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Abstract

Quantile regression, as a supplement to the mean regression, is often used when a comprehensive

relationship between the response variable and the explanatory variables is desired. The traditional

frequentists’ approach to quantile regression was well developed with asymptotic theories and effi-

cient algorithms. However not much work has been done under the Bayesian framework. The most

challenging problem for Bayesian quantile regression is that the likelihood is usually not available

unless a certain distribution for the error is assumed. In this dissertation, we propose two Bayesian

quantile regression methods: the data generating process based method (DG) and the linearly in-

terpolated density based method (LID). Markov chain Monte Carlo algorithms are developed to

implement the proposed methods. We provide the convergence property of the algorithms and

numerically verify the theoretical results. We compare the proposed methods with some existing

methods through simulation studies, and apply our method to the birth weight data.

Unlike most of the existing methods which aim at tackling one quantile at a time, our proposed

methods aim at estimating the joint posterior distribution of multiple quantiles and achieving global

efficiency for all quantiles of interest and functions of those quantiles. From the simulation results,

we found that LID could produce more efficient estimates than some existing methods. In particu-

lar, for estimating the difference of quantiles, LID has a big advantage over other existing methods.

Keywords: Bayesian inference; Markov chain Monte Carlo (MCMC); Quantile regression; Linearly

interpolated density (LID);
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Chapter 1

Introduction

Regression, a term defined by Galton (1885) [5] to describe a biological phenomenon, is one of the

most widely used statistical tools. Most of the time it refers to the linear mean regression, which

takes the form of

yi = xiβ + ϵi, i = 1, 2, ..., n,

where yi is the response variable, xi is a 1 × p vector consisting of p explanatory variables, β is a

p × 1 vector of coefficients for the explanatory variables, and ϵi is the error term which is usually

assumed to have mean zero.

The earliest regression, which used the method of least squares proposed by Legendre and Gauss,

however, was used for determining the orbits of the bodies around the sun. After about a century,

Yule and Pearson studied the theoretical property of the regression by assuming that the joint

distribution of yi and xi is normal. Later, Fisher found that only the conditional distribution of

yi|xi needs to be normal. This is one of the most commonly used assumptions in regression analysis.

It turns out that the mean regression could solve many problems under such simple assumptions.

However, for some data, the assumptions of the linear mean regression do not hold or the objective

of interests is no longer the mean. For example, people would like to study why some infants are

born with relatively low birth weights, that is, the lower quantiles of infant birth weights are of main

interests. Moreover, sometimes the error term does not even come from a distribution with finite

mean, e.g., the Cauchy distribution. In such cases, modeling other quantities, such as quantiles,

might be more appealing. For quantile regression, there are no specific assumptions about the error

term. In Sections 1.1, 1.2.1, and 1.2.2, we follow Chapters 1 and 3 of Koenker (2005) [10] to introduce

quntile regression.
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1.1 Introduction of quantile regression

As early as 1755, Boscovich published his work about calculating the ellipticity of the earth. His

model is

yi = a+ bsin2λi, i = 1, 2, 3, 4, 5,

where y is the arc-length of 1◦ of latitude and λ is the latitude, and the ellipticity is computed as

3a/b. In his work, he estimated a and b by minimizing the sum of absolute residuals under the

constraint that the sum of residuals equals to 0, that is,

min
a,b

5∑
i=1

|yi − a− bsin2λi|,

subject to:
5∑

i=1

yi − a− bsin2λi = 0.

Edgeworth (1888) [3] revised Boscovich’s idea by throwing away the constraint on the sum of resid-

uals, and thereby developed the median regression.

In order to model quantiles other than the median, an asymmetric version of absolute errors is used

as the objective function. For the τth quantile, the asymmetric function is defined as:

ρτ (u) = u(τ − I{u<0}), (1.1)

where I{u<0} is an indicator function taking value 1 if u < 0, and 0 otherwise. An example of the

ρ function with τ = 0.25 is given in Figure 1.1. One motivation to use this function as the loss

function is that for a random variable X ∼ F ,

Eρτ (X − x̂) = (τ − 1)

∫ x̂

−∞
(x− x̂)dF (x) + τ

∫ ∞

x̂

(x− x̂)dF (x).

In order to minimize this loss function, we can take the derivative with respect to x̂ and set it to 0:

(τ − 1)

∫ x̂

−∞
dF (x) + τ

∫ ∞

x̂

dF (x) = 0

τ − F (x̂) = 0.

One solution is the τ -th quantile, which is defined as x̂ = F−1(τ), where

F−1(τ) = inf{x : F (x) ≥ τ}.

2
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Figure 1.1: Example of the ρ function when τ = 0.25.
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For the linear regression case, we can specify the τ -th conditional quantile function as

Qτ (yi|xi) = xiβ(τ), i = 1, 2, ..., n.

The parameter β(τ) can be estimated by β̂(τ) which solves the objective function

min
β(τ)

n∑
i=1

ρτ (yi − xiβ(τ)).

Let Y = (y1, y2, ..., yn)
′, X = (x′1, x

′
2, ..., x

′
n)

′, 1n = (1, 1, ..., 1︸ ︷︷ ︸
n

)′. The above quantile regression

problem is equivalent to a linear programming problem,

min
(β(τ),u,v)

{τ1′nu+ (1− τ)1′nv|Xβ(τ) + u− v = Y }. (1.2)

where u and v correspond to the positive and negative parts of the residual vector Y − Xβ. One

can obtain β̂(τ) through solving the linear programming problem.

1.2 Inference for quantile regression

1.2.1 Inference based on asymptotic distributions

Consider data from the linear model

yi = xiβ + ϵi, i = 1, 2, ..., n, (1.3)

where ϵi’s are independent and identically distributed (iid) from a distribution F with density f .

Koenker and Bassett (1978) [11] showed that the joint asymptotic distribution of the m quantile

regression estimators ζ̂n = (β̂n(τ1)
′, ..., β̂n(τm)′)′ is

√
n(ζ̂n − ζ)

D−→ N(0,Ω⊗Q−1
0 ), as n→ ∞, (1.4)

4



where ζ = (β(τ1)
′, ..., β(τm)′)′, the positive definite matrix Q0 = limn→∞ n−1

∑n
i=1 x

′
ixi, the symbol

⊗ denotes Kronecker product and Ω is an m×m matrix with elements

ωij =
max(τi, τj)− τiτj

f(F−1(τi))f(F−1(τj))
. i = 1, 2, ...,m, j = 1, 2, ...,m.

If ϵi’s are not iid, then the asymptotic distribution of
√
n(β̂(τj)− β(τj)) takes the following form.

√
n(β̂(τj)− β(τj))

D−→ N(0, τj(1− τj)H
−1
n (τj)Jn(τj)H

−1
n (τj)), j = 1, 2...,m, as n→ ∞, (1.5)

where

Jn = lim
n→∞

n−1
n∑

i=1

x′ixi,

and

Hn(τj) = lim
n→∞

n−1
n∑

i=1

x′ixifi(ξi(τj)).

Here ξi(τ) = Qτ (yi|xi) and fi denotes the conditional density of yi|xi. The asymptotic covariance

matrix for β̂(τi) and β̂(τj) is as follows.

Acov(
√
n(β̂(τi)− β(τi),

√
n(β̂(τj)− β(τj)) = [max(τi, τj)− τiτj ]Hn(τi)

−1JnHn(τj)
−1, (1.6)

where i = 1, 2, ...,m and j = 1, 2, ...,m. Therefore, to test hypotheses or construct confidence

intervals, one has to estimate s(τj) = [f(F−1(τj))]
−1 for iid errors and fi(ξi(τ)) for non-iid errors.

Because F (F−1(τj)) = τj , if we take the derivative with respect to τ on both sides, then

f(F−1(τj))
d

dτj
F−1(τj) = 1, j = 1, 2, ...,

which leads to s(τj) =
d

dτj
F−1(τj). Siddiqui (1960) [17] suggests that one could approximate s(τj)

by

ŝn(τj) =
F̂−1
n (τj + hn)− F̂−1

n (τj − hn)

2hn
, j = 1, 2, ...,

where F̂−1
n is an estimate of F−1 and hn is the bandwidth which converges to 0 as n→ ∞. Similarly,

for non-iid errors, Hendreicks and Koenker (1991) [7] suggests that one could estimate fi(ξi(τ)) by

f̂i(ξi(τ)) =
2hn

xi(β̂(τ + hn)− β̂(τ − hn))
.

5



However, there is no guarantee that

di = xi(β̂(τ + hn)− β̂(τ − hn)) > 0.

One could replace f̂i by max{0, 2hn

di−δ}, where δ > 0 is a small quantity to avoid the denominator

being 0.

1.2.2 Inference based on bootstrap

When the variance of the estimate is difficult to calculate, the bootstrap method is usually one way

to circumvent the difficulty. For example, if the data come from Model (1.3), one can implement

the residual bootstrap to calculate confidence intervals for β(τ). Let

ϵ̂i = yi − xiβ̂(τ), i = 1, 2, ..., n. (1.7)

The bootstrap samples ϵ∗1, ϵ
∗
2, ..., ϵ

∗
n are drawn from ϵ̂1, ϵ̂2, ..., ϵ̂n with replacement. Letting

y∗i = xiβ̂(τ) + ϵ∗i , i = 1, 2, ..., n, (1.8)

we can obtain the bootstrap estimate of β(τ), denoted as β∗(τ), by

β∗(τ) = argmin
β

n∑
i=1

ρτ (y
∗
i − xiβ).

DeAngelis et al. (1993) [1] showed that the distribution of
√
n(β∗(τ) − β̂(τ)) conditional on D,

where D = {(xi, yi), i = 1, 2, ..., n}, converges to the limiting distribution of
√
n(β̂(τ)−β(τ)). There

are two ways to calculate confidence intervals based on B bootstrap samples β∗
1(τ), β

∗
2(τ), ..., β

∗
B(τ).

The first way is to estimate the covariance matrix of β̂(τ) by

1

B

B∑
i=1

(β∗
i (τ)− β̂(τ))(β∗

i (τ)− β̂(τ))′,

6



and then calculate confidence intervals based on the asymptotical normal distribution of
√
n(β̂(τ)−

β(τ)). The other method, discussed by Efron and Tibshirani (1993) [4], is based on quantiles of

β∗
1,j(τ), β

∗
2,j(τ), ..., β

∗
B,j(τ), j = 1, 2, ..., p,

where β∗
i,j(τ) denotes the j-th component of the i-th bootstrap estimate β∗

i (τ). A 95% con-

fidence interval for βj(τ), where βj(τ) is the j-th component of β(τ), could be estimated by

(β∗
0.025,j(τ), β

∗
0.975,j(τ)), where β

∗
0.025,j(τ) and β∗

0.975,j(τ) denote the 2.5% and 97.5% quantiles of

β∗
1,j(τ), β

∗
2,j(τ), ..., β

∗
B,j(τ) correspondingly.

When the errors are not iid, we have to switch to the (x, y)-paired bootstrap (Efron, 1982). In the

(x, y)-paired bootstrap, we will draw samples (x∗i , y
∗
i ), i = 1, 2, ..., n, from {(xi, yi), i = 1, 2, ..., n}

with replacement and equal weights. The bootstrap estimate β∗(τ) is computed by

β∗(τ) = argmin
β

n∑
i=1

ρτ (y
∗
i − x∗i β).

One could use the same methods as that for the residual bootstrap to calculate confidence intervals

after one has B bootstrap estimates.

1.2.3 Inference based on MCMB

He and Hu (2002) [6] proposed a Markov chain marginal bootstrap (MCMB) method based on

bootstrapping estimating equations.

Let Y1, Y2, ..., Yn be n independent random variables and let θ = (θ1, θ2, ..., θp) be the p-dimensional

parameter that relates to the distribution of Yi. Suppose that gi(Yi, θ) is a p-dimensional function

with Eθ(gi(Yi, θ)) = 0, i = 1, 2, ..., n. Then

S(Y, θ) =

n∑
i=1

gi(Yi, θ) = 0

is called an unbiased estimating equation. Assume that gi(Yi, θ) = aizi, i = 1, 2, ..., n, where ai’s are

constant and zi’s are random. The MCMB algorithm, quoted from He and Hu (2002) [6], is as follows.

1. Initialize θ̂(0) = θ̂ and k = 1.

2. Draw a bootstrap sample {z∗(k)1j , ..., z
∗(k)
nj } from {z1, ..., zn} for each j = 1, ..., p.
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3. In the sequence of j = 1, 2, ..., p, solve for θ̂
(k)
j from

Sj(Y, θ̂
(k)
1 , ..., θ̂

(k)
j−1, θ̂

(k)
j , θ̂

(k−1)
j+1 , ..., θ̂(k−1)

p ) = S
∗(k)
j ,

where Sj is the j-th component of S(Y, θ), and S
∗(k)
j is the j-th component of

∑n
i=1 aiz

∗(k)
ij .

4. Increase k by 1 and go to step 2, or stop if k has reached a prespecified level.

MCMB is very computationally efficient since it only solves a one-dimensional equation every time.

The computational cost of MCMB is in the order of O(np) instead of O(np5/2) for traditional

bootstrap methods. Kocherginsky and He (2007) [8] modified the MCMB method by applying two

transformations in order to decrease the potential high autocorrelation of the MCMB sequence and

broaden the applicability of MCMB.

For the quantile regression case, the corresponding estimating equation for the τ -th quantile is

S(D,β(τ)) =
n∑

i=1

xiψτ (yi − xiβ(τ)),

where ψτ (yi − xiβ(τ)) = τ − I{yi≤xiβ(τ)}. At the resampling step in the MCMB algorithm, one can

set ai = 1 and zi = xiψτ (yi − xiβ(τ)) − z̄, where z̄ = 1
n

∑n
i=1 xiψτ (yi − xiβ(τ)), as proposed by

Kocherginsky, He and Mu (2005) [9]. Alternatively, one can make use of the pivotal property of

S(D,β(τ)), which is observed by Parzen, Wei and Ying (1994) [15]. They suggest that I{yi≤xiβ(τ)}

can be generated from a Bernoulli distribution with success probability τ , so the distribution of

S(D,β(τ)) is independent of β(τ), which makes S(D,β(τ)) pivotal. Therefore, Step 2 in the algo-

rithm could be modified as follows.

2.a) Sample I∗ik{yi≤xiβ(τ)} from a Bernoulli distribution with success probability equal to τ .

2.b) set z∗kij = xijψ
∗ik
τ (yi − xiβ(τ)) = xij(τ − I∗ik{yi≤xiβ(τ)}).

1.3 Bayesian regression of quantiles

Similar to the linear mean regression, it is of interest to study regression of quantiles under the

Bayesian framework. A good property of the Bayesian method is that once we have the poste-

rior distribution or samples from the posterior distribution, it is relative easy to construct credible

intervals for the parameters. Generally, one can use the posterior quantiles or posterior sample
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quantiles to construct credible intervals for the parameters. However, the most challenging problem

for Bayesian quantile regression is that the likelihood is usually not available unless a certain dis-

tribution for the error is assumed. Due to this difficulty, not much work has been done under the

Bayesian framework.

The following are some work in the literature that I am aware of. Yu and Moyeed (2001) [19] pro-

posed an idea of employing a likelihood function based on the asymmetric Laplace distribution. In

their work, Yu and Moyeed assumed that the error term follows an independent asymmetric Laplace

distribution

fτ (u) = τ(1− τ)e−ρτ (u), u ∈ R,

where ρτ (u) is the loss function of quantile regression. The asymmetric Laplace distribution is

very closely related to quantile regression since the mode of fτ (u) is the solution to the quantile

regression objective function. Kottas and Gelfand (2001) [12] implemented a Bayesian median

regression. They introduced two distribution families with median zero, and they also employed

the Dirichlet process prior. Dunson and Taylor (2005) [2] tried to use a substitution likelihood

proposed by Lavine (1995) [13], to make inferences based on the posterior distribution. Here is the

description of the substitution likelihood. If y1, y2, ..., yn are iid from a distribution F , then for m

quantiles θ = (θτ1 , θτ2 , ..., θτm) of F with τ1 < τ2 < ... < τm, the substitution likelihood is

s(θ) =

 n

u1(θ) · · · um+1(θ)

m+1∏
i=1

∆τ
ui(θ)
i ,

where ui(θ) =
∑n

i=1 Iyi∈(θτi−1
,θτi ]

and (∆τ1,∆τ2, ...,∆τm+1) = (τ1, τ2−τ1, ..., 1−τm). One property

of Dunson and Taylor’s method is that it allows regression on multiple quantiles simultaneously.

Taddy and Kottas (2009) [18] developed a fully nonparametric model-based quantile regression

based on Dirichlet process mixing.

