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ABSTRACT

The idea that many classes of signals can be represented by linear combi-

nation of a small set of atoms of a dictionary has had a great impact on

various signal processing applications, e.g., image compression, super reso-

lution imaging and robust face recognition. For practical problems such a

sparsifying dictionary is usually unknown ahead of time, and many heuristics

have been proposed to learn an efficient dictionary from the given data. How-

ever, there is little theory explaining the empirical success of these heuristic

methods. In this work, we prove that under mild conditions, the dictio-

nary learning problem is actually locally well-posed: the desired solution is

a local optimum of the `1-norm minimization problem. More precisely, let

A ∈ Rm×n be an incoherent (and possibly overcomplete, i.e., m < n) dictio-

nary, the coefficients X ∈ Rn×p follow a random sparse model, and Y = AX

be the observed data; then with high probability (A,X) is a local optimum

of the `1-minimization problem:

minimize
A′,X′

‖X′‖1 s.t. Y = A′X′, ‖A′i‖2 = 1 ∀ i,

provided the number of samples p = Ω(n3k). This is the first result showing

that the dictionary learning problem is locally solvable for an overcomplete

dictionary. Our analysis draws on tools developed for the matrix completion

problem. In particular, inspired by David Gross’s golfing scheme, we derive

relaxed optimality conditions and construct dual variables to certify the local

optimality conditions.
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CHAPTER 1

INTRODUCTION

1.1 Background

In the past few decades, much progress in signal processing has been driven by

the goal of finding effective signal representations. Several well known and

powerful bases have been developed to represent audio and image signals,

for example, DFT, DCT and wavelet, which help discover the structures

of many classes of signals and lead to various useful applications, including

the successful practical image coding standards [1]. Hand design of bases

to effectively represent signals has been a paradigm in the signal processing

field.

However, there is a different idea which suggests that instead of designing

bases for each class of signals we encounter, we may learn an effective signal

representation from large sets of data. This idea can be illustrated by the well

known principal component analysis (PCA) and Karhunen-Loève decompo-

sition. In PCA, by doing eigenvalue decomposition of the data covariance

matrix, we can find the most important components in the data, which help

to understand the underlying data structures. The idea of learning bases

from the data is very appealing, compared to manually designing bases for

each class of signals we may encounter. On the one hand, it is inefficient

and even not possible to design bases for each class of signals. On the other

hand, as the dimension of data goes higher and higher, it may be beyond our

human intuition and capability to design effective representations for high

dimensional data.

In the past ten years, motivated by this promise, researchers have devot-

ed great effort to developing an automatic procedure to find effective signal

representation from sample data. In particular, much effort has been focused

on the sparse linear representation. A signal y ∈ Rm has a sparse represen-
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tation in terms of the dictionary of A = [A1, . . . ,An] ∈ Rm×n if y = Ax, for

some sparse coefficient vector x ∈ Rn. Sparse linear representation has been

a dominant idea in the field of signal processing recently. This is because in

many practical problems, signals have the property of sparsity or near sparsi-

ty [2]. In addition, due to the fundamental theoretical results in compressed

sensing [3], it is well known how to efficiently represent and recover sparse

signals. One basic result in compressed sensing can be understood as: If a

signal y ∈ Rm has a sparse representation under the dictionary A, where A

satisfies restricted isometry property (RIP) [3], then we can find the sparse

coefficients exactly by solving an `1-minimization problem:

minimize ‖x‖1 s.t. y = Ax. (1.1)

Compressed sensing theory gives us a powerful tool to study sparse signal

representations: once a signal has a sparse representation under an known

dictionary A, there exists an efficient algorithm which can guarantee to re-

cover it.

However, when one is given a new class of signals, it may not be clear

under what bases the signals can be sparsely represented. A popular heuris-

tic is to find a dictionary to represent these signals as sparsely as possible.

Specifically, we are studying the following model problem, which is referred

to as “dictionary learning”:

Given samples Y = [y1, . . . ,yp] ∈ Rm×p all of which can be spar-

sely represented in terms of some unknown dictionary A (i.e.,

Y = AX, for some X with sparse columns), recover A and X.

Many heuristic algorithms have been proposed to solve this problem

[2],[4]. Although they demonstrated great empirical performance in vari-

ous applications, their success is largely a mystery and there is little theory

available to explain when and why they succeed.

In this work we take a step towards such a theory. In particular, we study

the following model approach to dictionary learning:

minimize
A,X

‖X‖1 subject to Y = AX, ‖Ai‖2 = 1 ∀ i, (1.2)

where ‖X‖1 =
∑

ij |Xij|. This model, as a natural abstraction of many

heuristic algorithms, was first proposed in the work of Gribonval and Schnass
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[5]. They show that if the dictionary A is a square matrix and the coefficient

X follows Gaussian-Bernoulli random model, (A,X) is a local optimum with

high probability, provided the sample number p = O(n log n). In our work,

we do not restrict the dictionary to be square and it can be overcomplete,

i.e., A can have more columns than rows.

Before we state our main result in Chapter 2, let us discuss some prop-

erties of the above optimization problem. First, notice that although the

objective function is convex, both of the constraints are not. Therefore it

is a nonconvex problem. Second, the problem has an exponential number

of optimal solutions. Indeed, let Π ∈ Rn×n be a permutation matrix and

Σ ∈ Rn×n be a diagonal matrix of signs. Suppose (A,X) is an optimal solu-

tion; then (AΠΣ,ΣΠ∗X) also solves the optimization problem. Because of

this “permutation and sign” ambiguity, the problem has at least 2nn! solu-

tions. The nonconvexity and the exponential number of equivalent solutions

make it very difficult to solve and analyze the problem, and it seems nothing

rigorous can be said about the problem.

However, we will show that with high probability this problem is solvable,

at least locally, if the dictionary A satisfies some incoherence property, the

coefficients X follow a random sparse model and the number of samples is

Ω(n3k). Intriguingly, simulation results (see Chapter 2) even suggest global

correct recovery: no matter which initial point one chooses, a local algorithm

always converges to the desired solution (of course, up to the “permutation

and sign” ambiguity), if the problem is well-structured.

1.2 Organization

The goal of our work is to show why the dictionary learning problem is lo-

cally solvable. In Chapter 2, we describe the model in detail and state our

main result. The rest of the thesis is dedicated to the proof of the result. In

Chapter 3, we show that the local correctness of the `1-minimization (1.2) is

equivalent to the global optimality over the tangent space of the constraint

of (1.2) and derive relaxed KKT optimality conditions. Chapter 4 proves the

optimality conditions indeed hold with high probability by constructing the

dual variables explicitly using a Markov process. The success of the construc-

tion relies on a certain balancedness property of the linearized subproblem
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at the optimal point, which is stated and proved in Chapter 5. Chapter 6

concludes the thesis and outlines several directions for future work.

1.3 Notation

For matrices, X∗ denotes the transpose of X, ‖X‖ denotes the matrix oper-

ator norm and ‖X‖F =
√

tr[X∗X] denotes the Frobenius norm. By slight

abuse of notation, ‖X‖1 and ‖X‖∞ will denote the `1 and `∞ norms of the

matrix, viewed as a large vector:

‖X‖1 =
∑
ij

|Xij|, ‖X‖∞ = max
ij
|Xij|. (1.3)

For vector x, ‖x‖ denotes the `2-norm of x. ‖x‖1 and ‖x‖∞ will denote the

usual `1-norm and `∞-norm, respectively. The symbols e1, . . . , ed will de-

note the standard basis vectors for Rd. Throughout, the symbols C1, C2, . . . ,

c1, c2, . . . refer to numerical constants. When used in different sections,

they need not refer to the same constant. For a linear subspace V ⊂ Rd,

PV ∈ Rd×d denotes the projection matrix onto V . For matrices, A ⊗ B

denotes the Kronecker product between matrices A and B.
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CHAPTER 2

MODEL AND MAIN RESULT

2.1 Model

As introduced in Chapter 1, our goal is to study under what condition-

s the dictionary learning problem can be solved, at least locally, via `1-

minimization. The behavior of the algorithm obviously depends on the prop-

erty of A and the sparse coefficient matrix X. In this paper, we consider the

dictionary A whose column has a unit `2-norm and take the simple assump-

tion that the columns of A are well-spread, i.e., the mutual coherence [3] of

A

µ(A) = max
i 6=j
|〈Ai,Aj〉| (2.1)

is small. Classical results [2] show that if a known dictionary A has low

coherence, then we can recover any sparse representation with sparsity size

up to 1/2µ(A) by solving a `1-minimization problem:

‖x0‖0 <
1
2
(1 + 1/µ(A)) (2.2)

=⇒ x0 = arg min ‖x‖1 s.t. Ax = Ax0. (2.3)

Although pessimistic compared to surprisingly good empirical perfor-

mance, this result is powerful since the assumption on low coherence of A is

very simple and reasonable. On the other hand, there is less prior to believe

a dictionary satisfies the more powerful restricted isometry property [3].

Next we model the sparse coefficients of X. As we described before, we

want to show that if X is sufficiently sparse, then A can be locally recovered

by solving an `1-minimization problem. However, sparsity itself is not enough

to guarantee the success of recovery. Suppose for some i, Xij = 0 for all j,

then by no means can one recover the ith column of A. Therefore, in this

work we assume X not only is sparse but also has a random sparsity pattern.
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Formally, we assume the sparsity pattern of X is random and the nonzero

entries are i.i.d. Gaussian.

We will use the Gaussian-random-sparsity model for the coefficient matrix

X. We assume xj ∈ Rn is generated in the following way: first choose k

out of its n entries uniformly, and then set each of these k entries to be

i.i.d. Gaussian, while setting the remaining n − k entries to be zero. More

precisely, Y = [y1,y2, ...,yp] ∈ Rm×p are generated i.i.d by yj = Axj, where

xj ∈ Rn satisfies a Gaussian-random-sparsity model:

Ωj ∼ uni

(
[n]

k

)
(2.4)

and

xj = PΩj
vj, (2.5)

where

vij ∼i.i.d. N
(
0, σ2

)
, σ =

√
n/kp, 1 (2.6)

and PΩj
is the projection matrix onto Ωj.

In dictionary learning problem, what we observe is neither A nor X, but

rather their product Y = AX. Given Y, there is a corresponding constraint

manifold which is

M = {(A,X) | AX = Y, ‖Ai‖2 = 1 ∀ i} ⊂ Rm×n × Rn×p. (2.7)

Inspired by the success of `1-minimization to recover sparse signals in

compressed sensing, the following approach based on `1-minimization over

the constraint manifold has been proposed by Gribonval and Schnass [5] to

solve the dictionary learning problem:

minimize
A,X

‖X‖1 subject to Y = AX, ‖Ai‖2 = 1 ∀ i, (2.8)

where ‖X‖1 =
∑

ij |Xij|.
This model is a natural abstraction of many heuristic algorithms, and

[5] shows that if the dictionary A is a square matrix and the coefficient X

follows Gaussian-Bernoulli random model, (A,X) is a local optimum with

1Here, σ can be any positive number, and it will not affect the correctness of our theory.
The reason we choose σ =

√
n/kp is for notational convenience: when p is large, then the

spectrum norm of ‖X‖ will be approximately one.
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Figure 2.1: Phase transitions in dictionary recovery? We synthesize
sample data with varying sparsity level and problem size to test whether
locally minimizing the `1-norm correctly recovers the dictionary. Specifically,
the dictionary A ∈ Rm×n, sparse coefficients X ∈ Rn×p, where m = n × δ
and p = 5n log n. Left: δ = 1. Middle: δ = 0.8. Right: δ = 0.6. If
the relative error ‖Â−A‖F/‖A‖F in the recovered Â is smaller than 10−5,
the trial is judged success. We average over 10 trials; white corresponds to
success in all trials, black to failure in all trials. The problems are solved
using an algorithm based on sequential convex optimization and augmented
Lagrangian multiplier method [6].

high probability, provided the sample number p = O(n log n). In our work,

we do not restrict the dictionary to be square and it can be overcomplete,

i.e., A can have more columns than rows.

2.2 Simulation

Before formally stating our main theoretical result, we show some very in-

triguing simulation results in Figure 2.1. The simulation results indicate

that if A is incoherent, X follows the above Gaussian that under the above

Gaussian-random-sparsity model and p = Ω(n log n), the dictionary learning

problem is indeed solvable, not only locally.

