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ABSTRACT

Recent progress in communication technologies and their use in feedback control

systems motivate to look deeper into the interplay of control and communication

in the closed-loop feedback architecture. Among several research directions on

this topic, a great deal of attention has been given to the fundamental limitations in

the presence communication constraints. Entropy rate inequalities corresponding

to the information flux in a typical causal closed loop have been derived towards

obtaining a Bode-like integral formula.

This work extends the discrete-time result to continuous-time systems. The

main challenge in this extension is that Kolmogorov’s entropy rate equality, which

is fundamental to the derivation of the result in discrete-time case, does not hold

for continuous-time systems. Mutual information rate instead of entropy rate is

used to represent the information flow in the closed-loop, and a limiting relation-

ship due to Pinsker towards obtaining the mutual information rate between two

continuous time processes from their discretized sequenceis used to derive the

Bode-like formula. The results are further extended to switched systems and a

Bode integral formula is obtained under the assumption thatthe switching se-

quence is an ergodic Markov chain. To enable simplified calculation of the result-

ing lower bound, some Lie algebraic conditions are developed.

Besides analysis results, this dissertation also includesjoint control/communication

design for closed-loop stability and performance. We consider the stabilization

problem within Linear Quadratic Regulator framework, where a control gain is

chosen to minimize a linear quadratic cost functional whilesubject to the input

power constraint imposed by an additive Gaussian channel which closes the loop.

Also focused on Gaussian channel, the channel noise attenuation problem is ad-

dressed, by using H-infinity/H2 methodology. Similar feedback optimal estima-

tion problem is solved by using Kalman filtering theory.
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CHAPTER 1

INTRODUCTION

Control theory explores the feedback structures and uses them to design feed-

back controllers to achieve desired closed-loop behaviors. Information theory,

which was developed slightly later than control theory, deals with information

compression and transmission with or without loss. These two seemingly distinct

disciplines, however, are deeply related. In fact, their intrinsic relationship has

been exploited ever since their inception. Wiener, one of the founding fathers of

control theory, succinctly defined cybernetics as “the study of communication and

control in the animal and the machine” [1], where the role of communication of

information was explicitly pointed out. On the other hand, in [2] Shannon made

the following comment regarding the possible usefulness offeedback in reliable

communications “. . . can be pursued further and is related to a duality between

past and future and the notions of control and knowledge. Thus we may have

knowledge of the past and cannot control it; we may control the future but have

no knowledge of it.”.

Recently, a renewed interest of studying the relationship between the two sub-

jects has been stimulated by the need for understanding and developing new tech-

nologies that merge control, communication and computation, [3]. For example,

when multiple actuators and sensors are present in a complexcontrol system in

a distributed fashion, where wired networks are being replaced by wireless net-

works, the communication among the elements cannot be simply ignored. A set

of nontrivial questions can be therefore formulated related to the communica-

tion limitations. A basic one is: under certain informationpatterns, what is the

lower bound for the channel capacity to guarantee the closed-loop stability. In

addition, more questions can be raised if the performance and robustness of the

closed loops are also of interest. Results can be also developed on the infor-

mation theory& communication side. Though feedback is not able to increase

the capacity of communication channels significantly [4], it significantly simpli-

fies the coding schemes with stronger reliability guarantees. With feedback be-
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ing cheaply and reliably implemented, recent research holds a great promise for

improved performance in modern communication systems. Rather than benefit-

ing control/communication design, the unification of information theory and con-

trol theory enables a fresh perspective on complex and highly connected systems,

which are ubiquitous in biological and social networks, [5].

In this dissertation, the main focus is on:

• Obtaining Bode-type fundamental limitation results for continuous-time as

well as discrete-time stochastic switched plants by using information theo-

retic machineries;

• Control and feedback estimation design in the presence of communication

limitations for real-time as well as stationary closed-loop systems.

1.1 Chapter 2 Bode’s integral in with limited
information

1.1.1 Problem Formulation

We consider the following closed loop in the presence of disturbance. Under

−
Plant

Noise

Disturbance

Controller ε-Delay

Figure 1.1: A Feedback Closed Loop with Disturbance

the assumption that both the plant and the controller are linear time-invariant and

2



the loop-transfer functionL(s) has relative degree at least 1, a log integral is

obtained [6]:
1

2π

∫ ∞

0

log |S(jω)| =
∑

i

pi ,

whereS is the sensitivity transfer function, andpi represents the open-loop unsta-

ble eigenvalues.

However, when the linearity and the deterministic nature ofthe system dynam-

ics are removed, such a relationship may fail to hold. Therefore, the objective

of this research is to establish a similar relationship in a general setting, where

information theoretic quantities like entropy and mutual information are expected

to play a major role.

1.1.2 Literature Review

Most of the previous results on the intersection of control theory and information

theory are derived for discrete-time dynamical systems. Inthis chapter, we inves-

tigate continuous-time systems for the following reasons.First, a large number

of real-life systems are continuous-time in nature, and therefore it is of interest to

develop the corresponding continuous-time tools for closed-loop analysis. Sec-

ond, although digital channels dominate almost all communication systems, some

continuous-time models such as continuous-time Additive Gaussian White Noise

(AWGN) channels attract significant attention because of their theoretical simplic-

ity [7, 8]. From technique perspective of view, the continuous-time case imposes

challenges for both control theory and information theory.As for control, ex-

cept for the classical Bode’s result and its extensions [9],where Bode’s integral

formulae for continuous-time and discrete-time are bridged by Poisson’s integral

formula, there is no similar mathematical tool available yet for the general setting.

As for information theory, we point out that the results in [10] and [11], together

with several others [12–14], rely heavily upon the following entropy rate equality

originated by Kolmogorov [15]:

h̄(ξ) = log(2π
√
e) +

1

2π

∫ π

−π

log fξ(λ)dλ , (1.1)

whereξ is a discrete-time stationary process,h̄ stands for the entropy rate, and

fξ is the spectral density function ofξ. This formula, however, is only applicable

3



to discrete-time processes, and its continuous-time extension has to be derived

otherwise[16]. However, no such extension has been carried out since Kol-

mogrov’s comment because of the undesirable behavior of differential entropy

rate for continuous-time processes.

1.1.3 Main Contribution

In this chapter, we attempt to use tools from information theory to analyze perfor-

mance limitations for continuous-time systems with stochastic disturbances. We

first derive the mutual information rate inequality by assuming causality of the

closed-loop system. A Bode-type formula is then obtained toaddress the fun-

damental limitation of the stabilization problem in frequency domain. The tech-

niques utilized here are different from discrete-time casein that: 1. Mutual infor-

mation rate instead of entropy rate is adopted to represent the information flow in

a closed-loop; 2. To get the Bode-type integral, we use the result from [17], which

helps to circumvent Kolmogorov’s formula (1.1). To get insight into the result-

ing Bode’s integral, we employ tools from complex analysis to identify an extra

term of performance limitation induced by the controller/channel noise. We also

quantify the negative portion of the Bode’s integral and relate it to closed-loop

communication constraint. Finally we apply this frameworkto communication–

control interconnection to study the relationship betweenthe channel capacity and

the stability of the closed-loop systems.

1.2 Chapter 3: Bode’s Integral For Stochastic
Switched Systems

1.2.1 Problem Formulation

We consider the closed loop Fig. 1.2, where the plant is switching among finite

modes.

The objective is to derive a Bode-type formula by using information theory.

The statistical properties of the switching signal contribute significantly to the

closed-loop performance and need to be quantified explicitly.

4



−
Plant (σ(k))

Noise

Disturbance

Controller z−1

Figure 1.2: A Feedback Closed Loop with Disturbance and Plant Switching

1.2.2 Literature Review

While switched control systems have been studied from various perspectives [18],

it is still not clear how to characterize their fundamental limitations within an

appropriate framework. The problem becomes especially challenging, when such

closed loops are further subject to communication constraints. A notable effort

was made in [19], where the authors consider the stabilization problems and derive

the lower bound of the required data-rate.

In economics, typical dynamic programming problems in macroeconomics are

considered with a mutual information type of constraint, which is regarded as an

appropriate model ofrational inattention[20]. Rational inattention is the lack

of infinite capability of receiving and passing informationfor economic entities,

individuals and firms. The limited information processing capability contributes

to many aspects of economic fluctuations. For policy makers,rational inatten-

tion is an especially important factor, when curial monetary policies are craft. To

evaluate the consequence of the different policies, a recently developed frequency

domain approach in terms of a Bode’s integral, is appealing for its simplicity and

novelty [21].

1.2.3 Main contribution

In this chapter, we extend the framework from [10] to closed loops with stochas-

tic switched plants. We address the problem by using an information theoretic

5



framework towards obtaining a Bode integral formula, underthe assumptions that

the switching sequence is an ergodic Markov chain. We first derive a closed-loop

information conservation law by using information theoretic arguments similar

to [22] and [10]. Then, under some stationarity assumption,a Bode integral-like

theorem is obtained, characterizing a lower bound on the performance limitations.

To enable the simplified calculation of the resulting lower bound, some Lie alge-

braic conditions are developed.

To demonstrate the usefulness of the theoretical result, wepropose two different

examples. The first one is NCS with random packet dropouts, which has been

widely used in control literature to model typical computernetwork protocols,

such as TCP and UDP [23]. We develop a Bode integral to show that the degree of

instability of the plants determines the lower bound of the performance limitation.

The second potential illustration is in the field of macroeconomics, where feed-

back is used to generate optimal policies with respect to certain criteria. We apply

Bode’s integral to propose a simple frequency domain methodfor optimal mon-

etary policy evaluation under a regime of switching economy. Furthermore, we

extend the method to enable visualization of the impact of individual’s limited

information processing capability on the policy design limits. The content of the

chapter is reported in [24].

1.3 Chapter 4: Continuous Time Linear Quadratic
Design

1.3.1 Problem Formulation

In this chapter, we consider the control design problem withlimited informa-

tion. More specifically, we formulate the problem in the Linear Quadratic Regula-

tion framework, where the state-control minimizes a infinite quadratic functional,

while subject to the power constraint imposed by an additiveGaussian channel in

the closed loop.
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1.3.2 Literature Review

In most of the previous work, plants and communication channels are modeled

as discrete-time systems, since discrete-time models wellfit the digital communi-

cation channels. Nevertheless, it is still worth investigating the continuous-time

systems, since many plants to be controlled are continuous-time in nature. Fur-

thermore, as pointed out in [25], a number of communication channels in prac-

tice could be conveniently modeled as continuous-time additive Gaussian chan-

nels (AGC). Some recent effort has been made towards this direction, among

which [25] has provided if and only if conditions for observability and stabiliz-

ability of LTI systems over a class of Gaussian channels. Reference [26] proposes

a method of obtaining a tight upper bound on SNR based onH2 control type

argument.

The communication constrained LQG problems have also been addressed in

[27] in discrete time, where the communication channel is modeled as a finite rate

quantization. For the case of additive Gaussian channels, asimple scalar case was

considered in [28].

1.3.3 Main Contribution

This chapter is to investigate the continuous-time linear quadratic regulator control

problem over an additive white Gaussian noise (AWGN) channel with input power

constraint. A new framework based on stochastic differential equations(SDE) is

established to address both the plant and the channel dynamics, which are intro-

duced by the noise of the channel with some randomness. Within the framework,

an LMI convex optimization problem is proposed to calculatethe controller pa-

rameters.

1.4 Chapter 5: Noise Attenuation Over Additive
Gaussian Channels

1.4.1 Problem Formulation

While Shannon’s theory solves the information transmission problem with arbi-

trary accuracy (probability of error), the communication channels in control sys-

7



tems may not share the same feature because the accuracy of reconstruction of

messages needs a certain amount of time, which is not tolerable for control sys-

tems, especially when certain performances need to be achieved timely. It is then

reasonable to assume that the channel noise propagates intothe systems, and a

controller should be able to cope with the disturbance noise. In this chapter, we

consider a state feedback control problem with input power containt for the chan-

nel input.

1.4.2 Main Contribution

In this chapter we propose a new control design strategy to address the stabiliza-

tion and the noise attenuation problems in AWGN channels. The solution turns

out to fit into the mixedH∞/H2 framework. The design approach is based on

linear matrix inequalities (LMI). The LMI solution gives more computational ef-

ficiency, and it also avails a possibility of dealing with multiple-input-multiple-

output (MIMO) channels.

1.5 Chapter 6: Optimal State Estimation Over
Gaussian Channels with Noiseless Feedback

1.5.1 Problem Formulation

The scheme is depicted in Fig. 1.3 where the transmitter has access to the time-

history of the channel output via a noiseless feedback.

A transmitter and an estimator need to be designed to estimate the state of a

possibly unstable linear dynamics, while achieving mean square optimality.

1.5.2 Literature Review

Gaussian channel and its variants have been one of the central topics in infor-

mation and communication theory for their capability of capturing several im-

portant aspects of real-life communication systems. To consider the relationship

between control and communication, Gaussian channels are also a popular choice.

8
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Figure 1.3: State Estimation via Noiseless Feedback

Ref. [29] has captured the relation between the state (output) feedback stabiliza-

tion of a linear time-invariant (LTI) system and the signal-to-noise ratio (SNR)

constraint of the channel for both continuous-time and discrete-time cases; [27]

and [30] have considered the linear quadratic Gaussian framework to derive the

data-rate bound and provide a fairly complete scheme for design of the encoder,

the controller and the decoder. In [10], Gaussianity plays an important role in

obtaining the Bode’s integrals in terms of log integral of relevant power spectral

densities in the closed loop.

The state estimation under communication limitations has been investigated for

its close relationship with controls as well as its own importance. References

[31]and [32] tried to fit the problem into the framework developed in [10] and

[11] with the hope to use theH2 andH∞ control theory in this context. In a

more general setting, feedback has long been used to improvethe performance

of the communication systems in terms of better convergencerate of the error

probability. In the discrete-time setting in case of additive white gaussian noise

(AWGN) channel, inspired by Robbins-Monro stochastic iterative root seeking

algorithm from [33], S-K feedback coding is presented [34].A large number of

results followed this seminal work along with various of extensions. Recently,

this classical result caught much attention from control community, starting from

[12], which linked the optimal estimation with optimal encoding/decoding, with

a fundamental observation unifying control, estimation and communication (see

also [35]). Another similar development from the information theory perspective

is reported in [22], where colored gaussian channel with thecapacity of coding is
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discussed in a fairly general setting. The continuous-timeversion of S-K scheme

is presented in [36], where the derivation heavily relies onthe stochastic calculus

and optimal filtering theory.

1.5.3 Main Contribution

The objective of this chapter is to solve the continuous-time optimal estimation

problem in the presence of an AWGN channel with an input powerconstraint.

The contribution of the chapter is three-fold:

• It establishes a framework to analyze some important quantities in a sta-

ble closed loop, such as minimal mean-square error (MMSE) and channel

capacity (or signal to noise ratio), where stationarity is not assumed;

• Based on this framework, we not only recover the existing relation between

channel capacity and the open-loop instability in stable closed loops, but

also provide a tighter bound to guarantee an exponentially decaying mean

square of estimation error.

• The detailed procedure and algorithms are provided for the transmitter and

estimator design, together with the rigorous proof of optimality.
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CHAPTER 2

BODE-LIKE INTEGRAL FOR
CONTINUOUS-TIME CLOSED-LOOP

SYSTEMS IN THE PRESENCE OF
LIMITED INFORMATION

The chapter is organized as follows. In Section 2.1 we introduce the closed-loop

feedback configuration and some basic definitions and facts from information the-

ory and the theory of stochastic processes. Section 2.2 studies a general feedback

scheme, within which we develop a mutual information inequality and a Bode-

type integral formula. Section 2.3 further explores the relation of Bode’s integral

with the information transmission rate of the closed loop, while Section 2.4 carries

out the in-depth analysis of the the Bode-type integral by using complex integra-

tion techniques. The paper is concluded in Section 2.6. We note that Sections 2.4,

2.3 and 2.5 are developed in somewhat parallel manner, and the reader should not

be surprised to find forward cross-referencing among these sections.

2.1 Preliminaries

Notation:

• R denotes the field of real numbers;C stands for complex plane;C− and

C+ stand for the left half and right half ofC respectively.

• Random variables defined in appropriate probability spacesare represented

using boldface letters, such asx, y. If not otherwise stated, the random

variables take values inR throughout the chapter.

• If x(k), k ∈ N+, is a discrete time stochastic process, we denote its segment

{x(k)}uk=l by xu
l , and usexn

0 := xn for simplicity.

• Consider a continuous time stochastic processx(t), t ∈ R
+. A sample path

on an interval[t1, t2), 0 ≤ t1 < t2 ≤ +∞, is indicated asxt2
t1 . We also

denotext
0 := xt for simplicity.
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• x(h) is the discrete-time process obtained from sampling ofx(t) on t ∈
[t1, t2) with an intervalh > 0. We denotex(h)

i = x(h)(i) := x(t1+ ih), i =

0, 1, ....

• The probability density (if it exists) of a random variablex is represented

aspx.

• E[·] is the expectation operator of a random variable.

• (·)+ = max{·, 0} and(·)− = min{·, 0}.

• <(·) gives the real part of a complex number.

• λi(·) gives the eigenvalues of a square matrix.

• Re(·; z) gives the residue of a analytical function aboutz ∈ C.

In this section, several basic definitions and related factsfrom information the-

ory and stochastic processes are introduced. We rely on [4] an [37] as main refer-

ences.

2.1.1 Entropy, Mutual Information and Related Facts

In this subsection, we introduce some elementary definitions and results from

information theory, most of which are taken from [4].

Definition 2.1.1 (Differential Entropy). Thedifferential entropyof a continuous

random variablex with densitypx is defined as

h(x) := −E[log px] = −
∫

S

px log pxdx , (2.1)

whereS is an abstract space where the random variablex is defined.

Definition 2.1.2 (Conditional Entropy). If there are two random variablesx and

y, the conditional entropyh(x|y) is defined as

h(x|y) := −
∫

S2

pxy log px|ydxdy (2.2)

12



Definition 2.1.3 (Joint Entropy). The entropy of the random vectorxn := x0,x1, ...,xn,

comprised of random variables with densitypxn, is defined as

h(x0,x1, ...,xn) := −E[log pxn ] = −
∫

Sn

pxn log pxndxn (2.3)

Definition 2.1.4 (Mutual Information). The mutual information between the two

random variablesx andy is defined as

I(x;y) := −Exy

[

log
pxy
pxpy

]

= −
∫

S2

pxy log
pxy
pxpy

dxdy (2.4)

Definition 2.1.5 (Conditional Mutual Information). The mutual information be-

tween the two random variablesx andy is defined as

I(x;y|z) := −Exyz

[

log
pxy|z
px|zpy|z

]

= −
∫

S3

pxyz log
pxy|z
px|zpy|z

dxdydz

(2.5)

Definition 2.1.6 (Joint Mutual Information). The joint mutual information between

n dimensional vectorsxn := x0,x1, ...,xn andyn := y0,y1, ...,yn is defined as

I(xn;yn) = −Exnyn

[

log
pxnyn

pxnpyn

]

= −
∫

S2n

pxnyn log
pxnyn

pxnpyn

dxndyn

(2.6)

Definition 2.1.7. [Entropy Rate] The entropy rate ofx is defined as

h̄(x) := lim
n→∞

h(xn)

n + 1
, (2.7)

given the existence of the limit.

Definition 2.1.8 (Mutual Information Rate). The mutual information rate of two

stochastic processes is defined as

Ī(x;y) := lim
n→∞

I(xn;yn)

n+ 1
, (2.8)

given the existence of the limit.
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To consider the information between two continuous-time stochastic processes

we introduce the following definition.

