
c© 2010 by Andrew David Lenharth

AUTOMATIC RECOVERY FOR REQUEST ORIENTED SYSTEMS

BY

ANDREW DAVID LENHARTH

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana­Champaign, 2010

Urbana, Illinois

Doctoral Committee:

Professor Vikram Adve, Chair
Professor Sarita Adve
Assistant Professor Samuel King
Professor Yuanyuan Zhou, University of California, San Diego

Abstract

Gracefully recovering from software and hardware faults is important to en­

suring highly reliable and available systems. Operating systems have privi­

leged access to all aspects of system operation, thus a fault related to them

is able to affect the entire system. Existing approaches to operating system

recovery either do not protect the entire system or require a completely new

operating system design.

This dissertation presents a new approach to fault recovery in operat­

ing systems called Recovery Domains. This approach allows recovery from

unanticipated faults in commodity operating systems. Recovery is organized

around the concept of a dynamic request. Operating system entry points ini­

tiate requests to perform some action. System calls, for example, are a request

by an application to the operating system. When a fault is detected, the re­

covery system rolls back the effects of the offending recovery domain while

leaving the remainder of the system running. To ensure that the entire system

(including the state of other concurrent kernel threads) remains consistent

after the rollback, dependencies between domains are tracked as the system

runs. When rolling back a faulting domain, any other domains that were de­

pendent on the it, because of data­flow between the domains, are rolled back

and restarted.

Recovery Domains do not make faults transparent. Request failures are

reported to the requester. This visibility allows handling of faults which are

ii

permanent: those faults which would reoccur if the request were retried. Re­

covery Domains also handle timing and transient faults.

Recovery Domains require compiler support to instrument the system.

The necessary support is simple, but can cause unnecessarily large system

overhead. This dissertation describes several performance improvements to

Recovery Domains based on dynamic analysis of the system state and static

analysis of memory regions, allocators, and locks. Runtime analysis of the

inter­dependence of the active requests can allow reduced tracking of state

changes. The recovery compiler can reason about memory regions and data

structures protected by a lock to eliminate instrumentation on many opera­

tions to locked memory. “Fresh” heap objects, those objects which have been

allocated and have not yet become visible to other requests and threads, re­

quire no instrumentation. These improvements to the recovery runtime and

compiler provide substantial performance improvements over more simple

implementations.

This dissertation describes the goals, approach, semantics, and program­

ming model of Recovery Domains; the minimal implementation of the run­

time and compiler; the static analysis and optimization at the compiler level

and dynamic optimization to the runtime; and the porting of two signifi­

cantly different versions of the Linux kernel to the recovery system. It eval­

uates the overhead, effectiveness, and coverage of recovery. Finally it de­

scribes the potential integration of a model fault detector with the Recovery

Domains system.

iii

To Vernita, for her love and support.

iv

Table of Contents

List of Figures . viii

List of Tables . ix

Chapter 1 Introduction . 1
1.1 Research Contributions of this Dissertation 4
1.2 Dissertation Organization . 5

Chapter 2 Operating System Recovery 6
2.1 Challenges of Operating System Recovery 6
2.2 The Ideal Recovery System . 9
2.3 The System Model: Requests 10
2.4 Design Space . 12

Chapter 3 Recovery Domains . 15
3.1 Concepts and Terms . 15
3.2 Recovery System Organization: Request­Oriented Systems . . 17
3.3 Requests Context . 19
3.4 Recovery Domains: the Runtime Entities 21

3.4.1 Comparison to Transactions 22
3.4.2 Basic Recovery Domains 24
3.4.3 Independent Recovery Domains 25
3.4.4 Semantically Reversible Recovery Domains 26
3.4.5 Transparent Recovery Domains 29
3.4.6 Unlogged Recovery Domains 30

3.5 Execution Modes . 30
3.5.1 Normal Execution . 31
3.5.2 Recovery Execution . 31

3.6 Committing . 32
3.7 Predictable Error Semantics . 34
3.8 Programming Model . 37
3.9 Examples . 37

3.9.1 A Successful Request 37
3.9.2 A Faulting Request . 38

3.10 Fault Detectors . 39

v

3.11 Conclusion . 40

Chapter 4 Reference Design and Implementation 42
4.1 Reference Design . 43
4.2 Versioned Memory . 45

4.2.1 Global Versioning Structures 46
4.2.2 Load and Store Replacement 47

4.3 Tracking Dependencies Between Recovery Domains 49
4.3.1 Graph Simplification and Search 50
4.3.2 Alternative Graph Representations 51

4.4 Logging . 52
4.4.1 Alternative Log Structures 54

4.5 Committing Recovery Domains 54
4.6 Rolling Back Recovery Domains 56

4.6.1 Error Virtualization . 58
4.7 Compiler Passes . 59
4.8 Runtime . 61
4.9 Porting Linux . 63
4.10 Discussion . 67

4.10.1 Avoiding Deadlock . 67
4.10.2 Corrupting the Recovery System 68
4.10.3 Output Commit Mitigation 69

4.11 Conclusion . 70

Chapter 5 Design and Implementation of Compiler and Runtime
Analysis and Optimizations . 71
5.1 Dynamic Analysis of Dependence Graph 72
5.2 Locked Memory . 74

5.2.1 Optimizations for Locked Memory 75
5.2.2 Misuse of the Lock Annotation 78

5.3 Fresh Memory . 79
5.4 Compiler Analysis . 80
5.5 Runtime Support . 81
5.6 Porting Linux 2.6.27 . 84
5.7 Conclusion . 85

Chapter 6 Results . 86
6.1 Methodology . 87
6.2 Survivability . 88
6.3 Coverage . 91
6.4 Performance . 92

6.4.1 Performance of Reference System 93
6.4.2 Performance of Recovery Domains With Optimizations 94

vi

Chapter 7 Example Use With a Model Fault Detector 98
7.1 SVA Overview . 99
7.2 SVA As a Driver For Recovery 100
7.3 SVA Integration . 102

7.3.1 Source Transformation Example 104
7.3.2 Faulting Example . 108
7.3.3 Differences Preventing Merging of Runtimes 108

7.4 Conclusion . 110

Chapter 8 Related Work . 111
8.1 Limits of Recovery . 111

8.1.1 Limits of Recovery­Oriented Operating Systems . . . 113
8.2 Recovery Techniques . 115

8.2.1 Ad­hoc . 115
8.2.2 Isolation . 116
8.2.3 Checkpointing and Rollback 116
8.2.4 Transactions . 117

8.3 Recovery Systems . 120
8.3.1 Language Based . 120
8.3.2 OS Architectures for Isolation 122
8.3.3 Extending Checkpoints 126
8.3.4 Reducing Functionality 127

Chapter 9 Conclusion . 129

References . 134

vii

List of Figures

3.1 free releasing a resource which can be used by another thread 28
3.2 Commit protocol . 32
3.3 Annotated open system call . 36
3.4 A hypothetical system call . 38
3.5 A hypothetical faulting system call 39

4.1 Store to a pointer . 48
4.2 Load of a Pointer . 48
4.3 Paged log structure . 52
4.4 Committing a domain . 55
4.5 Rolling back a domain . 57
4.6 Example transformation on kmalloc 60

5.1 Example simple lock annotation 74
5.2 Simplified lock analysis. 77
5.3 Example load transform . 82
5.4 Example store transform . 83

7.1 Overlapping stack allocations 102
7.2 Original kernel source for purposes of an SVA and Recovery

Domains example. 104
7.3 Example of kernel source instrumented by SVA to provide

memory safety . 105
7.4 Example of kernel source instrumented by SVA to provide

memory safety then instrumented by Recovery Domains to
provide recovery . 107

viii

List of Tables

3.1 Primary Types of Domains . 23
3.2 Differences in Domain Types 23

4.1 Recovery Domain Structure members 43
4.2 Versioned memory meta­data 45
4.3 Changes to Linux 2.4.22 by type and lines of code 66

6.1 Percent of Dynamic Memory Operations By Domain Type . 90
6.2 Run­times (seconds) of benchmarks on Linux 2.4.22 93
6.3 Run­times (seconds) of benchmarks on Linux 2.6.27.5 94
6.4 Overheads as a percent of runtime over the same kernel with­

out Recovery Domains . 95
6.5 Overheads of Recovery Domains without various optimizations 96

ix

Chapter 1

Introduction

Recovery and continued correct execution of software a system in the event

of a fault has been sought for decades as a means to increase the reliability

of these systems. As our dependence on software becomes more pervasive,

software faults have a greater impact on our personal lives, our economies,

our health, our safety, and our infrastructures. Reducing or nullifying the

effects of failures is therefore quite desirable.

Operating systems form the heart of modern software stacks. In most ar­

eas, only a handful of commodity operating systems are in use. Desktop and

server operating systems, for example, are commodities with estimates of the

top three operating system families (Linux, Mac OS X, and Windows 2000

and later) covering around 96% of the market [98, 100]. Even in the spe­

cialized area of supercomputers, one commodity operating system, Linux,

is found on 443 of the top 500 supercomputers [101]. The pervasiveness of a

few operating systems gives common sets of bugs and vulnerabilities to many

machines performing many varied functions and running many different ap­

plications. A fault that can be triggered in an operating system will affect a

more diverse and larger set of users than a fault in a database or in presenta­

tion software.

Operating systems are also highly privileged, thus a breach in the OS be­

comes a breach in all applications running on the OS. Operating systems, due

to their control of system resources and management of many security mea­

1

sures, have unfettered access to the state of anything running on them. This

privileged state, while necessary, amplifies the effect and potential disruption

of faults.

Operating systems provide a common and complex foundation for soft­

ware systems. As such, they serve as a common failure point for a diverse

range of systems. Fail they do [32]. Analysis of one mobile phone operating

system shows that individual users experience an operating system failure ev­

ery 11 days [19]. Operating system failures are blamed for problems ranging

from the 2007 London Stock Exchange failure to regular crashes experienced

by users [31].

The availability of computational power is steadily increasing, both in

the low­end, consumer­system space, such as home routers, cell phones, and

set­top boxes, as well as in the traditional desktop computing space. Some

of this computational power can be used to improve the user’s experience

with the devices by improving reliability thus preventing frustrating crashes.

Reliability is, in fact, already pushed by some vendors as a differentiating

feature of their system (e.g. Apple, HP, Cisco, IBM, etc), showing a general

market interest in more reliable systems.

Since operating systems are foundational to a system’s stability and are

integral to limiting the impact of faults in programs run on the system, the

ability to recover from faults is especially important to creating and main­

taining a reliable system.

The primary traditional approaches to recovering from faults in the op­

erating system focus on drivers and, to a lesser extent, dynamically loaded

extensions. Recovering from faults in drivers, such as in [78, 77, 95], is based

on isolation, logging, and interposing on the communication between drivers

and the rest of the kernel. Other systems, such as [69], use similar techniques

2

to protect the kernel against arbitrary dynamically loaded extensions.

Existing approaches do not address entire operating systems. Focusing on

drivers and extensions leaves the majority of the code in an operating system

unprotected from faults. In fact, errors in the core of commodity operating

systems are especially difficult to recover from since such systems are in­

herently multi­threaded, handle resources shared between many clients (viz.,

user processes), have extensive asynchronous internal behavior, and directly

interface to hardware.

This dissertation proposes an organizing principle for recovery called

Recovery Domains that enables complex multi­threaded systems to recover

from run­time faults in nearly all components. Recovery Domains have

strong recovery semantics yet minimal and localized effects in the event that

recovery is triggered. Recovery domains are easy for programmers to add

to a system and require few changes to existing source code. The semantics

are such that they can be easily analyzed and manipulated by a compiler

or automated tool. Recovery Domains are a general mechanism capable of

handling very demanding multi­threaded, state intensive, request­oriented

software structures.

Recovery Domains do not require rewriting an operating system in a

different style, such as as a microkernel, as some existing approaches do,

such as [42, 68, 7, 6]. Nor do they only protect portions of the kernel, as

in [95, 77, 69]. Further, they don’t require a change in implementation lan­

guage to one which is type­safe, as required by [42, 68]. Being able to protect

an existing, entire kernel without significant changes in structure or language

sets this work apart from exist approaches to operating system recovery.

As discussed in Chapter 6, Recovery Domains provide a high rate of fault

recovery with only a couple of hundred lines of code changed in or added

3

to the original kernel. Recovery succeeded for an average of 33 consecutive

injected random faults. Performance, with static and dynamic optimizations,

is very good, often with less than 10% overhead. Low runtime overhead

and low programmer overhead make Recovery Domains an attractive way to

provide full­kernel fault recovery.

1.1 Research Contributions of this Dissertation

This work, broadly, contributes a new approach to the recovery of request­

oriented systems. This approach is applied to commodity operating systems,

potentially allowing significant improvements in reliability for real­world

systems. The high­level contributions of this dissertation are:

• A new request­oriented recovery mechanism with simple, powerful,

and easy to understand semantics.

• A simple to use interface for programmers to add recovery capabilities

to their systems with little effort.

• A set of compiler transformations to introduce recovery into systems.

• An implementation of the recovery mechanism which supports the re­

covering of operating systems.

• An investigation of the effectiveness, overheads, and programmer com­

plexity of introducing recovery into a commodity operating system,

namely, Linux.

• The use of inter­procedural analysis of memory regions to reduce the

overhead of recovery.

4

• The use of runtime analysis of the system to reduce the recovery over­

head.

1.2 Dissertation Organization

Chapter 2 provides the motivation and high­level considerations in designing

operating system recovery. Chapter 3 describes Recovery Domains, focusing

on the fundamental approach, concepts, and structures. Chapter 4 describes

a complete implementation of Recovery Domains, the experience of port­

ing Linux 2.4.22. Chapter 5 describes the addition of several optimizations

based on compiler analysis and runtime analysis and the experience porting

Linux 2.6.27. Chapter 6 provides performance, survivability, and coverage

results. Chapter 7 uses Secure Virtual Architecture’s [21] memory safety tool

as a model fault detector and shows how it would be modified to use Recov­

ery Domains when a memory fault is detected. Chapter 8 places this work

in the context of other recovery systems and recovery techniques. Finally,

chapter 9 concludes the work.

5

Chapter 2

Operating System Recovery

Recovering from faults in operating systems presents many challenges. We

discuss these before moving to enumerating the most desirable qualities of an

ideal recovery system. To address those challenges and to meet those ideals,

we present the unifying organization: requests.

2.1 Challenges of Operating System Recovery

Recovering from faults in operating systems has several unique challenges

in addition to the challenges of recovering from faults in general software

systems. The challenges of operating system recovery come from several

sources:

• Their inherent multi­threaded nature;

• Their low­level operation;

• Their rich functionality and complexity; and

• The pragmatics of commodity system.

Modern operating systems are inherently multi­threaded. A recovery sys­

tem for operating systems must be able to navigate the many threads poten­

tially executing simultaneously on multiple processors and recover the sys­

tem to a consistent state across all threads and processors.

6

Due to the low­level nature of the system which is being recovered, the

recovery system itself must be self­standing; it must not rely on the oper­

ating system. Since the operating system must run on top of the recovery

runtime, minimal dependencies should exist from the recovery system run­

time to the operating system. Ideally the recovery system’s data should not

be corruptible by the OS. This can be achieved by having the OS running

with such memory safety guarantees as would pro­actively prevent it from

accessing the recovery system’s runtime data. An example using of a memory

fault detector which provides these guarantees is given in Chapter 7.

The operating system is also low­level due to it interacting with and con­

trolling of hardware. Through these interactions, it interacts with the outside

world. The recovery system must gracefully interact with the real world and

other software. This primarily means that it should have a clear semantic on

the effects of recovery on hardware device state.

A system to recover from operating­system­level faults needs to be able to

handle the wide range of activities that an OS engages in on behalf of requests

from its clients. An operating system has a large exposed surface available to

malicious or buggy entities: the system call API, the network, and all hard­

ware devices. Each of these, and others, has a distinct entry point into the

kernel and interacts with kernel state in ways that are sometimes unique to

their role. This large exposed surface comes from the many functions the

operating system must perform, from processing network packets to inter­

acting with block devices to handling timers to creating abstractions such as

file­systems. This large surface imposes many paths into the kernel and many

potential interactions between entities which a recovery system must be able

to handle.

7

Operating systems, especially those in wide deployment, represent the re­

sults of significant engineering efforts. There seems to be little enthusiasm in

the commercial realm to re­architect an existing operating system with either

a new organization or in a new language which allows for easier recovery.

Thus, a practical recovery system must fit within the common architectures

for operating systems and make modest demands of the programmers with

respect to changes in the operating system structure.

Code does not exist in a causally isolated bubble, nor is it common that

all code running on a machine uses the recovery system. Hence the recovery

system must deal with events, code, and operations that are outside the realm

of recovery. It should allow, where external code is appropriately structured,

the programmer to annotate external interfaces to allow proper restoration of

a sane state to the external component.

Designing the semantics of recovery is in itself a major challenge. The

semantics must be strong enough to allow automatic recovery; the semantics

must require minimal design changes in the operating system; the seman­

tics must be natural enough for programmers to easily comprehend; and the

semantics must be possible to implement. These and other conditions are dis­

cussed in more detail in Chapter 2.2. The semantics dictate how threads inter­

act, how requests interact, how requests are tracked across thread boundaries,

how irreversible actions are dealt with, and in what state the system is left af­

ter recovery. Compelling levels of recovery require a recovery system which

specifies in an easily understood way what the system will look like after a

recovery. This allows the programmers to know how to have the system con­

tinue operating after recovery events. Semantics must be designed which can

allow a programmer to succinctly specify recovery for an operating system

kernel which is useful to the programmer and can handle the many corner

8

cases of complex, multi­threaded, legacy operating systems, while still allow­

ing an implementation which can be understood. Recovery is not an event

one wants to fail, so trust in the implementation is important; thus the com­

plexity of semantics is at odds with the simplicity and, to some extent, the

trustworthiness of an implementation.

Performance and correctness are also important and intertwined chal­

lenges of this work. The amount of performance degradation that is accept­

able depends on how well the recovery mechanism works, how often the

recovery system is employed, the size of the vulnerable surface of the target

system, and the requirements for availability of the target system. That said,

correctness is a must. The recovery system must not change the semantics

of the program when it is operating fault­free. These two characteristics are

intertwined. The recovery system must do work to enable a recovery to hap­

pen, and this work must happen during normal, fault­free execution. The

challenge is to minimize the overhead incurred during fault­free execution

to enable recovery. Care must be taken in the design and implementation of

both the compiler transformation and the runtime to ensure correct and ef­

ficient execution and correct recovery. This includes not reordering memory

accesses, respecting locks, and not deferring or batching recovery work if that

would introduce a window of time during which recovery in another thread

would cause undefined behavior.

2.2 The Ideal Recovery System

The ideal recovery system for recovery of faults in existing, common, de­

ployed operating system has several enumerable properties. Among the most

important are:

9

Automatic recovery: Recovery should be executed completely by the re­

covery system without intervention by the operating system, though

some fault detector which triggers a recovery may be used.

For the entire system: Recovery should be possible from any part of the op­

erating system, not just specific subsystems or drivers.

No porting effort: Use of the recovery system should require no porting

effort by the operating system programmer to enable recovery.

For commodity systems: The recovery system should work for widely de­

ployed existing operating systems.

Recover from detected errors of any type: Recovery should not be special­

ized to a particular type or class of error. It should be possible to re­

cover from any detected fault.

Recovery not usable as a denial of service: Recovery runs the risk of being

usable as an avenue for denial of service attacks by repeated recovery

and re­execution of a fault. Recovery systems should be designed so

that they cannot cause a denial of service.

Clear semantics: Programmers should know what will happen when recov­

ery is triggered. The semantics should be simple, intuitive, and useful

to programmers.

2.3 The System Model: Requests

To make an effective recovery system, it is first necessary to define a model of

system structure. The key insight is that a request­oriented view of recovery

10

for a system allows novel solutions more powerful than previous work. Re­

quests enter the system through well defined points. Processing of a request

by the system may cross traditional sub­system and thread boundaries. Re­

quests may issue requests to other parts of system in the course of processing

an outside request.

We start with a request oriented system model which allows greater flex­

ibility than previous work. Systems have been modeled in previous work in

three major ways:

As a collection of state: In this model, the memory and open resources rep­

resent the running system and are periodically backed­up in a check­

point; recovered precedes by using the checkpoint to restore the entire

system state.

As a subset of state and sub­systems: In this model, state is tied to a sub­

system, or, more generally, an object or set of objects and the code

which operate on them. These sub­systems of the system are recovered

independently by restarting them (and in some cases restoring some

persistent state for that sub­system).

With no model: Systems lack a model but have an ad­hoc approach in which

recovery happens by the programmer’s error handlers (either supported

in the language, e.g. exceptions, or by error values).

Request­orientation allow the recovery entity to more closely match the

structure and logical operation of many systems. Requests subsume recovery

of well engineered sub­systems; an entry into the sub­system is a request.

Concurrent requests are separately recoverable, even within the same sub­

system as it is the requests which are the entity of recovery, not the sub­

system.

11

Request­oriented recovery also seems an intuitive match to a program­

mer’s notion of system behavior, thus matching the recovery mechanism

more closely to the system architecture while providing stronger guaran­

tees than either exceptions or ad­hoc recovery. Applications make requests

of an operating system: requests to open a file, requests to read or write

through a file descriptor, requests to open a socket, and requests for memory

pages. Many protocols are structured as requests. The SMTP definition [45]

describes email transport as a series of commands and replies: “The server

responds to each command with a reply”; this is a request oriented system

where the requests are the commands. The HTTP definition [28] explicitly

uses the language of requests. Similar arguments can be made for FTP [59],

SSH [92, 90, 93, 91], CORBA [39], and many other network protocols.

TCP [58] and IP [57] can both be seen as describing a request­based sys­

tem between machines. In applications, libraries provide services that can

be viewed as requests: malloc to allocate memory, printf to write to the

console, rand to get a random number, and qsort to have an array sorted.

Toolkits are a set of requests between the application and the toolkit. In Qt,

the toolkit sends a “QEvent” to handlers in the application. This is a request

to process some action, such as a mouse move. Applications send the toolkit

requests to paint the screen, etc. Requests appear everywhere you look in the

software stack, from protocol specification to interfacing with a hardware

device.

2.4 Design Space

The design space of recovery is large. Recovery Domains pick out an aggres­

sive, but still practical, point in this space.

12

The first design choice is whether faults are visible to the system. We

choose to make faults visible to one thread, but invisible to the rest of the

system. We do this to enable the handling of faults which are permanent.

Reporting the fault to the requester allows us to avoid automatic re­execution

of the fault. The rest of the system is see system state “as­if” the fault never

occurred.

The second design choice is what recovery happens in the event of a fault.

Options used by other systems range from restoring the full system to a pre­

vious point to simply transferring control. We restore the system state which

is tainted by a fault, but leave the rest of the system alone. This allows some

threads to make forward progress in the event of a fault.

In operating system recovery, an important design choice is what com­

ponents of the system should be recoverable. Most approaches choose just

drivers or dynamic extensions. While this can narrow the interfaces which

the recovery system must deal with, it leaves parts of the system unprotected.

We target the entire operating system with Recovery Domains. We want to

recover from faults in as many locations as is feasible.

An important choice in design is what language to support or require.

Use of type­safe languages can simplify recovery and are required by some

recovery systems. We choose to support operating systems written in C (and

any other compiled language) to enable recovery for most existing operating

systems.

Finally, the design of recovery requires choosing the an architecture for

the operating system. Many whole operating system recovery systems use

micro­kernels. These often have cleaner interfaces, better isolation between

components, and allow more fine­grained restart of components. We do not

require a particular architecture. Although all the advantages with micro­

13

kernels in regard to recovery do apply to Recovery Domains, we do not de­

pend on this. To have a practical system for commodity systems we support

classic monolithic kernels.

14

Chapter 3

Recovery Domains

Recovery Domains, while not specific to operating systems, are designed to

operate in systems with specific patterns. Recovery Domains are organized

around the notion of a request as discussed in more detail in section 3.2.

Within this over­arching framework, many substantively different imple­

mentations are possible.