In Figure 2.1, we synthesize sample data with varying sparsity level and

problem size to test whether locally minimizing the `1-norm correctly recov-

ers the dictionary. For each problem instance, we start with a random initial

point in the constraint manifold and then use sequential convex optimiza-

tion to find a local optimal point of (2.8). Empirically, when the problem

is well-structured (X is sufficiently sparse), the local algorithm always cor-

rectly recovers the dictionary A up to sign and permutation ambiguity from

any random initial points; otherwise, when X is not sufficiently sparse, the
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algorithm fails. Further, the phase transition in Figure 2.1 is fairly sharp.

The simulation results show that there exist important classes of dictio-

nary learning problems which are solvable, and when the problem is well

structured even global recovery is achievable.

2.3 Main Result

Although the empirical results are very intriguing, the aforementioned dif-

ficulties of nonconvexity and sign-permutation ambiguity make it very diffi-

cult to analyze the correctness of the `1-minimization approach for dictionary

learning. However, Gribonval and Schnass [5] made the first step towards de-

veloping a theory for the correctness of dictionary learning algorithm. They

show that if the dictionary A is a square matrix and the coefficient X follows

Gaussian-Bernoulli random model, (A,X) is a local optimum of (2.8) with

high probability, provided the sample number p = O(n log n). In our work,

we show that the same result can be extended to wider classes of dictionary,

including the overcomplete dictionary, which has more columns than rows.

Our main result is that provided the number of samples p = Ω(n3k),

with high probability the desired solution (A,X) is a local optimum of the

`1-minimization problem over the manifoldM defined in 2.7. More precisely,

Theorem 2.1. There exist numerical constants C1, C2, C3 > 0, such that if

x = (A,X) satisfy the probability model (2.4)-(2.6) with

k ≤ min{C1/µ(A), C2n}, (2.9)

then x is a local minimum of the `1-norm over M, with probability at least

1− C3‖A‖2n3/2k1/2p−1/2(log p). (2.10)

This result implies when given polynomially many samples, the dictionary

learning problem is actually locally well-posed and a local algorithm can

hope to recover the desired dictionary. Our result on the local correctness of

`1-minimization for dictionary learning is the first result suggesting correct

recovery is possible via `1-minimization for non-square matrices.

The rest of the thesis is devoted to the proof of Theorem 2.1. In Chap-
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ter 3 we will show that the local correctness of the `1-minimization (2.8) is

equivalent to the global optimality over the tangent space of M, and derive

relaxed KKT optimality conditions. Chapter 4 proves the optimality con-

ditions indeed hold with high probability by constructing the dual variables

explicitly using a Markov process. The success of the construction relies on

a certain balancedness property of the linearized subproblem at the optimal

point, which is formally stated and proved in Chapter 5.
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CHAPTER 3

LOCAL PROPERTY AND LINEARIZED
SUBPROBLEM

3.1 Local Property

As described in the previous chapter, a key role in studying the problem (2.8)

will be played by the tangent space of manifold M. The tangent space at

the point (A,X) is characterized by

{(∆A,∆X) |∆AX + A∆X = 0, 〈Ai,∆Ai〉 = 0 ∀ i}, (3.1)

where the first equation comes from differentiating the bilinear constraint

Y = AX, while the second comes from differentiating the constraint ‖Ai‖2 =

1.

The minimization of the `1-norm of X over the above tangent space is

the linearized subproblem:

minimize
∆A,∆X

‖X + ∆X‖1 (3.2)

s.t. ∆AX + A∆X = 0,

〈Ai,∆Ai〉 = 0, ∀ i.

Intuitively, the local property of the objective function of the main op-

timization problem (2.8) should be related to its behavior over the tangent

space at the desired solution (A,X). Indeed, Lemma 3.1 shows that if (A,X)

is locally optimal over the constraint manifoldM in (2.8), then (A,X) is also

a local optimal point over the tangent space (3.1). Since the `1-minimization

over the tangent space is a convex optimization problem, local optimum over

the tangent space is also global optimum. Further, the converse is also true;

i.e., global optimum over the tangent space implies the local optimum over

the constraint manifold M.
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Lemma 3.1. Suppose that (∆A,∆X) = (0,0) is the unique optimal solution

to (3.2). Then (A,X) is a local minimum of (2.8). Conversely, if (A,X) is

a local minimum of (2.8), then (∆A,∆X) = (0,0) is an optimal solution to

(3.2).

Proof. Let TxM denote the tangent space of M at the point x = (A,X).

For any δ ∈ TxM, let xδ : (−ε, ε)→M be the geodesic satisfying xδ(0) = x

and ẋδ(0) = δ. Then

xδ(t) = x + tδ +O(t2). (3.3)

We first prove that global optimality over the tangent space is necessary.

To simplify the notation, let f(·) denote the `1-norm, which is the objective

function of (2.8). Suppose there exists δ ∈ TxM with f(x + δ) < f(x). Set

τ = f(x)− f(x + δ) > 0. By convexity of `1-norm, for η ∈ [0, 1],

f(x + ηδ) ≤ f(x)− ητ. (3.4)

But,

f(xδ(t)) = f(x + ηδ + (xδ(t)− (x + ηδ))) (3.5)

≤ f(x + ηδ) + L‖xδ(t)− x− ηδ‖2 (3.6)

≤ f(x)− ητ + L‖(t− η)δ‖2 +O(Lt2). (3.7)

When t is sufficiently small and letting η = t, this value is strictly smaller

than f(x).

Conversely, suppose that δ = 0 is the unique minimizer of f(x + δ) over

δ ∈ TxM. We will show that this minimizer is strongly unique, i.e., ∃ β > 0

such that

f(x + δ) ≥ f(x) + β‖δ‖ ∀ δ ∈ TxM. (3.8)

To see this, notice that if we write x = (A,X) and δ = (∆A,∆X), then

f(x) = ‖X‖1. Hence, if we set r0 = min{|Xij| | Xij 6= 0} > 0, whenever

‖∆X‖∞ < r0 and t < 1, we have

‖X + t∆X‖1 = ‖X‖1 + t〈Σ,∆X〉+ t‖PΩc∆X‖1 (3.9)

= ‖X‖1 + t〈Σ + sign(PΩc∆X),∆X〉. (3.10)

Set β(δ)
.
= 〈Σ + sign(PΩc∆X),∆X〉, and notice that β is a continuous func-
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tion of δ. Let

β? = inf
δ∈TxM,‖δ‖=r0/2

β(δ) ≥ 0. (3.11)

Then for all δ ∈ TxM with ‖δ‖ ≤ r0/2, we have

f(x + δ) ≥ f(x) + (2β?/r0)‖δ‖. (3.12)

Moreover, by convexity of f , the same bound holds for all δ ∈ TxM (regard-

less of ‖δ‖). It remains to show that β? is strictly larger than zero. On the

contrary, suppose β? = 0. Since the infimum in (3.11) is taken over a compact

set, it is achieved by some δ? ∈ TxM. Hence, if β? = 0, f(x + δ?) = f(x),

contradicting the uniqueness of the minimizer x. This establishes (3.8).

Hence, continuing forward, we have

f(xδ(η)) ≥ f(x) + ηβ‖δ‖ −O(βη2). (3.13)

For η sufficiently small, the right-hand side is strictly greater than f(x), and

thus x = (A,X) is local minimum of (2.8).

Due to Lemma 3.1, to prove the local correctness of dictionary learning

problem we only need to analyze the linearized subproblem (3.2). Since it

is a `1-minimization problem with linear constraints, it would be appealing

to use the tools developed for compressed sensing to prove the unique opti-

mality. However, unfortunately, our linearized subproblem does not have the

restricted isometry property (RIP), which is a dominant tool in compressed

sensing. At a high level, RIP states that there is no sparse vector near the

null space of constraint matrix. In our case the constraint matrix is specified

by equality constraints in (3.2). Let Π ∈ Rn×n be a permutation matrix with

no fixed point and set ∆A = −AΠ,∆X = ΠX.

Then, it is easy to see that ∆AX + A∆X = 0. Moreover, for each i,

〈Ai,∆Ai〉 = −〈Ai,Aπ(i)〉 ≈ 0, (3.14)

which follows the incoherence property of A. In the ideal case when A is an

orthogonal matrix, 〈Ai,∆Ai〉 is exactly zero. Thus we have constructed a

sparse vector which lies in the null space of the constraint matrix.

The absence of RIP makes the linearized subproblem very difficult to

attack by directly using tools in compressed sensing. Instead, our analysis
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is drawn on tools developed for the matrix completion problem [7], where

RIP also fails. Motivated by the success of David Gross’s golfing scheme

for matrix completion [8], we derive relaxed optimality conditions of the

linearized subproblem (3.2) in the next section and describe how to construct

the dual variables to certify these conditions in Chapter 4.

3.2 Optimality Conditions of Linearized Subproblem

To show (∆A,∆X) = (0,0) is an optimal solution of (3.2), it is easy to derive

the corresponding KKT conditions for the convex optimization problem (3.2).

The KKT conditions say that (0,0) is the optimal solution if and only if there

exist two dual variables, a matrix Λ ∈ Rm×p (corresponding to the constraint

∆AX + A∆X = 0) and a diagonal matrix Γ ∈ Rn×n (corresponding to the

constraint 〈Ai,∆Ai〉 = 0) satisfying

A∗Λ ∈ ∂‖ · ‖1(X) (3.15)

ΛX∗ = AΓ, (3.16)

where ∂‖ · ‖1 denotes the subgradient of `1-norm function.

The first constraint simply asserts that each column xj of X is the min-

imum `1-norm solution to Ax = yj. Specifically, let Ω = support(X) and

Σ = sign(X). Then (3.15) holds if and only if ∃w1, . . . ,wp ∈ Rm such that

A∗λj = Σj + wj, PΩj
wj = 0, ‖wj‖∞ ≤ 1. (3.17)

This constraint is quite familiar from the duality of `1-minimization in com-

pressed sensing literature [3].

On the other hand, the second constraint (3.16) is less familiar. It essen-

tially says that we cannot locally improve the objective function by changing

the bases in A. Since it states each column in ΛX∗ is proportional to the

corresponding column in A, it can be equivalently expressed as Φ[ΛX∗] = 0,

where

Φ[M] := [(I−A1A
∗
1)M1 | · · · | (I−AnA

∗
n)Mn] . (3.18)

It requires all λj to satisfy the equality constraint exactly, which makes

it potentially more difficult to satisfy than (3.15).
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Inspired by David Gross’s golfing scheme for matrix completion [8], in

Lemma 3.2 we trade off between the two constraints (3.15) and (3.16), and

show that by tightening one constraint and relaxing the other one, under

some balancedness property we can still guarantee the optimality of solution

(0,0).

Lemma 3.2. Let A be a matrix with no k-sparse vectors in its null space.

Suppose that there exists α > 0 such that for all pairs (∆A,∆X) satisfying

(3.1)

‖PΩc∆X‖F ≥ α‖∆A‖F . (3.19)

Then if there exists Λ ∈ Rm×p such that

PΩ[A∗Λ] = Σ, ‖PΩc [A∗Λ]‖∞ ≤ 1/2, (3.20)

and

‖Φ[ΛX∗]‖F <
α

2
, (3.21)

we conclude that (∆A,∆X) = (0,0) is the unique optimal solution to (3.2).

Proof. Consider any feasible (∆A,∆X) 6= (0,0). Choose H ∈ ∂‖·‖1(X) such

that 〈H,PΩc∆X〉 = ‖PΩc∆X‖1, and notice that PΩH = Σ. Then

‖X + ∆X‖1 ≥ ‖X‖1 + 〈H,∆X〉. (3.22)

Notice that since (∆A,∆X) is feasible,

〈∆A,ΛX∗〉+ 〈∆X ,A
∗Λ〉 = 〈∆AX,Λ〉+ 〈A∆X ,Λ〉 (3.23)

= 〈∆AX + A∆X ,Λ〉 (3.24)

= 〈0,Λ〉 = 0. (3.25)

Hence,

‖X + ∆X‖1 (3.26)

≥ ‖X‖1 + 〈H,∆X〉 − 〈A∗Λ,∆X〉 − 〈ΛX∗,∆A〉 (3.27)

= ‖X‖1 + 〈H−A∗Λ,∆X〉 − 〈ΛX∗,∆A〉 (3.28)

= ‖X‖1 + 〈PΩ[H−A∗Λ],PΩ∆X〉+ 〈PΩc [H−A∗Λ],PΩc∆X〉 − 〈Φ[ΛX∗],∆A〉
(3.29)
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= ‖X‖1 + 〈PΩc [H−A∗Λ],PΩc∆X〉 − 〈Φ[ΛX∗],∆A〉 (3.30)

≥ ‖X‖1 + ‖PΩc∆X‖1/2− ‖∆A‖F‖Φ[ΛX∗]‖F (3.31)

≥ ‖X‖1 +
(

1
2
− α−1‖Φ[ΛX∗]‖F

)
‖PΩc∆X‖1. (3.32)

In (3.29), we have used the fact that since ∆A is feasible, each column of

∆A is orthogonal to the corresponding column of A, and thus Φ[∆A] =

∆A. Furthermore, it can be easily verified that Φ is self-adjoint, and thus

〈ΛX∗,Φ[∆A]〉 = 〈Φ[ΛX∗],∆A〉. In (3.30), we have used that since H ∈
∂‖ · ‖1, PΩH = Σ = PΩ[A∗Λ].

