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ABSTRACT 

Astrocytomas are the most common glioma, accounting for about half of all primary brain 

and spinal cord tumors. Malignancy in these tumors ranges from the least aggressive 

pilocytic astrocytoma (WHO grade 1) to the most aggressive glioblastoma (WHO grade 4). 

Molecular biomarkers or signatures—i.e., patterns of gene or protein expression that can 

reliably distinguish between each grade and provide insight into the underlying molecular 

events associated with tumor progression—have not yet been well established for 

astrocytomas. To identify candidate biomarkers and characterize genetic and molecular 

mechanisms driving glioma development and progression, we performed a meta-analysis of 

publicly available microarray gene expression datasets, comprising 432 tumor samples from 

all four grades and 28 non-tumor samples.  

We first applied a consensus preprocessing method to raw microarray data to reduce bias 

introduced by different laboratories. Using DIRAC, a network-based classification approach 

previously developed in our lab, we were able to effectively differentiate tumor grades with 

an average accuracy of 87%. Additionally, we derived 46 specific transcriptional changes 

that are associated with astrocytoma progression; of the 46 genes, 27 were consistently 

upregulated and 19 were downregulated in the progression sequence.  

Notably, we discovered a histology-independent classifier, a network using erythropoietin to 

mediate neuroprotection through NF-kB (EPONFKB), consisting of 11 genes and predictive 

of survival in high grade astrocytoma (HGA) patients. This network is known for its roles in 

neuronal development and is capable of classifying HGAs into previously unrecognized 

subtypes. It has proven to be a more significant survival predictor (P = 2.4e-8) than histology-

based grading (P = 2.2e-6). 

With our network signatures associated with each grade and our progression-associated 

genes, we hope to increase the understanding of molecular mechanisms leading to brain 

cancer development, maintenance and progression. With the identification of the EPONFKB 

network as a novel prognostic factor, we hope to move tumor diagnosis and prognosis toward 

a more quantitative realm. 
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CHAPTER 1 

INTRODUCTION 

Astrocytomas are the most common gliomas, originating in star-shaped brain cells called 

astrocytes [1]. The conventional histopathologic diagnosis scheme is based on the World 

Health Organization (WHO) grading system, which assigns a grade from 1 (least aggressive, 

also called pilocytic astrocytomas) to 4 (most aggressive, also called glioblastoma) [2]. 

According to the WHO scale, major distinguishing hispathological features between different 

grades include growth rate of cells, rate of angiogenesis, and presence of necrosis [2].  

 

Tumor typing and grading that rely completely on the WHO system may be insufficient due 

to the subjective nature of pathological diagnosis [3]. Histological variability is commonly 

present within the same tumor, whereby characteristics defined by WHO may only offer an 

oversimplified representation of the actual tumor features [3, 4]. As a result, diagnostic 

accuracy and reproducibility are jeopardized, giving rise to significant inter-observer 

variability [5, 6]. 

 

However, accurate diagnosis is required for adequate treatment and to assess prognosis for 

patients. While piloctyic tumors (G1) are easily removed through surgery, for low-grade 

tumors (G2) and higher, the chance of recurrence increases while the survival rate diminishes; 

anaplastic astrocytoma (G3) and glioblastoma (G4 or GBM) patients have dim prognostic 

prospects, with GBM few patients surviving more than 12 months after diagnosis [7, 8] .  

 

Due to these reasons, many research studies have devoted their efforts to finding the genetic 

and molecular differences associated with astrocytoma patients. Most of these studies limited 

their focus to one or some of the grades [9-13]. Our study aimed to conduct a meta-analysis 

on microarray expression profiles of astrocytoma patients of various grades, and investigated 

the genetic and biological mechanisms implicated in the phenotypic differences. We 

achieved our goals through both network-based and gene-based approaches; firstly, networks 

that could best distinguish astrocytoma patients were analyzed followed by an investigation 

on the individual gene sets changing consistently with progression. Lastly, a network with 

prognostic value was found with available survival information. 
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A network-based classification method, Differential Rank Conservation (DIRAC) allowed us 

to identify differentially expressed networks (DENs) that revealed statistically robust 

differences between different astrocytoma tumors, leading to highly accurate classification of 

histologically similar phenotypes [14]. These molecular signatures represent the most 

perturbed networks in tumor samples as compared to non-tumor samples. It is known that 

tumorigenesis is a multi-step and complicated process; different biological networks 

associated with glioma evolvement become affected at different time points [15, 16]. By 

identifying these networks, we enhance our understanding of astrocytoma development from 

a network-based context. 

Besides finding networks that could accurately predict histological grades of the patients, we 

also searched for networks that could predict survival. Among the four astrocytoma grades, 

high grades (HGA, include grade 3 and 4 tumors) have raised more interest than the other 

two grades, because of their sample availabilities and poor survival prospects [10, 11, 17]. 

Due to their molecular heterogeneity, these tumors could be classified further into smaller 

subtypes, either according to the path of progression (primary and secondary) or according to 

survival prospects (proneural, proliferative, mesenchymal). HGA usually occur de novo 

(primary), but may also progress from a lower grade (secondary) [18, 19]. Primary and 

secondary HGAs share similar morphologic features, and it has remained controversial 

whether they can be distinguished histologically [20]. Moreover, they are not clearly 

different in prognosis [19, 20]; this has led many to look for alternative subtypes showing 

survival differences. Philips et. al. classified HGA into either proneural (PN), mesenchymal 

or proliferative using a set of 35 genes. The PN subtype was shown to survive longer than 

non-PN subtypes [10, 11, 17].  

