also, we define H(s), G(s), C(s), and r0(s) for the purpose of analysis as

H(s) =
s

s2 − αms+ kifC(s)
(5.23)

G(s) = H(s)(1− C(s)) (5.24)

C(s) =
kβD(s)

1 + kβD(s)
(5.25)

r0(s) = H(s)λd0 (5.26)

Substituting the control law (5.21) into the system (5.19), and simplifying

using the transfer functions (5.23)–(5.26), yields the following new closed-

loop reference system:

λdr,mod(s) = G(s) [θdλdr,mod(s) + σd(s)]

− C(s)H(s)

(
αm −

1

s
kif

)
λdr,ref (s) + r0(s) (5.27)

As long as D(s) is chosen so that C(s) is stable and proper, the trans-

fer function H(s) will be strictly proper and stable. Because of this, the

r0(s) term on the far right of Equation (5.27) is stable, and will have a

quickly diminishing bounded response. The system’s response due to the

desired flux value λdr,ref is given in the middle term of Equation (5.27),

−C(s)H(s)
(
αm − 1

s
kif
)
λdr,ref (s). Since C(s) is stable and proper, and H(s)

is stable and strictly proper, this term is also a stable system. Thus, bounded
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tracking signals λdr,ref will not cause the closed-loop reference system to go

unstable. The stability of this system was also verified via simulation using

MATLAB, over the entire range of possible β values.

Finally, in order to prove that the closed-loop reference system is stable, it

is necessary to show that the first term, G(s) [θdλdr,mod(s) + σd(s)], is stable.

Once again, Theorem 2 (the small-gain theorem) is used to accomplish this.

Notice that this term has exactly the same form as the interconnected system

described in Theorem 2. Thus, by invoking the small gain theorem, the

closed-loop reference system will be stable as long as the condition

‖G(s)‖L1Ld < 1 (5.28)

is met, since the input term σd(s) is bounded. The term Ld is defined as

Ld = max
θd∈Θ
|θd| (5.29)

Here, Θ is the set of all possible values of θd, based on the a priori known

bounds.

In order to ensure that this condition is met, the transfer function D(s),

along with gains k and kif , must be chosen. The chosen form of the transfer

function D(s) is given as

D(s) =
ωnd

s+ ωnd
(5.30)

This is a stable, first order, low-pass filter, with cutoff frequency ωnd. The

impulse response of the transfer function G(s) was then simulated with var-

ious cutoff frequencies and gains, across the entire possible range of β. The

magnitude of this impulse response was then integrated to get the L1 norm

of G(s). With the desired flux convergence rate αm = −60, the constant

Ld = 57, since we know that α ≥ 3. It was found that with ωnd = 5, k = 1,

and kif = 80, the resulting norm of G(s) satisfies ‖G(s)‖L1 ≤ 0.0163 for all

possible values of β. This results in the product ‖G(s)‖L1L ≤ 0.93, which

satisfies the L1 norm condition given in Equation (5.28).

Now, we may invoke Theorem 2 to ensure that the closed-loop reference

system is stable. The final form of this entire control loop is exactly the same

as the one in Figure 4.5 on page 61, except that the control law is different.

In this controller, an integral term is added to the control law, as seen in

Equations (5.14)–(5.15). The state predictor, given in Equation (5.13), will
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then track the new closed loop reference system (5.27), which we have just

proven is stable. The adaptive tuning laws given in Equations (3.44), (3.45),

and (4.17) are used to adjust the parameter estimates in real time, in such a

way that the error between the state predictor and actual system converges

to zero. Thus, the actual system will track the closed-loop reference model.

5.2.5 Current Actuation

In previous sections, it was assumed that the controller could specify the

desired currents ids and iqs, and that these currents would be instantly actu-

ated into the induction motor. In order for this to be feasible in a real-world

situation, some sort of control loop must be used to force the current to the

values specified by the field-oriented controller.

This is accomplished here using hysteresis switching to regulate each phase

current ias, ibs, and ics. Basically, hysteresis switching works by connecting

a phase to a high positive voltage whenever the corresponding phase current

is too low, and switching to a very high negative voltage whenever the cur-

rent is too high. There is a certain switching band which determines how

much current error there must be before a switch is made. The advantage

of hysteresis switching is that it is very fast and accurate. However, it is

possible for a hysteresis controller to cause extremely fast or slow switching

frequencies. It is desirable to have a specific, known switching frequency for

an inverter.