The right-hand side of (3.32) is strictly greater than ‖X‖1 provided that

(i) ‖Φ[ΛX∗]‖F < α/2 and (ii) PΩc∆X 6= 0. Condition (i) is simply (3.21),

and (ii) is implied by the assumption (3.19) and our assumption on the

nullspace of A. Indeed, suppose PΩc∆X = 0, then by (3.19), ∆A = 0, and

thus A∆X = 0. Since PΩc∆X = 0, each column of ∆X has sparsity size

at most k. Due to the assumption that there are no k sparse vectors in

the null space of A, we have ∆X = 0. But this contradicts the assumption

(∆A,∆X) 6= (0,0). Therefore, PΩc∆X 6= 0. This completes the proof of

Lemma 3.2.

The remainder of the argument is to show the condition (3.19) indeed

holds with high probability and we can construct the dual variables Λ ∈ Rm×p

to satisfy conditions (3.20) and (3.21) with high probability under the random

model described in Section 2.1, provided the number of samples is large

enough.
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CHAPTER 4

CERTIFICATION PROCESS

In this chapter, we prove that provided the number of samples p = Ω(n3k),

the desired dual variable Λ ∈ Rm×p in Lemma 3.2 indeed exists with high

probability by explicitly constructing Λ using a Markov process.

Before describing the construction of dual variables in detail, we first state

our main result on the existence of the desired dual variable.

Theorem 4.1. There exist numerical constants C1, C2, C3 > 0 such that if

k ≤ min

{
C1

µ(A)
, C2n

}
, (4.1)

then for any α > 0, there exists Λ ∈ Rm×p simultaneously satisfying the

following three properties:

PΩ[A∗Λ] = Σ, (4.2)

‖PΩc [A∗Λ]‖∞ ≤ 1/2, (4.3)

‖Φ [ΛX∗]‖F < α/2, (4.4)

with probability at least

1− C3α
−1n3/2k1/2p−1/2(log p). (4.5)

Due to Theorem 4.1, if p = Ω(n3k), then the probability of the existence

of dual variable Λ ∈ Rm×p satisfying (4.2), (4.3) and (4.4) can be arbitrarily

close to one, as n goes to infinity.

We will repeatedly apply the following lemma to prove Theorem 4.1.

Lemma 4.2. For any given p > 0 and letting x1, . . . ,xp be independent

and identically distributed random vectors with xj = PΩj
vj, where the Ωj ⊂

[n] are uniform random subsets of size k and vj ∼i.i.d. N (0, n/kp), then

16



there exists a positive integer t? ∈ [b(p − 1)/2c, p] and a sequence of vectors

λ1, . . . , λt? depending only on x1, . . . ,xt? such that

PΩj
A∗λj = sign(xj), j = 1, . . . , t? (4.6)

‖PΩc
j
A∗λj‖∞ ≤ 1/2, j = 1, . . . , t? (4.7)

E
[∥∥∥Φ[

t?∑
j=1

λjx
∗
j ]
∥∥∥
F

]
≤ Cn3/2k1/2p−1/2, (4.8)

where C is a numerical constant.

Proof of Theorem 4.1. Choose t1 = t? ∈ [b(p− 1)/2c, p] according to Lemma

4.2, and let λ1, . . . , λt1 be the corresponding dual vectors indicated by Lemma

4.2. Then we have

E
[∥∥∥Φ[

t1∑
j=1

λjx
∗
j ]
∥∥∥
F

]
≤ Cn3/2k1/2p−1/2. (4.9)

Moreover, if p ≥ 3, p− t1 ≤ 3p/4. Consider the i.i.d. random vectors(
p

p−t1

)1/2

xt1+1, . . . ,
(

p
p−t1

)1/2

xp, (4.10)

and they also satisfy the hypotheses of Lemma 4.2. Hence, we can apply

Lemma 4.2 again: there exists δ ∈ [b(p− t1−1)/2c, p− t1] and corresponding

certificates λt1+1, . . . , λt1+δ satisfying (4.6) and (4.7), such that if we set t2 =

t1 + δ, we have

E
[∥∥∥Φ[

t2∑
j=t1+1

λjx
∗
j ]
∥∥∥
F

]
≤

(
p− t1
p

)1/2

Cn3/2k1/2(p− t1)−1/2

= Cn3/2k1/2p−1/2.

After applying Lemma 4.2 twice, we only need to certify the remaining at

most p−t2 ≤ max((3/4)2p, 2) vectors xt2+1, . . . ,xp. Repeat this construction

O(log p) times, and we will get a sequence of dual certificates λ1, . . . , λp

satisfying (4.6)-(4.7), with

E
[∥∥∥Φ[

p∑
j=1

λjx
∗
j ]
∥∥∥
F

]
≤ C ′(log p)n3/2k1/2p−1/2.
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Then by applying Markov inequality we obtain the desired probability in

Theorem 4.1.

4.1 Markov Process Construction

In this section we show how to construct the random sequences of λ1, . . . , λt?

as described in Lemma 4.2. Let Θj ∈ Rm×m denote the projection matrix

onto the orthogonal complement of the range of AΩj
:

Θj = I−AΩj
(A∗Ωj

AΩj
)−1A∗Ωj

, (4.11)

and let Qj denote the residual at time j:

Qj
.
=

j∑
l=1

Φ[λlx
∗
l ]. (4.12)

Let σj = sign(xj(Ωj)) and set

ζj =

{
1
4

ΘjQj−1xj

‖ΘjQj−1xj‖ ΘjQj−1xj 6= 0

0 else
(4.13)

λLSj = AΩj
(A∗Ωj

AΩj
)−1σj, (4.14)

λj = λLSj − ζj. (4.15)

While the above construction process looks quite complicated, the rationale

for the construction is fairly simple: at each step we construct a dual certifi-

cate λj to deflate the residual Qj as much as possible and at the same time

satisfy the constraints A∗Ωj
λj = σj and ‖A∗Ωc

j
λj‖∞ ≤ 1/2. The least square

solution λLSj
1 helps us to locate the dual certificate. In particular, when the

dictionary A satisfies low coherence property, λj = λLSj − ζj will satisfy the

two constraints (4.6) and (4.7). Indeed,

A∗Ωj
λj = A∗Ωj

(λLSj − ζj) = A∗Ωj
λLSj = σj, (4.16)

1λLS
j is the least square solution to A∗

Ωj
λ = σj .
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where we use the fact A∗Ωj
Θj = 0. And for each i /∈ Ωj,

|A∗iλLSj | = |A∗iAΩj
(A∗Ωj

AΩj
)−1σj| ≤ ‖A∗iAΩj

‖2‖(A∗Ωj
AΩj

)−1‖‖σj‖2. (4.17)

Since σj is a vector of size k with each component being either 1 or −1,

‖σj‖2 =
√
k. Under the assumption kµ(A) < 1/2, a standard argument in

Appendix A shows that ‖(A∗Ωj
AΩj

)−1‖ ≤ 2. In addition, since A∗iAΩj
is

a vector of length k with entries bounded by µ(A), ‖A∗iAΩj
‖2 ≤ µ(A)

√
k.

Combining these bounds, we have

‖A∗Ωc
j
λLSj ‖∞ = max

i/∈Ωj

|A∗iλLSj | ≤ 2kµ(A). (4.18)

Hence, further assuming kµ(A) < 1/8, we upper bound ‖A∗Ωc
j
λLSj ‖∞ by 1/4

and thus ∥∥∥A∗Ωc
j
λj

∥∥∥
∞
≤

∥∥∥A∗Ωc
j
λLSj

∥∥∥
∞

+
∥∥∥A∗Ωc

j
ζj

∥∥∥
∞

(4.19)

≤ 1

4
+ max

i
‖Ai‖2‖ζj‖2 (4.20)

≤ 1

2
, (4.21)

where in (4.20) we have used the fact that ‖Ai‖2 = 1 and ‖ζj‖2 ≤ 1
4
.

The term ζj is chosen to deflate the residual Qj as much as possible.

Indeed, ζj is a scaled version of the solution to the optimization problem

minimize
ζ

‖Qj−1 + ζx∗j‖F subject to A∗Ωj
ζ = 0. (4.22)

The reason we make ζj have a small `2-norm is to guarantee (4.6) and (4.7)

will not be violated. As shown in Section 4.2, ζj can successfully control the

norm of the residual Qj.

4.2 Analysis

Our next task is to analyze the growth of the residual ‖Qj‖F and show

it is indeed very small with high probability. Let {Fj}1≤j≤p be the the

natural filtration with respect to x1,x2, . . . ,xp. Specifically, Fj is the σ-
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algebra generated by Ω1, . . . ,Ωj and v1, . . . , vj, and we have

F1 ⊂ F2 ⊂ · · · ⊂ Fp. (4.23)

Proof of Lemma 4.2. Since by definition Qj = Qj−1 + Φ[λjx
∗
j ],

E
[
‖Qj‖2

F | Fj−1

]
= ‖Qj−1‖2

F + E
[
‖Φ[λjx

∗
j ]‖2

F | Fj−1

]
+ 2E

[〈
Qj−1,Φ[λjx

∗
j ]
〉
| Fj−1

]
. (4.24)

We will show that there exist ε(p) > 0 and τ(p) to upper bound the last two

terms on the right-hand side of (4.24) by

E
[〈

Qj−1,Φ[λjx
∗
j ]
〉
| Fj−1

]
≤ −ε(p)× ‖Qj−1‖F (4.25)

E
[
‖Φ[λjx

∗
j ]‖2

F | Fj−1

]
≤ τ(p). (4.26)

Plugging into (4.24) and taking the expectation of both sides gives

E[‖Qj‖2
F ] ≤ E[‖Qj−1‖2

F ]− 2ε(p)E[‖Qj−1‖F ] + τ(p). (4.27)

Summing from j = 1, . . . , p and using the fact that Q0 = 0, we have

E[‖Qp‖2
F ] ≤ pτ(p)− 2ε(p)

p−1∑
j=1

E[‖Qj‖F ]. (4.28)

In Sections 4.2.1, 4.2.2 and 4.2.3, we show that the quantities ε(p) and τ(p)

satisfy the following bounds:

ε(p) ≥ C1

√
k/np, and τ(p) ≤ C2nk/p. (4.29)

Taking these bounds as given, by Jensen’s inequality and (4.28) we get

E[‖Q1‖F ] ≤ (E[‖Q1‖2
F ])1/2 ≤

√
τ(p), (4.30)

and hence Lemma 4.2 is verified in the case p = 1. On the other hand, if

p > 1, then since the left-hand side of (4.28) is nonnegative, we have

1

p− 1

p−1∑
j=1

E[‖Qj‖F ] ≤ p

p− 1

τ(p)

2 ε(p)
≤ τ(p)/ε(p). (4.31)
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It is easy to recognize that the left-hand side of this inequality is an average.

We claim there exists at least one t? ∈ [b(p− 1)/2c, p] such that

E[‖Qt?‖F ] ≤ 2τ(p)/ε(p). (4.32)

Indeed, suppose E[‖Qt‖F ] > 2τ(p)/ε(p) for all t ∈ [b(p− 1)/2c, p], then

1

p− 1

p−1∑
j=1

E[‖Qj‖F ] ≥ 1

p− 1

p−1∑
j=b(p−1)/2c

E[‖Qj‖F ] (4.33)

>
1

p− 1

p− 1

2
2τ(p)/ε(p) (4.34)

= τ(p)/ε(p), (4.35)

contradicting (4.31).

Combining (4.29) and (4.32) we establish Lemma 4.2.

What remains to do is show that the bounds in (4.29) indeed hold. Split-

ting E
[
〈Qj−1, λjx

∗
j〉 | Fj−1

]
as

E
[
〈Qj−1, λjx

∗
j〉 | Fj−1

]
= E

[
〈Qj−1, λ

LS
j x∗j〉 | Fj−1

]
− E

[
〈Qj−1, ζjx

∗
j〉 | Fj−1

]
, (4.36)

we establish the bound on ε in Section 4.2.1 and Section 4.2.2 below by

bounding the two terms on the right-hand side of (4.36) separately.