 

Using unsupervised hierarchical clustering, we found a network, named EPONFKB, which 

could efficiently distinguish HGA patients into two groups with significant survival 

difference (P = 2.4e-8), giving a much better separation between survival curves than when 

defined exclusively by histological grades (P = 2.2e-6). The prognostic value of the subtypes 

outperforms that based on primary/secondary subclasses (P = 0.001) and is comparable to 

PN/non-PN subclasses (P = 1.2e-8). 
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We defined the term “progression” following from the concept of secondary GBM, which 

has recurred in a patient with previously diagnosed lower grade astrocytoma. Since pilocytic 

tumors generally do not progress, the hypothetical sequence of progression is from normal to 

low-grade astrocytoma, progressing to anaplastic astrocytoma and eventually to GBM. The 

last part of our study was devoted to find progression-specific genes. From our datasets, two 

sets of genes that changed consistently in astrocytoma progression were identified and 

analyzed. One set consisted of 27 increasing genes and the other consisted of 19 decreasing 

genes, with both changing monotonically in the progressing sequence. These sets of genes 

allowed us to infer biological mechanisms as the tumor progresses. In doing so, we hope to 

provide genetic evidence associated with astrocytoma progression, which may help guide 

therapeutic decisions and eventually improve the clinical outcome. 
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CHAPTER 2 

RESULTS/DISCUSSION 

2.1 Effect of consensus preprocessing  

Direct integration of datasets generated by different platforms, institutions and experiments 

introduces noise into data and may lead to the discovery of false biomarkers, therefore 

appropriate pre-computation is a necessary step in all meta-analysis studies [21]. Our pre-

processing method greatly reduced sources of variations illustrated by an increase in Pearson 

correlation coefficients among patients. Figure 1a) is the Pearson correlation coefficient matrix 

obtained by applying GCRMA on raw microarray profiles of individual studies and combine 

them, and Figure 1b) was obtained by consensus pre-processing, which assembled raw 

expression data of 460 patients together and then applied necessary normalization steps (See 

Materials and Methods). 

 

In Figure 1, laboratory effects are still prominent; due to the differences in sample 

characteristics, sample preparation, hybridization, and other protocol differences, tumor samples 

from the same institution looked more homogenous than samples obtained from different 

institutions. However, with consensus processing, these disturbances were greatly alleviated with 

the average correlation coefficient increased from 0.87 (Figure 1) to 0.95 (Figure 2). 
 

Our processing method also allowed us to compute our confidence in whether a transcript is 

reliably present. We followed the probe sets detection algorithm implemented in Matlab 

Bioinformatics Toolbox (P-value for presence at 0.06, marginal at 0.04 and absence at P values 

below 0.04) and investigated how different probes filtering criteria (probes having 0%, or less 

than 25%, 50 %, 75% present calls for any phenotype could possibly be removed) affected the 

accuracy (Figure A.1) [22]. DIRAC showed robust performance against different numbers of 

probes present. Approximately 5000 probes that were absent throughout the whole phenotype 

were removed as this filtering strategy resulted in the best classification accuracy (Figure A.1). 

15371 probes were kept for further analysis. 
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2.2 Global regulation of networks across phenotypes 
 
Besides capturing how network expression patterns differ between phenotypes, DIRAC also 

provides quantitative measures (µ or rank conservation index) of how network rankings differ for 

a selected phenotype. If the combinatorial gene interactions in a specific network are quite 

similar among different patients, the network is considered tightly regulated within its phenotype. 

On the other hand, the network is considered loosely regulated if the ranks of network genes are 

greatly varied between samples of the same phenotype. Rank conservation index is a measure of 

the relative stability or consistency with which network rankings are maintained in a population 

[14]. 

 

Averaging rank conservation indices over all the networks provides a measure of global 

regulation in different phenotypes. For example, networks in normal patients samples are more 

highly conserved on average (0.962) than networks in pilocytic tumors (0.944), Similarly, 

network rankings in grade 2 to GBM samples matched the respective templates for 93.7% (µ= 

0.937), 93.3% (µ=0.933) and 91.7% (µ=0.917) of all pairwise orderings on average. In fact, the 

relative magnitude of average rank conservation indices has an inverse correlation with the 

malignancy of phenotypes. This trend suggests that the more aggressive diseases may have 

greater overall variation in network ranking among different samples. In normal or low-grade 

astrocytoma patients, most networks are still under tight regulation to maintain normal cellular 

functions, as the tumor develops, more cooperating oncogenes involved in tumorigenesis and 

growth mechanisms were activated, consequently more biological networks become increasingly 

disturbed. This deregulation increases with grades may contribute to its malignancy. Based on a 

one-way ANOVA, the estimated overall P-value for the ordering of phenotypes in Figure 3 is 

smaller than 0.001. 
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2.3 Top biomarkers from each classification 

Instead of searching for best gene or gene pairs, our study aimed to search for a set of related 

genes that could accurately distinguish similar disease phenotypes. Expression levels of genes 

were grouped into 248 human signaling networks, defined according to the BioCarta gene sets 

collection in the Molecular Signatures Database (MSigDB) [23]. Microarray expression data of 

any two phenotypes among five disease/control states were combined and classified by DIRAC. 

