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ABSTRACT

In this thesis, we study the optimal store location decisions for a firm enter-

ing a new market where the market adoption rate can be learned over time.

In the presence of market learning, the firm faces a trade-off between active

learning and deferred commitment. To illustrate this trade-off, we introduce

a two-stage retail location problem in which the market learning time (length

of the first stage) is endogenously determined by the firm’s first stage action.

To solve the problem, we develop an efficient solution method which provides

a framework to achieve a desired error rate of accuracy in the optimal so-

lution. The proposed algorithm is tested on the network constructed using

census data from the city of Chicago. Using the model, we first show that

the lack of foresight results in lower profit with over-commitment in facility

investment and that the difference increases with market uncertainty. We

further show that the firm should prefer active learning over deferred com-

mitment as consumers in the market become more conservative in making

product adoption decisions.
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CHAPTER 1

INTRODUCTION

1.1. Motivation and Philosophy

Store location decisions are a crucial part of retail operations. Locations are

one of the most influential considerations in consumers’ choice of stores as

they usually go to the closest or most conveniently located stores. If one firm

occupies the most attractive location in the neighborhood, the competitors

are relegated to the next-best locations. As a result, firms are often com-

pelled to develop a sustainable competitiveness based on their store locations.

Although store location decisions can create such strategic advantages, they

also represent risk as they involve a significant commitment of resources for

a long period of time. When a firm decides to enter a new market and selects

a set of locations for its retail stores, it has to make a substantial investment

to buy and develop the real estates or commit to a long-term lease ranging

typically from 5 to 20 years (Levy and Weitz (2008)). Unlike poor pricing or

inventory decisions, poor store location decisions negatively affect the firm

for a longer period of time.

The risk of commitment in retail industry magnifies when it comes to en-

tering a new market. When a firm is entering an emerging foreign market,

for example, it faces high level of uncertainties in many aspects (such as

uncertainty in local consumers’ purchasing behavior or their product adop-

tion decisions). As a result, it is difficult to anticipate how the products (or
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services) offered by the firm will be received by the local consumers. Under

such uncertain business environment, firms dynamically deploy retail stores

as they learn the market over time. For example, Apple is cautiously expand-

ing in China due to high market uncertainty resulting from other established

competitors (such as Lenovo and HP) and many local copycat manufacturers

(Chow (2011)). Since opening its first store in 2008, it only recently added

two new stores in Hong Kong and Shanghai. On the other hand, CVS Phar-

macy decided to expand fast in the Puerto Rico market. In 2010, it opened

the first 9 stores (Providence Business News, 2010). Due to aggressive en-

try, CVS Pharmacy quickly learned the market and recently announced to

open 13 additional stores in the region by 2012 (Peurto Rico Daily Sun,

2011). Clearly, different firms take different market entry approaches and

thus make different initial store deployment decisions. As a result, firms

learn the market (consumers also learn the product/service offered by the

firm) at a different rate and the resulting store location configurations may

differ significantly.

In this thesis, we consider the retail store location problem in the presence

of market learning. In particular, we study the optimal store location deci-

sions for entering a new market when the market adoption rate can be learned

over time. With the option of learning the uncertain market environment, a

firm faces a trade-off between “active learning” and “deferred commitment”

as described in the above examples. That is, a firm may want to actively

learn the market through greater initial investment since demand data is

collected at a faster rate. On the other hand, a firm may want to defer the

commitment since overly-aggressive investment often results in sub-optimal

store locations adversely affecting the firm in the long run. The primary

objective of this study is to understand the impact of learning in retail store
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location decisions and to derive relevant managerial insights.

To this end, we introduce a two-stage retail location model which captures

the market learning effect. We consider the consumer adoption rate of the

market to be uncertain, but can be learned during the first stage. After

the first stage, we assume that the adoption rate is fully learned and the

firm has the option to locate extra facilities in the second stage. To reflect

the trade-off between active learning and deferred commitment, we assume

that the duration of the first stage (market learning time) is endogenously

determined as a function of firm’s first stage action. Under this setting, the

firm chooses to either shorten (active learning) or lengthen (deferred com-

mitment) the market learning time by changing the initial stage action. The

main contribution of this research is two-folds. First, we develop an efficient

and effective solution method for solving the two-stage retail location prob-

lem with market learning. This solution method is applicable to any location

problems with endogenous learning time. We apply the algorithm to network

based on data from Chicago and illustrate the performance of the proposed

algorithm. Second, we provide insights on learning in retail store location

decisions. Using a myopic decision maker (who does not take into account

the effect of “learning”) as a benchmark, we show that firms should prefer

deferred commitment over active learning as market uncertainty increases.

We also show that lack of learning typically results in over-commitment in

facility investments with lower expected profit. By contrasting markets with

different consumer characteristics, we show that the firm should prefer active

learning over deferred commitment as consumers in the market become more

conservative in making product adoption decisions.
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1.2. Literature Review

Facility Location in retail setting has generally been formulated as a cover-

age problem. Church and ReVelle (1974) introduced the Maximal Coverage

Location Problem [MCLP] which finds the locations of a given number of

facilities to maximize the customer coverage, the total number of customers

served by the set of opened facilities. The problem assumes a binary coverage

scheme; i.e. service is accounted adequate if the customer is within a given

distance and is considered inadequate if the distance exceeds some critical

value. Daskin (1983) extends the problem to the “expected” covering case by

taking into account possible facility congestions. More recently, Berman and

Krass (2002) consider a generalized version of MCLP which allows partial

coverage of customers instead of a binary coverage. Berman et al. (2003)

and Drezner et al. (2004) discuss the Gradual Covering Location Problem

[GCLP] in which the degree of customer coverage is defined as a function of

traveling distance. In particular, they consider lower and upper thresholds

in traveling distance; customers who have a traveling distance less than the

lower threshold are fully covered whereas customers residing farther than the

upper threshold are not covered at all. The coverage for customers located

in between gradually decays as a function of the traveling distance. Drezner

et al. (2010) extend GCLP to stochastic case when upper and lower distances

are random variables. We consider a similar coverage scheme in this study.

We assume the coverage function to be a non-increasing function of the dis-

tance between a demand node and its closest facility. For more details on the

coverage location problems, please see Jacobson (1990) (for discrete models)

and Plastria (2002) (for continuous models).

Facilities typically function for an extended period of time, during which
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a certain aspect of market environment may be learned (Snyder (2006)). For

this reason, many facility location problems involve an extended planning

horizon where firms make a set of dynamic decisions over time. Pioneer-

ing work on the dynamic facility location problem has been done by Ballou

(1968) and Wesolowsky (1973). Dynamic Location Problems provide a set

of plans which involve expanding facilities or/and relocating existing facili-

ties as uncertain information such as demand, travel cost, competition unveil

over time. Van Roy and Erlenkotter (1982) and Baron et al. (2010) consider

a facility location problem on a dynamic setting where demand changes over

time. Campbell (1990) studies the dynamic location of transportation ter-

minals where demand, transportation cost and facility cost alter over time.