Finally, we establish the bound on τ in Section 4.2.3, completing the proof

of Lemma 4.2.

4.2.1 Upper bounding 〈Qj−1, λ
LS
j x∗j〉

Given Ωj = {a1 < a2 < · · · < ak}, set UΩj

.
= [ea1 | ea2 | · · · | eak ] ∈ Rn×k,

where each ai ∈ [n] and ei denotes the ith standard basis in Rn. So we have

PΩj
= UΩj

U∗Ωj
, and we can write

〈
Qj−1, λ

LS
j x∗j

〉
=

〈
Qj−1 , AΩj

(A∗Ωj
AΩj

)−1U∗Ωj
sgn(vj)v

∗
jPΩj

〉
. (4.37)
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Since E[sgn(vj)v
∗
j ] = c1σI, we have

E
[〈

Qj−1, λ
LS
j x∗j

〉
| Fj−1

]
= c1σEΩj

[〈
Qj−1 , AΩj

(A∗Ωj
AΩj

)−1U∗Ωj

〉]
. (4.38)

Writing (A∗Ωj
AΩj

)−1 = I + ∆(Ωj), then we get〈
Qj−1 , AΩj

(A∗Ωj
AΩj

)−1U∗Ωj

〉
=
〈
Qj−1PΩj

, AΩj
(A∗Ωj

AΩj
)−1U∗Ωj

〉
(4.39)

=
〈
Qj−1PΩj

, AΩj
U∗Ωj

〉
+
〈
Qj−1PΩj

, AΩj
∆(Ωj)U

∗
Ωj

〉
. (4.40)

Since Qj−1 = Φ[
∑j−1

i=0 λix
∗
i ] ∈ range(Φ), each column of Qj−1 is orthogonal

to the corresponding column of A. Note that the first inner product in (4.40)

is simply the inner product of the restriction of A to a subset of its columns

and the restriction of Qj−1 to a subset of its columns, and thus this term is

zero. Applying the Cauchy-Schwarz inequality to the second term of (4.40)

gives〈
Qj−1 , AΩj

(A∗Ωj
AΩj

)−1U∗Ωj

〉
≤ ‖Qj−1PΩj

‖F ‖AΩj
‖‖∆(Ωj)‖F . (4.41)

Standard calculations in Appendix A show that ‖AΩj
‖ ≤ (1 + kµ(A))1/2,

and ‖∆(Ωj)‖F ≤ 2kµ(A). Plugging back into (4.38), we have

E
[〈

Qj−1, λ
LS
j x∗j

〉
| Fj−1

]
≤ 2c1σkµ(A)(1 + kµ(A))1/2 EΩj

[‖Qj−1PΩj
‖F ].

(4.42)

4.2.2 Lower bounding 〈Qj−1, ζjx
∗
j〉

We have

〈Qj−1, ζjx
∗
j〉 = 〈Qj−1xj, ζj〉 (4.43)

= 1
4

〈
Qj−1xj,

ΘjQj−1xj
‖ΘjQj−1xj‖

〉
(4.44)

= 1
4
‖ΘjQj−1xj‖ (4.45)

≥ 1
4
‖Qj−1xj‖ − 1

4

∥∥∥PAΩj
Qj−1xj

∥∥∥ (4.46)
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where PAΩj
= AΩj

(A∗Ωj
AΩj

)−1A∗Ωj
∈ Rm×m. Applying the Kahane-Khintchine

inequality in Corollary B.3 to the first term of (4.46) gives

E [‖Qj−1xj‖ | Fj−1] = EΩj
Evj

[
‖Qj−1PΩj

vj‖
]

(4.47)

≥ σ√
π
× EΩj

[
‖Qj−1PΩj

‖F
]
. (4.48)

For the second term of (4.46), write PAΩj
as

PAΩj
= AΩj

(A∗Ωj
AΩj

)−1/2 × (A∗Ωj
AΩj

)−1/2A∗Ωj
, (4.49)

and we get∥∥∥PAΩj
Qj−1xj

∥∥∥ =
∥∥∥(A∗Ωj

AΩj
)−1/2A∗Ωj

Qj−1PΩj
vj

∥∥∥ (4.50)

≤
∥∥∥(A∗Ωj

AΩj
)−1/2

∥∥∥ ∥∥∥A∗Ωj
Qj−1PΩj

vj

∥∥∥ (4.51)

≤
√

2×
∥∥∥A∗Ωj

Qj−1PΩj
vj

∥∥∥ (4.52)

=
√

2×
∥∥PΩj

A∗Qj−1PΩj
vj
∥∥ , (4.53)

where in (4.52) we have used the fact that ‖(A∗Ωj
AΩj

)−1/2‖ ≤
√

2 under the

assumption kµ(A) < 1/2.

Applying the Jensen’s inequality to bound the expectation of (4.52), we

have

E
[∥∥∥PAΩj

Qj−1xj

∥∥∥ | Fj−1

]
≤
√

2× E
[∥∥PΩj

A∗Qj−1PΩj
vj
∥∥ | Fj−1

]
(4.54)

=
√

2× EΩj
Evj

[∥∥PΩj
A∗Qj−1PΩj

vj
∥∥] (4.55)

≤ σ
√

2× EΩj

[∥∥PΩj
A∗Qj−1PΩj

∥∥
F

]
. (4.56)

Since each column of Qj−1 is orthogonal to the corresponding column of A,

the diagonal elements of A∗Qj−1 are zero. By invoking the decoupling lemma

in Appendix C, we can remove the first PΩj
in (4.56) and get

EΩj

[∥∥PΩj
A∗Qj−1PΩj

∥∥
F

]
≤ 16

√
k

n
EΩj

[∥∥A∗Qj−1PΩj

∥∥
F

]
(4.57)
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≤ 16‖A‖
√
k

n
EΩj

[∥∥Qj−1PΩj

∥∥
F

]
. (4.58)

Since ‖A‖ ≤
√

1 + nµ(A) (see Appendix A), we have

EΩj

[∥∥PΩj
A∗Qj−1PΩj

∥∥
F

]
≤ c3

√
k/n+ kµ(A) EΩj

[∥∥Qj−1PΩj

∥∥
F

]
, (4.59)

for appropriate numerical constant c3.

Combining (4.36), (4.42), (4.48), (4.59) and (4.58), we get

E
[
〈Qj−1, λjx

∗
j〉 | Fj−1

]
≤ −c4σEΩj

[∥∥Qj−1PΩj

∥∥
F

]
, (4.60)

where

c4 = −2c1(1 + kµ(A))1/2kµ(A) +
c3

4

√
k/n+ kµ(A)− 1

4
√
π
.

Assuming k/n and kµ(A) are appropriately small constants, c4 is strictly

positive and we have

E
[
〈Qj−1, λjx

∗
j〉 | Fj−1

]
≤ −c4σEΩj

[∥∥Qj−1PΩj

∥∥
F

]
(4.61)

≤ −c4σ
∥∥EΩj

[
Qj−1PΩj

]∥∥
F

(4.62)

≤ −c4σ(k/n)‖Qj−1‖F (4.63)

= −c4

√
k/np ‖Qj−1‖F , (4.64)

where we have used Jensen’s inequality and the facts that EΩj
[PΩj

] = (k/n)I

and σ =
√
n/kp. This establishes the first part of (4.29).

4.2.3 Bounding ‖λjx∗j‖

We have already shown that under the conditions of Theorem 4.1,

‖λj‖2 ≤ ‖λLSj ‖2 + ‖ζj‖2 ≤ c5

√
k + 1/4 ≤ c6

√
k. (4.65)

Hence,

∥∥Φ
[
λjx

∗
j

]∥∥2

F
≤
∥∥λjx∗j∥∥2

F
= ‖λj‖2‖xj‖2 ≤ c6k‖xj‖2. (4.66)
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Since E[‖xj‖2
2] = n/p, we have the following simple bound

E
[∥∥Φ[λjx

∗
j ]
∥∥2

F
| Fj−1

]
≤ c6kn/p. (4.67)

This establishes the second part of (4.29).
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CHAPTER 5

BALANCEDNESS PROPERTY

In this chapter, we show that the condition in (3.19) indeed holds with high

probability; i.e., we will prove that for any (∆A,∆X) in the tangent space

to M at (A,X),

‖PΩc∆X‖F ≥ α‖∆A‖F (5.1)

for appropriate α > 0. This property essentially says that if we locally

perturb the basis A, we are guaranteed to pay some penalty by increasing the

Frobenius norm of PΩcX, and thus may not improve the objective function

‖X‖1. However, this balanceness property itself is not sufficient to establish

our main result Theorem 2.1, since it does not rule not the possibility that

as A changes, ‖PΩ∆X‖1 might decrease faster than ‖PΩc∆X‖1 increases.

For this purpose we need the golfing scheme in Chapter 4 to construct dual

variables to show this indeed will not happen.

More precisely, our main result on the balancedness property is the fol-

lowing:

Theorem 5.1. There exist numerical constants C1 . . . C8 > 0 such that if

k ≤ C1 ×min

{
n,

1

µ(A)

}
, (5.2)

then whenever p ≥ C2n
2, with probability at least

1 − C3p
−4 − C4 n exp

(
− C5 p

n log p

)
− C6n

2 exp

(
−C7k

2p

n2

)
, (5.3)

all pairs (∆A,∆X) satisfying (3.1) obey the estimate

‖PΩc∆X‖F ≥ C8‖∆A‖F/‖A‖2. (5.4)

The proof of Theorem 5.1 mainly consists of two parts. First we show
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the desired property (5.1) holds whenever the random matrix X satisfies two

particular algebraic properties. Then using probabilistic analysis we prove

these algebraic properties are indeed satisfied with high probability under

the aforementioned probabilistic model. In particular, we will apply two

technical tools on matrix norm bound, which are given in Appendix B. The

first algebraic property, which is stated in Lemma 5.2, involves a bound on

the extreme eigenvalue of XX∗, and this property is proved in Appendix D

using matrix Chernoff bound of [9]. The second algebraic property involves

controlling the difference between a matrix operator and its large sample

limit, and it is formally stated in Lemma 5.3. Since the proof of Lemma 5.3

is a little technical, the proof is given in Appendix E.

Before proving Theorem 5.1, we introduce one additional definition. Fix

0 < t < 1/2, and let Eeig(t) denote the event:

Eeig(t)
.
= { ω | ‖XX∗ − I‖ < t} . (5.5)

In particular, in the event Eeig(t), ‖XX∗‖ < 1 + t < 2, and ‖(XX∗)−1‖ =

(λmin(XX∗))−1 < 1/(1− t) < 2. Lemma 5.2 shows that if X has sufficiently

many i.i.d. columns, then the probability of Eeig(t) is close to one.

Lemma 5.2. Fix any 0 < t < 1/2, and let Eeig(t)
.
= { ω | ‖XX∗ − I‖ < t}.

Then there exists numerical constants C1, C2 and C3 all strictly positive such

that for all p ≥ C1(n/t)1/4,

P [Eeig(t)] ≥ 1− C2 n exp

(
−C3 t

2 p

n log p

)
− p−7. (5.6)

Lemma 5.2 is essentially a consequence of the matrix Chernoff bound of

[9] and the proof is given in Appendix D. For now we take this result as

given and apply it to prove Theorem 5.1.

Proof of Theorem 5.1. Due to Lemma 5.2, our analysis can be restricted in

the event Eeig. In the event Eeig, XX∗ is invertible, and for any pair (∆A,∆X)

satisfying (3.1) we can write ∆A as

∆A = −A∆XX∗(XX∗)−1. (5.7)
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Using the facts that

‖X∗(XX∗)−1‖ = 1/
√
λmin(XX∗) (5.8)

and that for any matrices P,Q,R,

‖PQR‖F ≤ ‖P‖‖R‖‖Q‖F , (5.9)

on Eeig(1/2) we have

‖∆A‖F ≤
‖A‖√

λmin(XX∗)
‖∆X‖F ≤

√
2 ‖A‖ ‖∆X‖F . (5.10)

Next we show that for any pair (∆A,∆X) satisfying (3.1), we further have

‖PΩ[∆X ]‖F ≤ α′‖PΩc [∆X ]‖F , (5.11)

for some positive constant α′.

Plug (5.7) into (3.1) and we get

0 = ∆AX + A∆X = A∆X

(
I−X∗(XX∗)−1X

)
. (5.12)

Note that above PX
.
= X∗(XX∗)−1X is the projection matrix onto the range

of X∗.