1.4 Our contribution

In this dissertation, we introduce a Bayesian method based on linearly interpolated density (LID) or

a data-generating process (DG), which avoids calculating densities directly. The proposed methods

can estimate multiple quantiles simultaneously. In particular, we found that LID has a big advantage

for estimating the difference of quantiles.
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The rest of the dissertation is organized as follow. Chapter 2 describes the algorithms of the two

methods. Chapter 3 shows theoretical results of the proposed methods. Chapter 4 gives numerical

results based on simulated and real data. Chapter 5 gives more numerical studies. Chapter 6 gives

the conclusion and discusses possible directions for future work.
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Chapter 2

Algorithms of the Two Proposed
Methods

Suppose that we have a linear model

yi = xiβ + ϵi, i = 1, 2, ..., n, (2.1)

where xi is a 1× p vector consisting of p explanatory variables, β is a p× 1 vector of coefficients for

the explanatory variables, and ϵi is the error term. The corresponding quantile model for the τj-th

quantile is

Qτj (yi|xi) = xiβ(τj), i = 1, 2, ..., n, j = 1, 2, ...,m. (2.2)

Because our methods are under the Bayesian framework, we need to put priors on the parameters

and make posterior analysis. Let Bm = (β(τ1), β(τ2), ..., β(τm)) and denote π(Bm|X) as the prior

for Bm|X. We are interested in the posterior distribution of Bm|X,Y , where X = (x′1, ..., x
′
n)

′ and

Y = (y1, ..., yn).

As introduced in the first chapter, it is not an easy task to find the posterior distribution since the

likelihood is not available unless the error distribution is specified. Here we will introduce two ways

to deal with this problem. The first method approximates the density based on linear interpolation.

The second method employs a data-generating process to avoid the likelihood.

2.1 Interpretations of Bm|X, Y

Before we introduce the algorithms, it is important to know how to interpret Bm|X,Y . Let us

consider an ideal case first, where B∞ is infinite dimensional and covers all the quantiles. In this

case, Y |X,B∞ is equivalent to Y |F1, F2, ..., Fn, where Fi is the cumulative distribution function

(cdf) of yi|xi. Assuming that all these conditional distributions have probability density functions

(pdf), we can calculate the likelihood function L(Y |X,B∞) through
∏n

i=1 fi(yi), where fi is the pdf

of yi|xi. Denoting π(B∞) as the prior for B∞, we can define the posterior distribution of B∞|X,Y
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as

p(B∞|Y,X) =
π(B∞)L(Y |X,B∞)

p(Y |X)
∝ π(B∞)L(Y |X,B∞),

where p(Y |X) denotes the marginal density of Y |X.

Similarly, we can define the posterior distribution of Bm|X,Y as

p(Bm|X,Y ) ∝ π(Bm)L(Y |X,Bm).

Now the interpretation of L(Y |X,Bm) is not straightforward. Our definition of L(Y |X,Bm) is that

L(Y |X,Bm) =
∏n

i=1 f̄i(yi), where f̄i(yi) is defined as an average over all the possible conditional

distributions of yi|xi with the same m quantiles (Qτ1(yi|xi), Qτ2(yi|xi), ..., Qτm(yi|xi)) = xiBm.

Denote π(fi|xiBm) as the prior on all the possible conditional distributions of yi|xi with the same

m quantiles (Qτ1(yi|xi), Qτ2(yi|xi), ..., Qτm(yi|xi)), then

f̄i(yi) =

∫
fi(yi|xi)π(fi|xiBm)dfi.

We will revisit this concept in Chapter 3, where we will discuss more about the priors and the

interpretation.

2.2 The linearly interpolated density method

We illustrate the basic of the method through the following example. Suppose Z ∼ F (z), where

F (z) is the cdf for Z. Let f(z) be the pdf of Z and z be an observed sample. Let τz = F (z) and

τ1, τ2 be two constants such that 0 ≤ τ1 < τz < τ2 ≤ 1. Then F−1(τ1) < z < F−1(τ2) if we assume

f(z) is continuous and non-zero. We can approximate f(z) by

τ2 − τ1
F−1(τ2)− F−1(τ1)

,

since

τ2 − τ1
F−1(τ2)− F−1(τ1)

=
τ2 − τ1

d
dτ F

−1(τ∗)(τ2 − τ1)
= f(z∗),

where τ1 < τ∗ < τ2 and z∗ = F−1(τ∗) ∈ (F−1(τ1), F
−1(τ2)). The last equation is because

τ∗ = F (F−1(τ∗)) ⇒ 1 = f(F−1(τ∗))
d

dτ
F−1(τ∗) = f(z∗)

d

dτ
F−1(τ∗) ⇒ d

dτ
F−1(τ∗) =

1

f(z∗)
.
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Moreover, if we shrink (τ1, τ2) towards τz, then (F−1(τ1), F
−1(τ2)) will shrink towards z, given f(z)

is continuous and nonzero. Because z∗ ∈ (F−1(τ1), F
−1(τ2)), we have

lim
τ1→τz,τ2→τz

f(z∗) = f(z).

We will discuss more about the convergence property of the linear interpolated density in Chapter 3.

Algorithm of the linearly interpolated density method

We want to run an MCMC algorithm on Bm and obtain samples from the posterior distribution.

Here we introduce the algorithm step by step.

1. Pick m quantiles, say, the τ1-th, the τ2-th,..., and the τm-th quantiles, which should include the

quantiles of interest. One possible choice is to make them equally spaced, that is, τi =
i
m .

2. Put a prior π(Bm) on Bm. One possible prior is a truncated normal N(µ,Σ) satisfying

xiβ(τ1) < xiβ(τ2) < ... < xiβ(τm), i = 1, 2, ..., n. (2.3)

3. Choose an initial value B0
m for Bm. A good choice is the quantile regression estimate, which could

be calculated by “quantreg” package in R. Since quantile regression estimates does not guarantee

that

xiβ̂
rq(τ1) < xiβ̂

rq(τ2) < ... < xiβ̂
rq(τm), i = 1, 2, ..., n,

we need to make some adjustments to the quantile regression estimates if necessary. If all the

covariates are positive, one possible modification is to use the order statistic of

(β̂rq
k (τ1), β̂

rq
k (τ2), ..., β̂

rq
k (τm)), k = 1, 2, ..., p,

denoted as

(β̂rq
k,(1)(τ1), β̂

rq
k,(2)(τ2), ..., β̂

rq
k,(m)(τm)), k = 1, 2, ..., p,

where β̂rq
k (τj) denotes the k-th element of β̂rq(τj). Therefore, the k-th row of B0

m is

(β̂rq
k,(1)(τ1), β̂

rq
k,(2)(τ2), ..., β̂

rq
k,(m)(τm)), k = 1, 2, ..., p.
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If some covariates are not positive, we can shift them to a positive region.

4. Approximate the densities. With the initial values of the parameters, we can calculate the linear

interpolated densities by

f̂0i (yi|xi) = [
m−1∑
j=1

I{yi∈(xiβ0(τj),xiβ0(τj+1))}
τj+1 − τj

xiβ0(τj+1)− xiβ0(τj)
] + I{yi∈(−∞,xiβ0(τ1))}τ1f1(yi)

+I{yi∈(xiβ0(τm),∞)}(1− τm)f2(yi), i = 1, 2, ..., n,

where f1 and f2 are two densities for the tail, which could be chosen as truncated normal densities.

Let L0 =
∏n

i=1 f̂
0
i .

5. Propose a move. Suppose we are at the k-th iteration. Randomly pick a number τj from

τ1, τ2, ..., τm and then randomly pick a component βk
l (τj) of βk(τj) to update. To make sure that

the proposed point β∗
l (τj) satisfying constraint (2.3), we can calculate a lower bound lb and an

upper bound ub for β∗
l (τj) and generate a value for β∗

l (τj) from Uniform(lb, ub), and we will use a

truncated normal as the proposal distribution in case lb = −∞ or ub = ∞. For each observation

(yi, xi), i = 1, 2, ..., n we can calculate a lower bound lbi and an upper bound ubi, i = 1, 2, ..., n, and

then lb = max
i

(lbi) is taken as the maximum of all these lower bounds and ub = min
i

(ubi) is taken

as the minimum of all these upper bounds. The formula to calculate ubi and lbi is given as follows.

If 1 < j < m and xi,l > 0, where xi,l denote the l-th element of xi, then

lbi =
xiβ

k−1(τj−1)−
∑

t̸=l xi,tβ
k−1
t (τj)

xi,l
,

and

ubi =
xiβ

k−1(τj+1)−
∑

t̸=l xi,tβ
k−1
t (τj)

xi,l
.

If 1 < j < m and xi,l < 0, then

lbi =
xiβ

k−1(τj+1)−
∑

t̸=l xi,tβ
k−1
t (τj)

xi,l
,

and

ubi =
xiβ

k−1(τj−1)−
∑

t̸=l xi,tβ
k−1
t (τj)

xi,l
.

If j = 1 and xi,l > 0, then

lbi = −∞,
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and

ubi =
xiβ

k−1(τj+1)−
∑

t̸=l xi,tβ
k−1
t (τj)

xi,l
.

If j = 1 and xi,l < 0, then

lbi =
xiβ

k−1(τj+1)−
∑

t̸=l xi,tβ
k−1
t (τj)

xi,l
,

and

ubi = ∞.

If j = m and xi,l > 0, then

lbi =
xiβ

k−1(τj−1)−
∑

t̸=l xi,tβ
k−1
t (τj)

xi,l
,

and

ubi = ∞.

If j = m and xi,l < 0, then

lbi = −∞,

and

ubi =
xiβ

k−1(τj−1)−
∑

t̸=l xi,tβ
k−1
t (τj)

xi,l
.

If xi,l = 0, then

lbi = 0,

and

ubi = 0.
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6. Once a move is proposed, let us setB∗
m = (βk−1(τ1), ..., β

k−1(τj−1), β
∗(τj), β

k−1(τj+1), ..., β
k−1(τm)).

We can calculate the linear interpolated density f̂∗i (yi|xi), i = 1, 2, .., n, through

f̂∗i (yi|xi) = [
∑

t̸=j,t̸=j−1,t<m

I{yi∈(xiβk−1(τt),xiβk−1(τt+1))}
τt+1 − τt

xiβk−1(τt+1)− xiβk−1(τt)
]

+I{yi∈(xiβk−1(τj−1),xiβ∗(τj))}
τj − τj−1

xiβ∗(τj)− xiβk−1(τj−1)

+I{yi∈(xiβ∗(τj),xiβk−1(τj+1))}
τj+1 − τj

xiβk−1(τj+1)− xiβ∗(τj)

+I{yi∈(−∞,xiβk−1(τ1))}τ1f1(yi) + I{yi∈(xiβk−1(τm),∞)}(1− τm)f2(yi), i = 1, 2, ..., n.

Let L∗ =
∏n

i=1 f̂
∗
i .

7. Calculate the Metropolis-Hastings ratio

r =
π(B∗

m)L∗p(Bk−1
m → B∗

m)

π(Bk−1
m )Lk−1p(B∗

m → Bk−1
m )

,

where p(Bk−1
m → B∗

m) denotes the transition probability from Bk−1
m to B∗

m and p(B∗
m → Bk−1

m )

denotes the transition probability from B∗
m to Bk−1

m . Notice that these two transition probabilities

can cancel out if we choose symmetric proposals for the tails. If r ≥ 1 then Bk
m = B∗

m; otherwise, let

Bk
m = B∗

m with probability r, and Bk
m = Bk−1

m ) with probability 1− r. If Bk
m = B∗

m, then Lk = L∗;

otherwise Lk = Lk−1.

8. Repeat Steps 5 - 7 until the desired number of iterations is reached.

2.3 The data generating method

Marjoram et. al. (2003) [14] proposed a Markov chain Monte Carlo (MCMC) without likelihoods

method to deal with the case that the likelihood is not available or very hard to compute while

generating data from the model is relative easy. Let us review their algorithm before we introduce

the alternative method for the Bayesian quantile regression problem.

2.3.1 MCMC without likelihoods

Suppose dataD come from a discrete distribution f(D|θ). If we want to draw samples from p(θ|D) ∝

π(θ)f(D|θ), where π(θ) is the prior of θ, we can take the following steps.

1. Generate θ from π(θ).
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2. Generate D′ from f(D|θ).

3. Accept θ if D = D′.

If D follows a continuous distribution, we can change Step 3 to “accept θ if ρ(D,D′) < ϵ”, where

ρ(D,D′) is a measure of distance between D and D′ and ϵ is a small quantity to control the accuracy.

If S is the sufficient statistic for θ, then the acceptance rate may be improved by comparing the

sufficient statistics. Combining this accept-reject algorithm with the Metropolis-Hastings algorithm,

we can get the MCMC without likelihoods algorithm as follows.

1. Suppose the chain is at θ. We can propose a move θ′ from a proposal distribution t(θ, θ′).

2. Generate D′ from f(D|θ).

3. Calculate S′ from D′.

4. If S′ = S, then go to next step, and stay at θ otherwise.

5. Calculate the Metropolis-Hastings ratio

r =
π(θ′)t(θ′ → θ)

π(θ)t(θ → θ′)
,

and accept θ′ with probability min(r, 1).

Again, if D is continuous, we will introduce a distance measure and a tolerance quantity.

2.3.2 Generating data based on quantiles

If we can generate data based on quantiles, then we can use the MCMC without likelihoods method.

Let us start from a simple case, where Z1, Z2, ..., Zn are iid with cdf F (z). We know that if F (z)

is invertible, we can use the inverse cdf method to generate n samples from F (z) through following

steps.

1. Generate u1, u2, ..., un from Uniform(0, 1).

2. Calculate z′i = F−1(ui), i = 1, 2, ..., n.

If we only know m quantiles instead of the cdf F , say, qτ1 , qτ2 , ..., qτm , where 0 < τ1 < τ2 < ... <

τm < 1, then we can use linear interpolations to generate samples as follows.

1. Generate u1, u2, ..., un from Uniform(0, 1).

2. If τj < ui < τj+1, then

z′i = qτj +
qτj+1 − qτj
τj+1 − τj

(ui − τj). (2.4)
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If ui < τ1 or ui > τm, then z′i can be generated from a truncated normal where z′i need to be smaller

than qτ1 or greater than qτm .

Now let us consider the linear regression case, where

yi = xiβ + ϵi, i = 1, 2, ..., n.

For each point (xi, yi), we can calculate m quantiles Qτ1(yi|xi), Qτ2(yi|xi), ..., Qτm(yi|xi) if we know

Bm. To generate samples in this case, we need to modify the interpolation step to the following.

If τj < ui < τj+1, then

y′i = Qτj (yi|xi) +
Qτj+1(yi|xi)−Qτj (yi|xi)

τj+1 − τj
(ui − τj). (2.5)

If ui < τ1 or ui > τm, then y′i can be generated from a truncated normal where y′i need to be smaller

than Qτ1(yi|xi) or greater than Qτm(yi|xi).

2.3.3 The algorithm of the data generating method

For the univariate case, where no covariates are involved, one can use order statistics as the sufficient

statistic and use the Euclidean distance as the measure if the data are continuous. Suppose that

the observed data is Z = (z1, z2, ..., zn) and continuous. In this case, the algorithm is as follows.

1. Pick m quantiles, say, the τ1-th, the τ2-th,..., and the τm-th quantiles, which should include the

quantiles of interest.

2. Put a prior π(qτ0:τm) on qτ0:τm = (qτ1 , qτ2 , ..., qτm).

3. Choose an initial value q0τ0:τm for qτ0:τm . One can use the sample quantiles as the initial point.

4. Propose a move at the k-th iteration. One possible proposal can be chosen as follows. Randomly

choose a number τj from τ1, τ2, ..., τm. If 1 < j < m, then q∗τj ∼ Uniform(qτj−1 , qτj+1). If j = 1 or

j = m, then q∗τj can be generated from a truncated normal, which should guarantee that q∗τj < qτ1

or q∗τj > qτm . Let q∗τ1:τm = (qτ1 , ..., qτj−1 , q
∗
τj , qτj+1 , ..., qτm).

5. Generate u1, u2, ..., un from Uniform(0, 1). Use the interpolation scheme (2.4) proposed in Section

2.3.2 and plug in q∗τ1:τm . Denote the generated data as Z ′ = (z′1, ..., z
′
n).

6. Calculate the order statistic S′ = (z′(1), ..., z
′
(n)).
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7. Calculate the Euclidean distance between S and S′

ρ(S, S′) =

√√√√ n∑
i=1

(z′(i) − z(i))2.

Go to the next step if ρ(S, S′) < ϵ, where ϵ is a pre-specified tolerance quantity. Otherwise qkτ1:τm =

qk−1
τ1:τm .

8. Calculate the Metropolis-Hastings ratio

r =
π(q∗τ1:τm)t(qk−1

τ1:τm → q∗τ1:τm)

π(qk−1
τ1:τm)t(q∗τ1:τm → qk−1

τ1:τm)
.

Let qkτ1:τm = q∗τ1:τm with probability min(r, 1).