Hakimi (1990) and Fischer (2002) consider sequential location problems in

which multiple firms (typically identified as leader and followers) compete

for fixed demand. In this thesis, we assume consumer adoption rate to be

the uncertain factor and a monopoly firm dynamically deploys facilities to

maximize its expected profit.

We limit the problem to a two-stage setting (with infinite time horizon)

since it suffices to study the trade-off between active learning and deferred

commitment and the value of market learning. Similar to our setting, Current

et al. (1997) consider two versions of two-stage facility location problems

where the total number of facilities to open varies depending on the future

scenario. Berman and Drezner (2008) also study a two-stage problem with

the fixed number of facilities opened in the first stage. They seek to minimize

the total cost of serving all the demand keeping in view that additional

facilities can be opened in the future stage. While these papers share similar

feature in demand uncertainty on a two-stage setting, they do not capture

the market learning effect. In particular, the length of the first stage is
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exogenously given and the firm passively makes decisions under given setting.

We explicitly incorporate the market learning effect by assuming the market

learning time (length of the first stage) to be endogenously determined as a

function of firm’s first stage actions.

Hiller and Shapiro (1986) and Rob (1991) are the first ones to consider

learning in firm’s capacity expansion. Learning has also been studied in

various fields of operations management including retail industry. Fisher

and Raman (1996) introduce the market learning to improve the forecast

accuracy of the demand of high-end fashion products. The firm initially

commits to relatively low production in the first stage before the sales start

and then further production decisions are made as more demand information

arrives. Caro and Gallien (2007) apply learning for dynamic assortment of

products in fashion retail industry. Araman and Caldentey (2009) take into

account learning for dynamically updating the price of a product. However,

market learning has not been studied in the retail store location setting, to

the best of our knowledge. In this thesis, we study how the presence of

learning affects the firm’s decision in retail store location.

1.3. Structure of the Thesis

The remainder of this thesis is structured as follows. In Chapter 2, we in-

troduce the two-stage retail location problem with market learning. We also

provide interesting structural properties of the problem. In Chapter 3, we

propose a solution method for the proposed problem and present the algo-

rithm’s performance. In Chapter 4, we first study the value of foresight by

contrasting the optimal decision maker to a myopic decision maker. We then

study the impact of learning by comparing the optimal policy under differ-
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ent market characteristics. Finally, we conclude the thesis by summarizing

managerial insights and proposing directions for future research in Chapter

5.
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CHAPTER 2

DYNAMIC RETAIL LOCATION MODEL

2.1. Single-stage Model

We first present a single-stage retail location problem without market learn-

ing. Consider a set of demand points I = {1, · · · ,m} where consumers reside

in and a set of sites J = {1, · · · , n} where the stores can be located. The

underlying network is G(V,A) where V = {I ∪ J} is the set of nodes and

A is the set of arcs. In each demand node, hi potential consumers live and

only 0 ≤ θ ≤ 1 fraction of those consumers actually adopt (purchase) firm’s

product/sevice. We refer to this random variable θ as the consumer adoption

rate. We consider the consumer demand at node i ∈ I is partially covered

by the coverage function gi(d) ∈ [0, 1] where d is the distance to its clos-

est opened facility. The coverage function gi(d) is a non-increasing convex

function of d with gi(0) = 1 for all i ∈ I. Hence, the effective demand cov-

ered at node i with opened facility set X can be expressed as θhigi(di(X))

where di(X) = minj∈X d(i, j). Denoting revenue per unit demand per unit

time by r, total revenue per unit time is
∑

i∈I rθhigi(di(X)). We denote the

fixed cost for operating facilities X per unit time by f(X) where f() is a

modular function. With the discount rate α on an infinite time horizon, the

single-stage retail location problem [SRLP] with given adoption rate that
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maximizes firm’s profit can be formulated as follows:

[SRLP] max
X⊂J

{∫ ∞

0

e−αt
(∑

i∈I

rθhigi(di(X))− f(X)
)
dt

}

=max
X⊂J

{
1

α

(∑
i∈I

rθhigi(di(X))− f(X)
)}

. (2.1)

Now we consider the case in which the consumer adoption rate θ is un-

known. Given the distribution of θ, one can then consider a problem of

maximizing the expected profit as follows:

[SRLP-U] max
X⊂J

{
Eθ

[
1

α

(∑
i∈I

rθhigi(di(X))− f(X)
)]}

. (2.2)

For simplicity, we reduce the facility candidate sites to the nodes of the

network in this study. In the following proposition, we show that both prob-

lems indeed satisfy the nodal optimality property, i.e., at least one optimal

solution exists with all the facilities located only on nodes, if the fixed cost

for a facility on the edge joining two nodes is a convex combination of those

two facility costs.

Proposition 2.1. Consider a facility j0 which is located on the edge joining

the two nodes j1 and j2; i.e., j0 = λj1 + (1 − λ)j2 where 0 ≤ λ ≤ 1. If

f(j0) = λf(j1) + (1− λ)f(j2), then there exists at least one optimal solution

which corresponds to locating only on the nodes of a network.

Proof. Consider a solution X in which at least one facility is located on the

edge joining nodes j1 and j2 where the distance between the two nodes is

d̄ = d(j1, j2). Take one facility on the edge, j0, and denote the set of de-

mand nodes covered by j0 as I0. At the moment, we fix the positions of

the remaining facilities (X−j0). For a given θ, objective function can then
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be expressed as 1
α

{∑
i∈I rθhigi(di(X))− f(X)

}
= 1

α

{∑
i∈I0 rθhigi(di(j0))−

f(j0) +
∑

i∈I\I0 rθhigi(di(X
−j0)) − f(X−j0)

}
. Note that the minimum dis-

tance between j0 and demand node i ∈ I0 is di(X
−j0) = min

[
d(i, j1 +

λd̄), d(i, j2+(1−λ)d̄)
]
. Since the coverage function gi(d) is decreasing in d for

each i, the first term in the objective function is
∑

i∈I0 max
[
rθhigi(d(i, j1 +

λd̄)), rθhigi(d(i, j2 + (1 − λ)d̄))
]
. This is convex in λ since the maximum of

two convex functions is convex, and the sum of convex functions is convex.

Further, the second term, f(j0) = λf(j1) + (1 − λ)f(j2), is linear in λ and

the remaining terms are constants. Hence, the objective function is convex

in λ and is maximized at least at either λ = 0 or 1. Applying the same logic

to other facilities on the edge, it follows that the node optimality condition

holds for the [SRLP]. Since taking expectation of convex function is also

convex, the node optimality condition also holds for the [SRLP-U].