We have one further constraint A∗i∆Aei = 0 ∀ i. Let CA : Rn → Rm×n

via

CA[z] = A diag(z). (5.13)

For U = [u1 | u2 | · · · | un] ∈ Rm×n, the action of the adjoint of CA on U is

given by

C∗A [U] = [〈A1,u1〉, . . . , 〈An,un〉]∗ ∈ Rn. (5.14)

Hence, our second constraint A∗i∆Aei = 0 ∀ i can be expressed concisely via

C∗A[∆A] = 0 ∈ Rn. (5.15)

Combining (5.12) and (5.15), we get

A∆X(I−PX) = 0 and C∗A[A∆XX∗(XX∗)−1] = 0. (5.16)
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It would be convenient to temporarily express the constraint (5.16) in the

vector form, as a constraint on δX
.
= vec[∆X ] ∈ Rnp. In vector notation,

(5.16) is equivalent to Mδx = 0, with

M
.
=

[
(I−PX)⊗A

C∗A((XX∗)−1X⊗A)

]
∈ R(mp+n)×np, (5.17)

where we have used the familiar identity vec[QRS] = (S∗ ⊗ Q) vec[R], for

matrices Q, R, and S of compatible size, and we have used CA to denote

the matrix version of the operator CA, uniquely defined via1

vec[CA[z]] = CAz ∀ z ∈ Rm×n. (5.18)

Consider a symmetric variant of the equation Mδx = 0, by setting

T
.
= M∗M

= (I−PX)⊗A∗A +
(
X∗(XX∗)−1 ⊗A∗

)
CAC∗A

(
(XX∗)−1X⊗A

)
.

(5.19)

Then Mδx = 0 if and only if

Tδx = 0. (5.20)

We can split δx as δx = PΩδx + PΩcδx. Multiply (5.20) on the left by PΩ and

we get

PΩTPΩδx = −PΩTPΩcδx, (5.21)

or equivalently,

[PΩTPΩ] (PΩδx) = − [PΩTPΩc ] (PΩcδx). (5.22)

Let SΩ ⊂ Rnp denote the solution space of PΩz = z, and define

ξ
.
= inf

z∈SΩ\{0}

‖PΩTPΩz‖
‖z‖

. (5.23)

Then if ξ > 0, by (5.22) we have

‖PΩδx‖ ≤ ξ−1 ‖PΩTPΩδx‖ = ξ−1 ‖[PΩTPΩc ] PΩcδx‖ (5.24)

1Indeed, it is easy to see CA ∈ Rmn×n is a block diagonal matrix whose blocks are the
columns of A.
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≤ ξ−1 ‖PΩTPΩc‖ ‖PΩcδx‖ . (5.25)

We will show that

‖PΩTPΩc‖ ≤ C‖A‖, (5.26)

for some positive constant C. Indeed, ‖PΩTPΩc‖ ≤ ‖PΩT‖‖PΩc‖ = ‖PΩT‖,
and

‖PΩT‖ (5.27)

≤ ‖PΩ(I⊗A∗)‖
∥∥(I−PX)⊗A + (X∗(XX∗)−1 ⊗ I)CAC∗A((XX∗)−1X⊗A)

∥∥
(5.28)

≤ ‖PΩ(I⊗A∗)‖‖(I−PX)⊗ I + (X∗(XX∗)−1 ⊗ I)CAC∗A((XX∗)−1X⊗ I)‖‖A‖
(5.29)

≤ ‖PΩ(I⊗A∗)‖(1 + 1/λmin(XX∗))‖A‖. (5.30)

Note PΩ(I⊗A∗) is a block-diagonal matrix, with blocks given by A∗Ω1
. . .A∗Ωp

.

By the matrix operator norm bound by incoherence (see Appendix A), the

operator norm of each of these blocks is upper bounded by a constant. Hence

‖PΩ(I⊗A∗)‖ is bounded by the same constant. On Eeig, λ−1
min(XX∗) is also

bounded by a constant, and thus (5.26) holds.

From (5.26), (5.25) and (5.26) we have

‖∆A‖F ≤
√

2‖A‖‖∆X‖F ≤
√

2‖A‖ (‖PΩ∆X‖F + ‖PΩc∆X‖F ) (5.31)

≤
√

2‖A‖
(
1 + Cξ−1‖A‖

)
‖PΩc∆X‖F . (5.32)

So our only remaining task is to lower bound ξ in (5.32) to complete

the bound on α. Specifically, in the following we will show that ξ is lower

bounded by a positive constant with high probability.

Notice that as p→∞, XX∗ → I almost surely. We can replace (XX∗)−1

with I in (5.19) to get a simplified approximation of T given by

T̂
.
= (I−X∗X)⊗A∗A + (X∗ ⊗A∗) CAC∗A (X⊗A) (5.33)

= I⊗A∗A− (X∗ ⊗A∗)(I−CAC∗A)(X⊗A). (5.34)

Let R denote the second term in (5.34)

R
.
= (X∗ ⊗A∗)(I−CAC∗A)(X⊗A). (5.35)
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Then T̂ = I⊗A∗A−R, and

T = I⊗A∗A−R + (T− T̂). (5.36)

In terms of T, T̂ and R,

ξ = inf
z∈SΩ\{0}

{
‖PΩ(I⊗A∗A−R + T− T̂)PΩz‖

‖z‖

}

≥ inf
z∈SΩ\{0}

{
‖PΩ(I⊗A∗A)PΩz‖

‖z‖

}
− ‖PΩRPΩ‖ − ‖PΩ(T− T̂)PΩ‖.

(5.37)

In the following we will bound the three terms in (5.37) separately. In par-

ticular, we will show

inf
z∈SΩ\{0}

{
‖PΩ(I⊗A∗A)PΩz‖

‖z‖

}
≥ 1− kµ(A), (5.38)

and there is a constant t? > 0 such that on Eeig(t?),

‖PΩ(T− T̂)PΩ‖ ≤ 1/8. (5.39)

The analysis of the middle term PΩRPΩ is a little technical, requiring

both additional algebraic manipulations and additional probability estimates.

Now define an event ER, on which the norm of PΩRPΩ is small:

ER
.
= {ω | ‖PΩRPΩ‖ ≤ 1/8} . (5.40)

In Appendix E, we prove the following Lemma 5.3, which shows that the

probability of ER is indeed close to one. More precisely,

Lemma 5.3. Let ER be the event that ‖PΩRPΩ‖ ≤ 1/8. Then there exist

positive numerical constants C1, C2, C3, C4, C5 and C6 such that whenever

k ≤ min

{
C1n,

C2

µ(A)

}
(5.41)

and p > C3 n
2 we have

P [ER] ≥ 1− C4p
−4 − C5n

2 exp
(
−C6k

2p/n2
)
. (5.42)
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Combining (5.38), (5.39) and (5.40), and further assuming kµ(A) < 1/2

(by choosing an appropriately small constant C1 in the statement of Theorem

5.1 ), on Eeig(t?) ∩ ER, we have

ξ ≥ 3

4
− kµ(A) >

1

4
. (5.43)

Therefore, on Eeig(t?) ∩ ER,

‖∆A‖F ≤
√

2‖A‖
(
1 + Cξ−1‖A‖

)
‖PΩc∆X‖F (5.44)

≤
√

2‖A‖(1 + C ′‖A‖)‖PΩc [∆X ]‖F (5.45)

≤ C ′′ ‖A‖2‖PΩc [∆X ]‖F , (5.46)

for some positive constants C ′ and C ′′.

Therefore, the bound in Theorem 5.1 holds with probability at least 1−
P[Eeig(t?)c]− P[EcR]. In Lemma 5.2 we have shown

P[Eeig(t?)c] < c1n exp(−c2p/n log(p)) + p−7, (5.47)

and in Lemma 5.3 we prove

P[EcR] < c3p
−4 + c4n

2 exp(−c5k
2p/n2). (5.48)

Combining these two probability bounds yields the desired result in The-

orem 5.1.

All that remains to show is that (5.38) and (5.39) indeed hold, and we

prove them in the following.

(i) Establishing (5.38) Fix any Z ∈ Rn×p with support set contained in

Ω and write z
.
= vec[Z]. Then

‖PΩ(I⊗A∗A)PΩz‖2 = ‖PΩ [ A∗A PΩ[Z] ]‖2
F (5.49)

=

p∑
j=1

∥∥∥A∗Ωj
AΩj

Z(Ωj, j)
∥∥∥2

2
(5.50)

≥ σ2
min(A∗Ωj

AΩj
)
∑
j

‖Z(Ωj, j)‖2
2 (5.51)

≥ ‖Z‖2
F (1− kµ(A))2, (5.52)
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where in (5.51) we used that Z is supported on Ω and in (5.52) we used the

bound σmin(A∗Ωj
AΩj

) > 1−kµ(A) (see Appendix A). Since this bound holds

for all z ∈ SΩ \ {0}, (5.38) holds.

(ii) Establishing (5.39) Write Ξ
.
= (XX∗)−1 − I, and then T− T̂ can be

written as

T− T̂ = X∗X⊗A∗A−
(
X∗(XX∗)−1X

)
⊗A∗A

+
(
X∗(XX∗)−1 ⊗A∗

)
CAC∗A

(
(XX∗)−1X⊗A

)
− (X∗ ⊗A∗) CAC∗A (X⊗A)

= (X∗ ⊗A∗)(−Ξ⊗ I)(X⊗A)

+
(
X∗(XX∗)−1 ⊗A∗

)
CAC∗A

(
(XX∗)−1X⊗A

)
− (X∗ ⊗A∗) CAC∗A

(
(XX∗)−1X⊗A

)
+ (X∗ ⊗A∗) CAC∗A

(
(XX∗)−1X⊗A

)
− (X∗ ⊗A∗) CAC∗A (X⊗A)

= (X∗ ⊗A∗)(−Ξ⊗ I)(X⊗A)

+ (X∗ ⊗A∗)(Ξ⊗ I)CAC∗A
(
(XX∗)−1X⊗A

)
+(X∗ ⊗A∗)CAC∗A(Ξ⊗ I)(X⊗A)

= (X∗ ⊗A∗)
(

(CAC∗A − I)Ξ⊗ I + (Ξ⊗ I)CAC∗A(XX∗)−1
)

(X⊗A).

Using the facts that ‖CAC∗A − I‖ = 12 and ‖CA‖ = 1, we have the estimate

‖PΩ(T− T̂)PΩ‖ ≤ ‖PΩ(X∗ ⊗A)‖2 ×
(
‖Ξ‖+ ‖XX∗‖−1‖Ξ‖

)
≤ ‖PΩ(I⊗A)‖2‖XX∗‖

(
1 + ‖(XX∗)−1‖

)
‖Ξ‖

≤ 6× ‖PΩ(I⊗A)‖2‖Ξ‖, (5.53)

where the last bound holds on Eeig(t) for small enough t (say, t < 1/2 is

sufficient). From the matrix norm bound by incoherence of A (see Appendix

A),

‖PΩ(I⊗A)‖2 = max
j
‖AΩj

‖2 ≤ 1 + kµ(A) < 2. (5.54)

Hence, on Eeig(t), ‖PΩ(T− T̂)PΩ‖ ≤ 12‖Ξ‖. In addition, on Eeig(t), ‖Ξ‖ ≤
t/(1− t). By choosing t small enough (say, t < 1/97) we can guarantees that

2Since C∗
ACA = I, ‖CAC

∗
A− I‖2 = ‖(CAC

∗
A− I)(CAC

∗
A− I)∗‖ = ‖(CAC

∗
A− I)‖, and

thus ‖CAC
∗
A − I‖2 = 1.
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on Eeig(t), ‖PΩ(T− T̂)PΩ‖ ≤ 1/8, which establishes the bound in (5.39).

Thus, we have proved (5.38) and (5.39) hold, and Theorem 5.1 is established.
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CHAPTER 6

CONCLUSION

The idea that many classes of signals can be represented by linear combina-

tion of a small set of atoms of a dictionary has had a great impact on vari-

ous signal processing applications, e.g., image compression, super resolution

imaging and robust face recognition [10]. However, for practical problems

such a sparsifying dictionary is usually unknown ahead of time. In this the-

sis we study an `1-minimization approach to the dictionary learning problem.

We prove that that under mild conditions, the dictionary learning problem

is locally well-posed, i.e., the desired solution is indeed a local optimum,

and thus a local algorithm can hope to recover the sparsifying dictionary.