9. Repeat Steps 4-8 until the desired number of iterations is reached.

For the linear model with one covariate case,

yi = a+ xiβ + ϵi, i = 1, 2, ..., n,

we would like to introduce summary statistics d1, d2 defined as



d1,τ1 =
1

n

n∑
i=1

(I(yi≤qτ1 (yi|xi)) − τ1)/
√
τ1(1− τ1)

...

d1,τm =
1

n

n∑
i=1

(I(yi≤qτm (yi|xi)) − τm)/
√
τm(1− τm),

(2.6)



d2,τ1 =
1

n

n∑
i=1

(I(yi≤qτ1 (yi|xi)) − τ1)x
∗
i /
√
τ1(1− τ1)

...

d2,τm =
1

n

n∑
i=1

(I(yi≤qτm (yi|xi)) − τm)x∗i /
√
τm(1− τm),

(2.7)

where x∗i = xi

max(|xi|)
and qτj (yi|xi)) = â(τj) + xiβ̂(τj), where â(τj) and β̂(τj) are the “quantreg”

(a package in R) estimates based on the originally observed data (X,Y ).
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Let D′ = {(xi, y′i), i = 1, 2, ..., n} be the generated data. We can calculate d′1, d
′
2 by



d′1,τ1 =
1

n

n∑
i=1

(I(y′
i≤qτ1 (yi|xi)) − τ1)/

√
τ1(1− τ1)

...

d′1,τm =
1

n

n∑
i=1

(I(y′
i≤qτm (yi|xi)) − τm)/

√
τm(1− τm),

(2.8)



d′2,τ1 =
1

n

n∑
i=1

(I(y′
i≤qτ1 (yi|xi)) − τ1)x

∗
i /
√
τ1(1− τ1)

...

d′2,τm =
1

n

n∑
i=1

(I(y′
i≤qτm (yi|xi)) − τm)x∗i /

√
τm(1− τm).

(2.9)

We calculate the Euclidean distance between d1, d2 and d′1, d
′
2 to decide whether we will reject the

move or not.

The algorithm is as follows.

1. Pick m quantiles, say, the τ1-th, the τ2-th,..., and the τm-th quantiles, which should include the

quantiles of interests.

2. Put a prior π(Bm) on Bm = (a(τ1), a(τ2), ..., a(τm), β(τ1), β(τ2), ..., β(τm)). One can use a

truncated normal prior same as the one for the linear interpolated densities method.

3. Choose an initial value B0
m. One can choose the initial value discussed at Step 3 of the linearly

interpolated density method.

4. Calculate d1 and d2 through equations (2.6) and (2.7).

5. Propose a move. One can use the same strategy as Step 4 of the linearly interpolated density

method. Denote the new point as B∗
m.

6. Generate data. Generate u1, u2, ..., un from Uniform(0, 1). Use the interpolation scheme (2.5)

discussed in the Section 2.3.2 and plug in B∗
m to generate D′.

7. Calculate d′1 and d′2 through equations (2.8) and (2.9). Go to the next step if ρ(d1, d
′
1) < ϵ1 and

ρ(d2, d
′
2) < ϵ2, where ρ(·, ·) is the Euclidean distance and ϵ1 and ϵ2 are two pre-specified tolerance

quantities. Otherwise Bk
m = Bk−1

m .

8. Calculate the Metropolis-Hastings ratio

r =
π(B∗)t(B∗ → Bk−1)

π(Bk−1
m )t(Bk−1

m → B∗
m)
,

20



and accept B∗ with probability min(r, 1).

9. Repeat Steps 5 - 8 until the desired number of iterations is reached.

For the multi-covariates case, this method could be easily generalized, but more distances may be

needed to compare instead of only d1 and d2.
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Chapter 3

Theoretical Results of the
Proposed Methods

In the previous chapter, we introduced two methods to solve the quantile regression problem. Both

methods used the Markov chain Monte Carlo (MCMC) method, so it is important to know the

stationary distribution of the Markov chain. The limiting property of the stationary distribution is

also of interest. In this chapter, we will show the limiting property of the stationary distribution as

m→ ∞, where m is the number of quantiles we use.

3.1 Stationary distribution of the linearly interpolated

density method

Let us consider the linear model

yi = xiβ + ϵi, i = 1, 2, ..., n, (3.1)

where xi is a 1× p vector consisting of p explanatory variables, β is a p× 1 vector of coefficients for

the explanatory variables, and ϵi is the error term. The corresponding quantile model for the τj-th

quantile is

Qτj (yi|xi) = xiβ(τj), i = 1, 2, ..., n, j = 1, 2, ...,m. (3.2)

Let πm(Bm) be the prior for Bm = (β(τ1), β(τ2), ..., β(τm)) and P̂m(Y |X,Bm) =
∏n

i=1 f̂i,m(yi)

denote the linear interpolated likelihood, where f̂i,m(yi) denotes the linear interpolated density for

the i-th observation and can be calculated by

f̂i,m(yi|xi) = [

m−1∑
j=1

I{yi∈(xiβ(τj),xiβ(τj+1))}
τj+1 − τj

xiβ(τj+1)− xiβ(τj)
] + I{yi∈(−∞,xiβ(τ1))}τ1f1(yi)

+I{yi∈(xiβ(τm),∞)}(1− τm)f2(yi), i = 1, 2, ..., n,
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where f1 and f2 are two densities for the tail. Therefore, the posterior distribution of Bm based

on the linear interpolated likelihood is P̂m(Bm|X,Y ) = πm(Bm)P̂m(Y |X,Bm)/P̂m(Y |X), where

P̂m(Y |X) =
∫
πm(Bm)P̂m(Y |X,Bm)dBm.

Proposition 3.1.1. P̂m(Bm|X,Y ) is the stationary distribution of the Markov chain constructed

through the linearly interpolated density method.

Proof: We will verify the detailed balance condition to show the stationary distribution. Denote the

probability from Bm to B′
m by K(Bm → B′

m) and the proposal distribution by q(Bm → B′
m). We

have

P̂m(Bm|X,Y )K(Bm → B′
m)

= P̂m(Bm|X,Y )q(Bm → B′
m)min(1,

πm(B′
m)P̂m(Y |X,B′

m)q(B′
m → Bm)

πm(Bm)P̂m(Y |X,Bm)q(Bm → B′
m)

)

=
π(Bm)P̂m(Y |X,Bm)

P̂m(Y |X)
q(Bm → B′

m)min(1,
πm(B′

m)P̂m(Y |X,B′
m)q(B′

m → Bm)

πm(Bm)P̂m(Y |X,Bm)q(Bm → B′
m)

)

=
πm(B′

m)P̂m(Y |X,B′
m)

P̂m(Y |X)
q(B′

m → Bm)min(
πm(Bm)P̂m(Y |X,Bm)q(Bm → B′

m)

πm(B′
m)P̂m(Y |X,B′

m)q(B′
m → Bm)

, 1)

= P̂m(B′
m|X,Y )K(B′

m → Bm).

�

3.2 Limiting distribution of the stationary distribution for

the linearly interpolated density method

In this section, we will first show that the stationary distribution will converge to some distribution

in terms of the total variation norm as m → ∞, and then we will show that after we construct a

Markov chain with increasing m the distribution at each step of the Markov chain will converge to

some distribution as m→ ∞.

To study the limiting distribution as m → ∞, we need to define a way to increase the number of

quantiles. Let us start from m0 = M0 − 1 quantiles: the 1
M0

-th, 2
M0

-th, ..., M0−1
M0

-th quantiles. We

can add new quantiles one by one in the following way: the 1
2M0

-th, 3
2M0

-th,..., 2M0−1
2M0

-th, 1
4M0

-th,
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3
4M0

-th,..., 4M0−1
4M0

-th quantiles and so on. Through this definition, we can see that

∆τ = max
0≤j≤m

(τj+1 − τj) ≤
2

m
= O(

1

m
), (3.3)

where τ0 = 0 and τm+1 = 1. We need the following assumption to show the limiting distribution.

Assumption 3.2.1. Let F = {f |
∫
fdx = 1, 0 ≤ f ≤ M1, |f ′| < M2, and f(x) <

c√
m

for x < q 1
m

and x > qm−1
m

}, where m is any positive integer, the quantities q 1
m

and qm−1
m

are the 1
m -th and

m−1
m -th quantile of f and M1, M2 and c are constants. We need to assume that all the densities of

yi|xi we considered are in this set.

From the assumption, we can see that F is a set of probability density functions with bounded

value, bounded first derivative and not too heavy tails. We can show that the Cauchy distribu-

tion, which has fairly heavy tails, is in the set. For the Cauchy distribution, the 1
m -th quantile is

q 1
m

= tan(π( 1
m − 1

2 )) = −ctan( π
m ), so f(q 1

m
) = 1

π
1

1+ctan2( π
m ) = 1

π sin
2( π

m ) = O( 1
m2 ) <

c√
m

for some

c.

Let us consider β(τ) as a function of τ , where 0 ≤ τ ≤ 1. One possible prior for β(τ) is the Gaussian

process prior. The prior of fi(yi|xi) can be induced from the prior of β(τ) because xiβ(τ) can give

all the quantiles of fi(yi|xi), which will determine fi(yi|xi). We can also obtain the priors on Bm

from the prior of β(τ) because Bm is a vector of m point on β(τ). Denote the prior on fi(yi|xi) by

π(fi) and the prior on Bm by πm(Bm).

Definition 3.2.1. Let θfi be all the quantiles of fi and θm = xiBm to be the m quantiles we are

using.

Proposition 3.2.1. Let P̂m(yi|θm) denote the linear interpolated density of yi given that the m

quantiles are θm. Let P (yi|θfi) = fi(yi) denote the true density given that the pdf of yi|xi is fi.

Then P̂m(yi|θm) → P (yi|θfi) as m→ ∞.

Proof:

We will prove this proposition in two different cases.

Case 1: If yi is between two quantiles we are using, in which case we can find two consecutive

quantiles qi,τj and qi,τj+1 such that yi ∈ [qi,τj , qi,τj+1), where 1 ≤ j ≤ m−1, then by the mechanism

of linear interpolation, we have the following equation.
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P̂m(yi|θm)

=
τj+1 − τj

qi,τj+1 − qi,τj

=
τj+1 − τj

F−1
i (τj+1)− F−1

i (τj)

=
τj+1 − τj

(F−1
i )′(τ∗)(τj+1 − τj)

(By the mean value theorem)

=
τj+1 − τj

1
fi(y∗

i )
(τj+1 − τj)

= fi(y
∗
i )

where τ∗ ∈ [τj , τj+1), y
∗
i ∈ [qi,τj , qi,τj+1), Fi denotes the cdf of yi|θf , Fi(y

∗
i ) = τ∗, and fi denotes the

pdf of yi|θf .

Now we want to show that

|fi(y∗i )− fi(yi)| ≤ sup
y∈[qi,τj ,qi,τj+1

)

fi(y)− inf
y∈[qi,τj ,qi,τj+1

)
fi(y) ≤M2δ, (3.4)

where δ =
√

2(τj+1−τj)
M2

. If qi,τj+1 − qi,τj ≤ δ, then |fi(y∗i )− fi(yi)| = |f ′i(y†)(y∗i − yi)| ≤M2δ, where

y† ∈ [qi,τj , qi,τj+1). Now let us consider the case that qi,τj+1 − qi,τj > δ. We will show that

∫ qi,τj+1

qi,τj

fi(y)dy > τj+1 − τj ,

if

sup
y∈[qi,τj ,qi,τj+1

)

fi(y)− inf
y∈[qi,τj ,qi,τj+1

)
fi(y) > M2δ.

Letting yinf = arg infy∈[qi,τj ,qi,τj+1
) fi(y), ysup = arg supy∈[qi,τj ,qi,τj+1

) fi(y), without loss of gener-

ality, we can assume that yinf < ysup. It is obvious that ysup − yinf > δ, because if ysup − yinf ≤ δ,

then

sup
y∈(qi,τj ,qi,τj+1

)

fi(y)− inf
y∈(qi,τj ,qi,τj+1

)
fi(y) = fi(ysup)− fi(yinf ) = |f ′i(y†)|(ysup − yinf ) ≤M2δ.

We can find a line with slope M2 that goes through (ysup, fi(ysup)). This line would be below the

curve fi(y) in [yinf , ysup), since fi(y) − fi(ysup) = f ′(y††)(y − ysup) ≥ M2(y − ysup) for y < ysup,
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which leads to fi(y) ≥ fi(ysup) +M2(y − ysup).

Now we can check the area S formed by the line, y = yinf , y = ysup, and fi(y) = 0. Figure 3.1

shows two possible cases. The shaded region is S.

If fi(ysup)−M2(ysup − yinf ) ≥ 0, the area is equal to

(2fi(ysup)−M2(ysup − yinf ))(ysup − yinf )

2
≥ fi(ysup)(ysup − yinf )

2
>
M2δ

2

2
= τj+1 − τj .

If fi(ysup)−M2(ysup − yinf ) < 0, the area is equal to

fi(ysup)
2

2M2
>

(M2δ)
2

2M2
= τj+1 − τj .

Therefore, in both cases, we show

∫ qi,τj+1

qi,τj

fi(y)dy ≥
∫ ysup

yinf

fi(y)dy ≥ S > τt+1 − τj ,

which contradicts with the fact that
∫ qi,τj+1

qi,τj
f(y)dy = τj+1 − τj . Hence

|fi(y∗i )− fi(yi)| ≤ sup
y∈(qi,τj ,qi,τj+1

)

fi(y)− inf
y∈(qi,τj ,qi,τj+1

)
fi(y) ≤M2δ =

√
2M2(τj+1 − τj) = O(

1√
m
)

given that τj+1 − τj = O( 1
m ).

Now let us consider the second case.

Case2: If yi is a point in the tail, which means that yi ≤ qi,τ1 or yi > qi,τm , then we can see

P (yi|θfi) = fi(yi) <
c√
m

from the Assumption 3.2.1. For the tail part, we can use a truncated normal

to do the interpolation so that P̂m(yi|θm) < c√
m
. Therefore, we find |P̂m(yi|θm)−P (yi|θfi)| < 2c√

m
=

O( 1√
m
).

In both cases, we showed |P̂m(yi|θm)− P (yi|θfi)| = O( 1√
m
). �

Definition 3.2.2. Let P (yi|θm) =
∫
fi∈Fθm

P (yi|θfi)π(fi|θm)dfi, where Fθm denotes the subset of

F that contains all the pdfs with those m quantiles equal to θm and π(fi|θm) denotes the prior of

fi|θm which is induced by π(fi).

Under this definition of P (yi|θm), we can show the following proposition.

Proposition 3.2.2. |P̂m(Y |X,Bm)− P (Y |X,Bm)| = O( 1√
m
).

Proof: Let us show |P̂m(yi|θm)− P (yi|θm)| = O( 1√
m
) first.
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Figure 3.1: Example of the 2 possible cases of the area: trapezia or triangle. The solid curve stands
for f(y). The dotted line stands for the line we constructed. And the shaded area is S.
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|P̂m(yi|θm)− P (yi|θm)|

= |
∫
f∈Fθm

P̂m(yi|θm)π(f |θm)df −
∫
f∈Fθm

P (yi|θf )π(f |θm)df |

≤
∫
f∈Fθm

π(f |θm)|P̂m(yi|θm)− P (yi|θf )|df

= O(
1√
m
).

Because P̂m(Y |X,Bm) =
∏n

i=1 P̂m(yi|xiBm) and P (Y |X,Bm) =
∏n

i=1 P (yi|xiBm), we can show

|P̂m(Y |X,Bm) − P (Y |X,Bm)| = O( 1√
m
) simply by induction. We will show the case that n = 2

here.

|P̂m(Y |X,Bm)− P (Y |X,Bm)|

= |P̂m(y1|X,Bm)P̂m(y2|X,Bm)− P (y1|X,Bm)P (y2|X,Bm)|

= |P̂m(y1|X,Bm)P̂m(y2|X,Bm)− P̂m(y1|X,Bm)P (y2|X,Bm)

+P̂m(y1|X,Bm)P (y2|X,Bm)− P (y1|X,Bm)P (y2|X,Bm)|

≤ |P̂m(y1|X,Bm)(P̂m(y2|X,Bm)− P (y2|X,Bm))|+ |(P̂m(y1|X,Bm)− P (y1|X,Bm))P (y2|X,Bm)|

= M1O(
1√
m
) +M1O(

1√
m
)

= O(
1√
m
)

For the case that n > 2, the proof can be easily generalized. �

Proposition 3.2.3. Eπm(|P̂m(Y |X,Bm)− P (Y |X,Bm)|) = O( 1√
m
)

The proof for this proposition is simply using the conclusion of Proposition 3.2.2. �

Proposition 3.2.4. Eπm(|P̂m(Y |X,Bm)− P̂m−1(Y |Bm−1, X)|) = O( 1√
m
)

The proof for this proposition is simply using the conclusion of Proposition 3.2.3 twice. �

In order to prove the convergence of one distribution to another, we need to introduce a norm to

measure the discrepancy. Here we will use the total variation norm, which will be denoted by ∥ ·∥TV

Definition 3.2.3. If µ1 and µ2 are probability measures, ||µ1 − µ2||TV = supA |µ1(A) − µ2(A)|,

where A denotes any measurable set.
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The following proposition, which appears as a homework problem of Robert and Casella (2004) [16]

p. 253, gives an equivalent definition.

Proposition 3.2.5. ||µ1 − µ2||TV = 1
2 sup|h|≤1 |

∫
h(x)µ1(dx)−

∫
h(x)µ2(dx)|.

