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ABSTRACT 

 

Tree swallow (Tachycineta bicolor) nestlings, eggs, and diet and sediment grab samples were 

used to quantify risks of exposure to15 trace elements, 31 polychlorinated biphenyl (PCB) 

congeners, 15 polybrominated diphenyl ether (PBDE) congeners and 13 organochlorine 

pesticides in the Calumet area of northeastern Illinois, USA.  Nesting success and clutch size 

were measured in tree swallows to determine whether local contaminants reduced tree swallow 

fitness.  Overall nesting success was not reduced when compared among sites and to range 

averages; 71-90% of clutches started had at least one nestling fledge.  Likewise there were no 

differences among sites in the proportion of eggs that hatched and nestlings that fledged.  

Generally, contaminant concentrations in the media were considered low or not elevated, 

although sediment concentrations of cadmium, chromium, and nickel at some sites were higher 

than the “probable effects concentration” or the “probable effects level” for sediment dwelling 

organisms, and lead, manganese, and zinc were above the “severe effects levels” at some sites.  

Calumet nestlings in 2005 were fed between 51 and 64% aquatic insects by mass. Terrestrial 

insects in the nestling tree swallow diet contained significantly greater concentrations of lead 

than aquatic insects consumed by the nestling tree swallows.  Mean mercury concentrations in 

nestlings ranged from 0.10 to 0.18 mg/kg dry weight (dw) and egg concentrations ranged from 

0.11 to 0.23 mg/kg dw and approximately 5% of the total mercury mass in nestlings came from 

the eggs.  Egg mercury concentrations, which are acquired directly from the mother, were 

positively correlated with the timing of nesting, and negatively correlated with brood size.  

Nestlings at Indian Ridge in 2004 and Powderhorn in 2005 accumulated the greatest mass of 

mercury.  Mean sum PCB concentrations in tree swallow eggs ranged from 463 to 830 ng/g wet 

weight (ww) and from 105 to 208 ng/g ww in nestlings.  Egg concentrations contributed 

approximately 48% of the total PCB mass in nestlings.  Nestlings at Big Marsh in both years, 

and Indian Ridge in 2004 accumulated the greatest mass of PCBs.  Nestlings from both Big 

Marsh and Indian Ridge in 2005 accumulated the most PBDEs, with approximately 21% of the 

total mass in nestlings coming from the eggs.  Mean sum PBDE concentrations in eggs ranged 

from 47 to 78 ng/g ww and from 20 to 62 ng/g ww in nestlings, and these results appear to be 

among the first reported PBDE concentrations in tree swallows.  Powderhorn had no record of 
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sediment contamination that was found, however low levels of contaminants were in the 

sediment and biota there.  Tree swallow nestlings accumulated a variety of contaminants from 

the Calumet sites though their diet, though eggs contributed significant amounts for some 

compounds like PCBs.  Understanding contaminant presence and uptake in wetlands of the 

Calumet area is particularly useful due to the loss of wetland habitat in this region.  
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Tree Swallow Natural History 

 

Tree swallows (Tachycineta bicolor) are mid-level predators that are often used to assess 

contaminant exposure via trophic transfer from aquatic systems to terrestrial systems (Table 1.1).  

Tree swallows have a large breeding range in North America extending from Tennessee to 

California and north to Labrador and Alaska.  They are common near water, provided there is 

structure for roosting and nesting (National Geographic Society, 1987).  They possess a number 

of qualities that make them particularly easy to use in ecological studies: they readily exploit nest 

boxes (Robertson et al., 1992), are tolerant of disturbances, and are of a manageable size for easy 

handling.  Not surprisingly, they have long been used in field research studies, and there is a 

tremendous body of knowledge about them (Robertson et al., 1992; McCarty 2002).  They are 

sometimes referred to as the „avian equivalent of the white rat‟ of avian ecology (Jones 2003, pg 

596).  Because tree swallows are so well studied, and easy to work with, they have frequently 

been used as biomonitors (Table 1.1). 

 

Tree swallows have historically arrived at nesting sites in northern Illinois in mid April (Graber 

et al., 1972) with males arriving up to a week prior to the females to defend a nest site 

(Robertson et al., 1992) and yearling swallows arriving later than others (Robertson et al., 1992).  

Females generally lay one egg per day (Robertson et al., 1992; Cornell University, 2004), and 

their total clutch size is usually between four and seven eggs (Cornell University, 2004; Gallo 

personal observation).  Egg mass averages 1.9 g but varies with clutch size (Robertson et al., 

1992), and increases with laying order (Wiggins, 1990; Robertson et al., 1992).  Eggs are 

typically incubated for 11 to 19 days, with most requiring only 14 or 15 days (Robertson et al., 

1992). 

 

When nesting, tree swallows are primarily aerial insectivores and typically feed in open areas 0-

50 m above ground (Robertson et al., 1992) and within 300 m of their nesting sites (Quinney and 

Ankney, 1985; Dunn and Hannon, 1992; McCarty 2002), but have been observed to fly over 100 

km to forage (Robertson et al., 1992).  Both parents feed the nestlings and the diet typically 

consists of insects caught on the wing (Robertson et al., 1992).  Nestling diet varies with site and 

insect availability, but swallows appear to be selective of prey size that they feed to their young 
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(Quinney and Ankney 1985).  Holroyd (1983) found that swallows at sites in southern Ontario 

fed their young primarily nematocerid flies (60-97% of the proportion of their daily diet).  

Elsewhere, dipterans have been found to comprise from 46 to 94% of tree swallow diets, but 

odonates (up to 87%) and homopterans (up to 26%) have been observed to be important as well 

(Blancher et al., cited in Robertson et al., 1992; McCarty and Winkler, 1991; Menglekoch et al., 

2004; Quinney and Ankney, 1985).  Aquatic insects are often the majority of the diet (Holroyd, 

1983; Quinney and Ankney, 1985; Menglekoch et al., 2004; Neigh et al., 2006c) but this varies 

with habitat (McCarty, 2001; Johnson and Lombardo, 2000) and insect availability (Smits et al., 

2005). 

 

Nestlings fledge between 15 to 25 days after hatching and nesting success (defined as at least one 

nestling departing the nest) is almost 79% (Robertson et al., 1992).  Nesting success has been 

observed to be up to 14% lower for later nesting birds (Robertson et al., 1992).  Tree swallows 

winter in the southern United States, Mexico and Central America (Cornell University, 2004).  

They have been documented to live up to 11 years, but the average is 2.7 years (Robertson et al., 

1992).  Estimates indicate that only about 20% of fledged swallows survive the first year of life 

(Robertson et al., 1992). 

 

The use of tree swallows to assess contaminant exposure started in the 1980s, and became 

common in the late 1990s (Table 1.1).  A number of studies have clearly demonstrated that tree 

swallow nestlings accumulate contamination from local sediment (Bishop et al., 1995; Froese et 

al., 1998; Dods et al., 2005; Maul et al., 2006) or soil (Smits et al., 2001; Maul et al., 2006) 

through the insects they consume.  Tree swallows are migratory, and because of slow depuration 

times in maternal tissues and subsequent deposition in the egg, there is uncertainty regarding the 

extent to which contaminant burdens in eggs and nestlings can be attributed to a particular 

locality (Custer and Custer, 1995; Dauwe et al., 2006; Maul et al., 2010).  To overcome these 

concerns, some studies use both nestlings and eggs to calculate local uptake rates (e.g. Ankley et 

al., 1993; Custer et al., 1998; Custer et al., 2000), or to normalize nestling concentrations by 

subtracting egg contributions from the total nestling contaminant mass (this study; Maul et al., 

2010).   
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There is growth dilution from a two gram egg to a 20 gram nestling and the proportion of 

maternally derived contaminant mass in nestlings will vary.  One study found eggs contributed 

between 2.4 to 23.9% of the mercury found in tree swallow nestlings (Longcore et al., 2007a). 

PCB contribution from eggs was 14.3 to 16.2% of the nestling mass (Maul et al., 2010) at a 

highly contaminated site in southern Illinois.   

 

In addition to documenting exposure, tree swallows have been used to investigate effects of 

contamination using various endpoints including reproduction (e.g. Froese et al., 1998; Wayland, 

1998; McCarty and Secord, 1999b; Harris and Elliott, 2000; Neigh et al., 2006a), development 

(e.g. McCarty and Secord, 1999b; Yorks, 1999; Longcore et al., 2007) parental care (e.g. Bishop 

et al., 2000), genetic mutation rates (Stapleton et al., 2001), histopathological changes (Bishop et 

al., 1998; Yorks, 1999; Gentes et al., 2007), and immunological response (Bishop et al., 1998b; 

Smits, 2000; Mayne, 2004; Dods, 2005; Franceschini et al., 2009; Hawley et al., 2009).   

 

For the purpose of this review, studies are separated by the primary contaminants that were 

assessed, and only results relevant to tree swallows are discussed. Trace Element results are 

listed in parts per billion (ppb) dry weight (dw) and organic compound results are in ppb wet 

weight (ww) unless otherwise indicated.  This presentation facilitates comparisons with the 

literature. Feather concentrations are listed in the form of the original study as no trustworthy 

conversion was found, (Custer et al., 2007a listed a moisture content of 46 to 77%, but they 

attribute this large range to condensation due to thawing).  All other media concentrations were 

transformed using values from the literature. (liver: 70% moisture from Erry et al., 1999; Adrian, 

1979; Franson, 1984; for other species; Blood: 80% Santolo et al., 1999) or using values from 

this study (nestlings: 30.8% moisture and 8.5% lipid, eggs: 82.7% moisture and 5.4% lipid).  

 

 

Trace elements 

 

Tree swallow eggs and nestlings have been demonstrated to contain various toxic and non-

essential trace elements (Kraus, 1989; Gerrard and St Louis, 2001; Custer et al., 2001; Custer et 

al., 2003; Custer et al., 2005; Tsipoura et al., 2007; Longcore et al., 2007a).  Most studies 
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evaluate multiple contaminants, fewer examine metals exclusively, and fewer still analyze only 

one trace element, usually mercury (Hg) (Table 1.2). 

 

Body burdens 

Tsipoura and colleagues (2007) measured 5 metals in bird blood, feathers and eggs in the 

Hackensack Meadowlands of New Jersey in 2006, furthering work in that region by Kraus 

(1989). They found relatively high Cr concentrations in blood, whereas Cr feather concentrations 

were lower than those found in other birds.  Blood lead levels were higher than the 2,000 ppb dw 

(400 ppb ww) that may have adverse physiological effects in birds (Tsipoura et al., 2007), and 

one tree swallow had feather lead concentrations above the adverse effects threshold of 4,000 

ppb dw (Tsipoura et al., 2007).  Lastly, the mercury concentrations in feathers were similar to 

those of birds from higher trophic levels, but blood concentrations were lower than other species, 

likely due to the depuration to the feathers.  Other studies found trace element concentrations that 

were similar to background concentrations (Bishop, 1995; Custer et al., 2005), were equal to 

reference site values (Custer et al., 2001), or were considered to be “low” (Custer et al., 2003). 

 

Gerrard and St. Louis (2001) assessed bioaccumulation of methylmercury (MeHg) in tree 

swallow eggs, nestlings and adults before and after the creation of a reservoir.  Along with 

increased concentrations of MeHg in swallow nestlings and feathers after flooding, they found a 

1:1 ratio of MeHg to Total Hg (THg) in all nestling tissue concentrations.  Two other studies 

evaluated Hg concentrations before and after hydrologic drawdowns and found no differences in 

mercury concentrations relative to water level (Custer et al., 2006; Custer et al., 2007d).  

 

Mercury concentrations in tree swallow eggs, nestlings, feathers and diet, from Maine and 

Massachusetts were measured as were its effects on growth (Longcore et al., 2007a).  The 

researchers found a lower rate of mass gain for 2- to10-day-old swallows with higher feather 

concentrations of mercury.  They suggested, based on as yet unpublished injection studies by 

Heinz, that tree swallow embryos may be more sensitive to Hg than are mallards, stating that 

Heinz observed effects at “somewhat less than 1 ppm ww” (approximately 5,780 ppb dw) 

(Longcore et al., 2007a pg 138).  Eleven clutches had an egg with concentrations of THg that 

exceeded  the threshold of 4,624-5,780 ppb dw for embryo toxicity, and four of these 11 nests 
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had other eggs that failed to hatch (Longcore et al., 2007a).  Nonetheless, their study sites had 

rates of hatch success above 89%.  Additionally, a higher maximum concentration of 2,000 ppb 

ww (11,560 dw) is currently listed for the range of impaired reproduction for some bird species 

(Eisler, 2000).  A different study around the Carson River in Nevada (Custer et al., 2007b) 

yielded no impact on hatch success at egg concentrations in the 4,624-5,780 ppb dw range.   

 

In an attempt to determine mercury concentrations in nestlings that likely came from the egg 

rather than the nestling diet, one study calculated that the egg contributed between 2.4  0.9 and 

23.9  3.8 percent of the 14-day-old nestling burden of mercury (Longcore et al., 2007b).  The 

authors calculated that these nestlings transferred between 80 to 92% of their Hg body burden to 

their growing feathers (Longcore et al., 2007b).  A similar finding in adult Bonaparte's gulls 

(Larus Philadelphia) determined that new feathers contained about 93% of the mercury body 

burden, after completion of molt (Braune & Gaskin 1987).   

 

Effects 

Bioindicator response and reproductive success were measured relative to trace element 

concentrations in tree swallows in Minnesota, before and after a wetland drawdown (Custer et 

al., 2006).  These authors found low concentrations of elements, and observed no differences 

among sites or years in bioindicator responses or nesting success. Similarly, no significant 

differences in bioindicator response or hatching success were observed in a second study 

measuring a drawdown along the Mississippi River (Custer et al 2007d), though trace element 

concentrations were found to be low. Nesting success was not reduced with maximum average 

mercury mass in fresh eggs of 1,280 ng, nor with maximum average mercury mass of 13,590 ng 

in whole nestlings (Longcore et al., 2007a).  There were  a number of unhatched eggs with 

mercury concentrations over 1 ppm ww, but either these were part of successful clutches, or the 

sample size was too small to detect reduced success (Longcore et al., 2007a).  Mercury 

concentrations in feathers were associated with reduced weight gain in 2-10 day old nestlings 

(Longcore et al., 2007b). 

 

Elevated mercury concentrations in tree swallows have been correlated with immunological 

responses. Higher blood mercury concentrations were associated with higher baseline 
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corticosterone levels in nestlings (Franceschini et al., 2009), and lower mitogen-induced swelling 

response to phytohaemagglutinin in females (Hawley et al., 2009).  Neither study was able to 

draw conclusions as to the impact of these responses on tree swallow survival.  A recent study 

utilized mark-recapture techniques and modeled survival relative to THg concentrations, and 

determined that adult tree swallows with blood mercury concentrations approximately 2,600 ppb 

greater than the reference swallows had approximately 1%  reduced survival (Hallinger et al., 

2011).  

 

 

Organic contaminants 

 

Tree swallows have often been used to assess exposure to organic contaminants (Table 1.1), but 

similar to elemental studies, most organics studies evaluate multiple contaminants.  

Polychlorinated biphenyls (PCBs) were assessed in the bulk of studies investigating organic 

contaminants in tree swallows.  Many studies evaluated dioxins, furans or pesticides, and a few 

measured polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocarbons (ALHs), oil sand 

reclamation products and contaminants from pulp mills or wastewater treatment plant effluents.  

Most studies documented tissue burdens in tree swallow eggs or nestlings; fewer evaluated 

effects of exposure.  Such studies assessed effects on reproductive success, (e.g. Custer, 1998; 

Smits et al., 2000; Neigh et al., 2006a), behavior (McCarty and Secord, 1999a; Bishop et al., 

2000), expression of endocrine disruption by aberrant plumage color (McCarty and Secord, 

2000) changed biomarker status (e.g. Burgess et al., 1999; Dods, 2005; Custer, 2006), reduced 

immunological function (Bishop et al., 1998a) or histological changes (Bishop et al., 1998b).  

Other studies have generated contaminant uptake models (Nichols et al., 1995; Nichols et al., 

2004). 

 

PCBs  

The Hudson River, below Hudson Falls, New York is the location of the highest recorded 

concentrations of PBCs yet found in tree swallow eggs.  Concentrations of the sum of over 116 

PCBs were between 9,000 and 24,000 ppb ww in eggs and between 32,000 and 96,000 ppb in 

15-day-old nestlings (Echols et al., 2004).  Further studies along the Hudson River determined 



 8 

there were no adverse reproductive effects at these concentrations (McCarty and Secord, 1999b), 

but suggested that there may be endocrine disruption as observed through altered nest building 

behavior (McCarty and Secord, 1999a), and plumage maturation (McCarty and Secord, 2000).  

Total PCB concentrations of 100,880 and 44,660 ppb for over 90 congeners in tree swallow 

pipers (egg surrogates) and 12-day-old nestlings, respectively, were found along the Housatonic 

River in Massachusetts (Custer et al., 2003). The concentrations found in the Housatonic 

nestlings are the highest recorded in tree swallows.  There was a negative relationship between 

total PCBs and hatching success for two of the three years of the Housatonic study (Custer et al., 

2003), though no correlation was found between adult survival and egg PCB concentration 

(Custer et al., 2007).  Studies in other locations evaluating PCBs found highest means in eggs or 

pipers ranging between 180 (Elliott et al., 1994) to 29,500 ppb (cited in Secord and McCarty, 

1999b) and between 4.3 (Neigh et al., 2006b) and 96,000 ppb for nestlings (Echols et al., 2004; 

Table 1.3).   

 

Uptake rates of PCBs were used to prompt a re-evaluation of the remediation process of a 

superfund site in southern Illinois.  A recent study of nestling tree swallow PCB accumulation in 

the Sangamo National Priorities List Site (SNPLS) found dilution rates in the SNPLS chicks 

ranged from 92.4 to -203 ng/g/d (Spears et al., 2008).  At SNPLS, diet appeared to be the main 

contributor to overall PCB uptake (Maul et al., 2006).  A similar finding from a different study 

suggested that tissue concentrations of PCBs were more closely related to prey consumed than 

local sediment or soil contamination (Smits et al., 2005).  

 

 

Organochlorine pesticides 

Many studies measured concentrations of multiple organochlorine (OC) pesticides (eg. see Table 

1.1).  The compounds DDE and DDD are consistently detected most frequently and in the 

highest concentrations in these studies. Approximately five years after DDT was banned for 

general use in North America, a study in Alberta, Canada analyzed tree swallow eggs and 

nestlings for eight OC pesticides to determine whether the contaminants originated from the 

natal area (Shaw, 1983).  Concentrations of DDE were between 860 and 2,230 ppb in eggs and 

nestling carcasses contained between 1.06 and 21.9 μg DDE (Shaw, 1983).  The author 
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concluded that some of the OC pesticide and PCB burdens were obtained close to the natal area 

(Shaw, 1983).  Studies decades later are finding residues in southern Ontario nestlings up to 16 

ppb DDT, 309 ppb DDE and 8 ppb DDD (Smits et al., 2005).  The authors determined that sum 

DDT tissue residues were positively correlated with terrestrial prey (and PCBs were correlated 

with aquatic prey) (Smits et al., 2005).  Tree swallow eggs in southern Ontario orchards 

contained a mean of 1,140 ppb p,p’-DDE, even though no applications of its parent product had 

occurred for decades (Mayne et al., 2005).  Lastly, a study examining 11 OCs in tree swallows 

nesting in orchards in British Columbia found DDE and DDD concentrations in eggs of up to 

11,200 ppb and 749 ppb, respectively (Elliott et al., 1994).  There was a high DDE to DDT ratio, 

implying that DDT in the tree swallow‟s food web was breaking down and there were no new 

sources of it.  

