(© 2011 Sruthi Bandhakavi

AUTOMATED DETECTION OF INJECTION VULNERABILITIES IN WEB
APPLICATIONS

BY

SRUTHI BANDHAKAVI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Doctoral Committee:

Professor Marianne Winslett, Chair & Director of Research

Professor Madhusudan Parthasarathy

Professor Carl Gunter

Professor Samuel T. King

Professor William H. Winsborough, University of Texas at San Antonio

Abstract

Web applications and browsers embed code from different origins, each of
which could have different levels of trustworthiness. These applications provide
rich functionality to the users by interacting with each other and with the host
machine—usually by sending and receiving information. The interaction of code
and data from various sources in the web applications and browsers has resulted
in the emergence of behaviors that could threaten the confidentiality, integrity, and
availability properties of the infrastructure on which the web applications and web
browsers run and that of the resources they handle. Injection, cross-site scripting
(XSS), cross-site request forgery (XSRF), etc. are some examples of vulnerabilities
that could allow malicious attacks on web applications and their infrastructure. Of
the many attacks on web applications, injection attacks are one of the most pop-
ular ones. In this dissertation, we describe two different analysis techniques that
could be used to automatically prevent and/or detect two specific types of injec-
tion vulnerabilities— SQL injection attacks on web applications and cross-context
scripting attacks in Firefox browser extensions.

In case of vulnerabilities like SQL injection, malformed user input alters the
SQL query issued. This query when processed allows the attacker to gain unau-
thorized access to the back-end server and database, and extract or modify sensi-
tive information.

Like mobile phone apps, browser extensions are widely popular third-party-
written weakly-vetted pieces of code. They expand the functionality of browsers
by interposing on and interacting with browser-level events and data. In this thesis,
we examine the cross-context scripting vulnerabilities occurring in the Firefox
browser extensions. Firefox extensions are one of the main reasons for Firefox’s
popularity—there are thousands of third-party extensions available to the users.
The extensions usually have the same privilege level as the browser. Cross-context
scripting attacks are caused when some specially crafted inputs from the content

pages (web pages, RSS feeds, etc) are executed in the privileged context of the

i

web browser, often by injecting malicious code into the extensions, which run
with the same privileges as the web browser.

In both the above injection vulnerabilities, there is a legitimate flow of infor-
mation from the untrusted sources to the trusted application. However, the inputs
from the untrusted sources force the trusted applications to behave in ways that
are not intended by the application developers. In case of SQL injection attacks,
a malicious user of the web application inserts inputs that produce SQL queries
with structures different from the query structures that the programmer intended.
In case of cross-context scripting attacks, the content (either RSS feeds or web
pages) contains malicious JavaScript, which when accessed by the browser exten-
sion changes its expected run-time behavior. This change in the expected behavior
occurs if the programmers have written buggy code with inadequate sanitization
or no sanitization at all of untrusted inputs.

To detect SQL injection attacks, apart from knowing that the SQL query is
tainted by the inputs from the user, we also need to know exactly which parts
of the query are tainted by the user inputs. A characteristic diagnostic feature of
SQL injection attacks is that they change the intended structure of queries issued.
Based on this insight, we propose a technique to detect and prevent SQL injec-
tion attacks. This technique dynamically mines the programmer-intended query
structure on any input, and detects attacks by comparing the structure of the ac-
tual query issued with the programmer-intended query structure. We propose a
simple and novel mechanism, called CANDID, for mining programmer-intended
queries by dynamically evaluating runs over benign candidate inputs. We show
that this mechanism is theoretically well founded and is based on inferring in-
tended queries by considering the symbolic query computed on a program run.
Our approach has been implemented in a tool called CANDID that retrofits web
applications written in Java to defend them against SQL injection attacks. We
report extensive experimental results that show that our approach performs re-
markably well in practice.

To understand how to find cross-context scripting vulnerabilities, we study the
Firefox browser extension architecture. In our analysis, we find that most of the
vulnerabilities in the Firefox browser extensions can be modelled as information
flows between different syntactic program elements in the extensions’ JavaScript
code. Based on this insight, we propose a new analysis framework called VEX,
which uses static taint analysis of JavaScript programs to identify flow patterns

that represent flows between untrusted sources and executable sinks. We de-

111

scribe several patterns of flows that can lead to privilege escalations in Firefox
extensions. VEX analyzes Firefox extensions for such flow patterns using high-
precision, context-sensitive, flow-sensitive static analysis. We subject 4303 brow-
ser extensions to the analysis, and VEX finds 5 of the 18 previously known vul-
nerabilities and 7 previously unknown vulnerabilities. Unlike previous works on
browser extension security which use dynamic information flow analysis tech-
niques for detecting vulnerabilities at run-time, VEX uses a static analysis tech-
nique. Consequently, VEX can be used to analyze thousands of extensions offline
and imposes no performance overhead at run-time.

The main contribution of the thesis is to show that static and dynamic informa-
tion flow analysis techniques can be used effectively to detect programmers’ intent
and thereby detect and/or prevent script injection vulnerabilities. We show that
the application architecture, features of the programming language that is used to
write the application, the complexity of the input language, and the characteristics
of the vulnerabilities play a major role in designing useful information flow anal-
ysis techniques for detecting the vulnerability. We describe these considerations
in this thesis. We also present an extensive comparison of our approaches with the

related work in the area.

v

To my family and friends, for their love and support.

Acknowledgments

All through my Ph.D., I obtained guidance, advice, support and encouragement
from all the wonderful people who were around me. These acknowledgements
will not be enough to convey my gratitude to all the people involved, but I will try.

I will start by thanking my advisors, Professors Marianne Winslett and P. Mad-
husudan. I thank them for providing me so many opportunities to learn and grow
over the course of my Ph.D. Professor Winslett provided me with all kinds of op-
portunities to grow as a researcher right from interacting with other researchers,
reviewing papers, writing grant proposals, to mentoring undergraduates. Profes-
sor Madhusudan spent many hours with me discussing research and provided me
with a wealth of information. I really appreciate the guidance they gave me in
both professional and personal matters.

I also want to express my gratitude towards the members of my dissertation
committee: Professors Carl Gunter, Samuel T. King, and William Winsborough.
I thank Professor Samuel King for providing me with great feedback that guided
me to think in interesting directions.

I also write these acknowledgments with a sad note on the untimely demise of
Professor William Winsborough. Professor Winsborough was not just a guide,
but a cherished friend. He was an enthusiastic researcher, who cared deeply about
his students. I spent countless hours with him discussing research. I wish I could
thank Professor Winsborough in person, but I hope he knew how much I appreci-
ated his support during the formative years of my PhD. I will miss him dearly.

Donna Coleman and Elaine Wilson provided invaluable assistance with all of
my administrative tasks. They always welcomed my questions with a smile and
never failed to assist me. I would also like to thank the administrative staff: Mary
Beth Kelly, Barbara Leisner, Rhonda McElroy, Lynette Lubben, Kathy Runck,
Holly Bagwell, for answering my numerous questions over the years.

I am thankful to my co-authors, Prithvi Bisht, Sandro Etalle, Jerry Den Her-
tog, Bruno P. S. Roacha, V. N. Venkatakrishnan, for the several insightful dis-

vi

cussions. Thanks are also due to my colleagues Sridhar Duggirala, Pranav Garg,
Ragib Hasan, Rajesh Karmani, Adam Lee, Thanh Huong Luu, Kazuhiro Minami,
Soumyadeb Mitra, Edgar Pek, Pavithra Prabhakar, Rishi Sinha, Naoki Tanaka,
Arash Termehchy, Joana M. F. da Trindade and Charles Zhang for giving me the
much needed feedback on my presentations. I had great discussions with my
undergraduate interns: Shikhar Agarwal, Wyatt Pittman and Nandit Tiku, who
worked hard to ensure that the VEX project was a success.

I thank my friends at UIUC, Nana Arizumi, Namrata Batra, Sarah Brown, Jay
Chheda, Piyush Gupta, Revathi Jambunathan, Fariba Khan, Sibin Mohan, Na-
mita Narain, Seema Kamath, Rajesh Karmani, Mohit Kumbhat, Veena Paliwal,
Pavithra Prabhakar, Ramya Raviprakash, Vijay Reddy, Hardik Thakker, Mehul
Thakkar, Utkarsh Sharma, Varashank Shukla, Komal Shukla, Anjali Sridhar, for
providing the much needed encouragement, entertainment and nourishment. I also
thank my worderful team at Tae Kwon Do at UIUC for supporting me and teach-
ing me the skills that could be applied inside and outside the doe-chang (training
room). The group of Women in Computer Science (WCS) provided me with a lot
of information.

I am forever in debt to my mother, aunts, uncles and my extended family, who
constantly encouraged me to achieve my dreams. I especially want to thank my
sister, Sindhura Bandhakavi, for being the responsible one in the family. Last but
not the least, I want to thank my husband, Pannagadatta Shivaswamy, for being
with me through the highs and lows of the PhD process and being a pillar of

strength throughout. I would not have survived the process without his support.

Vil

Table of Contents

[Chapter I Introduction| 1
(1.1~ Overview of Injection Vulnerabilities and Attacks| 2
(1.2 Detection and/or Prevention of Injection Vulnerabilities| 5
[L3__Research Contributions| 9
(1.4 Thesis Organization| 10

[Chapter 2 Background| 11
[2.1 Detection and Prevention of Injection Flaws| 11

[2.1.1 Sanitization and Fuzz Testing| 11
[2.1.2 Static Analysis| L. 12
2.1.3 Dynamic Analysis| 12
[2.1.4 Hybrid Approaches|. 12
[2.2 Overview of the JavaScript Programming Language| 12
[2.2.1 JavaScript Features That Need To Be Analysed| 16
[2.3 Static Specification and Analysis of JavaScript]. 19
[2.3.1 Applications of Analysis Techniques|. 20

[Chapter 3 Detection and Prevention of SQL Injection Attacks|. 22

BI _Overview of CANDIDI 23
3.1.1 AnExample] 23
[3.1.2 Our Approach|. 25

[3.2 Formal Analysis Using Symbolic Queries| 27
[3.2.1 SQL Injection Defined| 29

3.3 The CANDID Transformation| 34
B3.1 Resilienceof CANDIDI. 36

[3.4 Implementation and Evalvation|. 39
3.4.1 Transformationl 40
[3.4.2 Application Examples| 40
343 AttackSuitel. 41
[3.4.4 Experiment Setup|., 42
345 Attack Evaluation. oL 43

4 Performance Evaluation| 43

35 RelatedWorkl oo 45
[3.5.1 Vulnerability Detection Using Static Analysis| 46
[3.5.2 Defensive Techniques that Prevent SQLCIA|. 46

viii

[Chapter 4 Detection of cross-context scripting vulnerabilities in Brow- [

[serExtensionsl 51
4.1 Threat Model, Assumptions, and Usage Model| 52

2 EX Information Flow Patterns| 53
“4.2.1 Untrusted Sources| 54

422 FExecutable Sinksl 0oL 55

4.3 Static Information Flow Analysis of JavaScriptl 56
4.3.1 CoreJavaScript Syntax|. 58

432 AbstractHeaps|, 60

@433 Abstraction Function] 61

“4.3.4 Abstract Operational Semantics| 62

#4.3.5 Handling the Features of JavaScript| 84

4.3.6 A NoteonSoundnessl. 87

4.4 Implementation and Evalvation|. 88
@4.4.1 Evaluation Methodology| 89

@4.4.2 Experimental Results| 89

“.4.3 Successful Attacks| 93

44 Fl That D Resultin Attacksl 97

4S5 Related Work] oo 99
@4.5.1 Firefox Browser Extension Security| 99

4.5.2 Security of Extensions to Other Browsers| 101

#4.5.3 Operational Semantics of JavaScriptf 102

4.5.4 Comparison With Related Static Analyses of JavaScript] . 102

[Chapter 5 Conclusions| 108
BI _Conclusions 108

2 Future R h Directions| 112

[5.2.1 Generating Attack Inputs|. 112

[5.2.2 Securing Extensible Software[. 113
Referencesl. o v oot 116

X

Chapter 1

Introduction

With the advent of Web 2.0 and the cloud computing paradigm, Web browsers
have evolved from a platform to display static data to one facilitating client-side
processing and more complicated Web applications. Increasingly, users are rely-
ing on Web applications to perform tasks like shopping, business, banking, health-
care, social networking, and other critical interactions that involve exchange of
sensitive information. Different organizations in turn are relying on providing
more and more services through the Web to increase the availability of their offer-
ings, and to cut costs.

Such Web applications embed code and data obtained from different sources,
each of which could have different levels of trustworthiness. In fact, entire revenue
models of some companies are based on allowing third-party generated content to
be displayed on the pages generated by their Web applications. For example, Web
services like Google and Facebook allow advertisements to be displayed in the
Web pages they generate. Facebook allows third-party developers to create and
upload new applications. Web applications can also create mashups, which are
Web pages created by combining data, functionality and presentation from two
or more existing services. An apartment search mashup for a particular location
can be created by combining content from Web sites like Craigslist and displaying
them on the Google maps obtained for that location.

To accomodate the growing needs of the Web application users, Web browsers
are allowing users to customize their browsing experience by installing new appli-
cations (called browser extensions). Browser extensions are third-party developed
applications that extend the functionality of the browser and often run with full
privileges of the browser.

The interaction of code and data from various sources in the Web applications
and browsers has resulted in the emergence of behaviors that could threaten the
confidentiality, integrity, and availability properties of the infrastructure on which

the Web applications and Web browsers run. Injection, cross-site scripting (XSS),

Web Browser Database

User Input ”

PN ! p 4 Query g

%’ i S —
Web Page * Result Set

User

Figure 1.1: Architecture of a typical Web application

cross-site request forgery (XSRF), etc. are some examples of vulnerabilities that
could allow malicious attacks on Web applications and their infrastructure. De-
scriptions of these vulnerabilities can be found in the list of of top ten Web ap-
plication security vulnerabilities published by Open Web Application Security
Project (OWASP) in 2010 [1]]. Among all the vulnerabilities listed, OWASP ranks
injection vulnerabilities as the most prevalent.

The OWASP list describes injection vulnerabilities as follows: Injection flaws,
such as SQL, OS, and LDAP injection, occur when untrusted data is sent to an
interpreter as part of a command or query. The attacker’s hostile data can trick
the interpreter into executing unintended commands or accessing unauthorized
data. This thesis describes the different analysis techniques we have developed
for detecting and preventing two kinds of injection attacks, namely SQL injection
attacks on Web applications and cross-context script injection attacks on Firefox

Web browser extensions.

[.1 Overview of Injection Vulnerabilities and Attacks

SQL injection: SQL injection attacks occur when the inputs to Web applica-
tions are used to attack the back-end database layers of the Web servers. A typical
Web application architecture is shown in Figure[I.T] The Web applications gener-
ate Web pages that are displayed on the Web browser. These applications provide
rich functionality to users by interacting with each other and with the host ma-
chine — usually by sending and receiving information. Most Web applications
also allow their users to input information, which determines the control flow and
the output of the Web application. A Web server uses this information to create
a query to send to the back-end database. The database generates the results and

returns them to the Web application, which then displays the results in the user’s

Web browser. A malicious user of the Web application can manipulate the in-
puts so that the application produces malicious queries, thereby generating SQL
injection attacks.

We can illustrate SQL injection using an example. Consider a simple online
phone book manager that allows users to view or modify their phone book entries.
Phone book entries are private, and are protected by passwords. To view an entry,
the user enters his user name and password in a HTML form provided by the Web
application. The inputs from the HTML form are directly supplied to a procedure
that generates a SQL query. Hence, if the user supplies the string “John” for the
username and “correct-password” for password, the following query will

be generated:

SELECT x from phonebook WHERE username=’John’ AND

password='correct—-password’

To attack the Web application, a malicious user can supply the string “John’
OR 1=1 - -"forthe username, and “not-needed” for the password as inputs,

which will make the program issue the SQL query:

SELECT » from phonebook WHERE username=’John’ OR 1=1

——"password=’ not—needed’

The query selection clause contains the tautology 1=1, and given the injected
OR operator, the SELECT condition always evaluates to true. The sub-string “—-"
gets interpreted as the comment operator in SQL, and hence the portion of the
query that checks the password gets commented out. The net result of executing
this query is that the malicious user can now view all the phone book entries
of all users. Using similar attack queries, the attacker can construct attacks that
delete phone number entries or modify existing entries with spurious values. A
program vulnerable to an SQL injection attack is often exploitable further, as once
an attacker takes control of the database, he can often exploit it (for example using
command-shell scripts in stored procedures in the SQL server) to further violate

the confidentiality and integrity of the machine.

Cross-context scripting: Cross-context scripting [2] vulnerabilities are subtle
injection vulnerabilities, that expose the browser’s user to a disastrous attack from
the Web, often just by viewing a Web page. These attacks violate the privilege

separation between the Web browser and the content displayed in the browser.

Chrome Context

Browser Extension

(JavaScript) ‘ z

File
 System |

Netwark

JavaScript from
external websites

Content Context

Figure 1.2: Architecture of the Firefox browser

One instance of cross-context scripting vulnerabilities occurs in the Firefox Web
browser. Similar issues could arise in other extensible browsers like Chrome,
Safari, and Internet Explorer.

The reason for such vulnerabilities is evident when we understand the Firefox
browser architecture as shown in Figure [[.2] Firefox has two privilege levels:
content for the Web page displayed in the browser’s content pane, and chrome
for elements belonging to Firefox. The Firefox browser also allows the user to
download third-party written software called browser extensions, which help meet
the varied needs of the broad user population. Browser extensions expand the
functionality of browsers by interposing on and interacting with browser-level
events and data. Firefox code and extensions run with full chrome privileges,
which enables them to access all browser states and events, OS resources like the
file system and network, and all Web pages. Extensions also can include their
own user interface components via a chrome document, which can run with full
chrome privileges. Content privileges are more restrictive than chrome privileges.
For example, a page loaded from i11inois.edulcan only access content from
illinois.edul

One of the causes for cross-context scripting vulnerabilities is the interaction
between extensions in the chrome context and the content, which is facilitated by
the APIs provided by Firefox to communicate across protection domains. As the

Mozilla developer site explains, “One of the most common security issues with

4

illinois.edu
illinois.edu

extensions is execution of remote code in privileged context. A typical example
is an RSS reader extension that would take the content of the RSS feed (HTML
code), format it nicely and insert into the extension window. The issue that is
commonly overlooked here is that the RSS feed could contain some malicious
JavaScript code and it would then execute with the privileges of the extension —
meaning that it would get full access to the browser (cookies, history etc) and to
user’s files” [sic].

There are thousands of JavaScript browser extensions for Firefox. The exten-
sions could be written by in-experienced programmers, who often do not know
how to secure their code or how to properly sanitize the inputs. When coupled
with the dynamic nature of JavaScript semantics, which allow certain program
constructs to generate code during the execution of the program, this may give rise
to vulnerabilities. These vulnerabilities can be exploited by malicious Web con-
tent developers to steal confidential information like bank account details, pass-
words, cookies, etc. They may also inject code that re-directs a user to a malicious
Websites. Currently, the extensions are vetted by manual inspection, which does

not scale well and is subject to human error.

1.2 Detection and/or Prevention of Injection
Vulnerabilities

In both the above injection vulnerabilities, there is a legitimate flow of information
from the untrusted sources to the trusted application. The inputs from the untrusted
sources result in behaviors that are not intended by the application developers. In
case of SQL injection attacks, a malicious user of the Web application inserts in-
puts that produce SQL queries with structures different from the query structures
that the programmer intended. In case of cross-context scripting attacks, the con-
tent (either RSS feeds or Web pages) contains malicious JavaScript, which when
accessed by the browser extension changes its expected run-time behavior. This
change in the expected behavior occurs if the programmers have written buggy
code with inadequate sanitization or no sanitization at all of untrusted inputs.
Therefore, in both SQL injection and cross-context scripting, if one can under-
stand the programmers’ intent, any deviation from the intent can be considered an
attack. This thesis describes two analysis techniques, that use information flow

analysis, for understanding programmer intent and thereby facilitating automated

detection and/or prevention of such injection attacks.

SQL Injection: The problem of SQL injection is one of information flow in-
tegrity [3,4]. The semantic notion of data integrity requires that untrusted input
sources (1.e., user inputs) must not affect trusted outputs (i.e., structure of SQL
queries constructed). Notions of explicit information flows that track a relaxed
version of the above data integrity problem are suitable for handling this problem.

Research on SQL injection can be broadly classified into two basic categories:
vulnerability identification approaches and attack prevention approaches. The for-
mer category consists of techniques that identify vulnerable locations in a Web
application that may lead to SQL injection attacks.

In order to avoid SQL injection attacks, a programmer often subjects all inputs
to input validation and filtering routines that either detect attempts to inject SQL
commands or render the input benign [, 6]. The techniques presented in [7, [8]]
represent the prominent static analysis techniques for vulnerability identification,
where code is analyzed to ensure that every piece of input is subject to an input
validation check before being incorporated into a query (blocks of code that val-
idate input are manually annotated by the user). Solutions based on tracking of
explicit information flows have been implemented by mechanisms such as taint-
ing [9, 10, [11]] and bracketing [[12].

While these static analysis approaches scale well and detect vulnerabilities,
their use in addressing the SQL injection problem is limited to merely identi-
fying potential unvalidated inputs. The tools do not provide any way to check
the correctness of the input validation routines, and programs using incomplete
input validation routines may indeed pass these checks and still be vulnerable to
injection attacks. Although input validation routines can serve as a first level of
defense, it is widely agreed [13] that they cannot defend against sophisticated
attack techniques (for instance, those that use alternate encodings, and database
commands to dynamically construct strings) to inject malicious inputs to SQL
queries.

A much more satisfactory treatment of the problem is provided by the class of
attack prevention techniques that retrofit programs to shield themselves against
SQL injection attacks [14, [15 [10, 9, [11} 16, [17, [12]. These techniques often
require little manual annotation, and instead of detecting vulnerabilities in pro-
grams, offer preventive mechanisms that solve for the programmer the problem of

defending the code against injection attacks.

A more fundamental technique to the problem of defending SQL injection
comes from the commercial database world, in the form of PREPARE statements.
These statements allow a programmer to declare (and finalize) the structure of
every SQL query in the application. Once issued, these statements do not allow
malformed inputs to further influence the SQL query structure, thereby avoiding
SQL vulnerabilities altogether. This is in fact a robust mechanism to prevent SQL
injection attacks. However, retrofitting an application to make use of PREPARE
statements requires manual effort in specifying the intended query at every query
point, and the effort required is proportional to the complexity of the Web appli-
cation.

The above discussion raises a natural question: Could we automatically in-
fer the structure of the programmer-intended query structures at every query is-
sue point in the application? A positive answer to this question will address the
retrofitting problem, thereby providing a robust defense for SQL injection attacks.

Based on the insight that the the attack inputs change the intended structure of
queries issued, we propose a technique called CANDID to detect and prevent SQL
injection attacks [18]. CANDID detects SQL injection attacks by dynamically in-
ferring the programmer-intended query structure on any input, and comparing it
against the structure of the actual query issued. CANDID’s dynamic analysis tech-
nique is based on the fact that if we can extract a slice of the program statements
that are used to generate the user query, and execute these statements on benign
inputs, then we will get a benign query. If the structure of this benign query is
different from the query generated using the user inputs, then we can infer that the
user inputs changed the query structure and therefore they are malicious. In CAN-
DID, we simulate the process of extracting the program slice by instrumenting the
program such that it computes both the user and the benign queries simultane-

ously.

Cross-context Scripting: In the case of browser extensions, most cross-site
scripting attacks involve the attacker injecting JavaScript into a data item that
is subsequently executed by the extension under full browser privileges, thereby
changing the extension’s program structure. The vulnerabilities are caused by
some special commands provided by the JavaScript programming language, which
execute the inputs obtained from the untrusted content. Therefore, our key insight
is that extension vulnerabilities often translate into explicit information flows from

injectable sources to executable sinks.

Several dynamic analysis techniques with static instrumentation have been pro-
posed for JavaScript to check information-flow properties [19, 20]. SABRE [21]
is a framework for dynamically tracking in-browser information flows for ana-
lyzing JavaScript-based browser extensions. The taints are tracked by modifying
the JavaScript interpreter. In contrast, Djeric et al. [22] dynamically track taints
in both the browser’s native code and the script interpreter. Ter Louw et al. [23]]
highlight some of the potential security risks posed by browser extensions, and
propose run time support for restricting the interactions between browsers and
extensions.

Although dynamic techniques are useful in preventing certain types of script
injection attacks if they are enforced by the Web browser, they suffer from a few
drawbacks. When a questionable flow is detected dynamically, the browser has to
either choose an appropriate action (which might be overly restrictive) or ask the
user to choose an action (which might lead to an attack if the user chooses a wrong
option). Additionally, dynamic techniques impose a performance and memory
overhead on the browser because of the need to keep track of the security label for
every JavaScript object inside the browser. One of our main motivations was to
overcome these drawbacks while facilitating an analysis that scales to thousands
of extensions.

More recently, researchers have developed static information flow analysis
methods for JavaScript [24, 25]. Various language features of JavaScript make
precise static analysis hard. JavaScript is a dynamic programming language — new
code can be generated and executed during run-time using methods like eval,
settimeout, etc. Additionally, JavaScript supports higher order functions —
functions can be assigned to program variables and passed parameters to other
functions. Apart from having a reasonable way to handle all these non-standard
features, the extensions access the browser API and the DOM API, which also
should be included in the analysis of programs.

In [24] the authors essentially perform a context-insensitive and flow-insensitive
static analysis on the code, and delegate analysis of dynamic code to runtime
checks. Guarnieri et al. [25] propose a mostly-static enforcement for JavaScript
analysis, which is context-sensitive but flow-insensitive.

To automatically detect vulnerable extensions, we propose VEX, a novel high-
precision static-information flow analysis technique for analyzing JavaScript source
code [26]. We identify key information flow patterns (untrusted source and exe-

cutable sink pairs) that can lead to security vulnerabilities, and the VEX static

analysis checks extensions for the presence of such flows.

1.3 Research Contributions

My thesis shows that information flow analysis techniques, both static and dy-
namic, can be used to detect script injection vulnerabilities. By trading soundness
for tractability, static analysis techniques can be effective for bug detection in

complex applications.

Detection and Prevention of SQL Injection Attacks: Our work on SQL injec-

tion makes the following contributions:

e We propose a simple and novel mechanism, called CANDID, for dynam-
ically generating programmer intended queries for each query generated

from the user inputs.

e We show that there is a formal basis for this dynamic approach using the

notion of symbolic queries.

e We develop a fully automated, program transformation mechanism for Java
programs that employs this technique, with a discussion of practical issues

and resilience to various artifacts of Web applications.

e We perform a comprehensive evaluation of the effectiveness of CANDID’s

attack detection and its performance overheads.

Detection of Cross-Context Scripting Attacks: Our work on cross-context

scripting makes the following contributions:

e We describe several vulnerable patterns of flows as well as unsafe program-
ming practices that could lead to cross-context scripting attacks in Firefox

extensions.

e We enumerate the features of JavaScript programming language that make

the programs hard to analyze statically.

e We develop VEX, a framework for analyzing Firefox browser extensions
for vulnerable patterns. VEX contains a high-precision flow-sensitive, and

context-sensitive static analysis as its core.

9

e We subject thousands of browser extensions to the VEX analysis. VEX
finds a dozen exploitable vulnerabilities, seven of which were previously

unknown. VEX also finds hundreds of bad programming practices.

e We present a comprehensive analysis of the different static analyses for
JavaScript and compare them with VEX.

1.4 Thesis Organization

The rest of the thesis is organized as follows: Chapter [2] gives the background
of different approaches to detect and prevent injection attacks. It also gives an
overview of the different features of JavaScript and then describes the different
static analysis techniques defeloped for JavaScript and what these techniques are
used for. Chapter 3] describes our approach for detecting and preventing SQL
injection attacks. Chapter |4 summarizes our approach on detecting cross-context
scripting vulnerabilities. We present our conclusions and directions for future
work in Chapter 3

10

Chapter 2

Background

In this chapter, we provide an overview of different kinds of ways in which injec-

tion attacks could be detected and prevented.