This chapter explains the basis, goals, and semantics of recovery domains

independent of a specific implementation. It discusses the types of domains,

what they intend to cover, how execution is paired to domains, and how

programmers are meant to interact with the system.

3.1 Concepts and Terms

This, and subsequent chapters, make use of the terms listed below. These

terms will be explained in more detail in latter sections.

Recovery: The restoration of an erroneous state of the system to one which

is acceptable.

Request: An operation performed on behalf of another entity. The other

entity may be either software or hardware.

Requester: The entity issuing a request.

15

Request­oriented System: A system whose actions or computations are

largely initiated by outside events and entities.

Fault Detector: Language or runtime features, compiler instrumentation,

programmer inserted checks, or other sources of logic which detect the

runtime violation of a desired constraint.

Recovery Domain: The runtime entity containing information about a re­

quest, including control­flow information, state changes, and data­flow

between requests

Recovery Event: An invocation of the recovery system to perform a recov­

ery, usually at the request of a fault detector.

Context­Independent Request: A request which does not depend on the

state of the requester; the relevant and modified state is private to the

request in that it is not accessed by the requester.

Recovery Execution: Execution under the control of the recovery system

after a fault is triggered but before control is returned to the system.

Recoverable Domain: A domain is recoverable if the system can recover

from an error during the execution of the domain.

Parent Domain: The domain that is executing when the entry point of a new

domain, D, is reached and D begins execution. By definition, the parent

domain will be in the same thread.

Ancestor Domains: The set of domains reachable through the parent rela­

tionship.

Sub­request: A request make in the course of processing another, existing

request.

16

Commit: The transition of speculative state, state which has been changed

based on conditional operations, to permanent state, state which is

not dependent on conditional operations. A commit indicates that the

condition is resolved and the operations dependent on that condition

should have and did execute.

Output­commit: A state change which cannot be undone since it or its ef­

fects are visible to the outside environment, e.g. network activity, writes

to storage, or changes to the display.

Error Virtualization: The use of a preexisting, programmer­defined type of

error in place of an error defined by a fault detector which is not in the

original system.

Dependency Tracking: Monitoring and recording data­flow of speculative

values between requests to establish a partial commit ordering.

3.2 Recovery System Organization:

Request­Oriented Systems

The key organizing principle of this recovery system is the concept of a

request. A request, in this sense, is an operation in the software that per­

forms some action on behalf of another entity, even if that other entity is the

software itself. Making a request is an explicit invocation of the operation.

Sources of requests may be internal to a specific piece of software or come

from other software or hardware. Hardware tends to make requests through

interrupts, though not exclusively. Software uses interrupts, function calls,

and privilege­changing instruction (such as “Call Gates” on the Intel 386).

Although, arguably, every instruction is a request to hardware and every line

17

of code is a request (or several requests) to change the state of the system, we

focus on higher­level requests than these.

Recovery is tied to requests for the simple reason that they correspond

to high­level semantics of many programs. Hence request­oriented recovery

is both easy to reason about by programmers and does not require complex

mapping by the compiler from existing code to recovery entities.

Request­oriented systems, those whose executions are largely driven by

outside entities, are a common software organization structure. This struc­

ture arises fairly naturally due to either the nature of the software or modular

engineering. Operating systems and server software, such as database servers

and web servers, are often explicitly request oriented. Broad use of libraries

cause most systems to have substantial request­oriented internal communica­

tion. Graphical user interfaces, for example, have at their heart an event loop

that translates user requests (e.g. a mouse click) into a request of the applica­

tion (e.g. saving a file). An HTTP server sends files to clients in response to

requests from those clients.

Requests themselves may make requests in the course of processing. This

arises from the notion of a module or sub­system. A sub­system provides

an external interface used by the larger system to issue requests to the sub­

system. These sub­requests may cross thread boundaries (such as putting a

request on a work queue). Besides their important contribution in helping

programmer to manage the complexity of large systems, sub­systems and

their interfaces improve the granularity of recovery by reducing the scope

of execution tainted by a fault.

In operating systems, requests come from three sources. The first source

is system calls. These are calls into the operating system by applications

requesting some operation be done. This is a quintessential example of a

18

request­oriented system. The second source of requests is interrupts. These

are requests by hardware for attention. In the course of processing either of

these request types, operating systems may make internal requests. This is

the third source of requests. For example, an open system call will make sev­

eral internal requests: looking up an i­node in a cache, allocating resources,

checking permissions, etc. These internal requests come out of the structure

of the operating system.

Server software has a model similar to operating systems, receiving its re­

quest from sockets instead of system calls. The exposed layer of many servers

makes viewing the system from a request oriented standpoint straightfor­

ward.

General software, especially event driven software, often has substantial

portions that are request­oriented. This type of software is not the focus of

this dissertation, but may often be amenable to using Recovery Domains.

Graphical applications have, either internally or in a library, an event loop

that dispatches events, such as keystrokes or mouse clicks, to appropriate

handlers. Events can be viewed as requests in such a system. Libraries create

a natural request layer due to the modular design. Calls into most libraries

are natural internal requests. This includes basic resource allocation and deal­

location functions such as malloc and free as well as calls such as stringdup

and pthread_create. Function calls and object method invocations, as an

abstraction, map well, in most cases, to the notion of requests.

3.3 Requests Context

Requests exist within some context. This context primarily includes two fac­

tors. First, there may be a request which was already executing on the thread.

19

This previous request must be preserved and restored after the completion of

the current request. It is not necessarily the case that the previously executing

request initiated the new request. Interrupts initiate new requests on a thread

which was already executing a different request. The second component of

the context, then, is why the request started. A request started explicitly by

another request is a sub­request. Requests from outside the system, such as

an interrupt or a signal are not sub­requests, even if there was a previously

executing request on that processor.

In the general case, sub­requests are dependent on the request which is­

sued them. If a request ends, its execution is still speculative if the requester

is speculative. However, a common structure, especially across sub­system

and library boundaries, is to have requests which are not dependent on the

state of the requester. These requests are to modules or sub­systems which

encapsulate their state well. The prime example of this is malloc. Malloc,

and functions like it, are isolated from the caller, revealing little or no infor­

mation about their internal state. We call these requests context­independent

requests.

Requests which represent an external entity forcibly transferring exe­

cution to a new request, as happens during an interrupt, are also context­

independent. Although a request may have been executing, the source of the

new request is an entity privileged enough to preempt the existing request

and have its request processed before returning to the existing request.

It is often the case when context­independent requests are sub­requests,

as it is in the case of malloc, that there are context­independent inverse ac­

tions. For malloc, it is free. This observation, which is not unique to this

dissertation, allows higher­level recovery at the semantic level of the requests

rather than at lower levels. This allows for more efficient and flexible imple­

20

mentations of recovery.

3.4 Recovery Domains: the Runtime Entities

The basic unit of recovery is a recovery domain. All code executes within

some recovery domain. A recovery domain is an interval of execution de­

marcated by calls to the domain start and end operations. recovery domains

track which state changes are necessary to undo when recovering as well as

how data flows between requests. A recovery domain logically consists of:

Request entry point: This is the point at which the request starts and the

point at which a new recovery domain is created. This demarcation is

used as the point to which control returns in the event of a fault.

Request exit point: This is the point at which the request is complete. Con­

trol is returned to the requester and the recovery domain commits if it

is able and allowed to do so.

Recovery action: The programmer supplies an action to perform after re­

covery is initiated. This action is how a fault which is recovered from

is visible to the system. The most common action is to return an er­

ror code. Another useful option is to ignore the error (e.g. statistics

updates may not affect correctness and can be ignored if they fail).

Inverse action: The programmer may supply an action which semantically

undoes the effect of this request. A common example would be a

kmalloc request supplying kfree as an inverse action or vfs_open

supplying vfs_close. The recovery system may use the inverse action

to undo a request during recovery rather than directly restoring the

modified state.

21

Dependent domains: Domains which have data dependencies, either read­

after­write or write­after­write, or are sub­requests of this domain are

dependent on this domain. If a domain must recover, all dependent

domains must be recovered and restarted. This ensures that data used

by domains is produced only by domains which did not fault.

Each recovery domain executes within a single thread. Cross­domain and

cross­thread dependencies are recorded. Dependencies are formed by mon­

itoring data flow from state modification to accesses by recovery domains.

recovery domains are not checkpoints: a rollback of one domain does not

imply a rollback of all domains or all threads. As explained below, recovery

domains may be nested to take advantage of existing error recovery paths and

code that has a semantic inverse.

There are five types of recovery domains. Table 3.1 and Table 3.2 summa­

rize the semantics of the five domain types. Because of the nature of the ker­

nel entry points, it is not possible to statically determine the type of domain

a request starts. Specifically, the domain type depends on both the declared

behavior of the request and the context in which the request is issuer.

3.4.1 Comparison to Transactions

A recovery domain is transaction­like in that it provides failure atomicity.

However, recovery domains are not a replacement for synchronization nor

are they transactions. They do not provide any isolation; requests can in­

teract in any legal way. No additional durability beyond what was already

present in the system is provided by recovery domains. Some consistency is

provided, but only to memory state; recovery domains cannot ensure con­

sistency of device state or of communication with external systems. While a

22

Domain Types
(Recoverable?)

Semantics Example Use

Basic (Y) Forms dependencies with any
active domain as required, but
committing is dependent on
the commit of the parent.

Operations for which
the kernel already han­
dles failure, e.g., open

Reversible (Y) Has a known semantic inverse
operation that is sufficient for
rollback, i.e., ignoring inter­
nal state changes.

Allocators; reference
counts; not locks

Independent (Y) Same as basic but for opera­
tions which do not have a par­
ent.

System calls; inter­
rupts handlers

Transparent (Y) Upon Successful completion,
state changes ignored durring
rollback.

Operations whose
state changes do not
affect the correctness
of the kernel; e.g. LRU
numbering of pages,
disk cache read­ahead
policies

Unlogged (N) Forms no dependencies, but
tracks all writes to break de­
pendencies in other domains.

Interrupt handlers and
other device manipula­
tion code

Table 3.1: Primary Types of Domains

N
o

rm
al

R
ev

er
si

b
le

In
d

ep
en

d
en

t

T
ra

n
sp

ar
en

t

U
n

lo
g

g
ed

Reverts state changes Y Y Y Y N
Recover dependent domains Y Y Y Y N
Ignores dependencies on parents N Y Y Y Y
On success, only log inverse N Y N N N
On success, trys to commit N Y Y Y N/A
Parent is aware of fault Y Y Y N N
May be deferred by the programmer Y N Y Y Y
Normally has a deferred inverse N Y N N N

Table 3.2: Differences in Domain Types

23

transaction commits or aborts at completion, a recovery domain may exist af­

ter the request’s completion if it depends on speculative state (state modified

by other domains which have not committed yet). Since the processing of a

request can traverse threads, recovery domains may compose across threads.

3.4.2 Basic Recovery Domains

Basic domains are the most common unit of recovery. Basic domains are

intended for regions of execution that have existing error handling code at

their exit. In the event of a fault, basic domains are rolled back independent of

their parent and the request appears to fail in an expected way as specified by

the programmer. Control is returned to the parent at the domain entry point,

which can then handle the error as desired. Basic domains are the common

form of nested domains (sub­requests) that execute during the processing of

a request.

Basic domains participate fully in logging and interference tracking. Logi­

cally, these domains log all memory writes. This log contains all values which

must be restored in the event of a fault in the domain. Memory reads are

monitored to discover runtime data dependencies on other domains.

Basic domains fully participate in the interference tracking mechanism.

All reads of speculative values, i.e. values written by domains which have

not committed, form a dependency from the writer to the reader. Any value

written by a basic domain is speculative until it commits, hence most readers

of that value will form a dependency on the basic domain. The exceptions to

this last rule are due to the nature of some classes of readers, not to the nature

of basic domains.

Basic domains do not commit on normal completion. Instead, their log

and dependencies are merged with those of their parent, thus passing on the

24

responsibility for committing state to their parent. This commit behavior is

similar to that of “closed nested” transactions in the transactional memory lit­

erature [80] but, like all recovery domains, a key difference from transactions

is that they are never rolled back during normal execution.

Basic domains are for sub­requests. If a basic domain is used as an entry­

point into the kernel, the domain is considered an independent recovery do­

main which is discussed next.

3.4.3 Independent Recovery Domains

Independent domains handle requests which represent a new entry into the

system. A system call is a common request which will normally be handled as

an independent domain. These domains serve as a hard border between por­

tions of the system (e.g. user space and kernel space). Not all entry­points

are statically independent domains. A system call from an application rep­

resents a new request, say sys_open, whereas that same system call could be

issued by the kernel in the processing of a different request, say sys_exec.

Such a request is not an independent request when issued from another re­

quest because it is a sub­request; it is only part of the handling of an existing

request.

Independent domains differ from basic domains primarily in how they in­

teract with their ancestors and when they commit. Independent domains en­

capsulate local, context­free requests. This is to say that something declared

as an independent domain is assumed to be free of dependencies on its calling

context. It is not assumed that an independent domain is free of dependen­

cies on domains executing in other threads. For example, a alloc_page in the

Linux kernel is a basic allocator which is encapsulated with an independent

request. A request by one thread to alloc_page may from dependencies on

25

a concurrently executing request to free_pages since both requests modify

the same free­list. Hence an independent domain does not form dependencies

on its thread­local ancestor domains, but does interact fully with the depen­

dency mechanism with respect to all other threads.

Because it does not form dependencies on its ancestors, an independent

domain may commit as soon as it completes if all its dependencies have com­

mitted. If an independent domain can not complete immediately, its caller

forms a dependency on it. This means that if another thread on which the

independent domain is dependent aborts, hence causing the independent do­

main to abort, the caller domain will also abort. In normal operation, this

window is expected to be short, thus allowing the independent domain to

commit quickly reducing the amount of speculative state tracked at runtime.

3.4.4 Semantically Reversible Recovery Domains

Reversible domains exist for operations for which a semantic inverse action

can be defined, independent of the context in which it was called. This inde­

pendence means, most importantly, that two such operations (on the same or

different threads) can be performed or rolled back independent of the other (in

the absence of an internal fault within one of the domains). This is referred

to as the context­independence property.

For example, two calls to kmalloc (in Linux) may both update common

internal allocator state, producing an apparent dependence, but at the level of

the logical allocations, there is no dependence: either one can be performed

or rolled back independent of the other. Furthermore, this rollback can be

performed by any thread: it simply needs to have the address of the allocated

memory. Many counters, including reference counting operations on heap

objects, are also important cases of reversible domains. Like allocations, these

26

operations are extremely frequent, and create spurious dependencies between

domains. They can be treated as reversible domains because (a) the inverse for

an increment is simply a decrement, and vice versa, and (b) two operations on

the same counter in two different domains (in the same or different threads)

can be independently committed or rolled back.

When a reversible operation is complete, it can commit ignoring any de­

pendencies on its parent. This optimization greatly reduces the number of

interdependent domains that must be committed together or rolled back to­

gether on an error. For example, many concurrent allocations would become

interdependent and cause their invoking threads to be dependent on each

other, when in fact, at a semantic level, the context­independence property

ensures that the operations can be committed independently of their parents.

Reversible domains perform all the state and dependency tracking of an

independent and basic domain so internal faults within the domain can be de­

tected and recovered from. On a fault, just the reversible domain and any de­

pendent domain (such as multiple overlapping calls to an allocator) are rolled

back. The recovery action, such as returning an error code, is executed.

However, on the successful completion of a reversible domain, the state

changes by that domain are committed and the inverse action is logged with

the parent. If the parent must rollback, this inverse action will be called

to logically undo the operation of the reversible domain. So for example,

a malloc will be logged and if the domain calling malloc aborts, free will be

called on the allocated object. In principle, internal logging is optional and for

well tested and trusted code could be turned off by the programmer to im­

prove performance, although the recovery domain implementation presented

here leaves it on and a domain type for this type of behavior is not defined.

27

1 void foo(void* ptr) {
...
// Use ptr
...
free(ptr);

6 ...
// The freed memory should not be reused until the
// free is known to not have been speculative
...
if (bad_thing_happened)

11 rec_dom_abort (); // a recovery was triggered
...
}

Figure 3.1: free releasing a resource which can be used by another thread

Since many reversible domains often involve the ownership or allocation

of resources, the recovery system must ensure that a release operation (the

inverse of an acquire) does not occur until the parent domain commits. This

prevents reuse of speculative resources.

Let us assume that release actions are executed in place. Consider the

allocation in Figure 3.1. If the free is executed, it will commit since it is

an independent domain. The memory then may be allocated by a different

thread. If the request faults and triggers recovery, then the memory which

was freed will be in use and it cannot be rolled back safely. We wish to put the

memory in the state it was at the start of the request, but we cannot because

it is reused by another object. To solve this, we delay the the free until after

the domain commits to ensure that the memory isn’t reused by a different

thread.

Thus inverse actions, when they appear in code, are delayed until the com­

mit of the domain in which they appear. This is also the reason why lock

acquires are not treated as reversible though they have an obvious inverse:

deferring the inverse (the unlock) could cause deadlock if it is delayed until

28

after the acquisition of a different lock.

3.4.5 Transparent Recovery Domains

Transparent domains exist based on the observation that not everything mat­

ters nor has to be exact. Many places in a system, information is kept for

statistic reporting. It is desirable that these operations be accurate, but if

in the rare event of a fault they may deviate slightly from what they would

in correct execution, no harm will result. For example, if statistics report­

ing from the network layer reports having processed 230 packets rather than

230+1 packets, the end­user is not likely to notice or care. If, however, packet

counts used as TCP sequence numbers are not accurate, the protocol fails.

This indicates that the first case is a candidate for a transparent domain, since

small inaccuracies in the information is not critical while the second case are

not a candidate for a transparent domain since accuracy is critical.

A second case transparent domains address is operations that are strictly

used for performance optimization and have no impact on the semantics of

the system. Tracking the LRU numbering of memory pages is one example:

resetting all the numbers (except for any used for pinning memory) to arbi­

trary legal values will not affect kernel correctness. Other examples include

caches and some memoization. For such domains, the state changes and their

dependences do need to be logged to ensure recovery from errors during ex­

ecution of such a domain. Upon successful completion of such a domain,

however, any dependencies formed by the execution of the domain can be

ignored, i.e., the domain can be committed immediately, since transparent

domains leave the semantics of the system intact.

29

3.4.6 Unlogged Recovery Domains

The final type of domain is the unlogged domain. This domain is for ex­

tremely trusted code as well as for code which must not abort. An unlogged

domain effectively commits each write as it is issued; it transitions from spec­

ulative to completed to committed after each write. This ensures that state

changes caused by stores are never speculative. Because unlogged domains

cannot abort, reads are handled specially. An unlogged domain cannot undo

actions based on speculative values read from memory. To reflect this, reads

are not tracked for dependency formation and reads cause a logical write of

the value read back to the location. This ensures that the location is not con­

sidered speculative and will not be rolled back to a state before the unlogged

domain read it.

For example, we want the system time to increase monotonically. There­

fore, the request to update the system time after a timer interrupt is run in

an unlogged domain. This is trusted code which writes a commonly read

value. By using an unlogged domain, we ensure that time will never move

backwards due to a rollback of the time update. We further prevent readers

of the system time from forming a dependency on the interrupt handler, thus

saving some dependency tracking.

3.5 Execution Modes

Execution takes place in one of two modes: normal mode and recovery mode.

Most execution should take place in normal mode. Recovery mode is only

entered in the event of a recovery event triggered by a fault detection mech­

anism. After the recovery system completes recovery, execution resumes in

the normal mode.

30

3.5.1 Normal Execution

During execution in normal mode, all threads and requests execute without

significant deviation from their execution in the absence of the Recovery

Domains system. All memory operations are monitored and dependencies

between domains are recorded in accordance with the types of domains in­

volved. Recovery domains commit when they are able and never roll back.

In the absence of any fault, normal mode execution appears virtually iden­

tical to the code running without the recovery system. Execution deviates

some amount due to the the time and memory needed to manage recovery

domains and monitor state changes. This variation can potentially change the

interleaving of operations between threads, but only to an interleaving that

would have been allowed in the original system. Recovery domains do not

change or eliminate locks, so any change to the order locks are acquired is a

change allowed by the locking discipline.

3.5.2 Recovery Execution

Recovery is trigger by a fault detector when a fault occurs. These are explicit

calls to the recovery system to initiate recovery. These may be inserted in

the code by an instrumentation tool, inserted by the programmer, or in the

runtime of a safety checking tool. There are no implicit recovery events in

the semantics of the recovery system. All recovery must be initiated by the

programmer or by an automated tool.

Recovery events are expected to be very rare, hence the semantics of

recovery mode allow latitude in implementation. During recovery mode,

the recovery system is allowed to suspend all threads while recovery is

executing (though an implementation need not do this). Semantically re­

31

Figure 3.2: Commit protocol

versible requests are undone by executing inverse actions in reverse order

per thread, but with no guarantee of orderings between inverse actions of

different threads nor any guarantees of which thread the inverse actions

will be performed. These loose orderings are allowable by the definition of

context­independent requests.

Prior to inverse actions for semantically reversible requests being exe­

cuted, the memory state is restored to appear as if the faulting request (and

any dependent requests) never executed.

3.6 Committing

A recovery domain goes through as many as three states in order: Specula­

tive, Completed, and Committed. These states and their transitions are illus­

trated in figure 3.2. All but unlogged domains begin in the Speculative state.

32

When a domain exits it transitions to the Completed state. When a domain

in the Completed state has no more dependencies on uncommitted domains

it transitions to the Committed state. Each transition is accompanied by a

set of actions which will be described. Since dependencies can form chains

(A → B → C), completed domains must look at the transitive closure of the

dependence graph and check that they have no dependences on a Speculative

domain to transition to the committed state.

When an unlogged parent transitions from Speculative to Completed

state, it always enters the Committed state immediately; this step is explained

below.

When a basic domain transitions from Speculative to Completed state,

it merges with its parent domain such that in subsequent execution the two

domains are synonymous. It does not logically exist after this point, but

rather is part of its parent domain which remains in the Speculative state until

such time as its parent domain commits.

When an independent, reversible, or transparent domain transitions from

Speculative to Completed state, it removes all dependencies on its parents if

any exist (allowed by the context independence property, explained in section

3.4.4). This should be rare, but can arise from calling conventions for passing

structures which pass a pointer to a stack­allocated object. If a reversible

domain has a logged parent, the domain adds a dependence edge from the

parent to itself. The domain then attempts to enter the Committed state.

Attempting to enter the Committed state consists of checking that no de­

pendencies exist on speculative domains in the transitive closure of the de­

pendence graph. If no such dependencies exist, the domain transitions into

the committed state. To do so, it performs a series of actions to remove itself

from the system. First, it executes all logged delayed operations (resource

33

releases). It then marks all memory locations as non­speculative for which it

is the most recent writer. It then removes all dependence edges to and from

itself in the dependence graph. At this point no more references to the com­

mitted domain exist in the system and the domain’s meta­data may be deleted.

Note that for an unlogged domain, all these operations are no­ops as it will

never have logged state changes; thus no domain will have dependencies to an

unlogged domain. After a domain commits, each domain in the Completed

state attempts to enter the Committed state (since the dependence graph has

just had edges removed, more domains may be able to commit).

Note that the commit protocol is thread­agnostic. Even though depen­

dencies may cross multiple threads, the protocol does not care about whether

an incoming or outgoing dependence edge is from or to a different thread, or

whether some delayed operations may involve updating shared state. Do­

mains may be committed on any thread, even if that thread is different from

the thread they originally executed on, and commits can happen while other

threads continue to execute normally.

3.7 Predictable Error Semantics

Recovery Domains provide the following (predictable) error semantic to

client code. To aid in explaining this semantic, as way of definition, we say

domain B is directly dependent on domain A if domain B reads a memory

location written by domain A.

• control flow in the faulting thread is returned to the start of the “fault­

ing domain,” i.e., the recovery domain within which the fault occurred;

• the memory and register state of the thread that executed the faulting

domain are restored to those that would have occurred if the faulting

34

domain had not executed at all (i.e., there are no visible state changes

beyond that point), unless the domain was Unlogged, as explained in

Section 3.4.6;

• any other thread that executes a domain that is dependent on the fault­

ing domain (directly or transitively) has its control flow and state rolled

back to the start of the earliest such dependent domain, and its execu­

tion continues as if that domain itself encountered an error.