Intriguingly, the simulation results even suggest global optimality: When

the problem is well-structured, from any random initial point, a local algo-

rithm always converges to the desired solution up to sign and permutation

ambiguity.

To fully understand the dictionary learning problem is a long-term goal

and there are many interesting open problems. While we have proved the

local correctness result, simulation results even suggest global optimality. We

conjecture that when the problem is well-structured (X is sufficiently sparse),

the desired solution (A,X) is indeed the unique global optimal point to (2.8)

up to sign and permutation ambiguity. To establish this global correctness

result will require new ideas and tools. Another interesting open problem

involves with the uniqueness of sparse matrix factorization. Given Y = AX

as a product of a overcomplete dictionary A ∈ Rm×n(m < n) and a column-

wise sparse matrix X ∈ Rn×p, we want to determine under what conditions

in terms of number of samples p, Y has a unique sparse matrix factorization,

again up to sign and permutation ambiguity. This problem was proposed

and studied in [11], which establishes a partial result on the uniqueness of

overcomplete dictionary when we have (k+1)
(
n
k

)
samples, in which for each k-

dimension subspace of A there are exactly (k + 1) samples. However, under
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the random sparsity model in Section 2.1, it is still an open problem to

determine how many samples are needed to guarantee the uniqueness of the

overcomplete dictionary. Another interesting direction is “robust dictionary

learning,” where samples are corrupted by certain noises. We believe the

proposed `1-minimization approach (2.8) (or slightly modified one) is also

robust against noise. The techniques we used in this work may be still useful

to attack these problems.
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APPENDIX A

MATRIX NORM BOUND BY MUTUAL
COHERENCE

In this section, we give some bounds on the operator norm of matrix A based

on the mutual coherence of A [12]. Let A ∈ Rm×n be a matrix with unit

norm columns. Recall that mutual coherence µ(A) is defined as

µ(A) = max
i 6=j
|〈Ai,Aj〉|. (A.1)

Set ∆ = A∗A − I. Then we can use the mutual coherence to bound the

operator norm of A by

‖A‖2 = ‖A∗A‖ = ‖I+∆‖ ≤ 1+‖∆‖ ≤ 1+‖∆‖F ≤ 1+n‖∆‖∞ = 1+nµ(A).

(A.2)

Further, we can get a tighter bound for the submatrices of A. Let L ∈(
[n]
k

)
. Then the same argument works for AL:

‖AL‖2 = ‖A∗LAL‖ ≤ 1 + kµ(A). (A.3)

Similarly, we can bound the smallest eigenvalue of A∗LAL by

λmin(A∗LAL) = λmin(I+A∗LAL−I) ≥ 1−‖A∗LAL−I‖F ≥ 1−kµ(A). (A.4)

If we assume that kµ(A) < 1/2, then

‖(A∗LAL)−1‖ ≤ 2. (A.5)

We can get a tighter bound for the operator norm of (A∗LAL)−1 using the

Neumann series representation of the inverse. Write A∗LAL = I + H. Then

‖H‖F < kµ(A). Using the fact that

(A∗LAL)−1 =
∞∑
t=0

(− 1)tHt, (A.6)
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we have

‖(A∗LAL)−1 − I‖F = ‖
∞∑
t=1

(−H)t‖F (A.7)

≤
∞∑
t=1

‖ −H‖tF ≤ kµ(A)/(1− kµ(A)) (A.8)

< 2kµ(A). (A.9)
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APPENDIX B

MATRIX CHERNOFF BOUND AND
KAHANE-KHINTCHINE INEQUALITY

In this section, we quote two technical tools used in the proof of Theorem

5.1. The first one is the matrix Chernoff bound of Tropp [9], which builds

on ideas introduced by Ahlswede and Winter [13] to bound the eigenvalues

of the sum of independent random positive semidefinite matrices.

Theorem B.1 (Matrix Chernoff Bound, [9] Theorem 2.5). Let M1, . . . ,Mn

be a finite sequence of independent random positive-semidefinite matrices of

dimension d. Suppose that for each Mi, λmax(Mi) ≤ B almost surely. Set

µmin = λmin(
∑

i E[Mi]) and µmax = λmax(
∑

i E[Mi]). Then the following

two bounds hold:

P
[
λmin

(∑
i

Mi

)
≤ tµmin

]
≤ d exp

(
−(1− t)2µmin/2B

)
, ∀ t ∈ [0, 1),

(B.1)

P
[
λmax

(∑
i

Mi

)
≥ (1 + t)µmax

]
≤ d

(
et

(1 + t)1+t

)µmax/B

, ∀ t ≥ 0. (B.2)

Two simplifications of (B.2) are useful:

P
[ ∥∥∥∑

i

Mi

∥∥∥ ≥ (1 + t)µmax

]
≤ d exp

(
−t2µmax/4B

)
, ∀ t ∈ [0, 1],

(B.3)

and P
[ ∥∥∥∑

i

Mi

∥∥∥ ≥ t µmax

]
≤ d

(e
t

)tµmax/B

, ∀ t > e. (B.4)

The second is given in [9], while the first follows from (B.2) and the inequality

t− (1 + t) log(1 + t) ≤ −t2/4, which holds on [0, 1].

The second tool we quote here is the classical Kahane-Khintchine inequal-

ity, with constant 1/
√

2 found by Latala and Oleszkiewicz [14]:
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Theorem B.2 (Kahane-Khintchine Inequality [15], [14] Theorem 1). Let

σ1, . . . , σn be an i.i.d. sequence of Rademacher random variables (i.e., vari-

ables that take on ±1 with equal probability), and let x1, . . . ,xn be a fixed

sequence of vectors in a normed space V . Then

1√
2

(
E
[∥∥∥∑

i

σixi

∥∥∥2

V

])1/2

≤ E
[∥∥∥∑

i

σixi

∥∥∥
V

]
≤
(
E
[∥∥∥∑

i

σixi

∥∥∥2

V

])1/2

.

(B.5)

We use the Kahane-Khintchine inequality to prove Corollary B.3, which

is used in Section 4.2.2 to prove Theorem 4.1.

Corollary B.3. Let M ∈ Rm×n be any fixed matrix, and v ∈ Rn with each

component being an i.i.d. N (0, σ2) random variable. Then

σ√
π
‖M‖F ≤ E [‖Mv‖2] ≤ σ‖M‖F . (B.6)

Proof. For the right side, we simply use Jensen’s inequality:

E [‖Mv‖2] ≤
(
E
[
‖Mv‖2

2

])1/2
(B.7)

=

(
E

[∑
i

(
∑
j

Mijvj)
2

])1/2

(B.8)

=

(
E

[∑
i,j,j′

MijMij′vjvj′

])1/2

(B.9)

=

(∑
ij

M2
ijE[v2

j ]

)1/2

= σ‖M‖F . (B.10)

For the left side, we write vj = εjνj, where νj is a nonnegative random vari-

able with the same distribution as |vj|, and εj is an independent Rademacher

random variable. Then

E [‖Mv‖2] = E

[∥∥∥∥∥∑
i

Mivi

∥∥∥∥∥
2

]
(B.11)

= EεEν

[∥∥∥∥∥∑
i

Miεiνi

∥∥∥∥∥
2

]
(B.12)

≥ Eε

[∥∥∥∥∥Eν
[∑

i

Miεiνi

]∥∥∥∥∥
2

]
(B.13)
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= σ

√
2

π
Eε

[∥∥∥∥∥∑
i

Miεi

∥∥∥∥∥
2

]
(B.14)

≥ σ

√
1

π

Eε

∥∥∥∥∥∑
i

Miεi

∥∥∥∥∥
2

2

1/2

, (B.15)

where in (B.13) we have used Jensen’s inequality, and we have applied the

Kahane-Khintchine inequality in (B.15) . Since Eε [‖
∑

iMiεi‖2] = ‖M‖2
F ,

we have
σ√
π
‖M‖F ≤ E [‖Mv‖2] . (B.16)
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APPENDIX C

A DECOUPLING LEMMA

In Lemma C.1, we establish an upper bound of the expected norm of PΩMPΩ

in which M is a matrix with no diagonal elements. The proof is an application

of a well-known decoupling technique [16] and several steps are quite similar

to the argument in the proof of Proposition 2.1 of [17].

Lemma C.1. Fix M ∈ Rn×n with all diagonal elements equal to zero. Let

Ω ∼ uni
(

[n]
k

)
be a uniform random subset of size k. Then the following

estimate holds:

E [‖PΩMPΩ‖F ] ≤ 16

√
k

n
E [‖MPΩ‖F ] . (C.1)

Proof. Let Λ be a diagonal matrix whose entries are i.i.d. Bernoulli random

variables taking on value 1 with probability k/n . Let k′ be the trace of Λ,

i.e., the number of nonzeros in Λ, and thus k′ is a binomial random variable.

Then

E [‖ΛMΛ‖F ] =
n∑
s=0

P[k′ = s] E [‖ΛMΛ‖F | k′ = s] , (C.2)

≥
n∑
s=k

P[k′ = s] E [‖ΛMΛ‖F | k′ = s] . (C.3)

Conditioned on k′ = s, the nonzero entries on the diagonal of Λ are uni-

formly distributed on
(

[n]
s

)
. Furthermore, note that if Ω ⊂ support(diag(Λ)),

‖PΩMPΩ‖F ≤ ‖ΛMΛ‖F . Hence,

∀ s ≥ k, E [‖ΛMΛ‖F | k′ = s] ≥ E [‖PΩMPΩ‖F ] . (C.4)

Plugging into (C.3), and using the fact that k is a median of the binomial
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random variable k′, we have

E [‖ΛMΛ‖F ] ≥
n∑
s=k

P[k′ = s]E [‖PΩMPΩ‖F ] , (C.5)

= P[k′ ≥ k]E [‖PΩMPΩ‖F ] , (C.6)

≥ 1

2
E [‖PΩMPΩ‖F ] . (C.7)

Therefore,

E [‖PΩMPΩ‖F ] ≤ 2E [‖ΛMΛ‖F ] . (C.8)

Similar to [17], for each i, j, let Mij ∈ Rn×n be a matrix of which the (i, j)

entry is equal to the (i, j) entry of M and all other entries are zero. So we

can write E [‖ΛMΛ‖F ] as

E [‖ΛMΛ‖F ] = E
[∥∥∥∑

i>j

λiλj(Mij + Mji)
∥∥∥
F

]
. (C.9)

Let η1, η2, . . . , ηn be a sequence of independent Bernoulli random variables,

each taking on value 1 with probability 1/2. Then we have

E
[∥∥∥∑

i>j

λiλj(Mij + Mji)
∥∥∥
F

]
(C.10)

= 2EΛ

[∥∥∥Eη[∑
i>j

(
ηi(1− ηj) + ηj(1− ηi)

)
λiλj(Mij + Mji)

]∥∥∥
F

]
(C.11)

≤ 2EΛEη
[∥∥∥∑

i>j

(
ηi(1− ηj) + ηj(1− ηi)

)
λiλj(Mij + Mji)

∥∥∥
F

]
(C.12)

= 2EηEΛ

[∥∥∥∑
i>j

(
ηi(1− ηj) + ηj(1− ηi)

)
λiλj(Mij + Mji)

∥∥∥
F

]
, (C.13)

where in (C.12) we used Jensen’s inequality to pull the expectation out of

the norm. So there must exist at least one sequence η? such that the right

hand side of (C.13) is larger than or equal to its expectation over η. Let

T ⊂ [n] be the support of η?, and let T c be its complement. Then combining

(C.8) and (C.13), we have

E
[
‖PΩMPΩ‖F

]
≤ 4EΛ

[∥∥∥∑
i>j

(
η?i (1− η?j ) + η?j (1− η?i )

)
λiλj(Mij + Mji)

∥∥∥
F

]
(C.14)
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= 4EΛ

[∥∥∥ ∑
i∈T,j∈T c

λiλj(Mij + Mji)
∥∥∥
F

]
(C.15)

≤ 4EΛ

[∥∥∥ ∑
i∈T,j∈T c

λiλjMij

∥∥∥
F

]
+ 4EΛ

[∥∥∥ ∑
i∈T,j∈T c

λiλjMji

∥∥∥
F

]
. (C.16)

Let Λ′ be an independent copy of Λ, and then (C.16) is equal to

4EΛ,Λ′

[∥∥∥ ∑
i∈T,j∈T c

λ′iλjMij

∥∥∥
F

]
+ 4EΛ,Λ′

[∥∥∥ ∑
i∈T,j∈T c

λiλ
′
jMji

∥∥∥
F

]
≤ 8EΛ,Λ′

[∥∥∥ n∑
i,j=1

λ′iλjMij

∥∥∥
F

]
(C.17)

= 8EΛ,Λ′

[
‖Λ′MΛ‖F

]
(C.18)

≤ 8EΛ

(
EΛ′

[
‖Λ′MΛ‖2

F

] )1/2

(C.19)

= 8
√
k/n EΛ

[
‖MΛ‖F

]
. (C.20)

Now we move from the Bernoulli model back to the uniform model. Con-

ditioned on k′ = s, we can divide support(Λ) into a = dk′/ke random subsets

S1, . . . , Sa of size at most k, and the marginal distribution of each Si is uni-

form on
(

[n]
|Si|

)
. Hence

EΛ

[
‖MPSi

‖F | k′ = s
]
≤

{
EΩ [‖MPΩ‖F ] (i− 1)k < s

0 else
. (C.21)

Therefore,

EΛ

[
‖MΛ‖F

]
≤ EΛ

[∑
i

‖MPSi
‖F
]

(C.22)

=
n∑
s=0

∑
i

EΛ [‖MPSi
‖F | k′ = s] P[k′ = s]. (C.23)

≤
n∑
s=0

⌊ s
k

+ 1
⌋
EΩ [‖MPΩ‖F ] P[k′ = s] (C.24)

= EΩ [ ‖MPΩ‖F ]E [k′/k + 1] (C.25)

= 2EΩ [ ‖MPΩ‖F ] . (C.26)

Combining (C.20) and (C.26) gives (C.1).
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APPENDIX D

PROOF OF LEMMA 5.2

In this section we prove Lemma 5.2 by applying the matrix Chernoff bound

in Appendix B to the extreme eigenvalues of

XX∗ =

p∑
j=1

xjx
∗
j (D.1)

as a sum of independent positive semidefinite matrices.