 

Concentrations of  OCs were not elevated in tree swallows from the Great Lakes and St. 

Lawrence River basin (Bishop et al., 2000), or pool 15 of the Mississippi River (Custer et al., 

2000).  Likewise, OCs were either not detected or present at low concentrations in eggs and 

nestlings of tree swallows nesting along the Housatonic River (Custer et al., 2003).  Ten OC 

pesticides were detected in 16-day-old tree swallows collected from nests near wastewater 

treatment plants around Vancouver, British Columbia (Dods et al., 2005).  They also found 

heavier livers in nestlings below the wastewater outflows, but attributed this to 4-nonylphenol 

rather than OCs and other contaminants (Dods et al., 2005).  Tree swallow nestlings from old 

farm land in southern Ontario had low dieldrin residues of up to 18 ppb (Smits et al., 2005). 

 

Organophosphates, carbamates, pyrethroids and other non-persistent pesticides commonly used 

in apple orchards were examined for effects on thyroid function in conjunction with DDE 

(Mayne et al., 2005).  Tree swallow eggs contained a mean of 1,140 ppb p,p’-DDE, and there 

were higher plasma T4 concentrations and thyroid follicular epithelial cell height in tree swallow 

nestlings from sprayed sites.  The study also documented changes in thyroid physiology 

associated with greater applications of non-persistent pesticides, though the long-term 

significance of this is unknown.  A number of studies evaluated pesticides with respect to 

behavioral, immunological, and histopathological effects (eg Bishop et al., 2000, Bishop et al., 

1998a, Bishop et al., 1998b).  They found that after cholinesterase (ChE)-inhibiting insecticide 
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applications, parental visits were reduced in a manner that is not consistent with reduced food 

availability but rather with ChE inhibition.  A separate study found that the use of four ChE-

inhibiting pesticides significantly reduced mean plasma ChE levels by 41% within 12 hours of a 

second application of specific pesticides, but did not detect effects on survival (Burgess et al., 

1999). 

 

Dioxins and furans 

Most studies with dioxins and furans merely document the concentrations found in the biota 

(Table 1.4).  Moreover, almost all include analyses of other contaminants so any effects 

information must be interpreted as the result of mixtures. 

 

Tree swallow exposure to and uptake of PCBs, dioxins and furans was demonstrated in the 

Green Bay area of Wisconsin, and the need to use both eggs and nestlings to demonstrate local 

uptake was highlighted (Ankley et al.,1993).  Tree swallows nesting near pool 15 along the 

Mississippi River acquired 2,3,7,8-TCDD and 2,3,7,8 TCDF in their eggs (Custer et al., 2000).  

The TCDD concentrations were 2 to 5 times higher than those found in Green Bay, WI (Ankley 

et al., 1993) (Table 1.4).  Custer et al., (2002) calculated dioxin TEQs and accumulation rates in 

another exposure study along the Wisconsin River as well. 

 

Total dioxin/furans and their TEQs were significant variables in separate models explaining 

hatch success in tree swallows along the Housatonic River (Custer et al., 2003).  Tree swallows 

nesting along the Woonasquatucket River (Custer et al., 2005) produced some of the highest 

avian tissue TCDD concentrations yet reported (Table 1.4) and hatching success was negatively 

associated with these concentrations in eggs.  Additionally, along the Fraser and Thompson 

Rivers, British Columbia, lower nesting success was observed downstream from the pulp and 

paper mills than upstream; however the difference was thought to be caused primarily by nest 

abandonment and the study was unable to link this to effluent exposure (Harris and Elliott, 

2000).  Martinovic et al., (2003b) found total PCDF concentrations in 16 day old nestlings 

negatively correlated with basal corticosterone levels, and hypothesized that these concentrations 

may be interfering with the glucocorticoid component of the endocrine system in tree swallows, 

and may contribute to an inability to physiologically respond to stress. 
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Conclusions 

 

Tree swallows have been used extensively as biomonitors to assess exposure to or effects of 

many environmental contaminants including mercury, PCBs, pesticides and dioxins and other 

contaminants not detailed here like PAHs (e.g. Custer et al., 2001, Custer et al., 2003), reclaimed 

oil sand mine residues (Smits et al., 2000) and radiation (reviewed in McCarty, 2002).  Because 

tree swallows are predominantly aerial insectivores, they appear to be excellent surrogates for 

swifts, nighthawks, other swallow species and possibly even some bats, but care should be taken 

with extrapolating their uptake to birds with other foraging methods. Exposure studies clearly 

document that tree swallow nestlings accumulate contaminants on site (e.g. Ankley et al., 1993); 

however, the exclusive use of eggs or nestlings to document uptake is problematic.  Moreover, if 

scientists hope to draw conclusions about contaminant transfer from aquatic to terrestrial systems 

with tree swallows, it is important to clearly understand the diet of the swallows at the study site 

as there is much variation in the proportion of aquatic to terrestrial insects from different 

locations (e.g. 95% aquatic by mass (Menglekoch et al., 2004) to 85% terrestrial by count 

(Johnson and Lombardo 2000).  The number of studies evaluating toxicological effects on tree 

swallows is growing; nonetheless, our understanding of behavioral endpoints, population effects 

and indirect effects is still in its infancy.  Lastly, more toxicokinetic and experimental studies 

should be conducted to better understand the uptake and fate of contaminants in tree swallows 

and, indeed to learn how tree swallows function with exposure to specific concentrations and 

combinations of contaminants.  
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Table 1.1.  List of published tree swallow (Tachycineta bicolor) ecotoxicological studies.  

Abbreviations are in appendix 1. 

Author # Location Tissue 

analyzed 

Contaminant and/or 

endpoint studied 

Ankley et al., 1993 1 Lower Fox R and 

Green Bay WI  

Eggs, 

nestlings 

PCBs; PCDFs; PCDDs; 

TCDD-EQ 

Bishop et al., 1995 2 Great Lakes St. 

Lawrence River 

Basin (GLSLRB) 

Eggs nestlings CHCs; Hg 

Bishop et al., 1998a  3 Ontario Eggs, 

nestlings 

OC pesticides; PCBs; 

Immunological 

parameters; EROD; 

Histopathology 

Bishop et al., 1998b 4 Ontario Nestlings, 

adult blood 

OC pesticides; PCBs; 

histological; hormone 

Bishop et al., 1999 5 GLSTRB Eggs, 

nestlings 

OC pesticides, PCBs; 

productivity; biochemical 

indicators; vitamin A; 

EROD 

Bishop et al., 2000 6 Ontario Nestling, 

adult 

(behavior)  

ChE inhibiting 

insecticides; nestling 

calling and mass; adult 

behavior 

Brasso et al., 2008 7 Shenandoah R. 

headwaters, VA 

Female blood, 

feather 

Accumulation and effects 

of Hg  found reduced 

fledge success for year 

old females at 

contaminated site 

Brasso et al., 2010 8 Shenandoah R. 

headwaters, VA 

Eggs  Hg and laying order 

Burgess et al., 1999  9 Ontario Nestlings, 

adult blood 

OP pesticides; ChE 

inhibition 

Custer et al., 1998 10 Fox R. and Green 

Bay, WI 

Pipers, 

nestlings 

PCBs; DDE; cytochrome 

P450; EROD; BROD 

Custer et al., 2000 11 Pool 15 Mississippi 

R., IA 

Eggs, 

nestlings 

PCBs; OC pesticides; 

TCDD; TCDF 

Custer et al., 2001 12 North Platte R., WY Eggs, 

nestlings  

PAHs; ALHs; 18 trace 

elements; Hg; 

monooxygenase  

Custer et al., 2002 13 Wisconsin R., WI Eggs, 

nestlings 

PCBs; dioxins 

Custer et al., 2003 14 Housatonic R., MA Pipers, 

nestlings 

90+ PCBs; 16 dioxins 

and Furans; 26 OC 

pesticides; 39 PAHs; 27 

ALHs; 19 trace elements  
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Table 1.1.  Cont. 

Custer et al., 2005 15 Woonasquatucket R., 

RI 

Eggs, 

nestlings  

TCDD; 10 PCDFs; 

7PCDDs; 107 PCBs; 21 

trace elements; EROD; 

HPCV; 

Custer & Read, 

2006 

16 Housatonic R., MA Pipers, 

nestlings 

PCBs 

Custer et al., 2006 17 Agassiz NWR, MN Eggs, nestling 

livers 

Oxidative stress; genetic 

damage; 19 trace 

elements 

Custer et al., 2007b 18 Carson R., NV Eggs, nestling 

livers 

Hg; 18 other trace 

elements 

Custer et al., 2007c 19 Housatonic R., MA Eggs, adults  PCBs; 21 OCs; Survival 

in adults 

Custer et al., 2007d  20 Pool 8, Mississippi 

R., WI 

Eggs, 

Nestling liver, 

carcass 

Total PCBs, 24 OC 

pesticides, Hg, 18 trace 

elements; biomarkers 

Custer et al., 2008 21 Lostwood NWR, ND Nestling liver 

and carcass 

Hg and 18 other 

elements, oxidative stress 

and reproductive success 

Custer et al., 2009 22 Summit Co., CO Nestling 

kidney, liver 

31 metals and metalloids 

Custer et al., 2010a 24 Hudson R., NY Eggs 160 PCB congeners, 17 

PCDD-Fs, 28 OC 

pesticides 

Custer et al., 2010b 23 Housatonic R., 

Berkshire Co., MA 

Eggs Egg order for 21 OCs, 

total PCBs,  Hg and 18 

other elements 

DeWeese et al., 

1985  

25 Colorado Eggs, adult 

females (brain 

and carcass)  

OC pesticides; DDE; 

PCBs 

Dewitt et al., 2006 26 Monroe Co., IN Nestlings PCB and external heart 

morphology 

Dods et al., 2005  27 Vancouver, BC Nestling 

livers and 

carcass 

4-nonylphenol; 56 PCBs; 

21 OC pesticides; 

immune status; body 

composition 

Echols et al., 2004  28 Hudson R., NY Eggs, 

nestlings, 

adults 

PCBs 

Elliott et al., 1994  29 Okanagan Valley BC Eggs OC pesticides; PCBs 

Franceschini et al., 

2009 

30 SE ME, and Eastern 

MA 

Nestlings, 

adults 

Baseline and stress 

induced plasma 

corticosterone; Hg 

Froese et al., 1998  31 Saginaw Bay, MI Eggs, 

nestlings 

110 PCBs  
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Gentes et al., 2007 32 Poplar Creek 

Reservoir, AB 

Nestlings Naphthenic acids (Nas), 

histopathology, 

biomarkers; Dosing study 

Gerrard and St 

Louis, 2001 

33 Experimental Lakes 

Area Research 

Project, NW ON 

Eggs, 

nestlings 

MeHg 

Hallinger et al., 

2011 

34 South River, VA Adults Hg, survival 

Harris and Elliott, 

2000 

35 Fraser and Thompson 

Rivers, BC 

Nestlings PCBs; PCDDs; PCDFs; 

pesticides; 

chlorophenols; 

chloroguaiacols 

Hawley et al., 2009 36 South River, VA Adult females Mitogen induced 

swelling in response to 

phytohaemagglutinin and 

antibody response to 

sheep red blood cells; Hg 

Jayaraman et al., 

2009 

37 New Bedford Harbor, 

MA 

Eggs, 

nestlings 

PCBs, DDE 

Jones et al., 1993 38 Green Bay, WI Eggs, 

nestlings 

PCBs; PCDF; PCDD 

Kraus, 1989 39 Hackensack River 

Estuary, NJ 

Eggs, 

nestlings 

Metals 

Longcore et al., 

2007a 

40 Acadia NP ME, 

Ayer, MA 

Eggs, 

nestlings, 

feathers  

Hg; success 

Longcore et al.,  

2007b 

41 Acadia NP ME, 

Ayer, MA 

Eggs, 

nestlings, 

feathers  

Hg; growth 

Martinovic et al., 

2003a 

42 St. Lawrence R. 

Basin (SLRB), ON 

Nestlings CHCs (67 PCBs PCDD 

PCDF); Vitamin A 

Martinovic et al., 

2003b 

43 SLRB, ON Nestlings CHCs (PCBs PCDD 

PCDF); stress plasma 

Maul et al., 2006 44 Crab Orchard NWR, 

IL 

Nestlings  PCBs 

Maul et al., 2010 45 Crab Orchard NWR, 

IL 

Eggs, 

nestlings 

PCBs 

Mayne et al., 2004 46 Southern ON Eggs, 

nestlings 

Non-persistent 

pesticides; DDE; stress 

and immune response 

Mayne et al., 2005 47 Southern ON Nestling Non-persistent 

pesticides; DDE; thyroid 

function 
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McCarty and 

Secord, 1999a 

48 Hudson R., NY Adults Nest building behavior; 

PCB 

McCarty and 

Secord, 1999b 

49 Hudson R., NY Nestling  Productivity, mass and 

survival; PCBs 

McCarty and 

Secord, 2000 

50 Hudson R., NY Sub adult 

females 

Plumage color; PCBs 

McCarty, 

2001/2002 

51   Review paper 

Neigh et al., 2006a 52 Kalamazoo R., MI Eggs, nestling PCBs, productivity 

Neigh et al., 2006b 53 Kalamazoo R., MI Eggs, nestling PCBs 

Neigh et al., 2006c 54 Kalamazoo R., MI Eggs, nestling PCBs (Risk assessment) 

Nichols et al., 1995 55 Saginaw Bay, MI Eggs, 

nestlings 

PCBs 

Nichols et al., 2004 56 Hudson R., NY Nestlings PCBs 

Papp et al., 2007 57 Point Pelee N P 

(PPNP), ON 

Nestlings PCBs 

Secord et al., 1999  58 Hudson R., NY Eggs, 

nestlings, 

adults 

PCBs 

Shaw, 1984 59 Alberta Eggs nestlings OC pesticides, PCBs 

Smits et al., 2000 60 Athabaska R. Basin, 

AB 

Nestling   Reclaimed oil sand mine 

sites; Nestling immune 

function, growth and 

survival 

Smits et al., 2005 61 PPNP, ON Nestlings OC pesticides, PCBs 

Spears et al., 2008 62 Crab Orchard NWR, 

IL 

Eggs, 

nestlings 

PCBs 

Stapleton et al., 

2005 

63 Hudson R., NY and 

sites in AB ON WI 

MI 

Nestlings PCBs; minisatellite DNA 

mutation rates 

Tsipoura et al., 

2007 

64 Meadowlands, NJ Eggs, 

nestlings 

(carcass and 

feather), a few 

adults 

5 Metals 

Wayland et al., 

1998 

65 Alberta and 

Saskatchewan 

Nestlings Biomarkers; pulp mill 

and sewage effluent 

Yorks, 1999  66 Maryland Eggs, 

nestlings 

PCBs biomarkers and 

reproductive parameters; 

dosing study 
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Table 1.2.  Trace elements in tree swallow studies, listing highest mean Hg concentration and 

effects where appropriate.  THg = Total mercury, MeHg = Methylmercury 

Study Trace Elements Highest Hg Mean 

ppb dw unless noted 

otherwise 

Effects Finding 

1 THg Eggs: 456 NA 

7 Hg Female blood: 17800   Reduced fledge success for year old 

females at contaminated site Feather: 13.55 ppm 

ww 

8 Hg Eggs: 1965 

 

No interclutch variability, MeHg 96.5% 

of egg Hg, female blood Hg positively 

correlated with average hg of eggs in her 

nest,  sampling any egg would give an 

estimate that was ~10% of the true mean 

100% of the time 

Blood: 6150 

12 THg and 18 

other trace 

elements  

Eggs: 300  NA 

14 THg and 17 

other trace 

elements 

Pipers: 640  NA (Reduced hatch success in some 

years relative to PCBs) Nestlings: 310 

15 THg, MeHg 

and 19 other 

trace elements 

Nestling liver: Hg 

143 

Nesting success differences, however, 

attributed to dioxins  

Nestling liver: 

MeHg 117 

17 THg and 18 

other trace 

elements 

Eggs: 250  Elements generally at background 

concentrations, no increased Hg due to 

drawdown 
Nestling liver: 240  

Nestling: 270 

18 THg and 18 

other trace 

elements 

Eggs: 9230  Reduced hatching but not significantly 

different  Nestling liver: 4210 

20 THg and 18 

other trace 

elements 

Egg: 310 Drawdown did not influence element 

concentrations 

or bioindicator response 
Nestling liver: 190 

21 THg and 18 

other trace 

elements 

Eggs: 204 Element concentrations not elevated, 

reproductive success normal, difference 

in [Hg] relative to wetland type. 
Nestling liver: 160 

Nestling: 180 

22 THg and 30 

other trace 

elements 

Nestling liver: 80 

(results pooled with 

~30% other 

insectivorous 

passerines)  

Elevated Pb liver tissue concentrations, 

Fecal samples were not a good indication 

of what elements were ingested 
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23 THg and 18 

other trace 

elements  

Hg detected in only 

44% of eggs 

Difference in egg order among and 

within clutches for suite of 7 elements 

detected in >50% of eggs, Mn, Zn 

increased with egg order, B decreased 

30 THg Egg: 1457  “No relationship b/t blood, egg or feather 

Hg and stress induced corticosterone” in 

adults 
Adult blood: 4980 

33 MeHg Egg: 518  Nested earlier after flooding, no success 

differences Nestling (no 

feather): 188  

34 THg Blood: 3600 Model-averaged survival 1% lower in 

adults breeding at contaminated sites  

36 THg Blood: 16250 Females at more contaminated sites had 

weaker PHA-induced swelling responses, 

but this was not predicted by blood Hg 

concentrations 

39 Cr, Cu, Pb, Ni, 

Cd 

NA NA 

40 THg Egg: 1280 ng No success differences, suggests MeHg 

toxicity threshold for TRES eggs of 1000 

ppb ww 
Nestling: 13590 ng  

41 THg Feathers: 3000  Feather MeHg negatively correlated with 

linear growth rate weight b/t 2-10 days 

64 As Cd, Cr, Pb, 

Hg 

Blood: 97 Elevated blood concentrations of Pb, Hg 

concentrations elevated, but below 

ecological thresholds 
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Table 1.3.  Highest mean sum PCB concentrations.  DO = day old. 

Study Number of PCB 

congeners 

Medium Highest Mean ppb ww 

1 Total Eggs 4120 

Nestlings (b/t 4-17 DO) 2970 

5 Total Nestling 5469 

10 15 and total Pipers 3290 

11-13 DO nestlings 3770 

11 Total Eggs 540 

13 91 and total Eggs 330 

11-13 DO nestlings 300 

15 134+ and total Eggs 1130 

9-13 DO nestling 1720 

14 - 19 90+ and total Pipers 100880 

12 DO nestlings 44660 

20 Total Nestling 215 

23 Total Eggs  161000 

24 160 Eggs 6800 

25 Not listed Adult carcass 370 

Eggs 330 

26 70 and total Nestling 16400 

27 Sum of 56 16 DO nestlings (less liver and 

testis tissue) 

104 

28 116+ and total Eggs 25000 

15 DO nestlings 96000 

29 Total Eggs 180 

31 Sum of 110 Eggs 810 

15 DO nestlings 2272 

35 42+ (but only 5 in 

sum) 

16 DO nestlings 32 

37 Total as sum of 

18 

Eggs 11200 

9-13 DO nestlings 16800 

38 Total Eggs 10800 

16 DO nestlings 13100 

44 Sum of 15 15 DO nestlings 2828 

45 Sum of 55 Egg 4604 

Nestling 2297 

Local source 43252 ng 

58 Not listed Eggs 29500 

Nestlings 62200 

52-54 Approximately 

100 

Eggs 8100 

12 DO nestling 4300 

57 85 and 66 for sum 13 DO nestlings 473 
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61 sum of 85 12 DO nestling less digestive tract 786  

62 112 Eggs 4452 

12-17 DO nestlings 3994 

66 Total Eggs 948 

12 DO nestlings 18460 
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Table 1.4.  Concentrations of polychlorinated dibenzo-p-dioxin (PCDDs), polychlorinated 

dibenzofurans (PCDFs), Furans and OC pesticide contaminants.  This lists only the highest 

concentrations and the concentration for 2,3,7,8-TCDD, the most toxic dioxin and 2,3,4,7,8-

PeCDF the most toxic furan.  indicates congener was coeluted, thus actual concentration of 

individual congener is a concentration less than or equal to the listed value.   

