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Abstract

Given the rapid advancement of computer technology, the importance of administering

adaptive tests with polytomous items is in great need. With regard to the applicability of

adaptive testing using polytomous IRT models, adaptive testing can use polytomous items

of either rating scales, or in some testing situations of multiple choice. Additionally, the

availability of computerized polytomous scoring of open-ended items enhances such

applicability. This need promotes the research in polytomous adaptive testing (PAT).

This dissertation is an effort to focus on item selection methods, as a major component, in

polytomous computerized adaptive testing. So, it consists of five chapters that cover the

following:

Chapter 1 focuses on a thorough introduction to the item response theory (IRT)

models and adaptive testing related to polytomous items. Such an important overview

and introduction to basic concepts in test theory and mathematical models for

polytomous items is needed for the flow of consequent chapters. Chapter 2 is devoted to

the development of a central location index (LI) to uniquely represent the polytomous

item with a scale value parameter using most commonly used polytomous models. The

motivation and rationale to search for a central or an overall location parameter is twofold:

a) the confusion of multiple and different parameterizations for a polytomous item even

for the same model, and b) the unavailability of such single location parameter block the

usage of certain item selection methods in adaptive testing. Two approaches are used to

derive the proposed LIs, one is based on the item category response functions (ICRFs)

and the other is based on the polytomous item response function (IRF). As a result, four

LIs are proposed. Chapter 3 is particularly assigned to development of an item selection

method based on the developed location index and primarily assess its performance in the

PAT context relative to existing methods. This method belongs to the non-information

based item selection methods and we referred it as Matching-LI method. The results

support that this proposed method is promising and is capable to produce accurate ability

estimates and successfully manage the item pool usage. Chapter 4 introduces new item

selection methods taking in consideration the previous chapter’s results. The new

methods are the hybrid, stage-based information, polytomous a-stratification methods.
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The first two methods try to merge more than one criterion for selecting items of each

PAT (e.g., the hybrid method merges both the Matching-LI and maximum information

(MI) methods). The last method uses Matching-LI method within each stratum. Chapter

5 provides discussion, conclusions, and limitations and future research directions with

respect to important components of an adaptive testing program (i.e., item selection

methods, item response models, item banks, and trait versus attribute estimation).
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Chapter 1

Polytomous Item Response Models and Adaptive Testing

The current chapter provides an important overview and introduction to basic

concepts in test theory and mathematical models for polytomous items. This is required

to understand the proposed methods for item selection in computerized adaptive testing

for polytomous items that are described and studied in this dissertation.

Introduction

Item response theory (IRT) is critical to large-scale assessment, and computerized

adaptive testing (CAT) is considered one of the major modern developments of IRT. Until

recently, most of the research and applications of CAT focused on dichotomous items, and

only a few studies have investigated CAT with polytomous items and more specifically

polytomous item selection methods (Choi & Swartz, 2009; Dodd, De Ayala, & Koch, 1995;

van Rijn, Eggen, Hemker, & Sanders, 2002). The polytomous items are important for

various testing purposes such as education, personality, attitudes and more (Embretson &

Reise, 2000).

Both dichotomous and polytomous items are used in many standardized tests such

as state assessment measures. In addition, tests consisting of polytomous items are

preferable for one or more of the following reasons: (a) fewer polytomous items can attain

the same reliability compared to the dichotomous items, (b) the easiness of assessing some

traits using rating scales, and (c) the suitability of expressing item responses on an ordinal

scale (van der Ark, 2001).

Different models are available for modeling polytomous item responses. Examples

of such models are: the graded response model (GRM; Samejima, 1969), the nominal

response model (NRM; Bock, 1972), the partial credit model (PCM; Masters, 1982), and

the generalized PCM (GPCM; Muraki, 1992). The current study focuses on the work

related to the polytomous adaptive (PAT) system. Basically as in dichotomous CAT, PAT

consists mainly of four components (e.g., Dodd et al., 1995; Lima Passos, Berger, & Tan,

2007):

1. Item pool (or item bank).
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2. Item selection method.

3. Ability estimation procedure.

4. Stopping rule.

The first component in CAT is the pool of items that is used as a resource to

deliver adaptive tests. In dichotomous CAT, the item pool needs to contain enough

number of items to satisfy the purpose of testing (Lord & Novick, 1968). On the other

hand, an item bank composed of 30 polytomous items was considered sufficient to

successfully estimate the ability or trait level in PAT. This result did not take into

consideration the security of item banks in terms of item exposure rate, or the issue of

content balancing. In addition, the distribution of item bank information is another

problematic issue, such as skewed or bimodal distributions (Dodd et al., 1995). Therefore,

a larger item bank is required to deal with these issues.

The second critical component in adaptive testing to efficiently utilize the item

pool to sequentially select item after item depending on the examinee’s current ability

estimate (i.e., θ̂) until the end of test. This dissertation focuses on new item selection

rules for polytomous items.

The third issue in PAT is ability (or latent trait) estimation approaches. In the

literature, they can be classified into frequentist and Bayesian methods. Maximum

likelihood estimation (MLE) is a popular estimation method belonging to the first

category. Bayes modal (BM), maximum a posteriori (MAP), and expected a posteriori

(EAP) are Bayesian estimators used in CAT. Here we need to mention that ability

estimation procedures are under continuous development. Tao, Shi and Chang (2009)

proposed a new version of MLE to include scoring weights, called item-weighted likelihood

estimator (IWLE), into the process of estimation. That IWLE method is different from

Warm’s (1989) weighted likelihood estimation method.

The final component of a CAT algorithm is a stopping rule that terminates the

test. Different termination criteria to end a test exist. One approach is to administer a

fixed number of items. This approach is called fixed-length adaptive testing and it is

preferable in situations where the number of delivered items is a concern. Another
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approach that is used as a stopping rule is whether a predetermined measurement

precision has been achieved. The administration of items will continue until the standard

error of measurement is below an acceptable value (Embretson & Reise, 2000). The latter

approach is called variable-length adaptive testing. A third approach is to terminate the

test after a predetermined time is elapsed. A mixture of these approaches can be

practically used as well such as using both target precision and maximum number items a

stopping rule.

Toward the enhancement of PAT, the development and enhancement of item selection

criteria is our starting point.

The dissertation consists of five chapters: (a) the first chapter focuses on an

thorough introduction to the IRT models and adaptive testing related polytomous items,

(b) the second chapter is devoted to the development of a central location index to

uniquely represent the polytomous item with a scale value parameter using most

commonly used polytomous models, (c) the third chapter is particularly assigned to

development of an item selection method based on the developed location index and

primarily assess its performance in the PAT context relative to existing methods, (d) the

fourth chapter introduces new item selection methods taking in consideration the previous

chapter’s results, and (e) the fifth chapter provides discussion, conclusions, and limitations

and future research directions.

The reminder of this chapter covers different mathematical IRT models of

polytomous items, the connection among them, and the parameters describing item

properties, followed by explaining two item information measures, other modifications

applied to the original measures, and their relation to item selection criteria. Then, the

chapter concludes with defining the key terms used through out the research.

Polytomous IRT Models

Test items that have more than two response categories are called

polytomously-scored items. Both dichotomously and polytomously-scored items are

ubiquitous in educational and psychological testing. Due to the different scoring scheme,

polytomous IRT models should be used in item parameter calibration and ability

estimation.
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In the dichotomous item case, the test administrator classifies the observed

responses into one of two categories, correct or incorrect. This dichotomization treats all

incorrect answers as equivalent to one another. As such all the mathematical operations

required to answer an item on a mathematics test are considered una voce (i.e., as a

“single operation”). If an examinee correctly performs all the operations and their

response is categorized as a correct response, they receive a value of 1. Otherwise, the

response is categorized in the incorrect category with assigned value of 0. The value

assigned to responses reflects only whether the examinee has correctly performed

(heuristically) one “operation” (De Ayala, 2009).

In contrast, consider the following mathematical test item as an illustration:

(6/3) + 2 =?.

A scoring rubric for this item might be based on the operations or subtasks needed to

answer this item correctly. Therefore, for this item i there exist three possible integer

scores xi for this item, xi = 0, 1, or 2. These scores are called category scores that might

indicate the number of successfully completed operations. In general, polytomous test

items are scored in a way that reflects a particular score category out of m+ 1 scores (i.e.,

x = 0, 1, ...,m) that an examinee has achieved, been classified into, or endorsed. Examples

of this includes the case where a person gets a score of 2 on an item that is scored from 0

to 4 or a person selects a “disagree” option on a 5-point Likert-scale item (De Ayala, 2009;

Ostini & Nering, 2010).

With regard to the applicability of adaptive testing using polytomous IRT models,

CAT can use polytomous items of either rating scales, or in some testing situations of

multiple choice (Wang & Wang, 2001). Additionally, the availability of computerized

polytomous scoring of open-ended items enhances such applicability as suggested by

Bennet, Steffen, Singley, Morely, & Jacquemin’s (1997) research.

For the purpose of modeling polytomous data, polytomous IRT models were

proposed. One classification of the polytomous IRT models is in terms of whether the

category responses are treated as nominal and ordinal variables. In another classification
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scheme, polytomous IRT models fall in one of two main categories based on the

mathematical form of the model (Thissen & Steinberg, 1986). One category consists of

difference models such as Samejima’s graded response model (GRM; Samejima, 1969), and

the other consists of divided-by-total models such as the nominal response model (NRM;

Bock, 1972). For ordinal polytomous models, Mellenbergh (1995) defined different

classification scheme in terms of the models’ different order-preserving mechanisms in

forming the dichotomies of response categories. He classified them into three classes:

1. the cumulative probability (or graded-response) models.

2. continuation ratios (or sequential) models.

3. the adjacent-category (or partial-credit) models.

In the following subsections, a brief description of each model of the most commonly used

models, its parameterization, the meaning of the models’ parameters, and relationships

among these models are provided.

Nominal response model. For nominal item responses, Bock (1972) proposed

that the probability of response x to an item i by an examinee with ability θ, denoted by

Pix(θ), equals

Pix(θ) =
exp(cix + aixθ)∑m
x=0 exp(cix + aixθ)

, x= 0, 1, . . . , m, (1)

where aix is a slope (analog to discrimination) parameter of category x, cix is a location

(analog to difficulty) parameter of category x, and m+ 1 is the number of response

categories to item i.

For model identification, either sums are set to zero (i.e.,
∑
aix =

∑
cix = 0), or

one response category is set to to zero (e.g., the parameters of the lowest response

category, ai0 = ci0 = 0). For simplicity, there is no examinee subscript on the ability

parameter θ in the current and subsequent models. For each category of an item, there

exists an item category response function (ICRF), and the set of ICRFs per item is

uniquely determined given a set of identification constraints. Figure 1 provides the item

category characteristic curves (ICCCs) obtained from the ICRFs of a 4-category item; one

ICCC corresponds to an ICRF. At each level on the ability continuum, the sum of ICRFs
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equals 1 (i.e.,
∑m

x=0 Pix(θ = θ0) = 1).

Bock’s NRM is a general polytomous model that is used for mutually exclusive

response categories. Item response categories are not necessarily ordered and the NRM is

the only model for nominal categories. Mellenbergh (1995) has showed that the NRM can

be reformulated in terms of m log odds for a nominal variable of (m+ 1)-response

categories. He treated them as m dichotomous response variables that correspond to

choices of m categories to a reference category. The log odds of choosing a score category

x over the first category is as follows:

ln
(
Pix(θ)/Pi0(θ)

)
= ln

(
exp(cix + aixθ)
exp(ci0 + ai0θ)

)
= (cix − ci0) + (aix − ai0)θ = (cix + aixθ),

x = 0, 1, . . . ,m. (2)

If m = 1 (i.e., dichotomous item), then the NRM reduces to the two-parameter logistic

model, where the probability of answering the item correctly, Pi(θ) = Pi1(θ) and the

probability of answering the item incorrectly, Qi(θ) = 1− Pi1(θ) = Pi0(θ). This can be

described by

ln
(
Pi(θ)/1−Pi(θ)

)
= ln

(
Pi1(θ)/Pi0(θ)

)
= (ci1 − ci0) + (ai1 − ai0)θ = (ci1 + ai1θ), (3)

and the parameters of the reduced model are ai = ai1, bi = −ci1/ai1 .

Graded response model. Samejima (1969) proposed a model for items with

ordinal response categories (e.g., Likert-scale items). Samejima’s graded response model

(GRM) is one of the difference models (Thissen & Steinberg, 1986); even Samejima is

against such categorization and her model can be expressed as a divide-by-total model

(Samejima, 2010). The GRM expresses the cumulative probability of getting at least a

score x on item i

P ∗i (X ≥ x) = P ∗ix =
exp(ai(θ − bix))

1 + exp(ai(θ − bix))
, (4)
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where x = 1, 2, . . . ,m, and therefore the probability of responding in a specific category

score is Pix = P ∗ix − P ∗i,x+1. Note that it is assumed in GRM that P ∗i0 = 1 and P ∗i,m+1 = 0.

Also, the bivs are ordered such as bi1 < bi2 < . . . < bim.

Partial credit model. Masters (1982) developed a polytomous model, the

partial credit model (PCM), that is different in terms of its parameterization and

conceptualization from the GRM. This model is an extension of the dichotomous Rasch

model. The PCM belongs to the adjacent-category models in Mellenbergh’s classification

of IRT models, and to the divide-by-total models in Thissen and Steinberg’s classification.