Average cross-validation accuracy of 10 classifications is 86% (leave-one-out cross-validation) 

(Figure 3).  Two other manually curated network databases, Biology Process under Gene 

Ontology (BP), containing 825 curated pathways and cancer modules (CM) containing 456 

modules (specifically related to cancer were also candidates for network database [23]. The 

average leave-one-out cross-validation accuracies of DIRAC on these two gene sets collections 

were 87.5% and 89.0% respectively (Figure 3). Biocarta gene sets were chosen for further 

analysis based on two criteria: the relationships of the genes in each network are clearly defined 

with available interaction information, and the gene sets are small in size for time-efficient 

analysis. 

Though different malignancies of astrocytomas are theoretically well defined by the WHO, 

drawing a distinction between them may be challenging based on histological grounds alone. 

Clinical and neuroradiologic features such as age, previous treatment often facilitate diagnosis 

and prognosis [17]; for instance, pilocytic astrocytomas are known for their high incidence in 

children and are associated with favorable prognoses [24], while infilatrating tumors of grade 2 

to GBM occur usually in adults and are related to short survival [25]. However, these factors 

could be insufficiently decisive factors in diagnosis.   

To select the best therapeutic decisions requires understanding of molecular alterations leading to 

tumor carcinogenesis and astrocytoma progression. Tissue microarrays have emerged as a 

popular tool for high throughput measurements of human genetic profiles, due to their ability to 

measure the tissue-specific protein expressions and identify possible treatment targets connected 

to the clinical outcome [26]. However, most of the microarray studies are focused on the high-

grades, especially glioblastoma [9]. A meta-analysis including all malignancies of astrocytoma 

with normal brain tissues taken as control is necessary to gain insights into early and late events 

in the brain tumor evolution. 
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Malignant phenotypes, including cancers, usually arise as a net effect of interactions among 

multiple genes within networks. DIRAC is a powerful classification method based on the relative 

expression values of participating genes within biological networks. Furthermore, it identifies 

and measures network-level perturbations from a completely novel perspective, namely by the 

“combinatorial comparisons” of network genes as opposed to increases or decreases alone [14].  

By accounting for these combinatorial interactions, we alleviated the signal-to-noise issues in 

disease-perturbed networks. DIRAC classified astrocytoma patients of different grades with each 

other and with normal samples with fairly high accuracy, with the majority of classifications 

between different phenotypes above 90% accurate except in cases among grade 2 to grade 4 

tumors (G2 vs. G3 60%, G2 vs. G4 72%, G3 vs. G4 81%). This may be partially due to their 

invasive nature, which resulted in these tumors possessing histological and biological 

characteristics of more than one grade, posing challenges in the assignment of the grades; 

another reason is the small sample size of G2 tumors, which causes a less accurate training 

model and therefore, decreased precision in making predictions using DIRAC. In general, 

adjacent grades were similar in expression profiles and resulted in lower accuracies in these 

cases while far-apart grades were easier to distinguish. 

 

The classification performance is also limited by other factors. One possible factor is the 

presence of the subtypes and/or outliers (atypical patients) within cancer tumor samples [11, 18]. 

Due to limited access to normal brain tissues, they were collected and defined in different ways 

and some degree of heterogeneity was introduced into the datasets inevitably. Other factors 

potentially affecting accuracies, e.g. the clinical variables such as ages and tumor locations of the 

patients, which should be controlled for a fair comparison, were not available in most cases. 

Using a permutation-based testing to assess the statistical significance of estimated network 

classification rates (see Materials and Methods), we found a total of 219 and 195 networks which 

significantly discriminated between expression profiles of G1 versus normal controls and G2 

versus normal controls respectively, while 211 and 217 networks were identified as robust 

signatures in distinguishing anaplastic astrocytoma and glioblastoma from controls (P < 0.05). 

Among these differentially expressed networks (DENs), we estimated that only 5~6% (between 

11-12 networks in each set) are likely to have been found by chance rather than based on true 
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differences between the phenotypes, as determined by the FDR (see Materials and Methods). 

The top ten networks in each case were shown in Table 1a) to 1d) 

These networks represented significant changes that occurred in astrocytoma transitions. They 

could be functionally grouped into biological processes related to gliomagenesis and 

development such as cell cycle regulation, apoptosis signal transduction and immune system 

response [27]. 
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2.4 Inferences from changes in network ranking 

Different tumors vs. normal brains 
 

Sixteen networks were more perturbed in early stage astrocytoma patients than in advanced 

stages as indicated by a decreased network ranking. Interestingly, these networks contain proto-

oncogenes and are linked to early or initiation events in astrocytoma progression. An example is 

the platelet-derived growth factor (PDGF) signaling pathway whose ranks among all networks 

decreased with malignancy grade (Table 1e). In response to various stress stimuli, the receptor 

tyrosine kinase PDGFR-α binds with its ligand PDGF-α, to stimulate various mitogenesis 

mechanisms [28]. The downstream molecules also in the PDGF signaling pathway include key 

players in the JAK-STAT and MAPK/ERK signaling pathways (JAK1, STAT1, STAT3, 

STAT5A and different isoforms of mitogen-activated protein (MAP) kinases, MAP2K1, 