Study Medium Contaminant Highest Mean 

ppb ww 

1 Eggs 

 

2,3,7,8-PCDD 0.0052 

OCDD  0.140 

2,3,4,7,8-PCDF 0.0065 

2,3,7,8-PCDF 0.040 

4-17 DO nestlings 2,3,7,8-PCDD 0.0028 

1,2,3,4,6,7,8-PCDD 0.071 

2,3,4,7,8-PCDF 0.0021 

2,3,7,8-PCDF 0.026 

3 Eggs DDE 2290 

5 Nestling DDE 1484 

10 Pippers p,p’-DDE 200 

11 Eggs 

 

2,3,7,8-TCDD 0.026 

2,3,7,8 TCDF 0.22 

DDE 170 

13 Eggs 2,3,7,8-TCDF 0.0057 

DDE 0.099 

11-13 DO nestlings 2,3,7,8-TCDD 0.003 

2,3,7,8-TCDF 0.028 

DDE 0.008 

14 Pipers 

 

1,2,3,4,6,7,8-HpCDD  0.049 

1,2,3,7,8-PeCDF  1.01  

2,3,4,7,8-PeCDF  0.09  

12 DO nestlings 

 

1,2,3,4,6,7,8-HpCDD  0.022  

2,3,7,8-TCDF  0.507 

2,3,4,7,8-PeCDF  0.114  

15 Eggs 2,3,7,8-TCDD 1.013 

OCDD 0.568 

2,3,4,7,8-PeCDF 0.016 

1,2,3,4,6,7,8-HpCDF 0.057 

12 DO nestlings 2,3,7,8-TCDD 0.99  

1,2,3,4,6,7,8-HpCDD 0.038 

2,3,7,8-TCDF  0.008 

2,3,4,7,8-PeCDF  0.003 

19 Eggs p,p’-DDE 460  

20 12 DO Nestling p,p’-DDE 32    

24 Eggs OCDD 0.213 

25 Eggs p,p’-DDE 1300 
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29 Eggs DDT 40 

DDE 11200 

DDD 749 

35 16 DO nestlings 1,2,3,4,6,7,8-HpCDD 0.036 

1,2,3,4,6,7,8-HpCDF  0.010 

DDE 178.3 

37 Eggs DDE 526 

9-13 DO nestlings DDE 235 

42 - 43 16 day old nestlings total PCDDs 0.080 

total PCDFs 0.121 

46 - 47 Eggs p,p’-DDE 1820 

59 Eggs, viable DDE 1010 

Eggs, unhatched DDE 2230 

11 DO nestling  DDE 310 

61 12 DO nestlings DDE 309 
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Introduction 

 

Biomonitors are frequently used to assess the extent of local contamination and to determine the 

ecological risks to local wildlife presented by those contaminants.  This is particularly useful for 

assessing whether an area of concern will act as a population „sink‟ for species that utilize it. The 

selection of a useful biomonitor requires an understanding of the species‟ natural history and 

how those habits interact with questions of interest.  Tree swallow (Tachycineta bicolor) ecology 

is relatively well understood as they have been extensively studied in a variety of sub-disciplines 

(e.g. Kuerzi, 1941; Davis, 1982; Zach, 1982; Quinney et al., 1986; Robertson et al., 1992; Jones, 

2003; Ardia, 2005; Winkler et al., 2005).  This comparatively large body of ecological 

knowledge combined with their ease of study and their tendency to feed in close proximity to 

their nest sites (Quinney et al., 1985; Mengelkoch et al., 2004) has contributed to an increase in 

the use of tree swallows as biomonitors for North American wetland ecosystem health (Secord et 

al., 1999; McCarty, 2002; Jones, 2003; Maul et al., 2006; Neigh et al., 2006).   

 

Tree swallow nestlings have accumulated high concentrations of organic pollutants and 

physiological or behavioral changes have been associated with these contaminant burdens.  For 

example, high polychlorinated biphenyl (PCB) concentrations along the Hudson River were 

found to affect nest building behavior (McCarty and Secord, 1999), plumage coloration, and 

reproductive success (McCarty and Secord, 2000).  Organophosphorus insecticide applications in 

Ontario orchards tended to reduce parent to nest feeding visits by tree swallows in a manner 

suggestive of cholinesterase-inhibiting insecticide exposure (Bishop et al., 2000).  Swallows 

have been shown to accumulate dichlorodiphenyldichloroethylene (DDE) (Neigh et al., 2006), 

polycyclic aromatic hydrocarbons (Custer et al., 2001), as well as polychlorinated dibenzo-p-

dioxins and dibenzofurans at various locations throughout their summer range (Harris and Elliot, 

2000).  Tree swallows have also been used to investigate the movement and effects of mercury 

(Bishop et al., 1995; Gerrard and St Louis, 2001; Custer et al., 2007a; Longcore et al., 2007a; 

Longcore 2007b), and other trace elements (Kraus, 1989; Tsipoura et al., 2007; Custer et al. 

2009) in the environment.   
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Inorganic mercury (Hg) is naturally converted to the more toxic methylmercury (MeHg) in 

aquatic sediments (Peakall, 1972; Eisler, 2000).  MeHg is a known teratogen, carcinogen and 

mutagen and has been shown to adversely affect growth and reproduction in both terrestrial and 

aquatic organisms (Eisler, 2000).  It is a strong immune suppressor in vertebrates (Hawley et al., 

2009).  Methyl mercury bioaccumulates and biomagnifies in animals, and tree swallows are 

primarily exposed through diet and maternal transfer to the eggs (Eisler, 2000).  In birds, dietary 

exposure to mercury is primarily to MeHg (Burger and Gochfeld, 1997), and almost 100 percent 

of what is consumed is absorbed rather than excreted (Wolfe et al., 1998).  Total mercury 

(hereafter “mercury” or “Hg”) in tree swallows has been shown to be almost entirely comprised 

of MeHg (Gerrard and St. Louis, 2001), as has been demonstrated with other passerines (Rimmer 

et al., 2005).  Methylmercury was 84% of Hg with red-winged blackbird (Agelaius phoeniceus), 

Brewer's blackbird (Euphagus cyanocephalus), and cliff swallow (Hirundo pyrrhonota) (Wolfe 

and Norman 1998).  Similarly, egg Hg content has been shown to be 96.5% MeHg (Braune & 

Gaskin, 1987).  Mercury is mainly depurated through molting, and new feathers in gulls contain 

up to 93% of the Hg body burden after molting (Braune & Gaskin, 1987), and it has been 

estimated that feather growth in tree swallow nestlings accounted for 80-92% of body depuration 

of Hg (Longcore et al., 2007b).  Egg-laying is also a depuration route for females (Eisler, 2000; 

Brasso et al., 2010). Mercury burdens in birds are influenced by species specific absorption rates, 

trophic level of diet, exposure differences, sex, age, and molt (Burger and Gochfeld, 1997).     

 

Tree swallows are migratory, and this may affect their use as biomonitors.  The half-life of 

MeHg in blood is rather long: 84 days in mallard ducks (Anas platyrhynchus) (Heinz and 

Hoffman, 2004), 40 to 60 days in non-molting adult Cory‟s shearwaters (Calonectris diomedea) 

(Monteiro and Furness, 2001), and 60 days in seabirds (Wolfe et al., 1998).  In dosing studies 

with chickens, Hg was present in newly laid eggs long after the dosing was halted.  Elevated Hg 

concentrations were found in eggs laid 29 (Kiwimae et al., 1969), 46 (Kambamanouli et al., 

1991), and 60 days after dosing stopped (Sell et al., 1974) and all of these time frames were the 

maximum studied.  There is only a 2-4 week period when swallows arrive at their nesting sites 

and begin to lay eggs (Robertson et al., 1992), so this should be considered when determining the 

proportion of Hg burden that is from local sources and the proportion originating from sources 

outside the study site (Rimmer et al., 2005).  Moreover, because tree swallows are opportunistic 
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predators, assumptions that the prey is primarily of aquatic origin should be confirmed (Maul et 

al., 2006; personal observation).   

 

In this study I investigated Hg and trace element exposure at three wetlands in the Lake Calumet 

area of northeastern Illinois.  I quantified trace element concentrations in sediments, diet items, 

eggs and nestlings.  I attempted to account for off-site accumulation of Hg by tree swallow 

mothers, and I collected food boluses to determine diet composition in an attempt to understand 

terrestrial and aquatic sources of contaminants.  Tree swallow productivity was assessed as well.  

Understanding local contaminants and their effects on productivity is of particular interest in the 

Lake Calumet region as it is an area that was once dominated by wetlands. Now, however, the 

study sites offer some of the only wetland habitat for reproductive animals for miles.  In such 

situations, the few remaining wetlands can act as population sources or sinks, depending on a 

variety of factors, including the extent of contamination.   

 

 

Methods  

 

Study sites and habitat 

The Lake Calumet area of Illinois is highly industrialized, and has a long history of industry and 

waste disposal (USEPA, 2011; Sprenger et al., 2001; USACE and Tetra Tech, 2001).  Three 

wetlands in the area were selected to provide a spectrum of contamination.  Big Marsh (41° 41‟ 

30”, 87° 34‟ 24”) and Indian Ridge Marsh (41° 40‟ 51”, 87° 33‟ 50”), hereafter referred to as 

Indian Ridge, were chosen for the high levels of Aluminum (Al), cadmium (Cd), chromium (Cr), 

copper (Cu), lead (Pb), Hg, selenium (Se), zinc (Zn), PCBs, and Dichlorodiphenyldichloroethane 

(DDD)/DDE,  contamination in sediments (Sprenger et al., 2001) and Powderhorn Lake (41° 38‟ 

53”, 87° 31‟ 37”) (Figure 2.1), was selected as a reference site because it had no known sediment 

contamination.  In March of 2004, 30 tree swallow nest boxes (9.5 x 14 x 20 cm interior size, 3.8 

cm diameter entry hole) were placed on posts at approximately 2 m above the ground, and at a 

minimum of 15 m apart at each of the sites.  Boxes with no obscuring vegetation between them 

were placed at greater distances to avoid intraspecific competition.  Approximately one-meter-

long segments of polyvinyl chloride (PVC) pipe filled with expandable foam insulation (Great 
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Stuff©, Dow Chemical) were installed below each box to reduce predator access.  All boxes 

were placed within 20 m of water, with the vast majority of boxes within 5 m of water.  In some 

cases a wide band of emergent aquatic vegetation existed between the nest box and open water, 

increasing the distance between the box and open water.  Nest box sites were evaluated for 

habitat openness by measuring canopy cover using a convex spherical densiometer and 

estimating percent cover, as well as four measurements of the distance to nearest woody 

neighbor taller than 2 m at 90
o
 intervals.  Additional measurements of the distance to open water 

and nearest water were recorded as well as accessibility in front of nest box which measured the 

horizontal angle of gap created by the vegetation below box height within 5 m.   

 

Nest measurements 

In 2004, nest boxes were visited periodically starting on April 20 and then on alternate days from 

May 9
 
until all nestlings had fledged in early July.  In 2005, twice weekly box visits commenced 

March 19, and alternate day visits began on May 11
 
and continued through July 1.  Box visits 

involved opening the box and observing nest development, parent coloration, egg number, 

nestling number and appearance, and looking for signs of predation or competition from other 

species, like muddy raccoon prints on the predator guard or twig house wren nests in a box 

previously occupied by tree swallows.  In 2005 nesting material from competitor species found 

in nest boxes was removed.    

 

Fourteen day-old nestlings were weighed to the nearest quarter gram using a Pesola spring scale.  

Proportion hatch was defined as the proportion of eggs in a clutch hatching, and proportion 

fledge was defined as the proportion of nestling fledging from a successfully hatched clutch.  

Nesting success was defined as having one nestling fledge from a clutch of eggs.  Nests with 

raccoon predation (14 attempts, 1 successful) or human interference (eg: 5 stolen or vandalized 

boxes) were excluded from success and proportion calculations, depending on the timing of the 

occurrence. 

 

Media collection 

Grab samples of sediments were collected in acid washed, 500 ml glass jars from the sediment 

surface at three or four locations that were accessible and close to the nest boxes within each 
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wetland during the summer of 2004.  The samples were frozen, and then air-dried.  When a 

stable weight was achieved, the samples were ground using a tabletop Retsch Laboratory Mortar 

Grinder.     

 

Aquatic insects were collected qualitatively in both years from each site with a kick net.  Netting 

was performed along vegetated shorelines, near nest boxes. Larger genera were collected 

disproportionately to ensure there was enough mass for contaminant analysis, and genera not 

regularly seen in bolus samples were minimally included.  All insects were frozen, identified to 

order or family, sorted and rinsed in de-ionized water before submission for contaminant 

analysis.   

 

Food boluses were collected from all 12- to 14-day-old tree swallow nestlings in 2004 and from 

all 6- and 10-day-old nestlings in 2005.  Boluses were collected using the ligature method 

(Orians, 1966, Orians and Horn, 1969; Quinney and Ankney, 1985; Yorks, 1999; Menglekoch et 

al., 2004) with 89 mm, black Ty-Rap© zip ties.  One hundred thirty-six ligature attempts were 

made in 2004 and 376 attempts were made in 2005.  Ligatures were left on for 30 to 45 minutes.  

Boluses were preserved with 95% ethanol in 2004 but were frozen in 2005.  Bolus contents were 

cleaned of mucus, and insects were identified to family or lower.  The 2005 insects were dried at 

30 ºC and submitted for contaminant analysis. 

 

Five 0.3 square meter insect emergence traps were placed on the surface of the water near the 

nest boxes at each site on May 20, 2004 and May 3, 2005.  The traps were checked and insects 

collected every other day until the traps were removed on June 30.  Insects were frozen within 48 

hours of emergence, then identified to order or family, sorted and rinsed in de-ionized water 

before submission for contaminant analysis.  In 2004, insects from each emergence trap were 

identified and recorded daily for a one week sub-sample.  In 2005 insects were identified and 

recorded after each trap check.  All insect samples for contaminant analysis were ground under 

liquid argon and sample aliquots were stored at –20ºC. 

 

In 2004, the first two eggs in each of ten nests from each site were marked and collected.  In 

2005 the largest two eggs in each of ten nests at each site were collected to ensure sufficient 
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biomass for analyses. Previous studies of other bird species, have suggested that laying order is 

not related to organic contaminant burdens in eggs of other species (Reynolds et al., 2004; Van 

den Steen et al., 2006) and Brasso et al., (2010) reported that the mercury concentration in any 

one tree swallow egg is representative of the other eggs in the same nest.  Whole eggs were 

stored at 4ºC until the contents could be removed from the shell, combined with another egg 

from the same nest and homogenized with an Omni ES Mixer.  Egg contents were then digested 

and analyzed as indicated below.   

 

In both years, the heaviest 14 day-old nestling from each of the same nests from which eggs were 

collected was euthanized (University of Illinois Institutional Animal Care and Use Committee 

protocol number 03028).  Carcass were placed in separate clean 500ml glass jars and frozen.  

The digestive tracks were excised from partially thawed carcasses.  The carcasses were then 

homogenized using liquid argon and a blender, before being returned to storage at –20ºC. 

 

Sample analysis 

Aluminum (Al), arsenic (As), barium (Ba), Cd, Cr, Cu, iron (Fe), Pb, manganese (Mn), Hg, 

nickel (Ni), Se, silver (Ag), and Zn were analyzed in all sediment, insect, egg and nestling 

samples, and cobalt (Co) was analyzed in insect and nestling samples as well. Nitric acid 

microwave digestion procedures equivalent to US EPA Method 3051 (USEPA, 2003) for eggs, 

US EPA Method 3052 (USEPA, 2003) for nestlings and all insects, and a modified version of 

USEPA Method 3051 (USEPA, 2003) using only nitric acid for sediments were used prior to 

analysis.  Quality control (QC) samples were prepared with each type of samples in each of the 

digestion batches.  Batch QC measures for insects and eggs included a digested reagent blank, 

digested duplicate, analytical duplicate, matrix spike, analytical spike, and a Dogfish Liver 

Standard Reference Material (SRM).  The same QC procedures were used for sediments but with 

Montana Soil #2710 SRM.  In general, the overall QC for these samples ranged from acceptable 

to excellent.  Duplicates were reproducible, and spikes and SRMs recovered well with few 

exceptions.  Sample results for most metals pose a maximum uncertainty of +30% except for Cr 

which may be biased high in 2004 eggs as recovery was consistently approximately 190%.  

Mercury recovery in matrix and analytical spikes, and standard reference material averaged 88%, 
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and all media samples except one egg sample had Hg concentrations above the reporting limit 

(0.06 mg/kg dry weight [dw] for eggs). 

 

Results for most metals were obtained by Inductively Coupled Plasma Mass Spectrometry (ICP-

MS) using scandium, yttrium, niobium, rhodium, lanthanum, and thorium as internal standards.  

Mercury analyses were conducted using a VG Elemental PQ ExCell ICP-MS and a PS 

Analytical Millennium Fluorescence System.  All results are reported as total mass of element 

per unit dry weight, unless noted otherwise. 

 

Statistical analysis 

Differences in ecological endpoints and mean elemental concentrations in all media were 

compared using Analysis of Variance (ANOVA) in SAS (SAS System for Windows V8.2, © 

1999-2001 SAS Institute Inc, Cary NC, USA) or with Kruskal-Wallis in SAS.  Differences 

between years were first evaluated with ANOVA, and data from both years were pooled if 

results indicated no significant differences between years using p<0.05.  Differences in mean 

element concentrations among sites were determined using ANOVA and individual comparisons 

were performed with contrast statements in SAS.  Ecological endpoints and mean elemental 

concentrations in all media were assessed for parametric statistic suitability with Levene‟s test 

for homogeneity of variance and Shapiro-Wilks test for normality using a significance level of 

0.1.  Results failing normality tests were either log-transformed to normality or analyzed with 

nonparametric Kruskal-Wallis tests using SAS and individual site differences were determined 

with Dunn‟s method in Sigma Stat (© 2004 Systat Software, Inc).  Means and standard 

deviations were calculated in SAS and values greater than two standard deviations were 

considered extreme outliers and excluded from statistical analyses. Relationships among 

variables were evaluated with Pearson‟s Correlation via SAS.  Analysis of nesting and fledgling 

success parameters were made using a z test in Sigma Stat. Statistics for a given element were 

not performed if greater than half of the samples had concentrations below the detection or 

reporting limit.  When values below the detection or reporting limit were included in analyses, 

the value equal to half of the limit was used.   
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To make a more accurate estimation of the Hg burden nestlings acquired on site, I calculated 

“local-sourced contaminant mass” as follows.  The Hg concentration (in dry weight) in a nestling 

was multiplied by the dry weight of that nestling to obtain Hg mass.  The same process was done 

with the eggs.  Finally, the average mass of the contaminant in the eggs was subtracted from the 

mass in the nestling from the same nest.  A generalized egg shell mass of 0.1g (DeWeese et al., 

1985) was subtracted from the fresh egg mass, and all wet weights were transformed to dry mass 

using individual percent solids for nestlings and mean solid proportions from Calumet eggs for 

individual years (17.3% solid for 2004  and 17.6% solid for 2005).  Differences between nestling 

and egg contaminant mass that were less than zero were changed to zero.  I reported trace 

element concentrations in dw.  Comparisons to values reported in the literature as wet weight 

were converted to dw using values from this study (nestlings 30.8% moisture and eggs 82.7% 

moisture).  

