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ABSTRACT 
 
 

Proteins are involved in nearly every process that occurs in living systems, either as a 

main participant in the process or preforming a supporting role. It is estimated that 

approximately half of proteins in living systems are associated with a metal in some fashion. 

With such a high percentage of proteins interacting with metals, it may not be a surprise that 

most cellular pathways that  have at least one metalloprotein performing one or more steps. 

Many, if not all, of the most important and complex processes that occur in living systems are 

performed by a metalloprotein. These processes include photosynthesis, cellular respiration, and 

nucleic acid repair. The metals in these proteins expand the potential chemistry beyond what can 

be done with only the 20 naturally occurring amino acids. However, nature uses relatively few 

metal complexes, such as heme cofactors or iron sulfur clusters or metal ions, considering the 

number of functions that metalloproteins perform. Also, nature uses a surprisingly small number 

of protein domains and folds compared the number of possible folds. In metalloproteins, both the 

metal and protein environment surrounding it play an important role in determining the 

chemistry that is performed. The protein adjusts the properties of the metal, such as the redox 

potential or the number of open coordination sites. Many metal ions found in metalloproteins are 

less reactive outside of a protein environment. Despite many years of study, we are only 

beginning to understand the functioning of large complex metalloproteins, such as heme copper 

oxidases (HCOs) in respiration or the oxygen evolving complex in photosystems. Large complex 

proteins pose two problems with respect to studying function. Large complexes are relatively 

difficult to isolate in a biologically relevant form and the multiple metal sites can either interfere 

with spectroscopic analysis or require the use of relatively sophisticated methodology.  
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As an alternative to studying these complex proteins, we have chosen instead to redesign 

an existing well-studied heme protein, myoglobin, to mimic the bimetallic, heme-CuB site of 

HCOs. This is the site where molecular oxygen is converted to water as part of cellular 

respiration. The conversion of oxygen to water is highly difficult as there are many highly 

reactive intermediates that must stabilized so that the reaction can result in water formation. Such 

a redesign can be thought of as going from the “bottom up” with respect to the desired function.  

In the process of building up such a model, we are producing minimalistic versions in order to 

see what the function of each of the structural features is and how it affects chemistry.  

This thesis describes the improvement of an existing myoglobin based model system of 

HCOs, named CuBMb, where an non-native copper site was previously engineered into 

myoglobin by adding two histidine residues. Along with the native histidine, the resulting site  

resembles the CuB site found in HCOs. This model protein is purified without metal in the CuB 

site and therefore it is possible to determine the role of the bound metal and the effect of using 

other metals. Previous studies of this model have not observed the desired chemistry, production 

of water from oxygen. However, HCOs have a novel feature found in no other proteins, namely a 

covalently attached histidine and tyrosine moiety that is critical for function of HCOs in vivo. To 

roughly mimic this novel feature, a tyrosine was introduced into CuBMb at various locations in 

the designed heme-CuB site. To guide the selection of the positions to place our tyrosine we used 

both the amino acid sequence information of HCOs and computer based protein models of 

myoglobin with a tyrosine. The computer models were compared to reported crystal structures of 

HCOs. The most similar mutants were made and characterized. The resulting tyrosine containing 

CuBMbs displayed the ability to produce water from oxygen, despite the absence of the covalent 

bond between tyrosine and one of the hisitidines used to bind the copper, as in HCOs. Even more 
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unexpectedly the desired activity was observed without the copper in the CuB site.. This result is 

both interesting and unexpected.  To futher improve the observed rate, more features of HCOs 

such as proton delivery channels and non-natural heme cofactors with similar features compared 

to heme cofactors found in HCOs were introduced into myoglobin.  The proton channels had 

positive effects on the observed activity.  In addition to these interesting results, attempts were 

made to try and react the tyrosine containing CuBMbs under various conditions to induce 

formation of a covalent bond analogous to the crosslinked histidine and tyrosine found in HCOs. 

In the process, a crystal structure of a novel species, where an oxygen species is bound “side-on” 

to the metal of the heme cofactor instead of the expected “end-on” mode that to our knowledge 

has never been observed in a heme protein. 

In  summary, to better understand the functioning complex proteins like HCOs, a model 

protein was previously constructed. Introduction of new structural features, into the model 

protein (CuBMb), with the purpose of mimicking features similar to those found in found in 

HCOs caused the model system to become competent to perform the desired chemistry with less 

features than what is thought to be required in HCOs. As more features were attempted we 

discovered an interesting oxygen species bound to our protein. These type of results show the  

advantage of trying to build upto a minimal model. It is possible with such a system to obtain 

unique proteins and intermediates in addition to what information one is attempting elucidate. 

One is also able to perform experiments that would be impossible in the native system and obtain 

useful information. The insights gained by this modeling work will help the designers of the next 

version of CuBMb overcome the limitations of this version and gain insight into how to generally 

build and design metalloproteins. 
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CHAPTER 1 

INTRODUCTION 

1.1 A brief introduction to metalloproteins 

Proteins are the catalysts of choice for effectively all of the critical processes in living 

systems ranging from signal transduction to energy conversion and utilization. In a recent report, 

it was shown that greater than half of the proteins expressed in living systems contain some form 

of metal cofactor, or are otherwise associated with a metal1. The function of these metal 

cofactors can range from being merely structural2,3, to transferring electrons4, to directly 

interacting with and chemically modifying bound substrates5. While metals are vital to the 

functioning of metalloproteins, the surrounding protein environment is also critical in 

determining and facilitating function. For example, in zinc fingers3,  and metal sensing proteins2 

the metal plays a structural role but the resulting difference in protein conformation can alter 

interactions with other macromolecules and effect processes like gene transcription. When 

removed from the protein environment, the cofactors no longer function effectively in most 

cases. Furthermore, changes to the ligand set within the protein and even changes to the 

surrounding, long-range, hydrogen bonding, hydrophobic or ionic interactions can be altered in 

order to alter or introduce new functionality into a protein scaffold.  

1.2 CcO/HCO activity and function and structural features  

 Living systems must produce large quantities of high energy molecules, like adenosine 

triphosphate (ATP), in order to store and transfer chemical energy and facilitate the production 

of molecules vital for life. In aerobic organisms, the reduction of oxygen to water is coupled to 
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translocation of protons across the inner mitochondrial membrane to create a proton gradient6,7, 

which is then used to drive the production ATP. The class of enzymes responsible for the 

conversion of oxygen to water is the heme copper oxidases (HCOs)5. These enzymes bind 

oxygen at a heme site with a nearby secondary metal site, known to contain a copper atom. The 

oxygen is then efficiently reduced to water, with little to no production of partially reduced, 

reactive oxygen species, with electrons that are transferred through two alternate metal sites. The 

electron transfer events are then coupled to proton transfer through the protein and across the 

inter-mitochondrial membrane.  

While HCOs have been extensively studied8-13, detailed studies of the inner workings of 

these proteins are difficult 14. All of the proteins in this class are large transmembrane proteins, 

the mass of bovine CcO is ~200,000 Da, 14,15(see figure 1.1), which make these proteins difficult 

to express and purify in large yield. The other metal based electron transfer sites also have 

similar electron absorption spectra as compared to the catalytic site, which convolutes the 

spectroscopy. Modeling the metal sites of HCO proteins individually in smaller systems is, 

therefore, critical to understanding the intricacies of these proteins. 

In order to effectively model features of HCO proteins, an understanding of the important 

features in native HCOs is critical. In native HCOs, subunit I contains the heme-CuB site5, where 

oxygen binds, which consists of a His ligated heme cofactor and Cu atom ligated by 3 His 

residues, known as the CuB site. The role of the copper in the site is to transfer the second 

electron to bound oxygen14. Mutations that affect copper binding inhibit activity of HCOs. One 

of the His ligands of the CuB site is covalently attached to a nearby tyrosine residue by a novel 

His-Tyr cross-link, which has only been observed in HCOs. In many HCOs, the a-type and b-

type HCOs5,12, the covalently attached His and Tyr residues are separated by 4 residues in the 
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protein sequence. However, in c-type HCOs, the His and Tyr are on separate helices16. Subunit I 

also contains a 6 coordinate low spin heme cofactor that is the intermediate step in the transfer of 

electrons from a dicopper site, CuA, in Subunit II, to the heme cofactor in the heme-CuB site. 

The Heme-CuB
12 site is located deep within the lipid bilayer, which requires that a proton 

channel exist for efficient transfer of protons to the site for oxygen reduction.  

 

Figure 1.1 Crystal structure of Bovine CcO (PDB 1V54). Subunit I containing the heme CuB site is colored blue. 
Subunit II containing the CuA site is in purple. Locations of metal sites are indicated by red circles. All other 
subunits are in cyan. Coppers are represented as brown spheres 

1.3 Synthetic model systems for studying HCOs  

As mentioned above, the HCOs are large transmembrane proteins that are integral to the 

production of ATP in aerobic organisms. Study of these proteins is also complicated by the fact 

that HCOs have multiple metal containing sites and contain at least 2 heme cofactors. The heme-

CuB site, where the reduction of oxygen to water occurs12, has been the extensively studied, but 

the fine details of the intermediates involved in HCOs are often difficult to elucidate due the 

CuA

CuB
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complexity of the enzyme14. The multiple heme cofactors, in particular, are problematic as subtle 

changes at one site can be masked by an overlapping signal from the other site. As an alternative 

to studying the native HCOs, synthetic models of only the heme-CuB site have been constructed. 

Recently, some of these model systems have been shown to perform oxygen reduction17,18. These 

model systems typically consist of Fe containing porphyrin molecules, mimicking the heme of 

the heme-CuB site19, with either covalently attached linkers connecting His analogs18 (commonly 

pyridine or methyl histidine) or non-covalently attached with pyridine complexes that bind 

tridentate to the copper serving as a CuB site analog20,21. The non-covalent CuB analogs use the 

oxygen binding affinity of the heme and copper sites to ensure proximity20. Some of the more 

sophisticated versions of these synthetic systems contain an analog of the novel His-Tyr linkage 

seen in HCOs18,22-24. These systems represent the bare minimum that is required for HCO like 

oxygen reduction, with the hydrophobic protein environment mimicked with organic solvent. 

Work by Collman and coworkers18,22 reported the first active HCO model and characterized their 

model system with and without copper and with and without a cross-linked His-Tyr analog but 

not with the Tyr present, but unattached to the His.  

However, these large synthetic model complexes, are not well suited to physiological 

conditions, making them less relevant to the biological system. In addition, study of the roles of 

other features, such as the proton channels is impossible to reproduce in such systems as each 

variation would potentially require a different synthetic approach for each version and the 

insolubility of such complexes in water makes delivery of protons in a biologically relevant way 

impossible. Furthermore, longer-range interactions, like hydrogen bonding from nearby residues, 

which are known to be critical for fine-tuning protein function, cannot be studied in such systems 

because synthetic molecules are typically limited in size and the number of functional groups 
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that may be incorporated. As such, a semi-synthetic approach using small scaffold proteins, 

outlined below, to accommodate the important feature of the heme-CuB site in an environment 

where such properties can be investigated was employed here. 

1.4 Protein design methodology 

 Protein design and engineering offers the potential to create proteins unseen in nature 

with functions not seen in nature25, or proteins with the same function but better suited for either 

study or practical application. While the ultimate goal of protein design would be to design a 

protein from the primary amino acid sequence26,27, i.e. de novo protein design, where a protein 

could be designed from scratch and contain all the functional features of the protein of interest. 

The ability to design proteins in such a way is limited, however, by current knowledge of protein 

folding28.  

As an alternative to completely de novo protein design, the use of native proteins as 

scaffolds28-33, into which the functional elements of another protein can be incorporated. This 

method is aided by the fact that there are several thousand different scaffold types currently 

known. With the development of methodologies such as site directed mutagenesis the alteration 

of existing proteins sequences has become relatively simple. Therefore, the rational alteration of 

a known protein function should be achievable given a clear target activity and a protein having 

the desired function to emulate. It should be noted that more information that is known about the 

effects of mutagenesis on given “scaffold protein” particularly point mutations in a given region 

or position the more effective methodologies of this nature will be. Computer based protein 

design methodologies, using programs such as Visual Molecular Dynamics34 (VMD) and 

Scalable Molecular Dynamics (NAMD)35 or the Rosetta software package36, provides guidance 
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in the selection of given the point mutations to introduce proteins. Studies where computer aided 

rational redesign of native proteins has been employed have been successful, such as in the 

engineering of myoglobin into a structural and functional mimic of NOR31 (described below in 

section 1.1.5.3). Another prominent example computer based design work comes from the work 

of David Baker’s lab where they successfully made proteins with functions not seen in any 

known natural protein25. The advantage of such methodologies is that with proper parameters the 

equivalent of saturation mutagenesis at multiple sites can be performed and analyzed in silico. 

However, with any computer based protein design method confirmation by experimental work is 

highly important. With these tools, the rational design of proteins that mimic or model more 

complex protein from the “bottom up” is achievable. The advantage of such methodologies is 

that functions assigned by other models or by top down methodologies, i.e., classical 

biochemistry where something functional is altered to infer function, can be tested and confirmed 

or reassigned. The bottom up methodology tests if what is thought to impart function truly does.  

1.5 Selected protein engineering studies in myoglobin and previous work on CuBMb 

1.5.1 Selection of a proper protein scaffold for modeling HCOs 

Engineering functionality into a protein that does not natively exhibit the desired 

functionality is highly complex and requires that an appropriate scaffold protein first be chosen 

from the thousands of choices available28. Any scaffold must satisfy many criteria to be 

considered for protein engineering. In the case of modeling the heme-CuB site of HCO proteins, 

the scaffold protein must be readily isolated in high yield and not have multiple interfering 

chromophores that will overlap in spectroscopic studies. The scaffold protein must also be highly 

stable and able to withstand the many mutations required to introduce new activity. The scaffold 
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protein must also be, in this case, a heme protein capable of binding oxygen, as oxygen is the 

substrate. For modeling of the HCO heme-CuB site, the small heme protein myoglobin (Mb) was 

chosen as a scaffold. 

Myoglobin is a very well-characterized small heme protein37, ~17 kDa, whose natural 

function is oxygen storage. Mb is a highly stable protein and has been extensively mutated38-40. 

Such a vast library of studied mutations and their effects also provides an excellent knowledge 

base from which to draw from when considering further mutations to construct. In addition, Mb 

is relatively easy to crystalize41, which allows for easy structural characterization of variants, and 

its spectroscopic features have been thoroughly investigated making characterization of reactive 

intermediates easier37. Furthermore, Mb has been previously used as a scaffold32,42, into which 

various functions have been designed. Described below are previous studies where myoglobin’s 

oxygen based chemistry has been altered by point mutations and replacement of the native heme 

cofactor to gain insight into the function of other heme proteins or introduce new function. 

1.5.2 Conversion of myoglobin into a peroxidase and peroxygenase 

Work by Watanabe and coworkers focused on the enhancement of Mb based peroxidase43 

activity. Mutations showed that naturally occurring peroxidase activity of sperm whale Mb 

(swMb) can be enhanced by site directed mutagenesis. The mutations were chosen based on 

comparisions between oxygen bound structures of swMb and cytochrome c peroxidase (CcP). 

The distal histidine, His64, of Mb was mutated to Leu and a His residue was introduced at either 

residue 29 (L29H) or residue 43 (F43H). A nearby His in CcP is known to be critical in 

peroxidase functionality by aiding in cleavage of the oxygen-oxygen bond of hydrogen peroxide 

through hydrogen bonding, while the Leu mutation increased the lifetime of cpd I by preventing 
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radical formation at His6443. His29 in Mb was found to be too far away to enhance peroxidase 

activity, but His43 did enhance activity, as it has a similar distance to the bound oxygen as the 

His in CcP. This F43H/H64L myoglobin displays increased peroxidase activity44 and oxidizes 

Guaiacol and ABTS.  

Additional work by Watanabe and coworkers in myoglobin include the engineering of 

p450 like chemistry by rational design. The first mutations performed involved mutation of His 

64 as part of an attempt to mimic the activity of chloroperoxidase from Caldariomyces fumago in 

Mb, which is known to have an Asp residue near the active site that is important for activity. The 

incorporation of H64D45 into myoglobin resulted in increased peroxidase and peroxygenase 

activity by 78- and 580- fold respectively. This study is a good example of how one point 

mutation carefully selected point mutation can substantially change activity. A series of 

mutations were then tested to fine-tune the H64D mutant46,47 based on observations that position 

68 can affect binding properties of ligands in myoglobin48. Mutation of Val 68 to Ile was found 

to give the best increase in activity even compared to the Leu mutation. This study highlights 

that even subtle differences in animo acid side chains affect reactivity. The incorporation of the 

F43W mutation also resulted in increased peroxidase and peroxygenase activity in Mb49 of 3- 

and 20- fold respectively over both wild type and H64L Mb background. The Trp43 in 

F43W/H64L Mb oxidized was during reaction to 2,6-dihydro-2,6-dioxoindole50 based on NMR 

spectroscopy. The F43W/H64D/V68I mutant (WDI Mb) was made by incorporation of F43W 

into the above mentioned H64D/V68I background32. The Trp43 of WDI Mb was shown to be 

stoichiometrically oxidized by hydrogen peroxide. This observation allowed for isolation and 

characterization of the +16 Da product, unable to isolated in the previous study. This study was 
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the first to demonstrate preferential hydroxylation of the 6 position of Trp. The WDI Mb study 

confirmed the proposal of mechanism of 2,6-dihydro-2,6-dioxoindole50  proposed previously. 