Definition 2.1.9 (Mutual Information of Continuous Processes). The mutual in-

formation between two stochastic processesx andy on time interval[s, t), 0 ≤
s ≤ t <∞, is defined as

I(xt
s;y

t
s) :=

∫

log
dPxt

s,y
t
s

dPxt
s
× dPyt

s

dPxt
s,y

t
s
, (2.9)

wherePxt
s
, Pyt

s
andPxt

s,y
t
s

are the probability measures, induced by random ob-

jectsxt
s, y

t
s and(xt

s,y
t
s) respectively, and

dP
xts,y

t
s

dP
xts

×dP
yts

is the Radon-Nikodym deriva-

tive, given thatPxt
s,y

t
s

is absolutely continuous with respect to the product measure

Pxt
s
× Pyt

s
.

Similar to Definition 2.1.8, we define theinformation ratefor continuous-time

processes.

Definition 2.1.10 (Information Rate). The information rate is given by

Ī(x;y) := lim
T→∞

I(xT ;yT )

T
, (2.10)

given the existence of the limit.

In (2.10), Ī could be viewed as the rate of mutual information for reliable trans-

mission through any communication channel (x as input andy as output or vice

versa).

Remark 2.1.11. It is worth mentioning that, according to convention, we avoid

the notion of differential entropyh(·) for a segment of a continuous time process,

becauseh can be infinite for certain processes, as shown in the following example.

Example 2.1.12.Let w(t) , t ∈ R+, be a zero-mean white Gaussian noise pro-

cess with unit variance. It is straightforward to see thatw is an individually and

identically distributed (i.i.d) process in continuous time. We takeN + 1 samples

over the interval[0, 1) denoted asw0,w1, ...,wN . It is straightforward to see that

h(ŵ0, ŵ1, ...ŵN ) =
N+1
2

log 2πe, and from the fact thatw1, ...,wN is a function

of w1
0 we have

h(w1
0) ≥ lim

N→∞
h(ŵ0, ŵ1, ..., ŵN) = ∞ .

Therefore the counterpart of definition (2.1.7) in continuous time does not exist.
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The next lemma gives the opportunity to represent continuous time mutual in-

formation as the limit of its discretized version.

Lemma 2.1.13.Consider separable stochastic processesx andy. The mutual

information betweenxt
s andyt

s, 0 ≤ s < t <∞, can be obtained as

I(xt
s;y

t
s) = lim

n→∞
I(x

(δ(n))
0 , ...,x(δ(n))

n ;y
(δ(n))
0 , ...,y(δ(n))

n ) ,

x
(δ(n))
i = x(s+ iδ(n)) , i = 0, 1, ...

(2.11)

for any fixeds andt with δ(n) = t−s
n+1

.

The proof of this lemma is given in 2.7.

This lemma is used successfully in [38] to connect discrete-time results with

continuous-time ones regarding the channel sensitivity. The inherent sampling

type of argument in the lemmapermits the general information measures to in-

herent many of its properties from the simpler discrete-time case[39]. It will also

serve as an important tool to obtain the main result. A list ofuseful properties

of entropy and mutual information are given here, and are frequently used in the

upcoming arguments.

(P1) Symmetry and nonnegativity:

I(x;y) = I(y;x) = h(x)− h(x|y) = h(y)− h(y|x) ≥ 0 .

(P2) Kolmogorov equality:

I(x; (y, z)) = I(x; z) + I(x;y|z)

(P3) Data processing inequality:

I(x;y|z) ≥ I(x; g(y)|z)

The equality holds, ifg(·) is invertible.

(P4) Invariance of mutual information (entropy)

I(x;y|z) = I(x+ g(z);y|z) , h(x|z) = h(x + g(z)|z),
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whereg(·) is a function.

(P5) Chain rule:

h(xn|y) =
n
∑

k=1

h(xk|y,xk−1)

(P6) Maximum entropy: Considerx ∈ Rm and the covariance matrix given by

V := E[xx>]. Then we have

h(x) ≤ h(x̄) =
1

2
log((2πe)m det V ) ,

wherex̄ is a Gaussian process with the same covariance asx. Equality holds,

if x is Gaussian.

2.1.2 Spectral Analysis of Stationary Stochastic Processes

Here we introduce some results related to the spectral theory of stationary pro-

cesses.

Definition 2.1.14 (Wide Sense Stationary Process). A zero-mean continuous-time

stochastic processx(t) ∈ Rn, t ≥ 0, is stationary, if for allt ≥ 0 its covariance

function, defined by

Rx(τ) = E[x(t+ τ)x>(t)], τ ∈ R , (2.12)

is independent oft. Throughout this chapter,wide sense stationaryis abbreviated

asstationaryfor convenience.

The spectral decomposition of the covariance functionRx(t) is defined via Fourier

transform:

fx(ω) =

∫ ∞

0

e−itωRx(t)dt , (2.13)

and the functionfx(·) is calledpower spectral density (PSD)of x. The stationary

processx admits aspectral factorization, if

fx(ω) = φx(−jω)φx(jω) ,

for some functionφx(·). The following lemma from [40] shows that a rational

PSD always admits a rational spectral factorization.
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Lemma 2.1.15. If fx(ω) is rational, then there exits a minimum phase and asymp-

totically stable LTI systemφx(s), such that

fx(ω) = φx(−jω)φx(jω)

There are various ways to findφx; the reader is referred to [41] for an extensive

overview.

Definition 2.1.16 (Markov Process). A continuous-time stochastic processx(t), t ∈
R+, is called a Markov process, if

P (x(t) ∈ A|x(u), u ≤ s) = P (x(t) ∈ A|x(s)) (2.14)

holds for everys < t and every measurable setA ⊂ S , whereP (xt ∈ A|xu, u ≤
s) denotes the conditional probability of{xt ∈ A}, given the knowledge of

xu, u ≤ s.

While more general definitions of Markov processes can be found in many stan-

dard stochastic process texts, we adopt this simple one to avoid complex notations

requiring more background from the reader. We define classF functions as fol-

lows [42].

Definition 2.1.17 (ClassF function).

F = {l : l(ω) = p(ω)(1− ϕ(ω)), l(ω) ∈ C, ω ∈ R} , (2.15)

wherep(·) is rational andϕ(·) is a measurable function, such that0 ≤ ϕ < 1 for

all ω ∈ R and
∫

R
| log(1− ϕ(ω))|dω <∞.

It is obvious that all rational functions are inF.

The following lemma is taken from [17], which gives a lower bound on the

mutual information rate of two continuous-time Gaussian stationary processes.

Lemma 2.1.18.Suppose that two one-dimensional continuous-time processesx

andy form a stationary Gaussian process(x,y). Then

Ī(x,y) ≥ − 1

4π

∫ ∞

−∞

log

(

1− |fxy(ω)|2
fx(ω)fy(ω)

)

dω . (2.16)

The equality holds, iffx or fy belong to the classF.
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2.1.3 Closed-Loop System

Throughout the chapter we consider the feedback configuration depicted in Fig. 2.1.

e(t)

+
y(t)

P

u(t)

n(t)

d(t)

K ε-Delay

Figure 2.1: Basic Feedback Scheme

Several assumptions are made:

• The plantP is modeled by the following stochastic differential equation

ẋ(t) = Ax(t) +Be(t) , x(0) = x0 ,

y(t) = Cx(t) .
(2.17)

Herex(t) ∈ R
n, andx0 is assumed to have finite differential entropy or

|h(x0)| <∞.

• An arbitrary small time-delayε > 0 is imposed on the output signaly.

• The disturbanced(t) is a Markov process, andn(t) is a stochastic process

that models the controller noise. We assume thatd(t), n(t) andx0 are

mutually independent.

• The controllerK is given as a deterministic causal map such that

K : (yt−ε
0 ,nt

0) 7→ u(t) .
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Definition 2.1.19 (Sensitivity-like Function). A sensitivity-like function of the closed

loop is defined as

Sd,e(ω) =

√

fe(ω)

fd(ω)
, (2.18)

wheree andd are stationary and stationarily correlated.

Remark 2.1.20. The functionSd,e(ω) is the stochastic analogue of the sensitivity

function|S(jω)| in Bode’s original work [43].

Throughout, we adopt the following stability definition.

Definition 2.1.21 (Mean-square Stability). The closed loop given in Fig. 2.1 is

said to be mean-square stable, if

sup
t≥0

E[x>(t)x(t)] <∞ . (2.19)

2.2 Information Conservation Law and Extension of
Bode’s Integral Formula

As it has been revealed in [10], causality plays a central role in obtaining a Bode-

type formula for a discrete-time feedback loop with stochastic disturbance. Bear-

ing this observation in mind, we then obtain a set of mutual information rate in-

equalities resulting directly from the feedback structureand causality of the closed

loop shown in Fig 2.1. In turn, an analogue of Bode’s theorem is obtained by as-

suming certain stationarity and Markov properties for the disturbance signal.

To start with, we introduce the following Lemma, where the sum of all the

unstable eigenvalues (or the degree of instability) of the open loop state matrixA

is upper bounded by the mutual information rate between the initial valuex0 and

the error signale.

Lemma 2.2.1. If the closed-loop system in Fig. 2.1 is stable, then the following

inequality holds

Ī(x0; e) ≥
∑

i

<(λi(A))+ , (2.20)

where<(λi(A))+ := max{0,<(λi(A))}.
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Proof. If A is Hurwitz, then
∑

i <(λi(A))+ = 0 and (2.20) trivially holds. In case

A is not Hurwitz, it is obvious that there exists a nonsingularmatrixG ∈ Rn×n

such that

G−1AG =

[

As 0

0 Au

]

, (2.21)

whereAs andAu stand for the Jordan blocks with stable and unstable eigen-

values respectively. Accordingly, the statex(t) can be represented asx(t) =

G[x>
s (t),x

>
u (t)]

>, wherexs andxu indicate the stable and unstable sub-state vec-

tors respectively. We then consider the following unstabledynamics:

ẋu(t) = Auxu(t) +Bue(t) , (2.22)

whereBu stands for the submatrix ofBG−1 corresponding toAu. The solution to

(2.22) is written as

xu(t) = exp(Aut)xu(0) +

∫ t

0

exp(Au(t− τ))bue(τ)dτ

= exp(Aut)

(

xu(0) +

∫ t

0

exp(−Auτ)bue(τ)dτ

)

= exp(Aut)(xu(0) + x̂u(t)) ∀ t > 0 ,

(2.23)

where we have defined

x̂u(t) :=

∫ t

0

exp(−Auτ)bue(τ)dτ .

The condition in (3.2) implies that for allt

+∞ > M > logE
(

det(xu(t)x
>
u (t))

)

= 2t log (det(exp(Au)))

+ logE
(

det(xu(0) + x̂u(t))(xu(0) + x̂u(t))
>
)

(2.24)
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for someM ∈ R
+. On the other hand,

I(x0; e
t)

(a)

≥ I(xu(0); e
t)

(b)

≥ I(xu(0); x̂u(t))

(c)
= h(xu(0))− h(xu(0)|x̂u(t))

(d)
= h(xu(0))− h(xu(0) + x̂u(t)|x̂u(t))

(e)

≥ h(xu(0))− h(xu(0) + x̂(t))

(f)

≥ h(xu(0))− log(2πe)n

− log
(

detE
[

(xu(0) + x̂u(t))(xu(0) + x̂u(t))
>
])

.

(2.25)

Here, (a) follows from (P3) sincexu is a function ofx; (b) follows from (P3) since

x̂u is a function ofet; (c) follows from (P1); (d) follows from (P4); (e) follows

from (P1) and (f) is from (P6).

In what follows, we combine (2.24) and (2.25) to obtain

I(x0; e
t)

t
≥ h(xu(0))

t
− n log(2πe)

2t

− M

2t
+ log (det(exp(Au)))

(2.26)

Note that

log (det(exp(Au))) =
∑

i

λi(Au) =
∑

i

<(λi(A))+ , (2.27)

and taking the limit on both sides of (2.26), ast→ ∞, we obtain (2.20). �

The following Lemma is a consequence of closed-loop causality. It will be used

in subsequent derivations.

Lemma 2.2.2. Consider the feedback loop in Fig. 2.1, with all signals sampled

with the givenδ interval,0 < δ ≤ ε. The following identity holds:

I(d(δ)(i); [u(δ)]i,x0|[d(δ)]i−1) = 0 , ∀ i ≥ 1. (2.28)
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Proof.

I(d(δ)(i); [u(δ)]i,x0|[d(δ)]i−1)

(a)

≤ I(d(δ)(i);uδi,u(δ)(i),x0|[d(δ)]i−1)

(b)

≤ I(d(δ)(i);yδi−ε,nδi|[d(δ)]i−1)

(c)

≤ I(d(δ)(i);dδi−ε,x0,n
δi|[d(δ)]i−1)

(d)
= I(d(δ)(i);dδi−ε,x0,n

δi, [d(δ)]i−1)− I(d(δ)(i); [d(δ)]i−1)

(e)
= I(d(δ)(i);dδi−ε, [d(δ)]i−1)− I(d(δ)(i); [d(δ)]i−1)

(f)
= I(d(δ)(i);d(δ)(i− 1))− I(d(δ)(i);d(δ)(i− 1))

= 0

(2.29)

Here, (a) follows from (P3), since[u(δ)]i is a function of(uδi,u(δi)); (b) also

follows from (P3), since(uδi,u(δi)) is a function ofyδi−ε andnδi; (c) also follows

from (P3), sinceyδi−ε is a function ofdδi−ε , x0 andnδi; (d) follows from (P2);

(e) follows from the assumption thatn, x0 andd are mutually independent; (f)

follows from Markov property ofd. �

We are ready to state the main theorem regarding closed loop causality.

Theorem 2.2.3.Consider the closed loop shown in Fig. 2.1. The following in-

equality holds:

I(et;ut) ≥ I(dt;ut) + I(x0; e
t) , ∀ t ∈ R

+. (2.30)

Proof. Given t > 0, we takek + 1 samples of each of the signalse, d and

u over [0, t), by sampling the intervalδ(k) > 0 to get the discretized signals

{e(δ(k))(i) : 1 ≤ i ≤ k}, {d(δ(k))(i) : 1 ≤ i ≤ k} and{u(δ(k))(i) : 1 ≤ i ≤ k}
respectively. Notice also that(k + 1)δ(k) = t.

We expand the following mutual information by Kolmogrov’s formula (P4) for

any1 ≤ i ≤ k:

−I(d(δ(k))(i);x0, [u
(δ(k))]i|[d(δ(k))]i−1)

= I(d(δ(k))(i); [d(δ(k))]i−1)− I(d(δ(k))(i); [d(δ(k))]i−1,x0, [u
(δ(k))]i)

(a)
= h(d(δ(k))(i)|[d(δ(k))]i−1,x0, [u

(δ(k))]i)− h(d(δ(k))(i)|[d(δ(k))]i−1)
(b)
= h(d(δ(k))(i)|[e(δ(k))]i−1,x0, [u

(δ(k))]i)− h(d(δ(k))(i)|[d(δ(k))]i−1)
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(c)
= h(e(δ(k))(i)|[e(δ(k))]i−1,x0, [u

(δ(k))]i)− h(d(δ(k))(i)|[d(δ(k))]i−1)
(d)
= h(e(δ(k))(i)|[e(δ(k))]i−1)− I(x0; e

(δ(k))(i)|[e(δ(k))]i−1)

−I([u(δ(k))]i; e(δ(k))(i)|[e(δ(k))]i−1,x0)− h(d(δ(k))(i)|[d(δ(k))]i−1) ,

(2.31)

where (a) follows from (P1), (b) from the fact that[e(δ(k))]i−1 = [d(δ(k))]i−1 +

[u(δ(k))]i−1 and therefore the map([d(δ(k))]i−1,x0, [u
(δ(k))]i) 7→ ([e(δ(k))]i−1,x0, [u

(δ(k))]i)

is invertible, (c) from (P4) sincee(δ(k))(i) = d(δ(k))(i) + u(δ(k))(i), and (e) is from

(P4).

On the other hand, Lemma 2.2.2 claims that

I(d(δ(k))(i);x0, [u
(δ(k))]i|[d(δ(k))]i−1) = 0 (2.32)

Summing up−I(d(δ(k))(i);x0, [u
(δ(k))]i|[d(δ(k))]i−1) from 1 to k, ∀ k ≥ 1, and

considering (2.31), we have

0 =
k
∑

i=1

I(d(δ(k))(i);x0, [u
(δ(k))]i|[d(δ(k))]i−1)

(a)
= h([e(δ(k))]k)− I(x0; [e

(δ(k))]k)− h([d(δ(k))]k)

−
k
∑

i=1

I([u(δ(k))]i; e(δ(k))(i)|[e(δ(k))]i−1,x0)

(b)
= h([e(δ(k))]k)− h([e(δ(k))]k|[u(δ(k))]k + h([d(δ(k))]k|[u(δ(k))]k)

− I(x0; [e
(δ(k))]k)− h([d(δ(k))]k)

−
k
∑

i=1

I([u(δ(k))]i; e(δ(k))(i)|[e(δ(k))]i−1,x0)

(c)
= I([e(δ(k))]k; [u(δ(k))]k)− I(x0; [e

(δ(k))]k)

−
k
∑

i=1

I([u(δ(k))]i; e(δ(k))(i)|[e(δ(k))]i−1,x0)

− I([d(δ(k))]k; [u(δ(k))]k)

(d)

≤ I([e(δ(k))]k; [u(δ(k))]k)− I(x0; [e
(δ(k))]k)

− I([d(δ(k))]k; [u(δ(k))]k)

(2.33)

Here (a) follows from (P5), (b) follows from (P4) sinceh([e(δ(k))]k|[u(δ(k))]k) =
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h([d(δ(k))]k|[u(δ(k))]k) , (c) follows from (P1) and (d) follows from the non-negativeness

of mutual information.

Taking the limit ask → ∞, we haveδ(k) → 0, which consequently implies

that

0 ≤ I(et;ut)− I(dt;ut)− I(x0; e
t) . (2.34)

The inequality in (2.30) follows. �

Remark 2.2.4. The quantity
∑k

i=1 I([u
(δ(k))]i; e(δ(k))(i)|[e(δ(k))]i−1,x0) in the equa-

tion (b) of (2.33) has been defined in [44] asdirected informationfrom [u(δ(k))]k

to [e(δ(k))]k conditioned byx0, and is denoted asI([u(δ(k))]k → [e(δ(k))]k|x0). One

can define the continuous-time version of directed information by lettingk → ∞.

A preliminary exploration of continuous-time directed information and its relation

with optimal estimation theory has been reported recently in [45].

An inequality for information rate is readily obtained by dividing both sides

of (2.30) by t and lettingt go to infinity (assuming that the limit exists). It is

summarized in the following corollary.

Corollary 2.2.5. Given the closed loop system in Fig. 2.1, we have

Ī(e;u)− Ī(d;u) ≥ Ī(x0; e) (2.35)

The subsequent Theorem incorporates the mean square stability of the closed

loop with the information rate inequality (2.35). Some stationarity assumptions

are further enforced to derive a Bode-like formula. The details are summarized in

the following theorem.

Theorem 2.2.6 (Bode-Like Formula). Suppose the closed-loop system shown in

Fig. 2.1 is mean-square stable. Then

Ī(e;u) ≥ Ī(d;u) +
∑

i

<(λi(A))+ . (2.36)

Furthermore, if(d,u) and(u, e) form stationary processes andfu ∈ F andd is a

stationary Gaussian Markov process, then

1

2π

∫ ∞

−∞

log (Sd,e(ω)) dω ≥
∑

i

<(λi(A))+ . (2.37)
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Proof. The inequality in (2.36) directly follows from (2.20) and (2.35). To obtain

(3.2.12), first we have

I(et;ut)− I(dt;ut)

(a)
= lim

k→∞
{I([e(δ(k))]k; [u(δ(k))]k)− I([d(δ(k))]k; [u(δ(k))]k)}

(b)
= lim

k→∞
{h([e(δ(k))]k)− h([d(δ(k))]k)}

(c)

≤ lim
k →∞

{h([ē(δ(k))]k)− h([d(δ(k))]k)}
(d)
= lim

k→∞
{I([ē(δ(k))]k; [ū(δ(k))]k)− I([d(δ(k))]k; [ū(δ(k))]k)}

(e)
= I(ēt; ūt)− I(dt; ūt) ,

(2.38)

where(ē, ū) stands for the Gaussian stationary process with the same covariance

as(e,u). Here (a) follows from Lemma 2.1.13; (b) follows from (P1); (c) follows

from (P6); (d) follows from (P1), and we use the fact thath([ē(δ(k))]k|[ū(δ(k))]k) =

h([d̄(δ(k))]k|[ū(δ(k))]k), ∀k ∈ N+; (e) follows from Lemma 2.1.13. Then it is

straightforward to show that

Ī(e;u)− Ī(d;u) ≤ Ī(ē; ū)− Ī(d; ū) (2.39)

Sincefu ∈ F, Lemma 2.1.18 implies

Ī(ē; ū)− Ī(d; ū)

= − 1

4π

∫ ∞

−∞

log

(

1− feu(ω)fue(ω)

fe(ω)fu(ω)

)

dω +
1

4π

∫ ∞

−∞

log

(

1− fdu(ω)fud(ω)

fd(ω)fu(ω)

)

dω

=
1

4π

∫ ∞

−∞

log

(

fe(ω)

fd(ω)
· fd(ω)fu(ω)− fdu(ω)fud(ω)

fe(ω)fu(ω)− feu(ω)fue(ω)

)

dω

=
1

2π

∫ ∞

−∞

log (Sd,e(ω))dω .

