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ABSTRACT

Low-power, scalable detection systems require aggressive techniques to achieve

energy efficiency. Algorithmic methods that can reduce energy consumption

by compromising performance are known as being energy-aware.

The cascade architecture is known for being energy-efficient, but without

proper operation can end up being energy-inefficient in practice. In this

thesis, we propose a framework that imposes energy-awareness on cascaded

detection algorithms, which enforces proper operation of the cascade to max-

imize detection performance for a given energy budget. This is achieved by

solving our proposed energy-constrained version of the Neyman-Pearson de-

tection criterion, resulting in detector thresholds that can be updated to

dynamically adjust to time-varying system resources and requirements.

Sufficient conditions for a global solution for a cascade of an arbitrary

number of detectors are given. Explicit solutions are derived for a two-stage

cascade. Applied to a canonical detection problem, simulations show that

our energy-aware cascaded detectors outperform an energy-aware detection

algorithm based on incremental refinement, an existing alternate approach to

developing energy-aware algorithms. Combining our framework with incre-

mental refinement reveals a promising approach to developing energy-aware

energy-efficient detection systems.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Detection applications in the low-power domain, such as sensor nodes, portable

biomedical monitors, speech, vehicle and wildlife monitoring systems, are

an important class of applications that need to be energy-efficient. Design

of detection systems poses a particular challenge because the system must

continuously monitor the environment. This warrants the use of aggres-

sive power-reduction techniques such as approximate signal processing, which

have been applied at the algorithmic level to reduce energy consumption by

compromising task performance [1]. Algorithms with the ability to make this

run-time energy/performance trade-off are known as being energy-aware [2].

The problem addressed in this paper is to increase the energy efficiency of

detection systems through energy-aware algorithms.

1.2 Related Work

Efforts to develop energy-aware algorithms have gone into identifying and

designing algorithms possessing the incremental refinement property [3]. The

basic idea is to identify computations in the algorithm that can be terminated

early to provide graceful degradation in task performance. This principle has

been applied in many signal processing applications including signal detection
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[4], FIR filtering [5], beamforming [2], and image processing [6].

Energy-efficient multimodal sensor nodes detecting the presence of vehicles

have exploited the idea of “passive vigilence” [7] by implementing a tiered

wake-up network [8]. On a single node, a cheap sensor, which is always

running, is used to trigger more energy-intensive sensors to wake up and

take measurements. This approach reduces energy consumption by limiting

the amount of time an expensive sensor is actually taking measurements.

The detection algorithm used on these sensor nodes is limited to a decision

tree. The CART algorithm [8], which is used to construct the decision tree,

is modified to consider the energy consumption of each sensor. A decision

tree may be sufficient for simple detection tasks, but does not generalize to

detection applications that require more sophisticated processing.

A particular form of the tiered wake-up network known as the cascade ar-

chitecture is widely utilized in real-time detection applications. For example,

the IEEE 802.22 standard, which is being developed for cognitive radio, en-

visions spectrum sensing as being based on a two-stage cascade architecture

[9]. In [10], the result of a voice activity detector (implemented in hard-

ware) triggered whether or not to turn on a microprocessor used for speech

signal processing; this scheme effectively reduced the stand-by power of the

microprocessor using a two-stage cascade. A similar strategy is used in [11]

for a surveillance application, where the decision of a “wake-up” detector is

used to arouse the sensor node to full functionality. Although these systems

are energy-efficient, they are not energy-aware in that there is no systematic

method to trade off performance for energy consumption.

The cascade architecture has also been successfully used in real-time object

detection [12]. The Viola-Jones object-detection algorithm implements a

cascade of a large number of weak classifiers. The purpose of the cascade
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is to allow uninteresting regions of an image to be quickly discarded while

spending more computation time on promising regions. Hence, the cascade

serves to direct attention and processing power to regions of an image that

are likely to be an object of interest. Although a lot of work in the past

decade jointly considered energy consumption and system performance, most

of these efforts have focused on cost-sensitive learning for the construction

of the classifiers in the cascade (see [13] for a discussion and references). On

the other hand, little attention has been given to the system design aspect

of optimizing the final cascade performance [14]. Only very recently have

we seen efforts to consider energy costs while optimizing the final cascade

performance [13].

1.3 Our Contributions

The main contribution of this thesis is to develop a general framework to

impose energy-awareness on cascaded detection algorithms. We formulate an

energy-aware detection criterion such that solving the optimization problem

results in the energy-optimal operating point of the cascaded detectors.

In order to demonstrate the efficacy of our framework, we work through

a canonical detection application, designing and optimizing the operation of

a cascade of detectors. Our resulting cascaded detectors are compared to

an energy-aware detection algorithm based on the incremental refinement

property [4].
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1.4 Outline of Thesis

The remainder of this thesis is organized as follows: Chapter 2 reviews basic

concepts and terminology in detection theory and defines the cascade archi-

tecture for detection applications. Chapter 3 motivates the need for energy-

efficient detection and formally defines the problem, which is then solved in

Chapter 4 for the general case of a cascade of M detectors. Concrete results

are given for the specific case of M = 2, which are used in Chapter 5 to il-

lustrate the efficacy of our approach through a canonical detection problem.

Concluding remarks are given in Chapter 6.
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CHAPTER 2

PRELIMINARIES

The likelihood ratio test, receiver operating characteristic (ROC) curve, and

detection criteria are concepts from detection theory that are useful for the

development of this thesis. In this chapter, we define the cascade architecture

for detection, and derive its detection performance in terms of the true-

detection and false-alarm rates.

2.1 Detection Theory Fundamentals

In this section, we provide a concise summary of the necessary concepts and

notation from detection theory. For a more in-depth and complete study, the

reader is encouraged to refer to [15].

The goal of detection theory is to provide a systematic framework for mak-

ing an optimal decision between two competing hypotheses. The assumption

is that there is a true correct decision, and noisy observations are available

to aid in the decision making.

Detection theory addresses the issues of (1) optimal and thus (2) systematic

detection. It establishes detection criteria which quantitatively measure the

optimality of detection. It is shown that generally, the optimal decision rule

takes the form of a likelihood ratio test (or tests if there are more than two

competing hypotheses).

In this thesis, we confine ourselves to binary hypothesis testing. In other
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words, there are two competing hypotheses from which we must decide: H0

is known as the null hypothesis and corresponds to the absence of the signal

of interest. H1 corresponds to the hypothesis that the signal of interest is

indeed present. The likelihood ratio test, then, is expressed as

T ,
Pr[x|H1 true]

Pr[x|H0 true]

H1

R
H0

τ (2.1)

where x is a single sample or collection of noisy observations. T is called the

likelihood ratio and the test then is to compare T to some threshold τ such

that if T ≥ τ , we decide that H1 is true. If T < τ , we decide that H0 is true.

In order to actually determine T , we need an expression for the likelihood

ratio. This is derived by assuming a signal and noise model under both

hypotheses, which subsequently determines a conditional distribution on x,

which is used to evaluate the likelihood of the observation.

There are two types of errors associated with binary hypothesis testing.

The first is known as a missed detection, PM , and corresponds to T < τ

when in fact H1 is true. The second error is known as a false alarm, PFA,

and corresponds to T ≥ τ when in fact H0 is true. Mathematically,

1 − PM = 1 − Pr [T < τ |H1 true] = Pr [T ≥ τ |H1 true] (2.2)

PFA = Pr [T > τ |H0 true] (2.3)

where 1−PM is also known as the correct detection rate, PD, and the prob-

ability measures are conditioned on a particular hypothesis being true.

Measuring these two errors for a particular detector completely character-

izes the detector’s performance, which is graphically expressed by the ROC

curve, which plots PD versus PFA and is illustrated by the curves in Fig. 2.1.
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There are a few observations worth noting about the ROC curve:

Figure 2.1: Example ROC curve.

