(© 2011 Dapeng Li



CLOSED-LOOP ANALYSIS AND FEEDBACK DESIGN IN THE PRESENCE
OF LIMITED INFORMATION

BY

DAPENG LI

DISSERTATION

Submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy in Mechanical Engrimee
in the Graduate College of the
University of lllinois at Urbana-Champaign, 2011

Urbana, Illinois

Doctoral Committee:

Professor Naira Hovakimyan, Chair
Professor P.R. Kumar

Professor Geir Dullerud

Professor Prashant Mehta



ABSTRACT

Recent progress in communication technologies and theimufgedback control
systems motivate to look deeper into the interplay of cdraind communication
in the closed-loop feedback architecture. Among sevesdarch directions on
this topic, a great deal of attention has been given to thégmental limitations in
the presence communication constraints. Entropy rateusdggs corresponding
to the information flux in a typical causal closed loop haverbderived towards
obtaining a Bode-like integral formula.

This work extends the discrete-time result to continudnretsystems. The
main challenge in this extension is that Kolmogorov’s epyrate equality, which
is fundamental to the derivation of the result in discrétestcase, does not hold
for continuous-time systems. Mutual information rate éast of entropy rate is
used to represent the information flow in the closed-loop,atimiting relation-
ship due to Pinsker towards obtaining the mutual infornmatete between two
continuous time processes from their discretized sequisngsed to derive the
Bode-like formula. The results are further extended to vt systems and a
Bode integral formula is obtained under the assumption tthatswitching se-
guence is an ergodic Markov chain. To enable simplified ¢afimn of the result-
ing lower bound, some Lie algebraic conditions are devealope

Besides analysis results, this dissertation also incljgdletscontrol/communication
design for closed-loop stability and performance. We atarsthe stabilization
problem within Linear Quadratic Regulator framework, wharcontrol gain is
chosen to minimize a linear quadratic cost functional whkilbject to the input
power constraint imposed by an additive Gaussian channehvetoses the loop.
Also focused on Gaussian channel, the channel noise atienymoblem is ad-
dressed, by using H-infinity/H2 methodology. Similar feadk optimal estima-
tion problem is solved by using Kalman filtering theory.
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CHAPTER 1

INTRODUCTION

Control theory explores the feedback structures and uses tb design feed-
back controllers to achieve desired closed-loop behavitmformation theory,
which was developed slightly later than control theory,lsle@th information
compression and transmission with or without loss. Theseswemingly distinct
disciplines, however, are deeply related. In fact, theirinsic relationship has
been exploited ever since their inception. Wiener, one effthunding fathers of
control theory, succinctly defined cybernetics tree“study of communication and
control in the animal and the machihgL], where the role of communication of
information was explicitly pointed out. On the other hantd[2] Shannon made
the following comment regarding the possible usefulneds@dback in reliable
communications.”. . can be pursued further and is related to a duality between
past and future and the notions of control and knowledge. sThe may have
knowledge of the past and cannot control it; we may contrelftiture but have
no knowledge of it.

Recently, a renewed interest of studying the relationsktpeen the two sub-
jects has been stimulated by the need for understandingeusdioghing new tech-
nologies that merge control, communication and computaf®]. For example,
when multiple actuators and sensors are present in a coropigxol system in
a distributed fashion, where wired networks are being Ealadby wireless net-
works, the communication among the elements cannot be wiigpbred. A set
of nontrivial questions can be therefore formulated relate the communica-
tion limitations. A basic one is: under certain informatipatterns, what is the
lower bound for the channel capacity to guarantee the clusgul stability. In
addition, more questions can be raised if the performander@bustness of the
closed loops are also of interest. Results can be also gmatlon the infor-
mation theory& communication side. Though feedback is ¢ @o increase
the capacity of communication channels significantly [@gignificantly simpli-
fies the coding schemes with stronger reliability guarasitédith feedback be-



ing cheaply and reliably implemented, recent researchshalgreat promise for
improved performance in modern communication systemsheéRdahan benefit-
ing control/communication design, the unification of infa@tion theory and con-
trol theory enables a fresh perspective on complex andyigirinected systems,
which are ubiquitous in biological and social networks, [5]

In this dissertation, the main focus is on:

e Obtaining Bode-type fundamental limitation results fontiouous-time as
well as discrete-time stochastic switched plants by usifigrmation theo-
retic machineries;

e Control and feedback estimation design in the presence mhaanication
limitations for real-time as well as stationary closed4osystems.

1.1 Chapter 2 Bode’s integral in with limited
information

1.1.1 Problem Formulation

We consider the following closed loop in the presence ofudistnce. Under

Disturbangg , O , Plant

A

Controller e-Delay
‘—

Nois

Figure 1.1: A Feedback Closed Loop with Disturbance

the assumption that both the plant and the controller aeafitime-invariant and



the loop-transfer functiorl(s) has relative degree at least 1, a log integral is

obtained [6]:
1 [ ,
3 ) lsISt =2,

whereS is the sensitivity transfer function, apgrepresents the open-loop unsta-
ble eigenvalues.

However, when the linearity and the deterministic naturthefsystem dynam-
ics are removed, such a relationship may fail to hold. Theesfthe objective
of this research is to establish a similar relationship ireaggal setting, where
information theoretic quantities like entropy and mutumibrmation are expected
to play a major role.

1.1.2 Literature Review

Most of the previous results on the intersection of contiebry and information
theory are derived for discrete-time dynamical systemshiBichapter, we inves-
tigate continuous-time systems for the following reasorisst, a large number
of real-life systems are continuous-time in nature, andefioee it is of interest to
develop the corresponding continuous-time tools for addsep analysis. Sec-
ond, although digital channels dominate almost all comation systems, some
continuous-time models such as continuous-time Additigagsian White Noise
(AWGN) channels attract significant attention becauseaeif theoretical simplic-
ity [7, 8]. From technique perspective of view, the contins«iime case imposes
challenges for both control theory and information theoAs for control, ex-
cept for the classical Bode’s result and its extensionsvi@gre Bode’s integral
formulae for continuous-time and discrete-time are britligg Poisson’s integral
formula, there is no similar mathematical tool availablefgethe general setting.
As for information theory, we point out that the results i@]and [11], together
with several others [12—14], rely heavily upon the follog/ientropy rate equality
originated by Kolmogorov [15]:

() = log(2nve) + 5 [ log fe(a. (L1)

—Tr

where¢ is a discrete-time stationary procegsstands for the entropy rate, and
e is the spectral density function 6f This formula, however, is only applicable



to discrete-time processes, and its continuous-time sidamas to be derived
otherwise[16]. However, no such extension has been carried out sirade K
mogrov's comment because of the undesirable behavior tdrdiftial entropy
rate for continuous-time processes.

1.1.3 Main Contribution

In this chapter, we attempt to use tools from informatiorotlydo analyze perfor-
mance limitations for continuous-time systems with staticadisturbances. We
first derive the mutual information rate inequality by asswgncausality of the
closed-loop system. A Bode-type formula is then obtainedddress the fun-
damental limitation of the stabilization problem in freqog domain. The tech-
niques utilized here are different from discrete-time dadbat: 1. Mutual infor-
mation rate instead of entropy rate is adopted to reprekenbformation flow in
a closed-loop; 2. To get the Bode-type integral, we use thdtrirom [17], which
helps to circumvent Kolmogorov’s formula (1.1). To get g into the result-
ing Bode’s integral, we employ tools from complex analysisdentify an extra
term of performance limitation induced by the controlladonel noise. We also
guantify the negative portion of the Bode’s integral anatelit to closed-loop
communication constraint. Finally we apply this framewtmlcommunication—
control interconnection to study the relationship betwibserchannel capacity and
the stability of the closed-loop systems.

1.2 Chapter 3: Bode’s Integral For Stochastic
Switched Systems

1.2.1 Problem Formulation

We consider the closed loop Fig. 1.2, where the plant is sivigcamong finite
modes.

The objective is to derive a Bode-type formula by using infation theory.
The statistical properties of the switching signal conttésignificantly to the
closed-loop performance and need to be quantified explicitl
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Figure 1.2: A Feedback Closed Loop with Disturbance andtRaitching

1.2.2 Literature Review

While switched control systems have been studied from uanperspectives [18],
it is still not clear how to characterize their fundamentaiifations within an
appropriate framework. The problem becomes especialljecttang, when such
closed loops are further subject to communication comggaiA notable effort
was made in [19], where the authors consider the stabibizgtioblems and derive
the lower bound of the required data-rate.

In economics, typical dynamic programming problems in rmaconomics are
considered with a mutual information type of constraintjchkihis regarded as an
appropriate model ofational inattention[20]. Rational inattention is the lack
of infinite capability of receiving and passing informatifmr economic entities,
individuals and firms. The limited information processirapability contributes
to many aspects of economic fluctuations. For policy mak&tsynal inatten-
tion is an especially important factor, when curial mongfaolicies are craft. To
evaluate the consequence of the different policies, a tiyodeveloped frequency
domain approach in terms of a Bode’s integral, is appeabngs$ simplicity and
novelty [21].

1.2.3 Main contribution

In this chapter, we extend the framework from [10] to clossapk with stochas-
tic switched plants. We address the problem by using annmdition theoretic

5



framework towards obtaining a Bode integral formula, urtberassumptions that
the switching sequence is an ergodic Markov chain. We finstel@ closed-loop

information conservation law by using information thearetirguments similar

to [22] and [10]. Then, under some stationarity assumptoBode integral-like

theorem is obtained, characterizing a lower bound on tHepeance limitations.

To enable the simplified calculation of the resulting loweubd, some Lie alge-
braic conditions are developed.

To demonstrate the usefulness of the theoretical resulpromose two different
examples. The first one is NCS with random packet dropoutsghwiias been
widely used in control literature to model typical computetwork protocols,
such as TCP and UDP [23]. We develop a Bode integral to shavittbalegree of
instability of the plants determines the lower bound of tadg@rmance limitation.

The second potential illustration is in the field of macraemwics, where feed-
back is used to generate optimal policies with respect t@aicecriteria. We apply
Bode’s integral to propose a simple frequency domain metbodptimal mon-
etary policy evaluation under a regime of switching econofyrthermore, we
extend the method to enable visualization of the impact dividual’s limited
information processing capability on the policy designilenThe content of the
chapter is reported in [24].

1.3 Chapter 4: Continuous Time Linear Quadratic
Design

1.3.1 Problem Formulation

In this chapter, we consider the control design problem witfited informa-
tion. More specifically, we formulate the problem in the Lan€uadratic Regula-
tion framework, where the state-control minimizes a infigjiadratic functional,
while subject to the power constraint imposed by an add&gassian channel in
the closed loop.



1.3.2 Literature Review

In most of the previous work, plants and communication cle&are modeled
as discrete-time systems, since discrete-time modeldivtle digital communi-
cation channels. Nevertheless, it is still worth invediigathe continuous-time
systems, since many plants to be controlled are contintiowesin nature. Fur-
thermore, as pointed out in [25], a number of communicatimenoels in prac-
tice could be conveniently modeled as continuous-timetagdGaussian chan-
nels (AGC). Some recent effort has been made towards théstitin, among
which [25] has provided if and only if conditions for obseildy and stabiliz-
ability of LTI systems over a class of Gaussian channelseiRete [26] proposes
a method of obtaining a tight upper bound on SNR basedigrtontrol type
argument.

The communication constrained LQG problems have also bddressed in
[27] in discrete time, where the communication channel islehed as a finite rate
guantization. For the case of additive Gaussian channsis)@e scalar case was
considered in [28].

1.3.3 Main Contribution

This chapter is to investigate the continuous-time linegdyatic regulator control
problem over an additive white Gaussian noise (AWGN) chinitk input power

constraint. A new framework based on stochastic diffeatrtuations(SDE) is
established to address both the plant and the channel dgsawhich are intro-
duced by the noise of the channel with some randomness. WVifthiframework,
an LMI convex optimization problem is proposed to calculdwe controller pa-
rameters.

1.4 Chapter 5: Noise Attenuation Over Additive
Gaussian Channels

1.4.1 Problem Formulation

While Shannon’s theory solves the information transmisgimblem with arbi-
trary accuracy (probability of error), the communicatidraonels in control sys-



tems may not share the same feature because the accuracoos$trection of
messages needs a certain amount of time, which is not tédei@bcontrol sys-
tems, especially when certain performances need to bevachienely. It is then
reasonable to assume that the channel noise propagatdbensygstems, and a
controller should be able to cope with the disturbance ndise¢his chapter, we
consider a state feedback control problem with input powetaint for the chan-
nel input.

1.4.2 Main Contribution

In this chapter we propose a new control design strategydcead the stabiliza-
tion and the noise attenuation problems in AWGN channels Sdiution turns
out to fit into the mixedH../H, framework. The design approach is based on
linear matrix inequalities (LMI). The LMI solution gives m®computational ef-
ficiency, and it also avails a possibility of dealing with iplle-input-multiple-
output (MIMO) channels.

1.5 Chapter 6: Optimal State Estimation Over
Gaussian Channels with Noiseless Feedback

1.5.1 Problem Formulation

The scheme is depicted in Fig. 1.3 where the transmitter teessa to the time-
history of the channel output via a noiseless feedback.

A transmitter and an estimator need to be designed to estithatstate of a
possibly unstable linear dynamics, while achieving mearasgoptimality.

1.5.2 Literature Review

Gaussian channel and its variants have been one of the Icengies in infor-

mation and communication theory for their capability of tamg several im-
portant aspects of real-life communication systems. Taictem the relationship
between control and communication, Gaussian channel$sara popular choice.
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Figure 1.3: State Estimation via Noiseless Feedback

Ref. [29] has captured the relation between the state (Quipedback stabiliza-
tion of a linear time-invariant (LTI) system and the sigt@lnoise ratio (SNR)
constraint of the channel for both continuous-time andrdisctime cases; [27]
and [30] have considered the linear quadratic Gaussiareframk to derive the
data-rate bound and provide a fairly complete scheme fagdes the encoder,
the controller and the decoder. In [10], Gaussianity playsnaportant role in
obtaining the Bode’s integrals in terms of log integral deévant power spectral
densities in the closed loop.

The state estimation under communication limitations leenbnvestigated for
its close relationship with controls as well as its own intpoce. References
[31]and [32] tried to fit the problem into the framework deygéd in [10] and
[11] with the hope to use th&{, and /., control theory in this context. In a
more general setting, feedback has long been used to imgneveerformance
of the communication systems in terms of better convergeatse of the error
probability. In the discrete-time setting in case of adeitivhite gaussian noise
(AWGN) channel, inspired by Robbins-Monro stochasticatese root seeking
algorithm from [33], S-K feedback coding is presented [34]large number of
results followed this seminal work along with various ofengions. Recently,
this classical result caught much attention from controhownity, starting from
[12], which linked the optimal estimation with optimal emfiog/decoding, with
a fundamental observation unifying control, estimatiod aammunication (see
also [35]). Another similar development from the infornaattitheory perspective
is reported in [22], where colored gaussian channel witltcdpacity of coding is

9



discussed in a fairly general setting. The continuous-tiersion of S-K scheme
is presented in [36], where the derivation heavily relieshanstochastic calculus
and optimal filtering theory.

1.5.3 Main Contribution

The objective of this chapter is to solve the continuousetoptimal estimation
problem in the presence of an AWGN channel with an input povesistraint.
The contribution of the chapter is three-fold:

e It establishes a framework to analyze some important quesin a sta-
ble closed loop, such as minimal mean-square error (MMSH)channel
capacity (or signal to noise ratio), where stationarityas assumed;

e Based on this framework, we not only recover the existingtiah between
channel capacity and the open-loop instability in stabtesetl loops, but
also provide a tighter bound to guarantee an exponentialtpying mean
square of estimation error.

e The detailed procedure and algorithms are provided forrdresmitter and
estimator design, together with the rigorous proof of optity.

10



CHAPTER 2

BODE-LIKE INTEGRAL FOR
CONTINUOUS-TIME CLOSED-LOOP
SYSTEMS IN THE PRESENCE OF

LIMITED INFORMATION

The chapter is organized as follows. In Section 2.1 we intcedhe closed-loop
feedback configuration and some basic definitions and femts information the-
ory and the theory of stochastic processes. Section 2.iestadyeneral feedback
scheme, within which we develop a mutual information indiggand a Bode-
type integral formula. Section 2.3 further explores thatieh of Bode’s integral
with the information transmission rate of the closed loobil@&Section 2.4 carries
out the in-depth analysis of the the Bode-type integral bggisomplex integra-
tion techniques. The paper is concluded in Section 2.6. Wethat Sections 2.4,
2.3 and 2.5 are developed in somewhat parallel manner, aneader should not
be surprised to find forward cross-referencing among thes#oss.

2.1 Preliminaries

Notation

e R denotes the field of real numberS;stands for complex plan&;~ and
C* stand for the left half and right half @ respectively.

e Random variables defined in appropriate probability spacesepresented
using boldface letters, such asy. If not otherwise stated, the random
variables take values iR throughout the chapter.

e If x(k), k € N* is adiscrete time stochastic process, we denote its segment
{x(k)}i_, by x}*, and usex} := x" for simplicity.

e Consider a continuous time stochastic procg$$,t € R*. A sample path
on an intervalt;, t3), 0 < t; < ty < +o0, is indicated asxij. We also
denotex}, := x* for simplicity.