2.1 Detection and Prevention of Injection Flaws

2.1.1 Sanitization and Fuzz Testing

The most basic form of preventing injection attacks is through sanitization of in-
puts to the web application. Web applications can sanitize inputs by writing cus-
tom sanitization functions. They usually use regular expressions [27] to ensure
that the input strings do not have malicious scripts embedded in them. However, it
is hard to write correct sanitization functions that take care of all the corner cases.
They could be either too restrictive and generate a lot of false positives or worse
they could have missed some cases [6] like encodings in a different language, etc,
thereby allowing malicious inputs to be executed. Therefore, sanitization routines
should not be the only mechanism to prevent attacks on applications. Another way
to perform sanitization is to use a different encoding for the trusted strings defined
in the Web application. Any script in the input would have a different encoding
than the script in the Web application and therefore they can be separated.

Web application developers generally use fuzzers to discover security vulner-
abilities in their applications before deployment. Fuzzers are tools that gen-
erate random input strings from a given language specification, which can be
used to test if the applications filter those strings. The random strings can be
generated using a collection of attack input specifications. A comprehensive
list of cross-site scripting attack vectors is given in [28]. Several fuzz testing
tools [29, 130, 31,132} 133,134, 135] have been developed for detection of SQL injec-
tion attacks and cross-site scripting (XSS) attacks.

11

2.1.2 Static Analysis

Several static analysis techniques have been proposed for detecting and preventing
injection attacks. The main idea is to find the taints from untrusted sources to

trusted sinks and to check if that particular path can lead to a vulnerability.

2.1.3 Dynamic Analysis

There are several different kinds of dynamic analysis proposed for detecting and
preventing injection attacks. One technique is to instrument the applications stat-
ically to keep track of the taints dynamically. Several dynamic taint analysis tech-
niques with static instrumentation have been proposed for different programming

languages to check information-flow properties.

2.1.4 Hybrid Approaches

In these approaches, the analysis statically infers a property that needs to be sat-
isfied and instruments the application to ensure that such a property is satisfied at
run-time. An example would be an analysis technique where static string analysis
is performed over the Web applications to infer the model of the query string. Any

query generated dynamically should confirm to this model.

2.2 Overview of the JavaScript Programming
Language

JavaScript is a prototype-based, object-oriented scripting language. The language
has both imperative and functional features. It is a weakly typed language and
allows dynamic code generation. In this section we will give an overview of the
various language features of JavaScript. Some of the code samples are taken from
the book “JavaScript: The Definitive Guide” [36] and the IBM JavaScript Security
Test Suite [37]. In Section [2.2.1] we point out the features of JavaScript, which
need to be handled effectively by any analysis of JavaScript.

e Objects: A JavaScript object represents a collection of (name, value) pairs.

The names given to the values are called object properties. The values could

12

be primitive, like numbers and strings, or they could be composite values
like other objects (even functions). Object properties can be accessed either
by the field access notation (obj.prop) or by using an associative array no-
tation (obj[“prop”]). This means that an object property can dynamically
instantiate, as shown in the following code, where the function parameter
“b” is instantiated dynamically to the string “URL” when the function “foo”

is called.

function foo(a, b) {
var t = a[b];
document . write (t) ;

¥
foo(document, “URL”);

JavaScript objects can be dynamically modified i.e. new properties can be
added, old properties can be associated with new values, etc during program
execution. Therefore, the object signature need not be constant during the

execution of the program.

Arrays: Arrays are objects that contain numbers as property names and
therefore contain an ordered collection of numbered values. Array indices
should be between 0 and 232 — 1. If the array index is too large, a negative
number, or a floating-point number, it is converted to a string and used as a
property name. An array object has a few built-in library functions associ-
ated with it for array processing. Some examples of the built in methods are
join, reverse, sort, concat, slice, splice, etc. An array can hold values of dif-
ferent data types, making it different from the arrays in other programming

languages.

Function: Functions are also JavaScript objects, which can be defined
once and can be invoked, or executed, or used as constructors any num-
ber of times. JavaScript functions can be invoked using a variable num-
ber of arguments. These arguments are stored in an array property
named “arguments”. Values of any type can be passed to the function
as arguments, since JavaScript is a loosely typed programming language.

JavaScript also allows declaration of nested functions.

JavaScript supports higher-order functions similar to functional program-

ming languages. The functions are treated as first-class data values. They

13

can be assigned to variables, passed as parameters to other functions, stored

as properties in objects or in array variables, etc.

Execution Context: When the JavaScript interpreter starts up, it creates a
global object to hold the various global properties defined in the JavaScript
program. This global object is then initialized with the JavaScript core ob-
jects like String, Array, Object, Function, Date, etc . Any code that is not
part of a function runs with the global object as its execution context, i.e.

local variables are defined in the global object.

Whenever a new function begins to execute, a new object (called the call
object) is created to act as an execution context. While the body of a func-
tion is executing, the function arguments and local variables are stored as

properties of this call object.

Variable Scoping: The var keyword is used to declare the variables. Vari-
ables can also be implicitly declared without the var keyword, in which
case they are considered to be global variables even if they are declared

inside a function body.

JavaScript has function-level scope. All variables declared in a function, no

matter where they are declared, are defined throughout the function.

Every execution context in JavaScript is associated with a scope chain.
Whenever there is a need for an variable lookup, the current scope object
is checked to see if the variable is in that scope. If not, the scope object’s
scope is checked for the presence of the variable. A function declared in
the global scope has the function’s call object as its current scope and the

global scope in its scope chain.

Function Scoping: Functions in JavaScript are lexically rather than dy-
namically scoped. This means that they run in the scope in which they are
defined, not the scope from which they are executed. When a function is
defined, the current scope chain is saved and becomes part of the internal

state of the function.

this property: The this property refers to the calling context in which a
particular method is called. The semantics of this property can be explained

using the following figure.

14

1
2
3
4

5
6
7
8
9

10
11
12
13
14
15
16

var al = ”in global”;
var obj = {al:”in obj”};
function foo (){

var al = ”in foo”;

function bar (){
var idl = al;
var id2 = this.al;
document. write (7idl: ” + idl + 7 \t\t\t\t
id2:” + id2);
s
bar(); // idl = "in foo” , id2 = "in global”

obj.test = bar;
obj.test(); // idl = "in foo”, id2 = "in obj”

}
foo () ;

In the above example, a function “foo” is defined to have a local variable
“al”. There is global variable which shares the same identifier “al” and
another global variable which references an object with a property named
“al”. The function “bar” has two accesses to the identifier “al”, “id1” and
“id2” which are assigned “al” and “this.al” respectively. During the pro-
gram’s execution, when the “bar” method is called as a function,“id1” and
“id2” get values “in foo” and “in global” respectively. However, when the
same bar function is assigned to an object property and called as a method
of the object “obj”, “id1” and “id2” get values “in foo” and “in obj” respec-
tively. The “this” property refers to the calling context of the method “test”,
which is the object “obj”.

Prototype-based Inheritance: JavaScript uses prototype-based inheritance
[38]. Every object in the JavaScript heap has a special @Proto property,
which is used to specify inheritance chains. Additionally, every function
(that can be used as a constructor in new) has a prototype property. This
prototype property is used to instantiate the @Proto property when a new
object is created using the function constructor. An object inherits all the

properties of its @Proto and of all the objects in the prototype’s @Proto

15

chain.

e Dynamic Code Generation: The core JavaScript language contains special
methods (like eval, settimeout, Function, setinterval, efc) that
accept a string value as a parameter. At run-time, this string value is parsed
and executed at the program point where the methods are called. These
methods can be used to generate code dynamically based on the inputs given

to the program.

2.2.1 JavaScript Features That Need To Be Analysed

In addition to the non-standard scoping rules and prototype-based inheritance,
any analysis engine should be able to handle the following features in order to

effectively analyse the information flows in JavaScript code.

e Object Accessed Using Associative Array Notation: A property name
can be computed dynamically using string operations as shown in the fol-
lowing code sample. The operation “a+b” results in the computation of the

string “foo”. “o[*“foo0”]” is the same as accessing the property using the field

access notation‘‘o.foo”.

var o = new Object();

o.foo = document.URL;
var a = "f”;
var b = 700”7

document . write (o[a+b]) ;

An analysis needs to have string handling capabilities to correctly handle

array accesses like in the above example.

e Aliasing: In JavaScript, every construct is an object. The JavaScript objects
can be accessed using their variable references. These variables can also be
assigned to other variables, thereby creating an alias for the object. Alias-
ing combined with dynamic access and modification of objects and func-
tions could result in unexpected vulnerabilities. The following code show
the example of the code where the “eval” function is aliased to a program
variable.

1 e = eval;

2 e(window . content.document. getElementBylId (‘ ‘Forml’ ")) ;

16

O o0 N N B WD

—
(=)

“wm AW N =

An analysis algorithm has to ensure that it keeps track of this kind
of aliasing. An analysis needs to keep track of the fact that “e” and
“eval” are aliased in order to detect that there is a flow from “win-

dow.content.document” to “eval”.

The following example shows an example of interprocedural aliasing — the
object “pl.f.g.t” refers to the variable “a”, which in turn points to the “win-

dow.location” object.

function foo(pl, p2) {
pl.f = new Object();
pl.f.g = new Object();
pl.f.g.t = p2;

var a = window. location.toString () ;
var b = new Object();
foo(b,a);

document. write (b.f.g.t);

Context-sensitive Function Call Handling: JavaScript functions can be
called from different context with different parameters. In the following
code, there is a flow from “window.content.document” to “eval” when the
function “foo” is called in line 4. However, there is no such flow when
“foo” is called in line 5. An analysis has to differentiate between these two

function calls.

function foo(x) {

eval (x)

}

foo (window. content .document) ;

foo(“‘var x = 10°’);

Functions that take variable number of arguments: Functions in
JavaScript can take variable number of arguments. Any analysis has to take

this into consideration when function summaries are being generated.

Handling of higher-order functions: In JavaScript, the higher-order func-
tions are used in several ways —as event handlers (which take function refer-

ences as callbacks), as closures (functions that preserve the local variables

17

O o0 N N B WD

—
)

defined), etc. One example of such functions is the “settimeout” function,
which takes a function reference or a function definition as its first argument.
This functions is called after a certain timeout. In the following example,
the “alertMsg” function is called with an argument “b” after 3 seconds. An
analysis algorithm has to ensure that it also detects the function call in the

“settimeout” function.

function timeMsg ()

{
b = ”var x = 10; alert(x)”;
var t=settimeout(”alertMsg(b)”,3000);
}
function alertMsg(b)
{
eval(b) ;
}
timeMsg () ;

Core Library Functions and External JavaScript API: JavaScript is a
dynamic language. It provides powerful language features through its core
library and also by allowing external libraries to be easily accessed and
used. The HTML DOM API is one of the most common external libraries
included with JavaScript. This API provides functionality to access and
modify HTML content of a web page. Some examples of DOM methods
are getElementByld, innerHTML, appendChild, efc. The Firefox browser
provides additional API (called the Component API), which allow the ex-
tension JavaScript programs to access the privileged contexts like the file
system, network, cookies in the browser, efc. There are several external
libraries available for JavaScript and they could also be included in the
JavaScript program. Some common external libraries are JQuery, DoJo,
Prototype, etc. An effective analysis should be able to handle all the new

methods and features added by the external libraries.

XMLHttpRequest object is an example of an external object associated with
the DOM API. This object can be used by JavaScript programs to program-
matically connect to their originating server via HTTP. The XMLHttpRe-
quest object is associated with an event handler function which is called

when the request sent to the external web page sends a response. In order

18

to capture the information flows in the program, the analysis has to capture

the flow of information between the response and the rest of the program.

e Manual and built-in sanitizers: JavaScript also has some built in DOM
API which could be used to sanitize certain content. For example, the
encodeURI function can be used to encode the special character in a
URL. The programmers can also introduce their own sanitizers manually.
An analysis engine could have mechanisms to detect such sanitizers. How-
ever, since JavaScript allows dyanamic modifications of functions, the anal-
ysis should ensure that the sanitizers have not be overwritten in the code as

shown in the following example.

var t = document.URL;
function k() {

encodeURI = function (str) { return str; }

k();

1
2
3
4}
5
6 var u = encodeURI(t);
7

document . write (u) ;

2.3 Static Specification and Analysis of JavaScript

Operational Semantics. Yu et al [19] propose an operational semantics for a core

subset of JavaScript, which allows the analysis to instrument the code with certain
new operations. These new operations add a policy checking framework to the
JavaScript program. Maffeis et al [39] defined a small-step operational semantics
for the ECMAScript standard language corresponding to JavaScript, using which
they analyze security properties of web applications. These operational semantics
are one of the most comprehensive semantics covering all the features specified in
the language. The authors also present a soundness proof for the semantics. Guha
et al [38] propose an alternate operational semantics. In their semantics, they re-
duce JavaScript to a core calculus structured as a small-step operational semantics.
They then present a de-sugaring process using which JavaScript programs can be
converted into the programs written in the core calculus. They demonstrate the

correctness of the semantics by running several real-world test suites using the

19

semantics and showing that they produce the same results as those produced by
the full JavaScript interpreters. Taly et al [40] propose an operational semantics
for a slightly restricted and modified subset of the JavaScript strict mode (ES5S)
in the 5th edition of the ECMAScript Standard (ESS5). The strict mode supports
lexical scoping and closure-based encapsulation. The authors enforce a few more

restrictions on the language to ensure that it is amenable to static analysis.

Type Systems. Several static and dynamic type checking and inference sys-

tems [41} 142 143 44, 145, 46, 477] were proposed for JavaScript to detect errors
and vulnerabilities caused due to the lack of typing in JavaScript. Weber [46] lists
out the different mechanisms proposed for type checking and type inferencing in

JavaScript programs.

Points-to Analysis. Point-to analysis gives a picture of the different reference re-

lations between the objects in the JavaScript program. Several [235, 48] 40l points-

to analysis approaches have been proposed for different subsets of JavaScript.

Flow Analysis. Guha et al [49] build a static-flow analysis tool for the client

portion of the Ajax web applications. Using the flow analysis, they build a flow
graph of URLs (request graph) that the client-side program can invoke. Chugh
et al [24] Propose an information-flow based approach for inferring the effects
that a piece of JavaScript has on the website in order to ensure that key security
properties are not violated. Bandhakavi et al [26] propose an data-flow analysis
technique to detect flows between various program variables in the JavaScript

program.

2.3.1 Applications of Analysis Techniques

e Comparing different JavaScript interpreters: The ECMA specification of
JavaScript is a 200 page long text. Several JavaScript interpreters produce
different results for different features of JavaScript based on their under-
standing of the specification. Specifying precise operational semantics can
help in understanding these differences by comparing their semantics for
different features. In this context, Maffeis et al [39] performed number of

experiments with different implementations of JavaScript.

20

Sandboxing client-side code: Several browser level sandboxes have been
proposed to ensure that the client side JavaScript does not access and modity
core JavaScript objects at run-time. Some examples of sandboxes are Caja,
BrowserShield, browser instrumentation(CoreScript), ADSafe, FacebookJS
etc. Guha et al [38] use their semantics to develop a safe sublanguage of

JavaScript.

Veritying correctness of sandboxes: Maffeis et al [S0, 51,152, 53] use their
operational semantics for generating safe subsets of JavaScript and to manu-
ally prove that the so-called safe subsets of JavaScript are in fact vulnerable
to certain attacks. Politz et al [41] propose a type System to encode and

verify sand-boxing properties of the browser.

Preventing run-time errors: Type system papers JavaScript is dynamic,
weakly-typed (object but no classes) and has prototype based inheritance. It
also allows dynamic addition of members to objects. These features could
lead to run-time errors like buffer overflows, wrong type conversions, invo-
cation of undefined values, efc. Several type based approaches have been

proposed for detecting and preventing such errors.

Detecting and preventing client-side vulnerabilities: Points-to analysis and
flow analysis techniques [24, 25, 48, 49] have been used for detecting and
preventing several client-side vulnerabilities like cross-site scripting, cross-

site request forgery, modification of AJAX behavior, etc.

Detecting browser extension vulnerabilities: Flow analysis techniques can
also be used to find malicious information flow patterns in browser exten-

sion JavaScript code [54, 26].

21

Chapter 3

Detection and Prevention of SQL Injection
Attacks

SQL injection attacks are one of the topmost threats for applications written for
the Web. These attacks are launched through specially crafted user input on web
applications that use low level string operations to construct SQL queries.

In this chapter we offer a solution for detecting and preventing SQL injection at-
tacks using a technique that we call dynamic candidate evaluation. This technique
automatically (and dynamically) mines programmer-intended query structures at
each SQL query location, thus providing a robust solution to the retrofitting prob-
lem. Central to our approach are two simple but powerful ideas: (1) the notion that
the symbolic query computed on a program path captures the intention of the pro-
grammer, and (2) a simple dynamic technique to mine these programmer-intended
query structures using candidate evaluations.

Based on these ideas, we build a tool called CANDID (CANdidate evaluation
for Discovering Intent Dynamically). CANDID retrofits web applications written
in Java through a program transformation. CANDID’s natural and simple approach
turns out to be very powerful for detection of SQL injection attacks. We support
this claim by evaluating the efficacy of the tool in preventing a large set of attacks
on a class of real-world examples.

The chapter is organized as follows: In Section we informally present our
approach using an example. We present the formal basis for the idea of deriv-
ing intended query structures in Section Section presents the program
transformation techniques used to compute programmer-intended query struc-
tures. Section [3.4.1] presents the functional and performance evaluation of our
approach through experiments on our tool CANDID. A much more detailed com-
parison with the related work is given in Section

22

3.1 Overview of CANDID

3.1.1 An Example

Phonebook Record
Manager

User name: fjohn13
Password: [reoeres
Your Entry: " Display & Modify
Phone (Leave empty to delete): [521-000-0000 | |

submit | Reload | ||
@ Fina: | s

Figure 3.1: An HTML Form Generated by the Web Application

1 void process—form(String uname, String pwd, boolean
modify , String phonenum) {
if (modify == false){ /x Path 1. only display x*/

[\

3 query = "SELECT * FROM phonebook WHERE username = 7
+ uname + 7’ AND password = ° 7 + pwd + 7’7

4}

s else{ /x modify telephone number x/

6 if (phonenum == ") /x Path 2. delete entry x/

7 query = “DELETE FROM phonebook WHERE username=’"
+ uname + 7’ AND password = 7 + pwd + 7 7 7

8 else /¥ Path 3. update entry x/

9 query = “UPDATE phonebook SET phonenumber =" +
phonenum + “"WHERE username = ° 7 + uname + 7~
AND password = ’7 + pwd + 7’7

10 }

11 sql.execute(query);

12 }

Figure 3.2: Phonebook Record Manager Application Code

To illustrate SQL injection, let us consider the web application for a simple
online phone book manager, which generates an HTML form as depicted in Fig-

ure [3.1] This application allows users to view or modify their phone book entries,

23

which are private, and are protected by passwords. To view an entry, the user
fills in her user name, and chooses the Display button. To modify an entry, she
chooses the Modi fy button, and enters a different phone number that will be up-
dated in her record. If this entry is left blank, and the modify option is chosen, her
entry is deleted. The program that processes the input supplied by the form is also
shown in Figure [3.2] Depending on the display/modify check-box and depending
on whether the phone number is supplied or not, the application issues a SELECT,
UPDATE, or DELETE query.

The inputs from the HTML form are directly supplied to procedure
process—form, and hence the application is vulnerable to SQL injection at-
tacks. In particular, a malicious user can supply the string “John’ OR 1=1
— =" for the username, and “not —needed” for the password as inputs, and check
the display option, which will make the program issue the SQL query at line 3

(along the true branch of the conditional in line 2):

SELECT x* FROM phonebook WHERE username=’John’ OR 1=1 —

9

—’ AND password="not—needed’

This contains the tautology 1=1, and given the injected OR operator, the SELECT
condition always evaluates to true. The sub-string “~-"" gets interpreted as the
comment operator in SQL, and hence the portion of the query that checks the
password gets commented out. The structure of the original query that contained
the “AND” operator is now changed to a query that contained an “OR” operator
that uses a tautology. The net result of executing this query is that the malicious
user can now view all the phone book entries of all users. Using similar attack
queries, the attacker can construct attacks that delete phone number entries or
modify existing entries with spurious values. A program vulnerable to an SQL
injection attack is often exploitable further — once an attacker takes control of
the database, he can often exploit it (for example using command-shell scripts in
stored procedures in the SQL server) to gain additional access.

In order for an attack to be successful, the attacker must provide input that will
ultimately affect the construction of a SQL query statement in the program. In
the above example, the user name “John’ OR 1=1 --' " is an attack input,
whereas the input name “John” is not. An important observation that is used in
SQL PREPARE statements, and also in the work [[17,[12]] is that a successful attack
always changes the structure of the SQL query intended by the programmer of the

24

application. For the example given above, the attack input “John’ OR 1=1
——"" results in a query structure whose condition consists of an “OR” clause,
whereas the corresponding query generated using non-attack input “John” has
a corresponding “AND” clause. Detecting change in query structure that departs
from the one intended by the programmer is therefore a robust and uniform mech-
anism to detect injection attacks.

The problem then is to learn the structure of programmer-intended PREPARE
query structures for various query issuing locations in the program. If this can
be accomplished, then during program execution, the syntactic structures of the
programmer-intended query and the actual query can be compared in order to
detect attacks.

Several options are available to learn programmer intended queries. One ap-
proach is to construct valid query structures from safe test inputs [[15)]. The prob-
lem with a purely testing-based strategy is that it may miss some control paths
in the program and may not be exhaustive, leading to rejection of valid inputs
when the application is deployed. Another possibility is to use static analysis
techniques [14] to construct the programmer-intended queries for each program
point that issues a query. The effectiveness of static analysis is dependent on the
precision of the string analysis routines. As we show the related work section
(Section [3.5)), precise string analysis using static analysis is hard, especially for
applications that use complex constructs to manipulate strings or interact with

external functions to compute strings that are used in queries.

3.1.2 Our Approach

To deduce at run-time the query structure intended by a programmer, our high-
level idea is to dynamically construct the structure of the programmer-intended
query whenever the execution reaches a program location that issues a SQL-query.
Our approach is to compute the intended query by running the application on
candidate inputs, that are self-evidently non-attacking. For the above example,
the candidate input for variable name set to “John” and the variable modify
set to false, elicits the intended query along the branch that enters the first
if-then block (Path 1) in Figure [3.2] In order for a candidate input to be

useful, it must satisfy the following two conditions:

25

1. Inputs must be benign. The candidate input must be evidently non-attacking,
as envisioned by the programmer while coding the application. The queries

constructed from these inputs, therefore, will not be attack queries.

2. Inputs must dictate the same path that was dicated by the actual inputs.
An actual input to the program will dictate a control path to a point where
a query is issued. To deduce the programmer-intended query structure for
this particular path (i.e., the control path), the candidate inputs must also

exercise the same control path in the program.

Given such candidate inputs, we can detect attacks by comparing the query
structures of the programmer-intended query (computed using the candidate in-
put) and the possible attack query.

The above discussion suggests the need for an oracle that, given a control path
in a program, returns a set of benign candidate inputs that exercise the same con-
trol path. This oracle, if constructed, may actually offer us a clean solution to the
problem of deducing the query structure intended by the programmer. Unfortu-
nately, such an oracle is hard to construct, and is, in the general case, impossible
(i.e., the problem of finding such candidate inputs is undecidable). Indeed, if
construction of such an oracle was indeed achievable, then one could construct
a decision procedure for the halting problem by asking the oracle if at all there
exists a set of inputs that dictate control to any halt instruction in the program.

The crux of our approach is to avoid the above problem of finding candidate
inputs that exercise a control path, and instead derive the intended query structure
directly from the same control path. We suggest that we can simply execute the
statements along the control path on any benign candidate input, ignoring the
conditionals that lie on the path. In the above example, Path 1 is taken for the
attack input John’ OR 1=1 --'. We can execute the statements along that
path, in this case the lone SELECT statement, using the benign input “John” and
dynamically discover the programmer intended query structure for the same path.

The idea of executing the statements on a control path, but not the conditionals
along it, is, to the best of our knowledge, a new idea. It is in fact a very intu-
itive and theoretically sound approach, as shown by our formal description in the
next section. Intuitively, when a program is run on an actual input, it exercises a
control path, and the query constructed on that path can be viewed as a symbolic
expression parameterized on the input variables. A natural approach to compute

the intended query is then to substitute benign candidate inputs in the symbolic

26

expression for the query. This substitution is (semantically) precisely the same
as evaluating the non-conditional statements on the control path on the candidate

input, as shown in the next section.

3.2 Formal Analysis Using Symbolic Queries

In this section, we formalize SQL injection attacks and, through a series of gradual
refinements and approximations, we derive the detection scheme used by CAN-
DID. In order to concentrate on the main ideas in this analytic section, we will

work with a simple programming language.

P = defn;stmt; sql.execute(sy) (program)
defn := intn|strs|input int In|
input str Is |defn;defn (variable declaration)
stmt = stmt;stmt | n:=ae | s:=se |
skip | while (be) {stmt} |
if (be) then {stmt} else {stmt} (statement)
ae = c|n| fi(ty,... tg) (arithmetic expressions)
se = cstr|s|gi(ty,... tg) (string expressions)
be = true|false|h;(ty,..., tx) (boolean expressions)

wheren € Z, s € S, ¢ € Z is any integer constant,
cstr is any string constant, each ¢; is either ae, be or se,
depending on the parameters for f;, g;, h;, respectively.

Figure 3.3: A Simple While Language

We first define a simple while-programming language (see Fig. that has
only two variable domains: integers and strings. We fix a set of integer variables
7 and a set of string variables S, and use n, n;, etc., to denote integer variables
and s, s, etc., to denote string variables. A subset of these are declared to be
input variables using the keyword input, and is used to model user-inputs to a
web application.

Let us also fix a set of functions f; each of which take a tuple of values, each
parameter being a string/integer/boolean, and return an integer. Likewise, let’s fix
a set of functions g; (respectively h;) that take a tuple of string/integer/boolean
values and return a string (respectively boolean). A special string sg is the query
string, and a special command sql.execute(sy) formulates an SQL-query to a

database; we will assume that the query occurs exactly once and is the last instruc-

27

tion in the program. The syntax of programs is given in Fig. The semantics is
the natural one (and we assume each non-input integer variable is initialized to 0
and each non-input string variable is initialized to the null string €).

Note that the functions f;, g;, and h; are native functions offered by the lan-
guage, and include arithmetic functions such as addition and multiplication, string
functions such as concatenation and sub-string, and string-to-integer functions
such as finding the length of a string.

For example, if concat is a function that takes two strings and concatenates

them, then a string expression of the form:
concat (Y'Y SELECT x FROM employdb WHERE name=’'"'"', s)

denotes the concatenation of the constant string with the variable string s. For
readability, however, we will represent concatenation using ‘+’ (eg. “SELECT
FROM employdb WHERE name='" + s).

The formal development of our framework will be independent of the functions
the language supports. For the technical exposition in this section, we will assume

that all functions are complete over their respective domains.

Program P

input int n; input strs; str sg;

if (n=0) then ;; Path 1

{s0:=“SELECT * FROM employdb WHERE name=""+s+*" "’}

else ;; Path 2

{s0:=“SELECT * FROM employdb WHERE name="+s+ “’ AND status="cur’
’9};

sgl.execute (sg)

Figure 3.4: An Example Program

Figure 3.4]illustrates a program that will serve as the running example through-
out this section. The program takes an integer n and a string s as input, and
depending on whether n (which could be a check-box in a form) is 0 or not, forms
a dynamically generated query s;. Note that the query structures generated in
the two branches of the program are different. The input determines the control
path taken by the program, which in turn determines the structure of the query
generated by the program.

28

3.2.1 SQL Injection Defined

Let us assume a standard syntax for SQL queries, and define two queries ¢ and ¢’
to be equivalent (denoted ¢ ~ ¢’) if the parse structures of the two queries is the
same. In other words, two queries are equivalent if the parse trees of ¢ and ¢ are
isomorphic.

Let P be a program with inputs [= (Iny, ... In,, Isy,...Is,;). An input valua-
tion is a function v that maps each In; to some integer and maps each Is; to some
string. Let /V denote the set of all input valuations. For any input valuation v,
the program P takes a unique control path Run, (which can be finite, or infinite
if P doesn’t halt). We will consider only halting runs, and hence Run, will end
with the instruction sql.execute (sg). Note that the path Run,, and hence
the structure of the query sy, could depend on the input valuation v (e.g., due to
conditionals on input variables as in Fig. [3.4).