(2.40)

Here we have used the fact

fd(ω)fu(ω)− fdu(ω)fud(ω)

fe(ω)fu(ω)− feu(ω)fue(ω)
= 1.
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Indeed, sinced = e+ u, then

fd(ω) =

∫ ∞

−∞

e−itωRe+u(τ)dτ

=

∫ ∞

−∞

e−itω(Re(τ) + fe,u(τ) + fu,e(−τ) +Ru(τ))dτ

= fe(ω) + feu(ω) + fue(ω) + fu(ω) ,

(2.41)

and

fdu =

∫ ∞

−∞

e−itωRe+u,u(τ)dτ

=

∫ ∞

−∞

e−itω(Re,u +Ru)(τ)dτ

= feu(ω) + fu(ω) .

(2.42)

Hence, (2.41) and (2.42) give

fd(ω)fu(ω)− fdu(ω)fud(ω)

fe(ω)fu(ω)− feu(ω)fue(ω)

=
(fe + feu + fue + fu)fu − (fu + feu)(fu + fue)

fefu − feufue

= 1 .

The proof is complete. �

Remark 2.2.7. The equation (3.2.12) is formally identical to the inequality ver-

sion of Bode’s integral developed in the classical case [9],where a time delay is

introduced to make the residual oflog |S(s)| vanish at infinity for strictly proper

plants. The same type of time delay in the course of our derivation is introduced

to ensure closed-loop causality, so that the sequential relations among the signals

residing in Fig. 2.1 are revealed by using information theoretical machineries.

Remark 2.2.8. We have hinged onstationaryclosed loops for the derivation of

Bode’s integral formula (3.2.12) from the information conservation law in (2.35)

for simplicity. Nonetheless, the similar argument can be also extended toasymp-

totically stationarycases with minor modification.
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2.3 Negative Component of Bode’s Integral

In the section, we investigate the lower bound ofĪ(d;u), with additional assump-

tions thatd ande are mutually wide sense stationary andd is Gaussian. As shown

in the subsequent result, the lower bound ofĪ(d;u) is obtained as the negative

portion of the Bode’s integral obtained in the previous section.

The following theorem summarizes the main result

Theorem 2.3.1.Consider the feedback closed loop given in Fig 2.1, whered and

e are mutually wide-sense stationary andd is a Gaussian Markov process. If

fu(ω) is bounded away from zero, then the following inequality holds

Ī(d;u) ≥ − 1

2π

∫ ∞

−∞

(log Sd,e(ω))
− dω (2.43)

Proof. To begin with, we consider the following Wiener predictor

L(jω) =
fd,u(ω)

fu(ω)
ejωε ,

which represents the minimal mean square error prediction of d, given the obser-

vation of the entire time history ofu with the time delayε. To obtain a causal

prediction ofd(t) by using the possibly noncausalL(jω), we define the following

predictor:

d̂(t) = L(s)bu(t)ct ,

whereb·ct stands for the truncation operator.

The above Wiener predictor is now used to lower bound the quantity Ī(u;d).

First, the processd(τ), 0 ≤ τ < t is sampled with intervalδ(k) = t
k+1

, leading to
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I([d(δ(k))]k;ut−ε)

(a)

≥ I([d(δ(k))]k; d̂t)

(b)

≥ I([d(δ(k))]k; [d̂(δ(k))]k)

(c)
= h([d(δ(k))]k)− h([d(δ(k))]k|[d̂(δ(k))]k)

(d)

≥ h([d(δ(k))]k)− h([d̃(δ(k))]k)

(e)
= h([d(δ(k))]k)− h([d(δ(k))]k|[d̂(δ(k))]k) + h([d̃(δ(k))]k|[d̂(δ(k))]k)− h([d̃(δ(k))]k)

= I([d(δ(k))]k; [d̂(δ(k))]k)− I([d̃(δ(k))]k; [d̂(δ(k))]k) ,

whered̃ := d− d̂. Here (a) follows from (P3), sincêdt is a function ofut−ε; (b)

follows from (P3), since[d̂(δ(k))]k is a functiond̂t; (c) follows from P1; (d) follows

from the fact that conditioning reduces entropy; (e) follows fromh([d(δ(k))]k|[d̂(δ(k))]k) =

h([d̃(δ(k))]k|[d̂(δ(k))]k).

By applying Lemma 2.1.13, we have

I(dt;ut−ε) ≥ I(dt; d̂t)− I(d̃t; d̂t) ,

which in turn gives the limiting case

Ī(d;u) ≥ Ī(d; d̂)− Ī(d̃; d̂) . (2.44)

Note thatd andd̂ are Gaussian and stationarily correlated andfd ∈ F, and from

Lemma 2.1.13 we have

Ī(d; d̂)− Ī(d̃; d̂)

= − 1

4π

∫ ∞

−∞

log

(

1− f
dd̂
(ω)f

d̂d
(ω)

fd(ω)fd̂(ω)

)

dω +
1

4π

∫ ∞

−∞

log

(

1− f
d̃d̂
(ω)f

d̂d̃
(ω)

fd̃(ω)fd̂(ω)

)

dω

=
1

4π

∫ ∞

−∞

log

(

fd(ω)

fd̃(ω)

)

dω

=
1

4π

∫ ∞

−∞

log

(

fd(ω)

fd(ω)− |L(jω)|2fu(ω)

)

dω ,

where we have used the fact

fd̃(ω) = fd̃(ω) = fd(ω)− |L(jω)|2fu(ω).
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We then note that

|L(jω)| = |fdu(ω)|
|fu(ω)|

≥ <(fdu(ω))
fu(ω)

=
fdu(ω) + fud(ω)

2fu(ω)
=
fe(ω)− fd(ω)− fu(ω)

2fu(ω)

Therefore (2.44) is further written as

Ī(d,u) ≥
1

4π

∫ ∞

−∞

log

(

4fdfu
−f 2

d − f 2
e − f 2

u + 2fdfe + 2fdfu + 2fufe

)

dω
(2.45)

Taking the maximum value of the right hand side of (2.45), we have

sup
fu>0

1

4π

∫ ∞

−∞

log

(

4fdfu
−f 2

d − f 2
e − f 2

u + 2fdfe + 2fdfu + 2fufe

)

dω

= − 1

2π

∫ ∞

−∞

(log Sd,e)
− dω

�

The relation in (2.46) follows from the fact that (2.45) holds also for allfu(ω) > 0.

Once the inequality (2.46) is obtained, we can employ the inequality (3.2.18)

later in Section 2.5 to obtain the following theorem.

Theorem 2.3.2.Consider the closed loop shown in Fig. 2.1, wheree andd are

assumed jointly stationary, withd being a Gaussian Markov process. If the closed

loop is mean square stable then the following holds:

− 1

2π

∫ ∞

−∞

(log Sd,e(ω))
− dω ≤ Ī((x(0),d);u)−

∑

i

<(λi(A))+ , (2.46)

Remark 2.3.3. The upcoming discussion in Section 2.5 will show thatĪ((x(0),d);u)

represents the total information flow in the closed loop. Therefore, the inequality

in (2.46) implies that the negative portion of the Bode integral (whereSd,e(ω) <

1) is determined by both the degree of open-loop instability and the information

rate transmitted through the closed loop. It can be clearly observed from (2.46)

that if Ī((x(0),d);u) =
∑

i<(λi(A))+, then theSd,e(ω) ≥ 1 for all ω. Moreover,

the same observation shows that, to achieve a desirable shaping of the sensitivity

function, one needs a larger information transmission rateto allow for a less con-

straint on the negative part oflog Sd,e(ω).
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Figure 2.2: Linear Stochastic Closed Loop

2.4 Achievable Lower Bound of Bode’s Integral for
LTI Systems

This section is devoted to further investigation of the the tightness of the resulting

Bode’s integral. As is has been shown in (3.2.12), the sum of the unstable poles

serves as a lower bound on the log-integral of the sensitivity function; however, the

conservativeness of thisinequalityremains unclear. One can intuitively conclude

that the controller noisen contributes to the increase of1
2π

∫∞

−∞
log (Sd,e(ω)) dω

by makinge noisier within some frequency range. Detailed analysis of this issue

is given subsequently, where the controller and the plant are given by LTI systems.

We now specialize the problem to the closed-loop configuration, shown in Fig.

2.2, whereP (s) is strictly proper and minimum phase, and the unstable polesare

denoted as{p1, p2, ..., pN}. In addition, we choose a proper stable stabilizing con-

trollerK(s). The controller noisen(t) is a stationary (possibly colored) Gaussian

process with zero mean; the disturbance signald is a stationary Gaussian Markov

process. A candidated can be expressed as the following Itô integral, also known

as Ornstein-Uhlenbeck Brownian motion.

d(t) = b

∫ t

0

e−a(t−u)dWu ,

wherea > 0 andb 6= 0 are real numbers,Wt is a standard Wiener process. The

initial conditions for bothP (s) andK(s) are set to0.

Note that closed loop is stable (with sufficiently smallε > 0) and thatd andn
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are independent. We have

fe(ω) =
fd(ω)

|1− P (jω)K(jω)e−jωε|2 +
|K(jω)|2fn(ω)

|1− P (jω)K(jω)e−jωε|2 .

Subsequently, the sensitivity function is obtained as

Sd,e(ω) =

√

fe(ω)

fd(ω)
=

√

1 + |K(jω)|2 fn(ω)
fd(ω)

|1− P (jω)K(jω)e−jωε| (2.47)

Next, we prove the following theorem regarding the log-integral of sensitivity.

Theorem 2.4.1.Consider the closed loop shown in Fig 2.2. The following equal-

ity holds

1

2π

∫ ∞

−∞

logSd,e(ω)dω =
∑

i

<(λi(A))++
1

4π

∫ ∞

−∞

log

(

1 + |K(jω)|2fn(ω)
fd(ω)

)

dω ,

(2.48)

Proof. By using (2.47), we have

1

2π

∫ ∞

−∞

logSd,e(ω)dω =
1

2π

∫ ∞

−∞

log

(

1

|1− P (jω)K(jω)e−jωε|

)

dω+

1

4π

∫ ∞

−∞

log

(

1 + |K(jω)|2fn(ω)
fd(ω)

)

dω .

Notice that1/(1 −K(s)P (s)) is stable and proper. Then we employ the same

argument as in the proof of Theorem 3.1.4 in [9] to obtain

1

2π

∫ ∞

−∞

log

(

1

|1− P (jω)K(jω)e−jωε|

)

dω

=
1

2πj

∮

C

log

(

1

|1− P (s)K(s)e−sε|

)

ds

= p1 + ... + pN =
∑

i

<(λi(A))+ .

HereC denotes the right half plane closed contour, which has a sufficiently large

radius and circumvents all the unstable poles ofP (s) [9]. The same integration

can also be calculated by a simplified methodology developedin [46]. The proof

is complete. �

The positive termκ := 1
4π

∫∞

−∞
log
(

1 + |K(jω)|2 fn(ω)
fd(ω)

)

dω in (2.48) presents

31



an additional performance limitation, on the top of the sum of the unstable poles.

In order to gain some insight, we now illustrate the significance of this term from

different perspectives.

• Although it is not easy to quantifyκ in general (yet a special case is given

later in Lemma 2.4.2 to calculateκ explicitly), we can roughly estimate

its value by observing the magnitudes offd(ω), fn(ω) andK(jω). It be-

comes evident that, both a lower noise-to-disturbance ratio fn(ω)/fd(ω)

and a smaller controller magnitude|K(jω)| lead to a less restrictive limita-

tion on the closed loop.

• From information theoretical point of view, the expressionof κ reminds of

the mutual information rate of a continuous-time additive Gaussian channel

[4]. For the non-feedback additive Gaussian channel shown in Fig. 2.3, the

input/ouput mutual information can be calculated by Lemma 2.1.18 as

Ī(v; z) = − 1

4π

∫ ∞

−∞

log

(

1− |fvz(ω)|2
fv(ω)fz(ω)

)

dω

= − 1

4π

∫ ∞

−∞

log

(

1− |fv(ω)|2
fv(ω)(fv(ω) + fd(ω))

)

dω

=
1

4π

∫ ∞

−∞

log

(

1 + |K(jω)|2fn(ω)
fd(ω)

)

dω = κ .

The above interpretation ofκ shows that the extra amount of performance

limitation is induced by the mutual information rate between the propagated

controller noisev and the observationz. To reduce the mutual information

rate, one can reduce the uncertainty of the channel sourcev, which can be

done by either lowering the magnitude ofK(s), or denoising the controller

noisen.

• κ can be also related to the famousH∞ entropy [47]. Suppose there exits a

proper transfer functionM(s) such that

1

2

|K(jω)|2 fn(ω)
fd(ω)

1 + |K(jω)|2 fn(ω)
fd(ω)

=M(−jω)M(jω).
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Figure 2.3: Additive Gaussian channel

Then the above relation leads to

κ =
1

4π

∫ ∞

−∞

log

(

1 + |K(jω)|2fn(ω)
fd(ω)

)

dω

= − γ2

2π

∫ ∞

−∞

log
(

1− γ−2M(−jω)M(jω)
)

dω ,

which is exactly the expression of theH∞ entropy ofM(s) with disturbance

rejection levelγ = 1/
√
2. It has been shown that the minimalH∞ entropy

controller is equivalent to a suboptimalH∞ controller (‖M‖H∞
≤ γ) [47].

Therefore the above observation actually proposes a way to minimizeκ by

resorting to variousH∞ methodologies for the design ofK(s). While the

detailed development along this direction is not given here, the readers are

encouraged to look into this interesting problem as it provides a potential

link betweenH∞ theory and information theory.

Next we will show that, under some mild assumptions,κ can be obtained explic-

itly, where we assume thatfd(ω) andfn(ω) are rational and admit the following

spectral factorizations:

fd(ω) = φd(−jω)φd(jω), fn(ω) = φn(−jω)φn(jω) .

Lemma 2.4.2. Assume thatK(s)φn(s)
φd(s)

admits a minimal realization(Ak, bk, c
>
k , dk)

with Ak being Hurwitz. Moreover, assume that there exists a matrixQ > 0 solv-
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ing the following algebraic Riccatti equation (ARE):

A>
kQ +QAk −

1

1 + d2k
Qbkb

>
kQ +

1

1 + d2k
ckc

>
k = 0 , (2.49)

and ensuring that

Ak −
1

1 + d2k
bkb

>
kQ is Hurwitz. (2.50)

Then

1

4π

∫ ∞

−∞

log

(

1 + |K(jω)|2fn(ω)
fd(ω)

)

dω =
1

√

1 + d2k
b>kQbk +

dk
√

1 + d2k
c>k bk

Proof. We will first obtain the following spectral factorization:

1 + |K(jω)|2fn(ω)
fd(ω)

= H(−jω)H(jω) ,

whereH(s) = − 1√
1+d2

k

(b>kQ + dkc
>
k )(sI − Ak)

−1bk +
√

1 + d2k . Indeed, it can

be verified that

H(−s)H(s)

=

(

1
√

1 + d2k
b>k (sI+ A>

k )
−1(Qbk + dkck) +

√

1 + d2k

)

×
(

−1
√

1 + d2k
(b>kQ+ dkc

>
k )(sI−Ak)

−1bk +
√

1 + d2k

)

= b>k (−sI− A>
k )

−1ckc
>
k (sI−A>

k )
−1bk

+ dkc
>
k (sI− A>

k )
−1bk + dkc

>
k (−sI− A>

k )
−1bk + 1 + d2k

= K(−s)φn(−s)
φd(−s)

K(s)
φn(s)

φd(s)
+ 1 .

Next, note that bothK(s)φn(s)
φd(s)

and1/K(s)φn(s)
φd(s)

are, as a consequence of (2.49)
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and (2.50), analytic on the right half plane. Hence, we have

1

4π

∫ ∞

−∞

log

(

1 + |K(jω)|2fn(ω)
fd(ω)

)

dω

=
1

4π

∫ ∞

−∞

log (H(−jω)H(jω))dω

=
1

4π

∫ ∞

−∞

log
(

|H(−jω)|2
)

dω

= <
(

1

2π

∫ ∞

−∞

log (H(−jω)) dω
)

= <
(

1

2πj

∮

D

log (H(−s)) ds
)

,

whereD denotes a contour encompassing from−j∞ to j∞ and enclosingC+.

The value of the integration along the contour can then be evaluated by using the

residue oflog (H(−s)) abouts = ∞, which is calculated as

Res(log (H(−s)) ;∞) = − lim
s→∞

s(H(−s)−H(∞))

=
1

√

1 + d2k
b>k Qbk +

dk
√

1 + d2k
c>k bk.

Residue theorem in turn yields

<
(

1

2πj

∮

D

log (H(−s)) ds
)

=
1

√

1 + d2k
b>k Qbk +

dk
√

1 + d2k
c>k bk .

The proof is complete. �

In summary, the following theorem holds.

Theorem 2.4.3.Consider the closed loop shown in Fig. 2.3, and assume that

K(s)φn(s)
φd(s)

admits a minimal realization(Ak, bk, c
>
k , dk) andAk is Hurwitz, and

Q > 0 is the unique solution to the ARE in (2.49) and satisfies (2.50). Then

1

2π

∫ ∞

−∞

logSd,e(ω)dω =
∑

i

<(λi(A))+ +
1

√

1 + d2k
b>kQbk +

dk
√

1 + d2k
c>k bk .

(2.51)

Remark 2.4.4. The condition thatK(s)φn(s)
φd(s)

needs to be proper does not impose

a significant restriction on the class of closed loops, for which we can derive the
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same calculations as in Theorem 2.4.3, as one can always choose stabilizingK(s)

with higher relative degree, renderingK(s)φn(s)
φd(s)

proper.

2.5 Information Rate Inequality & Control with
Communication Constraints

Another information rate inequality regarding the closed-loop stability based on

the framework in Section 2.2 is obtained in this section. By using it, we investi-

gate the stabilization problem, where the communication channel is modeled as a

continuous-time Gaussian channel with certain Signal-to-Noise Ratio (SNR) level

constraint.

The following lemma provides a lower bound for the mutual information rate

Ī((x0,d);u), which accounts for total information rate flow in the loop. Further

insight intoĪ((x0,d);u) is provided later in Remark 2.5.2.

Lemma 2.5.1. Consider the closed-loop system shown in Fig. 2.1. We have the

following inequality:

Ī((x0,d);u) ≥ Ī(x0; e) + Ī(d;u) . (2.52)

Proof. Using Kolmogorov’s formula (P2), we have

I((x0,d
t);ut) = I(x0;u

t|dt) + I(ut;dt) , (2.53)

wheret ∈ R+ is arbitrary time instance. We can lower boundI((x0,d
t);ut) as

I((x0,d
t);ut)

(a)
= I(x0; e

t|dt) + I(ut;dt)

(b)
= I(x0; e

t)− I(x0;d
t) + I(x0;d

t|et) + I(ut;dt)

(c)
= I(x0; e

t) + I(x0;d
t|et) + I(ut;dt)

(d)

≥ I(x0; e
t) + I(ut;dt) .