Under normal execution, there should be no visible change to the output

of the system. In the absence of output­commits, a recovery event will trigger

a rollback of just the domain affected to the entry point of the domain in the

execution stack in which the domain is executing. Any dependent domains, as

defined in 3.4, are rolled back to their entry point and restarted. All domains

which are rolled back have their undo log walked and all memory changes

undone and all inverse or compensating action executed (e.g. free if a malloc

was called). Without output­commits, this allows parallel requests which

share state with a faulting domain to be transparently isolated from the fault.

Output­commits are considered to immediately commit the domain in

which they happen. In an operating system, if a domain issues commands

to a hardware device, that domain commits, making it unrecoverable. This

is generally true for user­space applications also, but in some cases inverse

actions can be made for what would otherwise be an output­commit. Calling

malloc has an inverse action, namely free, so it can be treated as undo­able

rather than as an output­commit.

35

asmlinkage long sys_open(const char *filename ,
2 int flags , int mode)

{
long ret;

/* Standard system call domain */
7 REC_SYSCALL(REC_FLAGS_NORMAL);

if (force_o_largefile ())
flags |= O_LARGEFILE;

12 ret = do_sys_open(AT_FDCWD , filename ,
flags , mode);

/* end system call domain */
/* return -RRECOVERY on fault */

17 /* return ret on normal execution */
REC_END(-RRECOVERY , ret);

return ret;
}

Figure 3.3: Annotated open system call

36

3.8 Programming Model

Programmer involvement in this recovery system is minimal. At a minimum,

programmers must identify requests. Figure 3.3 shows a prototypical anno­

tated system call which is annotated to return an error value in the event of a

fault. Once requests are delineated, the necessary work by the programmer

is complete. However, further work can make recovery less invasive when

triggered and lower the overhead under normal operation. Cross­thread re­

quests should be identified as requests to enable complete recovery of a single

logical request. Requests with an inverse action (e.g. kmalloc or vfs_open)

should be identified and associated with an inverse action.

Porting an existing system to the recovery system can be incremental.

Once the entry requests, those requests originating in the outside world, are

identified, recovery will work. Continued refinement will lead to faster re­

covery and faster error­free execution as well as more precise error handling.

3.9 Examples

A system call serves as an excellent example of a recovery domain. A hypo­

thetical system call is depicted as both succeeding and faulting in this section.

The specifics of what system call it is or what the sub­requests are is ignored

to focus on the behavior at the recovery domain level.

3.9.1 A Successful Request

Figure 3.4 depicts a hypothetical system call. Execution begins at the start of

the request (1). The request makes a sub­request, to a generic helper library at

(2) which starts a new protection domain (so that if the sub­request fails, the

37

1 2 3 4 5 6 7 8

Waiting on Child Domain

Active Independent Domain

Active Normal Domain Defered Commit Event

Defered Commit Processing

P
ro

te
c
ti
o

n

D
o

m
a

in
s

Figure 3.4: A hypothetical system call. 1: Start of a protection domain. 2:
Start of an independent nested protection domain. 3: End of the nested pro­
tection domain; the fact of it’s successful completion is logged in the parent
domain. 4: The nested protection domain executes a child domain. 5: A de­
ferred commit region is hit, and not executed. It is logged and deferred until
commit time. 6: Nested domain ends, and becomes dependent on its parent
for committing. 7: The protection commits. As part of this process, deferred
regions are executed. 8: All deferred regions are complete and the system call
is completely committed.

parent can clean up as specified by the programmer). Execution of the sub­

request completes and it is committed since it is a domain which is marked as

committing regardless of its context. The same happens at (4), but this sub­

request makes a further sub­request. At (5), an action, such as a resource free,

happens, which may not be visible to other threads until the request is known

to commit. Thus it is logged and postponed. This prevents unintentional

sharing of state between requests. The sub­request completes at (6). At (7) the

main request completes and, after the runtime checks for safety conditions,

commits. As part of the commit process the actions are deferred until commit

is completed.

3.9.2 A Faulting Request

Figure 3.5 is similar to figure 3.4 until a fault occurs in the sub­request. At

(5), the sub­request fails and the recovery mechanism takes over. The sub­

request is rolled back, and a semantic inverse action for the sub­sub­request is

executed to semantically roll it back. An error is returned to the main request

38

1 2 3 4 5 6

Waiting on Child Domain

Active Independent Domain

Active Normal Domain

Inverse

P
ro

te
c
ti
o
n

D
o
m

a
in

s

Figure 3.5: A hypothetical faulting system call. 1: Start of a protection do­
main. 2: Start of an independent nested protection domain. 3: Successful
completion of the nested protection domain; this is logged in the parent do­
main. 4: A nested protection domain executes a child domain. 5: A fault
occurs. Since the independent domain was reversible, its registered inverse is
executed. 6. Rollback of memory state for the child domain is complete and
all inverse operations have been executed. Control resumes on the error path
at 4.

(as specified by the programmer of the sub­request) and the main request

deals with the error in the manner it chooses, knowing that the effects of the

sub­request are undone.

3.10 Fault Detectors

Recovery Domains do not detect faults or corrupted state in the target sys­

tem. Recovery Domains only handle the recovery and restoration of the

system once an outside entity, the fault detector, has indicated the need to

recover. Since recovery is oriented around requests and does not necessitate

rollback of the entire system, it is necessary to consider what constraints and

requirements Recovery Domains place on fault detectors in order to orches­

trate successful recovery.

The first requirement for recovering from a fault is that the fault be de­

tected in the time frame of the request in which it occurred. Once a request is

complete, it may commit, preventing recovery from a fault which occurs dur­

ing its execution. Since recoverability may not survive the end of a request,

39

to recover from a fault and undo the corruption of system state caused by the

fault, the fault detector must catch the fault in the execution time­frame of

the request.

If a fault corrupts state in such a way that the fault detector will detect

uses of the corrupted state and flag a fault, then the corrupted state will not

spread to other requests, but only because the uses of the corrupt state cause

recovery. In this case the original, unflagged corruption remains. To recover

the initial corruption of state by a fault, it is important that a fault detector

detect a fault in the execution context of the request in which the fault occurs.

It is highly desirable, though not necessary, that a fault detector be “ea­

ger”. It should catch a fault before the fault can be expressed as corrupted

system state. In general this means the flag a fault before there are depen­

dent writes to memory. This prevents unintended executions in dependent

requests. For example, preventing an incorrect write to a function pointer

may prevent a different request from jumping to a incorrect location. As

long as the original request eventually faults, the dependent request using the

function pointer will be rolled back too. There is a window of vulnerabil­

ity in which either the original request or the dependent request can initial

an unrecoverable action, such as starting an unlogged domain or writing to

a hardware device. It is therefore desirable that faults be caught as soon as

possible.

3.11 Conclusion

The Recovery Domains system consists, at its heart, of runtime entities,

namely recovery domains, and the interconnection of those entities. Recov­

ery Domains are fashioned to match requests in a request­oriented system, a

40

common programming pattern found in operating systems and many other

software systems. The interconnectedness of recovery domains comes from

two sources: sub­requests form a parent­child relationship and memory

dependencies form a commit­dependency relationship. These relationships

govern when domains commit and what domains rollback in the event of a

fault.

Recovery Domains provide simple semantics and a simple programming

model. Placing a low burden on the programmer is intended to minimize the

effort of porting an operating system kernel to the recovery system.

41

Chapter 4

Reference Design and
Implementation

While Recovery Domains define a set of semantics and structure, they do

not dictate an implementation. Many actualizations of the system could be

imagined which maintain the semantics while differing wildly in design and

implementation. This chapter provides a reference design and implementa­

tion. It discusses our porting a real operating system to use recovery and our

experiences with the complete system.

An important component in a deployed system is the detection mecha­

nism that signals faults. The recovery system design and implementation is

independent of any detection mechanisms the programmer chooses to apply.

Fault detectors are beyond the scope of this work, though we will describe

a hypothetical combination of the memory safety detector in SVA [21] in

chapter 7.

This reference design and implementation consists of two main compo­

nents. The first is a set of compiler transforms to instrument the target system

and transform programmer annotations into recovery domains. The second

is a runtime which maintains all logs, tracks dependencies between domains,

manages committing domains, and performs roll back at a recovery event.

This chapter walks through the runtime components including the log­

ging system, the use of versioned memory, and how commits and aborts are

processed. It then turns to the porting of Linux 2.4.22 and lessons learned

from that port.

42

Parent pointer previous recovery domain on the stack
Root pointer request from the outside world
Peer pointer linked list of nodes at constant tree depth
Child pointer next level in tree
Dependence set out­edges in the dependence graph
Undo log old values and version numbers of written locations
Delayed action log operations to perform on commit
Inverse log operations to perform on rollback

Table 4.1: Recovery Domain Structure members

4.1 Reference Design

This chapter describes a reference design of Recovery Domains that is based

around maintaining an undo log for rollback and versioned memory for de­

pendency discovery. Control flow is managed with setjmp and longjmp style

operations. With these design elements, we can map directly many aspects of

Recovery Domains, leading to an implementation that is understandable to

the operating system programmer. This understandability, we feel, is critical

in a reference design of something on which reliability depends. Unnecessary

complication yields more opportunities for bugs and less overall trust in the

system.

Recovery Domains are tracked at runtime by allocating an object for each

new dynamic domain. The content of this object is summarized in table 4.1.

Domains contain a parent pointer, which points to the previous recovery do­

main running on that thread. This is the domain that is restored when this

domain ends. This pointer does not care if the parent domain caused this re­

quest or if this request was from an interrupt or other outside source. The

parent is simply the domain which will be restored at completion.

The root pointer contains the closest parent domain which is indepen­

dent. Basic domains are sub­requests and depend on their parent to commit.

43

Following the parents until the first independent, not basic, domain yields

the parent that is ultimately responsible for committing this domain. This

parent is stored in the root pointer to optimize dependence graph building as

well as simplifying the check to see which domains can commit.

The peer and child pointers are used to hold a tree or list, depending on the

context. The child pointer is used by a domain to point to a list of child do­

mains (sub­requests). This is a singly­linked list formed by the peer pointer.

The list is formed from the front, so if a domain is active, it is at the front of

the list. The peer pointer is also used to form a list of independent domains.

Independent domains cannot be children of another domain by definition

and therefore will not have fellow children in their linked list. The imple­

mentation does, however, need to track all independent domains, which are

the roots of commits, and does so with a linked list through the peer pointer.

The dependence set contains the out­edges of the dependence graph for

a domain. These are the domains which must commit for this domain to

commit and the domains which if any abort, cause this to domain abort. In

the implementation, this is stored as a sorted array and accessed with a binary

search since adding edges is less common than verifying their existence.

Three logs are kept by a domain. They are the undo log, the delayed

action log, and the inverse action log.

The inverse action log maintains the inverse actions for sub­requests

which are independent. This most commonly is free. The entries in the log

are records of function addresses and arguments.

The delayed action log contains records similar to the inverse action log,

but for actions which are independent and must not be executed until the

domain which would execute them has committed. This is used so that re­

sources that are semantically abstracted, such as allocations, are not reused

44

Lock protects meta­data
Current Version version number of location
Committed Version version of last commit
Last Writer last recovery domain to make a specu­

lative write to the location

Table 4.2: Versioned memory meta­data

before they are known to be be available.

The undo log contains the state which must be reverted during a commit.

Entries are records consisting of a locations, a size, contents, and the previous

owner. The first three fields of the record contain the necessary information

to restore a location to its pre­domain state. The previous owner field allows

the rollback to restore the meta­data for the locations.

4.2 Versioned Memory

The reference design uses a form of versioned memory to keep track of the

chain of writers to a location and the last commit of a location. Versioned

memory is not used to undo writes, but only to manage dependencies.

Each memory location, logically, has meta­data containing a lock, the last

writer, the current version, and the last committed version. These are sum­

marized in table 4.2.

Although the lock protects each meta­data structure from concurrent ac­

cess and update, it does much more. Access to the meta­data for a location

is serialized by the lock, as is access to the location itself. A meta­data lock

serves as a lock on the location which the meta­data covers. Since logging,

discussed later, requires an atomic read and a write of a location, this lock

doubles for that. The lock also blocks interrupts to prevent deadlock. An

interrupt­started domain could try to update meta­data that was already be­

45

ing updated, and hence locked, by the domain it interrupted, thus leading to

deadlock. Logging does not use a atomic­swap for the access to the loca­

tion simply because all access is already covered by the meta­data lock and an

atomic exchange operation (like all atomic operations) is expensive.

The current version field is maintained as a reference for the greatest value

of the version number stored by any recovery domain. When a domain writes

to the location, this value is incremented and logged by the writer. This pro­

vides an absolute ordering of writes to the location.

The committed version field indicates the latest version of the location

which was committed. Since a location can be written by two threads without

intervening reads, the two writes may be by independent domains. If the

second writer commits and then the first domain reverts, we need to know

that the second write must be preserved. Tracking the last committed version

allows the system to discard writes of older versions during revert.

The last writer field stores the domain which wrote the current version of

the location. If that domain has already committed, this is null. This is used

by readers to form dependencies.

4.2.1 Global Versioning Structures

Storing a meta­data entry for every memory location would be prohibitively

expensive. If an entry was maintained for every pointer­sized location the

kernel could access there would be a 4:1 memory overhead. On 32 bit Linux,

this would amount to using 800MB of the kernel’s 1GB of reserved address

space. Since this overhead is too high and much of the address space is

sparsely accessed, we hash memory locations. The hash function simply takes

the lowest order bits, minus the bottom two, to map pointer­sized locations

to the hash­table.

46

Using a hash table can result in false dependencies between domains.

However, using a dynamic structure, such as some form of a binary tree,

causes significant slowdown. The structure is accessed once for every load

and store issued in the kernel. Anything more complex than a direct index

of the hashed location dominates the runtime. Thus the performance over­

head of a more exact sparse structure is not worth the increase in precision of

dependence tracking.

4.2.2 Load and Store Replacement

The recovery compiler must instrument the original program instructions to

monitor the load and store traffic. This is done as a wholesale replacement of

load, store, and atomic memory instructions. These instructions are replaced

with calls into the recovery runtime which updates the necessary meta­data

and performs the operations. Loads and stores are discussed below, atomic

operations are not discussed but are very similar.

Figure 4.1 depicts the operations performed by the runtime for each store

instruction. A store instruction is replaced by a call into the runtime which

passes the location (pointer), the value to write, and the current recovery

domain. The location is hashed to acquire the meta­data. The meta­data is

locked and the previous writer is compared to the current writer. If they dif­

fer, the version for the location is incremented. The new version, the old value

of the location, and the pointer are logged in the current recovery domain’s

log. The store is execute and the lock is released. If the current writer is the

same as the previous writer for the location, only the store, logging, and lock

release happen; no version number needs to be changed.

Figure 4.2 depicts the operations performed by the runtime for each load

instruction. A load instruction is replaced by a call into the runtime which

47

Figure 4.1: Store to a pointer

Figure 4.2: Load of a Pointer

48

passes the location (pointer) and the current recovery domain. The return

value is the result of the load. The location is hashed to acquire the meta­

data. The meta­data is locked and the previous writer is compared to the

current reader. If they differ, an edge is added in the dependence graph from

the reader to the writer. The load is execute and the lock is released. If the

current reader is the same as the previous writer for the location, only the

load and lock release happen.

4.3 Tracking Dependencies Between Recovery

Domains

Every recovery domain tracks which domains it depends on and what do­

mains depend on it, creating a dependence graph between domains. This

dependence information is important because when a domain experiences

an error, it allows the rolling back of only those domains which have been

“tainted” by the error. This mechanism correctly handles dependencies that

cross threads, which is important due to the inherently threaded nature of the

systems we are interested in.

This tracking is represented as a graph. Each recovery domain contains a

sorted array of pointers to domains it is dependent upon. This allows a binary

search to test whether a dependency exists either for purposes of committing

or for purposes of adding a dependency after a read. Only out­edges are

stored in the graph.

On a read, meta­data maintained by the run­time is consulted to deter­

mine if the location contains a committed value, as explained in section 4.2.2.

If so, no dependency information is updated. If it contains a speculative value,

a (directed) dependency edge is formed to the domain responsible for the last

49

write of that location.

On a write, the meta­data for the location is updated to reflect the new

writer. If the writer is an unlogged domain, then the write is committed, else

the write is marked as speculative and the recorded writer helps subsequent

readers form dependence edges.

Tracking dependencies between recovery domains is mainly useful be­

tween separate threads; nested domains identify dependencies between do­

mains within the same thread. Domains are nested at run­time, and the nest­

ing structure forms one or more trees that determine when and how domains

can commit. To track nesting, the run­time maintains a stack of active do­

mains. All code runs in some domain, even if that domain is the default un­

logged domain. This ensures that all code participates in the maintenance of

meta­data.

When a recovery domain starts, it inspects the current stack to find the

currently active recovery domain. It records the domain as its parent so that,

on exit, it may restore that domain to an active state. A basic domain will

become a child of that domain and become dependent on it for commit. That

is, when the basic domain exits, it will not commit but simply notifies its par­

ent domain, which when it commits will commit the child. All other domain

types, however, do not record their parent: instead they starts a new tree.

They remember the previous active domain only for the purpose of restoring

it on exit.

4.3.1 Graph Simplification and Search

When finding domains to commit, the entire dependence graph must be

search to see if a domain can reach an active domain through the depen­

dence edges. If it can, the domain may not be committed. This search is

50

implemented as a depth first search starting from the domain in question and

stopping anytime an active domain is reached. All reachable domains may

either be committed or have their dependence edges rewritten. If the domain

the search started at can commit, then any domain visited in the DFS can

commit. If not, then the set of active domains which prevent commit are a

common set of dependencies for all visited domains. The edges can then be

replaced by this set, simplifying further traversals.

Alternative Simplification

Initially, a transitive closure was computed by merging the out­edges of each

domain with the out­edges of all domains it was dependent on. This is more

expensive in both space and time than the DFS­based graph simplification.

4.3.2 Alternative Graph Representations

The primary alternative graph representation we tried was a dense matrix

of bits. Each set bit represented an edge from the row domain to the col­

umn domain. This representation makes computing the transitive closure

relatively easy. It also makes testing for the existence of an edge a constant

time operation, rather than a log(n) operation. The primary failing of this

representation is its fixed size. The tracking structures need to be allocated

statically to avoid requiring a call to the OS to acquire new memory if more

domains than the matrix has room for are added. The number of domains in

the system was seen to be very bursty. Thus much of the time the fixed size

required examining more of the matrix than was necessary to compute the

transitive closure. Then during a large burst of activity, the matrix would not

have enough capacity for the number of domains in the system. The size of

51

Figure 4.3: Paged log structure

the matrix is practically limited by the exponential growth in memory usage

as the number of possible active domains increases.

4.4 Logging

Recovery Domains has several modes of logging. At the lowest level, mem­

ory writes are logged. This is the basis of rollback for a recovery domain. To

increase flexibility and reduce inter­domain dependencies, operations may

also be logged at the semantic level. Finally operations may be logged to be

executed at the committing of a domain.

All logs use a list of pages as illustrated in figure 4.3. Log entries are

stored in an array on a single, page­sized allocation. These pages are stored

as a linked list. When a page is full, a new page is pushed on the linked

list and entries are written to it until it is full. This provides very efficient

52

storage in space and time. The overhead per entry is two words amortized

over the number of entries in a page. The frequency of the allocations is once

per number of entries in a page. Further, single hardware­sized pages are

used so that if all internal memory is exhausted and the recovery system must

acquire memory from the operating system, the allocations will not require

contiguous virtual or physical pages.

Semantic logging occurs when an operation is declared as a domain with

a semantic inverse. In such cases, upon the successful completion of the op­

eration, the success is logged with sufficient information to perform the se­

mantic inverse operation. This structure allows two things. First it allows

optimized handling of independent subsystems for which a clear higher­level

logical structure is known, such as malloc (the inverse being free). Sec­

ond it allows inverses for code which modifies the state of devices. Writes to

memory­mapped devices or other device control channels cause state changes

that are not reversible by writing the old values to the device since writes

cause complex state changes. Semantic inverses allow operations to be given

inverses which encode the knowledge of the controlled device. In the case

where there are no dependencies on other executing domains, domains with

semantic inverse need not have their log retained by the calling context since

the reversal of that domain is logged semantically. During the execution of a

domain with a semantic inverse, memory logging occurs so that in the case

of a recovery event within the domain, the domain can be reversed. How­

ever, once the domain completes, the parent need only record the successful

completion and the necessary information to call the inverse after a recovery

event.

To allow resource managing subsystems such as malloc and free to not

often interfere with each other, operations may be logged to be deferred until

53

the successful completion of the calling request. This prevents, for example,

memory from being allocated and freed by one domain, then allocated by an­

other domain. In such a case unnecessary dependencies are formed by due to

the artifact of memory being reused by the allocator after a free. These depen­

dencies should not exist. By deferring operations, many false dependencies

can be avoided.

4.4.1 Alternative Log Structures

We tried several alternative structures for storing the log. Chief among these

were a pure linked list and an array. A linked list, even with a very efficient

allocator was less efficient than the hybrid structure we used. Much of that

inefficiency comes not from the allocator, but from the overhead in storing

the pointer to the next element. This pointer increased the size of each log

entry and the store added expense to a very performance­critical portion of

code (the store path). Since there is no constraint on the number of memory

operations a recovery domain may execute, there was no fixed size array that

would suffice.

4.5 Committing Recovery Domains

A commit of a domain comes when a domain meets the conditions specified

in chapter 3.6, namely it and all domains it is dependent on are in the done

state. The order in which domains are committed in the commit protocol

does not matter.

When a domain is committed, as illustrated in figure 4.4, several parts

of the domain structure, per­thread data, and global structures are updated.

The commit updates the current recovery domain for the thread with the

54

Figure 4.4: Committing a domain

one previously running prior to the start of this domain. If a domain was in

the done state but not active, which is the case if it could not commit due

to a dependency, this is omitted. For the entire commit procedure on all

domains involved, a global lock, which protects recovery domain creation

and destruction, is held.

The commit procedure walks the undo log, committing each write. This

is done by taking the written location and hashing the pointer to acquire the

meta­data for that location. The lock for the location is acquired and the

version in the undo log is compared to the last committed version in the log.

The meta­data is written with the maximum of the two version numbers. If

the last writer was the committing domain, the last writer field is cleared. The

lock is then released.

Committing a location can be done in arbitrary version order. Depen­

dency edges ensure that true data­dependencies are maintained between read­

55

ers and writers. Committing a version does not change the current version of

a location. This is because a later, uncommitted writer may still exist which

will have incremented the version number. However, since the write we are

committing overwrote existing data and all subsequent readers will depend

on the new version or a later version, any reader of old versions already has

the necessary dependencies on the writers. An older version may be rolled

back, but this will be a no­op since the effect of the rolled back domain is

already masked by a later writer.

After memory is committed, the deferred action log is walked, executing

each deferred action. These actions are those operations which, due to being

independent, must be delayed until it is known they should execute. The

most common example is a resource release or deallocation.

4.6 Rolling Back Recovery Domains

A rollback is triggered when some run­time mechanism, either a part of the

system or code inserted by an external tool, detects a potentially fatal error.

During normal execution, the system must maintain an undo log for each

speculatively written location, and a domain dependency graph for each do­

main. In addition, each domain maintains a list of deferred actions, such as

resource frees. The recovery system rolls back a faulty domain (or an enclos­

ing parent domain) and any other domains that are dependent on it. To roll

back a domain, the recovery system restores any memory perturbations and

undoes resources allocated for all dependent domains from the logs for those

domains. This is illustrated in figure 4.5.

During rollback, all affected threads are halted at a known state, and one

process walks the dependence graph of the faulting domain, rolling back any

56

Figure 4.5: Rolling back a domain

dependent domain. Because versioning is kept for writes as part of the meta­

data, domains can be rolled back in any order and the rollback code ensures

that the original value prior to all the rolled back speculative writes is re­

stored. Reversible operations encountered in the log are reversed with their

inverse function; by definition of such operations, the order in which these

inverses are applied is irrelevant. Register state is restored to the point of

domain entry for each active rolled­back domain, with the only change ap­

pearing as though the domain entry instruction returned an error (this is es­

sentially setjmp and longjmp, but potentially operating on threads besides

the current one).