Since the summands xjx
∗
j may have unbounded norm, we will use trunca-

tion technique to replace xjx
∗
j by truncated terms x̄jx̄

∗
j which are equivalent

to xjx
∗
j with very high probability.

Proof of Lemma 5.2. Let

x̄j =

{
xj ‖xj‖ ≤ (1 + β)

√
n log p/p

0 else
(D.2)

were β > 0 is a constant which we will choose later. From Gaussian measure

concentration, for each j

P

[
‖xj‖ > (1 + β)

√
n log p

p

]
< p−β

2/2. (D.3)

Therefore, by union bound maxj ‖xj‖ is bounded by (1 + β)
√
n log p/p with

probability at least 1− p1−β2/2. Hence, with probability at least 1− p1−β2/2,

x̄j = xj, ∀ j and thus
∑

j xjx
∗
j =

∑
j x̄jx̄

∗
j . Due to truncation, we have:

‖x̄jx̄∗j‖ = ‖x̄j‖2 ≤ B
.
= (1 + β)2n log p

p
. (D.4)
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Since by definition xjx
∗
j � x̄jx̄

∗
j for all j, E[xjx

∗
j ] � E[x̄jx̄

∗
j ], and thus

µmax
.
=
∥∥∥E[∑

j

x̄jx̄
∗
j

]∥∥∥ ≤ ∥∥∥E[∑
j

xjx
∗
j

]∥∥∥ = ‖I‖ = 1. (D.5)

Plugging (D.5) into (B.3), we have

P
[
λmax

(∑
j

x̄jx̄
∗
j

)
≥ 1 + t

]
≤ n exp

(
− t2 µmax p

4 (1 + β)2 n log p

)
. (D.6)

Notice that the right-hand side of (D.6) still depends on µmax ≤ 1. We will

resolve this by developing a lower bound on µmin and thus on µmax.

For the smallest eigenvalue, we have

µmin
.
= λmin

(
E
[∑

j

x̄jx̄
∗
j

])
(D.7)

≥ λmin

(
E
[∑

j

xjx
∗
j

])
−
∥∥∥E[∑

j

x̄jx̄
∗
j − xjx

∗
j

]∥∥∥ (D.8)

≥ λmin

(
E
[∑

j

xjx
∗
j

])
−
∑
j

E
[∥∥∥x̄jx̄∗j − xjx

∗
j

∥∥∥] (D.9)

= λmin(I)−
∑
j

E
[∥∥xjx∗j∥∥1‖xj‖>

√
B

]
(D.10)

= 1−
∑
j

E
[
‖xj‖2

21‖xj‖>
√
B

]
(D.11)

≥ 1−
∑
j

√
E[‖xj‖4

2]
√

E[(1‖xj‖>
√
B)2] (D.12)

= 1− p
√

E[‖x1‖4
2]

√
P[‖x1‖ >

√
B] (D.13)

≥ 1− p×
√

3n/p× p−β2/4 (D.14)

= 1−
√

3np−β
2/4, (D.15)

where in (D.9) we have used Jensen’s inequality, and in (D.12) we have used

the Cauchy-Schwarz inequality. Finally, in (D.15) we use the following bound

on E‖x1‖4:

E
[
‖x1‖4

2

]
= (k2 + 2k)σ4 ≤ 3k2σ4 = 3n2/p2. (D.16)

So we can write µmin ≥ 1−g(p), where g(p) =
√

3np−β
2/4. Apply Tropp’s
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bound (B.1) and we get

P
[
λmin

(∑
j

x̄jx̄
∗
j

)
< 1− t

]
≤ n exp

(
−(t− g(p))2

2(β + 1)2

p

n log p

)
. (D.17)

Now let β = 4. Then provided p > (Cn/t)1/4, we have g(p) < t/2 < 1/2.

Combining (D.6) and (D.17) establishes Lemma 5.2.
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APPENDIX E

PROOF OF LEMMA 5.3

In this section, we prove Lemma 5.3, which estimates the norm of the residual

PΩRPΩ. To establish this result in Lemma 5.3, we first write PΩRPΩ as a

sum of random semidefinite matrices that are independent conditioned on Ω

and then apply the matrix Chernoff bound in Appendix B to show with high

probability that ‖PΩRPΩ‖ is bounded by a small constant.

E.1 Proof of Lemma 5.3

Proof. To simplify notations, let xi denote the i-th row of X, and xj be j-th

column of X, where matrix X ∈ Rn×p. Similarly, we define

Ωi .= {j | (i, j) ∈ Ω} ⊆ [p], (E.1)

and

Ωj
.
= {i | (i, j) ∈ Ω} ⊂ [n]. (E.2)

By using the familiar identity (P⊗Q) = (P⊗ I)(I⊗Q), we can write R

as

R = (X∗ ⊗ I)(I⊗A∗)(I−CAC∗A)(I⊗A)(X⊗ I), (E.3)

where the product of the middle three terms is a block diagonal matrix

(I⊗A∗)(I−CAC∗A)(I⊗A) =


A∗(I−A1A

∗
1)A

. . .

A∗(I−AnA
∗
n)A

 .
(E.4)

Let Pi = I − AiA
∗
i . Then we can expand the product in (E.3) more
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explicitly by

R =


∑n

b=1Xb,1Xb,1A
∗PbA . . .

∑n
b=1 Xb,1Xb,pA

∗PbA
...

. . .
...∑n

b=1 Xb,pXb,1A
∗PbA . . .

∑n
b=1 Xb,pXb,pA

∗PbA

 . (E.5)

Thus

PΩRPΩ =
n∑
b=1

PΩ

(
xb
∗
xb ⊗A∗PbA

)
PΩ. (E.6)

Let

Ψi
.
= PΩ

(
xi
∗
xi ⊗A∗PiA

)
PΩ

= PΩ

(
PΩivi

∗
viPΩi ⊗A∗PiA

)
PΩ; (E.7)

then we can write PΩRPΩ as a sum of random positive semidefinite matrices

PΩRPΩ =
n∑
i=1

Ψi. (E.8)

Note that by definition (E.7), conditioned on Ω, Ψi only depends on

independent random vectors vi. Hence, conditioned Ω, {Ψi}1≤i≤n are inde-

pendent. So we would like to apply the matrix Chernoff bound in Appendix

B to bound the size of the sum of {Ψi}1≤i≤n conditioned on Ω. Before doing

this, we need to understand how Ω affects the size of Ψi.

Since the support of each xi is independent, with high probability Ω

is quite regular. Indeed, the expected size of Ωi is simply pk/n for any

i ∈ [n]. Furthermore, for distinct i and i′, |Ωi ∩ Ωi′ | concentrates about the

expectation, which is simply bounded by k2p/n2. We define a set of supports,

in which these quantities do not greatly exceed their expectations:

O .
=

{
Ω ⊂ [n]× [p]

maxi=1,...,n |Ωi| ≤ 3pk/2n

maxi 6=i′ |Ωi ∩ Ωi′ | ≤ 3pk2/2n2

}
. (E.9)

By measure concentration, it should be expected that the event Ω ∈ O is

highly likely. More precisely,
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Lemma E.1. With overwhelming probability, Ω ∈ O:

P [Ω ∈ O] ≥ 1− n2 exp

(
− pk2

10n2

)
. (E.10)

The proof of Lemma E.1 is a standard application of Bernstein’s inequality,

and thus is omitted.

Conditioned on Ω ∈ O, for any i ∈ [n], the norm of the i-th row xi

also concentrates about their conditional expectation, and further it will not

concentrate too strongly on the intersection Ωi′ ∩Ωi for any i′ 6= i. For each

i ∈ [n], we define

Ei
.
=

{
ω max

a6=i
‖xiPΩa‖ ≤ 2

√
k/n, and ‖xi‖ ≤ 2

}
, (E.11)

and set

EX
.
= ∩ni=1Ei. (E.12)

Similarly, by measure concentration we expect EX is overwhelmingly likely:

Lemma E.2. For any Ω ∈ O,

P[EX | Ω] ≥ 1− n2 exp

(
−k

2p

4n2

)
. (E.13)

We prove Lemma E.2 in Section E.2. In Lemma E.3, we show that condi-

tioned on Ei , Ψi indeed has a small norm:

Lemma E.3. Let Ei be the event defined in (E.11), and let Ψi denote the

i-th residual term:

Ψi = PΩ

(
xi
∗
xi ⊗A∗PiA

)
PΩ (E.14)

Then on event Ei, we have

‖Ψi‖ ≤ 4k/n+ 24 kµ(A). (E.15)

We prove Lemma E.3 in Section E.3.

Next we show how to apply Lemma E.1, E.2 and E.3 to establish the
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desired result on bounding ‖PΩRPΩ‖. Write Ψ
.
=
∑

i Ψi, and set

Ψ̄i = Ψi × 1Ei , (E.16)

where 1Ei denotes the indicator function of the event Ei. By Lemma E.3, Ψ̄i

satisfies

‖Ψ̄i‖ ≤ 4k/n+ 24 kµ(A)
.
= B. (E.17)

Then we can bound the probability that ‖Ψ‖ exceeds 1/8 by analyzing

the probability that ‖Ψ̄‖ exceeds 1/8:

P [‖Ψ‖ ≥ 1/8]

= P [‖Ψ‖ ≥ 1/8 | Ω ∈ O]P [Ω ∈ O] + P [‖Ψ‖ ≥ 1/8 | Ω ∈ Oc]P [Ω ∈ Oc]

≤ P [‖Ψ‖ ≥ 1/8 | Ω ∈ O] + P [Ω ∈ Oc]

≤ max
Ω0∈O

P [‖Ψ‖ ≥ 1/8 | Ω0] + P [Ω ∈ Oc]

≤ max
Ω0∈O

{
P
[
‖Ψ̄‖ ≥ 1/8 | Ω0

]
+ P

[
Ψ 6= Ψ̄ | Ω0

]}
+ P [Ω ∈ Oc]

≤ max
Ω0∈O

{
P
[
‖Ψ̄‖ ≥ 1/8 | Ω0

]
+ P [∪iEci | Ω0]

}
+ P [Ω ∈ Oc]

= max
Ω0∈O

{
P
[
‖Ψ̄‖ ≥ 1/8 | Ω0

]
+ P [EcX | Ω0]

}
+ P [Ω ∈ Oc]

≤ max
Ω0∈O

P
[
‖Ψ̄‖ ≥ 1/8 | Ω0

]
+ n2 exp

(
−k

2p

4n2

)
+ n2 exp

(
− k2p

10n2

)
(E.18)

≤ max
Ω0∈O

P
[
‖Ψ̄‖ ≥ 1/8 | Ω0

]
+ 2n2 exp

(
− k2p

10n2

)
, (E.19)

where in (E.18) we have used Lemma E.1 and E.2.

To complete the proof, we only need to bound the first term in (E.19).