MAP2K4, MAPK3, MAPK8). The PDGF signaling plays central roles during the initiation and 

progression of gliomas, and the overexpression of the receptors or the ligands has been found in 

both low/high astrocytomas [28-30]. The AKT pathway showed a similar pattern as the PDGF 

pathway in network ranking change, being more variably expressed in less malignant phenotypes 

(Table 1e); Phosphatidylinositol 3-kinases (PI3K) in the network converts phosphatidylinositol-

4, 5-bisphosphate (PIP2) to the second-messenger molecule PIP3, which in turn phosphorylates 

AKT protein. Phosphorylated AKT triggers downstream pathways through activation of 

mammalian target of rapamycin (mTOR), transcription factor NFk-β, and MDM2 [31]. This 

network not only stimulates growth but also contributes to an increase in anti-apoptotic features 

of glioma cells [27]. PDGF and its associated activated downstream AKT signaling, acting in 

concerted efforts to promote cellular growth and survival explain these networks being more 

disturbed in early stage astrocytomas; however, while the tumor cells are active in growth and 

neuronal differentiation, they have not yet acquired angiogenic properties as in the high grades 

[32]. As the tumor progresses to more advanced stages, these networks become less disturbed 

probably due to the angiogenesis related networks being more activated  

Six out of the sixteen networks are linked to immune system, one of the first responders in 

astrocytoma initiation. One such network, Cytokines and Inflammatory Response (INFLAM) 

showed similar expression pattern as the PDGF pathway (Table 1e). The network contains 8 

families of interleukins (IL), as well as the tumor necrosis factor (TNF), and all three isoforms of 

tumor growth factor (TGFβ). Cytokines like IL-1 and IL-6 are involved in a broad range of 
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different immune networks to provoke the inflammatory response; TNF is able to induce 

apoptotic cell death, stimulate inflammation, and inhibit tumorigenesis [33]; TGF-beta 

suppresses proliferation and differentiation of lymphocytes including cytolytic T cells, natural 

killer cells and macrophages, thus preventing immune surveillance of the developing tumor [34]. 

Various immune mechanisms communicate and coordinate their efforts to prevent tumor growth. 

The network being highly differentially expressed in pilocytic astrocytomas but less variably 

expressed at later stages supported the theory that the immune system is alerted at a relatively 

early stage of gliomagenesis and could potentially restrain the tumor growth. At more advanced 

stages, an immune response may still be active, but may possibly be immediately overwhelmed 

by high tumor burden and fail to show a highly variably expressed pattern [35].  

 

 In contrast, DIRAC captured an opposite ranking pattern for thirteen other networks. One of 

which is Cell to cell adhesion signaling (CELL2CELL) are related to the angiogenic properties 

of HGAs (Table 1e). This pathway contains major cell adhesion proteins like Catenin, PECAM-

1 and Paxillin. Catenins trigger changes in cell shape and motility; PECAM-1, involved in the 

formation of junctions between endothelial cells could modulate cell migration. Paxillin acts as 

an adaptor protein between proteins involved in adhesion signaling like FAK and SRC. These 

important molecules interact with cytoskeletal elements to produce changes in cell motility, 

migration, proliferation and shape [36]. Cell adhesion molecules have been associated with the 

invasive potential of GBMs, or a more aggressive subtype in GBM [11]. This network being 

more variably expressed in more malignant grades coincides with the fact that biological 

processes related to angiogenesis and cell invasion increase inactivity with aggressiveness of the 

tumor. 
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G1 vs other grades 
 
Pilocytic astrocytomas represent a distinct pathological and biological entity compared with 

other tumors [24]. They behave as well-circumscribed tumors which do not diffusely invade the 

brain parenchyma; instead, the tumor could be removed by surgery and recurrent rate is fairly 

low. However, there are no studies which compared pilocytic astrocytoma patients with normal 

as well as all other grades from a network perspective. Therefore, we are interested in finding the 

networks differentiating pilocytic astrocytoma from higher grades and inferring biological events 

to explain its antimigratory properties. We combined microarray samples of malignancy grade 2 

to grade 4 and termed this group collectively as diffusely infiltrating astrocytomas (DIA), 

indicating their nature to diffuse and spread. DIRAC detected 163 networks which could 

effectively separate grade 1 tumors from the rest (P<0.05) with their apparent accuracy ranging 

from 95% to 68%. The best network classifiers (with classification rate > 90%) are listed in 

Table 1f).  

 

 Among the best five classifiers, four of them are related to cell cycle regulation (Mechanism of 

Gene Regulation by Peroxisome Proliferator-activated receptors (alpha) (PPAR), Cell Cycle: 

G1/S Check Point (G1), Cell Cycle: G2/M Checkpoint (G2), p53 Signaling Pathway (P53)). A 

lot of genes are shared among these networks implying extensive overlaps among, and cross-talk 

between, these pathways. PPAR agonists affect expression of cell cycle related proteins in cell 

lines of glial brain tumors; they decrease cell proliferation, stimulate apoptosis and induce 

morphological changes and expression of markers associated with better prognosis [37]. P53 is a 

guardian in G1/S phase, whose inactivation allows cell cycle progression and makes apoptosis 

mechanisms ineffective. This tumor suppressor was shown to be not involved in the oncogenesis 

of pilocytic astrocytomas [24]; but for diffuse astrocytomas of WHO grade II, frequent mutation 

(occurs in up to 82%) of TP53, which encodes the protein was detected and believed to be one of 

its defining characteristics [16]. These networks also contain proto-oncogenes MDM2, which is a 

negative regulator of p53, members of the cyclin-dependent kinase (CDK) family (CDK2, CDK4 

etc.), and their inhibitors (CDKN 1A, CDKN 2A etc.). Similar to TP53, homozygous deletion of 

CDKN2A is found of 20% in diffuse astrocytoma while remains intact in grade 1 tumors [24], 

indicating these changes represent genetic events occurred to grade 2 or higher grade tumors. 

