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Abstract

This dissertation mainly focuses on coordinated pricing and inventory man-

agement problems, where the related background is provided in Chapter 1.

Several periodic-review models are then discussed in Chapters 2, 3 4 and 5,

respectively.

Chapter 2 analyzes a deterministic single-product model, where a price ad-

justment cost incurs if the current selling price is changed from the previous

period. We develop exact algorithms for the problem under different condi-

tions and find out that computation complexity varies significantly associated

with the cost structure.

Chapter 3 develops a single-product model in which demand of a period de-

pends not only on the current selling price but also on past prices through the

so-called reference price. Strongly polynomial time algorithms are designed

for the case without no fixed ordering cost, and a heuristic is proposed for

the general case together with an error bound estimation. Moreover, our

illustrates through numerical studies that incorporating reference price effect

into coordinated pricing and inventory models can have a significant impact

on firms’ profits.

Chapter 4 discusses the stochastic version of the model in Chapter 3 when

customers are loss averse. It extends the associated results developed in

Gimpl-Heersink (2008) and proves that the reference price dependent base-

stock policy is proved to be optimal under a certain conditions.

Instead of dealing with specific problems, Chapter 5 establishes the preser-

vation of supermodularity in a class of optimization problems. This property

and its extensions include several existing results in the literature as special

cases, and provide powerful tools as we illustrate their applications to sev-

eral operations problems: the stochastic two-product model with cross-price

effects, the two-stage inventory control model, and the self-financing model.
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Chapter 1

Introduction

1.1 Motivations

Thanks to recent advances in sophisticated information technologies such

as enterprise resource planning systems and electronic tags, companies are

now able to effectively gather information from customers and make dynamic

pricing with a relatively small amount of effort. For example, it has been

observed that Amazon.com, one of the leading e-commerce retailers, “ob-

tain[s] all sorts of information . . . at a minimum cost” to “adjust the prices

of identical goods to correspond to a customer’s willingness to pay (Weiss

and Mehrotra, 2001)”. Other examples include the airline industry, hotel

management, car rental agencies and etc.

Capability of dynamic pricing has prompted a rethink over classical rev-

enue management problems and inventory management problems. Due to

the traditional organizational structures within a firm, typical decisions on

the revenue management are made at first in order to maximize the total

revenue. Such decisions include activities like establishing the price impact

on demand, roughly estimating the sales target and etc. On the invento-

ry management side decisions like replenishment are then made in order to

minimize the associated cost, where demands are assumed exogenously de-

termined from an operations perspective. The two kinds of problems both

aim to match supply and demand, however, separately through marketing

decisions and inventory decisions.

Because in practice demands are usually price sensitive, one can expect

that incorporating the innovative dynamic pricing mechanism brings a cer-

tain flexibility to inventory management. By taking the advantage of coor-

dinated dynamic pricing and inventory management, it is no surprise that

companies can better match supply and demand hence improve their profit.
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The academics in response developed and analyzed a variety of mathematical

models that integrate the two kinds of decisions. Coordinated pricing and

inventory models have enjoyed a rapid growth in the past decade. See, for

example, Federgruen and Heching (1999); Petruzzi and Dada (1999); Chen

and Simchi-Levi (2004a,b); Song et al. (2009); Huh and Janakiraman (2008)

and etc. Significant progress has been made since the publication of the sem-

inal paper by Whitin (1955), where an economic order quantity model and a

newsvendor model both with price-dependent demand are analyzed. Detailed

literature review will be presented for each model considered in later chapter-

s. For a comprehensive review of this area, we refer to Chen and Simchi-Levi

(2011) for an up-to-date survey. The reader can also consult some other ex-

cellent resources such as Eliashberg and Steinberg (1991); Yano and Gilbert

(2003); Elmaghraby and Keskinocak (2003) and Chan et al. (2004).

This thesis belongs to the stream of research on dynamic pricing and in-

ventory problems, where several periodic-review models are respectively dis-

cussed in Chapters 2 – 5. For these models, Figure 1.1 conceptually illustrates

the typical decision process over the whole planning horizon. In all our the

horizon is divided into finite number of periods and indexed by 1, 2, · · · , T .

At the beginning of each period t, the system state xt, e.g., the inventory

level of a product, is observed, then pricing and replenishment decisions are

simultaneously made. The pricing decision will influence demand Dt in this

period or demands in later periods. In all our models, we assume zero lead

time. That is, orders delivered instantaneously. During the period, demand,

which depends on the current price and/or historical prices and maybe some

uncertain components, arrives and satisfied by on-hand inventory. Revenue

is obtained by the end of the period. We assume the replenishment decision

zt incurs a certain cost, unused inventory after satisfying demand is fully

carried over to the next period incurring a inventory holding cost; moreover,

under stochastic settings we assume unsatisfied demand is backlogged with a

shortage backlogging cost and will be fulfilled by end of the planning horizon.

At the beginning of the next period, the system state is updated to xt+1. The

same process will repeat in period t = 1, · · · , T sequentially, where the initial

state x1 is given as the system input. The objective is to maximize the total

profit by appropriately deciding {p1, · · · , pT} and {z1, · · · , zT}.
Incorporating two kinds of decisions will clearly lead to additional efforts.

As has been evidenced in various empirical studies from the economics litera-
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Figure 1.1: Coordinated pricing and inventory management

ture, price adjustment is not free and associated costs could be too significant

to be ignored in many business settings. This observation motivates Chapter

2, where a deterministic single-product model with price adjustment costs is

analyzed. This model takes into account the price adjustment cost, which

basically says a cost is charged whenever the selling price at the current pe-

riod is different from the one at the previous period, where the associated

could depend on the price adjustment directions, i.e., either marked up or

marked down. Such model includes several related models analyzed in the

literature as special cases. For example, if the price adjustment cost is signifi-

cantly high, then static pricing strategies should be applied, which reduces to

the model analyzed by Kunreuther and Schrage (1973). In this chapter, we

develop exact algorithms for solving the problem under different conditions,

and discuss the corresponding computational complexity. Interestingly, com-

putational complexity of our algorithms varies significantly with respect to

the structure of price adjustment cost functions. Several numerical examples

are also provided which show that dynamic pricing strategies may out per-

form static pricing strategies even when price adjustment cost accounts for

a significant portion of the total profit.

Chapter 3 considers a deterministic single-product model with reference

price effects. Notice that the major stream of revenue management litera-

ture and almost all existing inventory management models exclusively as-

sume that the demand of a period only depends on the selling price at the

current period. This assumption, appropriate to model impulse purchasing,

is unreasonable when consumers may react to firms’ pricing strategies. As

demonstrated by plenty of empirical evidences, it would lead to improper

managerial decisions if consumers’ reaction to pricing strategies is not ap-

propriately accounted for. An attempt of this chapter is to fill this gap by

3



incorporating reference price effects into coordinated pricing and inventory

management models. Specifically, a deterministic single-product model is

developed, where demand in a period depends not only on the current selling

price but also on past prices through the so-called reference price. Strongly

polynomial time algorithms are designed for the case without no fixed order-

ing cost, and a heuristic is proposed for the general case together with an

error bound estimation. Our numerical study illustrates that incorporating

reference price effects can have a significant impact on firms’ profits. In ad-

dition, sensitivity analysis is provided on profit with respect to three kinds

of input parameters: the relative contribution of reference price effects to

demands, the memory factor in the reference price model and the relative

magnitude of loss and gain.

Chapter 4 discusses reference price effects model under stochastic settings

when customers are loss averse. This chapter extends the associated results

developed in Zhang (2011), where the author mainly focus on the loss neutral

case. In this chapter, the reference price dependent base-stock policy is

proved to be optimal under a certain conditions.

It turns out in many stochastic inventory management problems the preser-

vation of a certain property under dynamic programming recursions plays a

key role to characterize the structure of either the profit/cost-to-go functions

or the optimal policies. Chapter 5 establishes a new preservation property

of supermodularity under optimization operations. Compared to the well-

known preservation result stated in Topkis (1998), our main result relaxes

the lattice requirement on constraint sets. On the other hand we have to

assume concavity of the objective function and impose a requirement on

the dimension of the parameter vector. Despite the additional assumptions,

our approach and its extensions provide powerful tools which can be used

in many applications. Specifically we will discuss the following operations

models in this chapter: the stochastic two-product model with cross-price ef-

fects, the two-stage inventory control model, and the self-financing model. In

contrast to papers originally introduce these models, applying our approach

gives significantly simpler proofs and provides additional insights.

4



1.2 Organization of the thesis

Chapter 2 analyzes a deterministic model with price adjustment costs. Sec-

tion 2.1 introduces the background and reviews the literature. Section 2.2

presents the mathematical formulation of this problem and discuss some

special cases. In Sections 2.3 and 2.4, exact algorithms together with cor-

responding computational complexity are provided to solve problem (2.2),

where to illustrate the idea clearly, we first analyze the case without fixed

ordering cost and focus solely on the pricing plan in Section 2.3, then move

to the general case in Section 2.4 and deal with the interaction of ordering

plan and pricing plan. We also consider a case in which selling prices are

restricted to a predetermined finite set in Section 2.5.

Chapter 3 develops a deterministic model where demand of a period de-

pends not only on the current selling price but also past observed prices

through the memory-based reference price. It focuses on developing effec-

tive algorithms for solving the model. Section 3.2 presents its mathematical

formulation. Section 3.3 analyzes the case without fixed ordering cost and

develop strongly polynomial time algorithms to several special cases. The

general model is dealt with in Section 3.4, followed by a numerical study in

Section 3.5. Finally, the last section gives some suggestions for future re-

search. To maintain a clear presentation, all technical proofs are presented

in the appendix of this chapter.

Chapter 4 consider a stochastic version of the model studied in Chapter

3.The main problem is described in Section 4.1. Section 4.2 then proves that

a reference price dependent base-stock policy is optimal when customers are

loss averse or loss neutral case.

Chapter 5 studies a new preservation property of supermodularity under

optimization operations when the constraint set may not be a lattice, where

the background and related literature are introduced in Section 5.1. Section

5.2 presents the main result of this chapter, as well as some extensions and

associated discussion. Section 5.3 considers three applications to illustrate

the usage of the new preservation property. Section 5.4 summarizes this

chapter and provides some future research problems. Most proofs of this

chapter are provided in the appendix unless otherwise specified.

Finally, the last chapter concludes this thesis by pointing out some direc-

tions for future research.
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Chapter 2

Costly Price Adjustment Model with
Deterministic Demand

2.1 Background and literature review

Coordinated pricing and inventory management problem with deterministic

demand has been extensively studied in many aspects. However, a predom-

inate assumption made in the majority of existing literature is that price

adjustment is costless. Yet, as evidenced by various empirical studies from

the economics literature (e.g., Bergen et al., 2003), cost associated with price

adjustments may be very significant to be ignored in many business settings.

For instance, Levy et al. (1997) report that price adjustment may generate

enormous costs for major retailer chains, and take up as much as 40% of the

reported profits for some of these chains. There are usually two kinds of costs

associated with price adjustment. One is called the managerial cost which

corresponds to “the time and attention required of managers to gather the

relevant information and to make and implement decisions”; and the other

is the physical cost (or menu cost) which associates with physical activities

such as manually changing shelf prices, “constructing new price lists, print-

ing and distributing new list prices and monthly supplemental price sheets,

and notifying suppliers(Zbaracki et al., 2004)”. Both costs may be signif-

icant in retailing and other industries (see Levy et al., 1997; Slade, 1998;

Aguirregabiria, 1999; Bergen et al., 2003; Kano, 2006).

The purpose of this chapter is to incorporate price adjustment costs into co-

ordinated pricing and inventory models. Specifically, we develop and analyze

a deterministic single-product periodic-review model over a finite planning

horizon. On the supply side, the setting is similar to the classic economic

lot sizing model. Namely, to satisfy demand for a finite horizon, replenish-

ment is made at the beginning of each period incurring fixed and variable

ordering costs and inventory is carried over from one period to the next in-
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curring holding costs. On the demand side, a selling price is determined at

the beginning of each period together with the replenishment decision, and

demand of a period deterministically depends on the selling price in the cur-

rent period. In contrast to the majority of the literature, we assume that a

price adjustment cost is charged if the current selling price is changed from

the previous period. The objective is to determine a coordinated ordering

and pricing plan so as to maximize the total profit over the planning horizon.

This model includes several coordinated pricing and inventory models an-

alyzed in the literature as special cases. For example, if price can be changed

freely without incurring any adjustment cost, it reduces to the problem ana-

lyzed in Wagner and Whitin (1958a) and Thomas (1970). If the price adjust-

ment cost is so high that prohibits any price change, then a constant price

should be determined at the beginning of the planning horizon hence it re-

duces to the static pricing model analyzed in Kunreuther and Schrage (1973);

Gilbert (2000) and van dan Heuvel and Wagelmans (2006). Great progress

has been made recently on this class of models. For example, in deterministic

settings, Deng and Yano (2006) and Geunes et al. (2006) extend the dynam-

ic pricing model and Geunes et al. (2008) extend the static pricing model

by incorporating ordering capacity constraints. However, almost all exist-

ing works in the literature predominately ignore the costs associated with

price changes. As the only exceptions to our best knowledge, Aguirregabiri-

a (1999) and Chen et al. (2008) incorporate these costs into their models

in stochastic settings, where the former concentrates more on empirical s-

tudies and the latter focus on deriving structural properties of the optimal

policies. Two other related papers are Netessine (2006), who recognizes the

importance of the impact of price adjustment costs on pricing and inventory

decisions and formulates a deterministic continuous-time model to optimize

the timing of a fixed number of price changes, and Celik et al. (2009), who an-

alyze a continuous-time stochastic revenue management problem with costly

price changes. Celik et al. (2009) characterize the optimal pricing policies for

settings with ample inventory and develop several heuristics based on fluid

approximations. However, their model does not take into account inventory

replenishment decisions and thus does not capture the intricate interaction

of ordering and pricing.

Our work is the first to introduce price adjustment costs into coordinated

pricing and inventory models in deterministic settings. Since our model takes

7



into account both fixed ordering costs and price adjustment costs, it is much

more involved to handle the interaction of ordering plans and pricing plans.

Still, we manage to develop exact algorithms to solve this problem under

different conditions. The main idea is to partition the planning horizon by

price adjustment periods such that each member of the partition consists of

consecutive periods with a constant price. The total profit is then appro-

priately allocated to these members. Each member corresponds to a static

pricing problem and an equivalent longest path problem is finally constructed

to obtain the optimal sequence of price adjustment periods.

The remainder of this chapter is organized as follows. In Section 2.2 we

present the mathematical formulation of this problem and discuss some spe-

cial cases. In Sections 2.3 and 2.4 we derive exact algorithms to solve problem

(2.2) and present their related computational complexity. To illustrate the

idea clearly, we first analyze the case without fixed ordering cost in Section

2.3, which allows us to focus solely on the pricing plan. The general case is

handled in Section 2.4, where the interaction of ordering plans and pricing

plans is taken into account. We also present an extension to our model in-

troduced in Section 2.2, as well as a case in which selling prices are restricted

to a predetermined finite set, in Section 2.5. We then present a numerical

study in Section 2.6. Finally, we conclude the paper in the last section with

some suggestions for further research.

2.2 Model and preliminaries

Consider a firm that makes replenishment and pricing decisions to satisfy a

sequence of demands of a single product over a finite planning horizon with

T periods. At the beginning of each period t, an ordering quantity zt and

a selling price pt are determined simultaneously, where pt belongs to some

closed interval [L,U ]. The replenishment incurs the cost

ktδ(zt) + ctzt,

where kt, ct ≥ 0, δ(0) = 0 and δ(y) = 1 whenever y > 0. That is, it consists of

the fixed ordering cost kt when zt > 0, and a variable ordering cost ctzt. Since

we focus on a deterministic model, without loss of generality, assume that

8



orders are delivered instantaneously and no backlogging is allowed. Inventory

left at period t, denoted by It, is carried over to the next period with the

marginal holding cost ht. Similar to Kunreuther and Schrage (1973) and

van dan Heuvel and Wagelmans (2006), demand of period is modeled as a

deterministic function of selling price p as

Dt(p) = atd(p) + bt, ∀p ∈ [L,U ], t = 1, . . . , T

where at, bt are positive coefficients, and d(p), referred to as the base demand

function, is a strictly decreasing function in term of p.

In contrast to most papers in the literature on coordinated pricing and

inventory models, we assume that a cost f(P̃ − P ) incurs when price is

changed to P̃ from the value P in the previous period, where f(0) = 0 and

for some non-negative U+ and U−,

f(P̃ − P ) =

U+ if P < P̃ ,

U− if P > P̃ .

Note that all results in the following still hold when the price adjustment

cost is time dependent. For simplicity, express the price adjustment cost as

f(P̃ − P ) = U α̃, ∀P 6= P̃ ,

where α̃, called the price change indicator, specifies the direction of price

adjustment and satisfies the consistency condition

α̃ ∈ {+1,−1}, α̃(P̃ − P ) > 0. (2.1)

That is, α̃ = +1 indicates markup and α̃ = −1 indicates markdown.

Similar price adjustment cost structures have been proposed and analyzed

in the literature. For example, Aguirregabiria (1999) and Kano (2006) con-

sider symmetric costs U+ = U−. Our model allows asymmetric price adjust-

ment costs to reflect the fact that firms may take different actions in response

to price markdown and price markup. For instance, a firm may advertise a

price decrease. However, it is very unlikely for a firm to advertise a price

increase.

The objective of the firm is to decide ordering quantities zt and prices pt
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in all periods over the planning horizon so as to maximize the total prof-

it without any backlogging. Mathematically, the firm faces the following

coordinated pricing and inventory problem:

maximize
T∑
t=1

{ptDt − f(pt − pt−1)− [ktδ(zt) + ctzt + htIt]} (2.2a)

subject to Dt = atd(pt) + bt, t = 1, 2, · · · , T, (2.2b)

It = It−1 + zt −Dt, t = 1, 2, · · · , T, (2.2c)

It ≥ 0, zt ≥ 0, pt ∈ [L,U ], t = 1, 2, · · · , T, (2.2d)

where ptDt, f(pt−pt−1), ktδ(zt)+ctzt and htIt in (2.2a) respectively represent

the one-period revenue, the price adjustment cost, the ordering cost and the

inventory holding cost in period t. Demand of period t depends on the selling

price pt through (2.2b). Constraint (2.2c) denotes the inventory balance

equation, which together with It ≥ 0 in (2.2d) ensures that no demand is

backlogged. The feasible sets of the inventory level It, order quantity zt and

selling price pt are given in (2.2d). Finally, we assume that I0 = 0 and p0 = 0,

where f(p1 − p0) = f(p1) can be regarded as the cost of setting up the price

p1 in the first period.

Several important pricing and inventory models can be cast as special cas-

es of the above problem. First, when L = U in (2.2d), (2.2) reduces to

the classical economic lot sizing problem, which is first, to our best knowl-

edge, analyzed in Wagner and Whitin (1958b). The authors show that it

can be solved in O(T 2) by appropriately constructing an acyclic network and

finding a shortest path in it. More efficient algorithms with a running time

O(T log T ) are proposed by Aggarwal and Park (1993); Federgruen and Tzur

(1991) and Wagelmans et al. (1992), respectively. The so-called zero inven-

tory ordering (ZIO for short) property, plays a key role in these works. It

basically says that there exists an optimal ordering plan such that by fol-

lowing the plan, an order is placed precisely when the inventory level drops

to zero. The ZIO property also implies that if t is a reorder period (i.e.,

It−1 = 0), then the optimal ordering plan over periods {1, 2, · · · , t − 1} can

be determined independently of that over {t, t+ 1, · · · , T}.
Second, if no price adjustment cost is incurred, i.e., f(∆) = 0 for any ∆,

then (2.2) reduces to the coordinated inventory and dynamic pricing model
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studied by Wagner and Whitin (1958a) and Thomas (1970). Since price in

each period can be independently decided, ZIO property still holds hence one

can solve an equivalent longest path problem in an acyclic network in O(T 2)

time to determine the optimal ordering plan.

Finally, if the price adjustment cost is very high, i.e., f(∆) is significant-

ly large for any nonzero ∆, then (2.2) reduces to the static pricing model

analyzed by Kunreuther and Schrage (1973). In this case, problem (2.2)

becomes

maximize
p∈[L,U ]

T∑
t=1

{p[atd(p) + bt]− C(d(p))} ,

where the function C(d) given below denotes the minimal total inventory-

related cost with respect to the base demand d,

C(d) = minimize
T∑
t=1

[ktδ(zt) + ctzt + htIt]

subject to It = It−1 + zt − (atd+ bt), t = 1, 2, · · · , T,
I0 = 0, It ≥ 0, zt ≥ 0, t = 1, 2, · · · , T.

Kunreuther and Schrage (1973) show that C(d) is concave and piecewise

linear in d. Building upon a heuristic algorithm proposed in Kunreuther

and Schrage (1973), van dan Heuvel and Wagelmans (2006) derive an exact

algorithm to solve this problem. They prove that if C(d) consists of ST linear

pieces, then all these linear pieces can be determined essentially by solving

ST economic lot sizing problems. Because it takes O(T log T ) time to solve

a T -period economic lot sizing problem, we make the following assumption

throughout this chapter.

Assumption 2.1. For a T -period coordinated inventory and static pricing

model, the function C(d) consists of O(ST ) linear pieces and its expression

can be determined in O(STT log T ) time.

We make two remarks on Assumption 2.1. First, if there is no speculative

motive on holding inventories, i.e. ct + ht ≥ ct+1 for all t < T , then the

T -period economic lot sizing problem can be solved in O(T ) time (see, e.g.,

Federgruen and Tzur, 1991). Therefore in this case we can remove the term

log T from Assumption 2.1. Second, Gilbert (2000) proves that ST = O(T )

when bt = 0 and all cost parameters are time-independent. Finally, van dan
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Heuvel and Wagelmans (2006) claim that ST = O(T 2) for the general case.

However, as pointed out by van dan Heuvel (private communication), there

is a flaw in their proof and it is not clear whether it can be fixed or not. We

also impose the following assumption on the base demand function.

Assumption 2.2. Given any constants A1 and A2, the function pd(p) +

A1d(p) + A2p in term of p has O(1) local maximizers in [L,U ], and it takes

an O(1) time to find all of these local maximizers.

A weaker version of Assumption 2.2 is used by van dan Heuvel and Wagel-

mans (2006), who implicitly assume that a global maximizer of any function

of the form pd(p) + A1d(p) + A2p in [L,U ] can be found in an O(1) time.

As we will see later, it is not sufficient to consider only the global maximizer

for our problem. Nevertheless, when the d(p) is linear, pd(p) +A1d(p) +A2p

is concave hence both our assumption and van dan Heuvel and Wagelmans

(2006)’s hold and are equivalent.

Before continuing on the analysis, we briefly introduce the basic idea to

solve problem (2.2). Specifically, we will partition the planning horizon such

that each member of the partition consists of a sequence of consecutive pe-

riods with a constant price. For convenience of the presentation, we provide

an alternative yet equivalent representation of a price sequence. Specifically,

for a given price sequence {p1, p2, · · · , pT}, we call {(sn, αn, Pn) : 1 ≤ n ≤ N}
is the associated pricing plan where

1. 1 = s1 < s2 < . . . < sN < sN+1 = T + 1 be the price adjustment

periods such that pt = Pn for all sn ≤ t < sn+1 and 1 ≤ n ≤ N ;

2. αn are the price change indicators at period sn for all 1 ≤ n ≤ N .

Note that the period T + 1 is introduced as an artificial price adjustment

period for notation simplicity in latter discussion. Moreover, for any two

triples (s, α, P ), (s̃, α̃, P̃ ) with s and s̃ being two consecutive price adjustment

periods, the consistency condition (2.1) below holds,

1 ≤ s < s̃ ≤ T + 1, α, α̃ ∈ {−1,+1}, (2.3)

Clearly there is a one-to-one correspondence between a price sequence and a

pricing plan defined as above satisfying (2.1) and (2.3).

12



2.3 Zero fixed ordering cost case

We assume in this section that no fixed ordering cost is charged, i.e., kt = 0

for all periods t. Define c(s, t) as the marginal cost of satisfying the demand

of period t by an order placed at period s, i.e.,

c(s, t) = cs + hs + · · · .+ ht−1, ∀1 ≤ s ≤ t ≤ T + 1.

It is straightforward to see that the optimal ordering periods is independent

of pricing plans and can be recursively obtained by letting τ1 = 1 and

τm+1 = min
{
T + 1,min[t : τm < t ≤ T, ct ≤ c(τm, t)]

}
, ∀m ≥ 1.

That is, it is optimal to place an order at period t if the associated cost is no

more than the cost of satisfying the demand of period t by earlier orders.

Figure 2.1 illustrates a typical (not optimal) ordering plan in this case,

where orders are placed at period τ1 = 1, τ2 = 4 and τ3 = 8. Once the order-

ing plan is determined, by ZIO property the ordering quantities at periods 1,

4 and 8 should respectively covers demands from period 1 to period 3, from

period 4 to period 7, and in period 8. Furthermore, the sequence of price

{p1, . . . , p8} can be determined independently.

1 2 3 4 5 6 7 8

τ1, p1, p2, p3 τ2, p4, p5, p6, p7 τ3, p8

Figure 2.1: A typical coordinated pricing and ordering plan in zero fixed
ordering cost case

What remains is to to decide the optimal pricing plan. Let c̄t = c(τm, t)

for τm ≤ t < τm+1. Given a pricing plan {(sn, αn, Pn) : 1 ≤ n ≤ N}, one can

verify that the minimal total ordering and inventory holding cost is∑
s1≤t<s2

c̄tDt(P1) +
∑

s2≤t<s3

c̄tDt(P2) + · · ·+
∑

sN≤t<sN+1

c̄tDt(PN),

the total price adjustment cost is Uα1 +Uα2 + · · ·+UαN and the total revenue

is
∑N

n=1R(Pn; sn, sn+1), where

R(P ; s, s̃) = P [Ds(P ) +Ds+1(P ) + · · ·+Ds̃−1(P )]
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denotes the accumulated revenue from periods s to s̃ − 1 when a constant

price P is used in these periods. Therefore by defining

G(P ; s, α, s̃, α̃) = R(P ; s, s̃)−
∑
s≤t<s̃

c̄tDt(P )− Uα,

the associated total profit can be expressed as

G(P1; s1, α1, s2, α2) +G(P2; s2, α2, s3, α3) + · · ·+G(PN ; sN , αN , sN+1, αN+1),

where αN+1 could be either +1 or −1.

In the above discussion, we in fact partition the planning horizon into

sub-planning horizons each of which consists of consecutive periods with a

constant price. For the sub-planning horizon {sn, · · · , sn+1 − 1}, the total

profit is G(Pn; sn, αn, sn+1, αn+1). Observe that Pn−1 6= Pn and Pn 6= Pn+1

imply that the sequence {(sn, αn) : 1 ≤ n ≤ N} remains unchanged if we

slightly modify Pn. Therefore a necessary condition for an optimal pricing

plan {(sn, αn, Pn) : 1 ≤ n ≤ N} is that for each n, Pn is a local maximizer of

the function G(P ; sn, αn, sn+1, αn+1) on [L,U ].

We are ready to convert problem (2.2) to a longest path problem on an

acyclic network (V , E). Let P(s, α, s̃, α̃) be the set of all local maximizers of

G(P ; s, α, s̃, α̃) on [L,U ]. Define the node set V and the link set E as

V =
{
v = (P, s, α, s̃, α̃) : P ∈ P(s, α, s̃, α̃) and (2.3) holds

}
∪ {v0,ve},

E =
{
〈v, ṽ〉 : v = (P, s, α, s̃, α̃), ṽ = (P̃ , s̃, α̃, s′, α′) ∈ V and (2.1) holds

}
,

where v0 = (P , 1,+1, 1,+1), ve = (P , T + 1,−1, T + 1,−1) for some P < L

are artificial nodes serving as the origin and the destination of the longest

path to be constructed. A typical node v 6∈ {v0,ve} specifies two consecutive

price adjustment periods s and s̃ together with their associated price change

indicators α and α̃, and a constant price P , restricted to be a local maximizer

of the profit function G(p; s, α, s̃, α̃) on [L,U ], used between periods s and

s̃ − 1. There is a link between two nodes v and ṽ only if the consistency

condition (2.1) holds. Note that for the two artificial nodes v0 and ve, values

of their price components do not correspond to any real price. Any P less

than min[L,U ] is sufficient to ensure that there is no incoming link to the

origin v0 and any node v adjacent to v0 is of the form v = (P, 1,+1, s, α).
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Similarly, there is no outgoing link to the destination ve and its adjacent

nodes must have the form v = (P, s, α, T + 1,−1). By Assumption 2.2, each

P(s, α, s̃, α̃) has O(1) elements hence the network (V , E) has O(T 2) nodes

and O(T 3) links.

For each link 〈v, ṽ〉 ∈ E , assign the length ` (v, ṽ) = 0 if v = v0 and

G(P ; s, α, s̃, α̃) if v = (P, s, α, s̃, α̃) 6= v0. To calculate all the link lengths, we

need to find local maximizers of G(P ; s, α, s̃, α̃) for all possible combinations

(s, α, s̃, α̃). This amounts to solving O(T 2) maximization problems, each of

which has an objective function in the form A0Pd(P ) +A1d(P ) +A2P +A3

for some constants Al, l = 0, 1, 2, 3 with A0 ≥ 0. From Assumption 2.2, all

these link lengths can be computed in an O(T 2) time.

Observe that any path from v0 to ve in the acyclic network specifies a

sequence {(sn, αn, Pn) : 1 ≤ n ≤ N}. In addition, its length is equal to

the associated total profit of the sequence. On the other hand, any optimal

pricing plan can be represented as a sequence {(sn, αn, Pn) : 1 ≤ n ≤ N}
with Pn being a local maximizer of the function G(P ; sn, αn, sn+1, αn+1), and

thus corresponds to a path from v0 to ve. Therefore, determining an optimal

pricing plan is equivalent to finding a longest path in the acyclic network

G = (V , E), which can be solved in O(|E|) by applying well known algorithms

from the network flow literature, where |E| denotes the number of elements

in E . In summary, we have the following results.

Theorem 2.1. When kt = 0 for all t = 1, 2, · · · , T , solving problem (2.2) is

equivalent to finding a longest path from node 1 to node T + 1 in the acyclic

network (V , E). Moreover,

(a) this network contains O(T 2) node and O(T 3) links;

(b) it takes an O(T 2) time to calculate all the link lengths in the network;

(c) a longest path from v0 to ve can be determined in O(T 3) time.