Finally, we note that the single-stage retail location problem can be trans-

formed to the uncapacitated fixed charge location problem [UFLP].

Proposition 2.2. The single-stage retail location problem [SRLP] is re-

ducible to the uncapacitated fixed charge location problem [UFLP].

Proof. Let H represent the maximum total demand of the market, H =∑
i∈I hi. Define a new distance metric as d̃i(X) = maxj∈X [1 − gi(d(i, j))].

Then, it follows that d̃i(X) = maxj∈X [1−gi(d(i, j))] = 1−minj∈X gi(d(i, j)) =

1− gi(minj∈X d(i, j)) = 1− gi(di(X)). Thus, for any X ⊂ J ,

1

α

(∑
i∈I

rθhigi(di(X))− f(X)
)
=

1

α

(∑
i∈I

rhi(1− (1− gi(di(X))))− f(X)
)

=
1

α

(
rH − r

∑
i∈I

hi(1− gi(di(X)))− f(X)
)

=
1

α

(
rH − r

∑
i∈I

hid̃i(X)− f(X)
)
.
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Since H and r are constants, maximizing this problem is equivalent to the

following UFLP:

min
X⊂J

{
f(X) + k

∑
i∈I

hid̃i(X)

}

where k is a constant.

This is an interesting and useful result since UFLP, while NP-Hard, has

many practical solution methods available (Daskin (1995)).

2.2. Two-stage Model with Learning

Now, we present a two-stage retail location problem incorporating market

learning. The subject of learning is the consumer adoption rate of the local

market which, in turn, determines the market demand for each node. In

the first stage, the adoption rate, θ, is uncertain, but its distribution is

known (as in [SRLP-U]). Based on its distribution, the firm must decide in

advance where and how many stores to open, X1, taking into account the

next stage. In stage 2, the adoption rate is fully learned, i.e., the precise

value of θ is known. Upon the realization of θ, the firm deploys additional

facilities accordingly, X2, (as in [SRLP]) to maximize its total profit. For

simplicity, we assume the facilities opened at the previous stage cannot be

closed or relocated. Relaxing this assumption, however, does not change

the key insights of our results if the facility closing cost is moderately high.

Denoting the market learning time to T , the two-stage retail location problem

for given T [TRLP] is formulated as follows:

max
X1⊂J

{
Eθ

[∫ T

0

e−αt
(∑

i∈I

rθhigi(di(X
1))− f(X1)

)
dt+ e−αTV (X2;X1, θ)

]}
(2.3)
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where V (X2;X1, θ) is the optimal objective value of:

max
X2⊂J\X1

{∫ ∞

T

e−αt
(∑

i∈I

rθhigi(di(X
1 ∪X2))− f(X1 ∪X2)

)
dt

}
. (2.4)

With some algebraic work, the problem can be reexpressed as:

[TRLP] max
X1⊂J

X2⊂J\X1

1

α

{
Eθ

[
(1− e−αT )

∑
i∈I

rθhigi(di(X
1))− f(X1)+

e−αT

(∑
i∈I

rθhigi(di(X
1 ∪X2))− f(X2)

)]}
. (2.5)

As for the single-stage problem, the two-stage problem also satisfies the

node optimality condition if the facility fixed cost on an edge is a convex

combination of the facility costs of the two linked nodes.

Proposition 2.3. Consider the facility fixed cost on an edge connecting two

nodes is a convex combination of those two facility costs. Then, there exists

at least one optimal solution for the [TRLP] which corresponds to locating

only on the nodes of a network for both stages.

Proof. We prove this holds for each stage in backwards. Given X1 and θ,

consider a second stage solution in which at least one facility is located on

the edge. By fixing the location of the remaining facilities, we can show that

the objective function of the second stage, (2.4), improves by relocating the

facility to either one side of the node (using the same logic for proving the

node optimality for the [SRLP] from Proposition 2.1). This holds for any

X1 and θ, thus the node optimality holds for the second stage problem. For

every possible θ, consider a first stage solution in which at least one facility is

located on the edge. Similar to the [SRLP-U], we can show that the objective

function of the first stage, (2.3), can be improved by relocating the facility
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on the edge to either one side of the node while fixing the others. Therefore,

there exists at least one optimal solution for the [TRLP] in which all facilities

are located only at the nodes of the network.

By extending the problem to two-stage, we note that the firm now has

incentive to deploy less facilities in the first stage since it has an option to

deploy more in the second stage. This dynamic nature of the problem leads

the firm to prefer “deferred commitment.” We characterize the relationship

between the market learning time and firm’s optimal solution in the following

proposition. It follows that when the market learning time takes extreme

values, the solution of the [TRLP] reduces to one of the single stage problems.

Proposition 2.4. (i) There exists a threshold in learning time τ̄ such that

if τ̄ ≤ T , the optimal first stage solution of the [TRLP] coincides with

the optimal solution of the [SRLP-U].

(ii) There exists a threshold in learning time τ such that if τ ≥ T , the

optimal second stage solution of the [TRLP] coincides with the optimal

solution of the [SRLP] for given θ.

Proof. Let us denote the first-stage expected profit per unit time by π1(X
1) =

Eθ

[∑
i∈I rθhigi(di(X

1)) − f(X1)
]
and similarly the second-stage expected

profit per unit time as π2(X
2;X1) =

∑
i∈I rθhigi(di(X

1∪X2))−f(X1∪X2).

Then, the objective function can be written as follows: Z[TRLP ] =
1
α

{
(1 −

e−αT )π1(X
1) + e−αTπ2(X

2;X1)
}
.

(i) Let X∗ be the optimal solution for the [SRLP-U]. We show that there

13



exists τ̄ such that, if τ̄ ≤ T , then

Z[TRLP ](X
∗, X2) ≥ Z[TRLP ](X̃

1, X̃2)

⇐⇒ 1

α

{
(1− e−αT )π1(X

∗) + e−αTπ2(X
2;X∗)

}
≥ 1

α

{
(1− e−αT )π1(X̃

1) + e−αTπ2(X̃
2; X̃1)

}
⇐⇒ π1(X

∗) ≥ e−αT

(1− e−αT )

[
π2(X̃

2; X̃1)− π2(X
2;X∗)

]
+ π1(X̃

1) (2.6)

holds for any (X̃1, X̃2). Since π1(X
∗) ≥ π1(X̃

1) and e−αT

(1−e−αT )
approaches to

0 as T increases, there exists τ̄ such that it satisfies (2.6) if τ̄ ≤ T .