Items are viewed as requiring multiple steps to obtain a correct answer. Incorrect response

options reflect partial knowledge; therefore, partial credit is given to each step completed.

For an examinee with ability θ, the probability of selecting category or response option x

of item i, denoted by Pix(θ), equals

Pix(θ) =
exp

∑x
v=1(θ − biv)

1 +
∑m

c=1 exp
∑c

v=1(θ − biv)
, (5)

where biv is an item-category location parameter. For notational convenience,∑0
v=0(θ − biv) = 0. The location parameter biv can be broken down into an item location

parameter (i.e., bi ), and a category threshold (i.e., div) such that biv = bi − div. The

difference in ability levels between two adjacent categories, x and (x+ 1), is called the

step difficulty or threshold, dix. The log odds based on the PCM equals

ln
(
Pix(θ)/Pi,x−1(θ)

)
= (θ − bix), x = 0, 1, . . . ,m. (6)

In the PCM, the thresholds need not to be ordered; harder steps may be preceded by

easier steps and vice versa.

Generalized partial credit model. As noticed above the PCM is based on the

Rasch model and considers items to be equally discriminating. Relaxing this assumption

and allowing items to be differentially discriminating led to the invention of the

generalized partial credit model (GPCM; Muraki, 1992, 1993). The ICRFs of GPCM can

be written as
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Pix(θ) =
exp

∑x
v=1 Ziv(θ)

1 +
∑m

c=1 exp
∑c

v=1 Ziv(θ)
, (7)

and

Ziv(θ) = Dai(θ − biv) = Dai(θ − bi + dv), (8)

where D is a scaling constant that puts the trait scale in the same metric as the normal

ogive model (D = 1.7) or stays on the metric of the logistic model (D = 1), ai is a slope

parameter for item i, biv is an item-category parameter, bi is an item location parameter,

and dv is a category parameter. If m = 1, the model reduces to Birnbaums (1968)

two-parameter logistic model. If all ai are equal, the GPCM reduces to the PCM. These

two restrictions combined yield a polytomous Rasch model.

The log odds based on the GPCM is

ln
(
Pix(θ)/Pi,x−1(θ)

)
= ai(θ − bix), x = 0, 1, . . . ,m. (9)

Without assuming the order of response categories the log-odds in Equation 2,

following the NRM log odds, can be expressed as

ln
(
Pix(θ)/Pi,x−1(θ)

)
= ln

(
exp(cix + aixθ)

exp(ci,x−1 + ai,x−1θ)

)
= (cix − ci,x−1) + (aix − ai,x−1)θ,

x = 0, 1, . . . ,m. (10)

Constraints can be replaced on parameters of the NRM such that it is a GPCM,

specifically, (cix − ci0) + (aix − ai0)θ must equal ai(θ − bix). Therefore, the relationship

between parameters in the NRM and GPCM can be expressed as

ai = (aix − ai,x−1) and bix = − (cix − ci,x−1)
(aix − ai,x−1)

(11)

Both the PCM and GPCM contain a similar term Z+
ix(θ) (i.e., the sum of Ziv(θ)).

In terms of the GPCM, this term can be written as
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Z+
ix(θ) =

x∑
v=1

Ziv(θ) =
x∑
v=1

Dai(θ − bi + dv) = Dai

[
x(θ − bi) +

x∑
v=1

dv

]
, (12)

and can be rewritten as

Z+
ix(θ) = Dai [Tx(θ − bi) +Xx] . (13)

Andrich (1978) called Tx the scoring function and Xx the category coefficient.

Information Indices and Related Item Selection Rules

In this section, information functions for polytomously scored items are presented.

These information indices are very important; because item selection methods were built

using them. Examples of such information-based item selection criteria are: maximum

information criterion and maximum Kullback-Leibler information criterion. Subsequently

more sophisticated versions of item selection rules based on Fisher and Kullback-Leibler

information indices are described.

Fisher and observed information. The observed information is given by,

J(θ) = −
(
∂2 logL
∂θ2

)
, (14)

where L is the likelihood of a sample of n independent item response observations (van der

Linden & Pashley, 2000). A well known index in statistics is Fisher information that gives

the amount of information provided by data on an unknown parameter, θ. It is given by,

I(θ) = −E
(
∂2 logL
∂θ2

)
= E(J(θ)), (15)

where E is the expectation to be found with respect to the responses. These two

information measures are equivalent under dichotomous IRT models (van der Linden,

1998). Also, they are the same under the GPCM (Donoghue, 1994; Muraki, 1993).

However, this equality is not satisfied under other models such as GRM with items of

three or more response categories. This was the reason for Choi and Swartz (2009) to

investigate the performance of some Bayesian item selection methods based on these two
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measures under GRM.

Bock (1972) introduced the information due to the responses in category x as a

partition of the item information, and Dodd et al. (1995) provided the general formula of

the item information function (IIF) derived from a model for a polytomous item,

Ii(θ) =
m∑
x=0

(P
′
ix(θ))2

Pix(θ)
=

m∑
x=0

Iix(θ), (16)

where P
′
ix(θ) is the first derivative of the probability of getting a score x on the ith item,

Pix(θ), with respect to θ. Iix(θ) is the item category information function and it is clear

that additivity feature is applied to item information over the item categories.

Under the IRT assumption of local independence, the test information function

has its additive property across a group of n items as well, Ii(θ) =
∑m

x=0 Iix(θ), (Lord &

Novick, 1968). The factors that affect the item information are complex in polytomous

items. For that reason, Akkermans and Muraki (1997) investigated the peaks of the IIF

for trinary items (i.e., three-category items).

For a more specific formula of the polytomous item information functions, the

above equation can be applied to any model. For the NRM, the IIF, Ii(θ), is given by,

Ii(θ) =
m∑
x=1

a2
ix Pix(θ)−

(
m∑
x=1

aix Pix(θ)

)2

, (17)

where aix is the item category discrimination parameter (Lima Passos et al., 2007). For

the GRM, the IIF, Ii(θ), is given by (Ostini & Nering, 2010), (Refer to Lima Passos,

Berger, and Tan (2008) for the IIF for the GRM item.)

Ii(θ) =
m∑
x=1

Aix. (18)

In Equation 19, Aix is described as the basic function that is given by

Aix = D2 a2
i

[
P ∗ix(θ)(1− P ∗ix(θ))− P ∗i,x+1(θ)(1− P ∗i,x+1(θ))

]
Pix(θ)

. (19)
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Under the GPCM, the IIF, Ii(θ), is given by,

Ii(θ) = a2
i

 m∑
x=1

x2 Pix(θ)−

(
m∑
x=1

xPix(θ)

)2
 = a2

i var(Xi), (20)

where the
[∑m

x=1 x
2 Pix(θ)− (

∑m
x=1 xPix(θ))2

]
is the variance of score on the item given a

specific level of ability (Donoghue, 1994). When PCM is considered, the discrimination

parameter, ai, is dropped from the above Equation. The Fisher information function is

considered a local index that conveys the information around a single θ value (Chang &

Ying, 1996; Chen, Ankenmann, & Chang, 2000). De Ayala (1992) found that using the

category information instead of item information for item selection reduced the test length

on average by one item for NRM CAT simulations.

Kullback-Leibler information. In the context of educational testing, Chang

and Ying (1996) presented the Kullback-Leibler (KL) information function as a global

information criterion for item selection in dichotomous CAT. The KL information function

is defined by

KLi (θ ‖ θ0) = Pi(θ0) log
[
Pi(θ0)
Pi(θ)

]
+ (1− Pi(θ0)) log

[
1− Pi(θ0)
1− Pi(θ)

]
, (21)

where θ0 represents a true ability level and Pi(.) is probability of answering item i

correctly. Chang and Ying (1996) mentioned several important features of the KL

function:

1. It is not symmetric; that is, KLi(θ ‖ θ0) 6= KLi(θ0 ‖ θ).

2. KLi(θ ‖ θ0) ≥ 0 and KLi(θ0 ‖ θ0) = 0.

3. Similar to the additive property of Fisher information, test information is the sum
(over n items) of the item information; that is,

KL(n) (θ ‖ θ0) =
n∑
i=1

KLi (θ ‖ θ0) . (22)

Note that KLi(θ ‖ θ0) is a function of two variables, θ and θ0. Geometrically, the

KL information function is a surface in three-dimensional space, as opposed to a function

in two-dimensional space represented by Ii(θ).
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As a function of two θ levels, KLi(θ ‖ θ0) represents the power of an item to

discriminate between these two levels. When θ = θ0, the value of KLi(θ ‖ θ0) is 0 (i.e., the

item cannot distinguish between examinees at the same level of θ). When θ and θ0 are

very different, the value of KLi(θ ‖ θ0) is large (i.e., the item can easily distinguish

between examinees with different θs). In other words, the KL is considered as a warning

signal that gives a loud alarm when there is a difference between the two θ levels;

otherwise the alarm will be lower. By contrast, Ii(θ) represents the discrimination power

of an item at a single θ.

The KL information index with respect to a polytomous item of (m+ 1) categories

can be generalized to the following

KLi(θ ‖ θ0) =
m∑
x=0

Pix(θ0) log
[
Pix(θ0)
Pix(θ)

]
, (23)

As in the context of Fisher information, we can get the form of category KL (CKL)

information function as followed,

KLix(θ ‖ θ0) = Pix(θ0) log
[
Pix(θ0)
Pix(θ)

]
. (24)

From the graphical representation as shown in Figures 1 and 2, we can see some of

the properties of KL and CKL under a given polytomous model, GPCM (note that these

curves are part of the KL or CKL surface at a specific level of θ0, the real ability level),

1. These curves are not symmetric; that is, KLix(θ ‖ θ0) 6= KLix(θ0 ‖ θ) (e.g., in the
graphed item, KLix(θ = −1 ‖ θ0 = 0) = .2756 6= KLix(θ0 = 0 ‖ θ = −1) = −.1206.

2. KLi(θ ‖ θ0) ≥ 0 and KLi(θ0 ‖ θ0) = 0 but KLix(θ ‖ θ0) is a real-valued that can
be negative as shown in Figures 1 and 2.

3. All CKL curves and the KL curve intersect at the same point. This point
corresponds to the real ability value; the amount of information of each are equal
at that point. For the 3-category item, it is the minimum value of middle-category
KL (i.e., the CKL with respect to score 1). In addition, the CKL for first (last)
categories is a monotone increasing (decreasing) function, respectively.

Modified information functions. As a step in modifying and refining

information functions, Veerkamp and Berger (1997) introduced an interval information
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Figure 1: Item and category KL information curves (θ0 = 0).

Figure 2: Item and category KL information curves (θ0 = −1).
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criterion for dichotomous CAT to overcome the problems of Fisher information. Instead of

maximizing Fisher information function at an ability estimate, they proposed to integrate

the function over a small interval around the estimate to compensate for the uncertainty

in it. In PAT, there is another reason to integrate Fisher information function over an

interval. Fisher information function might be multi-modal when items are analyzed with

the GPCM (Muraki, 1993). Van Rijn et al. (2002) demonstrated that a multi-peaked item

might contain more information for a small interval around the ability estimate than the

item that contains maximum Fisher information at the ability estimate. They proposed to

select the next item with a maximum interval information criterion:

i = arg max
i

∫ θ̂+δ

θ̂−δ
Ii(θ)dθ, (25)

where i is a potential item to be administered and δ is a small constant defining the width

of the interval.

Other variations of Fisher item information have been proposed and used as

alternatives to the original index. The A-optimality or sum criterion, ΦA =
∑

θ Ii(θ) and

the D-optimality or product criterion is given by ΦD =
∏
θ Ii(θ) where the distribution of

θ is equally weighted within an interval. In general, the A-optimality criterion corresponds

to the arithmetic sum and the D-optimality criterion corresponds to the geometric mean

(Berger & Veerkamp, 1996). Additional indices such as maximum expected information

that depends on the observed information or Fisher information exist.

The relationship between item information and IRF in PAT. The

theoretical relationship between the Fisher information and KL information in the context

of polytomous items is still the same as that for dichotomous items. That is, the second

derivative of KL information is considered Fisher information at the true ability level.

With respect to the relationship between Fisher information function (i.e., Ii(θ)),

and IRF or the expected score (i.e., E[X]). Figure 3 graphically shows the information

curve and the polytomous item response function for an item with three categories over

the ability continuum.

Muraki (1993) pointed out a relationship between the IRF and item information
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Figure 3: Item information and expected score curves for a 3-category item.

function, that can also be related to the gradient function Gi(θ) described in Equation 26

as follows,

Gi(θ) =
∂T̄i(θ)
∂θ

= a2
i

 m∑
x=1

x2 Pix(θ)−

(
m∑
x=1

xPix(θ)

)2
 =

Ii(θ)
ai

, (26)

Therefore, the curve of Fisher item information function intersects with the curve of

gradient function at the point of maximum information. This is a promising result that

could be beneficial and could provide a non-information based item selection algorithm in

PAT depends primarily on the polytomous IRF instead of the fisher information as a

criterion.