It is worth mentioning that the computational complexity can be reduced

if the price adjustment costs are symmetric, i.e., U+ = U− = U . In this case,

a given optimal pricing plan can be represented as a sequence {(sn, Pn) : 1 ≤
n ≤ N}, where {sn : 1 ≤ n ≤ N} are the price adjustment periods and Pn

is the price used from periods sn to sn+1 − 1. In contrast to the asymmetric

price adjustment cost case, here Pn is a global maximizer of the accumulated
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profit function (from periods sn to sn+1 − 1)

G(P ; sn, sn+1) = R(P ; sn, sn+1)−
∑

sn≤t<sn+1

c̄tDt(P )− U.

This allows us to find an optimal pricing plan by solving a longest path

problem yet in a different acyclic network network (V , E), where

V = {1, 2, · · · , T + 1}, E = {〈s, s̃〉 : s, s̃ ∈ V , s < s̃}.

The length of 〈s, s̃〉 ∈ E is given by maxP∈[L,U ] G(P ; sn, sn+1). Note that this

network contains O(T ) nodes and O(T 2) links, and it takes an O(T 2) time to

calculate all the link lengths and find a longest path from nodes 1 to T + 1.

2.4 General case

In this section, we consider the general case with fixed ordering costs. Similar

to Section 2.3, we partition the planning horizon such that each member

of the partition consists of consecutive periods with a constant price and

decompose the total profit over the planning horizon as the summation of

the profit incurred over all members of the partition. Figure 2.2 shows a

typical coordinated pricing and ordering plan in this case, where prices are

adjusted in periods s2 = 2 and s3 = 6, and orders are placed in periods

τ1 = 1, τ2 = 4 and τ3 = 8.

1 2 3 4 5 6 7 8

s1 s2 s3

τ1 τ2 τ3

Figure 2.2: A typical coordinated pricing and ordering plan

However, the problem is significantly more complicated than the zero fixed

ordering cost case as analyzed in the previous section. When there exist fixed

ordering costs, the optimal ordering plan cannot be determined independent

of the pricing plan due to the interaction of the two kinds of decisions. The

key is to carefully take into account the ordering period associated to each

price adjustment period. For this purpose, consider two consecutive price

16



adjustment periods s and s̃. Let τ and τ̃ be their corresponding ordering

periods, that is, demands of periods s and s̃ are respectively satisfied by

orders in periods τ and τ̃ . See Figure 2.3 for the illustration.

Constant price Ps s̃

τ τ̃possible ordering periods

Figure 2.3: Price adjustment periods s, s̃ and associated ordering periods
τ, τ̃

From the ZIO property, we have that

either τ = τ̃ ≤ s < s̃ or τ ≤ s < τ̃ ≤ s̃, (2.4)

where τ = τ̃ means that no replenishment is made between periods τ +1 and

s̃−1. In the case τ ≤ s < τ̃ ≤ s̃, the ZIO property implies that the demands

from periods τ to s are filled by the order at period τ whereas the demands

from periods τ̃ to s̃ are filled by the order at period τ̃ . Therefore the marginal

ordering and holding cost to satisfy demand in period s is c(τ, s). Moreover,

if no order is placed at period t for some t ≥ s, then the marginal order and

holding cost is c(τ, t). Observe that by the definition of c(s, t),

c(τ, t) = cτ + hτ + · · ·+ hs + · · ·+ ht−1 = c(τ, s) + hs + · · ·+ ht−1.

It indicates that if introduce an artificial replenishment at period s and let

the artificial marginal ordering cost be c(τ, s), then the marginal ordering

and holding cost to satisfy demand in period t is equal to c(τ, t). Figure 2.4

illustrates the idea to introducing artificial replenishment at price adjustment

periods.

The above observation plays the key role for solving the problem in general

case. For any (τ, s, τ̃ , s̃) satisfying (2.4), assume a constant price P is used

between periods s and s̃ − 1. Define d = d(P ) as the corresponding base

demand. Let C(d; τ, s, τ̃ , s̃) be the minimal ordering and inventory holding

cost accumulated from period s up to period s̃ − 1. There are two cases. If
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Constant price Ps s̃

τ τ̃possible reorder periods

Figure 2.4: Introducing artificial replenishment at price adjustment periods

τ < τ̃ then we can express

C(d; τ, s, τ̃ , s̃) = kτ (1− δ(s− τ)) + C1(d; τ, s, τ̃)

+ kτ̃δ(s̃− τ̃) + C2(d; τ̃ , τ̃ , s̃),

And when τ = τ̃ , we have that

C(d; τ, s, τ̃ , s̃) = kτ (1− δ(s− τ)) + C2(d; τ, s, s̃),

where C1(d; τ, s, τ̃) denotes the variable inventory costs accumulated from

period s to τ̃−1 provided demand in period s is satisfied by an order in period

τ , and C2(d; τ, s, s̃) =
∑s̃−1

t=s c(τ, t)(atd + bt) denotes the variable inventory

costs accumulated from periods s to s̃− 1 by ordering at period τ . Observe

that from the above expression, the fixed ordering cost kτ̃ is allocated to

periods {s, . . . , s̃− 1} only if s ≤ τ̃ < s̃ to avoid double counting.

It remains to decide the expression of C1(d; τ, s, τ̃). Interestingly, this can

be determined independent of periods out of {s, . . . , s̃ − 1} by solving the

following economic lot sizing problem,

C1(d; τ, s, τ̃) = minimize [c(τ, s)zs + hsIs] +
∑
s<t<τ̃

[ktδ(zt) + ctzt + htIt]

subject to It = It−1 + zt − (atd+ bt), s ≤ t < s̃,

Is−1 = 0, It ≥ 0, zt ≥ 0, s ≤ t < s̃,

In this problem, the variable zs denotes the quantity ordered at period τ

and carried over to satisfy the demands at period s or even later periods.

Inside the first pair of square brackets in the objective function, the term

c(τ, s)zs represents the variable ordering cost and the holding cost for inven-

tory ordered at period τ and carried over to s, and the term hsIs denotes the
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additional holding cost for inventory carried over to later periods. Although

the order is placed at period τ , for cost accounting purpose it can be regarded

as an order placed at period s by setting Is−1 = 0 and the variable ordering

cost equal to c(τ, s).

Similar to Section 2.3, the accumulated profit between the two consecutive

price adjustment periods s and s̃ taking into account their corresponding

ordering periods τ and τ̃ and price adjustment indicators α and α̃ can be

written as

G(P ; τ, s, α, τ̃ , s̃, α̃) = R(P ; s, s̃)− C(d(P ); τ, s, τ̃ , s̃)− Uα.

Using the same argument as in Section 2.3, we can prove that there is no loss

of optimality to restrict P in P(τ, s, α, τ̃ , s̃, α̃), the set of local maximizers of

the function G(P ; τ, s, α, τ̃ , s̃, α̃) for p ∈ [L,U ]. In addition, we can convert

problem (2.2) to a longest path problem in some acyclic network (V , E),

where the node set V and the link set E are defined by

V =
{
v = (P, τ, s, α, τ̃ , s̃, α̃) : P ∈ P(τ, s, α, τ̃ , s̃, α̃), (2.3) and (2.4) hold

}
∪{v0 = (P , 1, 1,+1, 1, 1,+1)},
∪{ve = (P , T + 1, T + 1,−1, T + 1, T + 1,−1)},

E =
{
〈v, ṽ〉 : v = (P, τ, s, α, τ̃ , s̃, α̃) ∈ V ,
ṽ = (P̃ , τ̃ , s̃, α̃, τ ′, s′, α′) ∈ V , (2.1) holds

}
,

where P < L and v0,ve respectively denote the origin and the destination

of the longest path to be constructed. Like the construction in the previous

section, there is no incoming link to node v0 and any node adjacent to v0

has the form (P, 1,+, 1, τ, s, α) when (2.1) holds.

For each link 〈v, ṽ〉 ∈ E , assign the length

` (v, ṽ) =

0, if v = v0,

G(P ; τ, s, α, τ̃ , s̃, α̃), if v = (P, τ, s, α, τ̃ , s̃, α̃) 6= v0.

Following the same argument as in the previous section, we know that the

longest path from v0 to ve in the acyclic network corresponds to an optimal

pricing plan to problem (2.2). The optimal ordering plan can be determined

when the pricing plan is known by solving a classical economic lot sizing
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problem.

We now discuss the computational complexity of this algorithm. To ob-

tain all the link lengths in the network, we need to know all O(T 3) func-

tions Ci(d; τ, s, t) for i = 1, 2. Clearly all C2(d; τ, s, t) can be obtained

in an O(T 3) time. From Assumption 2.1, it takes an O(STT
4 log T ) time

in total to determine the expressions of all functions C1(d; τ, s, t). There-

fore, it takes an O(STT
4 log T ) time to determine the expressions of all

G(P ; τ, s, α, τ̃ , s̃, α̃). Because C(d; τ, s, τ̃ , s̃) has O(ST ) linear pieces by As-

sumption 2.1, each G(P ; τ, s, α, τ̃ , s̃, α̃) consists of O(ST ) pieces of the form

A0Pd(P ) + A1d(P ) + A2P + A3 for some coefficients Al, l = 0, 1, 2, 3 with

A0 ≥ 0. By Assumption 2.2, the set P(τ, s, α, τ̃ , s̃, α̃) has at most O(ST )

elements and can be determined in an O(ST ) time. Therefore, the acyclic

network G = (V , E) has O(STT
4) nodes and O(S2

TT
6) links whose lengths

can be constructed in an O(STT
4 log T ) time.

In summary, we have the following theorem on problem (2.2).

Theorem 2.2. Solving problem (2.2) is equivalent to finding a longest path

from node v0 to node ve in the acyclic network (V , E) constructed as above.

Moreover,

(a) this network has O(STT
4) nodes and O(S2

TT
6) links;

(b) it takes an O(STT
4 log T ) time to construct the network;

(c) a longest path from v0 to ve can be found in an O(S2
TT

6) time.

Again the computational complexity can be reduced for the symmetric

price adjustment cost case with U+ = U− = U by converting problem (2.2)

to a longest path problem in a different acyclic network G = (V , E). In this

network, let

V = {v = (τ, s) : 2 ≤ τ ≤ s ≤ T} ∪ {v0,ve},
E =

{
〈v, ṽ〉 : v = (τ, s), ṽ = (τ̃ , s̃) and (2.4) holds

}
,

where v0 = (1, 1) and ve = (T + 1, T + 1) are the origin and the destination

of the longest path to be constructed. For any link 〈v, ṽ〉 with v = (τ, s) and

ṽ = (τ̃ , s̃), assign a length ` (v, ṽ) = 0 if v = v0 and maxP∈[L,U ] G(P ; τ, s, τ̃ , s̃)

otherwise, where G(P ; τ, s, τ̃ , s̃) = R(P ; s, s̃) − C(d(P ); τ, s, τ̃ , s̃) − U . The
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equivalence of the longest path problem in the acyclic network and problem

(2.2) should be clear from the analysis of this section and the previous one.

Note that we have O(T 2) nodes and O(T 4) links in the network (V , E) and

it takes a total O(STT
5 log T ) time to obtain all the link lengths.

2.5 Extensions and the finite price levels case

We introduce some extensions to the model discussed so far in this section.

First, similar discussion can be made if the feasible set of selling price is

not stationary, i.e., p ∈ Pt in period t, t = 1, · · · , T . The only difference

appears in the definition of P(τ, s, α, τ̃ , s̃, α̃), which becomes the set of local

maximizers of G(P ; τ, s, α, τ̃ , s̃, α̃) in Ps ∩ · · · ∩ Ps̃−1.

Second, the demand function can be generalized to Dt(p) = βt + αtd(p),

where d(p), called the price effect (see Kunreuther and Schrage, 1973, for ex-

ample), is some decreasing function in p. In this case, G(P ; τ, s, α, τ̃ , s̃, α̃) =

R(P ; s, s̃) − C(d(P ); τ, s, τ̃ , s̃) − Uα, which consists of pieces of the form

A1pd(p) +A2d(p) +A3p+A4 for some coefficients A1, · · · , A4. We can solve

problem (2.2) in a similar way by considering all local maximizers of these

functions. The computational complexity relies on the number of local max-

imizers and whether they can be found efficiently.

Finally, Celik et al. (2009) argue that the price adjustment cost may also

depend on the inventory level I on hand of the form cI + f(∆), where cI

is the inventory-related cost. Our approach can be extended to the price

adjustment cost function

f(P̃ , P, I) = V1(P ; α̃) + V2(P̃ ; α̃) + U(I; α̃),

such that (2.1) holds for P, P̃ and α̃, where U(I;α) and Vi(p;α), i = 1, 2, can

be general continuous functions in I and p, respectively. In this case, the

total profit relies on the constant price P in periods s, · · · , s̃− 1 through the

following function

R(P ; s, s̃)− C(−P ; τ, s, τ̃ , s̃)− [V1(P ; α̃) + V2(P ;α) + U(Is;α)] ,

where Is =
∑s−1

t=τ (bt − atP ) is the amount of inventory carried to period s.

This problem can be dealt in a similar way.
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So far we assumed that price can take all possible values within the interval

[L,U ]. As can be seen from the previous section, the complexity of our exact

algorithm may be very high partly due to the possibly large number of local

maximizers of the function G over [L,U ]. A remedy to alleviate this high

complexity is to restrict to a finite number of price levels in [L,U ]. By doing

this, we hope that a few price levels may capture a large portion of the

total profit. Thus, in this section, we analyze problem (2.2) with the price

admissible set [L,U ] replaced by a discrete set P with S predefined price

levels. It is also worth mentioning that our approach here is consistent with

many business practices in which candidates of price levels are determined a

priori.

Problem (2.2) with the constraint p ∈ P can be handled using the same

approach of Section 2.4. The only difference is that to construct the acyclic

network, we can simply focus on all feasible price candidates in P rather

than finding all local maximizers of the function G over [L,U ]. Specifically,

in the new acyclic network (V , E), let

V = {(P, τ, s, α) : P ∈ P , τ ≤ s}
∪{v0 = (P , 1, 1,+),ve = (P , T + 1, T + 1,−)},

E = {〈v, ṽ〉 : v = (P, τ, s, α), ṽ = (P̃ , τ̃ , s̃, α̃), (2.1) and (2.4) hold},

where P < minP . This network contains O(ST 2) nodes and O(S2T 4) links.

Moreover, for each link 〈v, ṽ〉 ∈ E , say v = (P, τ, s, α), ṽ = (P̃ , τ̃ , s̃, α̃),

assign the length

` (v, ṽ) =

0, if v = v0

G(P, τ, s, α, τ̃ , s̃, α̃), if v 6= v0.
,

Observe that for a given P and a tuple (τ, s, τ̃), C(d(P ), τ, s, τ̃ , s̃) can

be calculated by solving an economic lot sizing problem of the form

C(d(P ), τ, s, τ̃ , τ̃) with additional O(T ) addition operations for all s̃ ≥ τ̃ .

Thus, for a given P , all values C(d(P ), τ, s, τ̃ , s̃) and G(P, τ, s, α, τ̃ , s̃, α̃) can

be derived in an O(T 4 log T ); moreover, the length ` (v, ṽ) is independent of

the value of P̃ . Thus, it takes an O(ST 4 log T ) time to obtain all link lengths

in (V , E).

We now present a result parallel to Theorem 2.2.
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Theorem 2.3. Assume that the price admissible set P has S elements. Then

solving problem (2.2) is equivalent to finding a longest path from node v0 to

node ve in the acyclic network (V , E) constructed as above. Moreover,

(a) the network contains O(ST 2) nodes and O(S2T 4) links;

(b) it takes an O(ST 4 log T ) time to obtain all the link lengths;

(c) a longest path from v0 to ve can be found in an O(S2T 4) time.

Table 2.1 summarizes the sizes of the constructed acyclic networks and the

computational complexity of preparing all link lengths and finding longest

paths under different settings in our model, where recall that ST denotes

the number of linear pieces of C(d), the cost function corresponds to a T -

period static pricing and inventory control problem. One can observe that the

computational complexity heavily depends on the structure of cost functions.

Table 2.1: Computational complexity

Nodes Links Obtain lengths Total

kt = 0, U+ = U− O(T ) O(T 2) O(T 2) O(T 2)
kt = 0, O(T 2) O(T 3) O(T 2) O(T 3)

O(T 2) O(T 4) O(STT
5 log T ) O(STT

5 log T )
General case O(STT

6) O(STT
4 log T ) O(STT

4 log T ) O(S2
TT

6)
S price levels O(ST 2) O(S2T 4) O(ST 4 log T ) O(S2T 4)

2.6 Numerical Study

In this section we present an example typical in our numerical study to

illustrate the effectiveness of dynamic pricing strategies. Consider a 12-period

instance with d(p) = 30− p for p ∈ [20, 30],

kt = 150, ct = 20, ht = 5, V ±t = 2, U±t = 15,

for t = 1, 2, . . . , 12, and

{a1, a2, · · · , a12} = {5, 1, 3, 2, 2, 3, 5, 1, 10, 10, 5, 5},
{b1, b2, · · · , b12} = {4, 2, 2, 1, 13, 1, 1, 2, 2, 2, 13, 9}.
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In addition to solving problem (2.2) with continuous prices, we also solve

the problem with finite number of price levels and compare the two cases.

Specifically, we consider eight price admissible sets with the numbers of price

levels ranging from 3 to 10. These price admissible sets are derived by divid-

ing the interval [20, 30] equally and then rounding to an integers. That is,

for n = 3, · · · , 10,

Pn =
{

20 +
⌊

10k
n−1

⌋
: 0 ≤ k < n

}
,

where n represents the numbers of elements in Pn and bxc denotes the largest

integer number no more than x.

By applying the algorithms developed in previous sections, we obtained

the optimal profits, pricing and ordering plans as reported in Table 2.2 for

the continuous price case and for cases with predefined price admissible sets

P10, · · · ,P3, respectively. The optimal profit and solution associated with

the joint static pricing and inventory problem are also presented in the last

column. Moreover, we report the ratio between the optimal profit of each

different case with the optimal profit of the continuous price case in the third

line of the table.

From Table 2.2, we make several observations. First, the dynamic pricing

strategy significantly outperforms the static pricing strategy even when the

price adjustment cost accounts for a considerable portion of the total profit.

In fact, in the continuous price case, the price adjustment cost accounts for

38.4% of the total profit, while the static pricing strategy results in more

than 19% profit off.

Second, the optimal profit of problem (2.2) with finite number of price lev-

els depends on the values of price levels, and does not increase monotonically

with respect to the number of price levels. For instance, in the example,

when the price admissible set is P5, P7 or P9, the corresponding profit is

96.5% of the optimal profit of the continuous price case, while for P8 the

corresponding profit is only 92%.

We tested many other examples and found that these observations are valid

when the profit margin is relatively small. However, if the profit margin is

high, solving problem (2.2) with four to five price levels derived by equally

dividing the interval P provides very good approximation to problem (2.2)

with continuous price levels.
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Table 2.2: Numerical example

General P10 P9 P8 P7 P6 P5 P4 P3 Static

Profit 177.1 166 171 163 171 166 171 109 155 143.2

% 100 93.7 96.5 92.0 96.5 93.7 96.5 61.5 87.5 80.8

Prices
t = 1 25.4 26 25 26 25 26 25 27 25 26.1
t = 2 29.8 30 30 30 30 30 30 30 30 26.1
t = 3 29.8 30 30 30 30 30 30 30 30 26.1
t = 4 29.8 30 30 30 30 30 30 30 30 26.1
t = 5 29.8 30 30 30 30 30 30 27 30 26.1
t = 6 29.8 26 30 26 30 26 30 27 30 26.1
t = 7 29.8 26 30 26 30 26 30 27 30 26.1
t = 8 29.8 26 30 26 30 26 30 27 30 26.1
t = 9 25.4 26 25 26 25 26 25 27 25 26.1
t = 10 25.4 26 25 26 25 26 25 27 25 26.1
t = 11 25.4 26 25 26 25 26 25 27 25 26.1
t = 12 28.2 28 28 29 28 28 28 27 25 26.1

Orders
t = 1 33.2 29 34 29 34 29 34 24 34 29.7
t = 2 0 0 0 0 0 0 0 0 0 0
t = 3 0 0 0 0 0 0 0 0 0 22.7
t = 4 0 0 0 0 0 0 0 0 0 0
t = 5 19.3 26 17 26 17 26 17 29 17 33.7
t = 6 0 0 0 0 0 0 0 0 0 0
t = 7 0 27 0 27 0 27 0 21 0 26.7
t = 8 0 0 0 0 0 0 0 0 0 0
t = 9 47.8 42 52 42 52 42 52 32 52 41.4
t = 10 47.8 42 52 42 52 42 52 32 52 41.4
t = 11 53.9 52 57 47 57 52 57 52 38 61.4
t = 12 0 0 0 0 0 0 0 0 34 0
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It is also interesting to see how price adjustment cost affects the number

of prices in the optimal pricing plan for problem (2.2) with continuous price

levels. To do this, we test our current instance with price adjustment cost

scaled by a factor ε ranging from 0 to 3.6. As we can see from Table 2.3, the

larger the scale factor ε, the less the number of price levels in the optimal

pricing plan. This observation is consistent with our intuition. However, we

also find examples in which the number of price levels in the optimal pricing

plan does not decrease monotonically with the price adjustment cost.

Table 2.3: Number of price levels

# 10 9 8 7

ε [0, 0.03) [0.03, 0.12) [0.12, 0.15) [0.15, 0.35)

# 5 4 2 1

ε [0.35, 0.92) [0.92, 1.50) [1.50, 1.55) [1.55, 3.60)

2.7 Conclusion

In this chapter we present a coordinated pricing and inventory management

model with deterministic demand and price adjustment cost. We develop

exact time algorithms to solve the problem. Interestingly, depending on

the structure of the ordering cost and the price adjustment cost, the com-

putational complexity of our algorithms varies significantly (see Table 2.1).

Employing these algorithms, we demonstrate through a typical example that

dynamic pricing strategies can significantly outperform static pricing strate-

gies even when the price adjustment cost accounts for a considerable portion

of the total profit.

We plan to extend our model and its analysis along several directions.

First, it is interesting to see whether the algorithms developed in this chapter

can be improved. Observe that to construct the acyclic networks, we have

to solve a variety of optimization subproblems with small differences. Thus,

one direction is to identify and eliminate possible redundant computations

in solving these subproblems. Moreover, solving such subproblem indeed

corresponds to determining the optimal price for a certain joint static pricing

and inventory model. As we remarked on Assumption 2.1, the associated
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computational complexity is not clear by now, which may constitute another

direction.

Second, from our computational experiments, we observe that a few num-

ber of price levels, chosen appropriately, can capture a significant portion of

the total profit. Thus, an interesting question is to solve the joint inventory

and pricing problem which allows only at most N price levels for some given

N . Unlike the model analyzed in Subsection 2.5, the N possible price levels

are not given a priori and are decisions to be made in the problem.

Finally, it remains a challenge to incorporate ordering capacity constraints

into our model. In this case, it is not clear how to modify the approach in

Section 2.2 of breaking down the total profit to terms involving single con-

stant prices, as the zero inventory ordering property does not hold anymore.

Even if this could be done, it is likely that we have to solve the joint static

pricing and inventory model with capacity constraints as a subroutine, which

itself is challenging. To put this in perspective, we note that solving the joint

static pricing and inventory model with general capacity constraints is NP-

hard, while the algorithm developed in Geunes et al. (2008) takes an O(T 9)

time to solve the model with equal capacity constraints.
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Chapter 3

Reference Price Effect Model with
Deterministic Demand

3.1 Background and literature review

In this chapter, we develop a deterministic coordinated pricing and inventory

model incorporating a class of well-studied consumer behavioral models in

the marketing and economics literature: the memory-based reference price

model. Similar to the model discussed in the previous section, on the supply

side we consider a setting similar to the classic economic lot sizing model. On

the demand side, a selling price is determined, which influences demand in

the period, at the beginning of each period together with the replenishment

decision. Moreover, the objective is to make ordering and pricing decisions

so as to maximize the total profit over the planning horizon. What distin-

guishes our work from the literature is the incorporation of reference price

effect and the demand depends not only on the selling price but also on the

reference price. More specifically, in our model, demand is specified by a lin-

ear decreasing function of the current price plus a piecewise linear function

of the difference between the current price and the reference price.

Reference price models have been studied in the marketing and economics

literature over the past two decades. Such models argue that consumer-

s develop price expectations from historical prices (referred to as reference

prices) and use them to judge the current selling price of a product. That

is, reference price is an internal anchor formed in consumers’ minds as a re-

sult of experience based on information such as prices in observed periods

(Kalyanaram and Little, 1994). Figure 3.1 illustrates the typical customers’

behavior when taking into account the reference price effects. Although in

most cases it can not be physically observed, researchers noticed that “com-

parison of the market price to . . . reference price Raman and Bass (2002)”

influences consumers’ evaluation on potential purchases before making their
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decision, especially “in a market with repeated interactions (Popescu and

Wu, 2007).” The memory-based reference price model is not only validated

by various empirical studies (Briesch et al., 1997; Hardie et al., 1993; Green-

leaf, 1995, etc.) but also supported by the famous prospect theory (Tversky

and Kahneman, 1991). Indeed, reference price models are now accepted as

an empirical generalization in the marketing literature (see the review paper

Mazumdar et al., 2005).

period t− 1

collect information
⇓

form a reference price
⇓

compare to the selling price
⇓

decide the purchase

period t+ 1

Figure 3.1: Reference price effects

Even though various reference price models are now well established in

the marketing literature, their impact on pricing and inventory decisions is

largely unexplored despite their profound effects in shaping consumer de-

mand. Our work is among the limited initial attempts along this direction.

Some related work from the operations literature includes Fibich et al. (2003),

Popescu and Wu (2007), Urban (2008) and Gimpl-Heersink (2008). Among

them, Fibich et al. (2003) derive a closed form solution for a determinis-

tic and continuous time dynamic pricing problem in which demand rate is

piecewise linear in the current price and the reference price. Focusing on

a periodic review infinite horizon setting, Popescu and Wu (2007) extend

Kopalle et al. (1996) by allowing more general demand functions (as func-

tions of price and reference price). They illustrate that a stationary price

would be optimal if consumers are more sensitive to losses than gains and

provide a characterization of the optimal stationary price. Urban (2008) de-

velops a single-period model with stochastic demand and derives its optimal

solution. Finally, Gimpl-Heersink (2008) analyzes a stochastic periodic re-

view finite horizon model in which demand is a function of the current price

and the reference price with an additive random perturbation. Under rather

restrictive assumptions, Gimpl-Heersink (2008) proves that a reference price

dependent base-stock policy is optimal for a two-period setting with station-
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ary loss-neutral demand model.

Unlike these aforementioned papers, this chapter focuses on developing

effective algorithms for a periodic review finite horizon model with deter-

ministic demand. Such a model is important as it explicitly models the

interaction of operational and pricing decisions by capturing customers’ re-

sponse to dynamically adjusted prices in a tractable way through reference

prices, and thus holds the promise to be incorporated into decision support

systems. Indeed, it is arguably the simplest pricing and inventory model

that captures customers’ behavior towards dynamic pricing at an aggregated

level. Nevertheless, the analysis is nontrivial even for cases with zero fixed

ordering cost as we illustrate here. A closely related paper is Ahn et al.

(2007), which develop algorithms for a periodic review finite horizon model

in which demand also depends on past prices. Although a special case of

Ahn et al. (2007) is almost identical to one of the special cases of our model,

their demand functions are constructed based on a different mechanism and

are totally different from the ones derived from reference price models. It is

also appropriate to mention that none of the above papers incorporate fixed

ordering costs in their models, despite the fact that such costs are ubiquitous

in production planning settings.

Incorporating reference price effect into coordinated pricing and inventory

models significantly complicates the analysis and algorithm design. Indeed,

even without fixed ordering cost, our model is a maximization problem in-

volving a piecewise quadratic objective function which may not be concave.

Interestingly, in the case with zero fixed ordering cost, we identify certain

technical conditions under which our problem can be solved in strongly poly-

nomial time. For the general case, we propose an approximation heuristic

that discretizes reference price and exploits the structure of the economic

lot sizing problem. Lower and upper bounds to the optimal objective value

of our model are also provided based on the heuristic. Our numerical s-

tudy, employing the heuristic, illustrates that the more reference price effect

contributes to demands, the higher the benefit of coordinated pricing and

inventory models vs. the sequential decision making process.

The remainder of this chapter is organized as follows. In Section 3.2 the

mathematical formulation of our model is presented. In Section 3.3, we ana-

lyze the model with zero fixed ordering cost and develop strongly polynomial

time algorithms to several special cases. The general model is dealt with
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in Section 3.4, followed by a numerical study in Section 3.5. Finally, we

conclude the paper in the last section with some suggestions for future re-

search. To maintain a clear presentation, all technical proofs are presented

in Appendix A.

3.2 Problem description

Consider a firm that has to make coordinated ordering and pricing decisions

to satisfy a sequence of deterministic demands of a single product over a finite

planning horizon with T periods. On the supply side the setting is exactly the

same as the classic economic lot sizing model, i.e., at the beginning of period t,

an ordering quantity yt are determined and incurs the cost ktδ(yt)+ctyt, where

the order is assumed to be delivered immediately. Moreover, no shortage is

allowed and the inventory left at the end of period t, denoted by It, is carried

over to the next period with a unit inventory holding cost ht. The objective

of the firm is to decide its ordering quantities and prices so as to maximize

its total profit over the planning horizon.

On the demand side a selling price pt is decided simultaneously together

with the replenishment decision in each period. Unlike most papers in the lit-

erature on pricing and inventory coordination, in our model demand at each

period depends on not only the current selling price but also past observed

prices. We adopt one of the well-studied consumer behavioral pricing models

in the marketing literature, where the impact of past prices on the demand is

captured by the reference price effect. This type of models argues that con-

sumers develop price expectations, called the reference prices, based on past

observed prices and use them to judge the purchase price of a product (see

Mazumdar et al., 2005, for a review). Among many different reference price

models, a memory-based model, is commonly used and empirically validated

on scanner panel data for a variety of products (see, for example, Greenleaf,

1995). In this model, reference price is generated by exponentially weighting

past prices. Specifically, starting with a given initial r1, the reference price

at period t, denoted by rt, evolves as

rt+1 = αrt + (1− α)pt, t = 1, 2, · · · , T.
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In the above evolution equations, α ∈ [0, 1) is called the memory factor or car-

ryover constant (Kalyanaram and Little, 1994). Several papers, for example,

Raman and Bass (2002); Krishnamurthi et al. (1992); Mayhew and Winer

(1992), assume that α = 0. In this case, the model reduces to rt+1 = pt,

which means the price of the previous period serves as the reference price.