(ii) Let X∗ be the optimal solution for the [SRLP] for given θ. Similar to (i),

we show that there exists τ such that, if τ ≥ T , then

Z[TRLP ](X
1, X∗) ≥ Z[TRLP ](X̃

1, X̃2)

⇐⇒ π2(X
∗;X1) ≥ (1− e−αT )

e−αT

[
π1(X̃

1)− π1(X
1)
]
+ π2(X̃

2; X̃1) (2.7)

holds for any (X̃1, X̃2). Since (1−e−αT )
e−αT is increasing in T , the threshold value

τ which satisfies (2.7) can be obtained when X1 = ∅. That is,

T ≤ τ = − 1

α
ln

[
max

[
π1(X̃

1)

π2(X∗; ∅)− π2(X̃2; X̃1) + π1(X̃1)

]]
.

Note π2(X
∗; ∅) ≥ π2(X̃

2; X̃1) for any θ, thus 0 ≤ π1(X̃1)

π2(X∗;∅)−π2(X̃2;X̃1)+π1(X̃1)
≤ 1.

Therefore, there exists τ such that it satisfies (2.7) if T ≤ τ .

Proposition 2.4 (i) implies that if the market learning time is long enough,

the second stage profit will be small enough not to affect the first stage

decision. Hence, the first-stage action will be identical to the single-stage

case. On the other hand, Proposition 2.4 (ii) implies that if the intrinsic

market learning time is fast enough, there is no incentive to take action in
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the first stage. The firm can rather maximize the profit by forgoing the first

stage and deploy facilities on the second stage with full market information.

To summarize, this proposition suggests that the firm always benefits by

deploying facilities in the second stage (thus less in the first stage) unless T

takes an extremely large value. In fact, as the market learning T decreases,

the firm is more likely to be less aggressive in the first stage. This captures

the deferred commitment feature in the retail store location problem.

We now consider that the market learning time, T , is endogenously deter-

mined as a function of first stage action. While T can be a function of X1

in any form, we assume it depends on the first-stage “coverage” defined as

c(X1) =
∑

i∈I higi(d(X
1)). More specifically, we assume T = ϕ(c(X1)) > 0 is

a decreasing function in coverage with some finite intrinsic learning time ϕ(∅).

Hence, the more consumers covered in the first stage, the faster the consumer

adoption rate is learned. Finally, the two-stage retail location problem with

learning [TRLP-L] is:

[TRLP-L] max
X1⊂J

X2⊂J\X1

1

α

{
Eθ

[
(1− e−αT )

∑
i∈I

rθhigi(di(X
1))− f(X1)+

e−αT

(∑
i∈I

rθhigi(di(X
1 ∪X2))− f(X2)

)]}
(2.8)

where the learning time is T = ϕ(c(X1)).

We note that endogenous learning time does not affect the nodal optimal-

ity that we showed for [TRLP] in Proposition 2.3. That is, if the facility

operations cost on the edge connecting two nodes is a convex combination

of those two facility costs, then there exists at least one optimal solution for

this problem which corresponds to locating only on the nodes of a network

for both stages.
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The endogenous learning time introduces incentive for the firm to be ag-

gressive in the first stage since it shortens the market learning time. Thus

the option of market learning leads the firm to prefer “active learning.” We

illustrate this effect by contrasting the optimal solutions of the endogenous

and exogenous learning models in the following proposition.

Proposition 2.5. Let (X1∗, X2∗) be the optimal solution of the [TRLP-L]

and c(X1∗), T ∗ = ϕ(c(X1∗)) be the corresponding first stage coverage and the

learning time. For the exogenous learning time T = T ∗, let (X1∗
T , X2∗

T ) be the

optimal solution of the [TRLP] and c(X1∗
T ) be the corresponding first stage

coverage. Then, c(X1∗
T ) ≤ c(X1∗).

Proof.

Lemma 2.1. The optimal objective value Z[TRLP ] is a decreasing function in

T.

Proof. As in the proof of Proposition 2.4, we express the objective function

of the [TRLP] as Z[TRLP ] =
1
α

{
(1 − e−αT )π1(X

1) + e−αTπ2(X
2;X1)

}
where

π1(X
1) and π2(X

2;X1) are the first-stage and second-stage expected profit

per unit time, respectively. Thus, Z[TRLP ] =
1
α

{
π1(X

1) + e−αT (π2(X
2;X1)−

π1(X
1))
}
. Since π1(X

1) ≤ π2(X
2;X1), we know that Z[TRLP ] is decreasing

in T .

First, we know Z[TRLP−L](X
1∗, X2∗) ≤ Z[TRLP ](X

1∗
T , X2∗

T ) if T = T ∗ is

given for the [TRLP] (because [TRLP] has less constraint than [TRLP-L]).

Now, suppose c(X1∗
T ) > c(X1∗). This implies T ∗ > T = ϕ(c(X1∗

T )) since

ϕ(c) is decreasing in coverage c. From Lemma 2.1, we know that 1
α

{
(1 −

e−αT ∗
)π1(X

1∗
T ) + e−αT ∗

π2(X
2∗
T )
}
< 1

α

{
(1− e−αT )π1(X

1∗
T ) + e−αT ∗

π2(X
2∗
T )
}
.
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Thus, it follows that

Z[TRLP−L](X
1∗, X2∗) =

1

α

{
(1− e−αT ∗

)π1(X
1∗) + e−αT ∗

π2(X
2∗)
}

≤ 1

α

{
(1− e−αT ∗

)π1(X
1∗
T ) + e−αT ∗

π2(X
2∗
T )
}

<
1

α

{
(1− e−αT )π1(X

1∗
T ) + e−αTπ2(X

2∗
T )
}

= Z[TRLP−L](X
1∗
T , X2∗

T ).

This is a contradiction since ZTRLP−L(X
1∗, X2∗) is the optimal objective

value for the [TRLP-L].

The proposition shows that the presence of endogenous learning promotes

the firm to cover more consumers in the first stage and learn the market

faster. This is because the decision maker for the exogenously determined

market learning time model does not have any incentive to aggressively de-

ploy facilities given the same amount of learning time. This captures active

learning feature in the retail store location problem.