Proof: Assuming that M is a measurable set such that supA |µ1(A)−µ2(A)| = µ1(M)−µ2(M), we

can see that M− = {a|a ∈ M,µ′
1(a) − µ′

2(a) < 0} has measure 0 on both µ1 and µ2. Otherwise,

µ1(M
−) − µ2(M

−) =
∫
M− µ

′
1(x) − µ′

2(x)dx < 0, and in this case if we define M+ = {a|a ∈

M,µ′
1(a)− µ′

2(a) ≥ 0}, then

µ1(M
+)− µ2(M

+)

= µ1(M)− µ1(M
−)− (µ2(M)− µ2(M

−))

= µ1(M)− µ2(M)− (µ1(M
−)− µ2(M

−))

> µ1(M)− µ2(M),

which contradicts with the definition of M . Without loss of generality, let us assume that µ′
1(x)−

µ′
2(x) ≥ 0 for all x ∈M , so µ′

1(x)− µ′
2(x) < 0 for all x ∈ M̄ , where M̄ is the complementary set of

M . Define h0(x) = 1 if x ∈M , h0(x) = −1 if x ∈ M̄ . Then,

∫
h0(x)µ1(dx)−

∫
h0(x)µ2(dx)

= µ1(M)− µ2(M) + µ2(M̄)− µ1(M̄)

= µ1(M)− µ2(M) + (1− µ2(M))− (1− µ1(M))

= 2(µ1(M)− µ2(M)).

Hence,

||µ1 − µ2||TV

=
1

2
(

∫
h0(x)µ1(dx)−

∫
h0(x)µ2(dx))

≤ 1

2
sup
|h|≤1

|
∫
h(x)µ1(dx)−

∫
h(x)µ2(dx)|.
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We can also show the other direction as follows.

1

2
sup
|h|≤1

|
∫
h(x)µ1(dx)−

∫
h(x)µ2(dx)|

≤ 1

2

∫
|µ′

1(x)− µ′
2(x)|dx

=
1

2

∫
M

(µ′
1(x)− µ′

2(x))dx+

∫
M̄

(µ′
2(x)− µ′

1(x))dx

=
1

2
(µ1(M)− µ2(M) + µ2(M̄)− µ1(M̄))

= µ1(M)− µ2(M) = ||µ1 − µ2||TV

Therefore, ||µ1 − µ2||TV = 1
2 sup|h|≤1 |

∫
h(x)µ1(dx)−

∫
h(x)µ2(dx)|. �

Now we would like to prove that P̂m(Bm|X,Y ) → P (Bm|X,Y ) as m → ∞. We need to show the

following proposition first.

Proposition 3.2.6. |P̂m(Y |X)− P (Y |X)| = O( 1√
m
)

Proof:

|P̂m(Y |X)− P (Y |X)|

= |
∫
πm(Bm)(P̂m(Y |X,Bm)− P (Y |X,Bm))dBm|

≤
∫
πm(Bm)|(P̂m(Y |X,Bm)− P (Y |X,Bm))|dBm

= Eπm(|P̂m(Y |X,Bm)− P (Y |X,Bm)|) = O(
1√
m
) (By Proposition 3.2.3)

�

Now we can prove the following theorem which gives the limiting distribution of the stationary

distribution as m→ ∞.

Theorem 3.2.1. ∥P̂m(Bm|X,Y )− P (Bm|X,Y )∥TV → 0 as m→ ∞.
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Proof:

||P̂m(Bm|X,Y )− P (Bm|X,Y )||TV

=
1

2
sup
|h|≤1

|
∫
h(Bm)(

πm(Bm)P̂m(Y |X,Bm)

P̂m(Y |X)
− πm(Bm)P (Y |X,Bm)

P (Y |X)
)dBm|

≤ 1

2

∫
πm(Bm)| P̂m(Y |X,Bm)

P̂m(Y |X)
− P (Y |X,Bm)

P (Y |X)
|dBm

=
1

2

∫
πm(Bm)| P̂m(Y |X,Bm)P (Y |X)− P̂m(Y |X)P (Y |X,Bm)

P̂m(Y |X)P (Y |X)
|dBm

=
1

2

∫
πm(Bm)| (P̂m(Y |X,Bm)− P (Y |X,Bm))P (Y |X) + P (Y |X,Bm)(P (Y |X)− P̂m(Y |X))

P̂m(Y |X)P (Y |X)
|dBm

≤ 1

2

∫
πm(Bm)

|(P̂m(Y |X,Bm)− P (Y |X,Bm)|P (Y |X) + P (Y |X,Bm)|P (Y |X)− P̂m(Y |X)|
P̂m(Y |X)P (Y |X)

dBm

=
1

2
(
Eπm(|P̂m(Y |X,Bm)− P (Y |X,Bm)|)

P̂m(Y |X)
+

|P̂m(Y |X)− P (Y |X)|
P̂m(Y |X)

)

As we already know that P̂m(Y |X) → P (Y |X) as m→ ∞ by Proposition 3.2.6, we can choose any

e∗ > 0 such that e∗ < P (Y |X). Given this e∗, there exists anm∗ such that |P̂m(Y |X)−P (Y |X)| < e∗

for m > m∗. We can see that LB = min(P̂m0(Y |X), P̂m0+1(Y |X), ..., P̂m∗−1(Y |X), P (Y |X)− e∗) is

a lower bound for P̂m(Y |X), where m0 is the minimum number of quantiles we use.

Therefore, ||P̂m(Bm|X,Y )−P (Bm|X,Y )||TV < 1
2LB (Eπm(|P̂m(Y |X,Bm)−P (Y |X,Bm)|)+|P̂m(Y |X)−

P (Y |X)|) = O( 1√
m
) → 0 as m→ ∞. �

Definition 3.2.4. Let η denote the parameters of quantiles on which we want to make inference.

They should be included in Bm. Let π(η) denote the prior distribution of η, which is induced by

πm(Bm).

Definition 3.2.5. Let ft,m(Bm) denotes the density of the t-th step of the chain that uses m

quantiles and gt,m(η) denotes the marginal density of η by integrating out other variables of Bm

from ft,m(Bm).

Proposition 3.2.7. Suppose that f1(Bm) and f2(Bm) are two pdfs of Bm and g1(η) and g2(η) are

the marginal pdfs by integrating out other variables of Bm from f1(Bm) and f2(Bm) respectively. If

||f1 − f2||TV < ϵ, then ||g1 − g2||TV ≤ ||f1 − f2||TV < ϵ.
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Proof: Denote η̄ = Bm \ η, then we will have:

||g1(η)− g2(η)||TV

=
1

2
sup
|h|≤1

|
∫
h(η)(g1(η)− g2(η))dη|

=
1

2
sup
|h|≤1

|
∫
h(η)

∫
(f1(Bm)− f2(Bm))dη̄dη|

=
1

2
sup

|h∗|≤1

|
∫
h∗(Bm)(f1(Bm)− f2(Bm))dBm| (where h∗(Bm) = h(η))

≤ 1

2
sup
|h|≤1

|
∫
h(Bm)(f1(Bm)− f2(Bm))dBm|

= ||f1(η)− f2(η)||TV

< ϵ

�

Definition 3.2.6. Denote P̂m(η|X,Y ) and Pm(η|X,Y ) as the distributions of η|X,Y by integrating

out other variables of Bm from P̂m(Bm|X,Y ) and Pm(Bm|X,Y ), respectively.

From the result of Proposition 3.2.7, we can obtain the following corollary.

Corollary 3.2.1. If ||P̂m(Bm|X,Y )−P (Bm|X,Y )||TV ≤ ϵ, then ||P̂m(η|X,Y )−P (η|X,Y )||TV ≤ ϵ.

Proposition 3.2.8. If a sequence {an} converges to 0, which is to say that |an| → 0 as n → ∞,

then we can find a strictly decreasing sequence {ϵn} such that ϵn → 0 as n→ ∞ and |an| < ϵn.

Proof: Because |an| → 0 as n → ∞, we can find a strictly decreasing sequence {δm} such that

δm → 0 as m → ∞ and δ1 > |a1|. For any m, there exists some Nm, where Nm is increasing with

respect to m and N1 = 1, such that |an| < δm for n ≥ Nm.

we can choose ϵNm = δm−1, where δ0 = δ1 + 1. Let ϵk = ϵNm − k−Nm

Nm+1−Nm
(ϵNm − ϵNm+1) if

Nm < k < Nm+1. We want to check that this sequence {ϵk} satisfies all the conditions. First, it is

obvious that this sequence is strictly decreasing because ϵNm is strictly decreasing with respect to

m. Second, we need to check that |an| < ϵn. We can see that ϵNm = δm−1 > |an| for n ≥ Nm−1 and

Nm > Nm−1, so ϵNm > |aNm . If Nm < k < Nm+1, then ϵk > ϵNm+1 = δm > |an| for n > Nm, which

implies ϵk > |ak|. Therefore, for any k ∈ N, we have |ak| < ϵk. �.

Now let us construct a chain with increasing number of quantiles as follows. First, choose a strictly
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decreasing sequence {em}∞m=m0
such that ||P̂m(Bm|X,Y )−P (Bm|X,Y )||TV ≤ em. Second, assume

that the chain is Harris positive and aperiodic. Start the chain with m0 quantiles, which should

include η. After generating Tm0 samples such that ||fTm0 ,m0(Bm0) − P̂m0(Bm0 |X,Y )||TV < em0 ,

we can add one more quantile, using the strategy discussed at the beginning of the section. Let us

denote the prior of this new quantile conditionally on other quantiles to be π(Bnew|Bm). Then after

generating Tm0+1 samples such that ||fTm0+1,m0+1(Bm0+1)− P̂m0+1(Bm0+1|X,Y )||TV < em0+1, we

can add another quantile, and so on.

Theorem 3.2.2. ∥gt,m(η)− P (η|X,Y )∥TV → 0 as m→ ∞.

Proof: By Propositions 3.2.4 and 3.2.8, we can find a decreasing sequence δm such that Eπm(|P̂m(Y |X,Bm)−

P̂m−1(Y |X,Bm−1)|) ≤ δm and δm → 0 as m→ 0.

We will divide the proof into two parts.

Part1: we will show that ||g1,m(η)− P (η|X,Y )||TV → 0 as m→ ∞.

Suppose that m > m0, then f1,m(Bm) =
∫
π(B′

new|B′
m−1)fTm−1,m−1(B

′
m−1)Km(B′

m, Bm)dB′
m,

where B′
m = (B′

m−1, B
′
new) and Km is the transition kernel for the m-th step.

Let’s check the following equation first.

∥f1,m(Bm)− P̂m(Bm|X,Y )∥TV

=
1

2
sup
|h|≤1

|
∫
h(Bm)(

∫
π(B′

new|B′
m−1)fTm−1,m−1(B

′
m−1)Km(B′

m, Bm)dB′
m

−P̂m(Bm|X,Y ))dBm|

=
1

2
sup
|h|≤1

|
∫
h(Bm)(

∫
π(B′

new|B′
m−1)fTm−1,m−1(B

′
m−1)Km(B′

m, Bm)dB′
m

−
∫
P̂m(B′

m|X,Y )Km(B′
m, Bm)dB′

m)dBm| (Property of the stationary distribution)

=
1

2
sup
|h|≤1

|
∫
[π(B′

new|B′
m−1)fTm−1,m−1(B

′
m−1)− P̂m(B′

m|X,Y )]

∫
h(Bm)Km(B′

m, Bm)dBmdB
′
m|.

Let h∗(B′
m) =

∫
h(Bm)Km(B′

m, Bm)dBm. It is not difficult to see that h∗(B′
m) ≤ 1, so we can
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rewrite the above equation as follows.

||f1,m(Bm)− P̂m(Bm)||TV

=
1

2
sup
|h|≤1

|
∫
h∗(B′

m)(π(B′
new|B′

m−1)fTm−1,m−1(B
′
m−1)− P̂m(B′

m|X,Y ))dB′
m|

≤ 1

2
sup
|h|≤1

|
∫
h(B′

m)(π(B′
new|B′

m−1)fTm−1,m−1(B
′
m−1)− P̂m(B′

m|X,Y ))dB′
m|

= ||π(Bnew|Bm−1)fTm−1,m−1(Bm−1)− P̂m(Bm|X,Y )||TV

≤ ||π(Bnew|Bm−1)fTm−1,m−1(Bm−1)− π(Bnew|Bm−1)P̂m−1(Bm−1|X,Y )||TV

+||π(Bnew|Bm−1)P̂m−1(Bm−1|X,Y )− P̂m(Bm|X,Y )||TV .

Now we want to show that

a) ||π(Bnew|Bm−1)fTm−1,m−1(Bm−1)− π(Bnew|Bm−1)P̂m−1(Bm−1|X,Y )||TV ≤ em−1.

b) ||π(Bnew|Bm−1)P̂m−1(Bm−1|X,Y )− P̂m(Bm|X,Y )||TV ≤ Cδm, where C is some constant.

Let us show a) first,

||π(Bnew|Bm−1)fTm−1,m−1(Bm−1)− π(Bnew|Bm−1)P̂m−1(Bm−1|X,Y )||TV

=
1

2
sup
|h|≤1

|
∫
h(Bm)(π(Bnew|Bm−1)fTm−1,m−1(Bm−1)− π(Bnew|Bm−1)P̂m−1(Bm−1|X,Y ))dBm|

=
1

2
sup
|h|≤1

|
∫
h(Bm)π(Bnew|Bm−1)(fTm−1,m−1(Bm−1)− P̂m−1(Bm−1|X,Y ))dBm|

=
1

2
sup
|h|≤1

|
∫
(fTm−1,m−1(Bm−1)− P̂m−1(Bm−1|X,Y ))(

∫
h(Bm)π(Bnew|Bm−1)dBnew)dBm−1|.

Let h∗(Bm−1) =
∫
h(Bm)π(Bnew|Bm−1)dBnew, It is easy to see that h∗(Bm−1) ≤ 1, so we can

rewrite the above equation as follows.

||π(Bnew|Bm−1)fTm−1,m−1(Bm−1)− π(Bnew|Bm−1)P̂m−1(Bm−1|X,Y )||TV

=
1

2
sup
|h|≤1

|
∫
h∗(Bm−1)(fTm−1,m−1(Bm−1)− P̂m−1(Bm−1|X,Y ))dBm−1

≤ 1

2
sup
|h|≤1

|
∫
h(Bm−1)(fTm−1,m−1(Bm−1)− P̂m−1(Bm−1|X,Y ))dBm−1

≤ ||fTm−1,m−1(Bm−1)− P̂m−1(Bm−1|X,Y )||TV

≤ em−1.
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Now let us prove b),

||π(Bnew|Bm−1)P̂m−1(Bm−1|X,Y )− P̂m(Bm|X,Y )||TV

=
1

2
sup
|h|≤1

|
∫
h(Bm)(π(Bnew|Bm−1)P̂m−1(Bm−1|X,Y )− P̂m(Bm|X,Y ))dBm|

=
1

2
sup
|h|≤1

|
∫
h(Bm)(π(Bnew|Bm−1)

πm−1(Bm−1)P̂m−1(Y |X,Bm−1)

P̂m−1(Y |X)
− πm(Bm)P̂m(Y |X,Bm)

P̂m(Y |X)
)dBm|

≤ 1

2

∫
πm(Bm)| P̂m−1(Y |X,Bm−1)

P̂m−1(Y |X)
− P̂m(Y |X,Bm)

P̂m(Y |X)
|dBm

=
1

2

∫
πm(Bm)| P̂m−1(Y |X,Bm−1)P̂m(Y |X)− P̂m(Y |X,Bm)P̂m−1(Y |X)

P̂m−1(Y |X)P̂m(Y |X)
|dBm

=
1

2

∫
πm(Bm)| P̂m−1(Y |X,Bm−1)P̂m(Y |X)− P̂m−1(Y |X,Bm−1)P̂m−1(Y |X)

P̂m−1(Y |X)P̂m(Y |X)

+
P̂m−1(Y |X,Bm−1)P̂m−1(Y |X)− P̂m(Y |X,Bm)P̂m−1(Y |X)

P̂m−1(Y |X)P̂m(Y |X)
|dBm

≤ 1

2

∫
πm(Bm)(

P̂m−1(Y |X,Bm−1)|P̂m(Y |X)− P̂m−1(Y |X)|
P̂m−1(Y |X)P̂m(Y |X)

+
|P̂m(Y |X,Bm)− P̂m−1(Y |X,Bm−1)|

P̂m(Y |X)
)dBm

=
1

2
(

∫
π(Bnew|Bm−1)P̂m−1(Bm−1|X,Y )

|P̂m(Y |X)− P̂m−1(Y |X)|
P̂m(Y |X)

dBm

+
Eπm(|P̂m(Y |X,Bm)− P̂m−1(Y |X,Bm−1)|

P̂m(Y |X)
)

=
1

2
(
|P̂m(Y |X)− P̂m−1(Y |X)|

P̂m(Y |X)
+
Eπm(|P̂m(Y |X,Bm)− P̂m−1(Y |X,Bm−1)|)

P̂m(Y |X)
)

≤
|
∫
πm−1(Bm−1)P̂m−1(Y |X,Bm−1)dBm−1 −

∫
πm(Bm)P̂m(Y |X,Bm)dBm|

2P̂m(Y |X)
+

δm

2P̂m(Y |X)

(The second term is by Proposition 3.2.4)

=
|
∫
πm(Bm)P̂m−1(Y |X,Bm−1)dBm −

∫
πm(Bm)P̂m(Y |X,Bm)dBm|

2P̂m(Y |X)
+

δm

2P̂m(Y |X)

≤
∫
πm(Bm)|P̂m−1(Y |X,Bm−1)− P̂m(Y |X,Bm)|dBm

2P̂m(Y |X)
+

δm

2P̂m(Y |X)

=
Eπm

(|P̂m(Y |X,Bm)− P̂m−1(Y |X,Bm−1)|)
2P̂m(Y |X)

+
δm

2P̂m(Y |X)

≤ δm

2P̂m(Y |X)
+

δm

2P̂m(Y |X)
(The first term is by Proposition 3.2.4)

=
δm

P̂m(Y |X)

≤ δm
LB

(LB is defined in the proof of Theorem 3.2.1)

= Cδm

Hence, ||f1,m(Bm)− P̂m(Bm|X,Y )||TV ≤ em−1 + Cδm.
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Now, by the convexity of the norm, we can show the following.

||g1,m(η)− P (η|X,Y )||TV

= ||g1,m(η)− P̂m(η|X,Y ) + P̂m(η|X,Y )− P (η|X,Y )||TV

≤ ||g1,m(η)− P̂m(η|X,Y )||TV + ||P̂m(η|X,Y )− P (η|X,Y )||TV

≤ cm−1 + Cδm + em, (by Theorem 3.2.1 and Corollary 3.2.1)

Since em → 0 and δm → 0 as m→ ∞, we have ||g1,m(η)− P (η|X,Y )||TV → 0 as m→ ∞.