57

4.6.1 Error Virtualization

One key design goal is to use existing error return paths to preserve failure se­

mantics, expedite recovery, and simplify the implementation. Complex server

systems like an OS have extensive error checking, with corresponding error

return paths, for anticipated errors. In particular, many internal functions in

such a system are programmed to handle error conditions when they occur,

either by retrying an operation, or returning appropriate error information to

their callers, which then continue the process. This process creates the error

return path, which often propagates all the way back to the external client.

The system specifies a semantic for error handling that clients (e.g., system

calls) must use to deal with errors cleanly. By leveraging these existing error

return paths, we can incorporate comprehensive error recovery from nearly

all of a given system, such as an operating system, while requiring relatively

few changes to the code base.

Each domain specifies an integer error return code, which is returned to

its parent domain when an internal error is detected. The parent domain

can then handle this error code as desired by the programmer. If most do­

mains start at existing error checking points, then little further effort should

be needed to perform recovery and error return from unexpected errors.

Within a kernel, asynchronous requests are similar to a system call. A do­

main places a request on some structure. At some point another thread ser­

vices that request. These execution paths have defined ways for the worker to

return errors to the requester. Thus this idiom is implemented as an indepen­

dent domain for the worker which, if it fails, returns an error code though

the same channel by which it would normally return an error code to the

requester.

58

In the case of a kernel, when an error propagates up to the application,

appearing as a failed system call, the kernel can choose to return a suitable er­

ror code for that system call. For applications that don’t care about the error

code, including those that don’t wish to recover, this choice is unimportant.

For other applications, if this is a pre­existing error code, no changes are

needed to applications that use that system call. If it is a newly defined error

code, applications that wish to recover would need to handle this code ap­

propriately. If the error is persistent, i.e., retrying the same system call causes

the error to repeat, then the application may have to compensate in some

application­specific way or may simply be forced to die. In any of these

cases, the kernel and other applications should not be affected.

4.7 Compiler Passes

The recovery compiler consists of a series of passes to transform the anno­

tated kernel source into recovery­instrumented machine code. The first pass

replaces all memory operations with calls to runtime routines that will per­

form the operation, log the operation, and track dependencies caused by it.

The second pass interprets programmer­supplied annotations and maps these

annotations to sequences of low level annotations.

The compiler components are implemented in the LLVM compiler frame­

work [47]. Kernels are compiled through the normal C front­end and ma­

chine code is generated by the normal back­end; all transformations happen

on optimized intermediate representation (IR) code. Source annotations exist

in the original source code and are passed through the front­end unchanged.

The first pass replaces all memory operations with calls to runtime rou­

tines that will perform the operation, log the operation, and track dependen­

59

cies caused by it. This was explained previously in section 4.2.2.

The second pass interprets programmer­supplied annotations and maps

these to sequences of lower­level annotations, namely domain_begin and

domain_end, to be dealt with by the third pass. This pass allows the pro­

grammer to succinctly annotate the kernel (in this implementation, as a file

specifying the functions to be treated as domains, their inverses if any, and

their type). The programmer can directly use the low level annotations if

necessary or convenient.

void* kmalloc(size_t size , int type) {
//begin a logged, reversible domain
char* buf = rec_domain_begin (log=1, reversible=1);

4 //record current register state
int iserror = rec_setjmp(buf);
if (!iserror) {
// kmalloc_orig is the original kmalloc, renamed
result = kmalloc_orig(size , type);

9 // end the kmalloc domain
rec_domain_end ();
// log inverse function
rec_log_undo(kfree , result);

} else {
14 // Error landing pad:

// The user specified null as the error return
// value for the kmalloc domain. At this point, no
// kernel state has been restored by the runtime
// as though domain_kmalloc had never been called.

19 result = NULL;
}
return result;

}

Figure 4.6: Example of the recovery domain transformation on kmalloc. The
new functions implemented in the runtime are underlined. kmalloc_orig
contains the original code for kmalloc.

The third pass transforms low level annotations into operations to setup

and tear down recovery domains, and uses setjmp to create a landing pad

60

for control flow after a domain aborts. Figure 4.7 shows the result of the

third pass on the kmalloc function. kmalloc becomes a wrapper that hides

the domain management from the callers. It sets up a domain with a call to

rec_domain_begin which returns a buffer used for setjmp. Normally, the

original code for kmalloc is executed. The domain is then committed since

kmalloc is reversible; the inverse is logged in case the parent aborts; and the

result value is returned to the caller. If, however, the kmalloc domain aborts,

the error return code specified by the annotations, namely NULL, is returned

to the caller. The runtime manages rolling back state and terminating the

faulting domain before passing control to the landing pad.

4.8 Runtime

The runtime consists of 4 major components: recovery domain management,

logging, memory data­flow detection, and rollback infrastructure. The run­

time is SMP­safe and totals 1867 lines of C++ code (including all assertions

and debugging code) and 30 lines of assembly. Compiled, it results in 36kB of

program text, though for performance, it is linked to the kernel using LLVM

to perform inter­procedural optimization.

Recovery domain management implements the domain stack as a linked

list with the active domain (top of stack) at the front. It also tracks the type

of domain and dictates whether operations should be logged or not, as well

as managing the rollback or commit of domains.

Logging is implemented as a linked list of 4kB pages, each of which can

hold about 150 logging records. When a page fills up, a new one is linked

in. When a child domain terminates, its log is either linked in directly or, if it

was a reversible domain and committed, its inverse is recorded. If a domain

61

reverse is marked for delayed execution (such as a resource free), the delayed

function and its arguments are recorded.

Recovery domain management implements several data structures includ­

ing the domain stack, the logs of writes and inverse actions, and the domain

dependency graph. The domain dependency graph is stored as an out­edge

set in each domain. The completed but uncommitted domains are kept in a

list. The dependency graph is divided into two regions, the active domains

and the completed domains. Two properties are exploited to reduce the size

of the out­edge sets while still maintaining the necessary transitive closure of

the graph. First, only edges in the active set will form new dependence edges.

Thus all new edges will point from the active set to the completed set. Second,

only edges from the committed set to the active set matter for computing if

a domain in the completed set can commit. Because of this, the out­edge sets

for completed domains only include edges to active domains. When an active

domain is moved to the completed set, all nodes with edges to it are updated

to include its edges to active domains (thus maintaining the necessary tran­

sitive closure) and its out­edges are pruned to only contain edges to active

domains. This optimization greatly reduces the number of edges that must

be kept.

Dependencies due to memory reads and writes are tracked by memory

versioning. Memory addresses are hashed after masking off the lower bits so

regions are at least 64 bits (though in practice are several times larger). No

collision avoidance is done, so regions with the same hash value artificially

alias. For each entry, a sequence number of the last write, a sequence number

of the last commit, a count of domains with references to the location, and a

reference to the last writer is maintained. On a write, the sequence number

is incremented and the writer records the old value of the memory and the

62

sequence number of its write. Since a reference to that location is entered in

a log, the count for the location is incremented. The writer is also recorded

as the most recent writer of that region. On a read, the reader checks to

determine if there is an uncommitted writer and, if so, adds an edge in the

dependence graph to the writer.

The rollback mechanism simply walks the log in reverse order undoing

operations and removing the current domain from the stack of domains.

longjmp is used to return control to the landing pad created by the compiler.

During rollback, other threads that are dependent on the current domain are

also rolled back, directly modifying the saved state of the inactive thread (this

requires Linux­specific knowledge; an OS­agnostic version would set a flag

in the rolled back domain so on next execution, control would transfer to the

recovery point).

The commit mechanism walks the log, updating memory regions to re­

flect the sequence number of the logged writes, if that update is greater than

the sequence number of the last commit. Further, if any deferred actions are

logged for the domain (and its children), they are executed (e.g. memory

frees, reference count decrements).

4.9 Porting Linux

Two very different Linux kernels were ported to the recovery system. The

first, which will be described here, is the SVA ported Linux 2.4.22 kernel as

used in the SVA work [21]. The recovery system itself is completely indepen­

dent of SVA – SVA is only used as an error detection mechanism. To demon­

strate that and to gather experience porting another kernel, Linux 2.6.27 was

also ported. Linux 2.6.27 has some fairly major structural differences. In the

63

first porting exercise, several interesting common cases were discovered that

influenced the design of the recovery system. These include spin­locks, re­

quest queues, reference counting, and performance counters. As discussed

below, extra porting effort went into these objects as it greatly reduced the

number of dependencies between domains.

The starting point for a port to the recovery system is to identify en­

try points and allocators. For Linux, system call and interrupt entry points

were annotated as independent recovery domains. The list of basic alloca­

tors (e.g. kmalloc, kmem_cache_alloc, __alloc_pages) were annotated as

semantically reversible domains, and their inverses specified.

With this basic port, it became clear that spin­locks were a major cause

of thread interference. Because atomic operations were modeled as reads and

writes (with the writes logged only if the atomic operation succeeded), any

two threads that accessed the same spin­lock (even if they did not contend

for it) would form a read­after­write dependency. A basic spin­lock is binary,

and is used for synchronization. What data­flow exists is really control flow

masquerading as data flow. With these observations, successful spin­lock ac­

quires and releases are modeled as write­only memory accesses with old val­

ues of ’0’ and ’1’ respectively. Trying to acquire a spin lock was not treated

as a read operation. This preserves the property that a lock is released on a

rollback while breaking unnecessary dependencies. Reader­Writer spin­locks

were treated in a similar fashion.

Many counters used for performance statistics, e.g., the number of blocks

written to a disk, are not used in any decision made by the kernel; they simply

exist to be reported to user­space. These are not critical to the consistency of

the kernel after (presumably rare) error recovery. Therefore counter incre­

ment and decrement functions were defined as unlogged, reversible domains.

64

On a rollback, the counter increment or decrement is undone, but other do­

mains are not rolled back.

The kernel code implementing the exit system call has an internal func­

tion that does not return because the thread is terminated. Making this func­

tion (do_exit) an unlogged domain, however, is not attractive because it

performs considerable work, including closing files, tearing down address

spaces, and notifying other threads. Any of these operations could fail, in

which case we would like to restore kernel state and return an error. To fix

this mismatch, the kernel function do_exit was changed to return an int and

made an independent domain. Code which called do_exit (not expecting it

to return) was modified to go into an infinite loop calling do_exit. On a

permanent fault, this could cause the thread essentially to leak and try to exit

whenever it is scheduled, but this seems a better engineering tradeoff than al­

lowing exit to perform large and complex state changes to global kernel data

structures in an unrecoverable domain.

Correctly handling thread exit also required the introduction of the basic

primitive rec_thread_exit. This primitive causes all domains on the stack

to transition to the completed state. It is the last thing called before the kernel

calls schedule from the thread, never to return to that thread again. Delayed

commits and other resource frees for the defunct thread happen on the next

attempt by any thread to commit.

Many objects in the kernel are reference counted. Handling these well

reduces the number of unneeded dependencies. A reference counted object

is acquired by calling a function on an existing object. This function acts

very much like an allocator, in that it has an inverse, but serves to update the

reference count of the object. A similar function exists for when an object

is no longer needed. This function often handles the finalizing and freeing

65

Change LOC
recovery hooks 9
counter conversions 28
moving functions out of headers 40
spin lock conversion 34
exit fixes 6
bootup fixes 3
fork 1
misc 11
Total 132

Table 4.3: Changes to Linux 2.4.22 by type and lines of code

the associated object when the reference count reaches zero. All the major

structures in the VFS layer used this idiom. Thus the reference acquiring and

releasing functions were declared as inverses of each other and acquisition

functions as semantically invertible domains. Because of this, dependencies

between threads that existed only because of a change to the reference count

of an object were broken, without disturbing the garbage collection proper­

ties of the code. As a proof of concept, only the file­system was thoroughly

ported in this way.

While many interesting cases were considered and ported (and several

more primitives, such as queues, would benefit from special care), no design

changes were needed in porting the Linux kernel to use Recovery Domains.

Furthermore, only 132 lines of code were added or modified for the port of

Linux 2.4.22 as broken down by type in Table 4.9.

The port of Linux 2.6.27 proceeded similarly, starting with the alloca­

tors, system calls, and interrupt handlers. The softirq handlers and the sched­

uler were also annotated. The hooks for runtime memory allocation were

added. No major design changes were needed, even though several major

kernel features, such as kernel preemption, were added in this kernel version.

Furthermore, even fewer lines of code needed to be changed because (for ex­

66

ample) many macros had been moved out of headers and converted to inline

functions. This port is operational, but never tuned to provide competitive

performance. A new port of a non­SVA based Linux 2.6.27 is discussed in

Chapter 5.

4.10 Discussion

Several limitations and special considerations regarding recovery domains are

discussed here. Sources of deadlock introduced by Recovery Domains are

discussed first. Ways to corrupt the runtime and prevent recovery are then

discussed followed by a brief note on the output commit problem.

4.10.1 Avoiding Deadlock

The interaction between the process and thread management in the OS and

the Recovery Domains commit protocol can be a subtle source of deadlock.

Initially, to prevent corrupt state from leaking to user­space and to ensure

that a request is never reported as successful if it still might be rolled back

due to a dependency, system calls did not return until they committed.

Some system calls, however, block for reasons which necessarily cause

interference (and hence dependencies) with other system calls. While an IO

operation can block, it will eventually unblock due to the structure of the

kernel. A system­call such as sys_wait will necessarily, at least in the Linux

implementation, read and write memory from the control block of the very

threads on which it is waiting. The state written happens to be read as a matter

of course in several other system calls the waited­upon thread can issue. This

causes a circular dependency: a kernel level dependency from the waiting

thread to the thread being waited on and a recovery domain level dependency

67

from the waited upon thread trying to commit and return to user­space and

the thread which will not commit until the wait condition is satisfied. The

recovery system does not know about this cycle.

To avoid this, it is helpful to note that only one system call can get into

this situation. We therefore treated it specially: having it transition out of a

normal domain into an unlogged domain prior to blocking. This effectively

causes it to commit early and not block any other request.

We further only make a good faith effort to commit a system call prior to

returning to user­space. If yielding the processor to other requests does not,

after a finite time, allow the system call to commit, it returns to user­space

uncommitted and it will commit once its dependencies are met.

4.10.2 Corrupting the Recovery System

The recovery domain does not inherently protect itself from corruption by

the kernel. This corruption can come from several sources. It is worth noting

that many basic memory fault detectors will catch and prevent corruption.

Faults can come from stray pointers, stray control flow, stray DMA opera­

tions, and incorrect page re­mapping.

Of these, stray pointers are the most likely. Many bugs are caused by

incorrect pointer arithmetic or buffer overflows. Such an error could cause

writes to memory used by the recovery system, thus corrupting it. Range

checks could be employed in the runtime, since all writes are routed through

the runtime, to prevent this, but it was felt that memory faults would be the

first and most common fault detector deployed. Catching memory faults is

left to the detector, but corruption to the runtime could be caught by the

runtime.

68

Stray control flow is mostly solvable by preventing corruption to mem­

ory. However, since thread state is stored by the kernel, control flow can

be corrupted by inbound writes to the structure storing the register state for

inactive threads. Corrupted control flow can execute instructions which are

not instrumented and not prevented from writing to the recovery runtime.

There is no obvious way prevent this potential for corruption of control state

and only limited ways to prevent corruption to the runtime.

The only way to partially prevent corruption is to keep the runtime from

being writable by the kernel. This can be done through the page tables. Ran­

dom code executing in the kernel can undo any page table protection allowing

corruption. Incorrect page mappings cannot be solved for this very reason.

The last source, DMA, can be partially prevented by using an input­

output memory management unit (IOMMU). IOMMUs allow restricting

access to system memory to devices. While correct programming of an

IOMMU can prevent hardware devices from corrupting the recovery run­

time, correct programming can be prevented by one of the other sources of

corruption or by programmer error.

4.10.3 Output Commit Mitigation

Like any system with rollback, output commit is a problem. Values can es­

cape to the outside world though hardware before rollback happens. These

values cannot be rolled back; the values may cause hardware to execute non­

reversible operation, such as sending a network packet.

The structure of many drivers in the kernel help mitigate, but do not al­

leviate, the output commit problem. Many subsystems perform most work

in a context which does not interact with hardware. The passing of data to

the hardware device is separate from the processing of requests which take

69

the data from applications. Such a structure allows the system to success­

fully commit most of the complex processing of requests without touching

hardware. The controlling of hardware devices is done after the application

request commits.

Although this structure found in many drivers allows most complex logic

to be recoverable, it is serendipitous, but not required. The recovery system

currently cannot prevent output commit.

4.11 Conclusion

The reference implementation of Recovery Domains provides effective re­

covery from faults while being understandable by operating system program­

mers. Performance is good for several benchmarks, though low for an IO

intensive benchmark. The system provides an impressive recovery rate from

random faults inspiring confidence that recovery domains are good approach

to recovery from operating system faults.

The design achieves a simplicity which lends credibility to the implemen­

tation. Versioned memory and undo logging form the basis of the design.

Domains are allowed to finish without committing and a commit protocol

ensures domains commit when they can.

70

Chapter 5

Design and Implementation of
Compiler and Runtime Analysis
and Optimizations
The reference implementation of Recovery Domains given in the previous

chapter does not use analysis of the operating system by the compiler to

optimize the recovery system. In fact, it depends on the compiler only for

instrumentation of memory operations and inserting domain setup and tear­

down. We observe that the runtime recovery burden can be reduced through

static compiler analysis, dynamic, run­time analysis, and additional knowl­

edge about the kernel’s use of locks. This analysis allows the system to selec­

tively not monitor some memory operations while reducing the logging and

versioning requirements of some other operations.

The new optimizations are based around:

Dependence Graph: At runtime, the dependence graph is analyzed to see

if it, or specific domains, are complete (have all possible out­edges

formed). In this case, no monitoring of loads is needed.

Locked Accesses: At compile time, all loads and stores are analyzed to see if

they are accessing an object which is protected by a lock. Locks and

the objects they protect are identified by a new annotation. Locked

accesses do not need locking or versioning on writes and no monitoring

of loads.

Fresh Access: At compile time, all loads and stores are analyzed to see if they

are accessing an object which has been allocated but is not yet visible to

71

other requests. Fresh accesses need no monitoring of reads or writes.

This chapter describes these optimizations as well as the runtime changes

necessary to support them. A new port of Linux 2.6.27 to Recovery Domains

is used to demonstrate the effectiveness of the optimizations.

5.1 Dynamic Analysis of Dependence Graph

Every read is normally monitored to see if it forms a read­after­write depen­

dence with an uncommitted domain. The dependence graph is not between

individual locations, rather it is between domains. It is therefore unnecessary

to monitor a read if the dependence graph cannot have an edge added to it by

the read. We take advantage of this property both globally and locally.

To simplify dynamic analysis and to improve overhead in general, we

store two dependency graphs. The first graph is the full dependency graph

between all domains. The second graph is that graph projected onto just the

domains that form the roots of requests. These roots are exactly the inde­

pendent domains. Each independent request may have many generations of

descendants in the form of normal domains.

Computing whether a domain may commit requires the transitive closure

of the subset of the dependency graph reachable from the domain which is

trying to commit. Computing a transitive closure is expensive and storing

all edges for the closed graph costs memory and time. The time may be paid

more than once as the dependence graph will be traversed again if a domain is

not able to immediately commit. To minimize edges, we treat the sub­graph

of all independent domains specially. When a domain forms a dependency,

this edge is mirrored in the independent domain subgraph. That is, A → B

forms A.root → B.root. Since all child domains have an implicit dependency

72

on their parent, it is not necessary form dependencies on finished child do­

mains which are waiting on their parent. We can directly form a dependence

on the active parent. This prevents many edges from being formed to inactive

domains.

Dynamically, the runtime considers the completeness of the dependence

graph. If the sub­graph of the dependence graph of independent (root) do­

mains is complete, then no operation can add a dependence edge. The run­

time detects this condition by comparing edge counts to the number of inde­

pendent domains. When this comparison shows that all possible edges have

been formed, a global flag is set. The compiler­generated load instrumenta­

tion checks this flag and if it is set, performs the load in place rather than

calling into the runtime. The flag is cleared when a new domain is created, as

there is now a new target for dependencies. This provides substantial savings

by changing all reads (which account for roughly 66% of the memory oper­

ations) in the common case from a call to the runtime to a check of a global

flag. Examples of instrumented code are in section 5.4.

While a global flag is simple, some work can be avoided by reasoning

about an individual domain’s dependencies. When a single domain has all

possible dependencies, it does not need to read version information to add

dependence edges even if other domains still do.

We take advantage of the mirroring of edges into the independent­domain

subgraph by ignoring child domains when checking if a domain can commit.

Since all dependencies are projected onto the independent­domain subgraph,

computing the transitive closure and checking that all dependencies can com­

mit is performed on the subgraph rather than on the entire graph.

73

asmlinkage long sys_munmap(unsigned long addr,
size_t len)

3 {
int ret;
struct mm_struct *mm = current ->mm;

/* Annotation marking this function as the start
8 * of a recovery domain

*/
REC_SYSCALL();

profile_munmap(addr);
13

down_write(&mm->mmap_sem , mm);
/* down_write calls:

* rec_acquire(&mm->mmap_sem, mm,

* sizeof(mm_struct));
18 */

ret = do_munmap(mm, addr, len);
up_write(&mm->mmap_sem , mm);
/* up_write calls:

* rec_release(&mm->mmap_sem, mm,
23 * sizeof(mm_struct));

*/
return ret;

}

Figure 5.1: Example simple lock annotation

5.2 Locked Memory

We add one new annotation to mark memory covered by a read­writer or

exclusive lock. This annotation specifies four things: the lock location, the

lock acquisition point, the lock release point, and the region of memory cov­

ered by the lock. An example use of the annotation is shown in Figure 5.1

in which the mm_struct for the current process is locked for exclusive write.

The lock is annotated with information about which portion of memory it

covers, in this case all of the mm_struct. The end of the locked region is an­

74

notated. The annotations make no assumptions about the use of the memory

after the release of the lock.

Not shown in the example is that an annotation can mark the objects

pointed to by fields as also being covered under the lock, including linked

structures. This allows objects with linked lists of trees, for example, which

are protected by the lock, to be considered locked with the object. This is

a fairly common occurrence and turns out to be very important in practice.

For example, one of the most exercised functions in the benchmark post­

mark, find_vma, traverses a red­black tree which is referenced by a field in a

structure and covered by a lock in that structure.

The lock annotation is optional and need not be applied to every type of

object. The recovery system operates correctly without any lock annotation,

but the annotation provides opportunity for the compiler to reduce overhead.

5.2.1 Optimizations for Locked Memory

Locked objects, which are very common in a kernel, have several useful prop­

erties with respect to logging and versioning. First and most obviously, if an

object is exclusively locked for writing, then the meta­data handling the ver­

sioning of the memory locations in that object do not have to be locked for

updating. Objects locked for shared­reading, likewise, do not require version

meta­data locking when performing a read as the meta­data is not changing.

Dependence graphs still must be updated, but this is done in a request­local

manner.

More interestingly, a lock provides a single memory location that can be

used as a proxy for dependency tracking for the objects under lock. If all

accesses to lock­protected regions of an object are performed after the lock

is acquired, then any dependence edge between requests which could form

75

will have already formed by virtue of acquiring the lock. A write lock will

update the lock location, marking itself as the last writer. Since a writer must

first read the lock to acquire it, it will form a read­after­write dependency on

the previous writer. Any subsequent reader will first check the lock and ac­

quire it for reading. This operation is a read­after­write dependence and will

form an edge in the dependence graph. Writers form a dependency chain due

to the serializing nature of the lock and readers will transitively depend on

all uncommitted writers simply by depending on the last writer in the chain.

Therefore all reads of a locked object can be unmonitored. Since writes are

already serialized, writes to the object need only perform logging, not ver­

sioning. The lock provides a proxy version for the entire object or memory

region.