It captures the fact that “consumers. . . experience considerable difficulty in

recalling accurately even the most recently encountered prices . . . Thus, it is

unlikely that consumers would retrieve from memory and use prices encoun-

tered much beyond the immediate past purchase occasion (Krishnamurthi

et al., 1992).” Other values of α are also observed from empirical studies

(see the related discussion in Section 3.5). Observe that as α increases, “con-

sumers change their reference prices more slowly to incorporate new price

information (Greenleaf, 1995).” When α = 1, reference prices remain a con-

stant over the whole planning horizon. Thus, we restrict α < 1 to avoid the

trivial case that past prices have no impact on demand.

Following Greenleaf (1995); Kopalle and Winer (1996) and Fibich et al.

(2003), the demand at period t, with a given price p and a reference price r,

is modeled as

bt − atp+ η(r − p),

where bt−atp is the base demand independent of reference prices, η(r−p) is

the additional demand induced by the reference price effect. The difference

between reference price and selling price, i.e., r − p, in the above demand

model is usually referred to as a perceived surcharge/discount (Popescu and

Wu, 2007). If r < p, consumers perceive this as a loss, while if r > p, they

perceive it as a gain. In this paper, we assume that η is a kinked function

consisting of two linear pieces as

η(z) = η+ max{z, 0}+ η−min{z, 0},

where non-negative coefficients η+ and η− represent the marginal reference

price effect associated with gains and losses, respectively.

The kink of the function η indicates that consumers respond to losses and

gains differently. Consumers are classified as loss averse, loss neutral and

loss-seeking depending on whether η+ ≤ η−, η+ = η− or η+ ≥ η−. See

Figure 3.2 for the illustration. It is common in the marketing literature to
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Figure 3.2: Reference price effects in demand

assume that consumers are more sensitive to losses than gains. Indeed, the

loss averse assumption is consistent with the prospect theory (Tversky and

Kahneman, 1991), which predicts that a perceived loss would stimulate more

reaction from a human than a perceived gain, and has also been validated

by several empirical studies (see, for example, Putler, 1992; Hardie et al.,

1993). However, there is evidence that indicates consumers may be more

sensitive to gains than losses in some situations (e.g., Greenleaf, 1995; Krish-

namurthi et al., 1992). In this paper we consider the general case and make

no assumption on the relative magnitudes of the two coefficients. It is also

worth mentioning that our heuristic about to provided in Section 3.4 works

for arbitrary demand models dt = dt(pt, rt). See Remark 3.1 in that section.

We now present the mathematical model to maximize the firms’ total profit

over the planning horizon by simultaneously determining price and ordering

quantity in each period:

V ∗ = maximize
pt,yt,rt

T∑
t=1

{ptdt − [ktδ(yt) + ctyt + htIt]} (3.1a)

subject to It = It−1 + yt − dt, t = 1, · · · , T, (3.1b)

dt = bt − atpt + η(rt − pt), t = 1, · · · , T, (3.1c)

rt+1 = αrt + (1− α)pt, t = 1, · · · , T, (3.1d)

It ≥ 0, yt ≥ 0, pt ∈ [Lt, Ut], t = 1, · · · , T, (3.1e)

where I0 = 0 and the initial reference price r1 is given as an input to the

optimization model. In the above model, dt defined by (3.1c) denotes the

demand, and the term ptdt in (3.1a) is the revenue at period t. The bracketed

term in (3.1a) denotes inventory-related costs, including the fixed ordering

cost ktδ(yt), the variable ordering cost ctyt and the inventory holding cost

htIt. Constraint (3.1b) specifies the inventory balance equation (starting
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with zero inventory at the beginning of the planning horizon), which together

with yt ≥ 0 in (3.1e) ensures that no demand is backlogged. The last set of

constraints gives the feasible set for the decision variables. Throughout the

paper, we assume that dt is nonnegative for all feasible pt and rt.

Several coordinated pricing and inventory management models in literature

can be cast as special cases of problem (3.1). For example, when Lt = Ut, i.e.,

prices are given, problem (3.1) reduces to the classical economic lot sizing

model (Wagner and Whitin, 1958a). When η(z) = 0 or α = 1, problem (3.1)

reduces to the coordinated pricing and inventory model in which demand

at each period relies on the current price only. Similar models have been

studied by Wagner and Whitin (1958a); Thomas (1970), and etc. Note that

when kt = 0, η− = 0 and α = 0, our model is essentially identical to a special

case analyzed by Ahn et al. (2007). In their general model, demand depends

on prices of the current period and past periods. However, in general their

demand model is totally different from the reference price model employed

here. In addition, Ahn et al. (2007) do not take into account fixed ordering

costs.

3.3 Zero fixed ordering cost case

In this section we focus on the case with no fixed ordering cost, i.e., kt = 0,

at any period. Similar to the discussion in Section 2.3, in this case the

ordering plan can be determined independent of pricing plan, as well as the

marginal ordering and inventory holding cost, denoted by c̄t, in each period t

for t = 1, · · · , T . Therefore the profit in period t with respect to given selling

price pt and reference price rt can be expressed by

πt(rt, pt) = (pt − c̄t)[bt − atpt + η(rt − pt)].

Problem (3.1) then becomes

maximize
pt,rt:t≤T

π1(r1, p1) + π2(r2, p2) + · · ·+ πT (rT , pT ) (3.2)

subject to rt+1 = αrt + (1− α)pt, pt ∈ [Lt, Ut], t = 1, · · · , T.

What remains is to determine the optimal pricing plan.
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Observe that the per period profit function πt(r, p) is piecewise quadratic

and not jointly concave in general, which poses a significant technical diffi-

culty making the analysis of problem (3.2) rather challenging. In this section

we will introduce conditions on the input parameters such that problem (3.2)

can be solved in strongly polynomial time.

The following discussion depends on whether consumers are loss averse,

loss neutral or loss seeking. We first present a useful property on the optimal

pricing plan.

Proposition 3.1. If c̄t ≤ Ut in all periods, then there exists an optimal

solution {p1, · · · , pT} to problem (3.2) such that pt ≥ c̄t for all t = 1, · · · , T .

Proposition 3.1 basically says if the marginal ordering and holding costs do

not exceed the upper bounds of feasible prices at all periods, then an optimal

solution exists such that the firm can always make a profit in each period

by selecting proper feasible prices. This assumption is quite reasonable and

usually satisfied in practice.

Since the effect of past prices on period t’s demand is summarized by the

reference price rt, it will be convenient to express profit in terms of reference

prices. In particular, given the reference prices rt, rt+1 at periods t, t + 1,

respectively, the price pt and the profit, denoted by Πt(rt, rt+1), at period t

can be expressed as

pt =
rt+1 − αrt

1− α , Πt(rt, rt+1) = πt

(
rt,

rt+1 − αrt
1− α

)
.

Let Gt+1(rt+1), t ≤ T , be the maximal accumulated profit up to period t

when reference price rt+1 is specified at period t+ 1. That is,

Gt+1(rt+1) = maximize
ps,rs:s≤t

Π1(r1, r2) + Π2(r2, r3) + · · ·+ Πt(rt, rt+1),

subject to αrs + (1− α)ps = rs+1, ps ∈ [Ls, Us], s ≤ t.

Apparently solving problem (3.2) amounts to maximizing GT+1(r). Thus,

it suffices to determine the expression of GT+1(r), which can be inductively

derived for t = 2, · · · , T through

Gt+1(rt+1) = maximize
pt,rt

Gt(rt) + Πt(rt, rt+1), (3.3)

subject to αrt + (1− α)pt = rt+1, pt ∈ [Lt, Ut],

35



where G2(r2) = Π1(r1, r2) and we specify Gt+1(rt+1) = −∞ if rt+1 leads to

an empty feasible set in the above problem.

3.3.1 Loss averse and loss neutral cases

In this subsection we focus on cases in which consumers are loss neutral (i.e.,η

is linear) or loss averse (i.e., η is concave). To simplify notation, we replace

(rt, rt+1) by (x, r) in the definition of Πt(rt, rt+1) and problem (3.3).

Since the per period profit function Πt(x, r) is not jointly concave in x and

r, problem (3.3) may not be a concave maximization problem in general. To

circumvent this difficulty, we first prove that a certain modified version of

the per period profit function Πt(x, r) is jointly concave and supermodular

on some feasible set under some technical condition. Such result is given in

Proposition 3.2 below.

Proposition 3.2. Let Ω = {(x, r) : αx + (1 − α)p = r, p ≥ c̄t} in the

loss-averse case and Ω = <2 in the loss-neutral case. Then the function

Πt(x, r)− Atx2 +Btr
2 is jointly concave and supermodular on Ω, where

At =
1

2

2αat + αη+ + (1− α)η−

1− α , Bt =
1

2

2at + η+

1− α .

For constants At given in Proposition 3.2, define Ft(x) = Gt(x)+Atx
2 and

rewrite problem (3.3) as

Ft+1(r) = maximize
x

Ft(x) + (At+1 −Bt)r
2 +

[
Πt(x, r)− Atx2 +Btr

2
]
,

subject to αx+ (1− α)p = r, p ∈ [Lt, Ut].

One can expect that if At+1 ≤ Bt, or equivalently,

α(2at+1) + (1− α)(η− − η+) ≤ 2at, (3.4)

where we specify aT+1 = 0, then it is possible to inductively show the joint

concavity of Ft(x). Indeed we have the following proposition.

Proposition 3.3. Suppose the inequality (3.4) holds for each t ≤ T . If either

(a) η is linear or (b) η is concave and Lt ≥ c̄t in each period t, then each

function Gt is concave. Moreover, it consists of O(t) quadratic pieces and

can be obtained in an O(t2) time.
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The technical condition (3.4) holds under several plausible settings includ-

ing (a) α = 0 (i.e., the price in the previous period serving as the reference

price) and η−−η+ ≤ 2at; (b) at+1 ≤ at and η−−η+ ≤ 2at. Note that several

empirical studies (see Greenleaf, 1995, for example) support the hypothesis

that demand is more sensitive to selling price than to reference price, under

which the inequality η− − η+ ≤ 2at apparently holds.

The proof of Proposition 3.3 is nontrivial. In fact in the loss-averse case, the

reference price effects asymmetrically depend on whether the current price

or the reference price is higher. Such problem can not be easily solved. As

claimed in Fibich et al. (2003), the asymmetric reference price effects lead to

“non-smooth optimization problems” and the explicit solutions are difficult

to obtained by “using standard optimization method”. By observing that

“[t]he discrete formulation is . . . cumbersome for obtaining explicit solutions”,

Fibich et al. (2003) turns to a continuous-time formulation of this problem.

In the following we present an outline of the proof to illustrate its basic

idea and refer to the appendix for the full proof. Observe that the per period

profit function consists of two quadratic pieces, i.e.,

Πt(x, r) =

Π+
t (x, r), if x ≥ r,

Π−t (x, r), if x ≤ r,

where Π+
t and Π−t are quadratic functions given by

Π±t (x, r) =

(
r − αx
1− α − c̄t

)(
bt − at

r − αx
1− α + η±

x− r
1− α

)
.

In addition, we say Gt(x) consists of N quadratic pieces if there exists x1 <

· · · < xN , called the breakpoints of Gt, such that

Gt(x) = Gn
t (x), ∀xn−1 < x ≤ xn, 1 ≤ n ≤ N,

where x0 = −∞ and Gn
t (x) are quadratic functions. The basic idea is to

inductively prove that if Gt has N breakpoints, then Gt+1 has at most N + 5

quadratic pieces, where N possible breakpoints associate with the break-

points of Gt, 2 of them associate with the endpoints of the feasible set [Lt, Ut]

of p, and the remaining 3 possible breakpoints associate with the two-piece

quadratic function Πt.
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More specifically We will show that there exists some sequence of points

{Rm : m ≤ M} such that M ≤ N + 5 and exact one of the following cases

holds when rt+1 ∈ (Rm−1, Rm] for each m:

Gt+1(rt+1) =[Gim
t (rt) + Πjm

t (rt, rt+1) : αrt + (1− α)Ut = rt+1], (3.5a)

Gt+1(rt+1) =[Gim
t (rt) + Πjm

t (rt, rt+1) : αrt + (1− α)Lt = rt+1], (3.5b)

Gt+1(rt+1) = maximize
rt

[Gim
t (rt) + Πjm

t (rt, rt+1)], (3.5c)

where R0 = −∞, im ≤ N and jm ∈ {+,−} can be determined from the

sequence {Rm : m ≤ M}. That is, according to the range of rt+1, it leads

no loss of optimality to specify the quadratic pieces of Πt, Gt and determine

whether the constraint p ∈ [Lt, Ut] is active or not in problem (3.3).

Proof of the above statement is divided into four steps:

Step 1: There exists some R such that it leads no loss of optimality to con-

sider one quadratic piece of Πt(rt, rt+1) in problem (3.3) depending on

whether rt+1 ∈ (−∞, Lt] ∪ [R,Ut) or not.

Step 2: There exist two numbers RL, RU such that an optimal solution to prob-

lem (3.3) satisfies pt = Lt when rt+1 < RL and pt = Ut when rt+1 > RU ;

moreover, if rt+1 ∈ [RL, RU ], then the constraint p ∈ [Lt, Ut] can be re-

moved from problem (3.3) without loss of any optimality.

Step 3: There exists a non-decreasing sequence {rn : 1 ≤ n ≤ N} such that

it leads no loss of optimality to specify Gt = Gn
t in (3.3) when rt+1 ∈

(rn−1, rn] for each n, where r0 =∞.

Step 4: Let {Rm : m ≤M} be a sorting of Lt, Ut, R,RL, RU and {rn : n ≤ N}.
By combining results in the previous steps, we derive the desirable

expression (3.5) of Gt+1.

After verifying expression (3.5), we then show Gt+1 is piecewise quadratic

with breakpoints {Rm : m ≤ M}. In fact, Gt+1(r) is clearly quadratic on

(Rm−1, Rm] in cases (3.5a) and (3.5b). For case (3.5c), because the objective

function is quadratic in term of rt for any given rt+1, its optimal solution is

linear in rt+1. Hence Gt+1(rt+1) is also quadratic on (Rm−1, Rm] in this case.

From Proposition 3.1, there is no loss of optimality to assume Lt ≥ c̄t

when c̄t ≤ Ut at all periods. From Proposition 3.3, we can determine the
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expression of GT+1(r) in O(T 2) time when Lt ≥ c̄t. Since we can maximize

a function consisting of O(t) quadratic pieces in O(t) time, our main result

in this subsection follows.

Theorem 3.1. Suppose (3.4) holds. Problem (3.2) can be solved in O(T 2)

time if either (a) consumers are loss neutral; or (b) consumers are loss averse

and c̄t ≤ Ut for all t ≤ T .

3.3.2 The Loss-seeking Case

When consumers are loss-seeking (in this case, the function η is convex),

functions Gt may not be concave anymore. Hence it would be challenging to

obtain results similar to Proposition 3.3. In this subsection, we will focus on a

special case, in which we assume the price of the previous period serves as the

reference price (rt+1 = pt) and consumers are insensitive to price decreases

(η− = 0). Interestingly, this case is similar to the model 2-(K = 1, Q = ∞)

in Ahn et al. (2007).

We now develop a strongly polynomial time algorithm for this special case

under certain conditions. First observe that if a price markup incurs at

some period τ , i.e., pτ−1 < pτ , then the prices before period τ have no

impact on prices in later periods and they can be independently determined.

Specifically, for a given price sequence {p1, · · · , pT}, let 1 = τ1 < · · · < τN <

τN+1 = T + 1 be all markup periods, i.e., pt−1 < pt if t = τn for some

1 < n ≤ N and pt−1 ≥ pt otherwise. Here period 1 and the artificial period

T + 1 are counted as price markup periods for convenience. For each pair

of consecutive price markup periods (τ, τ̃) = (τn, τn+1) for some n, one can

verify that profit accumulated from period τ to period τ̃ − 1 is

Πτ (pτ , pτ ) +
∑
τ<t<τ̃

Πt(pt−1, pt),

which is independent of prices specified before period τ and after period τ̃−1.

This observation allows us to partition the planning horizon by the price

markup periods, determine prices between each consecutive price markup

periods independently, and then find the optimal markup period sequence
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with maximal total profit. For this purpose, define

`(τ, τ̃) = maximize
pt:τ≤t<τ̃

Πτ (pτ , pτ ) +
∑
τ<t<τ̃

Πt(pt−1, pt) (3.6)

subject to pτ ≥ pτ+1 ≥ · · · ≥ pτ̃−1,

pt ∈ [Lt, Ut], τ ≤ t < τ̃ .

Note that if τ and τ̃ turn out to be two consecutive price markup periods

in an optimal solution to problem (3.2), then `(τ, τ̃) is exactly the maximal

profit accumulated from period τ to period τ̃ − 1. From this observation, we

can construct an acyclic network (V , E) where the node set and link set are

respectively defined by

V = {1, 2, . . . , T + 1}, E = {(τ, τ̃) : 1 ≤ τ < τ̃ ≤ T + 1}.

Moreover, let `(τ, τ̃) be the length of a link (τ, τ̃) in E .

To calculate link lengths `(τ, τ̃), let Gτ,τ+1(p) = Πτ (p, p) and recursively

define Gτ,t for t = τ + 1, · · · , T through the optimization problem:

Gτ,t+1(pt+1) = maximize
pt

Gτ,t(pt) + Πt(pt, pt+1), (3.7)

subject to pt ≥ pt+1, pt ∈ [Lt, Ut],

where we set Gτ,t+1(pt+1) = −∞ when the feasible set of the above problem is

empty. Observe that the function Gτ,t(pt) can be interpreted as the maximal

accumulated profit from period τ to period t − 1 when the price at period

t − 1 is set at pt (or equivalently the reference price of period t is set at pt)

and only price markdown is allowed. The length `(τ, τ̃) can be computed by

maximizing the function Gτ,τ̃ (pτ̃ ) over pτ̃ .

We illustrate in the following theorem that an optimal solution to problem

(3.2) can be derived by finding a longest path in the acyclic network and

present the computational complexity.

Theorem 3.2. Suppose α = 0 and 0 = η− ≤ η+ ≤ 2at in each period. If

either c̄t ≤ Ut or Ut = U holds for each t = 1, · · · , T , then solving problem

(3.2) is equivalent to finding a longest path from the origin 1 to the destination

T + 1 in the acyclic network (V , E), which contains O(T ) nodes and O(T 2)

links. Moreover, it takes an O(T 3) time to construct the network and another
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O(T 2) time to find a longest path.

Similar idea of converting (3.2) to a longest path problem has been used

in Ahn et al. (2007) for the so-called 2-(K = 1, Q = ∞) model, where

subproblems similar to (3.6) are also derived to obtain link lengths of the

acyclic network. We point out two important differences with their paper.

First, subproblems in their model are automatically concave maximization

problems, while for our model, certain technical conditions on the input

parameters are required. More importantly, we calculate all link lengths by

inductively obtaining functionsGτ,t(pt) through (3.7) for all 1 ≤ τ < t ≤ T+1

in strongly polynomial time, while Ahn et al. (2007) suggest interior point

methods whose running time is polynomial but not strongly polynomial in

general. The construction of our strongly polynomial time algorithm follows

from a similar idea as in the proof of Proposition 3.3.

In Theorem 3.2 we require that either c̄t ≤ Ut for all t or Ut = U for all

t. Without such assumption, the longest path in (V , E) may fail to associate

with an optimal solution for problem (3.2). To see this, consider the 2-period

example with parameters (η−, η+) = (0, 1) and

(L1, U1, a1, b1, c̄1) = (0, 6, 1, 6, 0), (L2, U2, a2, b2, c̄2) = (0, 1, 1, 1, 3),

where c̄2 > U2 and U1 > U2. Calculation shows that `(1, 2) = 9, `(2, 3) = 0

and `(1, 3) = 6 in this acyclic network. Therefore, the longest path is {123},
which corresponds to the solution (p1, p2) = (3, 1). However, the actual total

profit associated with this solution is

p1(6− p1) + (p2 − 3)
[
1− p2 + (p1 − p2)

]
= 5,

which is strictly less than `(1, 3) = 6. In fact, node 2 appears in the longest

path {123} even though it is not a price markup period in the correspond-

ing solution, and the algorithm fails to find the optimal solution, which is

(p1, p2) = (2, 1), to problem (3.2). Interestingly, we show in Appendix A.5

that an optimal solution can be derived by finding a longest path in an

extended acyclic network again in O(T 3) even when the assumption either

c̄t ≤ Ut for all t or Ut = U for all t is relaxed.
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3.4 General case

In this section we consider the general problem with fixed ordering costs

and general reference price effect functions. Apparently this general case is

significantly more difficult than the special case with zero fixed cost presented

in the previous section. In this section, rather than solving problem (3.1) to

optimality, we propose a heuristic by discretizing the reference prices. In

addition, we derive lower and upper bounds to the optimal objective value

of problem (3.1) from the heuristic. To simplify our presentation, we assume

a uniform feasible set [L,U ] for prices at all periods and r1 ∈ [L,U ]. With

this assumption, we observe from (3.1d) that rt ∈ [L,U ] for all t ≥ 2.

We restrict reference prices to a predetermined finite set Rε ⊂ [L,U ] in

our heuristic. To achieve a reasonable accuracy, the set Rε is chosen as below

with some positive scalar ε,

max{min{|r − rε| : rε ∈ Rε} : r ∈ [L,U ]} ≤ 1
2
ε,

That is, the distance between sets Rε and any point in [L,U ] is no more than
1
2
ε. As a simple instance, we can set Rε = {L+ (n− 1)ε : n ≤ Sε}, where Sε,

the number of elements in Rε, is given as the integer part of ε−1(U − L).

Given the finite set Rε, we consider the following problem

V ε = maximize
yt,pt,rt

T∑
t=1

{ptdt − [ktδ(yt) + ctyt + htIt]} (3.8a)

subject to (3.1b) and (3.1c) hold∣∣rt+1 − αrt − (1− α)pt
∣∣ ≤ ε, t = 1, · · · , T, (3.8b)

It ≥ 0, yt ≥ 0, rt ∈ Rε, pt ∈ [L,U ], t = 1, · · · , T.

In the above problem, reference prices are restricted in Rε. In addition, the

reference price evolution equation (3.1d) is approximated by (3.8b). Clearly,

ε controls the accuracy of the approximation and smaller ε leads to better

approximation to problem (3.1). We will construct lower and upper bounds

for problem (3.1) based on problem (3.8).
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Another lower bound to problem (3.1) is given by the following problem

V ε
0 = maximize

yt,pt,rt

T∑
t=1

{ptdt − [ktδ(yt) + ctyt + htIt]}, (3.9)

subject to (3.1b), (3.1c) and (3.1d) hold,

It ≥ 0, yt ≥ 0, rt ∈ Rε, pt ∈ [L,U ], t = 1, · · · , T,

where reference price evolves as the same as in problem (3.1) but are restrict-

ed to Rε.

The advantage of restricting the reference price to a finite set is its

tractability. Indeed, we now show that both problems (3.8) and (3.9) can be

solved in polynomial time in terms of T and the number of elements in Rε.

We start with problem (3.8). The idea is to partition the planning horizon

according to ordering periods while taking into account the reference price

levels at these periods. Specifically, let τ and τ̃ with τ < τ̃ be two consecutive

ordering periods. Once the reference price levels r and r̃ at periods τ and

τ̃ are specified, pτ , · · · , pτ̃−1 can be optimized independent of prices in other

periods. The optimal cumulative profit from periods τ to τ̃ − 1, denoted by

`(τ, r, τ̃ , r̃), can be calculated from the optimization problem

maximize
pt,rt:τ≤t≤τ̃

−kτ +
τ̃−1∑
t=τ

[pt − c(τ, t)] [bt − atpt + η(rt − pt)] (3.10)

subject to |rt+1 − αrt − (1− α)pt| ≤ ε, τ ≤ t < τ̃ ,

rτ = r, rτ̃ = r̃, rt ∈ Rε, pt ∈ [L,U ], τ ≤ t < τ̃ .

We now show that problem (3.8) can be solved by identifying a longest

path in an acyclic network. Specifically, construct an acyclic network (V , E)

with the node set V and link set E defined by

V = {(τ, r) : 2 ≤ τ ≤ T + 1, r ∈ Rε} ∪ {v0,ve},
E = {〈(τ, r), (τ̃ , r̃)〉 : τ < τ̃ , (τ, r), (τ̃ , r̃) ∈ V},

where v0 = (1, r1) and the artificial node ve = (T + 1, ∗) are the origin and

the destination respectively in the network. Here the symbol “*” denotes

an arbitrary value since no reference price is specified at period T + 1. The

length of the link 〈(τ, r), (τ̃ , r̃)〉 ∈ E is given by `(τ, r, τ̃ , r̃), where in the case
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(τ̃ , r̃) = ve, it is obtained by simply removing the constraint rT+1 = r̃ from

problem (3.10). It is straightforward to verify that the longest path from v0

to ve corresponds to an optimal solution for problem (3.8), and its length

corresponds to the maximal profit that can be achieved.

It remains to calculate all link lengths. Interestingly, for a given (τ, r), all

the link lengths `(τ, r, τ̃ , r̃) for τ̃ > τ and r̃ ∈ Rε can be obtained by solving

another longest path problem in a different acyclic network. To see this,

define acyclic networks (Vτ,r, Eτ,r) by

Vτ,r =
{

(τ, r)
}
∪
{

(τ̄ , r̄) : τ̄ < τ̃ , r̄ ∈ Rε

}
,

Eτ,r =
{
〈(t, r̄), (t+ 1, r̃)〉 : (t, r̄), (t+ 1, r̃) ∈ Vτ,r

}
.

Let the length of the link 〈(t, r̄), (t+ 1, r̃)〉 be the optimal value of the fol-

lowing optimization problem

maximize
pt

[pt − c(τ, t)] [bt − atpt + η(r̄ − pt)] (3.11)

subject to |r̃ − αr̄ − (1− α)pt| ≤ ε, pt ∈ [L,U ],

where we assume the optimal value is −∞ when the feasible set is empty.

Observe that in this acyclic network, the length of a longest path from node

(τ, r) to node (τ̃ , r̃) is exactly `(τ, r, τ̃ , r̃) − kτ . Moreover, problem (3.11)

can be solved in an O(1) time because its objective function consists of two

concave quadratic pieces and its feasible set is either an interval or empty.

Since the acyclic network (Vτ,r, Eτ,r) contains O(TSε
2) links, it takes an

O(TSε
2) time to find a longest path from (τ, r) to all other nodes in the

network. Because there are O(TSε) feasible pairs (τ, r), we know all link

lengths in the network (V , E) can be calculated in an O(T 2Sε
3) time.

Similar idea can be applied to problem (3.9) with the same networks (V , E)

and (Vτ,r, Eτ,r) but different link lengths. In particular, when computing the

length of link 〈(t, r̄), (t+ 1, r̃)〉, we replace problem (3.11) by

maximize
pt

[pt − c(τ, t)] [bt − atpt + η(r̄ − pt)]
subject to r̃ = αr̄ + (1− α)pt, pt ∈ [L,U ],

which is still solvable in an O(1) time. Thus, all link lengths in the network

(V , E) can be constructed in O(T 2Sε
3) time as well.
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In summary, solving problem (3.8) or problem (3.9) is equivalent to finding

a longest path in an acyclic network (V , E), which consists of O(TSε) nodes,

O(T 2Sε
2) links and can be constructed in O(T 2Sε

3) time. Hence we end up

with the following result.

Theorem 3.3. (3.8) and (3.9) can be solved in an O(T 2Sε
3) time.

If no fixed ordering cost incurs at any period, then the optimal ordering

plan can be determined independent of the demand as discussed in Section

3.3. In this case, it is unnecessary to decide the ordering plan by finding a

longest path in (V , E). Instead, it suffices to determine the price sequence by

finding a longest path in (V1,r1 , E1,r1) from node (1, r1) to node (T+1, ∗). The

only modification is to replace c(τ, t) by c̄t when we compute all link lengths

in (3.10), where c̄t denotes the marginal ordering and inventory holding cost

associated with the optimal ordering plan.

Corollary 3.1. If kt = 0 for all t, problem (3.8) and problem (3.9) can be

solved in O(TSε
2) time.

Finally, we provide the lower and upper bounds for V ∗, the optimal ob-

jective value of problem (3.1), based on V ε, V ε
0 and the problem parameters.

Note that the bounds depend on the magnitude of η+, η−, L,U , ct and ht

but not the fixed cost kt.

Theorem 3.4. max{V ε − C−T ε, V ε
0 } ≤ V ∗ ≤ V ε + CT ε, where

CT = T
2

max{η+, η−} max
τ≤t≤T+1

max
{
|U − c(τ, t)|, |L− c(τ, t)

∣∣} ,
C−T = 2 min{(1− α)−1, T}CT

Remark 3.1. The heuristic actually works for arbitrary demand models dt =

dt(pt, rt) besides the one given by (3.1c). In fact, discussions are almost the

same by properly replacing the objective functions of optimization problems

in this section. Depending on the efficiency to solve the one dimensional

optimization problem (3.11), the computational complexity to solve (3.8) may

be different. Similarly, depending on the specific expression of dt(pt, rt), the

bounds for V ∗ may also differ slightly.
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3.5 Numerical study

In this section we conduct a numerical study to see how the firm’s profit

varies with parameters in problem (3.1) and the performance of the heuristic

given in Section 3.4.

Consider a 10-period instance (i.e. T = 10) with the initial reference price

r1 = 10, the variable ordering cost ct = 4, the holding cost ht = 1 , the fixed

ordering cost kt = 15 (the cost parameters are based on our experience with

a large retailing company), the lower bound L = 5 and the upper bound

U = 15. In addition, demand functions and reference price effect functions

are given as follows:

dt(p, r) = (1− β)(b− atp) + βη(r − p),
η(z) = (1− λ) max{z, 0}+ λmin{z, 0},

where 0 ≤ β, λ ≤ 1, b = 20 and

{a1, a2, · · · , a10} = {2, 2, 1.5, 1.5, 1.5, 1.5, 1, 1, 1, 1}.

In the above demand model, parameter β controls the relative contribution

of reference price effect. Observe that when β = 0, demand at a period only

depends on the price of the current period and reference prices do not play

a role at all.

In the above reference price effect function, parameter λ controls the rel-

ative magnitude of loss and gain. Specifically, the ratio λ
1−λ corresponds

to η−/η+ in model (3.1). Note that when λ > 0.5, consumers exhibit loss

aversion; when λ = 0.5, consumers are loss neutral; and when λ < 0.5, con-

sumers exhibit loss-seeking behavior. Different values of λ have been reported

from empirical studies. For instance, Greenleaf (1995) identify λ
1−λ = 1

5.4
or

λ ≈ 0.16 in a study involving a national brand of peanut butter, Hardie

et al. (1993) find that λ
1−λ = 1.457 or λ ≈ 0.65 in a refrigerated orange juice

purchase investigation, and Putler (1992) observes λ
1−λ = 2.4 or λ ≈ 0.7 by

studying egg sales.