(2.54)

Here (a) follows from the fact thatI(x0;u
t|dt) = I(x0;u

t+dt|dt) = I(x0; e
t|dt);

(b) follows from (P2); (c) follows from the independence ofd andx0; and (d)

follows from the fact thatI(x0;d
t|et) ≥ 0. We have obtained the following
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inequality:

I((x0,d
t);ut) ≥ I(x0; e

t) + I(ut;dt) . (2.55)

The conclusion is readily obtained by dividing the terms on both sides of (3.9) by

t and taking the limit ast→ ∞. �

Remark 2.5.2. To illustrate the importance of̄I((x0,d);u), we consider the block

diagrams shown in Fig. 2.4, which recast the closed loop in Fig. 2.1 into a typ-

ical analog communication scheme with feedback [48]. The “Message” to be

transmitted is composed of the two independent sourcesx0 andd(t), andu(t)

is the channel output. We can also identify the “Transmitter” and “Channel” in

this “communication system” accordingly, though, in our current setup, they do

not function the same way as their names suggest. It turns outto be clear that

Ī((x0,d);u) represents the input/ouput information rate, and therefore Lemma

3.2.18 indicates that the total information flow of the closed loop is bounded from

below by the contributions of the initial value and the disturbance.

Transmitter Channel

Feedback

u(t)

d(t)
e−εse(t)

+

y(t)
P K

x0

n(t)

Figure 2.4: Closed loop configuration from the communication perspective

We can then define thefeedback capacityof the closed loop in Fig. 2.1 as

Cf := sup
x0,d

Ī((x0,d);u) .

Notice that the discrete-time and non-causal version of thefeedback capacity has

been introduced in several chapters, as [22] and [30].

To take the closed-loop stability into consideration, we further elaborate the

inequality (3.2.18) to get the following theorem.

Theorem 2.5.3. If the closed-loop system shown in Fig. 2.1 with feedback capac-

ity Cf is mean-square stable, then

Ī(u;d) ≤ Cf −
∑

i

<(λi(A))+ . (2.56)
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Example: Stabilization with Gaussian Channel Constraint

Next we focus on the continuous time additive white Gaussiannoise (AWGN)

channel with input power constraint. This particular type of a communication

channel, rooted in Shannon’s celebrated work [7], has been intensively studied for

its theoretical and practical significance in various chapters, [8] [49] and [50]. To

consider the Gaussian channel in a feedback loop, we adopt the same scheme as

in [29], which is shown in Fig. 2.5. Here,P is the same LTI system as in (3.1) and

y(t) = x(t); K ∈ R
1×n is the control gain matrix;u(t) is the channel input with

power constraintE[u2(t)] ≤ P, ∀ t ≥ 0, for some power levelP > 0; d(t) is

a Gaussian white noise process with SDFfd ≡ Φ > 0.

+

+

x(t)

P

u(t)

n(t) (Gaussian White Noise)

Ke−εs

Channel

Figure 2.5: Feedback control in the presence of a Gaussian channel

The channel capacityC can be obtained by the following formula [37]:

C =
P

2Φ
. (2.57)

Regarding the closed-loop system stability, we have the following theorem.

Theorem 2.5.4. If the closed-loop system shown in Fig. 2.5 is mean-square sta-

ble, then the following relationship holds:

P

2Φ
≥
∑

i

<(λi(A))+ . (2.58)

Proof. Note thatd ≡ 0 and the fact that feedback does not change the capacity
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of memoryless white Gaussian additive channels imply

P

2Φ
= C = Cf = sup

x0

Ī(x0;u) .

Therefore (2.56) is reduced to

P

2Φ
= C ≥ Ī(x0;u) ≥

∑

i

<(λi(A))+ . (2.59)

The proof is complete. �

Remark 2.5.5. This result provides a sufficient condition to solveProblem 1in

[29]. A similar condition is also obtained in [25], where theauthors have used

the result from [49] on mutual information rate of a Gaussianchannel. Different

from [29], the method used here is purely information theory-based, and may be

applied to more general systems rather than LTI.

2.6 Conclusion

In this chapter we investigated the continuous-time information conservation laws

in a causal closed loop feedback setting as an extension fromthe well established

discrete-time case. For the purpose of this extension, we resort to mutual infor-

mation rate rather than differential entropy rate, whose behavior is not desirable

in the continuous-time setting. As a result of the aforementioned conservation

laws, a Bode-type integral formula is obtained, for which wehave used mutual in-

formation integral inequalities instead of the widely usedKolmogorov’s formula.

We also pursue an in-depth investigation into the resultingBode integral in terms

its tightness and its relation with communication constraints. These conservation

laws have also shown the ability of handling particular problems such as control

with limited information.

2.7 Proofs

We first introduce an alternative definition of mutual information between two

random variables [17].
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Definition 2.7.1. Let ξ andη be random variables assuming values in the measur-

able spaces(X,Fx) and(Y,Fy) respectively. The mutual information between

x andy is given as

I(x,y) = sup
∑

i,j

Pξnηn(Ei × Fj) log
Pξnηn(Ei × Fj)

Pξn(Ei)Pηn(Fj)
,

where the supremum is taken over all partitions{Ei} of X and{Fj} of Y .

To prove Lemma 2.1.13, we need the following proposition:

Proposition 2.7.2. Let ξn, n = 1, 2, ... andηn, n = 1, 2, ... be random variables.

Then, if(ξn, ηn) converges to(ξ, η) in distribution, we have

I(ξ; η) ≤ lim
n→∞

I(ξn; ηn)

Proof. By converging in distribution, we have

lim
n→∞

Pξnηn(A) = Pξη(A), ∀A ∈ Fx × Fy .

Therefore, for any fixed partition{Ei} and {Fi} of X and Y , which satisfy

Pξ(Ei) 6= 0 andPη(Fj) 6= 0, we have

lim
n→∞

∑

i,j

Pξnηn(Ei × Fj) log
Pξnηn(Ei × Fj)

Pξn(Ei)Pηn(Fj)

=
∑

i,j

Pξη(Ei × Fj) log
Pξη(Ei × Fj)

Pξ(Ei)Pη(Fj)

Considering Definition 2.7.1, the following relation can beobtained

lim
n→∞

I(ξn; ηn) = lim
n→∞

sup
∑

i,j

Pξnηn(Ei × Fj) log
Pξnηn(Ei × Fj)

Pξn(Ei)Pηn(Fj)
.

≥ sup
∑

i,j

Pξη(Ei × Fj) log
Pξη(Ei × Fj)

Pξ(Ei)Pη(Fj)
= I(ξ; η) .

�

Proof of Lemma 2.1.13.1

1The proof is inspired by a private communication with Dr. V. Prelov
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Proof. The first step is to establish the following inequality:

I(xt
s;y

t
s) ≤ lim

n→∞
I(x

(δ(n))
0 , ...,x(δ(n))

n ;y
(δ(n))
0 , ...,y(δ(n))

n ) . (2.60)

We define

x̄n :=

n
∑

i=0

x
(δ(n))
i χ[s+δ(n)i) ȳn :=

n
∑

i=0

y
(δ(n))
i χ[s+δ(n)i) ,

whereχ is the characteristic function. Sincex andy are separable, we can always

find the versions ofx andy such that the joint distribution of them can be arbi-

trarily approximated by the corresponding discrete-time processes with countable

samplings. Therefore the convergence in distribution is implied.

The inequality (2.60) is followed by applying Proposition 2.7.2

I(xt
s;y

t
s) ≤ lim

n→∞
I(x̄n; ȳn) = lim

n→∞
I(x

(δ(n))
0 , ...,x(δ(n))

n ;y
(δ(n))
0 , ...,y(δ(n))

n ) .

On the other hand, the following relation is immediately obtained by (P1)

I(xt
s;y

t
s) ≥ I(x

(δ(n))
0 , ...,x(δ(n))

n ;y
(δ(n))
0 , ...,y(δ(n))

n ) , ∀n ≥ 1 . (2.61)

The proof is completed by combining (2.60) and (2.61).
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CHAPTER 3

BODE’S INTEGRAL FOR STOCHASTIC
SWITCHED SYSTEMS

The chapter is organized as follows. In Section 3.1 we introduce the closed-loop

feedback configuration and some basic definitions and facts from information the-

ory and the theory of stochastic processes. Section 3.2 studies a general feedback

scheme, within which we develop a mutual information inequality and a Bode-

type integral formula. Section 3.3 applies Bode’s integralto NCS, while Section

3.4 carries out the analysis of its application to macroeconomics. The chapter is

concluded in Section 3.5.

3.1 Preliminaries & Problem Formulation

Notation:

• R denotes the field of real numbers;C stands for complex plane;C− and

C+ stand for the left half and right half ofC respectively.

• Random variables defined in appropriate probability spacesare represented

using boldface letters, such asx, y. If not otherwise stated, the random

variables take values inR throughout the chapter.

• If x(k), k ∈ N
+, is a discrete time stochastic process, we denote its segment

{x(k)}uk=l by xu
l , and usexn

0 := xn for simplicity.

• E[·] is the expectation operator of a random variable.

• (·)+ = max{·, 0} and(·)− = min{·, 0}.

• <(·) gives the real part of a complex number.

• λj(·) gives the eigenvalues of a square matrix.
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• h(·) stands for (differential) entropy andI(·; ·|·) for conditioned mutual in-

formation; h̄ and Ī stand for the entropy rate and mutual information rate

respectively.

• WhenA is a finite set,|A| gives the number of elements inA.

• sp{·} denotes the spectrum of an operator.

A list of useful properties of entropy and mutual information are given here,

and are frequently used in the upcoming arguments.

(P1) Symmetry and nonnegativity:

I(x;y) = I(y;x) = h(x)− h(x|y) = h(y)− h(y|x) ≥ 0 .

(P2) Kolmogorov equality:

I(x; (y, z)) = I(x; z) + I(x;y|z)

(P3) Data processing inequality:

I(x;y|z) ≥ I(x; g(y)|z)

The equality holds, ifg(·) is invertible.

(P4) Invariance of mutual information (entropy)

I(x;y|z) = I(x+ g(z);y|z) , h(x|z) = h(x + g(z)|z),

whereg(·) is a function.

(P5) Chain rule:

h(xn|y) =
n
∑

k=1

h(xk|y,xk−1)

(P6) Maximum entropy: Considerx ∈ R
m and the covariance matrix given by

V := E[xx>]. Then we have

h(x) ≤ h(x̄) =
1

2
log((2πe)m det V ) ,
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wherex̄ is a Gaussian process with the same covariance asx. Equality holds,

if x is Gaussian.

Throughout the paper we consider the feedback configurationdepicted in Fig. 3.1.

e(k)

+

+

y(k)

P(σ(k))

u(k)

n(k)

d(k)

K

Figure 3.1: Basic Feedback Scheme

Several assumptions are made:

• The plantP is modeled by the following stochastic difference equation

x(k + 1) = A(σ(k))x(k) +B(σ(k))e(k) , x(0) = x0 ,

y(k) = C(σ(k))x(k) , k = 0, 1, 2....
(3.1)

Herex(k) ∈ Rm, andx0 is assumed to have finite differential entropy or

h(x0) <∞, andσ(k) ∈ {1, 2, ..., N} =: N is a finite state ergodic Markov

process given by

P (σ(k + 1) = j|σ(k) = i) := pij ≥ 0 ,

wherepij is named as transition probability from statei to j, and
∑

j pij = 1

for all i ∈ N . The stationary distribution of the Markov chainσ, denoted

asπ = [π1, ..., π|N |], is obtained by solving

π
>[pij]i,j∈N = π

> , and [1, .., 1]π = 1 .
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• The disturbanced(k) is a stochastic process, andn(k) is a stochastic pro-

cess that models the controller noise. We assume thatσ(k), d(k), n(k) and

x0 are mutually independent.

• The controllerK is given as a deterministic causal map such that

K : (k,yk−1,nk) 7→ u(k) .

Definition 3.1.1 (Wide Sense Stationary Process). A zero-mean stochastic pro-

cessx(k) ∈ Rn, t ≥ 0, is stationary, if for allk ≥ 0 its covariance function,

defined by

Rx(l) = E[x(k + l)x>(k)], l ∈ N
+ ,

is independent ofl. Throughout this chapter,wide sense stationaryis abbreviated

asstationaryfor convenience.

Definition 3.1.2. The spectral density of a stationary processv is given as the

following Fourier transform

fv(ω) =
1

2π

∞
∑

k=0

Rv(k)e
−jωk

Definition 3.1.3 (Sensitivity-like Function). A sensitivity-like function of the closed

loop is defined as

Sd,e(ω) =

√

fe(ω)

fd(ω)
,

wheree andd are stationary and stationarily correlated.

Remark 3.1.4. The functionSd,e(ω) is the stochastic analogue of the sensitivity

function|S(jω)| in Bode’s original work [43].

Throughout, we adopt the following stability definition.

Definition 3.1.5 (Mean-square Stability). The closed loop given in Fig. 3.1 is

said to be mean-square stable, if

sup
k≥0

E[x>(k)x(k)] <∞ . (3.2)
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Definition 3.1.6 (Lie Algebra). A Lie algebra is denoted as

g := {A(n) : n ∈ N}LA ,

which is generated by the matricesA(n), n ∈ N , with respect to the standard Lie

bracket

[A(1), A(2)] := A(1)A(2)− A(2)A(1) .

We say that the Lie algebrag is solvableif the following derived series

g > [g, g] > [[g, g], [g, g]] > ...

becomes0 eventually, where “>” denotes the relation of sub-algebra.

Theorem 3.1.7. [Simultaneous triangularization] The matrices{A(n) : n ∈ N}
can be simultaneously triangularized by some linear operator T ∈ Cm×m, if and

only if the Lie algebrag is solvable.

3.2 Bode-like Integral Discrete Time Case

In this section we develop the information conservation lawof the closed loop

system depicted in Fig. 3.1. In turn, an analogue of Bode’s formula is obtained

with stationarity assumption.

3.2.1 Information conservation law

The following lemma is introduced to characterize the closed loop causality.

Lemma 3.2.1.

I(d(i); (ui,x0,σ
i)|di−1) = 0 , ∀ i ≥ 1. (3.3)
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Proof.

I(d(i); (ui,x0,σ
i)|di−1)

(a)

≤ I(d(i); (ui,ni,σi,x0)|di−1)

(b)

≤ I(d(i); (di−1,ni,σi,x0)|di−1)

(c)
= I(d(i); (ni,σi,x0)|di−1)

(d)
= 0

Here, (a) follows from (P3); (b) also follows from (P3), sinceui is a function of

(di−1,ni,σi,x0); (c) follows from (P4), and (d) is implied becausen, σ, x0 and

d are mutually independent. �

In what follows we use the result from Lemma 3.2.1 to achieve an equality, re-

vealing a key relationship among signals residing in 3.1.

Lemma 3.2.2. Consider the closed loop in Fig. 3.1. The following inequality

holds

h(ek) = h(dk) + I((x0,σ
k); ek) +

k
∑

i=1

I(ui; e(i)|ei−1,x0,σ
k) (3.4)

Proof. We break down the equality (3.3) by

0 = I(d(i); (ui,x0,σ
i)|di−1)

(a)
= I(d(i);ui,x0,σ

i,di−1)− I(d(i);di−1)

(b)
= I(d(i);ui,x0,σ

i, ei−1)− I(d(i);di−1)

(c)
= −h(d(i)|ui,x0,σ

i, ei−1) + h(d(i)|di−1)

(d)
= −h(e(i)|ui,x0,σ

i, ei−1) + h(d(i)|di−1)

(e)
= −h(e(i)|ei−1) + I((x0,σ

i)); e(i)|ei−1)+

I(ui; e(i)|ei−1,x0,σ
i) + h(d(i)|di−1) .

Here (a) follows from (P3), (b) follows from the fact thatei−1 = ui−1 + di−1,

(c) follows from (P1), (d) follows from (P4) and (f) from (P5). Summing up the

above equality from1 to k and using (P5), we have (3.4). �
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Remark 3.2.3. The term
∑k

i=1 I(u
i; e(i)|ei−1,x0,σ

k) is alternatively represented

as the directed information fromu to e conditioned by(x0,σ
k) [44].

Theorem 3.2.4.Consider the closed loop shown in Fig. 3.1. The following en-

tropy rate inequality holds

h̄(e) ≥ h̄(d) + Ī((x0,σ); e) . (3.5)

Proof. Considering the nonegativeness of the mutual information,from (3.4) we

have

h(ek) ≥ h(dk) + I((x0,σ
k); ek) .

The proof is completed by dividing both sides of the above equality by k and

lettingk → ∞. �

Remark 3.2.5. The inequality in (3.5) has been derived in both informationthe-

ory and control theory literature in different setups and with different generalities.

Here we only assume causality of the closed loop.

3.2.2 Evaluating an important information rate

As it can be seen in (3.5), the mutual information rateĪ((x0,σ); e) plays an im-

portant role in the conservation law. In this subsection we establish some nontriv-

ial lower bounds for̄I((x0,σ); e) assuming some algebraic conditions.

Theorem 3.2.6.Consider the closed loop in Fig. 3.1. The following inequality

holds.

Ī((x0,σ); e) ≥ lim inf
k→∞

1

k
E
∑

j

< (log λj (Fk))
+ , (3.6)

whereFk := A(σ(k))A(σ(k − 1)) · · ·A(σ(0)).

Proof. We first consider the dynamics of the plant

x(k + 1) = x(k)A(σ(k)) +B(σ(k))e(k) ,

which can be solved as

x(k + 1) =

(

k
∏

i=0

A(σ(i))

)

x0 +

k
∑

i=0

(

k
∏

l=i

A(σ(l))

)

B(σ(i))e(i)

= Fk(x0 − x̂0(k + 1)),
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where

x̂0(k + 1) :=−
(

k
∏

i=0

A(σ(i))

)−1 k
∑

i=0

(

k
∏

l=i

A(σ(l))

)

B(σ(i))e(i) .

Fk can be decomposed into the following form by a linear transformationTk:

T−1
k FkTk =

[

Fku 0

0 Fks

]

,

whereFku is unstable andFks is stable. The same linear transformation can be

applied tox0 andx̂0 to have

Tkx0 =

[

xu0

xs0

]

andTkx̂0 =

[

x̂u0

x̂s0

]

.

We then establish the lower bound ofI(x0,σ
k; ek) as follows

I(x0,σ
k; ek)

(a)
= I(x0;σ

k) + I(x0; e
k|σk)

(b)
= I(x0; e

k|σk)

(c)
= I(xu0,xs0; e

k,σk)

(d)
= h(xu0,xs0)− h(xs0|ek,σk)− h(xu0|xs0, e

k,σk)

(e)

≥ h(xu0,xs0)− h(xs0)− h(xu0|xs0, e
k,σk) .

Here (a) follows from P4, (b) follows from P1 and the fact thatx0 andσ are

independent (and thereforeI(x0;σ
k) = h(x0)), (c) follows from P3, (d) follows

from P1 and (e) follows from the fact thath(xs0|ek,σk) ≤ h(xs0).

To evaluate the termh(xu0|xs0, e
k,σk), we note that

h(xu0|xs0, e
k,σk)

= h(xu0 − x̂u0|xs0, e
k,σk)

≤ h(xu0 − x̂u0)

≤ log(2πe)l − logE| detFku|+ logE detxu0(k)x
>
u0(k)

≤ log(2πe)l −E log | detFku|+ logE detxu0(k)x
>
u0(k),
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where l is the dimension ofxu0 and the last inequality follows form Jensen’s

inequality.

Therefore we have

I(x0,σ
k; ek) ≥ − log(2πe)l + E log | detFku|

− logE detxu(k)x
>
u (k) .