Altered combinatorial interactions among gene pairs in the cell cycle regulation networks in 
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pilocytic astrocytomas as compared to DIAs may contribute to effective tumor suppression 

mechanisms such as cell-cycle arrest, which eventually results in controlled tumor cell growth 

and less tendency to migrate to brain parenchyma than other grades. 
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2.5 Monotonically changing genes in astrocytoma progression 

Certain genes appeared to be repeatedly differentially expressed as we compared different tumor 

grades against controls; this led us to search for a list of genes whose expression level were 

consistently up or down regulated in human astrocytoma progression. In doing so, we hope to 

correlate the molecular changes with the histopathological development. The commonly 

recognized path of progression on a normal person starts with the onset of low-grade 

astrocytoma, skipping the first grade, progressing to anaplastic astrocytomas and eventually to 

GBM, though patients may not necessarily go through each stage. However, this model could 

hardly be proven clinically due to the lack of available tissues in the early phases of 

tumorigenesis. In this aspect, spontaneous genetically engineered mouse models provide an 

opportunity to track the molecular and pathological changes as a function of time. Low-grade 

astrocytoma started to develop as early as from 1-week old genetically engineered mouse; from 3 

to 8 weeks the incidence of low-grade astrocytomas progressively increased, with 85% of 12-

week-old mice harboring low or high-grade astorcytomas [38].  

 “Progression” in human astrocytomas was established as mentioned before, with the support of 

mouse models. We kept track of differentially expressed genes from normal to GBM and found 

27 genes that successively increased and 19 genes that similarly decreased their relative 

expression values. Considering both our increasing and decreasing genes, we grouped them into 

four functional categories according to in DNA damage repair, chromatin regulation and 

apoptosis (Table A.1-2), according to the putative functions they encode.  

DNA Damage Repair related genes 

Our list of successively changing genes includes several genes that play critical roles in specific 

DNA damage repair processes. Those genes include DCLRE1B, PALB2, RBBP8, TOP1 and 

SMARCA2; all of these, with the exception of SMARCA2, increased their relative expressions 

in astrocytoma progression (Table A.1-2). The susceptibility to DNA damage arises from a 

compromised repair system, either in the repair proteins themselves or in the DNA damage 

response pathways. Genomic instability and the susceptibility to DNA damage can be indicative 

of a poor prognosis in many cancers, including gliomas.  
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DCLRE1B, also known as Apollo, is a 5’ to 3’ exonuclease that helps to maintain the 3’ 

overhang of telomeres, thereby suppressing activation of the DNA damage sensing protein [39]. 

Along with its binding partner TRF2, Apollo was also reported to help relieving topological 

stress during telomere replication in S phase and protecting chromosome termini from being 

recognized and processed as DNA damage [40, 41]. Increased levels of Apollo thus may repress 

the activation of DNA-damage or apoptosis mechanisms in astrocytoma progression. 

Apollo negatively regulates Topoisomerase 1 (TOP1) [42], another upregulating gene that 

controls and overcomes topological problems during DNA transcription. It was implicated in all 

three functional classes, but it has been mostly associated with DNA damage repair [43-45]. 

Inhibitors of TOP1 have shown promising activity in patients with high grade gliomas and 

warrant further study [46].  

TOP1 was also regulated by RBBP8 in our list, commonly known as CtIP, which functions in 

DNA double strand break repair by homologous recombination [42, 47, 48]. It has also been 

characterized as a transcriptional cofactor, interacting with and modulating the activity of the 

transcriptional repressor CtBP [49], the DNA repair protein BRCA1[50, 51], and G1/S-specific 

protein CyclinD1 as well as the oncogene retinoblastoma (Rb) [52, 53]. Due to its association 

with BRCA1, it had been heavily studied in breast cancer, with the corresponding protein 

expression considered as useful biomarkers for breast cancer prognosis; in addition, CtIP 

silencing was reported to be a novel mechanism for effective breast cancer therapy [54]. Another 

increasing gene, PALB2, last one in this category, enables recombinational DNA repair, in ways 

similar to RBBP8, through binding with BRCA2 [55].  Its increase in activity may imply its roles 

in cell cycle progression leading to tumor cell proliferation, in addition to preventing apoptosis 

of tumor cells in astrocytoma progression. 

Chromatin remodeling related genes 

All of the human genome is packaged into chromatin, which is continuously remodeled. The fate 

of the cell relies on a delicate balance between gene expression and repression. The 

transcriptional control of the genome is maintained not only by transcription factors but also 

chromatin remodeling proteins [56]. 4 increasing genes (PRMT1, ENY2, ESPL1, NCAPG 
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WDR76) and one decreasing gene SMARCA2 identified in our list, displayed significant 

connections to the chromatin modification process, as listed in Table A.1-2. 