We are interested in understanding how the parameters α, β and λ affect

the firm’s profit. Thus, in our study, we consider different combinations of the

three parameters with α ∈ {0.05n : 0 ≤ n ≤ 19}, β ∈ {0.1m : 1 ≤ m ≤ 4}
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and λ ∈ {0, 0.16, 0.65, 0.7, 1}, which amounts to a total of 400 cases. Since

reference price effect is usually dominated by direct price effect, we restrict

β ≤ 0.5. In the candidate set for λ, we include the values obtained by

Greenleaf (1995); Hardie et al. (1993) and Putler (1992), as well as two

special cases λ = 1 and λ = 0, which represent the gain-insensitive case and

loss-insensitive case respectively.

We apply the heuristic developed in the previous section to derive an ap-

proximation to problem (3.1). We first decide the number of reference price

candidates needed to achieve an acceptable accuracy level, which is mea-

sured by the ratio (V+−V−)/V , where V = V ε, V+ = V +CT ε and V− = V ε
0

are the upper and lower bounds to the optimal objective value of problem

(3.1) respectively. (In our computation, V ε
0 is always above V − C−T ε, an-

other lower bound derived in Theorem 3.4.) For all the 400 instances, we

set Rε = {5 + 0.1n : 0 ≤ n ≤ 100}, i.e., ε = 0.1 and 101 reference price

candidates are included. The accuracy ratio is reported in Figure 3.3 for all

possible combinations of α and (β, λ). From the figure, it appears that the

accuracy deteriorates as α and/or β increase. However, only in one instance

(β, λ, α) = (0.4, 1, 0.95), the ratio slightly exceeds 6%, and in most cases it is

less than 3%. This implies that for our problem instance, 101 reference price

levels provide reasonable accuracy.

To see how the accuracy ratio changes with respect to the number of refer-

ence price levels, we consider a typical instance with parameters (β, λ, α) =

(0.4, 0.65, 0.9). Figure 3.4 illustrates how the profit V = V ε derived from

the heuristic, as well as the upper bound V+ = V ε + CT ε and lower bound

V− = V ε
0 , vary as Sε increases, where Sε∈ {1 + 10n : 1 ≤ n ≤ 25}.

From Figure 3.4, we see that V+ and V− roughly approximate V mono-

tonically as Sε increases. The estimated error V+ − V− decreases rapidly as

more candidates of reference price levels are included at first and then s-

tays relatively flat when the number of reference price levels exceeds 101.

Thus, in our remaining study, we restrict the reference price levels to set

Rε = {5 + 0.1n : 0 ≤ n ≤ 100}.
Interestingly, our numerical study shows that for this instance, the optimal

ordering plan is independent of the number of reference price levels. We also

observe that optimal ordering plans remain quite stable for many additional

problem instances we tested. This observation thus motivates a new heuristic.

In the new heuristic, we first solve problem (3.8) with a small Sε to get
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Figure 3.3: Accuracy with respect to input parameters α, β and γ
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an ordering plan. We then fix the ordering plan and solve problem (3.8)

using larger Sε to get higher accuracy. Once the ordering plan is fixed, the

complexity of solving problem (3.8) is only O(TSε
2) instead of O(T 2Sε

3) for

the general problem as stated in Corollary 3.1. The approach developed in

Section 3.3 can also be used to reduce the computational complexity if the

conditions are satisfied.
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Figure 3.5: Profit with respect to all combinations of α, β and λ

We now illustrate how profit changes with respect to the parameters β, λ

and α. The profits V calculated by our heuristic are reported in Figure 3.5

for all possible combinations of β and (α, λ). Several observations can be

made from the figure.
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1. For any combination (β, λ), profit does not depend on α monotonically.

Roughly speaking, it decreases first and then increases in α. It also

appears that profit is more sensitive to α when α approximates to 1.

2. For any fixed α and β, profit decreases as λ increases. This is not sur-

prising as larger λ implies lower demand when the prices and reference

prices are kept unchanged.

3. For any fixed α and λ, profit decreases as β increases. This observation

follows from the fact that current price effect dominates reference price

effect.

4. Profit is more sensitive to β compared with other factors. For example,

profit is larger than 268 when β = 0.1 and drops to no more than 180

when β = 0.4. By contrast, profit varies less than 30 for each fixed β.

Throughout this chapter we assume that pricing and ordering decisions

are simultaneously determined. However, in practice there are still signifi-

cant barriers toward the integration of pricing and inventory decisions due to

traditional organizational structures within a firm, even though great bene-

fits of integration have been well demonstrated in various settings (see, for

instance, Chen et al., 2004; Deng and Yano, 2006; Federgruen and Heching,

1999). In the following, we provide further evidence to demonstrate the po-

tential of coordinated vs. sequential decision making when reference price

effect is incorporated. We refer to Gimpl-Heersink (2008) for a similar study

with reference price effect in stochastic settings but zero fixed ordering cost.

We first describe the sequential decision making process that is commonly

seen in practice. In the process, the marketing department first makes pricing

decision so as to maximize total revenue specified by the following problem.

Rs
0 = maximize

pt,rt:t≤T
p1d1 + p2d2 + · · ·+ pTdT

subject to dt = bt − atpt + η(rt − pt), t = 1, · · · , T,
rt+1 = αrt + (1− α)pt, pt ∈ [L,U ], t = 1, · · · , T.

Once the optimal prices and consequently the associated demand sequence

ds1, d
s
2, · · · , dsT become available, the production/distribution department

then takes the pricing decision from the marketing department as given and
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minimizes its inventory related cost given by the following optimization prob-

lem.

Cs
0 = minimize

yt:t≤T

T∑
t=1

[ktδ(yt) + ctyt + htIt]

subject to It = It−1 + yt − dst , t = 1, · · · , T,
I0 = 0, It ≥ 0, yt ≥ 0, t = 1, · · · , T.

We apply the algorithms developed in Section 3.3 to compute the total rev-

enue Rs
0 if the technical conditions are satisfied; otherwise we turn to Section

3.4 to approximate Rs
0. The total cost Cs

0 is simply given by the classical

economic lot sizing problem and can be solved efficiently.
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Figure 3.6: Sequential versus coordinated optimization

Figure 3.6 reports the ratio of V s/V (in the y-axis), where V s is the (es-
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timated) total profit Rs
0 − Cs

0 and V is the estimated profit in the coordi-

nated optimization problem (3.8). In the figure, we select four combinations

of (λ, β), namely, {(0.65, 0.1), (0.65, 0.2), (0.65, 0.3), (0.65, 0.4)}, and consider

these ratios with respect to α in the x-axis. As can be seen from the figure,

all ratios V s/V are less than 60%, which implies that more than 40% profit

could be potentially gained by coordinating pricing and inventory manage-

ment decisions. Figure 3.6 also demonstrates that for fixed λ and α, the

ratio of Vs/V decreases as β becomes larger. It means that more profit im-

provement can be obtained from pricing and inventory coordination when

reference price effect becomes more important. For other combinations of

(λ, β), we observe similar trends with respect to α. Note that due to the

accuracy of our heuristic, the ratios vary greatly when α is close to 1.

3.6 Conclusion

In this chapter we propose and analyze an coordinated pricing and inventory

model of a single product incorporating reference price effect in a determin-

istic setting. In this model, demand depends on both current selling price

and reference price, where the latter evolves according to an exponentially

smoothing process of past prices. When there is no fixed ordering cost, we

develop strongly polynomial time algorithms under certain technical condi-

tions. For the general setting with fixed ordering cost and kinked reference

price effect functions, we develop efficient heuristic.

Our numerical study illustrates that incorporating reference price effect

into pricing and inventory models have a great potential in improving firms’

profit. Specifically, we demonstrate that the more reference price effect con-

tributing to demand, the larger the profit can be gained through pricing and

inventory integration. Indeed, in our study, the profit gains are more than

40% in all instances and 50% in most instances.

There are several interesting research questions. First, further improve-

ment of the current algorithms and heuristic is important. Efficient algo-

rithms become pertinent as we incorporate these models into decision support

systems which usually involve many products.

Secondly, allowing capacity constraint may significantly complicate algo-

rithm design when reference price effect is present. Indeed, it is an open
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question whether our model with capacity constraint and zero fixed ordering

cost is NP-hard or not.

Thirdly, it is possible to extend our model and results to more general

demand functions. We choose to focus on piecewise linear demand functions

simply because they are relatively simple for implementation and have been

empirically validated in a variety of settings. Nevertheless, as mention in

Remark 3.1, the heuristic provided in Section 3.4 works for arbitrary demand

models, where the computational complexity and bounds of the estimated

errors could be different.

Finally, we would like to extend our model to settings with multi-products

demand. Such models are not only quite relevant in practice but also chal-

lenging. Indeed, in settings with multiple products, it is not clear how dynam-

ic pricing strategies affect the aggregated demand of a category of products

and more empirical studies are necessary.
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Chapter 4

Reference Price Effect Model with Stochastic
Demand

4.1 Problem description

This chapter discusses the stochastic version of the reference price mod-

el in Chapter 3 when customers are loss-neutral or loss averse. Specifically,

consider a periodic-review stochastic coordinated pricing and inventory man-

agement problem over a planning horizon with T period, where pricing and

ordering decisions are simultaneously made at the beginning of each period.

Demand of a period is stochastic and determined by the current selling price

pt and the reference price rt, where pt belongs to a closed interval [L,U ].

And as the same settings in Chapter 3, reference prices evolve according to

the memory-based model for some 0 ≤ α < 1,

rt+1 = αrt + (1− α)pt, ∀0 ≤ t < T.

In addition, we assume that r1, predetermined at the beginning of the plan-

ning horizon, belongs to the same feasible set of selling prices implying that

rt ∈ [L,U ] for all t.

Similar to the deterministic version studied in Chapter 3, given selling

price p and reference price r at period t, we assume the expected demand d

is

d = bt − atp+ η(r − p),

where bt, at ≥ 0, and for some η+, η− ≥ 0,

η(z) = η+ max{z, 0}+ η−min{z, 0}.

Recall that customers are called loss-averse if η− > η+, loss-seeking if η− <

η+ and loss-neutral if η− = η+. In this chapter we will focus on the loss-averse
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or loss-neutral case, i.e., η+ ≤ η−.

Given the expected demand d, the associated realized demand, denoted by

D(d, εt), is

D(d, εt) = dεm,t + εa,t,

where random variables εt = (εm,t, εa,t) are independent across the time

index and satisfy that εm,t > 0, E[εm,t] = 1 and E[εa,t] = 0. Moreover,

we assume D(d, εt) ≥ 0 for all feasible p and r with probability 1. This

model is known as the additive model when εm,t = 1, and it is known as the

multiplicative model when εa,t = 0. Similar to existing literature on joint

inventory and pricing optimization, such as Chen and Simchi-Levi (2011),

some of our results depend on whether demand follows the additive or the

multiplicative model.

Suppose that in each period, the order is received immediately with a

per unit cost ct. Because of uncertainties, realized customer demand may

be larger than or smaller than the firm’s inventory level in the period. We

assume unsatisfied demand is backlogged and will be finally fulfilled with

selling price in the period when it incurs, and unused inventory is carried

over to the next period. Denote by ht(x) the inventory holding (if x ≥ 0)

and backlogging (if x ≤ 0) cost associated with the inventory level x. Assume

that

ht(x) =

h−t (−x) if x ≤ 0,

h+
t (x) if x ≥ 0,

,

where both h−t (x) and h+
t (x) are increasing convex functions such that

h−t (x) = h+
t (x) = 0 for all x ≤ 0. In addition, suppose ctd ≤ ct+1d + h−t (d)

and (L− ct+1)d− h−t (d) is increasing in d when d ≥ 0. The two assumptions

are commonly used in literature, where the inequality implies that there is no

incentive to backlog demand, and the monotonicity assumption means that

more profit can be obtained by selling more.

The objective is to find an ordering and pricing policy so as to maximize

the total expected profit over the planning horizon. Let v0
T+1(x, r) = 0 and

v0
t (x, r) be the profit-to-go function at the end of period t associated with

the inventory level x and reference price r. We can write down the dynamic
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programming recursion for v0
t (x, r), t = 1, · · · , T , as

v0
t (x, r) = maximize

p,d,r̃,y
[pd− ct(y − x)]− Eht(y − εm,td− εa,t)

+Ev0
t+1(y − εm,td− εa,t, r̃)

subject to d = bt − atp+ η(r − p)
r̃ = αr + (1− α)p, y ≥ x, L ≤ p ≤ U.

where y denotes the order-up-to inventory level in the current period.

To our best knowledge, there are only a few papers that integrate stochas-

tic inventory models with reference price effects. Urban (2008) analyzes

a single-period joint inventory-and-pricing model with both symmetric and

asymmetric reference price effect, and provide numerical analysis which in-

dicates that accounting for reference prices has a substantial impact on the

firm’s profitability. Gimpl-Heersink (2008) analyzes a special case of the

demand model with only additive uncertainty. Recognizing that the single-

period expected revenue is not jointly concave as a function of the selling

price and the reference price, they prove that a base-stock policy is optimal

for one-period and two-period cases.

In this chapter, we extend Gimpl-Heersink (2008)’s results by analytically

proving the optimality of the base-stock policy in a model with any number

of periods for the general demand model when customers are either loss-

neutral or loss-averse. There are two significant technical challenges in our

model. The first one is that the single-period expected revenue fails to be

jointly concave as a function of the selling price and the reference price. This

challenge can be conquered by using the same transformation technique as

the previous chapter such that a modified revenue function is jointly concave.

The second one is the feasible set of the main problem is not convex due to

the constraint d = bt − atp + η(r − p) for a general concave η(z). Notice

that Guler et al. (2010) consider a similar dynamic program as ours and

face the same challenge. However, to circumvent such difficulty, they in fact

replace the constraint by a much simpler one. It leads to a formulation

which is not equivalent to the original problem. Under some reasonable

conditions we manage to prove that it loses no optimality to properly modify

the feasible set such that our main problem becomes a concave maximization

problem. This allows us to prove that a reference price dependent base-
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stock policy is optimal for a general concave η(z). When customers are loss-

neutral and demand models involve only an additive random perturbation,

we further prove that a higher reference price leads to a higher optimal base-

stock level. Moreover, in the infinite horizon setting, we focus on the model

when customers are loss-neutral. We prove that under some conditions on

system parameters the reference price converges to some steady state in the

optimal trajectory. Characterizations to the steady states are also provided.

The rest of this chapter is organized as follows. In Section 4.2, we consid-

er the finite horizon problem and characterize the structure of the optimal

policy. In Section 4.3, we analyze the infinite horizon counterpart. Finally,

Section 4.4 concludes the paper and points to interesting topics for future

research.

4.2 Finite horizon model

In this section, we focus on the finite horizon model when η+ ≤ η− in the de-

mand model, that is, customers are either loss-neutral or loss-averse. Notice

that η(z) is a concave function in this case.

Similar to Chapter 3, at first we reformulate the main problem such that

the objective function is jointly concave. Specifically, for each 1 ≤ t ≤ T ,

define

vt(x, r) = v0
t (x, r)− Atr2 − ctx,

where the constant At is given in Proposition 3.2. Let the expected demand

d, relative difference z = r−p, order-up-to inventory level y and the reference

price in the next period r̃ be decision variables. Then the selling price p =

r̃−αz, the current reference price r = r̃+ (1−α)z and the original problem

can be expressed by

vt(x, r) = maximize
d,y,z,r̃

{πt(z, r̃) + wt(y, d) + E[vt+1(y − εm,td− εa,t, r̃)]}

(4.1a)

subject to d = bt − at(r̃ − αz) + η(z), (4.1b)

r̃ + (1− α)z = r, (4.1c)

y ≥ x, L ≤ r̃ − αz ≤ U, , (4.1d)

58



where πt(z, r̃) and −wt(y, d) defined below can be interpreted as the trans-

formed one-period expected revenue and expected cost, respectively:

πt(z, r̃) = [(r̃ − αz)− L)][bt − at(r̃ − αz) + η(z)]

− At[r̃ + (1− α)z]2 + At+1r̃
2,

wt(y, d) = (L− ct+1)d− (ct − ct+1)y − E[ht(y − εm,td− εa,t)].

By Proposition 3.2, we know that πt is jointly concave and supermodular

when (3.4) holds. In addition, the following proposition characterizes the

function wt(y, d).

Proposition 4.1. wt(y, d) is jointly concave, supermodular and increasing

when y ≤ 0 and d ≥ 0.

Proof. It is straightforward to see the concavity and supermodularity of

wt(y, d) from the convexity of ht. We only need to verify its monotonici-

ty.

Since that ht is convex, ht(x) − ht(x − z) is increasing in x for any fixed

non-negative z. To see the monotonicity in y when y ≤ 0, for any δ ≥ 0,

from D(d, εt)− y ≥ 0 we know that

wt(y, d)− wt(y − δ, d) + (ct − ct+1)δ

= −E[ht(y −D(d, εt))− ht(y − δ −D(d, εt)]

= −E[h−t (D(d, εt)− y)− h−t (D(d, εt)− y + δ]

≥ −[h−t (0)− h−t (δ)] ≥ 0,

where the last inequality holds by ctd ≤ ct+1d+ h−t (d) for all d ≥ 0.

To see the monotonicity in d, denote x̃ = min{y − D(d, εt), 0}. Then for

any δ ≥ 0, by the monotonicity of (L− ct+1)d− h−t (d) on d ≥ 0,

wt(y, d+ δ)− wt(y, d) = −(ct+1 − L)δ − E[ht(y − dεt − δεm,t)− ht(y − dεt)]
≥ −E[(ct+1 − L)δεm,t + ht(x̃− δεm,t)− ht(x̃)]

= E[(ct+1 − L)δεm,t + h−t (δεm,t − x̃)− h−t (−x̃)] ≥ 0.

We then complete this proof.

We are ready to present the main theorem in this section.
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Theorem 4.1. Suppose (3.4) holds. Then vt(x, r) is decreasing in x and

jointly concave. Moreover, a non-negative and reference price dependent

base-stock policy is optimal, i.e., there exists yt(r) ≥ 0 such that it is op-

timal to raise the inventory up to yt(r) if x ≤ yt(r), and no order is placed

otherwise.

Proof. Since the objective function is independent on x, vt(x, r) is decreasing

in x for each t. It remains to show its concavity, which is straightforward

when t = T + 1. The statement will be proved inductively.

Suppose vt+1(x, r) is jointly concave. Because that the objective function

(4.1a) is increasing in y and d when y ≤ 0 ≤ d by Proposition 4.1, it leads

no loss of optimality to restrict y ≥ 0 and replace the equality in (4.1b) by

inequality, that is,

vt(x, r) = maximize
y,z,r̃

πt(z, r̃) + wt(y, d) + E[vt+1(y − εm,td− εa,t, r̃)]
subject to d ≤ bt − at(r̃ − αz) + η(z),

r̃ + (1− α)z = r,

L ≤ r̃ − αz ≤ U, y ≥ max{0, x}.

Because the feasible set is convex by the concavity of η, and the objective

is concave by Proposition 4.1, it implies that vt is concave by Proposition

2.3.9, Bertsekas et al. (2003). That a reference price-dependent base-stock

ordering policy is optimal can be proved by routine techniques.

An interesting question is how the optimal base-stock level yt(r) depends

on the reference price r. Gimpl-Heersink (2008) proves that in the one-period

case the optimal base-stock level is nondecreasing in r for the loss-neutral

additive demand model. All our numerical studies also suggest that it holds

in the multi-period case for general demand models. This is even true under

a significant amount of multiplicative uncertainty. As an example, Figure 4.1

shows the optimal base-stock level vs. reference price when γ = 0.99, α =

0.15, ct = 0.2, h(x) = 0.1 max{x, 0}− 0.15 min{x, 0}, bt = 40, at = 20, ηt = 20

and the variances of εa,t and εm,t are respectively 5 and 0.1.

Now we prove that in the multi-period case the optimal base-stock level

is indeed nondecreasing in r for the loss-neutral additive demand model. A

common and standard approach to prove this type of results is to employ

Theorem 2.8.1 in Topkis (1998), which states that if X and Y are lattices,
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Figure 4.1: Base-Stock Level vs. Reference Price

S is a sublattice of X × Y , and g(x,y) is supermodular in (x,y) ∈ S,

then f(x) = maxy[g(x,y) : (x,y) ∈ S] is supermodular on the set of x

for which the maximization is well defined. The constraints in our dynamic

programming model (4.1), however, do not seem to fit the needed sublattice

condition. Nevertheless, Theorem 5.1, which will be introduced in the next

chapter, provides a powerful tool for the analysis and leads to the following

desirable results.

Theorem 4.2. Suppose (3.4) holds. If the demand follows the loss-neutral

and additive model, then in addition to the results stated in Theorem 4.1, we

can select an optimal base-stock level yt(r) nondecreasing in reference price

r for each t.

Proof. We will show how to convert our problem into a format for which

Theorem 5.1 can be applied.

Since that η(z) is linear, say η(z) = ηz, we can write the relative difference

z given in (4.1b) as a linear function in terms of of d and r̃:

z = zt(d, r̃) =
d+ atr̃ − bt
αat + η

.

Correspondingly, express the transformed one-period expected revenue in d
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and r̃ as π̃t(d, r̃) = πt(zt(d, r̃), r̃). That is,

π̃t(d, r̃) = [r̃ − αzt(d, r̃)− L]d+ At[r̃ + (1− α)zt(d, r̃)]
2 − At+1r̃

2,

where π̃t(d, r̃) is quadratic and concave by Proposition 3.2. In addition,

calculation shows that the coefficient of the cross-term dr̃ is

η

αat + η
+ 2(1− α)At

a+ η

(αat + η)2
,

which is non-negative by the definition of At in Proposition 3.2. Therefore

π̃t(d, r̃) is also supermodular.

When demand is additive, εm,t = 1 for all t and (4.1) can be rewritten by

vt(x, r) = maximize
y,q

{ut(y, r) + (L− ct+1)y : y + q = x, q ≤ 0}, (4.2a)

ut(y, r) = maximize
d,ỹ,r̃

π̃t(d, r̃) + w̃(ỹ) + Evt+1(ỹ − εa,t, r̃) (4.2b)

subject to ỹ + d = y,

(at + η)r̃ + (1− α)d = (αat + η)r + (1− α)b,

(at + η)L ≤ bt − d+ ηtr ≤ (at + η)U,

where −q and ỹ denote the ordering quantity and the expected inventory

carried over to the next period, respectively, and the function w̃t defined

below is concave by the concavity of ht:

w̃t(ỹ) = −(L− ct+1)ỹ − E[ht(ỹ − εa,t)].

Moreover, the last two constraints are obtained by substituting z = zt(d, r̃)

into (4.1c) and the second inequality in (4.1d).

Clearly (4.2) is a special case of the problem (5.1). If vt+1(y, r) is concave

and supermodular, which can be verified straightforwardly when t = T , then

so are ut(y, r) and vt(y, r) by Theorem 5.1. We then inductively prove that

all ut are supermodular. By Theorem 2.8.1, Topkis (1998), the optimal base-

stock level yt(r) is nondecreasing in r.

The intuition of the monotonicity of the optimal base-stock level is quite

clear. In fact, in our demand model, higher reference price results in higher

demand and thus it is reasonable to expect that the optimal base-stock level is
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also higher. Notice that in the special case without reference price effects (i.e,

ηt(z) = 0), Federgruen and Heching (1999) show that under some conditions

the list-price policy is optimal, i.e., the price is non-increasing in the inventory

level of the firm. However, such policy may not be optimal in our problem.

On one hand, when the inventory level is high, the firm should lower the

price to increase the demand in order to clear inventory. On the other hand,

the firm may raise the price to increase the reference prices and thus the

demands in the future. This way, the firm cannot clear inventory in the

current period, but can clear more inventory in future periods. Either effect

can dominate depending on the demand function and customers sensitivity

to the reference price effect.

4.3 Infinite horizon model

We next turn to the infinite horizon version of our model when customers

are loss-neutral. We are interested in the asymptotic property of the optimal

trajectory. To avoid tedious technicalities, we assume system parameters are

stationary and focus the discounted profit case

v0
t (x, r) = maximize

p,d,r̃,y
[pd− c(y − x)]− Eh(y − εmd− εa)

+γEv0
t+1(y − εm,td− εa,t, r̃)

subject to d = b− ap+ η(r − p)
r̃ = αr + (1− α)p, y ≥ x, L ≤ p ≤ U,

where γ is the discount factor satisfying 0 < γ ≤ 1. Our goal is to study

whether the optimal reference price path converges to some steady state, and

to identify properties that characterize it.

It is worth noting that in loss-neutral case η(z) = ηz, the expected demand

d is linear in terms of the selling price p and the reference price r. Or

equivalently we can express the selling price as

p = p(d, r) ,
b− d+ ηr

at + η
.

In addition, when system parameters are stationary, (3.4) holds automati-

cally and the constant At is too independent on t, i.e., we can denote At = A
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for all t. Let

vt(x, r) = v0
t (x, r)− Ar2 − cx.

Then the limit of vt, denoted by ϕ(x, r), is be determined by the Bellman

equation as given in the following optimization problem:

ϕ(x, r) = maximize π(d, r)− Ehγ(y − εmd− εa)
+E [γϕ(y − εmd− εa, q)] , (4.3)

subject to q = αr + (1− α)p(d, r),

L ≤ p(d, r) ≤ U, y ≥ x,

where hγ(x) = h(x) + (1− γ)cx is the transformed holding and backlogging

cost function, and

π(d, r) = [p(d, r)− c]d− Ar2 + γA[(1− α)p(d, r) + αr]2

can be regarded as the modified single period expected revenue function. By

Proposition 3.2, π is jointly concave and supermodular.

We call {(xt, rt) : t ≥ 1} a state path if (xt+1, rt+1) solves problem (4.3)

when (x, r) = (xt, rt) for any t ≥ 1, and correspondingly {rt : t ≥ 1} the

reference price trajectory. Moreover, if rt = r∗ implies that rt+1 = r∗, then

we say r∗ is a steady state.

Compared to most joint inventory-and-pricing models in the literature, our

Bellman equation (4.3) has one more state variable r. This added dimen-

sion of state space brings significant challenge. Therefore, we first propose

a simplification of the problem, prove results for this simplified version in

Subsection 4.3.1, demonstrate how we can use it as an auxiliary tool to es-

tablish results for our original problem in Subsection 4.3.2, and then provide

a characterization of the steady state in Subsection 4.3.3.

Before proceeding to the analysis, we introduce the following definitions.

ω(d) = minimize
y

E[hγ(y − εmd− εa)],
y(d) = arg min

y
E[hγ(y − εmd− εa]. (4.4)

The existence of y(d) is ensured by the convexity of hγ and the assumption

lim|x|→∞ h
γ(x) = ∞. If there are multiple optimal solutions, let y(d) be the
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largest one. Lemma 4.1 below presents several properties of ω(d) and y(d).

Lemma 4.1. ω(d) is convex and y(d) is increasing in d. In addition,

(a) if the demand model is additive, then y(d) = d + ya and ω(d) = ωa for

some ya and ωa;

(b) if the demand model is multiplicative, then ω(d) is increasing when d ≥
0; moreover, if hγ(x) is positive homogeneous with degree ρ > 0 (i.e.,

hγ(dx) = dρhγ(x) for any d ≥ 0), then ω(d) = dρωm when d ≥ 0, where

ωm ≥ 0 is the minimum of the function Ehγ(y − εm) over y.

Proof. The convexity of ω(d) follows from the convexity of hγ(x). By εm ≥ 0,

E[hγ(y−εmd−εa)] is submodular in (y, d) hence y(d) is increasing by Theorem

2.8.1, Topkis (1998).

(a) For the additive demand model, ω(d) = min
y

E[hγ(y− d− εa)]. Let ya be

the largest minimizer of the function Ehγ(y−εa) and ωa = miny Ehγ(y−
εa). It is straightforward to show that y(d) = d+ ya and ω(d) = ωa.

(b) For the multiplicative demand model, ω(d) = miny E[hγ(y − εmd)] ≥
miny[h

γ(y)] = 0. Clearly ω(d) achieves its minimum at d = 0, which

together with its convexity implies that ω(d) is increasing in d when

d ≥ 0. Furthermore, if hγ(x) is positive homogeneous with degree ρ,

then

ω(d) = dρ min
y

E[hγ(y/d− εm)] = dρ min
y

E[hγ(y − εm)] = dρωm.

We now complete the proof.

4.3.1 When return is allowed

In this subsection, we study a simplified problem in which the retailer is

allowed to return products back to the manufacturer and get a full refund.

In this case the constraint y ≥ x disappears from the Bellman equation in

(4.3). Thus, ϕ(x, r) reduces to a function of r only, denoted by ϕ0(r), and it

is given by the following optimality problem:

ϕ0(r) = maximize
y,d

[R(d, r)− Ehγ(y −D(d, ε)) + γϕ0(q)],

subject to q = αr + (1− α)p(d, r), L ≤ p(d, r) ≤ U
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Observe that allowing return reduces the dimension of the state space to

one. In the following we denote by (y0(r), d0(r)) the optimal solution to the

above problem. If there are multiple optimal solutions, we select the one

with the largest y0(r).

It can be verified that the optimal order-up-to inventory level minimizes the

expected single period holding and backlogging cost. Using equation (4.4),

we have y0(r) = y(d0(r)), where d = d0(r) solves the following optimization

problem

ϕ0(r) = maximize
d

[R(d, r)− ω(d) + γϕ0(q)], (4.5)

subject to q = αr + (1− α)p(d, r), L ≤ p(d, r) ≤ U.

For technical convenience, we use q as the decision variable instead of d

in further analysis. Thus, we denote by d̃(q, r) = d
(
q−αr
1−α , r

)
and R̃(q, r) =

R(d̃(q, r), r) respectively the expected demand and transformed single period

revenue in terms of q and r. Then, problem (4.5) can be reformulated as

ϕ0(r) = maximize
q∈Q(r)

{
R̃(q, r)− ω(d̃(q, r)) + γϕ0(q)

}
, (4.6)

where Q(r) = {(1− α)p+ αr : L ≤ p ≤ U}.
Before showing the uniqueness of steady state for the simplified model, we

first present several structural results for a slightly generalized setting, which

will be useful for our analysis.

Lemma 4.2. Consider the following problem

ψ(r) = maximize
q∈Sε(r)

{θ(q, r) + γψ(q)} , ∀L ≤ r ≤ U, (4.7)

where for any L ≤ r ≤ U , Sε(r) is a subset of [L,U ] and the function θ is

continuous on Sε = {(q, r) : q ∈ Sε(r), L ≤ r ≤ U} assumed to be compact.