Locked Memory Analysis

The analysis to find locked accesses is shown in Figure 5.2. The locked prop­

erty is acquired for objects at the annotation and dropped at the release an­

notation. Operations on the object are locked if they meet three conditions:

there are no paths to them which do not go though a lock annotation, after

the lock annotation there are no unlocks, and there are no joins with un­

locked objects. Initially, calls are considered unlocking operations. Calls are

analyzed to see if they preserve the locking of their arguments. Calls which

do preserve an argument’s locking status are not considered unlock opera­

tions for that argument. Additionally, we determine if an argument is always

locked. Such arguments may be optimized as locked objects.

This analysis is iterated until a fixed point is reached. Finding function

arguments which are lock­preserving lengthens the periods in which an ob­

ject is locked, potentially causing a call previously considered as receiving an

76

function unlocks(Op, obj) {
case Op is a call:

if obj passed to arg not in SafeArgs
4 return true;

case Op is an unlock annotation:
return true;

default:
return false;

9 }

do {
/* trace all locked objects */
foreach(obj in {locked annotations})

14 foreach use in uses(obj)
if (no unlocks on path obj to use)

LockedOperations .insert(use);

/* trace through function arguments to see
19 if they are lock preserving */

foreach(arg in {function arguments})
if (forall use in uses(obj):

!unlocks(use , obj))
safeArgs.insert(arg);

24
/* see if calls are always locked */
foreach(arg in safeArgs)

if (at each call to function for arg:
actual arg is locked)

29 {locked annotations}.insert(arg);
} while (any result changed);

Figure 5.2: Simplified lock analysis.

77

unlocked argument to be show to always receive a locked object. More call

arguments considered lock­preserving can lengthen the apparent lifetime of

locks, causing more arguments and operations to be seen as locked.

5.2.2 Misuse of the Lock Annotation

Locks are not used perfectly and we must not expect lock annotations to be

used perfectly either. We therefore consider what happens when an annota­

tion is missing from a normally­annotated lock and when a normally­locked

object is accessed without the lock. The first case is fairly easy to prevent

when porting by folding annotation into the common locking code. An ex­

ample of this is seen in Figure 5.1 where the locking annotation is put in

down_write rather than at each use of the lock. The second case implies ex­

isting race conditions in the kernel and finding these bugs is not our goal

(though a race detector is welcome to use Recovery Domains to recover if it

detects a race). Though we expect this to cause kernel bugs, we want to have

an understanding of what happens during recovery in such a case.

Due to the non­invasiveness of Recovery Domains when there is no fault,

the behavior of the kernel does not change in the presence of either of these

errors. Absent a fault, Recovery Domains will do no more than changing the

interleaving of accesses in a lock­consistent manner.

When an object is properly locked but the lock is not annotated there is

no loss of recoverability. As with annotation, the lock will still serve as a

proxy for dependencies that may be formed. Unnecessary work will be done

checking and updating versioning, but since mutual exclusion is ensured by

the lock, recovery can reconstruct the order of operations from the undo logs

even though the locked writes didn’t record a version number. Operations in

the unannotated path will be individually versioned, but all writes will be

78

between the initial version of the lock and the write that clears it. Any other

reader or writer will log the version of the lock when they lock the object

prior to writes or reads. This allows the recovery system to reconstruct a

total ordering to writes to a specific location. The only harm is a missed

opportunity to reduce overhead.

The kernel may have a race condition bug in which an object is accessed

without acquiring the locks normally required to do so. The recovery system

cannot ensure correct recovery when a race condition involves one domain

with an annotated, locked access and a domain with an unlocked access (note

that without lock annotations, correct recovery would happen).

5.3 Fresh Memory

An object is fresh when it is allocated and hasn’t yet been exposed to other

requests. Exposure happens when a pointer to it is stored in a location read­

able by another domain. This is known as escaping. As long as the pointer

isn’t stored where another domain can read it, the object hasn’t escaped. Un­

til the object escapes, we can optimize operations on it knowing that no other

domain will be reading or writing the locations.

Objects are often initialized before escaping. These accesses which initial­

ize the object can be optimized to not do any logging or versioning. Since the

recovery action for an allocation is a deallocation, the contents do not matter

until another request can read them. For an object to escape, a pointer to it

must be written to memory reachable by another request. This write which

causes the escape of the object also effectively versions the object relative to

other domains. The escaping write will set the version on the memory loca­

tion which holds the pointer to the allocated object and mark the writer as

79

the allocating domain. For the object to actually escape, another domain must

read that location. This read will form a dependency between domains. This

is the same dependency edge which would form if each location in the object

had been versioned prior to the object’s escape, thus alleviating the need to

track the initial write to the fresh object.

Initially we mark objects from allocators as being fresh. We then trace

through the control flow of the code, finding locations where an escape hap­

pens. This can be either because the address was written into another object

or global memory or because it is passed to a function. If along all paths to a

particular access, the pointer don’t escape then the access is considered fresh.

We then look at functions which have arguments which are fresh in all

contexts in which the function is called. We repeat the previous analysis on

the argument, since it is fresh. If the argument remains fresh throughout the

function, we can reconsider all calls to the function as not killing the fresh

property of the object. This allows us to repeat the previous analysis no

longer considering calls to this function as causing the object to escape; i.e. a

fixed point is reached.

5.4 Compiler Analysis

The compiler passes start by finding the fresh memory and locked memory

annotations on pointers and performing an inter­procedural, flow­sensitive

propagation of these properties on the heap objects. Standard analysis tech­

niques are used to identify constant memory objects. These properties are

queried by an instrumentation pass for each load and store and atomic op­

eration to check for several optimizations. Locked, fresh, or constant reads

need not have any instrumentation. Normal reads have two paths generated

80

for them, one which calls into the runtime and one which directly executes

the load, as described in Section 5.1. The optimization in the Section 5.1 in

which a load is fast­pathed based on the dependence graph for that request

(rather than the global state of the dependence graph) is performed inside the

runtime. Locked writes are simply logged and not versioned. Fresh writes

are unlogged and not versioned.

Since we propagate information inter­procedurally, we can perform these

optimizations in functions which are passed heap objects. This, in practice,

helps in common cases of initialization functions. Objects, once constructed,

are often passed to functions which initialize various parts of them. Some

may clone an existing object, some may initialize a data structure (such as

a linked list) embedded in the object, etc. Likewise, many functions have a

precondition that the object they receive is locked. We are able to observe

that this is the case from propagating the locking analysis and take advantage

of this.

Figures 5.3 and 5.4 show the transformation on LLVM intermediate rep­

resentation as the equivalent transformation on C of a load and store, as well

as a sketch of the runtime.

5.5 Runtime Support

For clarity, we describe the full runtime though it is very similar in structure

to that presented in Chapter 4. The runtime consists of three main compo­

nents: undo logs, the dependence graph, and the memory versioning. Mem­

ory is versioned on a word sized boundaries. Meta­data is looked up in a 216

entry hash­table using a direct­map hash function. Meta­data entries in the

table have a lock, a last writer, and a current version number. The lock is im­

81

/* Original operation */
/* i32 X = *Y */
/* RD is the current recovery domain */

4
if (fastLoads)

X = *Y;
else

X = rec_log_load_i32 (Y, RD);
9

/* simplified runtime overview */
i32 rec_log_load_i32 (Y, RD) {

Meta = get_meta_for_ptr (Y);
Meta ->lock();

14 i32 retval = *Y;
RD->depend_on(Meta ->oldwriter);
Meta ->unlock();
return retval;

}

Figure 5.3: Example load transform

plemented by stealing a bit from the last writer pointer. The last committed

version number is not maintained for entries as it is implicit in the undo logs.

This trades efficiency in the common case for extra overhead when recovering

from a fault (which is rare).

Undo logs store information about writes. They store the old value, the

size of the value, the location, and the version number of that write. Bit­

stealing schemes are used to encode the size in the other values, providing

a good space savings. Logs are stored as a singly­linked list of pages which

contain arrays of log entries. The page size is chosen to be the same as the

hardware page size.

The dependence graph is a simple graph embedded in each domain. Roots

of the graph (independent domains) are stored as a singly linked list with the

pointers embedded in each node. Additionally, a list of root domains is kept.

Domains are reference counted to prevent the need to scan dependencies of

82

/* Original operation */
2 /* *Y = Val */

/* RD is the current recovery domain */

rec_log_store_i32 (Val , Y, RD);
/* or if Y is locked: */

7 rec_log_store_fastpath_i32(Val , Y, RD);

/* simplified runtime overview */
void rec_log_store_i32 (Val, Y, RD) {

Meta = get_meta_for_ptr (Y);
12 Meta ->lock();

i32 oldval = *Y;
*Y = Val;
Version = ++Meta->version;
RD->log_write(oldval, y, sizeof(i32), Version);

17 Meta ->unlock();
}

void rec_log_store_fastpath_i32(Val, Y, RD) {
Meta = get_meta_for_ptr (Y);

22 i32 oldval = *Y;
*Y = Val;
RD->log_write(oldval, y, sizeof(i32), 0);

}

Figure 5.4: Example store transform

83

all domains or store an inverse graph to determine the lifetime of a domain

structure. Committed domains may still be a dependence edge for a domain

which has not committed (dependencies are directional) and we integrate the

clearing of committed domains into other update actions on the edges of a

node.

To allow the recovery system to operate, the OS must provide a unique

identifier for each thread. We implement this as a pointer stored at the bot­

tom of each kernel stack which holds the active domain for that stack. The

contents of this pointer are opaque to the OS and managed completely by the

runtime.

5.6 Porting Linux 2.6.27

We annotate Linux 2.6.27 with 360 recovery domains. These cover all in­

terrupts, system calls, allocators, and some other functions. We chose to

annotate the timer interrupt’s updating of the system time as an unlogged

domain since this domain interfered with almost all other domains. These

annotations also cover work queue dispatch routines, running each item in

the work queue as a separate domain.

We annotated 104 locking locations covering mainly the mm_struct. This

structure is used and locked extensively in the file­system and virtual memory

subsystems. While there are other structures that could be annotated, this

lock is the most performance­critical in the benchmarks.

Several inline assembly operations, such as atomic instructions and bit

twiddling, were transformed into C code or gcc intrinsics. These are repre­

sented in LLVM and allow us to transform them into the appropriate run­

time call. Inline assembly code had to, in this way, be mostly eradicated from

84

the kernel so as to not miss any memory writes. Since we do not guarantee

consistency of user applications, we could leave the assembly routines which

copy into and out of user­space alone.

Some inter­procedural optimizations had to be disabled in LLVM when

processing the whole­kernel byte­code. Per­directory byte­code was fully

inter­procedurally optimized in all directories but arch/x86/kernel. Other

minor changes went into the kernel to reduce its dependency on gcc behavior.

5.7 Conclusion

Static and dynamic analysis provide a strong basis for reducing the amount

of tracking necessary for Recovery Domains. Small amounts of additional

annotation expose the structure of parts of the kernel to the recovery com­

piler allowing several new optimizations to be applied. Keeping in the spirit

of being able to incrementally port a kernel to Recovery Domains, these op­

timizations can be applied incrementally also.

85

Chapter 6

Results

We implemented the systems described in Chapter 4 and Chapter 5 and eval­

uated them on a variety of workloads. We considered three metrics during

evaluation:

Coverage: The theoretical coverage of the recovery technique in terms of

fraction of execution covered by the technique.

Survivability: The ability to recover from injected faults in the covered por­

tions of code.

Performance: The overhead incurred during normal (i.e., fault­free) execu­

tion of the kernel.

We did not directly measure the recovery time, which would give a mea­

sure of availability under potential denial­of­service attacks. We have ob­

served that recovery times are extremely short, far shorter than typical times

for a partial or complete reboot of the system.

Two implementations of Recovery Domains exist, one for the system de­

scribed in Chapter 4 and one for the system described in Chapter 5. For the

first implementation of Recovery Domains, we use the Linux 2.4.22 kernel

used in the previous memory safety work in SVA [21] and a port of Linux

2.6.27 to SVA. These ports were limited to a few benchmarks due to bugs in

the SVA runtime; all benchmarks that would run on the kernel without Re­

covery Domains ran on the kernel with Recovery Domains. For the second

86

implementation of Recovery Domains with the optimizations in Chapter 5,

we use a native (non­SVA) Linux 2.6.27 kernel. We replace much of the in­

line assembly code in this kernel with compiler intrinsics which replicate the

behavior. This kernel runs all benchmarks we tried without error.

6.1 Methodology

We select a variety of workloads on which to benchmark. These are:

postmark: a mail server benchmark with 1000 simultaneous files and 500000

transactions

bzip2: compressing a 17MB wav file at default options

gcc: compiling liblame

povray: rendering the install test scene

scp: transferring five 17MB wav files

scp ­C: transferring five 17MB wav files with compression

apache: transferring an empty HTML file 100000 times

apache (k): same as apache but reusing a single TCP connection

postgresql: PostgreSQL running pgbench to simulate a TPC­B [76] like

workload

We ran each benchmark at least six times, after an initial warm­up run, and

looked at cumulative result of those consecutive runs. For network bench­

marks we measured a maximum standard deviation of less than 1% in run­

times and considerably lower for other workloads. Overhead was calculated

87

against an equivalently­compiled kernel without recovery instrumentation.

This kernel is source­identical to the recovery kernel and compiled with iden­

tical optimizations. Coverage was measured by using a modified runtime

which tracks whether a memory operation was performed in a logged (re­

coverable) or unlogged domain. We instrument all memory operations and

classify them as reads, writes, or atomic operations.

We test on an Intel Core i7­860 in KVM, Linux’s in­kernel hypervisor,

with frequency scaling and hyper­threading disabled. The client for network

tests is connected to the test machine with one 1Gb Ethernet switch. The

kernel network and block devices are the virtio devices provided by KVM.

To validate the results using KVM, we ran the benchmarks directly on native

hardware (an Athlon MP). The results we obtained were similar, showing that

the results on KVM are representative of real hardware.

6.2 Survivability

To test how often a fault was unrecoverable (within the covered fraction

of code measured above), we inserted potential fault­injecting code in ev­

ery basic block of the kernel. During kernel execution, this code triggered a

fault (that would normally be fatal) in a randomly chosen basic block every

300,000+rand(0...300,000) basic blocks (where rand was recalculated after a

fault). These faults were only injected during logged intervals to focus on the

theoretically covered fraction of code. Faults were repeatedly injected until

the kernel crashed, deadlocked, or otherwise obviously failed. The above in­

jection rate corresponded to roughly about four faults every second of kernel

execution. At this rate, many non­trivial kernel operations would take a fatal

fault without Recovery Domains.

88

For the reference system, we repeated this experiment five times, each

running a workload that included booting up the kernel, logging in as root

and beginning to run the postmark application. Over these five runs, the

kernel survived an average 35.4 faults (range: 17 to 72) before crashing. This

means that on average, the kernel survived over 97.2% of faults in the covered

portion of the execution.

For the optimized system, we performed a similar, but more targeted,

experiment. Faults were injected as before, but only after a target workload

was started. This tests a more realistic workload than booting the system

and running postmark. Apache was the first workload. We performed 16

fault injection experiments on apache. The kernel survived an average 21

consecutive faults (range: 2 to 98). Postgresql was the second workload. We

performed 6 fault injection experiments on postgresql. The kernel survived

an average of 17 consecutive faults (range: 3 to 35).

The optimized system has fewer average successful recoveries than the

reference system. However, these tests were run on more varied and more

realistic workloads. Further, the runtime used was newer and less well tested.

We examined which kernel domains encountered the final, fatal fault in each

of the runs, but, perhaps surprisingly, did not notice any clear pattern there.

It is difficult to isolate exactly what kernel state corruption caused the fault

to be fatal in each experiment. We observed that the final, non­survived

fault occurred in the kernel entrypoints sys_open, sys_read, do_softirq,

sys_mprotect, sys_sendfile, and sys_brk. The entrypoint do_softirq

was the most common. The frequency of crashes in these entrypoints cor­

rosponds roughly with the percentage of time spent by the kernel in these

requests.

89

Benchmark
Reference Implementation Optimized Implementation
#Mem Ops Coverage #Mem Ops Coverage

find 47M 67% ­ ­
postmark 70B 96% 47.6B 97%
gcc 130M 31% 196.4M 96%
bzip2 63M 34% 88.3M 80%
povray ­ ­ 11.8M 71%
scp ­ ­ 682.6M 97%
scp ­C ­ ­ 570.6M 96%
apache (k) ­ ­ 797.0M 69%
apache ­ ­ 2.5B 87%

Table 6.1: Percent of Dynamic Memory Operations By Domain Type

We suspect, but have not verified, that recovery mechanism failures were

due to conditions in which recovery mechanisms could not recover, due to an

unlogged domain, for example, or due to bugs in the implementation of the

recovery system. Distinguishing these appears non­trivial due to the diffi­

culty in debugging kernel code and the corruption of state (full­system simu­

lators with deterministic replay have been the most useful in debugging these

failures, but very slow). Several crashes, we suspect, are due to not completely

handling all memory­like state. Page­table base­pointers and interrupt flags

are examples of state which could be easily tracked by the runtime, but cur­

rently are not.

Overall, the key observation we make from this experiment is that the

optimized recovery kernel is able to survive a large number of faults before

failing. Together, the experimental results show that Recovery Domains are

now efficient enough to be practical for real­world use, while still remaining

highly effective at recovering from faults.

90

6.3 Coverage

An important metric in evaluating the recovery mechanism is how often the

kernel is executing in code regions that are recoverable. Since the implemen­

tation “trusts” the scheduler and small portions of other codes as annotated

by the programmer with unlogged domains, this will be less than the entire

execution of the kernel.

As a proxy for execution time, we measured the number of memory oper­

ations (loads and stores) performed in each type of domain. we used several

benchmarks: postmark (which simulates a mail server), find, gcc, bzip2, and

a Linux kernel compile. The last two were not run on the SVA 2.4 kernel due

to instability inherited from SVA. Postmark was run for 500K file transac­

tions, find searching a tree of 2537 directories and 37822 files totaling 960MB

for a specific filename, bzip2 compressing a 17MB file, and gcc compiling li­

blame (a multimedia library) at ­O3. Compiling liblame involved compiling

20 C files (totaling about 28 KLOC) and linking them into a shared library

with ld. The testing of find was not duplicated for the implementation with

optimizations because the original filesystem had been lost by the time the

second system was implemented.

Table 6.1 shows that for file­system intensive applications like postmark

and to some extent find, coverage ranges from 64% to 97% in the reference

implementation. However for read and write intensive workloads, coverage

is considerably lower. File­system intensive applications spend more time

exercising the data structures in the file­system and VFS­layer code, rather

than just doing device IO, thus more of the execution time is spent in system

call code, which has excellent coverage. In the implementation discussed in

Chapter 5, most of the interrupt handlers are treated as logged domains which

91

improves coverage in IO intensive workloads dramatically.

When we look at the implementation with optimizations, we see in Ta­

ble 6.1 that coverage for postmark is mostly unchanged between the two im­

plementations, but bzip2 and gcc show a 2.4x and 3.1x increase in coverage.

This comes from running various deferred­work work­queues that are run

after an interrupt in recoverable domains, unlike in previous work. We run

the time­updating code in the timer interrupt as an unlogged domain which

accounts for most of the unlogged operations in povray.

For bzip2 and gcc, we see that both execute a higher fraction of memory

operations in recoverable domains and a larger absolute number of opera­

tions in recoverable domains. Table 6.4 shows that we have a considerable

performance gain in these cases. Thus we are not reducing overhead simply

by having fewer operations.

The number of kernel memory operations in each benchmark is not com­

parable between the old and new Recovery Domains implementation. Since

the numbers are for different kernel versions, they are quantifying different

algorithms and behaviors. However they sever to illustrate the amount of

work the various benchmarks do while in the kernel.

The coverage numbers show that the performance gains we achieve come

without reducing the percentage of the system that is recoverable. Rather, we

improve coverage considerably.

6.4 Performance

Ideally, during error­free execution, Recovery Domains would impose as lit­

tle overhead as possible. We first examine the performance overheads of the

reference system from Chapter 4 and compare it to several baseline kernels

92

without Recovery Domains. Then we turn to the optimized system from

Chapter 5, comparing it to the reference system.

6.4.1 Performance of Reference System

To isolate the overhead of Recovery Domains in the reference implementa­

tion, we measured benchmark run­times under three different kernels: the

original 2.4.22 kernel compiled with gcc, the SVA ported 2.4.22 kernel com­

piled with LLVM, and the SVA ported 2.4.22 kernel with Recovery Domains,

also compiled with LLVM. Comparing the first two options shows the over­

head due to SVA alone. However, the overhead of the recovery techniques

in this paper (and their design) are relatively orthogonal to any overheads

caused by SVA itself, and comparing the latter two kernels isolates the over­

head of the recovery techniques. All these measurements were taken using

KVM (Linux’s support for virtualization hardware on modern processors)

on an Intel Core2 6420 running at 2.13GHz. We used the same benchmarks

as in the coverage experiment with the same machine configuration. All per­

formance measurements used the average of three runs; the variability was

very low.

Memory usage by the recovery system was never directly measured. We

noted, however, that the statically allocated 32MB of memory was never ex­

hausted.

Native Kernel SVA Recovery Recovery vs. SVA
postmark 124 178 1004 5.6x
bzip2 13 12 13 1.08x
gcc(liblame) 23 23 29 1.26x

Table 6.2: Run­times (seconds) of benchmarks on Linux 2.4.22

93

Native Kernel Recovery Recovery vs. Native
postmark 336 2741 8.16x
bzip2 12 16 1.33x
gcc(liblame) 28 55 1.96x
kernel compile 683 1988 2.9x

Table 6.3: Run­times (seconds) of benchmarks on Linux 2.6.27.5

Table 6.2 shows that the system­call intensive Postmark program is

slowed down by about a factor of 5.6x. The other two benchmarks show

low overhead due to Recovery Domains: 8% and 26% respectively. Over­

all, although the overhead for postmark is high, we believe this benchmark

represents an extreme case for Recovery Domains. Furthermore, we are op­

timistic that these overheads can be greatly reduced by eliminating significant

bottlenecks in this prototype implementation.

In addition to the Linux 2.4.22 kernel, we ran the benchmark applications

on a port the 2.6 Linux kernel and measured the overhead of my recovery

kernel relative to a native 2.6 Linux kernel. This port was functional but

untuned due to both using a new runtime and the behavioral differences in

the different kernel versions. Preliminary results are encouraging with 1.33x

overhead for bzip2, 1.96x overhead for gcc, and 8.16x overhead for postmark.

In addition, a kernel compile benchmark of Linux 2.6.27.6 configured with

"allyesconfig" was run with 2.9x overhead. The results are summarized in

table 6.3.

6.4.2 Performance of Recovery Domains With

Optimizations

We evaluate the performance of Recovery Domains with optimizations by

comparing to three cases. We compare to results for the runtime from chap­

94

Benchmark Reference runtime New Runtime for Linux 2.6.27
2.4.22 2.6.27 Non­optimized Optimized

postmark 460% 716% 744% 134%
bzip2 8% 33% 3% 1%
gcc 26% 96% 13% 4%
povray ­ ­ 2% 2%
scp ­ ­ 50% 12%
scp ­C ­ ­ 19% 4%
apache ­ ­ 5% 0%
apache (k) ­ ­ 20% 5%
postgresql ­ ­ 38% 12%

Table 6.4: Overheads as a percent of runtime over the same kernel without
Recovery Domains

ter 4 for the Linux 2.4.22 kernel, the results using the same runtime on the

Linux 2.6.27 kernel, the current runtime without the optimizations described

in this chapter on the Linux 2.6.27 kernel, and the optimized Recovery Do­

mains on the Linux 2.6.27 kernel. Since many optimizations and quite a bit

of tuning went into the new runtime, comparisons between the optimized

runtime and the runtime from Chapter 4 are given for perspective and com­

pleteness. The comparison between the 2.4 and 2.6 kernel gives an intuition

for how much the recovery workload differs between the two very different

Linux kernels.