1. The points (0,0) and (1,1) are always the endpoints of the curve. (1,1)

means that PD = 1 and PFA = 1 and corresponds to setting τ = −∞

such that H1 is always declared true regardless of the actual statistic

T . Similarly, (0,0) corresponds to τ = ∞.

2. There exists some threshold τ ∈ (−∞,∞) corresponding to each in-

terior point of the ROC curve. The threshold to use for a particular

application is determined by optimizing a detection criterion.

3. Assuming a different signal and noise model results in a different like-

lihood ratio, which results in a different ROC curve. A uniformly

most powerful (UMP) likelihood ratio test has an ROC curve that lies

“above” all other ROC curves.

4. All useful ROC curves lie above the curve PD = PFA, or the dashed line

in Fig. 2.1. This dashed line corresponds to the detection performance
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of flipping a (weighted) coin, which ignores all observations and thus

represents the “worst” reasonable detector.

5. All ROC curves can be made concave. If they were not, randomiza-

tion could be used to make them concave and therefore achieve better

performance. For a proof, see [15].

There are two classical metrics used to determine the optimal operating

point of a detector (see item (2) on page 7). The Neyman-Pearson criterion

constrains the false-alarm rate and is used often in practice when no addi-

tional information such as costs and priors are available or relevant to the

detection problem at hand. It can be posed as the following optimization

problem:

maximize PD

subject to PFA ≤ γ

where γ ∈ [0, 1] is the false-alarm constraint. If costs and priors are available,

the Bayes risk criterion can be used to systematically trade off between the

two types of errors, PM = 1 − PD and PFA.

More rigorously, assume there exists a cost function Cij with 0 ≤ i, j ≤ 1,

where Cij represents the cost of deciding Hi when Hj is true. Furthermore,

define the prior probability of hypothesis Hi being true as πi for i ∈ {0, 1}.

Then the average Bayes risk is given as

R = π0 · (C00 (1 − PFA) + C10PFA) + π1 · (C01PM + C11(1 − PM))

= π0C00 + π1C11
︸ ︷︷ ︸

constant

+π0C
′
0PFA + π1C

′
1PM (2.4)

where C ′
0 can be considered as the net cost incurred for making a false alarm,
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and C ′
1 is the net cost incurred for missing a detection. In general, C ′

0, C
′
1 ≥ 0

because it is more costly to make an error than it is to make the right decision.

The Bayes risk criterion, then, is to minimize the average Bayes risk. From

(2.4), this can be stated as

minimize π0C
′
0PFA + π1C

′
1PM (2.5)

which can be seen as determining the optimal trade-off between PM and PFA.

2.2 Cascade Architecture

A block diagram of the cascade architecture for detection algorithms is given

in Fig. 2.2. Each detector represents a different likelihood ratio test. This

architecture is motivated by the fact that we can have a range of simple to

complex signal models, which will generally result in likelihood ratio tests

with simple to complex computational complexity, and weak to powerful

detection performance, respectively. Hence, we can obtain energy savings

if we run an energy-efficient detector to monitor the environment, which

then triggers more energy-intensive detectors only when an event of potential

interest occurs.

This general strategy is known as “passive vigilance” [7] and is most benefi-

cial when the probability of the event of interest occurring is low. We denote

this probability measure as π1 , Pr [H1 true], which is the prior probability

of the signal being present; π0 is defined as the prior probability of the signal

being absent, and it follows that π0 = 1 − π1. We see from Fig. 2.2 that

Detector 1 deciding H1 triggers Detector 2 to make a possibly new observa-

tion and from that, a decision, and so on. If at any point in the cascade a
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Phenomenon

Detector 1 Detector M

xM

H0 H0

H1
. . .

H1
Decide H1

Decide H0

x1

Figure 2.2: Block diagram of cascaded detectors.

detector decides H0, the decision process ends and H0 is declared.

In this abstract architecture, the structure of the observations x1, . . . xM is

quite general. For example, they can be the same data (i.e. x1 = · · · = xM ),

they can be data from different modalities from the same time frame (i.e.

x1 are audio samples and xM are video frames), or they can be observations

from different time frames. This last example, where detection is deferred

over multiple sequences of observations, is reminiscent of (but not equivalent

to) sequential hypothesis testing [16].

2.3 Detection Performance of Cascaded Detectors

As reviewed in Section 2.1, the detection performance of a detector is com-

pletely summarized by the false-alarm rate PFA and true-detection rate PD.

We can extend the notion of the detection performance of the cascade as a

system, by defining the system false-alarm rate P sys
FA , and the system true-

detection rate P sys
D . As discussed in Section 2.2, in the cascade architecture,

a final decision of H1 is only made when all of the detectors in the cascade

10



choose H1. Therefore,

P sys
FA = Pr [T1 ≥ τ1, . . . , TM ≥ τM |H0 true] (2.6)

P sys
D = Pr [T1 ≥ τ1, . . . , TM ≥ τM |H1 true] (2.7)

where the system detection performance is the joint probability measure

of the summary statistics for all of the detectors being greater than the

associated thresholds.

Using Bayes’ rule, the system performance can be expressed as

P sys
FA =

M∏

i=1

PFAi
(τi|τ1, . . . , τi−1) (2.8)

P sys
D =

M∏

i=1

PDi
(τi|τ1, . . . , τi−1) (2.9)

where PFAi
(τi|τ1, . . . , τi−1) , Pr [Ti ≥ τi|T1 ≥ τ1, . . . , Ti−1 ≥ τi−1, H0 true],

which is the conditional false-alarm rate of the ith detector;

PDi
(τi|τ1, . . . , τi−1) , Pr [Ti ≥ τi|T1 ≥ τ1, . . . , Ti−1 ≥ τi−1, H1 true]. This

dependence will hold if the observations for the detectors (i.e. x1, . . . , xM)

are conditionally correlated, which will generally be true if x1 = · · · = xM .

On the other hand, in a cascade with multimodal detectors, it is not

unreasonable that conditioned on the hypothesis, the observation noise from

detector to detector is independent.

11



CHAPTER 3

OPTIMAL ENERGY-AWARE OPERATION
OF CASCADED DETECTORS

We propose a new criterion for optimal detection in order to account for

energy consumption. We narrow down the general problem of designing an

optimal cascade of detectors to one of operating a cascade in an optimal

manner. We identify the thresholds in the likelihood ratio tests as being

an appropriate optimization variable and state the resulting optimization

problem to be solved.

At a high level, we would like to maximize the detection performance of the

cascade while minimizing the energy consumed by the cascade. We formulate

this problem as

maximize P sys
D

subject to P sys
FA ≤ γ

EC ≤ β

where EC is the energy consumption of the cascade and γ and β are spec-

ified constraints. We call this the Energy-Aware Neyman-Pearson (EANP)

detection criterion for obvious reasons.

We could also adapt the Bayes risk criterion from (2.5) to be

minimize π0C
′
0P

sys
FA + π1C

′
1P

sys
M

subject to EC ≤ β

12



with πi and C ′
i being the prior probability and cost of error, respectively, for

hypothesis Hi. We call this the Energy-Aware Bayes Risk (EABR) detection

criterion.

Solving either of these problems in its most general form would require

us to optimize over the form and the number of detectors M , the likelihood

ratios T1, . . . , TM , and the thresholds τ1, . . . , τM , which as pointed out in [14],

is an extremely difficult problem. A suboptimal approach is to split this into

two subproblems:

1. An optimization over the design of the cascade, which includes choosing

the number of detectors M and the likelihood ratios T1, . . . , TM .

2. An optimization over the operation of the cascade, which includes

choosing the appropriate thresholds τ1, . . . , τM for each of the likeli-

hood ratio tests.

The first problem is application-dependent and in many cases, improving

detection algorithms is the main topic of many research communities. The

second problem is important when the system is in actual operation and

battery life or energy consumption becomes a fundamental constraint.