1.5.3. Study of NORs by altering CuBMb 

There is a high level of similarity between HCOs and bacterial nitric oxide reductases 

(NORs).51 Differences, however, based on modeling and sequence homology are the presence of 

additional glutamic acid residues near the heme cofactor and non-heme iron site, i.e. the FeB 

site52-54 and the absence of the His-Tyr cross-link of HCOs. CuBMb is a myoglobin based model 

of HCOs described below in section 1.1.5.4. Lu and coworkers 31 modeled bacterial NORs based 

on the similarities between NORs and HCOs. A glutamate residue was  therefore added to 

CuBMb at position 68 in the place of valine, and the resulting protein was called FeBMb. As 

there was no crystal structure of bacterial NORs at the time for overlay and comparison, an 

energy minimized computer model of FeBMb was made, using Zn in the model as a Fe analog. A 

crystal structure of Fe bound FeBMb was also obtained that confirmed the computer modeling. 

FeBMb displays the activity of NORs, ie the conversion of two NO to N2O and H2O. Making 

FeBMb the first model of NORs that is both structurally and functionally consistent with NORs. 

This study shows that the chemistry of large complex transmembrane proteins such as NORs and 

HCOs can be successfully reproduced in a much smaller Mb based system. In fact, the a high 

degree of structural similarities between FeBMb and c type NORs (cNORs) was later 

confirmed51 when the crystal structure of the NOR from Pseudomonas aeruginosa was 

crystalized in complex with antibodies.  

As a futher extension of cNOR modeling an additional Glu residue55 was added into the 

heme pocket to see how NOR activity was affected as previous studies of NORs suggested 



10 
 

multiple Glu residues may be present in the heme-FeB site of NOR52-54. The main difference 

between the Glu residue at position 68 and the additional Glu at position 107 is that the new Glu 

residue is not a ligand to the metal site. The effect of the mutation however is substantial in that 

it doubles the rate of NOR activity compared to the original FeBMb. As the I107E mutant does 

not significantly alter the redox potential to protein it is likely involved in proton transfer via a 

hydrogen bonding network. This additional work on top of FeBMb shows that features such as 

hydrogen bonding networks and other secondary coordination sphere features can be rationally 

designed with careful selection of point mutations. 

1.5.4 Design and previously reported work on CuBMb 

The work described above showed that engineered His residues in the distal pocket of Mb 

can have a dramatic effect on the function of the protein. Similar in nature to the work described 

above, Sigman et al.56 engineered multiple His residues into the heme pocket of myoglobin, in 

order to build a heme-CuB site similar to that in HCOs. The mutations made were chosen based 

on overlays of crystal structures of WTswMb and bovine cytochrome c oxidase. Two mutations 

of amino acid sidechains to His , L29H and F43H, were introduced into the Mb scaffold to form 

a tris-His metal binding site along with the native distal His in Mb, His64 (Figure 1.2). Because 

this site is similar to the CuB site of HCOs, this Mb variant with the tris-His site will be referred 

to as CuBMb56, although the secondary metal site should be regarded as free of metal, unless 

otherwise noted. 
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Figure1.2 Comparison of (A) the heme-CuB site of bovine CcO (PDB 1V54), (B) Heme pocket of WT swMb (PDB 
1JP6) and (C) heme pocket of CuBMb 

As mentioned above, the copper in the site CuB of HCOs has been shown to provide a 

second electron to the bound oxygen in the reduction of oxygen to water, and is critical for native 

HCO function. This engineered site is similar to the CuB site in HCOs, in that the positioning of 

bound copper binding site is ~5Å from the heme iron56. The engineered protein does display 

weaker oxygen binding compared to wild type myoglobin, but binds copper with a Kd ~ 9 µM . 

An major advantage of studying CuBMb as opposed to native HCOs is that it CuBMb is not 

purified with a metal in the CuB site. This feature allows for the placement of any metal in the 

CuB site, which cannot be done in native HCOs. Positioning of copper in the engineered site was 

confirmed using EPR to demonstrate antiferromagnetic coupling between cyanide bound heme 

iron and added Cu56.  

 When myoglobin is reduced by ascorbate in the presence of TMPD as a mediator it binds 

oxygen and forms oxyMb in tris-HCl at pH 8 similarly to WTswMb. However, CuBMb also 

displays copper dependent oxygen chemistry that WTswMb does not57. In the absence of 

catalase, OxyMb reacts with hydrogen peroxide to form verdoheme58,59. In the presence of 

catalase the hydrogen peroxide is degraded and OxyMb is stable. CuBMb mutations did not 

A B C
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prevent oxygen binding, however the oxygen affinity CuBMb as demonstrated by a small 

deoxyMb shoulder in the soret band57. The addition of Ag(I) can restore wild type like oxygen 

binding as evidenced by the 418nm soret band with little or no deoxy shoulder. In the presence 

of Cu, heme oxygenase chemistry is observed as evidenced by a decrease in the intensity of the 

soret band and an increase in absorbance at 622 nm and 678 nm.  

This copper dependent chemistry is interesting, not only because wild type myoglobin 

doesn’t display this, but also because heme oxygenase chemistry60,61 shares a ferric hydroperoxo 

intermediate, also known as cpd 0, with HCO chemistry57. If this intermediate remains 

unprotonated it will cause degradation of the heme cofactor forming verdoheme and bilverdin 

via heme oxygenase chemistry.  If protonated, the dioxygen bond would likely cleave 

heterolytically forming cpd I, i.e. ferryl heme with a cation radical and proceed toward HCO like 

chemistry. The formation of such an intermediate from oxygen bound myoglobin would require 

an electron and a proton transferred to OxyMb57. Based on studies of wild type myoglobin, the 

protonation of the bound oxygen typically causes release of superoxide62. However, for reduction 

of oxygen to water protonation of the bound species must occur. Therefore the protein must 

coordinate electron and proton delivery carefully to avoid undesired chemistry. In the initial 

generation of the CuBMb catalyst, the chemistry seen indicated that while electron transfer 

occurred, introduction of protons was problematic. The inability of transfer protons as needed 

leads away from HCO activity and towards heme oxygenase chemistry61. Building other 

functional pieces of HCO proteins into the CuBMb scaffold, therefore, became a large priority.  
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1.5.5 Replacement of heme b with a mimic of o type heme 

One element that was missing from the original CuBMb system was a hydrogen bonding 

network to deliver protons to the catalytic site from bulk solvent. In an effort to create a more 

complete hydrogen bonding network in CuBMb and avoid heme oxygenase chemistry by 

increasing the likelihood of protonation of Cpd 0, the native heme b of myoglobin was replaced 

with an unnatural heme63, having a hydroxyethyl in the place of a vinyl group n heme b. The 

inspiration for this study was taken from the fact that different HCOs natively vary in the type of 

heme located in the Heme-CuB site5. The a/o type hemes of aa3, ba3, and bo3 oxidases contain a 

hydroxyfarnesyl group that is within hydrogen bonding distance of both the novel cross-linked 

His-Tyr and positioned at the end of the K-channel12,64, which has been implicated in the 

delivery of protons into the heme-CuB site65,66. Proposed catalytic mechanisms of HCO proteins 

suggest a hydrogen bonding network with the hydroxyfarnesyl hydroxyl and water molecules 

bridging the bound oxygen and the tyrosine hydroxyl. Other HCOs, such as bb3 types8, contain a 

b type heme, like myoglobin does, that lacks the hyrdroxyfarnesyl group. These HCOs 

compensate by having a nearby Tyr residue supply the hydroxyl group needed. 

Another attractive feature of the CuBMb system is that the heme cofactor in myoglobin 

can be replaced by unnatural hemes to study the effects different cofactors have on oxygen 

chemistry67,68. Lu and coworkers63 took advantage of this feature of myoglobin by replacing the 

b type heme of myoglobin with a mimic of o type heme o (Fe(III)-2,4 (4,2) hydroxyethyl vinyl 

deuterioporphyrin IX) that replaces a vinyl group of heme b with a hydroxyethyl group to 

analogous that of the hydroxyl of the o type heme. CuBMb containing heme o mimic, denoted as 

CuBMb(o) slowed the copper dependent heme oxygenase chemistry of by approximately 19-
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fold. Suggesting that the hydrogen bonding network was altered in CuBMb(o) by the unnatural 

cofactor and that this network regulates activity in HCOs. 

1.6 Thesis goals and outlook 

While several interesting features were observed in the CuBMb system, it still failed to 

meet the goal of performing as a viable mimic of HCO proteins. The goal of the work described 

in the following chapters is, therefore, to improve upon the CuBMb model system described 

above, thus making a functional and more accurate model of HCOs. Chapter 2 describes work 

aimed at introducing a tyrosine positioned similarly to the His-Tyr crosslinked amino acids 

observed in HCO and observing the effect of introduced tyrosine on the activity of CuBMb. It 

was seen that the tyrosine containing variants of CuBMb display the ability to consume oxygen 

and convert it to water, mimicking HCO activity. Presumably by affecting the hydrogen bonding 

network. It was also observed that the rate of activity is dependent upon the location of the 

tyrosine introduced. Chapter 3 describes work towards improving the activity observed in 

Chapter 2 by further expanding the hydrogen bonding network in the distal pocket of myoglobin 

by two methods. The first is by replacing heme b with the mimic of the o type heme described 

above. The second involves making additional point mutations to create a hydrophilic channel 

from the bulk solution to heme pocket to deliver protons to the heme CuB site. Chapter 4 is a 

summary of progress toward the formation of a His-Tyr crosslink, analogous to the one found in 

HCOs into CuBMb with the ultimate purpose of studying the effects on activity in comparison to 

the results of work in the preceding chapters. Chapter 5 describes the observation, via 

crystallography, of a side-on bound oxygen species bound to heme iron, this is the first direct  

observation of such a feature in a heme protein, although such features have been proposed in 
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some heme proteins. The chapter also discusses initial spectroscopic characterization of this 

novel species. 
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CHAPTER 2 

OXYGEN CHEMISTRY OF CUBMB AND THE EFFECT OF INTRODUCING 

TYROSINE RESIDUES INTO THE CUBMB SITE 

Portions of this chapter a taken from the final draft of a manuscript submitted to Proc Natl Acad Sci USA as “A 
Designed Functional Metalloenzyme  that Reduces O2 to H2O with over a Thousand Turnovers” (Miner,K. D., 
Mukherjee, A., Gao, Y.-G., Null, E. L., Petrik I. D., Zhao, X., Yeung, N., , Robinson, H., and Lu, Y.) 

2.1  Introduction 

2.1.1 Rationale for protein design 
Protein enzymes drive nearly all biological functions, catalyzing a wide range of 

reactions with high efficiency. Many of the enzymes involved in the most important and 

interesting processes for life, such as photosynthesis and respiration, are quite complex, making 

the fine details of their function difficult to study, understand, and mimic in artificial systems. 

Therefore, it is a grand challenge to rationally design smaller and more robust artificial enzymes 

with catalytic sites and activities similar to those native enzymes. To meet this challenge, we 

must test and expand our current knowledge of the working of enzymes to design enzymes 

capable of use in biotechnological applications. Toward this goal, great progress has been made 

in designing proteins with structures similar to native enzymes1-7 and advances in computational 

biology have allowed for rational design of function as well8-14. Despite these achievements, 

most designed enzymes have relatively simple active site structures and low activities with 

limited turnovers. Designing artificial enzymes with more complexity and higher turnovers will 

advance this field and decrease the likelihood that background reactivity or experimental artifacts 

would be mistaken for enzymatic reactivity. Building enzymes from the ground up will reveal 

structural features responsible for tuning enzymes and facilitate incorporation of artificial 

enzymes into practical applications. Here, we report the rational design of a functional model of 
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heme-copper oxidase (HCO), a metalloenzyme with a heterogeneous binuclear metal center that 

catalyzes the reduction of oxygen to water. Our model enzyme can actively reduce oxygen to 

water with over 1000 turnovers. By constructing this model enzyme from the bottom up we have 

gained insight into some of the critical structural features involved in native HCO respiration 

activity. Insights gained from further studies of such a designed enzyme may lead to alternatives 

to precious metal catalysts in fuel cells. 

Heme-copper oxidases represent an ultimate test of our ability to design complex proteins 

with important functions. As the terminal oxidases in aerobic respiration, HCOs catalyze the 

reduction of oxygen to water while transferring the free energy of this reduction into a proton 

gradient for the production of ATP, a universal energy source for most biological processes15-17. 

This reduction reaction is a difficult part of the aerobic respiration process and is also crucial to 

alternative energy production via fuel cells. While many catalysts that reduce oxygen to water 

have been reported18-21, a long-standing challenge is to carry out the reaction without the 

production of reactive oxygen species (ROS), such as superoxide and peroxide. ROS not only 

damage biomolecules in cells and components in fuel cells, but also decrease energy efficiency 

as ROS are a result of incomplete catalysis. In addition, efficient catalysts using non-precious 

metal ions such as iron or copper will greatly decrease costs in practical applications22,23.  

The active site of HCO responsible for such an important reaction is a complex 

heterogeneous bimetallic center containing a His-ligated heme center coupled to a copper center 

(called CuB) that is coordinated by three His residues, one of which is cross-linked to a Tyr 

residue (Figure 1A). Despite numerous studies, the exact structural features of HCO responsible 

for efficient oxygen reduction, such as the role of the metal ion in the CuB site and that of the 

tyrosine next to the copper coordinating His, are not well understood24-27. The gap in the 
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understanding of this enzyme is a direct result of HCOs being large membrane proteins, with 

molecular weights of ~200,000 Da., making it difficult to prepare homogeneous protein in large 

amounts. In addition, HCOs contain multiple metal-binding sites, making it difficult to study a 

single site without interference from the other sites. These complications prevent the use of 

HCOs in practical applications, despite being highly efficient catalysts under mild conditions. 

While much effort has been devoted to preparing synthetic models to overcome these 

limitations18,19, very few model systems are capable of actively reducing oxygen to water with 

multiple turnovers and without releasing ROS20,28. Furthermore, because synthetic models are 

prepared using small organic molecules in organic solvents, it is difficult to introduce long-

range, non-covalent interactions such as those between the conserved tyrosine and water 

molecules and their associated hydrogen bonding networks, which have been shown to be 

important for HCO function. 

As an alternative to studying native enzymes or purely synthetic molecules, we chose to 

use a small, stable, easy to produce and well-characterized protein to design an oxygen reduction 

enzyme that could mimic HCOs2. Myoglobin (Mb) is an ideal choice, as it is much smaller than 

HCOs, (17kDa) and easier to prepare and crystallize than both native HCOs and their synthetic 

model complexes. As a heme protein without other metal-binding sites, Mb has been a model 

heme protein for many spectroscopic studies and thus has often been used to calibrate 

spectroscopic signatures of heme proteins.  

2.1.2 Review of myoglobin and selected CuBMb oxygen chemistry 

 Sperm whale Myoglobin (swMb) has been extensively studied for many decades29. Under 

reducing conditions at or near physiological pH, swMb has been observed to undergo 
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autoxidation, i.e. the conversion of ferrous oxygen bound myoglobin (OxyMb) to the water 

coordinated ferric iron myoglobin (MetMb) form with the release of superoxide30. This rate 

increases as the pH is decreased from pH 8 to pH 6 due to an increase in protonation of the 

bound oxygen which is released as superoxide. The rate of autoxidation can also be enhanced by 

the presence of copper31. The introduction of two histidine residues into the heme pocket of 

myoglobin at positions 29 and 43 (L29H and F43H) resulted in the formation of a copper binding 

site in myoglobin ligated by the two introduced histidines and the naturally occurring distal 

histidine (His 64), forming a CuB site similar to that in Cytochome c Oxidase CcO32, a type of 

HCO (Figure 2.1). This myoglobin mutant, called CuBMb, displays copper dependent 

degradation of the heme cofactor into verdoheme (heme oxygenase activity), which is not 

observed in wild-type swMb32,33. This result is noteworthy in that CcO oxidase activity, the 

active site chemistry that we are modeling, shares some intermediates with heme oxygenase 

activity. 

 

Figure 2.1 Comparison of (A) bovine CcO heme-CuB site (PDB 1V54), (B) Heme pocket of WTswMb (PDB 1JP6) 
and (C) Heme pocket of CuBMb. 
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2.2 Materials and methods 

All chemicals, unless otherwise specified, were obtained from Sigma (St. Louis, MO) or Fisher 

Scientific (Hampton, NH). 

2.2.1 Purification of proteins 

The F33Y and G65Y mutations were introduced as previously described32 and confirmed 

by DNA sequencing at the Biotechnology Center of the University of Illinois. F33Y CuBMb and 

G65Y CuBMb were purified using a protocol previously described11 from inclusion bodies with 

a yield of ~20 mg/L with the following changes: R/Z (an estimate of protein purity with higher 

R/Z representing a purer protein preparation) was calculated using A408/A280 for F33Y CuBMb, 

and A410/A280 for G65Y CuBMb. Proteins with R/Z values of 3.5 or greater for G65Y CuBMb 

and 4 or greater for CuBMb and F33Y CuBMb were used in these studies. CuBMb was purified 

as previously described32 using a modified protocol for WTswMb. 

2.2.2 Crystallization of F33Y CuBMb 

F33Y CuBMb (1.0 mM) in 100 mM Tris base pH 8, (pH adjusted H2SO4), was mixed 1:3 with 

well buffer (0.1 M sodium cacodylate, 0.2 M sodium acetate trihydrate and 30% w/v 

polyethylene glycol 8000) using the hanging drop method with 300 µL well buffer in the well of 

the crystallization tray. 

2.2.3 Diffraction data collection 

The crystals were first soaked briefly in cryoprotectant (30 % polyethylene glycol 400) and were 

flash frozen in liquid nitrogen. The diffraction data sets summarized in Table S1 were collected 

at the National Synchrotron Light Source beamline X12C (Upton, NY) and were processed with 

HKL2000 software34. 
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2.2.4 Crystal structure determination 

The crystal structure was solved by the molecular replacement method using MOLREP in the 

CCP4 Package35. Refinement was performed using X-plor36 and SHELX’9737. For the crystal 

structure of CuBMb, the positions of H43 and H29 were rebuilt using the program O38. For the 

structure of F33Y CuBMb, the position of Y33 was rebuilt using the program O 38. All crystal 

structure determinations were performed by Mr. Yi-Gui Gao, of the George L. Clark X-Ray 

Facility and 3M Materials Laboratory, University of Illinois at Urbana-Champaign, as part of a 

collaboration. 