Intuitively, the input valuations are partitioned into two parts: the set of valid
inputs 1 which are benign, and the complement V' of invalid inputs, which include
all SQL injection attacks. A definition of SQL injection essentially defines this
partition.

The primary principles on which our definition of SQL injection is based on are

the following:

e (P1) the structure of the query on any valid valuation v is determined solely

by the control path the program takes on input v.

e (P2) an input valuation is invalid iff it generates a query structure different

from the structure determined by its control path.

The principle (P1) holds for most practical programs that we have come across
as well as any natural program we tried to write. An application, such as the
one in Figure [3.4] typically will generate different query structures depending
on the input (the input value of the variable n, in this case). However, these
query structures are generated differentially using conditional clauses that check
certain values in the input (typically check-boxes in Web application input), as
in in Figure As shown in our comparison studies in Section (P1) is
actually a more general principle than the underlying ideas suggested in earlier
works [14}112].

29

Let v be an input and m = Run, be the path the program exercises on it. By
(P1), we know that there is a unique query structure associated with 7. (P2) says
that every invalid input disagrees with this associated query structure. As men-
tioned in the earlier section, PREPARE statements are based on (P2). Moreover,
(P2) is a well-agreed principle in other works on detecting SQL injection [[17,12].
Given the above principles, we can define SQL injection.

Let us first assume that we have a valid representation function VR : [V — V,
which for any input valuation v, associates a valid valuation v’ that exercises the
same control path as v does, i.e., if VR(v) = ¢/, then Run, = Run,,. Intuitively,
the range of VR is a set of candidate inputs that are benign and exercise all fea-
sible control paths in the program. This function may not even exist and is hard
to statically or dynamically determine on real programs; we will circumvent the
construction of this function in the final scheme.

Now we can easily define when an input v is invalid: v is invalid iff the structure

computed by the program on v is different from the one computed on VR(v).

Definition 1. Let P be a program and VR : IV — V be the associated valid-
representation function. An input valuation v for P is an SQL-injection attack if
the structure of the query q that P computes on v is different from that of the query
¢ that P computes on VR(v) (i.e., ¢ % ¢').

Turning back to our example in Fig. the input v : (n«—0; s “Jim' OR

1 =1 — —") is an SQL-injection attack since it generates a query whose struc-

ture is:
SELECT ? FROM ? WHERE ?=? OR ?7=?
Its corresponding candidate input VR(v) = vy : (n«0; s<—“John”) exercises the

same control path and generates a different query structure:

SELECT ? FROM ? WHERE ?=7?

Alternate Definition Using Symbolic Expressions

Let us now reformulate the above definition of SQL injection in terms that ex-
plicitly capture the symbolic expression for the query at the end of the run Run,,.
Intuitively, on an input valuation v, the program exercises a path that consists of
a set of assignments to variables. The symbolic expression for a variable sum-
marizes the effect of all these assignments using a single expression and is solely

over the input variables (Inq, ... In,, Isq, ... Is,).

30

For example, consider the input v : (n< 0 and s« “Jim” OR 1=1--") for the
program in Fig[3.4] This input exercises Path 1, and the SELECT statement is the
only statement along this path. The symbolic expression for the query string s,

on this input at the point of query is Sym.(so):
*‘SELECT % FROM employdb WHERE name=’ ’’+s+'' 7 '’

Definition 2 (Symbolic expressions). Let U be a set of integer and string vari-
ables, and let be a sequence of assignments involving only variables in U. Then
the symbolic expression after © for any integer variable n € V' is an arithmetic
expression, denoted Sym.(n), and the symbolic expression for a string variable
s € V is a string expression, denoted Sym,(s). These expressions are defined

inductively over the length of m using the rules given in Figure|3.5

o If 7 = € (i.e., for the empty sequence),

Syme(n) = n ifnel
= (0 otherwise
Syme(s) = s ifsel
= ¢ otherwise
o If m =7'.(n' :=ae(ty,...,t)), then
Symy(n) = Symu(n),foreveryn € U,n#n’

Sym,(n') = ae(Symy(t1),...,Symu(t))

Sym(s) = Symu(s), forevery s € U.

o If m =7'.(s" ;== se(ty,...,t;)), then
Symy(n) = Symgu(n),foreveryn € U
Sym,(s') = se(Symqu(t1),...,Symu(tx))
Sym.(s) = Symu(s),foreverys e U, s +# .

Figure 3.5: Inductive Rules for the Compuation of Symbolic Expressions

For an input valuation v, let 7, denote the set of assignments that occur along
the control path Run, that v induces, i.e., 7, is the set of statements of the form
n := ae or s := se executed by P on input valuation v. Then the symbolic
expression for the query sy on v is defined to be Sym., (sg).

Observe that for any program P and input valuation v, the value of any variable
x computed on v is Sym,, (x). That is, the value of any variable can be obtained
by substituting the values of the input variables in the symbolic expression for that

variable.

31

Note that if v and v’ induce the same run, (i.e., Run, = Run,/), then 7, = 7,
and hence the symbolic expression for the query computed for v is precisely the
same as that computed for v'.

We can hence reformulate SQL injection as in Definition 1| precisely as:

Definition 3. Let P be a program and VR : IV — V be the associated valid-
representation function. An input valuation v for P is an SQL-injection attack
if the symbolic expression for the query, exp = Sym, (so) when evaluated on

v has a different query structure than when evaluated on VR(v) (i.e., exp(v) #
exp(VR(v))).

Consider the benign candidate input: v; : (n<—0 and s<—“John”) corresponding
to the input v : (n< 0 and s< “Jim’ OR 1=1--"") for the program in Fig[3.4] as
they exercise the same path (Path 1). The symbolic expression for s, on this valid

input at the point of query is Sym(so):
‘'SELECT x FROM employdb WHERE name=’ '’+s+‘' 7 7/

Note that the conditionals that are checked along the control path are ignored
in this symbolic expression. Substituting any input string for s tells us exactly
the query computed by the program along this control path. Consequently, we
infer that the input v is an SQL-injection attack since it follows the same path as
the valid input above, but the structure of the query obtained by substituting s<—
“John” in the symbolic expression is different from that obtained by substituting
s5<“Jim’ OR 1=1--".

Observe that the solution presented by the above definition is hard to imple-
ment. Given an input valuation v, we can execute the program P on it, extract
the path followed by it, and compute the symbolic expression along v. Now if we
knew another valuation v’ that exercised the same control path as v does, then we
can evaluate the symbolic expression on v and v’, and check whether the query
structures are the same. However, it is very hard to find a valid input valuation

that exercises the same path as v does.

Approximating the SQL injection problem

The problem of finding for every input valuation v, a corresponding valid valu-

ation that exercises the same path as v does (i.e., finding the function VR) is a

32

hard problem. We now argue that a simple approximation of the above provides
an effective solution that works remarkably well in practice.

We propose to simply drop the requirement that v’ exercises the same control
path as v. Instead, we define VR(v) to be the valuation v, that maps every integer
variable to 1 and every string variable s to a¥*®), where a’ denotes a string of a’s of
length ¢. That is, v, maps s to a string of a’s precisely as long as the string mapped
by v.

We note that v, is manifestly benign and non-attacking for any program. Hence
substituting this valuation in the symbolic query must yield the intended query
structure for the control-path executed on v. Consequently, if this intended query
structure does not match the query the program computes on v, then we can raise
an alarm and prevent the query from executing.

The fact that the candidate valuation v. may not follow the same control path
as v is not important as in any case we will not follow the control path dictated
by v., but rather simply substitute v. in the symbolic expression obtained on the
control path exercised on v. Intuitively, we are forcing the program P to take the
same path on v, as it does on v to determine the intended query structure that the
path generates. We will justify this claim using several practical examples below.

Consider our running example again (Figure [3.4). The program on input v :
(n<0, s “Jim" OR 1 = 1 — —") executes the i f£-block, and hence generates
the symbolic query exp:

“SELECT % FROM employdb WHERE name='"+s+“’"”

Substituting the input values in this expression yields

Ql:SELECT % FROM employdb WHERE name=’Jim’ OR 1=1--'
Consider the valuation v, : (n+ 1, s« “aaaaaaaaaa”). The program on this path
follows a different control path (going through the e 1 se-block), and generates a
query whose structure is quite unlike the query structure obtained by pursuing the

if-block. However, substituting v, in the symbolic expression exp yields

Q2:SELECT x FROM employdb WHERE name=’aaaaaaaaaa’

which is indeed the correct query structure on pursuing the i f-block. Since the
query structures of Q1 and Q2 differ, we detect that the query input is an SQL-
injection attack. Note that an input assigning (n<— 0, s<—“Jane”) will match the
structure of the candidate query.

The above argument leads us to an approximate notion of SQL injection:

33

Definition 4. Let P be a program, and v be an input valuation, and v, the benign
candidate input valuation corresponding to v. An input valuation v for P is a
SQL-injection attack if the symbolic expression exp for the query string sq on the

path exercised by v results in different query structures when evaluated on v and

ve (Le., exp(v) % exp(v.)).

The above scheme is clearly implementable as we can build the symbolic ex-
pression for the query on the input to the program, and check the structure of the
computed query with the structure of the query obtained by substituting candidate
non-attacking values in the symbolic query. However, we choose a simpler way to
implement this solution: we transform the original program into one that at every
point computes values of variables both for the real input as well as the candidate
input, and hence evaluates the symbolic query on the candidate input in tandem

with the original program.

3.3 The CANDID Transformation

In this section, we discuss the transformation procedure for the dynamic candidate
evaluation technique described in the earlier section. We accomplish this using a
simple program transformation of the web application.

For every string variable v in the program, we add a variable v, that denotes
its candidate. When v is initialized from the user-input, v, is initialized with a
benign candidate value that is of the same length as v. If v is initialized by the
program(e.g. by a constant string like an SQL query fragment), v.. is also initial-
ized with the same value. For every program instruction on v, our transformed
program performs the same operation on the candidate variable v.. For example,

if x and y are two variables in the program, the operation:

“SELECT * FROM employdb WHERE name=" 4+ = + y
results in the construction of a query, or a partial query string. The transformer
performs a similar operation immediately succeeding this operation on the candi-

date variables:

“SELECT % FROM employdb WHERE name=" + z. + ¥,

The operation on the candidate variables thus mirror the operations on their

counterparts. The departure to this comes while handling conditionals, where the

34

[e<BEEN le V)|

10
11

12

13
14
15

16
17

void process—form(String uname, String uname_c, String
pwd, String pwd.c, boolean modify, String phonenum
, String phonenum_c) {
if (modify == false){ /x Path 1. only display =/
query = ”SELECT x FROM phonebook WHERE username = ’7”

+ uname + 7’ AND password = ° 7 + pwd + 7’7
query_c = ”SELECT x FROM phonebook WHERE username =
>” 4+ uname_c + 7’ AND password = ° 7 + pwd.c + 7’

’
)

¥
else{ /x modify telephone number x/
if (phonenum == ””){ /x Path 2. delete entry x/
query = “DELETE FROM phonebook WHERE username=’"

+ uname + 7’ AND password = 7 + pwd + ;
query_c = "DELETE FROM phonebook WHERE username="’

kel 99

+ uname_c + 7’ AND password = + pwd_c +

2

s 9,

}else{ /x Path 3. update entry x/
query = “UPDATE phonebook SET phonenumber =" +

phonenum + “"WHERE username = ° 7 + uname + 7’
AND password = ’7 + pwd + 7’7

query_c = “UPDATE phonebook SET phonenumber =" +
phonenum_c + "WHERE username = ° ” + uname_c +
”> AND password = ’7 + pwd.c + 777;

}
}

compare—parse—trees (query ,query_c); /x throw
exception if no match x/
sql .execute (query);

}

Figure 3.6: Transformed Source for the Example in Figure

candidate computation needs to be forced along the path dictated by the real in-
puts. Therefore, our translator does not modify the condition expression on the
if-then-else statement. At run-time, the conditional expression is then only
evaluated on the original program variables, and therefore dictates candidate com-
putation along the actual control path taken by the program. The transformation
for the while statements are similar.

Function calls are transformed by adding additional arguments for candidate

samples. Due to the type safety guarantees of our target language (Java), we only

35

maintain candidates for string variables. We also do not transform expressions
that do not involve string variables. For those expressions that involve use of non-
string variables in string expressions, we directly use the original variable’s values
for the candidate.

The transformation for the SQL query statement sql .execute calls a pro-
cedure compare-parse-trees that compares the real and candidate parse
trees. This procedure throws an exception if the parse trees are not isomorphic.
Otherwise, the original query is issued to the database.

Figure [3.6] gives the transformed code for the program illustrated in Figure[3.2]
The actual transformation rules for the while language presented in the previous

section is presented in Figure 3.7

3.3.1 Resilience of CANDID

The transformation of programs to dynamically detect intentions of the program-
mer using candidate inputs as presented above is remarkably resilient in a variety
of scenarios. We outline some interesting input manipulations Web applications
perform, and illustrate how CANDID handles them. Several approaches in the re-
cent literature for preventing SQL injection attacks fail in these simple scenarios
(see Section [3.5).

Conditional queries. Conditional queries are differential queries constructed by

programs depending on predicates on the input. For example, a program may form
different query structures depending on a boolean input (such as in Figure[3.2)), or
perhaps even on particular values of strings. The candidate input may not match
the real queries on these predicates, and hence may take a different path than the
real input. However, in the CANDID approach, conditionals are always evaluated
on the real inputs only, and hence the candidate query is formed using the same
control path the real input exercises. An illustrative example: consider a pro-
gram that issues an INSERT-query if the input string mode is “ADD” and issues
a DELETE-query if mode is “MODIFY”. For a real query with mode="ADD”,
the candidate query will assign mode="“aaa” which, being an invalid mode, may
actually cause the program to throw an exception. However, the test for mode is
done on the real string and hence the candidate query will be an INSERT-query

with appropriate values of the candidate input substituted for the real input in the

query.

36

Grammar Production

Definition of the function I'()

defn

stmt

ac

S€

be

sql.
execute (se)

— intn

| strs

| defn; ; defny

| input-int n

| input-str s

— skip

| s := se

| n:=ae

| stmt; ; stmt

| 1 £ be stmt;
else stmty

| while be stmt;

— C

| n

| f’i(tl" . atk)

— cstr

| s

| gi(ty,. - t)

— false

| true

| hi(ty,. . . te)

— sqgl.

execute (se)

{intn}

{strs.;strs}

{ I'(defn;) ; I'(defny) }
{input-intn}
{input-strs;

str s. =
str-candidate-val (s) }

{skip }
{s.:=T(se);s:=se}
{n:=ae}

{ ['(stmt;); T'(stmty) }
{ let t-stmt; = ['(stmt,;) in
let t-stmty, = I'(stmty) in
if be t-stmt;
else t-stmty }
{ let t-stmt; = ['(stmt,;) in
while be t-stmt; }

{cstr}
{sc}
{ g:(@(t),. . L(t)) }

{ false}
{true }

{ hi(tl,. o .,tk) }

{ let t-se =T'(se) in
compare-parse-trees(se,t-se);
sql.execute (se) }

(1a)
(1b)
(Io)
(1d)

(le)

(2a)
(2b)
(20)
(2d)

(Ze)
(2D)

(3a)
(3b)
(3¢)

(3d)
(3e)
(3D

(32)

(3h)
(31)

“

Figure 3.7: Transformation To Compute Candidate Queries

Input-splitting. Programs may not atomically embed inputs into queries. For ex-

ample, a program may take an input string name, which contains two words, such

as “Alan Turing”, and may issue a SELECT query with the clauses FIRSTNAME='Alan’

and LASTNAME=’ Turing’. In this case, the candidate input is a string of a’s

37

of length 11, and though it does not have any white-space, the conditional on
where to split the input is done on the real query, and the candidate query will
have the clauses FIRSTNAME=' aaaa’ and LASTNAME=’aaaaaa’, which

elicits the intended query structure.

Preservation of lengths of strings. The method of forcing evaluation of candi-

date inputs along the control path taken by the real input may at first seem delicate
and prone to errors. An issue is that the operations performed on the candidate
path may raise exceptions. The most common way this can happen is through
string indexing: the program may try to index into the ¢’th character of a string,
and this may cause an exception if the corresponding string on the candidate eval-
uation is shorter than ¢. This is the reason why we choose the candidate inputs to
be precisely the same length as the real inputs. Moreover, for all relevant string
operations we can show that the lengths of the real and candidate strings are pre-
served to be equal. More precisely, consider a function ¢ that takes strings and
integers as input and computes a string. The function g is said to be length pre-
serving, if the length of the string returned by g as well as whether g throws an
exception depends only on the /engths of the parameter strings and the values of
the integer variables. All string functions in the Java String class (such as concate-
nation and substring function) are in fact length-preserving. We can show that the
strings for candidate variables are precisely as long as their real variable counter-
parts across any sequence of commands and calls to length-preserving functions.
Therefore, they will not throw any exception on the candidate evaluation. In all

the experiments we have conducted, the candidate path never raises an exception.

External functions and stored queries. CANDID also handles scenarios where

external functions and stored queries are employed in a program. When an ex-
ternal function ext (for which we do not have the source) is called, as long as
the function is free of side-effects, CANDID safely calls ext twice, once on the
real variables and once on the candidate variables. Methods such as tainting are
infeasible in this scenario as tracking taints cannot be maintained on the external
method; however, CANDID can still keep track of the real and intended structures
using this mechanism.

Stored queries are snippets of queries stored in the database or in a file, and
programs use these snippets to form queries dynamically. Stored queries are com-

monly used to maintain changes to the database structure that are dynamically

38

changed over time to reflect changes in configurations. Changes to stored queries
pose problems for static methods as the code requires a fresh analysis, but poses

no problems to CANDID as it evaluates attacks dynamically on each run.

3.4 Implementation and Evaluation

Java
Language

S00T

Optimization
Framework

Figure 3.8: Offline View of CANDID

ApacheTomcat
Server

[Web Browser]

Figure 3.9: Run-time View of CANDID

Our tool, CANDID, is implemented to defend applications written in Java, and

works for any web application implemented through Java Server Pages or as Java

39

servlets. Figures [3.8] and give an overview of our implementation. CANDID
consists of two components: an offline Java program transformer that is used to
instrument the application, and an (online) SQL parse tree checker. The program
transformer is implemented using the SOOT [53]] Java transformation tool. The

SQL parse-tree checker is implemented using the JavaCC parser-generator.

3.4.1 Transformation

The automated transformation was implemented for Java byte-code using an ex-
tension to the SOOT optimization framework [55]. SOOT provides a three-address
intermediate byte-code representation, Jimple, suitable for code analysis and opti-
mization. Class files of the uninstrumented applications were processed using the
SOQT framework with CANDID to generate instrumented class files for deploy-
ment.

The transformer handles all fifteen types of Jimple statements e.g.,
InvokeStmt, AssignStmt, etc. If a statement is found to be acting on,
producing or leading to St ring type objects, the transformer adds appropriate
statements to perform candidate evaluation; for example, identity statements are
used to pass parameters to methods. For user defined methods, corresponding to
each String parameter, a candidate parameter is added to the method signature and
an identity statement is inserted in the method body for parameter passing.

As mentioned earlier, we compare the parse trees of the real and candidate
queries for attack detection. It is worthwhile to mention here that even the slightest

mismatch of the parse trees is detected as an attack.

3.4.2 Application Examples

We evaluated our technique using a suite of applications that was obtained from an
independent research group [[14]. This test suite contained seven applications, five
of which are commercial applications: Employee Directory, Bookstore, Events,
Classifieds and Portal. These are available at http://www.gotocode. com.
The two other applications, Checkers and Officetalk, were developed by the same
research group. These applications were medium to large in size (4.5KLOC -
17KLOC).

Table 3.1 summarizes the statistics for each application. The number of servlets

40

Application \ LOC \ Servlets \ SCL ‘

Employee Dir | 5,658 7 (10) 23
Bookstore 16,959 3(28) 71
Events 7,242 7 (13) 31
Classifieds 10,949 6 (14) 34
Portal 16453 3(28) 67
Checkers 5421 18 (61) 5
Officetalk 4543 7 (64) 40

Table 3.1: Applications from the test suite

in the second column gives the number exercised in our experiment, with the total
number of servlets in brackets. Our goal was to perform large-scale automated
tests (as described below), and some servlets could only be accessed through a
complex series of interactions with the application that involved a human user, and
therefore were not exercised in our tests. The column SCL reports the number of
SQL Command Locations, which issue either a sgl.executeQuery (mainly
SELECT statements) and sql.executeUpdate (consisting of INSERT,
UPDATE or DELETE statements) to the database. Immediately preceding this
command location, the CANDID instrumentation calls the parse tree comparison

checker.

3.4.3 Attack Suite

The attack test suite was also obtained from the authors of [[14]. It consists,
for each application, both attack and non-attack inputs that test several kinds
of SQL injection vulnerabilities. Overall, the attack suite contains 30 different
attack string patterns (such as tautology-based attacks, UNION SELECT based
attacks [13]]), that were constructed based on real attacks obtained from sources
US/CERT and CERT/CC advisories. Based on these attack strings, the attack test
suite makes use of each servlet’s injectible web inputs.

The test suite also contained non-attack (benign) inputs that tested the resilience
of the application on legitimate inputs that “looked like” attack inputs. These
inputs contain data that may possibly break the application in the face of SQL
input validation techniques.

41

VM1 VM2

= =
N\

— N

Figure 3.10: Testbed Setup

3.4.4 Experiment Setup

Our objective was to deploy two versions of each application: (1) an original
uninstrumented version and (2) a CANDID protected version. Also, to simulate
a live-test scenario, we wanted to deploy attacks simultaneously on each of these
two versions and observe the results. We wanted the original and instrumented
versions to be isolated from each other, so that they do not affect the correctness
of tests. For this reason we decided to run them on two separate machines.

In order that the state of the two machines be the same at the beginning of the
experiments, we adopted the following strategy: On a host RedHat Linux system,
we created a virtual machine running on VMware also running RedHat EL 4.0
guest operating system. We then installed all the necessary software in this vir-
tual machine: the Apache webserver and Tomcat JSP server, MySQL database
server, and the source and bytecode of all Java web applications (original and in-
strumented versions) in our test suite. Through an automated script, we also pop-
ulated the database with tables required by these applications. After configuring
the applications to deployment state, we cloned this virtual machine by copying
all the virtual disk files to another host machine with similar configurations. This
resulted in two machines that were identical except for the fact that they ran the
original and instrumented versions of the web applications.

Figure shows the test scenario. The original application was deployed on
virtual machine VM1 and the instrumented application was deployed on virtual
machine VM2. A third machine (“Tester”’) was used to launch the attacks over
HTTP on the original and instrumented web applications, and also was used to
immediately analyze the result. For this purpose, a suite of Perl scripts utilizing

the wget command were developed and used. The master script that ran the at-

42

tack scripts ran in the following sequence, as shown in the figure (1) it launched
the attack first on the original application and (2) recorded the responses. It then
(3) launched the attack on the instrumented application and (4) recorded the re-
sponses. After step (4), another post-processing script compared the output from
the two VMs and classified the result into one of the following cases (a) the attack
was successfully detected by the instrumented application (b) the instrumented
application reported a benign string as an attack (c) the instrumented application
reported a benign string as benign (d) errors were reported by the original or in-

strumented application.

3.4.5 Attack Evaluation

We ran the instrumented application with the attack suite, and the results are sum-
marized in Table[3.2] The second column lists the number of input attempts, and
the third lists the number of successful attacks on the original application. The
number of attacks detected by the instrumented application is shown in the same
column. The fourth column shows the number of non-attack benign inputs and
any false positives for the instrumented application. CANDID instrumented appli-
cations were able to defend all the attacks in the suite, and there were zero false
positives.

The test suite we received had a large number of attack strings that resulted in
invalid SQL queries and are reported in column 5. We used a standard SQL parser
based on SQL ANSI 92 standard, augmented with MYSQL specific language ex-
tensions. To ensure the correctness of our parser implementation, we verified that

these queries were in fact malformed using an online SQL Query formatter [S6].

3.4.6 Performance Evaluation

For testing the performance impact we used the web application benchmarking
tool JMeter [577] from Apache Foundation, an industry standard tool for measuring
performance impact on Java web applications.

We computed the overhead imposed by the approach on one servlet that was
chosen from each application, and prepared a detailed test suite for each appli-
cation. As typical for web applications, the performance was measured in terms

of differences in response times as seen by the client. The server was on a Red

43

Application Input Succ. FPs/ | Parse
attemp. | Attacks Non- | Errors

attacks

(Benign)
EmployeeDir | 7,038 | 1529/1529 0/2442 | 3067
Bookstore 6,492 | 1438/1438 0/2930 | 2124
Events 7,109 | 1414/1414 | 0/3320 | 2375
Classifieds 6,679 | 1475/1475 0/2076 | 3128
Portal 7,483 | 2995/2995 0/3415 | 1073
Checkers 8,254 | 262/262 0/7435 | 557
Officetalk 6,599 | 390/390 0/2149 | 4060

component.

Table 3.2: Attack Evaluation results

m Original @ Transformed(With Parser) @ Transformed(Without Parser) ‘

Client Response Times(In ms)

ploy
Dir

Events Portal

Applications

Checkers Officetalk

Figure 3.11: Performance Overhead

44

Hat Enterprise Linux machine with a 2GHz Pentium processor and 2GB of RAM,
that ran in the same Ethernet network as the client. Note that this scenario does
not have any network latencies that are typical for many web applications, and is
therefore an indicator of the worst case overheads in terms of response times.

For each test, we took 1000 sample runs and measured the average numbers
for each run, with caching disabled on the JSP / Web/ DB servers. The results
are shown in Figure The figure depicts the time taken by the original ap-
plication, the transformed code, and also the transformed code without the parser

Figure [3.11] indicates that instrumented applications without SQL parser calls

had negligible overhead over the original applications (also optimized for perfor-
mance using SOOT), when compared to uninstrumented applications. Figure[3.T1]
also indicates that instrumented applications with SQL parser code had varying
overheads and ranged from 3.2% (for Portal application) to 40.0% (for OfficeTalk
application). These varying overheads are mainly attributed to varying numbers
of SQL parser calls in each page e.g., Bookstore application invoked SQL parser
code 7 times for the selected page, whereas Portal application only invoked it
once. OfficeTalk application’s high overhead is attributed to the fact that client
response time for uninstrumented application is very small (Sms) when compared
to other applications (23ms - 39ms). This application’s actual execution time is
dwarfed by factors like class load time and resulted in high overhead for instru-
mented application. In other applications actual execution time is considerable,
and thus the overheads are significantly less.

The above results clearly show that CANDID’s overheads are quite acceptable.
We briefly discuss some of the possible optimizations here that could further im-
prove the performance. The SQL parser contributes to most of the overhead and
can be greatly improved. Notably, the two class files of SQL parser we used are
large— 54KB and 21KB, and are frequently loaded. A hand coded SQL parser can
be significantly smaller in size. Also, by performing flows-to/reachability analy-

sis, we can avoid transformations of string operations that do not contribute to the

query.

3.5 Related Work

There has been intense research in detection and prevention mechanisms against
SQL injection attacks recently. We can classify these approaches broadly under
three headings: (a) coding practices that incorporate defensive mechanisms that
can be used by programmers, (b) vulnerability detection using static analysis tech-
niques that warn the programmer of possible attacks, and (c) defensive techniques
that detect vulnerabilities and simultaneously prevent them.

Defensive coding practices include extensive input validation and the usage of
PREPARE statements in SQL. Input validation is an arduous task because the pro-
grammer must decide the set of valid inputs, escape special characters if they are
allowed (for example, a name-field may need to allow quotes, because of names

like O’ Niel), must search for alternate encodings of characters that encode SQL

45

commands, look for presence of back-end commands, etc. PREPARE statements
semantically separate the role of keywords and data literals. Using PREPARE
statements is very effective against attacks and is likely to become the standard
prevention mechanism for freshly written code; augmenting legacy programs to
prepare statements is hard to automate and not viable. Two similar approaches,
SQL DOM [58] and Safe Query Objects [39], provide executable mechanisms

that enable the user to construct queries that isolate user input.