In this thesis, we focus on the second subproblem of optimizing the op-

eration of the cascade; in particular, we consider energy-efficient operation,

exploring the problem of making the optimal trade-off between energy con-

sumption and system performance. This problem has been addressed in a

limited sense in [14], where the author focused on real-time object detection

using the Viola-Jones algorithm to solve the first subproblem, and presented

an energy-agnostic method to determine the thresholds of the detectors in

cascade. We are not aware of work that explicitly considers the energy con-

sumption (i.e. the EANP or EABR detection criterion, or variants thereof)
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of a general cascade of detectors.

To motivate why it is important to consider energy consumption in op-

timizing the operation of a cascade of detectors, consider the illustration

in Fig. 3.1. Assume that for a particular detection problem, we found an

# Times Each

Detector is Run

Detector 1 Detector 2

(a) Energy-efficient operation

# Times Each

Detector is Run

Detector 1 Detector 2

(b) Energy-inefficient operation

Figure 3.1: Illustrating two ways to operate a cascade of detectors.

energy-efficient design of a cascade of two detectors (i.e. solved the first sub-

problem). Ideally, we would like the first detector to trigger only when the

signal is actually present. If this happens and the presence of the signal is

rare, we only run the energy-intensive detector when it is absolutely neces-

sary, as illustrated in Fig. 3.1(a). This leads to minimum energy consumption

by the cascade while maintaining high detection performance.

On the other hand, if τ1 is set very low, the first detector will exhibit behav-

ior that can colloquially be described as “paranoid” or “trigger-happy”, lead-

ing to unnecessary usage of the second detector, as illustrated in Fig. 3.1(b).

This will lead to high energy consumption and negate the benefits of utilizing

a cascade architecture for detection.

Hence, choosing the detector thresholds to optimally balance detection per-

formance with energy consumption is an important step in ensuring energy-

efficient operation of a cascade of detectors. For the remainder of this thesis,

14



we consider the following problem: given a cascade of M detectors,

max
τ1,...,τM

P sys
D (τ1, . . . , τM)

subject to P sys
FA (τ1, . . . , τM) ≤ γ

EC (τ1, . . . , τM) ≤ β

(3.1)
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CHAPTER 4

OPTIMIZATION

In this chapter, we derive an expression for the energy-consumption con-

straint found in the EANP detection criterion and show how the detector

thresholds can be used as an energy/performance “knob”. Subsequently, we

solve the EANP criterion to find the optimal trade-off between energy con-

sumption and detection performance. We show convexity of the problem

by variable transformation and appropriate problem relaxation. Further, we

provide an intuitively pleasing geometric interpretation of the necessary con-

ditions for optimality, from which the result in [14] follows as a special case.

Finally, we provide sufficient conditions for a closed-form solution for the

special but important case of a cascade of two detectors.

4.1 Proposed Energy Model for Cascaded Detectors

In this section, we develop a model of the energy consumed in the operation

of a cascade of detectors. In particular, because limiting energy consumption

will admittedly affect detection performance, we develop an energy model in

terms of the detection performance.

As we are concerned with maximizing system lifetime, we are interested

in the average energy consumed by the cascaded detectors. Denoting this as

16



EC,

EC =
M∑

i=1

αi · ci (4.1)

where ci is the energy consumed by running Detector i, and αi is the as-

sociated activity factor. In other words, the average energy consumed by

Detector i is the cost of running the detector, weighted by the probability of

actually running it.

The energy consumed from running an algorithm can be physically mea-

sured [17] and is associated with the computational, storage, and communi-

cation requirements of the algorithm [1]. In our model, we assume that the

energy consumed from running an algorithm is a known, fixed cost.

The underlying principle behind our energy-consumption model is that

the number of times Detector i is run, and hence the activity factor αi, is

determined by the decisions made by the previous i − 1 detectors, which is

controlled by the detectors’ thresholds. More succinctly,

αi = Pr [run Detector i] = Pr [T1 ≥ τ1, . . . , Ti−1 ≥ τi−1]

=
1∑

k=0

Pr [T1 ≥ τ1, . . . , Ti−1 ≥ τi−1, Hk true]

= π0 ·
i−1∏

j=1

PFAj
(τj |τ1, . . . , τj−1) + π1 ·

i−1∏

j=1

PDj
(τj |τ1, . . . , τj−1) (4.2)

where the first line follows from the cascade architecture and the second line

from the law of total probability. The third line uses Bayes’ rule to express

the activity factor as a function of the hypothesis priors and the conditional

detection performance of the detectors in the cascade.

In summary, the energy consumed by the cascaded detectors can be ex-

17



pressed as

EC(τ1, . . . , τM−1) =

c1 + π0 ·
M∑

i=2

ci ·
i−1∏

j=1

PFAj
(τj |τ1, . . . , τj−1) + π1 ·

M∑

i=2

ci

i−1∏

j=1

PDj
(τj |τ1, . . . , τj−1)

(4.3)

where α1 = 1 because the first detector in the cascade is always run, and the

energy consumption of the cascade is not a function of the threshold of the

final detector.

4.2 Log and Variable Transformation

We can reformulate the optimization problem as a maximization over the de-

tector false-alarm rates [14]. Doing so converts the problem into a resource-

allocation problem, where the false-alarm rate can be thought of as the re-

source to be allocated.

Let us define a new notation for the detector performance: let fi = PFAi

such that the system false-alarm rate is fsys =
∏M

i=1 fi. Defining lfi = log(fi),

we get that lfsys = log(fsys) =
∑M

i=1 lfi. Similarly, we can define lhsys =
∑M

i=1 lhi, where lhi as a function of (lf1, . . . , lfi) is simply the log-log ROC

curve if the cascade were to end at Detector i.

Making this log and variable transformation simplifies the problem in two

ways. (1) The log transformation makes the objective function and false-

alarm constraint additive, and (2) solving the optimization problem in terms

of the false-alarm rates instead of the thresholds works around the problem

that it is not reasonable to assume that the true-detection rate is a convex

(or concave) function of the thresholds. On the other hand, from what we
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know about ROC curves, it is not so unreasonable to assume that the true-

detection rate is a concave function of the false-alarm rate.

As a result, our optimization problem can be formulated as follows:

max
lf1,...,lfM

M∑

i=1

lhi (lf1, . . . , lfi)

subject to

M∑

i=1

lfi ≤ log(γ)

EC (lf1, . . . , lfM−1) ≤ β

lfi ≤ 0 i = 1, . . . , M

(4.4)

where the set of constraints represented by the third equation are added to

ensure that the false-alarm rates do not exceed 1.

4.3 Approximation: Rare-Event Detection

The use of the cascade architecture is energy-efficient in rare-event detection

applications. As an obvious counterexample, if the event of interest was al-

ways present, then in order for good detection performance, every detector

in the cascade would always need to be run, voiding any potential energy

savings; utilizing a cascade architecture in this scenario would not be appro-

priate.

If we indeed assume that the event of interest is very rare (i.e. π1 ≈ 0),

we can approximate the energy consumption to be

ẼC(lf1, . . . , lfM−1) , c1 +
M∑

i=2

ci · exp

(
i−1∑

j=1

lfj

)

(4.5)
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To give some intuition to (4.5), consider the case when M = 3:

ẼC = c1
︸︷︷︸

energy consumed by Det. 1

+ c2e
lf1

︸ ︷︷ ︸

energy consumed by Det. 2

+ c3e
lf1+lf2

︸ ︷︷ ︸

energy consumed by Det. 3

Each term in the summation corresponds to the actual energy consumed by

a particular detector when the event of interest is not present (i.e. hypothesis

H0 is true). If the event never occurs, then it would not particularly matter

how we allocate lf1 and lf2, so long as we stay within the energy budget.

On the other hand, given that the event does occur, the true-detection rate

is fundamentally linked to the false-alarm rate. We show in the next section

that under suitable conditions, there is a unique allocation of the false-alarm

rate that maximizes the true-detection rate, while satisfying the energy bud-

get.