More information in polytomous items. In general, a polytomous item has

more information than a dichotomous one. In reality, each pair of the adjacent categories

in a polytomous item could be considered as a single dichotomous item (Dodd et al.,

1995). For a fixed amount of information, this property makes the required size of the

item bank in PAT smaller than its size in dichotomous CAT. In other words, given a

dichotomous and polytomous item banks with same number of items the polytomous one

contains more information. Also, this may affect the item selection if we have a mixture of
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item types, dichotomous and polytomous items. Also, there are some studies that

discussed the information in polytomous items under different polytomous IRT models

(e.g., Akkermans & Muraki, 1997; Donoghue, 1994).

Definition of Terminology

Below is a summary of terms used frequently through out the following chapters.

Polytomous item response model. Item response model for items with more

than two response categories (e.g. multiple-choice item that allows partial credits for each

of the response categories, or constructed-response item with multiple steps).

Ability estimate. The estimate of the level of a latent trait of an examinee

demonstrated by their observed response pattern to a test.

Item response categories. The possible ways as assigned by the item writer

that an examinee could respond to an item. In the context of multiple-choice items, item

response categories are the options provided for the examinee to choose; in

constructed-response items, they are the steps or parts of the solution to the item that

allow different amounts of partial credit to be awarded upon their completion.

Item response function (IRF). The mathematical equation that relates the

probability of answering an item correctly as a function of the ability of the examinee

attempting the item and the item parameters.

Item category response function (ICRF). The mathematical equation that

describes the probability of an item category being chosen as a function of the ability of

the examinee and item category parameters.

Item characteristic curve (ICC). The curve that demonstrates the

relationship between the ability of an examinee and the probability of the examinee

answering the item correctly. Sometimes it is referred as a trace line. It is the graph of

IRF plotting against the ability parameters.

Item category characteristic curve (ICCC). The curve represents the

relationship between the probability of an examinee choosing an item category and the

ability of the examinee. ICCCs of all the categories within an item are usually plotted on

the same graph.
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Chapter 2

Development of Location Indices for Polytomous Items and Their IRT
Applications

The current chapter addresses the need to represent a polytomously-scored item

by one index for the use in adaptive testing. Therefore, this chapter introduces the

development of location indices for a polytomous item. Possible applications of such

indices in CAT are reported as well.

Objective of Study

Items are the building blocks of testing. Based on the scoring of response options,

items can be classified into two types: dichotomous and polytomous items. In terms of the

parameters that characterize items, they depend on the IRT model that fits such items.

For dichotomous items, the two-parameter logistic model are characterized by two

properties: an item’s discrimination power (measured by parameter ai for item i), and

difficulty (measured by parameter bi). In the polytomous case, many polytomous models

use a single discrimination parameter for the item regardless of response option, such as

the GRM, PCM, and GPCM. Other IRT models have multiple parameters; one parameter

per item category. With regard to item difficulty for polytomous items, models use several

parameters or thresholds that depend on item categories; therefore, at least two thresholds

will be used to provide an idea of the difficulty for a 3-category item (i.e., scored 0, 1, or 2).

The motivation and rationale to search for a central or an overall location

parameter is twofold: a) it may be due the confusion of multiple and different

parameterizations for a polytomous item even for the same model, and b) the

unavailability of such a single location index blocks the usage of certain item selection

methods in adaptive testing.

Based on the PAT literature, the item selection methods are sometimes natural

extensions of those used with dichotomous items, such as information indices. The

information-based item selection procedures may consider the item as a whole or at the

score category level. Dodd et al. (1995) commented that only the information-based item

selection algorithms have been investigated for the GRM, NRM, and PCM because of the
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unavailability of a single location index (or scale value parameter).

The potential item selection method to be developed in this dissertation intends to

use the properties of item characteristic curve (ICC) and item-category characteristic

curves (ICCCs) to define new polytomous item indices.

Item Location Indices

Two general approaches are used to develop item location for polytomous item.

The first approach is to study the category response functions and the second one focuses

on the item response function. Basically, the proposed indices are based on the ICRFs and

IRF of a polytomous item.

The development of such indices given here applies to polytomous models that

have the same discrimination across the different item categories where the mathematical

derivations introduced here apply for the other models in such category.

Considering the GPCM, the ICRF for score x on the ith item is

Pix(θ) =
exp

∑m
v=1 ai(θ − biv)

1 +
∑m

c=1 exp
∑c

v=1 ai(θ − biv)
. (27)

The definition of model parameters was introduced in Equations 7 and 8.

Studying the item category response functions (ICRFs). Assume a

polytomous item with three categories under the GPCM where each category has its own

ICRF. The parameters for item i are: ai, bi1, and bi2. Therefore, we have three ICRFs

with the possible scores (0, 1, or 2) on the item, Pi0(θ), Pi1(θ), and Pi2(θ). A graphical

representation of such a 3-category item is given in Figure 4. This graph provides the

rationale behind the following derivations. As seen in Figure 4, the peak of the

partial-credit score curve occurs at the same point that the zero and perfect score curves

intersect. It can be shown mathematically that this will always occur for the GPCM.

Starting with the probability of attaining the partial credit (middle) score, Pi1(θ), and we

locate the peak of this ICRF. From Equation 1,

Pi1(θ) =
exp [ai(θ − bi1)]

1 + exp [ai(θ − bi1)] + exp [ai(2θ − bi1 − bi2)]
, (28)
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and the first derivative of Equation 28 with respect to θ is

∂Pi1(θ)
∂θ

= aiPi1(θ)− aiPi1(θ)
2∑
c=1

cPic(θ)

= aiPi1(θ)

[
1−

2∑
c=1

cPic(θ)

]
. (29)

Setting Equation 29 equal to zero, we find that the maximum of Equation 29

occurs when any of the following three conditions hold: ai = 0, Pi1(θ) = 0, or∑2
c=1 cPic(θ) = 1 (or E(Xi) = 1). The fist condition, ai = 0, indicates that the item has

no discrimination power, hence, it would not be in an operational item pool. The second

condition, Pi1(θ) = 0, is not achievable. All response options have non-zero probability.

The third condition,
∑2

c=1 cPic(θ) = 1 or E(Xi) = 1, can be attained as seen by noting

that:

2∑
c=1

cPic(θ) = 1

Pi1(θ) + 2Pi2(θ) = 1

exp [ai(θ − bi1)] + 2exp [ai(2θ − bi1 − bi2)] = 1 + exp [ai(θ − bi1)] + exp [ai(2θ − bi1 − bi2)]

exp [ai(2θ − bi1 − bi2)] = 1

ai(2θ − bi1 − bi2) = 0

θ = 1
2(bi1 + bi2). (30)

The point on ability continuum corresponding to the intersection between these

two ICCCs of scores 0 and 2 satisfies the following condition

Pi0(θ) = Pi2(θ) (31)

1
1 + exp [ai(θ − bi1)] + exp [ai(2θ − bi1 − bi2)]

=
exp [ai(2θ − bi1 − bi2)]

1 + exp [ai(θ − bi1)] + exp [ai(2θ − bi1 − bi2)]
.
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The equivalence in Equation 31 implies that

exp [ai(2θ − bi1 − bi2)] = 1, (32)

and is the same conclusion as given in Equation 30 (i.e., θ = 1
2(bi1 + bi2)).

It is verified that the two ICCCs for the lowest and highest scores on the item that

are intersecting and we can see it is corresponding to the same point on the ability scale as

the peak for the ICCC of the partial-credit score, see Figure 4 for an example of

3-category item.

For a more generalized version of a polytomous item with m+ 1 categories where

every two ICCCs of scores x and m− x are intersecting in some point, (i.e.,

Pi0(θ) = Pim(θ), Pi1(θ) = Pi,m−1(θ), ..., Pix(θ) = Pi,m−x(θ), . . . , P
i,
m+1

2
(θ) = P

i,
m+3

2
(θ)).

See Figure 5 for an example of 5-category item.

Pix(θ) = Pi,m−x(θ)

xθ −
x∑
c=1

bic = (m− x)θ −
m−x∑
c=1

bic

[(m− x)− x]θ =
m−x∑
c=1

bic −
x∑
c=1

bic

(m− 2x)θ =
m−x∑
c=x+1

bic

θ = 1
m−2x

m−x∑
c=x+1

bic, x = 0, 1, ..., m+1
2 (33)

At the two middle ICCCs, θ = b
i,
m−1

2
. When m is an even integer, as represented

by the 5-category item example in Figure 5, such that there is one middle ICCC

representing the score of m
2 , we need to get a point on θ scale that corresponds to the

maximum of this ICCC.

To conclude, Table 1 summarizes the category characteristic curves of a

polytomous item with ordered response options scored 0 to m and the formula of the

corresponding intersection points on the ability scale with reference to the definition of

such scale values. This overall summary of the relations among ICRFs suggests the
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Table 1

Studied ICRFs and Corresponding Intersection Points

ICCCs Intersection Point Notes

C0, C1 b1 Model definition

C1, C2 b2 Model definition

C0, C2
1/2(b1 + b2) The same as the peak of C1 for a 3-category item

Cx, Cm−x
(
1/m−2x

)∑m−x
c=x+1 bic a form of intersecting point of x & m− x curves

Cx, Cy
(
1/m−x−y

)∑m−y
c=x+1 bic a form of intersecting point of any two curves

C0, Cm
(
1/m

)∑m
c=1 bic a form of intersecting point of 0 & m score curves

Note.Cv=item category characteristic curve for score v.

following proposed location indices.

Conclusion 1:

Based on the mathematical derivations mentioned above, we can propose

alternative forms of location index (LI) for a polytomous item. The first form of LI is the

average item category difficulties that takes all ICCCs into account, (LImean), by

substituting x = 0 into Equation 33,

LImean = 1
m

m∑
c=1

bic. (34)

The second form of LI is the truncated (trimmed or Windsor) mean; that is, the average

of item category difficulties that takes all ICCCs into account except the zero- and

perfect-score curves, (LItrimmedmean), by substituting x = 1 in Equation (33),

LItrimmed mean = 1
m−2

m−1∑
c=2

bic. (35)

The third form of LI is the median of item category difficulties, (LImedian), which is a
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Figure 4: Item category characteristic curves (ICCCs) for a 3-category item.

possible choice in statistics,

LImedian = median(bixs) =


b
(k)
ix , if m is even

0.5(b(k)ix + b
(k+1)
ix∗ ), if m is odd

(36)

where b(k)ix is the threshold parameter that have the kth rank among the thresholds of the

ith item and has score x, b(k+1)
ix∗ is the threshold parameter that have the (k + 1)th, and

b
(k)
ix ≤ b

(k+1)
ix∗ .

Studying the item response function (IRF). The ease of calculating a

polytomous IRF follows from the fact that an item response function (IRF) can be

thought of as describing the rate of change of expected value of an item response as a

function of the change in θ relative to an item’s location bi (Ostini & Nering, 2006). More

succinctly, this can thought as a regression of the item score onto the trait ability (Lord,

1980; Chang & Mazzeo, 1994).

The previous LIs are based on the ICRFs, hence they are considered as local

indices by the nature of information gained from curves of specific score categories. On the

other hand, this is not the case in polytomous models. Chang and Mazzeo (1994) showed

that the IRF for a polytomously scored item is defined as a weighted sum of the ICRFs
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Figure 5: Item category characteristic curves (ICCCs) for a 5-category item.

(the probability of getting a particular score for a randomly sampled examinee of ability),

E[Xi] =
∑
x

xPix(θ). (37)

The IRF, as defined in Equation 37, ranges from 0 to m (i.e., the maximum

possible score category of an item). Chang and Mazzeo (1994) established the

correspondence between an IRF and a unique set of ICRFs for two of the most commonly

used polytomous IRT models (i.e., GRM, PCM, and GPCM), where they considered the

GPCM and the PCM as one model. Specifically, they provided a proof for these models as

follows: “If two items have the same IRF, then they must have the same number of

categories; moreover, they must consist of the same ICRFs.” The condition of the proof is

that each item has its discrimination parameter that does not depend on the category on

the response scale. The GRM, PCM, and GPCM satisfy this condition but the NRM does

not because the latter potentially has different discrimination parameters for each the

response categories.

Along the same lines, Akkermans and Muraki (1997) introduced an item response

function (IRF) defined as a normalized expected score (i.e., weighted sum of ICRFs

divided by the number of item categories) that ranges from 0 to 1. Akkermans and
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Muraki’s IRF differs in terms of the range from that introduced by Chang and Mazzeo

(1994). Akkermans and Muraki introduced the gradient (i.e., first derivative) of IRF as an

item discrimination function, G(θ),

Gi(θ) =
∂T̄i(θ)
∂θ

= a2
i

 m∑
x=1

x2 Pix(θ)−

(
m∑
x=1

xPix(θ)

)2
 =

Ii(θ)
ai

. (38)

The polytomous IRF has various merits. First, the IRF carries the full information

of the item and encompasses the partial amount of information included in ICRFs.

Second, the expected score is valid to be applied to the most commonly used ordinal

response models, (i.e., GRM, PCM, and GPCM). Third, it is well connected to Fisher

information, see Equation 38. Due to these three properties of the IRF or expected score

of a polytomous item, it is a worthy candidate as a central location parameter.