Comparing performance of the optimized system to the reference imple­

mentation shows dramatic improvement. Though the reference implementa­

tion has a limited number of benchmarks, for those it does have we compare

extremely favorably. Table 6.4 shows the percent overhead of recovery on

various benchmarks. In postmark, which is a pathological case of file­system

overhead, we see a factor of 3.4 improvement over the results for the refer­

ence system on 2.4.22. A more interesting comparison is the new runtime

with and without the optimizations we describe. Here we see a factor of 3.8

95

Benchmark
All
Optimizations

without
load
fastpath

without
fresh
memory

without
locked
memory

postmark 134% 601% 175% 156%
bzip2 1% 5% 1% 1%
gcc 4% 12% 6% 6%
povray 2% 2% 2% 0%
scp 12% 42% 17% 14%
scp ­C 4% 16% 7% 6%
apache 0% 4% 2% 1%
apache (k) 5% 16% 10% 7%
postgresql 12% 35% 15% 16%

Table 6.5: Overheads of Recovery Domains without various optimizations

improvement.

While the improvement in postmark is notable, because postmark was a

worst case, the improvement in more realistic workloads is just as dramatic.

All except postmark have overheads of 12% or less with optimized recovery,

and all but two are 5% or less. Moreover, without the new optimizations

described in this work, the overheads would be much higher, e.g., 41% for

PostgreSQL and 50% for scp without compression.

To evaluate how much each individual optimization contributes to these

improvements in the presence of all other optimizations, Table 6.5 shows the

effects of turning off each optimization while leaving all others enabled. Each

should be compared with the overheads with all optimizations enabled (col­

umn 2). We see that all the optimizations matter, though disabling fast­path

loads hurts the overheads the most.

We find that fresh­memory analysis is especially helpful in the network

intensive benchmarks. The most data transfer intensive benchmark, scp, ex­

emplifies this. We found during profiling that a kernel structure was being

cloned in the network stack, causing a significant number of writes to the

96

fresh object.

We also see a gain from locked memory analysis, but not as large as the

other optimizations. This is, in part, due to the extra annotation burden. An­

notating locks requires understanding the locking discipline for each struc­

ture in the kernel and each type of lock. While many important cases are

fairly easy to annotate, others are too fine grained. Most of the performance

improvement we see here comes from annotating the locks of mm_struct.

This plays an important role in optimizing common functions in the virtual

memory system. However, trying to apply the same optimization to journal

heads in the journaling layer used by ext3 proves significantly harder and un­

profitable, at least to the extent we annotated it. Unlike the virtual memory

system which locked whole objects and trees with a single lock, the journal

layer took out locks to find and set individual bits. These operations meant

the journaling code did little work in explicit locked regions and the cost of

using the lock as a proxy for the object was more than the cost of the read

and write that were protected by the lock.

In addition to the tests we list above, we also tested a program, mplayer,

that has soft real­time requirements for frame decoding, to ensure that it is

able to meet those requirements. In our tests, we found that mplayer dropped

no frames in any configuration of Recovery Domains optimizations.

97

Chapter 7

Example Use With a Model Fault
Detector

Recovery Domains enable recovery from detected faults, but do not provide

a method of detecting faults. There have been significant research efforts to

develop automatic fault detectors and to integrate those into operating sys­

tems. XFI [83], SVA [21, 22], CCured [55], SFI [84], and SAFECODE [24]

are all examples of user­ or kernel­space fault detectors. These and similar

fault detectors improve safety but not reliability. Recovery Domains can be

used by these fault detectors to provide a complete system capable of not

only detecting faults, but recovering from faults and continuing execution.

Work on Recovery Domains was specifically inspired by work on Se­

cure Virtual Architectures (SVA). Specifically, SVA provides a basis for the

memory­safe execution of operating system kernels written in C (or another

non­typesafe language). When memory safety of the operating system built

on SVA is violated, SVA halts the machine. Further reflection on this scenario

directly led to designing Recovery Domains so that memory faults could be

recovered from, not merely detected. This chapter uses SVA as a prototypi­

cal fault detector to both illuminate the interaction between fault detector and

Recovery Domains and to provide, speculatively, a complete use of Recovery

Domains.

98

7.1 SVA Overview

SVA consists of two major components. The first is an API which wraps

access to hardware functions, such as page tables, allowing higher­level,

compiler­driven reasoning about the actions of operating systems. The sec­

ond component, built on that foundation, is a memory safety system.

The hardware abstraction ABI provides a way to understand, restrict, ab­

stract, and modify the use of (mostly) processor features by the operating sys­

tem. For example, abstracting page tables to the ABI allows systems, such as

memory safety, to validate that state changes conform to certain rules. Mem­

ory safety requires that kernel pages not be double­mapped, which it can

enforce by monitoring changes to the page table which must occur via the

ABI.

SVA contains a version of SAFECODE [24] specialized for operating sys­

tem environments. This provides several important safety guarantees for op­

erating systems written in unsafe languages, such as C. SVA aims to enforce

fine­grained (object level) memory safety, control­flow integrity, type safety

for a subset of objects, and a sound operational semantics even with dangling­

pointer errors.

These guarantees are ensured by instrumenting the code to monitor mem­

ory accesses and pointer arithmetic. SVA uses a pointer analysis (Data Struc­

ture Analysis [48]) to discover which pointers may point to which object

and to optimize bounds checks and object lookup based on this analysis.

Type­safe objects, as discovered by the pointer analysis, require fewer checks.

Pointer analysis allows instrumentation of indirect function calls to ensure

the target function is one known to be acceptable to that call­site by the com­

piler. Pointer analysis allows optimizations over existing object bounds stor­

99

age techniques. Existing techniques store bounds information either as “fat

pointers”, which embed object bounds inside pointers by enlarging the point­

ers, or in a global table of all objects. Fat pointers, as used in CCured [55],

break existing code by changing the size of pointers, causing interfaces to

change and disrupting hard­coded pointer arithmetic in structures contain­

ing pointers. A large table of all objects in the system, as used by Jones

and Kelly [43], creates a scalability problem as the number of objects grows.

Rather than having a table which maps all objects to object meta­data (such as

start address and length), tables are stored per points­to set discovered by the

pointer analysis. This reduces the number of entries which must be searched

through to find an object (or the lack of an object) for an arbitrary memory

address.

The instrumentation amounts to: recording the creation of objects, in­

cluding their bounds; checking bounds after pointer arithmetic; checking that

objects exist before a load or store; checking that an address is the start of an

object before a deallocation; checking that an indirect call is calling an ex­

pected function, found by compiler analysis; and recording the deallocation

of objects.

7.2 SVA As a Driver For Recovery

As a fault detector, SVA is ideal. It detects faults at the time a bug oc­

curs, rather than after corruption. When a fault is detected, the system is

halted. This prevents corrupted state in the OS. Further, by providing mem­

ory safety, the recovery runtime is protected from memory bugs in the op­

erating system. This alleviates many of the sources of potential corruption

to the runtime by the operating system. Because a fault is triggered before

100

a stray write (or read) happens, no memory error can corrupt the runtime.

A detector which triggered a fault far from the activation site could allow

corruption to happen to the runtime.

Recovery Domains also do not interfere with SVA’s notion of ’object’.

SVA monitors allocations and deallocations, forming runtime knowledge of

what language­level objects exist in the kernel address space. Since alloca­

tors are undone by an inverse operation, namely the deallocator, the existing

SVA monitoring code for those allocators will maintain a consistent notion

of objects even in the event of a rollback.

The use of a kernel ported to the hardware ABI can simplify a few im­

portant operations. First, atomic operations exist as calls to the ABI which

are compiled to LLVM intrinsics. This removes the need for either porting of

atomic operations to intrinsics just for recovery or the recognition of com­

mon inline assembly code sequences (which tend to be unique to each op­

erating system). Secondly, since the register state is handled by the ABI for

interrupts and process switching, the in­memory format of the saved regis­

ters is known. This allows the recovery system to directly restore the register

and control state of suspended processes rather than having to instrument

threads to verify that they were rolled back while suspended and to perform

the register and control restoration after they are awakened.

SVA thus forms a model fault detector for Recovery Domains. Neither

interfere with the assumptions of the other. SVA is greedy; SVA triggers

faults without allowing the corrupting action to happen. When a memory

fault happens, no corrupt state has been written thus protecting the recovery

system from its most prominent source of bugs that could prevent recovery.

101

void func1() {
void* x = alloca();
sva_register(x);
...

5 sva_unregister(x);
return;

}

void func2() {
10 void* y = alloca();

sva_register(y);
...
sva_unregister(y);
return;

15 }

void func3() {
void* z = alloca();
sva_register(z);

20 func1();
func2();
...
sva_unregister(z);
return;

25 }

Figure 7.1: Overlapping stack allocations

7.3 SVA Integration

Recovery Domains and SVA can coexist with few changes. SVA’s memory

safety compiler is first run over the kernel instrumenting it for safety. Then

the Recovery Domains compiler is run over the result. The runtimes for both

systems are linked into the kernel.

The systems do not mesh perfectly. One change is required for correct­

ness. Two other changes will lower the overhead of the combined system.

One area where stacking the transforms does not work is in the case

of stack allocations. Address­taken local variables or programmer­allocated

102

stack memory cause the creation of non­heap objects which must be tracked

by SVA. SVA requires the registration of these allocations with the runtime

as objects, which it performs automatically as part of its compiler passes. Re­

covery Domains assume stack allocations will be undone when the stack is

rolled back. During recovery, stack objects registered with the SVA runtime

must be unregistered. This cannot be achieved by registering inverse actions

with the Recovery Domains runtime to undo the registration of stack objects.

Consider figure 7.1. The stack objects in func1 and func2 may overlap when

those functions are called from func3. Since only one function is active, this

isn’t a problem in normal execution. However, if inverse actions were reg­

istered, by the end if func3, there would be three registered inverse actions

to undo stack objects, yet these objects would already be freed. For heap

objects, Recovery Domains defer deallocation to prevent this case, but for

stack allocations this is not possible since control flow implicitly deallocates

the objects. To solve this, either stack objects need to be promoted to heap

objects or Recovery Domains need to provide an inverse action stack which

can have actions removed if they no longer apply.

Two other changes are desirable, but not necessary to integrate the two

systems. The main effect of not performing these optimizations is extra log­

ging and loss of optimization opportunities. First, SVA introduces new mem­

ory locations to store bounds information obtained from the runtime. These

address­taken temporaries should be ignored by the recovery system. These

are easily identified since their only uses are by SVA runtime function calls.

Second, many objects would appear address­taken and escaping by the re­

covery system if considered without knowledge of SVA’s instrumentation.

Objects are passed to the SVA runtime regularly. This does not represent a

true escape and should be ignored by the recovery system.

103

struct fib_info * fib_create_info (
const struct rtmsg *r, struct kern_rta *rta,
const struct nlmsghdr *nlh, int *errp) {

...
5 if (fib_props[r->rtm_type].scope > r->rtm_scope)

goto err_inval;
...

fi = kmalloc(sizeof(*fi)+nhs*sizeof(struct
fib_nh), GFP_KERNEL);

10 ...
memset(fi,0,sizeof(*fi)+nhs*sizeof(...));

if (rta->rta_priority) {
temp = rta ->priority;

15 fi->fib_priority = *temp;
}

...
}

Figure 7.2: Original kernel source for purposes of an SVA and Recovery Do­
mains example.

7.3.1 Source Transformation Example

To clarify the combined compiler transformation of source by the safety

compiler from SVA and the recovery compiler from recovery domains, we

present an example of how the transformations stack. The example is sim­

plified in several ways. First, for readability, the example is given at the C

language level. This involves no loss of generality. Second, the accessing and

caching of the active recovery domain is omitted. Details on that can be found

in previous chapters.

Figure 7.2 is taken from the SOSP 2007 paper [21] on SVA. The exam­

ple is an excerpt of fib_create_info from the Linux 2.4.22 network stack.

This function allocates a data structure for new routes. The example shows

dynamic array indexing, allocation, memory functions (which are dealt with

specially by both SVA and Recovery Domains), and memory accesses.

104

MetaPool MP1 , MP2;
2

struct fib_info * fib_create_info (
const struct rtmsg *r, struct kern_rta *rta,
const struct nlmsghdr *nlh, int *errp) {

...
7 //look up object bounds and then check the access

getBounds(MP1 , &fib_props , &s, &e);
boundscheck(s, &fib_props[r->rtm_type].scope , e)
if (fib_props[r->rtm_type].scope > r->rtm_scope)

goto err_inval;
12 ...

fi = kmalloc(sizeof(*fi)+nhs*sizeof(struct
fib_nh), GFP_KERNEL);

pchk_reg_obj(MP2, fi, 96, NULL, SVA_KMALLOC);
...

17 //check bounds for memset without lookup since
//we know the start and size from the kmalloc
boundscheck(fi, (char*)fi + 95, (char*)fi + 96);
memset(fi,0,sizeof(*fi)+nhs*sizeof(...));

22 //check that rta is a valid object
lscheck(MP1, rta);
if (rta->rta_priority) {

//check that rta->rta_priority is valid
temp = rta ->priority;

27 lscheck(MP2 , temp);
fi->fib_priority = *temp;

}
...
}

Figure 7.3: Example of kernel source instrumented by SVA to provide mem­
ory safety. Added instrumentation is in bold.

105

Figure 7.3 comes directly from [21] and shows the various instrumenta­

tion performed by the safety compiler. The added instrumentation is in bold.

On line 8 the bounds of fib_props are looked up and the indexing on line

9 is checked by line 9 to ensure it stays in bounds. Line 15 registers an ob­

ject newly created by the allocator with the runtime. Line 19 checks that the

memset will stay inbounds. The check is against an object locally allocated

so the bounds information can be forwarded from the allocation site to the

check rather than looking it up.

Figure 7.4 builds on figure 7.3 by including instrumentation for recovery.

New instrumentation is in bold. To improve readability, temporary variables,

whose names start with rd, are introduced to store the result of loads.

While this is a straight­forward replacement of loads and stores by

rec_dom_load and rec_dom_store, a couple things should be explained.

First, on line 28, memset was replaced by a call into the runtime to perform

the memset. Memset streams a number of stores and can be specialized to

more optimally interact with both locking, logging, and checks for optimized

code paths. Second, kmalloc is an allocator and treated specially by the Re­

covery Domains system. However it does not appear so from this example.

This is because the setup, tear down, error virtualization, and inverse logging

for the allocator happen inside a wrapper created around kmalloc. This sim­

plifies the transform as no call sites need to be modified when introducing

Recovery Domains. Thus the call appears unchanged in this example.

In the full system, the fresh memory optimization would remove the call

to rec_dom_memset and call a memset routine which performed no logging.

This is possible because fi has not escaped by line 28.

106

MetaPool MP1, MP2;

struct fib_info * fib_create_info(
4 const struct rtmsg *r, struct kern_rta *rta,

const struct nlmsghdr *nlh , int *errp) {
...
//look up object bounds and then check the access
getBounds (MP1 , &fib_props , &s, &e);

9 rd1 = rec_dom_load(&r->rtm_type , ActiveRD);
boundscheck(s, &fib_props [rd1].scope , e)
rd2 = rec_dom_load(&r->rtm_scope , ActiveRD);
rd3 = rec_dom_load(&fib_props [rd1].scope , ActiveRD);
if (rd3 > rd2)

14 goto err_inval ;
...

fi = kmalloc (sizeof (*fi)+nhs*sizeof(struct
fib_nh), GFP_KERNEL);

//kmalloc is an independent domain and has
19 //effectively registered an kfree as an inverse by:

//rec_dom_log_inverse(kfree, fi)
pchk_reg_obj(MP2 , fi, 96, NULL , SVA_KMALLOC);

...
//check bounds for memset without lookup since

24 //we know the start and size from the kmalloc
boundscheck(fi, (char*)fi + 95, (char*)fi + 96);
//memset is specialized in the recovery domain
//runtime for efficiency
rec_dom_memset(fi,0,sizeof (*fi)+nhs*sizeof (...),

29 ActiveRD);
//check that rta is a valid object
lscheck (MP1 , rta);
rd3 = rec_dom_load(&rta ->rta_priority , ActiveRD);
if (rd3) {

34 //check that rta->rta_priority is valid
lscheck(MP2 , rd3);
rd4 = rec_dom_load(rd3 , ActiveRD);
rec_dom_store(&fi->fib_priority , rd4 , ActiveRD);

}
39 ...

}

Figure 7.4: Example of kernel source instrumented by SVA to provide mem­
ory safety then instrumented by Recovery Domains to provide recovery. In­
strumentation added by Recovery Domains is in bold. ActiveRD is short for
the active recovery domain. Accessing the active recovery domain is omitted
for clarity.

107

7.3.2 Faulting Example

If a fault occurred at line 31 in figure 7.4, the SVA runtime would call

rec_abort. The machine would be paused as the memory state was reverted.

Since kmalloc is an independent domain, its changes to the state would not be

reverted in this phase. After the memory state was reverted, the inverse oper­

ations would be performed. One such operation would be to call kfree with

the pointer returned at line 16. This would undo the effect of the kmalloc

semantically. Control flow would resume from the start of the domain and

recovery would be complete.

Since SVA cares about objects and their boundaries, maintaining matched

frees to allocations is required during recovery to keep consistent meta­data

for the SVA runtime. Thus the inverse for kmalloc needs to be a wrapper

around kfree which also calls SVA to unregister the object being deallocated.

7.3.3 Differences Preventing Merging of Runtimes

Although it would be nice to be able to share work between the SVA runtime

and the recovery runtime, there is not an obvious way to do this. This comes

from fairly different requirements on meta­data and what is instrumented.

SVA is primarily interested in objects. Objects are the language level con­

struct against which it is basing its protections. Thus it must lookup meta­

data for a region of memory corresponding to an object from an arbitrary

address. To do this it maintains a modified splay tree in which the nodes are

non­overlapping memory ranges. This allows it to find meta­data for an ob­

ject given any address inside the object. This lookup supports checking for

existence of objects (as in the lscheck) as well as retrieving the bounds of ob­

jects (via the getBounds call). Since meta­data is per­object, it is desirable to

108

minimize per­location overhead. Having a range lookup structure minimizes

space usage by having a fixed overhead per­object rather than per­location

and not having any memory use for unallocated memory.

Recovery Domains concerns itself with changes to memory locations. It

is not tied to higher level concepts like objects. Further, to protect the entire

kernel, it must protect allocators, which operate on pre­C­language­object

memory. Thus, by necessity, it cannot operate strictly on an object level.

Objects allow semantic optimization of recovery through inverses, but are

not necessary constructs for recovery; recovery semantics make sense from a

memory location standpoint, not from an object standpoint. Since potentially

every load and store is instrumented, and loads and stores are a large fraction

of the code executed, every effort is made to ensure extremely fast processing

of them. To do this, a direct lookup structure, in this case a hash­table, with

no chaining, is used to provide fast constant­time lookups. Speed requires

that two locations which hash to the same meta­data bucket alias.

To place recovery meta­data inside the object meta­data of SVA would

require using per­location memory, greatly expanding the size of meta­data

and making it variable length. Each load and store would have a considerably

more costly lookup, even if the required node was near the root of the tree.

Placing SVA object meta­data inside recovery meta­data, by adding a chain

of objects aliased by a location would increase the overhead of meta­data

by 33%. Creating and destroying objects would also be more costly as all

locations in that object would have to be updated.

There are situations in which some work can be shared. When a domain

starts or ends, the recovery system must take a global lock. SVA, similarly

needs a lock when registering allocated objects. These locks could be shared.

A similar situation exists on an SVA load­store check.

109

7.4 Conclusion

SVA integrates with Recovery Domains with almost no changes to either. A

few changes are necessary to keep SVA’s runtime consistent with the kernel

allocators in the event of rollback. SVA’s memory safety pairs well with re­

covery since errors are detected before they are executed. This allows precise

error recovery of the affected threads since the fault and the error are at the

same location.

SVA’s memory safety protects the recovery runtime from several methods

of corruption which could prohibit recovery or cause recovery to produce

unintended state. SVA, as published in [21] is vulnerable to the same page

re­mapping corruption which recovery domains is, but work has been done

on preventing this in [20].

110

Chapter 8

Related Work

In addition to the projects already discussed in this dissertation, work on

Recovery Domains is related to several categories of previous research:

transactional systems, techniques for recovering from faults in operating sys­

tems, and programming language support for recovering from faults. Many

projects focus on fault isolation within the OS through new OS architectures,

changes to commodity OS kernels, or language­based techniques.

This chapter starts with a discussion on the limits of recovery, which

drives the design of Recovery Domains. Then three basic recovery techniques

are reviewed, from very basic to complex. Then, specific recovery systems

proposed in the literature are discussed. Finally, the studies of the limitations

of both automated recovery and various recovery mechanisms are reviewed.

Avoiding the limits of various recovery techniques, in part, drives the design

of Recovery Domains and will be discussed at the end of the chapter.

8.1 Limits of Recovery

Automatic recovery is not without its limitations. Several studies look at

the types of bugs encountered by various systems and whether re­execution

would re­trigger them, how much and how often state should be saved to

avoid checkpointing corrupted state, and how automatic can recovery be and

still be successful.

111

Chandra and Chen [16] look at the types of faults encountered by sev­

eral applications and classify them into three categories. The first category,

comprising 72­87% of faults were independent of the operating environment

and would be re­triggered by any generic, transparent recovery mechanism.

Of the remaining faults, half were dependent on an operating environment

that was unlikely to change. The remaining faults were transient faults, faults

dependent on non­determinism or on state likely to have changed during

transparent recovery. This supports the argument of this dissertation that

permanent bugs (the first two categories in the study) are an important target

for recovery, and systems which merely recover from transient faults by small

changes to the environment are insufficient to handle large classes of faults.

Further work by Lowell, Chandra, and Chen [51] show a tension in trans­

parent recovery between not losing user­visible state and losing corrupted

state, hence allowing recovery. If execution since the last checkpoint has not

caused output, rollback can happen with no user­visible effects. This can

be ensured by checkpointing after at least every operation that causes user­

visible changes. However, they show this has a high risk of saving corrupt

state (thus producing incorrect output). If checkpoints are less frequent, cor­

rupt state is saved less often, but corrupt output is visible to the user. This

argues in favor of the decision to not make recovery domains transparent

to programmers. By exposing faults, but providing strong guaranties about

state, the programmer is able to reason about state after a fault and control the

visibility of the fault (by failing the operation, retrying, etc.) as appropriate

for that operation.

Chandra and Chen [17] also study how successfully a system recovers

from faults using checkpointing on a continuum of state sizes and frequen­

cies. At one end, programmer­supplied checkpointing saves a subset of pro­

112

gram state when the programmer deems it necessary. By minimizing the

amount of state saved, the likelihood of the state being corrupted, and hence

cause the fault to be re­executed, is minimized. At the far end of the spectrum

is automatic checkpointing which saves the entire state before any output­

commit. Although application­specific checkpointing performs significantly

better than generic checkpointing, faults injected into the application cause

1­19% percent of application­specific recovery systems to recover incorrect

state and 27­41% of generic recovery systems to recover incorrect state, lead­

ing to incorrect results.

8.1.1 Limits of Recovery­Oriented Operating Systems

Several operating systems have been constructed with recovery as a goal of

the design. These systems illustrate the need for recovery domains even in

the presence of novel system organizations.

Minix3 [41], a microkernel, includes a server responsible for restarting

failed servers. In practice, this creates an ad­hoc fault handling system. Since

servers have state, a failed server loses the state of all clients using it. In the

case of the network server, all open connections would be lost. This puts the

burden of recovery on every client for every type of server they use. Failures

of some components, such as the file system, prevent recovery since the rein­

carnation server depends on them. While state can be stored in a state storage

server, doing so increases the risk of restoring corrupted state, as well as in­

troducing more dependencies for successful recovery. Recovery Domains

would supplement this recovery mechanism by exposing failed requests to

the client in a uniform way (or at least in a way they should be able to handle

in normal fault­free operation) while preventing unexpected state loss due to

a restart.

113

Chorus [64] includes support for a type of sub­system­specific check­

pointing and restart ability [6]. Servers (or actors in Chorus) may check­

point a representation of their state in a persistent region of memory. To the

programmer this is simply support for programmer­supplied checkpointing

discussed in 8.1. On a server restart, all state and resources except the check­

pointed state are destroy, then the server is restarted and initialized with its

saved state. As discussed in 8.1 this approach does not guarantee correct state

after a restart.