4.4 Convexity

Theorem 4.4.1 If lhi(lf1, . . . , lfi) is a concave function for all i, then

max
lf1,...,lfM

M∑

i=1

lhi(lf1, . . . , lfi)

subject to

M∑

i=1

lfi ≤ log(γ)

ẼC(lf1, . . . , lfM−1) ≤ β

lfi ≤ 0 i = 1, . . . , M

(4.6)

is a convex optimization problem.

Proof Because the non-negative sum of concave functions is concave,
∑

lhi

is concave. The first constraint is linear in the variables we are optimizing
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over, and therefore convex. The second constraint (4.5) is also convex because

the exponential of a linear function is convex, and the non-negative linear

combination of convex functions is convex. Finally, the M constraints lfi ≤ 0

are trivially linear and therefore convex.

Hence, under the assumption that the log-log conditional ROC curves are

all concave, we are guaranteed an operating point that achieves the global

maximum, giving us the optimal cascade performance for the given energy

consumption budget.

4.5 Lagrangian Approach: A Geometric Interpretation

For any λ0, . . . , λM , µ ∈ R+, define the following:

L , lhsys − λ0

(
M∑

i=1

lfi

)

− µ · ẼC −
M∑

i=1

λi · lfi (4.7)

= lhsys −
M∑

i=1

λ′
i · lfi − µ · ẼC (4.8)

where λ′
i = λ0 + λi. Here, L represents the trade-off between the objective

function and a weighted combination of the constraints, where the weights are

given by λ0, . . . , λM and µ. Then, as proved in [18], for any λ′
1, . . . , λ

′
M , µ ∈

R+, the solution (lf ∗
1 , . . . , lf ∗

M) to the following unconstrained problem

arg max
lfi

lhsys −
M∑

i=1

λ′
i · lfi − µ · ẼC (4.9)

is also the solution to the constrained problem (4.6) with log γ =
∑

lf ∗
i and

β = ẼC(lf ∗
1 , . . . , lf ∗

M−1). This transformation to the unconstrained opti-

mization problem is known as the Lagrangian multiplier method [19]; L is
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referred to as the Lagrangian, and λ′
1, . . . , λ

′
M , µ are the Lagrangian multi-

pliers.

By the first-order necessary conditions (FONC) for optimality [19],

∇L =









∂lhsys

∂lf1
− λ′

1 − µ · ∂ẼC
∂lf1

...

∂lhsys

∂lfM
− λ′

M









= 0 (4.10)

Define ẼCk to be

ẼCk(lf1, . . . , lfk−1) , c1 +

k∑

i=2

ci · exp

(
i−1∑

j=1

lfj

)

(4.11)

Note that ẼC1 = c1 and ẼCM = ẼC. Hence, ẼCk represents the energy

consumed up to and including Detector k. Then, the FONC can be equiva-

lently stated as the following set of M equations:

∂lhsys

∂lfi
= λ′

i + µ ·
(

β − ẼCi

)

(4.12)

along with the conditions that
∑

lfi = log(γ) and ẼC = β. Observe that
(

β − ẼCk

)

is the energy consumed by subsequent detectors.

As an example, for M = 3,

∂lhsys

∂lf1

= λ′
1 + µ(c2e

lf1 + c3e
lf1+lf2) (4.13)

∂lhsys

∂lf2
= λ′

2 + µc3e
lf1+lf2 (4.14)

∂lhsys

∂lf3

= λ′
3 (4.15)

along with the conditions that lf1 + lf2 + lf3 = log(γ) and c1 + c2e
lf1 +

c3e
lf1+lf2 = β.
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Geometrically, a necessary condition for optimal operation of the cascade

is that for Detector i, the slope of the system log-log ROC curve is equal to

λi offset by a term proportional to the energy that is spent by all subsequent

detectors. If lfi < 0 for all i, then the last set of constraints in (4.6) are

not tight, and so by complementary slackness [19], λ′
i = λ0 for all i. The

condition that lfi = 0 implies that the false-alarm rate for Detector i is set

to be 1, or all observations are declared a detection. If all observations are

passed onto the next detector, then this behavior is equivalent to skipping

the detector and represents a form of degenerate operation, which may be

induced by a poor design of the cascade or unreasonable system constraints.

Optimality conditions for Neyman-Pearson criterion

If we exclude degenerate operation of the cascade (i.e. λ′
i = λ0) and consider

the Neyman-Pearson criterion where the energy constraint is ignored (i.e.

µ = 0), then conditions (4.12) imply that at the optimal operating point,

the slope of the ROC curves are equal. To interpret this in terms of resource

allocation, this condition equivalently implies that the optimal allocation of

the false-alarm rate “budget” is such that the weaker detectors are allocated

a higher false-alarm rate, as illustrated in Fig. 4.1. Intuitively, this makes

sense as weaker detectors are usually placed first in the cascade and act as a

trigger for the better, but more expensive, detectors. Their ideal role then is

to maintain high true detections while reducing the number of false alarms.

Based on the properties of the ROC curve, for a weak detector, we can only

maintain a high true-detection rate if we allow more false alarms. Note that

this is the same result as that which was derived in [14] for the original

Neyman-Pearson criterion (i.e. µ = 0).
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Figure 4.1: Geometric argument as to why a weaker detector is allocated a
higher false-alarm rate.

Optimality conditions for EANP criterion

Now consider when µ > 0. Then, the slopes of the early, weaker detectors are

greater than the slopes of the subsequent detectors. This forces a reduction

in the false-alarm rate that is allocated to the weaker detector. In fact, we

see that the greater the energy required by subsequent detectors, the smaller

the allocation that is given to the early detectors. Again, this is intuitively

pleasing because if an energy budget is reduced, then the early detectors

will be forced to be more frugal with the detections they declare; since we

are assuming rare-event detection, a small false-alarm rate translates into

energy-frugal behavior.
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Optimality conditions for independent detectors

Consider the special case when the detector statistics {Ti}M
i=1 are indepen-

dent, conditioned on the hypothesis. That is,

P sys
FA = Pr [T1 > τ1, . . . , TM > τM |H0 true]

=
M∏

i=1

Pr [Ti > τi|H0 true]

P sys
D = Pr [T1 > τ1, . . . , TM > τM |H1 true]

=
M∏

i=1

Pr [Ti > τi|H1 true]

Then,

lhsys(lf1, . . . , lfM) =

M∑

i=1

lhi(lfi) (4.16)

where the conditional true-detection rate lhi is a function of lfi only, implying

that lhi(lfi) is actually the unconditional log-log ROC curve. A practical

application where this independence assumption is reasonable is in multi-

modal detection (i.e. the M detectors process data observed from M different

sensing modalities). Then, from (4.16), it follows that (4.12) simplifies to

∂lhi

∂lfi
= λ0 + µ ·

(

β − ẼCi

)

(4.17)

where the left-hand side is the slope measured on the unconditional ROC

curve of Detector i.

If we consider the Neyman-Pearson criterion (i.e. µ = 0), (4.17) sim-

plifies further and decouples into M independent conditions; the geometric

interpretation for optimality is that each detector is operating on its uncondi-
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tional ROC curve such that the slopes are equal, determined by the Lagrange

multiplier, λ0. The practical implication is that the optimization problem,

originally in a simplex of dimension M , is reduced to M one-dimensional

problems.

If we consider the EANP criterion, we see that even when the performance

of one detector does not affect another, the energy consumption couples the

detectors together. Hence, the false-alarm rate budget cannot be optimally

allocated without jointly considering the energy consumption of all of the

detectors.