2.2.5 Computer modeling of proteins 

Computer models for F33Y CuBMb and G65Y CuBMb were created using Visual Molecular 

Dynamics39 (VMD) and NAMD40 (Molecular Dynamics Simulator) as described previously11 

with the following changes: the CuBMb structure was used as the starting structure upon which 

computer modeling simulations were performed on and the non-heme metals were not 

introduced into the simulation.  

2.2.6 17O Nuclear magnetic resonance (NMR) spectroscopy 

1H Decoupled 17O NMR spectra were collected at 81.3 MHz on a Varian UNITY INOVA 

spectrometer with a 5 mm AutoTuneX probe. Temperature was held constant at 25 °C by an FTS 

Systems unit. Gradient shimming was performed and the water signal was referenced to 0 ppm. 

Samples were placed inside an Omni-Fit NMR tube from Wilmad LabGlass (Vineland, NJ). 17O 

labeled (phenol-17O 35 %) L-tyrosine (~ 380 mM in water) was sealed inside of a capillary and 

placed inside the Omni-Fit (gas tight) NMR tube, serving as an external standard against which 

the H2
17O signal could be monitored. An external standard was used instead of an internal 
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standard due to the high pH requirement for solubility as well as eliminating any possible 

interference in the reaction. The L-tyrosine concentration used allowed detection in a matter of 

minutes and overcame the small volume of the capillary as well as 35% labeling of L-tyrosine. 

N,N,N′,N′-Tetramethyl-p-phenylenediamine dihydrochloride (TMPD) and ascorbic acid were 

added to a protein solution of either F33Y CuBMb, G65Y CuBMb, or WtswMb resulting in a 500 

µL volume sample at a concentration of 50 µM protein, 5 mM TMPD and 50 mM ascorbic acid 

in 50 mM potassium phosphate, pH 6. Immediately after TMPD and ascorbic acid addition, an 

initial spectrum collected over a period of ten minutes, followed by removal from the instrument, 

injection of 1 mL 17O2 at roughly atmospheric pressure (Cambridge Isotope Laboratories, Inc., 

Andover, MA, 70.7 % oxygen-17 content) into the Omni-Fit NMR tube, sealing of the port, 

inversion for 15 seconds to aid in oxygen saturation of the solution, and subsequent data 

collection. During data collection the tube was spun at 10Hz to aid in mixing. Time points were 

collected as appropriate. In between each time point the tube was removed from the instrument, 

inverted for 15 seconds, and replaced. Data were analyzed using MestReNova (Mestrelab 

Research, Santiago de Compostela, Spain).  The area of the tyrosine signal was set to 1 for all 

spectra and the area of the water signal was recorded in relation to this value. Collection of 17O 

NMR spectra was performed with the assistance of Dr. Eric L. Null. 

2.2.7 UV-visible spectroscopy  

All UV-visible spectra were acquired with an Agilent 8453 spectrometer (Agilent Technologies, 

Santa Clara, CA) using the supplied Chemstation software and kinetics package. Ferric protein 

spectra were obtained by taking 2 mL of 6 µM protein as isolated. For deoxy protein spectra, 

excess sodium dithionite was added, for unambiguous assignment. For oxy protein spectra, the 
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protein was reduced using ascorbic acid (1000 eq) and TMPD (100 eq) and oxygen was bubbled 

into the solution to ensure a clean oxygen-bound spectrum. 

For kinetic spectra monitoring of the reduced protein, the spectrum of the ferric (oxidized) form 

was collected first as a comparison using 2 mL of 6 µM protein in air-saturated 50 mM 

potassium phosphate pH 6 containing 2.2 µM catalase in a cuvette. The cuvette was sealed with 

a septum, wrapped with parafilm, and allowed to stir under an argon headspace. Then ascorbic 

acid (1000 eq) and TMPD (100 eq) were added to reduce the protein and spectra were collected 

over a period of 60 minutes. 

For determination of heme degradation rate, 4 mL of 18 uM protein was reduced using ascorbic 

acid (1000 eq) and TMPD (100 eq) in 50 mM potassium phosphate pH 6 in the absence or 

presence of up to 2 eq CuSO4 and with or without 2.2 µM catalase. After addition of reductant, 

the cuvette was capped to minimize oxygen from the air diffusing into solution. As both heme 

degradation and water production contributes to oxygen consumption, the rate of heme 

degradation was subtracted from the observed rates of oxygen consumption in the presence of 

copper to determine the total rate of water production (the activity that we are interested in 

modeling).  

2.2.8 Oxygen consumption rate and turnover studies using an oxygen electrode  

The reduction of myoglobin so that it may bing to oxygen requires a reductant to convert the 

oxidized metMb to a form able to bind oxygen. This is a required step in reduction of oxygen to 

water. Our reductant and mediator ascorbic acid (1000 eq) and TMPD (100 eq), respectively, 

were added to 500 µL of 18 µM protein in air saturated 50 mM potassium phosphate pH 6. We 

choose to study the protein at pH 6 because we found that the enzymatic activity is higher at 
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lower pH values, likely due to the greater availability of protons, which can play a significant 

role in O2 reduction to water. Consumption of oxygen was monitored using either an oxygen 

electrode (Oxytherm System, Hansatech Instruments Ltd., Norfolk, England) with data collected 

every 0.1 seconds or a YSI Model 53 oxygen meter equipped with a water-jacketed and stirred-

glass measuring vessel (1.8 mL volume) with data collected every 0.6 seconds. Oxygen 

consumption rates were calculated by taking the derivative of the oxygen concentration using a 

30 s data window (300 points or 50 points). For data where catalase and SOD, (Superoxide 

Dismutase) (Enzo Life Sciences International, Inc., Plymouth Meeting, PA), were used, 2.2 µM 

and 250 units (as defined by manufacturer) were added, respectively, before addition of 

reductant. The reaction of catalase and SOD with hydrogen peroxide and superoxide, 

respectively should produce one equivalent of oxygen per two equivalents of the respective 

ROS41,42 This is important as the production of ROS and water both consume oxygen. By being 

able to determine how much ROS are produced we can use that rate to calculate the amount of 

water, if any produced. The maximum initial rate of oxygen consumption measured was reported 

after subtraction of a background rate of oxygen consumption caused from added reductant and 

mediator alone reacting with oxygen.  

Studies to determine the maximal number of turnovers related to oxygen consumption the model 

protein can perform, i.e. multiple turnover studies were performed with the same starting 

conditions as the rate oxygen consumption rate studies above, except that the starting oxygen 

concentration was ~500 µM (~28 eq). Reductant was added and oxygen consumption was 

monitored until all oxygen was consumed. After the consumption of all oxygen, approximately 

500 µM oxygen in solution was reestablished by was introduced oxygen gas into the head space 

of sealed chamber. This process was repeated until no more turnovers were observed. Turnovers 
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performed during oxygen addition were not used in the calculation of overall activity. After 

every 4 cycles, ascorbic acid (~330 eq) and TMPD (~33 eq) was added to compensate for 

consumed reductant. 

2.2.9 ICP-MS studies 

 ICP-MS samples for WTswMb, CuBMb, F33Y CuBMb, and G65Y CuBMb were 

prepared by exchanging, the as purified the protein into 50 mM Bis-Tris pH 7 and diluting to a 

concentration of 100 µM. Samples were assayed by the microanalysis facility at the University 

of Illinois for the presence of Fe, S, Zn, Ag, Cu.   

2.3 Results and discussion 

2.3.1 Design of tyrosine containing CuBMb mutants 

In an attempt to more closely model the active site of native CcO, a tyrosine was 

introduced in proximity of the CuB site of CuBMb to mimic the His-Tyr crosslink in the native 

system and to study the effects of introducing a tyrosine into the model system (see Chapter 4 for 

efforts in introducing the His-Tyr crosslink).  

 In designing F33Y CuBMb, the sequences of A and B type CcOs were considered. In 

these CcOs, the crosslinked His-Tyr are four residues apart, i.e. His 240 is linked to Tyr 244 in 

an alpha helical structure. The corresponding locations in CuBMb for a tyrosine are residues 25 

and 33 for linkage to His 29, residues 39 and 47 for linkage to His 43, and residues 60 and 68 for 

linkage to His 64. Many of these locations are too far from the heme iron to be viable locations 

based on the CuBMb crystal structure (e.g. residues 25, 60, 47)  or may potentially interfere with 

heme binding or oxygen chemistry, residues 39 (based on computer simulations). Therefore, 

residue 33 was considered the best location. With regard to steric considerations, the mutation of 



30 
 

the native phenylalanine at position 33 to a histidine should be fairly conservative. See Figure 

2.2 for an overlay of the computer model and crystal structure of F33Y CuBMb. The high level 

of agreement between the model and structure provides confirmation of our modeling 

techniques. For reference, an overlay of bovine CcO and F33Y CuBMb has also been included. 

Although the CuBMb His residues overlay well with the bovine CcO structure43 (PDB: 1V54) 

the positioning of the tyrosines do not overlay well. 

  

Figure 2.2 Comparision of a 1.9 angstrom Met F33Y CuBMb crystal structure (cyan) with (A) F33Y CuBMb 
computer model (yellow) and (B) Crystal structure of bovine CcO (1V54) (grey). Note: the waters in the F33Y 
CuBMb structure have been omitted for clarity. 

 The design of G65Y CuBMb was influenced by two factors. First, the three dimensional 

structure of bovine CcO was used as a basis for positioning of the Tyr-OH–heme Fe distance. 

Secondly, because all the possible His-Tyr positions based on A- and B-type CcOs had been 

considered in the design of F33Y CuBMb, a design that more closely mimicked the C-type CcOs 

was attempted44. C-type CcOs have crosslinked His-Tyr residues on separate alpha helicies. This 

allowed for other locations not previously considered to be evaluated.  Based on energy 

minimized molecular dynamics simulations, the G65Y CuBMb Tyr-OH is positioned 

approximately 5.6 angstoms from the Fe atom of the heme which is nearly identical to the 

distance in Bovine CcO43,45. The relative positioning of the Tyr-OH is also supported by the first 
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reported structure of a C-type CcO46, which was published after G65Y CuBMb was designed. An 

overlay of the computer model of G65Y CuBMb and Pseudomonas stutzeri CcO (Ps CcO) can be 

seen in Figure 2.3. The positioning of tyrosine hydroxyl in the model and the Pseudomonas 

stutzeri CcO relative to the heme is in good agreement. 

   

Figure 2.3 (A) Energy minimized computer model of G65Y CuBMb and (B) Overlay of the crystal structure of cbb3 
HCO from Pseudomonas stutzeri (tan) and G65Y CuBMb computer model (yellow). 

2.3.2 Myoglobin, CuBMb, F33Y CuBMb, and G65Y CuBMb oxygen chemistry at pH 6  

It should be noted that the CuBMb proteins are purified do not contain a metal in the CuB site as 

confirmed by ICP-MS (see Table 2.1). The work described in this section is without metal added. 

2.3.2.1 UV-visible spectroscopy 

 Myoglobin is well studied and the oxidized (MetMb), reduced (DeoxyMb), and oxygen 

bound (OxyMb) states are well known29. Figure 2.4 contains reference UV-visible spectra of 

WTswMb, F33Y CuBMb, and G65Y CuBMb. The oxidized form of G65Y CuBMb has a 

significant bis-His ligated population, where the distal His64 is ligated to heme iron.  

Interestingly, the oxygen bound forms of the CuBMb tyrosine derivatives have blue-shifted Soret 
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bands at ~411 nm, versus a Soret band of ~418 nm for WTswMb, suggesting that the 

introduction of a tyrosine residue perturbs the environment of the heme pocket. 

Comparing the UV-visible traces of the three proteins under reducing conditions, 

WtswMb quickly forms OxyMb as expected and displays a fairly stable OxyMb spectrum even 

after reaction for one hour. Both tyrosine containing mutants also quickly formed OxyMb. 

However, unlike WtswMb, a population of DeoxyMb was also detected for the tyrosine mutants, 

which increased as the reaction proceeded. This suggests that enough oxygen is being consumed 

by the proteins to preclude oxygen binding, leading to the formation of DeoxyMb. CuBMb also 

displays this activity but it is much slower than the tyrosine mutants. This activity is different 

than what was observed by Sigman et al.32 where the OxyMb Soret at 418 nm was fairly stable 

without metal added. 
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.

 

 
Figure 2.4 Reference UV-visible spectra and time-dependent spectra, respectively of the reaction of 6 µM of 
WTswMb (A-B), F33Y CuBMb (C-D), and G65Y CuBMb (E-F) under reducing conditions at pH6. Reactions were 
monitored for one hour to ensure that the reaction was complete. Note: ‘Ferric’ is used in the reference as G65Y 
CuBMb contains a population of bis-His myoglobin in the oxidized state. 

2.3.2.2 Oxygen electrode studies 

Oxygen electrode studies were performed to assay both the product and relative rates of 

protein oxygen consumption. In these studies, we observed a rate of oxygen consumption for all 
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four proteins (Figure 2.5). The activity observed for WTswMb is surprising given that UV-vis 

studies show only oxygen binding capability. However, differences in the amount of protein used 

and difficulty in completely preventing leaking of air into the cuvette during the UV-visible 

studies could explain lack of observed activity by UV-visible work. In fact WtswMb is expected 

to have an increased rate of autoxidation30, i.e. the release of superoxide from OxyMb and the 

formation of MetMb, under mildly acidic conditions. This increase is caused by a higher rate of 

protonation of the bound oxygen compared to more basic conditions. This expected autoxidation 

rate explains the activity (i.e. oxygen consumption) observed with WTswMb in the sealed 

chamber of the oxygen electrode. The main products of WTswMb oxygen consumption in the 

oxygen electrode are reactive oxygen species, based on control studies where the rate of apparent 

oxygen consumption by WTswMb slows in the presence catalase. Similar results were also 

obtained in the presence of both SOD and catalase. Therefore based on the activity of catalase 

and SOD to convert reactive oxygen species back to oxygen, which caused the apparent slower 

rate, the product is a ROS. The similarity between the conditions with catalase only and with 

both SOD and catalase results, indicates hydrogen peroxide is the ROS produced. The source of 

the species in solution, hydrogen peroxide, is autoxidation. The product of autoxidation, 

superoxide, is unstable under the  slightly acidic (i.e. pH 6) and reductive conditions of the 

assay47 and forms hydrogen peroxide.  The amount of rate change caused by the addition of 

catalase and SOD can be used to calculate the rate of water production as half of the ROS is 

converted by these enzymes back to oxygen. The maximal decrease in observed oxygen 

consumption rate possible by SOD and catalase, if no other processes are occurring, and all the 

product is ROS is half the oxygen consumption rate observed in the absence of SOD and 

catalase. Therefore, if the apparent oxygen consumption rate in the presence of SOD and catalase 
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is greater than half the oxygen consumption rate in the absence of SOD and catalasesome water 

must be formed assuming no other processes are interfering, such as verdoheme formation. 

CuBMb has a slower overall rate of oxygen consumption than WTswMb but the 

percentage of water produced, as opposed to ROS species, is greater based on a smaller 

percentage change in the apparent oxygen consumption rate in the presence of catalase and SOD 

for CuBMb compared to WtswMb,  (See Figure 2.5C). This is probably because the reduction of 

oxygen to water has many more steps than the release of a partially reduced intermediate. It 

should be noted that the calculated rate of water production in CuBMb is approximately equal to 

that of WTswMb. Therefore, CuBMb is either lacking the hydrogen bonding network to deliver 

protons to the bound oxygen or the ability to reduce the oxygen effectively. Considering the 

reactions are carried out with excess reductant, there should be enough electrons or reducing 

equivalents available for the complete reduction of oxygen to water. If instead, CuBMb was 

unable to provide an environment where the initial reduction of the oxygen was more favorable 

than WtswMb, results similar to  WTswMb would be expected because protonation of the bound 

oxygen, the alternative under these conditions, would cause autoxidation because the protonated 

oxygen leaves a neutral superoxide30.   
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Figure 2.5 – Oxygen consumption data for WtswMb, CuBMb, F33Y CuBMb, and G65Y CuBMb at pH 6. (A) 
Representative oxygen consumption traces in the absence of SOD and catalase. (B) Oxygen consumption rates in the 
presence or absence of catalase or catalase/SOD. (C) Calculated rates of water and peroxide/superoxide production 
in the presence or absence of 1eq Zn, Ag, or Cu and absence of catalase or catalase/SOD. (D) Multiple turnover data 
for G65Y CuBMb and F33Y CuBMb. 

The substitution of a tyrosine at position 33 in F33Y CuBMb results in an approximately 

3-fold increase in rate of oxygen consumption over that of CuBMb, with a comparable ratio of 

water to ROS produced based on the comparable percentage rate decrease in the presence of 

catalase and SOD. The rate of oxygen consumption of F33Y CuBMb is about 1.5 times faster 

than that of WTswMb with a considerably higher percentage of water production in F33Y 

CuBMb compared to WtswMb (see Figure 2.5C). This is based on the lower percent change of 

apparent oxygen consumption rate in F33Y CuBMb change with catalase and SOD (see Figure 
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2.5B), compared to WTswMb. The increase in the rate of water production, compared to CuBMb 

(see Figure 2.5C), could be due to a better hydrogen bonding network in F33Y CuBMb since the 

hydroxyl group on the tyrosine which is not present in CuBMb could potentially stabilize a 

bound water molecule. With a Tyr-OH to heme iron distance of ~8Å, it is unlikely that Tyr33 is 

directly interacting with the bound oxygen directly and must be communicating through a water 

molecule. The Met F33Y CuBMb structure does not contain a water (see Figure 2.6B) within 

hydrogen bonding distance for F33Y CuBMb to interact through.  However, a reorganization of 

the water molecules present in the structure, is possible once a ligand binds. Crystal structures of 

WTswMb in the Met48 and Oxy49 forms, PDB 1JP6 and 1MBO, respectively (see Figure 2.6), 

suggest that such a rearrangement is possible. A potential location for stabilization of a water 

molecule is near Tyr33 and His43 is possible due to potential hydrogen bonding partners.  In 

addition, a crystal structure of F33Y CuBMb with a side-on bound, putatively assigned as peroxo 

species, bound to the heme iron has been obtained, as discussed  later in Chapter 5, this structure 

has a different positioning of water molecules in the heme pocket, and this distribution of waters 

contains one which is within hydrogen bonding distance of Tyr33. 