3.5.1 Vulnerability Detection Using Static Analysis

There are several approaches that rely solely on static analysis techniques [, [7]]
to detect programs vulnerable to SQLCIA. These techniques are limited to iden-
tifying sources (points of input) and sinks (query issuing locations), and checking
whether every flow from a source to the sink is subject to input validation ([8] is
flow-insensitive while [7] is flow-sensitive). Typical precision issues with static
analysis, especially when dealing with dynamically constructed strings, mean that
they may identify several such illegal flows in a web application, even if these
paths are infeasible. In addition, the user must manually evaluate and declare the
sanitizing blocks of code for each application, and hence the approach is not fully
automatable. More importantly, the tools do not in any way help the user deter-
mine whether the sanitization routines prevent all SQL injection attacks. Given
that there are the various flawed sanitization techniques for preventing SQL in-
jection attacks (several myths abound on Internet developer forums), we believe
there are numerous programs that use purported sanitization routines that are not
correct, and declaring them as valid sanitizers will result in vulnerable programs

that pass these static checks.

3.5.2 Defensive Techniques that Prevent SQLCIA

Defensive techniques that prevent SQL injection attacks are significantly different
from vulnerability analysis as they achieve the more complex (and more desir-
able) job of transforming programs so that they are guarded against SQL injection
attacks. These techniques do not demand the programmer to perform input valida-
tion to stave off injection attacks, and hence offer effective solutions for securing

applications, including legacy code. We discuss three approaches in detail be-

46

low; for a more detailed account of various other techniques and tools, including
paradigms such as instruction set randomization [60]], proxy filtering of input, and
testing, we refer the reader to a survey of SQL injection and prevention tech-
niques [13]].

Learning programmer intentions statically. One approach in the literature has

been to learn the set of all intended query structures a program can generate and
check at run-time whether the queries belong to this set. The learning phase can be
done statically (as in the AMNESIA tool [14]) or dynamically on test inputs in a
preliminary learning phase [15]. The latter has immediate drawbacks: incomplete
learning of inputs result in inaccuracies that can stop execution of the program on
benign inputs.

A critique of AMNESIA: Consider a program that takes in two input strings nam1
and nam?2, and issues a select query that retrieves all data where the name-field
matches either naml or nam2. If nam2 is empty, then the select query issues a
search only for naml. Further, assume the program ensures that neither naml
nor nam2 are the string “admin” (preventing users from looking at the adminis-
trators entries). There are two intended query structures in this program:

“SELECT % FROM employdb WHERE name=’"+ naml + /7

“SELECT % FROM employdb WHERE name=’'"+ naml + “/7+

[TY &L

“OR name='"+ nam2 +

with the requirement that neither naml nor nam?2 is “admin”.

We tested the Java String Analyser (the string analyzer used in AMNESIA [14]]
to learn query structures statically from Java programs) on the above example.
First, JSA detected the above two structures, but could not detect the requirement
that nam1 and nam?2 cannot be “admin”. Consider now an attack of the program
where naml =“John’ OR name=’admin” and nam?2 is empty. The program

will generate the query:

SELECT » FROM employdb WHERE name=’John’

OR name='"admin’

and hence retrieve the administrator’s data from the database. Note that though
the above is a true SQL injection attack, a tool such as AMNESIA would allow

this as its structure is a possible query structure of the program on benign inputs.

47

The problem here is of course flow-sensitivity: the query structure computed by
the program must be compared with the query structure the programmer intended
along that particular path in the program. Web application programs use condi-
tional branching heavily to dynamically construct SQL queries and hence require
a flow sensitive analysis. The CANDID approach learns intentions dynamically

and hence achieves more accuracy and is flow-sensitive.

Dynamic Tainting approaches. Dynamic approaches based on tainting input

strings, tracking the taints along a run of the program, and checking if any key-
words in a query are tainted before executing the query, are a powerful formalism
for defending against SQL injection attacks.

Four recent taint platforms [10, 9, [11, [16] offer compelling evidence that the
method is quite versatile across most real-world programs, both in preventing
genuine attacks and in maintaining low false positives. The taint-based approach
fares well on all experiments we have studied and several common scenarios we
outlined in Section[3.3.1

Our formalism is complimentary to the tainting approach. There are situations
where the candidate approach results in better accuracy compared to the taint ap-
proach. Typical taint strategies require the source code of the entire application to
track taint information. When application programs call procedures from external
libraries or calls to other interpreters, the taint based approach requires these ex-
ternal libraries or interpreters to also keep track of tainting or make the assumption
the return values from these calls are entirely tainted. The second choice may neg-
atively impact tainting accuracy. In our approach, we can call the functions twice,
one for the real input and one for the candidate input, which works provided the

external function does not have side-effects.

Dynamic Bracketing approaches. Buehrer et al. [17] provide an interesting ap-

proach where the application program is manually transformed at program points
where input is read, and the programmer explicitly brackets these user inputs (us-
ing random strings) and checks right before issuing a query whether any SQL
keyword is spanned by a bracketed input. While this is indeed a very effective
mechanism, it relies on the programmer to correctly handle the strings at various
stages; for example if the input is checked by a conditional, the brackets must be
stripped away before evaluating the conditional.

In [12], the authors propose both a formalization and an automatic transforma-

48

tion based on the above solution. The formalism is the only other formal definition
of SQL injection in the literature, and formalizes changes of query structure us-
ing randomized bracketing of input. The automatic transformation adds random
meta-characters that bracket the input, and adds functions that detect whether any
bracketed expression spans an SQL-keyword. However, the formalism and solu-
tion set forth in [12] has several drawbacks:

e The solution of meta-bracketing may not preserve the semantics of the origi-
nal program even on benign inputs. For example, a program that checks whether
the input is well-formed (like whether a credit card number has 16 digits) may
raise an error on correct input because of the meta-characters added on either side
of the input string. There are several other scenarios outlined in Section [3.3.1
where the scheme fails: conditional querying (where say a string input determines
the query structure, but would fail with meta-brackets), input splitting (since the
input word would span across keywords), etc. Adding meta-characters only after
such checks are done in the program is feasible in manual transformation [17]
(though it would involve tedious effort), but is very hard to automate and some-
times impossible (for example if properties of the input are used later in the pro-
gram, say when the input gets output in a tabular form where the width of tables
depends on the length of the inputs).

e The above problems are in fact deep-rooted in the formalism developed in [[12],
which considers an overly simple notion of an application program that essentially
takes in the input, applies a single filter function on it, and concatenates them to
form a query. Program constructs such as conditionals and loops are ignored and
is the source of the above problem (formally, a function applied on a bracketed
input can behave very differently than when applied on the real input). Our for-
malism is much more robust in this regard and the definition of SQL injection
in Definition 1| and Definition [3| are elegant and accurate definitions that work on

realistic programs.

In summary, we believe that the dynamic taint-based approach and the CAN-
DID approach presented in this chapter are the only techniques that promise a
real scalable automatic solution to dynamically detect and prevent SQL injection

attacks.

Acknowledgements This part of the thesis is joint work with Prithvi Bisht, P.
Madhusudan, and V. N. Venkatakrishnan. This research is supported in part by

49

NSF grants (CNS-0716584), (CNS-0551660), (IIS-0331707), (CNS-0325951),
and CNS-0524695. We thank William Halfond and Alessandro Orso for pro-
viding us their test suite of applications and attack strings.

50

Chapter 4

Detection of cross-context scripting
vulnerabilities in Browser Extensions

Driving the Internet revolution is the modern web browser, which has evolved
from a relatively simple client application designed to display static data into
a complex networked operating system tasked with managing many facets of a
user’s on-line experience. To help meet the varied needs of a broad user pop-
ulation, browser extensions expand the functionality of browsers by interposing
on and interacting with browser-level events and data. Some extensions are sim-
ple and make only small changes to the appearance of web pages or the browser
itself. Other extensions provide more sophisticated functionality, such as NO-
SCRIPT that provides fine-grained control over page JavaScript execution [61],
or GREASEMONKEY that provides a full-blown programming environment for
scripting browser behavior [62]. These are just a few of the thousands of exten-
sions currently available for Firefox, the second most popular browser today.

Extensions written with benign intent can have subtle security-related bugs,
called cross-context scripting vulnerabilities, that expose users to devastating at-
tacks from the web, often just by viewing a web page. Firefox extensions run
with full browser privileges, so attackers can exploit extension weaknesses to take
over the browser, steal cookies or protected passwords, compromise confidential
information, or even hijack the host system, without revealing their actions to the
user. Unfortunately, dozens of extension vulnerabilities have been discovered in
the last few years, and capable attacks against buggy extensions have already been
demonstrated [63]].

In this chapter, we propose VEX, a system for finding vulnerabilities in browser
extensions using static information-flow analysis. Our key insight is that exten-
sion vulnerabilities often translate into explicit information flows from injectable
sources to executable sinks. For extensions written with benign intent, most at-
tacks involve the attacker injecting JavaScript into a data item that is subsequently
executed by the extension under full browser privileges. We identify key flows of

this nature that can lead to security vulnerabilities, and we check extensions for

51

the presence of such flows using a high-precision static analysis that is both path-
sensitive and context-sensitive, to minimize the number of false positive suspect
flows. VEX has special features to handle the quirks of JavaScript (e.g., VEX does
a constant string analysis for expressions that flow into the eval statement that
execute dynamically generated code).

Determining whether extensions are malicious or harbor security vulnerabilities
is a hard problem. Extensions are typically complex artifacts that interact with the
browser in subtle and hard to understand ways. For example, the ADBLOCK PLUS
extension performs the seemingly simple task of filtering out ads based on a list
of ad servers. However, the ADBLOCK PLUS implementation consists of over
11K lines of JavaScript code. Similarly, the NOSCRIPT extension provides fine-
grained control over which domains are allowed to execute JavaScript and basic
cross-site scripting protection. The NOSCRIPT extension implementation consists
of over 19K lines of JavaScript code. Also, ADBLOCK PLUS had 41 releases in
1/1/06-6/10/11, and NOSCRIPT had 48 releases just in 1/1/11-6/10/11. While
Mozilla uses volunteers to vet each new extension and revision before posting it
on their official list of approved Firefox extensions, examining an extension to
find a vulnerability requires a detailed understanding of the code to reason about
anything beyond the most basic type of information flow. Thus tools to help vet
browser extensions can be very useful for improving the security of extensions.

We show that VEX identifies 5 previously known vulnerabilities, and identi-
fies other flows that led to the discovery of 7 previously unknown vulnerabilities,
including vulnerabilities in the extensions WIKIPEDIA TOOLBAR, MOUSE GES-
TURES, and KAIZOU.

4.1 Threat Model, Assumptions, and Usage Model

In this article, we focus on finding security vulnerabilities in buggy browser exten-
sions. We do not try to identify malicious extensions, bugs in the browser itself, or
bugs in other browser extensibility mechanisms, such as plug-ins. We assume that
the developer is neither malicious nor trying to obfuscate extension functionality,
but we assume the developer could write incorrect code that contains vulnerabili-
ties.

We use two attack models. First, we consider attacks that originate from web

sites, and we assume the attacker can send arbitrary HTML and JavaScript to

52

the user’s browser, modeling the usage model that assumes the user can navigate
to any page on the internet. We focus on attacks where this untrusted data can
lead to code injection or privilege escalation through buggy extensions. In the
second attack model, we assume the same model as above, but we consider certain
web sites as trusted. For example, if an extension gleans information from the
Facebook website, we assume that the Facebook data will not include arbitrary
HTML and JavaScript, but only well formatted and trusted data.

2. Feed them to the 4. VEX iutpugls extensions Safe

VEX Analyzer that nave flows ’ Extension
Uncompressed — I
o VEX e e

Extensions \
1. Download extensions and Attackable
uncompress them 3. VEX analyzes JavaScript Extension
for flow and unsafe 5. Extension vetter

programming patterns manually analyzes the e —
flows for vulnerabilities

Figure 4.1: The overall analysis process of VEX.

According to the Mozilla developer site, Mozilla has a team of volunteers who
help vet extensions manually. They run new and updated extensions isolated in a
virtual machine to test the user experience. The editors also use a validation tool,
which uses grep to look for key indicators of bugs. Many of the patterns they
search for involve interactions between extensions and web pages, and they use
their understanding of these patterns to help guide their inspection of the code.
Our goal is to help automate this process, so that analysts can quickly hone in on
particular snippets of code that are likely to contain security vulnerabilities. Fig-
ure shows our overall work flow for using VEX: when extensions are subject
to analysis by VEX, it reports precise code paths from untrusted sources to exe-
cutable sinks in the extensions’ code, which an expert must manually examine to

check whether they can be used to mount an attack.

4.2 VEX Information Flow Patterns

Firefox has two privilege levels: page for the web page displayed in the browser’s

content pane, and chrome for elements belonging to Firefox and its extensions.

33

Page privileges are more restrictive than chrome privileges. For example, a page
loaded from i11linois.edu can only access content from illinois.edu.
Firefox code and extensions run with full chrome privileges, which enables them
to access all browser states and events, OS resources like the file system and net-
work, and all web pages. Extensions also can include their own user interface
components via a chrome document, which can run with full chrome privileges.

Firefox has APIs for extension code to communicate across protection domains
and these interactions are one cause of extension security vulnerabilities. As the
Mozilla developer site explains, “One of the most common security issues with
extensions is execution of remote code in privileged context. A typical example
is an RSS reader extension that would take the content of the RSS feed (HTML
code), format it nicely and insert into the extension window. The issue that is
commonly overlooked here is that the RSS feed could contain some malicious
JavaScript code and it would then execute with the privileges of the extension—
meaning that it would get full access to the browser (cookies, history etc) and to
user’s files” [sic].

We characterize these cross-protection-domain interactions as information-flow
patterns from JavaScript objects that include page content (untrusted sources) to
JavaScript objects and methods that execute content with chrome privileges (exe-
cutable sinks). In this section we discuss the sources and sinks that VEX tracks.
Flows between these sources and sinks are sometimes benign, and represent an
incomplete list of possible extension security bugs, but these are the patterns that

VEX considers suspicious.

4.2.1 Untrusted Sources

We now describe the untrusted JavaScript objects that extensions can access. Un-
trusted objects might contain foreign scripts that can lead to attacks if run with
chrome privileges.

The JavaScript content-document object (window.content.document) accesses
the browser’s content page directly, and hence is an untrusted source. Also,
the browser sets JavaScript pop-up nodes (document.popupNode) when the user
right-clicks on document object model (DOM) elements. If this DOM element is
part of the page content, then it includes untrusted page content.

One API that extensions use to access persistent state is the Resource Descrip-

54

illinois.edu
illinois.edu

tion Framework (RDF). RDF is a model for describing hierarchical relationships
between browser resources [64]] and is used by the browser to store persistent data,
like bookmarks. Extension developers can store persistent extension data in an
RDF file, or access browser resources stored in RDF format. However, RDF data
can come from untrusted sources. For example, when a user stores a bookmark,
Firefox records the un-sanitized title of the bookmarked page, which is controlled
by the web page, in an RDF file. Extensions can also access un-sanitized book-
mark URLs using the nsILivemarkService interface and the BookmarksUtils
object.

Extensions access Firefox preferences through the nsIPrefService interface.
Any extension can set values in the preferences, and extensions have unchecked
access to all preference settings. Some extensions use this service to store un-
trusted strings obtained from web page content; hence using this service is also
treated as an untrusted source.

In summary, the VEX treats the following as untrusted source objects:
window.content.document, document.popupNode, BookmarksUtils, and ac-
cess to the new instances of the objects nsIRDFService, nsILivemarkService,

and nsIPrefService.

4.2.2 Executable Sinks

Now we describe the set of executable sinks, which are JavaScript objects and
methods that provide a way to parse and execute JavaScript dynamically. VEX
considers these executable sinks to be potentially dangerous when they execute
untrusted JavaScript code with chrome privileges.

The eval function call interprets string data as JavaScript, which it executes
dynamically. This flexible mechanism can be used to generate JavaScript code dy-
namically, for example to deserialize JavaScript Object Notation (JSON) objects.
However, this flexibility can lead to code injection vulnerabilities in extensions.
If extensions execute eval functions on un-sanitized strings that come from un-
trusted sources, an attacker can inject JavaScript code that runs with full chrome
privileges.

Each HTML element in a page has an innerHTML property that defines the
text that occurs between that element’s opening and closing tags. Extensions can

change the innerHTML property to alter existing DOM elements, or to add new

55

DOM elements, because the browser parses the modified text after JavaScript code
modifies this property. Thus, passing specially crafted strings (e.g., tags
with JavaScript in their onload attribute) into innerHTML can lead to code in-
jection attacks.

Extensions can add a new DOM element to a content page or chrome page
by using the appendChild method. This method causes the browser to parse and
process the data within the element, similar to the innerHTML property. Therefore,
this feature can also be used to execute injected code.

In summary, the executable sinks that we consider in VEX are calls to the func-

tions eval and appendChild, and assignments to innerHTML property.

4.3 Static Information Flow Analysis of JavaScript

The core component of VEX is a static analysis tool for detecting explicit infor-
mation flows in browser extensions written in JavaScript. VEX computes flows
between different sources and sinks, including all those described in Section
To support fine-grained information-flow analysis, VEX tracks the flows from
source objects to the sinks encountered in the JavaScript extension, using a taint-
based analysis. Motivated by the fact that every flow reported needs to be checked
manually for attacks, which can take considerable human effort,we aim for an
analysis that admits as few false positives as possible, where false positives are
flows reported by VEX that cannot actually occur at run time.

Statically analyzing JavaScript extensions for flows is a non-trivial task. Object
properties in JavaScript change dynamically, in the sense that new object proper-
ties can be created dynamically at run-time. Functions are objects in JavaScript,
and hence can be created, redefined dynamically, and passed as parameters. In
addition to the objects defined in the program, the extensions can also access
the browser’s DOM API and the Firefox Extension API provided by XPCOM
components, and the static analysis must handle them correctly. JavaScript brow-
ser extensions also have a large number of objects and functions that need to be
tracked. The challenge is to accurately keep track of such objects, properties, and
the corresponding flows to them.

The analysis engine in VEX is a static taint analysis to detect explicit flows,
where taint propagation for JavaScript is achieved by adapting an operational se-

mantics for JavaScript proposed by Maffeis et al [39]]. In the analysis, we replace

56

concrete heaps by abstract heaps, where abstract heaps accurately track objects
and their properties, but abstract the primitive values. An abstract heap can be
seen as a directed graph, where every object and function in the JavaScript pro-
gram 1is represented as a node, while the edges in the heap represent the field
relationships between different objects. Additionally, every node in the abstract
heap is associated with a taint value, which is used by VEX’s analysis to compute

the information flows from the source objects to the sinks.

The Analysis: In the analysis, VEX handles only loop-free programs, and trans-
lates programs with loops to loop-free programs first by unrolling loops a bounded
number of times (hence the analysis is not sound— see Section 4.3.6). The VEX
abstract semantics computes and tracks the abstract heap on (loop-free) programs
fairly precisely by mimicking the operational semantics for JavaScript. Unlike
common abstraction domains used in the literature, at any point during the analy-
sis, an abstract heap does not have a single node representing two objects; hence
VEX is quite accurate in keeping track of the precise heap nodes and field rela-
tions and the corresponding flows, ignoring only the exact primitive values in the
heap (like integers). Since programs are unrolled into loop-free code, the abstract
heaps have a bounded size, leading to a terminating algorithm.

JavaScript core objects and functions are summarized to have only the essen-
tial functionality; an example summary is given in Section Variables and
functions that are not initialized in the current program execution or through sum-
maries, are initialized to point to placeholder dummy objects with HIGH taints.
The default taint of an object created in the extension is set to LOW unless the
analysis explicitly sets the value to HIGH or a variable is uninitialized. The loops
in the program are unrolled a bounded number of times and function calls are
inlined for a bounded unrolling of recursive calls, and every path of the result-
ing program is explored. Thus VEX may overlook certain flows, as discussed
in Section [4.3.6] The static analysis does not evaluate the conditions in condi-
tional statements of the program because of the abstraction. Whenever it reaches
a conditional statement, both branches are traversed, in a depth-first manner, to
ensure that the entire program is covered. The analysis is flow-sensitive and, due
to inlining, also context-sensitive.

In Section we list the core JavaScript syntax and the JavaScript program
values. In section 4.3.2] we describe the abstract heap in detail, followed by a

description of the data structures that we use for the static analysis. The core

57

syntax is used for defining the abstract operational semantics in Section4.3.4

Notation: In the following sections, the components enclosed in square brackets
([1) are optional and the components enclosed in quotes (“) are required. A
finite list of elements of a particular type is represented by the appropriate non-

terminal symbol followed by a tilde(7).

4.3.1 Core JavaScript Syntax

val/® ;1= pv/® | £d7° % values

pvi® = ¢’® | undefined % primitive value
& ca= m’* | n/* | bool’® | null % literals

ml® = “foo” | “bar” | ... % strings

n/® = —n|0]|1]... % numbers
bool/® ;= true | false % boolean values
id = foo | bar | ... % identifiers

3 e m/* | id | n/® % property name
nonstr’/® := n’® | bool’* % non — string literals
nulllit/® ::= null | undefined % null literals
£d7% = function®(”[idy,...,idg]“){"[prog]“}” % function decl

Figure 4.2: JavaScript Values

Figure [4.2] gives the values that can be used in the JavaScript program. In this
figure, we add a superscript js to the non-terminals to indicate that these symbols
belong to the core JavaScript syntax; in Figure we present the values used
in our analysis. Apart from the usual strings, booleans, and numbers, JavaScript
has some additional primitive values — null is an object that is used to represent
the objects that do not exist (i.e. can’t find them anywhere in the scope chain),
and undefined is a value used to indicate that the variable has been defined but
not been assigned a value. The JavaScript property names could be either strings,
identifiers, or numbers.

Figure gives the syntax of the core components of the JavaScript program-
ming language. A core JavaScript expression could be a primitive value, object
or array literal, an identifier, a special this object, an expression generated us-
ing different operators, a function definition, a function or a constructor call, etc.
The JavaScript programming language statements are similar to the statements in
other programming languages which support exceptions. A JavaScript program-

ming language is a sequence of program statements or function definitions. VEX

58

analysis consists of the operational semantics for analyzing the JavaScript core

syntax.
EXPRESSIONS

expr = pvi® (PRIMITIVE VALUE)
| L expry, ., 10 expr,] <Y (OBJECT LITERAL)
| “["[expry, ... expr,|“]” (ARRAY LITERAL)
| this (THIS)
| id (IDENTIFIER)
| expr.id (FIELD ACCESS)
| expre["expr|” (MEMBER SELECTOR)
| expr &BIN expr (BINARY OP)
| &UN expr (UNARY OP)
| expr &PO (POSTFIX OP)
| function [id7%] “(?[1d!%, ..., 1d}"]“)”

“{” [prog]“}’ (INAMED] FUNCTION DEF)
| expre(”lexpry,...,expr,]“)” (FUNCTION CALL)
| new expr(”[expry,...,expr,|“)” (CONSTRUCTOR CALL)
| “(Cexpre?expre :”expr)” (CONDITIONAL EXPRESSION)

STATEMENTS

stm === (SKIP)
| " stm* <} (BLOCK)
| var [(id [“=" expr]) ~] (VARIABLE DECL.)
| id “=" expr (ASSIGN 1)
| expr.id “=" expr (ASSIGN 2)
| expre[Pexprt]” “ =" expr (ASSIGN 3)
| if “("expr®)” stm; [else stma)] (CONDITIONAL)
| while “("expr®)” stm (WHILE)
| return expr (RETURN)
| break [id] (BREAK)
| continue [id] (CONTINUE)
| id:smm (LABEL)
| throw expr (THROW)
| try“{7stm*“}”

[catch“(7id“)” “{"stm}“}"]

[finally“{”stm5“}”] (TRY)

PROGRAM
prog == stm [prog] (STATEMENT)
| function id”(”[idy,...,1d,]")
{"|prog|”}’ (FUNCTION DECLARATION)

Figure 4.3: Core JavaScript Syntax.

59

4.3.2 Abstract Heaps

H:= {(11:01),(12:09),...,(1n:0n)} % heap

1= fid | rand % location

id == foo|bar|... % identifiers

0= “LlA1:0ov1)y vy (Lm : ovin)]“} % objects

i = m % property name

ov = 1n | sectype | m % object values
sectype ::= (m, taint) % security type
m:= m/* % strings

taint := Low | HIGH % taint

1n ::= 1| NULL % nullable addresses
r= 1n“*"m | NULL % references

term ::= &Normal | &Return % return label
vexbool 1= &false | &true %oboolean analysis values

Figure 4.4: Abstract Heap, Locations and Values

Figure [4.4] gives the abstract data structure that the VEX static analysis tracks,
along with the values used in the abstract data structure. We model the state of a
JavaScript program using the notion of an abstract heap. Every object is stored on
the heap. The heap, H, is modeled as a set of (location, object) pairs. A location,
1, is an arbitrarily generated name created whenever a new object is created in the
program. For readability, a location referenced by an identifier, id, is represented
as fid. An object, o, represents the JavaScript object data structure and is a set of
(abstract property name, abstract value) pairs. An abstract property name, i, is a
primitive string. An abstract value, ov, could be a heap location (if the property
points to another object or if it is a primitive value), a NULL object, a string (value
of a string in the program syntax or a function body), or a security type. Only the
string primitive values are preserved in the String object. Security type, sectype,
keeps track of taints; a sink object’s security type acquires a taint associated with a
source object, if there is an explicit flow from the source object to the sink object.
A security type is modeled as a pair (taint value, source string); the taint value,
taint, could either be LOw or HIGH and the taint source string, m, is a string
identifying the source object of the taint. A reference, r, is an intermediate value
used to represent the property accesses of various objects in the program. The

return label, term, is used to represent different states of the analysis as described

in Section4.3.4]

60

4.3.3 Abstraction Function

VEX analysis abstracts out certain primitive values in order to provide tractable
static analysis of JavaScript programs. The abstraction function maps the primi-
tive values, property names, and literals in the original JavaScript program (given
in figures[4.2]and[4.3)) into abstract heap values (given in figure d.4). The mapping

is as follows:
e The nulllit’* values are mapped to NULL.

e The primitive integers (n’*) and booleans (boo17*) are mapped into objects
created using the new_primitive function. However, the exact values of these

literals are not stored in the object.

e The primitive strings (m’*) are mapped into objects created using the
new_string_primitive function. This string object records the exact string

primitive value for reference in the analysis.

e An object literal ({[(i!* : expr,),...,(i7* : expr,)]}), is mapped into an
object representation which faithfully keeps track of the abstraction of the
property and value mappings. During the abstract object creation, the inte-
ger and identifier property names are converted into primitive strings by the

operational semantics.

e An array literal is also mapped onto an abstract object. Special properties
are added to this object by creating the object as an instance of the prede-

fined Array object.

e A function declaration is also mapped into an abstract object with a special

property, “@Body”, which stores the function body as a string.

e For objects that are dynamically created inside loops, our operational se-
mantics faithfully maps the exact object representation for a pre-specified
number of loop iterations and then ignores the rest of heap once the maxi-

mum number of iterations is reached.

In summary, every element in the concrete heap is mapped into an abstract
object. Along with the abstract heap value, the analysis computes and propagates
a taint value with every heap object. The object creation and taint propagation

algorithm is given by the abstraction operational semantics in Section §.3.4]

61

4.3.4 Abstract Operational Semantics

Operational semantics of a language give a set of rules for evaluating the program,
its statements and its expressions to produce a state, given an initial mapping
of variables to values in the form of an initial state. We model VEX’s program
state, o, is either a tuple (current heap, current location, global location, program
fragment) (o0 = (H,1,,1,, fragment)) or a tuple (current heap, current location,

global location, program context) (0 = (H, 1, 14, co))

e An abstract heap object, H, is a set of (location,object) pairs representing the

objects that are initialized and used in the JavaScript program.

e A current scope object, 1, is a pointer to a location in the heap that rep-
resents the current execution context. All the local variables are accessible

from the current scope.

e A global object, 1,4, is a pointer to the initial object in the heap that consists
of all the core JavaScript objects like Object, Array, Function, etc. Ini-
tially, the current scope object is set to the location pointing to the global

object.
e A program fragment, fragment, is either a prog, stm, or expr.

e A program context, co, is a tuple (return label, object reference, return
value) ((term, r, ov)). The value of the return label, term, could be one of
&Normal or &Return, representing the termination status of the program
constructs. The return value, ov, gives the value stored in the location. The
object reference, r, is the reference to the returned value that is obtained by

evaluating the statement or the expression.