Note that the stability of the closed loop system implies that E detxu(k)x
>
u (k) <

∞ , ∀k. Then we have

Ī(x0,σ
k; ek) ≥ lim inf

k→∞

1

k
E log | detFku|

= lim inf
k→∞

1

k
E
∑

j

< (log λj (Fk))
+ .

�

Remark 3.2.7. The right hand side of (3.6) is actually a Lyapunov exponent for

the dynamic system (3.1). For a complete treatment of Lyapunov exponents for

stochastic switching systems, please refer to [51].

To overcome the difficulty of obtaininglim infk→∞
1
k
E
∑

j < (log λj (Fk))
+ by

using Lyapunov exponent method, we exploit the algebraic structure of the matri-

cesA(n), n ∈ N . From Theorem 3.1.7 we know that the solvability ofg implies

that{A(n)} , n ∈ N , can be simultaneously triangularizable by some linear trans-

formationT ∈ Cm×m:

T−1A(n)T =









λ
(n)
1 ? ?

0
. . . ?

0 0 λ
(n)
m









, ∀n ∈ N . (3.7)

Now we divide the index set{1, ..., m} into two distinct setsMu andMs,

defined by

Mu :=

{

j :
∏

n∈N

|λ(n)j |πn > 1 , j = 1, 2, ..., m

}

,

Ms := {1, ..., m} \Mu .

Corollary 3.2.8. Suppose that the Lie algebrag is solvable. Then we have

Ī((x0,σ); e) ≥
∑

n∈N

∑

j∈Mu

πn log |λ(n)j |
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Proof. We start with a mutually disjoint partition of the index set{1, 2, ...,σ(k)},

given by

{1, 2, ...,σ(k)} =
⋃

n∈N

Kn ,

whereKn := {i : σ(i) = n, i = 1, 2, .., k}. Then we claim that the eigenvalues of

Fk take the formλj(Fk) =
∏

n∈N

∏m
j=1

(

λ
(n)
j

)|Kn|

, whereλ(n)j is the diagonal en-

try from (3.7). Indeed it is easy to see thatT−1FkT = T−1A(σ(k))TT−1A(σ(k−
1))T · · ·T−1A(σ(0))T is a triangular matrix for allk. Further, thejth diagonal

entry ofT−1FkT can be calculated as

λj(Fk) =

k
∏

i=0

λ
(σ(i))
j =

∏

n∈N

(

λ
(n)
j

)|Kn|

Using the above relation and Fatou’s Lemma we have

lim inf
k→∞

1

k
E
∑

j

< (log λj (Fk))
+

= lim inf
k→∞

E
1

k

∑

j

< (log λj(Fk))
+

≥ E lim inf
k→∞

1

k

∑

j

< (log λj(Fk))
+ .

Furthermore,

lim inf
k→∞

1

k

∑

j

< (log λj(Fk))
+

= lim
k→∞

1

k

∑

j

< (log λj(Fk))
+

=
∑

j

<
(

∑

n

πn log λ
(n)
j

)+

=
∑

n∈N

∑

j∈Mu

πn log |λ(n)j | ,

where the second equality follows from ergodicity ofσ(k). �

Remark 3.2.9. As explained in [18], this modern algebraic approach, though

mathematically appealing, shows a significant drawback forits lack of robustness,

i.e. even a very small perturbation of system parameters canviolate the solvability
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condition. One may conduct perturbation analysis to relax the algebraic structure

requirement, though it is not trivial in general.

Here we propose yet another way to determine the Lyapunov exponent

lim infk→∞
1
k
E
∑

i < (log λi (Fk))
+ by using operator semigroup theory. To start

with, we consider the semigroup generated by matrices{A(n) , n ∈ N} with

respect to the matrix multiplication. The following lemma from [52] gives a suffi-

cient condition for the permutability of the spectra of the product of the operators.

Theorem 3.2.10.If for all n1, n2, n3 ∈ N ,

sp(A(n1)A(n2)A(n3)) = sp(A(n2)A(n1)A(n3)) , (3.8)

then for any sequenceA(n1), ..., A(nk) , n1, ..., nk ∈ N , the following identity

holds for any permutationτ of {n1, ..., nk}

sp

{

k
∏

i

A(ni)

}

= sp







τ(k)
∏

τ(i)

A(nτ(i))







.

The following corollary is now straightforward to prove.

Corollary 3.2.11. Suppose that the condition in (3.8) is satisfied. Then we have

Ī((x0,σ); e) ≥
∑

j

<
(

log λj

(

∏

n∈N

A(n)πn

))+

.

Proof. Theorem 3.2.10 implies that

sp(Fk) = sp

{

∏

n∈N

A|Kn|(n)

}

= sp

{

∏

n∈N

A|Kτ(n)|(τ(n))

}

= {λ̂(k)1 , . . . , λ̂(k)m }

for any permutationτ(·), whereλ̂(k)j =
∏

n∈N

(

λ
(k)
j

)|Kn|

. Following the same

argument in the proof of Corollary 3.2.8, we have

lim inf
k→∞

1

k
E
∑

j

< (log λj (Fk))
+ ≥

E lim inf
k→∞

1

k

∑

j

<
(

log λ̂
(k)
j

)+
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and

lim inf
k→∞

1

k

∑

j

<
(

log λ̂
(k)
j

)+

= lim
k→∞

1

k

∑

j

<
(

log λ̂
(k)
j

)+

=
∑

j

<
(

∑

n

πn log λ
(n)
j

)+

=
∑

j

<
(

log λj

(

∏

n∈N

A(n)πn

))+

.

The theorem is proved. �

3.2.3 Bode’s Integral

Theorem 3.2.12.Consider the closed loop in Fig. 3.1. Ifd ande form Gaussian

stationary processes, then

1

2π

∫ π

−π

log (Sd,e(ω)) dω ≥ lim inf
k→∞

E
1

k

∑

i

< (log λi (Fk))
+ .

Proof. This result is evident by considering the following relation, followed by

Kolmogrov’s formula [15]

h̄(d) = log(2πe) +
1

4π

∫ π

−π

log fd(ω)dω ,

h̄(e) = log(2πe) +
1

4π

∫ π

−π

log fe(ω)dω ,

together with Theorem 3.2.6. �

Since we have obtained various lower bounds forĪ(x0,d,σ; e) in the previous

subsection, the following corollaries can be readily obtained.

Corollary 3.2.13. Consider the closed loop in Fig. 3.1. Ifd ande form Gaussian

stationary processes, then

1

2π

∫ π

−π

log (Sd,e(ω)) dω ≥ log
∏

n∈N

|detA(n)|πn .
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Corollary 3.2.14. Consider the closed loop in Fig. 3.1. Ifd ande form Gaussian

stationary processes, and the Lie algebrag is solvable, then

1

2π

∫ π

−π

log (Sd,e(ω)) dω ≥
∑

j

<
(

log λj

(

∏

n∈N

A(n)πn

))+

.

Corollary 3.2.15. Consider the closed loop in Fig. 3.1. Ifd ande form Gaussian

stationary processes, and the condition in (3.8) is satisfied, then

1

2π

∫ π

−π

log (Sd,e(ω))dω ≥
∑

n∈N

∑

j∈Mu

πn log |λ(n)j | .

Remark 3.2.16. Similar to its deterministic counterpart, Bode’s integralin this

stochastic setting also captures the performance limitation of a closed loop in

frequency domain. The lower bound of the achievable performance is inherent

from its open loop plant instability.

Remark 3.2.17. Though it is hard to determine whether the closed loop in Fig.

3.1 is stationary in general, some results for LTI systems can be found in [53]

and [54].

3.2.4 Data Rate Inequality

Another inequality, resulting from the closed loop causality, is developed here.

The following lemma provides a lower bound for the mutual information rate

Ī((x0,d);u), which accounts for total information rate flow in the loop. Further

insight intoĪ((x0,d);u) can be found in [10] and [55].

Lemma 3.2.18.Consider the closed-loop system shown in Fig. 3.1. We have the

following inequality:

Ī((x0,d,σ);u) ≥ Ī(x0,σ; e) + Ī(d;u) .

Proof. Using Kolmogorov’s formula (P2), we have

I((x0,d
k,σk);uk) = I(x0,σ

k;uk|dk) + I(uk;dk) ,
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wherek ∈ N
+ is an arbitrary time instance. We can lower boundI((x0,d

k);uk)

as

I((x0,σ
k,dk);uk)

(a)
= I(x0,σ

k; ek|dk) + I(uk;dk)

(b)
= I(x0,σ

k; ek)− I(x0,σ
k;dk)+

I(x0,σ
k;dk|ek) + I(uk;dk)

(c)
= I(x0,σ

k; ek) + I(x0,σ
k;dk|ek) + I(uk;dk)

(d)

≥ I(x0,σ
k; ek) + I(uk;dk) .

Here (a) follows from the fact thatI(x0;u
k|dk) = I(x0;u

k+dk|dk) = I(x0; e
k|dk);

(b) follows from (P2); (c) follows from the independence ofd andx0; and (d) fol-

lows from the fact thatI(x0,σ
k;dk|ek) ≥ 0. We have obtained the following

inequality:

I((x0,d
k,σk);uk) ≥ I(x0,σ

k; ek) + I(uk;dk) . (3.9)

The conclusion is readily obtained by dividing the terms on both sides of (3.9) by

k and taking the limit ask → ∞. �

3.3 Networked Control Systems with Random Packet
Dropouts

In this section, we apply the framework from the previous section to examine

the performance limitation problems in the networked control systems (NCS). To

be specific, we only consider the control systems with a lossycommunication

channel placed between the sensor and the controller, whichhas been studied

in various chapters [56] [57] [58]. In this chapter we adopt astructure similar

to [57], shown in Fig. 3.2, where an erasure channel is employed to model a

packet dropout.

The packet dropouts are compensated for by an output of an LTIsystem, which

has to be designed. The controller can be represented by any causal map fromyk
0

to u(k). The sequence ofON’s andOFF’s of the erasure channel is modeled as a
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e(k) +
+

+

y(k)

P

u(k)

n(k)

d(k)

K

C

Figure 3.2: A networked control system

two-state Markov chain with transition probability matrix

P =

[

1− p p

q 1− q

]

, 0 ≤ p, q ≤ 1 .

One can calculate the stationary distribution asπ =
[

q
p+q

, p
p+q

]

. Let the state

space realization of the plant and the channel compensator be

[

A B

C 0

]

and

[

Ac Bc

Cc 0

]

respectively. We can then regard the dashed box in Fig. 3.2 asa generalized

“plant” with state matrices

Ã(1) =

[

A 0

BcC Ac

]

, Ã(2) =

[

A 0

0 Ac +BcCc

]

for the “ON” and “OFF” of the erasure channel respectively.

To simplify the subsequent analysis, we further assume thatthe compensator is

chosen such thatAc andAc +BcCc are stable. Under these additional conditions

and with account of Theorem 3.2.6 we have the corresponding Bode’s integral

theorem.
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Theorem 3.3.1.Consider the NCS in Fig. 3.2, and assume that the signalu is

Gaussian and stationary. The following relation holds for all causal controllersK

1

2π

∫ π

−π

log (Sd,e(ω)) dω ≥
∑

j

< (log λj (A))
+ . (3.10)

Proof. The proof is a simple application of Theorem 3.2.12, and is therefore omit-

ted here. �

Remark 3.3.2. This theorem characterizes the control design limitation for NCS

with random packet dropout. Given the stable compensator, the right hand side in

(3.10) shows that the lower bound of the closed loop performance is determined

solely by the degree of instability ofA. This observation suggests that, consid-

ering the relatively loose definition of stability in (3.2),packet dropout does not

make the system “more” unstable. However, the dropout may add up to the per-

formance limitation in other forms, for which a close scrutiny is required. This

result agrees with the previous work on data-rate limited control [59].

3.4 Monetary Policy Limits Analysis

We now turn our attention to the field of macroeconomics, where extensive study

has been conducted to investigate the use of feedback, in terms of monetary and

fiscal policies, to achieve certain objectives, such as financial stability and high

employment growth. For example, the celebrated Taylor Rule[60] suggests the

short-term nominal interest rate as an appropriate weighted linear combination of

deviations of inflation and GDP (Gross Domestic Product) from their target val-

ues. Following this seminal work, attention has been drawn to the area of optimal

feedback policy design and analysis. Recently, Brock [61] proposed a frequency

domain approach to asses the intrinsic tradeoffs between various control objec-

tives, such as minimizing inflation, interests rate and economy output volatilities.

More specifically, he employed Bode type integral to identify the impact of control

rules on the shaping of fluctuations in frequency domain, subject to fundamental

limits from the plant. In this section, we extend the method in [61] to the case

when the economy is modeled as switching dynamics taking values randomly

between regimes corresponding to an ergodic finite state Markov chain [62]. Be-

sides, the information theoretic nature of our framework allows for a convenient
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incorporation of the information theoretic modeling ofrational inattention[20]

into our limitation analysis. Rational inattention is a well-observed phenomena

that individual people have due limited information-processing capability, which

is believed to contribute to some important aspects of macroeconomic fluctua-

tions.

3.4.1 Bode’s integral for Markov switching AR model

Consider the following typical AR(1) model, usually considered in monetary pol-

icy literature [63]:

x(k) = a(σk)x(k − 1) + ς(σk)u(k) + ε(k), (3.11)

whereσ(k) ∈ N is an ergodic Markov chain with transition matrixP = [pij ] , i, j ∈
N , a(n), b(n) ∈ R; ε(k) is a zero-mean Gaussian process; the the state of interest

x(k) is simplified as a policy rule and is chosen as a general nonlinear function

u(k) = f(xk−1
0 ).

To unveil the role of the sensitivity function in this setup,we suppose that the

policymaker wishes to minimize the variance of the stateEx2(k) under the chosen

controlu(k). Notice that the closed-loop is assumed to be stationary. Then we

have

Ex2(k) =
1

2π

∫ π

−π

fx(ω)dω

=
1

2π

∫ π

−π

|G̃(jω)|2fe(ω)dω

=
1

2π

∫ π

−π

|G̃(jω)|2fε(ω)|Sε,e(ω)|dω ,

(3.12)

where the first equality follows from the stationary ofx, andG̃(·) is the “transfer

function” from e to x, the detailed derivation of which can be found in [54] and

[21]. The relation in the last equation in (3.12) helps in understanding the role

of Sε,e(ω), as it shapes the open loop response ofε (i.e. |G̃(jω)|2fε(ω)) into the

controlled one in frequency domain. It is then natural to seethat the limitation

inherent to the control policyf(·) can be characterized by the spectrum of the

sensitivity function. The constraint is now cast into the Bode integral formula, as

it will be shown in the next theorem.
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Theorem 3.4.1.Consider the model given in (3.11), and suppose that it is mean-

square stable. Then the following Bode’s integral inequality holds

1

2π

∫ π

−π

log Sε,e(ω)dω ≥
(

∑

n

πn log |a(n)|
)+

.

Proof. The proof is a simple application of Theorem 3.2.12. �

Remark 3.4.2. Comparing with the similar result obtained in [21], we present

a lower bound on the performance limitation for a more general control policy

rather than linear Taylor rules. Moreover, the calculationis simpler and can be

easily extended to the higher order cases (AR(l), l > 1 ) with little modification.

Remark 3.4.3. This theorem provides a general formula only to motivate more

theoretical development for various meaningful models as well as empirical vali-

dations .

3.4.2 Design limit under rational inattention

We can further exploit the design limitation problem by including rational inat-

tention, which is elegantly modeled as channel capacity in Shannon’s theory’s

framework following recent prominent work [20]. In our context, we assume that

the policy takes effect after passing through a communication channel with finite

capacity, depicted in Fig. 3.3. Here,e(k) is the actual effect of the feedback policy

u′. We now recall the usual definition of the channel capacityC [4]:

e(k)

x(k)

Process

u(k)

u′(k)
Channel

ε(k)

Feedback

Policy

Figure 3.3: Policy design with limited information
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C := sup
u′

Ī(u,u′)

The following theorem captures the design limits via an upper bound for the

entropy ratēI(ε;u).

Theorem 3.4.4.Consider the model given in (3.11), and suppose the it is mean-

square stable. Then the following inequality holds

Ī(u; ε) ≤ C −
(

∑

n∈N

πn log |a(n)|
)+

. (3.13)

Proof. The information conservation law (3.5) and the stability ofthe closed loop

imply that

h̄(ε) ≤ h(e)−
(

∑

n∈N

πn log |a(n)|
)+

.

The above inequality can be re-written as

Ī(ε;u) = h̄(ε)− h̄(ε|u)

≤ h̄(e)− h̄(e|u)−
(

∑

n∈N

πn log |a(n)|
)+

= I(e;u)−
(

∑

n∈N

πn log |a(n)|
)+

,

(3.14)

where we have used the fact thath̄(ε|u) = h̄(ε+ u|u) = h̄(e|u).
From (P3) and the definition of channel capacity we have

Ī(e;u) ≤ Ī(u;u′) ≤ C . (3.15)

The proof is completed by combining (3.14) and (3.15). �

Remark 3.4.5. The nonnegativity of mutual information ratēI(u; ε) further im-

plies that one needsC ≥
(
∑

n∈N πn log |a(n)|
)+

for closed loop stability. The

same relation has been developed in various control chapters to provide a suffi-

cient condition for stabilization of a closed loop with limited data-rate. In the

language of macroeconomics, this relation can be alternatively interpreted that

the level of information processing capability of the agents should be greater than

degree of instability of the process, for which the control policy is to be designed.
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If we assume that signals in the closed loop Fig. 3.3 are Gaussian (in which case,

the channel may need to be a Gaussian additive one), one can also represent (3.16)

in a log-integral fashion.

Corollary 3.4.6. Consider the model given in (3.11), and suppose the it is mean-

square stable, andu, ε are Gaussian stationary. Then the following inequality

holds

− 1

2π

∫ π

−π

log

(

1− |fε,u(ω)|2
fε(ω)fu(ω)

)

dω

≤ C −
(

∑

n∈N

πn log |a(n)|
)+

.

(3.16)

Proof. The proof is obviously implied by the fact that

Ī(ε;u) = − 1

2π

∫ π

−π

log

(

1− |fε,u(ω)|2
fε(ω)fu(ω)

)

dω

for Gaussian stationary processesu andε [17]. �

3.5 Conclusions

This chapter has developed a relatively complete Bode’s integral formula for

stochastic switched closed loops. Information theory has been employed as ma-

chinery to obtain a relationship among different system variables, which has in

turn resulted in Bode’s integral for stationary cases. Various algebraic conditions

have been proposed to capture tight performance bounds. Application of this the-

oretic framework to the field of NCS as well as macroeconomicsillustrates the

usefulness of this fundamental result.
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CHAPTER 4

LQR OVER ADDITIVE GAUSSIAN
CHANNEL

4.1 Preliminaries & Problem Formulation

The problem formulation and related definitions are given inthis section. We

consider the system in Fig. 4.1, with the details of each component given below:

Channel

+

+
PlantController

Low-pass
 Filter

n(t)

u(t)

v(t)

Figure 4.1: Closed-loop system

4.1.1 Plant

Consider the following single input LTI system as the plant to be controlled

dx(t) = Ax(t)dt +Bv(t)dt , t ≥ 0, (4.1)

wherex(t) ∈ Rn is the state of the plant andx(0) = x0, while v(t) ∈ R is the

input signal.
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4.1.2 Channel

As shown in Fig.4.1, a memoryless AWGN channel is located between the con-

troller and the plant, wheren(t) is standard white noise.

The white noise processn(t) could be viewed as a generalized derivative of

a standard Brownian motionWt. The Brownian motion is defined on a filtered

probability space(Ω,F ,P,Ft≥0), whereΩ is the sample space,F is theσ algebra,

the filtrationFt is an increasing subσ-algebra to whichWt is adapted, andP is

the probability measure.

We represent the channel dynamics as

dxc(t) = Acxc(t)dt+Bcu(t)dt

v(t)dt = Ccxc(t)dt + dWt , t ≥ 0
(4.2)

wherexc(t) ∈ Rk is the state,xc(0) = xc0; u(t) ∈ R is the output of the con-

troller and is the channel input and is further assumed to beFt adapted;v(t) is the

channel output and is fed into the plant, while(Ac, Bc, Cc) is a realization of the

low-pass filter, which characterizes the bandwidth of the channel.