  

Figure 2.6 Potential rearrangement of waters after ligand binding. (A) Crystal structures of WtswMb in the Met 
(grey) and Oxy forms (Cyan) and (B) Suggested rearrangement for F33Y-CuBMb based on Met structure. 
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G65Y CuBMb has a faster rate of oxygen consumption compared to CuBMb and F33Y 

CuBMb by 9- and 3-fold, respectively (see Figure 2.5B).  Along with the increase in oxygen 

consumption there is a comparable ratio of water to ROS production (see Figure 2.5C). The 

relative position of the tyrosine in G65Y CuBMb may be more favorable for creating a hydrogen 

bonding network that promotes the reduction of oxygen to water. Considering that Tyr65 was 

designed to more closely mimic the position of the native CcO His-Tyr crosslink with respect to 

the position of the heme (Figure 2.3), this explanation seems reasonable. Since an actual His-Tyr 

crosslink is not present in the G65Y CuBMb system, it is unlikely that Tyr65 could aid in oxygen 

reduction by donating a proton to the reaction, as the pKa of Tyr (without a cross-link) is around 

10. To confirm that the heme was involved in the observed activity, oxygen consumption 

reactions for G65Y CuBMb and F33Y CuBMb were repeated in the presence of 18 mM cyanide, 

as an inhibitor of oxygen chemistry at the heme iron, with significantly decreased oxygen 

consumption activity (see Figure 2.7). 

 

Figure 2. 7  Effect of cyanide addition on oxygen consumption rate for F33Y CuBMb and G65Y CuBMb.  
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then, additional oxygen was added until the oxygen consumption activity of the enzyme had 

slowed greatly. To a solution containing F33Y CuBMb or G65Y CuBMb and excess reductant, 

~500 µM or ~28 equivalents O2 was added, and oxygen reduction was monitored using an 

oxygen electrode until all oxygen was consumed. After complete consumption, a further addition 

of ~28 equivalents of O2 was carried out and oxygen reduction was measured again until all the 

oxygen was reduced. These stepwise additions resulted in the multiple plateaus observed in the 

traces for both proteins (Figure 2.5) with F33Y CuBMb reaching 505 turnovers and 

G65YCuBMb achieving 1056 turnovers (Figure 2.5D, inset). The number of turnovers reported 

here is an underestimate since the extra turnovers occurring during oxygen addition were not 

included in the calculation. These results demonstrate that the designed proteins are capable of 

hundreds of turnovers; with G65Y CuBMb exhibiting more than 1000 turnovers. 

2.3.2.3 17O NMR characterization 

To confirm that F33Y CuBMb and G65Y CuBMb are indeed reducing oxygen to water as 

designed, a more direct assay than oxygen consumption (via oxygen electrode studies) is 

required. Therefore, 17O NMR was used to identify the product of oxygen consumption by these 

proteins. By injecting 17O2 into the headspace of an NMR tube containing WTswMb, F33Y 

CuBMb or G65Y CuBMb, the production of H2
17O above the natural abundance of H2

17O in 

water, as produced by protein oxygen reduction, could be monitored. A typical 17O NMR 

spectrum, shown in Figure 2.8, consists of a peak assignable to H2
17O (referenced to 0 ppm) and 

a second small peak at 150 ppm assignable to 17O-labeled Tyr, which was added as an external 

standard to assist quantification. The normalized ratio of the H2
17O peak area and that of the 17O-

Tyr peak at 30, 60, 90, and 120 min are shown in Figure 2.7B. Consistent with UV-vis studies, 

the normalized ratio of WTswMb remains the same as that of the natural abundance of H2
17O in 
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water, suggesting that the protein did not produce any new H2
17O. In contrast, F33Y CuBMb and 

G65Y CuBMb produced up to 10 mM H2
17O at 120 min, as indicated by an increase in the 

normalized ratio between H2
17O and 17O Tyr to 1.5. These results confirm that water is indeed a 

product of F33Y CuBMb and G65Y CuBMb oxygen reduction, moreover,  the designed protein 

is performing HCO-like chemistry.  

  

Figure 2. 8 17O NMR spectroscopy.  (A) Typical background spectrum observed.  (B) Normalized change in the 
ratio of the 17O labeled Tyrosine and 17O water  peak areas over time. 

2.3.3 Effect of different metal ions on activity 

CuBMb and the tyrosine containing variants were purified from E. coli cells using a protocol that 

includes dialysis against buffer with 30 mM EDTA11,32 intended to remove metals that may have 

bound to the CuB site during purification. The effectiveness of this metal removal can be seen by 

the ICP-MS data of purified CuBMb, F33Y CuBMb, and G65YCuBMb (Table 2.1). This means 

that the oxygen reduction activity described above is in the absence of metal in the designed 

metal binding site (i.e. CuB site of CuBMb and its variants). These results are significant since 

the HCOs are purified with a Cu loaded in the CuB site. It should be made clear that HCOs with 

CuB site mutations or copper chaperone knock out mutants have much lower activity, indicating 

the importance of the metal in the CuB site to CcO activity in vivo. In the CuBMb proteins metal 
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must be added after purification otherwise the site is occupied by a water molecule. See Figure 

2.6B for F33Y CuBMb with water in the CuB site. Therefore to observe the effect of metal ions 

in the site they must be added. 

Table 2.1 ICP-MS results for levels of Ag, Cu, Fe, S, and Zn in as purified protein 

  
Note: All samples were normalized to 5.60 ppm Fe for clearer comparison 

 
As seen in Figure 2.5C, addition of 1 eq of Ag(I) or Zn(II) has no effect on the activity 

(within error for any of the proteins assayed). This is not completely unexpected as Ag(I) and 

Zn(II) are redox inactive and cannot donate an electron to the bound oxygen. The addition of 1 

eq of Cu(II) under reductive conditions yields an interesting but unexpected result. The addition 

of copper to CuBMb and F33YCuBMb results in an increase in the rate of oxygen consumption, 

which can be seen with larger length of the red and blue bars together, as these two rates sum to 

the overall rate (Figure 2.5C). However, after further experiments in the presence of catalase and 

superoxide dismutase, the rate increase appears to be from increased reactive oxygen species 

formation and not increased water production (red bars in Figure 2.5C). For G65Y CuBMb, the 

rate oxygen consumption actually slows slightly upon copper addition. This result suggests that 

the protein is becoming deactivated or not binding copper. To confirm that the tyrosine-

containing mutants could bind copper, metal binding titrations to determine dissociation 

constants, Kd,  values for copper were performed (Figure 2.9).  For F33Y CuBMb and G65Y 

CuBMb, the Kd was determined to be 2 µM and 100 µM, respectively. As a result, we performed 

studies with up to 2 eq of copper for CuBMb and its tyrosine variants to increase the percentage 

of CuB sites occupied. As seen in Figure 2.9C, the rate of oxygen consumption does increase 

Sample ppm Cu ppm Fe ppm S ppm Ag ppm Zn Ratio Cu:Fe Ratio Ag:Fe Ratio Zn:Fe
CuBMb 0.00 5.60 8.67 0.01 0.04 0.00 0.00 0.01

F33Y CuBMb 0.00 5.60 10.76 0.00 0.04 0.00 0.00 0.01
G65Y CuBMb 0.00 5.60 9.37 0.00 0.03 0.00 0.00 0.00
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with increasing copper concentration for CuBMb and F33Y CuBMb. However, in the presence of 

SOD, catalase and copper, the rate of oxygen consumption observed is slow, suggesting a high 

level of hydrogen peroxide formation either by the enzyme or by free copper. G65Y CuBMb 

showed a decrease in the rate of oxygen consumption with copper compared to rates with no 

metal.  This result is possibly due to increased copper-dependent heme oxygenase activity, which 

would inactivate G65Y CuBMb, was observed for CuBMb in a previous studies33,50, as the 

presence of 2 eq of Cu resulted in a visibly greenish solution, consistent with the formation of 

verdoheme, the product of heme oxygenase activity. To adjust for this activity an UV-vis based 

assay was performed by adapting an assay performed in previous work50 on CuBMb for copper-

dependent verdoheme formation. A UV-Vis based assay was performed using the pH 6 reaction 

conditions and verdoheme rates were measured (see Table 2.2).  The addition of Cu(II) under 

reaction conditions induces formation of verdoheme in all three proteins. The raw oxygen 

consumption rate data was then corrected using the rate of verdoheme formation obtained for the 

assay to reflect this information (see Figure 2.9D). The resulting corrected oxygen consumption 

rates obtained in the presence and absence of catalase and SOD still corresponded to high levels 

of hydrogen peroxide formation. Unfortunately, no copper containing assay condition attempted 

improved water production. However the observation of copper dependent verdoheme formation 

does suggest that copper is indeed binding.  

Table 2.2 Verdoheme formation rates (s-1) in the absence or presence of catalase and SOD 

Rates of verdoheme formation per second for CuBMb, F33Y CuBMb and G65Y CuBMb. Error indicated is Standard 
Deviation from the mean. 
 

Reagents Added
+ 1 eq Cu 8.47E-03 +/- 3.79E-04 3.77E-03 +/- 1.30E-04 8.83E-03 +/- 1.00E-03
+ 2 eq Cu 1.90E-02 +/- 8.12E-04 7.91E-03 +/- 4.54E-04 1.95E-02 +/- 7.90E-04
+ 1eq Cu, Catalase, SOD 3.38E-03 +/- 4.09E-04 2.07E-03 +/- 8.69E-05 1.98E-03 +/- 1.17E-04
+ 2eq Cu, Catalase, SOD 8.67E-03 +/- 1.24E-03 5.78E-03 +/- 4.91E-04 2.58E-03 +/- 3.22E-04

G65Y CuBMbF33Y CuBMbCuBMb
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Figure 2. 9 Determination of copper affinity and effect of copper dependent verdoheme formation.. Copper Kd 
determination for oxidized (A) F33Y CuBMb and (B) G65Y CuBMb in bis-Tris HCl  pH 7. Observed oxygen 
consumption rates with up to 2 eq Cu for CuBMb, F33Y CuBMb, and G65Y CuBMb (C) with and (D) without 
correction for verdoheme formation.  

 

2.4 Summary and Conclusions 

 CuBMb and its tyrosine containing variants perform HCO like chemistry, even in the 

absence of copper in the engineered CuB site. This result is unexpected as HCOs are generally 

isolated with copper in the CuB site and are inactive if mutations are made that interfere with Cu 

binding. This suggests that copper is not required for this type of chemistry to occur and that the 

role of the copper in the CuB site in HCOs may only be to increase the activity of the native 

system up to physiologically required levels, as we have shown that our system can perform the 
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required chemistry without the copper but a levels much lower than HCOs. Electrons used by our 

proteins are supplied via the addition of excess reductant that either reduces the heme and/or 

ligand to the heme. The CuBMb system appears to be unable to fully utilize copper for CcO 

chemistry as demonstrated by the observed verdoheme activity and the lack of an increase in 

HCO-like activity upon binding of copper to CuBMb and its tyrosine containing variants. Despite 

this shortcoming, the oxygen consumption rate of G65Y CuBMb is only 300-fold below that of 

some HCOs. As copper has been shown to provide an electron to reduce bound oxygen in CcOs, 

there are two likely causes of the proteins described here to produce water at a higher rate with 

copper. The first possibility is our system is unable to utilize the copper due to being unable to 

transfer electrons in and out of the CuB copper. This may be plausible as antiferromagnetic 

coupling of the copper in the CuB site and heme iron in our system requires a ligand bound to the 

heme iron such as cyanide to be observed as shown previously32. The absence of  

antiferromagnetic coupling without a ligand implys poor communication between the sites, and 

as a result the copper may not be becoming reduced before the oxygen binds and therefore does 

not have an electron to donate to the reduction of oxygen to water. An alternate possibility is that 

proton delivery is limiting, and that without efficient delivery of protons the enzyme has a rate 

limiting step of proton delivery that prevents rapid rate increase with copper. Such a proton 

delivery problem may be indicated the observed copper-dependent heme oxygenase activity,  

which is a result of a presumably  increased population of the ferric hydroperoxo species (cpd 0) 

that is common to both HCO and heme oxygenase chemistries without the formation of cpd I, 

which would have resulted from efficient proton delivery to cpd 0 . To resolve this a more 

extensive hydrogen bonding network or an efficient  source of protons analogous to proton 

channels of HCOs might be required. The resolution of these issues will make the CuBMb 
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system more efficient and more specific (less ROS production), making the system more ideally 

suited for practical applications. As described here, as a first generation model, this system could 

potentially be used in practical applications if one can prevent catalyst deactivation (likely due to 

catalyst poisoning by ROS production) after ~1000 turnovers. Described in the following chapter 

are early attempts at resolving these issues by using native HCOs and knowledge gained from 

previous studies with our system as a guide.   
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CHAPTER 3 

EFFECT OF ADJUSTING HYDROGEN BONDING NETWORKS ON OBSERVED 

OXYGEN CHEMISTRY 

3.1 Introduction 

3.1.1 Role of hydrogen bonding networks 

 The secondary coordination environments of proteins can have a significant effect on 

activity in a given active site. For instance, hydrogen bonding networks can modulate the activity 

of proteins by affecting the pKa values of amino acid side chains or allowing transfer of protons 

to substrates In heme proteins it has been postulated that one of the key differences between 

heme oxygenases1,2, that use oxygen to degrade heme, and heme proteins that cleave the 

dioxygen bond, such as heme copper oxidases (HCOs)3,4 that convert oxygen to water is the 

extensiveness of the hydrogen bonding network around the bound oxygen5 and thus the ability to 

donate protons to it. The delivery of protons to the heme-CuB site in HCOs must be efficient in 

order to maintain the proton gradient6,7 used to produce ATP and to sustain efficient reduction of 

oxygen to water. The transfer of protons in HCOs is mediated by proton channels3,8, namely the 

so called D and K channels, which supply protons to the Heme-CuB site for reduction of oxygen 

to water, as well as for translocation across the membrane, in the case of the D-channel. Many 

studies have been devoted to elucidating the function of these proton channels9-11. The water 

molecules in K-channel hydrogen bond to the hydroxyl group of the a/o-type heme in the heme-

CuB site and to the hydroxyl of the His-Tyr crosslinked residues4,12.  

The CuBMb and F33Y CuBMb and G65Y CuBMb work presented in Chapter 2 showed 

that the tyrosine-containing mutants of CuBMb could produce water from molecular oxygen and 
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that the rate varied with positioning of the introduced tyrosine. The fastest mutant described, 

G65Y CuBMb, had a rate of oxygen consumption that is approximately 300-fold slower than 

some HCOs. However, in the work above there were no proton channels designed to deliver 

protons to the Heme-CuB site, nor was there a heme that contained a hydroxyl group analogous 

to the hydroxyl group of hydroxyfarnesyl substituent of the a/o-type hemes. In an effort to study 

the effects of these features in CuBMb and its tyrosine containing mutants, a non-natural heme 

cofactor and a hydrophilic channel were introduced, separately into each mutant.  

3.1.2 Advantages of introducing a proton channel over further reduced pH 

Considering that lowering the pH from 8 to 6 allowed for discovery of the oxygen 

activity of this system, it might be expected that a further lowering of the pH of the bulk solution 

might further improve the activity observed. While this suggestion is logical, the stability of 

myoglobin in acidic conditions is limited as pH decreases13,14. Also, further decrease of pH will 

likely increase the rate of autoxidation that produces ROS15, and with His residues being our 

likely proton source, the  probability of significantly increasing population of protonated His is 

low. Therefore, further introduction of mutations to mimic proton channels to increase proton 

access to the site is a more attractive but technically more difficult alternative. If achieved it 

would make our model system more like HCOs. However, the locations need to be chosen 

carefully, as a high number of mutations or highly destabilizing mutations may be as problematic 

as lowering the pH. 

3.1.3 Summary of previous work with CuBMb containing a mimic of heme o 

 Our other proposed route to improve the activity of CuBMb and  tyrosine-containing 

variants, introducing a non-natural heme cofactor with a hydroxyl group analogous to the 
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hydroxyl of a hydroxyfarnesyl group of a/o type hemes, has been performed previously for 

CuBMb16.  In the previous study, the effect of incorporating Fe(III)-2,4-(4,2)-hydroxyethyl-

vinyldeuterioporphyrin IX (referred to as heme o mimic)  on copper dependent verdroheme 

formation the CuBMb system was investigated. 2,4-(4,2)-Hydroxyethyl-vinyldeuterioporphyrin 

IX is a compound nearly identical to protoporphyrin IX (heme b) with one vinyl group replaced 

with a hydroxyethyl group (see Figure 3.1). The replacement of the native heme b of 

myoglobinwith heme o mimic in CuBMb, denoted CuBMb(o), was achieved by unfolding 

CuBMb purified with heme b (denoted CuBMb(b)) and replacing with the heme o mimic. In a 

later obtained crystal structure, a crystallographic water was observed within hydrogen bonding 

distance of the hydroxyl group of the heme o mimic in V68T CuBMb, which is not observed in 

CuBMb with the native heme b17 (see Figure 3.3 below).  