As shown in Proposition 2.4 and 2.5, the proposed model clearly preserves

the trade-off between “active learning” and “deferred commitment.” While

the firm always benefits from a short learning time, first stage decision is

irreversible in the future. Hence, short-sighted initial decisions may lead to

sub-optimal facility locations and harm the firm in the long run. In the next

chapters, we develop a solution method for the proposed model in Chapter

4 and derive relevant managerial insights in Chapter 5.
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CHAPTER 3

SOLUTION APPROACH

3.1. Nonlinear Integer Programming Formulation

In this section, we present the solution approach to the two-stage retail lo-

cation problem with market learning. We first formulate the problem as an

integer programming problem. Let θ be a discrete random variable with

|S| possible outcomes (scenarios) such that the probability of a scenario s is

P (θ = θs) = ps and
∑

s∈S p
s = 1. Thus, the problem can be formulated as

follows:

[P1] max
X,Y,T

∑
s∈S

ps

α

[(
1− e−αT

)∑
i∈I

∑
j∈J

rθshigi(dij)Y
1
ij −

∑
j∈J

fjX
1
j

+e−αT

{∑
i∈I

∑
j∈J

rθshigi(dij)Y
2
ijs −

∑
j∈J

fjX
2
js

}]
(3.1)

s.t. Y 1
ij ≤ X1

j , Y 2
ijs ≤ X1

j +X2
js ∀i ∈ I,∀j ∈ J,∀s ∈ S, (3.2)∑

j∈J

Y 1
ij = 1,

∑
j∈J

Y 2
ijs = 1 ∀i ∈ I, ∀s ∈ S, (3.3)

X1
j +X2

js ≤ 1 ∀j ∈ J,∀s ∈ S, (3.4)

T ≥ ϕ

(∑
i∈I

∑
j∈J

higi(dij)Y
1
ij

)
, (3.5)

T ≥ 0, X1
j , X

2
js, Y

1
ij , Y

2
ijs ∈ {0, 1} ∀i ∈ I, ∀j ∈ J,∀s ∈ S. (3.6)
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The objective function (3.1) consists of four terms. The first term repre-

sents the expected present value discounting revenue over T periods of time

for stage 1 and second term accounts for total cost of the operating facilities in

the first stage over the two stages. The third term represents the discounted

value of the second stage revenue and the last term represents the total cost

for the operating facilities opened in the second stage discounted at present

value from time T to ∞. Constraints (3.2) state that each demand can only

be covered by an open facility for each stage. Constraints (3.3) ensure that

each demand is covered by at least one facility. Constraints (3.4) state that

we cannot locate another facility if one already exist. We refer constraint

(3.5) as the Coverage constraint, since it expresses the relationship between

learning time T and the coverage c(X1, Y 1) =
∑

i∈I
∑

j∈J higi(dij)Y
1
ij . Con-

straints (3.6) represent non-negativity and integrality of decision variables.

The above problem is a mixed integer program with X1, Y 1, X2 and Y 2

as decision variables and T as an auxiliary decision variable. The learning

time T is endogenously determined by the first stage demand coverage de-

fined as c(X1, Y 1). For convenience, we will use c to represent the coverage

in the first stage and also use T = ϕ(c). We obtain the upper bound in

coverage, c, by opening all the facilities in the first stage. The lower bound

in coverage, c, can be obtained by finding the commonly opened facilities

for solving the single-stage problem with the adoption rate in each scenario.

Since the endogenous characteristic of learning time T brings nonlinearity to

the objective function (3.1), the currently proposed formulation [P1] is very

challenging to solve. In the following section, we provide an approximation

algorithm for the problem.
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3.2. Solution Method

In this section, we develop an efficient solution method to solve the non-

linear integer program. Note that the constraint set of problem [P1] may

not necessarily be a convex set due to (3.5). Mahajan and Munson (2010)

proposed to solve a class of nonlinear programming problems involving non-

convex constraint sets by decomposing the constraint set into several convex

sets. Similar to this approach, we decompose the constraint set into sev-

eral subproblems with convex constraint sets and then use standard convex

optimization technique to solve the individual subproblems.

To remove the exponential terms in the objective function in [P1], we first

introduce a new decision variable W = e−αT . Then, we know the following:

Lemma 3.1. W = e−αT is an increasing function of the coverage c(X1, Y 1).

Proof. Since T = ϕ(X1, Y 1) = ϕ(c(X1, Y 1)) is a decreasing function of cov-

erage c(X1, Y 1), so T decreases as we increase the coverage and W = e−αT

being a decreasing function of T increases with a decrease in T . Hence

W (c) = eϕ(c) = e−αT is an increasing function of coverage.

Using W , the Constraint (3.5) can be revised as W ≤ e−αϕ(c) eliminating

the decision variable T . Since this constraint may create non-convexity in

the constraint set, we approximate W = e−αϕ(c) to Ŵ using piece-wise linear

functions of c. More specifically, we divide the range of first stage coverage

into a number of intervals such that the linear approximation of W in each

interval satisfies 0 ≤ W−Ŵ
W

≤ ϵ. The error rate ϵ determines the precision level

of the proposed approximation. Denoting the resulting intervals by k ∈ K,

we represent the lower and upper bound of coverage for each interval by ck

and ck, and the corresponding bounds of W by ωk and ωk, respectively. The
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linear approximation in the kth interval can be expressed as Ŵ = ak + bkck,

where ak and bk are constants, and the coverage ck ∈ [ck, ck]. Note that

the piece-wise linear approximation of W = e−αϕ(c) should be an increasing

function of c to avoid overlapping intervals [ωk, ωk]. This satisfies Lemma 3.1

and thus learning time T is decreasing function of coverage.

We approximate the Coverage constraint by |K| linear functions with the

domain restricted to [ck, ck] for the k
th approximation. So, the problem [P1] is

decomposed into |K| subproblems. The optimal solution of problem [P1] then

corresponds to the maximum of the optimal solutions of these subproblems.

Hence the problem [P1] assumes the following form.

[P2] max
k∈K

Πk,

where Πk = max
X,Y,Ŵ

∑
s∈S

ps

α

[(
1− Ŵ

)∑
i∈I

∑
j∈J

rθshigi(dij)Y
1
ij −

∑
j∈J

fjX
1
j+

Ŵ

{∑
i∈I

∑
j∈J

rθshigi(dij)Y
2
ijs −

∑
j∈J

fjX
2
js

}]

s.t. Y 1
ij ≤ X1

j , Y 2
ijs ≤ X1

j +X2
js ∀i ∈ I, ∀j ∈ J,∀s ∈ S,∑

j∈J

Y 1
ij = 1,

∑
j∈J

Y 2
ijs = 1 ∀i ∈ I, ∀s ∈ S,

X1
j +X2

js ≤ 1 ∀j ∈ J,∀s ∈ S,

Ŵ = ak + bkck,

Ŵ ∈ [ωk, ωk], X1
j , X

2
js, Y

1
ij , Y

2
ijs ∈ {0, 1} ∀i ∈ I,∀j ∈ J,∀s ∈ S.

The coverage constraint is changed from an inequality to an equality con-

straint to impose the bounds on coverage, since each interval of coverage

is associated with the respective interval [ωk, ωk]. The problem [P2] is an
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approximation of the problem [P1], however we can find the bound on the

relative error that accumulates in approximating the total profit over the two

stages.