Conclusion 2:

The fourth form of LI is derived from the polytomous IRF. Dichotomous IRT

models such as one-, two-, or three-parameter logistic models have an important feature

that the conditional mean of item score (i.e., expectation) is the probability of answering

the item correctly. Note that the dichotomous IRF uses the value of 0.5 (if there is no

guessing) as a threshold to determine the item location where the highest score is one.

Using same analogy, the index of a polytomous IRF corresponds to an expected score

equals 0.5m, where m is the highest possible score of (m+ 1)-response category item.

Since this value has a global nature in that it considers the IRF, we call it LIIRF.

LIIRF = θ : E[Xi] =
m

2
. (39)

For example, the θ point that corresponds to the 0.5 m under the GPCM can be

obtained through the following equation whose closed-form solution is complicated to

produce,

m∑
x=1

[
(2x−m) exp

(
ai

(
xθ −

x∑
c=1

bic

))]
= m. (40)

Therefore, an iterative algorithm is used to obtain the LIIRF for each polytomous item.
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Figure 6: Item characteristic curve (ICC) for a 3-category item.

Appendix A presents the details of the Newton-Raphson method to get the approximate

value of LIIRF for both the partial credit models (PCM and GPCM) and graded response

model (GRM). Using the first derivative of Pix to get the step of each iteration, the

approximate value of LIIRF using the partial credit models is

θt+1 = θt −
f(θt)
f ′(θt)

(41)

= θt −
∑m

x=1 xPix(θt)− m
2∑m

x=1 x ai Pix(θt) [x−
∑m

c=1 cPic(θt)]
. (42)

For a given polytomous item with 3-response categories, there is a correspondence

between the LIIRF and the ICRFs-based LIs, see Equation 30 and Figures 4 and 6. For

items with more than three response categories, the values of these indices are different,

see Figures 5 and 7.

Analogy of location index in dichotomous and polytomous items. Some

of location indices proposed for polytomous items reduce to indices used for dichotomous

items. In other words, the location index (parameter) or difficulty parameter for a

dichotomous item is based on the same techniques used to study the category response

functions and item response function of a polytomous item. Using a two-parameter

logistic model (Lord & Novick, 1968) to model the dichotomous item, we can have the
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Figure 7: Item characteristic curve (ICC) for a 5-category item.

intersection point of the two characteristic curves of such an item (i.e., the curves that

correspond to correct and incorrect answers) points to the difficulty (location) parameter,

bi. Figure 8 shows an example of the ICCs of correct and incorrect answers of a

dichotomous item intersecting in a point corresponding to θ = 1.0 (=item difficulty

parameter). This was based on the two category characteristic curves, first approach used

in the polytomous case.

Since there are more than two curves in the polytomous case, the median of

category thresholds can act as a location parameter and it corresponds to the peak of the

characteristic curve of category m/2 for m even, and the mean of the intersection of

middle two curves of the intermediate scores, m−1/2 and m+1/2 for m odd.

An alternative is to use the truncated mean, this is a version of LI that considers

only the category characteristic curves of partial scores and excludes the extreme response

categories (i.e., zero and perfect scores). This form of an LI does not have a counterpart

for dichotomous items because they have only two response options (correct/incorrect or

perfect/zero scores).

While based on the point of view of expected scores or item response functions,

the point on the ability scale corresponding to an expected score of 0.5 for dichotomous

scoring represents an index of item difficulty. Figure 9 shows an ICC of the same item
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Figure 8: Item category characteristic curves (ICCCs) for a 2-category item.

whose difficulty parameter bi = 1. This curve also represents the expected score

conditional on ability level, and it is obvious that θ = 1.0 where the expectation equals a

half. This provides the basis for the second approach.

An example. The following is a numerical example of calculating the LIs for a

polytomous item. Table 1 provides GPCM parameters of five items with four or five score

categories and their corresponding LIs. Since, the four proposed LIs (i.e., LImean,

LItrimmedmean, LImedian, and LIIRF) are identical for the case of 3-category items, therefore,

they are not included in the table. The Table shows that the LIs differentiate in values

from item to item. For example, they have similar values for items 3 and 5 but have

different values for items 1, 2 and 4. For items more than five response options, the

LItrimmedmean and LImedian start to differentiate. From the table it is obvious these two LIs

are the same.

Applications of Item Indices in Assessment

The availability of an index that represents the item location parameter

(equivalent to difficulty or location parameter in dichotomous items) provides a

summarized parameter of multiple category thresholds. Therefore, a polytomous item can

also have two parameters to ease the usage of it in some situations, in addition to the
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Figure 9: Expected score curve for a 2-category item.

Table 2

Item Parameters and the Corresponding Location Indices (LIs)

GPCM Parameters Location Indices

Id a b1 b2 b3 b4 LImean LItrimmean LImedian LIIRF

1 1.578 -2.718 0.183 2.725 0.063 0.183 0.183 0.170

2 0.894 -2.435 -1.215 0.734 -0.972 -1.215 -1.215 -1.050

3 1.688 -2.758 -1.352 -1.050 0.676 -1.121 -1.201 -1.201 -1.190

4 0.459 -1.102 -0.596 2.114 2.208 0.656 0.759 0.759 0.690

5 1.072 -2.343 -1.842 -1.328 -0.925 -1.610 -1.585 -1.585 -1.600
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category-related information in each item. The bi parameter of a polytomous item that is

included in model parameterization such GPCM is meaningful now and has a theoretical

background and beneficial usage.

In the context adaptive testing, non-information based item selection approaches

can be presented such that an individual’s estimated ability level is matched to a

polytomous item’s location index (LI). In particular, four proposed item selection methods

in PAT are built based on the alternative forms of polytomous item LI. The choice of the

next item to be administered is based on each form of the proposed index that matches

the current ability estimate. For example, considering the LIIRF, a global item index,

computed for an item under a polytomous response model, the next item for

administration is chosen based on matching LIIRF to the current estimate of examinee’s

ability.

Lima Passos et al.’s (2008) paper presented some findings regarding the item’s

1/2(bi1 + bi2). This index, based on our analytical results, corresponds to the mean of item

category thresholds, LImean, and the other LIs such as LIIRF in the case of 3-category

items are equal as well, Equation 30. They found that the smaller the difference given by

1/2(bi1 + bi2)− θ, the better (i.e., the more accurate) the tailoring between a selected item

i and the underlying trait θ. This is the core idea of the Matching-LI procedure in

polytomous adaptive testing and one of the main applications of polytomous item LIs.
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Chapter 3

Matching Location Index as a Non-information Item Selection Approach
in Polytomous Adaptive Testing

Introduction

One area of computerized adaptive testing (CAT) that received substantial

attention in the measurement literature concerns the method of determining which item in

an item pool should be administered at a given time of the adaptive-testing session.

Currently, the available item selection approach is information-based (i.e., uses

information functions as criteria for choosing items). Traditionally, the most widely used

item selection approach is the maximum information (MI) criterion, whereby the item in

the pool that has the highest information function value at the interim value of the

estimated ability (θ̂) is selected for next administration (van der Linden & Pashley, 2000).

The drawbacks of the MI approach is that the selected item maximizes the information at

the current value of θ̂, not the true value of ability level (θ). As a result, for a test taker

having an ability level θ, the MI produces a group of selected items that is optimal for the

ability level θ̂ rather than θ). The extent to which θ̂ is apart from θ will affect how

optimal the set of selected items (van der Linden, 1998).

Another drawback of the MI approach is the skewed distribution of item bank

usage. This approach heavily selects items with high-a parameters. As a consequence,

these high discriminating items are overexposed and this affects the security of the test

and consequently its validity. Additionally, there are more items of low and medium

discrimination in the item bank that are underexposed or are not used at all. It is known

that the item pool provides a collection of pretested and qualified items. Therefore, each

item passed a long process of investigation and hence it waste of time and money not to

use all.

A non-information item selection approach is proposed to help enhance and solve

the problems raised by using information-based methods (e.g., MI). The development of

an overall location index (LI) for polytomous items provides the basis for that alternative

approach in item selection. The Matching-LI item selection method is an attractive

30



approach that uses the distance between the value θ̂ and the item LI as a criterion for

item selection.

One main goal of the current study is to evaluate the performance of proposed

method in terms of the estimation efficiency and item pool usage. The interest in

exploring the properties of the Matching-LI approach of polytomous item selection stems

from two observations. First, the use of polytomous items in adaptive testing is increasing

(e.g., Dodd et al., 1995), and the development of testlets is paving the road for greater

potential for polytomous item response models in adaptive testing environment. Second,

the information functions of polytomous items can be irregular and even multimodal

(Muraki, 1993), unlike the the information functions of dichotomous items that are always

unimodal and symmetric.

The following sections are organized to provide a description to the

non-information item selection approach through a Matching-LI method, followed by a

presentation to the design of simulation study. Some results that compare the

performance of Matching-LI and MI methods are presented followed by a discussion of the

results and their implications.

Method

This section introduces the methods used to study adaptive selection of

polytomous items for computerized tests. First, the traditional item selection method in

PAT is reviewed because it provides a benchmark for the comparisons with the LI

methods. Subsequently, a description of each form of the Matching-LI methods is

provided.

Maximum information method. Maximum information is the standard

method in item selection. The criterion to maximize is Fisher information measure at the

interim ability estimate. Therefore, the next item after administering t items is to search

for an item that provides the maximum information at θ̂(t),

it+1 = arg max
h

{
Ih

(
θ̂(t)
)

: h ∈ Rt
}
, (43)

where Ih
(
θ̂(t)

)
is the information function of item h at a specific trait estimate.

31



The information function depends on the polytomous item response model

considered and fit to the data. In the current study, it is of interest to investigate the

properties of the studied item selection approaches for an item bank consisting of ordered

response items, such items that are fit by the GPCM (Muraki, 1992).

Matching-LI methods. In the last Chapter, four polytomous item location

indices (LIs) were proposed to represent a central or overall difficulty-like parameter for

each item. The first formula for a location index, LImean, is the mean of step difficulty

parameters: bi1, ..., bim. The second formula for a location index, LItrimmedmean, is the

truncated mean of step difficulty parameters that bi2, ..., bi,m−1. The third proposal of a

location index, LImedian, is the median of step difficulty parameters: bi1, ..., bim. The

fourth form of a location index is related to the polytomous item response function, LIIRF.

Polytomous item selection that is based on its unique LI is presented. Therefore,

four proposed item selection methods in PAT are built based on the alternative forms of

item LI. The choice of the next item to be administered is based on each form of the

proposed index, LIh, that matches the current ability estimate θ̂(t); that is, this method

searches for an item of minimum distance as follows

it+1 = arg min
h

{∣∣∣θ̂(t) − LIh
∣∣∣ : h ∈ Rt

}
, (44)

where LIh is a location index of a polytomous item h from the remaining items in the item

pool not administered yet, Rt.

Simulation Study Design

To assess the performance of Matching-LI Method as an item selection rule in

PAT, a simulation study was conducted. The study used Monte carlo simulation to

achieve its objectives of assessing the performance of the proposed item selection methods

and comparing its effectiveness to other existing methods. This section describes the

simulation design.

Data generation. The input used to simulate data consists of: (a) an item pool

and item parameter distributions, (b) distribution of target population, and (b) test

length and specification in the following details are described:
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Item pool and distributions of item parameters. The item pool consists of

300 polytomous items. The pool has different items with different numbers of score

categories, 3, 4, and 5. The item pool contains 200 3-category items (refer it as Type III),

60 4-category items (Type IV), and 40 5-category items (Type V). This satisfies the rule

of thumb that the item pool size is at least 12 times the test length (Stocking, 1994).

The item discrimination parameters (i.e., ai) were generated from uniform

distribution U [.25, 3.0] and category parameters were generated from uniform distribution

U [−3, 3]. The use of a uniform distribution ensured that an adequate number of items

existed at low, medium, and high levels of difficulty (e.g., Penfield, 2006).

The distance between the first and last category parameters (i.e., thresholds)

affected the shape of the information function of an item. The items with the same set of

thresholds yielded the same total amount of information across the entire ability

continuum, but different ordering of the thresholds affected the peakedness of the item

information curve. The peakedness of the curve increased as the degree of deviation from

the sequential order of the thresholds increased (Dodd & Koch, 1987).

The item parameters considered in the item bank have no reversals (i.e., the

category parameters are in ascending order). Also, we have considered reversals in 20% of

the item pool by altering the order of the same set of thresholds to form different items

and a new item pool.

Ability distributions. One thousand values of θ were drawn from a standard

normal distribution (i.e., N(0, 1)). Every simulated examinee receives a number of PATs,

each is directed by a specific item selection method. Note that the first item was always

selected randomly from the Type III items (3-category items).

Test length and specification. Test length is also important to a PAT. It

affects the accuracy of the final ability estimation. A fixed-length test of 15 items is

delivered to each examinee. The specification of test should consist of 10 Type-III items, 3

Type-IV items, and 2 Type-V items. The different item types have the same scoring

weights so the test total score will be 52 (i.e., 10× 3 + 3× 4 + 2× 5).

PAT setting. A FORTRAN program was written to provide PATs for each

examinee. It has a main program and several sub-routines that required tasks such as
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calculating the LIs for each item, the probabilities of GPCM, ability score estimates (e.g.,

EAP estimates), and item information indices.