  

Figure 3.1 Comparision of heme types 
At pH 8 CuBMb displays a copper dependent heme oxygenase activity as shown by 

Sigman et al.18 To form verdoheme, an intermediate in heme oxygenase chemistry, an Fe (III)-

Heme o Heme b

Heme o mimics
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hydroperoxo intermediate, also known as compound 0 (cpd 0), is formed. This subsequently 

reacts with the alpha-meso carbon5 and begins the pathway toward verdoheme/biliverdin 

formation. However, protonation of this intermediate would result in scission of the oxygen-

oxygen bond, forming compound I (cpd I) and releasing a molecule of water. The incorporation 

of the heme o mimic leads to a 19-fold reduction in the rate of the copper dependent verdoheme 

formation at pH 816. This effect was not seen with the mesoheme cofactor that replaces the vinyl 

of heme b with an ethyl. This reduction in observed verdoheme rate can be explained by at least 

two possible effects; either the formation of the Fe (III)-hydroperoxo, (cpd 0), was slowed, thus 

inhibiting the formation of the intermediate required to form both HCO or  heme oxygenase 

chemistry or the other possibility is that the rate of HCO-like activity was increased by the 

improved hydrogen bonding network and the Fe (III)-hydroperoxo intermediate became 

protonated more efficiently. In the process of performing the work in Chapter 2 we developed an 

assay for testing HCO-like activity in the CuBMb system. The results of the assay were 

confirmed using 17O NMR and we therefore have confidence in its accuracy. This assay should 

allow us to begin to answer the question of how the heme o mimic slows verdoheme formation 

by assaying its effect on HCO-like activity. Therefore, the goals of the work below is to 

investigate the effects of altering the hydrogen bonding network in CuBMb, F33Y CuBMb, and 

G65Y CuBMb on HCO-like activity by two methods: First, incorporate the heme o mimic into 

the CuBMb and its tyrosine variants. Second, make multiple point mutations to design 

hydrophilic channels to attempt to mimic the proton channels found in HCOs. The aim of this 

approach is to provide better proton access to the heme pocket and possibly improve chemistry 

performed in the CuBMb system by increasing the rate oxygen consumption and/or ratio of water 

to ROS produced.  
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3.2  Materials and methods  

3.2.1  Protein purification 

The mutations were introduced using site directed mutagenesis using a protocol 

previously described19 and confirmed by DNA sequencing at the Biotechnology Center of the 

University of Illinois. All proteins except CuBMb were purified from inclusion bodies using a 

protocol previously described20 with a yield of ~20 mg/L. For F33Y CuBMb and variants R/Z 

was calculated using A408/A280, and for G65Y CuBMb and variants using A410/A280; for G65Y-

CuBMb, protein with an R/Z value of 3.5 was used. CuBMb was purified as previously 

described19 using a modified protocol for WTswMb. 

3.2.2  Heme o mimic preparation and incorporation into protein 

2,4-(4,2)-hydroxyethyl-vinyldeuterioporphyrin IX was obtained from Frontier Scientific. 

Iron was incorporated as previously described16. The mass of the product was confirmed via ESI-

MS. Product with less than 20% signal intensity corresponding to b-type heme or Fe-HVD-

acetate ester was used for incorporation. The yield of Fe(III)-2,4-(4,2)-hydroxyethyl-

vinyldeuterioporphyrin IX obtained was assayed by UV-Visible spectroscopy, by dissolving in 

0.066M NaOH and was diluting into acetonitrile. Yield was estimated using an ε395 of 12.4 mM-

1. Apo-protein was prepared by extracting the heme using 2-butanone as was described 

previously16. Apo-protein concentrations were determined spectroscopically using an ε280 of 30 

mM-1. Protein was diluted to ~10 µM, and typically buffered with ~10 mM potassium phosphate 

pH 7, which seemed to increase the incorporation yield. Protein was slowly incorporated with 

heme o mimic by addition of 1/6 equivalent every 15-20 min, with the protein solution on ice 

with stirring and wrapped in foil. After 1 eq had been added, a second was added by 1/3 eq 

additions every hour. Incorporation was allowed to proceed overnight.  R/Z ratios and protein 
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concentrations were measured using the Soret absorbances at 404 nm for CuBMb(o), F33Y 

CuBMb(o), and 405 nm for G65Y CuBMb(o). Soret extinction coefficients of heme b variants 

were used as estimates for the heme o forms. Please note that as G65Y CuBMb met form has not 

been characterized, therefore met F33Y CuBMb extinction coefficient was used as many CuBMb 

mutants have a similar coefficient. 

3.2.3  Computer models for hydrophilic channels 

Energy minimized computer models for H36S/F106S F33Y CuBMb (2S_F33Y CuBMb) 

and V21S/V68S/F36S G65Y CuBMb (PCM_G65Y CuBMb) were performed using Visual 

Molecular Dynamics (VMD) 21 and Scalable Molecular Dynamics (NAMD) 22 as mentioned in 

Chapter 2,with the following changes - the starting structure for 2S_F33Y CuBMb was V68T 

CuBMb(o) with the heme o mimic replaced with heme b and Thr68 reverted back to Val68. All 

necessary mutations were made in addition to these. For PCM_G65Y CuBMb, the starting 

structure was the last time point of a G65Y CuBMb molecular dynamics equilibration of 10 ps. 

Because the goal of this simulation was to see positioning of water in the heme pocket and 

designed hydrophilic channels, molecular dynamics simulations were carried out for a longer 

duration (50 ps), than those described in Chapter 2. 

3.2.4  Oxygen electrode studies 

Oxygen electrode studies were performed as described in section 2.2.8 of chapter 2. Extinction 

coefficients ε408 of 135 mM-1 and 109 mM-1 were determined for 2S_F33Y CuBMb and 

2S_G65Y CuBMb, respectively, using a hemachromagen assay. It should be noted that the water 

and ROS calculations assume that all rate reductions are purely from activity of catalase and/or 

SOD. Other factors such as copper dependent verdoheme formation may need to be corrected for 

separately.  
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3.3  Results and discussion 

3.3.1 UV-Visible characterization of heme o mimic incorporated proteins 

Consistent with previous studies16, the incorporation of the heme o mimic into CuBMb, denoted 

CuBMb(o), causes a blue shift of the metMb Soret band to 404 nm confirming that CuBMb(o) is 

formed (Figure 3.2). F33Y CuBMb and G65Y CuBMb displayed a similarly shifted Soret band 

after incorporation with heme o mimic. In the case of G65Y CuBMb(o) the Soret band at 405 nm 

was unexpected, as G65Y CuBMb with native heme b, as purified has a significant bis-his 

population, with a Soret at ~410 nm and R/Z ratio of ~3.5. G65Y CuBMb(o) refolded with an 

R/Z of ~4 which is consistent with larger population of metMb. An extinction coefficient of 175 

mM-1cm-1 was used to estimate concentrations, as many CuBMb mutants have approximately 

this value for metMb. It should be noted, refolding of G65Y CuBMb to obtain a higher 

population of met could be useful for crystallization, as no conditions have been found for 

crystallizing G65Y CuBMb as purified. 

 

Figure 3.2 UV-Visible spectra of 6uM CuBMb(o) (black), F33Y CuBMb(o)(red) and G65Y CuBMb(o) (blue). 
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3.3.2 Effect of heme o mimic on CuBMb activity 

The rationale for expecting a difference in activity using the heme o mimic stems from the 

reduction on copper-dependent verdoheme formation previously observed and the observation of 

an additional an unpublished crystal structure where V68T CuBMb(o) displayed a 

crystallographic water not observed in the CuBMb structure with heme b (see Figure 3.3A). This 

extra water appears to be within hydrogen bonding distance of both the water observed in the 

CuB site and the hydroxyl of the heme o mimic. A stabilized water in this position may help 

form a better hydrogen bonding network for activity. The presence of heme o mimic in CuBMb 

results in an increase of the rate of oxygen consumption of approximately 50% compared to 

CuBMb (see Figure 3.3B). Interestingly CuBMb(o) relative ratio of water to ROS is 

approximately the same as CuBMb, meaning that the heme o mimic enhanced the activity. The 

addition of Zn(II) and Ag(I) as redox inactive mimics has no effect on the rate of CuBMb(o) 

similar to equivalent data for CuBMb. In the case of Zn(II)-CuBMb(o) the ratio water to ROS 

produced is lower however, this result is nearly within error. Addition of Cu(II) causes an 

increase in observed rate that is likely due to an increase in ROS produced, but is also nearly 

within error. These results suggest that the metal in the site, even a redox inactive metal, is 

disrupting the chemistry observed in CuBMb(o). It is possible that the metal is disrupting an 

interaction of His43 with a water stabilized by the additional hydroxyl group, by binding to the 

CuB site and affecting the hydrogen bonding network. 
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Figure 3.3 (A) Overlay of CuBMb (cyan) and V68T CuBMb(o) (black) structures Orange spheres are water in the 
V68T CuBMb(o) structure. Arrow indicates the additional water observed. (B) Rates of water (blue) and ROS 
production in CuBMb and CuBMb(o). Arrow indicates the additional water observed.  

3.3.3 Effect of heme o mimic on F33Y CuBMb 

When compared to CuBMb, F33Y CuBMb displays a 3-fold higher rate with the native heme b in 

the heme pocket. Based on the increase just discussed with CuBMb(o), it would be reasonable to 

expect that F33Y CuBMb(o) would have a rate between those of F33Y CuBMb and G65Y 

CuBMb. The rate increase in the latter case is approximately 20%, much less than the CuBMb 

case and the ratio of water to ROS is comparable to the results obtained with F33Y CuBMb with 

the native heme b. The calculated rates of water and ROS production are within error. Even in 

the presence of metal the rates and ratios are essentially the same. It seems that there is little 

effect from heme o mimic aside from the slight rate increase. This may be rationalized by the 

suggestion of reorganized waters in the pocket with a ligand bound as discussed in the 

conclusions of Chapter 2. If the tyrosine hydroxyl is stabilizing a water molecule within 

hydrogen bonding distance of His43 as suggested with a ligand bound the heme o mimic 

hydroxyl may be hydrogen bonding to a water that exists in the heme b version of F33Y CuBMb. 
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Considering the position in the heme pocket of the hydroxyl of the structure, there may be no 

proton for the additional network to transfer and thus only a mild effect on activity. 

  

Figure 3.4 (A) Overlay of F33Y CuBMb (cyan) and V68T CuBMb(o) (black) structures (B) Rates of water (blue) 
and ROS production in with and without heme o mimic(o). Arrow indicates addition water observed. 

3.3.4 Effect of heme o mimic on G65Y CuBMb 

For G65Y CuBMb, the effect of the heme o mimic is hard to predict as the location of the 

tyrosine based on the computer model of G65Y CuBMb is relatively distant from the heme o 

hydroxyl, unlike in HCOs, and may have little effect. However, the likelihood of stabilizing a 

water near His43 could be similar to that of CuBMb and following the logic and results of the 

argument for the lack of activity increase for F33Y CuBMb, an increase like that observed in 

CuBMb might be expected in G65Y CuBMb. The rate of oxygen consumption for G65Y 

CuBMb(o) is within error of the rate for its heme b counterpart, both approximately 5.4 µM/s. 

The ratio of water to ROS is close but G65Y CuBMb(o) appears to produce more ROS compared 

with the native heme incorporated, in the presence or absence of metal, although the individual 

water and ROS production rates are very close to the level of error for most metals. For G65Y 

CuBMb with native heme b, verdoheme production in the presence of copper slows the apparent 
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rate, as described in Chapter 2. In G65Y CuBMb(o), the apparent oxygen consumption rate is 

faster in the presence of copper. The observed rates are 5.4 µM/s without copper and with 5.9 

µM/s respectively which is beyond error. The percentages of water produced is ~65% in both 

cases. This would suggest that copper enhances the rate slightly but not the product formed. As 

G65Y CuBMb(o) produces more ROS in general, this copper-enhanced rate with no effect on 

product is a step in the right direction; but excitement is tempered by the general effect of heme o 

mimic in G65Y CuBMb increasing ROS. 

 

Figure 3.5 - (A) Overlay of G65Y CuBMb model and V68T CuBMb(o) structure (B) Rates of water (blue) and ROS 
production in with and without heme o mimic. Arrow indicates addition water observed. 

3.3.5 Rationale and Design of F33Y CuBMb Channel Mutant 

In CcOs the K-channel ends near the location of the His-Tyr crosslink. The hydroxyl 

group of the hydroxyfarnesyl group of o and a type hemes is suggested to be hydrogen bonded to 

the water in the K-channel4,23. With this in mind a design for a simple hydrophilic channel that 

ended near the location of both the hydroxyethyl group of heme o mimic incorporated CuBMb 

variants based on the V68T CuBMb(o) structure, and Tyr33 in F33Y CuBMb was attempted. The 
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shortest route to bulk solvent would be by making a hole in the heme pocket wall formed by BC 

loop region and the G-helix. The closest residue to the location of the hydroxyl of the heme o 

mimic that points into the heme pocket is Thr39. Because this residue is already suitable for 

hydrogen bonding, all that may be needed are mutations to make space for water to enter into the 

back of heme pocket. Mutations introducing potential hydrogen bonding partners to stabilize 

water in the proposed channel were introduced, namely F106S and H36S. F106S was selected as 

alternative to mutations in literature that are known to destabilize myoglobin24, specifically 

Y103X, while still making space in the desired region of the protein. H36S was selected becuase 

it is surface exposed and might potentially interact with Glu38, which could block our channel. 

Simulations were performed to test this design before attempting to express the designed protein. 

To simulate potential extra water in the heme pocket of myoglobin as a result of the new 

channel, the above crystal structure of V68T CuBMb with heme o mimic was used because it has 

three crystallographic waters compared to the two of F33Y CuBMb. To this starting structure the 

T68V/F33Y mutations were made in addition to the hydrophilic channel mutations. The resulting 

molecular dynamics equilibrated model can be seen in Figure 3.6. Interestingly the serine 

hydroxyl groups appear to hydrogen bonding to a water from the bulk solvent occupying part of 

the space generated by the F106S mutation. This simulation also suggested that methyl group of 

Thr39 might be blocking access of water to the heme pocket. Therefore two mutants of F33Y 

CuBMb were made, H36S/F106S/F33Y CuBMb and H36S/T39S/F106S CuBMb (referred to as 

2S_F33Y CuBMb 3S_F33Y CuBMb respectively). 
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Figure 3.6 Molecular Dynamics simulation results for 2S_F33Y CuBMb. Proposed channel residues are shown in 
Tan.  

3.3.6 Effect of hydrophilic channel mutations on F33Y CuBMb 

Both 2S_F33Y CuBMb and 3S_F33Y CuBMb mutants were able to reduce oxygen using TMPD 

and ascorbate similar to F33Y CuBMb. The observed oxygen consumption rates of these new 

mutants were approximately twice that of F33Y CuBMb, with approximately the same ratio of 

water to ROS produced (see Figure 3.7A). The 2S_F33Y CuBMb mutant was found to be more 

stable than 3S_F33Y CuBMb and was obtained at a higher yield, and was therefore used for 

more thorough characterization of the channel. The addition of metals to 2S_F33Y CuBMb had a 

similar effect to what was observed in F33Y CuBMb (See figure 3.7B). This would suggest that 

the introduction of mutations designed to allow bulk solvent better access for the purpose of 

enhancing the existing hydrogen bonding network was a success.  
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Figure 3.7 – Rates of water and ROS production for (A) F33Y CuBMb and the 2S and 3S variants and (B) F33Y 
CuBMb and 2S_F33Y CuBMb in the presence and absence of 1eq Zn, Ag, and Cu.  

3.3.7 Rationale and Design of G65Y CuBMb Channel Mutants 

In designing a proton channel mutant for G65Y CuBMb to deliver protons near the introduced 

tyrosine, we chose not to immediately use the above mutations designed for F33Y CuBMb, 

because Tyr65 is located on the opposite side of the heme pocket from residue 33. We also 

decided against simply making a hole in the nearest wall, as it was likely that the exposed heme 

edge would become larger or that the interaction between the porphryin and hydrophobic 

residues would be disrupted by mutation to hydrophilic residues. These effects could make 

interpretation difficult. We therefore decided to engineer a channel into the hydrophobic core of 

myoglobin that would emerge into the heme pocket near Tyr65. This channel design consisted of 

3 mutations to G65Y CuBMb. Val 21, Val68, and Leu69 were mutated to serine residues. 

Computer simulation of this mutant was performed using the G65Y CuBMb simulation results as 

a starting point and then introducing the 3 mutations (See Figure 3.8). Val21 is surface exposed 

and should pose minimal problems. Val68 has been mutated to both Thr and Ser in the literature 

and myoglobin was able to fold. Leu69 is the residue most likely to pose a problem to folding as 
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it is in the myoglobin core and is surrounded by hydrophobic residues. However, the space 

generated by this mutation could allow for a water to be trapped and hopefully stabilized by 

hydrogen bonds to the introduced serines or the backbones of nearby residues. Also, as further 

investigation of the effect of the H36S/F106S mutations introduced into F33Y CuBMb. These 

mutations were introduced into G65Y CuBMb for comparison (referred to as 2S_G65Y CuBMb). 

 

Figure 3.8 Molecular Dynamics simulation results for PCM_G65Y CuBMb. Proposed channel residues are shown 
in Tan.  

 

3.3.8 Effect of Channel Mutations on G65Y CuBMb 

 The effect of the introduction of the three serine residues designed to create PCM_G65Y 

CuBMb on activity is still yet to be determined, as the protein as isolated had low yield due to 

protein instability. The portion that was recovered was folded into a bis-His state that would not 
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readily reduce with TMPD and ascorbate. However, heme extraction and refolding of this mutant 

may yield more of a metMb-like population, as was observed for G65Y CuBMb with heme o 

mimic, and potentially avoid this issue. These difficulties lead to characterization of 2S_G65Y 

CuBMb to see the general effect of these mutations. 