 

 

Results 

 

Habitat and Productivity 

Including data from all three sites, tree swallow adults completed nests at significantly different 

dates in 2004 and 2005 (Table 2.1).  In 2004, there was a significant difference among sites in 

the date of nest completion, with nests completed significantly earlier at Big Marsh when 

compared to Powderhorn (means in Julian date 128, 131, 134 for Big Marsh, Indian Ridge and 

Powderhorn, respectively; Table 2.1, Table 2.2).  Again in 2005, there was a significant 

difference among sites in the date of nest completion; however, that year Indian Ridge was the 

site with the earliest completed nests (Julian date means 127, 125, and 130 for Big Marsh, Indian 

Ridge and Powderhorn, respectively; Table 2.1, Table 2.2).  In 2005, nest building at the three 

sites took between 3 and 34 days, calculated from the first appearance of nesting material in 

boxes to the time of observation of feathers lining the cup (I do not have observations early 

enough to document this for 2004).   

 

Late nesting tree swallows laid fewer eggs.  Julian date of nest completion was positively 

correlated with date of the first egg being laid (r =0.96, p<0.001), but negatively correlated with 
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number of eggs per nest (r = -0.57, p<0.001) with sites and years combined. The number of eggs 

per nest was not significantly different between the years (Table 2.1).  Tree swallows laid 

significantly different numbers of eggs per nest among the three sites with the years pooled, and 

the late arriving swallows at Powderhorn had significantly fewer eggs per nest than swallows at 

Big Marsh (Table 2.1, Table 2.2 for individual years).  Nestlings were heavier in 2004, and had 

significantly different masses among sites in both years (Table 2.1, Table 2.2).  Nestlings were 

significantly heavier at Powderhorn than at either of the other two sites in 2004 and nestlings at 

Indian Ridge were heavier than those at Big Marsh (Table 2.1). In 2005, nestlings were again 

heavier at Powderhorn than the other two sites (Table 2.1).  There were no differences in 

proportion hatch or fledge between years nor were there significant differences in proportion 

hatch or fledge among sites when years were combined (Table 2.1, Table 2.2).   

 

Physical habitat among sites was slightly variable (Table 2.3).  The percent closed overstory and 

distance to open water were the only parameters that differed among sites (Table 2.1). Boxes at 

Powderhorn had the greatest canopy cover and boxes at Indian Ridge were furthest from open 

water.  Indian Ridge had a ring of emergent aquatic vegetation in the shallow water, accounting 

for the different distance to open water.  There were no statistical differences among sites for 

other habitat variables including distance to vegetated water, nearest woody neighbor taller than 

2 m, or openness/accessibility in front of nest box (all p>0.05).  None of the measured habitat 

parameters differed significantly when comparing used and unused boxes across all 3 sites 

(p>0.05 for each).   

 

Nest box use suggested that tree swallows had more competition for nesting sites at Powderhorn 

from other species. One Black-capped Chickadee (Poecile atricapillus), three house sparrows 

(Passer domesticus) and 12 house wrens (Troglodytes aedon) established nests in the nest boxes, 

compared to nine house wren nests at Indian Ridge and seven house wren nests at Big Marsh in 

2004. 

 

Combining data from all sites and both years, Hg concentration in eggs was positively correlated 

with Julian Date of nest completion (Figure 2.2) and negatively correlated with brood size (r= -

0.53, p<0.001).   
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Diet 

Total insect dry mass collected in emergence traps at each site was between 0.87 and 2.64 g for 

the two years (Table 2.4).  The week long sub-sample of emergence trap insect mass in 2004 

indicated that there was no significant difference in capture among sites (Table 2.5).  A more 

thorough evaluation of emergence trap insect mass capture in 2005 indicated significantly 

different capture mass among sites, with significantly less emergence trap insect mass collected 

from Big Marsh than the other two sites (Table 2.4, Table 2.5).  Likewise, insect counts from 

emergence traps were significantly different among sites in 2005 (Table 2.5).  Powderhorn had 

significantly higher numbers of zygopterans and anisopterans in emergence traps than did the 

other two sites (Table 2.5).  Indian Ridge had the greatest count of sum dipteran, coleopteran, 

and other non-odonate insects among the three sites (Table 2.5). 

 

Forty-three boluses were collected from nestling tree swallows in 2004 and 121 were collected in 

2005.  Odonata, Diptera, and Coleoptera were most abundant by count (Table 2.6).  Of these 

orders most prominent in boluses, there were significant differences in numbers of insects per 

bolus between years (p<0.05 for each); however, the boluses did not have significantly different 

numbers of the less numerous insect orders between years, so these insects were pooled by year 

and by insect type for further analysis.  The sum of homopterans, trichopterans and 

miscellaneous insects in boluses were not different among sites (Table 2.7).  In bolus samples 

from 2004, there were no significant differences in numbers of dipterans, coleopterans or 

hymenopterans per bolus among sites; however, there were significant differences among the 

sites in the number of odonates found in boluses (Table 2.7), with boluses at Powderhorn 

containing more odonates than those at the other two sites.  Similarly, in 2005, there were no 

significant differences in numbers of dipterans, coleopterans or hymenopterans per bolus among 

sites, but odonate count in boluses was again significantly different among sites in 2005, with 

significantly more odonates in boluses from Powderhorn than both Big Marsh and Indian Ridge 

(Table 2.7).  In 2004, aquatic insects were 34% of the total bolus insect count and 63% in 2005, 

assuming all Diptera were aquatic (along with the Odonata, and Trichoptera).  All Coleoptera, 

Hemiptera, Hymenoptera, Lepidoptera and other insects were considered terrestrial.  In 2005 

boluses were identified to genus, and a more thorough identification determined dry weight 



 41 

biomasses of 52, 51 and 64% aquatic origin for Big Marsh, Indian Ridge and Powderhorn, 

respectively.     

  

Mercury 

Mean sediment mercury concentrations were not significantly different among sites (Table 2.8; 

mean sediment concentration 0.192, 0.084, and 0.102 mg/kg for Big Marsh, Indian Ridge and 

Powderhorn, respectively).  Similarly, mercury concentrations in aquatic insects were not 

significantly different when comparing different sampling methods (Table 2.8), so emergence 

trap insects, benthic insects and the aquatic portion of bolus insects were pooled for site analysis.  

Mean concentrations of total mercury in all insects were 0.026, 0.027, and 0.033 for Big Marsh, 

Indian Ridge and Powderhorn, respectively.  There was no significant difference in Hg 

concentrations in aquatic insects from different sites (Table 2.8; individual means in Table 2.9). 

Terrestrial bolus insects did not have significantly different Hg concentrations compared to 

aquatic bolus insects (Table 2.8), but the sample size was low.  There were no site differences 

when aquatic and terrestrial bolus insects were pooled (Table 2.8), but again there was a low 

sample size. 

 

Total mercury concentrations in eggs ranged from 0.08 to 0.32 mg/kg dry weight (Figure 2.3).  

There was no difference in Hg concentration in eggs between years; however, there was a 

significant difference in concentrations among sites with the years pooled (Table 2.8).  Both Big 

Marsh and Indian Ridge had eggs with lower concentrations of Hg than eggs at Powderhorn and 

eggs at Big Marsh had lower concentrations than eggs at Indian Ridge (Table 2.8, Figure 2.3).  

Mean concentrations of Hg in eggs were 0.12, 0.19, and 0.23 mg/kg for Big Marsh, Indian Ridge 

and Powderhorn, respectively with years pooled.  

 

One swallow nestling sample at Big Marsh had Hg concentrations of 1 mg/kg which was greater 

than two standard deviations from the mean so it was excluded from statistical analysis, though it 

is indicated in the figures.  Concentrations in nestlings were not significantly different between 

years (Table 2.8); however, the concentration pattern among the three sites was different 

between the two years (Figure 2.3), so years were not pooled to better illustrate these differences.  

Total mercury concentrations in swallow nestlings were significantly different among sites in 
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2004, with nestlings from Indian Ridge having significantly greater concentrations of Hg than 

nestlings at Powderhorn and Big Marsh (Table 2.8). Concentrations in nestlings in 2005 were 

significantly different among sites as well, with nestlings at Big Marsh and Indian Ridge both 

having significantly lower Hg concentrations than nestlings at Powderhorn (Table 2.8).  

 

Local-sourced total Hg mass in nestlings was analyzed excluding the aforementioned outlier.  

Local-sourced Hg mass was significantly different between years (Table 2.8, Figure 2.4).  

Mercury mass in nestlings from 2004 was significantly different among sites, with nestlings from 

Indian Ridge having greater Hg than nestlings at both Big Marsh and Powderhorn (Table 2.8).  

Nestlings from 2005 also had significantly different masses of local-sourced Hg among sites. 

Powderhorn nestlings had significantly greater local-sourced Hg than nestlings at Big Marsh and 

Indian Ridge (Table 2.8).  Hg from the eggs contributed 5 (  2 s.d.)% to the Hg mass in the 

Calumet nestlings.  Mercury is being accumulated locally, as indicated from the difference 

between the mass in the eggs and the mass in the nestlings, but one might expect that different 

proportions would be accumulated considering what is available from the nestling diet and the 

local sediment (Figure 2.5).  Sample sizes in insect and sediment samples were too small to 

permit comparisons, unfortunately. 

 

Other Trace Elements 

All trace elements were detected in all sediment samples (Table 2.10).  Trace element 

concentrations in sediments did not differ among sites (all values p>0.05). 

 

Barium, Cd, Cr,Cu, Mn, Se, and Zn concentrations did not differ by benthic, bolus, and emergent 

insect type and were pooled (p>0.05, Table 2.11);  Ag was not included in analyses as most of 

the samples were below the detection or the reporting limit.  For the pooled insect samples only 

copper concentrations differed among sites, with Indian Ridge having lower concentrations of 

copper in insects than Powderhorn (Table 2.12). When insect sample types that could not be 

pooled are analyzed separately, only Fe in bolus insects was significantly different among sites 

(Table 2.12).  Concentrations of Fe in bolus insects at Big Marsh were significantly greater than 

concentrations at Powderhorn (Table 2.12; means: Big Marsh, 355; Indian Ridge, 210; 

Powderhorn, 120 mg/kg dw).  Trace element concentrations in benthic insect samples that were 
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not pooled were not significantly different among sites (p>0.05).  All bolus insect trace element 

concentrations tested were not significantly different between aquatic and terrestrial origin, 

(p>0.05) except Pb concentrations, which were significantly greater in terrestrial insect samples 

compared to aquatic insect samples (Table 2.12; means 0.53, 0.74 mg/kg dw for aquatic and 

terrestrial bolus insects, respectively).  

 

Tree swallow egg samples were compared among sites for Ba, Cr, Cu, Fe, Mn, Se, and Zn.  

Copper, Fe, Mn, and Se concentrations in eggs did not differ between years, and none were 

significantly different among sites when analyzed with years pooled (all values p>0.05).  

Barium, Cr, and Zn concentrations in eggs did not differ among sites in 2004 or 2005 (Table 2.13 

for means). 

 

Concentrations of Ag, As, Cd and Ni in nestlings were largely below the reporting or detection 

limit in both years, detections of Al were rare in 2004 nestlings, and Pb was mostly below the 

reporting limit in 2005 (Table 2.14 for means).  Concentrations of Ba, Co, and Cu in nestlings 

did not differ between years (p>0.05, Table 2.14).  When these concentrations were pooled by 

year, there were no significant differences among sites for Co and Cu, but nestling Ba 

concentrations were significantly different and nestlings at Indian Ridge had higher Ba 

concentrations than nestlings from Big Marsh and Powderhorn (Table 2.12).  Nestling 

concentrations of Se and Cr from 2004 were significantly different among sites (Table 2.12).  

Nestlings at Indian Ridge had significantly greater Cr concentrations than did nestlings at Big 

Marsh whereas concentrations of Se were significantly greater in nestlings from Big Marsh than 

in those from Powderhorn (Table 2.12).  In 2005, there were no significant differences in 

nestling trace metal concentrations among sites for elements that were not pooled by year 

(p>0.05 for all, Table 2.14).  
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Discussion 

 

Mercury 

There was no specific pattern in Hg concentrations among different sample media at the sites.  

Mean Hg in sediment samples from Big Marsh were twice that of the other sites; however, there 

was no statistical difference likely due to the small sample size.  Insect samples, likewise did not 

have statistically different mean Hg concentrations among sites, but insects at Powderhorn 

tended to have the greatest mercury concentration.  Eggs at Powderhorn had significantly greater 

concentrations of mercury than the other sites, and nestling Hg concentrations and local source 

nestling mass of Hg was greatest at Indian Ridge in 2004, but greatest at Powderhorn in 2005.  

Trophic transfer is occurring as the nestlings are not acquiring much Hg from their eggs, and Hg 

concentrations in nestlings are greater than concentrations in their diet items.   

 

Mercury concentrations in Big Marsh sediments were higher than the threshold effects 

concentration (TEC) and threshold effects level (TEL) standards of 0.18 and 0.174, respectively 

(MacDonald et al., 2000; Buchman, 2008), but sediments at Indian Ridge and Powderhorn were 

below these ecological screening standards.  This means that sediments at Indian Ridge and 

Powderhorn would be considered unlikely to have toxic effects on sediment organisms.  

Sediments at Big Marsh were above this standard, suggesting they may cause toxic effects to 

some sediment dwelling organisms, but they were below the probable effects standard so effects 

may be somewhat less likely.  

 

Relative to other tree swallow studies, insect Hg concentrations at the Calumet sites were rather 

low.  Mean Calumet insect mercury concentrations were higher than concentrations in diet items 

from mine tailing contaminated sites in Colorado (Custer et al., 2009), but lower than 

concentrations found in Agassiz National Wildlife Refuge (NWR, Custer et al., 2006) and in the 

some Canadian experimental lakes (Gerrard and St. Louis, 2001).   

 

Egg concentrations at the Calumet sites were low to intermediate and nestling concentrations 

were low, relative to other tree swallow studies.  Concentrations of Hg in Calumet eggs were 

similar to concentrations from Agassiz NWR (Custer et al., 2006) and pool eight of the 
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Mississippi River (Custer et al., 2007b), though far lower than concentrations near an old mine in 

Nevada (Custer et al., 2007a) likely the highest Hg concentrations found in tree swallow eggs.  

Mercury concentrations in nestlings from Calumet were similar to concentrations from 

contaminated sites from a number of studies (Gerrard and St Louis, 2001; Custer et al., 2003a; 

Custer et al., 2006; Custer et al., 2008) and were much lower than reported by Longcore et 

al.(2007a) and Custer et al. (2007a).   

 

Local-source mercury mass in Calumet nestling was variable between the two years, and among 

the sites.  This may have been the result of the variability of mercury concentrations in the 

sediment samples and perhaps it underscores the opportunistic nature of tree swallow foraging.  

It would be insightful to have large numbers of terrestrial and aquatic insect bolus samples to 

more accurately determine whether differences exist in insect burdens relative to insect habitat. 

 

Habitat and Productivity 

Mercury is known to reduce hatchability and impair reproduction (Eisler, 2000), and Heinz and 

Hoffman (2003) observed reduced hatchability in eggs of mallards at concentrations as low as 

2.1 mg/kg dw  (Heinz and Hoffman 2003, assuming 64.5% moisture from Ricklefs, 1977); 

however, mercury concentrations in the eggs I examined were an order of magnitude lower than 

that found to impair hatchability in mallards.  The hatch and fledge proportion at the sites (71%- 

90%) is similar to the mean of 78.8% from almost 3500 tree swallow nests throughout North 

America (Robertson et al., 1992; Custer et al., 2007a).  The reproductive ecology of tree 

swallows near Lake Calumet was consistent with that of tree swallows across their range. 

Mercury concentrations in tree swallow eggs and nestlings in the Lake Calumet area were below 

avian levels affecting egg and nestling success and well below a general concentration for 

reduced hatching in tree swallow eggs of approximately 5.7 mg/kg dw (1 mg/kg ww) suggested 

by Longcore et al (2007a).   

 

Swallows prefer to colonize nest boxes that are in areas of relative openness, rather than densely 

shrubby or canopied areas (Rendell and Robertson, 1990), and the swallows at the sites nested at 

the more open sites 3 to 6 days earlier than at the less open one, Powderhorn. This difference in 

timing among the sites may have had an effect on ecological fitness, since tree swallows, like 
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many migratory passerines, are well documented to have larger broods the earlier they nest 

(Robertson et al., 1992; Stutchbury and Robertson, 1987; Winkler and Allen, 1996).  I observed 

a difference in brood size among sites that could be the result of the timing of nesting (Robertson 

et al 1992), parent age and experience (Robertson et al., 1992; Robertson and Rendell, 2001) or 

possibly food availability (Murphy, 2000).  I attempted to quantify female age in 2005 by 

observing coloration, but the sample size of confirmed aged females was small, and was 

confounded by the inability to similarly estimate male age.  Greater food availability at 

Powderhorn might suggest it to be a preferred site, contrary to colonization dates.  

 

I believe the reduced brood size for nestlings at Powderhorn was associated with later nesting 

(based on Robertson et al., 1992).  Nonetheless, the relationship in Calumet-area tree swallows 

between mercury egg content, viewed as a surrogate for female body burden of mercury, and 

nest timing, which can impact productivity, is intriguing.  There may be numerous factors why 

birds arrive and nest at different times, and the study was not designed to address these.  

However, the effects of compounds like mercury, in conjunction with stressful events like 

migration need to be better understood.  This study suggests that understanding of ecological 

effects of contamination would benefit from investigating indirect reproductive affects such as 

timing of nesting or migration success.  The tree swallows that nested later do not necessarily 

accumulate greater concentrations of mercury on site than do the early arrivals, but they do 

appear to experience greater interspecific competition for nest sites and have fewer young. 

 

Trace Elements 

Arsenic, Cd, Cr, Cu, Ni, Pb, and Zn concentrations in Calumet sediments were above the TEC, 

the benchmark at which toxicity becomes more likely (Ba, Mn, and Se are not listed) 

(MacDonald et al., 2000).  Sediment manganese concentrations were above the lowest effects 

level (LEL) (Buchman, 2008), which function similarly to the TEC, and below which sediment 

toxicity is unlikely.  Cadmium, Cr, and Ni concentrations at Big Marsh, a few samples from 

Powderhorn were higher than the probable effects concentration (PEC) or probable effects level 

(PEL), both of which are generally predictive of sediment toxicity (MacDonald et al., 2000).  

Concentrations of Pb at Big Marsh and Powderhorn, Mn at Big Marsh, and Zn at Big Marsh 

were higher than the severe effects level (SEL) indicating the sediments were severely polluted 
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and that adverse effects on sediment dwelling organisms would be expected to occur 

(MacDonald et al., 2000).  These effects values are general guidelines and definitive 

classification of sediment toxicity would require further evaluation.  