Item selection algorithms. Two item selection algorithms were considered in

this investigation. The first method selects the next item by matching the current ability

estimate to an item location index (LI) as described previously (Matching-LI). There were

four different forms based on these different proposed indices. The first version uses the

mean item category location index for matching, (LI1), the second version uses the

truncated mean of item category parameters, (LI2), the third version uses the median of

item category parameters, (LI3), and the fourth version uses the polytomous IRF whose

location index is corresponding to a expected score of .5m, (LIIRF).

The second method is maximum item information (MI), the traditional method

where the next item is selected based on maximizing information index at the present

ability estimate.

Ability estimation. Expected a Posteriori (EAP) with a prior distribution N(0,

1) was used for scoring examinees. With regard to the initial ability estimate, it was set

equal to zero, the mean of the ability distribution for the population.

Evaluation criteria. The study used two main evaluation criteria for comparison

among the different item selection methods: (a) measurement precision and (b) item pool

usage as measured by item exposure rates to show how effectively the item pool was used.

Measurement precision. The ability parameters recovery was used to evaluate

the proposed Matching-LI method compared to a standard method. Three statistics were

used to determine how close the estimated ability estimates were to the original ability

estimates. Evaluation criteria used were: (a) Bias, (b) Mean Square Error (MSE), and (c)

Pearson correlation coefficient. These indices capture the measurement precision.

Average bias (Bias) was estimated using Equation 45 below. In Equation 45, let θj

, j = 1, , N be the original ability of N examinees and θ̂j be the respective estimator from

the PAT using different item selection methods. Then the estimated bias was computed as

Bias =
1
N

N∑
j=1

(
θ̂j − θj

)
. (45)
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MSE was calculated using

MSE =
1
N

N∑
j=1

(
θ̂j − θj

)2
. (46)

The smaller the bias and the MSE, the better item selection method. Also, the

conditional bias and MSE are also considered given a small range over the ability

continuum. Therefore, the ability continuum is divided into five homogenous groups: the

lowest 20%, 20-40%, 40-60%, 60-80%, and the highest 20%.

The third statistic considered for the measurement precision was the Pearson

product moment correlation between the estimated and original ability, ρθ,θ̂; that is,

ρθ,θ̂ =

∑N
j=1(θj − θ̄j)(θ̂j − ¯̂

θj)
SθSθ̂

. (47)

Item pool usage. Using the item exposure rate provide a measure of which items

are selected by different algorithms. Item exposure rate is defined as the ratio of the

number of simulees who receive an item and the total number of examinees. Useful

information can be obtained through exposure rates such as ratios of over-, under-, and

never-exposed items in the item pool. The χ2 statistic, a descriptive measure to indicate

the skewness of item exposure rate distribution (Chang & Ying, 1999), was computed by

χ2 =
∑M

i=1(ri − L/M)2

L/M
, (48)

where ri is the exposure rate of item i, L is the test length, and M is the item pool size. It

quantifies the discrepancy between the observed and the ideal, uniform distribution and is

considered a good indicator of the efficiency of item pool usage. The smaller the χ2

statistic the better the exposure control.

Results

This section presents the relationship between the a-parameter and the one

corresponding LI for each item in the item pool, followed by the comparison of the results

for both measurement precision and item pool usage indices. (Note that all results of the

method based on truncated-mean, LItrimmedmean, is same as the method based on median,
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Table 3

Descriptive Statistics of Simulated Item Pool (No Reversals)

Statistic a b1 b2 b3 b4 bim − bi1

No. Items 300 300 300 100 40 300

Mean 1.621 −1.279 0.522 1.362 1.849 2.461

SD 0.775 1.313 1.522 1.209 0.954 1.497

Minimum 0.255 −2.992 −2.799 −2.265 −0.925 0.015

Maximum 2.975 2.772 2.993 2.992 2.965 5.931

LImedian; because there are no reversals within any item of the item pool.)

Distribution of a-parameter and corresponding LIs in the item pool.

Descriptive statistics (i.e., mean, standard deviation, minimum, and maximum) of the

GPCM parameters of the item pool are provided in Table 3. In addition to that the

distances between the first and last threshold parameters of items in the pool are

provided. It ranges from almost very small range, 0.015, to large range, 5.931, with mean

= 2.461 and SD = 1.497.

Also, the bivariate distribution of a-parameter and LIs for all items in the item

pool is depicted in Figure 10. It shows that the a-parameter is uniformly distributed and

the different LIs are uniformly distributed as well, which is expected as the category

parameters are generated originally from a uniform distribution. It is noticeable that there

is no positive relationship between a-parameter and the proposed LIs in the item pool.

Measurement precision. Table 4 presents the overall measurement precision

indices. It is expected that the maximum information method will be the most preferable

with respect to measurement precision. It is considered as a baseline here for high

precision. Also, it is obvious that the four matching-LI methods using different item

indices result in a slight loss in measurement precision compared with the maximum

information method. Among these four forms of matching methods, the IRF-index based

method is slightly more precise than the other three matching methods; the IRF-index

method yields slightly smaller bias, MSE, and larger ρθ,θ̂. It is more adequate to claim
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Figure 10: Distribution of a-parameter and LIs for all items in the item pool.
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Figure 11: Distribution of LIs for all items in the item pool.
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Table 4

Overall Measurement Precision Indices Under Different Item Selection Methods (N=1000,
M= 300, L=15)

Methods Bias MSE ρθ,θ̂

Matching-LImean 0.004 0.086 .953

Matching-LItrimmedmean 0.008 0.078 .957

Matching-LImedian 0.008 0.078 .957

Matching-LIIRF 0.002 0.076 .958

MI 0.002 0.029 .984
Note. MSE=mean squared error; LI=location index; MI=maximum information.

that these four matching methods are comparable in terms of measurement precision.

Conditional Bias and MSE are reported in Table 5. It is clear that the MI method

surpasses all the other methods across different ability levels. Also, the overall conditional

bias and MSE at different levels are of very low level for all considered item selection

methods; conditional bias reaches a maximum of 0.12 in absolute value and conditional

MSE reaches a maximum of 0.10. In general, at all levels of θ, the loss in measurement

precision for the four LI methods is very small compared to the MI method. The overall

measurement precision indices supports the claim that the matching-LI methods are

comparable, and this also applied to conditional bias and MSE. All selection methods

work slightly better at the three intermediate groups than at the lowest- and highest-20%

groups of examinees.
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Table 5

Conditional Bias and MSE Under Different Item Selection Methods (N=1000, M= 300,
L=15)

Matching-LI

Statistic Group LImean LItrimmed mean LImedian LIIRF MI

Conditional Bias 0-20% -0.121 -0.114 -0.114 -0.097 -0.006

20-40% -0.027 -0.026 -0.026 -0.041 0.011

40-60% 0.015 0.025 0.025 -0.016 0.006

60-80% 0.053 0.044 0.044 0.044 0.000

>80% 0.099 0.113 0.113 0.122 0.001

Conditional MSE 0-20% 0.085 0.089 0.089 0.085 0.029

20-40% 0.085 0.067 0.067 0.079 0.032

40-60% 0.099 0.081 0.081 0.075 0.027

60-80% 0.079 0.069 0.069 0.065 0.024

>80% 0.083 0.082 0.082 0.076 0.034
Note. MSE=mean-squared error of estimation; LI=location index; MI=maximum informa-
tion.

Item pool usage. Table 6 shows the item pool usage indices. The matching

method based on LImean had no items that were overexposed, and the other three

matching-LI methods have only one overexposed item (i.e., less than 1% of the item pool).

Also, the mean method manages to control item exposure rate in that; it leads to the

lowest maximum exposure rate (.158) and the other three methods are slightly higher

than the standard exposure rate, .20, while the MI method have a fairly large maximum

exposure rate, .743. All the four proposed methods have no items that have been never

exposed. Although, these four methods have a percentage of approximately 4–7% of

underexposed items; underexpose rates are very low. The MI is much worse compared to

the four matching LI methods. The MI results in 10% overexposed item, about 22%

never-exposed items, and more than 50% underexposed items. Regarding the skewness of

item exposure rates, the matching methods are the best (have lower statistics), and the
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Table 6

Overall Item Pool Usage Indices Under Different Item Selection Methods (N=1000, M=
300, L=15)

Matching-LI

Index LImean LItrimmedmean LImedian LIIRF MI

Max. Exposure Rate .158 .232 .232 .201 .743

Overexposed (%) 0 0.33 0.33 0.33 10.00

Underexposed (%) 3.67 7.00 7.00 6.67 51.33

Never-exposed (%) 0 0 0 0 21.67

χ2 6.86 9.13 9.13 8.46 81.39
Note. LI=location index; MI=maximum information.

MI method is the worst.

Figure 12 provides a visual representation of the item exposure rate distribution

for each item selection method (the method based on truncated-mean, LItrimmedmean, is

not presented because its exposure-rate distribution is same as the method based on

median). The items were ranked based on the value of discrimination parameter, a. It

shows clearly the uniform usage of items based on proposed item selection methods. On

the other hand, as expected the MI method depends largely on the a parameter.

The Figure 12 provides the actual values of discrimination parameters to give an

indication of which values have been chosen.

Table 7 presents the percentages of the overexposed items from the different

number of item categories of the mixed item pool. The over-exposed items were mostly

from the 4-category items compared to the other items of 3 and 5 categories.

Summary

The implementation of large scale assessment via PAT has generated great

challenges to practitioners. The matching methods based on the proposed location indices

are clearly superior to the MI method in terms of balancing item pool usage. The

Matching-LI methods used over 99% of the item pool thus use all available items and do

not waste any of them. It is well known that item writing is expensive and time
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Figure 12: Distribution of item exposure rates of the item selection methods.

Table 7

Percentages of Exposure Rates for Over-exposed Items (N=1000, M= 300, L=15)

Matching-LI

Number of Categories LImean LImedian LIIRF MI

3 0 0 0.5 9.00

4 3.33 3.33 0 8.33

5 0 0 0 7.50
Note. LI=location index; MI=maximum information.
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consuming. These items must pass a long review process to be included in an operational

item pool. Therefore, these proposed LI methods have a very desirable feature of

effectively utilizing the item pool. The decrease in performance of the proposed LI

methods in terms of precision of ability estimation is negligible. An added feature of the

LI methods is that they are easy and fast to implement because they are based on simple

statistical algorithms. The findings of current study support the findings of Lima Passos

et al. (2008) showing that a criterion that allows for a quick convergence to the most

suitable location parameters produces steady RMSE and bias curves.

The Matching-LIIRF (or matching-expected-score) method is slightly better than

the other three LI methods in terms of having a high level of measurement precision and

also has a successful usage of item pool and exposure control. All the proposed methods

perform as if each has an exposure control inherited that prevent items from being

overexposed or never being exposed, and keeps most of the items away from being

underexposed. Recall the test length used here is a short test (i.e., 15 items). In

conclusion, the matching-LI method is very promising in PAT. The LI methods could be

modified to deal with more constraints, such as content balancing, or different item pool

structure. These modifications and their performance with skewed ability distributions

require further investigation.

In terms of future research, the non-information item selection approach needs to

be investigated more in other contexts other than fixed-length tests, such as in delivering

an adaptive test of variable-length. A new version of polytomous a-stratification strategy

can be developed and investigated. In other words, the Matching-LI within stratum

approach is applied. Other factors and developments to study including the item pool

structure and the effect of a correlation between the item discrimination parameters and

the corresponding LI, that would necessitate blocking LI within each stratum. The item

pool used here provided no relationship between a-parameter and the LI so it is sufficient

to stratify the item pool using a-parameter only without considering blocking the

distribution of LI.

Based on the results displayed in the current Chapter with regard to the primary

assessment of the the Matching-LI method’s characteristics. In the following Chapter, a
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follow-up study of the Matching-LI method was conducted in a real setting. Additionally,

more item selection procedures were developed and investigated.
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Chapter 4

Improving the Performance of Matching-Location-Index Method With
Information Indices

Introduction

The mechanism of item selection is just one crucial component along with other

components in adaptive testing that needs to be improved and be flexible to different

purposes of testing. Ranking students in terms of their abilities and classifying these

students into performance levels are considered two major purposes in traditional adaptive

testing. Each item selection method used in adaptive testing has its strengths and

weaknesses. Therefore, it is better to know these characteristics that may enable us to

incorporate them in a procedure of combined benefits. The idea of combining more than

one procedure in selecting test items is to acquire as much as possible of these procedures’

pros together.

The item selection criteria, such as Fisher information, Kullback-Leibler (KL)

global information, or others, have no general recommendation to be used in polytomous

adaptive testing (Veldkamp, 2003). During the early stage of adaptive testing, item

selection criteria based on Fisher’s information often produce less stable latent trait

estimates than the KL global information criterion (Lima Passos, Berger & Tan, 2008).

This may cause problems; when the ability estimate is not close to the true value of the

ability parameter, Fisher information will produce inefficient item selection.

Cheng, Chang, Douglas and Guo (2009) reported that simulation studies for

dichotomous items revealed that the global information method outperformed the

maximum information early in the sequence (Chang & Ying, 1996), indicating it would be

a better choice for short adaptive tests. Also, because it would not always select the item

with the highest discrimination parameter at every difficulty level, it takes some steps

toward addressing item exposure. However, neither the maximum information nor the

global information method adequately address balancing item exposure and have no

features for satisfying test constraints.