4.6 Special Case: M = 2

For a cascade of two detectors, the constraint set in (4.6) defines the following

feasible set:

lf1 + lf2 ≤ log γ

c1 + c2 · elf1 ≤ β

Rearranging the equations leads to the following conditions for feasibility:

lf1 ≤ log

(
β − c1

c2

)

= log β ′ (4.18)

lf2 ≤ log γ − lf1 (4.19)

where β ′ is a constant defined to be (β−c1)/c2. These constraints, along with

the constraints that lf1 ≤ 0 and lf2 ≤ 0, define the feasible region (shown

in Fig. 4.2). Note that in this particular illustration, lf1 ≤ 0 is an inactive

constraint.
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Figure 4.2: Feasible region given by constraints (4.18) and (4.19).

Lemma 4.6.1 For a fixed lf1, the lf2 that maximizes (4.6) will be on the

boundary of the feasible set.

Proof If lf1 is fixed, the objective function, given as lh(lf1, lf2) = lh1(lf1)+

lh2(lf1, lf2), is constant in the first term; the second term is defined to be

the conditional ROC curve of the second detector. With lf1 fixed, the distri-

bution of the second detector’s test statistics is fixed. Hence, in accordance

with the properties of ROC curves, lh2 is a monotonically nondecreasing

function of lf2. Assume for lf1 fixed that the optimal lf2, denoted as lf ∗
2 ,

is in the interior of the feasible set. Then, there exists a δ > 0 such that

lf ∗
2 + δ is still feasible. But lh2(lf

∗
2 + δ) ≥ lh2(lf

∗
2 ) by the monotonicity

property of lh2. If they are equal, then the optimal solution is not unique. If

lh2(lf
∗
2 + δ) > lh2(lf

∗
2 ), then lf ∗

2 cannot be optimal. In either case, it follows

that the solution is on the boundary.

As a result of Lemma 4.6.1, we see from Fig. 4.2 that if lf ∗
1 = log β ′, then

lf ∗
2 = log(γ) − log β ′ = log γ

β′
, which is at the intersection of the two active

constraints. We denote this as a Type I solution.

Lemma 4.6.2 If log β ′ < log γ, then a Type I solution does not exist and the

constraint given in (4.19) is inactive. In this case, the optimal false-alarm
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rate for the second detector is given by lf ∗
2 = 0.

Proof If log β ′ < log γ, the intersection of the constraints (4.18) and (4.19)

is not in the feasible region. Hence, a Type I solution is impossible. From

Fig. 4.2, it is clear that if log β ′ < log γ, the constraint (4.19) is inactive. It

follows directly from Lemma 4.6.1 that lf ∗
2 = 0 (i.e. the false-alarm rate of

the second detector is 1). This situation is denoted as a Type II solution and

arises under an extremely stringent energy-budget β.

Theorem 4.6.3 Assuming log β ′ > log γ (i.e. no Type II solution), the

global solution to the optimization problem in (4.6) is given by (lf ∗
1 , lf ∗

2 ) =
(

β ′, log γ
β′

)

if the following two conditions hold:

1. the log-log conditional ROC curves are concave

2. ∂lhsys/∂lf1 > ∂lhsys/∂lf2 ≥ 0, where the partial derivatives are evalu-

ated at (lf ∗
1 , lf ∗

2 )

Proof The a-superlevel set of lhsys is defined as

Ca = {(lf1, lf2) | lhsys(lf1, lf2) ≥ a}

By the first condition, it follows that for all a, Ca is a convex set [20]. Define

lf = [lf1, lf2]
T and lf∗ = [β ′, log γ/β ′]T . Then, by convexity of Ca, Clhsys(lf∗)

is supported by the tangent hyperplane of lhsys, which is given by

▽lhT
sys (lf − lf∗) = 0 (4.20)

where ▽lhT
sys = [∂lhsys/∂lf1, ∂lhsys/∂lf2] is the transpose of the gradient of

lhsys, evaluated at lf∗. Expanding (4.20), the tangent line can be expressed

28



as

lf2 = −∂lhsys/∂lf1

∂lhsys/∂lf2
· lf1 + c

where c is some constant. From the second condition, it follows that the

magnitude of the slope of the tangent line is greater than the magnitude of

the slope of constraint (4.19). Hence, the only feasible point in Clhsys(lf∗) is

lf∗. Furthermore, because the feasible set minus lf∗ is not in Clhsys(lf∗), lf ∗

achieves the global solution to (4.6).

Comment: If the gradient condition does not hold, then the optimal solu-

tion will lie on the boundary of condition (4.19), and condition (4.18) will be

inactive. We denote this as a Type III solution.

4.7 Limitations and Discussion

There are a few observations and outstanding issues that need to be ad-

dressed. First, it is not immediately obvious whether or not Theorem 4.4.1

extends to the problem when the exact energy consumption expression is

used. Regardless, if required, the relaxed problem can be solved first in

hopes that the solution will be in the neighborhood of the true solution,

from which a local exact method can be used to converge to the true solu-

tion. Second, log-log conditional ROC curves are not always concave; more

general conditions under which this holds have not been fully investigated.

Third, in the general case where the detectors are not independent, the La-

grangian first-order conditions represent a set of M coupled equations with

M unknowns. If the gradient can be computed efficiently, there exist many

methods that can be used to solve this problem efficiently. This leads us to
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the final issue, which is that in practice, the gradient of the log-log conditional

ROC curves may be hard to compute efficiently. A practical algorithm for

the particular application of object detection using a cascade designed using

the Viola-Jones algorithm is given in [14]. This algorithm can be directly

modified to use the energy-adjusted slopes derived here.
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CHAPTER 5

CASE STUDY: SINUSOID IN NOISE

In this chapter, we consider the application of detecting a complex sinusoid

of unknown frequency and unknown phase in complex white Gaussian noise

(WGN). This problem is relevant in many real-world applications, such as

detecting communication signals (e.g. spectrum sensing in a cognitive-radio

application), detecting the presence of vehicles or wildlife in acoustic appli-

cations, or fault monitoring in structures and machines. A cascade of two

detectors was developed and its energy-aware operation optimized in [21].

We provide a complete explanation using the theory developed in this thesis.

5.1 Problem Statement

The problem is formulated as deciding between two alternative hypotheses:

H0 : x[n] = w[n] n = 0, 1, . . . , N − 1

H1 : x[n] = s[n] + w[n] n = 0, 1, . . . , N − 1

(5.1)

using N discrete observation samples, where

w[n] = wI [n] + jwQ[n] (5.2)

s[n] =
√

Eej(2πf0n+φ) (5.3)
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and wI [n] and wQ[n] are both real-valued WGN processes with variance N0/4,

f0 = k0/N is the unknown normalized frequency with frequency index k0 ∈

{0, 1, . . . , N − 1}, and φ is the unknown phase with 0 ≤ φ ≤ 2π.

5.2 Cascade of Two Detectors

To detect between H0 and H1, we cascade the energy detector followed by the

FFT detector, which is optimal [22]. The energy detector is a suboptimal

detector for this problem as it does not take advantage of the sinusoidal

signal model, but its advantage is its low complexity, resulting in low energy

consumption.

5.2.1 Energy detector

The summary statistic for the energy detector is the sum of the received

signal energy,

T1 ,
N−1∑

n=0

|x[n]|2 (5.4)

The decision rule then is given as

T1

H1

R
H0

τ1 (5.5)

where we decide that a sinusoid is present (i.e. choose H1) if T1 is greater

than some threshold τ1. Otherwise, we choose H0.

By the central limit theorem [22], for large N , the summary statistic T1 is

approximately Gaussian. Under the assumption that H0 is true, the mean
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and variance of T1 are given as [22]

E[T1|H0] = N

(
N0

2

)

(5.6)

var(T1|H0) = N

(
N0

2

)2

(5.7)

Under the assumption that H1 is true, we have

E[T1|H1] = N

(
N0

2
+ E

)

(5.8)

var(T1|H1) = N

(
N0

2
+ 2E

)(
N0

2

)

(5.9)

with derivations for (5.6) – (5.9) provided in Appendix A.