11



e x" is the discrete-time process obtained from sampling@§ ont <
[t1, t2) with an intervalh > 0. We denotex") = x(")(i) := x(t; +ih), i =
0,1,....

e The probability density (if it exists) of a random variabies represented
aspx.

e E[-| is the expectation operator of a random variable.

e ()" =max{-,0} and(-)~ = min{-, 0}.

e R(-) gives the real part of a complex number.

e )\;() gives the eigenvalues of a square matrix.

e Re(-; z) gives the residue of a analytical function about C.

In this section, several basic definitions and related flaota information the-
ory and stochastic processes are introduced. We rely om[ig7 as main refer-
ences.

2.1.1 Entropy, Mutual Information and Related Facts

In this subsection, we introduce some elementary defirstiamd results from
information theory, most of which are taken from [4].

Definition 2.1.1 (Differential Entropy. Thedifferential entropyof a continuous
random variable with densityp, is defined as

h(X) = —E[lngx] = = /px 1ngxdxa (21)
S

whereS is an abstract space where the random variah$edefined.

Definition 2.1.2 (Conditional Entropy. If there are two random variablesand
y, the conditional entrop¥(x|y) is defined as

h(x|y) := — /S2 Dxy 10g px|ydxdy (2.2)

12



Definition 2.1.3 (Joint Entropy. The entropy of the random vectot := x, x4, ..., X,,
comprised of random variables with density:, is defined as

h(xp, X1, ..., X,) 1= —E[log pxn| = —/ Pxn log pxndx” (2.3)

n

Definition 2.1.4 (Mutual Informatior). The mutual information between the two
random variables andy is defined as

I(x;y) == —Exy {log Py } = —/ Pxy 10g Py dxdy (2.4)
PxPy S2 PxPy
Definition 2.1.5 (Conditional Mutual Informatioh The mutual information be-
tween the two random variablesandy is defined as

I(x;y|z) == —Exy, [log ﬂ}
Px|zPy|z (25)
=— / Pxyz 10g Prylz dxdydz
S3 Px|zPy|z
Definition 2.1.6 (Joint Mutual Informatiof. The joint mutual information between

n dimensional vectors™ := x¢, X1, ..., X, andy” := yq, y1, ..., ¥, is defined as

I(x";y") = —Egnyn {log Pxryn }

Py (2.6)
= _/ Panyn l0g de"dy"
s2n PxnDyn
Definition 2.1.7. [Entropy Rate] The entropy rate &fis defined as
- . h(x™)
h =1 2.7
(x) == lim =, (2.7)

given the existence of the limit.

Definition 2.1.8 (Mutual Information Ratg The mutual information rate of two
stochastic processes is defined as

- LIy
[(xy) = lim %

, (2.8)

given the existence of the limit.
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To consider the information between two continuous-tinoelsastic processes
we introduce the following definition.

Definition 2.1.9 (Mutual Information of Continuous Proces$e3he mutual in-
formation between two stochastic procesgeendy on time interval(s, t), 0 <
s <t < oo, is defined as

d Py

where Py, Py: and Py: ,+ are the probability measures, induced by random ob-
jectsx’,y! and(xs, y!) respectively, an% is the Radon-Nikodym deriva-
tive, given thatPy: : is absolutely continuous with respect to the product measur
Py X Pyt

Similar to Definition 2.1.8, we define thaformation ratefor continuous-time
processes.

Definition 2.1.10 (Information Ratg The information rate is given by

B I T. T
I(x;y) := lim fxiy)

Jim == (2.10)

given the existence of the limit.

In (2.10), could be viewed as the rate of mutual information for reketohns-
mission through any communication channelas input andy as output or vice
versa).

Remark 2.1.11. It is worth mentioning that, according to convention, weidvo
the notion of differential entropk(-) for a segment of a continuous time process,
becausé can be infinite for certain processes, as shown in the follgwekample.

Example 2.1.12.Let w(t),t € R, be a zero-mean white Gaussian noise pro-
cess with unit variance. It is straightforward to see that an individually and
identically distributed (i.i.d) process in continuous &mMe takeN + 1 samples
over the interval0, 1) denoted asv,, w1, ..., wy. It is straightforward to see that
h(Wq, W1, ..Wy) = % log 27e, and from the fact thad, ..., wy is a function

of wj we have

h(W(l]) Z lim h(WQ,Wl, ...,VAVN) = 0.
N—oo
Therefore the counterpart of definition (2.1.7) in continsidime does not exist.
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The next lemma gives the opportunity to represent contiatiote mutual in-
formation as the limit of its discretized version.

Lemma 2.1.13. Consider separable stochastic processesidy. The mutual
information betweex’ andy’, 0 < s < ¢t < oo, can be obtained as

I(x%;y!) = lim ](X(()( DX ))'y(()( )),...,yff( M)

veey n 3

n—r00 ’ (2.11)
X = x(s 4+ id(n)),i = 0,1, ..

1

for any fixeds andt with 6(n) = =5.

The proof of this lemma is given in 2.7.

This lemma is used successfully in [38] to connect disctiete-results with
continuous-time ones regarding the channel sensitivitye ihherent sampling
type of argument in the lemmaermits the general information measures to in-
herent many of its properties from the simpler discretestcasd39]. It will also
serve as an important tool to obtain the main result. A lisuséful properties
of entropy and mutual information are given here, and amrguieatly used in the
upcoming arguments.

(P1) Symmetry and nonnegativity

I(x;y) = I(y;x) = h(x) — h(x]y) = h(y) — h(y[x) > 0.

(P2) Kolmogorov equality
I(x;(y,2)) = I(x;2) + I(x;y|z)
(P3) Data processing inequality
I(x;y]z) > I(x;9(y)|2)

The equality holds, ifj(+) is invertible.

(P4) Invariance of mutual information (entropy)
I(x;y]z) = I(x + g(z);y|z) , h(x|z) = h(x + g(2)|2),

15



whereg(+) is a function.

(P5) Chain rule

n

hx"y) = > h(xply,x"")
k=1

(P6) Maximum entropy Considerx € R™ and the covariance matrix given by
V := E[xx']. Then we have

h(x) < h(%) = %log((%re)m det V)|

wherex is a Gaussian process with the same covariange Bguality holds,
if x is Gaussian.

2.1.2 Spectral Analysis of Stationary Stochastic Processe

Here we introduce some results related to the spectral hefastationary pro-
cesses.

Definition 2.1.14 (Wide Sense Stationary Procgs# zero-mean continuous-time
stochastic process(t) € R™, t > 0, is stationary, if for allt > 0 its covariance
function, defined by

Ry(1) =E[x(t+7)x' ()], TER, (2.12)

is independent of. Throughout this chaptewide sense stationaig abbreviated
asstationaryfor convenience.

The spectral decomposition of the covariance funciiQ(¥) is defined via Fourier
transform:

felw) = /0 T e R (1)dt, (2.13)

and the functiory(+) is calledpower spectral density (PSDf x. The stationary
process admits aspectral factorizationif

fx(w) - ¢x(_jw)¢x(jw) )

for some functiony«(-). The following lemma from [40] shows that a rational
PSD always admits a rational spectral factorization.
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Lemma 2.1.15.If f4(w) is rational, then there exits a minimum phase and asymp-
totically stable LTI systend,(s), such that

fx(w) = ¢x(_jw)¢x(jw)

There are various ways to fingl; the reader is referred to [41] for an extensive
overview.

Definition 2.1.16 (Markov Process A continuous-time stochastic proceds), t €
R*, is called a Markov process, if

P(x(t) € Alx(u),u < s) = P(x(t) € Alx(s)) (2.14)

holds for everys < ¢t and every measurable sétC S, whereP(x; € A|x,,u <
s) denotes the conditional probability ¢k, € A}, given the knowledge of

Xy, U <8,

While more general definitions of Markov processes can badon many stan-
dard stochastic process texts, we adopt this simple onetd esmplex notations
requiring more background from the reader. We define dfagsctions as fol-
lows [42].

Definition 2.1.17 (ClassF function).
F={l:l(w)=pw)(l—pw)),l(w)eCweR}, (2.15)

wherep(-) is rational andp(-) is a measurable function, such tiat ¢ < 1 for
allw € Rand [, [log(1 — p(w))]dw < 0.

It is obvious that all rational functions are lih
The following lemma is taken from [17], which gives a lowerunal on the
mutual information rate of two continuous-time Gaussiatighary processes.

Lemma 2.1.18. Suppose that two one-dimensional continuous-time pressss
andy form a stationary Gaussian proc€ssy). Then

I(x,y) > __/ log <1 - %) dw . (2.16)

The equality holds, iffx or f, belong to the clasB.
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2.1.3 Closed-Loop System

Throughout the chapter we consider the feedback configurdgpicted in Fig. 2.1.

IC e-Delay

n(t)

Figure 2.1: Basic Feedback Scheme

Several assumptions are made:

e The plantP is modeled by the following stochastic differential eqaati

x(t) = Ax(t) + Be(t), x(0) =xo, (2.17)

Herex(t) € R", andx, is assumed to have finite differential entropy or
|h(x0)| < 0.

e An arbitrary small time-delay > 0 is imposed on the output signgl

e The disturbancel(t) is a Markov process, angl(t) is a stochastic process
that models the controller noise. We assume th@y, n(¢) andx, are
mutually independent.

e The controllerk is given as a deterministic causal map such that

K:(yy©,nb)—u(t).

18



Definition 2.1.19 (Sensitivity-like Function A sensitivity-like function of the closed
loop is defined as

Saalw) = 1/ =) (2.18)

fa(w)’

wheree andd are stationary and stationarily correlated.

Remark 2.1.20. The functionSy . (w) is the stochastic analogue of the sensitivity
function|S(jw)| in Bode’s original work [43].

Throughout, we adopt the following stability definition.

Definition 2.1.21 (Mean-square Stabili)y The closed loop given in Fig. 2.1 is
said to be mean-square stable, if

sup E[x ' (#)x(t)] < oc. (2.19)

t>0

2.2 Information Conservation Law and Extension of
Bode’s Integral Formula

As it has been revealed in [10], causality plays a centralirobbtaining a Bode-
type formula for a discrete-time feedback loop with stoticatisturbance. Bear-
ing this observation in mind, we then obtain a set of mututdrmation rate in-
equalities resulting directly from the feedback structumd causality of the closed
loop shown in Fig 2.1. In turn, an analogue of Bode’s theorewbitained by as-
suming certain stationarity and Markov properties for tlstutbance signal.

To start with, we introduce the following Lemma, where thensof all the
unstable eigenvalues (or the degree of instability) of {hendoop state matri¥
is upper bounded by the mutual information rate betweennitialivaluex, and
the error signaé.

Lemma 2.2.1. If the closed-loop system in Fig. 2.1 is stable, then theofeihg
inequality holds
I(xp;€) > > R(M(A)*, (2.20)

whereR(\;(A))* == max{0, RO\ (A))}.
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Proof. If Ais Hurwitz, then)_. R(\;(A))* = 0and (2.20) trivially holds. In case
A is not Hurwitz, it is obvious that there exists a nonsingutetrix G € R™*"

such that
A, 0

0 A,

G'AG = , (2.21)

where A, and A, stand for the Jordan blocks with stable and unstable eigen-
values respectively. Accordingly, the staté) can be represented ast) =
G[x/!(t),x,} (t)]", wherex, andx, indicate the stable and unstable sub-state vec-

S ? u

tors respectively. We then consider the following unstalyleamics:
%u(t) = Auxu(t) + Bue(t) (2.22)

whereB, stands for the submatrix @G~ corresponding tel,. The solution to
(2.22) is written as

x,(t) = exp(Aut)x,(0) + /o exp(A,(t — 7))b.e(T)dr

= exp(A,t) (Xu(O) + /Ot exp(—Aur)bue(T)dT) (2.23)

= exp(Aut)(xu(0) + %u(t)) V>0,

where we have defined
t
Xy (t) == / exp(—A,7)be(T)dr .
0
The condition in (3.2) implies that for all

+o00 > M > logE (det(xu(t)XT(t))) = 2tlog (det(exp(A,)))

u

(2.24)
+10g E (det (%,(0) + %y (£)) (%,(0) + %, () )
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for someM € R™. On the other hand,

I(xp;€") > I(x,(0);e")

(x,(0)) — A3, (0) % (t))
(%u(0)) = 74 (0) + %, (1) [%u(£)) (2.25)
> h(x,(0) — h(x,(0) + X(t))

> h(x,(0)) — log(2me)"
— log (det E [(XU(O) + %, (1)) (x,(0) + f(u(t))T]) .

Here, (a) follows from (P3) since, is a function ofx; (b) follows from (P3) since
x, is a function ofe’; (c) follows from (P1); (d) follows from (P4); (e) follows
from (P1) and (f) is from (P6).

In what follows, we combine (2.24) and (2.25) to obtain

I(xgie)  h(x,(0))  nlog(2me)
t - t 2t
(2.26)
— 2+ Tog (det(exp(A.)
Note that
log (det(exp(A,))) = Z N(A,) = Z R(A(A)T, (2.27)

and taking the limit on both sides of (2.26),tas> oo, we obtain (2.20). O

The following Lemma is a consequence of closed-loop caysélivill be used
in subsequent derivations.

Lemma 2.2.2. Consider the feedback loop in Fig. 2.1, with all signals skachp
with the givend interval,0 < ¢ < e. The following identity holds:

1(dD(0); [uO], xo|[dP)f1) =0, Vi>1. (2.28)
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Proof.

(a) ,

< 1(d®)(i);u”, u'® (i), xo|[d®))

(b) 4

< I(d® (i);y*=c, n%|[d @] 1)

(c) .

< (A9 (i); d% ¢, xo, n%|[d®) ) (2.29)
@ 1D (i) 4", o, ", [dO) ) = 1@V (0):[d D))
(e) . i—e i— i—

= 1(d9(i); d%¢, [dD)Y) — 1(d9(i); [dO)h
210 (@):d (i — 1) - (D (0):dO (i — 1))

=0

Here, (a) follows from (P3), sincm®]’ is a function of(u,u(d4)); (b) also
follows from (P3), sincéu’’, u(di)) is a function ofy?—¢ andn’; (c) also follows
from (P3), sincey® ¢ is a function ofd®—¢ , x, andn?; (d) follows from (P2);
(e) follows from the assumption that x, andd are mutually independent; (f)
follows from Markov property ofl. O

We are ready to state the main theorem regarding closed kggatty.

Theorem 2.2.3.Consider the closed loop shown in Fig. 2.1. The following in-
equality holds:

I(e';u') > I(d;uh) + I(x;€"), VteRT. (2.30)

Proof. Givent > 0, we takek + 1 samples of each of the signads d and
u over [0,t), by sampling the intervad(k) > 0 to get the discretized signals
{eCEN () + 1 <4 < Kk}, {dCFD(G) - 1 <4 < kY and{ul®®)(G) : 1 < i < k}
respectively. Notice also th&k + 1)d(k) = t.

We expand the following mutual information by Kolmogrovsmula (P4) for
anyl <i<k:

~I(@° (i): 0, [ O[OV
— I(d(5(k (4); [d(é(k))]i—l) _ I(d(‘;(’“”(i); [d(é(k))]i—17X07 [u(é(k))]i)
<d<5<’f D[R g, [u®FN]) — A(dOB) (4)[[d ORI

(
R(dP™ (0)|[eEVE, x, [u®HI]Y) — A(@CED ()] [T

®)
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< (e (i) [V, g, [wED)) — R(AOED (7)|[dCE] )

D 1(eC® () [e@EN) — (x5 €W (i) [OFN])
_[([u(é(k))]i;e(é(k))(zme( ] ,Xo) h(d‘s ))(z’)|[d(‘5(k”]i‘1),
(2.31)

where (a) follows from (P1), (b) from the fact tht®*:)]"~1 — [d(‘s(’“”]"‘1 +
[u®*)])i=1 and therefore the mapd ©*)]i—1 x,, [u@E)]?) s ([e@ED] =1 x4, [u@FED]?)
is invertible, (c) from (P4) since®®) (3) = d@®) () + u®*)(4), and (e) is from
(P4).

On the other hand, Lemma 2.2.2 claims that

1(dC®) (4): x,, [u(é(k))]in(é(k))]i—l) -0 (2.32)

Summing up—1(d@®)(5); xo, [u®®)])F[dCHED]-1) from 1 to k, ¥V k > 1, and
considering (2.31), we have

® h([e@*D)F) — b([eCENTF| [@ENE L p([dOKI]F| [u@kI)F)
— I(x0: [eHV]) — ("))

— Z [([u(é(k))]i; e(5(k))(z')|[e(5(k))]i—1’ x0) (2.33)
(©)
= I([e((s(k))]k7 [u(é(k))]k) - [(X0§ [e((g(k))]k)
k
= D IO O (0) [ ED) 7 xg)
k. [u@N]k)

< ]([e(é(k))]k’
— ]([d(é(k))]k. [u(é(k))]k)

?

@ [uOEDTFY — [ (xq: [ePRN]F)

Here (a) follows from (P5), (b) follows from (P4) sinég[e**)]*|[u®®)k) =
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h([dCENE| [uCED]F) [ (c) follows from (P1) and (d) follows from the non-negatiess
of mutual information.
Taking the limit ask — oo, we haves(k) — 0, which consequently implies
that
0 < I(e';u’) — I(d';u') — I(xg;€). (2.34)

The inequality in (2.30) follows. 0J

Remark 2.2.4. The quantityy " T([uC®®)]%: e@k) (4)|[e®*F)])~1 x) in the equa-
tion (b) of (2.33) has been defined in [44] dected informatiorfrom [u®)]*

to [e®*)]* conditioned byx,, and is denoted ag [u’*)]k — [e®(k)]k|x,). One
can define the continuous-time version of directed inforomeby lettingk — oo.