Under the GPCM, Pastor, Dodd and Chang (2002) used the a-stratification design
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to control item exposure. Due to the presence of multiple category difficulty parameters

per item, the item selection was based on the information function. They did not use the

a-stratification design to its full capacity in PAT. So, we suggest using one index rather

than several step difficulties per item. One possibility is the summation of the step

difficulties for an item as an index for item pool stratification. To choose the next item,

we may find some sort of matching this proposed index with the current estimated ability

is used.

Another approach to enhance the item selection algorithm is the use of suitable

item information measures based on the stage of test (i.e., Kullback-Leibler (KL)

information in the early stages and maximum information (MI) that uses Fisher

information in the later stage(s) of CAT course). The usage of multiple item selection

criteria was previously used in ability estimation; expected a posterior (EAP) used early

in a test and later maximum likelihood estimator (MLE).

Certainly, the development of item selection criteria in polytomous adaptive

testing is possible as some new ideas can be achieved and can be promising solutions to

problems raised by multi-response items. The performance of an item selection method is

affected by the other components in PAT, so we consider them as well in the current study

for better assessment of the proposed LI.

To conclude, two main points were raised here, first, dealing with the inaccurate

trait estimates at the early test stage, second, heavily usage of high-a items on the

expense of low-a items (i.e., the unbalanced utilization of item pool). To circumvent such

problems alternative item selection criteria are introduced. Therefore, the purpose is to

refine the performance of Matching-LI method that were introduced previously and

measure the behavior of the new methods and evaluate their strengths and weaknesses for

efficient measurement.

In the following section, three proposed item selection methods are introduced: (a)

hybrid method, (b) polytomous a-stratification strategy, and (c) stage-based information

method.
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Item Selection Methods

In the current section, we introduce the new procedures for selecting polytomous

items for adaptive testing. Based on the preliminary results of Ali and Chang (2010) and

the previous chapter that assess the performance of the Matching-LI method compared to

the maximum information (MI) method, it was clear the advantage of using such method

for maintaining item pool and controlling exposure rates without applying strategies of

item exposure control. In the current study, a modified version of Matching-LI method

that incorporates an information measure into the item selection criterion is presented.

Also, two other procedures are presented: polytomous a-stratification strategy and

alternating information index (or stage-based Information) method.

Hybrid matching-LI and information method. This version of item

selection method combines two procedures in one to form a new criterion in item selection

for polytomous adaptive testing. It combined matching-LI and Fisher information criteria

together.

Originally the non-information item selection procedure depends on matching

item’s LI (e.g., LImean or LIIRF) to the interim ability estimate, θ̂, during the test course.

The criterion is to minimize the absolute difference between θ̂ and LIh. So the it+1 item to

be selected has the minimum distance between the current θ̂(t) based on t items and its

location parameter, as follows

it+1 = arg min
h

{∣∣∣θ̂(t) − LIh
∣∣∣ : h ∈ Rt

}
,

where LIh is a location index of a polytomous item h from the remaining items in the item

pool not administered yet, Rt. Minimizing the distance between the estimated ability level

and LI is equivalent to maximizing the reciprocal of this distance.

As indicated by previous results, the Matching LI procedure is performing very

well in terms of the item pool usage, but it is slightly less efficient in ability estimation

compared to the criterion that maximizes Fisher information function. To help enhance

the precision of test taker’s ability estimation in addition to the efficiency of item pool

usage, a hybrid method that combines both the information function and Matching LI
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approach in one item selection is proposed where the item is selected by maximizing the

following criterion

it+1 = arg max
h

 1∣∣∣θ̂(t) − LIh
∣∣∣I
(
θ̂(t)
)

: h ∈ Rt

 . (49)

This new criterion is maximizing the product of the information function I
(
θ̂(t)
)

and the

reciprocal of the distance between item’s location parameter and the interim trait

estimate, as appeared in Equation 1. The techniques plays the role of balancing the

powers of both procedures and hopefully perform better. In other words, the hybrid

method tries to take the estimation efficiency from the first term, MI criterion, and to get

the balance pool utilization from the second term, the Matching-LI criterion. The hybrid

comes from the nature of each term, information and non-information bases, respectively.

Alternating information index (or stage-based information) method.

The MI criterion’s strong dependence on the item’s discrimination parameter, for

instance, gives rise to a twofold nuisance. Because the most discriminative items are also

the most informative, their selection leads not only to the unwelcomed side effect of

overexposure of valuable items from the outset of the test. It also underlies a problem

known as the attenuation paradox (Lord & Novick, 1968; van der Linden & Pashley,

2000). The attenuation paradox can be a serious hindrance in the early stages of an

adaptive test, where the bias of the estimator θ̂ can be relatively high (i.e., θ̂ might

strongly deviate from the true trait value θ0). Selecting a highly discriminative item to

match an uncertain θ̂ might provide little information on the true trait. Consequently, a

mismatch between the items, selected to fit the newly updated estimator, and the true

value can arise, leading to further inefficiency of the succeeding θ̂. A considerable delay of

θ̂ sequential convergence to the true value can follow.

In addition to the aforementioned reasons, the idea behind proposing the

stage-based information method comes from the stages that a test goes through. It has

been distinguished between three main stages of ability estimation; namely, early, interim,

and final stages as suggested by van der Linden and Pashley (2000). The logic behind

alternating the information criterion used for item selection was used before in the context

48



of trait estimation; where the different stages affect the choice of the ability estimators.

For example, in dichotomous CAT more than one method is used during the course of test

starting with expected a posteriori (EAP) at the initial stage where a higher possibility to

have zero or perfect score pattern that makes maximum likelihood estimator (MLE)

undefined. Later when both zeros and ones are present at response pattern, switching to

the MLE would be reasonable. Using such alternation would benefit the trait estimation

in adaptive testing.

By the same token in the context of item selection criteria, it was known that KL

global information criterion is better than the MI in the early stages of the test.

Therefore, the proposed method suggests to use a global information index for the early

phase where much uncertainty about the trait estimate is available that enable us using

the MI. On the other hand, it has been argued that the global information seems more

appropriate to counteract the attenuation paradox (Lima Passos et al., 2007). Therefore,

it is beneficial to globally search for the polytomous items until a point where enough

items are administered and consequently high expectation of more accurate trait estimate.

At that time, the information index used is shifted to another index suitable to such stage.

It is needed to know if the estimation accuracy will be affected if the transition point

differs. In other words, when to alternate the information index, e.g., do we use the KL

information at the early and interim stages of a test or only for the first stage.

This alternating information index method is another way of combining two

criteria to get the utmost benefits out of them by getting their unique features and

avoiding their weak points.

Polytomous a-stratification strategy. Dichotomous a-stratification method

was proposed for selection as a solution to problems raised by the traditional method

based on Fisher information (see for more details Chang & Ying, 1999; Qi, Chang, &

Ying, 2001). In the dichotomous stratified design, the test is partitioned into a number of

stages and the pool is partitioned into strata, where items of each stage are selected from

a particular stratum. The selection is done by matching the difficulty parameter of an

item with the examinee’s trait estimate. In the polytomous version of a-stratification

design, Pastor et al. (2002) provided an alternative item selection procedure where
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maximum information is used within each stratum to choose the next item for

adminstration. This is because there are multiple difficulty steps per polytomous item and

there is no single item parameter available to be used for selection.

After the development of such single parameter (i.e., LI, that represents the

difficulty of a polytomous item), matching such index within each stratum becomes

possible. LI can be one form of LImean, LItrimmed mean, LImedian, or LIIRF. The proposed

method is Matching-LI method with stratification to the item pool. Therefore, polytomous

a-stratification strategy (PASS) uses one of these proposed polytomous item indices in

replacement of the b-parameter in the dichotomous a-stratification strategy. Blocking the

LI within each stratum may not be needed. In other words, we may not need to have a

uniform distribution of that index through the strata if there is no positive significant

relationship between a-parameter and the LI for the assigned item pool. At that time, it

is sufficient to stratify the item pool using a-parameter only without considering the

distribution of LI in each stratum. The selection within each stage will be based on

matching the estimated trait as well. The main difference of this method compared to

that used by Pastor et al. (2002) is using a non-information approach, e.g., Matching-LI,

instead of using the information-based item selection method at each stage of the test.

Also, it may consider alternative criterion other than the discrimination parameter

to stratify the item pool. One possibility is to use the width of item information function.

Dodd and Koch (1987) reported that shape of item information is not solely related to the

distance between step values for such an item but also it is related to the sequence of

these step values (i.e., the existence of reversal).

Data and Study Design

The purpose of the current study is to evaluate the performance of proposed item

selection methods in addition to using the Matching-LI methods using two indices, LImean

and LIIRF and the MI and KL as reference information criteria. This results eight item

selection procedures: Hybrid, Stage, PASS, Matching-LImean, Matching-LIIRF, MI, and

KL.

The study design used item parameters from real items to get a more realistic

results. The following section provides more information about the study design and the
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implementation of PATs.

Data.

Item parameters. An item bank has been formed from ninety-three (93) real

items collected from a real application. The item parameters were calibrated using a large

sample of students who took the National Assessment of Educational Progress (NAEP)

reading main assessments from 2000-2007. Each item has four category response options.

The estimates of item parameters were obtained by fitting the GPCM to the data and

using a NAEP BILOG/PARSCALE program. The item parameters, the discrimination

and three step difficulty for each item, are reported in addition to the LIs corresponding

to each item in Appendix A.

In this simulation, a short-length test of nine items was used. With regard to the

early stages, we can see the performance of such methods in the first few items for

example five items or so to get the difference in ability estimation and item pool

management. Also, it shows the type of items that are recommended by each criterion.

The item parameters considered in the item bank have a number of items with

reversals (i.e., the category parameters are not in ascending order from score zero to score

m). The items of reversed item category thresholds had only one reversal and there are 19

such items (i.e., 20% of the actual item pool). Table B1 in Appendix B provides the item

parameters of item pool.

Response generation. One thousand simulees were generated from a standard

normal distribution. Each simulated examinee received eight PATs, each of which was

directed by a specific item selection method.

The response of each simulee was generated in the following manner: The

probability of answering each of the four score categories (i.e., 0 to 3) conditional on the

known item parameters and simulees true trait value was calculated. Thereafter, three cut

scores for the cumulative probabilities were determined, t1, t2, and t3, with t1 = Pi0,

t2 = Pi0 + Pi1 and t3 = Pi0 + Pi1 + Pi2 where Pi0, Pi1 and Pi2 are the probability of

getting a score category 0, 1, or 2, respectively, calculated via Equation 7 in Chapter 1.

Based on t1, t2 and t3, four category intervals were obtained, namely, (0, t1), (t1, t2),

(t2, t3), and (t3, 1). A random number was drawn from the uniform distribution U(0, 1).
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The category (i.e., the interval containing the random number) was assigned an item-score

of 1, and 0 otherwise.

Procedure.

PAT initialization. The polytomous adaptive tests start with a randomly

chosen item from the item pool by the item selection methods and the initial trait value

was assumed to be zero, the mean of trait distribution.

Stoping rule. The stopping rule used here is administering a fixed number of

items to all simulees. Test length is an important factor to a PAT; it affects the accuracy

of the final trait estimation. Therefore, each delivered adaptive test consisted of nine

items.

Item selection procedures. We compared the proposed item selection methods

to the existing methods. The first method was non-information based that selects the next

item by matching the current trait estimate to an item index as described before

(Matching-LI); hence, it has two versions based on these different indices. The first version

uses the average item category location index that considers all ICCCs into account,

(LIMean). The second version considered the polytomous IRF as an item index (LIIRF).

The hybrid method combined maximizing Fisher information and matching LIIRF.

The alternating information index (Stage) Method was applied where MI was used toward

the end of test. Therefore, first at the selection was based on KL information criterion

until the administration of 6 items then we switched to MI.

To apply the PASS, the item bank was divided into a number of strata. Based on

the polytomous item’ ai parameter, where i = 1, 2, . . . , 93, and their relationship between

items’ LIs, the stratification was conducted. At the current, we used only the

discrimination parameter to sort the items in an ascending order. For this case, there were

three strata, each stratum equally consisted of 31 items and 3 items were selected from

each stratum. The items from 1-31, 32-62, and 63-93 formed the three strata from low to

high discrimination. For item selection within each stratum, two method were of interest.

Matching-LI method was applied and the LIIRF was the chosen index used to represent

the item’s location parameter, (PASS with Matching-LIIRF). Also, we applied the PASS

with MI where MI was the criterion for selecting items at each test phase.
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Standard methods were used as MI and KL. With regard to the KL method, as we

do not know the true trait value, an interval is used. The trait confidence interval of the

nth step in the implementation of PATs, is defined as [θ̂n−1 − δn−1, θ̂n−1 + δn−1] where

δn−1 = c√
n

, where c is a constant selected according to a coverage probability (Chang &

Ying, 1996), herein c = 3.

Scoring method. The expected a posteriori (EAP) with a prior distribution

N(0, 1) is considered for scoring simulees.

Evaluation measures. The study used two main evaluation criteria for

comparison among the different item selection methods. Measurement precision was the

first criterion for comparison. The other one was pool utilization as expressed by item

exposure rates, where they showed how effectively the item pool was used.