In order to correct this, the hysteresis switching signal (which takes values

0 or 1) is filtered using a low-pass filter. This filtered switching signal is

then used as the duty ratio for a PWM channel. This PWM is then used to

actually switch the inverter power electronics. With a PWM, the switching

frequency will always be constant. However, the fast convergence rate and

accuracy of hysteresis control is still present with this system. This technique

is very similar to the one described in [49].

The desired direct axis stator current ids will be specified by the flux-axis

control loop, while the quadrature axis current iqs will be specified by the

speed control loop. These desired currents are then transformed into three-

phase values using (5.2). Each of these three currents is compared to the

actual measured phase current, and this error signal is used to create the
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hysteresis switching signal. Then, the hysteresis switching signal is filtered

to obtain the PWM duty ratios.

5.3 Experimental Results

In this section, the entire control system developed in the previous section is

implemented and tested experimentally. The tests are set up using a three-

phase induction motor driven by an inverter. The switching signals for all

three phases of this inverter are given using a TI TMS320F2812 digital signal

processor (DSP). A 2048 slot encoder is used for speed measurement. Each

phase current is sensed using a Hall-effect sensor, and sampled at a sampling

frequency of 20 kHz. The 2-pole induction motor electrical parameters are

estimated to be R̂r = 2.23 Ω, L̂r = 0.2148 H, and L̂m = 0.2048 H.

A hysteresis band of 0.02 A is used, and then filtered using a first-order low

pass filter with a cutoff frequency of 200 Hz. This filtered signal is then used

as the duty ratio for a 10 kHz PWM wave, which is actually used to switch

the inverter power electronics. The time axis for each of the following figures

is in seconds. In all of the following experiments, all adaptive parameters are

tuned at the fast rate of γ = 10, 000.

First, the speed loop is tested to ensure that the PID controller is sufficient

to maintain speed. In the first test, shown in Figure 5.1, the machine is

initially running at 1725 RPM, with a flux command of 300 mV-s, and a

load torque of 0.1 N-m. Then, at 6.4 seconds, the load torque is increased

to 0.3 N-m. As can be seen from Figure 5.1, the speed dynamics respond

quickly, and the current commanded by the controller, iqs, responds very

quickly and remains stable. Next, the speed loop is tested with a change in

desired speed. Figure 5.2 shows the response of the system when the speed

command is changed from 1000 to 1725 RPM. One can see that this results in

temporary weakening of the field. However, the flux controller does recover.

Here, the load torque is constant at 0.3 N-m.

Next, the system’s response to changes in flux command are tested. In

Figure 5.3, λdr is commanded to increase from 300 to 500 mV-s, while the

speed is to maintain 1725 RPM. One can see that the speed control loop

remains unaffected by the change in rotor flux magnitude. This time, the

current ids from the L1 flux control loop is plotted. As can be seen, this
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Figure 5.1: Increase in load torque, x axis in seconds
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Figure 5.2: Increase in speed command, x axis in seconds

89



6 7 8 9 10 11 12
1500

1725

2000

ω
m

 [rad/sec]

6 7 8 9 10 11 12

2

4

i
ds

 [A]

6 7 8 9 10 11 12

200

400

600

λ
dr

 [mV−s]

Figure 5.3: Increase in flux command, x axis in seconds

current command is relatively smooth. The L1 controller does not try to

over-actuate to compensate for high frequency dynamics such as switching

dynamics. Similarly, Figure 5.4 shows the closed loop system response when

the flux command is decreased from 400 to 200 mV-s at 3.6 seconds. For

both of these tests, the machine is under 0.3 N-m of load torque.

The same tests are repeated again in order to measure the adaptive param-

eter estimates during these changes. Figure 5.5 shows the adaptive estimates

when the flux command is increased from 300 to 500 mV-s at time t = 5.2

seconds. Then, Figure 5.6 shows the adaptive estimates when the flux com-

mand is decreased from 400 to 200 mV-s at time t = 3 seconds. In both

situations, there are high frequency components in the parameter estimates.

It is important to note that these do not enter the control channel ids, as

seen in Figures 5.3 and 5.4.

It is also desirable to obtain the system response when field weakening is

used as the speed command is increased. Figure 5.7 shows the system re-

sponse when the flux command is decreased from 400 to 200 mV-s, as the

speed command is simultaneously increased from 1000 to 1725 RPM. The

current command ids is again plotted to show the L1 controller’s response.