Let q(r) be the largest optimal solution for problem (4.7).

(a) If Sε is a convex sublattice of <2 and θ(q, r) is supermodular on Sε, then

q(r) is nondecreasing and the reference price trajectory {rt : t ≥ 1} of

problem (4.7) monotonically converges to a steady state.

(b) If problem (4.7) admits a steady state r∗ ∈ [L,U ] then for sufficiently
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small positive δ,

1
1−γ θ(r

∗, r∗) = maximize
r∈[L,U ]:|r−r∗|≤δ

{
θ(r, r∗) + γ

1−γ θ(r, r)
}
.

Proof. Popescu and Wu (2007) consider a model similar to (4.6) without

inventory related cost (i.e., ω(d) = 0 and c = 0) and prove a result similar

to part (a). Here we briefly mention the basic idea. Note that the mono-

tonicity of q(r) is an direct application of Theorem 2.8.1, Topkis (1998) since

the objective function in problem (4.7) is supermodular and the set Sε is a

sublattice. It, together with the fact that r belong to the compact set [L,U ],

implies that a reference price trajectory monotonically converges.

We now prove part (b), notice that {r∗, r, r, · · · , r, . . .} gives a feasible

and sub-optimal reference price trajectory whenever r ∈ [L,U ] and |r − r∗|
is sufficiently small. The corresponding total value θ(r, r∗) + γ

1−γ θ(r, r) is

no more than ψ(r∗) = 1
1−γ θ(r

∗, r∗), the value associated with the optimal

reference price trajectory path {r∗, r∗, r∗, · · · }.

We now apply Lemma 4.2 to problem (4.6).

Theorem 4.3. If return is allowed and demand is the loss-neutral, then

reference price trajectory monotonically converges to a unique steady state

r∗. Moreover, d∗ = b − ar∗ is the unique optimal solution to the convex

minimization problem

minimize
d∈D

{
ω(d) + 1

2
Bd2 + Cd

}
, (4.8)

where D = {b− ap : p ∈ [L,U ]}, scalars B = a−1 +
(
a+ η 1−γ

1−αγ

)−1

> 0 and

C = c− a−1b.

Proof. Notice that in the loss-neutral case the expected demand d̃(q, r) and

the revenue R̃(q, r) = R(d̃(q, r), r) have the expressions as follows:

d̃(q, r) = d
(
q−αr
1−α , r

)
= b− a+η

1−αq + aα+η
1−α r,

R̃(q, r) =
(
q−αr
1−α − c

) (
b− a+η

1−αq + aα+η
1−α r

)
− λr2 + γλq2,

Clearly R̃(q, r) is supermodular and concave becauseR(d, r) is jointly concave

and d̃(q, r) is linear. Moreover, because ω(d) is convex by Lemma 4.1 and
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d̃(q, r) is linear, decreasing in q and increasing in r, we know that ω(d̃(q, r)) is

submodular and convex in (q, r). Therefore the transformed expected single-

period profit

θ(q, r) = R̃(q, r)− ω(d̃(q, r))

is concave and supermodular. The existence of a steady state immediately

follows from Lemma 4.2(a).

To prove the necessary condition on a steady state, define

Θ(q, r) = θ(q, r) +
γ

1− γ θ(q, q).

By Lemma 4.2(b) we know that for a given steady state r∗ and a sufficiently

small δ > 0,

Θ(r∗, r∗) ≥ Θ(q, r∗), ∀ q ∈ [L,U ] : |q − r∗| ≤ δ. (4.9)

Observe that Θ(q, r) is jointly concave in (q, r). Let ∂+
q Θ(q, r) and ∂−q Θ(q, r)

be the right- and left-derivatives of Θ(q, r) at q for a given r, respectively.

It is well-known from convex analysis (see, e.g., Rockafellar, 1970) that both

∂+
q Θ(q, r) and ∂−q Θ(q, r) exist; moreover, the above inequality is equivalent

to ∂−q Θ(r∗, r∗) ≥ 0, if r∗ > L,

∂+
q Θ(r∗, r∗) ≤ 0, if r∗ < U .

Recall that d∗ = b− ar∗. Next we show that∂−q Θ(r∗, r∗) ≥ 0 if and only if ∂+ω(d∗) +Bd∗ + C ≥ 0,

∂+
q Θ(r∗, r∗) ≤ 0 if and only if ∂−ω(d∗) +Bd∗ + C ≤ 0.

To see it, let ∂+ω(d) and ∂−ω(d) be the right- and left-derivatives of the

convex function ω at d respectively. Since ω̃(q, r) = ω(d̃(q, r)), calculation

shows that[
∂
∂q
R̃(q, r)

] ∣∣
q=r

= 1
1−α(b− ar)− a+η

1−α(r − c) + 2λγr,[
∂+
q ω̃(q, r)

] ∣∣
q=r

= − a+η
1−α

[
∂−ω(d)

] ∣∣
d=b−ar = − a+η

1−α∂
−ω(b− ar).
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The above equation implies that

[
∂+
q θ(q, r)

] ∣∣
q=r

= 1
1−α(b− ar) + 2λγr − a+η

1−α

[
(r − c)− ∂−ω(b− ar)

]
.

In addition, since θ(q, q) = (q − c)(b− aq)− (1− γ)λq2 − ω(b− aq),

γ
1−γ

[
∂+θ(q, q)

]
= γ

1−γ (b− aq)− aγ
1−γ [(q − c)− ∂−ω(b− aq)]− 2λγq.

Thus,

∂+
q Θ(r∗, r∗) =

(
1

1−α + γ
1−γ

)
(b− ar∗)

−
(

1+η/a
1−α + γ

1−γ

)
[a(r∗ − c)− a∂−ω(b− ar∗)].

From the definitions of B and C we have that ∂+
q Θ(r∗, r∗) ≤ 0 if and only if

∂−ω(d∗) + Bd∗ + C ≤ 0. Similarly ∂−q Θ(r∗, r∗) ≥ 0 if and only if ∂+ω(d∗) +

Bd∗ + C ≥ 0. Therefore, (4.9) is equivalent to∂+ω(d∗) +Bd∗ + C ≥ 0, if d∗ is not the upper boundary of D,

∂−ω(d∗) +Bd∗ + C ≤ 0, if d∗ is not the lower boundary of D.

Since B is positive, d∗ minimizes ω(d) + 1
2
Bd2 + Cd over D.

Finally, problem (4.8) admits a unique minimizer over the compact feasible

set D because its objective function strictly convex. Thus we conclude that

the steady state is unique.

The above result extends the existence and uniqueness of the steady state

in Theorem 2, Popescu and Wu (2007) by incorporating inventory related

costs ω(d) and c. Unlike their loss-neutral setting, the single period expected

profit function here may be non-smooth at r = r∗. Yet, we still have the

uniqueness of the steady state and provide a characterization of the stead

state as the optimal solution of a minimization problem with a strictly con-

vex objective function. The parametric analysis of the steady state will be

presented in Proposition 4.2 .

It can also be shown that the optimal base-stock level y0(r) is nondecreas-

ing in r. To see this, observe that in problem (4.5), if we write q as a function

of d and r in the objective function, we can show that the objective function

69



is supermodular in (d, r) and the set

{(d, r) : L ≤ p(d, r), r ≤ U}

a is a sublattice of <2. Therefore, d0(r) is nondecreasing in r and y0(r) =

y(d0(r)) is nondecreasing as well by Lemma 4.1. This, together with Theorem

4.3, implies that the optimal order-up-to levels also monotonically converge.

4.3.2 When return is not allowed

Now we move our attention back to the system in which return is not allowed.

For exposition purpose, we denote I∗ as the model when return is not allowed,

and denote I0 as the system with the same parameters as I∗ when return is

allowed.

Theorem 4.4 below shows that I∗ and I0 share the same type of convergence

results on the reference price path for the additive demand model.

Theorem 4.4. Consider the system I∗ when demand is additive. There

exists an optimal policy such that under the optimal policy, the reference

price trajectory {rt : t ≥ 1} converges to a steady state, which is unique and

equal to r∗, the steady state of system I0.

Proof. Let {(x0
t , r

0
t ) : t ≥ 1} be the state path of I0 under the optimal policy

starting with some given initial state (x0
1, r

0
1). Recall that at the beginning of

period t ≥ 1 when a typical state (x0
t , r

0
t ) = (x, r) is observed, we respectively

denoted by d0(r) and y0(r) the expected demand and inventory level after

replenishment/return under the optimal policy for I0.

For I∗, we claim the following policy, referred to as policy I0, is optimal:

given the state (x, r) at the beginning of any period, if x > y0(r), no order

is placed and solve problem (4.3) by setting y = x to get the reference price

of the next period; if x ≤ y0(r), place an order to raise the inventor level

to y0(r) and determine the reference price of the next period, denoted by q,

from d0(r) = d̃(q, r).

To see the optimality of policy I0, observe that if x > y0(r), no order is

placed. Since the expected demand is assumed to be always positive and

E[εa,t] = 0, eventually the inventory level will drop down to a point at which

an order is necessary. Suppose at the beginning of some period τ ≥ 1 the
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observed state (x, r) satisfies that x ≤ y0(r). We next prove that the state

path {(xt, rt) : τ ≥ τ} in I∗ under policy I0 satisfies the condition xt ≤ y0(rt)

for all t ≥ τ . In fact, To see this, note that y0(r) = ya + d0(r) by Lemma

4.1(a). If xt ≤ y0(rt), then

xt+1 = y0(rt)− [d0(rt) + εa,t] = ya − εa,t ≤ ya + d0(r0
t+1) = y0(r0

t+1),

where the inequality follows from the nonnegativity of the realized demand.

Thus, at each period t ≥ τ , I∗ under policy I0 gives exactly the same state

path as I0 with (x0
τ , r

0
τ ) = (x, r) under its optimal policy and results the

same realized discounted total profit. Since φ(x, r) ≤ φ0(r) for any (x, r),

policy I0 is optimal for any initial state (x, r) with x ≤ y0(r). For a given r,

we can show that a stationary reference price dependent base-stock policy is

optimal by extending Theorem 4.1 to its infinite horizon counterpart. Since

it is optimal to order up to y0(r) when x < y0(r), y0(r) must be the optimal

base-stock level and thus policy I0 is actually optimal for I∗.

The above analysis indeed shows that I∗ will simply mimic I0 once an

order is placed. Thus, the reference price trajectory {rt : t ≥ 1} converges

to the unique steady state of I0, which is also a steady state of I∗. Observe

that any steady state of I∗ is also a steady state of I0. This implies that the

steady state of I∗ is unique as well.

We can prove a weaker result for the multiplicative demand model.

Theorem 4.5. Consider the system I∗ when demand is multiplicative. There

exists an optimal policy such that under the optimal policy, the reference price

trajectory {rt : t ≥ 1} converges to the unique steady state r∗ of system I0 if

we start with an initial state (x, r) with x ≤ y0(r) and r ≤ r∗.

Proof. The logic of the proof is similar to the one for Theorem 4.4. The key

difference is that in general, we cannot guarantee that the inventory levels

xt following policy I0 will always be no more than y0(rt) if we start with

initial state (x, r) with x ≤ y0(r). However, if x ≤ y0(r) and r ≤ r∗, then we

can show that the state path {(xt, rt) : t ≥ 1} in system I∗ is optimal under

policy I0. In fact, if xt ≤ y0(rt) and rt ≤ r∗, then

xt+1 = y0(rt)− d0(rt)εm,t ≤ y0(rt) ≤ y0(rt+1),
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where the first inequality holds by the nonnegativity of the realized demand

and the second one holds since rt ≤ rt+1 by Theorem 4.3 and y0(r) is non-

decreasing.

Although we can analytically prove the convergence of reference price only

when the initial state lies in a certain region in the multiplicative model, our

numerical experiments show that the convergence result holds with any initial

states. As an example, Figure 4.2 shows the optimal reference price trajec-

tories of reference price (inventory is not plotted here) with γ = 0.99, α =

0.15, c = 0.2, h(x) = 0.1 max{x, 0} − 0.15 min{x, 0}, b = 40, a = 20, η = 20

and the variances of εa and εm are 5 and 0.1, respectively.
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Figure 4.2: Reference price path under loss-neutral demand

4.3.3 Characterizing the steady-state

The previous subsection establishes some conditions for the optimality of

reference-price dependent base-stock policy and global convergence proper-

ties of reference price trajectory. In this section we characterize the steady

state r∗. In particular, we have the following proposition.

Proposition 4.2. The steady state r∗ is decreasing in α, η, a and increasing

in γ, b, c.
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Proof. From Theorem 4.3, we have that d∗ = b − ar∗ is the unique optimal

solution to the problem

minimize
d∈D

[
ω(d) + 1

2
Bd2 + (a−1b− c)d

]
,

where B = 1
a

+ 1
a+s

with s = η 1−γ
1−αγ . Clearly d∗ and r∗ depend on α, γ and

η through s. Since the objective function in the minimization problem is

supermodular in (d,B), by Theorem 2.8.1, Topkis (1998), d∗ is decreasing in

B. Since B is decreasing in s and r∗ = (b − d∗)/a is decreasing in d∗, we

know that r∗ is decreasing in s. In addition, because s is decreasing in γ and

increasing in α and η, we then conclude the monotonicity of r∗ in have that

is decreasing in α, η and increasing in γ.

For the monotonicity in b and c, note that r∗ solves the problem

minimize
r∈P

{
ω(b− ar) + 1

2
B(b− ar)2 + (ac− b)r

}
,

where ω(b − ar) and (b − ar)2 are submodular in (r, b) by the convexity of

ω(d) and d2. One can easily verify that the objective function of the above

minimization problem is submodular in (r, b, c). Therefore r∗ is increasing in

b and c by Theorem 2.8.1, Topkis (1998) again.

To see the monotonicity of r∗ in a, observe from the above convex min-

imization problem that r∗ is the projection of p∗ onto the interval [L,U ],

where p = p∗ is the unique solution satisfying the following condition:

∂−ω(b− ap)−
(
1 + a

a+s

)
p+

(
c+ b

a+s

)
≤ 0

≤ ∂+ω(b− ap)−
(
1 + a

a+s

)
p+

(
c+ b

a+s

)
.

Notice that by the convexity of ω, the first and the last terms in the above

inequality are strictly decreasing in a and p for a > 0 and p ≥ 0 (it is easy to

show that p∗ ≥ 0). Since p = p∗ is the unique solution satisfying the above

inequalities, p∗ and hence r∗ are decreasing in a.

The above proposition extends the results in Section 4.2, Popescu and Wu

(2007) where there is no inventory-related cost to a model in which inventory

is a consideration. Recall that α measures the contribution of historical prices

to the reference price, η measures the reference price effect in demand, and
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a measures the sensitivity to the current selling price. That the steady state

is decreasing in a, α and η suggests that in the long run a lower price should

be charged to the market in which consumers are more sensitive to the base

price effect and to the reference price effect. Furthermore, the monotonicity

in the discount factor γ, the market size b and the per unit ordering cost c

suggests that a firm should charge a higher price in the long run if it cares

more about profit in future, or when it has a larger market size or a higher

production cost. Specifically, if the firm makes myopic decision, i.e., the

firm uses the optimal solution for the integrated inventory and pricing model

in which γ = 0, then it will underprice the product in the long run. The

intuition is clear. Under myopic decision making, the inventory manager

cares only about the current period profit and he/she would reduce price to

boost current period sales. This however leads to lower reference price and

is detrimental to the firm’s long-term profit.

It is also interesting to study the impact of the demand uncertainties on

the steady state. For this purpose, we use the convex order defined as follows

(see, e.g., Shaked and Shanthikumar, 1994, for a comprehensive discussion).

Definition 4.1. Given two random variables ζ1 and ζ2, we say ζ1 is smaller

than ζ2 in the convex order if Eh(ζ1) ≤ Eh(ζ2) for all convex functions h :

< 7→ <.

Intuitively, ζ1 is smaller than ζ2 in the convex order if ζ2 is “more variable”

than ζ1. For example, when ζi follows the normal distribution with zero mean,

ζ1 is smaller than ζ2 in convex order if and only if ζ1 has the smaller variance

than ζ2 does.

Proposition 4.3 below basically states that the higher uncertainty in the

market, the higher a firm should charge in the long run.

Proposition 4.3. Consider the demand model D(d, ε) = dεm + εa.

(a) In the additive demand case, the steady state is independent of εa.

(b) In the multiplicative demand case, if hγ is positive homogeneous with

degree ρ > 0, and εm is smaller than ε̃m in the convex order, then the

corresponding steady states, respectively denoted by r∗(εm) and r∗(ε̃m),

satisfy that r(εm) ≤ r(ε̃m).
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Proof. Recall that the steady states depends on (εm, εa) only through

ω(d) = minimize
y

Ehγ (y − dεm − εa) ,

where the transformed transformed holding and backlogging cost function hγ

is convex as assumed.

(a) Since ω(d) is a constant by Lemma 4.1(a), the optimal solution d∗ =

b − ar∗ to problem (4.8) and hence the steady state r∗ are independent

on εa.

(b) By Lemma 4.1(b), ω(d) = dρωm when d ≥ 0 for some ωm ≥ 0. In this

case, (4.8) reduces to

minimize
d∈D

[
ωmd

ρ + 1
2
Bd2 + Cd

]
,

where all elements in D = {b− ap : L ≤ p ≤ U} are nonnegative.

Observe that the objective of the above problem is a supermodular func-

tion in (ωm, d). Denote d(ωm) as the optimal solution associated with

any given ωm. Then d(ωm) is decreasing in ωm by Theorem 2.8.1 in Top-

kis (1998). Finally, by the definition of convex order and the definition

of ωm in Lemma 4.1(b),

ωm = min
y

Ehγ(y − εm) ≤ min
y
hγ(y − ε̃m) = ω̃m.

Therefore b − ar∗(εm) = d(ωm) ≥ d(ω̃m) = b − ar∗(ε̃m) implying that

r∗(εm) ≤ r∗(ε̃m).

4.4 Conclusion

This chapter studies a joint inventory and pricing model with reference price

effect. This provides new insights into how inventory decision interacts with

pricing decision under the presence of reference price effect. The major chal-

lenge is that the reference price effect links pricing decisions in difference pe-

riods, which further links with the inventory replenishment decisions in each
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period. This increases the dimension of the dynamic programming problem.

Despite the difficulty, we were able to analyze both the finite horizon and

infinite horizon model, and establish a number of structural results.

For the finite horizon model, we prove that a base-stock policy is always

optimal under general settings on demand uncertainty when customers are

either loss-neutral or loss-averse. For the infinite horizon model, we first

analyzed a simplified model in which the return of inventory is allowed. This

allows us to reduce the dimension of our dynamic program, and show that

the reference price converges to a steady state eventually. We then move our

attention back to the case where return is not allowed and proved similar

convergence result. We also analyzed how the optimal steady reference price

varies with model parameters.

Our work should only be taken as an initial attempt to inventory and pric-

ing models with reference price effect. Several future tasks are specifically

desirable. First, our discussion is based on the assumption that unsatisfied

demand is fully backlogged. Whether similar results hold in the lost-sales

case is still a challenge. Second, we also want to know if optimal order-up-to

inventory level is monotone in given reference price or not when customers

are loss-averse. Though our numerical studies suggest that the optimal base-

stock level is monotonically nondecreasing in r for multi-period problems,

it is still an open question whether we can prove the monotonicity theoreti-

cally. Finally, it would be interesting to see if the reference price trajectory

converges for the infinite horizon model for more general demand models.
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Chapter 5

Preservation of Supermodularity in
2-dimensional Parametric Optimization

Problems

5.1 Background and preliminaries

In many dynamic programing problems, one is concerned whether a kind

of property can be preserved hence structural results of optimal solutions

can be derived. For example in Chapter 3 we recursively proved in Propo-

sition 3.3 that all functions Gt defined by (3.3) are concave and consist of

O(t) quadratic pieces. As another example, the concept of supermodularity

provides a convenient tool in deriving monotone comparative statics in many

dynamic programing problems. One of the key preservation properties states

that if X and Y are lattices, D is a sublattice of X × Y , and g(x,y) is

supermodular in (x,y) ∈D, then the function

f(x) = maximize
y

[g(x,y) : (x,y) ∈D]

is supermodular on the set of x for which the maximization is well defined

(see Topkis, 1998, Theorem 2.7.6). Under the above conditions, one can also

show that the optimal solution set is increasing in x. The above preservation

property is powerful and widely used in many problems. However, to apply it,

the set D is required to be a sublattice. Relaxing the lattice requirement has

been proven a significant challenge. Indeed, without the lattice condition, the

analysis becomes much more complicated even in some very simple settings

in which supermodularity can be preserved.

The objective of this chapter is to establish a new preservation property of

supermodularity under optimization operations when the constraint set may

not be a lattice. Specifically, consider the following optimization problem
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parameterized by two dimensional vectors x ∈ S = {Ay : y ∈D},

f(x) = maximize
y

{
g(y) : Ay = x,y ∈D

}
, (5.1)

where A is a 2 × n matrix, D is a closed convex sublattice of <n and g is

an n-dimensional function defined on D. Throughout of this chapter, we

assume that the maximization is well defined whenever x ∈ S. The main

result Theorem 5.1 shows that f is concave and supermodular on S if A is

non-negative and g is concave and supermodular on D.

The significance of the above result is that the constraint set

{(x,y) : Ay = x,y ∈D}

is not a lattice in general and may not be mapped to become one by a vari-

able transformation. Of course, by relaxing the lattice requirement, we have

to assume concavity of the objective function and impose a requirement on

the dimension of the parameter vector. In addition, in general the opti-

mal solution set is not monotone in x. Though it may appear restrictive,

relaxing the above assumptions even slightly may render the preservation

property invalid. More importantly, the property and its extensions include

several existing results in the literature as special cases, and they prove quite

powerful as we illustrate their applications to several operations models.

We notice that our results can be applied to many applications. For ex-

ample, Gong and Chao (2011) consider the capacitated inventory systems

with remanufacturing and characterize the optimal policies by showing some

preservation property under the minimization operation in associated dy-

namic programing problems. By probably introducing additional variables

we observe that their problems are in fact special cases of (5.1) and some

of their results can be easily implied by Theorem 5.1. Another example is

the production planning problem with emissions trading discussed by Gong

and Zhou (2011), where their key technical results can be directly ensured

from our results as we will show later in Section 5.2. In addition, when ana-

lyzing the stochastic coordinated pricing and inventory model with reference

price effects in the previous chapter, we already adopted the main result in

this chapter to prove Theorem 4.2 when customers are loss-neutral and the

demand model involves only an additive random perturbation.
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In this chapter we focus on three other applications. The first application is

a two-product coordinated pricing and inventory control problem with cross-

price effects over a finite planing horizon. In this model, the retailer observes

the initial inventories of two products at the beginning of each period, and

then simultaneously decide their prices and the ordering quantities. The

demand of each product during a period is stochastic and depends not only

on its own price but also the price of the other product. The objective is to

maximize the total expected profit over the planning horizon assuming zero

lead time and backlogging of unfilled demand.

In the second application, we consider a two-stage coordinated dynamic

pricing and inventory control problem over a finite planning horizon. In

the model, the firm observes the initial raw material inventory level and the

finished product inventory level at the beginning of each period, and then

decides the amount of raw material to be purchased, the amount of product

produced from the raw material, and the selling price of product. Demand

of the product is stochastic and depends on its price. There is no lead time

for delivery and unused inventory is carried over to the next period. The

objective is to maximize the total profit over the whole horizon.

In the third application, we consider a self-financing retailer who sells a

single product over a finite planning horizon with its operational decisions

limited by its cash flow. At the beginning of each period, the retailer observes

the initial inventory level of the product and its available capital on hand,

and then decides the amount of product to be ordered such that the ordering

costs do not exceed the available capital. The delivery is immediate, unused

capital is deposited to the savings account. After demand during the period

is realized, unused inventory is carried over to the next period and unsatisfied

demand is lost. The retailer obtains its profit by either depositing the unused

capital or selling the product. The objective is to maximize the total profit

over the planning horizon.

The first and second applications fall into the literature on coordinated

pricing and inventory models. Papers directly related to the first application

include Zhu and Thonemann (2009), Song and Xue (2007) and Ceryan et al.

(2009), who analyze models with substitutable products and develop struc-

tural properties of the optimal policies. The second and third applications

are respectively extensions of Yang (2004) and Chao et al. (2008). Compared

with their papers, our approach based on results developed in this chapter is

79



significantly simpler and provides additional insights to these applications.

For instance, for the first application, Zhu and Thonemann (2009), Song and

Xue (2007) and Ceryan et al. (2009) prove the submodularity of the profit-to-

functions by analyzing the first-order optimality condition (the KKT condi-

tion) of the optimization problems resulted from the dynamic programming

recursion. Their proofs are lengthy and unfortunately not very insightful.

They also require smoothness assumptions on objective functions and can

only deal with simple feasible sets. In fact, for tractability, all these three

papers ignore the lower and upper bound constraints on prices when they

analyze the KKT conditions, even though such constraints are indispensable

in particular for linear demand models. Our approach allows us to treat co-

ordinated pricing and inventory models with complementary products and

substitutable products in a unified framework and derives new structural

results. Yang (2004) analyzes a model related to our second application

without pricing decisions. Again, his approach is also based on complicated

analysis on the first-order optimality condition of the optimization problems

resulted from the dynamic programming recursion.

Before continuing on the discussion, we introduce the notations and basic

concepts used in this chapter. Sets are expressed by boldface capital letters

(e.g., D and S), matrices by regular capital letters (e.g., A and B), vectors

by boldface lowercase letters (e.g., x and y) and real numbers by regular

lowercase letters. We also write A = [ai,j]m,n or x = [xi]n sometimes to

emphasize entries of A or components of x, where subscripts outside the

bracket indicate the size of A or the dimension of x. All vectors are column

vectors, and 0, e are the vectors with all components 0, 1, respectively.

Given any m × n matrix A and subset S of <n, denote by A ≥ 0 if all

its entries are non-negative, |A| the determinant of A when m = n, and

A(S) = {Ax : x ∈ S} ⊂ <m. Given vectors x = [xi]n and y = [yi]n, denote

by x ≤ y if xi ≤ yi for all i, and

x ∨ y = [max(xi, yi)]n, x ∧ y = [min{xi, yi}]n.

S is called a convex set if

x,y ∈ S and 0 ≤ λ ≤ 1 =⇒ λx+ (1− λ)y ∈ S.
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S is a sublattice (of <n) if

x,y ∈ S =⇒ x ∧ y,x ∨ y ∈ S.

For example, the box set [l,u] = {x : l ≤ x ≤ u} forms a convex sublattice

of <n, where some components of vectors l,u could be −∞,+∞, respectively

(if ui = +∞, for example, xi ≤ ui is to be understood as xi < +∞).

Given a function f defined on a subset S of <n (in case S is not specified,

we implicitly assume S = <n), we say f is increasing if

x ≤ y ∈ S =⇒ f(x) ≤ f(y).

f is concave if S is convex and for all 0 ≤ λ ≤ 1 and x,y ∈ S,

λf(x) + (1− λ)f(y) ≤ f(λx+ (1− λ)y).

And f is supermodular if S forms a sublattice and for all x,y ∈ S,

f(x) + f(y) ≤ f(x ∧ y) + f(x ∨ y).

In addition, we say f is decreasing, convex or submodular if −f is increas-

ing, concave or supermodular. f is monotone if it is either increasing or

decreasing, bimonotone if it is a bivariate function increasing in one variable

and decreasing in the other, a valuation if it is submodular and supermodu-

lar. When referring to a convex function, we assume it is well-behaved (i.e.,

closed, proper and lower semi-continuous) and may take the value +∞. For

details on these concepts, we refer to Rockafellar (1970), Topkis (1998) and

Simchi-Levi et al. (2005).

This chapter is organized as follows. In Section 5.2, we present our main

result, its special cases and extensions. In addition, several examples are

also given to demonstrate the applicability and limitation of our results on

a few examples. In Section 5.3, we apply the main result to the three afore-

mentioned applications. Section 5.4 summarizes this chapter and provides

some future research problems. Throughout this chapter, many proofs are

provided in Appendix B unless otherwise specified.
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5.2 Main results

In this section, we first show in Theorem 5.1 that concavity and supermod-

ularity can be preserved in problem (5.1) if A ≥ 0. We then present a

preservation property of components-wise concavity and supermodularity in

Proposition 5.1 on a special case of problem (5.1) and an extension of Theo-

rem 5.1 by replacing the constraint Ay = x with Ay = Bx for some matrix

B with two columns in Proposition 5.2. From Corollary 5.2 to Corollary 5.3

we discuss another special case of problem (5.1) and show several preserva-

tion properties. Finally, the applicability and limitation of our results are

demonstrated on several examples including linear programs and quadratic

programs. We point out that several results in the literature can be directly

derived from ours as we go along.

Theorem 5.1. Assume that A is a non-negative 2 × n matrix in problem

(5.1). If D is a closed convex sublattice, then so is S; if g is concave and

supermodular on D, then so is f on S.

Proof. It is straightforward to see S = A(D) is closed and convex. Concavity

of f on S follows from Theorem 5.4, Rockafellar (1970). It remains to prove

that S is a sublattice and f is supermodular on S, i.e., x∧ x̃,x∨ x̃ ∈ S and

f(x) + f(x̃) ≤ f(x ∧ x̃) + f(x ∨ x̃) for any x, x̃ ∈ S.

Let y and ỹ be the optimal solutions associated with x and x̃ in problem

(5.1), respectively. Because D is a sublattice, y ∧ ỹ,y ∨ ỹ ∈ D and a =

A(y ∧ ỹ), b = A(y ∨ ỹ) ∈ S. Since A ≥ 0, a ≤ x ∧ x̃ hence x ∧ x̃ belongs

to the convex hull of {a,x, x̃} (see Figure 5.1 for the illustration). We know

from the convexity of S that x ∧ x̃ ∈ S. Similarly, we also have x ∨ x̃ ∈ S.

Denote x∧ x̃ = λa+ µx+ νx̃ for some 0 ≤ µ, ν, λ ≤ λ+ µ+ ν = 1. Then

x ∨ x̃ = λb+ µx̃+ νx by a+ b = x ∧ y + x ∨ y = x+ x̃. The concavity of

f implies that

λ[f(a) + f(b)] + (1− λ)[f(x) + f(x̃)] ≤ f(x ∧ x̃) + f(x ∨ x̃).

In addition, the definition of f and the supermodularity of g lead to

f(x) + f(x̃) = g(y) + g(ỹ) ≤ g(y ∧ ỹ) + g(y ∨ ỹ) ≤ f(a) + f(b).