EROS [71, 70] includes continuous checkpointing. Continuous check­

pointing periodically marks all objects as copy­on­write and asynchronously

writes out the state to disk. If an object in the checkpoint is modified it will be

copied and the copy modified, thus not tainting the in­progress checkpoint.

However, correctness of restart in this system is dependent on not having

corrupted state in the checkpoint, a problem discussed in 8.1.

CuriOS [23] allows servers to bind client state as protected objects. These

objects are strongly isolated, they are only available to the server when it

is processing the client’s request. The hope is that on a server restart, having

client state protected allows a server to continue processing requests from the

client. This again depends on not saving corrupted state. If state is corrupted

and all necessary state to process a request is per­client, then after several

retries, the client and its state can be killed. Further, the authors acknowledge

that “restarting a service that has visible external effects may not always result

in correct behavior”. So while more carefully designed to isolate client state

that exists in servers and bind that state to the client, this is not sufficient to

ensure recovery. This approach is similar to MicroReboot [15, 14].

114

8.2 Recovery Techniques

Recovering from errors has been a concern of programmers as long as there

have been misbehaving hardware, misbehaving software, and users.

8.2.1 Ad­hoc

The first ad­hoc recovery technique is ubiquitous: error codes. Error codes

exist in operating system interfaces [99, 96, 97, 4], in standard libraries [1],

shared libraries [3], and in process termination. Error codes are no more

than a signaling mechanism indicating to the caller that an error needs to be

handled. The state of the faulting system and what actions should be taken

vary as widely as the users of error codes.

Exceptions [2, 5] are a common feature of modern programming lan­

guages. The semantics of exceptions vary widely between languages. They

range from being a signalling and control mechanism in languages such as

Java to also performing basic recovery in languages such as C++. When they

perform recovery they often are limited to destroying objects on the stack

and executing their destructors. This enables the common idiom of “release

on destroy” whereby a resource, such as an open file, is released when the

wrapping object is destroyed. This, however, is not a recovery feature of the

language, but the disciplined use of exceptions to help with recovery. Ex­

ceptions, in practice, even within the same language, are used in different

ways and to different extents by programmers, making it impossible to have

a uniform exception handling regimen across all libraries a program may use.

Further, exceptions are part of the interface to a library forcing the applica­

tion to adopt the library programmer’s exception handling methodology for

those portions of the code which interface with that particular library; other

115

libraries may implement and constrain exceptions differently.

8.2.2 Isolation

Isolation is the notion of containing and limiting a portion of the system such

that a fault in it can be dealt with without terminating the entire system. The

most widely deployed form of isolation is the process. A process is, on mod­

ern operating systems, isolated from other processes and the operating system

by the virtual memory management hardware (as controlled by the operat­

ing system). This contains the process state and prevents stray corruption of

other process’ state. Language­level isolation is used by several systems; such

as SPIN [10], Singularity [42, 26], JavaOS [68], SafeDrive [95], SFI [84], and

XFI [83]; to provide isolation to components of an operating system. These

specific systems will be discussed in more depth in Section 8.3.2.

8.2.3 Checkpointing and Rollback

Using checkpoints for fault tolerance is well studied [61, 25] and many mech­

anisms have been proposed for it [46, 13, 67, 79, 88]. While approaches vary

by the fault model they are targeting and the initiator of roll­backs (sensors,

programmer driven, host driven), they must all capture the state of a system

in such a way as to be able to restore the pre­fault state after the fault. There

are limitations associated with how often a fault can be recovered from as

discussed in 8.1. In general, like Recovery Domains, using checkpoint and

rollback for recovery involves a separate fault detection mechanism and rules

governing the restart of the system. Checkpointing and Recovery Domains

both suffer from the output­commit problem: actions that are visible outside

the system.

116

Checkpoint­based recovery has to contend with non­determinism in re­

execution: a random event during normal execution will not happen dur­

ing re­execution. How to handle these events which are not recorded in the

checkpoint affect the amount of involvement required of the programmer.

In some cases, such as a random number generator, using a different num­

ber during re­execution may be acceptable. However, a key­press (which is

essentially a random event) should not be lost because of a rollback.

Checkpoints and re­execution have been discussed for use as debugging

aids for a considerable time [94, 27, 8, 11, 18, 75, 82, 81]. Notably, check­

points are used for deterministic debugging by King et. al. in [44] for oper­

ating systems by Srinivasan et. al. in [75] for applications. These systems are

intended as debug aids and are not concerned with the continued execution

of a system, but with allowing programmers to find the root cause of a fault.

Recovery Domains are not concerned with providing a convenient mecha­

nism for debugging a fault, but for recovering a system and continuing after

a fault.

8.2.4 Transactions

Many of the low­level mechanisms we use are borrowed from database

systems. These include the use of undo logs for recovery; the tracking of

dependencies between undo­able operations (domains); the distinction be­

tween “protected” database operations (like Basic Domains), unprotected

operations (Transparent Domains) and “real” operations (Unlogged Do­

mains); and the use of open­nested transactions [54] with “compensating

transactions” [34, 9] (reversible domains with programmer­specified undo

operations).

117

Nevertheless, Recovery Domains are novel in several ways. First, none

of the previous transactional systems we know of were designed to achieve

a similar goal, namely recovery of entire systems from unanticipated errors.

Achieving consistent state of a database under expected operating conditions

gives recovery from anticipated errors as a side effect. Recovery from unan­

ticipated, non­fatal errors are not handled however. All fatal errors should

trigger the recovery system, to ensure consistent data, when the database is

restarted. Second, transactional memory systems and database systems in­

tegrate recovery with several other aspects of the system. Recovery from

anticipated errors is integrated with synchronization and data management

to achieve “failure atomicity” and “execution atomicity” because they share

mechanisms for logging, conflict detection, and rollback. Third, databases

transactions focus on the recovery of the data in the database while Recovery

Domains focus on the recovery of the internal state of the system, not on the

data it is managing.

Programming language mechanisms are also being developed to add

transactions to new or existing parallel programs [36, 53], but those mecha­

nisms also are designed for both optimistic concurrency as well as recovery.

In contrast, we introduce recovery mechanisms semi­automatically into an

existing multi­threaded software system where the synchronization mecha­

nisms are pessimistic (e.g., locks, semaphores, or monitors), i.e., they do not

support rollback of program state. Therefore, we have to introduce logging

and rollback into such existing systems, and have to optimize these by taking

advantage of transparent and reversible operations wherever possible. Fur­

thermore, Recovery Domains do all this semi­automatically to minimize the

manual effort expended by the programmer.

118

TxLinux [63] exploits transactional memory within an OS kernel to sim­

plify programming of mutual exclusion. It introduces a new primitive called

a cooperative transactional spinlock for combining optimistic and pessimistic

synchronization. It does not aim to improve the recoverability of the OS

kernel in the presence of unanticipated faults, either within or outside critical

sections. Like this work, we could leverage hardware support for transac­

tional memory techniques. We would be using transactions not to replace

locking in the kernel but to replace locking in the run­time.

Locus [86], QuickSilver [38], and TxOS [56] all add transactional seman­

tics to operating system services. These systems do not aim to recover from

internal faults within the operating system per se: an unexpected internal ker­

nel error can crash the system just as with an ordinary, non­transactional

kernel. These systems do have primitive mechanisms for rolling back and

restarting intervals of code, but using these mechanisms for fault recovery re­

quires significantly different policies, e.g., (a) treating dependences between

threads as benign and tracking the dependences to identify which intervals

must be rolled back if an error occurs; (b) designing appropriate error re­

porting policies when a request encounters an error and must be rolled back;

(c) designing appropriate, and minimal, annotations to facilitate the design;

and (d) developing optimizations to achieve acceptable performance. The

reference implementation of Recovery Domains addresses (a­c) to achieve

nearly automatic recovery but with arguably prohibitive overhead for pro­

duction use. The optimized implementation addresses (d) by proposing new

compiler optimizations to bring the overheads down to acceptable levels.

119

8.3 Recovery Systems

Based on these recovery techniques, many recovery systems have been devel­

oped. The first class of systems we discus extend languages with new features

which explicitly provide enhanced recovery. The second class we investigate

are operating system recovery systems. Some are based on standard check­

pointing techniques, other use various forms of isolation (both hardware and

software) with recovery. Finally, we look at a collection of recovery systems

which are based on extensions to checkpointing.

8.3.1 Language Based

Some programming language extensions or programming models exist to

attempt to improve error handling and the correctness of error return paths.

Recovery Domains generalize and unify these models; these extensions

can be treated as special cases of Recovery Domains, albeit ones with nice

language­level syntax.

Weimer and Necula [85] extend Java exception handlers to have a stack

of “compensation” code to release resources acquired before an exception is

raised. This is motivated by observing that exception handlers rarely pre­

serve invariants (such as lock state) or interface requirements. They present

a language extension and runtime which allow blocks of code to be marked

with compensation code that is executed if an exception unwinds past a given

point. This can be seen as a semantically invertible recovery domain execut­

ing in an unlogged parent domain. While compensation stacks help prevent

high level mistakes during exception handling, they do not provide low­level

guarantees of the state of the program after exceptions.

120

Low­level memory state guarantees are provided by Shinnar et. al. [72]

who extend the exception model of C# to support exceptions with memory

undo. Their language extensions also support user defined hooks to undo ar­

bitrary operations. Neither work handles memory dependence tracking and

rollbacks across multiple threads. Without cross­thread rollback, memory

state is still undefined after an exception.

Xu et al. [89] describe a language­agnostic programming model that en­

ables error recovery for concurrent object­oriented programs. They define

mechanisms for cooperative exception handling and (like database systems)

take advantage of transactions in the underlying language for recovery as

well. Since we are recovering commodity operating systems written in assem­

bly and C code, we have neither the luxury of simply extending a language

exception mechanism, nor can we rely on certain programming styles.

Rudys et al. [65] instrument Java code to allow runaway threads to be

stopped without corrupting the runtime. This is done by inserting checks in

loops to check if a thread has been killed. Blocking calls made to native code

spawn a new thread with the original thread waiting on it. With these re­

structurings, a thread can be destroyed even if it is in a system call or runtime

function. The goal of this work is simply to supply the equivalent of ’kill’

for threads that exceed their resource limit without causing the JVM and the

application hosting it to die. In this sense, this work is not concerned about

general recovery, simply recovery from a narrow class of faults. Further, this

work depends on the memory safety of the language implementation. This

contrasts with Recovery Domains which is not meant as a way to terminate

runaway threads in a safe manner but provides inter­thread recovery from

any fault, including potentially resource limitations and infinite loops, given

the correct detector.

121

Rudys et al. [66] extend runaway thread termination in [65] to preserve

sane state in the event of a termination. An object­granularity transaction sys­

tem is created and code is transformed to run all tasks in it. They have several

assumptions: all transactions start at thread creation and end at thread termi­

nation, threads are short lived, and threads only handle one request before

they terminate. Consistency of output channels and resources, such as open

file descriptors, are not maintained. If circular dependencies are created, the

youngest thread is killed. The basic approach and set of assumptions is from

studying Java­based servers with general frameworks that create instances of

programmer­supplied classes to handle requests. Overheads range from 6x

to 7x in array light­code to 23x in their worst­case. Recovery Domains are

more general: allowing request nesting, handling circular dependencies with­

out rollback, and not making assumptions about the threading structures of

a program.

8.3.2 OS Architectures for Isolation

The general technique of checkpoint and recovery has been well­studied in

the past [25] and has been applied to operating systems. Bressoud and Schnei­

der use deterministic hypervisor­level replay to replicate the state of a sys­

tem remotely, thus facilitating efficient fail­over recovery for operating sys­

tems [12]. Deterministic replay subjects the system to the potential to ei­

ther save corrupt state or re­execute a fault after rollback as discussed in Sec­

tion 8.1.

The Rio Vista project [52] makes in­memory file­system caches persistent

by using battery­backed RAM, and can use this persistence to recover data

after reboots. I/O Shepherding [35] adds a new layer below the file system

to unify file­system reliability in order to cope with storage faults. These

122

recovery systems target a different, narrower category of fault than Recovery

Domains.

Recent projects describe alternative OS architectures that improve fault

isolation by breaking OS­level subsystems into isolated components, thus

isolating faults to a single subsystem. Microkernels [7, 33, 37, 40] run OS­

level subsystems as user­mode server processes with a small underlying ker­

nel. Although this provides memory isolation, if a process is restarted due

to a fault, state is either lost in the traditional microkernel approach or state

is restored, running the risk of restoring corrupted state. The risk of restor­

ing corrupted state is discussed in section 8.1. Microkernels with recovery

capabilities are discussed in 8.1.1. Microkernels pair well with Recovery Do­

mains as microkernels force a very request­oriented structure on the kernel,

dovetailing nicely with the basic unit of recovery in Recovery Domains: a

request.

Virtual machine monitors have been used to isolate device driver faults

from the rest of the kernel [50, 29]. This isolates code which is often buggy,

but does nothing to recover from faults in the core kernel, faults in the VMM,

or state loss by a restarted device driver. These projects use a VMM to provide

isolation, the use of address spaces or instrumentation by systems such as

Nooks [77] is discussed in Section 8.3.2.

Further, projects such as Singularity [42, 26], SPIN [10] and JavaOS [68]

implement operating systems in type­safe languages, eliminating many silent

errors. The projects use the compiler­supported, language­based isolation

provided by memory safety as an important component of their architecture,

but do not extend the language semantics to recover from runtime errors.

Fault recovery in these systems require the correct handling of exceptions by

the programmer rather than being handled in an automatic way as done in

123

Recovery Domains.

Recovery Domains is a more general mechanism that is language­agnostic

and targets commodity operating systems and user­space systems. There is

an enormous amount of engineering­hours invested in existing systems and

rewriting all these systems is both unreasonable and too time and resource

consuming to be a practical solution to reducing faults and providing recov­

ery today. Further, these systems mainly provide memory safety, which is

only one type of potential error. Recovery Domains allow recovering from

any error for which a detector exists.

Direct Fault Isolation

In addition to alternative OS architectures, several recent projects focus

on retrofitting commodity operating systems for improved fault isolation.

Nooks [78] implements a driver isolation layer for Linux by using memory­

management hardware to catch errant memory accesses made by buggy

drivers.

Nooks statically wraps kernel extensions and drivers to provide isola­

tion, logging, and recovery. All interactions of an extension are logged by

the wrapper and isolation is enforced by copying kernel objects used by the

extensions into and out of the address space. Nooks takes the isolation and

monitoring approach one step further and rebuilds drivers’ internal state by

replaying driver­level calls after a fault in a device driver [77]. Nooks fo­

cuses on extensions to the kernel, including device drivers and makes rigid

assumptions about their boundaries. Although some code is shared, different

types of extensions require different wrappers. Wrappers for network drivers

must be written which are separate from wrappers for sound cards or wrap­

pers for file systems. Recovery Domains are request­oriented and are defined

124

by their entry points, subsuming any executed code in­between. This makes

them simple to specify and uniform across the entire system, not specific

to each subsystem. Further, complex interactions between components and

extensions are naturally incorporated into a request. One of Nooks’ most

interesting features is its ability to restore sane state to a hardware device by

replaying requests to the hardware. Recovery Domains are flexible enough

to allow incorporation of Nooks for interacting with hardware devices. Re­

covery Domains are always on and cover the entire code base, including the

core kernel and are not limited to extensions.

Like Nooks, SafeDrive [95] isolates drivers from the rest of the operat­

ing system, but SafeDrive uses language­level mechanisms on legacy C code

to enforce memory isolation. SVA [21] uses language­level mechanism on

legacy C code to enforce fine­grained memory safety for entire kernels, and

XFI [83] uses binary instrumentation to interpose on memory accesses for

OS extensions to enforce isolation.

SafeDrive [95] adds type annotations, in the form of bounds informa­

tion, to Linux drivers. The source is then type­checked and transformed

by the compiler to enforce those types. This provides software­based isola­

tion. Safedrive recovers from type­safety violations by assuming a driver is

restartable. SafeDrive logs specific actions, such as registering device names

or new filesystems, and undoes them to restart the driver. However, not

all global state changes are logged, only state updated though well defined

mechanisms provided by the kernel. Thus a driver directly accessing core

kernel data structures can leave the kernel in an inconsistent state after recov­

ery. SafeDrive, like Nooks, has only been evaluated with drivers (which are

extensions with well­defined interfaces).

125

Vino [69] protects a kernel from errant extensions (not drivers) by imple­

menting software fault isolation to limit fault propagation and transactions

to recover. All access to the kernel by extensions are mitigated through ac­

cessors functions with associated undo operations. These are logged as part

of the transaction preventing the transaction from needing to log operations

performed by the core kernel on behalf of an extension. Vino is a specially

designed operating system, not an attempt to provide recovery to commodity

systems like Recovery Domains, Nooks, and SafeDrive do.

These projects are complementary to this work; they focus on drivers and

extensions. Projects such as Nooks provide a more powerful mechanism for

reasoning about hardware interaction than recovery domains at the cost of

having to write wrappers for each class of device driver. Recovery Domains

supply recovery to the entire kernel, though may not always recover from a

fault in a request which modifies device state. A combination of strong driver

specific recovery, such as Nooks provides, to enable recovery for requests

with low­level hardware accesses and Recovery Domains to enable recovery

to the rest of the system would be a very powerful and comprehensive recov­

ery system.

8.3.3 Extending Checkpoints

Checkpoints have many variations for automatic recovery.

MicroReboot

A variation on checkpointing and isolation is to isolate data from code

while having stateless components. MicroReboot [15] maintains separate

and consistent state for Java objects and can restart individual object without

restarting the entire application. On a fault, just the faulting components are

126

restarted. This is, in spirit, the application level version of microkernels with

data­isolation, such as those discussed in 8.1.1. This approach to recovery

requires the redesign of applications and suffers from limitations similar to

those shown in 8.1.1, namely potentially saving corrupted state.

Environment Changing

A further variation on checkpointing aimed at recovery, as done by Qin et.

al. [60], is to change the environment in which a system is operating. If a

fault is triggered, rollback and re­execution occurs but something is changed.

Many things may be changed, such as memory initialization, delaying frees,

padding allocations, reordering messages, adjusting scheduling, changing sig­

nal delivery, dropping network requests, etc. This approach, like most check­

pointing approaches, also risks saving corrupt state. If state is corrupted and

checkpointed far enough in advance of a symptom of a bug being manifest,

the system will not be able to recover. Further, if the manifestation of a bug

is not caught during re­execution yet the bug was triggered, recovery will er­

roneously succeed. As the set of environment changes increases, the set of

possible changes the system can make becomes the power set of the set of

changes. This means that a sufficiently complex implementation (one with

many ways to change the environment) must have heuristics to prune the

search space, which may cause it to miss a combination of changes that would

avoid the bug.

8.3.4 Reducing Functionality

Systems based on error virtualization, such as ASSURE [74, 73] use error vir­

tualization in much the same way as Recovery Domains. ASSURE was con­

currently developed and was published in the same conference as recovery

127

domains [49]. ASSURE differs from recovery domains in several key aspects.

First, with ASSURE, recovery points are determined by off­line analysis us­

ing fuzzing. Operating­system­supported checkpointing is used to snapshot

the system at recovery points. In the event of a detected fault, the most cur­

rent (or older if necessary) checkpoints are re­executed on a shadow machine.

Re­execution searches for a recovery point which can be used as an error vir­

tualization point. A rescue point is accepted by the re­execution search and

the production binary is patched at the error to use it if the recovery point

allows the application to continue, not change semantics, and process further

requests. The use of binary patching allows ASSURE to be used on existing

binaries, rather than requiring recompilation as Recovery Domains do. The

systems differ in where application specific knowledge is stored. ASSURE

stores it in the recovery systems, while Recovery Domains store the informa­

tion in the original system’s code base. These reflect the differing goals of the

two systems. ASSURE focuses on recovery for binary applications, whereas

Recovery Domains focus on recovery for systems which will be recompiled

to use the recovery system.

Failure­oblivious computing [62] instruments C code with checks to en­

sure memory safety. At runtime, if a memory safety condition is violated,

such as an out of bound store or a load, no memory state is changed but

execution continues with a fabricated value.

128

Chapter 9

Conclusion

Recovery from faults is important for reliable systems. This dissertation pro­

poses and evaluates Recovery Domains – a practical approach to recovery

from faults in request­oriented operating systems. Recovery Domains pro­

vide a low overhead method of enabling recovery from faults detected by

automated fault detectors with minimal changes to an operating system ker­

nel.

Recovery of operating systems is a difficult problem subject to several

important constraints, namely,

• Operating system recovery must work with commodity systems with

few changes. There is a massive investment in developing modern op­

erating systems; operating systems such as Linux and Microsoft Win­

dows have estimated minimum development costs ranging to more than

a billion dollars [87, 30]. Developing a new operating system or mak­

ing major architectural changes to an existing one thus is prohibitively

expensive.

• Recovery must work with commodity operating systems without

changing the interface to the operating system. There is a broad range

of application software built upon the ubiquitous commodity operating

systems. Changing all these systems is not feasible, so to supply im­

proved reliability for these systems, recovery must not require changes

129

to the interface they interact with.

• Recovery must work with the entire operating system. Faults can oc­

cur in any portion of an operating system. Automated tools to protect

against faults can cause faults in locations which are unanticipated by

the original programmer. A recovery system must be able to handle

faults anywhere.

This dissertation presents Recovery Domains as a way to provide re­

covery to operating systems subject to these constraints. Recovery Domains

attempt to meet the ideal recovery system presented in Chapter 2.2 subject

to some inherent constraints. These goals are met, with the noted limitations,

by Recovery Domains, as summarized:

Automatic recovery: Recovery Domains provide completely automatic re­

covery from the point a fault detector triggers recovery. The work

of recovery happens in the Recovery Domains runtime and compiler

transforms handle the instrumentation of the system to use the recovery

system. All details of runtime monitoring happen without programmer

intervention.

For the entire system: Recovery Domains provide recovery for almost the

entire operating system. A few things, such as the core scheduler and

early boot code are implicitly trusted. The programmer can exclude

some additional code paths from protection by making them unlogged

domains, but this is not required by the system.

Minimal porting effort: Recovery Domains require some, though minimal,

porting effort. Request boundaries and how to deal with an error after

recovery require manual annotation, but this annotation burden is very

130

low (a couple hundred lines of code for a code base of over four million

lines in Linux 2.6).

For commodity systems: Recovery Domains are suitable for commodity

systems. This is demonstrated with two ports of architecturally dif­

ferent versions of the Linux kernel and no reason is known that they

should not be usable unmodified on other commodity systems, such as

Windows, OS X, or the BSDs.

Recover from detected errors of any type: Recovery Domains are agnostic

to the type of error that triggers rollback. A fault detector is neces­

sary to detect faults and trigger rollback, but that is beyond the scope

of Recovery Domains. Recovery Domains were inspired by real fault

detectors and is designed to work with them.

Recovery not usable as a denial of service: Recovery Domains do not com­

pletely mask the existence of a fault. Faults are reported to the initiator

of a request. This allows higher­level, existing logic to deal with the

fault. The fault is masked from other tasks in the system. Because there

is no automatic retry mechanism, faults will not keep reoccurring due

to the recovery system.

Clear semantics: Recovery Domains have clear semantics. Both the action

and aftermath of recovery and execution under non­faulting conditions

is specified.

Recovery Domains, as an organization for operating system recov­

ery, are a close match to common operating system architecture. The

implementation­independent design of the recovery system is given in Chap­

ter 3. Recovery is organized around the notion of request, recognizing that

131

requests can in themselves issue requests. Recovery Domains allow for the

notion of context­independent requests to allow semantic recovery for re­

quests which can be logically undone (rather than restoring memory state)

and do not depend on the state of the requester. Recovery Domains track de­

pendencies between themselves and other executing domains to ensure that

consistent state is used by the entire system. This enables recovery or multi­

ple threads, even if shared state is corrupted. Recovery Domains have a clear

and simple programming model which does not require many modifications

to a system.