It is important to notice that it maintains a smooth current command, even

though the adaptive parameters have very high frequency oscillations. This

test is performed again to record these adaptive parameters in Figure 5.8.
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Figure 5.4: Decrease in flux command, x axis in seconds
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Here, the speed is increased and flux decreased simultaneously at approxi-

mately time t = 7.2 seconds.

To ensure that the parameter estimates do cause the state predictor to

track the actual system dynamics, the tests for flux changes are performed

again, and this error is measured. In Figures 5.9–5.11, the error ed = λ̂dr−λdr,
where λ̂dr is the state predictor output, and λdr is the estimated machine flux.

This error is given in mV-s. The flux λdr itself is also plotted, along with

the current command ids. Figure 5.9 gives the result when flux command

is increased from 300 to 500 mV-s. Figure 5.10 gives the response with flux

decreased from 400 to 200 mV-s. The response of speed increasing from

1000 to 1725 RPM while flux is decreased from 400 to 200 mV-s is shown in

Figure 5.11.

One can see from Figures 5.9–5.11 that the state predictor tracks the esti-

mated flux magnitude well. This indicates that the tuning laws are sufficient.

The fast tuning rate of γ = 10, 000 is used, which helps drive this error to

zero very quickly. However, this fast tuning does not cause high frequency

dynamics to enter the current command ids. This allows the L1 controller to

maintain robustness while increasing performance.
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Figure 5.7: Speed increase during field weakening, x axis in seconds
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Figure 5.9: State predictor error during increase in flux command, x axis in
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Figure 5.10: State predictor error during decrease in flux command, x axis
in seconds
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CHAPTER 6

CONCLUSION

It has been shown that the L1 controller achieves very good performance and

improved robustness over a model reference control system, even with very

fast adaptive tuning. It was shown in Chapter 3 that the MRAC controller

lacks robustness, specifically in the presence of unmodeled dynamics. These

issues are then addressed with the L1 control scheme. While the relatively

new L1 controller has been used in several aerospace applications, it has

never been applied to a motor drive system. Chapter 5 demonstrates the

feasibility of applying an L1 controller to an induction motor drive system.

The model of an induction motor has many uncertainties which can change

during machine operation. Due to this, it was desirable to implement an

adaptive controller to regulate the flux of the motor. With the proposed

L1 control scheme, it is possible to adaptively control an induction motor

so that transient performance is consistently desirable, even with uncertain

parameters.

The proposed controller was proven to be stable using the small-gain the-

orem. This theorem ensures that the interconnected system created within

this controller will be stable using conditions on its L1 norm. Further, this

thesis tested the controller experimentally to verify its performance and sta-

bility. It is noted that this controller creates a commanded current input that

is very smooth, even with high frequency oscillations in parameter estimates.

These parameter estimates are only shown to remain bounded, and do not

necessarily converge to their true values. They must only converge to values

which cause the system to track the desired performance.

This control system causes the motor behavior to track the behavior of a

reference model, which is specified as a goal for performance. Using adap-

tation of unknown parameters, the L1 controller is very effective at tracking

this model behavior. This control scheme only assumes that the form of the

system model is accurate at low frequencies, and that there may be fast, sta-

96



ble, unmodeled high frequency dynamics in the system. This more accurate

and relaxed assumption results in the controller not expending unnecessary

control effort to correct for these high frequency dynamics. Thus, the con-

trol inputs to the machine are smooth, and only contain lower frequency

components.

Because the L1 controller does not create high frequency control channel

inputs, this results in much better robustness. It allows the adaptive con-

troller to increase the tuning rates arbitrarily high. Fast tuning rates for the

adaptive estimates result in much better performance, since they will cause

the system to converge to the desired model behavior much more quickly.

With an MRAC controller, fast tuning will cause high frequency oscillations

in the control channel, which may destabilize the system in the presence of

unmodeled dynamics. Therefore, there is a tradeoff between performance and

robustness with the MRAC controller. The L1 controller instead allows for

arbitrarily fast tuning rates, as faster tuning is better for both performance

and robustness.

Further work could be done to utilize a better flux observer, in order to

increase the accuracy of this controller. The accuracy of this controller is

only limited by that of the flux observer. This thesis did not propose any

new advances in flux observation.

It may be possible to further develop this controller by combining the

control technique with an observation technique using output feedback. Cao

and Hovakimyan discuss output feedback for L1 control in [50] and [51].

Improving the flux observer for this controller could also be done using many

of the adaptive flux observation techniques discussed in section 2.3.
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