By combining the above two inequalities we conclude the desirable inequality
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x ∧ x̃
x

x̃

x ∨ x̃

a

b

Figure 5.1: Construction of a and b in the proof of Theorem 5.1

f(x) + f(x̃) ≤ f(x ∧ x̃) + f(x ∨ x̃). Therefore f is supermodular on S.

Remark 5.1. Theorem 5.1 still holds when the equality constraints Ay = x

in (5.1) are replaced by inequality constraints. Indeed, it suffices to add non-

negative slack or surplus variables to the inequality constraints and apply

Theorem 5.1 in the current format to establish the same result.

Remark 5.2. The statement of Theorem 5.1 remains valid for some discrete

cases. Specifically, suppose all entries of A are integers, D = [l,u] ∩ Zn,

where Z denotes the set of all integers and l,u ∈ Zn. We can show that

if g is supermodular on D and integrally concave (see Section 3.4, Murota,

2003) then so is f on S. The proof is almost identical except that we now

deal with the concave extensions of g and f instead.

Note that in the proof of Theorem 5.1, we only need the supermodularity

of g and the concavity of f (not the concavity of g) to ensure the super-

modularity of f . The concavity of g does provide a sufficient condition for

the concavity of f though. One may ask whether the concavity of g can be

replaced by component-wise concavity such that supermodularity can still be

preserved. Though the answer is negative in general as we illustrate later in

this section on an unconstrained quadratic program, the concavity of g can

be weakened for a special case of problem (5.1). The key is to observe that

in the proof of Theorem 5.1, we construct a such that x∧ x̃ can be expressed

as a convex combination of a,x and x̃, and then apply the concavity of f

on S. If one can guarantee that x ∧ x̃ and a lie on the same vertical line,

then the concavity of f(x1, x2) in x2 is sufficient to complete the proof. This

observation motivates the proposition below.
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Proposition 5.1. Consider the optimization problem parameterized by

[t, x] ∈ S ⊂ <2:

f(t, x) = maximize
y

{g(t,y) : at+ b′y = x, (t,y) ∈D} ,

where D ⊂ <n, a ≥ 0, b ≥ 0 and

S = {(t, at+ b′y) : (t,y) ∈D}.

Denote D(t) = {y : [t,y] ∈ D} and S(t) = {x : [t, x] ∈ S}. If D is a

sublattice and D(t) is convex for all t, then so is S. Moreover, if g(t,y)

is supermodular on D and concave in y on D(t) for all t, then f(t, x) is

supermodular on S and concave in t on S(t) for all t.

When n = 2, A ≥ 0 and |A| > 0, Theorem 5.1 implies that if g on D

is concave and supermodular, then so is g(Px) on A(D), where P = A−1.

Notice that the matrix P has non-negative diagonal entries and non-positive

off-diagonal entries (any matrix with this property will be referred to as an

L0-matrix thereafter). A stronger result can be obtained from Proposition

5.1, which provides a sufficient condition such that supermodularity is pre-

served under linear variable transformations.

Corollary 5.1. Given any 2 × 2 L0-matrix P and function g defined on a

subset D of <2, if D is a closed convex sublattice then so is the set S = {x :

Px ∈D}; moreover, if g on D is component-wise concave and supermodular

then so is the function g(Px) in term of x ∈ S.

The following proposition presents an extension of problem (5.1).

Proposition 5.2. Given some m × n matrix A and m × 2 matrix B such

that B′A ≥ 0 and B′B is an L0-matrix, closed convex sublattice D of <n,

and concave and supermodular function g on D, define

f(x) = maximize
y

{
g(y) : Ay = Bx,y ∈D

}
,

for all x ∈ S = {x : there exists y ∈ D such that Ay = Bx}. Then S is a

closed convex sublattice, and f is concave and supermodular on S.

Next we consider a special case of problem (5.1) below. Given convex

sublattices Sn of <2 and real-valued functions fn defined on Sn for n = 1, 2,
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let S be the Minkowski sum of S1 and S2, i.e.,

S = {x1 + x2 : x1 ∈ S1, x2 ∈ S2}.

Furthermore, for any x ∈ S define

f(x) = maximize
x1∈S1,x2∈S2

{f1(x1) + f2(x2) : x1 + x2 = x} . (5.2)

Note that when Sn = <2 for both n = 1, 2, −f is called the infimal convolu-

tion of −f1 and −f2 (see Rockafellar, 1970, Section 5).

The following result is an immediate corollary of Theorem 5.1.

Corollary 5.2. Suppose P is a non-singular 2 × 2 matrix. For problem

(5.2), if all P−1(Sn) are convex sublattices of <2, and fn(Px) are concave

and supermodular on P−1(Sn), then P−1(S) forms a convex sublattice of <2,

and f(Px) is concave and supermodular on P−1(S).

We omit the detailed proof of Corollary 5.2. Observe that if P is the

identity matrix, then Corollary 5.2 states the preservation of concavity and

supermodularity in problem (5.2). In general, we may have some flexibility of

choosing the matrix P depending on applications. Three interesting instances

of P are listed below:

J =

[
1 0

0 −1

]
, J1 =

[
1 −1

0 −1

]
, J2 =

[
−1 0

−1 1

]
.

where all of them are projections, i.e., J(Jx) = J1(J1x) = J2(J2x) = x.

The linear transformation J maps a vector [x1, x2] to [x1,−x2]. Geometri-

cally, J(S) is the reflection of the set S at the horizontal axis. Interestingly

the transformation shows a simple but useful relation between two dimen-

sional submodular functions and supermodular functions, whose proof follows

directly from the definitions of supermodularity and submodularity and thus

is omitted.

Lemma 5.1. When both S and J(S) are sublattices of <2, f(x) is super-

modular on S if and only if f(Jx) is submodular on J(S).

This above lemma allows us to convert a statement on supermodularity

to the related statement on submodularity. For example, we know from
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Corollary 5.1 that if g is component-wise concave and submodular on <2

then so is the function g(Bx) in x for any 2× 2 non-negative matrix B.

The other two transformations J1 and J2 map a vector [x1, x2] to [x1 −
x2,−x2] and [−x1, x2 − x1], respectively. We will use them in the following

to analyze a closely related concept, L\-concavity, which finds applications

in inventory models (see, for instance, Zipkin, 2008).

Definition 5.1. A function f is L\-concave on S ⊂ <n if the set S+ =

{(x, ξ) : x−ξe ∈ S} ⊂ <n+1 forms a sublattice and f(x−ξe) is supermodular

on S+. And f on S is L\-convex if and only if −f is L\-concave on S.

when S = <n, the above definition is consistent with the one given in

Murota (2003). In the two dimensional space one can verify that if S can

be expressed by

{[x1, x2] : l1 ≤ x1 ≤ u1, l2 ≤ x2 ≤ u2, l0 ≤ x1 − x2 ≤ u0}, (5.3)

then the corresponding S+ given below is a clearly convex sublattice:

{[x1, x2, x3] : l1 ≤ x1 − x3 ≤ u1, l2 ≤ x2 − x3 ≤ u2, l0 ≤ x1 − x2 ≤ u0}.

As pointed out by Murota (2003), an L\-concave function f is also con-

cave and supermodular. Moreover, its Hessian matrix ∇2f(x), provided the

existence, has non-positive diagonal entries and non-negative off-diagonal en-

tries, and possesses the diagonal dominance property, i.e., the summation of

entries in each row is non-positive. It should be mentioned that depending

on applications, one may also assume ξ ≤ 0 or ξ ≥ 0 in the definition of

L\-concavity. For example, Zipkin (2008) uses {ξ : ξ ≤ 0} as the domain of

ξ when he applies it to inventory models with lost sales.

The following lemma characterizes L\-concavity through supermodularity

for two dimensional functions.

Lemma 5.2. Suppose the function f is defined on S ⊂ <2. If S is of

the form (5.3), then so are both J1(S) and J2(S). In addition, the four

statements below are equivalent:

(a) f(x) is L\-concave in x on its domain S;

(b) f(J1x) is L\-concave in x on its domain J1(S);
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(c) f(J2x) is L\-concave in x on its domain J2(S);

(d) f(x), f(J1x) and f(J2x) are respectively supermodular on their domains.

By Lemmas 5.1, 5.2 and all above discussions, we have the following result

on problem (5.2) from Corollary 5.2, where the proof is omitted.

Corollary 5.3. Assume in problem (5.2) that all Sn are convex sublattices

of <2. Then S forms a convex sublattice of <2. In addition,

(a) if both fn are concave and supermodular on Sn, then so is f on S;

(b) if J(Sn) are sublattices of <2 and both fn are concave and submodular

on Sn, then f is concave and submodular on S;

(c) if Sn is of the form (5.3) and fn is L\-concave on Sn for each n, then f

is L\-concave on S.

It should be mentioned that in Corollary 5.3(b) the condition on J(Sn) is

indispensable. Actually it may fail if J(Sn) are not sublattices. For example,

consider the problem below for all x1, x2 ≥ 0:

f(x1, x2) = maximize y1

subject to y1 + z1 = x1, y2 + z2 = x2,

0 ≤ y1 ≤ y2, z1, z2 ≥ 0,

where it is straightforward to see that the set S1 = {[y1, y2] : 0 ≤ y1 ≤ y2}
forms a sublattice and the objective function is a valuation. Solving the

above parameterized optimization problem gives us

f(x1, x2) = min{x1, x2}, ∀x1, x2 ≥ 0,

which is supermodular as is consistent with Corollary 5.3(a). However, we

cannot apply Corollary 5.3(b) because J(S1) is not a sublattice. In fact, f

is not submodular since

f(0, 0) + f(1, 1) = 0 + 1 > 0 + 0 = f(0, 1) + f(1, 0).

Next we demonstrate the applicability and limitation of our results on a

few examples.
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Example 5.1 (Linear Programs). Suppose p,u are two given n-dimensional

vectors and A is a 2×n matrix. Zipkin (2003) considers the linear program-

ming problem

f(x) = maximize
y

{p′y : Ay ≤ x,0 ≤ y ≤ u} .

Using intricate geometrical argument, he shows that f(x) is supermodular

in x over x ≥ 0 if A is non-negative. Interestingly, this result immediately

follows form Remark 5.1 of Theorem 5.1.

Zipkin (2003) also proves that for arbitrary matrices A and C with proper

sizes, the function defined below is supermodular over x ≥ 0 as long as the

maximization above is well defined for all x ≥ 0,

f(x) = maximize
y

{p′y : Ay ≤ x, Cy ≤ 0,y ≥ 0} .

Unfortunately, our result does not cover this case. As we show later in

Example 5.3, it does not work even for the case of quadratic objective. It is

interesting to observe that f(x) is not necessarily supermodular if x is not

restricted in the non-negative orthant. Here is an example:

p = [−1, 0, 0,−1], C = 0, A =

[
1 1 −1 −1

−2 −1 2 1

]
.

Calculation shows

f(x1, x2) = min{0, x1 + x2, 2x1 + x2, 3x1 + 2x2}.

One can verify the submodularity of f . However, f is not supermodular since

f(0, 0) + f(1,−1) = 0 + 0 > −2 + 0 = f(0,−1) + f(1, 0).

This example also indicates that without the condition A ≥ 0, Theorem 5.1

may fail even if the objective function in problem (5.1) is linear.

Example 5.2 (quadratic programs I). Suppose P,Q are n × n symmetric

matrices such that P +Q is negative definite, and

g(y, z) = 1
2
y′Py + 1

2
z′Qz.
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For all x ∈ <n, define

f(x) = maximize
y

{g(y,x− y)} .

One can easily verify that f(x) is a quadratic function. Moreover, denote

y(x) as the optimal solution to the above problem for any given x, and

∇2f(x) as the Hessian matrix of f(x). Calculation shows that

y(x) = (P +Q)−1Qx, ∇2f(x) = P (P +Q)−1Q.

When n = 2, we further have

∇2f(x) = P (P +Q)−1Q = |Q|
|P+Q|P + |P |

|P+Q|Q.

There are some interesting observations on Example 5.2. First, it is a spe-

cial case of problem (5.1) when n = 2. From the expression of ∇2f(x), we

know that if g is supermodular then so is f , which is consistent with the

statement of Theorem 5.1. This result does not seem to follow directly from

Theorem 2.7.6, Topkis (1998) since the constraint set does not form a sub-

lattice. One may simplify the example by eliminating z and the constraints.

However, even when all entries of P are zero and Q has positive off-diagonal

entries, we know that g(y, z) is supermodular in (y, z) but g(y,x − y) is

neither submodular nor supermodular in (x,y) in general.

Second, we can not weaken the concavity assumption on g in Theorem 5.1

to component-wise concavity. Consider Example 5.2 with matrices P and Q

given below

P =

[
−9 4

4 −1

]
, Q =

[
−1 4

4 −9

]
,

where g is component-wise concave and supermodular in this instance. On

the other hand, calculation shows that the Hessian matrix of f(x) is

∇2f(x) =
7

18

[
5 −4

−4 5

]
.

It indicates that f is not supermodular.

Third, Theorem 5.1 does not hold in higher dimensional spaces, i.e., n ≥ 3.
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Consider Example 5.2 with matrices P and Q given below,

P =

−11 8 0

8 −16 5

0 5 −10

 , Q =

−7 4 0

4 −14 5

0 5 −9

 ,
where g is L\-concave, hence concave and supermodular, in the instance. On

the other hand, the Hessian matrix of f is

∇2f(x) =

 −4.25 2.79 −0.01

2.79 −7.27 2.49

−0.01 2.49 −4.73

 .
Therefore f is neither supermodular nor submodular. Extending our results

to higher dimensional spaces is interesting and challenging.

Finally, the optimal solution may not be monotone or may not have a clear

monotonicity pattern even in cases in which we do have monotonicity. To see

this, consider Example 5.2 with P,Q given below and their related optimal

solutions y(x) = [y1(x1, x2), y2(x1, x2)].

P =

[
−6 5

5 −6

]
, Q =

[
−5 2

2 −1

]
, y(x) =

1

28

[
21 −7

13 −3

]
x;

P =

[
−6 3

3 −4

]
, Q =

[
−3 2

2 −6

]
, y(x) =

1

65

[
20 10

−3 44

]
x.

In both instances, g are supermodular. However, in the first instance, for

both i = 1, 2 yi(x1, x2) are increasing in x1 but decreasing in x2. In the

second instance, y1(x1, x2) is increasing in both x1 and x2 but y2(x1, x2) is

increasing in x2 and decreasing in x1.

Example 5.3 (quadratic programs II). Consider the problem

f(x1, x2) = maximize 1
2
(y − e)′Q(y − e)

subject to α′1y ≤ x1, α′2y ≤ x2, y ≥ 0,

for all [x1, x2] ≥ 0, where α1 = [1,−1
2
], α2 = [−1

2
, 1] and Q =

[
−2 1

1 −2

]
.

90



Let A =

[
α′1

α′2

]
=

[
1 −1

2

−1
2

1

]
. Depending on whether each constraint α′iy ≤

xi is active or not, we have

f(x1, x2) =



0, if [x1, x2] ∈ S0,

−(x1 − 1
2
)2, if [x1, x2] ∈ S1,

−(x2 − 1
2
)2, if [x1, x2] ∈ S2,

1
2

(A−1x− e)
′
Q (A−1x− e) , if x = [x1, x2] ∈ S3,

where S0 = {x : 2x ≥ e},

Si = {[x1, x2] : 0 ≤ 2xi ≤ 1, 3 ≤ 2xi + 4x3−i}, ∀i = 1, 2

and S3 = {x ≥ 0 : x 6∈ Si, i = 0, 1, 2}. That is, neither constraint is active

when x ∈ S0, only the constraint α′iy ≤ xi is active when x ∈ Si for each

i = 1, 2, and both constraints are active when x ∈ S3.

Calculation shows that ∂2

∂x1∂x2
f(x1, x2) = −4

3
for any interior point x ∈ S3.

Hence, unlike the linear programming problems analyzed in Zipkin (2003),

f is not supermodular over x ≥ 0. It also provides another instance to

demonstrate that Theorem 5.1 may fail without the condition A ≥ 0.

To end this section, we apply Theorem 5.1 and its extensions to several ap-

plications in literature, where the corresponding analyses can be significantly

simplied by our results.

Example 5.4. The following optimization problem is presented in Chao et al.

(2009) when they analyze a dynamic capacity expansion model,

f0(x1, x2) = maximize {g0(x1, y2) : x2 ≤ y2 ≤ x1 + x2} .

Chao et al. (2009) prove that if g0(x1, x2) is submodular and concave in x2,

then so is f0(x1, x2). Such result serves as the key technical tool in their

analysis. They also comment that it is usually challenging to prove the p-

reservation of submodularity under maximization.

We now show that the above statement follows directly from our results.

Define g(x) = g0(Jx) and f(x) = f0(Jx). Then the problem can be rewritten

by

f(x1, x2) = maximize
{
g(x1, y2) : y1 + y2 = x2, 0 ≤ y1 ≤ x1

}
.
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Since the submodularity of g0, f0 is equivalent to the supermodularity of g, f ,

the same result as Chao et al. (2009) is ensured by Proposition 5.1.

Example 5.5. Gong and Chao (2011) consider a periodic-review manufac-

turing system with product returns. Mathematically they face the problem

v(x1, x2) = minimize
y1,y2,z1,z2

[rz1 + pz2 + h(y1, y2)]

subject to y1 + z1 = x1, y2 − z2 = x2,

y1 ≥ 0, z1 ≥ 0, z2 ≥ 0,

z1 ≤ kr, z2 ≤ km, z1 + z2 ≤ k,

In their model, v(x1, x2) is the cost-to-go function, where x1 and x2 denote

the the inventory levels of returned products and total products (including

both returned products and the serviceable products) at the beginning of a pe-

riod, respectively. In the objective function, the term rz1 + pz2 denotes the

costs associated with remanufactring z1 units and manufacturing z2 units,

and h(y1, y2) denotes the minimal expected total discounted cost to the end of

the planning horizon when the inventory levels of returned products and total

products respectively become y1 and y2 after manufacturing and remanufac-

tring decisions in the period. In addition, constants kr, km and k in the last

set of constraints specify the capacities involved in remanufactring, manufac-

turing or total remanufactring/manufacturing operations, respectively.

By using L\-convexity and lattice analysis, Gong and Chao (2011) charac-

terize the optimal solution to the above problem under serval settings, e.g.,

kr = +∞, km = −∞ and k < +∞. When all kr, km and k are finite, they

claim that v is L\-convex if so is h. They do not provide the detailed proof

as they state that the associated analysis is complicated. Interestingly, this

claim can be directly derived by applying Corollary 5.3(c) to the following

equivalent problem:

−v(x1, x2) = maximize
y1,y2,z1,z2

[−(rz1 + pz2)− h(y1, y2)]

subject to y1 + y2 = x1, y2 + z2 = x2,

y1 ≥ 0, z1 ≥ 0, z2 ≤ 0,

z1 ≤ kr,−km ≤ z2, z1 − z2 ≤ k.

Example 5.6. Gong and Zhou (2011) consider a production planning prob-
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lem with emissions trading, where their key technical result claims that for

the problem

f(x1, x2) = minimize
u,v

g(x1 + uv, x2 − u),

subject to 0 ≤ u, vmin ≤ v ≤ vmax,

if g is convex on <2 and 0 < vmin ≤ vmax, then the following preservation

properties hold:

(a) If g(y1, y2) is supermodular in (y1, y2) then so is f(x1, x2) in (x1, x2);

(b) If g(y1, y2−y1/vmin) is submodular in (y1, y2) then so is f(x1, x2−x1/vmin)

in (x1, x2);

(c) If g(y1−vmaxy2, y2) is submodular in (y1, y2) then so is f(x1−vmaxx2, x2)

in (x1, x2).

The original proof of the above result in Gong and Zhou (2011) is much

involved. For example, when prove the statement (a) by verifying that f(x)+

f(x̃) ≤ f(x ∨ x̃) + f(x ∧ x̃) for any x, x̃ ∈ <2, Gong and Zhou (2011) first

assume g(y∨) = f(x ∨ x̃) and g(y∧) = f(x ∨ x̃) for some y∨ and y∧, then

construct two other vectors ȳ and ŷ such that

f(x) + f(x̃) ≤ g(ȳ) + g(ŷ) ≤ g(y∨) + g(y∧).

Depending on the relative position of y∨ and y∧, four cases together with six

subcases are discussed. The other two statements are proved similarly.

From our main results we can prove these statements in a much easier

way. To see it, introduce y1 = x1 + uv and y2 = x2− u in the definition of f

and properly change signs of variables. We have that

−f(x1, x2) = maximize
y1,y2,z1,z2

−g(y1, y2)

subject to y1 + z1 = x1, y2 + z2 = x2,

z2 ≥ 0, vmaxz2 ≥ −z1 ≥ vminz2

Let x = [x1, x2], y = [y1, y2] and

Z = {[z1, z2] : z2 ≥ 0, z1 + vminz2 ≤ 0 ≤ z1 + vmaxz2}.
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Then for any nonsingular 2× 2 matrix P ,

−f(Px) = maximize
{
−g(Py) : y + z = x, z ∈ P−1(Z)

}
.

Notice that the above three statements indeed claim that −f(Px) is supermod-

ular in x when −g(Py) is concave and supermodular in y for the following

three instances of P :[
1 0

0 −1

]
,

[
1 0

−1/vmin 1

]
,

[
1 −vmax

0 1

]
.

It is straightforward to verify that the corresponding P−1(Z) are respectively

{[z1, z2] : z2 ≤ 0, vminz2 ≥ z1 ≥ vmaxz2},
{[z1, z2] : z1 ≤ vminz2 ≤ 0, (vmax − vmin)z1 ≤ vminvmaxz2},
{[z1, z2] : z2 ≥ 0, 0 ≤ z1 ≤ (vmax − vmin)z2},

where each P−1(Z) forms a convex sublattice of <2. Then the key technical

result of Gong and Zhou (2011) immediately follows from Corollary 5.3.

5.3 Applications

We have applied the results in the previous section to the reference price mod-

el in Chapter 4 (see Proposition 4.2). In this section we apply them several

other periodic-review operational models. In all these models, we will deal

with parameterized optimization problems with the following mathematical

structure:

v(x1, x2) = maximize
y1,y2

[f(z1, z2) + v̄+(y1, y2)]

subject to y1 = x1 + z1, y2 = x2 + z2,

hn(y1, y2) ≤ 0, ∀ 1 ≤ n < M,

hn(z1, z2) ≤ 0, ∀M ≤ n < N,

a1 ≤ y1 ≤ b1, a2 ≤ y2 ≤ b2,

l1 ≤ z1 ≤ u1, l2 ≤ z2 ≤ u2,
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where some components li, ai could be −∞ and bi, ui could be +∞. Define

vectors l = [l1, l2],u = [u1, u2],a = [a1, a2] and b = [b1, b2], and sets

Y = {y ∈ [a, b] : hn(y) ≤ 0, ∀ 1 ≤ n < M},
Z = {z ∈ [l,u] : hn(z) ≤ 0, ∀M ≤ n < N},

We can rewrite the above problem as

v(x) = maximize
y

{f(y − x) + v̄+(y) : y ∈ Y ,y − x ∈ Z} , (5.4)

where v is defined on the set X = {y − z : y ∈ Y , z ∈ Z}.
Notice that in the stochastic coordinated pricing and inventory model

with reference price effects analyzed in Section 4.2, when customers are loss-

neutral and the demand uncertainty is additive, the corresponding problem

(4.2) has the structure of the general problem (5.4).

We have the following theorem on problem (5.4).

Theorem 5.2. In problem (5.4),

(a) if all hn are convex and bimonotone, then Y , Z and X are convex sub-

lattices in <2. In addition, if v̄+ on Y and f on Z are concave and

supermodular, then so is v on X;

(b) if all hn are convex and monotone, then J(Y ), J(Z) and J(X) are

convex sublattices in <2. In addition, if v̄+(Jy) on J(Y ) and f(Jz) on

J(Z) are concave and supermodular, and X also forms a sublattice, then

v on X is concave and submodular.

Proof. Denote Z− = {z ∈ <2 : −z ∈ Z}. Observe that problem (5.4) can

be converted to the format amicable to (5.2) as

v(x) = maximize
y∈Y ,z∈Z−

{f(−z) + v̄+(y) : y + z = x} .

Because given conditions on hn ensure that Y and Z− are convex sets (The-

orem 4.6, Rockafellar, 1970) and sublattices (Example 2.2.7, Topkis, 1998),

Part (a) holds by applying Theorem 5.1. Part (b) then follows from Lemma

5.1 and part (a).

If additional conditions are imposed on f andZ in problem 5.4, the optimal

solution to problem (5.4) exhibits certain monotonicity properties. Note that
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in the following theorem we say f(x1, x2) is separable if it can be expressed

as f1(x1) + f2(x2) for two univariate functions f1 and f2.

Theorem 5.3. Suppose that Z = [l,u] and f is separable in problem (5.4).

(a) If v̄+ is supermodular, all hn are continuous and bimonotone, and f is

concave, then there exists an optimal solution [y1(x1, x2), y2(x1, x2)] to

problem (5.4) such that yi(x1, x2) is increasing in both x1 and x2 for

i = 1, 2.

(b) If v̄+ is submodular, all hn are continuous and monotone, and f is linear,

then there exists an optimal solution [y1(x1, x2), y2(x1, x2)] to problem

(5.4) such that yi(x1, x2) is increasing in xi and decreasing in xj for

i, j = 1, 2 and i 6= j.

The managerial interpretation and intuition of the above characterization

on the optimal solution will become clear when we talk about the concrete

applications. Notice that we introduce no concavity/convexity assumptions

on v̄+ and hn in Theorem 5.3. However, they will be required in all the fol-

lowing applications to inductively show the supermodularity/submodularity

of profit-to-go functions. Moreover, with these concavity/convexity assump-

tions, if ft is linear then more refined characterization of optimal solution

y(x) is possible by partitioning the space of the parameter x into several

regions, which is provided in Appendix B.6.

5.3.1 Coordinated pricing and inventory control with
cross-price effects

Consider a retailer who decides the ordering quantities and prices of two prod-

ucts over a finite planning horizon with T periods. At the beginning of each

period, the retailer observes the initial inventory levels xi and then simulta-

neously decides the selling prices pi and the order-up-to-levels yi for products

i = 1, 2. The demand of product i during a period is given by di(p1, p2) + εi,

where εi is a random variable with expected value 0, di(p1, p2) is the expect-

ed demand of product i depending on the prices of both products. Denote

x = [x1, x2],y = [y1, y2], p = [p1, p2], ε = [ε1, ε2] and dε = d(p) + ε. The

demand function can be time dependent but we drop the time index for sim-

plicity. We assume that random vectors are independent across time, there
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is no lead time for delivery, unsatisfied demand is backlogged and unused

inventory is carried over to the next period.

As common in the literature, the expected demand d(p) is assumed to

be linear as d(p) = b − Ap for some vector b ≥ 0 and the price sensitivity

coefficient matrix A = [ai,j]2,2. Suppose p ∈ [l,u], where l ≤ u are lower and

upper bounds on the prices such that dε ≥ 0 almost surely. For product i,

coefficients ai,i, ai,j respectively denote its own price sensitivity and the cross

price sensitivity to the other product j (j 6= i). We assume that ai,i ≥ 0,

that is, the demand of a product is decreasing in its own price. Depending

on the nature of products, we focus on two cases: (a) the two products are

complements, i.e., an increase in the price of one product will decrease the

demanded amount of the other product, or equivalently ai,j ≥ 0; (b) the

two products are substitutes, i.e., an increase in the price of one product

will increase the demanded amount of the other product, or equivalently

ai,j ≤ 0. In addition, we assume that the price change of one product has a

stronger effect on its own demand than on the other product’s demand, i.e.,

ai,i ≥ |ai,j|. Note that A is positive semi-definite under these assumptions.

For our purpose, we assume A is positive definite. In this case, there is a

one-to-one correspondence between the expected demands and the prices.

It will be convenient to use the expected demands instead of prices as the

decision variables. Denote the realized demand vector as dε = d+ ε and the

corresponding price vector as p(d) = A−1(b − d). The expected one-period

revenue is given by r(d) = d′p(d), which can be easily verified to be concave.

Moreover, in the complementary product case, r(d) is supermodular and

r(Ad) is submodular; in the substitutable product case, r(d) is submodular

and r(Ad) is supermodular.

The ordering cost is proportional to the ordering quantity specified by

c(z) = c′z for an ordering quantity vector z = [z1, z2]. For an amount

x = [x1, x2] of inventory carried over from one period to the next, an inven-

tory holding and backorder cost h(x) = h1(x1) + h2(x2) is incurred, where

hi(xi), assumed to be convex, represents the inventory holding cost when

xi > 0 and the shortage penalty cost when xi < 0. To avoid technicality,

we assume that E[h(y − ε)] is strictly convex, where E is the expectation

operator corresponding to random variables ε. The objective of the retailer

is to find an ordering and pricing decision so as to maximize its expected

total profit over the planning horizon. Let vt(x) be the profit-to-go function
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of period t starting with an inventory level x. The dynamic program can be

formulated as

vt(x) = maximize
y,d

{r(d)− c′z + gt(y − d)}

subject to y = x+ z, 0 ≤ z ≤ k, l ≤ A−1(b− d) ≤ u,

where gt(x) = E[vt+1(x − ε) − h(x − ε)], the ordering quantity z is non-

negative and bounded above by k and without loss of generality, assume

vT+1(x) = c′x. For any given nonsingular 2×2 matrix P , the above problem

can be equivalently reformulated as

vt(Px) = maximize
y

{
ft(Py)− c′Py

}
+ c′Px (5.5a)

subject to y = x+ z, 0 ≤ Pz ≤ k
ft(Py) = maximize

d

{
r(Pd) + gt(P x̃)

}
, (5.5b)

subject to y = d+ x̃, l̃ ≤ A−1Pd ≤ ũ,

where l̃ = A−1b− u and ũ = A−1b− l.
Because r(d) and E[−h(y − ε)] are strictly concave, problem (5.5a) has

unique optimal solution, denoted by y(x) = [y1(x1, x2), y2(x1, x2)], when

P is the identity matrix. We have the following proposition. It is worth

mentioning that Proposition 5.3 remains valid if all functions (e.g., r and

h), system inputs (e.g., l and u) except A, and the random variables ε are

time-dependent.

Proposition 5.3. In all periods, vt and ft are concave.

(a) In the complementary product case, vt(x) and ft(y) are supermodular,

vt(Ax) and ft(Ay) are submodular, and yi(x1, x2) is increasing in either

x1 or x2.

(b) In the substitutable product case, vt(x) and ft(y) are submodular, vt(Ax)

and ft(Ay) are supermodular, and yi(x1, x2) is increasing in xi and de-

creasing in xj for i, j = 1, 2 and i 6= j.