Accuracy of measurement. The ability parameters recovery was used to

evaluate the proposed item selection methods. Two statistics are used to determine how

close the estimated ability estimates were to the original ability estimates. Evaluation

criteria fit here were: (a) Bias, (b) Root Mean Square Error (RMSE), and (b) Relative

Efficiency. These indices were to capture the measurement precision.

Average bias (bias) was estimated. Let θj , j = 1, , N be the original trait value of

N examinees and θ̂j be the respective estimator from the PAT using different item

selection methods.

The RMSE was calculated using Equation 50 as follows

RMSE =

√√√√ 1
N

N∑
j=1

(
θ̂j − θj

)2
. (50)

The smaller bias and RMSE the better item selection method would be. Relative

efficiency also is a good indicator for the degree of procedure enhancement relative to a

reference procedure. As a standard we used the MI as reference for our the relative

efficiency. The close the values to one, the more efficient the procedure is.

Item utilization. To determine the item exposure of each item selection

method, the probability of administering each item was computed by dividing the number

of times the item was administered by the total number of simulees. The minimum and
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Table 8

Descriptive Statistics of Real Item Pool (M=93)

Statistic a b1 b2 b3 Distance

Mean 0.59 -0.72 0.47 1.88 2.72

SD 0.17 1.17 0.93 1.18 1.22

Minimum 0.28 -4.01 -1.82 -1.36 0.26

Maximum 1.19 1.56 2.27 4.47 8.15

maximum of item exposure rates in addition to the three quartiles were calculated as well.

The closer these values are, the more uniformly the distribution of item exposure rates

will be. Also, the percentage of pool of over- and under-exposed items provided useful

information. The χ2 statistic, a descriptive statistic that indicates the skewness of item

exposure rate distribution (Chang & Ying, 1999). It quantifies the discrepancy between

the observed and the ideal, uniform distribution and is considered a good indicator of the

efficiency of pool utilization.

For the current study, the adaptive tests was considered as medium-stakes test.

Therefore, we tolerate the target exposure rate to be .30. Also, three quartiles in addition

to maximum and minimum exposure rates were considered. Also, the type of items

heavily selected by each method was studied.

Results

The current section presents a descriptive analysis to the item pool, followed by

the comparison of the results for both measurement precision and item pool usage indices.

Description of the NAEP item pool. Descriptive statistics (i.e., mean,

standard deviation, minimum, and maximum) of the NAEP reading item parameters are

provided in Table 8. In addition, the distances between the largest and smallest threshold

parameters of items are provided. It ranges from almost very narrow width, 0.26, to a

larger width of overage, 8.15, with mean =2.72 and SD = 1.22.

Also, the distribution of a-parameter and LIs for all items in the item pool is

depicted in Figure 13. Note that the discrimination parameters were limited in range,
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Figure 13: Relationship of LImean and LIIRF with discrimination parameters.

[0.28, 1.19]; therefore, the item bank is not rich enough especially for high-ability students.

Idea: we can add items for the item pool to fill the gap found in the items available. For

example, high-discriminating items need to be added to the item bank. With regard to

the item category thresholds, the item bank has items that threshold mean covers the

range of [-1.91, 2.58]. Also, there is a lack of items that cover the right area (at the right

of the vertical line of a=1.20).

Total item information and the standard error of measurement are displayed in

Figure 14. Commenting of the match between the distribution of item bank information

and the trait distribution in the target population, it is obvious that the total information

given by the item bank is not enough to secure accurate trait estimates along the scale
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Figure 14: Total item bank information.

range especially at the lower and higher ends. The curve of total information is peaked at

the interval of (0.5, 1) up to 30 logits. Also, the minimum value possible for standard

error of an estimate is about 0.20 and getting much larger at the two tails. It may be due

to the way of collecting these items; they are not designed to be grouped in one pool.

Accuracy of measurement. Table 9 presents the bias, RMSE, and relative

efficiency for different item selection methods. As expected, the MI is the most efficient in

trait estimation, the PASS is the least, and all the remaining methods are intermediate.

Measurement using the Stage-based information method is very precise and very similar

to the precision of MI. Relative to the MI, the Hybrid and KL methods are very efficient

and are superior to the two methods of non-information approach, Matching-LImean and

Matching-LIIRF. The PASS methods had a largely biased estimates and thus larger

RMSEs. All the remaining methods had very small bias and RMSE.

Pool utilization. Table 10 summarizes the distribution of item exposure rate (r)
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Table 9

Measurement Accuracy Indices for Different Item Selection Methods (N=1000, M= 93,
L=9)

Methods Bias RMSE Relative Efficiency

MI 0.017 0.462 1.00

KL 0.008 0.515 0.90

Matching-LImean -0.003 0.565 0.82

Matching-LIIRF 0.025 0.604 0.76

Hybrid -0.004 0.531 0.87

Stage 0.022 0.480 0.96

PASS with MI 1.663 1.877 1.00∗

PASS with Matching-LIIRF 1.835 2.037 0.92∗

Note. RMSE=root mean squared error; LI=location index; MI=maximum information;
PASS=polytomous a-stratification strategy.
∗ The relative efficiency is with regard to PASS with MI.

across the pool under different item selection rules. As we know that the smaller the χ2

statistic the better the exposure control. It is clear the Hybrid and Matching-LI methods

have the best pool utilization indices, where the fives values of minimum, quartiles, and

maximum exposure rate are closer to each other than those of the other methods.

Table 11 shows the statistics of over- and under-exposed items and it also provides

the preferred items selected by different item selection criteria. The item that has been

mostly selected by all item selection methods is item 62: a62 = 0.62,

b62 = (−0.39,−0.59, 0.23) with LI62
mean= -0.25 and LI62

IRF= -0.29.

Then there two other examples of mostly selected items, items 66 and 67. Their properties

are as follows,

item 66: a62 = 0.64, b62 = (−0.17,−0.20, 0.61) with LI66
mean= 0.05 and LI66

IRF= 0.08.

item 67: a67 = 0.64, b67 = (−0.39,−0.60, 0.25) with LI67
mean= -0.25 and LI67

IRF= -0.29.

We can see that items 62 and 67 are very much the same in terms of their

characteristics and were their behavior. Note that the items were rank ordered based on
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Table 10

Descriptive Statistics of Pool Utilization by Different Item Selection Methods

Methods Min. 1st Qtile 2nd Qtile 3rd Qtile Max. χ2

MI .004 .009 .013 .017 .909 43.29

KL .005 .009 .012 .019 1.000 44.51

Matching-LImean .006 .032 .059 .114 .466 11.71

Matching-LIIRF .007 .029 .059 .122 .539 12.02

Hybrid .006 .025 .059 .130 .599 13.06

Stage .003 .009 .012 .021 1.000 44.24

PASS with MI 0 0 0 .032 1.000 63.73

PASS with Matching-LIIRF 0 0 .031 .069 1.000 47.44
Note. LI=location index; MI=maximum information; KL=Kullback-Leibler information;
PASS=polytomous a-stratification strategy.

the discrimination parameter so as the item number increases, the discrimination power of

item is getting larger. Based on that we can see the pattern of selected items attached to

the different item selection methods.

On the other hand, in terms of the over- and under-exposed indices, the Hybrid

and Matching-LIIRF methods provided the best performance of utilizing the item pool and

the two forms of PASS were the least.

Summary

The current study presented new item selection methods in the context of adaptive

testing with polytomous items. They are the Hybrid, Stage, PASS methods. These new

methods were compared to two Matching-LI procedures and two information procedures,

MI and KL. The notion of combining the information and non-information approaches as

expressed in the Hybrid method was excellent. It provided a balanced performance on

both measurement precision and item pool usage.

The other example of item selection method is stage-based method that paired

between the MI and KL criteria to be used exchangeably in delivering test items

throughout the test course. The method is efficient in trait estimation but did not
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Table 11

Item Utilization Indices and Mostly Selected Items by Different Item Selection Methods

Over- Under- Over-exposed

Methods exposed (%) exposed(%) Items

MI 13.98 27.96 62, 66, 67, 82, 85–93

KL 10.75 27.96 12, 13, 17, 20, 59, 62, 64–67

Matching-LImean 8.60 1.08 16, 17, 20, 26, 33, 34, 37, 62

Matching-LIIRF 5.38 3.23 16, 17, 20, 37, 62

Hybrid 5.38 3.23 20, 62, 65–67

Stage 11.83 29.03 12, 13, 59, 62, 64–67, 88, 92, 93

PASS with MI 9.68 55.91 22, 31, 53, 58, 59, 62, 67, 87, 88

PASS with

Matching-LIIRF 9.68 38.71 9, 16, 23, 33, 37,62, 65–67
Note. LI=location index; MI=maximum information; KL=Kullback-Leibler information;
PASS=polytomous a-stratification strategy.

enhance the usage of items available to be selected from.

Stratification of the item pool and selecting item within each stratum by any of

the MI or matching the LIIRF do not help enhance the estimation accuracy and the

estimates were biased. The real item pool used in the study was not rich enough for better

stratification. This supports the influence of item pool quality and also the item pool

information/size on the performance of item selection methods in adaptive testing (Lima

Passos, et al., 2007; Pastor et al., 2002). The study of Lima Passos et al. used two item

pools with 300 and 600 items. We found that Pastor et al. manipulated the item pool by

modifying their item parameters.

In terms of the items that have been labeled as over-exposed items, the item

selection methods that apply the information measures as criteria (e.g., MI and Stage

procedures) tend to be attached to the items of relatively high discrimination. (Consider

that the largest a-parameter is 1.19). On the contrary, the item selection methods of

non-information approach (e.g. Matching-LI) tend to select more the item of high-low to
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relatively-medium discrimination. The highest a-parameter for an item from this group is

0.64 and the lowest was 0.47. The Hybrid method tends to search for items similar to the

Matching-LI methods. Generally, most of the reported items are items with reversal. This

is related to Dodd and Koch’s (1987) claim that the items with the same set of thresholds

yielded the same total amount of information across the entire ability continuum, but

different ordering of the thresholds affected the peakedness of the item information curve.

The peakedness of the curve increased as the degree of deviation from the sequential order

of the thresholds increased.

60



Chapter 5

Discussion and Conclusion

Discussion

The technology of adaptive testing with polytomous items, especially item

selection procedures, was the main focus of this dissertation. The polytomous items were

introduced starting with their properties using an IRT framework. Different model

parameterizations were introduced to show its suitability to different types of polytomous

items. The most commonly used polytomous models were critically analyzed in terms of

the parameters that describe an item that has m+ 1 ordered response categories scored

from 0 to m. Consequently, the analysis, in addition the literature review of PAT,

concluded that there was a need to have an overall location index or parameter for

polytomous items.

The importance of such an index is critical for a PAT environment. The need to

have such an index that allow the researcher to have more and more item selection criteria

other than information-based criteria is urgent . The unavailability of an index to

represent the difficulty or location of a polytomous item prevents the application of PAT

non-information item selection procedures. Therefore, the primary focus here was to

develop a novel polytomous item location index.

The mathematical derivation allows for four possibility variants of the index.

Three indices, LImean, LItrimmed mean, and LImedian, were developed based on studying the

interrelations among the item category response functions (ICRFs). One more index was

developed on the basis of polytomous item response function (IRF), LIIRF. Studying the

polytomous IRF has the property that it can be applied to the most commonly used item

response models, GRM, PCM, and GPCM. The proposed polytomous LIs are related to

item difficulty parameters and have as special cases those used for dichotomous responses.

The success of developing a single location parameter for a polytomous item opens

the door for more and more innovative procedures, especially the presence of

non-information item selection approach opened the door for the hybrid approach in item

selection that combined both information and non-information criteria. The results of the
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simulation study provided that the Matching-LI methods balanced item pool utilization

without wasting any items. This is compared to MI that wasted more than 50% of the

available items, which is undesirable property considering that item writing and review

process are tedious, time-consuming, and expensive. On the other hand, the

non-information approach does not lose much in measurement precision. Another added

benefits of the new method is that it is easy and fast.

All the Matching-LI methods perform as if each method has its exposure control

mechanism inherited that effectively manages the item pool (i.e., prevent items from being

overexposed or never being exposed, and keeps most of the items away from being

underexposed). The simulation study findings suggested the modification of these

non-information methods and this was the motivation for the second study.

Other item selection procedures were proposed. These methods are hybrid

(information/non-information), stage-based information, and polytomous a-stratification

strategy. A second study was conducted to evaluate their behavior. The second study was

conducted based on NAEP data. The hybrid method was proposed as a response to the

first study; it helps enhance the estimation accuracy by adding Fisher information to the

selection criterion. The study findings successfully supports the logic of building the

hybrid method on both information and non-information criteria by merging them in one

single criterion.

With regards to the stage-based information method, the two criteria MI and KL,

were use sequentially to deliver an adaptive test. This method was efficient in trait

estimation but did not improve the usage of item pool. The third method that applied

item pool stratification was the worse in teems of both estimation accuracy and item

utility.

The type of items preferred by different item selection methods were investigated.

The item selection methods, such as MI and Stage-based, that apply information indices

have a higher tendency used the relatively high-discriminating items in the operational

item pool. The methods of non-information approach (e.g., Matching-LI) tended to use

items with medium discrimination and the hybrid method has the same tendency.

Generally, most of the reported items are items with reversal. Dodd and Koch (1987)
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stated that the amount of information available by each item depends on several factors

such as ordering of the thresholds. The ordering of the thresholds affects the peakedness

of the item information curve and is consequently related to the deviation from the

sequential order of the thresholds.