Part2: We need to show that for any point on the chain with t > 1 and m∗ ≥ m, we have

||gt,m∗(η)− P (η|X,Y )||TV ≤ em−1 + Cδm + em.

By Proposition 6.52 in Robert and Casella (2004) [16], we have, ||ft,m(Bm)− P̂m(Bm|X,Y )||TV ≤

||f1,m(Bm) − P̂m(Bm|X,Y )||TV . Using corollalry 3.2.1, we obtain ||gt,m(η) − P̂m(η|X,Y )||TV ≤

||f1,m(Bm)− P̂m(Bm|X,Y )||TV .

Still by the convexity of norm, we have the following.

||gt,m(η)− P (η|X,Y )||TV

≤ ||gt,m(η)− P̂m(η|X,Y ) + P̂m(η|X,Y )− P (η|X,Y )||TV

≤ ||gt,m(η)− P̂m(η|X,Y )||TV + ||P̂m(η|X,Y )− P (η|X,Y )||TV

≤ ||f1,m(Bm)− P̂m(Bm|X,Y )||TV + ||P̂m(η|X,Y )− P (η|X,Y )||TV

≤ em−1 + Cδm + em

By the same argument, for m∗ > m, we can obtain,

||gt,m∗(η)− P (η|X,Y )||TV ≤ em∗−1 + Cδm∗ + em∗ .

By the monotonic property of em and δm, we have, em∗−1 + Cδm∗ + em∗ < em−1 + Cδm + em.

Therefore, combining these two parts, we show ||gt,m(η)− P (η|X,Y )||TV ≤ em−1 + Cδm + em → 0

as m→ ∞. �

3.3 Stationary distribution of the data-generating method

First, let us consider the method that accepts data Y ′ in a neighborhood of Y . According to the

algorithm, we will reject any proposed pointB′
m if Y ′ is not in the neighborhood of Y , N (Y, ϵ), where
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N (Y, ϵ) = {Y ′|ρ(Y ′, Y ) =
√∑n

i=1(y
′
i − yi)2 < ϵ}. Let P̂m(N (Y, ϵ)|X,Bm) denote the probability

that the generated data Y ′ is in N (Y, ϵ). The posterior distribution of Bm|X,N (Y, ϵ) is

P̂m(Bm|X,N (Y, ϵ)) =
πm(Bm)P̂m(N (Y, ϵ)|X,Bm)

P̂m(N (Y, ϵ)|X)

Proposition 3.3.1. P̂m(Bm|X,N (Y, ϵ)) is the stationary distribution of the Markov chain con-

structed through the data generating method.

Proof: We will verify the detailed balance condition to show the stationary distribution. Denote

the probability from Bm to B′
m by K(Bm → B′

m) and the proposal distribution by q(Bm → B′
m).

Assume
πm(B′

m)q(B′
m→Bm)

πm(Bm)q(Bm→B′
m) ≤ 1. We have

P̂m(Bm|X,N (Y, ϵ))K(Bm → B′
m)

= P̂m(Bm|X,N (Y, ϵ))q(Bm → B′
m)P̂m(N (Y, ϵ)|X,B′

m)
πm(B′

m)q(B′
m → Bm)

πm(Bm)q(Qm → B′
m)

=
πm(Bm)P̂m(N (Y, ϵ)|X,Bm)

P̂m(N (Y, ϵ)|X)
q(Bm → B′

m)P̂m(N (Y, ϵ)|X,B′
m)
πm(B′

m)q(B′
m → Bm)

πm(Bm)q(Bm → B′
m)

=
πm(B′

m)P̂m(N (Y, ϵ)|X,B′
m)

P̂m(N (Y, ϵ)|X)
q(B′

m → Bm)P̂m(N (Y, ϵ)|X,Bm)

= P̂m(B′
m|X,N (Y, ϵ))K(B′

m → Bm).

The proof is analogous when
πm(B′

m)q(B′
m→Bm)

πm(Bm)q(Bm→B′
m) ≥ 1. �

If we consider the linear model with one covariate,

yi = a+ xiβ + ϵi, i = 1, 2, ..., n,

then we will consider the following neighborhood,

N1(d1, d2, e1, e2) = {D′ = (X,Y ′)|ρ(d1, d′1) < e1&ρ(d2, d
′
2) < e2}.

If we assume π(Bm) is the prior for Bm = (a(τ1), a(τ2), ..., a(τm), β(τ1), β(τ2), ..., β(τm)) and denote

the probability that the generated data is in N1(d1, d2, e1, e2) as P̂m(N1(d1, d2, e1, e2)|Bm), then the

posterior distribution of Bm|N1(d1, d2, e1, e2) is

P̂m(Bm|N1(d1, d2, e1, e2)) =
πm(Bm)P̂m(N1(d1, d2, e1, e2)|Bm)

P̂m(N1(d1, d2, e1, e2))
,
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where

P̂m(N1(d1, d2, e1, e2)) =

∫
πm(Bm)P̂m(N1(d1, d2, e1, e2)|Bm)dBm.

Proposition 3.3.2. P̂m(Bm|N1(d1, d2, e1, e2)) is the stationary distribution of the Markov chain

constructed through the data generating method.

The proof is similar to the previous one. �

Using similar arguments as we presented in Section 3.2, we can show the following theorems.

Theorem 3.3.1. ||P̂m(Bm|X,N (Y, ϵ))− P (Bm|X,Y )||TV → 0 as m→ ∞ and ϵ→ 0.

Theorem 3.3.2. ||gt,m(η)− P (Bm|X,Y )||TV → 0 as m→ ∞ and ϵ→ 0.

Theorem 3.3.3. ||P̂m(Bm|N1(d1, d2, e1, e2)) − P (Bm|X,Y )||TV → 0 as m → ∞, e1 → 0 and

e2 → 0.

Theorem 3.3.4. ||gt,m(η)− P (Bm|X,Y )||TV → 0 as m→ ∞, e1 → 0 and e2 → 0.
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Chapter 4

Simulation Studies and a Real
Data Example

In this chapter, we will check the performance of the algorithms proposed in Chapter 2. We will

also compare our methods with some other methods including Regression of Quantiles (RQ) and

Markov Chain Marginal bootstrap (MCMB). For all the simulation and real data studies in this

chapter, we will focus on the inferences on the first quartile, the median, and the third quartile.

4.1 Performance of proposed methods

In this section, we will check the performance of the two proposed algorithms: the linearly interpo-

lated density algorithm and the data-generating algorithm. We will compare the posterior estimates

of the parameters with the true value and the RQ estimates. For all the simulations in this chapter,

we always center the covariates before running our proposed algorithms and the RQ and MCMB

algorithms. When calculating the estimates, we transform the parameters back to original ones.

4.1.1 Performance of the linearly interpolated density method (LID)

Consider the following two models:

yi = a+ bxi + ϵi, i = 1, 2, ..., n, (4.1)

and

yi = a+ bxi + ϵixi, i = 1, 2, ..., n, (4.2)

where ϵi’s are iid from N(0, 1), i = 1, 2, ..., n. The quantile model associated with these models is

Qτ (yi|xi) = a(τ) + b(τ)xi, i = 1, 2, ..., n. (4.3)
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It is not difficult to see that atrue(τ) = a+ Φ−1(τ) and btrue(τ) = b for Model (4.1), where Φ−1(τ)

denotes the τ -th quantile of the standard normal distribution. For Model (4.2), we have atrue(τ) = a

and btrue(τ) = b+Φ−1(τ).

In the simulations, we set a = 5, b = 5, and generated n = 200 obervations from Models (4.1)

and (4.2). The covariate xi was generated from Uniform(1, 5). To get the posterior distribution of

(a(τj), b(τj))|X,Y , j = 1, 2, ...,m, we used m = 7, 11, and 15 quantiles and put truncated normal

priors on a(τ1), a(τ2), ..., a(τm) and b(τ1), b(τ2), ..., b(τm). The truncated normal priors are N(0,Σa)

and N(0,Σb) with the order constraint that a(τ1)+b(τ1)xi < a(τ2)+b(τ2)xi < ... < a(τm)+b(τm)xi,

i = 1, 2, ..., n. The covariance matrices Σa = Σb = diag(1/100, ..., 1/100) are both m ×m diagonal

matrices. We let τj = j/(m+ 1), j = 1, 2, ...,m.

We also provided the posterior estimates of the parameters based on the true densities (TD),

where we used the same normal prior as that for the LID method but ignored the order con-

straint to simplify the computation. For Model (4.1), we used Gibbs sampler to draw samples from

Ptrue((a(τj), b(τj))|X,Y ), which denotes the posterior distribution of the parameters based on the

true densities, through the following conditional distributions:

a(τj)|X,Y, b(τj) ∼ N(

∑n
i=1 yi +Φ−1(τj)− b(τj)xi

n+ 1/100
,

1

n+ 1/100
), (4.4)

and

b(τj)|X,Y, a(τj) ∼ N(

∑n
i=1(yi − a(τj) + Φ−1(τj))xi

1/100 +
∑n

i=1 x
2
i

,
1

1/100 +
∑n

i=1 x
2
i

). (4.5)

For Model (4.2), we used the following conditional distributions:

a(τj)|X,Y, b(τj) ∼ N(

∑n
i=1

yi−(b(τj)−Φ−1(τj))xi

x2
i

1/100 +
∑n

i=1
1
x2
i

,
1

1/100 +
∑n

i=1
1
x2
i

), (4.6)

and

b(τj)|X,Y, a(τj) ∼ N(

∑n
i=1

yi+Φ−1(τj)xi−a(τj)
xi

n+ 1/100
,

1

n+ 1/100
). (4.7)

For the model with iid errors, the RQ standard errors are calculated by the “iid” method of the

“quantreg” package in R, and for models with non-iid errors, the RQ standard errors are calculated

by the “nid” method of the “quantreg” package. The LID estimates are based on 200,000 samples

(we ran the Markov chain for 400,000 steps and used the first half as burn-in). The TD estimates

are based on 10,000 samples.

From the results in Table 4.1, we can see that the RQ estimates and the standard errors are very
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Table 4.1: Comparison of the LID method with the RQ method for model (4.1)
Methods a(0.25) b(0.25) a(0.5) b(0.5) a(0.75) b(0.75)
RQ 4.47 (0.23) 4.95 (0.07) 4.94 (0.22) 5.03 (0.07) 5.74 (0.19) 4.93 (0.06)
LID m = 7 4.15 (0.15) 5.03 (0.05) 4.53 (0.20) 5.14 (0.06) 5.57 (0.18) 5.01 (0.06)
LID m = 11 4.33 (0.17) 4.99 (0.05) 4.80 (0.25) 5.06 (0.07) 5.71 (0.23) 4.97 (0.07)
LID m = 15 4.29 (0.20) 4.98 (0.07) 4.80 (0.29) 5.05 (0.09) 5.72 (0.23) 4.96 (0.08)
TD 4.43 (0.18) 4.97 (0.06) 5.10 (0.18) 4.97 (0.06) 5.78 (0.18) 4.97 (0.06)
True value 4.33 5 5 5 5.67 5

Note: For the LID and TD estimates, the values in each cell are the posterior mean and standard
deviation. For the RQ estimates, the values in each cell are the estimate and standard error.

Table 4.2: Comparison of the LID method with the RQ method for model (4.2)
Methods a(0.25) b(0.25) a(0.5) b(0.5) a(0.75) b(0.75)
RQ 5.48 (0.37) 4.15 (0.21) 4.74 (0.43) 5.11 (0.20) 5.30 (0.49) 5.41 (0.23)
LID m = 7 5.02 (0.37) 4.28 (0.19) 4.89 (0.53) 4.99 (0.25) 5.32 (0.37) 5.41 (0.18)
LID m = 11 5.29 (0.31) 4.22 (0.11) 5.28 (0.40) 4.90 (0.20) 5.76 (0.45) 5.26 (0.18)
LID m = 15 5.27 (0.28) 4.20 (0.11) 5.50 (0.33) 4.75 (0.15) 5.96 (0.41) 5.16 (0.14)
TD 5.28 (0.34) 4.21 (0.16) 5.28 (0.34) 4.89 (0.16) 5.28 (0.34) 5.56 (0.16)
True value 5 4.33 5 5 5 5.67

Note: For the LID and TD estimates, the values in each cell are the posterior mean and standard
deviation. For the RQ estimates, the values in each cell are the estimate and standard error.

close to the estimates and standard deviations based on the true densities, though the estimates for

the median are a little different. The posterior mean of the LID method is closer to the TD posterior

mean when m is increased from 7 to 11, and the posterior means are similar for m = 11 and m = 15.

From the results in Table 4.2, we can see that the RQ estimates are still close to the estimates based

on the true densities, but the standard errors are a little larger than the TD standard deviation.

The posterior means of the LID method for are closer to the TD posterior means when m increases

from 7 to 11. It is a little strange that the posterior standard deviations in Table reft1 increase when

m increases and in Table reft2 the posterior means of the LID method with m = 11 are closer to the

TD posterior means than the posterior means of the LID method with m = 15. This may be due to

the following reasons. First, when m is large the Markov chain may need a longer time to converge.

Second, the prior distribution of the TD method is not the same as the LID method, which may

result in a different posterior distribution from the limiting distribution of the LID method. Notice

that the standard deviations of the LID posterior distribution when m = 11 and 15 are smaller than

the standard errors of the RQ estimate for Model (4.2). This may suggest that the LID estimates

sometimes are more efficient than the RQ estimates.

41



4.1.2 Performance of the data-generating method (DG)

In Chapter 2, we introduced two scenarios for the data-generating method under two different cases,

the univariate case and the regression case. Here we will check the performances of the method for

both cases.

First, let us consider the univariate case with the following model,

zi ∼ N(θ, σ2), i = 1, 2, ..., n. (4.8)

The corresponding quantile model is

Qτ (zi) = a(τ). (4.9)

In the simulation, we set θ = 10, σ = 4, and generated n = 200 observations from Model (4.8).

To get the posterior distribution of a(τj)|Z, j = 1, 2, ...,m, we used m = 7, 11, and 15 quantiles

and put truncated normal priors on a(τ1), a(τ2), ..., a(τm). The truncated normal distribution is

N(0,Σa) with the order constraint that a(τ1) < a(τ2) < ... < a(τm). The covariance matrix

Σa = diag(1/100, ..., 1/100) is m ×m and diagonal. Let τj = j/(m + 1), j = 1, 2, ...,m. For this

algorithm, we need to specify a tolerance quantity ϵ which defines the neighborhood of the observed

data. In this example, we set ϵ = 0.8 and 0.6. The LID estimates are based on 50,000 samples (we

ran the Markov chain for 100,000 steps and used the first half as burn-in). The TD posterior mean

and standard deviation are calculated directly from the the following distribution:

a(τ)|Z ∼ N(

∑n
i=1

zi+Φ−1(τ)
σ2

n/σ2 + 1/100
,

1

n/σ2 + 1/100
). (4.10)

From the results in Table 4.3, we can see that the DG estimates give a bigger standard deviation

than that of RQ estimates and the estimates based on the true density. We can also see that the

standard deviations of the DG method are smaller when we increase number of quantiles or decrease

the tolerance quantity. This is consistent with the theoretical results.