 

Mean Al, As, Ba, Cu, Pb, Mn, Ni, and Se concentrations in Calumet insects were greater than the 

(geometric) mean concentrations found in tree swallow dietary items from mine tailing 

contaminated sites in Colorado (Custer et al., 2009), but mostly were similar in concentration to 

the contaminated sites in the few other studies found (Custer et al., 2002, Custer et al., 2003b, 

Custer et al., 2007a).  Concentrations of Pb were far greater in Calumet insects than those in the 

diet of tree swallows in the Lostwood NWR, ND (Custer et al., 2008); however, concentrations 

in the diet of starlings (Sternus vulgaris) nesting near highways when Pb additives were still used 

in gasoline were about ten fold higher (Grue et al., 1986).  

 

Generally, mean concentrations of elements in tree swallow eggs in this study were similar to 

concentrations found in tree swallow eggs along the Housatonic River in MA (Custer et al., 

2003a).  Mean Cu and Fe concentrations are a little higher in some Calumet sites than the 

geometric mean from the Housatonic study.  Calumet egg trace element concentrations were 

generally similar to or slightly higher than concentrations in tree swallow eggs from along the 

North Platte River, WY (Custer et al., 2001), Agassiz NWR, MN (Custer et al., 2006), pool 8 of 

the Mississippi River (Custer et al., 2007b), Lostwood NWR, ND (Custer et al., 2008) and along 

the Carson River, NV (Custer et al., 2007a).  Egg Se concentrations were lower than barn 

swallow egg concentrations at both the control and Se contaminated sites in Texas (King et al., 

1994).   

 

Comparative results for nestlings are not as abundant in the literature as they are for eggs, 

because different tissues are often analyzed.  Calumet nestling trace element concentrations were 

generally similar to those of nestlings along the Housatonic River, MA and from the Lostwood 

NWR, ND.  Calumet nestlings had higher Ba concentrations than nestlings from the Housatonic 

study, and higher Fe and Pb concentrations than nestlings from the Lostwood study, but overall 

these concentrations are considered as background or „no effects‟ concentrations (Custer et al., 

2003a).   
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Elevated concentrations of Pb, Mn and Zn at some Calumet sites may be problematic for 

sediment dwelling organisms.  Manganese and Zn are considered „essential‟ or „beneficial‟ 

elements and are fairly well regulated by birds (as cited in Custer et al., 2009) and were not 

elevated in the Calumet bird and egg tissues.  Lead has deleterious impacts on metabolism, 

growth, development, reproduction, and survival of most species, but unless large doses occur, 

such as through ingestion of lead shot for hunting, lead toxicosis is unlikely (Eisler, 2000).  Lead 

has been shown to impact other passerines.  Barn swallows (Hirundo rustica) nesting along 

roads had reduced red blood cell (RBC) δ-aminolevulinic acid dehydratase (ALAD) of 31% in 

adults with mean Pb concentrations of 5.1 mg/kg (Grue et al., 1984).  Starlings (Sturnus 

vulgaris) nesting in a road right of way had nestling carcass Pb concentrations of 4 mg/kg and 

significantly reduced brain mass, haemoglobin concentration, percent haematocrit, and RBC 

ALAD activity (Grue et al., 1986).  These reductions do not impact nestling survival in the nest, 

but their success after fledging is unknown (Grue et al., 1986).  These concentrations are well 

above the mean concentration in Calumet nestlings, but within the observed range. 

 

Diet origin 

Bolus samples from the tree swallow nestlings at the Calumet area sites over the two years 

indicated that their diet comprised of Diptera (44%), Coleoptera (19%), Hymenoptera (14%), 

Homoptera (11%), and Odonata (8%) by count.  Calumet nestlings in 2005 were fed between 51 

and 64% aquatic insects by mass, which is useful in understanding contaminant uptake since 

terrestrial insects had greater concentrations of Pb than aquatic insects at the Calumet sites.  

Sample size was low, and other differences between aquatic and terrestrial insects may have 

been missed.  Many tree swallow studies assume the birds are primarily eating emergent aquatic 

insects, but Calumet swallows consume both terrestrial and aquatic insects in fairly equal 

proportions.  The fact that tree swallows are opportunistic insectivores underscores the 

importance of understanding diet source to provide greater insight into local contaminant 

movements.  The use of eggs and nestlings were integral in determining the extent of local-

source contaminant uptake.  Egg Hg from unknown maternal sources contributed approximately 

5% of the Hg mass in the Calumet nestlings indicating that the vast majority of nestling Hg 

accumulation is by local dietary uptake.  Another study calculated that the egg contributed 
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between 2.4  0.9 and 23.9  3.8% of the 14-day-old nestling burden of mercury (Longcore et 

al., 2007b).   

 

 

 Conclusions 

 

Tree swallows nesting at three sites in the Calumet area of Chicago, Illinois experienced no 

detectable reproductive effects, with Hg concentrations in the eggs as high as 0.32 mg/kg dry 

weight, and maximum concentrations in nestlings of 1 mg/kg dry weight.  Local diet and 

sediment Hg concentrations, along with the timing of tree swallow migration, egg development 

and Hg pharmacokinetics in birds reinforced the understanding that tree swallow egg 

contaminant values should be interpreted as indications of maternal contaminant burden obtained 

from local nesting sites and previous unknown sources.  Rosten et al., (1998) came to similar 

conclusions, reporting that correlations of mercury in passerine eggs to concentrations in nesting 

site vegetation and insects „seemed to depend mainly on whether the bird was migratory or 

resident‟ (Rosten et al., 1998). 

 

Eggs and nestlings are useful for calculating an estimate of locally derived contaminant mass.  In 

the Lake Calumet area, tree swallow eggs contributed only about 5% of the nestling Hg mass.  

We found that concentrations of different contaminants in eggs from the Calumet region 

contributed up to 50% of the nestling contaminant mass, so understanding the egg-nestling 

relationship was very useful in understanding local contaminant uptake.     

 

Total Pb concentrations in sediment at Powderhorn, the reference site, were above probable 

effect levels, which could have had deleterious effects on sediment dwelling organisms.  Overall 

concentrations in biotic media were considered to be at „no effects‟ levels, but physiological and 

physical changes have been demonstrated at concentrations within the range of Calumet 

observations (Grue et al., 1984; Grue et al., 1986), though their effects on survival or success are 

unknown.   
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Mercury and other contaminants of concern may indirectly affect fitness.  This combined with 

the fact of habitat degradation in the Calumet region that has left a fraction of the original 

wetland size, underscores the importance of monitoring remaining nesting habitat for the future 

of wildlife populations.  Biomonitors as thoroughly studied as tree swallows may be well suited 

to study this.  However, greater understanding is only possible with detailed knowledge of the 

local habitat, food web, and the habits of the biomonitor.   

 

I attempted to understand local sources of contamination by the use of sediment and diet samples 

and by quantifying terrestrial and aquatic sources of diet.  Moreover, by collecting both eggs and 

nestlings I could distinguish whether contaminants burdens were transferred from the mother 

from external sources or were accumulated on site.  The continued and thoughtful use of bio-

monitors can shed more light on these issues and will be imperative for understanding the role 

habitat contamination plays in regions with increasing habitat loss in areas such as Calumet, 

Illinois. 
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Figure 2.1:  Map of Illinois, USA with expanded view of study sites. 

Big Marsh 

Indian Ridge 

Powderhorn 
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Table 2.1. Test statistics and p values for habitat and productivity statistical comparisons.   

   

Variable   Comparison  Test statistic p  

 

J.D. completed nest years  H=13.56  <0.001 

   J.D. completed nest 2004 sites  H=15.84 <0.001 

      BM vs PL sites  Q=3.67 <0.05 

   J.D. completed nest 2005 sites  H=9.89   0.007 

      BM vs IR sites  Q=2.45 <0.05 

      IR vs PL sites  Q=2.68 <0.05 

 

Number of eggs years  H=0.01 0.94 

   Number of eggs sites  H=9.18 0.01 

      BM vs PL sites  Q=2.75 <0.05 

 

Nestling mass years  H=32.01 <0.001 

   Nestling mass 2004   sites  F=10.83 <0.001 

      BM vs PL sites  F=19.65 <0.001 

      IR vs PL sites  F=4.38 0.039 

      BM vs IR sites  F=7.06 0.009 

   Nestling mass 2005 sites  F=3.65 0.028 

      BM vs PL sites  F=4.44 0.036 

      IR vs PL sites  F=7.29 0.008 

 

Proportion hatch years  H=0.28 0.597 

   Proportion hatch  sites  H=0.93 0.628 

 

Proportion fledge years  H=0.82 0.365 

   Proportion fledge  sites  H=0.40 0.818 

 

Percent overstory cover sites  H=12.30 0.002 

 

Distance to open water sites  H=18.89 <0.001 
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Table 2.3.  Habitat variables measured  standard deviation.  All values are in meters except 

orientation and angle of openness (degrees), percent overstory cover (percent) and densiometer 

value for shrubby cover (count out of 96). Distance to nearest woody neighbor over 2 m (DNN) 

0 is the quadrat encompassing 45 degrees to either side of the box opening, DNN represents the 

quadrat to the east of the opening, DNN 180 to the rear, DNN 270 to the west.  Orientation is the 

degree representation of the box opening. 

 

Habitat variable    Big Marsh Indian Ridge Powderhorn 

 

DNN 0 8  9 9  9 12  9 

DNN 90 5  7 5  7 3  5 

DNN 180 7  8 7  9 2  4 

DNN 270 5  7 6  7 2  4 

 

Densiometer value for cover 58  32 60  26 49  27 

 

Percent overstory cover 26  27 21  27 40  29 

 

Orientation 179 230 217 

 

Angle of openness 130  109 155  106 146  70 

 

Distance to open water 5.3  1.7 50.4  44 5.6  2.5 

 

Distance to vegetated water 5  2 5  3 6  3 
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Figure 2.2.  Nesting timing as indicated by the Julian date that feathers were first found in the 

nest, plotted with the concentration of total mercury in the eggs from those nests (r=0.60, 

p<0.0001).  Circles are 2004 values and squares are 2005.  FLC = feather lined cup. 
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Table 2.5.  Test statistics and p values for emergent trap insect statistical comparisons.   

 

Variable  Comparison  Test statistic p  

 

Insect mass 2004 sites  F=0.14 0.870 

Insect mass 2005 sites  F=7.25 0.009 

   BM vs IR sites  F=8.06 0.015 

   BM vs PL sites  F=13.08 0.004 

 

Zygopterans 2005 count sites  H=123.02 <0.001 

  BM vs PL sites  Q=7.73 <0.05 

   IR vs PL sites  Q=8.87 <0.05 

 

Anisopterans 2005 count sites  H=118.56 <0.001 

   BM vs PL sites  Q=8.06 <0.05 

   IR vs PL sites  Q=8.73 <0.05 

 

Non-Odonate 2005 count sites  F=15.54 <0.001 

   IRvs PL sites  F=17.94 <0.001 

   IR vs BM sites  F=27.62 <0.001 
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Table 2.7.  Test statistics and p values for bolus insect statistical comparisons.   

 

Variable    Comparison  Test statistic p  

 

Odonata 2004 sites  H=8.80 0.012 

   BM vs PL sites  Q=2.27 <0.05 

   IR vs PL sites  Q=2.42 <0.05 

 

Odonata 2005 sites  H=38.28 <0.001 

   BM vs PL sites  Q=5.24 <0.05 

   IR vs PL sites  Q=5.03 <0.05 

 

Homoptera+Hymenoptera+other sites  H=0.52 0.769   
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Table 2.8.  Test statistics and p values for Mercury concentration statistical comparison for all 

media from three wetlands in the Calumet area, IL. 

 

Variable    Comparison  Test statistic p  

 

Sediment sites  F=0.97  0.424 

 

Aquatic insects  sampling methods  F=0.62 0.547 

 Aquatic insects sites  F=0.68 0.203 

 

Bolus insects terrestrial vs aquatic  F=1.50 0.289 

 

Bolus insects (all) sites  F=2.84 0.203 

 

Eggs  years  F=2.36 0.129 

 Eggs sites  F=30.79 <0.001 

      BM vs PL sites  F=60.10 <0.001 

      IR vs PL sites  F=8.92 0.004 

      BM vs IR sites  F=25.69 <0.001 

 

Nestlings years  H<0.01 0.987 

  Nestlings 2004 sites  F=4.09 0.028 

      BM vs IR sites  F=6.86 0.014 

      IR vs PL sites  F=4.96 0.035 

   Nestlings 2005 sites  F=13.51 <0.001 

      BM vs IR sites  F=20.38 0.001 

      IR vs PL sites  F=20.09 0.002 

 

Local Source years  F=13.84 0.001 

   Local Source 2004 sites  F=4.25 0.026 

      BM vs IR sites  F=6.72 0.016 

      IR vs PL sites  F=5.40 0.029 

   Local Source 2005 sites  F=11.81 <0.001 

      BM vs PL sites  F=16.44 <0.001 

      IR vs PL sites  F=18.86 <0.001 
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Figure 2.3.  Mercury in tree swallow eggs (open bars) and nestling (cross hatch), 2004 and 2005.  

Error bars are standard deviation, significant differences indicated by different letter.  Mercury 

concentration in 2005 nestlings at Big Marsh are depicted as two values with and without the 

extreme outlier.  Note the break in the Y-axis.  n=10 except n=9 for Big Marsh 2005, lower value 

which had an extreme outlier removed.   
 local source Hg
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Figure 2.4.  Mean local-sourced mercury in swallow nestlings.  Local –sourced Hg mass = mass 

of Hg in nestlings minus mass of Hg in eggs from same nest box. Error bars are standard 

deviation, significant differences indicated by different letter.  Local-sourced mercury mass in 

2005 nestlings at Big Marsh are depicted as two values with and without the extreme outlier.  

Note the break in the Y-axis.  n=10 except n=9 for Big Marsh 2005, lower value.   
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Figure 2.5.  Mercury concentrations in sediments, boluses, eggs and nestlings.  Error bars, where 

present are standard deviation.  Big Marsh nestling value does not include outlier from 2005.  
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Table 2.10.  Trace metal concentrations in sediment samples from three wetlands in the Calumet 

region, IL, in 2004.  All concentrations mg/kg dry weight.   

 

 Big Marsh Indian Ridge Powderhorn   

n 3 4 3 

 

Al 17267  9482 19625  14540 20633  14808 

 

As 13  5 7  5 15  10 

 

Ba 176  49 132  102 157  56 

 

Cd 3.0  2.6 0.9  0.9 3.7  1.2 

 

Cr 94  55 51  29 64  34 

 

Cu 107  25 72  74 79  41 

 

Fe 117033  149280 34025  22562 50567  25452 

 

Pb 400  315 87  60 250  61 

 

Mn 2370  2629 510  332 517  431 

 

Ni 50  27 26  17 31  10 

 

Se 1.2  0.6 1.7  0.7 1.5  0.9 

 

Ag 0.5  0.4 0.3  0.3 0.3  0.2 

 

Zn 2081  2898 278  260 362  102 
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Table 2.11. Concentrations in pooled insect samples (benthic, bolus, and emergent insects) at 

three sites in the Calumet region, IL, years pooled.  All concentrations mg/kg dry weight.  Data 

for Al, As, Co, Fe, Pb, Ni, and Ag not shown due to low detections. 

 

 Big Marsh Indian Ridge Powderhorn   

pooled n 7 7 7 

 

Ba 9.1  5.8 6.0  3.8 14.3  18.4 

 

Cd 0.4  0.6 0.1  0.1 0.3  0.1 

 

Cr 1.7  0.7 1.2  0.6 2.0  1.0 

 

Cu 21.8
ab

  5.4 16.3
a
  4.0 26.5

b
  7.6 

 

Mn 88.2  117.3 42.8  49.2 175.4  189.7 

 

Se 2.0  1.4 1.4  0.4 1.3  0.4 

 

Zn 110.1  23.4 89.3  15.9 100.1  14.3 

 

 
Letter indicates mean is significantly different from that of different letters (p<0.05). 
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Table 2.12.  Test statistics and p values for trace element concentration statistical comparisons 

for all media from three wetlands in the Calumet area, IL.  Only significant results (p<0.05) are 

reported. 

 

Element Variable    Comparison  Test statistic p  

 

Cu Pooled insect types sites  F=5.33  0.015 

    IR vs PL sites  F=10.53 0.004 

 

Fe Bolus insects sites  F=11.32 0.040 

    BM vs PL sites  F=22.24 0.018 

 

Pb Bolus  origin  F=8.59 0.043 

 

Ba Nestlings sites  F=4.61 0.014 

    BM vs IR sites  F=6.37 0.015 

    IR vs PL sites  F=7.13 0.010 

 

Se Nestling 2004 sites  H=7.45 0.024 

    BM vs PL sites  Q=2.65 <0.05 

 

Cr Nestling 2004 sites  H=9.90 0.007 

    BM vs IR  sites  Q=3.29 <0.05 
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Introduction 

 

Aquatic stages of insects (e.g., midge larvae, mayfly nymphs, etc.) accumulate sediment-bound 

contaminants, including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCs), 

metals (Cd and Hg), and polycyclic aromatic hydrocarbons (PAHs), and then transport the 

contaminants into terrestrial food webs upon emergence (Mauck and Olson, 1977; Menzie, 1980; 

Larsson, 1984; Ciborowski and Corkum, 1988; Kovats and Ciborowski, 1989; Dukerschein et al., 

1992; Corkum et al., 1997; Reinhold et al., 1999, Maul et al., 2006).  In fact, in a laboratory study, 

adult chironomids had higher PCB concentrations than the larvae that were exposed to sediment 

containing PCBs (Larsson, 1984).  Therefore, aquatic insects that emerge as adults from polluted 

wetlands may present a substantial risk of contaminant exposure to aerial insectivores such as bats 

and birds.   

 

Tree swallows are commonly used as monitors of sediment contaminants in part due to their 

preference for feeding on insects over open water near their nesting site (Menzie, 1980; McCarty 

1997; McCarty and Winkler, 1999; Mengelkoch et al., 2004), and for their utilization of nest 

boxes (Kuerzi, 1941; Graber et al., 1972).  The natural history and ecology of tree swallows is 

relatively well understood (e.g., Kuerzi, 1941; Robertson et al., 1992), and there has been much 

work using them to assess contamination throughout their range (see McCarty, 2002; Chapter 1 

of this thesis).  Secord and colleagues have shown nestlings to accumulate high concentrations of 

PCBs along the Hudson River (Secord et al., 1999) and suggested this affects nest building 

behavior (McCarty and Secord, 1999a), plumage color and hatch success (McCarty and Secord, 

2000).  Others have observed that tree swallow exposure to organophosphorus (OP) insecticide 

spray events in Ontario orchards tended to reduce feeding visits by parents in a manner 

suggestive of cholinesterase-inhibiting insecticide exposure (Bishop et al., 2000).  Swallows 

have also been shown to accumulate dichlorodiphenyldichloroethylene (DDE) (Custer et al., 

1998), PAHs (Custer et al., 2001), polychlorinated dibenzo-p-dioxins (PCDDs), and 

dibenzofurans (PCDFs) (Harris and Elliott, 2000).   