Finally, from the results obtained here, the stratification process of polytomous

item pool is not as straightforward as that of the dichotomous case. This matches the

results of Pastor et al. (2002) in their conclusion to deeply think more about a

polytomous stratification design (PSD). Such PSD can use an index that considered not

only the discrimination parameter in stratifying the item bank but also considered the

single location parameter of a polytomous item and other item properties for a better

PSD such as width of information coverage and sequentiality of step parameters.

Conclusion

Given the the rapid advancement of computer technology, the importance of

administering adaptive tests with polytomous items is in great need. This need promotes

the research in polytomous adaptive testing. From the current research that was

conducted here, it is obvious that the Matching-LI methods are very promising item

selection procedures in polytomous adaptive testing environment. These methods are

considered under a new category of polytomous item selection methods called

non-information approach. It was very convenient to build such methods based on the

derived LIs. Also, the hybrid method is an added-value procedure to the literature in such

field.

These conclusions can generalized to fixed-length adaptive tests fitted by the

GPCM, selected form an item bank, and scored by the EAP. The research designs were as

close to the real application as possible. Two test lengths were considered 9 and 15 items

which are considered short to medium length. The size of item pool ranges from 93 to 300

items.

Limitations and Future Research

We will address the limitations and our recommendations for future research in

terms of the different aspects of adaptive testing.
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Item selection methods. The research in testing is very active. As we are

interesting in developing procedures for selecting the best items in polytomous adaptive

testing, it is also important to match practitioner’s needs regarding the test structure.

The structure of a test is predesigned by content experts that provides the user with

adequate representation of content areas. According to Boyd, Dodd and Choi (2010) there

is no research conducted in severely constrained PATs; that is, tests that incorporate

many non-statistical constraints. Therefore, a natural extension of the current research is

to add a mechanism to the item selection procedures to satisfy these constraints without

affecting the precision of measurement and maintaining optimal item pool usage.

The severely constrained adaptive tests need specific selection methods for

polytomous items. Cheng and Chang (2009) introduced a maximum priority index as a

mechanism used for delivering of severely constrained adaptive tests with dichotomous

items. This index performs very well in that context compared to existing methods such

as the Swanson and Stocking (1993) method. This priority index can be incorporated with

the Matching-LI methods.

In terms of information measures used, Fisher and KL information indices are two

information measures considered the building blocks of the selection criteria applied in

adaptive testing with both dichotomous and polytomous items. Other information

measures can be useful to be merged to enhance the efficiency of CAT system. In the case

of stage-based method presented here, these two measures have been alternated based on

their superiority attached to each stage. Other available measures can be used such as

mutual information (Cover & Thomas, 1991).

The item selection methods developed and studied here can be refined and further

investigated. One possibility is the continuous stage-based information method where a

linear combination of global and local information measures is introduced. The linear

combination assigns specific weights to each information measure that are monotonically

increasing or decreasing as the number of items administered increases.

Item banks. In terms of structure of the item bank: peaked versus flat. Both

peaked and flat item banks were used in the polytomous adaptive system. The peaked has

more information at small range; whereas, the flat one covers a wider range. An item
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bank that has uniform information coverage along the trait range offers the best grounds

for a PAT setting, irrespective of the criteria. In practice, however, item banks tend to

have a bell-shaped information curves, with relatively poor information at extreme values

of the traits. In this case, the issue of choosing an item selection criterion becomes more of

clear decisive relevance (Lima Passo et al., 2007). Also, the effect that an item bank

information/size has on quality of the trait estimation has been detected and reported in

previous studies on dichotomous and polytomous CAT (Dodd et al., 1995; Roberts, Lin, &

Laughlin, 2001). Therefore, the item bank, in relation to the item characteristics and

newly developed LIs, needs to be investigated more.

Polytomous IRT models. The item analysis using simulated- and real-data

were performed using traditional polytomous IRT models; that is, dominance models. The

most commonly used dominance models are the GRM, NRM, PCM, and GPCM. Other

models can fit specific polytomous item data (Tay, Ali, Drasgow, & Williams, in press)

such as the ideal point models including the generalized graded unfolding models (GGUM;

Roberts, Lin, & Laughlin, 2001).

Trait versus attribute estimation. In terms of overall trait estimation versus

student’s profile, the field of applying polytomous cognitive diagnostic models is in its

infancy and there is no research that provides adaptive tests and consider the cognitive

diagnosis. Ali, Shuliang and Chen (in preparation) tries to use the partial-credit DINA

model (de la Torre, 2010) in polytomous adaptive testing with cognitive diagnosis

(CD-PAT).
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Appendix A

Approximation of LIIRF Using Newton-Raphson Method

The Newton-Raphson method is a numerical method to solve nonlinear equations

of the form of f(x) = 0. The approximate solution to the equation is

xt+1 = xt −
f(xt)
f ′(xt)

, (A-1)

where xt+1 is the updated approximation based on the previous estimate, xt, and f ′(xt) is

the fist derivative of f(xt) with respect to x.

In the following section we introduced the approximation of LIIRF using the three

different polytomous IRT models: (a) the partial credit models (Masters, 1982; Muraki,

1992) and (b) the graded response model (Samejima, 1969).

LIIRF of the Partial Credit Models’ (PCM and GPCM) Items

In the current case, consider a polytomous item with m+ 1 response categories

ranging from 0 to m. The formula of getting a category x on item i using a general form

to the partial credit models is given by

Pix(θ) =
exp

∑x
v=1 ai(θ − biv)

1 +
∑m

c=1 exp
∑c

v=1 ai(θ − biv)
, (A-2)

where the discrimination parameters ai for all items are equal for PCM and different for

GPCM. The expected score given a specific ability value θ is given by

E(X) =
m∑
x=1

xPix(θ), (A-3)

Assuming that m
2 is our critical point to get the corresponding θ value that satisfies such

criterion, so the following is to satisfy

m∑
x=1

xPix(θ) =
m

2
, (A-4)

therefore, the function that needs to be solved is
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f(θ) =
m∑
x=1

xPix(θ)− m

2
= 0. (A-5)

Given that
∂Pix(θ)
∂θ

= aiPix(θ)

[
x−

m∑
c=1

cPic(θ)

]
, (A-6)

so the the first derivative of f(θ) with respect to θ, f ′(θ), is given by

f ′(θ) =
m∑
x=1

x aiPix(θ)

[
x−

m∑
c=1

cPic(θ)

]
, (A-7)

The approximate value of LIIRF using the partial credit models is

θt+1 = θt −
f(θt)
f ′(θt)

(A-8)

= θt −
[
∑m

x=1 xPix(θt)]− m
2∑m

x=1 x ai Pix(θt) [x−
∑m

c=1 cPic(θt)]
. (A-9)

LIIRF of the Graded Response Model’s (GRM) Items

The formula of getting a category x on item i using a general form to the graded

response model is given by

Pix(θ) = P ∗ix(θ)− P ∗i,x+1(θ), (A-10)

where P ∗ix(θ) is given by the formula of two-parameter logistic model as follows

P ∗ix(θ) =
1

1 + exp[−ai(θ − bix)]
. (A-11)

therefore, the function that needs to be solved is

f(θ) =
m∑
x=1

x (P ∗ix(θ)− P ∗i,x+1(θ))− m

2
= 0. (A-12)

Given that
∂P ∗ix(θ)
∂θ

= aiP
∗
ix(θ) [1− P ∗ix(θ)] , (A-13)

so the the first derivative of f(θ) with respect to θ, f ′(θ), is given by
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f ′(θ) =
m∑
x=1

x ai
[
P ∗ix(θ) (1− P ∗ix(θ))− P ∗i,x+1(θ)

(
1− P ∗i,x+1(θ)

)]
, (A-14)

The approximate value of LIIRF using the GRM is

θt+1 = θt −
f(θt)
f ′(θt)

(A-15)

= θt −

[∑m
x=1

(
x (P ∗ix(θt)− P ∗i,x+1(θt))

)]
− m

2∑m
x=1 x ai

[
P ∗ix(θt) (1− P ∗ix(θt))− P ∗i,x+1(θt)

(
1− P ∗i,x+1(θt)

)] .(A-16)
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Appendix B

IRT Parameters and Information Curves of 93 NAEP Reading
Assessment Items
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Table B1

Item Parameters of 93 NAEP Reading Assessment Items

1st Stratum 2nd Stratum 3rd Stratum
i ai bi1 bi2 bi3 i ai bi1 bi2 bi3 i ai bi1 bi2 bi3
1 0.28 -3.33 -0.71 -1.36 32 0.51 0.30 0.29 0.55 63 0.63 -1.59 1.25 2.24
2 0.28 -3.33 -0.46 -1.32 33 0.51 -3.90 -1.74 3.63 64 0.63 0.17 0.25 0.92
3 0.28 -3.78 -0.69 -1.26 34 0.51 -1.36 -0.22 2.33 65 0.64 -1.57 -0.02 0.96
4 0.38 1.56 1.70 4.47 35 0.52 -0.97 0.11 2.72 66 0.64 -0.17 -0.20 0.61
5 0.39 0.59 0.20 1.90 36 0.53 0.41 0.33 0.64 67 0.64 -0.39 -0.60 0.25
6 0.39 -0.31 0.18 1.80 37 0.54 -3.54 -1.63 2.92 68 0.64 0.75 1.05 3.79
7 0.40 -1.02 1.79 2.75 38 0.54 -1.21 0.64 0.66 69 0.65 0.40 1.08 3.78
8 0.40 0.08 -1.39 1.43 39 0.54 -1.49 0.95 2.37 70 0.65 -0.51 0.75 1.68
9 0.40 0.12 -1.17 1.53 40 0.55 -1.40 -0.10 3.12 71 0.66 -1.51 1.21 2.15
10 0.41 0.11 -1.25 1.48 41 0.55 -1.27 0.47 3.20 72 0.67 -0.77 1.51 2.35
11 0.42 -0.36 0.15 1.72 42 0.55 -0.93 -0.33 2.73 73 0.67 -0.08 1.21 2.06
12 0.42 -0.23 0.03 -0.33 43 0.55 -1.08 -0.14 1.24 74 0.68 -0.30 0.90 1.83
13 0.42 -0.20 0.12 -0.37 44 0.56 -0.95 -0.26 2.62 75 0.69 -0.37 0.80 1.70
14 0.42 0.97 -0.04 1.98 45 0.56 -0.12 1.27 2.18 76 0.71 -0.68 1.48 2.32
15 0.42 -0.39 0.17 1.73 46 0.56 -1.24 0.45 3.25 77 0.71 -1.74 1.59 2.19
16 0.44 -1.60 -0.45 1.03 47 0.56 -1.68 -0.30 1.86 78 0.71 -0.04 1.17 1.90
17 0.45 -2.64 1.10 -0.32 48 0.57 -1.18 0.49 3.19 79 0.72 -0.04 1.15 1.88
18 0.46 -0.79 2.03 2.90 49 0.57 -1.86 0.03 1.62 80 0.73 -0.20 1.35 1.99
19 0.47 1.29 1.63 3.69 50 0.57 -2.20 -0.36 2.56 81 0.75 0.00 0.34 2.11
20 0.47 -2.70 0.99 -0.18 51 0.57 -1.62 0.88 2.47 82 0.78 0.17 0.21 2.17
21 0.47 0.54 0.34 1.15 52 0.59 0.11 0.22 0.92 83 0.79 -1.63 1.40 2.14
22 0.48 0.11 0.21 0.94 53 0.59 0.06 -0.25 1.03 84 0.81 0.14 1.49 1.97
23 0.48 -1.18 -0.16 2.33 54 0.59 -0.03 1.11 3.69 85 0.82 0.05 0.36 2.26
24 0.48 -0.35 2.25 2.87 55 0.60 -0.99 0.01 1.16 86 0.83 0.12 0.33 2.34
25 0.48 -0.48 2.27 2.77 56 0.60 -0.20 0.48 1.76 87 0.84 -1.11 0.35 2.12
26 0.49 -4.01 -1.82 4.14 57 0.60 -0.49 0.81 1.77 88 0.89 -1.13 0.43 2.11
27 0.49 -0.72 0.41 2.05 58 0.61 -1.01 -0.04 1.02 89 0.90 0.13 1.43 2.00
28 0.50 -3.64 -1.75 2.96 59 0.61 -1.15 0.38 0.55 90 0.92 1.08 1.18 1.69
29 0.50 -0.35 2.11 2.98 60 0.61 0.35 1.45 3.72 91 0.99 0.16 1.34 1.98
30 0.50 -0.25 2.19 2.64 61 0.62 0.37 1.47 3.73 92 1.17 0.36 1.21 1.64
31 0.50 0.15 0.32 0.97 62 0.62 -0.39 -0.59 0.23 93 1.19 0.37 1.20 1.59

SOURCE: U.S. Department of Education, Institute of Education Sciences, National Center
for Education Statistics, National Assessment of Educational Progress (NAEP), 2000-2007
Reading Assessments (National Center for Education Statistics [NCES], 2010).
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Figure B1: Information functions for items 1-24
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Figure B2: Information functions for items 25-48
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Figure B3: Information functions for items 49-72
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Figure B4: Information functions for items 73-93
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