Now, let us consider the regression model 4.1 and 4.2, and this time we apply the data-generating

method. As introduced in Chapter 2, in this case we need to calculate the d1 and d2 distances and

set corresponding tolerance quantities ϵ1 and ϵ2 for them. In the simulations, we used the same

settings as the ones in Section 4.1.1 and set ϵ1 = 0.2
√
m and ϵ2 = 0.1

√
m or ϵ1 = 0.1

√
m and

ϵ2 = 0.05
√
m.
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Table 4.3: Comparison of the DG method with the RQ method for Model (4.8)

Methods a(0.25) a(0.5) a(0.75)
RQ 7.45 (0.33) 10.28 (0.33) 12.88 (0.37)
DG m=7 ϵ = 0.8 7.20 (0.83) 10.09 (0.64) 12.96 (0.95)
DG m=7 ϵ = 0.6 7.23 (0.71) 10.08 (0.57) 12.84 (0.83)
DG m=11 ϵ = 0.8 7.23 (0.80) 10.08 (0.61) 13.02 (0.86)
DG m=11 ϵ = 0.6 7.20 (0.62) 10.09 (0.48) 12.91 (0.75)
DG m=15 ϵ = 0.8 7.26 (0.72) 10.12 (0.63) 13.08 (0.80)
DG m=15 ϵ = 0.6 7.18 (0.59) 10.10 (0.48) 12.88 (0.72)
DG m=19 ϵ = 0.8 7.17 (0.65) 10.16 (0.58) 13.22 (0.78)
DG m=19 ϵ = 0.6 7.13 (0.67) 10.12 (0.52) 13.00 (0.72)
DG m=23 ϵ = 0.8 7.08 (0.65) 10.04 (0.66) 13.18 (0.77)
DG m=23 ϵ = 0.6 7.04 (0.59) 10.13 (0.49) 13.02 (0.68)
TD 7.50 (0.28) 10.20 (0.28) 12.90 (0.28)
True value 7.30 10 12.70

Table 4.4: Comparison of the DG method with the RQ method for Model (4.1)

Methods a(0.25) b(0.25) a(0.5) b(0.5) a(0.75) b(0.75)
RQ 4.47 (0.23) 4.95 (0.07) 4.94 (0.22) 5.03 (0.07) 5.74 (0.19) 4.93 (0.06)
DG m = 7∗ 3.99 (1.15) 4.98 (0.33) 5.01 (0.44) 4.98 (0.14) 5.82 (0.83) 4.99 (0.25)
DG m = 7 ∗ ∗ 4.44 (0.31) 4.97 (0.10) 4.98 (0.29) 5.00 (0.09) 5.59 (0.35) 5.00 (0.11)
DG m = 11∗ 4.04 (0.89) 4.90 (0.22) 4.87 (0.45) 4.98 (0.12) 5.46 (0.60) 5.05 (0.17)
DG m = 11 ∗ ∗ 4.39 (0.30) 4.96 (0.10) 4.95 (0.26) 5.00 (0.08) 5.59 (0.36) 5.00 (0.13)
DG m = 15∗ 4.69 (0.45) 4.81 (0.16) 5.41 (0.43) 4.85 (0.14) 6.09 (0.53) 4.84 (0.16)
DG m = 15 ∗ ∗ 4.45 (0.20) 4.94 (0.06) 4.83 (0.11) 5.03 (0.04) 5.59 (0.30) 5.00 (0.08)
TD 4.43 (0.18) 4.97 (0.06) 5.10 (0.18) 4.97 (0.06) 5.78 (0.18) 4.97 (0.06)
True value 4.33 5 5 5 5.67 5

NOTE: Here ∗ denotes that ϵ1 = 0.2
√
m and ϵ2 = 0.1

√
m, and ∗∗ denote ϵ1 = 0.1

√
m and ϵ2 =

0.05
√
m.

Table 4.5: Comparison of the DG method with the RQ method for Model (4.2)

Methods a(0.25) b(0.25) a(0.5) b(0.5) a(0.75) b(0.75)
RQ 5.48 (0.37) 4.15 (0.21) 4.74 (0.43) 5.11 (0.20) 5.30 (0.49) 5.41 (0.23)
DG m = 7∗ 3.82 (1.86) 4.50 (0.59) 5.18 (0.83) 4.85 (0.37) 6.19 (1.38) 5.18 (0.46)
DG m = 7 ∗ ∗ 4.82 (1.08) 4.33 (0.40) 5.10 (0.52) 4.89 (0.25) 5.37 (0.77) 5.38 (0.31)
DG m = 11∗ 3.59 (1.81) 4.55 (0.50) 5.19 (0.84) 4.79 (0.32) 6.32 (1.48) 5.16 (0.47)
DG m = 11 ∗ ∗ 4.96 (0.50) 4.37 (0.30) 5.06 (0.37) 4.96 (0.16) 5.72 (0.71) 5.31 (0.23)
DG m = 15∗ 4.06 (1.29) 4.16 (0.47) 5.56 (0.47) 4.57 (0.22) 6.95 (0.93) 4.89 (0.29)
DG m = 15 ∗ ∗ 4.91 (0.62) 4.37 (0.26) 5.17 (0.53) 4.90 (0.22) 5.92 (0.55) 5.19 (0.18)
TD 5.28 (0.34) 4.21 (0.16) 5.28 (0.34) 4.89 (0.16) 5.28 (0.34) 5.56 (0.16)
True value 5 4.33 5 5 5 5.67

NOTE: Here ∗ denotes that ϵ1 = 0.2
√
m and ϵ2 = 0.1

√
m, and ∗∗ denote ϵ1 = 0.1

√
m and ϵ2 =

0.05
√
m.
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From the results in Tables 4.4 and 4.5, we can see that the DG standard deviations tend to be

smaller with larger m and smaller ϵ1 and ϵ2. Also, the DG posterior means tend to be closer to the

TD posterior means as ϵ1 and ϵ2 decrease. These are all consistent with the theoretical results.

4.2 Comparison of several methods under models with

multiple covariates

In this section we will compare the performance of the LID, RQ, and MCMB estimates. Let us

consider the following model,

yi = a+ bx1,i + cx2,i + (1 + x1,i + x2,i)ϵi, i = 1, 2, ..., n, (4.11)

where ϵi ∼ N(0, 1). The corresponding quantile model is

Qτ (yi|x1,i, x2,i) = a(τ) + b(τ)x1,i + c(τ)x2,i. (4.12)

It is not difficult to see that the true values of a(τ), b(τ), and c(τ) are a+Φ−1(τ), b+Φ−1(τ), and

c+Φ−1(τ).

In the simulations, we set a = 5, b = 1, c = 1 and generated n = 200 obervations. The covariates

x1,i and x2,i were generated from lognormal(0, 1) and N(0, 1), respectively. For the LID algorithm,

we used m = 11 quantiles and put the truncated normal prior on the parameters similar as those

introduced in Section 4.1.1 with the constraint changed to a(τk) + b(τk)x1,i + c(τk)x2,i < a(τl) +

b(τl)x1,i + c(τl)x2,i, where 1 ≤ k < l ≤ m and i = 1, 2, ..., n. For the TD method, we used the same

normal prior as for the LID method but ignored the order constraint for the prior setting to simplify

the computation. For Model (4.11) The TD samples were drawn through the following conditional

distributions:

a(τj)|X,Y, b(τj), c(τj) ∼ N(

∑n
i=1

yi+Φ−1(τj)(1+x1,i+x2,i)−b(τj)x1,i−c(τj)x2,i

(1+x1,i+x2,i)2

1/100 +
∑n

i=1
1

(1+x1,i+x2,i)2

,
1

1/100 +
∑n

i=1
1

(1+x1,i+x2,i)2

),

(4.13)

b(τj)|X,Y, a(τj), c(τj) ∼ N(

∑n
i=1

x1,i(yi+Φ−1(τj)(1+x1,i+x2,i)−c(τj)x2,i)
(1+x1,i+x2,i)2

1/100 +
∑n

i=1

x2
1,i

(1+x1,i+x2,i)2

,
1

1/100 +
∑n

i=1

x2
1,i

(1+x1,i+x2,i)2

),

(4.14)
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Table 4.6: Simulation results for Model (4.11)

Methods a(0.25) b(0.25) c(0.25) a(0.5) b(0.5) c(0.5) a(0.75) b(0.75) c(0.75)
RQ 4.35 0.16 0.38 5.50 1.48 1.38 5.50 1.48 1.38

(0.41) (0.56) (0.15) (0.27) (0.34) (0.09) (0.27) (0.34) (0.09)
MCMB 4.22 0.34 0.40 4.93 0.91 0.90 5.61 1.48 1.38

(0.24) (0.40) (0.10) (0.22) (0.29) (0.12) (0.22) (0.26) (0.11)
LID 4.81 -0.21 0.33 5.53 0.51 0.87 6.37 1.33 1.41

(0.30) (0.27) (0.47) (0.27) (0.15) (0.54) (0.35) (0.20) (0.58)
True density 4.62 -0.01 0.45 5.29 0.66 1.12 5.96 1.33 1.79

(0.25) (0.21) (0.35) (0.25) (0.21) (0.35) (0.25) (0.21) (0.35)
True value 4.33 0.33 0.33 5 1 1 5.57 1.67 1.67

and

c(τj)|X,Y, a(τj), b(τj) ∼ N(

∑n
i=1

x2,i(yi+Φ−1(τj)(1+x1,i+x2,i)−b(τj)x1,i)
(1+x1,i+x2,i)2

1/100 +
∑n

i=1

x2
2,i

(1+x1,i+x2,i)2

,
1

1/100 +
∑n

i=1

x2
2,i

(1+x1,i+x2,i)2

),

(4.15)

For the LID method, the estimates are based on 500,000 samples, which are the second half of the

1,000,000 samples generated. For the MCMB method, we used 200 bootstrap samples and set the

length of the MCMB sequence equal to 100. For the TD method, the estimates are based on 10,000

samples.

From the results in Table 4.6, we can see that the RQ estimates and the MCMB estimates are similar,

but the MCMB estimates tend to give smaller standard errors. Compared with the estimates

based on the true densities, the RQ and MCMB estimates underestimate a(τ) and overestimate

b(τ), whereas the LID estimates performs in the opposite direction. All these three algorithm

underestimate c(τ). The overall view is that the RQ and MCMB estimates are closer to the true

value while the LID estimates are closer to the estimates based on the true densities.

Let us consider the following model with iid errors.

yi = a+ bx1,i + cx2,i + ϵi, i = 1, 2, ..., n, (4.16)

The corresponding quantile model is the same as (4.12). We can see that the true values for a(τ),

b(τ) and c(τ) are a + Φ−1(τ), b and c. For Model (4.16), the TD samples were drawn through the
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Table 4.7: Simulation results for Model (4.16)

Methods a(0.25) b(0.25) c(0.25) a(0.5) b(0.5) c(0.5) a(0.75) b(0.75) c(0.75)
RQ 4.36 0.91 1.09 5.13 0.95 0.86 5.67 1.01 0.89

(0.15) (0.037) (0.20) (0.11) (0.027) (0.14) (0.17) (0.040) (0.21)
MCMB 4.46 0.90 1.03 5.11 0.94 0.92 5.79 0.96 0.95

(0.21) (0.090) (0.22) (0.12) (0.041) (0.16) (0.17) (0.082) (0.25)
LID 4.52 0.82 0.94 5.17 0.93 0.87 5.71 1.06 1.00

(0.11) (0.079) (0.19) (0.072) (0.035) (0.13) (0.13) (0.079) (0.22)
True density 4.36 0.98 1.01 5.03 0.98 1.01 5.70 0.98 1.01

(0.11) (0.027) (0.14) (0.11) (0.027) (0.14) (0.11) (0.027) (0.14)
True value 4.33 1 1 5 1 1 5.67 1 1

following conditional distributions:

a(τj)|X,Y, b(τj), c(τj) ∼ N(

∑n
i=1 yi +Φ−1(τj)(1 + x1,i + x2,i)− b(τj)x1,i − c(τj)x2,i

1/100 + n
,

1

1/100 + n
),

(4.17)

b(τj)|X,Y, a(τj), c(τj) ∼ N(

∑n
i=1 x1,i(yi +Φ−1(τj)(1 + x1,i + x2,i)− c(τj)x2,i)

1/100 +
∑n

i=1 x
2
1,i

,
1

1/100 +
∑n

i=1 x
2
1,i

),

(4.18)

and

c(τj)|X,Y, a(τj), b(τj) ∼ N(

∑n
i=1 x2,i(yi +Φ−1(τj)(1 + x1,i + x2,i)− b(τj)x1,i)

1/100 +
∑n

i=1 x
2
2,i

,
1

1/100 +
∑n

i=1 x
2
2,i

),

(4.19)

In the simulations, we used the same settings as that for Model (4.11) except that we generated

xi,1’s from lognormal(0, 1) and xi,2’s from Bernoulli(0.5).

From the results in Tables 4.7, we can see that all these three methods performs similarly, especially

for the median. All these three methods have smaller standard errors for the median and larger

standard errors for the first and third quartiles. However, there are still some minor differences.

Unlike the results for Model (4.11), the MCMB algorithm tends to give larger standard errors than

the RQ estimates, while the LID standard deviations are in-between except the standard deviations

for a(τ)’s, which are always smaller than the other two.

4.3 Real data study

In this section, our study is based on the June 1997 Detailed Natality Data, which is published by

the National Center for Health Statistics. It is also analyzed in Koenker (2005) [10]. The following

background information is quoted from Pg. 20 of Koenker (2005) [10].
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Table 4.8: Results for the birth weight data with τ = 0.25

Methods Intercept mom.age smoke m.wtgain
RQ 2.35 (0.042)* 0.013* (0.0043) -0.11 (0.084) 0.011 (0.0019)*
MCMB 2.42 (0.034)* 0.012* (0.0055) -0.15 (0.065)* 0.010 (0.0020)*
LID 2.26 (0.034)* 0.016* (0.0035) -0.16 (0.069)* 0.011 (0.0016)*

NOTE: The symbol ∗ denotes statistical significance.

“[T]he sample is restricted to singleton births, with mothers recorded as either black or

white, between the age of 18 and 45, resident in the United States. Observations with

missing data for any of the variables described in the following were also dropped from

the analysis. This process yielded a sample of 198,377 babies. Education of the mother is

divided into four categories: less than high school, high school, some college, and college

graduate.” “The prenatal medical care of the mother is also divided into four categories:

those with no prenatal visit, those whose first prenatal visit was the first trimester of

the pregnancy, those with the first visit in the second trimester, and those with the first

visit in the last trimester.”

With the infant birth weight being the response variable, we are interested in the following explana-

tory variables: mom.age, smoke, and m.wtgain, where the variable mom.age denotes the age of

the mother, the variable smoke is a dummy variable indicates whether the mother smokes during

pregnancy, and the variable m.wtgain denotes mother’s weight gain during pregnancy. The quantile

model is

Qτ (yi|xi) = a(τ) + b(τ)xi,1 + c(τ)xi,2 + d(τ)xi,3, i = 1, 2, ..., n, (4.20)

where yi denotes the infant birth weight for the i-th observation, the value xi,1 is the i-th observation

of mom.age, the value xi,2 is the i-th observation of smoke, and the value xi,3 is the i-th observation

of m.wtgain. Because the original data set is quite large and our algorithm is quite computationally

intensive, we will analyze a portion of the original data set, which are the first 1000 observations.

We centered the covariates before we implement the algorithms. For the two continuous variables,

mom.age and m.wtgain, we subtract the mean from them, while for the dummy variable smoke we

subtract 0.5 from it. The reason to center the covariates is that this helps reducing the standard

error of the intercept. For the LID method, the estimates are based on 5,000,000 samples, which

are the second half of the 10,000,000 samples generated. For the MCMB algorithm, we used 200
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Table 4.9: Results for the birth weight data with τ = 0.5

Methods Intercept mom.age smoke m.wtgain
RQ 2.79 (0.017)* 0.010 (0.0027)* -0.17 (0.033)* 0.010 (0.0012)*
MCMB 2.78 (0.019)* 0.010 (0.0036)* -0.18 (0.037)* 0.010 (0.0016)*
LID 2.61 (0.011)* 0.015 (0.0018)* -0.15 (0.027)* 0.012 (0.0009)*

NOTE: The symbol ∗ denotes statistical significance.

Table 4.10: Results for the birth weight data with τ = 0.75

Methods Intercept mom.age smoke m.wtgain
RQ 3.15 (0.035)* 0.0050 (0.0035) -0.11 (0.068) 0.0123 (0.0017)*
MCMB 3.14 (0.037)* 0.0056 (0.0039) -0.088 (0.068) 0.0124 (0.0017)*
LID 3.05 (0.030)* 0.011 (0.0035)* -0.078 (0.064) 0.013 (0.0015)*

Note: The symbol ∗ denotes statistical significance.

bootstrap samples and set the length of the MCMB sequence equal to 100.