 

Many studies have characterized accumulation of PCBs and other organic contaminants in tree 

swallows and other birds (eg. Ankley et al., 1993; Secord et al., 1999; Custer et al., 2003; Smits 
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et al., 2005), but fewer researchers have looked for polybrominated diphenyl ethers (PBDEs) in 

birds.  PBDEs are flame-retardants that are widely used in household electrical appliances, 

foams, bedding material and textiles.  Congeners with fewer bromines have been found to be 

highly persistent and bioaccumulative, and in 2004 penta-brominated formations were banned in 

the European Union (cited in Van den Steen et al., 2009a).  Recent studies provide evidence that 

higher brominated congeners break down to lower brominated forms (Rayne et al., 2003; 

Stapleton et al., 2004; Van den Steen et al., 2007).  Voorspoels et al. (2007) demonstrated that 

PBDEs move through simple terrestrial food chains in Europe, with measurable concentrations 

in some common bird species including great tits (Parus major), common buzzards (Buteo 

buteo), and sparrowhawks (Accipiter nisus).  In North America, PBDEs have been found in eggs 

of peregrine falcons (Falco peregrinus) (Holden et al., 2009; Park et al., 2009), ospreys (Pandion 

haliaetus) (Henny et al., 2009), herring gulls (Larus argentatus) (Gauthier et al., 2008), and a 

few other piscivores or birds of prey (see Chen and Hale, 2010).  PBDEs are neurotoxic and alter 

endocrine function (Darnerud, 2003).  

 

Tree swallows are both migratory and opportunistic insectivores, so it is useful to understand the 

proportion of contaminant burden that is maternally transferred to nestlings from sources outside 

the study site, as well as the fraction of their diet that is terrestrial or aquatic in origin (Custer et 

al., 1998; Maul et al., 2006).  Diet is particularly relevant because research suggests that 

terrestrial feeding birds may be exposed to greater concentrations of higher brominated PBDE 

congeners than aquatic feeding birds (Law et al., 2003; Lindberg et al., 2004; Jaspers et al., 2006; 

see Chen and Hale, 2010).  My research goals were to determine concentrations of organic 

contaminants in tree swallow nestlings, eggs, and diet and sediment samples at three locations 

within the Calumet region of Illinois, and to determine organic contaminant loads accumulated 

by nestlings on site via their diet by comparing contaminant burdens in nestlings to those in eggs 

from the same nest.  To do so, tree swallow eggs and nestlings, insect populations, insects 

collected from actual food bolus samples, and sediments were analyzed for selected organic 

contaminants.   
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Methods 

 

Study sites 

The Lake Calumet area of Illinois is highly industrialized, and has a long history of industry and 

waste disposal (USEPA, 2011; Sprenger et al., 2001; USACE and Tetra Tech, 2001).  Three 

study sites were selected to provide a spectrum of contamination around the Calumet area of 

Illinois.  Big Marsh (41° 41‟ 30”, 87° 34‟ 24”) and Indian Ridge Marsh (41° 40‟ 51”, 87° 33‟ 50” 

hereafter Indian Ridge) were chosen for the high levels of 8 metals, PCBs, and 

Dichlorodiphenyldichloroethane (DDD)/DDE,  contamination in sediments (Sprenger et al., 

2001) and Powderhorn Lake (41° 38‟ 53”, 87° 31‟ 37” hereafter Powderhorn) was selected as a 

reference site because it had no known sediment contamination (Figure 3.1).  In March of 2004, 

30 nest boxes of 14 by 10 by 20 cm interior size, and 38 mm diameter entry hole were placed on 

posts at approximately 2 m in height, and at a minimum of 15 m apart at each of the sites.  Boxes 

with no woody cover between them were placed at greater distances.  Approximately 1-m long 

segments of polyvinyl chloride (PVC) pipe filled with expandable foam insulation (Great Stuff© 

by Dow Chemical) were positioned below each box to reduce predator access.  All boxes were 

placed within 20 meters of water, with the vast majority of boxes within 5 meters of water. 

 

Sample collection and preparation 

Grab samples of sediment were collected in acid washed, 500 ml glass jars in 2004 from the 

sediment surface at three or four locations adjacent to the nest boxes at each wetland.  The 

samples were kept frozen until processed at the lab where they were air-dried and ground using a 

tabletop Retsch Laboratory Mortar Grinder.  A sub-sample was removed, oven dried at 105 °C, 

and percent moisture was determined.  Approximately 10-g portions of the air-dried sediment 

samples were weighed for sample preparation following the sample extraction, cleanup and 

fractionation details below, and subsequently analyzed. Total organic carbon (TOC) was 

measured in sediment samples with a carbon analyzer.  Samples were treated with sulfurous acid 

and dried at low temperature, then analyzed for TOC.    

 

Aquatic insects were collected in both years from each site by kick netting with a D-frame net.  

Larger genera were disproportionately retained to ensure there was enough mass for contaminant 
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analysis, and genera not regularly seen in bolus samples were minimally included.  All insects 

were frozen, sorted and rinsed in de-ionized water before submission for contaminant analysis.  

Prior metal contaminant analyses (Chapter 2, of this thesis) reduced sample mass available for 

organic analyses, leaving only one sample from Indian Ridge and Powderhorn for 2004 and Big 

Marsh for 2005 and two samples each from Indian Ridge and Powderhorn for 2005. 

 

Food boluses were collected from 12- or 14-day-old tree swallow nestlings in 2004 and from six- 

and10-day-old nestlings in 2005.  Boluses were collected using the ligature method (Orians, 

1966; Wilson, 1966; Orians and Horn, 1969; Bryant and Turner, 1982; Yorks, 1999; 

Mengelkoch et al., 2004) with 89 mm, black Ty-Rap© zip ties.  One hundred thirty-six ligature 

attempts were made in 2004 and 376 attempts were made in 2005.  Ligatures were left on for 30 

to 45 minutes.  Nests were inspected for loose insects and fallen boluses before and after 

ligatures were applied, and all insects were collected.  Boluses were preserved with 95% ethanol 

in 2004, but were frozen in 2005.  Boluses were cleaned of mucus, contents were identified to 

family or to the lowest relevant level to determine aquatic or terrestrial origin, dried and 

weighed.  Samples from 2005 were submitted for isotope and contaminant analysis as pooled 

terrestrial or aquatic insects from each site. 

 

In 2004, the first two eggs in each of ten nests from each site were marked and then collected 

after there were four or more eggs in the nest. In 2005 the largest two of the first four eggs in 

each of ten nests were collected to maximize sample mass.  Studies of laying order effects of 

contaminant concentration in passerines generally suggest there is either no effect or the among-

clutch concentration variance was too large to make specific eggs necessary (Ormerod and Tyler, 

1992; Bryan et al., 2003; Reynolds et al., 2004; Van den Steen et al., 2006; Longcore et al., 

2007; Van den Steen et al., 2009b; Custer et al., 2010a;).  Whole eggs were placed in individual, 

pre-weighed scintillation vials with chlorine-free padding and stored at 4 ºC.  Prior to analysis, 

the two eggs from a given nest were allowed to come to room temperature, opened, combined in 

clean glass vials and homogenized with an Omni ES Mixer.  All sample aliquots were stored at 

minus 20 ºC for up to 12 months.   
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The nestling with the greatest mass was collected from each of the same nests from which eggs 

were collected.  Nestlings were decapitated (University of Illinois Institutional Animal Care and 

Use Committee protocol number 03028) and whole carcasses were placed in individual, clean 

500ml glass jars and frozen.  Digestive tracts were removed from the carcasses prior to 

contaminant analysis.  Insect and nestling samples were homogenized under liquid argon and 

stored at –20 ºC until analysis.   

 

Chemical analyses 

Concentrations of 31 PCBs, 15 PBDEs, dichloro-diphenyl-trichloroethane (DDT), its break-

down products (DDD and DDE) and ten other chlorinated pesticides were evaluated.  The 

following PBDE congeners (named according to congener number) were measured: 17, 28, 49, 

71, 47, 66, 100, 99, 85, 154, 153, 138, 183, 190, and 209.  The PCB congeners measured (named 

according to the Ballschmiter–Zell (BZ) numbering system with international union of pure and 

applied chemistry (IUPAC) recommendations) include: 5&8, 18, 28, 31, 33, 44, 49, 52, 66, 70, 

74, 77, 84&101, 95, 99, 105, 110, 118, 126, 128, 138&163, 149, 153, 180, 183, 187, 194, and 

200/201.  Numbers joined with an ampersand were co-eluted.  The organochlorine (OC) 

pesticides measured include: alpha-chlordane, beta-chlordane, trans-nonachlor, alpha-

hexachlorocyclohexane (a-BHC), beta-hexachlorocyclohexane (b-BHC), gamma-

hexachlorocyclohexane (g-BHC or Lindane), heptachlor epoxide, isomer B (HPX), oxychlordane 

(OXC), dieldrin, heptachlor, DDD, DDE and DDT. 

 

Aliquots of the prepared samples were extracted using a Dionex Accelerated Solvent Extractor 

(ASE) following a modified Pressurized Fluid Extraction (PFE) (USEPA, 1996a).  Following 

the ASE extraction, the samples were taken through two cleanup procedures: a modified Gel 

Permeation Cleanup (USEPA, 1994), and a modified Silica Gel Cleanup (USEPA, 1996b). Two 

silica gel fractions were collected for instrumental analysis, the first contained the PCBs, 4,4‟-

DDE, Heptachlor, and a small portion of trans-nonachlor, and the fraction second contained the 

remainder of the chlorinated pesticides.  Polybrominated diphenyl ether (PBDE) flame retardants 

were contained in both fractions. 
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The sample fractions were analyzed for PCBs and chlorinated pesticides using a Varian 3400 gas 

chromatograph (GC) equipped with an electron capture detector (GC/ECD) and a Restek Rtx®-5 

Integra guard column.  The column was 30m x 0.25 mm ID with a 0.25-µm df coating of 5% 

diphenyl-95% dimethyl polysiloxane.  The instrumental analysis followed a modification of 

USEPA methods, Organochlorine Pesticides by Gas Chromatography (USEPA, 2003d), 

combined with Polychlorinated Biphenyls (PCBs) by Gas Chromatography (USEPA, 2003b).  

To confirm the GC/ECD results and in some cases, to differentiate and quantify some analytes 

that co-eluted on the GC/ECD, the same fractions were then analyzed on a Varian 3800 GC with 

Saturn 2000 ion trap mass spectrometer using a modified version of Semivolatile Organic 

Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) (USEPA, 2003c).  The same 

type of GC column was used in the GC/MS analysis.  Both silica gel fractions were analyzed for 

PBDEs using a Micromass Autospec NT High Resolution mass spectrometer equipped with a 

Hewlett-Packard 6890 gas chromatograph.  The GC/MS set up followed a modification of 

Brominated Diphenyl Ethers in Water, Soil, Sediment and Tissue by HRGC/HRMS  (USEPA, 

2007).  A Restek Stx®-500 (15 m x 0.25 mm ID x 0.15 µm df) column was used in the PBDE 

analyses. Identification and confirmation of the individual PBDE congeners was accomplished 

using peak retention time and the abundance ratios of selected ion fragments (eg USEPA, 

2003a).  Quality control (QC) samples were processed and evaluated with each type of samples 

in each of the digestion batches.  Batch QC measures for all samples included a digested reagent 

blank, digested duplicate, analytical duplicate, matrix spike, and an analytical spike.  

 

Statistical analyses  

When possible, I calculated the concentrations of sum PBDE and sum PCB by adding the 

concentrations of all the individual congeners analyzed in a given media type.  Sum PCB was 

calculated as the total of all individual PCB congeners excluding PCB 126, which was not 

detected in any media.  Sum PBDE or PCB concentrations were only calculated when greater 

than 50% of congeners were above detection limits in greater than 50% of the samples.  When 

the above criteria were met for a given medium, I used a value equal to half of the detection or 

reporting limit for samples with values below detection limits.  With a few exceptions, in media 

where these criteria were not met, I generally did not conduct statistical analyses and report only 

maximum detected concentrations of individual congeners.  All media concentrations except 
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sediment are presented in ng/g wet weight (ww); sediment concentrations are reported as dry 

weight (dw) as these formats are most common in the literature.  Nestling, insect and most 2004 

egg contaminant concentrations were calculated from dry weight concentrations using 

individually obtained wet:dry ratios.  Some 2004 and all 2005 eggs concentrations were adjusted 

with a mean solid content for the eggs from that year due to lack of individual ratios.  Values 

were not lipid normalized because individual lipid concentrations were not available for all 

media and most of the variables did not correlate with lipid concentrations for their respective 

media type (Herbert et al., 1995).   

 

Yearly differences in contaminant concentrations were compared across all three sites for each 

media type with one-way analysis of variance (ANOVA) using SAS (V8.2 and V9, 1999 and 

2002, SAS Institute, Inc.) to determine whether the data could be pooled for further analyses.  

Homogeneity of variance was confirmed with Levene‟s test using alpha 0.1.  Normality was 

assessed visually and with Shapiro-Wilk‟s test using an alpha value of 0.1 since ANOVA is 

robust with non-normal data (Zar, 1984).  Media pooled between years were compared for 

contaminant differences among sites with a one-way ANOVA.  To minimize comparisons, 

contrast statements were used to determine if mean concentrations at a specific site were 

different from those measured at the reference site.  Data that lacked homogeneity of variance or 

normal distribution, were log transformed or analyzed with nonparametric Kruskal-Wallis tests 

in SAS or in Sigma Stat (© 2004 Systat Software, Inc) and individual comparisons verses the 

control (Powderhorn) were made with Dunn‟s method.  A Satterthwaite t-test was performed 

using SAS when there were only two means to compare, such as terrestrial and aquatic insects 

from food boluses.  

When applicable, differences among sites in PCB or PBDE congener suites were investigated  

using analysis of similarity (ANOSIM) on generated, log transformed, Bray-Curtis Similarity 

matrices using PRIMER (V5.2.4, 2001, Primer-E Ltd).  Congener suites included the same 

individual congeners that were used for sum values.  ANOSIM is a multivariate, non-parametric 

test of significance, evaluating within and among group distances for multiple variables 

(congeners) with a single comparison.  Using ANOSIM allowed us to determine site or year 

differences among the suite of congeners without having to create a „sum‟ variable of the 

individual congeners.  „Sum‟ variables are widely used (e.g., Custer et al., 1998; Dods et al., 
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2005; Maul et al., 2006); however, different studies may use different congeners in their sum 

values, ranging from 5 PCB congeners (e.g., Harris and Elliott, 2000) to all 209 (e.g., Custer et 

al., 2007b) and thus are not readily comparable.  In addition, different congener profiles can 

yield similar sum values, masking some differences.   

 

To make a more accurate estimation of the true concentration of contaminants nestlings acquired 

on site, I calculated “local-sourced contaminant mass” as follows.  The concentration (in dry 

weight) of a given contaminant in a nestling was multiplied by the dry weight of that nestling to 

obtain the mass of the contaminant.  The same process was done with the contaminant in eggs 

from the same nest.  Finally, the mass of the contaminant in the eggs was subtracted from the 

mass in the nestling to obtain local-sourced contaminant mass.  A generalized egg shell mass of 

0.1g (DeWeese et al., 1985) was subtracted from the fresh egg mass, and all wet weights were 

transformed to dry mass using individual percent solids for nestlings and mean solid proportions 

from the eggs for individual years (17.3% solid for 2004  and 17.6% solid for 2005).  Local-

sourced contaminant mass differences were determined by subtracting total sum mass of the 

relevant congeners in eggs from the total sum mass of the relevant congeners in nestlings the 

same nests. Differences in nestling and egg contaminant mass that were less than zero were 

changed to zero (96 out of 128 occurrences for Sum PCBs and 15 out of 608 occurrences for sum 

PBDEs). 

 

 

Results 

 

PBDEs 

The PBDEs were detected too rarely in sediments to generate sum PBDE values, and therefore, 

statistical analyses were not conducted.  Of the 15 congeners analyzed, only BDEs 71, 47, 99, 

and 209 were detected, and each of these was detected in less than half of the samples.  The 

maximum concentrations measured for each of these congeners were 0.34 (Indian Ridge), 0.66 

(Indian Ridge), 0.52 (Indian Ridge), and 82 (Powderhorn) ng/g, respectively. While BDE 209 

was detected in two sediment samples, it was rarely detected in the other media tested (a total of 

18 detections out of 139 samples).  
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Detection of PBDEs in benthic insects was rare as well.  Of seven samples analyzed over both 

years, each PBDE congener was found in at least two samples; however, only BDEs 47, 66, 100, 

99, 85, 153, and 183 were detected in over four samples.  Therefore, sum PBDE values were not 

generated for benthic insects, and these data were not statistically analyzed. The maximum 

concentrations measured for each of these congeners were 2.73 (Big Marsh), 1.52 (Powderhorn), 

0.84 (Big Marsh), 2.80 (Big Marsh), 0.88 (Big Marsh), 1.63 (Powderhorn) and 2.85 

(Powderhorn) ng/g, respectively.   

 

Five bolus insect samples were analyzed and only BDEs 71, 47 and 99 were found in three or 

more samples.  I did not analyze samples from 2004 and I did not generate sum PBDE values 

due to the low frequency of congener detection.  Maximum concentrations for BDE 71, 47 and 

99 in bolus samples were 0.70 (Indian Ridge), 6.60 (Big Marsh), and 2.28 (Indian Ridge) ng/g, 

respectively.  No site had consistently higher concentrations of these congeners than the others, 

and comparing insects of aquatic and terrestrial origin did not reveal differences in mean sum 

PBDEs when pooling data from all three sites (Table 3.1).  

 

In tree swallow eggs, ten PBDE congeners were detected in a majority of samples; congeners 17, 

71, 138, 190, and 209 were below detection and/or reporting limits in the majority of samples.  

Mean concentrations of sum PBDEs in eggs at the various sites were analyzed with the years 

pooled, as concentration means were not significantly different between years (Table 3.1). Mean 

pooled sum PBDE concentrations in eggs at Big Marsh, Indian Ridge, and Powderhorn were 51, 

69, and 68 ng/g, respectively, and there were no significant differences in mean sum PBDE 

concentrations among sites (Table 3.1, Table 3.2).  The suites of all the congener concentrations 

among the three sites were compared using ANOSIM, and were significantly different between 

years but not significantly different among sites (Table 3.1, Figure 3.2). 

 

In tree swallow nestlings, concentrations of five PBDE congeners were below reporting or 

detection limits in a majority of samples (BDEs 17, 49, 66, 190, and 209, though each of these 

was detected in at least 3 samples).  The mean sum PBDE concentrations in nestlings were 

significantly different between years and among sites in 2005, but not in 2004 (Table 3.1, Table 

3.2). Concentrations of sum PBDEs in nestling carcasses from 2005 at both Big Marsh and 
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Indian Ridge were significantly greater than concentrations in nestlings from Powderhorn (Table 

3.1).  The suite of PBDE congener concentrations in nestling carcasses was significantly 

different between the two years (Figure 3.3) and the suite of PBDE concentration profiles were 

significantly different among sites in both 2004 and 2005 (Table 3.1).  In 2004 both Big Marsh 

and Indian Ridge nestlings had significantly different suites of PBDE congener concentrations 

than those at Powderhorn, and again in 2005 (Table 3.1). 

 

Local-sourced sum-PBDE mass, (the difference in sum PBDE mass between the nestlings and 

the eggs from the same nest) were significantly different between years (Table 3.1, Table 3.2).  

Analyzing the years separately indicated that local-sourced sum PBDE mass in nestlings was not 

significantly different among sites in 2004, but was significantly different in 2005 (F=7.87, 

p=0.003 Table 3.1, Table 3.2).  Both Big Marsh and Indian Ridge nestlings had significantly 

greater local-sourced sum PBDE mass than the nestlings at Powderhorn (Table 3.1). The 

congeners with the greatest local-sourced sum PBDE masses were 47, 99, 153, and 183 (Figure 

3.4).  On average, eggs contributed 21 (  33 s.d.)% of PBDE mass to the nestlings. 

 

PCBs 

PCB congener detection in sediment samples was highly variable, with all but 3 congeners (153, 

180 and 187) having at least one result below the reporting or detection limit.  There were no 

differences among sites in the concentration of sum PCBs (Table 3.3, Table 3.4). Similarly, the 

suite of PCB congener concentrations were not significantly different among sites.  