Proposition 3.1. Let Π(W ) and Π(Ŵ ) be the optimal profits of the problems

[P1] and [P2] respectively. Then, Π(Ŵ ) is a lower bound for Π(W ) and the

relative error between Π(Ŵ ) and Π(W ) is bounded by the relative error rate

in linear approximation ϵ; i.e., Π(W )−Π(Ŵ )
Π(W )

≤ ϵ.

Proof. Let us denote the first stage expected profit per unit period (terms

in the objective function corresponding to the first stage) by π1(X
1, Y 1) =∑

s∈S p
s
[∑

i∈I
∑

j∈J rθ
shigi(dij)Y

1
ij −

∑
j∈J fjX

1
j

]
and the second-stage ex-

pected profit per unit period by π2(X
2, Y 2;X1, Y 1) =

∑
s∈S
∑

i∈I
∑

j∈J rp
sθs

higi(dij)Y
2
ijs−

∑
s∈S
∑

j∈J p
sfjX

2
js−
∑

j∈J fjX
1
j . Therefore, the objective func-

tion can be expressed as

Π(W ) =
1

α

[
(1−W )π1(X

1, Y 1) +Wπ2(X
2, Y 2;X1, Y 1)

]
=

1

α

[
π1(X

1, Y 1) +W
{
π2(X

2, Y 2;X1, Y 1)− π1(X
1, Y 1)

}]
.

Here we note that π1(X
1, Y 1) ≤ π2(X

2, Y 2;X1, Y 1) holds for any solution

(X1, Y 1, X2, Y 2) since one can only improve the expected unit profit in the

second stage by deploying additional facilities (otherwise, one can preserve

the first stage expected unit profit by choosing not to open new facilities).

Now from the error rate inequality W−Ŵ
W

≤ ϵ, it follows that (1−ϵ)W ≤ Ŵ
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and thus

(1− ϵ)Π(W ) = (1− ϵ)
1

α

[
π1 +W (π2 − π1)

]
≤ 1

α
[π1 + (1− ϵ)W (π2 − π1)]

≤ 1

α

[
π1 + Ŵ (π2 − π1)

]
= Π(Ŵ ).

Hence, we have Π(W )−Π(Ŵ )
Π(W )

≤ ϵ.

Proposition 3.1 states that the approximate profit obtained by the solving

problem [P2] provides a good lower bound on the true optimal profit which

is the objective value of the problem [P1]. This enables us to bound the

relative error rate in the approximate and the true profit by ϵ. Since this

error rate is the same as the error rate of linear approximation, therefore the

network designer can achieve the desired precision in the profit approximation

by appropriately choosing the error rate ϵ. These results are based on the

fact that we intend to under-approximate the profit and thus it provides us

with a least profit that can be obtained following the approximation. In other

words, the decision maker can be conservative while approximating the value

of W , so that the approximated profit provides a lower bound for the exact

solution.

Although the constraint sets in problem [P2] are linear, the objective func-

tions Πk’s still contain nonlinearity because they involves product of decision

variables namely of W with Y 1, Y 2 and X2. We linearize the objective func-

tion by exploiting the fact that Y 1, Y 2 and X2 are binary variables. We

introduce a constraint for each variable which allows the decision variable

W to get into effect if the corresponding binary variable is 1 and forces

the value of the product to be 0 otherwise. But to achieve this, we first
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introduce continuous decision variable ζY 1, ζY 2 and ζX2 corresponding to

each binary variable. We define the coefficients of the binary variables as

DY 1
ij (Ŵ ) = ( 1

α
)rhigi(dij)

∑
s∈S p

sθsŴ , DY 2
ijs(Ŵ ) = ( 1

α
)rpsθshigi(dij)Ŵ and

DX2
js (Ŵ ) = ( 1

α
)psfjŴ , ∀i ∈ I,∀j ∈ J,∀s ∈ S, so that we can express the

objective function Πk as

max
X,Y,Ŵ

∑
i∈I

∑
j∈J

DY 1
ij (1)Y 1

ij −
∑
i∈I

∑
j∈J

DY 1
ij (Ŵ )Y 1

ij −
1

α

∑
s∈S

ps
∑
j∈J

fjX
1
j

+
∑
s∈S

∑
i∈I

∑
j∈J

DY 2
ijs(Ŵ )Y 2

ijs −
∑
s∈S

∑
j∈J

DX2
js (Ŵ )X2

js (3.7)

Now provided that we have the following bounds for the values of D′s subject

to the constraints in Problem [P2]

DY 1
ij ≤ DY 1

ij (Ŵ ) ≤ D
Y 1

ij

DY 2
ijs ≤ DY 2

ijs(Ŵ ) ≤ D
Y 2

ijs

DX2
js ≤ DX2

js (Ŵ ) ≤ D
X2

js

then by following the technique of Oral and Kettani (1992) we express prob-

lem [P2] as:

[P3] max
k∈K

Πk,

where Πk = max
X,Y,Ŵ ,ζY 1

ij ,ζY 2
ijs ,ζ

X2
js

∑
i∈I

∑
j∈J

DY 1
ij (1)Y 1

ij −
∑
i∈I

∑
j∈J

(DY 1
ij Y 1

ij + ζY 1
ij )

− 1

α

∑
s∈S

ps
∑
j∈J

fjX
1
j +

∑
s∈S

∑
i∈I

∑
j∈J

(D
Y 2

ijsY
2
ijs − ζY 2

ijs )

−
∑
s∈S

∑
j∈J

(DX2
js X

2
js + ζX2

js )
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s.t. ζY 1
ij ≥ DY 1

ij (Ŵ ) + (D
Y 1

ij −DY 1
ij )Y 1

ij −D
Y 1

ij ∀i ∈ I, ∀j ∈ J

ζY 2
ijs ≥ −DY 2

ijs(Ŵ ) + (D
Y 2

ijs −DY 2
ijs)Y

2
ij +DY 2

ijs ∀i ∈ I,∀j ∈ J,∀s ∈ S

ζX2
js ≥ DX2

js (Ŵ ) + (D
X2

js −DX2
js )X

2
js −D

X2

js ∀j ∈ J,∀s ∈ S

Y 1
ij ≤ X1

j , Y 2
ijs ≤ X1

j +X2
js ∀i ∈ I, ∀j ∈ J,∀s ∈ S,∑

j∈J

Y 1
ij = 1,

∑
j∈J

Y 2
ijs = 1 ∀i ∈ I,∀s ∈ S,

X1
j +X2

js ≤ 1 ∀j ∈ J,∀s ∈ S,

Ŵ = ak + bkck,

X1
j , X

2
js, Y

1
ij , Y

2
ijs, Zτ ∈ {0, 1} ∀i ∈ I,∀j ∈ J,∀s ∈ S,

ζY 1
ij , ζY 2

ijs , ζ
X2
js ≥ 0, Ŵ ∈ [ωk, ωk] ∀i ∈ I,∀j ∈ J,∀s ∈ S.