The power constraint is an important characterization of anAWGN channel. It

takes the form [48]

E(|u(t)|2) ≤ P , ∀ t ≥ 0 , (4.3)

whereE(·) refers to the expectation operator on the aforementioned complete

probability space, andP > 0 is a pre-specified upper bound on the average power

of the channel inputu(t).

Remark 4.1.1. An extra communication channel could also be located in be-

tween the output of the plant and the controller. Here, we assume that the con-

nection between sensor(s) and controller is of unlimited communication ability

(infinite bandwidth and noiseless).

4.1.3 Augmented System

To treat this communication/control interconnection as a whole, we introduce the

following Itô-type linear (SDE)

dξ(t) = Āξ(t)dt+BwdWt +Buu(t)dt , t ≥ 0 (4.4)
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whereξ(t) = [x>(t), x>c (t)]
>, Ā =

[

A BCc

0 Ac

]

, Bw =

[

B

0

]

, andBu =

[

0

Bc

]

. We make the standard assumption that(Ā, Bu) is controllable.

4.1.4 Control Objective

The class of admissible control signalsu(·) will be defined similar to [64]:

U =

{

u(·) : u(t) isFt adapted;

lim sup
t→∞

∫ t

0
|u(s)|2dt
∫ t

0
x(s)ds

<∞ a.s.

} (4.5)

Consider the following cost-functional:

J = lim sup
T→∞

1

T

∫ T

0

(ξ>(t)Qξ(t) + ρu2(t))dt , (4.6)

whereQ = Q> > 0, ρ > 0.

The control objective is to design an optimal controller such that the cost-

functional J is minimized, subject to constraints of the communication chan-

nel. Specifically, for the system dynamics in (4.4) we address the following con-

strained stochastic linear quadratic control problem

inf
u(·)∈U

J , (4.7)

subject to the power constraint in (4.3).

Remark 4.1.2. The linear quadratic regulator (LQR) problem with stochastic dis-

turbance without any communication constraint has been thoroughly investigated

in parallel with its deterministic counterpart in [65], [66], etc.

4.2 Controller Design via Linear Matrix Inequalities

In this section, the problem (4.7) is cast into an LMI optimization problem and is

solved in the framework of an eigenvalue problem (EVP).
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4.2.1 LMI Configuration of Stochastic LQR

The classic state feedback stochastic LQR problem for the system dynamics in

(4.4) is defined as

inf
u(·)=Kξ(·)

J, (4.8)

whereK is the feedback gain matrix to be determined. It is well knownthat under

the assumption that(Ā, Bu) is controllable, the optimal state feedback control

could be expressed as

u∗(t) = −1

ρ
B>

u Pξ(t) , (4.9)

whereP > 0 is the solution of the following algebraic Riccati equation

Ā>P + PĀ− 1

ρ
PBuB

>
u P +Q = 0 . (4.10)

The minimum of the cost-functionalJ is given by

J∗(u∗(·)) = B>
wPBw a.s.. (4.11)

The problem (4.8) can be alternatively solved using the following LMI EVP,

min
R,Y

γ (4.12)

subject to







ĀR +RĀ> +BuY + Y >B>
u RQ1/2 √

ρY >

(RQ1/2)> −I 0
√
ρY 0 −1







≤ 0 ,

(4.13)

[

γ B>
w

Bw R

]

≥ 0 , (4.14)

and

R > 0 , (4.15)

where the matricesR ∈ R(n+k)×(n+k) andY > ∈ Rn+k are decision variables, over

which γ is optimized, andI stands for identity matrix of appropriate dimension.
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Supposeγ∗ is the minimum. ThenJ∗ = γ∗, and the optimal state-feedback gain

K∗ = Y ∗R∗−1, where(K∗, R∗) = argmin γ∗. The above EVP is derived follow-

ing the same procedure for LMI representation of deterministic LQR, for which

one can refer to [67] for details.

Remark 4.2.1. In the current scenario, the state used for the control law isξ(t),

which is a stacked vector ofx(t) andxc(t). The availability of the channel state

is a conventional assumption when a communication channel with feedback is

considered

4.2.2 LMI Representation of Power Constraint

In what follows, LMI conditions for power constraint (4.3) are derived and sum-

marized in the following lemma.

Theorem 4.2.2.Consider the system (4.4) with state feedback controlu(t) =

−Kξ(t). The power constraint (4.3) is satisfied if for arbitraryε > 0 andλmax ≥
λmin > 0 there existR ∈ R(n+k)×(n+k) andY ∈ R(n+k)×1 solving the following

LMIs:

λminI ≤ R ≤ λmaxI , (4.16)

ĀR +R>Ā> − BuY − Y >B>
u ≤ −εI, (4.17)

and
[

P Y

Y > µ−1R

]

≥ 0 , µ =
λmaxB

>
wBw

ελ3min

+
λmaxξ

>
0 ξ0

λ2min

. (4.18)

The corresponding control gain is obtained asK = Y R−1.

Proof. Substituting the state feedback law into (4.4) we have

dξ(t) = (Ā− BuK)ξ(t)dt+BwdWt . (4.19)

This linear SDE has a unique strong solution [68] (Chapter 5.6)

ξ(t) = eÃtξ0 +

∫ t

0

eÃ(t−τ)BwdWt, t ≥ 0 , (4.20)

whereÃ , Ā− BuK. Then by applying Itô’s isometry [68], it is straightforward

66



to show that

E(u2(t))

= E
(

ξ>(t)K>Kξ(t)
)

= ξ>0 e
Ã>tK>KeÃtξ0

+B>
w

∫ t

0

eÃ
>(t−τ)K>KeÃ(t−τ)Bwdτ ,

(4.21)

In order to find an upper bound forE(u2(t)), we first note that (4.16) and (4.17)

imply that

eÃ
>teÃt ≤ λmax

λmin
e−ελmintI , ∀t ≥ 0 , (4.22)

where the inequality is obtained by the standard argument ofupper-bounding a

quadratic Lyapunov function (it equalsξ>(t)R−1ξ(t) in this case). Next, we derive

an upper bound on the terms in the right-hand-side of (4.21).The first term could

be bounded as

ξ>0 e
Ã>tK>KeÃtξ0

≤ λmax

λmin
(ξ>0 ξ0)(KK

>)e−ελmint

≤ λmaxξ
>
0 ξ0

λmin
KK>

=
λmaxξ

>
0 ξ0

λ2min

KλminK
>

≤ λmaxξ
>
0 ξ0

λ2min

KRK> ,

(4.23)

and repeating the same steps for the second term gives:

∫ t

0

B>
we

Ã>(t−τ)K>KeÃ(t−τ)Bwdτ

≤ λmax

λmin
KK>B>

wBw

∫ t

0

e−ελmin(t−τ)dτ

≤ λmaxB
>
wBw

ελ2min

KK>(1− e−ελmint)

≤ λmaxB
>
wBw

ελ2min

KK>

≤ λmaxB
>
wBw

ελ3min

KRK> .

(4.24)
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Hence, it follows from (4.21) together with the bounds (4.23) and (4.24) that

E
(

ξ>(t)K>Kξ(t)
)

≤ µKRK> , (4.25)

Therefore, if we want the power constraint (4.3) to hold for state feedbacku(t), it

is sufficient to have

µKRK> = µKRR−1RK> = µY R−1Y > ≤ P , (4.26)

which is equivalent to (4.18) by using the well known Schur’scomplement. �

4.2.3 Communication Constrained LQR

The problem (4.7) is readily solved if the power-constraintLMI conditions (4.16),

(4.17) and (4.18) are imposed on an EVP (4.12), corresponding to a stochastic

LQR problem formulation. We have the following theorem.

Theorem 4.2.3.Consider the closed-loop system given by (4.1) and (4.2) andthe

LMIs given by (4.13), (4.14), (4.16), (4.17) and (4.18). Thequadratic performance

indexJ , subject to the dynamics of both the plant and the channel, isminimized

by solving the following LMI EVP forR andY

min
R,Y

γ (4.27)

The optimal control gain is obtained asK∗ = Y ∗R∗−1.

Proof. The proof is completed by taking into account (4.16), (4.17)and (4.18) as

additional LMI constraints for the EVP (4.12), where (4.15)is dropped because

R is further bounded by (4.16). �

Remark 4.2.4. Notice thatλmin, λmax and ε are tuning parameters and can be

adjusted to obtain a solution to the LMI EVP. More specifically, λmin andλmax

specify the lower and upper bound of the matrix spectrum ofR, and these two

parameters can be chosen conservative (i.e. smallλmin and largeλmax) as compu-

tational capability allows. The parameterε reflects the negativeness of (4.17).
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4.3 Numerical Example

In this section we consider a numerical example to evaluate the control design

method of Theorem 4.2.3. We choose a 2nd order plant with the following matri-

ces:

A =

[

−0.5 −1

0 −2

]

, B =

[

1

1

]

.

The parameters of the channel are chosen as:

Ac = −4, Bc = 10, Cc = 1.

The initial values arex0 = [−1, 2]> and xc0 = 0, which impliesξ(0) =

[−1, 2, 0]>. The augmented system is written as

dξ(t) =







−0.5 −1 1

0 −2 1

0 0 −4






ξ(t)dt+







0

0

10






u(t)dt

+







1

1

0






dWt, ξ0 =







−1

2

0






.

(4.28)

We set the power constraint levelP = 3. Choose weight matrices

Q =







2 0 0

0 1 0

0 0 0.1






, ρ = 3 ,

and tuning parameters asλmin = 0.3, λmax = 50 and ε = 0.07. Using Matlab

toolbox YAMLP [69] as the LMI solver, and applying Theorem 4.2.3 we obtain

the minimumγ∗ = 1.0442, and corresponding matrices

R∗ =







2.0034 1.8531 −5.6960

1.8531 3.4384 −3.6070

−5.6960 −3.6070 31.9690






,

Y ∗ =
[

−0.003001 −0.00220 0.0000313
]

.
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The control gain is then computed as

K∗ = Y ∗R∗−1 =
[

−0.0042 0.0010 −0.0006
]

.

4.4 Conclusion

In this chapter a new approach has been proposed to address the continuous-time

linear quadratic control problem for LTI systems subject toAWGN channel con-

straints. The main result of the chapter is expressed as LMI EVP, the solution

of which results in the optimal state feedback gain, minimizing a quadratic cost-

functional. The key idea was to express both the control and the constraint as

convex optimization problems. Further research will pursue dynamic feedback,

plant uncertainties, and channel uncertainties.
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CHAPTER 5

NOISE ATTENUATION OVER ADDITIVE
GAUSSIAN CHANNELS

The chapter is organized as follows. In Section 5.1, the problem is formulated, and

an LMI solution is provided. In Section 5.2 the method is extended to a MIMO

channel, and in Section 5.3 a numerical example is given to illustrate the proposed

algorithm. The chapter is concluded in Section 5.4.

Notation:

• The H2 norm of a transfer function matrixG(s), denoted by‖G‖H2 , is

obtained by‖G‖H2 = 1
2π

∫∞

−∞ trace(G(jω)G∗(jω)), where(·)∗ represents

the conjugate transpose.

• TheH∞ norm of a transfer function matrixG(s), denoted by‖G‖H∞
, is

obtained by‖G‖H∞
= supω σ̄‖G(jω)‖, whereσ̄(·) gives the maximum

singular value.

• The expectation operator is denoted byE(·) .

• The power spectral density (PSD) of a wide-sense stationarysignalx(t), t ≥
0 is denoted byfe(ω). If e(t) is ann dimensional vector, thenfe(ω) is ma-

trix.

5.1 Single Input Single Output Channel

We consider the problem of stabilizing an unstable plant over a noisy communi-

cation channel, while keeping a certain performance bound for the channel noise

attenuation. We consider the following system:

ẋ(t) = Ax(t) +Bu(t) x(0) = x0.

z(t) = Cx(t)
(5.1)
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where statex(t) ∈ R
n, control inputu(t) ∈ R, performance outputz(t). We also

assume the system is initialized with a zero-mean Gaussian random variablex0.

Here we assume that(A,B,C) is a minimal realization. The closed loop is shown

in Fig. 5.1.

The communication channel is assumed to be an infinite bandwidth AWGN

channel as follows

u(t) = e(t) + n(t), t ≥ 0, (5.2)

wheree(t) = −Kx(t) is the channel input andK ∈ R1×n is the control gain

matrix,u(t) is the channel output, andn(t) is a zero-mean white Gaussian process

with PSDσ2
n. The power of the channel input signal is given byE(e2(t)), which

can be alternatively expressed as

Ee2(t) =
1

2π

∫ ∞

−∞

fe(ω)dω .

A power constraint is imposed on the input of the AWGN channelasEe2(t) ≤
P, ∀t ≥ 0, whereP > 0 is a pre-specified value, reflecting the hardware limita-

tions or some other design requirements. We define the following Signal-to-Noise

Ratio, orSNR of the channel (5.2) as

SNR ,
P
σ2
n

.

It has been shown that the channel capacity isSNR/2 nat/sec [48].

Three important aspects of the closed-loop system are considered and analyzed

in detail.

Closed loop stability

The closed loop system is stabilized by choosing the controlgainK from the

admissible setK , {K : A− BK is Hurwitz}.
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Power Constraint

Denote the transfer function fromn(t) to the channel inpute(t), also known as

complementary sensitivity, asTen(s). The following relation holds [29]:

1

2π

∫ ∞

−∞

fe(ω)dω = ‖Ten‖2H2
fn(ω) = ‖Ten‖2H2

σ2
n .

Therefore, the power constraint can be equivalently expressed as

‖Ten‖2H2
≤ P
σ2
n

= SNR .

Channel Noise Attenuation

We are also interested in the impact of the channel noisen(t) on the measure-

ment variablez(t). Consider the closed loop depicted in Fig.5.1. We say that the

channel noise attenuation is achieved with levelγ > 0, if

‖Tzn‖H∞
≤ γ ,

whereTzn(s) is the transfer function fromn(t) to z(t). Observing the following

relation

‖Tzn‖H∞
= sup

ω∈R
|Tzn(jω)| = sup

ω∈R

√

fz(ω)

fn(ω)
,

the quantity‖Tnz‖H∞
reflects the the maximum magnitude offz(ω)/σ2

n over all

frequencies. We note that theH∞ norm is not induced byL2 norms ofz(t) and

n(t) in the conventional sense [70].

We address the following control problem: find a static statefeedback control

gainK ∈ K, such that the requiredSNR is minimized subject to a desired noise

attenuation levelγ > 0.

Remark 5.1.1. State feedback is used for the simplicity of the presentation of the

main ideas. More complex cases can be considered in a similarmanner.
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5.1.1 Tradeoff Between Signal-to-Noise Ratio and Channel Noise
Attenuation

First Order Case

Consider the following first order unstable dynamics

ẋ(t) = ax(t) + u(t) ,

z(t) = x(t) ,
(5.3)

wherea > 0 andu(t) = −kx(t) + n(t) k ≥ a. Let the noise attenuation level be

γ > 0. We have the following theorem.

Theorem 5.1.2.The minimal channelSNR for the system (5.3) to be stable and

satisfying the noise attenuation level‖Tzn‖H∞
≤ γ is given by

SNR ≥
{

2a γ ≥ 1
a
,

γ
2
(a+ 1

γ
)2 0 < γ < 1

a
.

(5.4)

The corresponding control gain is given as

k? =

{

2a γ ≥ 1
a
,

a+ 1
γ

0 < γ < 1
a
.

(5.5)

Proof. Calculate the inequality‖Tzn‖H∞
≤ γ as follows

γ ≥ sup
ω∈R

|Tzn(jω)| = sup
ω∈R

1
√

ω2 + (a− k)2
=

1

k − a
.

Then we havek ≥ a+1/γ as an additional constraint for the minimization of the

power of the channel input signalkx. This optimization problem is formulated

and explicitly solved as

inf
k≥a+1/γ

‖kx‖2H2
= inf

k≥a+1/γ
k
1

2π

∫ ∞

−∞

σ2
n

ω2 + (k − a)2
dω

= inf
k≥a+1/γ

σ2
n

k2

k − a

=

{

2aσ2
n γ ≥ 1

a
,

γ
2
(a+ 1

γ
)2σ2

n 0 < γ < 1
a
.
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Eqs. (5.4) and (5.5) follow straightforwardly. �

Remark 5.1.3. This simple example gives us a chance to understand how much

extraSNR (channel capacity) is required to attain a given channel noise attenua-

tion level. As Eqn. (5.3) suggests, an extra amount ofSNR is needed if the atten-

uation levelγ is larger than1/a. In view of the the fact that the required channel

capacity for closed-loop stability isa [29], the quantitymax
{

γ
4
(a+ 1

γ
)2 − a, 0

}

can be regarded as the cost of extra channel capacity to attain the attenuation level

γ.

Ch5second Order System: A Case Study

We go one step further and consider the second order system:

ẋ(t) =

[

1 1

0 2

]

x(t) +

[

0

1

]

u(t) , (5.6)

z(t) =
[

1 0
]

x(t) . (5.7)

The control gain is given by the matrixK =
[

k1 k2

]

∈ R2. The AWGN is

given as

u(t) = −Kx(t) + n(t) .

The following proposition gives the explicit expression of‖Tzn‖H∞
in terms of

k1 andk2.

Proposition 5.1.4. The‖Tzn‖H∞
for the closed-loop system composed of (5.6),

the controllerK and the AWGN is given as

‖Tzn‖H∞
=







1
2+k1−k2

(k1, k2) ∈ S
2

(k2−3)
√

4k1−(k2−1)2
(k1, k2) ∈ T ,

(5.8)

where

S = {k1 = 3, k2 = 3} ∪ {(3 < k1 < 5) ∩ (3 < k2 < k1)}
⋃

{

(k1 ≥ 5) ∩ (3 < k2 < 2 +
√

−1 + 2k1)
}

T = {k1 > 5}
⋂

{

2 +
√

−1 + 2k1 < k2 ≤ k1

}
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Proof. We calculate‖e‖2H2
by using the following complex contour integral and

the residue theorem [71]:

‖e‖2H2

=
σ2
n

2π

∫ ∞

−∞

Ten(jω)Ten(−jω)dω

=
σ2
n

2πj

∮

γ

Ten(s)Ten(−s)ds

= σ2
n(Res(Ten(s)Ten(−s); p1) +Res(Ten(s)Ten(−s); p2))

= σ2
n

k32 − (k1 + 3)k22 + 2k1k2 − k21
2(−3 + k2)(−2− k1 + k2)

,

whereγ represents the contour[−jωR, jωR] ∪ {R exp(jθ) : −π/2 < θ < π/2}
with large enough radiusR > 0, andRes(·; pi) denotes the residue evaluated at

the polespi, i = 1, 2. During the course of calculation we have used the fact that

Ten(s) = K(sI− A+BK)−1B =
k2s+ k1 − k2

s2 + (k2 − 3)s+ k1 − k2 + 2
.

The conclusion is therefore reached by noticing that SNR= ‖e‖2H2
/σ2

n. �

Now we proceed to calculate the power of channel inpute as summarized by

the following proposition.

Proposition 5.1.5. The power of the channel input, in terms ofk1 andk2 can be

written as
∫ ∞

−∞

fe(ω)dω =
k32 − (k1 + 3)k22 + 2k1k2 − k21
2(−3 + k2)(−2− k1 + k2)

. (5.9)

Proof. First note that

Tzn(s) =
1

s2 + (k2 − 3)s+ k1 − k2 + 2
,

and by using Routh’s criterion, the set of stabilizing control gains is obtained as

K = {[k1k2] : {k1 ≥ k2} ∩ {k2 ≥ 3}} . (5.10)

The rest of the proof follows the procedure of solving the optimization problem

sup
k1 andk2 satisfy(5.10)

√

Tzn(jω)zn(−jω) .
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The machinery used for this problem is reduced to calculus, and is dropped there-

fore.