 

Seventeen PCB congeners were detected in >50% of the benthic insect samples (44, 49, 52, 70, 

84&101, 95, 99, 105, 110, 118, 128, 138&163, 149, 153 and 187); however, there was only one 

sample at Big Marsh (due to prior metals analyses), so a t-test comparing Indian Ridge and 

Powderhorn was performed.  Sum PCB concentrations in benthic insects at Indian Ridge and 

Powderhorn were not significantly different (Table 3.3). Sum PCB concentrations in benthic 

insects for Big Marsh, Indian Ridge and Powderhorn with years pooled were 44, 11 and 15 ng/g, 

respectively (Table 3.4).    
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Seventeen congeners were detected in 3 or more of the five bolus samples (44, 70, 84&101, 95, 

99, 105, 110, 118, 128, 138&163, 149, 153, 187, 194 and 200/201). Mean sum PCB 

concentrations in boluses were not compared because there was only one sample at Powderhorn. 

The sum PCB means were 34, 64, and 57 ng/g at Big Marsh, Indian Ridge and Powderhorn, 

respectively (Table 3.4).  Suites of PCB congeners in both benthic and bolus insect samples were 

not tested with ANOSIM due to low replication.  

 

The sum PCB concentrations in the five bolus samples did not differ by origin (terrestrial vs 

aquatic Table 3.3).  The means were 51 (± 10 s.d.) ng/g for aquatic insects, and 49 (± 31) ng/g 

for terrestrial insects. Similarly, the suite of PCBs were not significantly different by origin 

(Table 3.3).    

 

All but three of the 30 PCB congeners analyzed (5&8, and 18) were detected in the majority of 

tree swallow eggs.  Mean sum PCB concentrations in eggs were not significantly different 

between years, and means were significantly different among sites when the years were pooled 

(Table 3.3, Table 3.4, yearly means shown).  Eggs at Indian Ridge had significantly lower sum 

PCB concentrations than those at Powderhorn (Table 3.3, means 541, 463, and 830 ng/g for Big 

Marsh, Indian Ridge and Powderhorn, respectively).  The suites of PCB congeners in eggs were 

significantly different between years (Table 3.3, Figure 3.5).  The suite of PCB congeners in 

eggs were not significantly different among sites in 2004, but were significantly different among 

sites in 2005 (R=0.192, p=0.002).  Eggs from 2005 at both Big Marsh and Indian Ridge had 

significantly different suites of PCB congeners from eggs at Powderhorn (Table 3.3, Figure 3.4).  

 

Most PCB congeners were detected in the majority of nestlings with the exception of 5&8, 18 

and 33.  Mean sum PCB concentrations in nestlings were not significantly different between 

years; therefore, years were pooled for site analysis (Table 3.3, Table 3.4).  Mean sum PCB 

nestling concentrations were significantly different among sites (Table 3.3).  Big Marsh nestlings 

had significantly greater sum PCB concentrations than those at Powderhorn (Table 3.3).  The 

suites of PCBs congeners in nestlings were significantly different between years, and were also 

significantly different among sites in both years (Figure 3.6, Table 3.3).  In 2004 both Big Marsh 
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and Indian Ridge nestlings had significantly different suites of PCB congener concentrations 

than those at Powderhorn, and again in 2005 (Table 3.3). 

 

Local-sourced sum-PCB mass in nestlings differed among years and among sites for both years 

(Table 3.3).  In both years, local-sourced sum-PCB mass in nestlings from Big Marsh was 

greater than in nestlings from the reference site, Powderhorn (Table 3.3).  Indian Ridge nestlings 

had significantly greater mass of PCBs than did nestlings at Powderhorn in 2004 (Table 3.3, 

Table 3.4, Figure 3.7).  Eggs contributed 48 (  77 s.d.)% of the nestling PCB mass. 

 

Organochlorine Pesticides 

Thirteen organochlorine pesticides were measured in all media; however, only DDD and DDE 

were detected in a majority of sediment samples.  DDT was found in five sediment samples 

(Table 3.5).  There were no significant differences in DDD or DDE concentrations in sediments 

among sites (Table 3.6).  

 

DDE was detected in all benthic and bolus insect samples, while DDD was detected in only one 

bolus sample and 2 benthic samples.  DDT and alpha chlordane were each only detected in one 

benthic sample (Table 3.5).  The remaining OCs were not detected in either of these two media 

types.  DDE concentrations in benthic insects were not significantly different between years, but 

there was only one sample from Big Marsh so concentrations of DDE in benthic insects at Indian 

Ridge were compared to concentrations at Powderhorn, which were not significantly different 

(Table 3.5, Table 3.6).  Similarly, there was only a single bolus insect sample from the reference 

site so site means were not compared (Table 3.5). There were no significant differences in DDE 

concentrations between the aquatic or terrestrial origin of the insects in the bolus samples (Table 

3.6).  However, the sample size was very low, and aquatic bolus insects had 2.5 times the 

concentration of DDE than did terrestrial insects (means of 12 and 5 ng/g respectively). 

 

In tree swallow eggs, DDD, DDE, DDT, trans-nonachlor, dieldrin and the sum of HPX and OXC 

were detected frequently enough for statistical analyses (Table 3.5).  Concentrations of trans-

nonachlor, DDD, and sum HPX and OXC in eggs were significantly different between years 

(Table 3.6), and therefore data from each year were analyzed separately. For the rest of the 
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analytes with sufficient detections, years were pooled.  DDE concentrations in eggs differed 

among sites, with eggs at Big Marsh having greater mean concentrations of DDE than the eggs at 

Powderhorn (Table 3.5, Table 3.6).  Concentrations of dieldrin and DDT in eggs were 

significantly different among sites (Table 3.6).  Dieldrin concentrations in eggs at Big Marsh and 

Indian Ridge were significantly lower than concentrations at the reference site and 

concentrations of DDT in eggs from Big Marsh were significantly lower than those at 

Powderhorn (Table 3.6).  Concentrations of sum HPX and OXC and DDD in eggs from 2004 

were significantly different among sites, though concentrations of trans-nonachlor in eggs were 

not (F=0.77, p=0.4728, Table 3.6).  Eggs from Big Marsh and Indian Ridge in 2004 had 

significantly greater DDD concentrations than eggs at Powderhorn; however, the eggs from 

Powderhorn in 2004 had significantly greater concentrations of sum HPX and OXC than eggs 

from Big Marsh and Indian Ridge (Table 3.6).  Eggs differed in concentrations of sum HPX and 

OXC and DDD and trans-nonachlor among the three sites in 2005 (Table 3.6).  Eggs from Big 

Marsh in 2005 had greater concentrations of DDD than eggs from Powderhorn (Table 3.6).  Eggs 

from both Big Marsh and Indian Ridge in 2005 had significantly lower concentrations of trans-

nonachlor and sum HPX and OXC than eggs at Powderhorn (Table 3.6). 

 

In nestlings DDD, DDE, dieldrin and trans-nonachlor, were detected frequently enough for 

statistical analyses (Table 3.5)  Concentrations of dieldrin, trans-nonachlor and DDE in nestlings 

differed between years (Table 3.6).  In both 2004 and 2005 DDE concentrations in nestlings 

were significantly different among sites, with the nestlings at Big Marsh having a significantly 

greater concentration of DDE than nestlings at Powderhorn (Table 3.6).  Concentrations of 

dieldrin and trans-nonachlor in 2004 nestlings were both significantly different among sites 

(Table 3.6).  Nestlings from Big Marsh in 2004 had significantly lower concentrations of dieldrin 

and trans-nonachlor than nestlings at Powderhorn (Table 3.6).  Nestling concentrations of 

dieldrin in 2005 were significantly different among sites (Table 3.6 and trans-nonachlor 

H=2.9228, p=0.2319).  In 2005, Indian Ridge nestlings had significantly lower concentrations of 

dieldrin than nestlings from the reference site (Table 3.6).  Pooled by year, concentrations of 

DDD were significantly different among sites, and the nestlings at Big Marsh and Indian Ridge 

had significantly greater concentrations of DDD than the nestlings at Powderhorn (Table 3.5, 

Table 3.6).   
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Local-sourced DDD and trans-nonachlor mass in nestlings were not significantly different 

between years (H=0.0646, p=0.7993; H=0.8891, p=0.3457, respectively, Table 3.7); however, 

DDE and dieldrin were (Table 3.6).  DDD mass was significantly different among sites with 

nestlings at Big Marsh and Indian Ridge having significantly greater local-source mass than 

nestlings at Powderhorn (Table 3.6).  Local-source trans-nonachlor mass in nestlings was not 

significantly different among sites (H=3.6243, p=0.1633).  In 2004 there were differences in 

local-sourced DDE and dieldrin mass (Table 3.6, Table 3.7), and no significant differences in 

DDE mass in nestlings when comparing to the reference site (F=3.30, p=0.0820; F=0.58, 

p=0.4553, comparing Big Marsh and Indian Ridge to Powderhorn respectively).  Local-source 

dieldrin mass in nestlings from Big Marsh was significantly lower than the mass in Powderhorn 

nestlings (though there was no difference for nestlings from Indian Ridge (Q=0.673, p>0.05) 

Table 3.6).  Local-sourced mass of DDE in 2005 was significantly different among sites (Table 

3.6, Table 3.7) with nestlings from Big Marsh having significantly greater local-sourced DDE 

mass than nestlings at Powderhorn (Table 3.6; Q=1.626, p>0.05 for Indian Ridge and 

Powderhorn).  Local-sourced mass of dieldrin in nestlings was not significantly different among 

sites in 2005 (H=1.0268, p=0.5985, Table 3.7).  Egg mass contributed 42 (  95 s.d.), 35 (  34 

s.d.), 31 (  34 s.d.) and 17 (  54 s.d.)% of nestling contaminant mass for DDD, DDE, trans-

nonachlor, and dieldrin, respectively.      

 

Diet  

Forty-three boluses were collected from nestling tree swallows in 2004 and 121 were collected in 

2005.  The insects identified from the bolus samples ranged from 13 (Indian Ridge, 2004) to 69 

(Indian Ridge, 2005) % insects of aquatic origin by count.  These proportions were calculated 

defining all Odonata and Diptera as aquatic and all Hemiptera, Hymenoptera, Lepidoptera and 

Arachnida of terrestrial origin (Table 3.8).  In 2005 boluses were identified to genus to determine 

origin, and weighed. Dry-weight biomass from 2005 was of slightly different proportions but all 

sites had greater than 50% aquatic biomass.     
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Discussion 

 

PBDEs 

Polybrominated diphenyl ethers are an emerging contaminant of concern that are neurotoxic, 

alter endocrine function and have been shown to impair fetal development in kestrels (Falco 

sparverius) (McKernan et al., 2009).  Reference information for passerines is sparse at this time 

and the only reference to tree swallows I found was a sum of 81 ng/g ww (assuming 5.4% lipid 

in converting to ww units) in tree swallow eggs nesting near New Bedford Harbor, MA., with the 

majority of the PBDE sum comprised of BDEs 99 and 47 (Jayaraman et al.2008).  Maximum 

mean concentrations of PBDEs in the eggs at the Calumet sites were similar (Powderhorn 2004: 

78 ng/g) with lowest concentrations being about half the New Bedford value (47 ng/g at Big 

Marsh in 2004).  Similar to the findings of Jayaraman et al. (2008), the greatest proportion of the 

sum PBDEs at the Calumet sites was comprised of BDEs 99 and 47.  Studies in Europe with a 

similar species, the great tit (Parus major), yielded far lower egg concentrations for the sum of 7 

PBDE congers: 4.19 to 6.85 ng/g ww (Dauwe et al., 2006), 0.4 to 13.6 ng/g (Van den Steen et 

al., 2009b), 20.4 ng/g ww (Van den Steen et al., 2009a) and 22 ng/g ww for the sum of 8 

congeners (Voorspoels et al., 2007, assuming 10% egg lipid proportion from Voorspoels et al., 

2007, and 5.4% nestling lipid from this study).  One study had a range of 3 – 79 ng/g ww for the 

sum of 7 congeners (Van den Steen et al., 2008), the maximum of which is similar to the 

concentrations observed in New Bedford and Calumet swallows.  Sum PBDE concentrations in 

bird eggs tend to be far greater in North America than Europe, and insectivorous species tend to 

have lower concentrations than piscivorous species.  The concentrations in eggs of Calumet tree 

swallows were 19 times lower than sum PBDE concentrations in Lake Michigan herring gull 

(Larus argentatus) eggs (Gautier et al., 2008).  These concentrations from Lake Michigan gulls 

may be the highest recorded in birds eggs (Chen and Hale, 2010) though when lipid normalized 

the greatest sum PBDE concentrations in bird eggs were found in osprey (Pandion haliaetus) 

eggs along the Willamette River (Henny et al., 2009), but wet weight geometric mean 

concentrations are about 14 times greater than those of Calumet swallow eggs. 

 

Fifteen-day-old great tit nestlings were found to contain PBDE concentrations (the sum of 7 

congeners) between 0.79 – 0.82 ng/g ww (Dauwe et al., 2006), which is approximately 20-70 
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times lower than the values in Calumet nestlings.  Voorspoels and colleagues (2007) sampled 

great tit body fat and found mean concentrations of 117 ng/g ww for the sum of 8 PBDE 

congeners, about twice the concentration of PBDEs from whole nestlings at Indian Ridge in the 

study.  Calumet nestling PBDE concentrations were comparable to the median concentration of 

the sum of about 10 PBDEs in muscle tissue of seven aquatic and terrestrial predatory birds in 

Belgium (range: 2.73 ng/g ww for kestrels, Falco tinnunculus to 50.4 ng/g ww for barn owls, 

Tyto alba) (Jaspers et al., 2006), but far below muscle concentrations of 141 ng/g ww in 

European sparrowhawks Accipiter nisus (Voorspoels et al., 2007).  Concentrations were 

converted from lipid weight using lipid proportions listed in respective studies.   

 

The only documentation I found of PBDEs in insects were for BDE 47, with concentrations in 

caterpillars in South Antwerp of 0.027 and 0.030 ng/g (Dauwe et al., 2006), being much lower 

than the mean concentrations of BDE 47 in terrestrial Calumet bolus insects (1.00 ng/g) and 

Calumet benthic insects (1.04 ng/g all sites) and far less than the mean of 3.09 ng/g in aquatic 

bolus insects.   

 

Comparisons among different species are problematic because of different physiology, habits, 

and toxicokenetics.  Moreover, when comparing the Calumet PBDE concentrations to 

concentrations from Europe it should be kept in mind that Europe banned penta and octa BDE 

compounds in 2004 (Van den Steen et al., 2009a).  The urban location of the Calumet sites 

should be noted as well, since higher sum PBDE concentrations have been found in passerine 

eggs in urban areas (Van den Steen et al., 2009c).  Lastly, the aquatic nature of a portion of the 

tree swallow diet may provide for different congener exposure than is provided by terrestrial 

insects (Law et al., 2003; Lindberg et al., 2004; Jaspers et al., 2006; Chen and Hale, 2010). 

 

PCBs 

Although PCB levels were highest in the “contaminated” sites it seems unlikely that these levels 

interfered with nesting and fledgling success.  A number of other studies have reported tree 

swallow nestling sum PCB concentrations that are approximately ten fold greater than those I 

observed in the Calumet nestlings (Ankley et al., 1993; Custer et al., 1998; Custer et al., 2005; 

Maul et al., 2006; Neigh et al., 2006; Spears et al., 2008; Maul et al., 2010) and some studies 
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reported concentrations  100 fold greater (Jones et al., 1993; Yorks, 1999; Custer et al., 2007b; 

Jayaraman et al., 2009).  Calumet nestling concentrations were roughly 500 times lower than 

those found in nestlings living along the Hudson River (96,000 ng/g; Echols et al., 2004), which 

at this time are the highest recorded in tree swallow nestlings.  Sum PCB nestling concentrations 

at Calumet were far lower than those of 2,272 ng/g ww in 15 day old nestlings in Saginaw Bay, 

MI., (Froese et al., 1998), and half that of 473 ng/g ww for 13 do nestlings in Southern Ontario 

(Papp et al., 2007) (assuming 14% lipid).  Calumet nestling values were somewhat similar to 

those of nestlings along the Wisconsin River WI. (300 ng/g ww) (Custer et al., 2002) and 

concentrations found in nestlings sampled near Vancouver BC waste water treatment plants 

(104ng/g ww) (Dods et al., 2005).The maximum mean sum PCB concentrations in the Calumet 

nestlings were about 7 times that of nestlings roosting downstream of pulp mills in western 

Canada 31.6 ppb ww (Harris and Elliott, 2000).  Effects on hatch success, such as there being 

more dead embryos or infertile eggs in a clutch with sum PCBs over 62,800 ng/g ww in eggs, 

(Custer et al., 2003) or endocrine disruption (114,000 ng/g in adults, McCarty and Secord, 

1999a; McCarty and Secord, 2000) in tree swallows has been shown to occur at much greater 

concentrations than were found in the nestlings at Calumet.  Therefore, Calumet swallows 

probably suffered few effects from the PCB loads they experienced. 

 

The PCB concentrations in Calumet area tree swallows were relatively low.  Sum PCB 

concentrations in tree swallow eggs in the Calumet region were more than two orders of 

magnitude less than the mean sum concentrations in eggs at the most contaminated sites along 

the Housatonic River, which are the highest yet found in tree swallow eggs (161,000 ng/g eggs; 

Custer et al., 2010a and 100,880ng/g ww for pipers; Custer et al., 2003).  Calumet egg 

concentrations were about one order of magnitude lower than those found in the Hudson River 

(Echols et al., 2004), a Massachusetts superfund site (Jayaraman et al., 2009), a Michigan 

superfund site (Neigh et al., 2006), and near Green Bay, Wisconsin (Jones et al., 1993).  Calumet 

concentrations in eggs were 4 to 10 times lower than found along the Hudson River (Custer et 

al., 2010b), or in a superfund site in southern Illinois (Spears et al., 2008; Maul et al., 2010) or 

near Green Bay WI (Ankley et al., 1993; Custer et al., 1998).  Concentrations of sum PCBs in 

eggs from the Calumet sites were similar to or greater than concentrations found in a number of 

other studies (DeWeese et al., 1985; Elliott et al., 1994; Froese et al., 1998; Yorks, 1999; Custer 
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et al., 2000; Custer et al., 2002; Custer et al., 2005).  Ecological effects, such as higher levels of 

nest abandonment (McCarty and Secord, 1999b) were not observed in the Calumet nests 

(Chapter 2, this thesis for overall success; personal observation). 

 

Tree swallows accumulate PCBs from their diet, so understanding their exposure through the 

concentrations found in local insects is useful for evaluating risks from contaminated local 

sediments.  Total PCB concentrations documented in insects from other tree swallow studies 

were far greater than the range of 7 to 64 ng/g I found in bolus and benthic insects in the 

Calumet.  Concentrations between 115 (caddisflies) to 630 (general gut contents) ng/g were 

found in southern Illinois (Maul et al., 2006), whereas samples from Michigan yielded a range 

between 90 – 682 ng/g (Nichols et al., 1995), but the greatest PCB concentrations in insects were 

between 70 and 18,800 ng/g and were collected in the Housatonic River study where the highest 

PCB concentrations have been found in tree swallow eggs (Custer et al., 2003). 

 

Mean sediment concentrations of sum PCBs at the Calumet sites are greater than the National 

Oceanic and Atmospheric Administration‟s (NOAA) derived upper effects threshold (UET) 

(Buchman, 2008) which is the “lowest reliable concentration” from microtox bioassays below 

which no effects were observed (Buchman, 2008).  Calumet sediment concentrations are also 

greater than the probable effects level (PEL) which delineates a PCB concentration above which 

adverse effects to sediment dwelling organisms are expected to frequently occur.  These are 

screening values and should be interpreted as indications of potential sediment toxicity that 

requires further evaluation.   