The building blocks of chromatin, named the nucleosome, can be restructured by two 

mechanisms: 1. the movement of nucleosomes by ATP-dependent chromatin remodeling 

complexes; and 2. the modification of core histones by histone acetyltransferases, deactylases, 

methyltrans-ferases, and kinases [56, 57]. Our gene set modified the chromatin through both 

mechanisms. 

As an arginine-specific histone methyltransferase, PRMT5 is primarily known to be involved in 

epigenetic gene regulation through histone methylation of H2A, H3 and H4 [58, 59]. It also has 

the ability to facilitate dedifferentiation and to create pluripotent stem cells, resembles functions 

of biomarkers indicative of mesenchymal high grade glioma (HGA), a more malignant subtype 

associates with worse prognosis. 

PRMT5 also methylates several other important glioma-related genes including p53, JAK2 and 

EGFR. By interacting with PRMT, p53, a tumor suppressor, was weakened in its target 

specificity and ability to facilitate DNA damage repair [60-62]; PRMT5 has also been linked to 

the invasive and migratory potential of glioblastoma cells through its regulation of the 

ubiquitously expressed tyrosine kinase JAK2 [63]. Further extending PRMT5’s role in 

oncogenesis is the observation that activation of the JAK2/STAT3 pathway correlates with 

glioma grade and aggressiveness, and that this activation occurs more frequently in gliomas 

expressed with EFGR, another reported PRMT5 methylation target [64]. Taken together, 

increased expression of PRMT5 may directly or indirectly contribute to a cascade of events that 

lead to the progression of early-grade tumors to later more malignant phenotypes. 

SMARCA2, better known as Brm, is a ATP-dependent chromatin complex. Consistent with our 

observation that Brm monotonically decreased with respect to glioma grade, aberrant expression 

of Brm genes is associated with disease development and progression in many cancers [65, 66]. 

Though the exact mechanism is not clear, there has been speculation that the loss of Brm may 

result in the increased interactions with transcription factors such as Oct4 and Sox2 to enable 

pluripotency, which leads to tumor cell proliferation and  [67-69].  Lastly, Brm is also known to 
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interact with PRMT5 resulting in further chromatin remodeling through the methylating action of 

PRMT5 on H3 and H4 [70].   

The remaining two genes ENY2 and ESPL1, were also implicated in regulation of gene 

expression. ENY2 has been identified as a part of another chromatin remodeling complex, 

SAGA, known for its ability to acetylate histones H2A and H2B [71]; On the other hand, ESPL1 

plays a pivotal role in the separation of sister chromatids at anaphase. Overexpression and 

mislocalization of ESPL1 were seen in a wide range of human cancers [72] .  

Apoptosis 

Many genes in our list encoded apoptotic proteins. Unlike the other two functional categories, 

the majority of apoptotic genes (6 out of 10) decreased with tumor grade (Table A.1-2). Because 

evasion of apoptosis is generally considered as a hallmark of cancer, pro-apoptotic genes that 

suppress formation of tumors should decrease their expression with tumor grade, for instance 

C10orf97 and DSTYK. In contrast, anti-apoptotic genes that facilitate tumorigenesis should be 

more active in high-grade gliomas, as in the case of NUP107.  However, we also found AK2 and 

BCL2L11 who seemed to induce cell death, became more active as the tumor progressed; to 

support our finding. a number of studies validated their overexpression in various diseases, 

including cancer,  

One possible explanation to this interesting phenomenon is that genes and their respective 

encoded proteins usually play a number of roles in signal transduction, and apoptosis may be one 

of the many functions known to us, therefore the up or down regulation of a certain transcript is a 

net effect of biological pathways interacting and influencing each other rather. We will need 

more discoveries regarding their exact roles in cancer, or astrocytoma in particular. Nevertheless, 

a large number of genes related to programmed cell death, allowed us to further understand its 

involvement in glioma development and progression. 

Blood biomarkers 

 

Four of the key transcripts (ESPL1, KIF15, NUP205, PRMT5) in this list encoded proteins that 

are secreted into the blood. These blood biomarkers have significant potential applications in 

early detection and management of various diseases, including cancer. Simply by measuring 
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altered blood levels of proteins without the need to sample disease tissues is a less expensive and 

more friendly therapeutic option for disease prediction and monitoring than traditional medicine. 
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2.6 Prognostic networks that reclassifies high grade astrocytoma 

HGAs are very aggressive tumors usually associated with worst prognosis, with average length 

of survival for G3 patients around three years, and fourteen months for GBM patients [73]. Due 

to the heterogeneity of their molecular profiles, a lot of efforts had been devoted to discover 

subtypes within the large collection of tumor samples. A long-existing attempt to classify HGA 

is according to the clinical histories of patients: a HGA tumor may be classified as either primary 

if there was no prior history of tumor occurrence, or secondary, if the tumor recurred to the 

patients, usually in a more malignant form. Primary tumors are believed to occur to older 

patients, and have a slightly shorter survival time [18]. 