A preliminary exploration of continuous-time directedaniation and its relation
with optimal estimation theory has been reported recent[y5b].

An inequality for information rate is readily obtained byvidiing both sides
of (2.30) byt and lettingt go to infinity (assuming that the limit exists). It is
summarized in the following corollary.

Corollary 2.2.5. Given the closed loop system in Fig. 2.1, we have

I(e;u) — I(d;u) > I(xo;e) (2.35)

The subsequent Theorem incorporates the mean squaratgtabihe closed
loop with the information rate inequality (2.35). Some istaarity assumptions
are further enforced to derive a Bode-like formula. The itletae summarized in
the following theorem.

Theorem 2.2.6 (Bode-Like Formula Suppose the closed-loop system shown in
Fig. 2.1 is mean-square stable. Then

I(e;u) > I(d;u) + > R(A(A))T . (2.36)

Furthermore, ifd, u) and(u, e) form stationary processes ayigle F andd is a
stationary Gaussian Markov process, then

o0

2 )

log (Sae()) dw = 3~ RON(A)* (2.37)
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Proof. The inequality in (2.36) directly follows from (2.20) and 88). To obtain
(3.2.12), first we have

I(e';u’) — I(d";u)
ékl m {T([e@]E. [u@MNFY _ 1([qEENF @)Yy
® k} {h([e(é(k))]k) _ h([d(é(k))]k)}

© (2.38)

< lim {h(e (6(K)) ] ) — h([d(é(k))]k)}

k —oo

hm {I([e (6(k) )] : [u(é(k))]k) _ ]([d(é(k))]k; [ﬁ(é(k))]k)}

k—o00

2 (e - 1),

where(e, u) stands for the Gaussian stationary process with the sanagianue
as(e,u). Here (a) follows from Lemma 2.1.13; (b) follows from (P1)) {ollows
from (P6); (d) follows from (P1), and we use the fact thge®®) ]k |[a®*)]k) =
h([ACEDTF [aCED]R) VE € N*; (e) follows from Lemma 2.1.13. Then it is
straightforward to show that

I(e;u) — I(d;u) < I(e;u) — I(d; a) (2.39)

Sincef, € F, Lemma 2.1.18 implies

I(e;u) — I(d;u)
o _i o o . feu(w)fue(w) W i o o i fdu(w)fud(w) W
=i /_mlg@ Fol@) ful) )d e /_mlg@ Fa(@) ful@) )d
L (o) al@) o)~ Fan(@)fual@)Y
e (fdw Fo@) fal@) — Fou(@) fuol) ) §
_ 1 [ log (Saelw)) e
(2.40)
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Indeed, sincel = e + u, then

fd(w):/_ e " Repu(T)dr

oo

— /_OO e (Re(T) + for(T) + fue(—=T) + Ru(7))dr (2.41)

[e.9]

= Je(W) + feu(W) + fue(w) + fu(w),

and

fdu:/ e_itwRe+u,u(7)dT

o0

= / ) ¢ " (Reu + Ru)(7)dr (2.42)

(e}

= feu(w) + fu(w).
Hence, (2.41) and (2.42) give

fd(w)fu<w) B fdu(w)fud(w>
fe(w)fu<w) - feu(w)fue<w)
(fe + feu + fue + fu)fu B (fu + feu)(fu + fue)
fefu - feufue

=1.
The proof is complete. O

Remark 2.2.7. The equation (3.2.12) is formally identical to the ineqtyalier-
sion of Bode’s integral developed in the classical casevf@gre a time delay is
introduced to make the residual o |S(s)| vanish at infinity for strictly proper
plants. The same type of time delay in the course of our d&sivas introduced
to ensure closed-loop causality, so that the sequentatioas among the signals
residing in Fig. 2.1 are revealed by using information tleéioal machineries.

Remark 2.2.8. We have hinged ostationaryclosed loops for the derivation of
Bode’s integral formula (3.2.12) from the information censtion law in (2.35)
for simplicity. Nonetheless, the similar argument can Is® &xtended tasymp-
totically stationarycases with minor modification.
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2.3 Negative Component of Bode’s Integral

In the section, we investigate the lower bound @f; u), with additional assump-
tions thatd ande are mutually wide sense stationary ahs Gaussian. As shown
in the subsequent result, the lower bound/ad; u) is obtained as the negative
portion of the Bode’s integral obtained in the previousisect

The following theorem summarizes the main result

Theorem 2.3.1. Consider the feedback closed loop given in Fig 2.1, wiieaad
e are mutually wide-sense stationary atdds a Gaussian Markov process. If
fu(w) is bounded away from zero, then the following inequalitydsol

i) 2~ [ (logSae(w))” do (2.43)

Proof. To begin with, we consider the following Wiener predictor

L) = 140 e

fu(w)
which represents the minimal mean square error predicfieh given the obser-
vation of the entire time history ai with the time delay. To obtain a causal
prediction ofd(¢) by using the possibly noncaudaljw), we define the following
predictor:

where|- |, stands for the truncation operator.
The above Wiener predictor is now used to lower bound the tifyah(u; d).

First, the procesd(7),0 < 7 < t is sampled with interval(k) = -, leading to
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I
© ([aC®IF) — B ([dCED]F) [GENRY
([dCF) - h([a<6<k>>]'f>
() = B OO ACED]) + (AR — n([d )
= I([dC] [dCONE) — ([dOW [T,

whered := d — d. Here (a) follows from (P3), sincg’ is a function ofu’~<; (b)
follows from (P3), sincéd *("))]* is a functiond’; (c) follows from P1; (d) follows
from the fact that conditioning reduces entropy; () fosdvomph([d@*)]k|[dOkD]k) =
h([a(é(k))]k|[a(é(k))]k)_

By applying Lemma 2.1.13, we have

I(d';u'™) > 1(d'd") — 1(d;d"),
which in turn gives the limiting case
I(d;u) > I(d;d) — I(d;d). (2.44)

Note thatd andd are Gaussian and stationarily correlated gqnd F, and from
Lemma 2.1.13 we have

I(d;d) — I(d;d)
— o [ (1 Bl L (1 S,

=—/ (7))

. fa(w) "
47r ) 1g(m )—|L(jw)|2fu(w)>d ’

where we have used the fact

falw) = fa(w) = fa(w) — |L(jw)* fu(w).
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We then note that

_ Hanl@)] o Rlau(@)) _ fauw) + faal®) _ fol) — fa() ~ fulw)
Fa@] = fulw) 2Ful) 21u(@)

Therefore (2.44) is further written as

| L(jw)]

I(du) >

R ( afu )dw (2.45)
i ) B\ = 2= F2 4 2fafe+ 2fafu + 2fufe

Taking the maximum value of the right hand side of (2.45), aeeh

supi OOlog< 5 4fafu )dw
fu>047T —00 _fd_fez_f121+2fdfe+2fdfu+2fufe 0

1 [~ _
=5 /_OO (log Sqe)” dw

The relation in (2.46) follows from the fact that (2.45) hekiso for allf, (w) > 0.

Once the inequality (2.46) is obtained, we can employ thquaéty (3.2.18)
later in Section 2.5 to obtain the following theorem.

Theorem 2.3.2.Consider the closed loop shown in Fig. 2.1, wher@ndd are
assumed jointly stationary, witth being a Gaussian Markov process. If the closed
loop is mean square stable then the following holds:

—o- | (ogSac(w)) dw < T((x(0). d)iw) = SO ROA)T . (246)

Remark 2.3.3. The upcoming discussion in Section 2.5 will show thdi (0), d); u)
represents the total information flow in the closed loop.réfare, the inequality
in (2.46) implies that the negative portion of the Bode inéégwhereSy o (w) <

1) is determined by both the degree of open-loop instability #he information
rate transmitted through the closed loop. It can be cledrseoved from (2.46)
thatif 7((x(0),d); u) = >°, R(Ni(A))T, thentheSy o (w) > 1 for allw. Moreover,
the same observation shows that, to achieve a desirablenghafthe sensitivity
function, one needs a larger information transmissiontatdlow for a less con-
straint on the negative part ofg Sq o (w).
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Figure 2.2: Linear Stochastic Closed Loop

2.4 Achievable Lower Bound of Bode’s Integral for
LTI Systems

This section is devoted to further investigation of the tgathess of the resulting
Bode’s integral. As is has been shown in (3.2.12), the surhelinstable poles
serves as a lower bound on the log-integral of the sensifivitction; however, the
conservativeness of thisequalityremains unclear. One can intuitively conclude
that the controller noisa contributes to the increase gf [~ log (Sq.e(w)) dw
by makinge noisier within some frequency range. Detailed analysihisfissue
is given subsequently, where the controller and the plangaen by LTI systems.
We now specialize the problem to the closed-loop configoimashown in Fig.
2.2, whereP(s) is strictly proper and minimum phase, and the unstable @otes
denoted a$py, po, ..., py }. In @addition, we choose a proper stable stabilizing con-
troller K(s). The controller noisa(t) is a stationary (possibly colored) Gaussian
process with zero mean; the disturbance signiala stationary Gaussian Markov
process. A candidai® can be expressed as the following Ito integral, also known
as Ornstein-Uhlenbeck Brownian motion.

t
d(t) =10 / e~ t=Waw,
0
wherea > 0 andb # 0 are real numberd}; is a standard Wiener process. The

initial conditions for bothP(s) and K (s) are set td.
Note that closed loop is stable (with sufficiently smalt 0) and thatd andn
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are independent. We have

_ fa(w) K (jw)[*fa(w)
1= P(jw)K(jw)e 7> |1 = P(jw) K (jw)e«?”

fe(w)

Subsequently, the sensitivity function is obtained as

M) JTHIEGO)PEY
faw) |1 = P(jw)K (jw)e iw]

Sde(w) = (2.47)

Next, we prove the following theorem regarding the log-gmée of sensitivity.

Theorem 2.4.1. Consider the closed loop shown in Fig 2.2. The following ¢équa
ity holds

1 [ B I - 2fa(w)
5 /_OO log Sqe(w)dw = ;%(AZ(A)) —i—E /_OO log <1 + | K (jw)| m) dw ,
(2.48)

Proof. By using (2.47), we have

1 o 1 o 1
%/_m log Sq.e(w)dw =5 /_Oo log <|1 — P(jw)K(jw)e—j“’E|) dw+
% /_OO log (1 + ‘KUWHQ—QEZ;) dw .

Notice thatl /(1 — K(s)P(s)) is stable and proper. Then we employ the same
argument as in the proof of Theorem 3.1.4 in [9] to obtain

! /°°1 ! d
27 ) B\ |1 = P(jw)K (jw)e 7+ ) ™

1 1
_ % iﬂlog <|1 _ p(s)K(s)e‘“|) o
— D1t Dy = Z R(A:(A))T.

Here% denotes the right half plane closed contour, which has acgeritly large
radius and circumvents all the unstable poles”¢f) [9]. The same integration
can also be calculated by a simplified methodology develap@b]. The proof
is complete. O

The positive terms := = [~ log (1 - |K(jw)\2f:;—$§) dw in (2.48) presents
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an additional performance limitation, on the top of the surthe unstable poles.
In order to gain some insight, we now illustrate the signifaeof this term from
different perspectives.

e Although it is not easy to quantify in general (yet a special case is given
later in Lemma 2.4.2 to calculate explicitly), we can roughly estimate
its value by observing the magnitudes fafw), fn(w) and K (jw). It be-
comes evident that, both a lower noise-to-disturbance rétiw)/ fa(w)
and a smaller controller magnitu¢l& (jw)| lead to a less restrictive limita-
tion on the closed loop.

e From information theoretical point of view, the expressan: reminds of
the mutual information rate of a continuous-time additiaiGsian channel
[4]. For the non-feedback additive Gaussian channel shaviag. 2.3, the
input/ouput mutual information can be calculated by LemnialB as

B \fv<w>|2
-0 oolog<1‘f<> fo@) + Ja )d”
zﬁ Oolog<1+\K |2;zw>

The above interpretation af shows that the extra amount of performance
limitation is induced by the mutual information rate betwélee propagated
controller noisev and the observatioa To reduce the mutual information
rate, one can reduce the uncertainty of the channel saynatich can be
done by either lowering the magnitude &1 s), or denoising the controller
noisen.

e 1 can be also related to the famoHts, entropy [47]. Suppose there exits a
proper transfer function/(s) such that

K (e

1
21+ K (ju) P2

= M(—jw)M(jw).
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Figure 2.3: Additive Gaussian channel

Then the above relation leads to
1 [~ . fn(w))
K= — log [ 1+ |K(jw)|? dw
= g< K () P2

2 [e'e)
v _ . .
— __27r/ log (1—7 2M(—ju))M(]w)) dw ,

which is exactly the expression of tlig,, entropy of)M (s) with disturbance
rejection levely = 1/4/2. It has been shown that the mininvdl, entropy
controller is equivalent to a suboptimél,, controller (|M||x.. < 7) [47].
Therefore the above observation actually proposes a wayrtionize ~ by
resorting to varioud?,, methodologies for the design &f(s). While the
detailed development along this direction is not given htre readers are
encouraged to look into this interesting problem as it pfesia potential
link betweenH , theory and information theory.

Next we will show that, under some mild assumptionsan be obtained explic-
itly, where we assume tha (w) and f,(w) are rational and admit the following
spectral factorizations:

fa(w) = da(—jw)da(jw), fa(w) = ¢n(—jw)dn(jw) .

Lemma 2.4.2. Assume thak (s) $2( admits a minimal realizatiopdy, by, ¢ , dy)

with A, being Hurwitz. Moreover, assume that there exists a méatrix 0 solv-
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ing the following algebraic Riccatti equation (ARE):

ALQ + QA — 2 Qbrb. Q + ——cpep =0, (2.49)

and ensuring that
1

A_
SR )

brb, Q is Hurwitz (2.50)

Then

o (W dy,
ﬁ /_OO log (1 + |K(jw)‘2§dgw;) dw = ﬁb;@bk + \/jdz bk

Proof. We will first obtain the following spectral factorization:

1t |K<jw>\2% — H(—jw)H(jw).

whereH (s) = — (b Q + drel ) (sl — Ax) b, + /1 + d2 . Indeed, it can

be verified that

H(—s)H(s)
- <\/%7d2b;(sﬂ + A) N (Qbr + dicr) + 4/ 1+ di) X
k
<ﬁ(b;@ +diey ) (sT— Ap) e + /14 di)
V k

=0, (—sI — A} ) tepef (sI — AL )7ty
+ dkck (SH — AT) lbk + dkck ( sl — A;—)_lbk + 1+ dz

_ Pn(=5) o\ Pnls)
= K(—s) (S)K() ()+1.

Next, note that bottk (s) $2(} and1/ K (s) 2213} are, as a consequence of (2.49)
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and (2.50), analytic on the right half plane. Hence, we have
L~ - 2fa(w)
E/_Oolog <1+|K(]w)| ) dw
1 [~ . .
— 1 [ lor((=wHGw) o
=—/ log, (| H(—jo)[2) de

where % denotes a contour encompassing frefjro to joo and enclosingC™.
The value of the integration along the contour can then bliated by using the
residue oflog (H(—s)) abouts = oo, which is calculated as

Res(log (H(—s));00) = — lim s(H(—s) — H(c0))

5§—00

1 dy,
- b Qb+ of
1+dika 1+dikk

Residue theorem in turn yields

1 1 dy
R j{lo H ds) = ——b Qb + ———0, by
<2m 8 (H(=)) kak T+a """
The proof is complete. O

In summary, the following theorem holds.

Theorem 2.4.3. Consider the closed loop shown in Fig. 2.3, and assume that

K(s)z“gs admits a minimal realizatiofAy, by, ¢/ , d) and 4, is Hurwitz, and

@ > 0is the unique solution to the ARE in (2.49) and satisfies (2.58en

dy.

(2 51)

o longe )dw:Z%()\ A)*

1
+
/ d2

Remark 2.4.4. The condition thaf{ (s )¢“(s needs to be proper does not impose
a significant restriction on the class of closed loops, forcwhwve can derive the

35



same calculations as in Theorem 2.4.3, as one can alwaysektabilizingi (s)

with higher relative degree, renderirﬁ@(s)izgzg proper.

2.5 Information Rate Inequality & Control with
Communication Constraints

Another information rate inequality regarding the clo$eop stability based on
the framework in Section 2.2 is obtained in this section. Bing it, we investi-
gate the stabilization problem, where the communicati@nalel is modeled as a
continuous-time Gaussian channel with certain Signalocse Ratio (SNR) level
constraint.

The following lemma provides a lower bound for the mutuabmfiation rate
I((x, d); u), which accounts for total information rate flow in the loopurfRer
insight into/((x, d); u) is provided later in Remark 2.5.2.

Lemma 2.5.1. Consider the closed-loop system shown in Fig. 2.1. We have th
following inequality:

I((x0,d);u) > I(xo;€) + I(d;u). (2.52)
Proof. Using Kolmogorov’s formula (P2), we have

T((xo, d");u) = I(xp; u'ld’) + I(u'; ). (2.53)
wheret € Rt is arbitrary time instance. We can lower bouk{@x,, d*); u’) as

I((x0,d");u)

@ I(xp; €'|d") + I(u*;d")

2 I(xore') — (xo; d') + I(xg; d'[e’) + I(u; ') (2.54)

9 I(xo; ') + I(x0;d'[e") + I(u'; d")

(@
> I(xq;€e") + I(u’;d").