 

Local source nestling concentrations of 43,252 ng were found at a superfund site in southern 

Illinois (Maul et al., 2010) which were over an order of magnitude higher than local source 

concentrations found in the Calumet. 

 

Observed PCB concentrations are low in the media collected from the Calumet area sites.  This 

may help explain why the egg contribution to nestling PCB mass was approximately 50%, if 

local concentrations could not dilute the PCB mass in the egg.  Although concentrations are low, 

uptake is occurring, but the risk to tree swallows is low.  
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Organochlorine Pesticides 

Although DDT has been banned for general use in North America since the early 1970s, its 

breakdown products DDD and DDE were the major pesticide residues in sediments, insects, tree 

swallow eggs and nestlings at the Calumet sites.  Mean DDD concentrations in the Calumet 

nestlings were generally much higher than the range of concentrations found in old agricultural 

areas within Point Pelee National Park, Canada (4 – 8 ng/g) (Smits et al., 2005).  Maximum DDE 

concentrations in Point Pelee nestlings were higher than Calumet concentrations by about 40%, 

as were concentrations in nestlings sampled from a various wetlands in southern Ontario (22- 

559ng/g) (Bishop et al., 1995).  Concentrations of DDD and DDE in tree swallow nestlings have 

been associated with terrestrial prey (Smits et al., 2005); however, I did not find a difference in 

bolus concentrations relative to terrestrial or aquatic origin at the Calumet sites. 

 

The DDD and DDE concentrations in tree swallow eggs from the Calumet area were generally 

low and were much lower than in those collected from orchards in British Columbia (Elliott et 

al., 1994).  Maximum concentrations of DDE in tree swallow eggs in BC orchards were almost 

two orders of magnitude greater than those of Calumet eggs.  Concentrations of DDD in tree 

swallow eggs in Calumet were within the range found in BC orchard eggs; however, the 

maximum concentrations in BC eggs were approximately three times greater than the largest 

mean DDD concentration in Calumet swallow eggs.  Concentrations of DDE in tree swallow 

eggs in Southern Ontario orchards were two to ten times greater than the concentrations I found 

in Calumet tree swallow eggs (Mayne et al., 2005).  Mean maximum DDE concentrations in 

pipers (1 or 2- day old nestlings) collected along the Housatonic River were twice as high as 

mean maximum concentrations from the Calumet area (Custer et al., 2003).  

 

The DDE concentrations in diet samples from the literature range as high as 65 ng/g along the 

Housatonic R. (Custer et al., 2003) to concentrations of 0.37 ng/g in caterpillars from Belgium 

(Dauwe et al., 2006). Calumet insects sampled contained DDE concentrations ranging from 1 to 

56 ng/g.  

  

Of the five sediment samples in which DDT was detected, two samples had DDT concentrations 

greater than 100 ng/g dw, which is greater then the PEL, above which adverse effects on 
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sediment dwelling organisms are expected to occur (Buchman, 2008). All detected sediment 

DDD sample concentrations exceeded the PEL, and two exceed the severe effects level (SEL), 

above which sediments are considered severely polluted, and adverse effects on the majority of 

sediment dwelling organisms is to be expected. Observed DDE concentrations exceeded PEL 

concentrations in three samples and probable effects concentrations (PEC) in two samples 

(MacDonald et al., 2000). Calumet sediment samples did not uniformly exceed effects threshold 

levels, and these variable sediment concentrations help explain the lower concentrations in 

Calumet insect and tree swallow samples.  

 

Eggs vs Nestlings 

Sum PBDE concentrations in the Calumet tree swallow eggs were consistently dominated by 

BDEs 47 and 99 in both years and among the three sites.  These two congeners are most 

abundant in 2004 nestlings, but some of the nestlings at Powderhorn from 2004 also have a 

preponderance of BDE 183 in addition to 47 and 99.  Nestlings from 2005 had a slightly 

different profile with BDEs 47, 99 and 183 as most abundant, but with BDE 153 as a strong 

contributor to overall sum PBDE mass as well.  This difference of profiles between eggs and 

nestlings suggests active uptake of higher congeners by nestlings at the Calumet sites and 

metabolism of the higher congeners to lower ones in the eggs.  PCB profiles were similar 

through both years and among sites as well as between eggs and nestlings.  Congeners 84&101, 

118, 138&163, 153 and 180 were dominant.  OC pesticides did not follow a general pattern 

when comparing between egg and nestling profiles.  

 

LocalSource 

Bolus insect count and biomass suggested that tree swallows in the Calumet area consumed a 

variable diet of insects from both aquatic and terrestrial sources.  When there was an emergence 

of weevils (Curculionidae), the terrestrial beetles were found in high numbers in boluses, 

reinforcing how opportunistic the swallows are with their food choice.  Diet samples are an 

accurate “snapshot”, of the actual food the nestling is eating; however, they only provide 

periodic confirmation of diet items so some caution should be exercised in drawing conclusions 

based on these snapshot results.   
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The proportion of contaminant mass in Calumet nestlings that is attributable to the egg varied 

tremendously depending on the compound.  Eggs accounted for approximately one fifth of 

nestling PBDE mass and about one half of the nestling PCB mass.  There was a great deal of 

variation in this measurement and is likely due in part to the fact that the eggs are merely from 

the same nest as the nestling that was analyzed as well as the mathematical inaccuracies of using 

mean egg moisture values in conversions.  Nonetheless, these proportion estimates are useful in 

providing an estimate regarding the source of persistent contaminants found in nestlings of 

migratory species. Examining local source contaminant mass in nestlings highlighted that 

PBDEs in Calumet nestlings are mostly acquired locally.  The PCB results differed between 

nestling and local source as did those for the OCs.  Eggs contributed greater than 30% of the 

mass of these contaminants, altering the interpretation of the nestling results alone.  These 

differences between nestling and local source results should be considered when researchers are 

interested in site specific understanding of contaminant availability.  

 

Local risk  

Approximately 20% of the PBDE contaminant mass in nestlings was attributed to the egg, 

confirming local uptake in the Calumet region.  Eggs had fairly similar concentrations and 

profiles, but nestlings acquired different amounts in their local diet depending on which site they 

were collected from.  Big Marsh and Indian Ridge both posed the greatest risk of uptake among 

the Calumet sites, but, concentrations in tree swallow nestlings in the Calumet region were low, 

compared to piscivorous or predatory species of North American birds.  Comparing Calumet 

nestlings to insectivorous and predatory birds in Europe, concentrations may be considered 

intermediate.  Concentrations of PBDEs have been noted to cause growth effects, oxidative 

stress and thyroid, vitamin A, glutathione homeostasis and immunomodulatry changes in 

developing kestrels with egg BDE 71 concentrations of 18,700ng/g (cited  in Chen and Hale, 

2010), though a recent study with chicken (Gallus gallus), mallard (Anas platyrhynchos), and 

kestrel (Falco sparverius) eggs suggested a lowest-observed-effect level (LOEL) of pentaBDEs, 

to be 1,800 ng/g egg wet weight (McKernan et al., 2009).  This is approximately 45 times the 

measured pentaBDE concentrations in the Calumet tree swallow eggs.  In contrast, it was 

suggested that a concentration of about half the LOEL reported by McKernan et al. may impact 

reproductive success of wild osprey (Pandion haliaetus) eggs in the Pacific northwest of the 
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USA (Henny et al. 2009); however, this concentration is still far higher than what is seen in 

Calumet tree swallow eggs.   

  

Concentrations of PCBs in nestlings at the Calumet sites were acquired equally from maternal 

egg input and from their diet.  Big Marsh posed the greatest risk for uptake among the three sites, 

but the concentrations were nonetheless low.  Laboratory studies suggest LD50s in various bird 

species with diet PCB concentrations ranging from mid 60 to 6,000 ng/g diet (Rice et al., 2003).  

Calumet bolus insects had sum PCB concentrations of 64 ng/g. The concentrations available at 

the Calumet sites may pose problems for sensitive birds; however, there is a wide range of 

toxicity of different PCB congeners, and PCB toxicity of 60 ng/g would likely depend which 

congeners contributed to the sum value.  The most toxic congener (e.g. 126) was not found in the 

Calumet nestlings.  Brain concentrations of 310,000 ng/g were considered diagnostic of PCB 

induced mortality in altricial birds (Rice et al., 2003).  This is about 2000 times greater than the 

concentrations in Calumet swallow nestlings.  

 

The OC pesticide exposure varied among the sites, with greatest risks from DDE at Big Marsh, 

and from DDD at Big Marsh and Indian Ridge, whereas nestlings at Powderhorn were exposed 

to more dieldrin and trans-nonachlor.  Concentrations of DDE  in tree swallow eggs were about a 

tenth of the concentration which causes almost complete reproductive failure in brown pelicans 

(Pelecanus occidentalis), the avian species most sensitive to DDE (Blus, 2003). Concentrations 

of DDD in eggs that were associated with greatly reducing a population of western grebes 

(Aeschmorphorus occidentalis) in California (Blus, 2003) were about 250 times that of the 

Calumet swallow eggs.  Reduced productivity was found in shags (Phalacrocorax aristotelis) 

when egg dieldrin concentrations were 100 times that of Powderhorn tree swallow egg 

concentrations (Blus, 2003). 

 

 

Conclusions 

 

Tree swallow eggs and nestlings in the Calumet area of Illinois had low concentrations of a 

variety of organic pollutants.  Sediment samples from the Calumet sites exceeded a number of 
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contaminant screening criteria.  Nonetheless, existing literature does not indicate that observable 

reproductive effects would occur in tree swallows at the concentrations of these Calumet 

contaminants.  Diet concentrations of sum PCBs may be considered high for sensitive species.  

Diet and sediment sample analyses did not confirm terrestrial or aquatic contaminant origin in 

the Calumet tree swallows.  Using a normalizing function to determine local contaminant mass 

yielded different results and more insight into local uptake than only evaluating nestling 

contaminant concentrations. Localized contaminant uptake occurred and could be an issue for 

PBDEs, concentrations of which are trending higher through time in bird species in North 

America (Chen and Hale, 2010).  As far as I have determined, this is the first published account 

of PBDE concentrations in tree swallow eggs and nestlings. 



 99 

 
 

Figure 3.1:  Map of Illinois, USA with expanded view of study sites. 

Big Marsh 

Indian Ridge 

Powderhorn 
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Table 3.1.  Test statistics and p values for PBDE concentration statistical comparisons for all 

media from three wetlands in the Calumet area, IL.   

 

Variable    Comparison  Test statistic p  

 

Bolus BDE 71 origin  t=2.96 0.060 

Bolus BDE47 origin  t=1.27 0.296 

Bolus BDE99 origin  t=0.55 0.636 

 

Egg sum  years  F=0.83 0.367 

   Egg sum 2004 and 2005 site  F=1.85 0.166 

 

Egg  suite years  R=0.10 0.021 

   2004 sites  R=0.04 0.166 

   2005 sites  R<0.01 0.385 

 

Nestling sum  years  H=10.42 0.001   

   2004 sites  H=5.67 0.059 

   2005 sites  F=6.81 0.005 

      BM vs PL sites  F=8.62 0.007 

      IR vs PL sites  F=12.05 0.002 

 

Nestling suite years  R=0.55 <0.001 

   2004 sites  R=0.26 0.001 

      BM vs PL sites  R=0.55 0.001 

      IR vs PL sites  R=0.27 0.005 

   2005 sites  R=0.32 0.001 

      BM vs PL sites  R=0.45 0.003 

      IR vs PL sites  R=0.60 0.001 

 

Local-sourced sum years  F=8.34 0.006 

   2004 sites  F=2.34 0.117 

   2005 sites  F=7.87 0.003 

      BM vs PL sites  F=10.14 0.004 

      IR vs PL sites  F=13.61 0.001 
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Figure 3.2. PBDE congener concentrations in tree swallow eggs (ng/g wet weight) for 2004 and 

2005 at three sites in Calumet, Illinois. 
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Figure 3.3. PBDE congener concentrations in tree swallow nestlings (ng/g wet weight) for 2004 

and 2005 at three sites in Calumet, Illinois.   
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 Local source PBDE in nestlings
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Figure 3.4. Local-sourced PBDE mass in nestlings for 2004 and 2005 at three sites in Calumet, 

Illinois. Local –sourced PBDE mass = mass of PBDE congener in nestlings minus mass of 

PBDE congener in eggs from same nest box.     
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Table 3.3.  Test statistics and p values for PCB concentration statistical comparisons for all 

media from three wetlands in the Calumet area, IL. 

 

Variable    Comparison  Test statistic p  

 

Sediment sum sites  H=0.60 0.741 

 

Sediment suite sites  R=-0.15 0.859 

 

Benthic sum IR vs PL sites  t=-0.63 0.571 

 

Bolus sum origin  F=0.01 0.916 

 

Bolus suite origin  R=-0.17 0.600 

 

Eggs sum years  H=0.52 0.470 

   Eggs sum pooled sites  H=6.38 0.041 

      IR vs PL sites  Q=2.52 <0.05 

 

Eggs suite years  R=0.30 0.001 

   2004 sites  R<0.00 0.446 

   2005 sites  R=0.192 0.002 

      BM vs PL sites  R=0.26 0.003 

      IR vs PL sites  R=0.26 0.008 

 

Nestling sum years  F=2.65 0.109 

   Nestling sum pooled  sites  F=10.65 <0.001 

      BM vs PL sites  F=19.23 <0.001 

 

Nestling suite years  R=0.19 0.001 

   2004 sites  R=0.43 0.001 

      BM vs PL sites  R=0.80 0.001 

      IR vs PL sites  R=0.24 0.014 

   2005 sites  R=0.16 0.006 

      BM vs PL sites  R=0.16 0.040 

      IR vs PL sites  R=0.16 0.020 

 

Local-source years  F=4.72 0.034 

   Local-source 2004 sites  F=6.14 0.007 

      BM vs PL sites  F=12.22 0.002 

      IR vs PL sites  F=5.10 0.033 

   Local-source 2005 sites  F=8.86 0.001 

      BM vs PL sites  F=15.77 <0.001 
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Figure 3.5. Profile of PCB congener concentrations in tree swallow eggs (ng/g wet weight) for 

2004 and 2005 at three sites in Calumet, Illinois. 
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Figure 3.6.  Profile of PCB congener concentrations in 14-day-old nestling carcasses in 2004 and 

2005 at three sites in Calumet, Illinois. 
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Table 3.6.  Test statistics and p values for OC pesticide concentration statistical comparisons for 

all media from three wetlands in the Calumet area, IL.  Most comparisons that are not significant 

are not shown. 

 

Variable    Comparison  Test statistic p  

 

Sediment DDD sites  F=4.07 0.067 

Sediment DDE sites  F=0.43 0.669 

 

Benthic DDE IR vs PL sites  t=1.12 0.362 

 

Bolus DDE origin  t=1.19 0.336 

 

Eggs DDE sites  F=5.80 0.005 

   BM vs PL sites  F=10.01 0.003 

 

Eggs dieldrin sites  H=23.15 <0.001 

   BM vs PL sites  Q=4.56 <0.05 

   IR vs PL sites  Q=3.62 <0.05 

 

Eggs DDT sites  F=4.82 0.012 

   BM vs PL sites  F=9.60 0.003 

 

Eggs trans-nonachlor years  H=4.18 0.041 

   2005 sites  F=6.04 0.006 

      BM vs PL sites  F=8.06 0.008 

      IR vs PL sites  F=6.75 0.015 

 

Eggs DDD years  F=5.06 0.028 

   2004 sites  F=19.31 <0.001 

      BM vs PL sites  F=8.63 <0.001 

      IR vs PL sites  F=10.60 0.003 

   2005 sites  F=7.90 0.002 

      BM vs PL sites  F=15.72 <0.001 

 

Eggs Sum HPX+OXC years  F=4.89 0.031 

   2004 sites  F=4.72 0.018 

      BM vs PL sites  F=9.15 0.006 

      IR vs PL sites  F=4.23 0.005 

   2005 sites  F=4.72 0.018 

      BM vs PL sites  F=9.97 0.004 

      IR vs PL sites  F=7.89 0.009 
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Table 3.6.  Cont.  

 

Variable    Comparison  Test statistic p  

 

Nestling dieldrin years  H=6.76 0.009 

   2004 sites  H=8.67 0.013 

      BM vs PL sites  Q=2.73 <0.05 

   2005 sites  H=7.12 0.029 

      IR vs PL sites  Q=2.63 <0.05 

 

Nestling Trans-nonachlor years  H=4.95 0.026 

   2004 sites  H=10.37 0.006 

      BM vs PL sites  Q=3.21 <0.05 

 

Nestling DDE years          F=4.36 0.041 

   2004 sites  F=9.43 <0.001 

      BM vs PL sites  F=14.71 <0.001 

   2005 sites  F=10.44 <0.001 

      BM vs PL sites  F=20.33 <0.001 

 

Nestling DDD sites  H=32.81 <0.001 

   BM vs PL sites  Q=5.72 <0.05 

    IR vs PL sites  Q=3.38 <0.05 

 

Local-source DDE years  H=7.10 <0.001 

   2004 sites  F=3.80 0.037 

   2005 sites  H=14.40 <0.001 

      BM vs PL sites  Q=3.81 <0.05 

 

Local-source dieldrin years  H=4.58 0.032 

   2004 sites  H=7.72 0.021 

      BM vs PL sites  Q=2.65 <0.05 

 

Local-source DDD sites  H=27.39 <0.001 

   BM vs PL sites  Q=5.22 <0.05 

   IR vs PL sites  Q=3.08 <0.05
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Abbreviations 

 

AB = Alberta 

ALHs aliphatic hydrocarbon 

BROD = benzyloxyresorufin O-dealkylase 

Cd = cadmium 

CHC = chlorinated hydrocarbons 

ChE = cholinesterase 

Co = county 

CO = Colorado 

Cr = chromium 

Cu = copper 

DDD = dichlorodiphenyldichloroethane 

DDE = dichlorodiphenyldichloroethylene 

DDT = dichlorodiphenyltrichloroethane 

DNA = deoxyribonucleic Acid 

DO = day old 

ELARP = experimental Lakes Area Research Project 

EROD = ethoxyresorufin-O-deethylase ethoxyresorufin O-deethylase 

GLSLRB = Great Lakes St Lawrence River Basin 

Hg= mercury 

HpCDD = heptachlorodibenzodioxin 

HpCDF = heptachlorodibenzofuran 

HPCV = half-peak coefficient of (nuclear DNA) variation 

HxCDD = hexachlorodibenzodioxin 

HxCDF = hexachlorodibenzofuran 

Ni = nickel 

NP = national park 

OC = organochlorine 

OCDD = octachlorodibenzodioxin 

OCDF = octachlorodibenzofuran 

OP = organophosphorus 

NWR = national wildlife refuge 

PAH = polycyclic aromatic hydrocarbon 

Pb = lead 

PCB = polychlorinated biphenyl 

PCDD = polychlorinated dibenzo-p-dioxin 

PCDF = polychlorinated dibenzofurans  
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Abbreviations (continued) 

 

PeCDD = pentachlorodibenzodioxin 

PeCDF = pentachlorodibenzofuran 

SLRB = Saint Lawrence River Basin 

TCDD = tetrachlorodibenzo-p-dioxin  

TCDD-EQ = tetrachlorodibenzo-p-dioxin equivalent  

TCDF = tetrachlorodibenzofuran 

 

 