Hence, the detection performance, characterized by the false-alarm rate

PFA1
and detection rate PD1

, can be approximately given in terms of the

Q-function:

PFA1
(τ) = Pr [T1 ≥ τ |H0] = Q

(

τ − E[T1|H0]
√

var(T1|H0)

)

(5.10)

PD1
(τ) = Pr [T1 ≥ τ |H1] = Q

(

τ − E[T1|H1]
√

var(T1|H1)

)

(5.11)

5.2.2 FFT detector

As the amplitude, phase, and frequency are unknown parameters in the si-

nusoidal model, we adopt the generalized likelihood-ratio test (GLRT) which

consists of replacing the unknown parameters with the maximum-likelihood

estimates (MLE) [22]. Defining the discrete Fourier transform (DFT) of the
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signal at frequency index k ∈ {0, . . . , N − 1} to be

X(k) =

N−1∑

n=0

x(n)e−j2πkn/N (5.12)

the summary statistic is equivalent to taking the maximum of the squared

magnitude of the DFT over all frequency indices. The decision rule is ex-

pressed as

T2 , max
k

{
|X(k)|2

}H1

R
H0

τ2 (5.13)

where hypothesis H1 is chosen if the maximum of the DFT is greater than

some threshold τ2, and H0 is chosen otherwise. The DFT can be computed

efficiently using the fast Fourier transform (FFT), and so we call this GLRT

the FFT detector.

From (5.12), as X(k) is a linear combination of independent Gaussian

random variables, the real and imaginary components of X(k), defined as

XI(k) and XQ(k), respectively, are independent Gaussian random variables.

For all k under H0 and for k 6= k0 under H1,

XI(k), XQ(k) ∼ N
(

0, N · N0

4

)

(5.14)

For k = k0 under H1, XI(k) and XQ(k) are also Gaussian, but mean-shifted

to account for the signal energy in the frequency bin.

If we define C(k) , |X(k)|2 = XI(k)2 + XQ(k)2, then C(k) is chi-square

distributed with two degrees of freedom. For all k under H0 and for k 6= k0

under H1,

4

N · N0

C(k) ∼ χ2 (κ = 2) (5.15)
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where κ is the degree of freedom. For k = k0 under H1,

4

N · N0
C(k) ∼ χ2

(

κ = 2, λ =
4NE

N0

)

(5.16)

with λ defined as the noncentrality parameter. Derivations for (5.14) – (5.16)

are provided in Appendix B.

The false-alarm rate of the FFT detector can be derived as follows:

PFA2
(τ2) = Pr

[

max
k

{C(k)} > τ2|H0 true
]

= 1 − Pr [C(0) < τ2, . . . , C(N − 1) < τ2|H0 true]

= 1 −
N−1∏

k=0

Pr [C(k) < τ2|H0 true]

= 1 −
(

1 − exp

(

− 2τ2

N · N0

))N

(5.17)

where 1 − e−x/2 is the cumulative distribution function (CDF) of a normal-

ized chi-square distribution with two degrees of freedom. The CDF of a

normalized noncentral chi-square distribution with two degrees of freedom

and parameter λ is given as [4]

P (x, λ) = 1 −Q
(√

λ,
√

x
)

(5.18)

where Q is Marcum’s Q function. The true-detection rate is derived similarly
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and is given as

PD2
(τ2) = Pr

[

max
k

{C(k)} > τ2|H1 true
]

= 1 − Pr [C(0) < τ2, . . . , C(N − 1) < τ2|H1 true]

= 1 − Pr [C(k0) < τ2|H1 true] ×
∏

k 6=l

Pr [C(k) < τ2|H1 true]

= 1 −
(

1 −Q
(√

4NE

N0

,

√
4τ2

N · N0

))

×
(

1 − exp

(

− 2τ2

N · N0

))N−1

(5.19)

Figure 5.1 compares the detection performance between the energy detec-

tor and FFT detector at two different input SNRs when the block size is

N = 256. There are a few comments to be made.

• For each detector, we plot (1) the traditional ROC curves (see

Fig. 5.1(a) and 5.1(c)), and (2) the log-log ROC curves (see Fig. 5.1(b)

and 5.1(d)).

• In general, for all input SNRs, the FFT detector is more powerful than

the energy detector. In other words, for any false-alarm rate, the FFT

detector achieves a higher true-detection rate.

• For SNRin = −6 dB, the FFT detector attains near-perfect perfor-

mance (see Fig. 5.1(a) or 5.1(b)), whereas at -15 dB, we see a trade-off

between true detections and false alarms (see Fig. 5.1(c) or 5.1(d)).

5.3 Baseline: Incremental FFT Detector

In [4], the FFT detector was made energy-aware by identifying an incremental

refinement property in the computation of a radix-2 FFT. Because the FFT
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(b) Log-log ROC curves at SNRin = −6 dB.
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(c) ROC curves at SNRin = −15 dB.

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
−10

−8

−6

−4

−2

0

lf = log(P
FA

)

lh
 =

 lo
g(

P
D

)

 

 

FFT Detector
Energy Detector
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Figure 5.1: Detection performance comparison for the energy detector and
FFT detector at different input SNRs with block size N = 256.

is computed in stages, we can stop after any stage and use (5.13) to make

a decision about the hypothesis, as shown in Fig. 5.2. We define the n-

incremental detector to be the FFT detector terminated after the nth FFT

stage. The (log2 N)-detector is equivalent to computing the full FFT (5.12).

Clearly, ending prematurely saves on computations but results in a degra-

dation in detection performance. The performance analysis of the incremen-

tal detectors is similar to (5.17) and (5.19) and can be found in [4]. Figure 5.3

shows the true-detection rate as a function of the termination stage n, at

SNRin = −6 dB, for a fixed false-alarm rate of γ = 10−4 and an input block

size of N = 256.
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FFT

Truncated

to

n stages

MAX

Figure 5.2: Block diagram of the n-incremental FFT detector (adapted
from [4]).

Figure 5.3: Detection performance of the energy-aware n-incremental FFT
detector at SNRin = −6 dB, for γ = 10−4 and N = 256 (taken from [4]).

5.4 Simulation Setup

We present results using the same parameters as used in [4]. In particular,

the signal power and noise variance parameters, E and N0, are determined

by assuming that SNRin = 10 · log10
E

N0/2
= −6 dB; the false-alarm constraint

is set at γ = 10−4, and the input block size is N = 256.

For our energy-consumption model, we choose typical hypothesis priors

and fixed energy costs for the detectors. As discussed earlier, the cascade

architecture is most beneficial in applications where the event to be detected

does not occur often. Therefore, we assume priors of π1 = 10−1 and π0 =

1−π1. We choose the energy costs c1 = 2N and c2 = 5N log2 N based only on

the computational cost associated with each algorithm, which is proportional
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to the number of MAC instructions used to form the summary statistics.

5.5 Optimization

Given the parameters in the previous section, the false-alarm constraint and

domain of the objective function are shown in Fig. 5.4(a). The energy
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(a) Problem domain for simulation setup.
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(b) Contours of the objective function.

Figure 5.4: Problem domain and objective function contours, estimated
from Monte Carlo simulation.

constraint is a function of the energy budget β, which ranges from 2N to

N(2+5 log2 N), or 512 to 10752 for our simulation setup. From Lemma 4.6.2,

if β < c1 + γ · c2, the optimal solution will be a Type II solution. As this

represents a very stringent energy budget, in order to avoid these degenerate

solutions, we only consider β ∈ [c1 + γ · c2, c1 + c2] = [513.024, 10752].

Figure 5.4(b) shows the contours of the objective function lhsys, which is

the true-detection rate of the cascade. The contours are nearly vertical lines

(i.e. nearly not a function of lf2) because as seen in Fig. 5.1(b), the FFT

detector achieves near-perfect detection, regardless of the false-alarm rate.