Here (a) follows from the fact thd{{xo; u*|d") = I(xg; u'+d’|d") = I(xo; e'|d’);
(b) follows from (P2); (c) follows from the independencedfandx,; and (d)
follows from the fact that/(x,;d’|e’) > 0. We have obtained the following
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inequality:
I((x0,d");u’) > I(xo;€") + I(u';d"). (2.55)

The conclusion is readily obtained by dividing the terms othisides of (3.9) by
t and taking the limit ag — oo. O

Remark 2.5.2. To illustrate the importance df (x,, d); u), we consider the block
diagrams shown in Fig. 2.4, which recast the closed loopgn Bil into a typ-
ical analog communication scheme with feedback [48]. Thesbage” to be
transmitted is composed of the two independent souxgeend d(t), andu(t)
is the channel output. We can also identify the “Transniitéed “Channel” in
this “communication system” accordingly, though, in ourremt setup, they do
not function the same way as their names suggest. It turngodug clear that
I((x0,d); u) represents the input/ouput information rate, and theeef@mma
3.2.18 indicates that the total information flow of the clb&®op is bounded from

below by the contributions of the initial value and the dibance.

X0 I I ! I
o + () | t
] p ( ):\ Ik lu( )’
) ¥+ L I
. o apl
. | Transmitter: | Channel _!
Feedback

Figure 2.4: Closed loop configuration from the communicaperspective

We can then define thifeedback capacitgf the closed loop in Fig. 2.1 as

Cs = sup I((xo,d);u).

x0,d

Notice that the discrete-time and non-causal version ofdbdback capacity has
been introduced in several chapters, as [22] and [30].

To take the closed-loop stability into consideration, wetHer elaborate the
inequality (3.2.18) to get the following theorem.

Theorem 2.5.3.1f the closed-loop system shown in Fig. 2.1 with feedbaclkacap
ity Cy is mean-square stable, then

I(w;d) <Cr = RN(A)T. (2.56)
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Example: Stabilization with Gaussian Channel Constraint

Next we focus on the continuous time additive white Gaussiise (AWGN)
channel with input power constraint. This particular tydeaccommunication
channel, rooted in Shannon’s celebrated work [7], has b@ensively studied for
its theoretical and practical significance in various chept[8] [49] and [50]. To
consider the Gaussian channel in a feedback loop, we adegiatihe scheme as
in [29], which is shown in Fig. 2.5. Her@ is the same LTI system as in (3.1) and
y(t) = x(t); K € R™" is the control gain matrixu(¢) is the channel input with
power constrainE[u?(¢)] < 22, Vt > 0, for some power level? > 0; d(t) is

a Gaussian white noise process with SRF= ¢ > 0.

x(t)

n(t) (Gaussian White Noise)

Figure 2.5: Feedback control in the presence of a Gaussameth

The channel capacity can be obtained by the following formula [37]:

&

C=2.
20

(2.57)

Regarding the closed-loop system stability, we have tHeahg theorem.

Theorem 2.5.4.1f the closed-loop system shown in Fig. 2.5 is mean-square st
ble, then the following relationship holds:

= RO (2.58)

Proof. Note thatd = 0 and the fact that feedback does not change the capacity
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of memoryless white Gaussian additive channels imply

Q@ —
ﬁ:cch:s}lclopl(xo;u)-

Therefore (2.56) is reduced to

P _
55 = C = I(xou) > Z?R()\i(A))JF. (2.59)
The proof is complete. O

Remark 2.5.5. This result provides a sufficient condition to soReoblem 1in
[29]. A similar condition is also obtained in [25], where thathors have used
the result from [49] on mutual information rate of a Gaussihannel. Different
from [29], the method used here is purely information thelmaged, and may be
applied to more general systems rather than LTI.

2.6 Conclusion

In this chapter we investigated the continuous-time infation conservation laws
in a causal closed loop feedback setting as an extensiontirenvell established
discrete-time case. For the purpose of this extension, s@tréo mutual infor-
mation rate rather than differential entropy rate, whodeal®r is not desirable
in the continuous-time setting. As a result of the aforenosed conservation
laws, a Bode-type integral formula is obtained, for whichhage used mutual in-
formation integral inequalities instead of the widely ug&dmogorov’s formula.
We also pursue an in-depth investigation into the resulBade integral in terms
its tightness and its relation with communication constisai These conservation
laws have also shown the ability of handling particular peats such as control
with limited information.

2.7 Proofs

We first introduce an alternative definition of mutual infaton between two
random variables [17].
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Definition 2.7.1. Let¢ andn be random variables assuming values in the measur-
able spacesX, .#,) and (Y, .#,) respectively. The mutual information between
x andy is given as

I(x,y) =sup ) _ Pe,y,(E; x F})log

irj
where the supremum is taken over all partitigis } of X and{F;} of Y.
To prove Lemma 2.1.13, we need the following proposition:

Proposition 2.7.2. Let &,,n = 1,2, ... andn,,n = 1,2, ... be random variables.
Then, if (¢, n,) converges td¢, ) in distribution, we have

1(§m) < lim 1(&n; 1)
Proof. By converging in distribution, we have

lim P, (A) = Pey(A),VA € Fp x F, .

Therefore, for any fixed partitiof £;} and {F;} of X andY, which satisfy
P¢(E;) # 0 andP,(F};) # 0, we have

lim P, (E; x F;)log —="n !
Jim 2 P VT P, (B P, (Fy)

i?j

= ) Py(E; x Fy)log =Lt 2 I
ZJ: ¢ 7 P(Ey) Py (F)

Considering Definition 2.7.1, the following relation candigained

nh—{EO ](Sna nn) = 7}1—{20 sup ZZJ: Pﬁnnn(Ei X Fj) log Pﬁn (Ez')Pnn(Fj) ’
Pe, (E; X F;
> supZPgn(Ei X Fj)log (B < £) =1(&m) .

Pe(E;) Py (F))

1]

Proof of Lemma 2.1.13.

1The proof is inspired by a private communication with Dr. YelBv
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Proof. The first step is to establish the following inequality:

I(xt;yt) < Tim TP x @), yO@m) o6y (2.60)
n—00
We define
_ d(n — i(n
Xp = ZXE ( ))X[S+6(n)i) Yn = ZYZ( ( ))X[s+5(n)i) )
i=0 i=0

wherey is the characteristic function. Singeandy are separable, we can always
find the versions ok andy such that the joint distribution of them can be arbi-
trarily approximated by the corresponding discrete-timeepsses with countable
samplings. Therefore the convergence in distribution 3lieal.
The inequality (2.60) is followed by applying Propositio7 2
I(xsy?) < lim I(Res9) = lim 16,0005y 00y 000y

n—oo

On the other hand, the following relation is immediatelyaobéd by (P1)
I(xtyt) = 1§ x 00Dy 0y ) e > 1. (2.61)

n

The proof is completed by combining (2.60) and (2.61).
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CHAPTER 3

BODE'S INTEGRAL FOR STOCHASTIC
SWITCHED SYSTEMS

The chapter is organized as follows. In Section 3.1 we intcedhe closed-loop
feedback configuration and some basic definitions and femts information the-
ory and the theory of stochastic processes. Section 3.iestadjeneral feedback
scheme, within which we develop a mutual information indiggand a Bode-
type integral formula. Section 3.3 applies Bode’s integpdNCS, while Section
3.4 carries out the analysis of its application to macroeauns. The chapter is
concluded in Section 3.5.

3.1 Preliminaries & Problem Formulation

Notation

e R denotes the field of real numberS;stands for complex plan&;~ and
C* stand for the left half and right half @ respectively.

e Random variables defined in appropriate probability spacesepresented
using boldface letters, such asy. If not otherwise stated, the random
variables take values iR throughout the chapter.

e If x(k), k € N is adiscrete time stochastic process, we denote its segment
{x(k)}i_, by x}*, and usex} := x" for simplicity.

e EJ[-| is the expectation operator of a random variable.
e ()" =max{-,0} and(-)~ = min{-, 0}.
e R(-) gives the real part of a complex number.

e )\;(-) gives the eigenvalues of a square matrix.
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e h(-) stands for (differential) entropy and-; -|-) for conditioned mutual in-
formation; h and stand for the entropy rate and mutual information rate
respectively.

e WhenA is a finite set| A| gives the number of elements.ih
e sp{-} denotes the spectrum of an operator.

A list of useful properties of entropy and mutual informatiare given here,
and are frequently used in the upcoming arguments.

(P1) Symmetry and nonnegativity

I(x;y) = I(y;x) = h(x) — h(x]y) = h(y) — h(y[x) > 0.

(P2) Kolmogorov equality
1(x;(y,2)) = 1(x;2) + I (x;y|2)
(P3) Data processing inequality
I(x;y]z) > I(x;9(y)|2)
The equality holds, ifj(+) is invertible.
(P4) Invariance of mutual information (entropy)
I(x;y|z) = I(x + g(z);y|2) , h(x|z) = h(x + g(2)|z),

whereg(+) is a function.

(P5) Chain rule

n

h(x"ly) = ) hixily,x"™)
k=1

(P6) Maximum entropy Considerx € R™ and the covariance matrix given by
V := E[xx']. Then we have

h(x) < h(%) = %log((%re)m det V)|
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wherex is a Gaussian process with the same covariange Bguality holds,
if x is Gaussian.

Throughout the paper we consider the feedback configurdépitted in Fig. 3.1.

+ . e(k)
°—>? — P(o(k))
d(k)
y(K
u(k) KC —

n(k)

Figure 3.1: Basic Feedback Scheme

Several assumptions are made:

e The plantP is modeled by the following stochastic difference equation

x(k+1) = A(o(k))x(k) + B(a(k))e(k), x(0)=xo,

(3.1)
y(k) = Clo(k)x(k), k=0,1,2..

Herex(k) € R™, andx, is assumed to have finite differential entropy or

h(xg) < oo, ande (k) € {1,2,..., N} =: N is afinite state ergodic Markov
process given by

Plo(k+1) =jlo(k) =1i) =p; >0,

wherep;; is named as transition probability from state j, andzj pij =1
for all i € N. The stationary distribution of the Markov chain denoted
asm = [my, ..., ), iS obtained by solving

7' [pijlijen =7, and [I,. 1w=1.
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e The disturbancel(k) is a stochastic process, andk) is a stochastic pro-
cess that models the controller noise. We assumestfiat d(k), n(k) and
x( are mutually independent.

e The controllerk is given as a deterministic causal map such that

K (k,y" n") — u(k).

Definition 3.1.1 (Wide Sense Stationary Proces#é zero-mean stochastic pro-
cessx(k) € R", ¢t > 0, is stationary, if for allk > 0 its covariance function,
defined by

Ry (1) = E[x(k +D)x"(k)], 1€ NT,

is independent of. Throughout this chaptewide sense stationaiig abbreviated
asstationaryfor convenience.

Definition 3.1.2. The spectral density of a stationary process given as the
following Fourier transform

Definition 3.1.3 (Sensitivity-like Function A sensitivity-like function of the closed
loop is defined as

fe(w)
fa(w)’

wheree andd are stationary and stationarily correlated.

Sd,e (w) =

Remark 3.1.4. The functionSq (w) is the stochastic analogue of the sensitivity
function|S(jw)| in Bode’s original work [43].

Throughout, we adopt the following stability definition.

Definition 3.1.5 (Mean-square Stabilily The closed loop given in Fig. 3.1 is
said to be mean-square stable, if

sup E[x" (k)x(k)] < 00. (3.2)

k>0
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Definition 3.1.6 (Lie Algebrg. A Lie algebrais denoted as
g:={A(n):neN}pa,

which is generated by the matricd$n), n € N, with respect to the standard Lie
bracket

We say that the Lie algebgais solvableif the following derived series

a> g0 >0 [g 0] >..

becomed eventually, where *” denotes the relation of sub-algebra.

Theorem 3.1.7.[Simultaneous triangularization] The matriced(n) : n € N'}
can be simultaneously triangularized by some linear opefiatce C™*™, if and
only if the Lie algebray is solvable

3.2 Bode-like Integral Discrete Time Case

In this section we develop the information conservation tdwhe closed loop
system depicted in Fig. 3.1. In turn, an analogue of Bodemita is obtained
with stationarity assumption.

3.2.1 Information conservation law

The following lemma is introduced to characterize the aidsep causality.

Lemma 3.2.1.

1(d(i); (W', xp, ) [d") =0, Vi>1. (3.3)
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Proof.

=
o

(1); (u', %0, 0")|d"™)

1(d(i); (w', ', o, xo) ")

INE

INE

I(d(i); (", ', 0", x0)[d")
= 1(d(i); (', 0", x)[d"")

—
~

—~
Sy
=

=0

Here, (a) follows from (P3); (b) also follows from (P3), séna’ is a function of
(d=1, n’, 6%, x0); (c) follows from (P4), and (d) is implied becausgao, x, and
d are mutually independent. 0J

In what follows we use the result from Lemma 3.2.1 to achiaveguality, re-
vealing a key relationship among signals residing in 3.1.

Lemma 3.2.2. Consider the closed loop in Fig. 3.1. The following ineqtyali
holds

k
h(e") = h(d*) + I((xo,0%);€) + > I(u'se(i)le " x0, o) (3.4)

i=1

Proof. We break down the equality (3.3) by

0= I(d(z’); (u', %o, 0")|d"™)

/\

(d(z u’,xg, 00, dh) — I(d(4);d")

—
=

= I(d(i);u’, %o, 0", €1 — I(d(i); d" 1)

—
2]
~

—h(d(i)|u’, xg, 6", e 1) 4+ h(d(i)|d")

—~
Sy
=

)
—h(e(i)|u’, xo, 0", e 1) + h(d(i)|d" )
—h(e(i)|e’™") + I((x0,0")); e(i)|e" ")+
I(u’e(i)|e' ™, xo,0") + h(d(i)|d1).

—
(ﬁ
~

Here (a) follows from (P3), (b) follows from the fact thet™! = ui~! + d'!,
(c) follows from (P1), (d) follows from (P4) and (f) from (P5umming up the
above equality fron to £ and using (P5), we have (3.4). O
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Remark 3.2.3. Theterm)_| I(u’;e(i)|e'™", %o, o) is alternatively represented
as the directed information fromto e conditioned by(x,, o*) [44].

Theorem 3.2.4.Consider the closed loop shown in Fig. 3.1. The following en-
tropy rate inequality holds

Rle) > h(d) + ((x0, 0);e). (3.5)

Proof. Considering the nonegativeness of the mutual informafrom (3.4) we
have
h(e®) = h(d*) + I((x0,0"); €").

The proof is completed by dividing both sides of the aboveaétyuby k£ and
letting k — oo. 0J

Remark 3.2.5. The inequality in (3.5) has been derived in both informatioe:
ory and control theory literature in different setups anthwlifferent generalities.
Here we only assume causality of the closed loop.

3.2.2 Evaluating an important information rate

As it can be seen in (3.5), the mutual information ratex,, o); e) plays an im-
portant role in the conservation law. In this subsection staldish some nontriv-
ial lower bounds for ((xo, o); ) assuming some algebraic conditions.

Theorem 3.2.6. Consider the closed loop in Fig. 3.1. The following ineqtyali
holds.
I((x0,0);e) > lim inf kE R (log \j (Fy)™, (3.6)

k—o0
J

whereF, := A(a (k) A(a(k — 1)) - -- A(e(0)).

Proof. We first consider the dynamics of the plant
x(k+1) =x(k)A(o(k)) + B(o(k))e(k),
which can be solved as
k k
x(k+1) <HA > X0+ Y (H A(a(m> B(o(i))e(i)
=0 =i

= Fk(XO — Xo(k + 1)),
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where
_1 k

o(k+1) (HA ) Z(HA(U(Z))) B(o(i))e(i) .

F), can be decomposed into the following form by a linear tramsédionT},:

Fro O

T F.T. =
k kLk 0 st

where F},, is unstable and’,, is stable. The same linear transformation can be
applied tox, andx, to have

Xu0 A Xu0
Tixg = “ andixo = Au .
X0 X0

We then establish the lower boundidf,, o*; e*) as follows

I
= h(Xu0,Xs0) — h(xso|ek, ak) — h(xu0|Xs0, e, ak)

—
Ve

h(xu07 XSO) - h(XsO) - h(XuO|X807 ek7 a-k) .

Here (a) follows from P4, (b) follows from P1 and the fact tlkgtand o are

independent (and therefoféx,; o) = h(xo)), (c) follows from P3, (d) follows
from P1 and (e) follows from the fact thatx,,|e*, o*) < h(x4).
To evaluate the term(x,o|x.o, €*, o*), we note that

h(xu0|Xs0, €*, )

= h(Xu0 — Xuo|Xs0, €", ")

< (X0 — Xuo)

< log(2me)" — log E| det Fy, | + log E det x,0(k)x,, (k)
< log(2me)’ — Elog| det Fy,| + log E det x,0(k)x,,(k),
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where! is the dimension ofk,, and the last inequality follows form Jensen’s
inequality.
Therefore we have

I(xg,0";e") > —log(2me)’ + Elog | det Fj,|
— log E detx, (k)x, (k).

Note that the stability of the closed loop system implies thdet x,,(k)x,! (k) <
o0, Vk. Then we have

I(x0,0";e") > hmlnf kElog| det Fi,|

— lim inf EE Z R (log Aj (Fx)"
J

Remark 3.2.7. The right hand side of (3.6) is actually a Lyapunov exponent f
the dynamic system (3.1). For a complete treatment of Lyap@xponents for
stochastic switching systems, please refer to [51].