Another relatively new approach by Phillips et al, utilized a set of 35 genes to classify HGAs 

into three classes, and resembled each subclass with a corresponding stage in neurogenesis .  One 

tumor class (proneural or PN) displaying neuronal lineage markers shows longer survival, while 

two other tumor classes enriched for neural stem cell markers display equally short survival 

(non-proneural or non-PN).  

Our study was also interested in finding biomarkers indicative of HGA prognosis. With available 

survival information from 239 patients, we derived a novel network with significant prognostic 

value. Using a distance matrix defined based on the DIRAC metric (see Materials and 

Methods), the genomic profiles of all HGA patients were grouped into two clusters using 

unsupervised clustering. Subsequent log-rank tests on the survival estimates of these two groups 

gave a P-value of 2.4e-8, comparable to the performance given by the genes separating proneural 

vs, non-proneural groups (P value=1.2e-8); more importantly, it outperforms p-values given by 

histological separation (grade 3 against grade 4 tumors, P value=0.001) as well as by path of 

progression (primary against secondary tumors, P value=2.2e-6). Besides this network, four 

others defined in the Biocarta network collection yielded statistically significant P values in their 

respective log-rank tests (Table A.3) 

The EPONFKB network utilizes erythropoietin to mediate neuroprotection through NF-kB. It 

initiates signaling when erythropoietin (EPO) binds with its receptor EPOR to trigger NF-kappa-

B, a heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65 and 

NFKB1/p50 in the presence of Janus kinase 2 (JAK2). The activated complex then translocates 
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to the nucleus and subsequently sends out both apoptotic signals through superoxide dismutase 2 

(SOD2) and antiapoptotic signals through glutamate receptor subunit zeta-1 (GRIN1).  

Involvement of the EPONFKB network in gliomas is an interesting and debatable subject as how 

it affects survival.  The standard treatment of GBM with radiation does significant damage to the 

surrounding brain, resulting in significant collateral damage.  This damage is often referred to as 

“radiochemobrain” and results in slowing psychomotor skills, cognitive decline, fatigue, and loss 

of drive, all of which significantly reduced quality of life [74, 75]. To counteract these effects, 

patients have been given hematopoetic growth factor erythropoietin prior to and following 

radiation. EPO signaling crossactivates the antiapoptotic transcription factor NF-kappaB, this 

causes neuroprotection against oxidative stress and implies radioprotection. As a matter of fact, 

EPO has pleotrophic affects on the brain including anti-apoptotic, antioxidative, neurotrophic, 

axon-protective, angiogenic, and neurogenic – many of which appear to be neuroprotective for 

the insults of radiation and chemotherapy [76-82]. In addition, EPO has also been shown to 

improve the responsiveness of tumors to radiation therapy in human glioma xenographs by 

increasing tumor oxygenation [83, 84].   

Despite all the positive effects EPO it believed to have, these same effects could also help to 

promote tumor growth. Administering EPO as part of chemotherapy is controversial because of 

the possibility for it to promote tumor growth [85-88]. Recently, EPO signaling was shown to be 

involved in angiogenesis of human glioma cells as well as cancer stem cell maintenance [89, 90]. 

Still, others have shown that while EPO does augment the survival of glioma cells, it is unlikely 

to appreciably influence basal glioma growth [91]. 

While our results implicate the EPONFKB as a novel and powerful biomarker in predicting 

patient survival, the exact mechanism through it modulates survival is unclear. One possible 

explanation is the longer survival subtype with 161 patients may have more patients underwent 

EPO-related chemotherapy; this group also has a larger proportion of patients (45%) belonged to 

the PN subtype, as compared to the shorter survival subtype (13%), consistent with the 

observation that PN class has better prognosis than non-PN classes.  
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2.7 Tables 

Network Name Apparent 
Accuracy 

P-values 

G2 0.984 <0.001 
G1 0.984 <0.001 
TID 0.977 <0.001 

PDGF 0.977 <0.001 
EGF 0.977 <0.001 
IL1R 0.977 <0.001 

P38MAPK 0.977 <0.001 
GSK3 0.974 <0.001 

HIVNEF 0.974 <0.001 
EIF4 0.973 <0.001 

Table 1. Top 10 networks differentiating normal from grade 1 patients 

Network Name Apparent 
Accuracy 

P-values 

PROTEASOME 0.982 <0.001 
EGF 0.982 <0.001 

MCALPAIN 0.964 <0.001 
ALK 0.964 <0.001 
CBL 0.949 <0.001 

GSK3 0.949 <0.001 
PDGF 0.948 <0.001 
AT1R 0.946 <0.001 
EIF4 0.941 <0.001 
FAS 0.940 <0.001 

Table 2. Top 10 networks differentiating normal from grade 2 patients 

Network Name Apparent 
Accuracy 

P-values 

ERK 0.991 <0.001 
CHEMICAL 0.955 <0.001 

EGF 0.954 <0.001 
MCALPAIN 0.954 <0.001 

KERATINOCYTE 0.945 <0.001 
IGF1MTOR 0.944 <0.001 

CBL 0.935 <0.001 
BCR 0.935 <0.001 
GSK3 0.935 <0.001 
IL2RB 0.934 <0.001 

Table 3. Top 10 networks differentiating normal from grade 3 patients 
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Network Name Apparent 