Proof. Let L be the collection of all 2 × 2 matrices L = [`i,j]2,2 such that

`i,1`i,2 ≤ 0 for i = 1, 2. Notice that if P,A−1P ∈ L, then sets {z : 0 ≤
Pz ≤ k} and {d : l̃ ≤ A−1Pd ≤ ũ} are sublattices (Example 2.2.7, Topkis,
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1998); moreover, −h(Px) is concave and supermodular in x by Lemma 2.6.2,

Topkis (1998). We next verify these statements by selecting proper matrices

P .

(a) Let P be the identity matrix and AJ in (5.5), respectively. It is straight-

forward to see P,A−1P ∈ L and r(Pd) is concave and supermodular.

Since vT+1 is linear as assumed, we can inductively prove that in all pe-

riods vt(Px) and ft(Py) are concave and supermodular by Theorem 5.2.

That is, vt(x), ft(y), vt(AJx) and ft(AJy) are concave and supermod-

ular. We then conclude the properties of vt and ft by Lemma 5.1. In

addition, Theorem 5.3(a) implies that yi(x1, x2) is increasing in either x1

or x2.

(b) Let P = J and A in (5.5), respectively. Similarly by Theorem 5.2 and

Lemma 5.1, we can verify properties of vt and ft. In addition, Theorem

5.3(a) implies that Jy(Jx) = [y1(x1,−x2),−y2(x1,−x2)] is increasing

in [x1, x2], that is, yi(x1, x2) is increasing in xi and decreasing in xj for

i 6= j.

We now complete this proof.

It is not surprising that in the complementary product case, the optimal

order-up-to-levels are increasing in the initial inventory levels of both prod-

ucts, and in the substitutable product case, the optimal order-up-to-level of

a product is increasing in its own initial inventory level while decreasing in

the other product’s initial inventory level.

A simpler version of our model was analyzed by Zhu and Thonemann

(2009), which deals with only the substitutable product case without the

constraint z ≤ k. Song and Xue (2007) consider a more general setting

with more than two substitutable products and derive structural results of

the optimal order-up-to levels similar to Zhu and Thonemann (2009) for the

two product case. Ceryan et al. (2009) extend Zhu and Thonemann (2009)

by introducing the constraint z ≤ k and an additional resource capacity

constraint z1 + z2 ≤ k0. Notice that for Ceryan et al. (2009)’s model, we

can characterize functions vt, ft and optimal solutions y(x) as the same as

Proposition 5.3(b) by using the similar argument. It is appropriate to point

out that all the structure results on the optimal inventory decision in these
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papers can be easily derived by our approach (we present in Figure B.3 in

the appendix to illustrate the structure of y(x) for Ceryan et al. (2009)’s

model).

Compared with these three papers, we deal with both the complementary

product case and the substitutable product case in a unified framework. We

are not aware of any paper which analyzes coordinated pricing and inven-

tory models with complementary products. Moreover, in the substitutable

product case, we develop theoretical results on vt(Ax) that are not available

in the literature. Even though these three papers present results on vt al-

most identical to Proposition 5.3, our approach is significantly simpler. In

fact, all these papers establish the submodularity of vt(x) recursively by an-

alyzing the first-order optimality condition (the KKT condition) of problem

(5.4). Their approaches can only handle simple feasible set and require some

technical conditions on the objective functions (e.g., smoothness almost ev-

erywhere). And all three papers ignore the bound constraints p ∈ [l,u] on

prices, though such constraints are imposed in their models. For example,

Zhu and Thonemann (2009) discuss the range of optimal prices after deriving

their structural results. Song and Xue (2007) mention that the price vector

p belongs to some compact set in their introduction section but does not

explicitly analyze it when proving the related theorem.

Remark 5.3. In general, the optimal prices may not be monotone as il-

lustrated in Zhu and Thonemann (2009). However, when the matrix A is

symmetric, Ceryan et al. (2009) and Zhu and Thonemann (2009) prove that

p(x) is decreasing in x (again by analyzing the KKT condition and ignoring

the bound constraints on prices).

Remark 5.4. Proposition 5.3 could fail when demand follows the multi-

plicative model dε = b−Aεp, where entries of the price sensitivity coefficient

matrix Aε are random variables. To see it, consider a special case when

c = 0, h(x) = 0 and vt+1(x) = l0(x)− x′Bx in (5.5b) for some linear term

l0(x). Here the quadratic term x′Bx in vt+1 can be treated as a perturbation

which is relatively small comparing to l0(x). Suppose EAε = A for some

positive definite A and E(Aε − A)B(Aε − A) = Q. Let d = b − Ap be the
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decision variable. In this case problem (5.5b) becomes

ft(y) = maximize
d

−d′(A−1 + A−1QA−1)d− (y − d)′B(y − d) + l(y,d)

subject to l ≤ A−1(b− d) ≤ u,

where l(y,d) is some linear function in terms of y and d. Let us consider

the instance

A−1 =

[
0.54 0

0 0.98

]
, B =

[
0.97 0.07

0.07 0.98

]
, Aε = A+ ε

[
0.54 −0.48

−0.48 0.64

]
,

where ε is some random variable with the expected value 0 and variance 1.

It is no hard to see the objective is quadratic and strictly concave. Moreover,

by properly selecting l and u one can expect that the constraint is inactive

when y belongs to some nonempty open subset of <2. For these y the above

problem reduces to a special case of Example 5.2. In this situation calculation

shows that

∇2vt+1(x) = −2B =

[
−1.94 −0.14

−0.14 −1.96

]
, ∇2ft(y) =

[
−0.38 0.05

0.05 −0.59

]
.

In this example, vt+1 is submodular but ft is not.

5.3.2 Two-stage inventory control

Consider a two-stage coordinated dynamic pricing and inventory control

problem with random supply and demand over a finite planning horizon.

At the beginning of each period, the firm observes the initial raw material

inventory level x0
1 and the finished product inventory level x2, and then de-

cides the amount z0
1 of raw material to be purchased (i.e., z0

1 ≥ 0) or sold

(i.e., z0
1 ≤ 0). Assume the is no lead time for delivery. With x0

1 + z0
1 amount

of raw material on hand, the firm simultaneously determines the amount z2

of raw material to be converted into finished product, and the selling price

p of the finished product in the period. Suppose one unit of the finished

product consumes one unit of the raw material and 0 ≤ z2 ≤ x0
1 + z0

1 . Right

after the production, the inventory level of raw material becomes x0
1 +z0

1−z2

and that of finished product becomes x2 + z2. By the end of this period,
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an additional amount ε0
1 of raw material arrives and brings the raw material

inventory level up to x0
1 + z0

1 − z2 + ε0
1, where ε0

1 is a non-negative random

variable. Moreover, an amount d(p)− ε2 of demand for the finished product

arrives and brings its inventory level down to x2 + z2 − d(p) + ε2, where

unsatisfied demand is backlogged, ε2 is a random variable independent on ε0
1

with expected value 0 and d(p) denotes the expected demand given the price

p. Assume that d(p) is strictly deceasing in p, which implies that there is a

one-to-one correspondence between expected demand and selling price. For

convenience, we use d = d(p) as the decision variable and denote the selling

price by p = p(d), where d ∈ [l, u] for some 0 ≤ l ≤ u with p(u) ≥ 0.

Following the literature (e.g., Zipkin, 2000), we use echelon inventory levels

x = [x1, x2] as system states, where x1 = x0
1 + x2 is the total inventory of

raw material and finished product. Suppose it incurs the costs c1(z0
1), c2(z2),

h1(x0
1) and h2(x2) if z0

1 units of raw material is purchased/sold, z2 units of the

finished product is produced, x0
1 units of raw material inventory and x2 units

of product inventory are carried over to the next period, where h2(x2) is to be

understood as the shortage penalty cost if x2 < 0. To avoid technicality, we

assume that the expected one-period revenue r(d) = dp(d) is strictly concave,

and c1(z1) + c2(z2) and E[h1(x1 − x2 + ε0
1) + h2(x2 + ε2)] are strictly convex,

where E denotes the expectation operator corresponding to ε0
1 and ε2. The

firm’s objective is to maximize the expected total profit over the T -period

planning horizon.

Let vT+1(x1, x2) = 0 and vt(x1, x2) be the profit-to-go functions with

respect to the echelon inventory levels [x1, x2] at the beginning of period

t = 1, · · · , T . We can formulate the problem as

vt(x1, x2) = maximize
y1,y2,d

[r(d)− c1(z1)− c2(z2) + gt(y1 − d, y2 − d)]

subject to y1 = x1 + z1, y2 = x2 + z2,

y2 ≤ y1, z2 ≥ 0, l ≤ d ≤ u,

where [y1, y2] denotes the echelon inventory levels right after the production,

the constraint y1 ≤ y2 indicates that the amount of finished product produced

from raw material can not exceed the amount of on-hand raw material, and

gt(x1, x2) = E[vt+1(x1 + ε0
1 + ε2, x2 + ε2)]

− E[h1(x1 − x2 + ε0
1) + h2(x2 + ε2)].
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Note that system inputs can be time-dependent which will not affect our

later analysis.

The problem can be equivalently reformulated as

vt(x1, x2) = maximize
y1,y2

[ft(y1, y2)− c1(z1)− c2(z2)] , (5.6a)

subject to y1 = x1 + z1, y2 = x2 + z2,

y2 ≤ y1, z2 ≥ 0,

ft(y1, y2) = maximize [r(d) + gt(y1 − d, y2 − d)] , (5.6b)

subject to d ∈ [l, u].

Since functions r(d),−c1(z1),−c2(z2),−h1(z0
1) and −h2(z2) are strict-

ly concave, there exist unique optimal solutions [y1(x1, x2), y2(x1, x2)] and

d(y1, y2) respectively to problems (5.6a) and (5.6b). Observe that the both

problems are special cases of problem (5.4).

We have the following proposition from Theorems 5.2 and 5.3.

Proposition 5.4. In all periods, vt and ft are L\-concave, and yi(x1, x2) are

increasing in x1 and x2 for i = 1, 2. Moreover, d(y1, y2) ≤ d(y1 + δ, y2 + δ) ≤
d(y1, y2) + δ for any δ ≥ 0.

Proof. Suppose vt+1 is L\-concave, which is true in the last period t = T . By

gt(x1 − ξ, x2 − ξ) = E[vt+1(x1 − ξ, x2 − ξ)− h1(x1 − x2)− h2(x2 − ξ)],

where h1, h2 are convex as assumed, one can easily verify the L\-concavity of

gt. Because (5.6b) is a special case of (5.2), it is no hard to see from Corollary

5.3(a) that ft(y), ft(J1y) and ft(J2y) are supermodular. Therefore ft is L\-

concave by Lemma 5.2, and so is vt by Corollary 5.3(c).

The monotonicity of yi(x1, x2) follows from Theorem 5.3(a). To character-

ize d(y1, y2), we need the results of Lemma 3 in Zipkin (2008), which claims

that there exists d0(y1, y2) solving the unconstrained problem

maximize
d

[r(d) + gt(y1 − d, y2 − d)]

such that d0(y1, y2) ≤ d0(y1 +δ, y2 +δ) ≤ d0(y1, y2)+δ for any δ ≥ 0. Because
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the objective function is concave, it follows that

d(y1, y2) = max{l,min [d0(y1, y2), u]}.

Observe that max{l,min [d0 + δ, u]} = max{l − δ,min [d0, u− δ]} + δ. We

then conclude the inequality on d(y1, y2).

Remark 5.5. Though Zipkin (2008) uses a slightly different definition of L\-

concavity by restricting ξ ≤ 0, one can exactly follow his proof to see Lemma

3, Zipkin (2008) holds under our definition.

The structure of y(x) is consistent with the intuition that higher initial

inventory level leads to higher order-up-to-levels. Moreover, the two inequal-

ities of d(y1, y2) imply that lower price should be charged so as to reduce the

inventory level of finished product; however, the reduction has bounded sen-

sitivity. Furthermore, when c1 and c2 are linear, refined structure of y(x1, x2)

can derived as the problem 5.4. For simplicity, we omit the details here.

Yang (2004) considers a similar problem without pricing. He assumes that

c1(z1) is either strictly convex or linear, and c2(z2) is linear. Different from

our model in which the echelon inventory levels play the role of system states,

he models the minus cost-to-go function vt as below in the inventory levels

of raw material and finished product.

vt(x
0
1, x2) = maximize

y1,y2

[−c1(z0
1 + z2)− c2(z2) + Egt(y1 + ε0

1, y2 − ε2)]

subject to y1 = x1 + z1, y2 = x2 + z2, y1 ≥ 0, z2 ≥ 0,

where gt(x1, x2) = −h1(x0
1)−h2(x2)+vt+1(x1, x2). Yang (2004) then analyzes

the related KKT conditions and inductively prove that all vt are concave, su-

permodular and their Hessian matrices are diagonal dominant. Since that

L\-concavity implies concavity and the diagonal dominance property for s-

mooth functions, our results immediately lead to the same concavity and

diagonal dominance properties on vt as Yang (2004). In addition, because

c1(z0
1 + z2) + c2(z2) is supermodular in [z0

1 , z2], the supermodularity of vt can

also be obtained from Theorem 5.2.
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5.3.3 Inventory control with self-financing

Consider a self-financing retailer who sells a single product over a finite plan-

ning horizon with the operational decisions limited by its cash flow. At the

beginning of each period, the retailer observes the initial inventory level x1

of the product and his/her capital level s on hand, and then places an order

of size z1 to raise the inventory level up to y1 = x1 +z1. The order is received

right away which incurs an ordering cost c per unit. We assume that the

total ordering cost cz1 can not exceed the available capital s. Unused capital

s− cz1 is deposited to a savings account and the earning is r(s− cz1) at the

end of the period, where r ≥ 1 and r − 1 is the interest rate. A demand dε

arrives during the period. The retailer fills the demand from his/her avail-

able inventory with a unit price p and receives a revenue pmin{y1, d
ε} from

sales. The revenue increases to rpmin{y1, d
ε} at the end of the period. Un-

used inventory is carried over to the next period and unsatisfied demand is

lost, which incurs the inventory holding and shortage penalty cost h(y1−dε).
Assume that h is convex and p ≥ c (i.e., profit increases as the amount of

sold product increases).

Define x2 = s+ px1 as the current capital plus the revenue if all inventory

on hand is sold out. It will be convenient to use [x1, x2] as system states.

Under this setting, the state [x̃1, x̃2] in the next period satisfies x̃1 = (y1−dε)+

and x̃2 = r(y2 − px̃1), where y2 = s− cz1 + py1 = x2 + pz1 − cz1.

Let vT+1(x1, x2) = 0 and vt(x1, x2) be the profit-to-go functions in period

t = 1, · · · , T . The retailer’s objective is to maximize the expected ending

profit and faces the dynamic recursion

vt(x1, x2) = maximize
y1,y2

E
[
ft
(
y1 − dε, ry2

)
− h(y1 − dε)

]
(5.7)

subject to y1 = x1 + z1, y2 = x2 + z2,

py1 ≤ y2, z1 ≥ 0, z2 = (p− c)z1,

where the expectation operator E associates with random variables dε, the

constraint py1 ≤ y2 corresponds to the cash flow limitation, and ft(x1, x2) =

vt+1(x+
1 , x2 − px+

1 ) with x+
1 = max(x1, 0). We assume that E[h(y − ε)] is

strictly convex to avoid technicality, which ensures the uniqueness of the

optimal solution, denoted by y(x) = [y1(x1, x2), y2(x1, x2)], to problem (5.7).

Apparently (5.7) is a special case of problem (5.4). We have the following
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results on problem (5.7).

Proposition 5.5. All vt(x1, x2) are decreasing in x1, increasing in x2, jointly

concave and supermodular. Moreover, the optimal solution y(x) is increasing

in x.

Proof. Suppose these statements are true in period t+ 1, which are obvious

in the last period t = T . From the definition of ft, we know ft(x1, x2) is

decreasing in x1 and increasing in x2. Then one can verify the monotonicity

of vt from the expression (5.7).

By Corollary 5.1, vt+1(x1, x2 − px1) is concave and supermodular, which

together with the monotonicity of vt+1 implies that ft(x1, x2) is concave and

supermodular. Because (p − c)z1 is increasing in z1, properties on vt and

y(x) follow from Theorems 5.2 and 5.3.

In Proposition 5.5, The monotonicity of vt(x1, x2) obeys the intuition that

lower initial inventory level x1 for higher initial total value x2 = s + px1

brings more flexibility for retailer’s operations and hence leads to higher

ending profit. Moreover, though omitted here, one can obtain some refined

characterization of y(x) by similar arguments as problem (5.4).

A simpler version of the problem without the inventory holding and short-

age penalty cost is analysed by Chao et al. (2008), where all parame-

ters (including the cumulative distribution function of demand) are time-

independent. The major difference between our model and the one in Chao

et al. (2008) is the definition of system states. Chao et al. (2008) model the

profit-to-go functions v0(x1, s) in terms of the initial inventory level x1 and

capital s. Unlike our results, they only prove that v0(x1, s) is jointly concave

and increasing in s, and characterize the structure of optimal solution under

some specific conditions.

5.4 Conclusion

In this chapter we study a class of two dimensional parameterized optimiza-

tion problems, and establish the preservation of supermodularity together

with concavity, where the constraint set may not be a lattice and may not

be mapped to become one by a variable transformation. We also present
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several variations in Section 5.2 including the preservation of supermodulari-

ty together with the component-wise concavity, submodularity together with

concavity and L\-concavity.

Our results include several results in the literature as special cases. They

significantly simplify the proofs of several operational models, some of which

have not been treated rigorously, and shed new insights on these models. We

believe our results can be applied in many other models.

Our results also bright up several interesting issues that need further re-

search. First, as we comment in Example 5.2, our results can not be directly

extended to higher dimensional space. A natural question is under what

conditions the preservation of supermodularity in problem (5.1) holds when

we have more than two parameters.

The second question is whether we can say anything about the structure

of the optimal solution to problem (5.1). As we notice in Example 5.2, the

optimal solution may fail to be monotone in general. It would be interesting

to identify conditions under which the optimal solution is monotone.

107



Chapter 6

Future research

Though have been proposed over a half century, coordinated pricing and

inventory management problems receive considerable attentions in the op-

erations management community only in the past decade. Academics have

recognized the importance of the coordination of different decisions which

are previously made in a separate way. For example, in Chapter 3 where a

deterministic model with reference price effect is developed, we pointed out

through numerical examples that more than 40% profit could be potentially

gained by coordinating pricing and inventory management decisions com-

pared to a sequential decision making process. Recent years have witnessed

phenomenal growth of successful deployments of pricing strategies. This

thesis belongs to this stream of research on dynamic pricing and inventory

problems and mainly focuses on the periodic-review models from Chapter

2 to Chapter 5. I would like to conclude this thesis by pointing out some

potential directions for my furture research in addition to specific conclusions

provided in previous chapters.

The first possible future research is to build and analyze more general

coordinated pricing and inventory management problems. For example, one

potential direction is to incorporate customer behavior into operational mod-

els. Consumer behavior has been extensively studied in the marketing and

economics literature, however, its impact on pricing and inventory decision-

s is largely unexplored despite their profound effects in shaping consumer

demand. A few works, including Chapter 3 and Chapter 4 in this thesis,

have discussed several models with reference price effects, which assume that

consumers will judge their purchase basing on historical selling prices. Never-

theless, this kind of work is quite limited, for example, to my best knowledge

there is no research on multi-product or multi-echelon models with reference

price effects so far. Furthermore, historical selling prices are not the on-

ly factor influences consumer behavior: other factors include brand loyalty,
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purchase frequency, promotion and so on. Incorporating customer behavior

enriches the applicability of models and of course imposes enormous modeling

and technical challenge. Because of the strong empirical and theoretical sup-

ports, it is definitely worth considering such extension of operations models,

characterizing the associated structure of the optimal policies, and applying

these results to decision support systems in practical problems.

Developing efficient algorithms for solving coordinated pricing and inven-

tory models is another potential direction for the future research. The mo-

tivation is quite clear: efficient algorithms, either exact or heuristic, play

important roles when connecting academic research to industrial practice.

Well-designed algorithms should balance the accuracy and efficiency, and

ensure robustness with respect to system inputs. For example, exact algo-

rithms are given for the two deterministic models studied in Chapter 2 and

Chapter 3, where computational complexity and sensitivity analysis of pa-

rameters are provided if possible. However, efficient algorithms for general

stochastic, multi-product, multi-period models are poorly explored. Even in

the deterministic single-product setting, incorporating pricing decisions sig-

nificantly increases the computational complexity relative to pure inventory

models. Because of the theoretical importance and practical relevance of

stochastic models, it is critical to to develop efficient and effective computa-

tional approaches to solve them. A possible direction is to apply the so-called

stochastic approximation algorithm. Such algorithm runs adaptively and is

quite simple but useful. Moreover, it has been extensively applied in many

research fields including operations research and management science.

Finally, advances in information technologies allow companies efficiently

gather information from customers and make dynamic pricing to improve

the profit. As the flip side of the coin, today customers are also able to

dynamically respond to companies strategies correspondingly. For example,

Groupon, a website that “features discounted gift certificates usable at local

or national companies (wikipedia.org)”, plays the role of an agent standing

for customers to argue with companies. Therefore it would be interesting to

develop game models to capture the interaction of companies and consumers.
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Appendix A

A.1 Proof of Proposition 3.1

For any feasible solution PT+1 = {p1, · · · , pT} to problem (3.2), let p∗t =

max{pt, c̄t} at period t. The given condition in this proposition implies

that Pt = {p1, · · · , pt−1, p
∗
t , · · · , p∗T} is feasible to problem (3.2) for any

t = 1, · · · , T . We make two observations. First, the demand function dt(p, r)

is non-negative, increasing in reference price r and decreasing in price p. Sec-

ond, reference price at any period is independent of prices in later periods.

We next inductively prove that the profit corresponds to the price sequence

Pt = {p1, · · · , pt−1, p
∗
t , · · · , p∗T}

for 1 ≤ t ≤ T is higher than the one given by

Pt+1 = {p1, · · · , pt, p∗t+1, · · · , p∗T}.

Observe that the two solutions correspond to the same accumulated profit

before period t, as well as the same reference price rt at period t. Profits

associated with Pt and Pt+1 are (p∗t − c̄t)dt(p
∗
t , rt) and (pt − c̄t)dt(pt, rt) at

period t, respectively. If p∗t = pt, then both Pt and Pt+1 correspond to

the same profit at the period; otherwise p∗t = c̄t > pt, Pt corresponds to zero

profit, which is higher than the negative profit associated with Pt+1 at period

t. Furthermore, for any period s with s > t, the demand under Pt is no less

than the demand under Pt+1 and in addition, p∗s− c̄s ≥ 0. It implies that the

profit given by Pt is no less than that by Pt+1 for all s > t.

110



A.2 Proof of Proposition 3.2

We introduce the following lemma, where its proof will be given later.

Lemma A.1. ϕ(y, z) = yβ(z)−ay2−bz2 is jointly concave and supermodular

when y ≥ 0 if a ≥ 0, β(z) is concave, and there exists β0 ≤ 2
√
ab such that

0 ≤ β(z1)− β(z2) ≤ β0(z1 − z2) for all z1 ≤ z2.

By specifying a = at + At − Bt, b = At − α2Bt and β0 = 1
2
η− + αBt − At

in Lemma A.1, it immediately follows Proposition 3.2.

Next we prove Lemma A.1. Observe that f(g1(x1), g2(x2)) is supermodular

if f(x1, x2) is supermodular and both g1(x), g2(x) are increasing. Specifically

yβ(z) and thus ϕ(y, z) are supermodular.

Given any function f(y, z), 0 ≤ λ ≤ 1 and points (y0, z0), (y1, z1) with

y0, y1 ≥ 0, denote

[f((1−λ)y0+λy1, (1−λ)z0+λz1)−(1−λ)f(y0, z0)−λf(y1, z1)] = (1−λ)λ∆(f).

It is straightforward to verify that ∆(−ay2− bz2) = a(y0− y1)2 + b(z0− z1)2.

Moreover, because y0, y1 ≥ 0 and β(z) is concave, we have

(µy0 + λy1)β(µz0 + λz1) ≥ (µy0 + λy1)[µβ(z0) + λβ(z1)]

= µy0β(z0) + λy1β(z1)− µλ(y0 − y1)[β(z0)− β(z1)],

which implies that ∆(yβ(z)) ≥ −(y0 − y1)[β(z0) − β(z1)]. By conditions on

β0, we know that

∆(ϕ(y, z)) ≥ a(y0 − y1)2 + b(z0 − z1)2 − (y0 − y1)[β(z0)− β(z1)]

≥ (2
√
ab− β2

0)|(y0 − y1)(z0 − z1)| ≥ 0,

Therefore ϕ(y, z) is concave when y ≥ 0 by the definition.

A.3 Proof of Proposition 3.3

Let Ft(x) = Gt(x) + Atx
2 and rewrite problem (3.3) as

Ft+1(r) = maximize
x

Ft(x) + (At+1 −Bt)r
2 +

[
Πt(x, r)− Atx2 +Btr

2
]
,

subject to αx+ (1− α)p = r, p ∈ [Lt, Ut],
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Recall the definition of Ft. Since we assumed Lt ≥ c̄t when η is con-

cave, Proposition 3.2 ensures that [Πt(x, r)− Atx2 +Btr
2] is concave. Note

that At+1 ≤ Bt by the condition (3.4), and the feasible set is convex in

(x, r), Proposition 2.3.9 in Bertsekas et al. (2003) ensures that Ft+1 is con-

cave provided the concavity of Ft. Because G2(x) = Π1(r1, x), we know

F2(x) = Π1(r1, x) + B1x
2 + (A2 − B1)x2 is concave in x by Proposition 3.2

again. We conclude that all Ft and Gt, 2 ≤ t ≤ T + 1, are concave.

We divide the remaining proof into several steps. Some useful observations

on the function θ(x, r) = ∂+
x [Gt(x) + Πt(x, r)], the right derivative of the

objective function of problem (3.3) at x for a fixed r, are made for further

use.

1. θ(x, r) decreases in x when r ≥ c̄t, and increases in r when x ≥ c̄t.

2. If α > 0, define q(p, r) = [r − (1− α)p]/α, then θ(qr(p), r) increases in

r when p ≥ c̄t.

3. θ(r, r) decreases in r and θ(r, r) ≤ 0 if and only if R ≤ r, where

R = sup {r : θ(r, r) ≥ 0}.

The first two follow from their expressions

θ(x, r) = ∂+Gt(x) +
α

1− α

[
2at(r − αx)

1− α − (bt + atc̄t)

]
+

η0

1− α

[
(1 + α)r − 2αx

1− α − c̄t
]
,

θ(qr(p), r) = ∂+Gt(qr(p)) +
α

1− α [2atp− (bt + atc̄t)]

+
η0

1− α (2p− r − c̄t) ,

where η0 = η+ if x ≥ r and qr(p) ≥ r (or r ≤ p); otherwise η0 = η−.

Moreover, we have

θ(r, r) = ∂+
x Gt(r) +

2αat + η+

1− α r − α(bt + atc̄t) + η+c̄t
1− α ,

= ∂+Ft(r)− (η− − η+)r − α(bt + atc̄t) + η+c̄t
1− α .

Because Ft is concave and η+ ≤ η−, it follows the last observation.
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Step 1:

In this part we will claim that depending on r, it suffices to consider one

quadratic piece of Πt in problem (3.3). Specifically,

Gt+1(r) = maximize
x

Gt(x) + Πj
t(x, r),

subject to αx+ (1− α)p = r, p ∈ [Lt, Ut],

where Πj
t(x, r) = Π−t (x, r) if r ∈ (−∞, Lt] ∪ [R,Ut) and Πj

t(x, r) = Π+
t (x, r)

otherwise. In the following We verify this statement in three cases.

1. For any r < Lt, a feasible x to problem (3.3) satisfies

αx ≤ r − (1− α)Lt < r − (1− α)r = αr.

Therefore x < r and α > 0 imply that Πt(x, r) = Π−t (x, r).

2. For any r > Ut, we have Πt(x, r) = Π+
t (x, r) in problem (3.3) similarly.

3. For any Lt ≤ r ≤ Ut, note that r is feasible to problem (3.3) and θ(x, r)

decreases in x by r ≥ Lt ≥ c̄t. There are two sub-cases:

(a) if R ≤ r, then θ(r, r) ≤ 0 hence θ(x, r) ≤ 0 for any x ≥ r, which

implies Gt(x) + Πt(x, r) decreases in x when x ≥ r. Therefore

there exists an optimal solution x∗(r) to problem (3.3) such that

x∗(r) ≤ r. We then conclude that it leads no loss of optimality to

let Πt(x, r) = Π−t (x, r) in problem (3.3).

(b) if R > r, then we can let Πt(x, r) = Π+
t (x, r) in problem (3.3) by

using a similar argument.

Step 2:

We now distinguish whether the constraint p ∈ [Lt, Ut] is active or not.

Specifically, we will claim that

Gt+1(r) =

[Gt(x) + Πt(x, r) : αx+ (1− α)Ut = r], if r > RU ,

[Gt(x) + Πt(x, r) : αx+ (1− α)Lt = r], if r < RL,
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where RU = Ut, RL = Lt if α = 0; otherwise if α > 0,

RL = sup{r : θ(qr(Lt), r) ≥ 0}, RU = inf{r : θ(qr(Ut), r) ≤ 0}.

Moreover, if r ∈ [RL, RU ], the constraint p ∈ [Lt, Ut] is inactive. That is,

Gt+1(r) = maximize
x

[Gt(x) + Πt(x, r)]

subject to αx+ (1− α)p = r.

It is straightforward to verify the above statement when α = 0. Note that

Gt+1(r) = −∞ when either r > Ut or r < Lt because such r leads to empty

feasible set to problem (3.3) in this case.

When α > 0, we can express the feasible set of problem (3.3) as an interval

[qr(Ut), qr(Lt)]. In addition, θ(x, r) decreases in x on the interval by concavity

of its objective function.

Different cases for α > 0 are considered below.

1. For any r < RL, we know θ(qr(Lt), r) ≥ 0 because θ(qr(Lt), r) is de-

creasing in r by Lt ≥ c̄t. Moreover, from the monotonicity of θ(x, r) in

x, we have

θ(x, r) ≥ θ(qr(Lt), r) ≥ 0, ∀x ≤ qr(Lt).

Therefore qr(Lt) satisfying αqr(Lt)+(1−α)Lt = r solves problem (3.3).

2. For any r > RU , the statement can be verified similarly.

3. For any r ∈ [RL, RU ], we have θ(qr(Lt), r) < 0 < θ(qr(Ut), r). Hence

an optimal solution x∗(r) to problem (3.3) satisfies qr(Ut) < x∗(r) <

qr(Lt). That is, the boundary constraint p ∈ [Lt, Ut] is inactive. Be-

cause of concavity of the objective function, there is no loss of optimal-

ity to remove such inactive constraint, which concludes the statement.