To overcome the difficulty of obtaininigm inf;_, ., 1 E > R(log (Fp)" by
using Lyapunov exponent method, we exploit the algebraicgire of the matri-
cesA(n),n € N. From Theorem 3.1.7 we know that the solvabilitygafmplies
that{A(n)},n € N, can be simultaneously triangularizable by some lineasstra
formationT" € C™*™:

AW s

T'AMT=1| o . « | ,vneN. (3.7)
0 0 AW

Now we divide the index sefl,...,m} into two distinct setsM,, and M,
defined by

M, = {j TN 1= 1,2,...,m} ,

neN
M :={1,...m}\ M,.

Corollary 3.2.8. Suppose that the Lie algebgas solvable Then we have

((x0,0); >szlog|)\

neN jeMy
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Proof. We start with a mutually disjoint partition of the index gét 2, ..., o (k) },

given by
{1,2,...0(k)} = | K,
neN

wherelC,, := {i: o(i) = n,i = 1,2, .., k}. Then we claim that the eigenvalues of

Kol
F}, take the formxj(Fk) = [loen T2, ( 5"’) ,Where)\j is the diagonal en-

try from (3.7). Indeed itis easy to see that' F, 7 = T~ A(o (k))TT ' A(o (k—
)T ---T7'A(a(0))T is a triangular matrix for alk. Further, thejth diagonal
entry of -1 F,/T can be calculated as

H )\(a(l H <)\§n)) | n |

neN

Using the above relation and Fatou’s Lemma we have
hm 1nf kEZ R (log A, (Fi))*

= liminf E— ZéR (log A, (Fk))

k—00

> Ehmlnf 2 Z% log \; (Fk))

Furthermore,

hlgn 1nf ? R (log \j(Fx))*
j

1
= lim z Z R (log \;(Fy.))"
J

k—o0

+

=Y % (Z m, log Ag."’)
i n

= Z Z ﬁnlog\)\gn)\,

HEN jEMu

where the second equality follows from ergodicityaa(f). O

Remark 3.2.9. As explained in [18], this modern algebraic approach, timoug
mathematically appealing, shows a significant drawbackd$adack of robustness,
i.e. even a very small perturbation of system parametersiotate the solvability
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condition. One may conduct perturbation analysis to rel@algebraic structure
requirement, though it is not trivial in general.

Here we propose yet another way to determine the Lyapunoorexg
lim infj o0 1 E >, R (log A; (F}.))" by using operator semigroup theory. To start
with, we consider the semigroup generated by matricés:) ,n € N} with
respect to the matrix multiplication. The following lemnrarh [52] gives a suffi-
cient condition for the permutability of the spectra of tmeguct of the operators.

Theorem 3.2.10.If for all n;,n9,n3 € N,
sp(A(n1)A(n2)A(ns)) = sp(A(nz) A(n1)A(ns)) , (3.8)

then for any sequencé(n,), ..., A(ny), ni,...,nx € N, the following identity
holds for any permutation of {n, ..., n;}

k 7(k)
sp {H A(nl)} = sp {H A(nT(i))} .
i (i)

The following corollary is now straightforward to prove.

Corollary 3.2.11. Suppose that the condition in (3.8) is satisfied. Then we have

I((x0,0);€) > Zﬂ% (log)\j (H A(n)ﬂn>> :

neN

Proof. Theorem 3.2.10 implies that

sp(Ey) = sp { 11 A’Cwn)} — sp { 11 A’CTW'(T(n))}

neN neN

= A, A

m

¢ - S (k) DN -
or any permutationr(-), where\;” = [ .\ ()\j ) . Following the same
argument in the proof of Corollary 3.2.8, we have

o1 +
hlggg.}f EE Z R (log Aj (Fr)" >
j

1 o

o1 (k)

Ehlgglogfk‘ _ %(log)\] )
j
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and
hgglf—Z%(lo k)+
ey Z%(lo )

—Zﬂ? (anlog)\ >

=) % <1og A (H A(nyfn)) .
J neN

The theorem is proved. O

3.2.3 Bode’s Integral

Theorem 3.2.12.Consider the closed loop in Fig. 3.1.dfande form Gaussian
stationary processes, then

—/ log (Sde(w)) dw > hmme Z% (log \; (F3.))™

Proof. This result is evident by considering the following relatidollowed by
Kolmogrov’s formula [15]

™

h(d) = log(2me) + ﬁ/ log fa(w)dw

—T

s

h(e) = log(2me) + %/ log fe(w)dw

—T

together with Theorem 3.2.6. O

Since we have obtained various lower bounds/fo, d, o; e) in the previous
subsection, the following corollaries can be readily aitdi

Corollary 3.2.13. Consider the closed loop in Fig. 3.1.dfande form Gaussian
stationary processes, then

1 " Tn
%/_W log (Sq.e(w)) dw > log H |det A(n)

neN
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Corollary 3.2.14. Consider the closed loop in Fig. 3.1.dfande form Gaussian
stationary processes, and the Lie alggpbigsolvable then

QL /7r log (Sd.e(w)) dw > Z% (log A (H A(M“)) |
7). ; neN

Corollary 3.2.15. Consider the closed loop in Fig. 3.1.dfande form Gaussian
stationary processes, and the condition in (3.8) is salisien

1 [7 n
— log (Sqe(w)) dw > Z Z T log|)\§. )|.

2w
- TLGN jeMu

Remark 3.2.16. Similar to its deterministic counterpart, Bode’s integrakhis
stochastic setting also captures the performance liraitadf a closed loop in
frequency domain. The lower bound of the achievable perdoice is inherent
from its open loop plant instability.

Remark 3.2.17. Though it is hard to determine whether the closed loop in Fig.
3.1 is stationary in general, some results for LTI systenms lwafound in [53]
and [54].

3.2.4 Data Rate Inequality

Another inequality, resulting from the closed loop caugais developed here.
The following lemma provides a lower bound for the mutuabmnfiation rate

I((x0,d);u), which accounts for total information rate flow in the loopurther
insight into/((xo,d); u) can be found in [10] and [55].

Lemma 3.2.18. Consider the closed-loop system shown in Fig. 3.1. We have th
following inequality:

I((x0,d,0);u) > I(x0,0;e) + I(d;u).

Proof. Using Kolmogorov’s formula (P2), we have

I((x0,d", o"); u*) = I(xq, o";u*|d") + I(u";d"),
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wherek € N7 is an arbitrary time instance. We can lower boutitk,, d*); u*)
as

I((x, 0", d"); u”)

9 I(xy, oF; €*|d¥) + I(u*; d¥)

© I(xq, 0%;€") — I(xy, o%; d")+

I(xq, o*;d*|e") + I(u*;d")

9 I(xo, 0% ") + I(x0,0*; d¥le") + I(u*; d¥)

g) I(xq, 0%;e") + I(u*;d").
Here (a) follows from the fact thd{(x,; u*|d*) = I(xo; u*+d*|d*) = I(x; e*|d*);
(b) follows from (P2); (c) follows from the independencedbéndx,; and (d) fol-
lows from the fact that (xq, o*; d*|e¥) > 0. We have obtained the following
inequality:

I((x0,d", a™);uf) > I(x, 0"; ") + I(u*;d"). (3.9)

The conclusion is readily obtained by dividing the terms othisides of (3.9) by
k and taking the limit ag — oc. OJ

3.3 Networked Control Systems with Random Packet
Dropouts

In this section, we apply the framework from the previoustisecto examine
the performance limitation problems in the networked aargystems (NCS). To
be specific, we only consider the control systems with a l@ssymunication
channel placed between the sensor and the controller, wiashbeen studied
in various chapters [56] [57] [58]. In this chapter we adotacture similar
to [57], shown in Fig. 3.2, where an erasure channel is engoldg model a
packet dropout.

The packet dropouts are compensated for by an output of asylsiém, which
has to be designed. The controller can be represented byaasglanap frony}
to u(k). The sequence @N’s andOFF's of the erasure channel is modeled as a
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[

Figure 3.2: A networked control system

two-state Markov chain with transition probability matrix

I—p p
qg 1—gq

P =

], 0<pqg<1.

One can calculate the stationary distributionmas= [ﬁ, ﬁ] Let the state

space realization of the plant and the channel compensator b

A|B
c|0

respectively. We can then regard the dashed box in Fig. 32 generalized
“plant” with state matrices

A. | B,
C.| 0

and

A 0
B.C A.

A 0
0 A .+ B.C,

A1) =

, A2) =

for the “ON” and “OFF” of the erasure channel respectively.

To simplify the subsequent analysis, we further assumelileatompensator is
chosen such that, and A, + B.C. are stable. Under these additional conditions
and with account of Theorem 3.2.6 we have the correspondodeB integral
theorem.
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Theorem 3.3.1.Consider the NCS in Fig. 3.2, and assume that the signal
Gaussian and stationary. The following relation holds fbcausal controllersC

% /_7; log (Sq.e(w)) dw = ;%(log A (ANT . (3.10)

Proof. The proofis a simple application of Theorem 3.2.12, andasdfore omit-
ted here. O

Remark 3.3.2. This theorem characterizes the control design limitat@rNCS
with random packet dropout. Given the stable compensa@right hand side in
(3.10) shows that the lower bound of the closed loop perfoceas determined
solely by the degree of instability of. This observation suggests that, consid-
ering the relatively loose definition of stability in (3.2)acket dropout does not
make the system “more” unstable. However, the dropout mdyuado the per-
formance limitation in other forms, for which a close sanytis required. This
result agrees with the previous work on data-rate limitatrod [59].

3.4 Monetary Policy Limits Analysis

We now turn our attention to the field of macroeconomics, wlextensive study
has been conducted to investigate the use of feedback,ns t&r monetary and
fiscal policies, to achieve certain objectives, such as @hstability and high
employment growth. For example, the celebrated Taylor 0§ suggests the
short-term nominal interest rate as an appropriate weigtear combination of
deviations of inflation and GDP (Gross Domestic Productinftbeirtarget val-
ues Following this seminal work, attention has been drawn &dtea of optimal
feedback policy design and analysis. Recently, Brock [6&ppsed a frequency
domain approach to asses the intrinsic tradeoffs betweeougacontrol objec-
tives, such as minimizing inflation, interests rate and ecoynoutput volatilities.
More specifically, he employed Bode type integral to iderttie impact of control
rules on the shaping of fluctuations in frequency domainjesitbo fundamental
limits from the plant. In this section, we extend the methodal] to the case
when the economy is modeled as switching dynamics takingegatandomly
between regimes corresponding to an ergodic finite statédwarhain [62]. Be-
sides, the information theoretic nature of our framewolttvesd for a convenient
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incorporation of the information theoretic modelingrational inattention[20]
into our limitation analysis. Rational inattention is a @bserved phenomena
that individual people have due limited information-presi@g capability, which
is believed to contribute to some important aspects of nemaeomic fluctua-
tions.

3.4.1 Bode’s integral for Markov switching AR model

Consider the following typical AR(1) model, usually corsidd in monetary pol-
icy literature [63]:

x(k) = alop)x(k — 1) + s(or)u(k) + €(k), (3.11)

whereo (k) € N is an ergodic Markov chain with transition matix= [p;;] .4, 7 €
N,a(n),b(n) € R; e(k) is a zero-mean Gaussian process; the the state of interest
x(k) is simplified as a policy rule and is chosen as a general neanlifunction

u(k) = f(xg ).

To unvell the role of the sensitivity function in this setwpe suppose that the
policymaker wishes to minimize the variance of the si%é(%) under the chosen
controlu(k). Notice that the closed-loop is assumed to be stationargnTie
have

Ex*(k) = % /_7r fx(w)dw
= [ 1669 fef) 312
1 ™

:% B

(G ()| fe(w)[See(w) |duw,

where the first equality follows from the stationarysgfandG(-) is the “transfer
function” from e to x, the detailed derivation of which can be found in [54] and
[21]. The relation in the last equation in (3.12) helps in erstanding the role
of S.(w), as it shapes the open loop response fe. |G(jw)|? fo(w)) into the
controlled one in frequency domain. It is then natural to thedt the limitation
inherent to the control policy(-) can be characterized by the spectrum of the
sensitivity function. The constraint is now cast into thedlBantegral formula, as

it will be shown in the next theorem.
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Theorem 3.4.1. Consider the model given in (3.11), and suppose that it ismea
square stable. Then the following Bode’s integral inequ#lolds

+
1 s
5;./Cwlog5g£(w)dw;z (j;:ﬂﬁlog|a@¢n) |

Proof. The proof is a simple application of Theorem 3.2.12. 0J

Remark 3.4.2. Comparing with the similar result obtained in [21], we prEse
a lower bound on the performance limitation for a more gdnewatrol policy
rather than linear Taylor rules. Moreover, the calculai®simpler and can be
easily extended to the higher order cases (AR( 1) with little modification.

Remark 3.4.3. This theorem provides a general formula only to motivateanor
theoretical development for various meaningful models el as empirical vali-
dations.

3.4.2 Design limit under rational inattention

We can further exploit the design limitation problem by umihg rational inat-
tention which is elegantly modeled as channel capacity in Shasnth&ory’s
framework following recent prominent work [20]. In our cert, we assume that
the policy takes effect after passing through a commurdnathannel with finite
capacity, depicted in Fig. 3.3. Hekg ) is the actual effect of the feedback policy
u’. We now recall the usual definition of the channel capagitig]:

e(k) ek
\J Process
u(k) x(k
u'(k)| Feedback
Channel |+ )
Policy

Figure 3.3: Policy design with limited information
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€ :=sup I(u, )

u

The following theorem captures the design limits via an uggeind for the
entropy ratel (e; u).

Theorem 3.4.4.Consider the model given in (3.11), and suppose the it is mean
square stable. Then the following inequality holds

I(uje) <% — (Z 7 log |a(n)\> . (3.13)

neN

Proof. The information conservation law (3.5) and the stabilitytwf closed loop
imply that
+
h(e) < h(e) — (Z T log|a(n)|> :
neN

The above inequality can be re-written as

= (3.14)
+
= I(e;u) — (Z 7 log |a(n)\> :
neN

where we have used the fact thdk|u) = h(e + uju) = h(e|u).

From (P3) and the definition of channel capacity we have
I(e;u) < I(w;u') < ¥F. (3.15)
The proof is completed by combining (3.14) and (3.15). O

Remark 3.4.5. The nonnegativity of mutual information raféu; €) further im-
plies that one needg > (3=, ., log|a(n)]) " for closed loop stability. The
same relation has been developed in various control cleperovide a suffi-
cient condition for stabilization of a closed loop with lited data-rate. In the
language of macroeconomics, this relation can be altemigtinterpreted that
the level of information processing capability of the agesttould be greater than
degree of instability of the process, for which the contliqy is to be designed.
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If we assume that signals in the closed loop Fig. 3.3 are Gaugis which case,
the channel may need to be a Gaussian additive one), onestareptesent (3.16)
in a log-integral fashion.

Corollary 3.4.6. Consider the model given in (3.11), and suppose the it is mean
square stable, and, e are Gaussian stationary. Then the following inequality
holds

L Wlog(l—%)dw

<€ — (Z 7, log|a(n)]

neN

Proof. The proof is obviously implied by the fact that

T(e:u) = —%/jrlog (1 - %) o

for Gaussian stationary processeande [17]. O

3.5 Conclusions

This chapter has developed a relatively complete Bode&gmat formula for
stochastic switched closed loops. Information theory heeskemployed as ma-
chinery to obtain a relationship among different systeniaides, which has in
turn resulted in Bode’s integral for stationary cases. Masialgebraic conditions
have been proposed to capture tight performance bounddicAppn of this the-
oretic framework to the field of NCS as well as macroeconoritiigstrates the
usefulness of this fundamental result.
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CHAPTER 4

LQR OVER ADDITIVE GAUSSIAN
CHANNEL

4.1 Preliminaries & Problem Formulation

The problem formulation and related definitions are giveithis section. We
consider the system in Fig. 4.1, with the details of each aorept given below:

Low-pass |
Controller || Filter S 3 Plant

Figure 4.1: Closed-loop system

4.1.1 Plant

Consider the following single input LTI system as the planibé controlled
dx(t) = Axz(t)dt + Bo(t)dt, t>0, (4.1)

wherex(t) € R" is the state of the plant and0) = z,, while v(t) € R is the
input signal.
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4.1.2 Channel

As shown in Fig.4.1, a memoryless AWGN channel is located/éen the con-
troller and the plant, where(¢) is standard white noise.

The white noise process(t) could be viewed as a generalized derivative of
a standard Brownian motioW;. The Brownian motion is defined on a filtered
probability spacé(2, F, P, Fi~o), where2 is the sample spacé; is theo algebra,
the filtration 7, is an increasing sub-algebra to whichV; is adapted, and is
the probability measure.

We represent the channel dynamics as

dz.(t) = Acx.(t)dt + Bou(t)dt

(4.2)
v(t)dt = Coxo(t)dt +dW,, t>0

wherez,.(t) € R” is the stateg.(0) = z.; u(t) € R is the output of the con-
troller and is the channel input and is further assumed t&;taptedy () is the
channel output and is fed into the plant, whil¢., B, C.) is a realization of the
low-pass filter, which characterizes the bandwidth of thenciel.
The power constraint is an important characterization AMGN channel. It
takes the form [48]
E(lut))) <P, Vt>0, (4.3)

whereE(-) refers to the expectation operator on the aforementionetplzie
probability space, an® > 0 is a pre-specified upper bound on the average power
of the channel input(¢).