We developed a reference design and implementation of Recovery Do­

mains suitable for a standard operating system. This design appears in chap­

ter 4. This implementation is based on memory versioning, undo logging, and

a dependence graph. Memory versioning allows finding dependency infor­

mation between domains based on reads and writes. Undo logging provides

for restoring memory state in the event of a fault by restoring the initial or last

committed contents to modified memory locations. The dependency graph

records dependencies found at runtime by the memory versioning between

active domains. The graph encodes the information necessary to determine

when a domain may commit. The system was implemented in LLVM. Linux

2.4.22 was ported to the system and we measured the survivability, overhead,

and coverage of the system. We found that the system could recover from, on

average, 33 consecutive faults. The overhead ranged from 8% to 460%. The

fraction of memory operations executed in recoverable domains ranged from

97% for kernel intensive code to 31% for code which spent most of its ker­

nel time handling interrupts (the timer interrupt was marked as an unlogged

domain).

132

Building on the reference implementation, we integrate compiler analysis

and optimizations, as well as runtime analysis and optimizations, to dramat­

ically lower the overhead of Recovery Domains. Analysis of the dynamic

state of the dependence graph provides opportunities to elide monitoring of

reads. When memory is protected by locks, we can use the memory version

on the lock as a proxy for the locations covered by the lock and avoid ver­

sioning those locations while the lock is held. Memory which is allocated but

has not become visible to other requests needs no instrumentation. These op­

timizations combine to lower Recovery Domains overhead to less than 15%

in all but one test case.

Finally, since Recovery Domains require a fault detector, we give a spec­

ulative integration of the memory safety detector of SVA with Recovery Do­

mains. A couple of cases are noted, for example stack object registration,

which require additional work, beyond simply combining the transforms and

runtimes, to maintain consistent meta­data in the SVA runtime. SVA and lat­

ter work on that platform, provide solutions to many of the potential sources

of corruption to the recovery meta­data that could prevent correct recovery.

This example integration provides a picture of a complete system which com­

bines fault detection with automatic recovery.

Recovery Domains provide a compelling, practical, and easy to use sys­

tem for recovering from faults in commodity operating systems. We hope

that it inspires programmers to make more reliable systems; safety tool de­

signers to not just detect faults in their designs, but use Recovery Domains to

recover from the detected faults; and researchers to continue exploring recov­

ery. Ultimately though, we hope through this work and continuing work in

this area that people come to expect computer systems to be reliable and that

the tools and techniques to make that happen come into wide­spread use.

133

References

[1] Ieee std 1003.1­2001 (posix.1).

[2] Iso/iec 14882:1998.

[3] Xlib Programming Manual. O’Reilly & Associates, Inc.

[4] Macintosh Volume VI. Addison­Wesley, 1991.

[5] Java Virtual Machine Specification, The, 2 ed. Prentice Hall PTR, April
1999.

[6] Abrossimov, V., and Hemann, F. Fast error recovery in chorus/os:
The hot­restart technology. Tech. Rep. CSI­T4­96­34, Chorus Sys­
tems, Inc., August 1996.

[7] Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Teva­
nian, A., and Young, M. Mach: A new kernel foundation for unix
development. In Proceedings of the USENIX Annual Technical Con­
ference (Atlanta, GA, USA, July 1986), pp. 93–113.

[8] Agrawal, H., DeMillo, R. A., and Spafford, E. H. An execution­
backtracking approach to debugging. IEEE Software 8, 3 (1991), 21–
26.

[9] Bernstein, P. A., Hadzilacos, V., and Goodman, N. Concurrency
Control and Recovery in Database Systems. Addison­Wesley, 1987.

[10] Bershad, B., Savage, S., Pardyak, P., Sirer, E. G., Becker, D., Fi­
uczynski, M., Chambers, C., and Eggers, S. Extensibility, Safety
and Performance in the SPIN Operating System. In Proceedings of
the ACM symposium on Operating systems principles (SOSP) (Copper
Mountain, CO, USA, 1995), pp. 267–284.

[11] Boothe, B. Efficient algorithms for bidirectional debugging. In Pro­
ceedings of the ACM SIGPLAN 2000 conference on Programming
language design and implementation (PLDI) (New York, NY, USA,
2000), ACM, pp. 299–310.

134

[12] Bressoud, T. C., and Schneider, F. B. Hypervisor­based fault toler­
ance. ACM Transactions on Computer Systems 14, 1 (February 1996),
80–107.

[13] Bronevetsky, G., Marques, D., Pingali, K., Szwed, P., and Schulz,
M. Application­level checkpointing for shared memory programs.
In Proceedings of the 11th international conference on Architectural
support for programming languages and operating systems (ASPLOS)
(New York, NY, USA, 2004), ACM, pp. 235–247.

[14] Candea, G., Cutler, J., and Fox, A. Improving availability with
recursive micro­reboots: A soft­state system case study, 2003.

[15] Candea, G., Kawamoto, S., Fujiki, Y., Friedman, G., and Fox,
A. Microreboot–a technique for cheap recovery. In 6th Symposium
on Operating Systems Design and Implementation (OSDI) (December
2004), pp. 31–44.

[16] Chandra, S., and Chen, P. M. Whither generic recovery from appli­
cation faults? a fault study using open­source software. In Proceed­
ings of the 2000 International Conference on Dependable Systems and
Networks (DSN, formerly FTCS­30 and DCCA­8) (Washington, DC,
USA, 2000), IEEE Computer Society, pp. 97–106.

[17] Chandra, S., and Chen, P. M. The impact of recovery mechanisms
on the likelihood of saving corrupted state. In Proceedings of the 13th
International Symposium on Software Reliability Engineering (ISSRE)
(Washington, DC, USA, 2002), IEEE Computer Society, p. 91.

[18] Chen, S.­K., Fuchs, W. K., and Chung, J.­Y. Reversible debugging
using program instrumentation. IEEE Transacitons on Software Engi­
neering 27, 8 (2001), 715–727.

[19] Cinque, M., Cotroneo, D., Kalbarczyk, Z., and Iyer, R. K. How
do mobile phones fail? a failure data analysis of symbian os smart
phones. Dependable Systems and Networks, International Conference
on 0 (2007), 585–594.

[20] Criswell, J., Geoffray, N., and Adve, V. Memory safety for low­
level software/hardware interactions. In Proceedings of the Eighteenth
Usenix Security Symposium (August 2009).

[21] Criswell, J., Lenharth, A., Dhurjati, D., and Adve, V. Secure
Virtual Architecture: A Safe Execution Environment for Commodity
Operating Systems. In Proceedings of the ACM symposium on Oper­
ating systems principles (SOSP) (Stevenson, WA, USA, October 2007),
pp. 351–366.

135

[22] Criswell, J., Monroe, B., and Adve, V. A virtual instruction set in­
terface for operating system kernels. In Workshop on the Interaction
between Operating Systems and Computer Architecture (WIOSCA)
(2006).

[23] David, F. M., Chan, E., Carlyle, J. C., and Campbell, R. H. Curios:
Improving reliability through operating system structure. In Proceed­
ings of the 2008 Symposium on Operating Systems Design and Imple­
mentation (OSDI) (2008), pp. 59–72.

[24] Dhurjati, D., Kowshik, S., Adve, V., and Lattner, C. Mem­
ory safety without runtime checks or garbage collection. In Confer­
ence on Language, Compiler, and Tool Support for Embedded Systems
(LCTES) (San Diego, June 2003).

[25] Elnozahy, E. N. M., Alvisi, L., Wang, Y.­M., and Johnson, D. B.
A survey of rollback­recovery protocols in message­passing systems.
ACM Computer Survey 34, 3 (2002), 375–408.

[26] Fahndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt,
G. C., Larus, J. R., and Levi, S. Language support for fast and reliable
message­based communication in Singularity OS. In Proceedings of
EuroSys (Belgium, April 2006).

[27] Feldman, S. I., and Brown, C. B. Igor: a system for program debug­
ging via reversible execution. In Proceedings of the 1988 ACM SIG­
PLAN and SIGOPS workshop on Parallel and distributed debugging
(PADD) (New York, NY, USA, 1988), ACM, pp. 112–123.

[28] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
Leach, P., and Berners­Lee, T. Hypertext Transfer Protocol –
HTTP/1.1. RFC 2616 (Draft Standard), June 1999. Updated by RFC
2817.

[29] Fraser, K., Hand, S., Neugebauer, R., Pratt, I., Warfield, A., and

Williams, M. Safe hardware access with the xen virtual machine mon­
itor. In Proceedings of the First Workshop on Operating System and
Architectural Support for the on demand IT InfraStructure (Boston,
MA, USA, October 2004).

[30] Frazer, K. Building secure software: how to avoid security problems
the right way. SIGSOFT Software Engineering Notes 27, 2 (2002), 71–
72.

[31] Ganapathi, A., and Ganapathi, A. Why does windows crash. Tech.
rep., University of Berkeley, 2005.

136

[32] Ganapathi, A., Ganapathi, V., and Patterson, D. Windows xp ker­
nel crash analysis. In Proceedings of the 2006 Large Installation System
Administration Conference (2006), pp. 12–22.

[33] Golub, D., Dean, R., Forin, A., and Rashid, R. Unix as an Appli­
cation Program. In Proceedings of the 1990 USENIX Summer Confer­
ence (1990).

[34] Gray, J. The transaction concept: Virtues and limitations. In Proceed­
ing of the International Conference on Very Large Databases (1981),
pp. 144–154.

[35] Gunawi, H. S., Prabhakaran, V., Krishnan, S., Arpaci­Dusseau,
A. C., and Arpaci­Dusseau, R. H. Improving file system reliability
with i/o shepherding. In Proceedings of twenty­first ACM SIGOPS
symposium on Operating systems principles (SOSP) (New York, NY,
USA, 2007), ACM, pp. 293–306.

[36] Harris, T., and Fraser, K. Language support for lightweight transac­
tions. In Proceedings of the ACM SIGPLAN Conference On Object­
Oriented Programming Systems, Languages, and Applications (OOP­
SLA) (New York, NY, 2003), ACM Press, pp. 388–402.

[37] Hartig, H., Hohmuth, M., Liedtke, J., Schonberg, S., and

Wolter, J. The Performance of u­Kernel­Based Systems. In Proceed­
ings of the 1997 Symposium on Operating Systems Principles (October
1997).

[38] Haskin, R., Malachi, Y., and Chan, G. Recovery management in
quicksilver. ACM Transactions on Computer Systems (1988), 82–108.

[39] Henning, M. The rise and fall of corba. ACM Queue 4, 5 (June 2006),
28–34.

[40] Herder, J. N., Bos, H., Gras, B., Homburg, P., and Tanenbaum,
A. S. Minix 3: a highly reliable, self­repairing operating system.
SIGOPS Operating System Review 40, 3 (2006), 80–89.

[41] Herder, J. N., Bos, H., Gras, B., Homburg, P., and Tanenbaum,
A. S. Reorganizing unix for reliability. In Asia­Pacific Computer Sys­
tems Architecture Conference (2006), pp. 81–94.

[42] Hunt, G. C., Larus, J. R., Abadi, M., Aiken, M., Barham, P., FÃďh­
ndrich, M., Hodson, C. H. O., Levi, S., Murphy, N., Steensgaard,
B., Tarditi, D., Wobber, T., and Zill, B. An overview of the Sin­
gularity project. Tech. Rep. MSR­TR­2005­135, Microsoft Research,
October 2005.

137

[43] Jones, R. W. M., and Kelly, P. H. J. Backwards­compatible bounds
checking for arrays and pointers in c programs. In Automated and
Algorithmic Debugging (1997), pp. 13–26.

[44] King, S. T., Dunlap, G. W., and Chen, P. M. Debugging operating
systems with time­traveling virtual machines. In Proceedings of the
annual conference on USENIX Annual Technical Conference (ATEC)
(Berkeley, CA, USA, 2005), USENIX Association, pp. 1–1.

[45] Klensin, J. Simple Mail Transfer Protocol. RFC 2821 (Proposed Stan­
dard), Apr. 2001. Obsoleted by RFC 5321, updated by RFC 5336.

[46] Laadan, O., and Nieh, J. Transparent checkpoint­restart of multiple
processes on commodity operating systems. In 2007 USENIX Annual
Technical Conference on Proceedings of the USENIX Annual Technical
Conference (ATC) (Berkeley, CA, USA, 2007), USENIX Association,
pp. 1–14.

[47] Lattner, C., and Adve, V. LLVM: A compilation framework for life­
long program analysis and transformation. In Proceedings of the Con­
ference on Code Generation and Optimization (CGO) (San Jose, CA,
USA, Mar 2004), pp. 75–88.

[48] Lattner, C., Lenharth, A. D., and Adve, V. S. Making context­
sensitive points­to analysis with heap cloning practical for the real
world. In Proceedings of the ACM SIGPLAN Conference on Program­
ming Language Design and Implementation (PLDI) (San Diego, CA,
USA, June 2007), pp. 278–289.

[49] Lenharth, A., Adve, V. S., and King, S. T. Recovery domains: an
organizing principle for recoverable operating systems. In Proceed­
ing of the 14th international conference on Architectural support for
programming languages and operating systems (ASPLOS) (New York,
NY, USA, 2009), ACM, pp. 49–60.

[50] LeVasseur, J., Uhlig, V., Stoess, J., and Gotz, S. Unmodified De­
vice Driver Reuse and Improved System Dependability via Virtual Ma­
chines. In Proceedings of the 2004 Symposium on Operating Systems
Design and Implementation (OSDI) (December 2004).

[51] Lowell, D., Chandra, S., and Chen, P. Exploring failure trans­
parency and the limits of generic recovery. In Proceedings of the 4th
USENIX Symposium on Operating Systems Design and Implementa­
tion (OSDI) (2004), pp. 289–304.

138

[52] Lowell, D. E., and Chen, P. M. Free transactions with rio vista. In
Proceedings of the Sixteenth ACM Symposium on Operating Systems
Principles (SOSP) (New York, NY, USA, 1997), ACM Press, pp. 92–
101.

[53] Menon, V., Balensiefer, S., Shpeisman, T., Adl­Tabatabai, A.­R.,
Hudson, R. L., Saha, B., and Welc, A. Practical weak­atomicity se­
mantics for java stm. In Proceedings of the twentieth annual symposium
on Parallelism in algorithms and architectures (SPAA) (New York, NY,
USA, 2008), ACM, pp. 314–325.

[54] Moss, J. E. B. Nested Transactions: an Approach to Reliable Dis­
tributed Computing. PhD thesis, MIT Labratory for Computer Sci­
ence, 1981.

[55] Necula, G. C., Condit, J., Harren, M., Mcpeak, S., and Weimer,
W. Ccured: Type­safe retrofitting of legacy software. ACM Transac­
tions on Programming Languages and Systems 27 (2005), 2005.

[56] Porter, D. E., Hofmann, O. S., Rossbach, C. J., Benn, A., and

Witchel, E. Operating systems transactions. In Symposium on Oper­
ating Systems Principles (SOSP) (2009), pp. 161–176.

[57] Postel, J. Internet Protocol. RFC 791 (Standard), Sept. 1981. Updated
by RFC 1349.

[58] Postel, J. Transmission Control Protocol. RFC 793 (Standard), Sept.
1981. Updated by RFCs 1122, 3168.

[59] Postel, J., and Reynolds, J. File Transfer Protocol. RFC 959 (Stan­
dard), Oct. 1985. Updated by RFCs 2228, 2640, 2773, 3659.

[60] Qin, F., Tucek, J., Sundaresan, J., and Zhou, Y. Rx: treating bugs as
allergies ­ a safe method to survive software failures. In Symposium on
Operating Systems Principles (SOSP) (2005), pp. 235–248.

[61] Randell, B., Lee, P., and Treleaven, P. C. Reliability issues in com­
puting system design. ACM Computer Survey 10, 2 (1978), 123–165.

[62] Rinard, M., Cadar, C., Dumitran, D., Roy, D. M., Leu, T., and

Beebee, W. S. Enhancing server availability and security through
failure­oblivious computing. In Proceedings 6th Symposium on Oper­
ating Systems Design and Implementation (OSDI) (2004), pp. 303–316.

139

[63] Rossbach, C. J., Hofmann, O. S., Porter, D. E., Ramadan, H. E.,
Bhandari, A., and Witchel, E. TxLinux: Using and managing hard­
ware transactional memory in an operating system. In Proceedings
of the Twenty First ACM Symposium on Operating Systems Principles
(SOSP) (October 2007).

[64] Rozier, M., Abrossimov, V., Armand, F., Boule, I., Gien,
M., Guillemont, M., Herrmann, F., Kaiser, C., Langlois, S.,
Lèonard, P., and Neuhauser, W. Overview of the chorus distributed
operating systems. Computing Systems 1 (1991), 39–69.

[65] Rudys, A., and Wallach, D. S. Termination in language­based sys­
tems. ACM Transactions on Information System Security 5, 2 (2002),
138–168.

[66] Rudys, A., and Wallach, D. S. Transactional rollback for language­
based systems. In Proceedings of the 2002 International Conference
on Dependable Systems and Networks (DSN) (Washington, DC, USA,
2002), IEEE Computer Society, pp. 439–448.

[67] Sancho, J. C., Petrini, F., Davis, K., Gioiosa, R., and Jiang, S.
Current practice and a direction forward in checkpoint/restart imple­
mentations for fault tolerance. In Proceedings of the 19th IEEE Inter­
national Parallel and Distributed Processing Symposium (IPDPS’05) ­
Workshop 18 (Washington, DC, USA, 2005), IEEE Computer Society,
p. 300.2.

[68] Saulpaugh, T., and Mirho, C. Inside the JavaOS Operating System.
Addison­Wesley, Reading, MA, USA, 1999.

[69] Seltzer, M. I., Endo, Y., Small, C., and Smith, K. A. Dealing with
disaster: Surviving misbehaved kernel extensions. In Proceedings of
the 1996 Symposium on Operating Systems Design and Implementation
(OSDI) (Seattle, WA, October 1996), pp. 213–227.

[70] Shapiro, J. S., Smith, J. M., and Farber, D. J. Eros: A capability
system. Tech. rep., University of Pennsylvania, 1997.

[71] Shapiro, J. S., Smith, J. M., and Farber, D. J. Eros: a fast capability
system. In Symposium on Operating Systems Principles (1999), pp. 170–
185.

[72] Shinnar, A., Tarditi, D., Plesko, M., and Steensgaard, B. Inte­
grating support for undo with exception handling. Tech. Rep. MSR­
TR­2004­140, Microsoft Research, Dec. 2004.

140

[73] Sidiroglou, S., Laadan, O., Keromytis, A. D., and Nieh, J. Using
rescue points to navigate software recovery. In Proceedings of the 2007
IEEE Symposium on Security and Privacy (Washington, DC, USA,
2007), IEEE Computer Society, pp. 273–280.

[74] Sidiroglou, S., Locasto, M. E., Boyd, S. W., and Keromytis, A. D.
Building a reactive immune system for software services. In In Pro­
ceedings of the USENIX Annual Technical Conference (2004), pp. 149–
161.

[75] Srinivasan, S., Kandula, S., Andrews, C., and Zhou, Y. Flashback:
A lightweight extension for rollback and deterministic replay for soft­
ware debugging. In USENIX Annual Technical Conference (2004),
pp. 29–44.

[76] Stets, R., Gharachorloo, K., and Barroso, L. A. A detailed com­
parison of two transaction processing workloads. In In WWC­5: IEEE
5th Annual Workshop on Workload Characterization. Stets et (2002),
ACM Press, pp. 189–222.

[77] Swift, M., Annamalai, M., Bershad, B., and Levy, H. Recovering
device drivers. In Proceedings of the 2004 Symposium on Operating
Systems Design and Implementation (OSDI) (Nov 2004).

[78] Swift, M., Bershad, B., and Levy, H. Improving the reliability of
commodity operating systems. In Proceedings of the 19th Symposium
on Operating Systems Principles (New York, 2003).

[79] Ta­Shma, P., Laden, G., Ben­Yehuda, M., and Factor, M. Virtual
machine time travel using continuous data protection and checkpoint­
ing. SIGOPS Operating Systems Review 42, 1 (2008), 127–134.

[80] Traiger, I. L. Trends in systems aspects of database management. In
International Conference on Databases (1983), pp. 1–21.

[81] Tucek, J., Lu, S., Huang, C., Xanthos, S., and Zhou, Y. Automatic
on­line failure diagnosis at the end­user site. In Proceedings of the 2nd
conference on Hot Topics in System Dependability (HOTDEP) (Berke­
ley, CA, USA, 2006), USENIX Association, pp. 4–4.

[82] Tucek, J., Lu, S., Huang, C., Xanthos, S., and Zhou, Y. Triage: di­
agnosing production run failures at the user’s site. In Proceedings of
twenty­first ACM SIGOPS Symposium on Operating Systems Princi­
ples (SOSP) (New York, NY, USA, 2007), ACM, pp. 131–144.

141

[83] Úlfar Erlingsson, Abadi, M., Vrable, M., Budiu, M., and Nec­
ula, G. C. XFI: Software guards for system address spaces. In Sympo­
sium on Operating System Design and Implementation (OSDI) (Seat­
tle, WA, USA, November 2006), pp. 75–88.

[84] Wahbe, R., Lucco, S., Anderson, T. E., and Graham, S. L. Efficient
software­based fault isolation. In IN PROC. OF THE 14TH SYMPO­
SIUM ON OPERATING SYSTEM PRINCIPLES (1993), pp. 203–
216.

[85] Weimer, W., and Necula, G. Finding and preventing run­time error
handling mistakes. In Proceedings of the ACM Conference on Object­
Oriented Programming, Systems, Languages, and Applications (OOP­
SLA) (2004), pp. 419 – 431.

[86] Weinstein, M. J., Jr., T. W. P., Livezey, B., and Popek, G. J. Transac­
tions and synchronization in a distributed operating system. In Sym­
posium on Operating Systems Principles (SOSP) (1985), pp. 115–126.

[87] Wheeler, D. A. Linux kernel 2.6: It’s worth more! http://www.
dwheeler.com/essays/linux-kernel-cost.html, February 2010. As
of August 2009.

[88] Xu, G., Rountev, A., Tang, Y., and Qin, F. Efficient checkpointing
of java software using context­sensitive capture and replay. In Proceed­
ings of the the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of
software engineering (ESEC­FSE) (New York, NY, USA, 2007), ACM,
pp. 85–94.

[89] Xu, J., Randell, B., Romanovsky, A., Rubira, C. M. F., and Wu, Z.
Fault tolerance in concurrent object­oriented software through coordi­
nated error recovery. In Proceedings of the Twenty­Fifth International
Symposium on Fault­Tolerant Computing (FTCS) (Washington, DC,
USA, 1995), IEEE Computer Society, p. 499.

[90] Ylonen, T., and Lonvick, C. The Secure Shell (SSH) Authentication
Protocol. RFC 4252 (Proposed Standard), Jan. 2006.

[91] Ylonen, T., and Lonvick, C. The Secure Shell (SSH) Connection
Protocol. RFC 4254 (Proposed Standard), Jan. 2006.

[92] Ylonen, T., and Lonvick, C. The Secure Shell (SSH) Protocol Archi­
tecture. RFC 4251 (Proposed Standard), Jan. 2006.

[93] Ylonen, T., and Lonvick, C. The Secure Shell (SSH) Transport Layer
Protocol. RFC 4253 (Proposed Standard), Jan. 2006.

142

[94] Zelkowitz, M. V. Reversible execution. Communications of the ACM
16, 9 (1973), 566.

[95] Zhou, F., Condit, J., Anderson, Z., Bagrak, I., Ennals, R., Har­
ren, M., Necula, G., and Brewer, E. Safedrive: Safe and recoverable
extensions using language­based techniques. In Proceedings of the 2006
Symposium on Operating Systems Design and Implementation (OSDI)
(Seattle, WA, USA, November 2006), pp. 45–60.

[96] Linux 2.6.30 include/asm­generic/errno­base.h.

[97] Linux 2.6.30 include/asm­generic/errno.h.

[98] http://marketshare.hitslink.com/report.aspx?qprid=
10&qptimeframe=Y&qpsp=2009. As of August 2009.

[99] http://msdn.microsoft.com/en-us/library/ms679320.aspx. As of
August 2009.

[100] http://w3counter.com/globalstats.php?date=2009-05-31. As of
August 2009.

[101] http://www.top500.org/stats/list/33/osfam. As of August 2009.

143