 The results of the introducing the F106/H36S mutations into G65Y CuBMb (2S_G65Y 

CuBMb) is different than that of 2S_F33Y CuBMb. This is not completely unexpected becuase 

the mutations are on the other side of the heme pocket from Tyr65. Instead of increasing the rate 

of oxygen consumption as in 2S_F33Y CuBMb, 2S_G65Y CuBMb actually has an 

approximately 30% slower rate, compared to G65Y CuBMb. While initially this would seem like 

a setback, reactions in the presence of catalase and SOD had nearly no effect on the oxygen 

consumption rate observed. This would suggest that the product formed in 2S_G65Y CuBMb is 

exclusively water, within error of our methodology (see Figure 3.9). The rates of oxygen 

consumption toward water are comparable for both G65Y CuBMb and 2S_G65Y CuBMb. This 

may be because the hydrogen bonding network in 2S_G65Y CuBMb could be hydrogen bonding 

from multiple sides of the bound oxygen or the introduced hydrogen bonding could adjusting the 

pKa of His43 allow it to transfer protons more effectively. Either of these could alter the rate of 

proton donation to the bound oxygen and allowing for a more rapid transfer to the bound oxygen. 

The introduction of redox inactive metals into the site had little effect on the oxygen 

consumption rate but the apparent level of ROS production is higher. In the case of copper the 

observed rate is slower without catalase and therefore our assumptions in calculation of water 

and ROS fail (see red bar in the water direction in Figure 3.8) this would suggest that ROS are 

being consumed which is not the case. This failure is likely the result of copper-induced 
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verdoheme formation. As rates of verdoheme formation have not been determined for this 

mutant, G65Y’s rates were used as an estimate to obtain an estimate of water to ROS ratios.  

 

Figure 3.9 – Water (blue) and ROS (red) production rates for G65Y CuBMb and 2S_G65Y CuBMb in the absence 
and presence of 1eq of Zn, Ag, and Cu. The red bar in the water side of graph suggesting ROS consumption is 
breakdown of our assumptions. Asterisk indicates correction using G65Y CuBMb verdoheme rates 

3.4 Summary and Conclusions 

 The effects of trying to alter the hydrogen bonding network in CuBMb and its tyrosine 

variants shown to perform HCO like chemistry are interesting. The incorporation of heme o 

mimic into the CuBMb, F33Y CuBMb and G65Y CuBMb had a different result in each mutant. 

For CuBMb the overall rate increased by 50% without metal and the ratio of products was 

essentially unchanged. With metal the percent ROS increased slightly. For F33Y CuBMb there 

was essentially no change, which seems to be consistent with the hypothesis that a water may be 

stabilized by Tyr33 in the oxygen bound state which would likely not allow heme o mimic 

enough space to have another water molecule. For G65Y CuBMb the inclusion of the cofactor 
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caused a small general increase in the percent ROS formed. However, copper-loaded G65Y 

CuBMb(o) kept the same product ratio and slightly increased overall rate. This is in contrast to 

G65Y CuBMb with native heme b which is slowed by Cu addition, likely from verdoheme 

formation. The addition of hydrophilic channels with the goal of increasing the access of protons 

into heme pocket has been shown to have two different effects; the first effect is a rate increase if 

the channel added is from the same side of the heme pocket as the tyrosine as in 2S_F33Y 

CuBMb, but little change in the ratio of products formed. This effect might an indication of better 

flow of protons into the same hydrogen bonding network. The other observed effect is 

potentially both more important and more interesting. This second effect occurs when the 

channel introduced is on the opposite side of the pocket from the introduced tyrosine residue as 

in 2S_G65Y CuBMb. The rate of the oxygen consumption decreases but the products formed 

have a higher percentage of water, in the case of metal free 2S_G65Y CuBMb nearly 100% 

conversion to water from oxygen. This cleaner catalyst should be more robust in terms of total 

turnovers, as the production of ROS is believed to be the downfall of G65Y CuBMb causing a 

significant slowing after about 850 turnovers. Design of a proton channel on the same side as the 

introduce tyrosine G65Y CuBMb was performed, in the PCM_G65Y-CuBMb mutant, but the 

resulting protein was difficult to purify and characterize. The combination of the heme o mimic 

and 2S hydrophilic channel in G65Y CuBMb has the potential be a very interesting protein. The 

resulting 2S_G65Y CuBMb(o) could potentially be very clean and not be degraded as quickly in 

the presence of copper. The heme o hydroxyl would be well positioned to interact with both the 

hydrophilic channel and waters in the heme pocket, potentially improving the effect of the 

channel further.  
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CHAPTER 4 

PROGRESS TOWARD HIS-TYR CROSSLINK FORMATION IN CUBMB 

MUTANTS WITH TYROSINE 

4.1 Introduction 

 The purpose of the work described herein is to improve the CuBMb1,2 model of heme 

copper oxidases (HCOs) by introducing a His-Tyr crosslink and then comparing the activity of 

uncrosslinked tyrosine-containing CuBMb with that of the crosslinked version, in a fashion 

similar to the work described in the preceding chapters. Such a study would allow for a direct 

comparison of the crosslinked His-Tyr with the same His and Tyr uncrosslinked in the same 

protein environment. Such work has yet to be reported in HCOs. 

4.1.1 Brief overview of crosslinked posttranslational modifications 

 Posttranslational modifications such as phosphorylation, glycosylation, and ubiquination 

are common is living systems3. These modifications can extend the functionality of proteins 

beyond that of the 20 amino acids or hold two sections of a protein in close proximity by 

covalent linkage4. Modifications can range in size from a linkage of 2 amino acids, e.g. disulfide 

bonds, to addition of sugars, to the attachment of whole proteins such as ubiquination3. The 

function of these modifications can also vary: Some are structural in nature and lock the protein 

into a given conformation, others are involved in signaling; for example ubiquination is well 

known to signal for degradation. Many enzymes in the cell either modify other enzymes or are 

modified themselves by other enzymes; e.g. the kinases involved in signaling pathways. Some 

amino acid linkages are proposed to be mediated by nearby metal cofactors, such as the recently 

reported Phe-Val crosslink in protein 4. This result in particular is interesting because it is 
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relatively difficult to form radicals at both of the involved amino acid side chains. The novel His-

Tyr crosslink of HCOs is also thought to result from the early turnovers at the heme-CuB site5.  

4.1.2 Summary of His-Tyr Crosslink features and proposed roles 

 The His-Tyr crosslink is a unique structural feature found in all HCOs. This structural 

feature was first identified using X-ray crystallography6,7 and was confirmed via Mass 

Spectrometry and Edman Degradation5. Mutation of the crosslinked Tyr residue to Phe8 causes 

loss of copper in the CuB site and abolishes enzyme function. Unfortunately, HCOs have not 

been isolated lacking the His-Tyr crosslink unless mutation of the crosslinked residues had been 

performed. This makes study of function in the native system difficult, as changes needed to 

remove the crosslink change more than the crosslink itself. Small molecule analogs of the 

crosslinked His-Tyr amino acids have been made to study the effects of this covalent bond on the 

properties compared to His and Tyr9-11. Similar analogs have been incorporated into synthetic 

models of HCOs12-14. The proposed function of the crosslink ranges from merely structural15 to 

the donation of a proton and/or an electron to the reduction of oxygen to water16. The pKa of the 

hydroxyl of the crosslinked His-Tyr was ~3 pKa units below that of Tyr. This would make the 

pKa of the His-Tyr linkage ~7. Under physiological conditions such a residue should be able to 

donate a proton and therefore could be expected to be a source of protons for the reduction of 

oxygen to water. 

4.1.3 Rationale for inclusion in CuBMb system and unique benefits 

As part of the process of constructing a functional bottom-up model of CcO from 

myoglobin an effort has been made to incorporate this unique and important feature. How the 

His-Tyr crosslink is formed in HCOs is unknown but it is believed to be formed during the early 
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turnovers of the enzyme5. Therefore, our experiments, if successful, may provide new insight 

into the mechanism of formation of this feature in the native enzyme and what relative 

positioning of the two components relative to each other may be required. The experimental 

design involves reaction of the Tyr-containing CuBMb mutant with either oxidant (such as 

H2O2), copper alone, reductant alone, or copper with reductant. Ideally, we would prefer 

formation via reductant or reductant with copper for a more physiologically relevant result. The 

sections below summarize the progress made toward incorporating a His-Tyr crosslink into the 

CuBMb system and note observed side reactions. 

4.2 Materials and methods 

4.2.1 Protein purification 

 All tyrosine containing mutants and variants described in this chapter are purified from 

inclusion bodies using a previously described protocol.17 Typical yields from the inclusion body 

protocol are ~20 mg/L. I28Y and F33Y CuBMbs and variants purify in the metMb form and the 

purified protein is evaluated for quality by taking the ratio of A408/A280 and if the R/Z value is 4 

or greater the protein is consider usable. For G65Y CuBMb the ratio of A410/A280 is used and the 

protein with a value of ~3.5 is used. The lower cutoff is a result of a population of bis-His ligated 

protein that is present in this mutant; as bis-His has a lower extinction coefficient than the met 

form. As discussed in Chapter 2 this purification protocol results in protein that does not contain 

metal in the CuBMb site based on Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) 

results.  

4.2.2 Crosslinking experiments 
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Unless otherwise noted all buffer solutions were treated with Chelex 100 beads (Sigma) 

to remove divalent metal ions. 

To check for crosslinking under reaction conditions 1 mL of 50 µM protein was reacted in a 1.5 

mL eppendorf tube with stirring and with the appropriate reagents for 30 minutes at room 

temperature. Reactions at pH 8 and pH 6 used 20 mM tris-HCl and 100 mM potassium 

phosphate , respectively. In reactions with catalase, enzyme was added in levels consistent with 

work by Sigman et al.2 Reactions were stopped by running the reaction mixture down a PD-10 

column equilibrated with either water or 20 mM Tris-HCl, pH 8. Colored eluent was collected. 

Two different methods were used to remove the heme cofactor before digestion with the 

appropriate protease. The first method used was analytical High Pressure Liquid 

Chromatography (HPLC) using a C18 column after concentrating the reaction products to a 

volume of ~100 µL. This instrument used was a Waters Delta 600 with Waters 600 controller 

and Waters 2487 Dual λ detector. The reaction was injected onto a pre-equilibrated Vydac 

218TP54 C18 column. The column was equilibrated using 84% solvent A and 16% solvent B 

where solvent A is 0.05% TFA in distilled H2O (dH2O) and solvent B is60 % acetonitrile 

(ACN), 0.05 % trifluoroacetic acid (TFA) in dH2O. The percentage of Buffer B was ramped up 

to 83% over the first 20 minutes then ramped up to 100% over the next 2 minutes, and then held 

for eight minutes to clean the column (30 minutes overall). Over the next 2 minutes buffer B was 

lowered to 16% (84% A) and then held for the remainder of the run (13 minutes) to equilibrate 

the column. The whole procedure lasted 45 min per sample. Absorbances at A280 and A380 were 

used to monitor protein and free heme respectively. Any heme signal associated with the protein 

was presumed to be covalently attached. The protein containing fractions were pooled, flash 
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frozen, and lyophilized overnight. The lyophilized protein was resuspended in the buffer needed 

for the protease used. 

  The second method used was extraction of the heme using 2-butanone. For this method 

the protein was exchanged in to water. The protein was then unfolded using 1% v/v of 2 M HCl 

and to this an equal volume of ice cold water saturated with 2-butanone was added and then the 

mixture was mixed by inversion. The butanone layer (top) should be red from free heme. The 

bottom layer should be colorless, if not additional HCl was added and mixed again. If still 

colored then there is likely covalently attached heme. In reaction conditions known to form 

verdoheme, a greenish color was observed. The top layer was removed by Pasteur pipet and 

replaced with fresh 2-butanone until top layer was colorless. To remove the 2-butanone dialysis 

against water was performed until 2 exchanges after the 2-butanone was no longer smelt, 

typically 5 to 6 dialysis steps. The final exchange was against the buffer used for protease digest. 

4.2.3 Digestion of proteins with proteases after removal of the heme 

The heme-free protein was digested by either 20 µL of 1 µg/µL Salt Free α-

Chymotrypsin (Sigma) in 100 mM Tris-HCl, pH 7.8 for I28Y CuBMb or by 20 µL of 1 µg/µL 

Proteomics Grade Trypsin (Sigma) in 1 mM HCl added to protein in 230 µL of 100 mM 

ammonium bicarbonate, pH 8.5 for all others. Crude digest mixtures were then either analyzed 

using MALDI-MS or injected onto an HPLC column for further purification. 

4.2.4 Isolation of crosslinked peptide by HPLC 

After digestion of protein the resulting crude digestion mixture was purified by HPLC to 

isolate the potentially crosslinked fragment. Crude digestion mixture in the amount of 100 µL 

was injected onto a pre-equilibrated Vydac 218TP54 C18 column. The column was equilibrated 
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90% solvent A and 10% solvent B where solvent A was 0.05% TFA in dH2O and solvent B was 

100% ACN, 0.05% TFA in dH2O. The method was run at 1 mL/min and starting conditions of 

10% B were held for 10 minutes. The percentage of Buffer B was ramped up to 60% over the 

first 120 minutes and then ramped up to 100% to wash the column for 30 minutes, and then re-

equilibrated over 40 minutes. Absorbances at A225 and A315 were monitored (A225 for peptide 

backbone and A315 for possible crosslink specific signal) The resulting peaks were then run on 

MALDI-MS (Matrix Assisted Laser Desorption Ionization Mass Spectometery) to determine the 

mass of the peptide(s) in the peak. 

4.2.5 UV-Vis characterization of isolated peptide 

Specrta were collected using a Cary 3E spectrophotometer (Varian). The isolated 

potentially crosslinked fragment was dissolved in modified universal buffer (50 mM sodium 

acetate, 40 mM MES, 40 mM MOPS, 40 mM Tris, 40 mM CAPS, 100 mM potassium 

phosphate). The 100 mM sodium nitrate normally used was replaced with 100 mM potassium 

chloride to avoid absorbance from the nitrate interfering with the monitoring of changes in the 

UV region. To adjust the pH 2 M HCl was added. The pH values listed were measured by adding 

a given amount of HCl to buffer before adding the peptide fragment. The same amount was 

added to buffer containing either isolated potentially crosslinked peptide or a control peptide 

ordered with the appropriate sequence based on MALDI-MS results. 

4.2.6 MALDI-MS 

 MALDI-MS , using a Voyager DE, as performed on either the crude digestion product or 

fractions collected after HPLC using a C18 column. The matrix used was α-cyano-4-

hydroxycinnamic acid. The accelerating voltage was 20000 V, the mass range was 400 – 4000 
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Da, and the low mass gate was set to 400 Da. Laser intensity varied from 1800 – 2200 depending 

on sample. An insulin/angiotensin mixture was used as a standard for calibration. Crude digest 

samples could typically be seen with usable intensity with a 1:10 ratio of sample-to-matrix 

solution. HPLC purified peptide samples could be seen typically with a 1:5 dilution. All expected 

values were based on the use of the Protein Prospector tool ( prospector.ucsf.edu).  

4.2.7 LC-ESI-MS/MS 

Crude digest samples were also submitted for LC-ESI-MS/MS (Liquid Chromatography 

– Electrospray tandem Mass Spectometry and the liquid chromatography step was performed 

using the same protocol and column used for the HPLC purification for consistent peak elution 

times for comparison purposes. The LC-MS/MS samples were run by the Mass Spectrometry 

facility at the University of Illinois at Urbana-Champaign. 

4.3 Results and Discussion 

Please note that all observed crosslinking masses obtained using MALDI-MS are 

hydrogen peroxide-dependent unless stated. 

4.3.1 I28Y CuBMb  

Considering the positioning of the three His residues that form the CuB site in CuBMb, 

covalent attachment between Tyr28 and His29 seems the most reasonable based on 3-

dimensional location (see Figure 4.1). For I28Y, CuBMb chymotrypsin protease was used. 

Chymotrypsin cleaves primarily after Trp, Tyr, Phe, and Leu (with lower frequency) residues. 

Based on the sequence of I28Y CuBMb this should produce a His containing peptide with a mass 

of 686 Da and a Tyr containing peptide of mass 1460 Da and crosslinking of the two would give 



79 
 

a mass of 2142 Da. See Figure 4.2 for the I28Y sequence with potential cleavage points noted by 

arrows and Table 4.1 for a list of expected and observed masses by MALDI-MS. 

 

Figure 4. 1 Molecular dynamics simulation results for I28Y CuBMb.  

I28Y CuBMb did not display a mass corresponding to the crosslinked peptides of interest. 

This result is not unexpected as residues to be crosslinked are adjacent residues in an alpha helix. 

The distance between the His nitrogen and the nearest Tyr carbon that would give the 

appropriate crosslink are 4.2 angstroms based on computer modeling results. However, there is a 

peak with a mass that is 4 Da less than the expected crosslinking mass and that is hydrogen 

peroxide dependent (See Table 4.1). 
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Figure 4.2 Potential cleavage sites for A) chymotryptic digest of I28Y CuBMb, tryptic digest of B) F33Y CuBMb, 

and C) G65Y CuBMb. Intended His and Tyr for crosslinking are colored red. The smallest possible Tyr containing 

peptide is shown in green. For F33Y CuBMb grey sequence is Tyr containing peptide if Lys34 cleavage is missed 

The smallest possible His containing peptide is shown in blue. 

4.3.2 F33Y CuBMb 

 The protease used for F33Y CuBMb was trypsin. Trypsin cleaves after Arg and Lys 

residues. As seen in Figure 4.2 the F33Y Sequence has a cleavage site in between the His and 

Tyr and shortly after the Tyr. Based on the sequence of F33Y CuBMb this should produce a His 

containing peptide with a mass of 1617 Da, Tyr containing peptides of masses 423 Da and 1345 

Da (depending on cleavage after Lys 34), and crosslinking of the two peptides would give 

masses of 2040 Da and 2961 Da. See Figure 4.2 for F33Y CuBMb sequence with potential 

cleavage points noted by arrows and Table 4.1 for other masses of interest.  