VEX analysis is based on a set of rules that transform abstract heaps based on
each statement in the program. The analysis works by over-approximating the
effect of the statements on the abstract heap. In this section, we present the big-
step operational semantic rules for expressions, statements, and programs. The
transformation rules are denoted respectively by s, 2 and 225 respectively.
Given a state containing a program fragment, the transformation rules produce a
state containing new program context after their execution.

These rules closely follow the small-step operational semantics proposed by

Mafteis et al [139]], which cover the ECMA-262 standard for JavaScript. The heap

62

representation abstracts away the primitive values and the types. Therefore, big-
step operational semantics are sufficient for the analysis since it does not require
fine-grained control over the state and the computations. Whenever applicable,
we point out the differences between our abstract semantics and those proposed
by Maffeis et al.

Program Semantics

Programs are sequence of statements and function declarations. The program
semantics are defined in Figure

VD(NativeEnv,1l,,1,, P) =H; FD(H;,1,,1,, P) =H
(8 8) 1 (Hy g -8) 2(P—INIT)

prog 7% Hy, 14, 14, prog

H,1,14, function id([id ~]){[prog|}[prog;] 22 H,1,14, [P1] (P-FUN)

stm

H,1,1g,stm — H, 1, 1,, (&Normal, ry, ovy)
H,1',14, prog bros, H”,1" 14, (term,], ovh)

— (P-SEQ)
H,1,1g, stm; prog —= H",1” 14, (term, 1/, ov})

H 1,1, LNy (P-TERM-BRANCH)

Figure 4.5: Program Semantics

Given a program prog, the rule (P-INIT) initializes the analysis by generating
the initial program state. The initial scope points to the global location. This
rule starts with an initial heap, NativeEnv, which consists of the JavaScript
core objects, and the DOM and Firefox API. In JavaScript, function declarations
and variable declarations are processed before the program starts executing. The
auxiliary functions FD and VD (defined in Figure [4.6) are used to perform the
preprocessing in the initialization rule. For every variable declaration, VD creates
an entry in the current scope object with the variable name and assigns a NULL
value to it. For every function declaration, FD creates an entry for that function in
the current scope.

After the pre-processing step, a function declaration encountered during the
analysis is ignored as specified in the rule (P-FUN). Blocks of statements are

analyzed sequentially using the (P-SEQ) rules.

63

VD(H,1,)=H (H-VD)

“4d” 1< H(1) H(1.“4d” = NULL) = H,
VD(H, 1, var id[= expr][, (idi[= expry]) ~][prog]) =
VD(Hi, 1, var [(id;[= expry]) ~][prog])
“id” < H(1)
VD(H, 1, var id[= expr][, (idi[= expry]) ~]|prog]) =
VD(H, 1, var [(idi[= expry]) ~][prog])
VD(H, 1, var[prog|) = VD(H,1, [prog]) (H-VD-VAR)

(H-VD-INIT)

(H-VD-INIT-IGNORE)

VD(H, 1, {stm* }|prog]) = VD(H, 1, stm*[prog]) (H-VD-BLOCK)

VD(H,1,if “("expr®)” stm; else stma[prog|)
= VD(H,1, stm; stms [prog]) (H-VD-IF)

VD(H,1,while “("expr®)” stm[prog]) = VD(H, 1, stm [prog]) (H-VD-WHILE)
VD(H, 1, try “{”Sl‘m* ((}77 CatCh“(” id“)?’ “{77 stm? (1A 2 finally“{”stm; W [prog])
= VD(H, 1, stm* stm] stm} [prog]) (H-VD-TRY)

stm < {7 expr, “continue [id];”, “break [id];”,
“return expr;”, “throw expr”

VD(H, 1, stm[prog]) = V. D(H, 1, [prog])

(H-VD-IGNORE)

FD(H,1,)=H (H-FD)
H, Function(function ([id ~|){;[prog]},1) = H;,1;
Hi(1.41dfun” = 11) = Hy

FD(H, 1, function idf,,([id ~]){[prog]}|prog,])
= FD(Hy, 1, [prog,])

(H-FD-FD)

stm < {while,for,...function}
FD(H, 1, stm|prog]) = FD(H, 1, [prog])

(H-FD-IGNORE)

Figure 4.6: Variable Instantiation and Function Declaration

64

Statement Semantics

The semantics of statements are defined in Figure The ; statement does not
change the program state. The return program state of an expression statement
is the same as the program state obtained by evaluating the expression; this is
defined in the rule (S-EXPR). The conditional statement without an else branch
is transformed into a statement with an else branch consisting only of the skip
statement in rule (S-1F). The analysis parallelly evaluates every branch in the
program, by evaluating both the branches of the conditional statements. The rules
(S-IF-THEN) and (S-IF-ELSE) illustrate this. The analysis does not evaluate the
conditional expression. This is one of the main differences between the opera-
tional semantics of JavaScript and out static semantics.

Similarly, for the while statement the analysis should be able to skip the while
loop and continue the analysis on the rest of the program, or it should execute
the body of the loop a pre-specified number of times. The (S-WHILE-SKIP) rule
shows the skipping of the while statement. The (S-WHILE-BODY) rule shows
that the body of the loop is executed and the resulting state is used to execute the
next iteration of the while loop. Therefore, the result of executing the while loop
is the state obtained by performing a few iterations over the loop body. The loop
conditional is also ignored by the analysis. The loop is executed a fixed number
of times instead. This is another difference between the VEX analysis and the
operational semantics.

The assignment statement is defined in the rule (S-ASSIGN). The left hand side
and the right hand side expressions are evaluated using the expression semantics
given in Section 4.3.4] The expression semantic rules return the program context
(&Normal,1; * m,ovy) for the left hand side expression expr, and the program
context (&Normal,ry,ovy) for the right hand side expression expr,. The (S-
ASSIGN) assigns the value obtained from the right hand side, ovs, to the reference
of the left hand side, 1; * m, using the @Put auxiliary function defined in the
Figure 4.20

Expression Semantics

Given a program state, o, an expression returns a new program state along with
the program context, which contains the reference to the location pointed by the

expression and the value stored at that location. We describe the expression se-

65

%Skip Statement

stm

H,1,1g,; — H,1,1,, (&Normal, NULL,NULL) (S-SKIP)

%Expression
H,1,1g, expr o, 1g, (term, r1, 0va)

po (S-EXPR)
H,1,1g, expr — H',1’, 15, (term,ry, ovy)

%Conditional Statements
%If then else

H,1,1g,if(expr) stm; % H,1,1, (&Normal, NULL,NULL) (S-IF-SKIP)

H,1,1,,stm w1, 1g, (term, ry, ovy)

(S-1F)
H,1,1g, if (expr) stmy " H,1/, 1, (term, 11, ovy)

stm
H,1,1g,stmy — H,1', 14, (term,ry, ovy)

(S-IF-THEN)
H,1,1g, if(expr) stm; else stmy Smeoy1, 1g, (term, ri, ovy)
H,1,1g, stmy w1, 1g, (term,ry, ova)
(S-IF-ELSE)

H,1,1g, if (expr) stm; else stmy CLLS S 1 1g, (term, r1, ova)

%lteration Statements
% While

H,1,1g, while(expr) stmy g1, 1g, (&Normal, NULL, NULL)(S-WHILE-SKIP)

t
H,1,1g, stm 2 Hy, 14, 1g, (termy, T, ov)),
q 1
Hi, 11, 14, while(expr) stm; — Ha, 1o, 14, (termo, r/, ov})

— (S-WHILE-BODY)
H,1,1g,while(expr) stm; — Hy, 12,14, (termy, rf, ovy)

Y%var expression and assignment semantics
H,1,1g, [var] expry SN (&Normal,1; *m, ovy)
H,1,1g, expry RN (&Normal, ro, ovy)
H,1,1g, @Put(1; *m,ovp) — H, 1,14, 0v9

o (S-ASSIGN)
H,1,1g, [var] expr; = expry — H',1,1,, (&Normal, 1; % m, ovy)

%Return Statement
H,1,1g, return; % H,1,1,, (&Return, NULL,NULL) (S-RETURN)

H,1,1g, expr LWL, 1,, (&Normal, r, ov)

— (S-RETURN-EXPR)
H,1,1,, return expr; — H,1’, 15, (&Return, r, ov)

Figure 4.7: Statement Semantics

66

mantics in this section.

In our abstract semantics, every value is either an object, a string or a security
type. The analysis also ignores the exact values of the integer and boolean literals.
All boolean operations compute the taints instead of the actual primitive values.
This means that the VEX abstract operational semantics need not deal with fine
grained type conversion semantics and the contextual rules as in the operational
semantics proposed by Maffeis et al.

Figure 4.8|defines the expression semantics for JavaScript literals. The rule (E-
STRINGLIT) creates a new object for the string using the predefined templates for
creating objects defined in Figure 4.24] allocates a new location for this object,
and adds the (location, object) pair to the heap, H, to produce the new heap H;.
The new string object keeps track of the value of the string primitive. The rule
(E-NON-STRINGLIT) is similar to the previous rule except that it works on the
non-string literals and does not track the exact primitive value. The rules (E-
OBIJLIT), and (E-ARRAYLIT) create new object and array literals respectively.
They work by creating a new object for the literals and then inserting the properties
into these objects using the @Put internal method defined in Figure Both
these rules differ in the way the new object is created. In (E-OBJLIT) the new
object is created using a predefined template, while in (E-ARRAYLIT) the new
array object is created by instantiating an Array object (one of the core JavaScript
objects). All the literals are tainted LOW.

Figure @ has the semantic rules for this, identifier access, field access and
member selector. For this and id, the scope chain is checked to find the scope
in which the identifiers could be found. Once the scope object is found, the @Get
function is used to get the value of the identifier and the @GetParent function to
get the location of the parent. These two functions are defined in Figure {4.20]
Notice that the property names in the array object are the array indices converted
to strings.

We define the semantics for operator handling in Figure 4.10] In case of unary
operators, and postfix operators, the analysis returns the object value that the ex-
pression represents as shown in the rules (E-UNARYOP) and (E-POSTFIXOP).
Rule (E-BINARYOP) defines the semantics for binary operations on non-string
expressions. In this rule, the semantics use a predefined new_object template to
create a new object. The security type of the newly created object is the join of
the security type of the objects represented by the operands. Additionally, in case
of string concatenation (as shown in rule (E-CONCAT)) the analysis concatenates

67

%String Literals
o = new_string_primitive(“object”, f0bjectProt,
m/*, (NULL, LOW))
Hy,1; = alloc(H, o)

o (E-STRINGLIT)
H,1,1,,m’° — H;,1,1,, (&Normal, NULL, 1;)

%Literals: Boolean, Number
o = new_primitive(“object”, f0bjectProt, (NULL, LOW))
Hy,1; = alloc(H, o)

T (E-NON-STRINGLIT)
H,1,1g,nonstr’* — Hy, 1, 1,, (&Normal, NULL, 1)

oNull Literals: null,undefine

%Null Literal 11,undefined

H,1,1g,nulllit’ % H;,1,1,, (&Normal, NULL,NULL) (E-NULLLIT)]

o = new_object(“object”, f0bjectProt, (NULL, LOW))
Hp,1; = alloc(H, O)
m; = @ToString(i!°)
Ho, 1, 1g, expry w1, 1g, (&Normal, ry, ovy)

m, = @ToString(i}’)
Hn—1),1,1g, expr, w1, 1,, (&Normal, r,, ovy)
Hy,1,1g, @Put(1y *my, ovy) — Hj, 1,15, 0vg
1,1, @Put(1; *my, 0vy,) — H),, 1,15, 07y,

!
Hi1y)

— — . (E-OBJLIT)
H,1,1g,{[(i1" : expry),..., (in :expr,)]} —
H),,1,1g, (&Normal, NULL, 1;)
o = new Array()
Hp,1; = alloc(H, o)

expr
Ho,1,1g, expry — Hy, 1,15, (&Normal,ry, ovy)

Hi, 1), 1, 1g, expry, — Hy, 1,1g, (&Normal, 1y, ovy,)
Hy,1,1g, @Put(1y * “1”7,0vy) — H}, 1,14, 0vy

H/(n—l)’ 1,15, @Put(1; * “n”,0ov,) — H),, 1,14, 07,
expr

H,1,1g, “Pexpry, ..., expr,“]” — H;,, 1,14, (&Normal, NULL, 1;)

(E-ARRAYLIT)

Figure 4.8: Expression Semantics for Literals

68

Scope(H, 1, “@Qthis”) = 13 H,1,.@Get(“Qthis”) = ov
H, 1;.@GetParent(“Qthis”) = 13

opr (E-THIS)
H,1,15,this — H, 1,14, (&Normal, 15 * “@this”, ov)
Scope(H, 1, “id”) =1 H,1;.@Get(“id”) = ov
H,1;.@GetParent(“id”) = 1,
- (E-IDE-VAL)
H,1,15,id — H,1,1,, (&Normal, 1 * “id”, ov)
H,1,1,, expr[“id”] g, 1g, (&Normal,1; * m,ov) (E-SEL)
-OEL
H,1,1g, expr.id g, 1g, (&Normal, 1 * m,ov)
H,1,1g, expr oy, 1g', (&Normal,r, 1)
H,1,.@Get(m) = ov H ov.@AddTaints(1;) — H’ ov
(E-Acc)

H,1,1g, exprim] w1, 1g, (&Normal, 1y * m, ov)

H,1,1g, expr LR, 1/, (&Normal, NULL, NULL)
H,1,.@Get(m) = ov H', ov.@AddTaints(1;) — H”, ov

opr (E-Acc-GLOB)
H,1, 1, exprim] — H”,1’, 1,4, (&Normal, 14 * m, ov)

H,1,1g, expr W1, 1g, (&Normal,1’ *m;, NULL)
o = new_object(“object”, f0bjectProt, (NULL, LOW))
Hy,1; = alloc(H, o) Hi(1;.@QScope = 1) = Hy
Hp, 1,1, @Put(l’ *my, 11) — H3, 1,14
H3,1;.@AddTaints(1") — Hj, 14

opr (E-Acc-NULL)
H,1,1g, exprim] — Hj, 1, 14, (&Normal, 11 *m, NULL)

Figure 4.9: Identifier and Field Access Semantics

69

%Unary Operators
H,1,1g, expr H 1, 1g, (&Normal, r,1’)

(E-UNARYOP)
H,1,1g, &UN expr <25 H,1,1,, (&Normal, r,1’)

%Postfix Operators
H,1,1g, expr 2LH 1, 1g, (&Normal, r,1’)

— T — (E-POSTFIXOP)
;1,15 expr &P0 — H', 1,15, (&Normal,r,1’)

%Binary Operators
H,1,1g, expry 2 Hy, 1, 1g, (&Normal, ry,1y)
Hy, 1,15, expry P Hy, 1, 1g, (&Normal, ro, 1)
—(Ho IsStrPrim(1;) = &true V Hy.IsStrPrim(13) = &true)

sectype; = Hp,1;.@Get(“QTaint”)
sectype, = Ha, 19.@Get(“QTaint”)

sectype = @JoinTaint(sectype,, sectype,)

o = new_object(“object”, {0bjectProt, sectype)

H',1" = alloc(H, o)
(E-BINARYOP)

H,1,1g, expr; &BIN expr, W1, 1lg, (&Normal,NULL,1")

%String Concatenation
H,1,1g,expr; 2w, 1, 1g, (&Normal, ry,1q)
Hi,1,1,, expry P Uy, 1, 1g, (&Normal, ro, 1)
Hy.IsStrPrim(1;) = &true V Hp IsStrPrim(12) = &true
m; = @GetStrPrim(Hg, 1)
mg = @GetStrPrim(Hg, 1)
sectype; = Ha,1;.@Get(“QTaint”)
sectypey = Ha, 15.@Get(“QTaint”)
sectype = @JoinTaint(sectype,, sectype,)
o = new_string_primitive(“object”,
f0bjectProt, (m; + my), sectype)

H',1’ = alloc(Hs, o)
(E-CONCAT)

H,1,1g, expry + expr, 2LH 1, 1g, (&Normal, NULL,1’)

Figure 4.10: Operator Handling

70

the string value of both the operands and adds its to the primitive string object

created using the new _string_primitive predefined function.

%Function declaration expression; returns Object
H, Function(function ([id ~]){[; prog]},1) = Hi,1;

—— o (E-FUN)
H,1,1g, function ([id ~]){[; prog]} — Hi, 1,14, (&Normal, NULL,1y)
o = new_object(“Object”, f0bjectProt, (NULL, LOW))
Hy,1; = alloc(H, o)
Hy(1;.@Scope = 1) = Hy
Hy, Function(fun([id ~)){; [prog]},11) = Hs, 13
H3(1;.“id” = 13) = Hy

o (E-FUN-NAMED)
H,1,1g, function id([id ~]){[prog]} —
Hy,1,1g, (&Normal, 1y x “id”, 1)

Figure 4.11: Function Declaration

Figure [4.11] shows the semantics for function declaration. In case of an un-
named function declaration, a new function object is created using the predefined
helper function Function defined in the Figure .12 This helper function creates a
new function object, creates a location for this object in the heap, and then returns
this newly created location, 1;. This location is returned by the expression transi-
tion in rule (E-FUN). We define the semantics for named function declaration in
rule (E-FUN-NAMED). In this rule, a new object, o, is created to store the current
scope chain. This new object is assigned to a new location and is inserted into the
heap. The new function object is created using the Function method at location
15. An entry for this new function object is created in the heap and is returned.
The Function method is defined by the rule (H-FUNCTION) in Figure d.12]

%Function object creation
01 = new_object(“object”, f0bjectProt, (NULL, LOW))
Hi,1; = alloc(H, 01)
o = new_function(function([id ~]){prog},1,11, (NULL, LOW))
Hy, 1o = alloc(Hy, 0)Hs = Ha (1. “constructor” = 13)

H, Function(function([id ~|){P},1) = Hs, 1

(H-FUNCTION)

Figure 4.12: Function Object Creation

The function call semantics are given in Figures 4.13] [4.14] [4.135] The semantic
rules perform the following operations in order:

71

%function calls. Returns: Object, Exception. Uses: @Fun, @Call
H,1,1g, expry oW, 1g, (&Normal, 1n *m, ovy)
H, 1,14, expr; 2w, 1, 1,, (&Normal, ry, ovy)

H,_1,1,14, expr, 2 Hp, 1, 1g, (&Normal, ry,, ovy,)
Type(1ln * m) = REFERENCE lisActivation(H,,, 1n)
Hp,1,1g, @Fun(1n, 1n *m, ovy,...,0V,) — Hpes, Lres, Lg, CO (E-CALL-REF)

expr
H,1,1g, expre(expry, ..., expr,) — Hres, Lres, 1g, €O

expr
H 1,1, expry — H, 1,14, (&Normal, 1n *m, ovy)
H,1, 14, expr; Ym0, 1,, (&Normal, ry, ovy)

H,_1,1,1,, expr, Y Hp, 1, 1,, (&Normal, r,, ov,)
Type(1n * m) = REFERENCE isActivation(H,,, 1n)
Hy, 1,15, @Fun(1g, 1n *m, ovy,...,0Vy,) — Hpes, Lyes, 1g, CO (B-CALL-REF-ACT)

expr
H,1,1g, expre(expry, ..., expr,) — Hres, Lres, 1g, €O

H,1,1g,expr; — H,1,1g, (&Normal, NULL, ov)
H,1,1g, expry Ym0, 1g, (&Normal, ry,ovy)

Hy—1,1, 14, expr, Y Hp, 1, 1,, (&Normal, r,, ov,)
Hy,,1,1,, @Fun(1,, 0vy,0vy,...,0V,) — Hyes, Lyes, Lg, CO
“ 5 Rl - e e (E-CALL-REF-NULL)

expr
H,1, 1, expry (expry, ... ,expr,) — Hyes, Lyes, 1g, co

Figure 4.13: Function Call

IsFuncDecl(H, ov;) = &false
o = new_object(“dummy”,0bjectProt, (NULL, LOW))
Hy, 1o = alloc(H, o)
Hs, 15.@AddTaints([ov ~]) — H}, 1o
(lov ~]) = By (E- @FUN-EXC)

H,1,1g, @Fun(1y, ov1[, 0v ~]) 225 Hy, 1,14, (&Normal, NULL, 1)

IsFuncDecl(H, 12) = &true
H,1,1g,15.@Call(1;[,0v ~]) = H',1’, 14, co
(E-@FuN-CALL)

H,1,1g, @Fun(1y,12],0v ~]) 25 H, 1/, 14, co

Figure 4.14: @Fun

72

1. The function expression and all the function arguments are evaluated ac-

cording to the expression semantic rules.

2. If the function expression evaluates to an program context in which the ob-
ject reference is a NULL object as in (E-CALL-REF-NULL), then the global
location, 1, is assigned to the this property. This condition can occur if the
function expression is a function declaration without a name. Additionally,
if the parent object of the function object reference, 1n*m, is either null or is
an activation object, as in the rule (E-CALL-REF-ACT), the global object’s
location, 14, is considered to be the this property. However, if the parent
object obtained from the reference 1n *m is not an activation object, then 1n
is considered to be the this property (as in the (E-CALL-REF) rule). All
these three rules are illustrated in the Figure 4.13]

3. The helper function @Fun is called with the heap, location of the this
object, and the function’s actual parameters’ object values (ovy, ..., ov,) if
any. This function returns the result value of evaluating the function in the
program context co, which is returned by the function call expression. The
function, @Fun, is defined in the Figure [4.14]

4. The @Fun function takes the function declaration, location of the this ob-
ject, and the function parameter values as arguments along with the current
program state as arguments. It produces either a dummy object or the re-
turn value of executing the function. A dummy object is created if the func-
tion object does not exist i.e. the value returned by evaluating the function
name, ovy, is either null or is not a function declaration object. The taint
of the dummy object is the taint of the function parameters. If the value
returned by evaluating the function name is a function declaration object, as
determined by the IsFuncDecl function, the @Call (defined in Figure

method is called to execute the function body.

The @Call function essentially inlines the function body and executes the state-
ments in the body. It follows the following steps:

1. Extract the function body, the program statements are in the statement block

prog.

2. Creates a new arguments object, 04,45, to store the actual function parameter

values. The new_arguments function is defined in the Figure It creates

73

H(1;).@QBody = function([id ~]){prog}
| [ov~] |=n new_arguments(n, ([ov ~]), 11, (NULL, LOW)) = 0g4rgs
alloc(H, Oargs) = Hl, 13 Hl(ll).@FSCOpe =1y
new _activation(13,12,14) = 04t
alloc(Hg, Oact) = H3, 15 FP(H3, 15, ([id N]), 0, n) = Hy
VD(Hy, 15, prog) = Hs FD(Hs, 15, prog) = Hg
Hg, 15, 15, @FunExe(1, prog) — H',1’, 14, co

I-CALL
H,1,1,,1,.@Call(1a], ov ~]) — H, 1/, 1,,co ()

H,1,1,, prog %) Hyj,19,1g,co0
H,11,1g, @FunRet(1, co) — H, 1/, 14, co’

[- @ FUNEXE
H,1,1g, @FunExe(1, prog) — H',1’, 14, co’ ()

H,1,1,, @FunRet(1;, (&Return,r, ov)) —
Hy,11,1,, (&Normal,r,ov) (I-FUN-RET)

H,1,1g, @FunRet(1;, (&Normal, r,ov)) —
H,11,1g, (&Normal, NULL,NULL) (I-FUN-NOR)

%Function parameters
FP(H,1,(),n;,ny) =H (H-FP)

n; < ng 1, = H(1). “arguments”
ov=H(11).“n;” H(1.“id” =ov) = H,

H-FP-ACTUAL
FP(H, 1, (id], id ~]),n1,n2) = FP(Hy, 1, ([id ~]),n1 + 1, n2) ()

n; >=ny H(1.“id” = NULL) =H;

H-FP-FORMAL
FP(H,1, (id[, id ~]),n1,n2) = FP(Hy, 1, ([id ~]),n1 + 1,n3) ()

Figure 4.15: @Call

74

an arguments array, where in an entry is created for each object value in the

parameters.

3. Extract the function scope associated with the function declaration into lo-

cation 14.

4. Create a new activation using the function new_activation, which is also
defined in the Figure

5. A new activation object, o,., 1S created and assigned to the location 1;.
The activation object consists of three properties, location 13 pointing to the
arguments array, location 1, pointing to the this object, and location 1, to
point to the first location in the scope chain. The activation object is the new

scope in which the function is executed.

6. Function FP (defined in Figure 4.15)) is used to assign actual parameter val-

ues to the formal parameters in the function.

7. Functions VD and FD are used for pre-processing variable and function

declarations producing the new heap Hg and

8. Finally, the previous scope location 1 is stored in the @FunExe context.
The function body is executed using the transformation rules and the result-
ing program context is checked to see if the function returned a value (has
the &Return label) or it reached the end of the statement block (has the
&Normal label).

9. If a value is returned, the (I-FUN-RET) rule changes the label to &Normal,
retains the reference and the returned object value, and returns. The scope

is reset to the stored scope.

10. If the function does not return a value, then the (I-FUN-NOR) rule resets
the scope, but returns a new context with the reference and the object value

set to NULL.

The semantics for constructor invocation are given by the rules in the Fig-
ures [4.16] [4.17, and 4.15] The semantics rules are summarized in the following

steps:

1. If the constructor expression expr, does not evaluate to a location as spec-
ified in the rule (E-NEwW-EXC-0BJ), then a dummy object is created and

75

%Constructor invocation
% new operator. Returns: Object, Exception . Uses: @Construct
H,1,1,expr —25 |, 1, 1g, (&Normal, r, ov)
H,1,1,, expry om0, 1,, (&Normal, ry, ovy)

H,_1,1,1g, expr, 2 H,, 1, 1g, (&Normal, r,, ovy,)
Type(ov)! = OBJECT
ove = new_object(“object”,ObjectProt, (“dummy”, HIGH))
H,,1; = alloc(H/, 09)
H,,1;.@AddTaints([ovy,...,0v,]) — H,,, 11

(E-NEW-EXC-0BJ)
H,1,1g,new expr{([expry, ..., expr,])] apr,

H,,1,1,, (&Normal, NULL, 1)
H,1,1,expr —25 W, 1, 1g, (&Normal, r,1’)
7 expr
H', 1,1, expry — Hy, 1,14, (&Normal, rq, ovy)

H,_1,1,14, expr, 2 Hp, 1, 1,, (&Normal, r,, ovy,)
Type(1’) = OBJECT @Construct < H(1)
H,,1’.@AddTaints([ovy,...,0v,]|) — H,, 1’

e (E-NEW-EXC-CONSTR)
(pr
H,1,1g,new expr{([expr, ... expr,])] —
H,,1,1g, (&Normal,r,1’)
H,1,1,expr 25 |, 1, 1g, (&Normal, r,1’)
0 expr
H',1,1g, expry — Hy, 1,14, (&Normal, rq, ovy)

H,_1,1,1g, expr, 2 H,, 1, 1,, (&Normal, r,, ovy)
Type(1’) = OBJECT @QConstruct < H(1')

expr

H,,1,1,,1" . @Construct([ovy,...,ov,]) — H,,11,1,,co
noE {Bgocos "])expr woTE (E-NEW-CONSTR)
H,1,1g, new expr{(lexpry, ..., expr,])] — H},, 11,14, co

Figure 4.16: Constructor Invocation

76

ovy = H(1;). “prototype”
Type(ove) = OBJECT
o = new_object(“object”, ove, (NULL, LOW))
Hs, 13 = alloc(H, O)
H3, 1,1g,11.@Call(13, [ov ~]) — Hy,1’, 15, (&Normal, r, ov)
Type(ov) = OBJECT

(I-CONSOBIJRET)

expr

H,1,1g,1;.@Construct([ov ~]) —
Hy,1', 14, (&Normal, r, ov)

ove = H(11). “prototype”
Type(ovy) = OBJECT
o = new_object(“object”, ove, (NULL, LOW))
H3, 13 = alloc(H, O)
H3, 1,14,1;.@Call(13, [ov ~]) — Hy,1', 14, (&Normal, r, ov)
Type(ov)! = OBJECT

o (I-CONSOBINORM)
H,1,1g,1;.@Construct([ov ~]) —

H4,1', 14, (&Normal, NULL, 13)

ov = H(1y). “prototype”
Type(ov)! = OBJECT
o = new_object(“object”, f0bjectProt, (NULL, LOW))
Hs, 13 = alloc(H, o)
H3, 1,1g,11.@Call(13, [ov ~]) = Hy,1’, 14, (&Normal, r, ov)
Type(ov) = OBJECT

oxpr (I-CONSGLOBRET)
H,1,1g,1;.@Construct(fov ~]) —
Hy,1', 14, (&Normal, r, ov)

ov = H(1;). “prototype”
Type(ov)! = OBJECT
o = new_object(“object”, 0bjectProt, (NULL, LOW))
Hz,13 = alloc(H, O)
H3,1,1g, 1,.@Call(13, [ov ~]) —
Hy,1', 14, (&Normal, r, ov)
Type(ov)! = OBJECT

(I-CONSGLOBNORM)

expr

H,1,1g,1;.@Construct([ov ~]) —
Hy,1’, 14, (&Normal, NULL, 13)

Figure 4.17: @Construct

77

returned. The dummy object is tainted with the taints of all the parameters

to the constructor function.