From the results in Tables 4.8, 4.9, and 4.10, we notice the following things. First, these three

methods agree on the effects of the covariates. Mother’s age and the weight gain during pregnancy

have positive effects, while smoking during pregnancy have negative effects. Second, we used a sim-

ple Z-test (|estimate/se| compared with 2) to decide the significance and find that these methods

agree on the significance of almost all the parameters. For the relative low birth weight and the

normal birth weight, all parameters seem significant, except for the RQ estimate of smoke for the

relative low birth weight. For the relative high birth weight, only m.wtgain seems to be significant,

although the LID estimate suggests that mom.age is also significant. Third, the standard deviations

by the LID algorithm are almost always the smallest, which again suggest that the LID estimates

sometimes are more efficient.

4.4 Some conclusions

From the results based on the simulation data and the real data. We find the followings. First, both

the LID and DG algorithms can give comparable results with those from RQ or MCMB. Second,

the numerical results show that the DG algorithm will have better performance with large m and

small tolerance quantities, which is consistent with the theoretical results. Third, the numerical

results suggest that with larger m the LID algorithm may need a longer time to converge. Last, the

numerical results also suggest that the LID algorithm sometimes produces more efficient estimates
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than the RQ estimates or the MCMB estimates.
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Chapter 5

More Numerical Explorations for
LID

In this chapter, we compare our proposed method with other methods for several different models.

We compare the mean squared error, level, and power based on simulation studies. We also compare

the estimation accuracy based on a real data example.

5.1 Comparison of mean squared errors

In this section, we compare the mean squared errors (MSEs) among different methods for several

different models.

5.1.1 The MSE for single quantiles

Let us consider the following non-i.i.d-error model:

yi = a+ bxi + (1 + xi)ϵi, i = 1, 2, ..., n, (5.1)

where ϵi’s are i.i.d. from N(0,1)

In the simulation, we choose a = 5 and b = 1. The covariate xi is generated from lognormal(0,1).

We compared the MSEs of different methods based on 400 data sets generated from Model (5.1).

We also considered the following parametric model for the MLE calculation and the Bayesian method

that uses the true underlying density.

yi = a+ bxi + (γ1 + γ2xi)ϵi, i = 1, 2, ..., n. (5.2)

We used the following abbreviation for different methods. RQ denotes the estimates by the “quantreg”

package in R. EWRQ denotes the weighted RQ with estimated weights [10], and OWRQ denotes the
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weighted RQ with optimal weights [10]. LID* denotes the method using modified likelihood esti-

mates, i.e., using τi+1−τi−1

qi+1−qi−1
as the estimates of the densities instead of τi+1−τi

qi+1−qi
. LID* nc denotes the

modified method LID* applying to the original data, which is not centered. TD denotes the Bayesian

method using the true densities based on Model 5.1. TD (5.2) denotes the Bayesian method using

the true densities based on Model (5.2). MLE denotes the maximum likelihood estimates based

on Model (5.1), and MLE (5.2) denotes the maximum likelihood estimates based on Model (5.2).

TQ (5.2) denotes the Bayesian method using the linear interpolated densities with normal quantiles

based on Model (5.2).

First consider the case with data size n = 100 for each of the 400 data sets generated from Model

(5.1). We used m = 15 quantiles for LID based methods. For all the Bayesian methods, we con-

structed a Markov chain with length 1,000,000, used the first half as the burn-in period, and took

every 1,000-th samples.

The results are given in Tables 5.1 and 5.2. We can see that LID behaved similarly to two weighted

RQ methods, and all of them are better than RQ. The Bayesian methods based on the true densities

performed very similar as MLE, which is not surprising, because we used a very flat prior N(0, 100)

for each parameter. TQ (4.2) seems to be the limiting case of LID, that is, the best performance

that LID can achieve as m→ ∞.

Table 5.1: Comparison of the MSEs of the median from different methods (n = 100 and m = 15).

Methods MSE of a(0.5) SE of MSE MSE of b(0.5) SE of MSE

RQ 0.18 0.013 0.18 0.013

EWRQ 0.11 0.008 0.11 0.007

OWRQ 0.11 0.008 0.10 0.007

LID 0.11 0.008 0.11 0.008

LID* 0.11 0.008 0.10 0.007

LID* nc 0.10 0.008 0.10 0.006

TD 0.07 0.005 0.06 0.005

MLE 0.07 0.005 0.07 0.005

TD (5.2) 0.07 0.005 0.07 0.005

MLE (5.2) 0.07 0.005 0.07 0.005

TQ (5.2) 0.09 0.006 0.08 0.006
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Table 5.2: Comparison of the MSEs of the third quartile from different methods (n = 100 and

m = 15).

Methods MSE of a(0.75) SE of MSE MSE of b(0.75) SE of MSE

RQ 0.22 0.015 0.21 0.013

EWRQ 0.15 0.010 0.14 0.009

OWRQ 0.14 0.010 0.13 0.009

LID 0.16 0.012 0.12 0.009

LID* 0.16 0.012 0.12 0.009

LID* nc 0.14 0.011 0.14 0.010

TD 0.07 0.005 0.06 0.005

MLE 0.07 0.005 0.07 0.005

TD (5.2) 0.09 0.006 0.08 0.006

MLE (5.2) 0.09 0.006 0.08 0.006

TQ (5.2) 0.12 0.008 0.12 0.011

We did more simulations with different values of n and m. We changed the size for each data

set from n = 100 to 200. We checked the performance of LID for m = 15, 19, and 23. The results

are in Tables 5.3 and 5.4. From the results, we can see that with n = 200 and different values of m,

the MSE of LID and it variations behaved similarly. It seems m = 15 is enough to give a reasonable

approximation to the limiting distribution, and increasing m does not help much. In this example,

the MSE of LID seems to be a little worse than the MSE of weighted RQ, but still a little better

than that of RQ.
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Table 5.3: Comparison of the MSEs of the median from different methods (n = 200).

Methods MSE of a(0.5) SE of MSE MSE of b(0.5) SE of MSE

RQ 0.09 0.006 0.10 0.007

EWRQ 0.06 0.004 0.06 0.004

OWRQ 0.06 0.004 0.06 0.004

LID 15 0.07 0.005 0.07 0.005

LID 19 0.07 0.005 0.08 0.005

LID 23 0.08 0.005 0.08 0.006

LID* 15 0.07 0.005 0.07 0.005

LID* 19 0.07 0.005 0.07 0.005

LID* 23 0.07 0.005 0.07 0.006

TD (5.2) 0.03 0.002 0.04 0.003

MLE (5.2) 0.03 0.002 0.04 0.003

TQ (5.2) 0.04 0.003 0.05 0.004

Table 5.4: Comparison of the MSEs of the third quartile from different methods (n = 200).

Methods MSE of a(0.75) SE of MSE MSE of b(0.75) SE of MSE

RQ 0.11 0.008 0.10 0.007

EWRQ 0.07 0.005 0.07 0.004

OWRQ 0.07 0.005 0.07 0.004

LID 15 0.10 0.007 0.08 0.006

LID 19 0.10 0.008 0.08 0.006

LID 23 0.10 0.008 0.08 0.006

LID* 15 0.11 0.010 0.09 0.010

LID* 19 0.10 0.007 0.08 0.006

LID* 23 0.10 0.008 0.08 0.006

TD (5.2) 0.04 0.003 0.04 0.003

MLE (5.2) 0.04 0.003 0.04 0.003

TQ (5.2) 0.06 0.004 0.06 0.006
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Next, we consider the following model:

yi = a+ bxi + (1 + xi)ϵi, i = 1, 2, ..., n, (5.3)

where ϵi’s are i.i.d. from F . The distribution F has a piecewise linear CDF between the 1/m-th and

the (m− 1)/m-th quantile, where the 1/m, 2/m, ..., (m− 1)/m-th quantiles are the same as those of

N(0, 1). Between the i/m-th and (i+ 1)/m-th quantiles, i = 1, 2, ...,m− 2, the CDF is linear. The

left tail of F between −∞ and the 1/m-th quantile is proportional to a truncated normal, the left

half of N(Φ−1(1/m), 22), and the right tail between the (m−1)/m-th quantile and ∞ is proportional

to the right half of N(Φ−1((m − 1)/m), 22). The only difference between Model (5.1) and Model

(5.3) is the error term. All other settings are the same.

Correspondingly, we have the following parametric model for the Bayesian method that uses the

true density:

yi = a+ bxi + (γ1 + γ2xi)ϵi, i = 1, 2, ..., n, (5.4)

where ϵi’s are i.i.d. from F .

We use TQ (5.3) to denote the Bayesian method based on Model (5.3), assuming the underlying

distribution of ϵi is unknown. For TQ (5.3) there are m+1 parameters: a, b, and m−2 quantiles of

ϵi. TD (5.4) denotes the Bayesian method using the true densities based on Model (5.4). For this

example, we added Yu and Moyeed’s (2005) method, denoted by YM, in the comparison.

Table 5.5: Comparison of the MSEs of the median from different methods (n = 100 and m = 15).

Methods MSE of a(0.5) SE of MSE MSE of b(0.5) SE of MSE

RQ 0.19 0.015 0.19 0.014

EWRQ 0.12 0.008 0.11 0.008

OWRQ 0.12 0.008 0.11 0.007

LID 0.12 0.008 0.12 0.008

LID* 0.10 0.007 0.10 0.007

YM 0.16 0.013 0.17 0.013

TQ (5.3) 0.15 0.011 0.14 0.009

TD (5.4) 0.07 0.005 0.06 0.005
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Table 5.6: Comparison of the MSEs of the third quartile from different methods (n = 100 and

m = 15).

Methods MSE of a(0.75) SE of MSE MSE of b(0.75) SE of MSE

RQ 0.23 0.015 0.21 0.014

EWRQ 0.19 0.036 0.17 0.020

OWRQ 0.15 0.010 0.14 0.010

LID 0.17 0.013 0.13 0.010

LID* 0.14 0.011 0.11 0.009

YM 0.20 0.014 0.18 0.012

TQ (5.3) 0.15 0.011 0.14 0.011

TD (5.4) 0.08 0.006 0.08 0.006

From Tables 5.5 and 5.6, we can see that LID and LID* work well. Their performance is similar

to that of weighted RQ for τ = 0.5. For τ = 0.75, LID and LID* are better than EWRQ, and LID*

seems to be the best among all the methods except TD (5.4), which should be the optimal result

that the Bayesian method could achieve. Other than these, we can see that the performance of Yu

and Moyeed’s method is only slightly better than RQ, which is not surprising because there are

some similarities between these two methods.

We also increased the size of each data set from 100 to 200, and the results are in Tables 5.7 and

5.8. We can see that in this case EWRQ, OWRQ, LID, LID* and TQ (5.3) perform very similarly.

Table 5.7: Comparison of the MSEs of the median from different methods (n = 200 and m = 15).

Methods MSE of a(0.5) SE of MSE MSE of b(0.5) SE of MSE

RQ 0.09 0.007 0.10 0.007

EWRQ 0.05 0.004 0.06 0.004

OWRQ 0.05 0.004 0.06 0.004

LID 0.06 0.004 0.05 0.004

LID* 0.06 0.004 0.06 0.005

YM 0.08 0.006 0.09 0.006

TQ (5.3) 0.06 0.005 0.06 0.004

TD (5.4) 0.03 0.002 0.03 0.002
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Table 5.8: Comparison of the MSEs of the third quartile from different methods (n = 200 and

m = 15).

Methods MSE of a(0.75) SE of MSE MSE of b(0.75) SE of MSE

RQ 0.11 0.008 0.11 0.008

EWRQ 0.06 0.004 0.07 0.005

OWRQ 0.06 0.004 0.06 0.004

LID 0.06 0.004 0.06 0.005

LID* 0.07 0.006 0.08 0.008

YM 0.10 0.007 0.10 0.007

TQ (5.3) 0.06 0.004 0.06 0.004

TD (5.4) 0.03 0.002 0.04 0.003

5.1.2 The MSE for difference of quantiles

Because our proposed method estimates many quantiles simultaneously and RQ only tackles one

quantile at a time, it is possible that our method may produce better estimates for some functions of

multiple quantiles. Here we consider the estimation of the difference of quantiles on three examples.

In the first example, We used m = 15 quantiles and each data set contains 100 or 200 observations

generated from Model (5.3). We compared the MSE of the difference of the parameters of the 0.75

quantile and the 0.5 quantile for the following five methods: RQ, EWRQ, OWRQ, LID and YM.

For all the Bayesian methods, we constructed a Markov chain with length 1,000,000, used the first

half as the burn-in period, and took every 1,000-th samples. The results are in Tables 5.9 and 5.10.

Table 5.9: The MSE and its standard error of the difference between the median and the third

quartile with n = 100 for Model (5.3)

Methods MSE of a(0.75)− a(0.5) SE of MSE MSE of b(0.75)− b(0.5) SE of MSE

RQ 0.16 0.011 0.15 0.010

EWRQ 0.12 0.008 0.11 0.007

OWRQ 0.11 0.007 0.09 0.006

LID 0.07 0.005 0.03 0.002

YM 0.10 0.007 0.10 0.007
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Table 5.10: The MSE and its standard error of the difference between the median and the third

quartile with n = 200 for Model (5.3)

Methods MSE of a(0.75)− a(0.5) SE of MSE MSE of b(0.75)− b(0.5) SE of MSE

RQ 0.09 0.006 0.09 0.007

EWRQ 0.05 0.004 0.06 0.004

OWRQ 0.05 0.003 0.05 0.004

LID 0.03 0.002 0.02 0.002

YM 0.07 0.004 0.07 0.005

We can see that the MSE of LID is the smallest among all the methods. When n = 100, the

MSE of LID is about half of that of EWRQ and OWRQ for a(0.75)− a(0.5), and the MSE of LID

is about one fourth of that of EWRQ and OWRQ for b(0.75)− b(0.5). When n = 200, the MSE of

LID for both a(0.75)− a(0.5) and b(0.75)− b(0.5) are about half of that of EWRQ and OWRQ.

In the second example, We used m = 15 quantiles and each data set contains 100 or 200 observations

generated from Model (5.1). We compared the MSE of the difference of the parameters of the 0.75

quantile and the 0.5 quantile for the following five methods: RQ, EWRQ, OWRQ, LID and YM.

For all the Bayesian methods, we constructed a Markov chain with length 1,000,000, used the first

half as the burn-in period, and took every 1,000-th samples. The results are in Tables 5.11 and 5.12.

Table 5.11: The MSE and its standard error of the difference between the median and the third

quartile with n = 100 for Model (5.1)

Methods MSE of a(0.75)− a(0.5) SE of MSE MSE of b(0.75)− b(0.5) SE of MSE

RQ 0.17 0.013 0.16 0.012

EWRQ 0.11 0.008 0.12 0.009

OWRQ 0.11 0.008 0.11 0.007

LID 0.06 0.004 0.03 0.003

YM 0.11 0.008 0.11 0.008)
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Table 5.12: The MSE and its standard error of the difference between the median and the third

quartile with n = 200 for Model (5.1)

Methods MSE of a(0.75)− a(0.5) SE of MSE MSE of b(0.75)− b(0.5) SE of MSE

RQ 0.085 0.006 0.08 0.005

EWRQ 0.051 0.004 0.05 0.004

OWRQ 0.048 0.004 0.05 0.003

LID 0.038 0.004 0.03 0.002

YM 0.063 0.005 0.06 0.004

From Tables 5.11 and 5.12, we can see that LID outperforms other methods for estimating the

difference of quantiles for this model.

In the third example, the data are generated from the following model:

yi = a+ bx1,i + cx2,i + (1 + x1,i + x2,i)ϵi, i = 1, 2, ..., n, (5.5)

where ϵi’s are i.i.d. from N(0,1). The corresponding quantile model is

Qτ (yi|xi) = a(τ) + b(τ)x1,i + c(τ)x2,i, i = 1, 2, ..., n, τ =
1

m+ 1
, ...,

m

m+ 1
. (5.6)

In the simulations, we chose a = 5, b = 1, and c = 1. The covariate x1,i was generated from

lognormal(0,1) and x2,i was generated from Bernoulli(0.5). We set m = 15 and n = 100 or 200.

We compared the MSE of the difference of the parameters of the 0.75 quantile and the 0.5 quantile

for the following five methods: RQ, EWRQ, OWRQ, LID and YM. For all the Bayesian methods,

we constructed a Markov chain with length 1,000,000, used the first half as the burn-in period, and

took every 1,000-th samples. The results are in Tables 5.13 and 5.14.
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Table 5.13: The MSE and its standard error (in parenthesis) of the difference between the median

and the third quartile with n = 100 for Model (5.5)

Methods MSE of a(0.75)− a(0.5) MSE of b(0.75)− b(0.5) MSE of c(0.75)− c(0.5)

RQ 0.28 (0.021) 0.20 (0.014) 0.42 (0.031)

EWRQ 0.19 (0.014) 0.16 (0.011) 0.40 (0.028)

OWRQ 0.19 (0.014) 0.14 (0.009) 0.39 (0.028)

LID 0.28 (0.012) 0.03 (0.002) 0.18 (0.012)

YM 0.18 (0.014) 0.13 (0.010) 0.28 (0.023)

Table 5.14: The MSE and its standard error (in parenthesis) of the difference between the median

and the third quartile with n = 200 for Model (5.5)

Methods MSE of a(0.75)− a(0.5) MSE of b(0.75)− b(0.5) MSE of c(0.75)− c(0.5)

RQ 0.13 (0.008) 0.10 (0.006) 0.22 (0.016)

EWRQ 0.09 (0.006) 0.07 (0.005) 0.20 (0.013)

OWRQ 0.09 (0.006) 0.07 (0.005) 0.20 (0.013)

LID 0.07 (0.005) 0.03 (0.002) 0.12 (0.008)

YM 0.09 (0.006) 0.07 (0.005) 0.17 (0.012)

From Tables 5.13 and 5.14, we can see that for estimating the difference between quantiles, LID

outperforms all other methods except for a(0.75)− a(0.5) with n = 100.