 

 

 

L HVW AKVEADVAGHGQDY HIRL F KSHPETLEKHDRF KHLK

I28Y CuBMb

F33Y CuBMb

LHVWAK VEADVAGHGQDIHIR LYK SHPETLEK HDRFK HLK

LHVWAK VEADVAGHGQDIHIR LFK SHPETLEK HDRFK HLK 

TEAEMK  ASEDLK K HYVTVLTALGAILK K K

G65Y CuBMb

A

B

C
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Table 4.1 Expected and observed digested protein fragments for His 29 Tyr 33 crosslinking 

 

4.3.2.1 Studying the isolated crosslinked peptide 

 F33Y CuBMb, like I28Y CuBMb, forms a new mass upon reaction with hydrogen 

peroxide. The mass observed by MALDI-MS is 1-2 Da more than calculated which is within 

error of the MALDI-MS. The mass observed would require amino acids 17-42 to be present in 

the crosslinked peptide (see Table 4.1). The most plausible interpretation would be that a 

covalent bond involving Tyr 33 is formed that prevents the cleavage of the peptide backbone 

after Arg 31 or Lys34. The peptide of interest was isolated by HPLC from a crude trypsin digest 

mixture. See Figure 4.3 for an overlay of the HPLC traces of the tryptic digests for F33Y CuBMb 

+ H2O2 and unreacted F33Y CuBMb and the corresponding MALDI-MS spectra. In the inset of 

I28Y CuBMb 29 - 33 HIRLF 685 686

All non-I28Y CuBMb 17 - 31 VEADVAGHGQDIHIR 1617.7 1618

I28Y CuBMb 15 - 28 AKVEADVAGHGQDY 1460 1459
F33Y CuBMb 32 - 42 LYKSHPETLEK 1345.5 N. A.
L32V/F33Y CuBMb 32 - 42 VYKSHPETLEK 1331.5 N. A
L32V/F33Y/T39A 32 - 42 VYKSHPEALEK 1301.5 N. A.
L32V/F33Y/L40A 32 - 42 VYKSHPETAEK 1289.5 N. A.
G65Y CuBMb 64 - 78 HYVTVLGAILK 1499.8 1500

L32V/F33Y/T39A CuBMb 17- 42 XL VEADVAGHGQDIHIR  + 
VYKSHPEALEK

2917.2 2936

L32V/F33Y/L40A 17- 42 XL VEADVAGHGQDIHIR  + 
VYKSHPETAEK

2905.2 2923

G65Y CuBMb 17 - 31 , 64 - 78 XL
VEADVAGHGQDIHIR  + 
HYVTVLGAILK 3115.5 N.A.

Protein Residues Sequence

His containing peptide

Tyr containing peptide

L32V/F33Y CuBMb 17- 42 XL 2947.2VEADVAGHGQDIHIR  + 
VYKSHPETLEK

I28Y CuBMb 15 - 28 XL 2142

F33Y CuBMb 17- 42 XL 2961.2

AKVEADVAGHGQDY + HIRLF

VEADVAGHGQDIHIR  + 
LYKSHPETLEK

2964

2963

2138

Expected 
Mass

Observed 
Mass

Crosslinked peptide
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Figure 4.3A a small peak in the H2O2 reacted sample can be seen; this peak has a mass of 2963 

Da when isolated and MALDI-MS is performed (see Figure 4.4).  

  

 

Figure 4.3 Overlay of (A) HPLC traces and (B) MALDI-MS spectra of tryptic digests of F33Y CuBMb with (red) 
and without reaction with H2O2 (black). Boxed region indicates region in the inset of (A). Crosslinked peak 
indicated by arrow with observed mass by MALDI-MS. Masses listed in (B) in are colored with respect to spectrum 
referred to. Only masses of interest or masses at 100% intensity for both spectra are labelled. 
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Figure 4. 4 MALDI-MS spectrum of Isolated F33Y “Crosslinked” peptide The peaks observed correspond to the +1 
and +2 charged states of the peptide. 

Peptide sequencing using Edman Degradation on the isolated peptide resulted in the 

readout shown in Figure 4.5. This sequence reads as if there are two N-termini similar to 

observations with unreduced disulfide linked peptides18. Based on the MALDI-MS spectrum of 

the isolated peptide where neither of the masses corresponding to the individual peptides are 

observed, the only plausible interpretation is a covalent bond between a residue before Lys 34 

and a residue after Lys34. The backbone must be cleaved after Lys34 otherwise there would be 

no “2nd N-terminus”. The presence of the residues after Lys34 in the sequence requires the 

covalent bond otherwise the MALDI-MS results would not show one species. This interpretation 

suggests that the introduced tyrosine could be forming a covalent bond with a sidechain or 

backbone atom with a residue between 35 and 42 (Figure 4.5). In addition, there is no evidence 

for cleavage of the backbone at Arg 21, otherwise the first cycle of Edman Degradation would 

have indicated V, S, and L indicating a 3rd N-terminus. Therefore there is interference with 

trypsin cleavage at this site.  
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Figure 4.5 Edman degradation results and the effect on the expected peptide. The red line in the table represents the 
expected missed signal. Arrows represent trypsin cleavage.  

UV-Visible data on the isolated peptide showed a pH-dependent shift in the UV-Visible 

region peak (Figure 4.6) similar to those observed with crosslinked synthetic His-Tyr model 

compounds10. Based on controls using a synthesized peptide with the same primary sequence this 

shift was not observed. These results taken together suggest that there is indeed a covalent 

attachment formed by Tyr33 and another location in F33Y however it seems unlikely the 

attachment is with His29 as intended. 

 

 

Cycle # AA identified
1 V, S
2 -
3 E , H
4 A , P
5 D , E
6 V , T
7 A , L
8 G , E
9 H , K

10 G , k
11 Q , d
12 D
13 i
14 -
15 -
16 -
17 -
18 -

VEADVAGHGQDIHIR    LYKSHPETLEK

Expected F33Y CuBMb Crosslinked peptide based on MALDI-MS

Interpretation after Edman Deg. Data

VEADVAGHGQDIHIRLYK         SHPETLEK
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Figure 4.6 UV-Visible changes with (A) control and (B) “crosslinked” peptide with pH change. Note: selected pH 

values displayed for B for clarity 

4.3.2.2 Work done using mutants of F33Y CuBMb  

Mutations were made to F33Y CuBMb for two reasons. The first was to attempt to 

increase the likelihood of a His-Tyr crosslink as the best conditions using hydrogen peroxide 

gave a ~15% yield based on peak area of the HPLC traces. The second reason was to discern the 

location of the covalent bond formation between Tyr33 and the peptide containing residues 35 to 

42 as based on Edman degradation UV-Vis studies on the peptide. Mutations aimed at increasing 

crosslink formation include L32V/F33Y CuBMb and Y146F/Y151F/F33Y CuBMb. An 

additional mutant, I30P/F33Y CuBMb, was purified from inclusion bodies and characterized. 

However, the protein was highly unstable and was unable to be reduced using ascorbate and 

TMPD. The L32V mutation would make CuBMb more like HCO in the region including His-Tyr 

as the conserved sequence is HPXVY in a and b type HCOs5 and F33Y CuBMb in the 

corresponding sequence is HIRLY. Studies by Wikstrom and coworkers19 observed that mutation 

of the corresponding Val to Ile caused a decrease in activity presumably from the more bulky 

residue affecting the water network in the pocket. CuBMb natively has an even more bulky Leu 

and this added bulk might interfere with crosslinking to His29. The HPLC traces of the two 
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mutants are highly similar as expected. However, the mass of the observed crosslinked peptide is 

16 Da heavier than expected. This extra mass could be either some kind of oxidative damage on 

the peptide or potentially cleavage after Arg31 as well as after Lys34. However, this situation 

seems unlikely as the tyrosine would have to form two crosslinks to amino acids on different 

helicies for this proposed species to be observed. The HPLC traces showed no significant change 

in the relative yield. The Y146F/Y151F/F33Y mutations were made based on work by Ortiz de 

Montallano’s group20 showing myoglobin dimerization via a surface Tyr151. This naturally 

occurring radical pathway would funnel radicals away from Tyr33 crosslinking and lower 

efficiency. Unfortunately, this also did not improve yield. 

 

Figure 4.7 Relative positions of potential crosslink partners for Tyr 33 

The second reason for introducing mutations was to discern the location of the covalent 

bond formation between Tyr 33 and the peptide containing residues 35 to 42 as based on Edman 

degradation UV-Vis studies on the peptide. If the identity of the amino acid Tyr is crosslinked to 

was known, we could potentially mutate it to a less reactive amino acid to avoid undesired 
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crosslinking. Point mutations replacing Thr39 and Leu40 with either Ala or Pro were made as 

these residues were closest to Tyr33 based on the crystal structure of F33Y CuBMb (see Figure 

4.7). These mutations were made in  L32V/F33Y CuBMb. For our purposes the elimination of 

the linkage should theoretically be the same for F33Y CuBMb. The intent of the Ala mutations 

was to disrupt potential crosslinks formed to a sidechain and the proline mutations where 

intended minimize the reactivity of the backbone amine at these positions. Based on MALDI-MS 

results, summarized in Table 4.1, these point mutations did not eliminate the crosslinked peptide 

as the mass in all cases shifted as expected with respect to the L32V/F33Y background. Mutation 

of His36 to Ala was also performed in order to remove the residue most likely to crosslink based 

on chemical properties of the sidechains, His36 is the only aromatic side chain aside from Phe 42 

which is too far away from Tyr33. In addition to the shifted crosslinked mass, some mutations 

displayed a new species not previously observed, with a mass corresponding to a linkage 

between Tyr33 and Tyr103, a known radical site in wild type Mb. Table 4.2 has the calculated 

masses for Tyr33 and Tyr103 linkage and the observed masses. This result is interesting in that 

we are indeed forming a radical at Tyr33 if a dityrosine linkage is formed. However, it indicates 

a low likelihood of success of obtaining a His-Tyr crosslink as desired, as both the crosslink 

between residues 35 and 42 and the dityrosine crosslink suggest that Tyr33 moves away from 

His29 instead of toward it. 
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Table 4.2 Peptide masses for observed alternate crosslinks  

 

4.3.3 G65Y CuBMb 

In an attempt to avoid the undesired covalent attachments observed in F33Y CuBMb, 

G65Y CuBMb was developed. The G65Y mutation was selected based on overlays of bovine 

CcO and CuBMb crystal structures. Computer minimization confirmed that the heme iron and 

Tyr-OH distance is ~5 angstoms. The distance based on computer modeling between Tyr65 and 

His29 is ~3.3 angstoms. (see Figure 4.8). This distance is closer than the equivalent distances in 

F33Y CuBMb. Reactions with G65Y CuBMb were performed in a similar manner to that of 

F33Y CuBMb. The expected His containing fragment is 1617 Da as in F33Y CuBMb. The 

expected Tyr containing fragment is 1500 Da. Therefore the expected crosslink mass is 3115 Da. 

It should be noted that the 1617 Da peptide mass has been observed reproducibly in F33Y 

CuBMb. For G65Y CuBMb the smallest digested fragment is flanked on both sides by at least 

one additional Lys residue. The crosslinking were to interfere with backbone cleavage by trypsin 

at the predicted locations, these flanking Lys residues would minimize the increase in the 

number of unexpected amino acids but providing additional locations to cleave the backbone.  

F33Y CuBMb 33-35 LYK 423.5 N. A.
L32V/F33Y CuBMb 33-35 VYK 407.5 N. A
L32V/F33Y/T39A 33-35 VYK 407.5 N. A.
L32V/F33Y/L40A 33-35 VYK 407.5 N. A.

L32V/F33Y/T39A CuBMb 2318 2336
L32V/F33Y/L40A 2318 2336

Potential Y33-Y103 Crosslinked peptides

Expected 
Mass

Observed 
Mass

33-35, 103-118 XL YLEFISEAIIHVLHSR + VYK

Protein Residues Sequence

Tyr33 containing peptide

Y103 Containing Peptide

All Mutants 103-118 YLEFISEAIIHVLHSR 1928 1927/1928

F33Y CuBMb 33-35, 103-118 XL YLEFISEAIIHVLHSR + LYK 2334 N/A

L32V/F33Y CuBMb 33-35, 103-118 XL YLEFISEAIIHVLHSR + VYK 2318 N/A
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Figure 4.8 Energy minimized model of G65Y CuBMb with closest His nitrogen to Tyr carbon distances labeled 

 4.3.3.1 Observed MALDI-MS and LC-ESI-MS/MS 

Reactions with H2O2 or copper with reductant did not yield any expected crosslinking 

fragments nor did MALDI-MS reproducibly give fragments corresponding to as His29-Tyr65 

crosslink. The only condition that showed a mass close to that expected was G65Y CuBMb + 2 

eq. Cu with 1000 eq. TMPD and ascorbate. This observation required a higher intensity than 

normally used on the MALDI-MS which produced a very small peak that could arguably be 

noise. To independently check for the crosslinked mass, sample was submitted for LC-ESI-

MS/MS. The same column and conditions used for HPLC peptide isolation for F33Y CuBMb 

was performed to confirm that digestion was proceeding properly and to identify the Tyr 

containing fragment and its elution time off the HPLC column. Compared to the control sample 

where only buffer was added during reaction there was significantly less of the fully digested Tyr 

containing peptide in the Cu + reductant reaction. This is interesting in that copper with reductant 

is inducing a major change to the tyrosine peptide. Unfortunately, no new Tyr containing 

fragment was observed via MS and no obvious sharp new peak was observed via LC. This may 
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be explained by the observation that crosslinked His29-Tyr65 would have a mass above 2000 

m/z and thus be outside the range of ESI-MS/MS. The peptide would have to be at least doubly 

charged to be observed. This however assumes complete digestion. If there is a missed cleavage, 

especially on the His29 peptide, the mass could be higher and require a triply charged peptide to 

be observed. However, a missed cleavage event requiring a triply charge peptide to be observed 

is less likely on the G65Y peptide as it is flanked on both sides by at least one additional Lys 

residue that could be cleaved.  

4.4 Summary, conclusions, and future experiments 

In summary, reactions of I28Y CuBMb and F33Y CuBMb formed unique peptides after 

reaction with H2O2. Based on Edman degradation and MALDI-MS, the isolated peptide for 

F33Y CuBMb does contain the portion of the protein with the His and Tyr residues for 

crosslinking. In addition, there is further support based on mutations to that portion of F33Y 

CuBMb causing the appropriate mass shifts as observed by MALDI-MS. The peptide does not 

appear to contain a His-Tyr crosslink based on Edman degradation results. However, based on 

UV-Visible studies where the pH of the solution containing the peptide isolated was adjusted 

from pH 11 to pH 3 there is a shift in the UV region similar to those observed for His-Tyr 

crosslink small molecule analogs. It is likely that this species is composed of Tyr crosslinked to 

either an amino acid side chain or backbone atom of the residues between Ser34 and Lys42. 

Based on distances from crystal structures, the most likely residues are Thr39 and Leu40 if the 

linkage is to the sidechain. This is not as unreasonable as it may seem in light of a recently 

reported Phe-Val crosslink mediated by a metal site4. However, Edman degradation should have 

given either no signal or an unknown signal for one of the residues5 if the linkage was via 

sidechain (unless the linkage was broken by the edman reaction). However, it may be more 
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likely that the linkage is to the backbone, which would not be altered by mutagenesis and would 

be more likely to be broken by the edman reaction.  

For G65Y CuBMb there was no reproducibly observed crosslinked mass using H2O2 or 

reductant in the presence or absence of copper. However, ESI-MS/MS shows significant 

differences between unreacted and protein reacted with copper and reductant. The unreacted 

trace shows a Tyr containing peak. The copper and reductant treated sample does not, nor does it 

show any new peaks that contain components of the peptide containing Tyr65. This absence is 

possibly due to poor cleavage induced by a covalent attachment and the resulting less digested 

peptide that has an m/z ratio of greater than 2000, and thus is less likely to be observed. In other 

words, if the most digested version of the peptide is produced, with a mass of 3115 Da it would 

require a charge of +2 to have an m/z less than 2000 and be observed. If a less digested peptide 

product has a mass over 4000 Da then a +3 charge would be needed, which would require a ~900 

Da mass increase. A potential source for this mass increase may be a covalent linkage to the 

heme cofactor as it has a mass of 616 Da and due to size might interfere with complete digestion. 

If the mass is less than 4000 Da such a linkage would also strongly alter the elution of the 

peptide off of the C18 column, as such a column separates by hydrophobicity and heme is very 

hydrophobic. 

To resolve these potential issues in G65Y CuBMb there are multiple routes including 

making point mutations to increase the positive charged residues that are not cleavable by 

trypsin. A related strategy is to add additional Lys or Arg residues to create smaller digest 

fragments, so that a lesser charge is needed to observe the peptide of interest. As for the covalent 

linkage with heme, a separate purification step separating the peptide peaks from the heme 

containing peaks (similar to the HPLC protocol described for heme extraction as was described 
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in the methods section) could isolate such a linkage. Subsequent direct injection into a MS 

instrument may yield confirmation of this idea. 

In the case of F33Y CuBMb, based on computer modeling of G65Y CuBMb, adding bulk 

at position 65 causes His29 to move toward Phe33. If a Phe65 mutation was made it might be 

possible to compete with the undesired linkage. However, based on Kd studies for G65Y CuBMb 

the copper binding, described in chapter 2, in this situation the likelihood of copper mediated 

linkage would be greatly reduced due to less copper binding at a given concentration of metal. 