Since Ψ̄i is the sum of a sequence of independent random positive semidefinite

matrices conditioned on Ω0, we can apply the matrix Chernoff bound in

Appendix B. First, we need to estimate µmax = ‖E[Ψ̄ | Ω0]‖, which can be

bounded by

µmax = ‖E[Ψ̄ | Ω0]‖

≤ ‖E[Ψ | Ω0]‖

= ‖EV

[
n∑
i=1

PΩ0

(
PΩi

0
vi
∗
viPΩi

0
⊗A∗PiA

)
PΩ0

]
‖
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= ‖ n
kp

n∑
i=1

PΩ0

(
PΩi

0
⊗A∗PiA

)
PΩ0‖

≤ ‖ n
kp

n∑
i=1

PΩ0

(
PΩi

0
⊗A∗A

)
PΩ0‖

= ‖ n
kp

PΩ0

(
n∑
i=1

PΩi
0
⊗A∗A

)
PΩ0‖

=
n

p
‖PΩ0 (I⊗A∗A) PΩ0‖, (E.20)

where in (E.20) we have used the fact that
∑

i PΩi
0

= kI.

In (E.20), PΩ0 (I⊗A∗A) PΩ0 is a block diagonal matrix and each block

has a norm bounded by ‖AΩj
‖2, which is again upper bounded by 1 +kµ(A)

due to (A.3). Therefore, provided kµ(A) < 1/2, we have

µmax ≤ 3n/2p. (E.21)

Let tµmax = 1/8. Then t ≥ p/12n ≥ e, so we can apply the matrix

Chernoff bound (B.4) and get

P
[∥∥Ψ̄∥∥ ≥ 1/8 | Ω

]
≤ np

(
12en

p

) 1
8B

, (E.22)

where B is the bound on the norm of the summands Ψ̄i. By choosing suffi-

ciently small constants C1 and C2 in the statement of Lemma 5.3 , we can

make the exponent ν = 1
8B

as large as desired. Assuming p ≥ Cn2, and by

appropriate choice of C1 and C2, we can bound the probability that ‖Ψ̄‖
exceeds 1/8 by

P
[∥∥Ψ̄∥∥ ≥ 1/8 | Ω

]
≤ C(ν)p−3. (E.23)

Plugging into (E.19) completes the proof.

E.2 Proof of Lemma E.2

Proof. This proof is an application of Gaussian measure concentration [18].

If v is an i.i.d. sequence of N (0, σ2) random variables, and f is a positively
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homogeneous, 1-Lipschitz function, then

P [f(v) ≥ E[f(v)] + t] ≤ exp

(
− t2

2σ2

)
. (E.24)

Given Ω ∈ O, we define f(vi)
.
= ‖viPΩi‖ = ‖xi‖. It is easy to see f(vi) is a

1-Lipschitz function of vi. Since Ω ∈ O, |Ωi| ≤ 3pk/2n and thus

E
[
‖xi‖ | Ω

]
≤
√

E [‖xi‖2 | Ω] =
√
|Ωi|n/kp ≤

√
3/2. (E.25)

Applying Gaussian measure concentration, we get

P[‖xi‖ ≥ 2 | Ω] ≤ P
[
f(vi) ≥ E[f(vi) | Ω] + (2−

√
3/2) | Ω

]
(E.26)

≤ exp

(
−kp

4n

)
. (E.27)

Similarly, given i′ 6= i, we define g(vi)
.
= ‖viPΩi∩Ωi′‖ = ‖xiPΩi′‖. It is

easy to check that g(·) is also a 1-Lipschitz function of vi. Since Ω ∈ O,

|Ωi ∩ Ωi′| ≤ 3pk2/2n2, and by Jensen’s inequality,

E
[
g(vi) | Ω

]
≤
√

E [g(vi)2 | Ω] = ≤
√

3k/2n. (E.28)

By Gaussian measure concentration,

P
[
g(vi) ≥ 2

√
k/n | Ω

]
≤ P

[
g(vi) ≥ E[g(vi) | Ω] + (2−

√
3/2)

√
k/n | Ω

]
≤ exp

(
−k

2p

4n2

)
. (E.29)

Taking the union bound over all n choices of i in (E.26) and all n(n− 1)

ordered pairs (i, i′) in (E.29) gives (E.13).

E.3 Proof of Lemma E.3

Proof. We will show the calculations for i = 1 only, and the same argument

works for i = 2, . . . , n as well. Recall that Ψ1 = PΩ

(
x1∗x1 ⊗A∗P1A

)
PΩ.

The term A∗P1A = A∗A−A∗A1A
∗
1A ≈ I− e1e

∗
1, since A is incoherent
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and thus an approximately orthogonal matrix. Let

∆
.
= A∗P1A− (I− e1e

∗
1) ∈ Rn×n; (E.30)

then

‖∆‖∞ ≤ ‖A∗A− I‖∞ + ‖A∗A1A
∗
1A− e1e

∗
1‖∞ ≤ 2µ(A). (E.31)

Write

‖Ψ1‖ =
∥∥PΩ

(
x1∗x1 ⊗ (I− e1e

∗
1 + ∆)

)
PΩ

∥∥
≤
∥∥PΩ

(
x1∗x1 ⊗ (I− e1e

∗
1)
)
PΩ

∥∥+
∥∥PΩ(x1∗x1 ⊗∆)PΩ

∥∥ . (E.32)

We handle these two terms in (E.32) separately. For the first term

L
.
= PΩ

(
x1∗x1 ⊗ (I− e1e

∗
1)
)
PΩ ∈ Rnp×np, (E.33)

we let L : Rn×p → Rn×p be the equivalent linear operator via

vec [L[Q] ] = L vec[Q] (E.34)

for all Q ∈ Rn×p. Therefore,

‖L‖ = ‖L‖ .
= sup

Q6=0

‖L[Q]‖F
‖Q‖F

. (E.35)

By the familiar identity vec[PQR] = (R∗ ⊗ P) vec[Q], the operator L[Q] is

given by

L[Q] = PΩ

[
(I− e1e

∗
1) PΩ[Q] x1∗x1

]
. (E.36)

We can expand (E.36) by expressing PΩ[H] as
∑n

a=1 eae
∗
aHPΩa , for any H ∈

Rn×p. Then (E.36) becomes

L[Q] =
n∑
a=1

eae
∗
a

[
(I− e1e

∗
1) PΩ[Q] x1∗x1

]
PΩa

=
n∑
a=2

eae
∗
a PΩ[Q] x1∗x1PΩa

=
n∑
a=2

eae
∗
a

(
n∑
b=1

ebe
∗
b Q PΩb

)
x1∗x1PΩa
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=
n∑
a=2

eae
∗
a Q PΩax1∗x1PΩa . (E.37)

Since the summands in (E.37) do not overlap with each other,

‖L[Q]‖2
F =

n∑
a=2

‖e∗a Q PΩax1∗x1PΩa‖2 (E.38)

≤
n∑
a=2

‖e∗aQ‖2‖x1PΩa‖4 (E.39)

≤ 16
k2

n2
‖Q‖2

F . (E.40)

Therefore, we conclude

‖L‖ ≤ 4k/n. (E.41)

Next we address the second term W
.
= PΩ

(
x1∗x1 ⊗∆

)
in (E.32).

Similarly, we consider the associated linear map operator W : Rn×p → Rn×p,

given by

W [Q] = PΩ

[
∆ PΩ[Q] x1∗x1

]
=

n∑
a=1

n∑
b=1

eae
∗
a ∆ ebe

∗
b Q PΩb x1∗x1PΩa . (E.42)

We break the summation in (E.42) into four terms:

T1
.
= e1e

∗
1 ∆ e1e

∗
1 Q PΩ1x1∗x1PΩ1 , (E.43)

T2
.
=

n∑
b=2

e1e
∗
1 ∆ ebe

∗
b Q PΩbx1∗x1PΩ1 , (E.44)

T3
.
=

n∑
a=2

eae
∗
a ∆ e1e

∗
1 Q PΩ1x1∗x1PΩa , (E.45)

T4
.
=

n∑
a=2

n∑
b=2

eae
∗
a ∆ ebe

∗
b Q PΩbx1∗x1PΩa , (E.46)

and thus

W [Q] = T1 + T2 + T3 + T4. (E.47)

Since e∗1∆e1 = A∗1A1 − (A∗1A1)2 = 0, the first term T1 = 0. We will
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show that on E1, we can bound T2,T3 and T4 by:

‖T2‖F ≤ 8µ(A)
√
k‖Q‖F , (E.48)

‖T3‖F ≤ 8µ(A)
√
k‖Q‖F , (E.49)

‖T4‖F ≤ 8µ(A)k‖Q‖F . (E.50)

Hence, on E1,

‖W [Q]‖F ≤
(

16µ(A)
√
k + 8µ(A)k

)
‖Q‖F . (E.51)

Therefore, ‖W‖ ≤ 16µ(A)
√
k + 8µ(A)k ≤ 24kµ(A). Combining this with

(E.41), we get the desired result (E.15).

All that remains to do is prove the three inequalities (E.48), (E.48) and

(E.50). We establish these bounds in the following.

(i) Establishing (E.48). For the term T2 defined in (E.44),

‖T2‖F =
∥∥∥e∗1 ∆

(∑
b

ebe
∗
b Q PΩbx1∗)x1PΩ1

∥∥∥
2

≤
∥∥∥e∗1∆∥∥∥

2

∥∥∥∑
b

ebe
∗
b Q PΩbx1∗

∥∥∥
2

∥∥∥x1PΩ1

∥∥∥
2

(E.52)

≤
√
n‖e∗1∆‖∞ ×

∥∥∥∑
b

ebe
∗
b Q PΩbx1∗

∥∥∥
2
× 2 (E.53)

≤ 4
√
nµ(A)

∥∥∥∑
b

ebe
∗
b Q PΩbx1∗

∥∥∥
2
. (E.54)

For the last term in (E.54), we have

∥∥∑
b

ebe
∗
b Q PΩbx1∗∥∥2

2
=
∑
b

(e∗b Q PΩbx1∗)2

≤
∑
b

‖e∗bQ‖2
2‖x1PΩb‖2

2

≤ 4k ‖Q‖2
F /n. (E.55)

Combining (E.54) and (E.55) establishes (E.48).
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(ii) Establishing (E.49). For T3 defined in (E.45), we have

‖T3‖2
F =

n∑
a=2

(e∗a∆e1)2
∥∥∥ e∗1Q PΩ1x1∗ x1PΩa

∥∥∥2

≤ 4µ2(A)
n∑
a=2

‖e∗1Q‖2‖x1PΩ1‖2‖x1PΩa‖2 (E.56)

≤ 4µ2(A)× 4× 4(k/n)× (n− 1)‖e∗1Q‖2 (E.57)

≤ 64µ2(A)
k(n− 1)

n
‖Q‖2, (E.58)

where in (E.56) we have used the bound ‖∆‖∞ ≤ 2µ(A) and the Cauchy-

Schwarz inequality. Thus we have established (E.49).

(iii) Establishing (E.50). Express ‖T4‖2
F as a sum of squared `2-norms of

the rows of T4:

‖T4‖2
F =

n∑
a=2

∥∥∥ n∑
b=2

e∗a∆eb e∗bQPΩbx1∗ × x1PΩa

∥∥∥2

=
n∑
a=2

‖x1PΩa‖2
( n∑
b=2

e∗a∆eb × e∗bQPΩbx1∗
)2

(E.59)

≤ 4(k/n)×
n∑
a=2

(
e∗a∆

n∑
b=2

ebe
∗
bQPΩbx1∗

)2

(E.60)

≤ 4(k/n)×
n∑
a=2

‖e∗a∆‖2
2

∥∥∥ n∑
b=2

ebe
∗
bQPΩbx1∗

∥∥∥2

2
(E.61)

≤ 4(k/n)× ‖∆‖2
F ×

∥∥∥ n∑
b=2

ebe
∗
bQPΩbx1∗

∥∥∥2

2
(E.62)

≤ 4(k/n)× n2‖∆‖2
∞ ×

n∑
b=2

(
e∗bQPΩbx1∗

)2

(E.63)

≤ 16 k nµ2(A)×
n∑
b=2

‖e∗bQ‖2
2‖PΩbx1∗‖2

2 (E.64)

≤ 64 k2 µ2(A)×
n∑
b=2

‖e∗bQ‖2. (E.65)

Bound the summation
∑n

b=2 ‖e∗bQ‖2 by ‖Q‖2
F , and then we get (E.50). This

completes the proof of Lemma E.3.
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