Unlike the first order case, the increased degree of complexity in the second

order case makes it very difficult to get an explicit solutionfor the problem, even

though we have obtained the expressions of the correspondingH2 andH∞ norms

in (5.9) and (5.8) respectively. As an alternative, we illustrate theSNR (Channel

capacity )/ performance tradeoff graphically in the following plots.

Fig. 5.2 shows the required SNR for the given control gain that satisfies the

conditions given in (5.10). As we can see, without an additional constraint for

noise attenuation, the minimal SNR takes the value(k?1 = 6, k?2 = 6).

In Fig. 5.3, the effect of the enforced noise attenuation on the solution set of

K is shown. The size of the feasibility set ofK decreases along withγ, which is

consistent with (5.5) for the the first order case.

5.1.2 Controller Design via Linear Matrix Inequality

In this section, we use LMI technique to solve the problem forthe general case.

To start with, we introduce the following theorem forSNR minimization.

Lemma 5.1.6. Consider the closed loop shown in Fig. 5.1. The optimization

problem

inf
K∈K

SNR ,

is equivalent to the following LMI minimization problem

min
XSNR,YSNR,ρ

ρ

subject to XSNR > 0 ,Φ(XSNR, YSNR, ρ) ≥ 0 and

Ψ(XSNR, YSNR) ≤ 0 ,

(5.11)

whereρ ∈ R,XSNR = X>
SNR ∈ Rn×n, YSNR ∈ R1×n,

Φ(XSNR, YSNR, ρ) ,

[

ρ YSNR

Y >
SNR XSNR

]

,

and

Ψ(XSNR, YSNR) ,







(

AXSNR +XSNRA
>

−BYSNR − Y >
SNRB

>

)

XSNRB

B>XSNR −1






.
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The optimal control gain is obtained as

K?
SNR = Y ?

SNR(X
?
SNR)

−1 ,

whereX?
SNR andY ?

SNR are the optimal solutions to the problem (5.11).

Proof. The proof is based on the classic LMI solution to the state feedbackH2

optimization synthesis problem for the following auxiliary deterministic closed

loop, composed of the plantG(s) and the controllerK(s):

G(s) =







A B

0 1

I 0






, K(s) = K ∈ R

1×n ,

with the objective function given by‖K(sI − A + BK)−1B‖2H2
. The proof is

completed by using the standard procedure given in [67]. �

Similarly, the noise attenuation can also be cast into LMI conditions, given by

the following lemma.

Lemma 5.1.7. Consider the closed loop in Fig. 5.1. The CNA level is less than

γ, if and only if we can find matrices0 < Xn = X>
n ∈ Rn×n, Yn ∈ R1×n that

satisfy the following LMI feasibility condition

Θγ(Yn, Xn) ,













(

AXn +XnA
>

−BYn − Y >
n B

>

)

B XnC
>

B> −1 0

CXn 0 −γ2













≤ 0 . (5.12)

The resulting control gain is obtained as

Kn = YnX
−1
n .

Proof. Consider the following auxiliary systemG and the controllerK respec-

tively

Gn(s) =







A B B

C 0 0

I 0 0






, K(s) = Kn ∈ R

1×n .
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The transfer function from the disturbance to the performance measurement is

calculated as

S(s) = C(sI− A+BKn)
−1B ,

which is identical toTzn(s). Subsequently we can use standard LMI arguments to

obtain the feasibility sets ofXn andYn that satisfy‖Tzn(s)‖H∞
≤ γ. The readers

can refer to [67] for details. �

It is easy to see that theproblemis equivalent to minimizingρ over all ma-

tricesXSNR, YSNR, Xn, Yn, ρ that satisfy (5.11) and (5.12). While the optimization

problems in (5.11) and (5.12) are convex themselves, the joint one is not convex.

Therefore we enforce the condition

X = XSNR = Xn andY = YSNR = Yn

to obtain the convexity, admittedly with some degree of conservatism. Indeed,

the same treatment is widely used in mixedH2/H∞ problems, such as [72]. The

above argument proves the following main theorem.

Theorem 5.1.8.Given a desired channel noise attenuation levelγ, a lower bound

for the required channelSNR of the closed loop system is obtained via the follow-

ing LMI optimization problem:

min
X,Y

ρ

Subject to X > 0 ,Φ(X, Y, ρ) > 0

Ψ(X, Y ) ≤ 0 andΘγ(X, Y ) ≤ 0 .

(5.13)

The lower bound of theSNR is given asρ?, which is the optimal value obtained

in (5.13). The corresponding controller is given as

K? = Y ?(X?)−1 ,

whereX?, Y ? are the resulting values of the decision variablesX andY respec-

tively.

Remark 5.1.9. In this section, only the full state feedback is considered.How-

ever, the same approach can be easily extended to output feedback case.
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−K

x(t)

Figure 5.1: Closed-loop system
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5.2 Vector Gaussian Channel

Here we consider the case where the control signal is a vector, and it is transmit-

ted through a vector Gaussian channel, which is also a simplecase of a MIMO

channel. In applications, this scenario represents the case, where actuators and

controllers are geographically distributed and multiple transmitters and receivers

are therefore employed to conduct the communication task, as shown in Fig. 5.4.

From the perspective of wireless communication, a multipleaccess system with

multiple antennas at the base-station allows several users, who are spatially sepa-

rated, to communicate simultaneously. Moreover, the channel fading in the point-

to-point communication can be overcome or even utilized by MIMO communica-

tion schemes [73].

.
.
.

.
.
.

u(t)

n1(t)

n2(t)

nm(t)

u1(t)

u2(t)

um(t)

e(t)

e1(t)

e2(t)

em(t)

ẋ(t) = Ax(t) +Bu(t)

z(t)

−K

x(t)

Figure 5.4: MIMO Channel

The channel is modeled as follows.

u(t) = He(t) + n(t) t ≥ 0, (5.14)

wheree(t) ∈ Rm is the channel input, andu(t) ∈ Rm is the channel output,

n(t) is a m dimensional Gaussian white noise process withEn(t) = 0 and

En(t)n> = σ2
nI, andH ∈ Rm×m is a channel gain matrix, which is assumed

to be deterministic here. The channel input is required to satisfy the following

power constraint as

Ee>(t)e(t) = trace(E(e(t)e>(t))) ≤ P ∀t ≥ 0

for some pre-specified input power levelP > 0. Similar to the scalar case, the
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power of the channel inputEe>(t)e can be also represented as

trace(E(e(t)e>(t))) =
1

2π

∫ ∞

−∞

tracefe(jω)dω .

Here theSNR is similarly defined as

SNR :=
P
σ2
n

.

5.2.1 State Feedback Stabilization

In this section, we design a controller/transmitterK, such that the closed loop

system satisfies the power constraintP. We can then formulate the following

theorem for the solution ofSNR constrained state feedback stabilization.

Lemma 5.2.1. Consider the feedback configuration in Fig. 5.4, where we have

min trace(Ω) (5.15)

subject to XSNR > 0 , Φ̃(XSNR, YSNR,Ω) > 0 and

Ψ̃(XSNR, YSNR) ≤ 0 ,

in whichΩ ∈ Rm×m,XSNR = X>
SNR ∈ Rn×n, YSNR ∈ Rm×n,

Φ̃(XSNR, YSNR,Ω) ,

[

Ω YSNR

Y >
SNR XSNR

]

,

and

Ψ̃(XSNR, YSNR) ,







(

AXSNR +XSNRA
>

−BYSNR − Y >
SNRB

>

)

XSNRB

B>XSNR −I






≤ 0.

The optimal control gain is obtained as

K?
SNR = H−1Y ?

SNR(X
?
SNR)

−1 ,

whereY ?
SNR andX?

SNR are the solutions of the optimization problem.

Proof. Note that the power of the channel input can be represented as

Ee(t)e>(t) =
1

2π

∫ ∞

−∞

tracefe(jω)dω
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=
σ2

2π

∫ ∞

−∞

trace(Tne(jω)T
∗
ne(jω)dω

= ‖Tne‖H2σ
2 , (5.16)

where the transfer functionTne(s) is written as

Tne(s) = HK(sI− A+BHK)−1B . (5.17)

Therefore the problem is reduced to the followingH2 optimization problem:

inf
K

‖Tne‖H2 .

To minimize the channelSNR, we consider the following auxiliary determinis-

tic closed loop, composed of the plantG(s) and the controllerK(s) :

G(s) =







A B

0 1

I 0






, K(s) = HK,K ∈ R

m×n ,

for which we minimize theH2 norm ofTne(s). The solution can be obtained by

solving the standardH2 optimal control problem via LMIs [67]. �

Similar to the scalar case, the noise attenuation is also presented via relevant

LMI conditions in the following lemma.

Lemma 5.2.2. Consider the closed loop in Fig. 5.4. The noise attenuation level is

less thanγ, if and only if we can find matrices0 < Xn = X>
n ∈ Rn×n, Yn ∈ Rm×n

that satisfy the following LMI feasibility condition

Θ̃γ(Yn, Xn) ,












(

AXn +XnA
>

−BYn − Y >
n B

>

)

B XnC
>

B> −I 0

CXn 0 −γ2I













≤ 0 . (5.18)

The resulting control gain is obtained as

Kn = H−1YnX
−1
n .

Then we have the following theorem.
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Theorem 5.2.3.Given the channel noise attenuation levelγ, a lower bound for

the required channelρ of the closed loop system is obtained via the solution of the

following LMI EVP problem:

min
X,Y

trace(Ω)

Subject to X > 0 , Φ̃(X, Y,Ω) > 0

Ψ̃(X, Y ) ≤ 0 andΘ̃γ(X, Y ) ≤ 0 .

(5.19)

The (sub)optimal value ofSNR is given as trace(Ω?), and the corresponding con-

troller is given as

K? = Y ?(X?)−1 ,

whereX?, Y ? are the optimal values of the decision matricesX andY respec-

tively.

5.3 Numerical Example

In this section we will give a simple example to illustrate the proposed algorithm.

We consider the following state space realization of a3rd order LTI system:

A =







4 1 0

0 2 1

0 0 2






, B =







0 0.5

0 0

1 0






,

C =
[

0 0 1
]

.

The vector Gaussian channel has two inputs and two outputs, where the Gaus-

sian noise vectorn(t) ∈ R2 andEn(t) = [0, 0]>,En>(t)n(t) = I, and the channel

matrix are given as

H =

[

1 0.2

0.2 1

]

.

We first calculate the control gains(K) and the minimal channel input power

(‖Ten(jω)‖2H2
, for different values ofγ. The result is summarized in the following

table.
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γ min ‖Ten‖2H2
K

0.1 22.5095

[

−2.9905 58.9790 19.0237

16.5871 −8.4777 −3.6414

]

0.5 16.7534

[

−2.5710 21.5600 9.6628

16.4738 −0.2014 −1.5698

]

1 16.2293

[

−2.4630 17.8123 8.7206

16.4472 0.7493 −1.3309

]

10 16.0064

[

−2.3994 15.9983 8.2658

16.4279 1.2303 −1.2101

]

Upon obtaining the control gains for differentγs we can compare the corre-

sponding PSDs of the observation signalz, which are depicted in Fig. 5.5. As we
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Figure 5.5: Power Spectral Density ofz for different noise attenuation levels

can see from Fig. 5.5, settingγ lower implies that the impact of the channel noise

on the observation signalz is smaller.

Fig. 5.6 shows the relation between the minimalSNR and the noise attenuation

levelγ.
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Figure 5.6: MinimalSNR (power ofz) versusγ

5.4 Conclusion

In this chapter, we have considered the channel noise attenuation problem for

feedback control over both scalar and vector Gaussian channels. An effective

LMI approach is proposed and verified. Future development includes uncertain

systems and output feedback.
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CHAPTER 6

OPTIMAL ESTIMATION OVER
GAUSSIAN CHANNELS WITH

NOISELESS FEEDBACK

The chapter is organized as follows. In Section 6.1, we introduce the models

for both the channel and the plant, and the design problem statement. Section

6.2 discusses a scalar version of the problem, which leads tothe development

of the solution in Section 6.3. A numerical example is analyzed in Section 6.4.

We conclude the chapter with different problems for future research directions in

Section 6.5.

6.1 Problem Formulation

In this section we state the problem formulation. The schemeis depicted in

Fig. 6.1 where the transmitter has the access to the time-history of the channel

output via a noiseless feedback.

• The plant of interest is given by the followingn dimensional linear SDE

dx(t)

dt
= Ax(t) ,x(0) = x0 . (6.1)

whereA ∈ Rn×n. To ensure the solutionx(t) of (6.1) is Gaussian, the initial

valuex0 is also assumed to be Gaussian. Also,Ex0x
>
0 is not singular.

• The communication part of the closed loop is modeled as an additive white

Gaussian channel

dv(t) = z(t)dt+ σdW(t) , (6.2)

wherez(t) is the channel input generated by the signalxt
0, W(t) is a stan-

dard Wiener process andv(t) is the channel output. An average power

constraint is imposed on the channel input:

lim sup
T→∞

1

T

∫ T

0

Ez2(t)dt ≤ P ,
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Figure 6.1: State Estimation via Noiseless Feedback

for someP > 0. Slightly different from most of the communication theory

literature, the power constraint here is defined over an infinite time hori-

zon to get aligned with some notions in control theory such asasymptotic

stability. We also define the noise-to-signal ratio of the channel as

SNR ,
P

σ2
.

It is well-known that the channel capacity isC = SNR/2 [48].

• The transmitter (encoder) is a causal map defined asz(t) , f(t,x0,v
t
0).

The receiver(decoder)/estimator is also a causal mapx̂(t) , g(t,vt
0), where

x̂(t) is the estimation of the statex(t). The error signal is defined asx̃(t) ,

x(t)− x̂(t).

• As a standard assumption, all the random variables (processes) in this sys-

tem are defined in a filtered probability space(Ω,F ,Ft,P).

Definition 6.1.1. The unique solutionX(t) of a stochastic differential equation is

said to be mean-square exponentially stable with convergence rateν < 0 if

lim sup
t→∞

1

t
logE‖X(t)‖2 ≤ ν
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The objective of joint estimation/communication design isto identify a trans-

mitter and receiver/estimator combination such that the error dynamics with state

x̃(t) is mean-square exponentially stable with minimal decayingrate.

6.2 Estimation, Communication and Control over
Gaussian Channel: A Scalar case study

In this section we review a scalar estimation problem with communication con-

straint, which was originated by [48] and [36]. Some modifications and innovative

observations are made to shed a light on the main result to be presented in the next

section.

6.2.1 Transmitting a Gaussian Random Variable

We consider the simplest case, where an analog scalar Gaussian variablee is to be

transmitted through a continuous-time AWNG channel. We further assume that

the transmitter (encoder) takes the following affine structure for easy computation

and Guassianity off , given by

f(t, e,vt
0) , φ(t,vt

0) + ψ(t,vt
0)e . (6.3)

For this given structure of information transmission scheme, the minimal mean-

square error for each time instancet is achieved by choosing the estimationê(t) =

E[e|vt
0], which is not readily calculable in general case. So one needs to show a

way to construct the corresponding receiver/estimator, which yields ê(t). Upon

that, constrained by the channel input power levelP, parameter optimization for

f andg needs to be conducted to reach minimal mean square error. In other words,

the problem of optimal estimation is solved in two steps:

1. For the given transmitter (6.3), obtain the estimation schemeg with output

ê(t);

2. Solve the optimization problemming,f E(ẽ
2(t)) subject to power constraint

P.

The first step is straightforwardly obtained by the conditional Kalman-Bucy

filter.
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Lemma 6.2.1. Consider the linear transmission strategy in (6.3). Then

dê(t) =
1

σ2
P (t)ψ(t,vt

0)[dvt − φ(t,vt
0)dt− ψ(t,vt

0)ê(t)dt]

dP (t)

dt
= − 1

σ2
P 2(t)ψ2(t,vt

0) ,

(6.4)

whereP (t) , E[(ẽ(t))2|vt
0], P (0) = E(m̃(0))2 andê(0) = Ee.

Proof. The proof is just an application of Kalman-Bucy filter for thedynamic

system withe(t) as the system state andv(t) as the noise corrupted observation.

de(t) = 0

dv(t) = [φ(t,vt
0) + ψ(t,vt

0)e]dt+ σdW(t) .
�

The second step is solved by the following lemma.

Lemma 6.2.2. Within the class of linear transmission strategies, which satisfy

the condition of (6.2.6) and the power constraint, optimal transmission strategyφ∗

andψ∗ are given by

φ∗(t,vt
0) = −σ

√

SNR

P (0)
exp

(

SNR

2
t

)

ê(t)

ψ∗(t,vt
0) = σ

√

SNR

P (0)
exp

(

SNR

2
t

)

.

The optimal mean square error for this strategy is

Eẽ2(t) = P (0) exp (−SNRt)

The proof of the lemma can be found in [36].

Remark 6.2.3. Not surprisingly, this feedback coding strategy design canbe re-

garded as feedback stabilization problem, where the state to be stabilized, in the

mean-square sense, is defined asẽ(t). The stabilization problems can be solved

conveniently by using Lyapunov’s indirect method. More specifically, one can

employ the Lyapunov argument developed in stochastic setting by choosing the

candidate Lyapunov function asV (ẽ(t)) = 1
2
ẽ2(t), and ensure its negative deriva-

tive by designing proper transmission schemes. The detailsof this approach are

not discussed here.
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Remark 6.2.4. It is also shown in [36] that the solutionφ∗(t,vt
0) + ψ∗(t,vt

0)e is

optimal among nonlinear functionals ofe (i.e. f(t, e,vt
0)).

Remark 6.2.5. This feedback communication scheme can be regarded as an continuous-

time extension of the S-K method.

6.2.2 Transmission of a signal

Next we go one step further by replacing the constant sourcee by a dynamic one

x(t), evolving according to the linear scalar differential equation with parameter

λ ∈ R and a Gaussian initial valuex0

dx(t)

dt
= λx(t), x(0) = x0. (6.5)

Following the same idea in (6.4), we can consider the Kalman-Bucy filter for

the dynamics

dx(t) = λx(t)dt,

dv(t) = [φ(t,vt
0) + ψ(t,vt

0)x(t)]dt+ σdW(t).

Next, we proceed with the two-step strategy. The following lemma provides

a structure of decoder/estimator, which yields the optimalestimationx̂(t) =

E[x(t)|vt
0].

Lemma 6.2.6. Consider the linear transmission strategy in (6.3) (wheree is re-

placed byx) and the source (6.5). Then the optimal estimation ofx(t) is given

as

dx̂(t) = λx̂(t)

+
1

σ2
P (t)ψ(t,vt

0)[dvt − φ(t,vt
0)dt− ψ(t,vt

0)x̂(t)dt]

dP (t)

dt
= 2λP (t)− 1

σ2
P 2(t)ψ2(t,vt

0) ,

(6.6)

whereP (t) , E[x̃2|vt
0], P (0) = Ex2

0 andx̂(0) = Ex0.

Next we proceed to the step two. Towards this end, the differential equation with
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equality ofP (t) in (6.6) is rewritten as

Ṗ (t) =

(

λ− 1

σ2
P (t)ψ2(t,vt

0)

)

P (t) ,

and solved by

P (t) = P (0) exp

(
∫ t

0

(

2λ− 1

σ2
P (τ)ψ2(τ,vτ

0)

)

dτ

)

.

Taking the expectation and using Jensen’s inequality, we have

Ex̃2(t) = P (0) exp

(
∫ t

0

(

2λ− 1

σ2
EP (τ)ψ2(τ,vτ

0)

)

dτ

)

,

where Fubini’s theorem is also used to interchange integration and expectation.

The Lyapunov exponent can be calculated as

lim sup
T→∞

1

T
logEP (T )

≥ 2λ− 1

σ2
lim inf
T→∞

1

T

∫ t

0

EP (t)ψ2(t,vt
0, t)dt

≥ 2λ− 1

σ2
lim sup
T→∞

1

T

∫ t

0

EP (t)ψ2(t,vt
0, t)dt .