True confirmation of any crosslinking analogous to that of HCOs will eventually require either 

Edman Degradation or crystallization to confirm any linkage. Edman Degradation was shown 

not to disrupt the linkage in HCOs by Buse et al.5 Therefore our crosslink should be able to 

withstand Edman degradation if it is the correct linkage. Crystallization would be the best way to 

confirm proper connectivity.  
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CHAPTER 5 

CHARACTERIZATION OF A NOVEL SIDE-ON BOUND OXYGEN SPECIES IN 

F33Y CUBMB 

5.1 Introduction 

5.1.1  Side-on bound oxygen in biology 

Since oxygen is diatomic, it can bind to protein in two ways: end-on, as in oxygen-bound 

myoglobin1 (OxyMb) (Figure 5.1A) and hemerythin, or side-on, as in naphthalene dioxygenase2 

(Figure 5.1B) and homoprotocatechuate 2,3 dioxygenase3. In proteins, iron-bound, side-on 

oxygen species in proteins have been observed in non-heme iron sites. Side-on oxygen species 

bound to non-heme iron are reactive species. Karlsson et al. reported crystal structures for 

naphthalene dioxygenase with the side-on bound oxygen. They proposed that this species attacks 

the napthalene substrate and produces cis-1,2-dihydrodiol. Work by Lipscomb’s lab3 reported the 

structure of ferrous iron loaded homoprotocatechuate 2,3 dioxygenase with and oxygen side-on 

bound also suggest reaction with an aromatic substrate. 

For heme proteins such as p450s, side-on bound intermediates have been proposed4; 

however, many p450s are believed to perform chemistry with the ferryl cation radical 

intermediate commonly referred to as compound I (cpdI)5. Computational work indicates that a 

side-on bound complex could not be activated to undergo dioxygen bond cleavage6. In some 

p450s, such as p450 aromatase7,8 , however, the hydrogen-bonding network in the active site 

promotes the activation of the substrate, which may suggest that proton access to the ferric 

peroxo intermediate is limited. Thus, a side-on peroxo intermediate may be the active 

intermediate. Other in p450s, such as a p450 2B47,9 mutations of the active site proton donors 
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have demonstrated an enhancement of activity, i.e. the deformylation of  

cyclohexanecarboxaldehyde,  that is thought to be performed by a side-on intermediate. 

   

Figure 5. 1  Examples of side-on and end-on bound oxygen. (A) WtswMb (PDB 1MBO) and (B) Napthalene 
Dioxygenase (PDB 1O7M). 

5.1.2 Side-on bound porphyrin complexes 

Side-on bound oxygen species have also been observed in porphyrin-based organic 

complexes. Work by Valentine and coworkers have reported observations of side-on bound 

oxygen complexes with various metals10,11, including iron10,12,13. The EPR spectra of these iron 

complexes have a signal at g = 4.2 that has been assigned to a side-on bound oxygen species. The 

side-on bound species observed were formed when porphryin complexes reacted with potassium 

superoxide in dry organic solvent. UV-visible studies for Valentine’s iron complexes were 

described as having a low-energy Soret band, and the peaks in the visible region (between 500 

nm and 700 nm) have shoulders similar to those of Ti complexes. The features of the reported 

complexes did not shift with changes in solvent or counter ion, suggesting that the complexes do 

not coordinate with them. As a result, these complexes are suggested to be six-coordinate.  This 

leaves an open coordination site to the porphyrin as the oxygen is bound in a side-on fashion. 

These complexes are sensitive to moisture and air, and they decompose rapidly. As far as 

Leu 29

Phe 43 His 64

A

2.8 Å

2.9 Å
2.6 Å 1.8 Å

Asp 362

His 208

His 213

2.0 Å
1.7 Å

2.1 Å
2.4 Å

2.1 Å

B



98 
 

reactivity, the complexes are generally not electrophilic, as they do not oxidize styrene or 

cyclohexene12.  However, they have been shown to nucleophilically attack electron-poor olefins 

such as menadione to form menadione epoxide with an approximately 70% yield. The 

electrophilicity of the porphryin ring, however, does affect the ability of the complex to perform 

this chemistry. For protoporphyrin IX dimethylester (PPIXDME), an analog of the heme b in 

myoglobins, this activity does occur.  

Work by Naruta and coworkers14 in studies of porphyrin-complex-based models of HCOs 

has revealed a side-on bound peroxo species with a copper analogous to CuB in proximity. This 

complex was crystallized and will be discussed below (see Figure 5.2). Naruta and coworkers 

also recently described a seven-coordinate side-on complex that could be converted to an end-on 

ferric hydroperoxo species analogous to Cpd 0; it was produced upon protonation using 

methanol15. The additional seventh ligand, absent in side-on bound complexes mentioned above, 

was a histidine analog.  The presence of this ligand was shown to be important in the conversion 

of the side-on complex to the end-on complex. 

5.1.3 Relation to CuBMb studies 

As described in the preceding chapters, CuBMb is a model system for the study of 

HCOs16,17. The formation of a ferric hydroperoxo intermediate is an important step in the 

reduction of oxygen to water. The hydroperoxo intermediate is protonated to form (cpd I): the 

ferryl species with a cation radical. As an alternate route to cpd I, hydrogen peroxide can be 

added to ferric heme proteins via a “peroxide shunt.” A tyrosine-containing variant of CuBMb17, 

F33Y CuBMb, was reacted with hydrogen peroxide for the purpose of inducing a His-Tyr 

crosslink (described in Chapter 4). After reacting F33Y CuBMb with hydrogen peroxide, a 
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covalent bond that is not yet fully characterized formed based on mass spectrometry. When 

hydrogen peroxide reacted F33Y CuBMb was crystallized in an attempt to determine the location 

of a newly formed covalent bond. Unexpectedly, we obtained a crystal structure with a side-on 

bound oxygen species. Contained in this chapter is the first, to our knowledge, structure of a 

side-on bound oxygen species heme iron in a protein system.  Since this species is a proposed 

transient intermediate in some p450s8 and is only observed as a relatively stable species in 

organic porphyrin complexes in dry organic solvent12, there is much that could be learned by 

characterizing such a species. 

5.2 Materials and methods 

5.2.1  Purification of protein 

 The F33Y CuBMb used in this chapter was purified as described in Chapter 2. The cutoff 

ratio of A408/A280 for useable protein was 4. 

5.2.2 Crystallization of F33Y CuBMb 

Side-on bound F33Y CuBMb crystals were obtained by taking 1.7mM as purified F33Y 

CuBMb (met form) in 20 mM Tris pH 8 (pH adjusted with H2SO4).  To this protein, three eq. 

H2O2 were added and allowed to react for approximately 30 minutes. This protein was then 

concentrated using a centrifugal concentration device with a MWCO of 10 kDa. The reacted 

protein was then diluted to ~1.7 mM and mixed 2:2 with crystallization buffer (0.1 M sodium 

cacodylate, 0.2 M sodium acetate trihydrate with 30% w/v polyethylene glycol 8000) and stored 

over a well of 300 µL crystallization buffer using the hanging drop method. It should be noted 

that this method does not reproducibly result in crystals with the side-on bound oxygen species.  



100 
 

In fact, most F33Y CuBMb crystals obtained are of the met form.  The resulting protein and well 

buffer solution has a pH of approximately 7. 

Met-F33Y CuBMb crystals were also soaked with H2O2 in an attempt to reproduce the 

results of the solution crystallization described above. The crystallization of metMb has been 

described in the methods section of Chapter 2. However, the crystallization buffer used to 

produce these crystals contained 30% w/v PEG 10000 instead of 30% PEG 8000, as this was 

subsequently observed to form crystals more reliably. The crystal and mother liquor of metMb 

crystals had a volume of 4 µL. To this, 1 µL of well buffer and F33Y CuBMb in the same ratio 

(one volume 1mM F33Y CuBMb to three volumes well buffer) with 100 eq. H2O2. The 

hydrogen peroxide was added to the protein solution just prior to mixing with the well buffer. 

Mixing this solution 1:4 with the crystal drop would result in  20 eq. H2O2 compared to the total 

amount of protein in the drop. The higher amount of H2O2 compared to solution based 

crystallization was used to increase the probability of hydrogen peroxide reacting with the 

crystallized protein to form a side-on complex. Mr. Yi-Gui Gao aided in the reaction of crystals 

with H2O2 to ensure that the crystals were minimally damaged by the mixing procedure. The 

structure obtained by this procedure is more consistent with an end-on species not a side species. 

5.2.3 Diffraction Data Collection 

The crystals were first soaked briefly in cryoprotectant (30 % polyethylene glycol 400) and were 

flash frozen in liquid nitrogen. The diffraction data sets summarized in Table S1 were collected 

at the National Synchrotron Light Source beamline X12C (Upton, NY) and were processed with 

HKL2000 software18. 

5.2.4 Crystal Structure Determination 
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The crystal structure was solved by the molecular replacement method using MOLREP in the 

CCP4 Package19. Refinement was performed using X-plor20 and SHELX’9721. For the crystal 

structure of CuBMb, the positions of H43 and H29 were rebuilt using the program O22. For the 

structure of F33Y CuBMb, the position of Y33 was rebuilt using the program O 22. All crystal 

structure determination was performed by Mr. Yi-Gui Gao, of the George L. Clark X-Ray 

Facility and 3M Materials Laboratory, University of Illinois at Urbana-Champaign, as part of a 

collaboration. 

5.2.5 EPR spectroscopy of H2O2-reacted F33Y CuBMb 

EPR spectroscopy of H2O2-reacted F33Y CuBMb consisted of 300 µL of 500 µM protein 

reacting with three eq. H2O2 in 100 mM Tris-HCl (pH 8) while being stirred at room 

temperature. After the reaction, samples were mixed with 20% glycerol and flash-frozen in EPR 

tubes. EPR spectra were collected at 20K and 2mW power. The higher concentration of protein 

was used to maximize potential signals from any new species.  

5.2.6 UV-visible spectroscopy of H2O2-reacted F33Y CuBMb 

All UV-visible spectra were taken using an Agilent 8453 spectrometer (Agilent 

Technologies, Santa Clara, CA) using the supplied Chemstation software and kinetics package. 6 

µM F33Y was reacted with three eq. H2O2 at pH 8 in 100 mM Tris-HCl and pH 6 in 100 mM 

potassium phosphate. The reaction was monitored for one hour. 
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5.3 Results and Discussion 

5.3.1 Obtained crystal structures of H2O2-reacted F33Y CuBMb 

As mentioned above, F33Y CuBMb was reacted with H2O2 for the purpose of inducing a 

His-Tyr crosslink analogous to that in HCOs. The 1.5 Å structure obtained after F33Y CuBMb 

reacted in solution did not contain any evidence of such a covalent bond. The structure did 

contain a side-on bound oxygen species; it is presumably a peroxo species, based on studies by 

Valentine and coworkers12.  The structure obtained by Naruta  and coworkers14 is included for 

comparison as it is also a HCO model system. It should be noted that the Nartura structure is six-

coordinate whereas the F33Y CuBMb structure is seven-coordinate. The two complexes contain 

a side-on bound oxygen species with an oxygen-oxygen bond distance that is too short to be two 

water molecules, and oxygen-iron distances too similar for both oxygen atoms for it to be an 

end-on species. Both structures have another molecule that interacts at least weakly with the 

bound peroxo species. This interaction was not required for the model complexes obtained by 

Valentine and coworkers11 that were based on a Mn(II) side-on structure. For F33Y CuBMb, 

there is a water molecule within hydrogen-bonding distance to both oxygen atoms of the putative 

peroxo species, and His64 may be hydrogen bonding as well. An interesting feature of this 

structure not observed in the met F33Y structure is a water molecule within hydrogen-bonding 

distance of both His43 and Tyr33. This water molecule potentially allows Tyr33 and His43 to 

interact with the bound species via the hydrogen bonding network. The network of hydrogen 

bonds observed apparently stabilizes this intermediate and prevents the expected ferryl 

intermediates from forming.  
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Another structure of F33Y CuBMb reacted with hydrogen peroxide after crystallization. 

This structure was not side-on bound; the ligand appears to be end-on bound. As this structure 

was obtained by reaction in the crystal, it may be a trapped intermediate.  There is a water 

molecule observed in the designed site is in the CuB site, formed by His29, His43, and His64, 

which is similar to what was observed in the met F33Y CuBMb structure in Chapter 2. The 

difference in the water distribution could indicate that the protein is unable to adopt a different 

conformation, or that there is a less occupancy of at water in this end-on structure at the location 

of the water observed in the side-on structure. 

 

 
Figure 5.2  Comparison of F33Y CuBMb hydrogen peroxide structures, (A) The side-on bound F33Y CuBMb 
structure and (B) the F33Y CuBMb end-on structure, (C) Overlay of (A) and(B)  and (D) (TMP)FeIII-(O2)-
(5MeTPA)CuII obtained by Naruta and coworkers. 
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5.3.2 Reaction of  F33Y CuBMb in solution with hydrogen peroxide 

5.3.2.1 UV-visible spectroscopy  

The reaction of F33Y CuBMb with H2O2 was characterized via UV-Vis using a diode 

array spectrometer. The reaction was initiated by adding  three eq of H2O2 to met F33Y CuBMb. 

The addition of hydrogen peroxide cause the Soret band to decrease in intensity and shift to 411 

nm. This is inconsistent with previously reported compound II spectra under these conditions in 

CuBMb17. As the reaction proceeded, a slight shoulder grew in at ~580 nm. When the reaction 

was repeated at pH 6, the reaction initially formed a species similar to that observed at pH 8.  

However, this species converted to a second species with a large shoulder at ~580 nm. This new 

species had a Soret band at ~412 nm, but as the observed spectra was a mixture, it might be more 

red-shifted. It would seem that both reactions starting out similarly, but at lower pH, the 

conversion to a second species was much more rapid.  The visible region of the second species 

had a shape similar to the visible region of a side-on bound species reported by Valentine and 

coworkers in studies with PPIXDME (a heme b analog) and superoxide12,13.  The Soret band, 

however, was blue-shifted by about 20 nm compared to the species reported with PPIXDME. 

This could be due to the additional ligand to the heme or a difference in the environment (a heme 

pocket of a protein versus organic solvent). The reduction of this species by TMPD and 

ascorbate did not produce a deoxyMb species or any significant spectral change, suggesting that 

the species formed under hydrogen peroxide-reacted conditions is not the same as the 411 nm 

oxyMb formed using reductant observed in work described in Chapter 2. 



105 
 

  

Figure 5. 3  UV-Visible spectra of F33Y CuBMb reaction with hydrogen peroxide. Reaction with three equivalents 

H2O2 at (A) pH 8 and (B) pH 6  

5.3.2.2 EPR spectroscopy 

To further characterize the reaction in solution with peroxide, EPR was performed with 

500 uM F33Y CuBMb and three eq. H2O2 at pH 8. The reaction was monitored by taking 

aliquots at various time points, mixing the sample with 20% glycerol, and flash freezing. The 

reaction was monitored for one hour. EPR spectra were collected at 20K and 2mW power, 

conditions that are usually suitable for metMb. An initial sample of metMb was prepared as a 

control, and as a way to determine the signal due to the glycerol-induced conformational change 

in Mb to bis-his ligated, to avoid misinterpretation. As the reaction proceeded, the signal from 

metMb at g  ~ 5.7 decreased as expected. At g ~ 2 and upon addition of H2O2, a peak formed 

that overlapped with a  g ~ 2 peak from  metMb. The peak at g = 2 that originated upon addition 

with H2O2  diminished with time.  A small peak at g  ~ 4.2 was observed that appeared constant 

after H2O2 was added, it did not diminish as the g ~2 peak did.  It should be noted that peaks at 

this position have been assigned to free iron.  Based on the UV-Vis work described above, there 

was no verdoheme formed, usually indicated by a small peak a 678 nm, which would be required 
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in order to degrade the heme and release the iron. Also, Valentine and coworkers10 assigned a 

side-on peroxo species to a signal at this position. Therefore, this signal could be from a side-on 

peroxo, but EPR conditions should be adjusted as the signal intensity is very low.  

 

Figure 5.4 EPR spectroscopy of reaction between F33Y CuBMb and hydrogen peroxide pH 8 

5.4 Summary and Conclusions 

5.4.1 Relation of side-on oxygen species in F33Y CuBMb HCO-like chemistry 

As mentioned above, the UV-visible spectra of the species formed after the reaction with 

hydrogen peroxide is different from the oxyMb species observed when TMPD and ascorbate 

were used (in Chapter 2); also, the addition of reductant does not cause spectra changes. This 

would suggest that the observed species is not able to reduced and cleave the dioxygen bond.  

This does not mean that oxygen chemistry is impossible under these conditions: there could 
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either be a small population that consumes oxygen slowly, or a population that is not active 

spectroscopically overlapping with any active species enough to preclude any observation of the 

relevant spectral changes. Based on Naruta’s precedent of converting a  seven-coordinate side-on 

species to an end-on species15, protonation might convert our species to an intermediate found in 

HCO chemistry. 

5.4.2 Future directions 

The observed side-on species has yet to be spectroscopically characterized as a pure species.  

Efforts are underway to reproduce a side-on bound crystal using both 16O- and 18O-labeled 

hydrogen peroxide.  If successful, UV-visible studies and resonance Raman studies of the 

crystals will provide reference spectra for a side-on bound oxygen in a protein environment, 

potentially providing a new route to confirm the existence of these suggested species in p450s. 

EPR studies at lower temperatures could yield a better signal at g = 4.2 so that these results could 

be more readily compared with studies by Valentine’s lab10. Also, this side-on bound species 

could be better suited for reactions similar to olefin epoxidation reactions described by Valentine 

and coworkers12.  If a substrate were able to enter the heme pocket of myoglobin, it is possible 

that interesting chemistry could be performed by the side-on species. Without mutations 

allowing such a substrate to enter the heme pocket, it may be difficult to observe such activity.  
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