Remark 4.1.1. An extra communication channel could also be located in be-
tween the output of the plant and the controller. Here, werassthat the con-
nection between sensor(s) and controller is of unlimitechrmanication ability
(infinite bandwidth and noiseless).

4.1.3 Augmented System

To treat this communication/control interconnection ashal, we introduce the
following Itd-type linear (SDE)

dé(t) = AE(t)dt + B,dW, + Byu(t)dt t>0 (4.4)
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where¢(t) = [«T(t),z] ()T, 4 =

, B, = [ﬁ],andBu:

0 : - .
[ B ] . We make the standard assumption th&tB,,) is controllable.

0 A

4.1.4 Control Objective

The class of admissible control signals) will be defined similar to [64]:

U= {u(-) - u(t) is F, adapted,

fo \u s)|?dt } (4.5)
limsup =———— < > a.s.

t—o0 0 (S)dS

Consider the following cost-functional:

J = limsup 7 / (ET(HQE) + pu ()t (4.6)

T—o00

whereQ = Q" > 0, p > 0.

The control objective is to design an optimal controller stilcat the cost-
functional J is minimized, subject to constraints of the communicatibare
nel. Specifically, for the system dynamics in (4.4) we adslthe following con-
strained stochastic linear quadratic control problem

inf J, (4.7)

u(-)eU
subject to the power constraint in (4.3).

Remark 4.1.2. The linear quadratic regulator (LQR) problem with stocltedits-
turbance without any communication constraint has beemtiyhly investigated
in parallel with its deterministic counterpart in [65], [6@&tc.

4.2 Controller Design via Linear Matrix Inequalities

In this section, the problem (4.7) is cast into an LMI optiatian problem and is
solved in the framework of an eigenvalue problem (EVP).
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4.2.1 LMI Configuration of Stochastic LQR

The classic state feedback stochastic LQR problem for tegesydynamics in
(4.4) is defined as

inf  J,
u()=Ke() (48)

whereK is the feedback gain matrix to be determined. It is well kndlat under
the assumption that4, B,) is controllable, the optimal state feedback control
could be expressed as

w(t) = —%BJ PE(t). (4.9)

whereP > 0 is the solution of the following algebraic Riccati equation
ATP+PA - %PBUBJPJrQ =0. (4.10)
The minimum of the cost-functionalis given by
J*(u*(")) = B) PB, a.s.. (4.11)

The problem (4.8) can be alternatively solved using the¥alhg LMI EVP,

min (4.12)
subject to
AR+ RAT + B,Y +Y'B] RQY? /pYT
RQl/Z T -1 0
( ) (4.13)
VY 0 -1
S 07
BT
T Pw s, (4.14)
B, R
and
R>0, (4.15)

where the matrice® € R("+#)x(+k) gndy ™ € R™** are decision variables, over
which ~ is optimized, and stands for identity matrix of appropriate dimension.
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Supposey* is the minimum. Thew™* = ~*, and the optimal state-feedback gain
K* =Y*R*' where(K*, R*) = arg min v*. The above EVP is derived follow-
ing the same procedure for LMI representation of deterimlsQR, for which
one can refer to [67] for details.

Remark 4.2.1. In the current scenario, the state used for the control lagitis
which is a stacked vector of(t) andx.(t). The availability of the channel state
is a conventional assumption when a communication chanitelfeedback is
considered

4.2.2 LMI Representation of Power Constraint

In what follows, LMI conditions for power constraint (4.3)aderived and sum-
marized in the following lemma.

Theorem 4.2.2.Consider the system (4.4) with state feedback contfo] =
—K¢(t). The power constraint (4.3) is satisfied if for arbitrary 0 and . >
Amin > 0 there existR € R(tR)x(+k) gndy € R+*)*1 solving the following
LMIs:

)\minI[ S R S )\maxl[a (416)
AR+ R'A" - B,Y - Y'B] < —, (4.17)
and
P Y )\maxBTBw )\maxgérgO
>0 = © . 4.18
YU u 'R T : Anin Afin ( )
The corresponding control gain is obtainedias= Y R,
Proof. Substituting the state feedback law into (4.4) we have
dé(t) = (A — B K)&(t)dt + B,dW, . (4.19)
This linear SDE has a unique strong solution [68] (Chapt&) 5.
~ t
£(t) = eM&y + / AT BL AW, >0, (4.20)
0

whered £ A — B, K. Then by applying Itd’s isometry [68], it is straightforvea
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to show that

E(u®(t))
=E (&' (KT K(t))

TAtT At
o€ K Ke™&

+B$/ AT KT KA B dr
0

(4.21)

In order to find an upper bound fdf(u?(t)), we first note that (4.16) and (4.17)

imply that
ATt At < )\max 6_5)\11)111 H7 vt 2 07 (4.22)

o )\mln
where the inequality is obtained by the standard argumenppér-bounding a
quadratic Lyapunov function (it equals (t) R~1£(t) in this case). Next, we derive
an upper bound on the terms in the right-hand-side of (4:P8.first term could
be bounded as
ggeATtKTK€At£O
)\max — N
< T Q) (KK et

)‘maxgggo T
S W (4.23)

m;l\);go 50 K}\minKT

min

min

and repeating the same steps for the second term gives:

t _ .
/ Bl KT KA B, dr
0

A t
S max KKTB;EBw/ e_EAmin(t_T)dT

min 0

)\maxBTBw
< [maxTw W
e\l

min
)\maxBT Bw
S—02
6)\m1n

Amax B, Bu
< —= =
- EN3 .

min

KKT(1— e mint) (4.24)
KK

KRK'.
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Hence, it follows from (4.21) together with the bounds (4.28d (4.24) that
E (") KTKE(t) < uKRK'", (4.25)

Therefore, if we want the power constraint (4.3) to hold fate feedbacki(t), it
is sufficient to have

pKRK'" = uKRR'RK'" = yYR'Y'T <P, (4.26)

which is equivalent to (4.18) by using the well known Schedsnplement. [

4.2.3 Communication Constrained LQR

The problem (4.7) is readily solved if the power-constraidt conditions (4.16),
(4.17) and (4.18) are imposed on an EVP (4.12), correspgnmira stochastic
LQR problem formulation. We have the following theorem.

Theorem 4.2.3. Consider the closed-loop system given by (4.1) and (4.2} la&ad
LMis given by (4.13), (4.14), (4.16), (4.17) and (4.18). Tuadratic performance
index ./, subject to the dynamics of both the plant and the channaijngnized
by solving the following LMI EVP forR andY’

I}zl’lgl y (4.27)

The optimal control gain is obtained &8 = Y*R*™!.

Proof. The proofis completed by taking into account (4.16), (447 (4.18) as
additional LMI constraints for the EVP (4.12), where (4.1%)ropped because
R is further bounded by (4.16). O

Remark 4.2.4. Notice that)\,;,, Amax @nde are tuning parameters and can be
adjusted to obtain a solution to the LMI EVP. More specifigal,;;, and \,,.x
specify the lower and upper bound of the matrix spectrunk oéind these two
parameters can be chosen conservative (i.e. stpalland large\,,..,) as compu-
tational capability allows. The parametereflects the negativeness of (4.17).
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4.3 Numerical Example

In this section we consider a numerical example to evallsecontrol design
method of Theorem 4.2.3. We choose a 2nd order plant witholfenrfing matri-

—0.5 -1
o=t
0 -2 1

The parameters of the channel are chosen as:

A=

A.=-4, B,=10, C.=1.

The initial values arer, = [-1, 2|" andz, = 0, which implies£(0) =
(=1, 2, 0]T. The augmented system is written as

=05 -1 1
=1 0 —2 1 |ewat+| 0 |u@®)dt
0 0 —4 10
(4.28)
1 -1
+ 1 th, g(]: 2
0

We set the power constraint level= 3. Choose weight matrices

0
0

and tuning parameters as,;, = 0.3, \..x = 50 ande = 0.07. Using Matlab
toolbox YAMLP [69] as the LMI solver, and applying Theoren248 we obtain
the minimumy* = 1.0442, and corresponding matrices

2.0034 1.8531 —5.6960
R = 1.8531  3.4384 —3.6070 |,
—5.6960 —3.6070 31.9690

Y* = | —0.003001 —0.00220 0.0000313 | .
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The control gain is then computed as

K*—Y*R = [ —0.0042 0.0010 —0.0006 | .

4.4 Conclusion

In this chapter a new approach has been proposed to addeessrtinuous-time
linear quadratic control problem for LTI systems subjecA®WGN channel con-
straints. The main result of the chapter is expressed as LWR, Ehe solution
of which results in the optimal state feedback gain, miningza quadratic cost-
functional. The key idea was to express both the control Aedconstraint as
convex optimization problems. Further research will pardynamic feedback,
plant uncertainties, and channel uncertainties.

70



CHAPTER 5

NOISE ATTENUATION OVER ADDITIVE
GAUSSIAN CHANNELS

The chapter is organized as follows. In Section 5.1, thelprolis formulated, and
an LMI solution is provided. In Section 5.2 the method is exied to a MIMO
channel, and in Section 5.3 a numerical example is givetustikte the proposed
algorithm. The chapter is concluded in Section 5.4.

Notation

e The #, norm of a transfer function matrig(s), denoted byi|G||4,, is
obtained by||G|l, = 5= |7 trac€G(jw)G*(jw)), where(-)* represents

the conjugate transpose.

e The ., norm of a transfer function matri&(s), denoted by||G||3.., iS
obtained by||G||3.. = sup, 7||G(jw)||, wherea(-) gives the maximum
singular value.

e The expectation operator is denotedibfy) .

e The power spectral density (PSD) of a wide-sense staticzigmalz(t), ¢ >
0 is denoted byf.(w). If e(t) is ann dimensional vector, thefi(w) is ma-
trix.

5.1 Single Input Single Output Channel

We consider the problem of stabilizing an unstable plant aveoisy communi-
cation channel, while keeping a certain performance boanthe channel noise
attenuation. We consider the following system:

i(t) = Ax(t) + Bu(t) (0) = wo. (5.1)
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where state:(¢) € R”, control inputu(t) € R, performance outpui(t). We also
assume the system is initialized with a zero-mean Gausaiziom variablex,.
Here we assume thatl, B, C') is a minimal realization. The closed loop is shown
in Fig. 5.1.
The communication channel is assumed to be an infinite baldviWGN
channel as follows
u(t) =e(t) +n(t), t>0, (5.2)

wheree(t) = —Kz(t) is the channel input an& € R is the control gain
matrix,u(t) is the channel output, andt) is a zero-mean white Gaussian process
with PSDo2. The power of the channel input signal is givenIbge?(¢)), which
can be alternatively expressed as

Be(t) = %/_OO £(w)dow

A power constraint is imposed on the input of the AWGN chamsd#e?(t) <
P, ¥Vt > 0, whereP > 0 is a pre-specified value, reflecting the hardware limita-
tions or some other design requirements. We define the follp®ignal-to-Noise
Ratio, orSNR of the channel (5.2) as

P
SNRé—Z.
Un

It has been shown that the channel capaci§N& /2 nat/sec [48].
Three important aspects of the closed-loop system aredenesi and analyzed
in detail.

Closed loop stability

The closed loop system is stabilized by choosing the comgaot X from the
admissible se = {K : A — BK is Hurwitz }.
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Power Constraint

Denote the transfer function from(¢) to the channel input(¢), also known as
complementary sensitivity, &s,,(s). The following relation holds [29]:

1 [e.9]
3 || ) = I Tenlfi o) = Tl

Therefore, the power constraint can be equivalently esgaas

P
1T l5,, < pohs SNR.

n

Channel Noise Attenuation

We are also interested in the impact of the channel noigeon the measure-
ment variable:(¢). Consider the closed loop depicted in Fig.5.1. We say thet th
channel noise attenuation is achieved with leyvel 0, if

HTznnHoo <7,

whereT,(s) is the transfer function from(t) to z(¢). Observing the following
relation

: f2(w)
Tonll., = sup |1.n(Jw)| = sup ,
H HH wER‘ ( >| weR fn(w)

the quantity||7,..||+.. reflects the the maximum magnitude ©fw) /o2 over all
frequencies. We note that thé., norm is not induced by, norms ofz(¢) and
n(t) in the conventional sense [70].

We address the following control problem: find a static staéglback control
gain K € I, such that the require8NR is minimized subject to a desired noise
attenuation level > 0.

Remark 5.1.1. State feedback is used for the simplicity of the presentaifdhe
main ideas. More complex cases can be considered in a simmélaner.

73



5.1.1 Tradeoff Between Signal-to-Noise Ratio and Chanmoet@
Attenuation

First Order Case

Consider the following first order unstable dynamics

(t) = azx(t) + u(t), (5.3)

wherea > 0 andu(t) = —kxz(t) + n(t) k > a. Let the noise attenuation level be
~ > 0. We have the following theorem.

Theorem 5.1.2. The minimal channeSNR for the system (5.3) to be stable and
satisfying the noise attenuation ley@l.,, ||+, < v is given by

2 > 1
SNRZ{ ¢ = (5.4)

The corresponding control gain is given as
2 > 1
e A (5.5)
a+ 3 0<y<=.
Proof. Calculate the inequality7’,, ||3.. < as follows

1 1
> sup |T.,(jw)| = sup = .
K weR‘ () wekR \/wW2 + (a — k)2 k—a

Then we havé > a + 1/~ as an additional constraint for the minimization of the
power of the channel input sign&ak. This optimization problem is formulated
and explicitly solved as

1 [ o?
inf ||kz|?. = inf k— — " dw
k>a+1/~ || ||H2 k>a+1/~ 21 oo w? + (]C — a)2
/{52
= inf o2
k>at+1/y Tk —a
~J 2ao;, v> 1,
B %(G—F%)ZO’?L 0<7<%.
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Egs. (5.4) and (5.5) follow straightforwardly. O

Remark 5.1.3. This simple example gives us a chance to understand how much
extraSNR (channel capacity) is required to attain a given channeeattenua-

tion level. As Egn. (5.3) suggests, an extra amour8NiR is needed if the atten-
uation levely is larger thanl /a. In view of the the fact that the required channel
capacity for closed-loop stability i5[29], the quantitymax {%(a + %)2 —a, O}

can be regarded as the cost of extra channel capacity to Hitaattenuation level

Y.

Ch5second Order System: A Case Study
We go one step further and consider the second order system:
11 0
p(t) = t) + t), 5.6
i(t) [02]x<> Hu() (5.6)
A0 = [ 10, (5.7)

The control gain is given by the matrix = [ kv ko ] € R%. The AWGN is
given as
u(t) = —Kx(t) + n(t).

The following proposition gives the explicit expression|@t,, ||+ in terms of
k1 andk‘g.

Proposition 5.1.4. The ||T.,]||1.. for the closed-loop system composed of (5.6),
the controllerK” and the AWGN is given as

1 ki, ko) € S
| Tl = { 2Rk 1, #2) (5.8)

(k2—3)/4k1 —(kz—1)2
where

S={k1 =3k =3U{B<k <5)NEB <k <k)}
U{(k;l25)0(3<k2<2+\/—1+2k1)}
T:{k1>5}ﬂ{2+\/—1+2k1<k2§k1}
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Proof. We calculaté|e||3,, by using the following complex contour integral and
the residue theorem [71]:

lell3,

o2 [
" / T (e T (— ) oo

:% N

0.2

— I T (8) T (—
oni f en(8)Ten(—s)ds

= 02(Res(Tun(8)Ten(—5); p1) + Res(Tun(s)Tun(—5); po))
2 ki — (k1 + 3)k3 + 2k1 ko — k7
T2(=3+ ko) (—2— k1 + ko)

wherey represents the contoljwR, jwR] U {Rexp(j8) : —7/2 < 0 < w/2}
with large enough radiug > 0, and Res(-; p;) denotes the residue evaluated at
the pole;, i = 1, 2. During the course of calculation we have used the fact that

k‘gS‘Fk’l - ]{32

T..(s)=K(sl— A+ BK) 'B = .
(s) = K(sI - A+ BEK) Z1 (ks —3)sth—Fat2

The conclusion is therefore reached by noticing that SNR||3,, /o2. O

Now we proceed to calculate the power of channel inpas summarized by
the following proposition.

Proposition 5.1.5. The power of the channel input, in terms/afandk,; can be

written as
> f (@)oo = k3 — (k1 + 3)k3 + 2k1ks — k3
e (=34 k) (=2 — ky + k)

Proof. First note that

(5.9)

1
Tzn — )
(S) 52+(l{32—3)5+k‘1—k‘2—|—2

and by using Routh’s criterion, the set of stabilizing cohtrains is obtained as
K= {[kika] : {k1 > Ko} N {ka > 3}}. (5.10)

The rest of the proof follows the procedure of solving tharaation problem

sup. \/TZN(jW)ZN(_jW) .
k, andk, satisfy(s.10)
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The machinery used for this problem is reduced to calcuhgjsadropped there-
fore.

Unlike the first order case, the increased degree of contplexithe second
order case makes it very difficult to get an explicit solutionthe problem, even
though we have obtained the expressions of the correspptimnd? ., norms
in (5.9) and (5.8) respectively. As an alternative, we tlate theSNR (Channel
capacity )/ performance tradeoff graphically in the follog/plots.