(6.7)

It is clear that the minimization ofP (t) is reduced to the choice ofψ that mini-

mizes 1
σ2 lim supT→∞

1
T

∫ t

0
EP (t)ψ2(t,vt

0, t)dt. Towards this end, we have

P ≥ lim sup
T→∞

1

T

∫ T

0

E[φ(t,vt
0) + ψ(t,vt

0)x(t)]
2

= lim sup
T→∞

1

T

∫ T

0

E[φ(t,vt
0) + ψ(t,vt

0)x̂(t)]
2

+ lim sup
T→∞

1

T

∫ T

0

Eψ2(t,vt
0)P (t)dt

≥ lim sup
T→∞

1

T

∫ T

0

Eψ2(t,vt
0)P (t)dt .

A lower bound of the Lyapunov exponent ofEP (t) is given as

lim sup
T→∞

1

T
logEP (T ) ≥ 2λ− P

σ2
= 2λ− SNR . (6.8)
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The above lower bound can be achieved on

ψ2(t,vt
0)P (t) = P

and

φ(t,vt
0) + b(t,vt

0)x̂(t) = 0 , ∀t ≥ 0 ,

which in turn gives the optimal solution of

ψ∗(t,vt
0) = σ

√

SNR

P (0)
exp

(

SNR − 2λ

2
t

)

and

φ∗(t,vt
0) = −σ

√

SNR

P (0)
exp

(

SNR − 2λ

2
t

)

x̂(t) .

Remark 6.2.7. Eqn. (6.8) shows that for the variance ofx̃(t) to be exponentially

decaying, one needsλ < SNR
2

= C. In other words, converging estimation

is achievable provided that the degree of instability of thesource is less than the

channel capacity. This observation can be roughly explained by Shannon’s source-

channel separation principle [4]. The unstable process produces extra information

at the steady rateλ(≥ 0), which needs to me transmitted in a timely manner for

the vanishing of the mean square error (or rate distortion function). Therefore

adequate channel capacity needs to be allocated. For an alternative in-depth treat-

ment of unstable sources, by resorting to the concept ofany time capacity, one is

referred to [74].

6.2.3 Estimation Without Feedback

As a special case, the non-feedback communication scheme can be considered by

proceeding to a similar argument as in the case when feedbackis available. In

fact, without the knowledge ofvt
0 , the optimal estimation ofx(t), utilized on the

transmitter’s sid,e reduces to its expectation:Ex(t) = exp(λt)Ex0 andφ(t,ut
0)

becomesφ(t), which is a non-random function. Consequently the output ofthe

estimator verifies the following dynamics:

dP (t)

dt
= 2λP (t)− 1

σ2
P 2(t)b(t) ,
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which is solved by

P (t) =
exp(2λt)

P−1(0) + 1
σ2

∫ t

0
ψ2(τ,vτ

0) exp(2λτ)dτ
.

Similar to the previous case, we have the optimal solution

φ∗(t) = −σ
√

SNR

P (0)
exp(−λt)Ex0

and

ψ∗(t) = σ

√

SNR

P (0)
exp(−λt)

Remark 6.2.8. The following discussion further reveals the dependency ofthe

optimal performance on the nature of the source dynamics:

• Stable source (λ < 0): P ∗(t) is exponentially decaying at the rate|λ|, which

is given by the inequality

P ∗(t) ≤ P (0) exp(−|λ|t)

• Neutrally stable source (λ = 0): P (t) presents a much slower decay rate

given by

P ∗(t) =
P (0)

1 + SNRt
.

The behavior ofP (t) in above equation is similar to the one that has been

achieved by traditional sphere-packing coding strategy indiscrete-time set-

ting, with code word lengthn replaced by the timet.

• Unstable source (λ > 0): P (t) diverges with arbitrary instability rate, since

P ∗(t) =
P (0) exp(|λ|t)
1 + SNRt

.

However, if only the finite horizon problem is considered, one can always

find a global minimum.
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6.3 Main Result: Optimal Estimation Over A
Gaussian Channel

With the clear identification of the relation between communication and estima-

tion in the previous section,we are now ready to tackle the main problem. The

solution is given by using a water-filling type of argument.

6.3.1 Estimation Structure & a Dual Control Problem

Like in the scalar case, we first consider the optimal estimation problem for the

vector dynamics

dx(t) = Ax(t)dt,

dv(t) = φ(t,vt
0)dt+ ψ>(t,vt

0)x(t) + σdW(t) .

The transmitter is expressed asφ(t,vt
0)dt+ψ

>(t,vt
0)x(t). The functionsφ(t,vt

0) ∈
R ψ(t,vt

0) ∈ Rn are nonlinear functions to be determined to minimize the Lya-

punov index of the error variance, while ensuring the average power of channel

input below the constrained levelP .

For the given transmitting scheme, the following Kalman-Bucy filter is adopted

for the optimal estimation ofx(t),

dx̂(t) = Ax̂(t)dt

+
1

σ2
P (t)ψ(t,vt

0)[dv − φ(t,vt
0)dt− ψ>(t,vt

0)x̂(t)dt],

Ṗ (t) = AP (t) + P (t)A>

− 1

σ2
P (t)ψ(t,vt

0)ψ
>(t,vt

0)P (t) ,

(6.9)

whereP (t) := E
[

x̃(t)x̃>(t)|vt
0

]

.

Remark 6.3.1. One can consider the dual control problem with plant dynamics

given by

dx(t)

dt
= Ax(t) + Bu(t),

dv(t) = ψ>(t,vt
0)x(t)dt + σdW(t) ,

(6.10)

where the second equation models the AWGN channel identicalto (6.2). If the
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control signalu(t) is designed via the typical LQG method [75], then the sepa-

ration principle further shows that the variance of the error between the state and

its estimated value is identical toEP (t) in (6.9). Therefore, to control the plant

(6.10) over the AWGN channel, one can design a proper estimator to cope with

the communication constraint, and the control part, which falls into the classical

linear quadratic framework, is relatively independent, given the convergence of

the estimation. Admittedly, the overall closed loop performance is fundamentally

restricted by the communication-constrained estimation,no matter how well the

controller is designed. On can further refer to [76] for the same property in gen-

eral nonlinear systems. This estimation-control separation also explains why our

focus is on the estimation part, whose relationship with communication constraint

is unveiled in detail subsequently.

6.3.2 Solving The Estimation Problem: A water-filling approach

We first introduce a spaceB, which is a real Hilbert space with internal product

defined as

〈α, γ〉 , lim
T→∞

1

T

∫ T

0

α>(t)γ(t)dt α(·), γ(·) ∈ B . (6.11)

We sayβ(·) ∈ B, if 〈β, β〉 exits and is less than∞. If β(·) ∈ B, then the

limT→
1
T

∫ T

0
β(t)β>(t) exists.

Next, we define a new quantityβ(t) , 1
σ
P 1/2(t)ψ(t,vt

0), and assume that

β(·) ∈ B.

Remark 6.3.2. Rigorously speaking, rather than a deterministic functionof t as

its notation suggests,β(t) is a stochastic process on theσ-algebra generated byvt
0.

However, we implicitly drop the randomness for three reasons: (1) We can always

chooseψ(t,vt
0) = σP−1/2(t)β(t) to make it non-stochastic; (2) The scalar cases

in the previous section suggest that deterministic choicesof β(t) suffice for the

optimality, which is also verified in the later discussion for this vector case; (3)

This simplification reduces an otherwise accusive math discussion, while keeps

the main point clear. For example, we see obviously thatEP (t) = P (t), which

will be useful in the later discussion.

The next lemma links Lyapunov exponent of the the variance ofx̃ with a matrix

eigenvalue.
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Lemma 6.3.3. If P (0) is non-singular, and assume

∫ T

0

(

lim
T→∞

1

T

∫ T

0

β(t)β>(t)dt− β(t)β>(t)

)

dt ≺M (6.12)

for some symmetric matrixM . then the following ine quality holds:

lim sup
t→∞

1

t
logE‖x̃(t)‖2

≤ λmax

(

A> + A− lim
t→∞

1

t

∫ t

0

β(τ)β>(τ)dτ

)

.

(6.13)

The proof is follows the same line in [6].

Remark 6.3.4. Note that the assumption is not that strict. If one chooseβ(t) =

[
√
2 sin(t),

√
2 cos(t)]>, it is easy to see

∫ T

0

(

lim
T→∞

1

T

∫ T

0

β(t)β>(t)dt− β(t)β>(t)

)

dt ≺
[

2 1

1 2

]

Note thatλmax cannot made arbitrarily small due the power constraint, clearly

shown by the following inequality

P ≥ lim sup
T→∞

1

T

∫ T

0

E[φ(t,vt
0) + ψ>(t,vt

0)x(t)]
2dt

≥ lim sup
T→∞

1

T

∫ T

0

E[φ(t,vt
0) + ψ>(t,vt

0)x̂(t)]
2dt

+ Eψ>(t,vt
0)P (t)ψ(t,v

t
0)dt

≥ lim sup
T→∞

1

T

∫ T

0

Eψ>(t,vt
0)P (t)ψ(t,v

t
0)dt

= σ2〈β, β〉 ,

(6.14)

where the second inequality follows from the orthogonalitybetweenx̃(t) and

x̂(t).

Hence, an optimization problem could be formulated to achieve the lowest Lya-

punov exponent upperbound by the choice ofβ(·).

98



inf
β(·)∈B

λmax

(

A> + A− lim
T→∞

1

T

∫ T

0

β(t)β>(t)dt

)

s.t. 〈β, β〉 ≤ SNR and

A> + A− lim
T→∞

1

T

∫ T

0

β(t)β>(t)dt ≺ 0 .

(6.15)

Another related optimization problem can be formulated in the same fashion,

where the optimalβ(·) must achieve a minimal channel SNR, subject to closed

loop stability:

inf
β(·)∈B

〈β, β〉

s.t. A> + A− lim
T→∞

1

T

∫ T

0

β(t)β>(t)dt ≺ 0 .

For both problems, once the optimal decision functionβ∗(·) is obtained, the op-

timal transmitter and estimator are straightforwardly obtained. Unfortunately, it

is very hard, if not impossible to obtainβ∗(t) by using numerical routines, be-

cause these optimization problems are all inherently infinite-dimensional. Here

we propose a solution inspired by the water-filling strategy.

Before jumping into the detailed development, an immediateobservation can

be made regarding the minimal SNR for mean square stability.

Proposition 6.3.5. If the error dynamics are mean-square exponentially stable,

then channel SNR statistics for any causal transmission anddecoding/control is

given by
SNR

2
>

1

2

∑

i

λ+i (A+ A>) ≥
∑

j

<+ (λj(A)) (6.16)

Proof of Proposition 6.3.5:Note that matricesA+A>, limT→∞
1
T

∫ T

0
β(t)β>(t)dt

and the difference of the two are Hermitian, so all their eigenvalues are real and

can be ordered asλ1 ≥ λ2, ...,≥ λn for convenience. Then using Theorem III.4.1

of [77] and noting the fact thatlimT→∞
1
T

∫ T

0
β(t)β>(t)dt − (A + A>) � 0, we

have

0 <
k
∑

i=1

λi

(

lim
T→∞

1

T

∫ T

0

β(t)β>(t)dt− (A+ A>)

)

≤
k
∑

i=1

λi

(

lim
T→∞

1

T

∫ T

0

β(t)β>(t)dt

)

−
k
∑

i=1

λi
(

A + A>
)

,

(6.17)
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for all k ≥ 1. Particularly, the inequality (6.17) is also valid fork = κ ,

maxi
{

i|λi(A+ A>) ≥ 0
}

, in which we have

κ
∑

i=1

λi
(

A + A>
)

<

κ
∑

i=1

λi

(

lim
T→∞

1

T

∫ T

0

β(t)β>(t)dt

)

≤
n
∑

i=1

λi

(

lim
T→∞

1

T

∫ T

0

β(t)β>(t)dt

)

= lim
T→∞

1

T

∫ T

0

β>(t)β(t)dt ≤ SNR .

(6.18)

The first inequality in (6.16) is straightforward to obtain.The second inequality is

a direct application of Proposition III.5.3 of (3.22) in [77]. The detailed proof is

omitted. �

Now we are ready to construct an optimal information transmission scheme.

More specifically, given the channel SNR level, the smallestmean-square conver-

gence rateν of the state is obtained via the choice ofβ(·). The complete algorithm

follows these steps.

Basis Construction

Choose a set of orthonormal basis functionsβi(·) ∈ B, i = 1, 2, ..., n such that

〈βi, βj〉 = δij , i, j = 1, 2, ..., n

whereδij is the Kronecker’s delta. There are a number of ways to construct the

basis functions, e.g. ifn = 2, we can simply choose

β1(t) =
√
2 sin(ωt), andβ2(t) =

√
2 cos(ωt) ω > 0.

Weight Choice by Water-filling

Choose an orthonormal matrixQ ∈ R
n×n such that

Q>(A+ A>)Q = diag{λ1, λ2, ..., λn} ,
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whereλi is short forλi(A + A>). Thenβ(·) can be parameterized by the basis

constructed in 1) with a set of weighting factorsη1, η2, ..., ηn ≥ 0 as

Q>β(t) = [η1β1(t), η2β2(t), ..., ηnβn(t)]
> .

Based on this fact, the following identity is evident and will be useful later for

〈β, β〉 = 〈Q>β,Q>β〉 =
n
∑

i=1

η2i .

Then the convergence rate minimization problem (6.15) can be reduced to the

following finite dimensional case

min
ηi,ν

ν

s.t.
n
∑

i=1

η2i ≤ SNR and(λi − ν)+ ≤ η2i ,

where the positivity ofη2i brings up(λi − ν)+ ≤ η2i . This standard optimization

problem can be solved by using the Lagrange multipliersξi ∈ R, i = 1, 2, ..., n

andL ∈ R. The objective function is re-written as

J , ν +
n
∑

i=1

ξi((λi − ν)+ − η2i ) + L

(

n
∑

i=1

η2i − SNR

)

.

Differentiating with respect toη21, ...., η
2
n andν respectively, we have

0 =
∂J

∂η2i
= −ξi + L

0 =
∂J

∂ν
= 1−

∑

i∈S

ξi , S , {i|(λi − ν) ≥ 0}

Solving the set of equations and using Kuhn-Tucker conditions, we have the opti-

mal assignment of the energy

η∗2i = (λi − ν∗)+ ,
n
∑

i=1

η∗2i = SNR
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Figure 6.2: Water Filling For Optimal Energy Distribution

The optimal convergence rateν∗ solves

n
∑

i=1

(λi − ν∗)+ = SNR

The solution is depicted graphically in Fig. 6.2. The vertical levels indicate the

eigenvalues of the matrixA+A>, and the vertical axis is downward pointing. As

the input power is increased from zero, we allocate the powerto the eigenspace

associated with the largest eigenvalue. When more power becomes available, it

will be spilled over other eigenspaces to achieve an even ”water level”.

Optimal Transmitter and Estimator

Notice that (from last step)

〈β∗, β∗〉 =
n
∑

i=1

η∗2i = SNR ,

and the equality in (6.14) holds. Then we have the optimalityachieved on

φ∗(t,vt
0) + ψ∗>(t,vt

0)x̂(t) = 0 .

Expressed in terms ofβ∗(t), we have the optimal transmitter design:

φ∗(t,vt
0) = −β∗>(t)P ∗− 1

2 (t)x̂(t) ψ∗(t,vt
0) = P ∗− 1

2 (t)β∗(t) ,

102



whereP ∗(t) solves a variation of differential Lyapunov equation givenby (P ∗(0) =

P (0))

Ṗ ∗(t) = P ∗(t)A+ A>P ∗(t)− P ∗ 1
2 (t)β∗(t)β∗>(t)P ∗ 1

2 (t) . (6.19)

and the estimator/receiver is given as

dx̂(t) = Ax̂(t)dt+
1

σ2
P ∗− 1

2 (t)β∗(t)dv(t) , x̂(0) = x̂0

Remark 6.3.6. Note that the time profile ofP ∗(t) (and henceψ∗(t,vt
0)) can be

determined off-line by integrating (6.19).

6.4 Simulation: Estimation via Amplitude Modulation

In this section we demonstrate our approach by using an analog amplitudes modu-

lation (AM) method to transmit the estimation error. The schematic block diagram

is shown in Fig. 6.3, where we do not assume any digitalization (A/D, D/A, quan-

tization etc.) for simplicity. Here the plant is given as

dx(t)

dt
=

[

0 1

−6 3.5

]

x(t) ,x(0) = [1 1]> .

The communication channel is corrupted by a standard white Gaussian noise

(Ẇ(t), σ2 = 1) and is assumed to have the power constraintP = 13 (SNR =

P/σ2 = 13 ) .

The design procedure follows the three steps proposed in theprevious section,

following an initialization stage:

1. The estimator is initialized witĥx0 = [0, 0]>, andP (0) is set to a2× 2 unit

matrix;

2. We choose the basis functions as

β1(t) =
√
2 sin(200πt) andβ2(t) =

√
2 cos(200πt)

respectively .
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3. We conduct the water filling algorithm to determine the optimal conver-

gence rateν∗ = −3 and weightsη1 = 0.6299 , η2 = 3.5501. In turn we

have

β∗(t) =

[

−0.7901 sin(200πt)− 2.3186 cos(200πt)

0.4114 sin(200πt) + 4.4532 cos(200πt)

]

4. The carrier wavesψ∗
1(t) andψ∗

2(t), as well as the estimator, can be generated

by solving the matrix differential equation (Ricatti).

Figure 6.4 shows the time-history of the state errorx̃(t); Fig. 6.5 shows the

modulated channel input and Fig. 6.6 shows the noise-corrupted channel output.

The simulation result is consistent with the theory developed in this chapter and

exhibits fast estimation error convergence in the presenceof channel noise and

power constraint. Compared with traditional amplitude modulation communica-

tions, where carrier waves are usually chosen as sinusoidalsignals with constant
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amplitudes, this method explicitly uses the knowledge of the signal dynamics (A)

to generate a set of carrier waves to meet the needs of optimalestimation. This

example also suggests that the method can be extended to morepractical scenarios

for the simplicity of amplitude modulation in communication systems.

6.5 Conclusion

In this chapter, we develop a design method to solve the optimal estimation prob-

lem with limited information. The objective is achieved by first fixing the struc-

ture of the transmitter and estimator by using conditional Kalman-Bucy filtering

theory. Then the optimal parameters of the given structure are determined by a

water-filling like technique by distributing the availablechannel input power to

properly address the state-space of the dynamics to be estimated. The resulting

communication/estimation scheme turns out to be surprisingly simple and fits into

the conventional amplitude modulation framework with modified carrier wave-

forms, as shown in the example. The future research includesextension to digital

communications and noisy feedbacks.
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CHAPTER 7

FUTURE RESEARCH

In this dissertation, a framework has been laid out to facilitate the in-depth analysis

of the closed loop trade-off in the presence of limited information. For the purpose

of synthesis , several approaches have also been proposed tofit the existing control

design methods into the systems with communication constraint. We list several

directions as possible future research

• Bode-like formula for time-varying systems. A similar framework based on

Chapter 2 can be readily utilized to derive a relevant information conser-

vation law for the closed loop with a time-varying plant. Thecentral issue

relies on the “degree” of instability, which can be possiblycharacterized

by a Lyapunov exponent. Not surprisingly, a certain dichotomy assumption

should be enforced on the plant to obtain the Lyapunov exponent.

• Bode-like formula for continuous-time switched systems. This topic would

combine the result of both Chapter 2 and Chapter 3. More specifically,

when the regularity conditions similar in Chapter 2 are imposed on the

continuous-time processes in the closed loop with Markov switching, the

discrete-time result of Chapter 3 can be readily extended tocontinuous-time

case.

• Control design in the presence of additive Gaussian channels. In Chapter

4 and 5, two approaches have been given for stationary and nonstationary

cases respectively. Rather than designing a simple controlgain, the fu-

ture research along this line relies on the encoding and decoding schemes.

Stochastic nonlinear control theory might be a suitable framework to work

on.
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