Therefore, when the main interest is the difference of the parameters for different quantiles, LID

showed a big advantage over all the other methods.

5.2 Level and Power studies

In this section, we study the level and power for our proposed method in hypotheses testing. We are

interested in knowing whether our method can achieve the claimed level and whether our method

could be more powerful than RQ. First we consider the following model:

yi = a+ bx1,i + cx2,i + (1 + 0.2x1,i + x2,i)ϵi, i = 1, 2, ..., n, (5.7)
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where ϵi’s are i.i.d. from N(0,1). Model (5.7) has non-i.i.d. errors.

In the simulations, we chose a = 5, b = 1, and c = 1. The covariate x1,i was generated from

lognormal(0,1) and x2,i was generated from Bernoulli(0.5). We set m = 15 and n = 1000. We sim-

ulated 100 data sets from the model and applied LID and RQ to each data set. We know the true

value of the differences between the parameters for different quantiles, so we can subtract this value

from the parameter and test whether this parameter is 0. To determine whether the parameter is

significant or not, we checked whether the 95% confidence/credible interval contains 0. We recorded

the number of times that the parameter is significant under the claimed level 0.05. The results are

in Tables 5.15 to 5.17.

Table 5.15: The number of times of significance of the difference between the median and the first

quartile for Model (5.7)

Methods b(0.5)− b(0.25)− 0.1348980 c(0.5)− c(0.25)− 0.6744898

RQ 3 4

LID 2 7

Table 5.16: The number of times of significance of the difference between the median and the 0.125

quantile for Model (5.7)

Methods b(0.5)− b(0.125)− 0.2300698 c(0.5)− c(0.125)− 1.150349

RQ 2 5

LID 2 15

Table 5.17: The number of times of significance of the difference between the first quartile and the

0.125 quantile for Model (5.7)

Methods b(0.25)− b(0.125)− 0.09517192 c(0.25)− c(0.125)− 0.4758596

RQ 4 4

LID 1 6

We can see that RQ gives roughly the correct level. LID works reasonably well for this example,
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with the level a little low for b and a little high for c.

We also compared the power of the test for Model (5.7). Because we know that the true value of

b(0.5)− b(0.25) and c(0.5)− c(0.25) are not 0, we tested whether these parameters are significant or

not for each data set and we recorded the number of times that the parameter is significant under

the claimed level 0.05. The results are in Tables 5.18 to 5.20. We can see that the power of LID

is better than that of RQ for the differences of b(τ). For the differences of c(τ), RQ seems to be

slightly better than LID.

Table 5.18: The number of times of significance of the difference between the median and the first

quartile for Model (5.7)

Methods b(0.5)− b(0.25) c(0.5)− c(0.25)

RQ 60 100

LID 94 96

Table 5.19: The number of times of significance of the difference between the median and the 0.125

quantile for Model (5.7)

Methods b(0.5)− b(0.125) c(0.5)− c(0.125)

RQ 86 100

LID 99 100

Table 5.20: The number of times of significance of the difference between the first quartile and the

0.125 quantile for Model (5.7)

Methods b(0.25)− b(0.125) c(0.25)− c(0.125)

RQ 29 89

LID 43 78

We also tested the following model:

yi = a+ bx1,i + cx2,i + (1 + 0.2x1,i + 0.5x2,i)ϵi, i = 1, 2, ..., n, (5.8)

where the covariate x1,i was generated from lognormal(0,1) and x2,i was generated from Gamma(1,1/2).
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For this model, we can see that the differences of c(τ) is only half of that for Model (5.7), and we

should be able to see better whether RQ is truly better at detecting the differences of c(τ). The

results are in Tables 5.21 to 5.23. We can see that LID has a better power for the difference of both

b(τ) and c(τ) in this case.

Table 5.21: The number of times of significance of the difference between the median and the first

quartile for Model (5.8)

Methods b(0.5)− b(0.25) c(0.5)− c(0.25)

RQ 66 58

LID 99 72

Table 5.22: The number of times of significance of the difference between the median and the 0.125

quantile for Model (5.8)

Methods b(0.5)− b(0.125) c(0.5)− c(0.125)

RQ 85 76

LID 99 89

Table 5.23: The number of times of significance of the difference between the first quartile and the

0.125 quantile for Model (5.8)

Methods b(0.25)− b(0.125) c(0.25)− c(0.125)

RQ 38 30

LID 53 33

5.3 Bootstrap testing

In this section we used the bootstrap idea to study the level and power of hypotheses testing. We

bootstrapped the data and used LID and RQ to give the estimates for each bootstrapped data set,

and then used the standard deviation of the estimates as the standard error.
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Consider the following model:

yi = a+ bx1,i + ϵi, i = 1, 2, ..., n, (5.9)

where ϵi’s are i.i.d. from N(0,1). In the simulations, we chose a = 5, and b = 1. The covariates x1,i

was generated from Normal(0,1). We set m = 15 and n = 200. The corresponding quantile model

is

Qτ (yi|xi) = a(τ) + b(τ)x1,i, i = 1, 2, ..., n, τ =
1

m+ 1
, ...,

m

m+ 1
. (5.10)

We simulated 100 data sets from this model and compared the number of times of significance of

LID and RQ. Here we focus on the following parameters: a(0.5)− a(0.25) and b(0.5)− b(0.25). We

can see that the true value of a(0.5)− a(0.25) is not 0 and the true value of b(0.5)− b(0.25) should

be 0. For each data set, we used 40 bootstrap samples to give the standard error. Based on this

standard error, we constructed the 95% confidence/credible interval and checked whether 0 is in the

interval. We recorded the number of times that the parameter is significant under the claimed level

0.05.

For this model, we treat the number of times that a(0.5)−a(0.25) is significant as a measurement of

the power and the number of times that b(0.5)− b(0.25) is significant as a measurement of the level.

The results are in Table 5.24. The expected number of times of significance for b(0.5)− b(0.25) is 5.

LID gives the right level and the level for RQ is a little high.

Table 5.24: The number of times of significance of the difference between the median and the first

quartile

Methods a(0.5)− a(0.25) b(0.5)− b(0.25)

RQ 100 12

LID 100 6

We did more simulations to confirm the findings. We simulated 500 data sets from Model

(5.9). The results are in Table 5.25. We can see that for the 500 data sets, the estimated level of

b(0.5)− b(0.25) is very close to 25 for LID, but it is a little high for RQ.
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Table 5.25: The number of times of significance of the difference between the median and the first

quartile for 500 data sets

Methods a(0.5)− a(0.25) b(0.5)− b(0.25)

RQ 500 47

LID 496 22

Because in the simulation RQ is not giving the right level, we used the asymptotic standard

error instead of the bootstrap variance to determine the significance of the parameters for RQ. The

results are in Table 5.26. We can see that RQ now also gives roughly the right level. In Figures 5.5

and 5.6, we have the plots of the bootstrap variance versus the asymptotic variance. We can clearly

see that the bootstrap variance is usually larger.

Table 5.26: The number of times of significance of the difference between the median and the first

quartile for 500 data sets (corrected for RQ)

Methods a(0.5)− a(0.25) b(0.5)− b(0.25)

RQ 500 15

LID 496 22
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Figure 5.1: The plot of the bootstrap variance versus the asymptotic variance for a(0.5)− a(0.25)
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Figure 5.2: The plot of the bootstrap variance versus the asymptotic variance for b(0.5)− b(0.25)

5.4 Birth weight data

In this section, we revisit the birth weight data. We consider the following quantile model for the

birth weight data:

Qτ (yi|xi) = a(τ) + b(τ)xi,1 + c(τ)xi,2 + d(τ)xi,3, i = 1, 2, ..., n, (5.11)
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where xi,1 is the indicator function that indicates whether the mother went to prenatal care for

more than or equal to two times, xi,2 is the indicator function that indicates whether the mother

smoked or not, and xi,3 is mother’s weight gain during pregnancy. We compared the results from

RQ and LID for the full data set. Here we focus on the 0.25, 0.5 and 0.75 quantiles and the difference

between the 0.25 and 0.5 quantiles. The results are in Tables 5.27 to 5.29.

Table 5.27: Estimates of the parameters and their standard errors (in parentheses) for the birth

weight data with τ = 0.25.

Methods a(0.25) b(0.25) c(0.25) d(0.25)

RQ 2.94 (0.0045) −0.048 (0.0069) −0.22 (0.0081) 0.0091 (0.00020)

LID 2.94 (0.0032) −0.036 (0.0058) −0.21 (0.0020) 0.0085 (0.00003)

Table 5.28: Estimates of the parameters and their standard errors (in parentheses) for the birth

weight data with τ = 0.5.

Methods a(0.5) b(0.5) c(0.5) d(0.5)

RQ 3.26 (0.0040) −0.064 (0.0063) −0.23 (0.0070) 0.0084 (0.00018)

LID 3.27 (0.0038) −0.057 (0.0048) −0.23 (0.0046) 0.0084 (0.00013)

Table 5.29: Estimates of the parameters and their standard errors (in parentheses) for the birth

weight data with τ = 0.75.

Methods a(0.75) b(0.75) c(0.75) d(0.75)

RQ 3.59 (0.0044) −0.058 (0.0071) −0.22 (0.0076) 0.0078 (0.00019)

LID 3.61 (0.0023) −0.062 (0.0061) −0.26 (0.0041) 0.0083 (0.00024)

From the results, we can see that the estimates from both methods are close for most parameters

with a few exceptions, such as d(0.25) and c(0.75). The standard error from LID seems to be smaller

than that from RQ. For d(0.25), the standard error is extremely small, so we checked the histogram

and the trace plot, which are in Figures 5.3 and 5.4. The trace plot of the chain looks fine and the

Markov chain does not get stuck in a local mode.
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Figure 5.3: The histogram of d(0.25)
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Figure 5.4: The trace plot of d(0.25)

To see how well the estimates are, we compared the estimated conditional quantile with the

local quantile estimated nonparametrically. We considered two subsets of the full data. For the

first subset of the data, we selected xi,1 = 1, xi,2 = 1, and 24.5 < xi,3 < 25.5, within which range

there are 96 observations. For the second subset of the data, we selected xi,1 = 1, xi,2 = 0, and

44.5 < xi,5 < 45.5, within which range there are 1318 observations. Then we calculated the quantile

of yi in each subset of the data as the local quantile, and compared it with the predicted quantiles

69



from RQ and LID. The results are presented in Tables 5.30 and 5.31. From the results, we can see

that all the estimated quantiles are very close to the local quantile estimates.

Table 5.30: Estimates of the local quantile at xi,1 = 1, xi,2 = 1, and xi,3 = 25.

Quantile Local quantile RQ estimate LID estimate

0.25 2.81 2.76 2.77

0.5 3.02 3.07 3.08

0.75 3.41 3.40 3.40

Table 5.31: Estimates of the local quantile at xi,1 = 1, xi,2 = 0, and xi,3 = 45.

Quantile Local quantile RQ estimate LID estimate

0.25 3.18 3.21 3.19

0.5 3.54 3.53 3.53

0.75 3.86 3.84 3.88

Then, we compared the performance of both methods for randomly selected subsets to check

the variability of the methods. We randomly sampled 50 data sets from the full data set, with

1000 observations in each data set. For each data set, we sampled from the full data set without

replacement. Then, based on each data set, we computed the estimates for the parameters, and

compared them with the estimates from the full data set, which we treated as the “truth”. In this

way, we can calculate the MSE for all the parameters. The results are in Tables 5.32 to 5.35. From

the results, we can see that for single quantile estimation, RQ has slightly smaller MSEs than LID.

In Table 5.35, we looked at the MSE of the difference of the quantiles. The results show that LID

has smaller MSEs except for the intercept. In particular, for d(0.5)−d(0.25), which is the parameter

for mother’s weight gain, LID has a much smaller MSE than that of RQ.
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Table 5.32: MSE of the parameters and their standard errors (in parentheses) for the birth weight

data with τ = 0.25.

Methods a(0.25) b(0.25) c(0.25) d(0.25)

RQ 0.10 (0.003) 0.0031 (0.0005) 0.0047 (0.0009) 3.30× 10−6 (6× 10−7)

LID 0.14 (0.004) 0.0048 (0.0009) 0.0066 (0.0014) 6.25× 10−6 (1.2× 10−6)

Table 5.33: MSE of the parameters and their standard errors (in parentheses) for the birth weight

data with τ = 0.5.

Methods a(0.5) b(0.5) c(0.5) d(0.5)

RQ 0.10 (0.003) 0.0031 (0.0006) 0.0026 (0.0006) 3.55× 10−6 (6× 10−7)

LID 0.11 (0.003) 0.0042 (0.0008) 0.0049 (0.0011) 4.91× 10−6 (9× 10−7)

Table 5.34: MSE of the parameters and their standard errors (in parentheses) for the birth weight

data with τ = 0.75.

Methods a(0.75) b(0.75) c(0.75) d(0.75)

RQ 0.0014 (0.0003) 0.0037 (0.0008) 0.0037 (0.0007) 2.84× 10−6 (5× 10−7)

LID 0.0031 (0.0009) 0.0045 (0.0010) 0.0084 (0.0021 ) 4.56× 10−6 (6× 10−7)

Table 5.35: MSE of the difference between the 0.5 and the 0.25 quantile and their standard errors

(in parentheses) for the birth weight data.

Methods a(0.5)− a(0.25) b(0.5)− b(0.25) c(0.5)− c(0.25) d(0.5)− d(0.25)

RQ 0.40 (0.006) 0.0036 (0.0006) 0.0030 (0.0006) 5.16× 10−6 (1.0× 10−6)

LID 0.49 (0.007) 0.0029 (0.0006) 0.0028 (0.0006) 1.23× 10−6 (2× 10−7)

To provide an explanation of the different performance between the estimates of single quantiles

and the difference of quantiles, we looked at the correlation between d(0.5) and d(0.25) estimated

from both methods. Figures 5.5 and 5.6 are the plots of d(0.5) versus d(0.25) from both methods.

From the two plots, we can see that the correlation between d(0.5) and d(0.25) is much stronger for
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LID than that for RQ. The correlation between d(0.5) and d(0.25) for LID is 0.89 and the correla-

tion for RQ is 0.57. The reason that the correlation between d(0.5) and d(0.25) is larger for LID is

because LID assumes more about the global likelihood than individual RQ. This strong correlation

decreased the variability of the estimate of d(0.5)− d(0.25) for LID.
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Figure 5.5: The plot of d(0.5) versus d(0.25) from LID over the 50 data sets. The correlation is

about 0.89.
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Figure 5.6: The plot of d(0.5) versus d(0.25) from RQ over the 50 data sets. The correlation is

about 0.57

5.5 Conclusions

From the simulation results, we can see that for estimating single quantiles, LID performs similarly

as weighted RQ. For differences of quantiles, LID performs better than other methods. For a non-

i.i.d. error model, LID has a reasonable level and good power. In bootstrap testing, LID gives the
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correct level.

For the birth weight data, both LID and RQ give good estimates of the quantiles. RQ has slightly

smaller MSEs for estimating single quantiles and LID has smaller MSEs for estimating the difference

of quantiles. The large correlation between the parameters estimated by LID may explain why LID

performs better for estimating the difference of quantiles.
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Chapter 6

Conclusions and Future Work

In this thesis, we introduced two Bayesian methods, DG and LID, for the quantile regression problem.

We proved the convergence of these two methods under some mild conditions and numerically verified

the theoretical results. From the simulation results, we found that LID could produce more efficient

estimates than some existing methods. In particular, for estimating the difference of quantiles, LID

has a big advantage over other existing methods. Besides, we tried two ways to do hypotheses

testing based on LID estimates: one is to use the posterior distribution, and the other is to use the

bootstrap idea. We found that for a non-i.i.d. error model, LID is more powerful than RQ with the

first testing method. With the bootstrap testing, LID can provide the right level.

The followings are some possible future directions. First, we would like to generalize our methods

for censored data. One challenging issue is how to interpolate the densities for the censored parts.

Second, we would like to generalize our algorithms to some non-linear models. As long as it is

possible to find some proposal distribution satisfying the order constraint, our algorithms should

be able to be generalized in this direction. Third, we only implemented linear interpolation up to

now, so it is of our interest to see whether other interpolations could enhance the algorithm. For

example, we can try some smooth interpolations so that the interpolated densities will be continuous

or even differentiable. Then, the assumptions in Chapter 3 will be easier to check. Fourth, LID

is a computationally intensive algorithm. If we can find some way to reduce the computational

complexity, it will make the method more widely applicable in practice.
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