2. If the constructor expression expr evaluates to a location 1’, but the object
pointed to by this location is not a constructor (i.e. function object), then
the location 1/, tainted with the security types of the constructor parameters,
is returned. This is specified in the rule (E-NEW-EXC-CONSTR).

3. Finally if the expression evaluates to a location 1’ and this location con-
tains the @Construct property, then the object pointed to by this location
could be used as a constructor. The rule (E-NEW-CONSTR) deals with this
case. In this rule, the @Construct auxiliary function is called to invoke the

constructor.

The @Construct function (given in Figure follows the following steps:

1. Given the constructor object location, 14, the rules first extract the “prototype”
property of the object pointed to by the location 1;. The returned value is

stored in the location ovs,.

2. If the returned prototype value is a location (as in (I-CONSOBJRET) and
(I-CONSOBJNORM)), a new object is created with its @Proto property to

be ovy at location 15.

3. If the returned prototype value is not a location (as in (I-CONSGLOBRET)
and (I-CONSGLOBNORM)), then the predefined location,
f0bjectProt, which points to the object prototype is used as a prototype

for the new object created at location 13.

4. The object created at location 13 is assigned to the this property when the

constructor function is executed using the @Call function.

5. When the @Call function returns, the return object value, ov, is checked to
see if it is a location or not. If it is a location, then the context returned as is
(as seen in rules (I-CONSOBIJRET) and (I-CONSGLOBRET)). If ov is not
a location, then the location 13 is returned (as in rules (I-CONSOBJINORM)
and (I-CONSGLOBNORM)).

78

l:ov!I< H HH=H1:ov 0
1 , (H-ALLOC) l:0ov < H
alloc(H,ov) = Hy,1 H1)=o

il< i~
il< {(i:ov)~}

i< {(i:ov)~}

o={(i1:0vy) ~[,1i:0vp],(iz: ova) ~}
{(i1 : ovy) ~[,1: 0ov],(ig: ovg) ~}

01 =
H(l) (¢} H = H[l — 01] il< i ~, 19~

H(li=ov)=H

{(i1 : ovy) ~,i: 0ov,(i2: ovy) ~}.i = ov[(H-GET)]

Figure 4.18: Heaps and Objects

Auxiliary and Internal Property Semantics

(H-RET)
v

(H-NOTIN) M (H-ISIN)

(H-SET)

The semantic rules in Figure allow the semantic rules to access the abstract

heap contents. If a location 1 is not in the heap, then (H-ALLOC) creates the new

location and allocates the object value to this location. The rule (H-RET) returns

the object value if the location already exists in the heap. The (H-NOTIN) and

(H-1IN) rules search an object for the occurrence of property names. The (H-SET)

rule replaces an object value associated with a property. The (H-GET) rule get the

object value associated with a property.

H, 1.@HasProperty(i)
Scope(H,1,i) =1

(SCOPE REF)

—(H.1.@HasProperty(i)) H(1).@Scope =1’
Scope(H,1,i) = Scope(H,1’,1)

(SCOPE LOOKUP)

Scope(H, NULL, i) = NULL(SCOPE NULL)

i < H(1)
Prototype(H,1,i) =1

(PROTOTYPE REF)

il< H(1) H(1).@QProto =1’
Prototype(H, 1, i) = Prototype(H,1’, 1)

(PROTOTYPE LOOKUP)

Prototype(H, NULL, i) = NULL (PROTOTYPE NULL)

H, 1.@HasProperty(i) = (Prototype(H,1,i) # NULL) (I - HAS PROPERTY)

Figure 4.19: Scope and Prototype Lookup

Figure [d.19 specifies the function for accessing the scope and prototype chains

79

for the presence of properties. In Figure the relations < and !< check
for presence and absence of a property value in the local object heap represented

by the current location 1. These relations are defined as rules (H-NOTIN) and
(H-1SIN) in Figure

Prototype(H,1,m) =1; H(1;)m=o

v
I-GET
H,1.@Get(m) = ov ()

Prototype(H, 1,m) = NULL
H,1.@Get(m) = undefined

(I-GET-NULL)

Prototype(H, 1,m) = 1;
H, 1.@GetParent(m) = 1;

(I-GETPARENT)

Prototype(H, 1,m) = NULL
H, 1.@GetParent(m) = NULL

(I-GETPARENT-NULL)

Prototype(H, 1,m) = NULL
H,1.@Get(m) = NULL

(I-GET-NULL)

m!< H(1 H(ly.m =ov) =H
(11) H(,)=H (L-PUT)
H, @Put(1; *m,ov) — Hy, 1, 0v

m!< H(1l;) H(lgm=ov)=H
H, @Put(NULL % m, ov) — Hj,1;,0v

(I-PUT-GLOB)

H,1.@Get(“@QPrimitiveVal”) if HIsStrPrim(1)
H,H(1).@Get(“@QPrimitiveVal”) if Type(H(1))
@GetStrPrim(H, 1) = = OBJECT
A H.IsStrPrim(H(1))

e otherwise

Figure 4.20: Internal Properties

Figure [4.20] defines the different internal properties used to access the object
properties given an property name or object location, return the property’s parent,
or to insert a new property or a property value into the heap.

Figure 4.21] specifies functions for accessing the types of the different object
values used in the abstract heap and the semantic rules. An object value could
be a NULL type representing the undefined or null, an OBJECT type represent-
ing a location, a REFERENCE type representing a reference value, a TAINT type
representing a security type, or a STRING type.

Figures and define the several taint manipulation operations required

for the semantics. The @JoinTaint function (Figure 4.22) is a commutative func-

80

Type : ov — T

Type(NULL) = NULL
Type(1) = OBJECT
Type(1ln * m) = REFERENCE
Type(sectype) = TAINT
Type(m) = STRING

IsPrim : ov — bool
IsPrim(ov) = Type(ov) ¢ {REFERENCE, OBJECT, TAINT}

IsStrPrim : H, 1 — bool
&false 1 == NULL
IsStrPrim(H,1) = ¢ &true (H,1.@Get(“@PrimitiveVal”)! = NULL)
&false otherwise
isActivation : H,1 — bool
&false 1 == NULL
isActivation(H,1) = { &true (H,1.@Get(“@QIsActivation”)! = NULL)
&false otherwise
IsFuncDecl : H,1 — bool
&false 1 == NULL
IsFuncDecl(H,1) = ¢ &true (H,1.@Get(“@Body”)! = NULL)
&false otherwise
@ToString : i/ — m

5 'jS g 'jS _
@ToString (i) = { ¢ if Type(i’®) = STRING

“Js" otherwise
Figure 4.21: Types
argument 1 argument 2 result
NULL sectype sectype
(NuLL,Low) (NuLL,Low) (NuULL,LOW)
(NULL, Low) (m, HIGH) (m, HIGH)
(mi, HIGH) (mg, HIGH) ({mi,my}, HIGH)

Figure 4.22: @JoinTaint function(commutative)

81

tion which is used to merge two security types. Notice that the LOW security type
is always associated with a NULL string. The @GetTaint function is used to get
the taint value of an object. The @AddTaints function is used to join the taint

values of several objects and add it to the specified object.

ov if Type(ov) = TAINT
@GetTaint(H, ov) = ¢ (NULL,LOW) if Type(ov) = NULL
(H, ov.@Get(“QTaint”)) otherwise
sectype, = @GetTaint(H, 1)
sectype; = @GetTaint(H, ovy)

sectype,, = @GetTaint(H, ov,,)
sectype] = @JoinTaint(sectype, sectype;)

sectype,, = @JoinTaint(sectype’(n_l), sectype,,)
H,1.@Put(“QTaint”, sectype]) — Hj, 1, sectype/,
H,1.@AddTaints([ovy,. .., ov,]) — Hy,1

(H-ADDTAINTS)

Figure 4.23: Taint Manipulation Operations

Figures and specify several pre-defined templates used to create dif-

ferent kinds of objects by the operational semantic rules.

new_object(m, 1, sectype) = {

“@QClass” : m,
“@Proto” : 1,
“@QTaint” : sectype
}

new_proto(m, 11, 15, sectype) = {
“@QClass” : m,
“@Proto” : 1y,

“constructor” : 1g
“@QTaint” : sectype

}

new_primitive(m, 1, sectype) = {
“@QClass” : m,
“@Proto” : 1,
“@Taint” : sectype
}

Figure 4.24: Predefined Object Templates-1

82

Figure 4.25: Predefined Object Templates-2

83

4.3.5 Handling the Features of JavaScript

Figure 4.26] gives an example of a sample JavaScript heap computed using the
VEX analysis. Every object and function in the JavaScript program is represented
as a node in the heap, while the properties of the object are represented using
edges in the graph. In the figure, the global object 1oc_Global has five prop-
erties ObjectProt, FunctionProt, Array, ArrayProt, and array_instance
pointing to the nodes 1loc_ObjProt, loc_FunProt, loc_1, loc_ArrayProt, and
loc_4 respectively. Every node in the heap is associated with a taint value, HIGH
or Low — HIGH representing the untrusted objects and LOW representing the
trusted objects. High taints and low taints are represented by red and blue nodes,
respectively, in the figures (all nodes in Figure 4.26|are Low). Figure shows
the initial abstract heap representation of the window.content.document object

and the window.document object; notice that one of the nodes loc_document,

loc_Global

has a high taint.

Figure 4.26: Sample JavaScript Heap — Array Object

Prototype-based Inheritance: Figure[d.26|illustrates how VEX handles prototype-
based inheritance. The Array object in JavaScript is represented as the node
loc_1 in the figure. Since the Array object is a constructor, which can be used
to create new instances of the array, it has a prototype field pointing to the

object, ArrayProt, represented in the graph by the node loc_ArrayProt. A

84

loc_Global

window

loc_window

document

Figure 4.27: window.content.document Object

new Array instance, array_instance object, is created in the program using
the statement: array_instance = new Array (). In Figure §.26] loc_4 rep-
resents the array_instance object. The @Proto field of this object points to
the object loc_ArrayProt. Therefore, the push method is accessible to the

array_instance object and can be called using the array_instance.push.

Function and Object Summaries: Natively supported functions and objects are
replaced with stubs that summarize the effect on the heap and the taints when ac-
cessing them. VEX function and object summaries are hence simplified JavaScript
objects and functions containing only the essential functionality of the objects.
For example, a JavaScript Array object is defined in Figure to be a func-
tion object with the @Class, prototype, and @Proto properties initialized to
the string “Function”, identifier ArrayProt, and identifier FunctionProt, re-
spectively. The variables FunctionProt and ArrayProt point to the prototype

objects, which contain the various functions like 1length and push.

var Array = function(){
this.QClass = “function”;
this.prototype = ArrayProt;
this.@Proto = FunctionProt; };

Figure 4.28: Array object summary in VEX

Browser’s DOM API and XPCOM components: VEX treats most of the brow-
ser’s DOM API and XPCOM components as uninitialized variables, fields, and

85

functions. However, VEX provides explicit function summaries for the API com-
ponents and objects that VEX needs to keep track of in order to trace the flows
to and from the objects. VEX analysis sets the taint of the objects that represent

insecure sources or those that are dependent on insecure sources to HIGH.

Higher-order functions: VEX analysis accurately keeps track of the objects
and implements function calls by inlining the function bodies according to the
JavaScript semantics. Higher-order functions calls are also inlined. Additionally,
VEX provides summaries for some higher order functions in the JavaScript API.
For example, the settimeout function in JavaScript takes a callback function as
its first argument. This function is represented in VEX as a function in which the

function body invokes the callback function in the first argument.

Dynamically generated code: The eval method in JavaScript allows execution
of dynamically formed code, and is widely used in browser extensions. While an
accurate analysis of the structure of dynamically created code is a research topic
in itself, and out of the scope of this paper, the analysis cannot simply ignore
eval statements. VEX analysis performs a constant-string analysis for strings
and string operations. If the actual parameters to the eval statement evaluate to
a constant string, VEX’s static analysis engine parses these constant strings and
inserts them into the program flow just after the eval statement. This ensures
that these newly parsed statements are included in the computation of the taint. In
most correct extensions, an eval-ed statement is dynamically chosen from a set
of constant-strings or taken from trusted sources, and hence evaluate to a constant
string on the path explored (and tracked accurately by VEX). Parameters to eval,
whose exact string values are not statically inferred by VEX along the path ex-
plored, are tested to check if they are tainted. If there is a flow from an untrusted
source to an eval, VEX will report this flow, as it corresponds to a vulnerable flow

pattern.

Object properties accessed in the form of associative arrays: In JavaScript,
objects are treated as associative arrays. This means that any property of the object
can be accessed using the array notation. Array indices could be constant strings,
which are then evaluated to get the actual property being accessed; or they could
be numbers, which indicate the property number that is being accessed; or they
could be variables, that could be instantiated at run time. If VEX cannot evaluate
the array index to a property name for any reason, the array access conservatively

gets the taints of every property in the parent array object.

86

Functions that take arbitrary number of arguments: Some functions in
JavaScript can have variable numbers of arguments. For example, the push
method of an array can be called with any number of arguments and the argu-
ments will be appended to the end of that array. To handle this in VEX, the object
representing the push method has a special property indicating that it can take a
variable number of arguments and when the method is called, VEX analysis con-
servatively appends the taints of all the arguments to the push method to the array

object on which the method is called.

Initialization of the Analysis: The functions in the Firefox extensions are usu-
ally event handlers triggered by the user events like mouse clicks on menu items,
keyboard events, etc. The calls to the event handler are embedded in a special file
written in XUL, the special markup language used to create the user interface of
an extension. As a pre-processing step of our analysis, we extract all the event
calls from the XUL files and write them into a single JavaScript file along with all
the JavaScript files in the extension. This ensures that we trigger all the events in
the extension. However, this has a side effect of considering only a single program

execution sequence.

4.3.6 A Note on Soundness

Most static analysis tools, such as those used in compilers and those used in
abstract interpretation, over-approximate the concrete semantics, and hence are
sound. In the context of flow analysis, a sound tool never reports that a program
has no flows when it has one. Soundness often entails a large number of false
positives, i.e. flows that the tool reports but may not actually ever happen during
execution.

VEX is not sound. We believe that a sound state-of-the-art analysis tool for
JavaScript extensions would overwhelm and frustrate the tool’s users with a tor-
rent of false positives. Thus to handle certain features of JavaScript without pro-
ducing a lot of false positives, we chose not to make VEX sound. As a conse-
quence, for example, a maliciously written extension could easily evade detection
by VEX. On the other hand, a maliciously written extension can easily harm its
users directly, without any input from untrusted web pages. This underlies the
reason why our threat model assumes that the extension author is not malicious.

Instead of aiming for soundness, we concentrated on making VEX accurate on

87

paths in the program, without collapsing (merging) the nodes of the heap in any
way. Since VEX can only analyze a finite number of paths in the program (ob-
tained by unrolling recursion a bounded number of times) in this accurate manner,
the analysis VEX performs is inherently not sound.

False positives are also, of course, still possible in VEX, i.e. VEX may report
flows that actually do not exist in the program. This stems from the fact that the
analysis uses an abstraction. In particular, not having precise enough informa-
tion for evaluating conditionals, not precisely being able to determine the values
of strings being subject to eval statements, etc. are common sources for false
positives. Compared to classical heap analysis in programs that merges nodes in
heaps, VEX performs a much more accurate analysis that reduces the number of
false positives considerably. In experiments, we found that VEX produces very
few false positives.

Overall, our choices were determined mainly by the complexity of JavaScript
analysis and our aim at building a useful tool, which in turn led us to sacrifice

soundness.

4.4 Implementation and Evaluation

VEX is implemented in Java (~ 7000 LOC), and utilizes a JavaScript parser
built using the ANTLR parser generator for the JavaScript 1.5 grammar provided
by ANTLR [65]. ANTLR outputs Java-based Abstract Syntax Trees (AST) for
JavaScript sources obtained from the pre-processing of the extension’s XUL and
JavaScript files. The XUL files add different UI elements to the browser’s chrome.
When any one of the user-interface elements is invoked and clicked, the corre-
sponding event is triggered and the event-handler is called. We extract all such
calls to the event-handlers from the XUL files and run them using VEX’s abstract
operational semantics.

During the execution of the program using the abstract operational semantics
outlined in Section [4.3] if the program reaches a vulnerable sink, it checks if the
inputs or assignments to the sink are tainted. If they are tainted, VEX reports the
occurrence of the flow along with the source objects and sink locations in the code.
The source objects are the objects described in Section #.2) and the sink locations
are the points where the sinks described in Section [4.2]are encountered during the

execution. The rest of this section summarizes our results.

88

The number of loop unrollings can be set as a parameter in the VEX analysis
engine (in our experiments, a bound of just one was used). The VEX implementa-
tion has a number of optimizations to improve memory usage and speed. To save
memory, abstract heaps are freed when backtracking in the depth-first search. But
to save time, abstract heaps at join points are cached and compared when other

paths hit these points, to avoid exploring paths unnecessarily.

4.4.1 Evaluation Methodology

The extensions we analyzed were chosen as follows. First, in October 2008, we
built a suite of extensions using a random sample of 1828 extensions from the
Mozilla add-ons web site, by downloading the first extensions in alphabetical or-
der for all subject categories. This extension suite had 2 extensions with known
vulnerabilities. In November 2009, we downloaded 699 of the most popular ex-
tensions and 8 extensions with known vulnerabilities. In April 2011, we down-
loaded 2082 popular extensions. The random sample and the popular extensions
had 314 extensions in common, for a total of 4303 extensions. Our suite includes
multiple versions of some extensions, allowing cross-version comparisons. For
instance, we found a new version of the FizZLE, to be vulnerable even though its
authors tried to fix the vulnerabilities in the previous version.

We extracted the JavaScript files from these extensions and ran VEX on them,
using a 2.4GHz 64 bit x86 processor with a maximum heap size of 16GB for the
JVM.

To evaluate the effectiveness of VEX, we perform two kinds of experiments.
First, we run VEX on the downloaded extensions and check if any of them have
one of the malicious flow patterns. Second, we check if VEX can detect known

extension vulnerabilities.

4.4.2 Experimental Results

Finding flows from injectible sources to executable sinks: Figure 4.29| sum-
marizes the experimental results for flows that are from injectible sources to exe-
cutable sinks (flows for which the sinks are eval and innerHTML). Of the 4303
extensions analyzed by VEX, a grep showed that a total of 1498 extensions had

the occurrence of either the string “eval (* or the string “innerHTML” or both.

89

1T 1T 01 | L1 SL |6 [es1 | [eoy, |
| S € L 9¢ 0 w TWIHISUUT 0) Uumouun)
0 ! 1 0 0 0 ré THIHIouuT 0) epoNdndod
0 0 0 I I1 0 4! TWIHISUUT 0) sJoid
0 0 0 I I %S L THIHISUUT 0) JOY
C Sl € 14 0 x1 Y4 TWIHISUUT 0) 50(J JUAU0))
19! 0 ¢ [4 91 0 9¢ TEeAS 0] JEA UMOUYU[)
0 0 0 4 6 %1 4! TeA® 0] SJId
€ 0 0 0 14! %C L1 TeAS 0] 30(J JU2JU0D)
ansqom | waiskgy

smoyf syu1s mdui pPaISNAI D | UOISUIIXTT/1IS))
JUDISIXI-UON | QUWLOAYI-UON | PIZNIUDS || §1 204N0S' | WLOLf 224NOF pautifuo)) || SUAY

J[qeyoeny 10N Jrqeyoeny XdA uIaned MOo[

* Attackable Extensions are listed in Section 4.4.2]

Flows from Injectible Sources to Executable Sinks.

Figure 4.29:

90

The first column of Figure 4.29| indicates the exact source to sink flow pattern
checked by VEX. The second column indicates the number of extensions on which
VEX reports an alert with corresponding flows. On an average, VEX took 11.5
seconds per extension. It took about a week to analyze all the extensions with
flows from untrusted sources to eval and innerHTML sinks.

To look for potential attacks, we manually analyzed the extensions with sus-
pect flows found by VEX, spending about 20 minutes per extension on average.
The next column reports the number of extensions on which we could engineer
an attack based on the flows reported by VEX. We were able to attack nine ex-
tensions, of which only two extensions (FIZZLE VERSION 0.5 and BEATNIK V-1.0)
were already known to be vulnerable. The rest of the attacks are new.

The next column shows the extensions where the source is provided either by
the extension user or the extension developer or computed from the system param-
eters by the extension. The values are either stored in the preferences or in a local
file. Since we trust the users and extension developers in our trust model, these
extensions are considered to be non-vulnerable. However, if the preferences file
or the local file system is corrupted in any way, these extensions can be attacked.

The fifth column shows the extensions where the source is code from a web site,
and where an attack is possible provided the web site can be attacked. In other
words, these extensions rely on a trusted web site assumption (e.g., that the code
on the Facebook website is safe). We think that these are valid warnings that users
of an extension (and Mozilla) should be aware of; trusted web sites can after all
be compromised, and the code on these sites can be changed leading to an attack
on all users of such an extension.

Not all flows lead to attacks— the next set of columns describe the alerts that we
were unable to convert to concrete attacks. Some extensions were not exploitable
as the input is sanitized correctly (either by the extension or the browser), prevent-
ing JavaScript injection. Others extensions were not exploitable as the sinks were
not in chrome executable contexts. These extensions are noted in the next two
columns. Finally, VEX, being a static flow-analysis tool, does report alerts about
flows that do not actually exist— there were very few of these, and are noted un-
der the column “Non-existent flows”. Section4.4.4]discusses the flows that do not

lead to attacks.

New vulnerabilities discovered: The number of security vulnerabilities discov-

ered are shown in column 3 in Figure[4.29] of which 7 are new. WIKIPEDIA TOOL-

91

BAR versions v-0.5.7 and v-0.5.9 have flows from window.content.document to
eval, which leads to attacks. MOUSE GESTURES REDOX v-2.0.3 has flows from
nsIPrefService to eval, which also led to an attack. BEATNIK V-1.2, FIZZLE V-
0.5.1, and F1zzLE v-0.5.2 are also attackable, and have flows from nsIRDFService
to innerHTML. KA1zou v-0.5.8 has a flow from window.content.document to
innerHTML which leads to attacks. Section[4.4.3] gives some details about the the

flows and the attacks in some of the vulnerable extensions.

Known vulnerabilities detected: Apart from the new vulnerabilities found by
VEX, there are several extensions that have been reported to be vulnerable in the
past. In the course of our research, we found 18 unique extensions that were
reported to be vulnerable in various databases like CVE, Secunia, etc. Of these
18, we did not find the source code for five extensions (GREASEMONKEY v<0.3.5,
Wizz Rss v<3.1.0.0, SKYPE v<3.8.0.188, MOUSEOVERDICTIONARY v<0.6.2, POW
v<0.0.9), so we did not analyze them. Of the remaining 13 extensions, we found
that 10 of them can potentially be found using explicit information flow analysis
techniques, like VEX.

Currently, VEX can detect 5 of the above 10 known extension that have flow-
based vulnerabilities: F1ZZLE v-0.5, BEATNIK V-1.0, COOLPREVIEWS V-2.7,2.7.2,
INFORSS v-<=1.1.4.2, and SAGE V- < 1.3.9, <=1.4.3. COOLPREVIEWS has
flows from document.popupNode to appendChild. INFORSS has flows from
nsIRDFService to appendChild. SAGE has flows from BookmarksUtils to an
object accessing the local file system using the nsIFile interface.

The remaining 5 extensions have flow vulnerabilities but were not found by
VEX for the following reasons. For FEEDSIDEBAR V< 3.2, FIREBUG Vv-1.01,
SCRIBEFIRE V<= 3.4.2, and UPDATE SCANNER V| 3.0.3 the trigger of the flow
was in an event handler or a function call which was called outside the extension’s
code base. In YOONO version < 6.1.1 an un-sanitized JavaScript element like an
image or link is rendered in the chrome context. However, it was difficult to find
the source and sink objects from its source code.

Finally, there were three extension vulnerabilities (for which we had the source)
that cannot be found by VEX because they are not flow vulnerabilities. These vul-
nerabilities include attacks on a file server (e.g.,FIREFTP v<0.97.2, < 1.04), and
directory traversal attacks (e.g.,NAVIGATIONAL SOUNDS version-1.0.2, AJAX YAHOO
MAIL VIAMATIC WEBMAIL version-0.9) when a chrome package is “flat” rather

than contained in a .jar. In both the above cases, an attacker can escape from the

92

extension’s directory and read files in a predictable location on the disk. Since
such attacks are not related to chrome privilege escalations, and VEX does not
handle them.

4.4.3 Successful Attacks

Attack scripts: All our attack scenarios involve a user who has installed a vulner-

able extension who visits a malicious page, and either automatically or through
invoking the extension, triggers script written on the malicious page to execute in
the chrome context. Figure 4.30]illustrates an attack payload that can be used in
such attacks: this script displays the folders and files in the root directory. The
attack payloads could be much more dangerous, where the attacker could gain
complete control of the affected computer using XPCOM API functions. More
examples of such payloads are enumerated in the white-paper given in [66]. In

this section, we illustrate a few attacks on extensions with previously unknown

vulnerabilities.
<script>
var root = Components.classes
["@mozilla.org/file/local;1"] .createlInstance
(Components.interfaces.nsILocalFile);
try {

root.initWithPath("/."); // for Linux or Mac
}catch (er){
root.initWithPath ("\\\\."); // for Windows

var drivesEnum = root.directoryEntries, drives = [];
while (drivesEnum.hasMoreElements ()) {

drives.push (drivesEnum.getNext () .
QueryInterface (Components.
interfaces.nsILocalFile) .path);

}
alert (drives);
</script>

Figure 4.30: Attack Script to Display Directories

Wikipedia Toolbar, up to version 0.5.9: If a user visits a web page with the di-

rectory display attack script in its <head> tag, and clicks on one of the Wikipedia

toolbar buttons (unwatch, purge, etc.), the script executes in the chrome context.

93

The attack works because the extension has the code given in Figure [d.31] in its

toolbar.js file.

script = window._content.document.
getElement sByTagName (‘' ‘script") [0] .innerHTML;
eval (script);

Figure 4.31: Wikipedia Toolbar Code

The first line gets the first <script> element from the web page and executes
it using eval. The extension developer assumes the user only clicks the buttons
when a Wikipedia page is open, in which case <script> may not be malicious.
But the user might be fooled by a malicious Wikipedia spoof page, or accidentally
press the button on some other page. VEX led us to this previously unknown
attack, which we reported to the developers, who acknowledged it, patched it, and
released a new version. This resulted in a new CVE vulnerability (CVE-2009-
41-27). The fix involved inserting a conditional in the program to check if the
URL of the page is in Wikipedia’s domain and evaluating the script only if this is

true.