Step 3:

In this part we will claim that depending on r, it leads no loss of optimality

to specify the quadratic piece of Gt(x) in the problem (3.3). Specifically,
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there exists a non-decreasing sequence {rn : n ≤ N} such that

Gt+1(r) = maximize
x

Gn
t (x) + Πt(x, r),

subject to αx+ (1− α)p = r, p ∈ [Lt, Ut],

for any r ∈ (rn−1, rn], where r0 = −∞ and N is the number of breakpoints

of Gt.

To verify the statement, define x∗(r) as maximal optimal solution to prob-

lem (3.3), i.e., x∗(r) = maxX∗(r) where

X∗(r) = arg max
x

{Gt(x) + Πt(x, r) : αx+ (1− α)p = r, p ∈ [Lt, Ut]} .

Because the feasible set is increasing in r (see, e.g., Topkis, 1998, for the

definition of increasing sets), and Πt(x, r) is supermodular by Proposition 3.2,

we know x∗(r) increases in r by Theorem 2.8.2 in Topkis (1998). Therefore

there exists an increasing sequence {rn : n ≤ N} such that

xn−1 < x∗(r) ≤ xn, ∀r : rn−1 < r ≤ rn,

where {xn : n ≤ N} is the breakpoint sequence of Gt. It implies that if

rn−1 < r ≤ rn, then xn−1 < x ≤ xn can be introduced as a redundant

constraint to problem (3.3). Hence there is no loss of optimality to specify

Gt(x) = Gn
t (x) when rn−1 < r ≤ rn.

It remains to calculate rn, n ≤ N . Define rnL = αxn + (1 − α)Lt and

rnU = αxn+(1−α)Ut which are the breakpoints related to xn of the following

functions,

GL
t+1(r) = [Gt(x) + Πt(x, r) : αx+ (1− α)Lt = r]

GU
t+1(r) = [Gt(x) + Πt(x, r) : αx+ (1− α)Ut = r].

Moreover, for j ∈ {+,−} define

rnj = sup
{
r : ∂+

x [Gt(x) + Πj
t(x, r)]

∣∣
x=xn

≤ 0
}
,

which are are the breakpoints related to xn of the following functions, re-
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spectively,

G+
t+1(r) = max

x
[Gt(x) + Π+

t (x, r)],

G−t+1(r) = max
x

[Gt(x) + Π−t (x, r)].

By combining results from the first two steps, we know rn ∈
{rnL, rnU , rn+, rn−}. The consistence examination can be applied to determine

rn from the four candidates. For example, if rnL belongs to an interval

(Rm−1, Rm] such that Gt+1(r) = GL
t+1(r), then it is consistent so that rn = rnL.

Otherwise, we do the same examination for rnU , rn+ and rn− sequentially. We

summarize the consistence examination as below for easy reference.

1. If θ(xn, rnL) > 0, then rn = rnL and Gt+1(rn) = GL
t+1(rn).

2. If θ(xn, rnU) < 0, then rn = rnU and Gt+1(rn) = GU
t+1(rn).

3. If rn+ ≥ xn, then rn = rn+ and Gt+1(rn) = G+
t+1(rn).

4. If rn+ < xn, then rn = rn− and Gt+1(rn) = G−t+1(rn).

The above consistence examination does not assign two different rn and

r̃n to the same xn. Otherwise, the definition of {rn} implies that for either

r = rn or r = r̃n we have the expression

Gt(x
n) + Πt(x

n, r) = maximize
x

Gt(x) + Πt(x, r)

subject to αx+ (1− α)p = r, p ∈ [Lt, Ut].

Without loss of generality, assume rn < r̃n. Since x∗(r) is increasing, the

above relation holds for all r ∈ [rn, r̃n], which means that Πt(x
n, r) is a con-

stant in the interval. It contradicts with the setting that Πt(x, r) is quadratic.

Therefore each xn corresponds to at most one rn.

Step 4:

By all results so far, we can conclude the desirable expression (3.5). We next

discuss the computational complexity to obtain Gt+1 from Gt.

In Step 1 we need to obtain the constant R = sup{r : θ(r, r) ≥ 0}.
Since Gt is concave and piecewise quadratic with N breakpoints, θ(r, r) is

116



decreasing and consists of N + 1 linear pieces. Therefore it takes O(logN)

time to obtain R by a binary search algorithm. Similarly, we can also obtain

RL and RU defined in Step 2 in additional O(logN) time.

In Step 3 we need to obtain the sequence {rn : n ≤ N}. Since both

∂+
x [Gt(x) + Π+

t (x, r)] and ∂+
x [Gt(x) + Π−t (x, r)] are linear in r for any fixed

x, it takes O(1) time to calculate all four calculates of rn. Therefore such

sequence can be obtained in O(N) time.

When determining the expression of Gt+1 through (3.5), apparently each

case of (3.5a), (3.5b) and (3.5c) can be solved in O(1) time. In summary, it

takes O(N) time to obtain Gt+1 from Gt.

Observe that G2(x) = Πt(r1, x). Hence each Gt+1 is concave and consists

of O(t) quadratic pieces. In addition, we can obtain all Gt+1 recursively for

t = 1, 2, · · · , T in O(T 2) time.

A.4 Proof of Theorem 3.2

We first verify the computational complexity to construct the network (V , E).

Since Πt(x, p) is quadratic when x ≥ p, it is straightforward to verify that

Πt(x, p)− 1
2
η+x2+ 1

2
η+p2 is jointly concave on {(x, p) : x ≥ p} when η+ ≤ 2at.

For any t > τ , define Fτ,t(p) = Gτ,t(p) + 1
2
η+p2 and rewrite (3.7) as

Fτ,t+1(p) = maximize
x

Fτ,t(x)− 1

2
η+x2 + Πt(x, p) +

1

2
η+p2,

subject to x ≥ p, p ∈ [Lt, Ut].

Similar to the proof of Proposition 3.3, we know both Fτ,t(p) and Gτ,t(p) are

concave; moreover, Gτ,t+1(p) consists of O(t− τ) quadratic pieces and can be

obtained in O(t− τ) time after Gτ,t(p) becomes available. Therefore, it takes

O(T 3) time to obtain all Gτ,τ̃ (p), and an additional O(T 3) to obtain `(τ, τ̃)

by maximizing Gτ,τ̃ (p) over p for all 1 ≤ τ < τ̃ ≤ T + 1. Note that Gτ,t(p)

is strictly concave when η+ > 0, which implies that problem (3.6) yields a

unique optimal solution.

We next show the equivalence of solving problem (3.2) and finding a longest

path in (V , E). That is, we need to prove that the total profit incurred by

an optimal price sequence is no more than the total length of some path in

(V , E), and there exists a longest path in (V , E) with the total length no more

117



than the profit associated with some feasible price sequence of problem (3.2).

On the one hand, given an optimal price sequence {p1, · · · , pT}, let 1 =

τ1 < τ2 < · · · < τN+1 = T + 1 be its price markup periods. Then for any pair

of consecutive price markup periods (τ, τ̃), we have pτ−1 ≤ pτ , pτ̃−1 ≤ pτ̃ and

pt ≥ pt+1 when τ ≤ t < τ̃ − 1. Clearly {pτ , · · · , pτ̃−1} is feasible to problem

(3.6), which implies the accumulated profit from period τ to τ̃ −1 is no more

than `(τ, τ̃). Therefore the total profit associated with the feasible price

sequence {p1, · · · , pT} is no more than total length of the path {τ1τ2 · · · τN+1}
with τ1 = 1 and τN+1 = T + 1.

On the other hand, suppose τ1τ2 · · · τNτN+1 with 1 = τ1 < · · · < τN <

τN+1 = T + 1 is a longest path in (V , E). Without loss of generality, we can

assume `(τn−1, τn) + `(τn, τn+1) > `(τn−1, τn+1) for any 1 < n ≤ N ; other-

wise we can replace links (τn−1, τn) and (τn, τn+1) by a new link (τn−1, τn+1).

Let {p1, · · · , pT} be the price sequence related to the longest path, i.e.,

{pτ , · · · , pτ̃−1} solves problem (3.6) for any (τ, τ̃) = (τn, τn+1), n = 1, · · · , N .

If we can prove all τn are price markup periods, then this price sequence is

feasible to problem (3.2) and its profit is the same as the length of the longest

path.

Assume to the contrary that there exists a node τ on the longest path

such that pτ−1 > pτ . Let τ̄ , τ, τ̃ with τ̄ < τ < τ̃ be three consecutive nodes

on the longest path. Since we assume pτ−1 > pτ , {pτ̄ , · · · , pτ̃−1} is feasible

to problem (3.6) with (τ, τ̃) replaced by (τ̄ , τ̃). It follows from Πτ (r, p) =

Πτ (p, p) + (p− c̄τ )η(r − p) that

`(τ̄ , τ̃) ≥ Πτ̄ (pτ̄ , pτ̄ ) +
τ−1∑
t=τ̄+1

Πt(pt−1, pt) + Πτ (pτ−1, pτ ) +
τ̃−1∑
t=τ+1

Πt(pt−1, pt)

= `(τ̄ , τ) + `(τ, τ̃) + η+
[
(pτ − c̄τ )(pτ−1 − pτ )

]
where the equality follows from the definition of {pτ̄ , · · · , pτ−1} and

{pτ , · · · , pτ̃−1}. If pτ ≥ c̄τ , then `(τ̄ , τ̃) ≥ `(τ̄ , τ) + `(τ, τ̃), which contra-

dicts the assumption that `(τ̄ , τ) + `(τ, τ̃) > `(τ̄ , τ̃). It then follows that

pτ−1 ≤ pτ and τ is indeed a price markup period. Thus, it remains to prove

pτ ≥ c̄τ .

In the case that c̄t ≤ Ut at all periods, Proposition 3.1 implies that it

suffices to restrict our attention on pt ≥ c̄t for all t. We now focus on the

case when Ut = U at all periods. In this case, assume that {pτ , · · · , pτ̃−1}
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is the optimal solution to problem (3.6) with largest pτ among all optimal

solutions (it is well defined since all optimal solutions of problem (3.6) form a

compact set). If pτ < c̄τ , let s be the first period with nonnegative marginal

profit after periods τ , i.e., s = min{t : pt ≤ c̄t, τ ≤ t < τ̃}, where we specify

s = τ̃ if pt < c̄t for all τ ≤ t < τ̃ . Since we assume pτ−1 > pτ , we have that

pt < pτ−1 ≤ U for τ ≤ t < τ̃ . Thus, for sufficient small ε > 0, pτ + ε < pτ−1

and {pτ + ε, · · · , ps−1 + ε, ps, · · · , pτ̃} is feasible to problem (3.6). Moreover,

calculation shows that

Πτ (pτ−1, pτ ) +
s−1∑
t=τ

Πt(pt−1, pt) + Πs(ps−1, ps) +
τ̃−1∑
t=s+1

Πt(pt−1, pt)

≤ Πτ (pτ−1, pτ + ε) +
s−1∑
t=τ

Πt(pt−1 + ε, pt + ε)

+ Πs(ps−1 + ε, ps) +
τ̃−1∑
t=s+1

Πt(pt−1, pt).

This implies the price sequence {pτ + ε, · · · , ps−1 + ε, ps, · · · , pτ̃} gives a

profit no less than that associated with {pτ , · · · , pτ̃−1}, which contradicts

the assumption that {pτ , · · · , pτ̃−1} is the optimal solution with the largest

pτ . Therefore pτ ≥ c̄τ and the proof is now complete.

A.5 Remarks on Theorem 3.2

In the case that neither c̄t ≤ Ut nor Ut = U holds at some period, we are

still able to solve problem (3.2) in O(T 3) time. The key is to construct an

expanded acyclic network and maintain the price consistency. That is, if

some time period τ is included as a node in a feasible path, then it should

represent a price markup period.

To take into account price consistency, we assume that η+ > 0 for all t.

This assumption ensures the uniqueness of the optimal solution to problem

(3.6) (see proof of Theorem 3.2). Denote this solution by

{p(τ, τ̃), pτ+1, · · · , pτ̃−2, p(τ, τ̃)},

where the dependency on (τ, τ̃) for the first and the last elements is empha-
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sized (other components also rely on (τ, τ̃)). We now introduce the extended

acyclic network (V̄ , Ē)

V̄ =
{

(τ, τ̃) : 1 ≤ τ < τ̃ ≤ T + 1
}
∪
{
v0 = (1, 1),ve = (T + 1, T + 1)

}
,

Ē =
{
〈(τ̄ , τ), (τ, τ̃)〉 : p(τ̄ , τ) < p(τ, τ̃), 1 ≤ τ̄ < τ < τ̃ ≤ T + 1

}
∪
{ 〈
v0, (1, τ)

〉
: 2 ≤ τ ≤ T + 1

}
∪
{
〈(τ, T + 1),ve〉 : 1 ≤ τ ≤ T

}
,

where artificial nodes v0,ve are the origin and the destination in the

longest path problem to be constructed. Moreover, the length of any link

〈(τ̄ , τ), (τ, τ̃)〉 containing no artificial node is given by `(τ̄ , τ), and other links

in Ē are assigned with a zero length.

Our construction implies that a non-artificial node (τ, τ̃) represents con-

secutive periods starting from period τ and ending at period τ̃ − 1 with

non-decreasing prices. In addition, two non-artificial nodes (τ̄ , τ) and (τ ′, τ̃)

are connected by a link in Ē if and only if they share a common index which

indicates a price markup period, that is, τ = τ ′ and p(τ̄ , τ) < p(τ, τ̃). Clearly

a path from v0 to ve in the network (V̄ , Ē) corresponds to a feasible price

sequence to problem (3.2), and an optimal solution to problem (3.2) corre-

sponds to a path in the network.

The acyclic network contains O(T 3) links, whose lengths can be construct-

ed in O(T 3) time. An additional O(T 3) time allows us to find a longest path

in (V̄ , Ē) from node v0 to node ve. Thus, problem (3.2) can be solved in

O(T 3) time if rt+1 = pt, η
− = 0 and 0 < η+ ≤ 2at at all periods.

Observe in the loss aversion case, we assume that c̄t ≤ Ut for all t in

Theorem 3.1. If this assumption is violated, a similar construction can be

applied to the model if rt+1 = pt, η
+ = 0 and 0 < η− ≤ 2at at all periods. In

this case, problem (3.2) can also be solved in O(T 3) time by converting it to

a longest path problem in some acyclic network.

A.6 Proof of Theorem 3.4

We first prove V ∗ ≤ V ε + CT ε. Suppose {p∗t : t = 1, · · · , T} is the optimal

price sequence to problem (3.1) and T ∗ is the associated optimal ordering

plan. Then a feasible solution to problem (3.8) is constructed by keeping the

price sequence and ordering plan unchanged (i.e. pt = p∗t and T = T ∗). In
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addition, let rt = arg min{|r − r∗t | : r ∈ Rε} be the nearest element in Rε to

r∗t for each t ≥ 2, which implies |rt − r∗t | ≤ 1
2
ε and

|rt+1 − αrt − (1− α)p∗t | = |rt+1 − r∗t+1 + α(r∗t − rt)| ≤ ε
2

+ αε
2
≤ ε,

Therefore such sequence {(pt, rt)} is feasible to problem (3.8). Let V be the

profit associated with the feasible solution {(pt, rt) : t = 1, · · · , T}, and c̄t

be the marginal ordering and inventory holding costs given by the ordering

plan T ∗. Because |rt − r∗t | ≤ ε
2

and

|pt − c̄t| ≤ max
1≤τ≤t≤T+1

{|Lt − c(τ, t)|, |Ut − c(τ, t)|},

we have that

|d∗t − dt| = |η(r∗t − p∗t )− η(rt − p∗t )| ≤ 1
2

max{η+, η−}ε.

which then implies that

|V − V ∗| ≤
T∑
t=1

|pt − c̄t||dt − d∗t | ≤ CT ε.

Hence it follows that V ∗ ≤ V + CT ε ≤ V ε + CT ε.

Since V ε
0 ≤ V ∗ is trivial, it remains to show V ε ≤ C−T ε+V ∗. Suppose {rεt :

t = 1, · · · , T} is the optimal reference price sequence to problem (3.8) and

T ε is the optimal ordering plan. Then a feasible solution to problem (3.1) is

constructed by keeping the pricing and ordering plan unchanged (i.e. pt = pεt

and T = T ε), and generating rt through rt+1 = αrt+(1−α)pt. Let V be the

profit associated with the feasible pricing sequence {(rt, pt) : t = 1, · · · , T}
and the ordering plan T in problem (3.1). Since pt = pεt , r

ε
1 = r1 and

|rεt+1 − rt+1| = |rεt+1 − αrεt − (1− α)pεt + α(rεt − rt)| ≤ ε+ α|rεt − rt|,

the following inequality can be proved recursively.

|rεt − rt| ≤
t−1∑
τ=1

ατε ≤ εmin
{

(1− α)−1, (t− 1)
}
,

which in turn implies |d∗t − dt| ≤ max{η+, η−}max{(1− α)−1, t− 1}ε. Thus,
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similar to the argument in the above paragraph, it follows that

V ε ≤ V + C−T ε ≤ V ∗ + C−T ε.

In summary, we conclude the desirable inequalities.
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Appendix B

B.1 Proof of Proposition 5.1

Apparently the concavity of g in term of y implies that f(x1, x2) is concave

in x2. Rewrite the problem as below, which is a special case of (5.1) with

[1,0] being the first row of the matrix A.

f(x1, x2) = maximize
(y1,y)∈D

{g(y1,y) : y1 = x1, a1y1 +α′y = x2}.

For any y+ = (y1,y), ỹ+ = (ỹ1, ỹ) ∈D, note that

(Ay+) ∧ (Aỹ+) = A(y+ ∧ ỹ+).

Following the same proof of Theorem 5.1, we define a from any two x, x̃. It

is easy to verify that a = [a1, a2] and x ∧ x̃ = [s1, s2] satisfy a1 = s1. Hence

the concavity of f(x1, x2) in x2 completes the proof, too.

B.2 Proof of Corollary 5.1

The basic idea is to de composite P as P = LU for some triangle matrices

L and U , then sequentially discuss g1(x) = g(Lx) and g2(x) = g1(Ux) =

g(Px). The statement is straightforward when both diagonal entries of P

are zero. Without loss of generality we assume that the first diagonal entry

of P is 1. Two cases are considered depending on the sign of |P |.
If |P | ≥ 0 then we can express P = LU as below:

P =

[
1 −p
−p̄ p2

]
=

[
1 0

−p̄ 1

]
×
[

1 −p
0 |P |

]
= LU,
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where p, p̄ and p2 are some non-negative real numbers. Denote g1(x) =

g(Lx), i.e., g1(x1, x2) = g(x1, x2 − p̄x1). Apparently g1 is component-wise

concave. Moreover, we have

g1(x1, x2) = maximize {g(x1, y) : p̄x1 + y = x2, [x1, y] ∈D}.

Therefore g1 is supermodular on {x : Lx ∈ S} by Proposition 5.1. Fol-

lowing a similar argument, we can verify the component-wise concavity and

supermodularity of g2(x) = g1(Ux) on {x : LUx ∈ S}, i.e., g(Px) on

{x : Px ∈ S}.
If |P | < 0, consider g(PJ0x) for the linear transformation J0 mapping a

vector [x1, x2] to [x2, x1]. Because |PJ0| = −|P | > 0, and that g(Px) on

{x : Px ∈ S} is component-wise concave and supermodular if and only of

so is g(PJ0x) on {x : PJ0x ∈ S}, we conclude this proof immediately.

B.3 Proof of Proposition 5.2

Recall that B′B has non-negative diagonal entries and non-positive off-

diagonal entries. If B′B is singular, then some real numbers λ1, λ2, vector

v satisfy that λ1λ2 ≤ 0 and Bx = (λ1x1 + λ2x2)v for all x = [x1, x2]. In

this case f depends on x through λ1x1 + λ2x2 hence its supermodularity

follows from its concavity. It leads no loss of generality to assume B′B is

non-singular.

For any x, x̃ ∈ S, let y, ỹ be the corresponding optimal solutions. Since

y ∧ ỹ,y ∨ ỹ ∈D, there exist a, b ∈ S such that

A(y ∧ ỹ) = Ba and A(y ∨ ỹ) = Bb.

By B′A ≥ 0, it leads to

B′Ba = B′A(y ∧ ỹ) ≤ (B′Ay) ∧ (B′Aỹ) = (B′Bx) ∧ (B′Bx̃).

Note that the inverse of B′B is non-negative. We know a ≤ x ∧ x̃ and in a

similar way, x∨ x̃ ≤ b. By the same remaining part of the proof of Theorem

5.1, f is concave and supermodular on S.
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B.4 Proof of Lemma 5.2

When S has the form (5.3), calculation shows that

J1(S) = {[x1, x2] : l1 ≤ x1 − x2 ≤ u1, l2 ≤ −x2 ≤ u2, l0 ≤ x1 ≤ u0},
J2(S) = {[x1, x2] : l1 ≤ −x1 ≤ u1, l2 ≤ x2 − x1 ≤ u2, l0 ≤ −x2 ≤ u0}.

Therefore both J1(S) and J2(S) have the form (5.3), too.

We next show (a) and (d) are equivalent. Let ψ(x1, x2, ξ) = f(x1−ξ, x2−ξ)
and S+ = {[x1, x2, x3] : [x1 − x3, x2 − x3] ∈ S} be its domain. Observe that

f(J1[x1 − ξ, x2 − ξ]) = ψ(x1, ξ, x2), f(J2[x1 − ξ, x2 − ξ]) = ψ(ξ, x2, x1).

Therefore all the three functions in (d) are respectively supermodular on their

domains if and only if ψ is supermodular in any two of its variables with the

other one fixed on S+. On one hand from the definition we know that f is

L\-concave if and only if ψ is supermodular on S+. We then conclude the

equivalence between (a) and (d) by Theorems 2.6.1 and 2.6.2, Topkis (1998).

By the equivalence between (a) and (d), f(J1x) is L\-concave on J1(S)

if and only if f(J1x), f(J2
1x) = f(x) and f(J2J1x) are respectively super-

modular on their domains. Notice that J2J1 = J0J2 where J0 is the lin-

ear transformation mapping a vector [x1, x2] to [x2, x1], and that a function

g(x1, x2) is supermodular in [x1, x2] if and only if so is the function g(x2, x1)

in [x1, x2]. Therefore f(J2J1x) is supermodular if and only if so is f(J2x).

We then conclude the equivalence between (b) and (d). Similarly, (c) and

(d) are equivalent, too.

B.5 Proof of Theorem 5.3

(a) Since f is separable, we can rewrite (5.4) as

maximize
y=[y1,y2]

{[f1(y1 − x1) + f2(y2 − x2) + v̄+(y)] : y ∈ Y ,y − x ∈ [l,u]} ,

where the objective, regarded as a function of x and y, is supermodular

(Lemma 2.6.2, Topkis, 1998) and the set {(x,y) : l ≤ y−x ≤ u} forms

a sublattice (Example 2.2.7, Topkis, 1998). The monotonicity of y(x)
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follows from Theorem 2.8.1, Topkis (1998).

(b) Note that Jy(Jx) solves the problem

maximize
y

{f(Jy) + v̄+(Jy) : y ∈ J(Y (Jx))} ,

where the objective is supermodular by Lemma 5.1, and J(Y (Jx)) forms

a sublattice by Example 2.2.7, Topkis (1998) and that all hn are mono-

tone. Therefore Jy(Jx) is increasing in x as we proved in part(a). The

monotonicity of y(x) then follows.

B.6 Characterization of the optimal solution to

problem (5.4) for linear ft

Recall the definition of function v(y) in the proof of Theorem 5.3, which is

concave and supermodular (submodular) if vt+1 is concave and supermodular

(submodular). Suppose y0(x) maximizes v(y) over Y . Notice that y(x) =

y0(x) if z0(x) ∈ Z, where z0(x) = y0(x)− x. Otherwise z(x) = y(x)− x
belongs to the boundary of Z. We only need to characterize y(x) for the

latter case z0(x) 6∈ Z.

We start from Z = [l,u]. When z(x) = [z1(x1, x2), z2(x1, x2)] belongs to

the boundary of Z, there are four possible cases: z1(x1, x2) = l1, z2(x1, x2) =

l2, z1(x1, x2) = u1 and z2(x1, x2) = u2. We focus on the first case; the others

can be discussed by similar arguments. If z1(x1, x2) = l1 or equivalently

y1(x1, x2) = x1 + l1, y2(x1, x2) must solve the problem

maximize {v(x1 + l1, y2) : [x1 + l1, y2] ∈ Y , x2 + l2 ≤ y2 ≤ x2 + u2}.

Relax the constraint x2 + l2 ≤ y2 ≤ x2 + u2 and denote ȳ2(x1) as the related

optimal solution. Because this is a concave maximization problem,

y2(x1, x2) = max{x2 + l2,min[ȳ2(x1), x2 + u2]}.

Let γ1(x1) = ȳ2(x1) − l2 and γ2(x1) = ȳ2(y1) − u2, which are increasing

(decreasing) functions by Theorem 5.3 if v is supermodular (submodular)

and all hn are bimonotone (monotone) in problem (5.4). Partition the state

126



space of x by curves x2 = γ1(x1) and x2 = γ2(x1). Then it is optimal to let

y2 = x2 + l2 when x lies above the curve x2 = γ1(x1), y2 = x2 + u2 when x

lies below the curve x2 = γ2(x1), and y2 = ȳ2(x1) otherwise.

The structure of y(x) is conceptually illustrated in Figure B.1 and Figure

B.2 when Z = [l,u], where the former corresponds to supermodular v̄+ and

bimonotone hn, and the latter corresponds to submodular v̄+ and monotone

hn. The space of x is partitioned into nine areas by four curves x2 = γk(x1),

1 ≤ k ≤ 4, where all functions γk are increasing (decreasing) if vt+1 is

supermodular (submodular) and all hn are bimonotone (monotone).

S2,2

S2,1

S2,3

S1,2
S1,1

S1,3

S3,2S3,1

S3,3

x2 = γ1(x1) x2 = γ2(x1)

x2 = γ3(x1)

x2 = γ4(x1)

Figure B.1: Structure of y(x) for Z = [l,u]: Supermodular case.

The structure of y(x) is described as below:

1. If x = [x1, x2] lies above the curve x2 = γ3(x1), then the constraint

y2 − x2 ≥ l2 is active hence y2(x1, x2) = x2 + l2. If x lies below the

curve x2 = γ4(x1), then the constraint y2 − x2 ≤ u2 is active hence

y2(x1, x2) = x2 + u2. If x lies between the two curves, then it leads no

loss of optimality to remove constraints l2 ≤ y2 − x2 ≤ u2.

2. If x = [x1, x2] lies on the left side of the curve x2 = γ1(x1), then the

constraint y1−x1 ≤ u1 is active hence y1(x1, x2) = x1 +u1. If x lies on

the right side of the curve x2 = γ2(x1), then the constraint y1−x1 ≥ l1 is

active hence y1(x1, x2) = x1 + l1. If x lies between the two curves, then

it leads no loss of optimality to remove constraints l1 ≤ y1 − x1 ≤ u1.
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S2,2

S2,3

S2,1

S1,2
S1,3

S1,1

S3,2 S3,3

S3,1

x2 = γ2(x1)x2 = γ1(x1)

x2 = γ3(x1)

x2 = γ4(x1)

Figure B.2: Structure of y(x) for Z = [l,u]: Submodular case.

We can characterize y(x) for x in each area. For example, if x ∈ S1,2, i.e., x

lies above x2 = γ3(x1) and between x2 = γ1(x1) and x2 = γ2(x1), then only

the constraint y2 − x2 ≥ l2 is active. It is optimal to let y2(x1, x2) = x2 + l2

and y1(x1, x2) maximizes v(y1, x2 + l2) over Y . If x ∈ S2,2, then it leads

no loss of generality to remove the constraint y − x ∈ [l,u]. If x ∈ S3,2,

only the constraint y2 − x2 ≤ u2 is active therefore y2(x1, x2) = x2 + u2 and

y1(x1, x2) maximizes v(y1, x2 + u2) over Y . Similar arguments can be made

when x falls into other areas.

Next we consider Z = {z ∈ [l,u] : h(z) ≤ 0} for some convex h. Let ȳ(x)

be the optimal solution associated with Z = [l,u], and z̄(x) = ȳ(x)− x. If

h(z̄(x)) ≤ 0, then y(x) = ȳ(x). Therefore we only needs to discuss these

x ∈ Ω = {x : h(z̄(x)) ≥ 0}.
Observe that h(z(x)) = 0 for all x ∈ Ω. If h is bimonotone (monotone)

then h(z1, z2) = 0 determines some increasing (decreasing) function z2 =

α(z1). Let a = [l0, α(l0)] and b = [u0, α(u0)] be the intersection points of the

curve h(z) = 0 and the boundary of [l,u]. Then

y(x) = arg max {v(y) : y ∈ Y ,y − x = [ξ, α(ξ)], l0 ≤ ξ ≤ u0} .

Recall that y0(x) maximizes v over y and z0(x) = y0(x) − x. Again,

because it is a concave maximization problem, we can further partition the

set Ω into three parts depending on whether z0(x) < ξ, ξ ≤ z0(x) ≤ α(ξ)
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or z0(x) > α(ξ).

Figure B.3 conceptually illustrates the structure of y(x) associated with

Z = {z ∈ [l,u] : h(z) ≤ 0} for some linear h(z1, z2) = z1 + z2 − k0.

Comparing to Figure B.2, we further partition the space of x by adding one

curve x2 = γ̄(x1) corresponding to the h(z) ≤ 0 such that the additional

constraint is active if and only if x ∈ Ω = {[x1, x2] : x2 ≤ γ̄(x1)}. Ω is

further partitioned into three parts Ωm,m = 1, 2, 3, by two curves such that

z = b when x ∈ Ω1, the constraint z ∈ [l,u] is inactive when x ∈ Ω2, and

z = a when x ∈ Ω3. When x 6∈ Ω, the characterization of y(x) is similar as

ȳ(x).

S0
2,2

S2,3

S0
2,1

S1,2

S1,3

S1,1

S0
3,2 S3,3

Ω2

Ω1

Ω3

x2 = γ̄(x1)

x2 = γ̄(x1)

x2 = γ5(x1)

x2 = γ6(x1)

Figure B.3: Structure of y(x) for Z = {z ∈ [l,u] : h(z) ≤ 0}

When more constraints of the form hn(z) ≤ 0 are involved in the expression

of Z, we can repeat the above discussions by adding constraints step by step,

then characterize y(x) by further partitioning the space of x.

*
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