In order to calculate the bounds on D′s, we utilize the fact that the func-

tions D′s are increasing functions of Ŵ and consequently achieve the lower

and upper bounds at the the respective bounds of Ŵ .

3.3. Computational Performance

We performed a set of numerical experiments to illustrate the performance of

the proposed solution method. The algorithm is coded in C++ integrating

ILOG CPLEX 12.2 and run on an HP Z400 desktop with 2.93GHz CPU

and 16GB of RAM. The proposed algorithm was applied to the networks

generated from the networks constructed using 2000 census data from the

city of Chicago. The data includes the distance matrix with each element

representing the distance between the nodes, average income of the household

and population at various nodes. We generate facility cost fi proportional

to the income and potential consumers hi proportional to the population of

the nodes i ∈ I.
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The computational performance of the algorithm (solution time measured

in seconds) is illustrated in Table 3.1. We use two different networks of

size 43 (downtown Chicago) and 102 (greater downtown Chicago) with three

different sets of candidate sites to evaluate the performance of the proposed

algorithm. For each of these settings, we report the average solution time of

10 instances (generated by varying the standard deviation of the adoption

rate) for both 25 and 50 scenarios. The standard deviation is varied by

changing the support of the uniform distribution where the mean adoption

rate is 0.5. The market learning time is determined by T = γe−βc(X1,Y 1) with

γ = 30 and β = 3.5/c, where c is lower bound of the first stage coverage for

each problem. Other parameters are set to α = 0.05, λ = 0.01 and r = 190.

We present the solution times for two different levels of error rate, ϵ = 0.1%

and 0.01%.

Scenarios (|S|)
Demand (|I|) Candidate Sites (|J |) ϵ = 0.1% ϵ = 0.01%

25 50 25 50

43
10 19 22 40 44

20 31 44 58 83

30 190 311 380 594

102
30 216 681 402 1,239

50 823 2,991 1,541 5,429

70 1,507 9,523 2,703 15,023

Table 3.1: Computational performance of the proposed algorithm

As shown in Table 3.1, the proposed algorithm solves the problem quite

efficiently. The largest problem in the study with 100 demand nodes and

70 candidate locations in less that 10,000 seconds on average with an error

rate of 0.1%. Note that there is a significant difference between the solution
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times of 25 and 50 scenarios indicating that the solution time is substantially

affected by the number of scenarios. As anticipated, we observe that a higher

level of accuracy in the optimal solution increases the solution time.
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CHAPTER 4

NUMERICAL RESULTS AND INSIGHTS

In this chapter, we numerically study the impact of considering the market

learning effect in retail store location decisions. We first study the value of

foresight in the presence of market learning effect by contrasting the optimal

planner to a myopic planner who does not have foresight. We further an-

alyze the trade-off between active learning and deferred commitment under

markets with different consumer learning characteristics. We use an example

of 102 demand nodes with 70 candidate store locations from the previous

chapter. The number of scenarios is set to 25 and the parameters are set

identical as in Section 3.3 unless stated otherwise.

4.1. Value of Foresight with Market Learning Effect

We consider a myopic planner who maximizes the profit for the current stage

only without considering recourse option. Myopic planner represents a firm

without foresight: a firm who decides to abandon the long term plan with

a pressure to perform immediately. This exercise illustrates how firms may

react differently under different market circumstances depending on their de-

gree of foresight. Similar to the optimal planner, the myopic planner only

knows the distribution of the adaption rate and deploys the facilities based

on the expected adoption rate in the first stage. While making the first stage

decision, however, she does not take into account future decisions although
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market learning process is still in place based on the first stage coverage. Af-

ter the learning is completed, the myopic planner will then deploy additional

facilities to maximize the profit of her second stage. The formulation for the

two-stage myopic retail location problem is as follows:

∫ T

0

e−αtV (X1)dt+

∫ ∞

T

e−αtV (X2;X1, θ)dt, (4.1)

where V (X1) = max
X1⊂J

{
Eθ

[∑
i∈I

rθhigi(di(X
1))− f(X1)

]}
,

V (X2;X1, θ) = max
X2⊂J\X1

{∑
i∈I

rθhigi(di(X
1 ∪X2))− f(X1 ∪X2)

}

and the learning time is T = ϕ(c(X1)). The objective function of the myopic

planner’s problem (4.1) can be rewritten as

1

α

{
(1− e−αT )V (X1) + e−αTV (X2;X1, θ)

}
. (4.2)

To contrast the behavior of two planners, we use the numerical example in-

troduced in the previous section with β = 3.5/c̄. We compare their respective

decisions as the market variability changes, where market variability repre-

sents coefficient of variation of the adoption rate. The adoption rate follows a

uniform distribution with mean of 0.5. For convenience, we let ΠO, fO, rO and

NO, and ΠM , fM , rM and NM be the expected total profit, facility operation

cost, total revenue and average number of opened facilities corresponding to

the optimal and the myopic planner respectively. Also, let πi
O and πi

M denote

the expected profit per unit time in stage i for the optimal and the myopic

planner respectively.

Since the myopic planner seeks to maximize the current stage’s expected
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profit only, her first stage expected unit profit is always equal or greater than

that of the optimal planner (π1
O ≤ π1

M) as shown in Figure 4.1. The first stage

expected unit profit for the myopic planner remains flat regardless of market

uncertainty because it does not take into account the second stage. On the

other hand, the optimal planner attempts to hedge against market uncer-

tainty, thus the first stage profit decreases as market variability increases.

In the second stage, however, the optimal planner gains a greater expected

unit profit (π2
O ≤ π2

M). In fact, we observe that the difference between the

two planners’ second stage expected unit profit increases with market uncer-

tainty. This explains the optimal planner’s decreasing profit in the first stage

pays off in the second stage as market uncertainty increases.
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Figure 4.1: Profit comparison for the optimal and the myopic planner at
each stage

Table 4.1 compares the two planners’ optimal profits and the corresponding

market learning time for different levels of market variability. The expected

total profit for both planners increase with market variability. This means the
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Market
Variability

Optimal Planner Myopic Planner

Profit
TO

Profit
TM

π1
O π2

O ΠO π1
M π2

M ΠM

0.06 891 899 17,930 6.50 893 898 17,925 6.22

0.12 883 920 18,177 7.31 893 909 18,093 6.22

0.18 883 945 18,523 7.31 893 926 18,343 6.22

0.24 866 992 18,990 8.23 893 949 18,681 6.22

0.30 866 1,034 19,542 8.23 893 977 19,092 6.22

0.36 866 1,077 20,134 8.23 893 1,008 19,545 6.22

0.42 866 1,126 20,765 8.23 893 1,042 20,040 6.22

0.48 845 1,201 21,449 8.97 893 1,079 20,581 6.22

0.54 845 1,259 22,188 8.97 893 1,119 21,1667 6.22

0.60 831 1,340 22,963 9.48 893 1,161 21,792 6.22

Table 4.1: Comparison of profits (in thousand $) and learning time (in unit
time) for the optimal and the myopic planner

firm can gain higher expected total profit when entering a market with higher

uncertainty since it can take advantage of high adoption rates in a highly

uncertain market. This insight coincides with the real options literature

(Dixit (1992)): the value of real option increases as the market variability

increases (the decision maker can exercise the option when market turns out

to be good; otherwise, simply stay put). However, the difference between

the total profit of the optimal and the myopic planner increases as market

uncertainty increases. This reveals that lack of foresight harms the firm more

as the market variability increases. Myopic planner does not account for the

value of this real option in her first stage decisions, although she still benefits

from the option when the second stage comes.