Fizzle versions 0.5, 0.5.1, 0.5.2
F1zzLE is a RSS/Atom feed reader that uses Livemark bookmark feeds. Vul-
nerability report CVE-2007-1678 explains that F1ZZLE VER.0.5 allows remote

attackers to inject arbitrary web scripts or HTML via RSS feeds. F1zZLE’s RSS
feeds are obtained from the bookmarks’ RDF resource, using the XPCOM RDF
service. The author of F1ZZLE purportedly fixed this vulnerability in the next
version; however, VEX signaled the presence of a flow, and we found that the san-
itization routine that the programmer wrote was flawed, and the extension can be
attacked using suitably encoded scripts. These new attacks for FIZZLE VER 0.5.1
and F1zZLE VER 0.5.2 were not known before, to the best of our knowledge.
Figure[d.32]gives a highly simplified version of FIZZLE, to show its information
flows. When the user clicks on the FIZZLE extension toolbar to see the feeds,
F1ZZLE is initialized, i.e., sys.startup () on line 15 is called. This method
loads the bookmarks from the Firefox bookmarks folder. The title and URL of
the feeds are obtained from the bookmarks’ RDF resource and then stored in an
array in FIZZLE when bookmarks.load () is called. After the bookmarks
are loaded, ui.buildFeedList () is called. In this method, the bookmark

array is accessed on line 24 and the elements are added to a variable named html

94

bookmarks.js:

1. function Bookmarks(){

2. var bookmarks =new Array();

3. this.load = function(){

4. bookmarks =new Array();

5. var rdf=Components.classes[
“@mozilla.org/rdf/rdf-service;1”’]
.getService(Components.interfaces.nsIRDFService);

6. var bmds = rdf.GetDataSource(”’rdf:bookmarks”);

7. var iter = bmds.GetAllResources();

8. while (iter.hasMoreElements()){

9. var element = iter.getNext();

10. bookmarks.push(

{name:element.name, url:element.url});

1.} }}

Sys.js:
12. var sys=new Sys();
13. function Sys() {

14. var bookmarks =null;
15. this.startup = function() {
16. bookmarks = new Bookmarks();

17. bookmarks.load();
18. ui.buildFeedList(); }
19. this.getBookmarks(){

20. return bookmarks; } }
ui.js:
21. var ui=new Ui();

22. function Ui(){
23. this.buildFeedList = function() {
24, var bm = sys.getBookmarks();

25. for (var i=0;i<bm.size(); i++) {
26. var mark = bm.get(i);
27. html += <p> mark.name; }

28. divinnerHTML = html; } }

Figure 4.32: F1zZLE vulnerability code.

on line 27. This html variable is then assigned to the innerHTML property of
the (div) tag of an HTML page. This page is then displayed in a frame in the
browser. The attack happens when a malicious RDF file is loaded, where the
name element of the feed contains JavaScript. Assigning a specially crafted script
to the innerHTML property at line 28 results in the script being executed under

chrome privileges.

95

To detect this kind of attack, we must be able to determine that the information
that flows into the htm1 variable and eventually into the innerHTML property is
from the bookmarks’ RDF resource. It is difficult to detect this manually, because
most extensions are encoded in many separate JavaScript files spread across mul-
tiple directories, and the routines defined in these files have complex interactions
with each other. Even the example shown in Figure {.32] is spread over three
different JavaScript files, and we have omitted many lines of code from the func-
tions shown. As mentioned earlier, VEX users can define summaries for library
functions, or just rely on default summaries. Given a function summary for the
push method of the Array object defined in the XPCOM library, VEX detects
that F1ZZLE has flows from the RDF service to innerHTML.

Beatnik version 1.2

BEATNIK is another RSS reader with the same kind of problematic flow as Fiz-
ZLE, documented in CVE-2007-3110 for BEATNIK version 1.0. In the Mozilla
add-ons page for the subsequent version of BEATNIK, the extension developer
said he had sanitized the RSS feed input. VEX found that there were still flows
from the bookmarks’ RDF to the innerHTML property in BEATNIK version 1.2,
because VEX currently does not consider declassification via sanitization. Our
manual examination showed the new sanitization to be inadequate. The saniti-
zation parses the feed input and checks whether the nodes contain script. If the
feed contains only text nodes, it is appended to the RSS feed title; otherwise it is
discarded. By encoding the (and) tags as their HTML entity names, we can fool

this routine. If we name the RSS feed as follows:

Title < /a >< img src = " "
onerror= 'CODE FROM FIGURE [.30 & gt; Beatnik
< /img> < a >

the string is converted into

Title < img src =" " onerror= ’'CODE FROM
FIGURE(4.30] > Beatnik <a>

and results in an attack. To the best of our knowledge, this attack has not been
reported thus far. One must understand the extension code to form these attack
strings; in this case, the <a> tag had to be closed at the beginning of the string

and opened again at the end for the script to work.

96

Kaizou v- 0.5.8: Kaizou is a web development extension that allows users to open

the source of any web page in a separate window, modify the contents and render it
again in the current window by pressing a button. However, this separate window
has chrome privileges, and when the user saves the changes he made to the page
source, the scripts in the page are executed with chrome privileges. A malicious
web page can have an attack script, which could result in an attack when modified

using KAI1zou.

Mouse Gestures Redox v-2.0.3: The MOUSE GESTURES REDOX extension allows

users to create shortcuts for frequently used commands without using keyboard,
menu or toolbars. The users can either create new gestures or download them
from an online source. The new gestures are scripts, which are stored in the
browser’s preferences file. When the gestures are enabled, they are retrieved from
the prefs.js file and sent as arguments to the eval () function, thereby activating
the gestures. If any of the gestures downloaded from the internet contain attack

scripts, they would be executed in the chrome context when eval is called.

4.4.4 Flows That Do Not Result in Attacks

Figure[d.33|gives several examples of the suspect flows that we manually analyzed
and for which either trusted sources were assumed by the extension or we could
not find attacks.

The first set has extensions accessing values from web-sites or sources it trusts,
and the values flow to eval or innerHTML. Of course, if the trusted sources
are compromised, then the extensions may become vulnerable. The second set
illustrates examples where the input was sanitized between the source and the
sink. We do not know for sure that the sanitization is adequate, but we were
unable to attack it. The third set of extensions had non-chrome sinks. The last set
has two examples that show false positives where the flows reported by VEX do

not exist in the code.

97

‘weagoxd oy ur
POZI[enIul JOASU SI J[qBLIBA [BUOT)
-IpuOd Y} Se uIs 9y} Sey eyl
[ouelq 9y} MO[[0J AU [[IM UOTS
-U9)Xd U} ‘UOIINO9Xe Ay} FJurng

TWIHISUUT
0] JeA umouyun)

60020160 1°0-A NTIADSIINS

‘Suins pasted Ap30e1100Ur SIY) UI
J[qelIBA UMOUNUN U SPUy XdA
‘A[Iadoid osred jou pnodo XdaA
jeyy Suwns jduogeael poyrun
pue payoed e s1juowngie s, TeAS

TeA®
0] IeA UMOUU)

1°7°8°0-A LITV NI

smop
JUQ)STXS-UON

JodKy

-JUAU09,, 9q 0} pAYJeW ST Inqg [In TWIHISUUT syurs
owoIyd & sey o3ed Aedsip oyJ, | 01 20 IUAUOD 0°€ T-A 441d9Ovd QUIOIYD-UON
s3e) woIsno ojul TWIHISUUT
paznrues are s3e) TNLH indup | 01 oo uQuUO)D L C-A LIVHD dDd9N0S MAIA
1 Surznrues A[QAO9JJ9 sIoquunu TWIHISUUT ndur
0] pajaAu0d st ulgs ndur ayJ, | 01 20 IUANUOD) 7°0-A JOLVIAWNNVHITY pozniueg
| /woD
*spunoxbyoeqissmoiq//
:d2373y 9IS gom 9y} WOl safewt TWILHISUUT 0}
punoidyoeq S[BISUI Iosn YL | @0 TAISSIAUISU | S'€°0-A SANNOYDIOVE YASMOI
*9pod
UOISUQ)Xd QU} OJUl PIPOIPIeY
ST yormym joJuTr=319biuosl IS
/o0 o0 swspTaom//:d33y Tend gqom paisnn
:9)IS goM B ST 90INOS QU] | 0} IeA Uumoudun) T Z-A SIS ATIOM SI 90IN0S

uoneuedxy

wed mopg

uoisua)xy || uonesyisser)

Figure 4.33: Extensions That Could Not be Attacked

98

http://worldsms.co.cc/json?get=info
http://worldsms.co.cc/json?get=info
http://browserbackgrounds.com/
http://browserbackgrounds.com/
http://browserbackgrounds.com/

4.5 Related Work

4.5.1 Firefox Browser Extension Security

Several researchers developed proof-of-concept malicious extensions [67,68]] and
demonstrated how they can be used to perform malicious operations in the brow-
ser. Verdurmen [67] described the extension architecuture and the extension re-
view process. He created two proof of concept malicious extensions: a password
stealer and an extension that performs unauthorized bank transactions.

Ter Louw et al. [68] highlight how a malicious extension can tamper with the
Firefox browser’s code and date. First, a malicious extension can damage the
browser’s codebase integrity by subverting the browsers installation process, tak-
ing control of the borwser, and hiding its presence completely. Second, it can also
read and write users’ confidential data, even if it sent over an encrypted connec-
tion. The authors developed a proof of concept malicious extension, BrowserSpy,
to demonstrate these security risks posed by browser extensions. They propose
a two-pronged solution for preventing these security risks. First, to prevent the
extension from subverting the browser’s code base, they propose to allow the ex-
tension users to sign code that they want to install in their browser. Additionally,
they provide automated tools to allow the user to check the integrity of the code
whenever the user wishes to do so. This ensures that any malicious extension can-
not introduce new code into the signed extension’s code base. Additionally, drive-
by-downloads of extensions are not possible i.e. the extension cannot be modified
without the user noticing the change. Second, they develop a run-time monitor
for the extension code to ensure that extension does not tamper with or steal priv-
ileged resources and content. The authors specified 6 different policies providing
various functionality like: allowing or denying access to a single XPCOM API,
enforcing the same origin policy within the browser extension, denying access to
the password manager, preventing URL history leaks, efc. Arbitrarily assigning
of policies to extensions could lead to problems because even benign extensions
which require the particular behavior can also be blocked. Therefore, the authors
suggest that policies must be assigned on a per-extension basis. Assigning poli-
cies on a per-extension basis could become cumbersome; the user might not even
have the knowledge of what kind of policy to use for a particular extension. Ad-
ditionally, restricted interfaces can still be susceptible to security vulnerabilities if

the policies are not assigned properly.

99

SABRE [21] is a framework for dynamically tracking in-browser information
flows for analyzing JavaScript-based browser extensions. SABRE does this by
associating a security label with every JavaScript object created in the browser
memory. The paper provides a list of sources and sinks tested to check for confi-
dentiality violations. They also have a separate set of sources and sinks to check
for integrity violations. The taints are tracked by modifying the JavaScript inter-
preter such that it tracks information flows during the execution of each JavaScript
instruction. The authors also modified other browser subsystems, including the
DOM subsystem (e.g., HTML, XUL) and XPCOM, to store and propagate secu-
rity labels to allow information flow tracking across browser subsystems. Finally,
the JavaScript interpreter is equipped with a special declassification and endorse-
ment mechanism. Whenever, SABRE reports an information flow violation, an
vetter or a user must decide whether it is an actual security violation or an al-
lowed extension behavior. In the former case, the user can whitelist the flow using
the declassification mechanism. One main feature of SABRE’s information flow
tracking is it facilitates both explicit and certain forms of implicit flow analysis.
Implicit flow analysis is required when the analysis is aiming to find a malicious
extension.

Djeric et al [22] propose another approach to dynamically track taints in both
the browser’s native code and the script interpreter. Their taint tracking algorithm
is extremely similar to that of SABRE, except that the taint checking decisions
are used to allow or deny the execution of JavaScript operations. Therefore this
techniques prevents vulnerabilities from being executed. Another notable differ-
ence between this approach and SABRE is that this approach tracks implicit flows
only in untrusted content. The analysis tracks only the explicit flows in the trusted
browser code and extension code. This ensures that the analysis does not generate
a lot of false positives. However, this means that it only works on trusted code and
will not be able to track malicious extensions that use control flows.

Although dynamic techniques are useful in preventing certain types of script
injection attacks if they are enforced by the web browser, they suffer from a few
drawbacks. First, they impose a performance and memory overhead on the brow-
ser because of the need to keep track of the security label for every JavaScript
object inside the browser. When a questionable flow is detected dynamically, the
browser has to either choose an appropriate action (which might be overly restric-
tive) or ask the user to choose an action (which might lead to an attack if the user

chooses a wrong option).

100

Additionally, it is not possible to completely test all the behaviors of the brow-
ser extensions before deployment using dynamic techniques. This is due to the
fact that it is not easy to create test inputs for JavaScript extension since each
extension takes different kind of input and usually requires keyboard or mouse
events to trigger the extension. Therefore, it is not feasible to find vulnerabilities
before deployment by running the extension on various inputs. These drawbacks

motivated us to find a static alternative to analyze browser extensions.

4.5.2 Security of Extensions to Other Browsers

One of the reasons for extension vulnerabilities in the Firefox web browser is
that the browser architecture is too permissive — it allows every extension to have
the same privileges as the browser. Barth er al [69] examined the 25 most pop-
ular Firefox extensions and found that 88% of them do not need the full set of
privileges available to them. Additionally, 76% of the extensions used an un-
necessarily powerful API, which made it difficult to automatically reduce their
privileges. Based on these experiences, they proposed a new browser extension
architecture which had and API for separating access to the different components
based on the principles of least privilege and privilege separation. The Google
Chrome extension system adopted this new architecture.

Having a good extension architecture is not enough, however. Guha et al [[70]
conducted an analysis of the Chrome extension manifest files and found that this
extension model is not entirely effective in limiting the privileges given to the
browser extensions. This is partly because the API still provide more privileges
than required by the extension. They studied the page access control behavior
of 1,139 extensions. They found that only 17% of the extensions correctly limit
access to only the web pages that they need to access. The rest of the extensions
either use overly permissive wildcard characters to limit page access or request
permissions to access all web pages. This discussion strongly suggests that apart
from the extension architecture and the APIs provided to the extensions, the access
control policy and its implementation in the extension program play a major role in
the security of the system. Guha et al [[/0] propose a new framework for authoring,

analyzing, verifying, and deploying secure browser extensions.

101

4.5.3 Operational Semantics of JavaScript

Maffeis et al [39] proposed a small-step operational semantics for JavaScript, us-
ing which they analyze security properties of web applications. They also use
their operational semantics for generating safe subsets of JavaScript and to manu-
ally prove that the so-called safe subsets of JavaScript are in fact vulnerable to cer-
tain attacks [51]. Our operational semantics follows their operational semantics,
but works on an abstract heap. Guha et al. [38] propose an alternate operational
semantics. Taly et al [40] propose an operational semantics for a restricted and

modified subset of JavaScript.

4.5.4 Comparison With Related Static Analyses of JavaScript

In this section, we give an in-depth overview of the various related works in the
are and compare them with our approach. Each method has its advantages and
disadvantages and it is useful based on the size of the JavaScript program being
evaluated, and also the kind of security properties that need to be verified. Each

method has a different way of dealing with eval and other dynamic features.

SIF: Chugh et al [24] propose a context-insensitive and flow-insensitive static in-
formation flow analysis for JavaScript code called staged information flow analy-
sis, SIF. The SIF information flow analysis infers the effects a piece of JavaScript
has on the information flows in the program in order to ensure that key confiden-
tiality and integrity properties are not violated.

The information flow policy that needs to be satisfied is specified in the form
of sets of pairs of policy elements. A policy element is either a JavaScript pro-
gram variable or an element called a hole (represented as o), which is a place-
holder for evals in the program. A hole represents a piece of code that will
be dynamically generated. Each policy pair represents a flow that is disal-
lowed. The example given in the paper checks for two kinds of flow policies.
A confidentiality policy requires (document.cookie, o) i.e. the value of
document . cookie must not flow into any variable within the code generated
by an eval, since the code can steal this information. An integrity policy requires
(o, document .location) i.e. the value of document .location cannot
be modified by dynamic code obtained from an untrusted source.

Given a JavaScript program, with several accesses to the eval statement, the

SIF static analysis uses a static constraint-based analysis to compute the set of

102

pairs values that can flow into all known variables that are in the same scope as
the hole. These pairs of values could be used to compute two sets (the must not
read(MNR) set and the must not write(MNW) set) representing the confidential-
ity and integrity policy. The MNR set contains all the variables whose value is
affected by the protected source variable (document . cookie in the above ex-
ample). The MNW set contains all the variables whose value could affect the
protected sink (document .location in the above example). The MNR and
MNW sets are called the residual policy. If the code in the hole does not write
any value to the variables in the MNW set and does not read any values from the
MNR set, then the program can be considered to have no vulnerable flows. To en-
sure this, SIF instruments the evals such that whenever the eval is instantiated
the code is checked to find if it adheres to the flow policy. The residual policy
is recomputed if this newly generated code also has a hole. The authors call this
kind of a combination of the static and dynamic analysis staging. Hence the name
SIF.

Some of the notable features of SIF are: SIF tracks both implicit and explicit
flows, which is required since the threat model is of a malicious code executing on
a page. They trust the page author to write the correct confidentiality and integrity
policies to use the analysis. evals are not analyzed statically and are treated as
holes. To decrease the burden of computing a lot of constraints, they make some
simplifications in the contents fo the policy. The policies do not specify general
flows like flows between two variables, one policy component should always be
a hole. Furthermore, the policies cannot be fine-tuned. All the holes have to
adhere to the same policy. The aliasing is very coarse grained. For example, to
prevent access to document . cookie by an alias like tmp = document and
accessing tmp . cookie, every object’s access to the cook ie property is tainted.
This is done because they don’t want to taint the document object, since it will
lead to a lot of false positives. Function bodies are inlined during function calls.
All the fields that can be accessed using the @Proto field are inserted into the
current object. However, this means that fields that are created dynamically will
not be inserted into the object. For their evaluation, they only consider evals as
holes. To handle dynamically created field names, they unrealistically assume that
dynamically created field names are separate from the static field names that are
in the program.

Their context insensitive, flow-insensitive analysis is very imprecise and would

create a lot of false positives if the approach is used in the analysis of Firefox

103

extensions. To show this fact, we obtained a copy of SIF and modified it to build
a new tool called SIFEX [54], which extends SIF to analyze flows in the Fire-
fox browser extensions. In SIFEX, the constraints for DOM and JavaScript core
API are specified. SIFEX analyzed browser extension code for three different
kinds of flows: RDF objects to hole, window.content.document to hole (hole
could be eval or innerHTML). We used SIFEX to analyze 2452 browser ex-
tensions. These extensions had more than 3.8 million lines of JavaScript code.
SIFEX found potential vulnerabilities in 169 extensions. The previous version of
VEX [26] generates 63 vulnerability reports for the same dataset. Therefore, we
can conclude that SIFEX produces more false positives than VEX. We found that

many of the false positives are due to the context-insensitivity of SIFEX.

GATEKEEPER: Guarnieri et al. [25] propose a mostly-static points-to analysis
of JavaScript. The points-to analysis they propose is context-sensitive but flow-
insensitive. The main goal of the points-to analysis is to statically enforce security
and reliability policies for JavaScript code.

Their approch is as follows: First, they identify a subset of JavaScript syn-
tax, JavaScriptsarg, which is amenable to sound and precise points-to analy-
sis. Certain features of JavaScript like assignment to the innerHTML property
and dynamic creation of property names for loads and stores are not amenable
to static analysis. However, they are an integral part of the target programs that
need to be analyzed. Therefore, the authors propose program instrumentation to
ensure that these constructs are safe dynamically. The program instrumentation
encapsulates these constructs in conditionals such that the construct do not intro-
duce dynamic code. Certain constructs like eval, Funct ion object constructor,
settimeout, setinterval, and with construct are not allowed to be in-
troduced in the code. Second, for the subset of JavaScript, they provide rules to
translate each statement in the program representation into a database of facts,
expressed in Datalog notation. Using these translation rules, any program written
in JavaScriptgapg can be converted into a database of facts, which are basically
facts about the program. The rules for the points-to analysis are also given as
Datalog facts. Third, they combine these facts with a representation of the native
environment of the browser to compute the points-to set of the whole-program.

Finally, they formulate several security and reliability policies terms of Datalog
rules which check the points-to sets of the above generated facts for the presence

or absence of certain predicates on the points-to facts in the program. The authors

104

formulate Datalog rules for several such policies including restricting widget ca-
pabilities, making sure built-in objects are not modified, preventing code injection
attempts, redirect and cross-site scripting detection, preventing global namespace
pollution, taint checking, etc.

The primary difference between VEX and GATEKEEPER is that VEX’s points-
to analysis is specifically tailored towards computing taint information. While
GATEKEEPER is a generic points-to analysis for JavaScript. This might be the rea-
son why their taint analysis is very specific. For example, for taint analysis they
show a simple case where a tainted variable directly flows into an executable sink.
However, they do not seem to consider a scenario where the expression is modi-
fied by a function (like a sanitization function) or the value passed to the execution
context is a result of a binary operation on two variables, one tainted and the other
untainted. It is unclear how to write a policy for such a scenario since the authors
don’t state explicitly how to deal with binary operations on variables. Addition-
ally, to generate accurate results for the analysis VEX is both context-sensitive and
flow-sensitive, while GATEKEEPER is context-sensitive but not flow sensitive. In
the paper, the authors conjecture that flow and context sentivity might not make a
lot of difference in the precision. However, in our experience with medium sized
browser-extensions (=8000 LOC on average), we found that context sensitivity
matters a lot and omitting this would produce a lot of false positives [54]]. The
absence of flow-sensitivity would make it hard to reason about the presence of
sanitization routines in one path in the program. The authors prove that GATE-
KEEPER’s points-to analysis is sound for JavaScriptsarp, while we don’t have
any soundness guarantees for VEX. GATEKEEPER programs are not allowed have
eval. In contrast, VEX performs a constant-string analysis to find the value that
could reach the eval function and use this to compute the taint values generated
dynamically by eval. There are some other subtle differences in how we con-
struct a call-graph and some subtle similarities in how we generate summaries for

built-in objects, but these don’t affect the analysis specifically.

ENCAP: Taly et al [40] provide semantics for a subset of JavaScript, SES;; ¢,
which is used for API confinement. In this paper they also propose a static points-
to analysis to prove that any trusted Web sandbox that conforms to the SES;;5.
syntax can be verified to be secure i.e. no interleaved sequence of API method
calls of a JavaScript sandbox returns a direct reference to a security-critical object.

Similar to GATEKEEPER, they encode the SES;;,; program statements into

105

Datalog facts. Using this encoding of program statements, the Web sandbox
API code is converted into Datalog facts. During this conversion, the tool ab-
stracts heap-locations based on their allocation site. The points-to analysis is also
specified in terms of Datalog rules. The analysis is context-insensitive and field-
insensitive. It only supports weak updates, which means that they aggregate values
with each variable and property assignment. The core JavaScript and DOM func-
tions are also encoded as Datalog rules; different from GATEKEEPER and VEX,
which encode them as simplified JavaScript objects. The authors claim that this
improves the precision of the analysis. The attacker is also encoded as a set of
Datalog rules and facts, whose consequence set is an abstraction of the set of all
possible invocations of all the API methods. To test the API confinement, a set of
security critical objects that should not be leaked is specified. Once the combined
set of Datalog rules and facts reach a fixed-point, confinement can be proved by
showing that the security critical objects do not leak to untrusted content. The
authors prove that the points-to analysis is sound.

The main difference between ENCAP and VEX is that ENCAP deals with a
restricted version of JavaScript which is amenable to static analysis. Specifically,
every eval in SES;,,; and some object property loads and stores are associated
with a set of free variables that could be used dynamically. This information
can be used to ensure the soundness of these constructs even though the exact
run-time value is not available statically. The language restrictions ensure that
the variables are lexically scoped and this defines an undefined value. VEX is
defined on the full version of JavaScript and therefore it is hard to give soundness
guarantees about the analysis. The analysis of ENCAP is context-insensitive and
flow-insensitive. This could create a lot of false positives if used to perform an

information flow analysis for programs like browser extensions.

An Analytic Framework for JavaScript: Van Horn et al [[71] propose a reduction

semantics for JavaScript which can be used to systematically derive intensional
abstract interpretations. In the first step, they transformed the operational seman-
tics of JavaScript propsed by Guha et al [38] into an equivalent low level abstract
machine called JavaScript Abstract Machine(JAM). Then they derived a system-
atic abstraction of the entire low-level machine. This abstract machine can be
instantiated to obtaint traditional analyses like k-CFA and Configurable Program
Analysis(CPA). The taint-analysis proposed in this thesis can also be specified

in this framework by associating appropriate abstractions for allocations, loads,

106

stores, and operations on expressions. It will be interesting to see how this will

work in practice.

Acknowledgments This part of the thesis is joint work with Shikhar Agar-
wal, Samuel T. King, P. Madhusudan, Wyatt Pittman, Nandit Tiku, and Marianne
Winslett. We thank Chris Grier and Mike Perry for directing us to the Firefox ex-
tension vulnerabilities. We thank the developers of SIF, Ravi Chugh, Jeff Meister,
Sorin Lerner, and Ranjit Jhala, who graciously allowed us to modify and use their
source code to develop SIFEX. This research was funded in part by NSF CA-
REER award #0747041, NSF grant CNS #0917229, NSF grant CNS #0831212,
grant N0014-09-1-0743 from the Office of Naval Research, and AFOSR MURI
grant FA9550-09-01-0539.

107

Chapter 5

Conclusions

This chapter is organized as follows. Section enumerates the contributions
of the thesis and the lessons learnt from the work. Section 5.2 concludes with

thoughts on the future research directions that this work leads to.

5.1 Conclusions

In this thesis, we described two novel techniques for detection and prevention of
two different kinds of injection flaws. These approaches are based on applying in-
formation flow analysis techniques to program code. Both these approaches detect
the vulnerabilities by inferring the programmers’ intention and checking whether
maliciously crafted inputs could change the program behaviors to generate an at-
tack.

To detect and prevent SQL injection attacks, we have presented a novel tech-
nique, called CANDID, to dynamically deduce the programmer intended structure
of SQL queries. We showed how to use CANDID to effectively transform ap-
plications so that they guard themselves against SQL injection attacks. The key
insight used in CANDID is that the attack inputs change the intended structure of
queries issued. The basis for CANDID s approach is a powerful idea: a symbolic
query computed for a particular execution path can capture the intention of the
programmer.

CANDID computed symbolic queries by generating sample benign inputs and
forcing them to follow the same path as the user input, thereby producing a sam-
ple benign query structure for a particular program path. The program can weed
out malicious queries by comparing the sample benign query structure to queries
produced from actual user inputs. We implemented CANDID on a test suite that
contained seven applications, five of which are commercial, to show strong ev-

idence that CANDID will scale to most web applications. CANDID detected all

108

the 30 different attack patterns that we tested it with. CANDID imposed a modest
performance overhead, ranging from 9% to 43% based on the size of the applica-
tion and the size of the query generated. We also showed that, compared to the
related work, CANDID is more robust in handling sanitization routines, external
library calls, and string manipulation functions. CANDID also handles conditional
queries (queries whose structure depends on the input value) well. We also show
that the benign query structures generated by CANDID are more accurate than
other static approaches because it is flow sensitive and dynamic.

At a more abstract level, the idea of computing a symbolic query on sample
inputs in order to deduce the intentions of the programmer is a powerful idea that
probably has more applications in systems security. There are several approaches
in the literature on mining intentions of programmers from code, as such inten-
tions can be used as specifications for code, and detection of departure from inten-
tions can be used to infer software vulnerabilities and errors [[72, 73, 74]. The idea
of using candidate inputs to mine programmer intentions is intriguing and holds
much promise.

Our key insight to detect cross-context scripting vulnerabilities in Firefox brow-
ser extensions is that extension vulnerabilities often translate into explicit infor-
mation flows from injectable sources to executable sinks. For extensions written
with benign intent, most attacks involved the attacker injecting JavaScript into
a data item that was subsequently executed by the extension under full browser
privileges. In this thesis, we identified key flow patterns of this nature that can
lead to security vulnerabilities.

To detect these key flow patterns in the browser extension source code, we de-
veloped a novel high-precision static information-flow analysis framework for the
JavaScript programming language. The static analysis technique we developed is
context-sensitive, field-sensitive and flow-sensitive. We motivated the requirement
for high precision static analysis by describing the JavaScript semantics in detail
and pointing out the important features of JavaScript that need to be precisely
handled to perform an information flow analysis that does not produce a lot of
false positives, i.e., declare that a vulnerability may exist, when in fact there is no
vulnerability. This analysis has special features to handle the quirks of JavaScript
(e.g., it does a constant string analysis for expressions that flow into the eval
statement that execute dynamically generated code).