As such, ∂lhsys/∂lf1 > lhsys/∂lf2 at any feasible point and therefore from

Theorem 4.6.3, the optimal solution to the problem (4.6) must be (lf ∗
1 , lf ∗

2 ) =
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(log β ′, log(γ/β ′), where β ′ = β−c1
c2

, the Type I solution.

In order to actually use this result to operate the cascade, we must map

the optimal false-alarm rates to corresponding thresholds:

exp(lf ∗
1 ) = β ′ = Pr(T1 > τ1|H0 true)

exp(lf ∗
2 ) =

γ

β ′
= Pr(T2 > τ2|T1 > τ1, H0 true)

From (5.10), we can find τ1 analytically:

τ1 = Q−1

(

β ′ − E[T1|H0]
√

var(T1|H0)

)

where Q−1 is the inverse Q-function. In general, the conditional false-alarm

rate for the second detector will depend on τ1 and is difficult to compute an-

alytically. A constant false-alarm rate (CFAR) method can be used to adjust

the threshold τ2 until the desired false-alarm rate is met. This strategy will

operate the cascade such that the optimal detection performance is achieved

for the given energy-consumption constraint.

5.6 Results

Figure 5.5 shows the optimal detection performance for varying energy con-

straints. The dashed stems correspond to the detection performance of the

eight different incremental detectors. In particular, the n-incremental de-

tector has an energy cost of 5nN , as computations are terminated after the

nth FFT stage. The solid black curve corresponds to the performance of our

proposed energy-aware cascaded detector.

Although the incremental refinement principle transforms an algorithm to

be energy-aware, Fig. 5.5 illustrates that for detection applications, exploit-
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Figure 5.5: Detection probabilities at varying energy constraints with
SNRin = −6 dB, N = 256.

ing the fact that the system must be continuously monitoring the environ-

ment results in the optimized energy-aware cascade architecture providing

a much better energy/performance trade-off. More importantly, this figure

also demonstrates the performance scalability of the cascade with varying

energy requirements. Unlike heuristic methods which would set the energy

threshold arbitrarily, our proposed method gives a systematic method to

meet energy constraints, and provides much finer granularity of control over

the energy/performance trade-off.

Figure 5.6 shows the energy/performance trade-off when using the n-

incremental detector as the second detector in our cascade, where n = 6, 7, 8.

As the figure illustrates, for SNRin = −6 dB and N = 256, the best detector

to use depends on the particular β. The 6-incremental detector should be

used until β ≈ 7N , and the 7-incremental detector should be used for greater

energy constraints. Surprisingly, we observe that the full 8-incremental de-

tector will not be used in practice under these SNR and false-alarm rate

conditions. This illustrates how our energy-aware cascaded detectors can be

used together with incremental refinement methods, resulting in even more
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energy-efficient systems.
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Figure 5.6: Detection probabilities at varying energy constraints using the
6-,7-,8-incremental detector as the second detector in the cascade.
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CHAPTER 6

CONCLUSION

The cascade architecture for detection algorithms is an effective framework

for designing energy-efficient detection applications. Controlling the thresh-

olds of the detectors in the cascade is an efficient strategy to control the

average energy consumed while operating the cascaded detectors. The de-

rived analytic expressions for the energy consumed by the cascaded detectors

can be used to maximize detection performance for a specified energy con-

sumption constraint, which is crucial in applications where battery life is a

fundamental constraint.

Assuming a rare-event scenario (which is relevant to most applications

where a cascade of detectors would be used) simplifies the energy consump-

tion model. This results in a convex optimization problem such that any

local solution is also a global solution, which is the energy-optimal operating

point of the cascaded detectors.

For a two-stage cascade, the generalized CFAR method we propose is a

practical solution to systematically determine the energy-optimal operating

point and to dynamically adjust the cascade’s operation to time-varying

system-level energy requirements. Simulations for detecting a sinusoid in

white Gaussian noise show that imposing energy-awareness on cascaded de-

tection algorithms greatly outperforms incremental refinement, an alternate

method to design energy-aware detection algorithms.

For a cascade of more than two detectors with conditionally correlated
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test statistics, we have derived necessary conditions for optimality. Practi-

cal, simple CFAR-like methods to determine this energy-optimal operating

point have yet to be identified. If the detector test statistics are independent,

conditioned on the hypothesis, then the problem greatly simplifies and prac-

tical, efficient methods can be developed to determine the energy-optimal

operating point of the cascade. This conditional independence assumption is

reasonable in multi-modal detection, which represents a wide class of appli-

cations.
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APPENDIX A

DERIVATION OF ENERGY DETECTOR
STATISTICS

A.1 Mean and Variance of T1 under H0

Under the null hypothesis H0, x[n] = wn ∼ cN
(
0, N0

2

)
, where wn = wnI +

jwnQ is proper complex Gaussian (PCG), we derive derive the mean and

variance of the test statistic T1 of an energy detector.

A.1.1 Mean

E [T1|H0] = E

[
N−1∑

n=0

|xn|2
]

=
N−1∑

n=0

E
[
|wn|2

]
=

N−1∑

n=0

N0

2
= N · N0

2

A.1.2 Variance

E
[
T 2

1

∣
∣H0] = E

[(
N−1∑

n=0

|xn|2
)(

N−1∑

m=0

|xm|2
)]

=
N−1∑

n=0

N−1∑

m=0

E
[
|wn|2 · |wm|2

]

=

N−1∑

n=0

E
[
|wn|4

]
+

N−1∑

n=0

∑

m6=n

E
[
|wn|2

]
· E
[
|wm|2

]

=
N−1∑

n=0

E
[
w4

nI + w4
nQ + 2w2

nI · w2
nQ

]
+

N−1∑

n=0

∑

m6=n

(
N0

2

)2

=

N−1∑

n=0

6

(
N0

4

)2

+ 2

(
N0

4

)2

+ N(N − 1)

(
N0

2

)2

= 2N

(
N0

2

)2

+ N(N − 1)

(
N0

2

)2

= N

(
N0

2

)2

+ N2

(
N0

2

)2
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where we used the fact that if Y ∼ N (0, σ2), then E[Y 4] = 3σ4. So,

var(T1|H0) = E
[
T 2

1

∣
∣H0] − E [T1|H0]

2 = N ·
(

N0

2

)2

A.2 Mean and Variance of T1 under H1

Under hypothesis H1, xn = sn + wn =
√

Eej(2πf0n+φ) + wn, where wn ∼

cN (0, N0

2
) is PCG.

A.2.1 Mean

E [T1|H1] =
N−1∑

n=0

E
[
|sn + wn|2

]

=

N−1∑

n=0

E

[

E + 2
√

E · Re{ej(2πf0n+φ) · w∗
n} + |wn|2

]

= N · E + 2
√

E

N−1∑

n=0

E [wnI · cos(2πf0n + φ) + wnQ · sin(2πf0n + φ)]

+ N · N0

2

= N ·
(

N0

2
+ E

)
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A.2.2 Variance

E
[
T 2

1 |H1

]
=

N−1∑

n=0

N−1∑

m=0

E

[(

E + 2
√

E · Re{ej(2πf0n+φ) · w∗
n} + |wn|2

)

·
(

E + 2
√

E · Re{ej(2πf0m+φ) · w∗
m} + |wm|2

)]

=
∑

n

∑

m

E2 + 2E
N0

2
+ E

[
|wn|2 · |wm|2+

4E · Re{ej(2πf0n+φ)} · Re{ej(2πf0m+φ)}
]

= N2 ·
(

E2 + 2E
N0

2

)

+ E
[
T 2

1 |H0

]
+ 4E

∑

n

cos2(2πf0n)E
[
w2

nI

]
+

sin2(2πf0n)E
[
w2

nQ

]

= N2 ·
(

E2 + 2E
N0

2

)

+ E
[
T 2

1 |H0

]
+ 4EN

N0

4

So,

var(T1|H1) = E
[
T 2

1 |H1

]
− E [T1|H1]

2

= E
[
T 2

1 |H1

]
− N2 ·

[(
N0

2

)2

+ E2 + 2E
N0

2

]

= E
[
T 2

1 |H0

]
+ ENN0 − N2

(
N0

2

)2

= N

(
N0

2

)2

+ N2

(
N0

2

)2

+ ENN0 − N2

(
N0

2

)2

= N

(
N0

2

)2

+ ENN0

= N

(
N0

2
+ 2E

)

· N0

2
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APPENDIX B

DERIVATION OF FFT DETECTOR
STATISTICS

Define fk =
[
1, e−j2πk/N , . . . , e−j2πk(N−1)/N

]†
, where † is the Hermitian trans-

pose operator. It can be shown that ||fk||2 = fk
†fk = N . With this notation,

the DFT can be succinctly represented as an inner product: X(k) = fk
†x,

where x = [x(0), . . . , x(N − 1)]T is the time-series stacked into a vector of

size N .