We also note that the market learning time of the optimal planner increases

as the variability in the market increases. This suggests that the optimal

planner takes a cautious approach, preferring deferred commitment, when
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entering markets with high uncertainty. The learning time for the myopic

planner however does not change with market variability since its coverage

remains the same regardless of market variability.

Table 4.2 shows that the myopic planner invests more on facility (both

in terms of numbers and cost) relative to the optimal planner. The over-

commitment in facility investment for the myopic planner is due to its lack

of foresight while making decisions in the first stage. Since the myopic plan-

ner invests more on the facility costs, she typically gains higher revenue.

However, the difference in revenue and facility cost (i.e. the expected to-

tal profit) of the optimal planner is always greater than that of the myopic

planner and it increases with market variability.

Market
Variability

Optimal Planner Myopic Planner

NO fO rO NM fM rM

0.06 17.4 42,707 60,638 17.76 43,635 61,561

0.12 17.64 41,666 59,843 18.48 45,389 63,482

0.18 18.16 42,780 61,303 19.00 46,694 65,037

0.24 18.20 41,217 60,208 19.52 48,122 66,803

0.30 18.68 42,275 61,818 20.04 49,416 68,508

0.36 19.00 42,924 63,058 20.36 50,169 69,714

0.42 19.52 44,087 64,852 20.92 51,548 71,588

0.48 19.40 42,507 63,955 21.24 52,339 72,920

0.54 19.80 43,215 65,402 21.68 53,274 74,440

0.60 20.52 42,658 65,621 22.24 54,454 76,245

Table 4.2: Comparison of facility cost and revenue for the optimal and the
myopic planner (in thousand $)

To better understand the over-commitment in facility investment for the

myopic planner, we compare the ratio of total facility operation cost to total

revenue for both planners in Figure 4.2. This ratio represents the marginal
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rate of return in facility investment. We observe that the return on invest-

ment for the myopic planner is always lower than that of the optimal planner.

Further, its difference increases as the market uncertainty increases. This il-

lustrates that the over-commitment in facility deployment adversely effects

the myopic planner and its magnitude increases with market uncertainty.
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Figure 4.2: Over-commitment of the myopic planner

To summarize, the myopic planner’s decision tends to differ from the op-

timal planner’s decision with market uncertainty as evident from the above

discussion. The myopic planner incurs larger facility cost but earns lower

profits as compared to the optimal planner. On the other hand, the optimal

planner becomes more prudent (deferred commitment) as uncertainty in the

market increases and thus gains higher expected total profit over the two

stages. Therefore, the firm should prefer deferred commitment over active

learning as market uncertainty increases.
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4.2. Active Learning vs. Deferred Commitment

We now construct four different markets where consumers take different

amount of time on average before making the product adoption decision.

Markets with many early adopters make faster product adoption decision on

average and reveals the adoption rate quickly. For such market, the market

learning time is shorter with same level of first stage demand coverage. On

the other hand, markets with many late adopters are conservative to newly

introduced products and make slower product adoption decision. We refer

to this market behavior as sensitivity in new product introduction; i.e. the

market learning time is shorter for the sensitive market since it reacts faster

to the product exposure (first stage coverage). We define the market learning

time as T = γe−βc(X1,Y 1) and capture different learning trends by varying γ

as shown in Figure 4.3. Hence, a market with low γ represents sensitive mar-

ket whereas a market with high γ represents insensitive market. Parameter

β is set to β = 3.0/c̄ for all markets. Rest of the parameters are set identical
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Figure 4.3: Market learning time with different market sensitivities
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to previous section across all markets.

Table 4.3 compares the optimal solutions for markets with different sen-

sitivities. We note that the firm increases its first stage coverage as market

sensitivity decreases; i.e. the firm should increase the investment in facili-

ties as the market becomes less sensitive to the product introduction. This

suggests that the firm has incentive to learn the market faster as market sen-

sitivity decreases and thus prefers active learning over deferred commitment.

We further observe that the expected profit decreases as market sensitivity

decreases. This is because the market takes longer time to reveal its adoption

rate as market sensitivity decreases.

γ 20 40 60 80

Coverage 20,104 24,156 28,233 30,579

Profit (in thousand $) 24,429 21,143 20,191 19,916

Table 4.3: Optimal profit and coverage comparison under different market
sensitivities
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CHAPTER 5

CONCLUSIONS

In this thesis, we study the two-stage retail location problem in the presence

of endogenous market learning. In particular, a firm sequentially deploys

facilities over two stages when the customer adoption rate is learned at the

end of the first stage. We formulate the problem into a two-stage nonlinear

integer program and propose an efficient and effective solution method. The

proposed algorithm provides a framework to achieve a desired error rate of

accuracy in the optimal solution.

Using the model, we first study the trade-off between active learning and

deferred commitment under different consumer characteristics. We show that

the firm should prefer active learning over deferred commitment as market

becomes insensitive to new product introduction. In other words, the firm

should be aggressive when the market has many late adopters while prudent

when the market has many early adopters. Second, we investigate the value

of foresight by contrasting the optimal planner to the myopic planner who

does not take into account the effect of learning. We show that the firm

should prefer deferred commitment over active learning as market uncertainty

increases as the value of foresight increases with market uncertainty in the

presence of market learning effect. We also show that lack of market learning

typically leads the firm to over-commit in facility investments while earning

lower expected profit.

This research can be extended in several ways. First, it would be inter-
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esting to consider site specific adoption rate θi. While adoption rates on the

same market will be likely to be correlated, relaxing uniform adoption rate

will certainly enrich the proposed model. Another possible research direction

is to study a multi-stage version of the problem where the adoption rate (or

its distribution) is partially learned over time. One may consider Bayesian

learning scheme in implementing this research. Another potential extension

is to incorporate firm’s various risk attitudes in a two-stage model.
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