Fig. 5.2 shows the required SNR for the given control gain sadisfies the
conditions given in (5.10). As we can see, without an addéiaonstraint for
noise attenuation, the minimal SNR takes the vélje= 6, k5 = 6).

In Fig. 5.3, the effect of the enforced noise attenuationhensolution set of
K is shown. The size of the feasibility set Af decreases along with, which is
consistent with (5.5) for the the first order case.

5.1.2 Controller Design via Linear Matrix Inequality

In this section, we use LMI technique to solve the problentliergeneral case.
To start with, we introduce the following theorem KR minimization.

Lemma 5.1.6. Consider the closed loop shown in Fig. 5.1. The optimization
problem

inf SNR,
Kek

is equivalent to the following LMI minimization problem

min  p
XsNR,YSNR:P

subject to Xawr > 0, @(Xewr, Yenr, ) > 0 and (5.11)
\II<XSNR7 }/SNR) S 0 5

wherep € R, Xqr = X, € R, Yo € R
1% Yonr
YT XSNR

SNR

D (Xowr, Yorr, p) 2

9

and
AXSNR + XSNRAT B
\II<XSNR7 }/SNR) é _B}/SNR - }/S—ll\IRBT SR
BTXSNR —1
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The optimal control gain is obtained as

K* — Y* X*

-1
SNR SNR( SNR) ’

whereXZ . andYZ,, are the optimal solutions to the problem (5.11).

Proof. The proof is based on the classic LMI solution to the statdldaek?
optimization synthesis problem for the following auxijfadeterministic closed
loop, composed of the plati(s) and the controlle¥s (s):

Al B
Gs)=|0|1 |, K(s)=KeR"",
110

with the objective function given by K (sI — A + BK)~'B||3,,. The proof is
completed by using the standard procedure given in [67]. O

Similarly, the noise attenuation can also be cast into LMiditions, given by
the following lemma.

Lemma 5.1.7. Consider the closed loop in Fig. 5.1. The CNA level is lessitha
v, if and only if we can find matrice8 < X,, = X € R™", Y, € R*" that
satisfy the following LMI feasibility condition

(i) 5 e
0, (Y, X,) 2 ”BTTl I <0. (5.12)
CX, 0 -2
The resulting control gain is obtained as
K,=Y,X .

Proof. Consider the following auxiliary systed and the controlles respec-
tively

A|B B
Gus)=1cCl0o 0|, K(s)=K,cR>.
1|0 0
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The transfer function from the disturbance to the perforceameasurement is
calculated as
S(s)=C(sl — A+ BK,)'B,

which is identical tdl’,,,(s). Subsequently we can use standard LMI arguments to
obtain the feasibility sets of,, andY,, that satisfy||7%,.(s)||#.. < 7. The readers
can refer to [67] for detalils. O

It is easy to see that theroblemis equivalent to minimizing over all ma-
trices Xewr, Yeanrs Xn, Yo, p that satisfy (5.11) and (5.12). While the optimization
problems in (5.11) and (5.12) are convex themselves, tiné¢ gmie is not convex.
Therefore we enforce the condition

X = XSNR = Xn andY = YSNR = Yn

to obtain the convexity, admittedly with some degree of eovatism. Indeed,
the same treatment is widely used in mixkel/? ., problems, such as [72]. The
above argument proves the following main theorem.

Theorem 5.1.8. Given a desired channel noise attenuation leyel lower bound
for the required chann&NR of the closed loop system is obtained via the follow-
ing LMI optimization problem:

W
Subjectto X > 0,®(X,Y,p) >0 (5.13)

U(X,Y) <0 andO.,(X,Y) <0,

The lower bound of th&NR is given asp*, which is the optimal value obtained
in (5.13). The corresponding controller is given as

K* — Y*(X*)—l 7

where X™*, Y* are the resulting values of the decision variableandY respec-
tively.

Remark 5.1.9. In this section, only the full state feedback is considernddw-
ever, the same approach can be easily extended to outpbiidedase.
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#(t) = Az(t) + Bu(t)

Figure 5.1: Closed-loop system

SSKTROSS
TSSOSO
RSSqegatiuentend
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S
S

Figure 5.2: SNR v.s. Control gain

80



Figure 5.3: Feasibility sets for differehtg .
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5.2 \Vector Gaussian Channel

Here we consider the case where the control signal is a vextdrit is transmit-
ted through a vector Gaussian channel, which is also a siogsle of a MIMO
channel. In applications, this scenario represents the, ealsere actuators and
controllers are geographically distributed and multipesmitters and receivers
are therefore employed to conduct the communication taséhawn in Fig. 5.4.
From the perspective of wireless communication, a mulifgeess system with
multiple antennas at the base-station allows several usbsare spatially sepa-
rated, to communicate simultaneously. Moreover, the chldiading in the point-
to-point communication can be overcome or even utilized byl communica-
tion schemes [73].

Figure 5.4: MIMO Channel

The channel is modeled as follows.
u(t) = He(t) +n(t) t>0, (5.14)

wheree(t) € R™ is the channel input, and(t) € R™ is the channel output,
n(t) is am dimensional Gaussian white noise process with(t) = 0 and
En(t)n" = o2, and H € R™™ is a channel gain matrix, which is assumed
to be deterministic here. The channel input is required tisfgathe following
power constraint as

Ee' (t)e(t) = tracdE(e(t)e (1)) <P V>0

for some pre-specified input power leviél > 0. Similar to the scalar case, the
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power of the channel inpile (t)e can be also represented as

tracaE(e(t)e’ (£))) = % / "~ tracef, (jw)dw.

—00

Here theSNR is similarly defined as

SNR := B .
on

5.2.1 State Feedback Stabilization

In this section, we design a controller/transmittéy such that the closed loop
system satisfies the power constrafht We can then formulate the following
theorem for the solution &3NR constrained state feedback stabilization.

Lemma 5.2.1. Consider the feedback configuration in Fig. 5.4, where we hav

min tracd(?)
subjectto Xgw > 0, P(Xew, Yenr, Q) > 0 and

\I](XSNR7 }/SNR) S 07
inwhichQ € R™™, X = X/, € R™" Y € R,

Q }/SNR

D(Xowr: Yorr, ) 2
SNR SNR }/S—NI—R XSNR

)

and
AXSNR —"_ XSNRAT

SNR

BTXSNR _H

- XorB
\I]<XSNR7 }/SNR) = ( —BYqr — Y. BT ) SR < 0.

The optimal control gain is obtained as
* — * * \—1
KSNR =H 1}/SNR<XSNR) )

whereYg,, and X}, are the solutions of the optimization problem.

(5.15)

Proof. Note that the power of the channel input can be represented as

Be(t)eT(t) — % /_ ~ tracef, (jw)dw
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2 [ee)
-z / trace T, ()T (jow)dw
7T —00

= ||Tne||7.,5202 ) (5.16)
where the transfer functiofy,.(s) is written as
The(s) = HK(sl— A+ BHK) 'B. (5.17)
Therefore the problem is reduced to the followiHg optimization problem:
i%f | Tre | #¢s -

To minimize the channe&gNR, we consider the following auxiliary determinis-
tic closed loop, composed of the plakts) and the controllefs(s) :

Al B
Gs)=| 01|, K()=HK KeR™,
I|0

for which we minimize the/{, norm of 7},.(s). The solution can be obtained by
solving the standar@{, optimal control problem via LMIs [67]. O

Similar to the scalar case, the noise attenuation is alssepted via relevant
LMI conditions in the following lemma.

Lemma 5.2.2. Consider the closed loop in Fig. 5.4. The noise attenuatiosl is
less thany, if and only if we can find matrices < X,, = X, € R™",Y,, € R™*"
that satisfy the following LMI feasibility condition

0, (Yo, X,) =
AX, + X, AT
+ B X,0T
~BY, - Y,/ B! <0 (5.18)
BT -1 0 - '
X, 0 —

The resulting control gain is obtained as
K,=H'Y, X'
Then we have the following theorem.
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Theorem 5.2.3.Given the channel noise attenuation leyela lower bound for
the required channelof the closed loop system is obtained via the solution of the
following LMI EVP problem:

I)I(ll}r/l tracd(?)
Subjectto X > 0,9(X,Y,Q) > 0 (5.19)

T(X,Y) <0 andO,(X,Y) <0.

The (sub)optimal value &NR is given as tracg2*), and the corresponding con-
troller is given as
K* — Y*(X*)—l 7

where X*, Y* are the optimal values of the decision matricésandY” respec-
tively.

5.3 Numerical Example

In this section we will give a simple example to illustrate ffroposed algorithm.
We consider the following state space realization 8fcdaorder LTI system:

410 0 05
A=lo21]. B=]o o |,
00 2 1 0
C:[O()l}.

The vector Gaussian channel has two inputs and two outpbexenhe Gaus-
sian noise vecton(t) € R? andEn(t) = [0,0]",En' (t)n(t) = I, and the channel

matrix are given as
1 0.2
H= .
[ 02 1 ]

We first calculate the control gairfsj and the minimal channel input power
(| T2 (jw) |13, for different values ofy. The resultis summarized in the following
table.
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‘ ~y ‘ 1fnin|]TenH3{2 ‘ K

92,9905 58.9790 19.0237 |
0.1 | 22.5095
| 165871 84777 —3.6414
925710 21.5600  9.6628
0.5 | 16.7534
16.4738 —0.2014 —1.5698
—92.4630 17. .
| 169903 30 17.8123  8.7206
16.4472  0.7493 —1.3309
[ 23994 15.9983 8.2658 |
10 | 16.0064
16.4279  1.2303 —1.2101

Upon obtaining the control gains for differens we can compare the corre-
sponding PSDs of the observation sigaalvhich are depicted in Fig. 5.5. As we

Figure 5.5: Power Spectral Density ofor different noise attenuation levels

can see from Fig. 5.5, settinglower implies that the impact of the channel noise
on the observation signalis smaller.

Fig. 5.6 shows the relation between the minii®8R and the noise attenuation
level .
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it [ Toclly
o 8

Figure 5.6: MinimalSNR (power ofz) versusy

5.4 Conclusion

In this chapter, we have considered the channel noise atienuproblem for
feedback control over both scalar and vector Gaussian et@nmn effective
LMI approach is proposed and verified. Future developmesitides uncertain
systems and output feedback.
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CHAPTER 6

OPTIMAL ESTIMATION OVER
GAUSSIAN CHANNELS WITH
NOISELESS FEEDBACK

The chapter is organized as follows. In Section 6.1, we thtoe the models
for both the channel and the plant, and the design probletanset. Section
6.2 discusses a scalar version of the problem, which leadsetalevelopment
of the solution in Section 6.3. A numerical example is anatlym Section 6.4.
We conclude the chapter with different problems for futweearch directions in
Section 6.5.

6.1 Problem Formulation

In this section we state the problem formulation. The sch&ngepicted in
Fig. 6.1 where the transmitter has the access to the timterhisf the channel
output via a noiseless feedback.

e The plant of interest is given by the followingdimensional linear SDE

dx(t) B
= Ax(t) ,x(0) = %o . (6.1)

whereA € R™*". To ensure the solutiak(t) of (6.1) is Gaussian, the initial
valuex, is also assumed to be Gaussian. AE&x, is not singular.

e The communication part of the closed loop is modeled as aitiaeld/hite
Gaussian channel

dv(t) = z(t)dt + cdW(t), (6.2)

wherez(t) is the channel input generated by the siggalW (¢) is a stan-
dard Wiener process and(t) is the channel output. An average power
constraint is imposed on the channel input:

1 /7
lim sup T / Ez’(t)dt < &,
0

T—o00
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Plant —> Transmitter
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Noiseless Feedback
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SN—

Estimator |«

Figure 6.1: State Estimation via Noiseless Feedback

for someZ? > 0. Slightly different from most of the communication theory
literature, the power constraint here is defined over anitefiime hori-
zon to get aligned with some notions in control theory suchsysnptotic
stability. We also define the noise-to-signal ratio of tharatel as

&

SNR £ =
0-2

It is well-known that the channel capacityds= SNR/2 [48].

e The transmitter (encoder) is a causal map defined(8s= f(t,x, vi).
The receiver(decoder)/estimator is also a causalxtgp= g(t, vi), where
%(t) is the estimation of the statet). The error signal is defined &sgt) =
x(t) — x(t).

e As a standard assumption, all the random variables (presgssthis sys-
tem are defined in a filtered probability spd€e ., 7, P).

Definition 6.1.1. The unique solutioX (¢) of a stochastic differential equation is
said to be mean-square exponentially stable with convesgeater < 0 if

1
lim sup i log E| X (#)|* <v

t—o00
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The objective of joint estimation/communication desigtoisdentify a trans-
mitter and receiver/estimator combination such that thertdynamics with state
x(t) is mean-square exponentially stable with minimal decayatte.

6.2 Estimation, Communication and Control over
Gaussian Channel: A Scalar case study

In this section we review a scalar estimation problem witmgunication con-

straint, which was originated by [48] and [36]. Some modtfaas and innovative
observations are made to shed a light on the main result toelsemted in the next
section.

6.2.1 Transmitting a Gaussian Random Variable

We consider the simplest case, where an analog scalar @awssiable: is to be
transmitted through a continuous-time AWNG channel. Weghieirassume that
the transmitter (encoder) takes the following affine stritestor easy computation
and Guassianity of, given by

f(t, e, vo) = o(t, vo) + ¥(t, vole. (6.3)

For this given structure of information transmission schethe minimal mean-
square error for each time instande achieved by choosing the estimatig() =
E[e|v{], which is not readily calculable in general case. So one sig@dhow a
way to construct the corresponding receiver/estimatoichvisieldsé(t). Upon
that, constrained by the channel input power le¥glparameter optimization for
f andg needs to be conducted to reach minimal mean square errahdnwords,
the problem of optimal estimation is solved in two steps:

1. For the given transmitter (6.3), obtain the estimatidmeseeg with output
e(t);

2. Solve the optimization problemin, ; E(&*(¢)) subject to power constraint
Z.

The first step is straightforwardly obtained by the condisibKalman-Bucy
filter.
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Lemma 6.2.1. Consider the linear transmission strategy in (6.3). Then

de(t) = —P( YW (t, vo)ldve — d(t, vo)dt — (t, vi)é(t)dt]

0 _ —iP2< DU vS),

(6.4)
dt

whereP(t) £ E[(&(t))?|v!], P(0) = E(m(0))? andé(0) = Ee.

Proof. The proof is just an application of Kalman-Bucy filter for tdgnamic
system withe(¢) as the system state andt) as the noise corrupted observation.

de(t)
dv(t)

0
[(t, vh) + w(t, v)eldt + adW (t).

O

The second step is solved by the following lemma.

Lemma 6.2.2. Within the class of linear transmission strategies, whiatis§y
the condition of (6.2.6) and the power constraint, optimah$mission strategy*
and«* are given by

56 v) = —oy R op (%t) &(1)

SNR SNR
VH(t,vh) = oy [ = exp (—t) )

The optimal mean square error for this strategy is
Eé*(t) = P(0) exp (—SNRt)

The proof of the lemma can be found in [36].

Remark 6.2.3. Not surprisingly, this feedback coding strategy designloame-
garded as feedback stabilization problem, where the sidie stabilized, in the
mean-square sense, is definect@s. The stabilization problems can be solved
conveniently by using Lyapunov’s indirect method. More @fieally, one can
employ the Lyapunov argument developed in stochastiongelty choosing the
candidate Lyapunov function &5(&(t)) = 1é*(t), and ensure its negative deriva-
tive by designing proper transmission schemes. The dethilsis approach are
not discussed here.
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Remark 6.2.4. It is also shown in [36] that the solutia#t (¢, vi) + ¢* (¢, vi)e is
optimal among nonlinear functionals ef(i.e. f (¢, e, vi)).

Remark 6.2.5. This feedback communication scheme can be regarded as tmumrs-
time extension of the S-K method.

6.2.2 Transmission of a signal

Next we go one step further by replacing the constant saubyea dynamic one
x(t), evolving according to the linear scalar differential eipmwith parameter
A € R and a Gaussian initial value,

dx(t)

— Ax(t), x(0) = xq. (6.5)

Following the same idea in (6.4), we can consider the KalBacy filter for
the dynamics

dx(t) = Ax(t)dt,
dv(t) = [p(t, vh) + (t, vy)x(t)]dt + cdW (t).

Next, we proceed with the two-step strategy. The followiegnina provides
a structure of decoder/estimator, which yields the optisslmationx(t) =
E[x(t)|v).

Lemma 6.2.6. Consider the linear transmission strategy in (6.3) (wheigre-
placed byx) and the source (6.5). Then the optimal estimatiox(@} is given
as

dx(t) = Ax(t)

: P()y(t, vo)ldve — ¢(t, vo)dt — (¢, vo)x(t)dt]  (6.6)

o2

+

) — o) P00 vS).

whereP(t) = E[x?|vi], P(0) = Ex2 andx(0) = Ex,.