B.1 Mean and Variance of X(k) under H0

Under H0, x = w = [w0, . . . , wN−1]
T , where w is PCG with variance N0

2
I.

B.1.1 Mean

E [X(k)|H0] = E
[
fk

†w
]

= 0

B.1.2 Variance

E
[
|X(k)|2 | H0

]
= E

[
fk

†ww†fk
]

= fk
†
E
[
ww†

]
fk = fk

†N0

2
Ifk =

N0

2
fk

†fk

= N · N0

2

Because the PCG property is closed under addition and the components
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of w are PCG, X(k) is PCG. As a result:

1. XI(k) and XQ(k), the real and imaginary components of X(k) are

independent.

2. E[XI(k)2] = E[XQ(k)2] = 1/2 · E[X(k)2] = N · N0

4
.

Thus, C(k) , |X(k)|2 = XI(k)2 + XQ(k)2 is chi-square with two degrees

of freedom. Normalizing by the variance of XI and XQ, 4
N ·N0

C(k) ∼ χ2.

B.2 Mean and Variance of X(k) under H1

Under H1, let k = k0. For all other integer k, the value of the FFT of the

sinusoid is 0. The statistics in these bins will be the same as those under H0.

Define s = [s0, . . . , sN−1]
T such that x = s + w. Then,

X(k0) = fk
†s + fk

†w

Because we assume s is deterministic, X(k0) is then just a mean-shifted

proper complex Gaussian random variable with variance N · N0

2
, as derived

in the previous section. To compute the mean shift:

fk
†s = fk

†
√

E ·












ejφ

ej(2πk0/N+φ)

...

ej(2πk0(N−1)/N+φ)












=
√

Eejφ · fk†












1

ej2πk0/N

...

ej2πk0(N−1)/N












=
√

Eejφ · fk†fk = N
√

Eejφ = N
√

E cos(φ)
︸ ︷︷ ︸

E[XI(k0)|H1]

+j · N
√

E sin(φ)
︸ ︷︷ ︸

E[XQ(k0)|H1]
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B.3 Noncentrality Parameter under H1

λ ,
E [XI(k0)|H1]

2

var (XI(k0)2|H1)
+

E [XQ(k0)|H1]
2

var (XQ(k0)2|H1)

=
4

N · N0

[(

N
√

E cos(φ)
)2

+
(

N
√

E cos(φ)
)2
]

=
4NE

N0

So under H1,
4

N ·N0
C(k0) ∼ χ2 (λ), with noncentrality parameter λ =

4NE/N0.

50



REFERENCES

[1] L. Benini and G. De Micheli, “System-level power optimization: tech-
niques and tools,” in ACM Trans. Design Automat. Embed. Syst., vol. 5,
April 2000, pp. 115–192.

[2] A. Sinha, A. Wang, and A. Chandrakasan, “Energy scalable system
design,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems,
vol. 10, no. 2, pp. 135–145, April 2002.

[3] S. Nawab, A. Oppenheim, A. Chandrakasan, J. Winograd, and J. Lud-
wig, “Approximate signal processing,” J. VLSI Signal Process. Syst.,
vol. 15, no. 1/2, pp. 177–200, 1997.

[4] J. Winograd, S. Nawab, and A. Oppenheim, “FFT-based incremental
refinement of suboptimal detection,” in Proc. IEEE Int. Conf. on Acous-
tics, Speech, and Signal Processing, vol. 5, May 1996, pp. 2479–2482.

[5] M. Goel and N. Shanbhag, “Dynamic algorithm transformations (DAT)-
a systematic approach to low-power reconfigurable signal processing,”
IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 7,
no. 4, pp. 463–476, Dec. 1999.

[6] Y. Andreopoulos and I. Patras, “Incremental refinement of image
salient-point detection,” IEEE Trans. on Image Processing, vol. 17,
no. 9, pp. 1685–1699, Sept. 2008.

[7] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler, “Design
of a wireless sensor network platform for detecting rare, random, and
ephemeral events,” in Proceedings of the 4th International Symposium
on Information Processing in Sensor Networks, 2005, p. 70.

[8] A. Benbasat and J. Paradiso, “A framework for the automated genera-
tion of power-efficient classifiers for embedded sensor nodes,” in SenSys
’07: Proceedings of the 5th Int. Conference on Embedded Networked
Sensor Systems, 2007, pp. 219–232.

[9] C. Cordeiro, K. Challapali, D. Birru, and N. S. Shankar, “IEEE 802.22:
An introduction to the first wireless standard based on cognitive radios,”
Journal of Communications, vol. 1, no. 1, Apr. 2006.

51



[10] H. Noguchi, T. Takagi, M. Yoshimoto, and H. Kawaguchi, “An ultra-
low-power VAD hardware implementation for intelligent ubiquitous sen-
sor networks,” in IEEE Workshop on Signal Processing Systems, Oct.
2009, pp. 214–219.

[11] D. H. Goldberg, A. G. Andreou, P. Julián, P. O. Pouliquen, L. Riddle,
and R. Rosasco, “VLSI implementation of an energy-aware wake-up
detector for an acoustic surveillance sensor network,” ACM Trans. Sen.
Netw., vol. 2, no. 4, pp. 594–611, 2006.

[12] P. Viola and M. Jones, “Robust real-time object detection,” Int. Journal
of Computer Vision, vol. 57, pp. 137–154, 2001.

[13] V. C. Raykar, B. Krishnapuram, and S. Yu, “Designing efficient cas-
caded classifiers: Tradeoff between accuracy and cost,” in Proceedings
of the 16th ACM SIGKDD. ACM, 2010, pp. 853–860.

[14] H. Luo, “Optimization design of cascaded classifiers,” in IEEE Computer
Society Conf. on Computer Vision and Pattern Recognition, vol. 1, 2005,
pp. 480–485.

[15] B. Levy, Principles of Signal Detection and Parameter Estimation. New
York, NY: Springer, 2008.

[16] A. Wald, Sequential Analysis. New York, NY: J. Wiley & Sons, 1947.

[17] A. Sinha and A. Chandrakasan, “Energy aware software,” in Thirteenth
Int. Conf. on VLSI Design, 2000, pp. 50–55.

[18] H. Everett, “Generalized Lagrange multiplier method for solving prob-
lems of optimum allocation of resources,” in Operation Res., vol. 11,
1963, pp. 399–417.

[19] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA: Athena
Scientific, Sept. 1999.

[20] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY:
Cambridge University Press, March 2004.

[21] D. M. Jun and D. L. Jones, “An energy-aware framework for cascaded
detection algorithms,” in IEEE Workshop on Signal Processing Systems,
Oct. 2010, pp. 1–6.

[22] S. Kay, Fundamentals of Statistical Signal Processing, Volume 2: Detec-
tion Theory. Englewood Cliffs, NJ: Prentice-Hall, 1998.

52