Using this new static analysis technique, we developed a tool called VEX,

which can be used for detecting security vulnerabilities in Firefox browser exten-

109

sions. VEX helps in automating the difficult manual process of analyzing browser
extensions, by identifying and reasoning about subtle and potentially malicious
flows. Experiments on thousands of extensions showed that VEX is successful
at identifying flows that indicate potential vulnerabilities. This approach greatly
reduced the number of flows that must be vetted manually. Using VEX, we iden-
tified 7 previously unknown security vulnerabilities and 5 known vulnerabilities,
together with a variety of instances of unsafe programming practices. We also
show that VEX is more precise and thereby generates lesser number of false pos-
itives when compared to other static analysis techniques, which aim to solve the
same problem.

We draw the following conclusions from the thesis:

¢ Information flow analysis techniques can be used effectively to detect and
prevent injection vulnerabilities in web applications. The techniques we
developed in this thesis work on the program source code and require no
annotation from the programmer. These techniques differ from approaches
like model-checking program code, which require the specifications and
program code to be written in a special language that can be used for pro-

gram analysis.

e In case of SQL injection attacks, we believe that the character-level dynamic
tainting and the CANDID approach are the only techniques that promise
a real scalable automatic solution to dynamically detect and prevent SQL
injection attacks. The CANDID approach works particularly well in the case
of web applications where all the input is considered to be a string type.
Additionally, the SQL query generated has to conform to the SQL grammar
and the web application is expecting the input to supply only a part of the
SQL query.

e Cross-context script injection attacks are more complicated than the SQL
injection attacks. In case of cross-context scripting attacks, the extension
takes string inputs from the source. The string inputs could legally be fully
formed scripts. These inputs could be malicious or not based on specific
API used in the input string. Therefore, it is much more difficult to generate
candidate inputs for these attacks. It is very hard to differentiate between
legal and illegal inputs based on the structure of the input string. Therefore,

we developed VEX to detect cross context scripting vulnerabilities based

110

on certain attack patterns instead of detecting the attacks dynamically as in
CANDID.

VEX detects the presence of pre-defined flow patterns in the extension code.
The presence of flow patterns may not lead to actual attacks. This is possible
because of several reasons. One reason could be that the inputs could have
been properly sanitized by explicit sanitization routines in the program by
sanitization API provided by Firefox, or by implicit sanitization associated
with certain JavaScript objects. A second reason could be that the sink
objects are not in the privileged chrome context in the browser. Third reason

could be that the input was obtained from a trusted web site.

The above conclusion suggests that a human vetter is required for the several
reasons. The first is that there is often a big gap between a vulnerability and
an exploit, and it often takes a lot of cleverness and software know-how to
move from a vulnerability to an exploit. The second is that the user knows
the bigger picture of how the code will be used, e.g., whether it is okay to
trust input coming from a particular site. The third is that you had to have
a good understanding of browser architecture and functionality to decide

which info flows to analyze.

VEX is a bug-finding tool. The VEX analysis could result in both false-
positives (report non-existent flows) and false-negatives (fail to report valid
flows). As described in Section 4.3.6] the decision to make a tradeoff be-
tween being completely sound versus having no false negatives was moti-
vated by the JavaScript language semantics and our goal to develop a useful
tool. Like most static analysis techniques, VEX’s precision depends on the
precision of the JavaScript summaries created for the core JavaScript ob-
jects and the DOM methods. Our experimental results show that VEX is

highly successful in detecting attackable vulnerabilities.

111

5.2 Future Research Directions

5.2.1 Generating Attack Inputs

An interesting future direction is to develop automatic ways to synthesize attacks
that exploit injection flaws reported by tools like CANDID and VEX. Using CAN-
DID and VEX, we can deduce the statements in the program which process the
inputs from an untrusted source and assign them to an executable sink. In web
applications, the inputs are usually strings. Most web applications use a combina-
tion of custom API and hand-written sanitization routines to ensure that the strings
do not contain malicious scripts and thereby protect the programs from injection
attacks.

From our experience of looking at the source code of different Firefox browser
extensions, we learned that such sanitization routines can be diverse and hard
to write correctly. There is a need for automated techniques to understand the
sanitization techniques and ensure that they are able to protect the applications
from different kinds of attacks. The two main requirements for the analysis of
the sanitization routines are generating string constraints from the source code
(including the sanitization routines that work on strings), and solving these string
constraints to produce string values that satisfy the constraints. The string thus
generated are malicious, then we can conclude that the sanitization routine is not
correct.

In the literature, symbolic analysis techniques have been used to generate string
constraints from the statements that transform the inputs before they flow into the
sinks. Constraint solving techniques can be used to generate attack inputs that sat-
isfy the generated string constraints. Several approaches based on string constraint
solving have already been proposed for generating test inputs for SQL injection
attacks [75, 76, [7'7, [/8]. These approaches differ in the way that they solve the
string constraints. The approaches either use either automata based techniques
or explicit string constraint solvers on string constraints to generate attack inputs.
Most of these approaches use symbolic analysis techniques to generate the string
constraints that need to be solved.

Generating attack inputs for JavaScript programs is much more complicated.
The JavaScript programming language allows complex string operations. Con-
straints generated for such string operations are difficult to solve. Some complex

string operations that are regularly used in JavaScript programs are:

112

e Containment in regular expressions/context free grammars.
e Common string manipulation functions like replacement and concatenation.

e JavaScript operations like substring and indexof, which generate con-

straints involving the length of strings.

The Kaluza string constraint solver [[/9] is one of the most recent string con-
straint solvers for JavaScript. Kaluza generates the string constraints from the
path conditions and operations obtained by executing a JavaScript web applica-
tion. It supports string operations like concatenation and replacement. Further, it
supports containment in regular expressions. However, one of the major disad-
vantages of Kaluza is that it considers strings of only bounded length and hence
generation of string constraints for attack inputs is not always possible. Although
Kaluza supports a variant of indexof and substring operations, it requires the
fixing of the size values in order to generate constraints. Kaluza obtains these size
values by using the Kudzu tool which executes the program on sample inputs and
extracts the concrete values. It is not clear how to generate constraints statically
in the presence of loops and recursion.

Symbolic analysis is the right step for the analysis of string constraints. How-
ever there is a need for tools that generate string constraints statically (without
dynamic inputs) and also can solve the constraints robustly without regard to the
size of the input and attack strings. There is a requirement for better tools in this

area.

5.2.2 Securing Extensible Software

Extensible software is of growing importance and is being increasingly used. Sev-
eral major browsers, including Firefox, Chrome, IE, and Safari, provide an API for
developing browser extensions. With the advent of smart phones like the iPhone
and the Android, phone applications are also becoming popular. Other examples
of extensible software are social networking applications, and applications that
run on the cloud. Increasingly, web applications are moving towards combining
data from different sources to provide a better user experience. These applica-
tions are written by a few people and downloaded and used by millions of people.

These extensions are a big security concern. If compromised, they can be used to

113

steal users’ private information like email, messages, and address book contents.
They can also violate the integrity of the devices and databases.

This thesis shows how static program analysis for information flows could be
effectively used to find vulnerabilities in browser extensions. A similar kind of
analysis can be applied to other extensible applications. The JavaScript analysis
techniques developed in this thesis can be used to detect and prevent cross-context
scripting attacks and cross-site scripting attacks in other JavaScript based applica-
tions, such as Chrome extensions and client-side JavaScript.

One of the reasons for extension vulnerabilities in the Firefox web browser
is that the browser architecture is too permissive — it allows every extension to
have the same privileges as the browser. Barth ez al [69]] examined the 25 most
popular Firefox extensions and found that 88% of them do not need the full set
of privileges available to them. Additionally, 76% of the extensions used an un-
necessarily powerful API, which made it difficult to automatically reduce their
privileges. Based on these experiences, they proposed a new browser extension
architecture which had and API for separating access to the different components
based on the principles of least privilege and privilege separation. The Google
Chrome extension system adopted this new architecture.

Having a good extension architecture is not enough, however. Guha et al [[70]
conducted an analysis of the Chrome extension manifest files and found that this
extension model is not entirely effective in limiting the privileges given to the
browser extensions. This is partly because the API still provide more privileges
than required by the extension. They studied the page access control behavior
of 1,139 extensions. They found that only 17% of the extensions correctly limit
access to only the web pages that they need to access. The rest of the extensions
either use overly permissive wildcard characters to limit page access or request
permissions to access all web pages. This discussion strongly suggests that apart
from the extension architecture and the APIs provided to the extensions, the access
control policy and its implementation in the extension program play a major role in
the security of the system. Guha et al [[70] propose a new framework for authoring,
analyzing, verifying, and deploying secure browser extensions.

In conclusion, securing extensible software requires a three pronged approach
requiring design of new application architectures (including secure APIs and pro-
gramming language abstractions), new policy language design, and new analy-
sis techniques. Extensible architectures should be designed with careful thought

given to the APIs that are being exposed to the extensions. There is also a need for

114

new programming languages developed with security as a design goal. These new
languages should make authoring and analyzing secure programs an easy process.
There is a requirement for new policy languages that are easy to understand and
that could be used to describe the different security requirements of the differ-
ent components of an extensible application. Given the security policies and a
program, new analysis techniques should be developed which would efficiently

ensure that the program satisfies the security policies.

115

References

[1] The Open Web Application Security Project (OWASP), “OWASP top 10
web application security risks in year 2010,” https://www.owasp.org/index.
php/Top_10_2010-Main.

[2] R. S. Liverani, “Cross context scripting with Firefox,” April 2010,
http://www.security-assessment.com/files/documents/whitepapers/
Cross_Context_Scripting_with_Firefox.pdf.

[3] K. J. Biba, “Integrity considerations for secure computer systems,” USAF
Electronic Systems Division, Bedford, MA, Tech. Rep. ESD-TR-76-372,
Apr. 1977.

[4] A. Sabelfeld and A. C. Myers, “Language-based information-flow security,”
IEEE Journal on Selected Areas in Communications, vol. 21, 2003.

[5] C. Anley, “Advanced SQL injection in SQL server applications, White paper,
Next Generation Security Software Ltd.” Tech. Rep., 2002.

[6] O. Maor and A. Shulman, “SQL injection signatures eva-
sion. White paper, Imperva,” Tech. Rep., 2002. [Online]. Avail-
able: http://www.imperva.com/application_defense_center/white_papers/
sql_injection_signatures_evasion.html

[7] Y. Xie and A. Aiken, “Static detection of security vulnerabilities in scripting
languages,” in Proceedings of the 15th USENIX Security Symposium, July
2006, pp. 179-192.

[8] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in
java applications with static analysis,” in Proceedings of the 14th
conference on USENIX Security Symposium - Volume 14. Berkeley,
CA, USA: USENIX Association, 2005. [Online]. Available: http:
/lportal.acm.org/citation.cfm?1d=1251398.1251416/ pp. 18-18.

[9] T. Pietraszek and C. V. Berghe, “Defending against injection attacks through
context-sensitive string evaluation,” 2005.

[10] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans, “Au-
tomatically hardening web applications using precise tainting,” in 20th IFIP
International Information Security Conference, 2005.

116

https://www.owasp.org/index.php/Top_10_2010-Main
https://www.owasp.org/index.php/Top_10_2010-Main
http://www.security-assessment.com/files/documents/whitepapers/Cross_Context_Scripting_with_Firefox.pdf
http://www.security-assessment.com/files/documents/whitepapers/Cross_Context_Scripting_with_Firefox.pdf
http://www.imperva.com/application_defense_center/white_papers/sql_injection_signatures_evasion.html
http://www.imperva.com/application_defense_center/white_papers/sql_injection_signatures_evasion.html
http://portal.acm.org/citation.cfm?id=1251398.1251416
http://portal.acm.org/citation.cfm?id=1251398.1251416

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

W. Xu, S. Bhatkar, and R. Sekar, “Taint-enhanced policy enforcement: A
practical approach to defeat a wide range of attacks,” 2006.

Z. Su and G. Wassermann, “The essence of command injection attacks in
web applications,” January 2006.

W. G. Halfond, J. Viegas, and A. Orso, “A Classification of SQL-Injection
Attacks and Countermeasures,” in Proc. of the International Symposium on
Secure Software Engineering, Mar. 2006.

W. Halfond and A. Orso, “AMNESIA: Analysis and monitoring for neutral-
izing SQL-injection,” 2005.

F. Valeur, D. Mutz, and G. Vigna, “A learning-based approach to the de-
tection of SQL attacks,” in Proceedings of the Conference on Detection of
Intrusions and Malware Vulnerability Assessment, 2005.

W. Halfond, A. Orso, and P. Manolios, “Using positive tainting and syntax-
aware evaluation to counter SQL injection attacks,” in Proceedings of the
Twelfth ACM SIGSOFT Symposium on Foundations of Software Engineer-
ing, 2006.

G. Buehrer, B. W. Weide, and P. A. G. Sivilotti, “Using parse tree valida-
tion to prevent SQL injection attacks,” in SEM ’05: Proceedings of the 5th
international workshop on Software engineering and middleware, 2005.

S. Bandhakavi, P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan, “CAN-
DID: Preventing SQL Injection Attacks Using Dynamic Candidate Evalua-
tions,” in CCS ’07: Proceedings of the 14th ACM conference on Computer
and communications security. New York, NY, USA: ACM, 2007, pp. 12—
24.

D. Yu, A. Chander, N. Islam, and I. Serikov, “Javascript instrumentation for
browser security,” in POPL ’07. New York, NY, USA: ACM, 2007, pp.
237-249.

H. Kikuchi, D. Yu, A. Chander, H. Inamura, and I. Serikov, “Javascript in-
strumentation in practice,” in APLAS °08. Berlin, Heidelberg: Springer-

Verlag, 2008, pp. 326-341.

M. Dhawan and V. Ganapathy, “Analyzing information flow in javascript-
based browser extensions,” in ACSAC’09: Proceedings of the 25th Annual
Computer Security Applications Conference. =~ Honolulu, Hawaii, USA:
IEEE Computer Society Press, Los Alamitos, California, USA, Decem-
ber 2009, http://doi.ieeecomputersociety.org/10.1109/ACSAC.2009.43. pp.
382-391.

117

[22] V.Djeric and A. Goel, “Securing script-based extensibility in web browsers,”
in Proceedings of the 19th USENIX conference on Security, ser. USENIX
Security’10. Berkeley, CA, USA: USENIX Association, 2010. [Online].
Available: http://portal.acm.org/citation.cfm?1d=1929820.1929851 pp. 355—
370.

[23] M. Ter Louw, J. S. Lim, and V. N. Venkatakrishnan, “Extensible web brow-
ser security,” Lucerne, Switzerland, 2007.

[24] R. Chugh, J. Meister, S. Lerner, and R. Jhala, “Staged information flow for
javascript,” in Proceedings of the 2009 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, M. Hind and A. Diwan,
Eds., no. 978-1-60558-392-1. Dublin, Ireland: ACM, June 15-21 2009, pp.
50-62.

[25] S. Guarnieri and B. Livshits, “Gatekeeper: Mostly static enforcement of se-
curity and reliability policies for javascript code,” in Proceedings of USENIX
Security °09, 2009, pp. 151-168.

[26] S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslett, “Vex:
vetting browser extensions for security vulnerabilities,” in Proceedings
of the 19th USENIX conference on Security, ser. USENIX Security’10.
Berkeley, CA, USA: USENIX Association, 2010. [Online]. Available:
http://portal.acm.org/citation.cfm?1d=1929820.1929850 pp. 22-22.

[27] K. K. Mookhey and N. Burghate, “Detection of SQL Injection and Cross-
site Scripting Attacks.” [Online]. Available: http://www.symantec.com/
connect/articles/detection-sql-injection-and-cross-site-scripting-attacks

[28] RSnake, “XSS Cheat Sheet.” [Online]. Available: http://ha.ckers.org/xss.
html

[29] January 16 2005. [Online]. Available: http://packetstormsecurity.org/UNIX/
misc/fuzzer-1.1.tar.gz

[30] J. Ruderman, “Introducing jsfunfuzz.” [Online]. Available: http://www.
squarefree.com/2007/08/02/introducing- jsfunfuzz/

[31] [Online]. Available: http://www.businessinfo.co.uk/labs/jsfuzz/fuzz.php

[32] J. Adriaans and P. Laguna, “HackBar.”” [Online]. Available: https:
/laddons.mozilla.org/en-US/firefox/addon/hackbar/

[33] Security Compass, “XSS Me.” [Online]. Available: https://addons.mozilla.
org/en-US/firefox/addon/xss-me/

[34] Security Compass, “SQL Inject Me.” [Online]. Available: https:
/laddons.mozilla.org/en-US/firefox/addon/sql-inject-me/

118

http://portal.acm.org/citation.cfm?id=1929820.1929851
http://portal.acm.org/citation.cfm?id=1929820.1929850
http://www.symantec.com/connect/articles/detection-sql-injection-and-cross-site-scripting-attacks
http://www.symantec.com/connect/articles/detection-sql-injection-and-cross-site-scripting-attacks
http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://packetstormsecurity.org/UNIX/misc/fuzzer-1.1.tar.gz
http://packetstormsecurity.org/UNIX/misc/fuzzer-1.1.tar.gz
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
http://www.businessinfo.co.uk/labs/jsfuzz/fuzz.php
https://addons.mozilla.org/en-US/firefox/addon/hackbar/
https://addons.mozilla.org/en-US/firefox/addon/hackbar/
https://addons.mozilla.org/en-US/firefox/addon/xss-me/
https://addons.mozilla.org/en-US/firefox/addon/xss-me/
https://addons.mozilla.org/en-US/firefox/addon/sql-inject-me/
https://addons.mozilla.org/en-US/firefox/addon/sql-inject-me/

[35] Francois Larouche, “SQL Power Injector.” [Online]. Available: http:
/Iwww.sqlpowerinjector.com/

[36] D. Flanagan, JavaScript: The Definitive Guide, 4th ed. O’Reilly Media,
2001, no. 0-596-00048-0.

[37] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet, and R. Berg, “Ibm
javascript security test suite.” [Online]. Available: https://researcher.ibm.
com/researcher/view_page.php?1d=1598

[38] A. Guha, C. Saftoiu, and S. Krishnamurthi, “The essence of javascript,’
in Proceedings of the 24th European conference on Object-oriented
programming, ser. ECOOP’10. Berlin, Heidelberg: Springer-Verlag,
2010. [Online]. Available: http://portal.acm.org/citation.cfm?1d=1883978.
1883988 pp. 126-150.

[39] S. Maffeis, J. Mitchell, and A. Taly, “An operational semantics for
JavaScript,” in Proc. of APLAS 08, ser. LNCS, vol. 5356, 2008, pp. 307—
325.

[40] A. Taly, U. Erlingsson, M. S. Miller, J. C. Mitchell, and J. Nagra, “Auto-
mated analysis of security-critical javascript apis,” in IEEE Security & Pri-
vacy (Oakland conference), 2011.

[41] J. Politz, S. A. Eliopoulos, A. Guha, and S. Krishnamurthi, “Adsafety: Type-
based verification of javascript sandboxing,” in USENIX Security, 2011.

[42] C. Saftoiu, “Jstrace: Run-time type discovery for javascript,” May 2010.

[43] P. Thiemann, “Towards a type system for analyzing javascript programs,” in
European Symposium on Programming, 2005, pp. 408—422.

[44] S. H. Jensen, A. Mgller, and P. Thiemann, “Type analysis for JavaScript,” in
Proc. 16th International Static Analysis Symposium (SAS), ser. LNCS, vol.
5673. Springer-Verlag, August 2009.

[45] C. Anderson and P. Giannini, “Type checking for javascript,” Electronic
Notes in Theoretical Computer Science, vol. 138, pp. 37-58, 2005.

[46] B. Weber, “Type safety for javascript.”

[47]1 A. Guha, C. Saftoiu, and S. Krishnamurthi, “Typing local control
and state using flow analysis,” in Proceedings of the 20th European
conference on Programming languages and systems: part of the
joint European conferences on theory and practice of software, ser.
ESOP’11/ETAPS’11. Berlin, Heidelberg: Springer-Verlag, 2011. [Online].
Available: http://portal.acm.org/citation.cfm?1d=1987211.1987225 pp. 256—
275.

119

http://www.sqlpowerinjector.com/
http://www.sqlpowerinjector.com/
https://researcher.ibm.com/researcher/view_page.php?id=1598
https://researcher.ibm.com/researcher/view_page.php?id=1598
http://portal.acm.org/citation.cfm?id=1883978.1883988
http://portal.acm.org/citation.cfm?id=1883978.1883988
http://portal.acm.org/citation.cfm?id=1987211.1987225

[48] B. Livshits and S. Guarnieri, “Gulfstream: Incremental static analysis for
streaming javascript applications,” 2010.

[49] A. Guha, S. Krishnamurthi, and T. Jim, “Using static analysis for ajax
intrusion detection,” in Proceedings of the 18th international conference
on World wide web, ser. WWW ’09. New York, NY, USA: ACM,
2009. [Online]. Available: http://dot.acm.org/10.1145/1526709.1526785
pp- 561-570.

[50] S. Maffeis, J. Mitchell, and A. Taly, “Isolating javascript with filters, rewrit-
ing, and wrappers,” in Proc of ESORICS’09. LNCS, 20009.

[51] S. Maffeis and A. Taly, “Language-based Isolation of Untrusted JavaScript,”
in In Proceedings of Computer Security Foundations, ser. IEEE, 2009,
See also: Dep. of Computing, Imperial College London, Technical Report
DTRO09-3, 2009.

[52] S. Mafteis, J. Mitchell, and A. Taly, “Object capabilities and isolation of un-
trusted web applications,” in Proc of IEEE Security and Privacy’10. 1EEE,
2010.

[53] S. Maffeis, J. Mitchell, and A. Taly, “Run-time enforcement of secure
javascript subsets,” in Proc of W2SP’09. 1EEE, 2009.

[54] S. Agarwal, S. Bandhakavi, and M. Winslett, “SIFEX: Tool for static analy-
sis of browser extensions for security vulnerabilities,” Poster at Annual Com-
puter Security Applications Conference, December 2010.

[55] “Soot: a java optimization framework,” http://www.sable.mcgill.ca/soot/.
[56] “Online SQL syntax checker,” http://www.wangz.net/gsqlparser/sqlpp/sqlformat.htm.
[57] Apache, “The JMeter project,” http://jakarta.apache.org/jmeter/.

[58] R. A. McClure and I. H. Kruger, “Sql dom: compile time checking of dy-
namic sql statements,” in ICSE ’05: Proceedings of the 27th international
conference on Software engineering, 2005.

[59] W. Cook and S. Rai, “Safe query objects: Statically-typed objects as
remotely-executable queries,” in ICSE ’05: Proceedings of the 27th inter-
national conference on Software engineering, 2005.

[60] S. W. Boyd and A. D. Keromytis, “SQLrand: Preventing SQL injection at-
tacks,” 2004, pp. 292-302.

[61] TAOSS, “NoScript Firefox extension,” http://noscript.net/.

[62] A. Boodman, “The Greasemonkey Firefox extension,”
https://addons.mozilla.org/en-US/firefox/addon/748.

120

http://doi.acm.org/10.1145/1526709.1526785

[63] R. S. Liverani and N. Freeman, “Abusing Firefox extensions, Defcon 17,7
July 2009.

[64] C. Waterson, “RDF in fifty words or less,”
https://developer.mozilla.org/en/RDF _in_Fifty_Words_or_Less.

[65] “ANTLR Parser Generator,” http://www.antlr.org.

[66] N. Freeman and R. S. Liverani, “Exploiting cross context scripting vulner-
abilities in Firefox,” April 2010, http://www.security-assessment.com/files/
whitepapers/Exploiting_Cross_Context_Scripting_vulnerabilities_in_Firefox.
pdf.

[67] J. Verdurmen, “Firefox extension security,” Radboud University Nijmegen,
The Netherlands, 2008, Undergraduate Thesis.

[68] M. T. Louw, J. S. Lim, and V. N. Venkatakrishnan, “Enhancing web brow-
ser security against malware extensions,’ in Journal in Computer Virology,
vol. 4, no. 3, 2008, pp. 179-195.

[69] A. Barth, A. P. Felt, P. Saxena, and A. Boodman, “Protecting browsers from
extension vulnerabilities,” in Network and Distributed System Security Sym-
posium (NDSS), vol. 17, February 2010.

[70] A. Guha, M. Fredrikson, B. Livshits, and N. Swamy, “Verified security for
browser extensions,” in Symposium on Security and Privacy. 1EEE Com-
puter Society Press, Los Alamitos, California, USA, May 2011.

[71] D. V. Horn and M. Might, “An analytic framework for javascript,” 2011, in
submission.

[72] G. Ammons, R. Bodik, and J. Larus, “Mining specifications,” 2002.

[73] R. Alur, P. Cerny, P. Madhusudan, and W. Nam, “Synthesis of interface spec-
ifications for Java classes,” in POPL ’05: Proceedings of the 32nd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
2005.

[74] W. Weimer and G. C. Necula, “Mining temporal specifications for error de-
tection.” in TACAS, 2005, pp. 461-476.

[75] F. Yu, M. Alkhalaf, and T. Bultan, “Generating vulnerability signatures for
string manipulating programs using automata-based forward and backward
symbolic analyses,” in ASE, 2009, pp. 605-609.

[76] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst, “Hampi: a
solver for string constraints,” in ISSTA, 2009, pp. 105-116.

121

http://www.security-assessment.com/files/whitepapers/Exploiting_Cross_Context_Scripting_vulnerabilities_in_Firefox.pdf
http://www.security-assessment.com/files/whitepapers/Exploiting_Cross_Context_Scripting_vulnerabilities_in_Firefox.pdf
http://www.security-assessment.com/files/whitepapers/Exploiting_Cross_Context_Scripting_vulnerabilities_in_Firefox.pdf

[77]

[78]

[79]

A. S. Christensen, A. Mgller, and M. 1. Schwartzbach, “Precise analysis of
string expressions,” in Proc. 10th International Static Analysis Symposium,
SAS 03, ser. LNCS, vol. 2694. Springer-Verlag, June 2003, available from
http://www.brics.dk/JSA/. pp. 1-18.

P. Hooimeijer and W. Weimer, “Solving string constraints lazily,” in Pro-
ceedings of the IEEE/ACM international conference on Automated software
engineering, ser. ASE ’10. New York, NY, USA: ACM, 2010.

P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song, “A
symbolic execution framework for javascript,” in IEEE Symposium on Secu-
rity and Privacy, 2010, pp. 513-528.

122

	Chapter 1 Introduction
	Overview of Injection Vulnerabilities and Attacks
	Detection and/or Prevention of Injection Vulnerabilities
	Research Contributions
	Thesis Organization

	Chapter 2 Background
	Detection and Prevention of Injection Flaws
	Sanitization and Fuzz Testing
	Static Analysis
	Dynamic Analysis
	Hybrid Approaches

	Overview of the JavaScript Programming Language
	JavaScript Features That Need To Be Analysed

	Static Specification and Analysis of JavaScript
	Applications of Analysis Techniques

	Chapter 3 Detection and Prevention of SQL Injection Attacks
	Overview of CANDID
	An Example
	Our Approach

	Formal Analysis Using Symbolic Queries
	SQL Injection Defined

	The Candid Transformation
	Resilience of CANDID

	Implementation and Evaluation
	Transformation
	Application Examples
	Attack Suite
	Experiment Setup
	Attack Evaluation
	Performance Evaluation

	Related Work
	Vulnerability Detection Using Static Analysis
	Defensive Techniques that Prevent SQLCIA

	Chapter 4 Detection of cross-context scripting vulnerabilities in Browser Extensions
	Threat Model, Assumptions, and Usage Model
	Vex Information Flow Patterns
	Untrusted Sources
	Executable Sinks

	Static Information Flow Analysis of JavaScript
	Core JavaScript Syntax
	Abstract Heaps
	Abstraction Function
	Abstract Operational Semantics
	Handling the Features of JavaScript
	A Note on Soundness

	Implementation and Evaluation
	Evaluation Methodology
	Experimental Results
	Successful Attacks
	Flows That Do Not Result in Attacks

	Related Work
	Firefox Browser Extension Security
	Security of Extensions to Other Browsers
	Operational Semantics of JavaScript
	Comparison With Related Static Analyses of JavaScript

	Chapter 5 Conclusions
	Conclusions
	Future Research Directions
	Generating Attack Inputs
	Securing Extensible Software

	References