Next we proceed to the step two. Towards this end, the diffexrlkequation with
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equality of P(¢) in (6.6) is rewritten as

Pl = (A= LPOw ey ) P,

and solved by

P(t) = P(0) exp < /O t (m P, vg)) dT) |

Taking the expectation and using Jensen’s inequality, we ha

B (t) = P(0) exp ( /0 t <2>\ _ %EP(TW(T, vg)) dT) ,

where Fubini’'s theorem is also used to interchange integraind expectation.
The Lyapunov exponent can be calculated as

1
lim sup T log EP(T)

T—o00

t
> 2\ — 1 i ing %/ EP(t)?(t, vi, t)dt (6.7)
0

0'2 T—o00

1 1/

> 2)\ — — limsup —/ EP(t)?(t,vh, t)dt .
02 T—o00 T 0

It is clear that the minimization oP(¢) is reduced to the choice of that mini-

mizest limsupy_,., & [o EP(t)y?(t, v, t)dt. Towards this end, we have

. 1 [ t ¢ 2
2 > lim sup T/o E[o(t,vy) + ¥(t, vy)x(t)]

T—o00

. 1 T t t\3 2
= hm sup ? /0v E[Cb(t; V()) + ?/)(t> VO)X(t)]

T—o00

1 /T
+limsupf/ E?(t, vi) P(t)dt

T—o00 0

T
Zlimsup%/ E?(t, vi) P(t)dt .

T—o00 0

A lower bound of the Lyapunov exponentBfP () is given as

1
lim sup T logEP(T) > 2\ — z =2)A —SNR. (6.8)

T—o00 02
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The above lower bound can be achieved on
VAt vg)P(t) = &
and
(t,vh) +b(t, vi)x(t) =0,Vt >0,

which in turn gives the optimal solution of

SNR

(V) = o —exp(

P(0)

SNR — 2)\t
2

and

SNR SNR — 2\ R
O (t,vh) = —0o P0) exp ( 5 t) x(t) .

Remark 6.2.7. Eqn. (6.8) shows that for the variancexgt) to be exponentially
decaying, one needs < S';'R = C. In other words, converging estimation
is achievable provided that the degree of instability ofg¢barce is less than the
channel capacity. This observation can be roughly exptHiyeShannon’s source-
channel separation principle [4]. The unstable processymes extra information
at the steady rat&(> 0), which needs to me transmitted in a timely manner for
the vanishing of the mean square error (or rate distortiowtfan). Therefore
adequate channel capacity needs to be allocated. For amagie in-depth treat-
ment of unstable sources, by resorting to the concephgftime capacityone is

referred to [74].

6.2.3 Estimation Without Feedback

As a special case, the non-feedback communication schemtgeczonsidered by
proceeding to a similar argument as in the case when feedbakailable. In
fact, without the knowledge of}, , the optimal estimation of(¢), utilized on the
transmitter’s sid,e reduces to its expectati@x(t) = exp(At)Exq and¢(t, uf)
becomesys(t), which is a non-random function. Consequently the outpuhef
estimator verifies the following dynamics:

dP(t)

L
— = 2\P(t) = S PA(1)b(1),
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which is solved by

exp(2At)
P~1(0) + 0—12 fot 2(7, vi) exp(2AT)dT .

P(t) =

Similar to the previous case, we have the optimal solution

¢*(t) = —0 P((; exp(—At)Exg
and
0 (1) = o) | g exp(-3)

Remark 6.2.8. The following discussion further reveals the dependencihef
optimal performance on the nature of the source dynamics:

e Stable sourceX < 0): P*(t) is exponentially decaying at the rdte, which
is given by the inequality

Pr(t) < P(0) exp(—|Alt)

e Neutrally stable sourceX(= 0): P(t) presents a much slower decay rate

given by
P(0)

" 14 SNRE’

The behavior ofP(t) in above equation is similar to the one that has been
achieved by traditional sphere-packing coding strateglisorete-time set-
ting, with code word length replaced by the time

Pr(t)

e Unstable sourceX > 0): P(t) diverges with arbitrary instability rate, since

P(0) exp(AlY)

P*(t) =
®) 1+ SNR¢

However, if only the finite horizon problem is considerede @an always
find a global minimum.

95



6.3 Main Result: Optimal Estimation Over A
Gaussian Channel

With the clear identification of the relation between commation and estima-
tion in the previous section,we are now ready to tackle thenmpeoblem. The
solution is given by using a water-filling type of argument.

6.3.1 Estimation Structure & a Dual Control Problem

Like in the scalar case, we first consider the optimal estongiroblem for the
vector dynamics

dx(t) = Ax(t)dt,
dv(t) = o(t,vi)dt + T (t,vh)x(t) + cdW (t).

The transmitter is expressedg@s, vi)dt+y " (¢, vi)x(t). The functions)(¢, vi) €
R (¢, v§) € R™ are nonlinear functions to be determined to minimize the-Lya
punov index of the error variance, while ensuring the avergwer of channel
input below the constrained lever .

For the given transmitting scheme, the following Kalmarcifilter is adopted
for the optimal estimation aof(¢),

dx(t) = AX(t)dt
+ L Pyt vi)ldv — ot vi)dt — o7 (¢, vE)(t)dt),

o (6.9)
P(t) = AP(t) + P(t)A"

_ %P(t)z/)(t, v T (t, v P(t),

whereP(t) := E [x(t)x " (t)|v}].

Remark 6.3.1. One can consider the dual control problem with plant dynamic
given by

dx(t) N "
—ar ~ Ax()+ Bul®), (6.10)

dv(t) =" (t,vi)x(t)dt + ocdW(t),
where the second equation models the AWGN channel iderttd@.2). If the
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control signahu(t) is designed via the typical LQG method [75], then the sepa-
ration principle further shows that the variance of the iebetween the state and
its estimated value is identical #P(t) in (6.9). Therefore, to control the plant
(6.10) over the AWGN channel, one can design a proper esimbatcope with
the communication constraint, and the control part, whadls finto the classical
linear quadratic framework, is relatively independentegi the convergence of
the estimation. Admittedly, the overall closed loop peariance is fundamentally
restricted by the communication-constrained estimatienmatter how well the
controller is designed. On can further refer to [76] for theng property in gen-
eral nonlinear systems. This estimation-control sepamadiso explains why our
focus is on the estimation part, whose relationship withimomication constraint
is unveiled in detail subsequently.

6.3.2 Solving The Estimation Problem: A water-filling apach

We first introduce a spad8, which is a real Hilbert space with internal product
defined as

(a,7) £ lim l/O a ()yt)dt  a),y(-) € B. (6.11)

T—o00

We saypg(-) € B, if (3,5) exits and is less thano. If §(-) € B, then the

limy_, L [ B(t)37 (t) exists.
Next, we define a new quantit§(t) = 1PY2(t)y(t,v}), and assume that

() € B.

Remark 6.3.2. Rigorously speaking, rather than a deterministic functbn as

its notation suggestg|) is a stochastic process on thalgebra generated by.
However, we implicitly drop the randomness for three reas¢t) We can always
choose)(t, vt) = o P~1/2(t)5(t) to make it non-stochastic; (2) The scalar cases
in the previous section suggest that deterministic chaaée®¢) suffice for the
optimality, which is also verified in the later discussiom this vector case; (3)
This simplification reduces an otherwise accusive mathudsion, while keeps
the main point clear. For example, we see obviously Ba&(t) = P(t), which

will be useful in the later discussion.

The next lemma links Lyapunov exponent of the the variance wfth a matrix
eigenvalue.
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Lemma 6.3.3.If P(0) is non-singular, and assume

T T
/ <lim L[ swaT @t - ﬁ(t)ﬁT(t)) dt<M  (6.12)
0
for some symmetric matriX/. then the following ine quality holds:

lim sup % log E[|x(t)]?

. L (6.13)

S )\max (AT -+ A - hm _/ 5(T)BT(T)dT) :
t—o00 t 0

The proof is follows the same line in [6].

Remark 6.3.4. Note that the assumption is not that strict. If one choo&e =
[v25sin(t),v/2cos(t)] T, itis easy to see

/0 (nml ﬁ(t)ﬁT(t)dt—ﬁ(t)ﬁT(t)> dt < [f ;]

Note that),,., cannot made arbitrarily small due the power constraingrte
shown by the following inequality

. 1 4 t T t 2
P> lmsup 1 / Elo(t, vb) + 07 (1, vh)x(t) dt

T—o00

1 T
> Jimsup — / Elo(t, vh) + 7 (¢, vi)%(1)]2dt
0

T—oc0

+EQT(t,vh) P(t)y(t, vh)dt (6.14)

1 T
> limsup 7 / EoT (¢, vh) P(£)u(t, vt)dt

T—o00 0

=a*(8,8),

where the second inequality follows from the orthogonalistweenx(¢) and
x(1).

Hence, an optimization problem could be formulated to achibe lowest Lya-
punov exponent upperbound by the choice 0f).
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inf  Amax (AT+A— lim —/ B(t) )
B(-)eB T—o0 T
st. (B,5) <SNR and (6.15)

AT+ A— lim —/ BT (t)dt < 0.
T—oo T
Another related optimization problem can be formulatechie $ame fashion,
where the optimals(-) must achieve a minimal channel SNR, subject to closed
loop stability:

f
651168(5 )
s.t. AT+A—hm—/ BB (t)dt < 0.

For both problems, once the optimal decision functiti(y) is obtained, the op-
timal transmitter and estimator are straightforwardlyantéd. Unfortunately, it
is very hard, if not impossible to obtaj#*(¢) by using numerical routines, be-
cause these optimization problems are all inherently itefidimensional. Here
we propose a solution inspired by the water-filling strategy

Before jumping into the detailed development, an immedauditgervation can
be made regarding the minimal SNR for mean square stability.

Proposition 6.3.5. If the error dynamics are mean-square exponentially stable
then channel SNR statistics for any causal transmissiordandding/control is
given by
SRS 12A+(A+AT) > Z?R* (A(A) (6.16)
2 24~ :

Proof of Proposition 6.3.5:Note that matricesl+ AT, limy_, .. & T fo ()BT (t)dt
and the difference of the two are Hermitian, so all their eigdues are real and
can be ordered as, > )\, ..., > A, for convenience. Then using Theorem I11.4.1
of [77] and noting the fact thdtmy_,. 7 fOTﬁ(t)ﬁT(t)dt —(A+AT) =0, we
have

0< 3o (Jim 7 [ s @ - (4 40)
< Zl)\i (lim % 5(t)5T(t)dt) — Z)\ (A+AT),

(6.17)



for all £ > 1. Particularly, the inequality (6.17) is also valid for = « £
max; {i|\;(A+ A") > 0}, in which we have

ZAZ-(AJFAT) (hm—/ BT (¢) )
SZA(IE{;?/ B(t) ) (6.18)

= lim — 5T( t)B(t)dt < SNR.

The first inequality in (6.16) is straightforward to obtairhe second inequality is
a direct application of Proposition 111.5.3 of (3.22) in [[77The detailed proof is
omitted. 0J

Now we are ready to construct an optimal information traission scheme.
More specifically, given the channel SNR level, the smahesan-square conver-
gence rate of the state is obtained via the choiceAgf). The complete algorithm
follows these steps.

Basis Construction

Choose a set of orthonormal basis functigys) € B,i = 1,2, ..., n such that

<5zvﬁ]> - 6ij7 Z?] = 1,2,...,”

whered;; is the Kronecker’s delta. There are a number of ways to cocistne
basis functions, e.g. #f = 2, we can simply choose

Bi(t) = ﬂsin(wt), andpsy(t) = \/§cos(wt) w > 0.

Weight Choice by Water-filling

Choose an orthonormal matrix € R™*" such that

QA+ ANQ = diag{\, Ao, ..., A},
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where)\; is short for\;(A + AT). Thenj3(-) can be parameterized by the basis
constructed in 1) with a set of weighting factexs s, ...,n, > 0 as

QTB(t) = [mBr(t), mBa(t), .., mBn(t)]

Based on this fact, the following identity is evident andlé useful later for

(8,8)=(Q"8,Q"8) = Zm

Then the convergence rate minimization problem (6.15) camelluced to the
following finite dimensional case

min v
iV

sty n? <SNRand(\; —v)" <17,
=1
where the positivity of)? brings up(\; — v)™ < n?. This standard optimization
problem can be solved by using the Lagrange multiplfers R, = 1,2,...,n
andL € R. The objective function is re-written as

_V+Z§z iV _771 +L<an SNR)

Differentiating with respect tg?, ..., n2 andv respectively, we have

aJ
0 o2 &+

0] »
0:5:1—2@,82{@\(&—@20}

1€S

Solving the set of equations and using Kuhn-Tucker conastiave have the opti-
mal assignment of the energy

(N =" Zn*z—SNR
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Figure 6.2: Water Filling For Optimal Energy Distribution

The optimal convergence rai¢ solves

i()‘i —1v*)T =SNR

i=1

The solution is depicted graphically in Fig. 6.2. The vettievels indicate the
eigenvalues of the matrix + AT, and the vertical axis is downward pointing. As
the input power is increased from zero, we allocate the pdavéne eigenspace
associated with the largest eigenvalue. When more powembes available, it
will be spilled over other eigenspaces to achieve an eveteitavel”.

Optimal Transmitter and Estimator

Notice that (from last step)
(8*,87) = in*? = SNR,
=1
and the equality in (6.14) holds. Then we have the optimalityieved on
¢"(t, vo) + 0" (8, vo)x(t) = 0.
Expressed in terms ¢f*(¢), we have the optimal transmitter design:

¢*(t,v) = =BT (WP TIOR() ¢ (tvE) = PTR()B(),
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whereP*(t) solves a variation of differential Lyapunov equation gibsr(P*(0) =
P(0))

Pr(t) = P(t) A+ ATP*(t) — P*3(1)3* ()8 () P*3 (1) . (6.19)
and the estimator/receiver is given as
dx(t) = A%(t)dt + %P*_é(t)ﬁ*(t)dv(t) %(0) = %o

Remark 6.3.6. Note that the time profile oP*(¢) (and hence)* (¢, v{)) can be
determined off-line by integrating (6.19).

6.4 Simulation: Estimation via Amplitude Modulation

In this section we demonstrate our approach by using an gaatplitudes modu-
lation (AM) method to transmit the estimation error. Theesolatic block diagram
is shown in Fig. 6.3, where we do not assume any digitaling#dD, D/A, quan-
tization etc.) for simplicity. Here the plant is given as

dx(t) | 0 1 _ -
5 = [ 6 35 ] x(t),x(0)=1[1 1]".

The communication channel is corrupted by a standard whaas&an noise
(W(t), 0> = 1) and is assumed to have the power constratt= 13 (SNR =
P[o? =13).

The design procedure follows the three steps proposed ipréwous section,
following an initialization stage:

1. The estimator is initialized witk, = [0,0] ", andP(0) is set to & x 2 unit
matrix;

2. We choose the basis functions as
B1(t) = V2sin(2007t) and By (t) = v/2 cos(2007t)

respectively .
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Figure 6.4: State Error

3. We conduct the water filling algorithm to determine theiropt conver-
gence rate’* = —3 and weights); = 0.6299,7, = 3.5501. In turn we

have
—0.7901 sin(2007t) — 2.3186 cos(2007t)

* t —
v 0.4114 sin(2007t) + 4.4532 cos(2007t)

4. The carrier waves; (t) andy;(t), as well as the estimator, can be generated
by solving the matrix differential equation (Ricatti).

Figure 6.4 shows the time-history of the state es¢t); Fig. 6.5 shows the
modulated channel input and Fig. 6.6 shows the noise-ctadughannel output.
The simulation result is consistent with the theory devetbim this chapter and
exhibits fast estimation error convergence in the presefi@hannel noise and
power constraint. Compared with traditional amplitude mation communica-
tions, where carrier waves are usually chosen as sinussigtals with constant
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Figure 6.5: Channel Input
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Figure 6.6: Channel Output
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amplitudes, this method explicitly uses the knowledge efdignal dynamics4)
to generate a set of carrier waves to meet the needs of opstiadation. This
example also suggests that the method can be extended t@raotieal scenarios
for the simplicity of amplitude modulation in communicatisystems.

6.5 Conclusion

In this chapter, we develop a design method to solve the apestimation prob-
lem with limited information. The objective is achieved bssfifixing the struc-

ture of the transmitter and estimator by using conditionalnkan-Bucy filtering

theory. Then the optimal parameters of the given structteedatermined by a
water-filling like technique by distributing the availaliteannel input power to
properly address the state-space of the dynamics to beatstimThe resulting
communication/estimation scheme turns out to be surgligsimple and fits into
the conventional amplitude modulation framework with niiedi carrier wave-
forms, as shown in the example. The future research inclextesision to digital
communications and noisy feedbacks.
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CHAPTER 7

FUTURE RESEARCH

In this dissertation, a framework has been laid out to faatéithe in-depth analysis
of the closed loop trade-off in the presence of limited irfation. For the purpose
of synthesis, several approaches have also been propd#dbteaexisting control
design methods into the systems with communication canstré/e list several
directions as possible future research

e Bode-like formula for time-varying systems. A similar framork based on
Chapter 2 can be readily utilized to derive a relevant infation conser-
vation law for the closed loop with a time-varying plant. Tdentral issue
relies on the “degree” of instability, which can be possibharacterized
by a Lyapunov exponent. Not surprisingly, a certain dichot@ssumption
should be enforced on the plant to obtain the Lyapunov exgtone

e Bode-like formula for continuous-time switched systemisisTtopic would
combine the result of both Chapter 2 and Chapter 3. More Bpaty,
when the regularity conditions similar in Chapter 2 are isgm on the
continuous-time processes in the closed loop with Markoxcéwng, the
discrete-time result of Chapter 3 can be readily extendedntinuous-time
case.

e Control design in the presence of additive Gaussian chanmelChapter
4 and 5, two approaches have been given for stationary arstatammary
cases respectively. Rather than designing a simple cog#iol, the fu-
ture research along this line relies on the encoding anddiegschemes.
Stochastic nonlinear control theory might be a suitablméaork to work
on.
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