Accuracy 
P-values 

CELL2CELL 0.962 <0.001 
P38MAPK 0.950 <0.001 

G2 0.949 <0.001 
G1 0.948 <0.001 

ERK 0.947 <0.001 
MPR 0.943 <0.001 

PROTEASOME 0.936 <0.001 
VEGF 0.935 <0.001 

CELLCYCLE 0.934 <0.001 
HIVNEF 0.934 <0.001 

Table 4. Top 10 networks differentiating normal from grade 4 patients 

 

 
Table 5. Changes in network rankings of selected networks in different astrocytoma grades 

vs. normal controls; PDGF, AKT and INFLAM showed decreased ranking as the diseases 
develop, while CELL2CELL showed an opposite pattern 

 
 
 

 

 

 

 

Table 6. Top 5 networks differentiating grade 1 from other astrocytoma tumors 

 

 

 G1 G2 G3 G4 
Ranki

ng 
Classificat
ion Rate 

FD
R 

Rank
ing 

Classifica
tion Rate 

FD
R 

Rank
ing 

Classifica
tion Rate 

FD
R 

Rank
ing 

Classifica
tion Rate 

FD
R 

PDGF 4 0.977 0 7 0.948 0 32 0.899 0 66 0.894 0 
AKT 65 0.939 0 122 0.840 0.0

008 
141 0.810 0.0

000
1 

151 0.824 0 

INFLA
M 

73 0.935 0 99 0.862 0.0
002 

107 0.851 0 155 0.821 0 

CELL2
CELL 

116 0.908 0 81 0.871 0.0
002 

65 0.873 0 1 0.962 0 

Network Name Apparent 
Accuracy 

FDR 

PPARA 0.946 0 
G2 0.932 0 

KERATINOCYTE 0.926 0 
P53 0.915 0 
G1 0.911 0 
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Table 7.  Summary of microarray expression datasets included in the study 
aOne normal fetal brain RNA, 1 normal cerebellum RNA, 2 normal tissue were surgically 
removed tissue adjacent to resected tumor tissue and RNA extracted 
b Brain samples of epilepsy patients 
c Pooled normal brain tissue 

 

 

 

 

 

 

Platform Authors of Study 
(year, GSE 
accession) 

Number of patients in each class 
Normal Grade 1 Grade 2 Grade 3 Grade 4 

U133A Frejie et al (2006, 
GSE 4412) [10] 

0 0 0 8 46 

Phillips et al (2006, 
GSE 4271) [11] 

0 0 0 21 55 

Wong et al (2008,  
GSE 12907) [12] 

4a 21 0 0 0 

Rich et al (2005, 
GSE 13041) [38] 

0 0 0 0 31 

Lee et al (2008, 
GSE 13041) [17] 

0 0 0 0 28 

Barrow et al (2008, 
GSE 13041) [17] 

0 0 0 0 31 

 Mcdonald et al 
(2005, GSE 3185) 

0 0 3 0 0 

Total U133A 4  21  3  29  191  
U133- 

Plus 2.0 
Sun et al (2006, 
GSE 4290) [13] 

23b 0 7 19 77 

Liu et al (2010, 
GSE 19728)  

1c 
 

2 5 5 5 

Sharma et al (2007,  
GSE5675) [39] 

0 41 0 0 0 

Lee et al (2008, 
GSE 13041) [17] 

0 0 0 0 27 

Total U133-Plus 2.0 24 43 12 24 109 
Total  28  64  15  53  300  
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2.8 Figures 

  

Figure 1. Pearson-correlation matrix before consensus pre-processing. Tumor samples from 
the same experiments displayed higher homogeneity than other samples 
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 Figure 2: Pearson-correlation after consensus pre-processing; Laboratory effects are much 
less obvious; tumor samples from different studies or phenotypes all look highly correlated. 
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Figure 3: Rank conservation of networks across phenotypes. Colors on the heatmap represent 
rank conservation indices for each network in the five different phenotypes, where the brighter 
colors indicate very tight regulation of network ranking in a phenotype and the darker colors 

indicate loose regulation of networks. 
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Figure 4: Classification accuracy on different network databases; cross-validation accuracies 

of DIRAC using three different network collections are fairly close 
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Figure 5: Genes showing consistent dys-regulation in progression a) 27 upregulated genes b)  

19 downregulated genes 
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Figure 6: Comparison of different approaches to re-classify HGAs.  a) Survival estimates of 
two groups separated by histological grades b) by primary or secondary HGA subtype c) by 
prognostic network marker EPONFKB d) by proneural (PN) or non-PN subtype. The log-rank 
test on the two subtypes defined by our network marker has a p-value comparable to one of the 
best regarding scheme. 
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CHAPTER 3 

CONCLUSIONS 

DIRAC is a classification approach accounted for the combinatorial behavior of interacting 

genes in biological networks, which provides accurate molecular signatures between different 

astrocytoma grades. These signatures allowed us to learn the most disturbed networks associated 

with tumor malignancy. Moreover, a network consisted of 11 individual genes was found to be 

significant in predicting prognosis of high grade astrocytomas.  Besides network biomarkers, 46 

genes were observed to change their expression values in a unidirectional manner with the tumor 

grade; their biological functions and implications in astrocytoma progression were identified. 

  

The significantly perturbed pathways identified in this study offered biological insights into 

tumorigenesis and progression of astrocytoma, and may be potential candidates for novel 

diagnostic approaches. Due to the high heterogeneity of malignant brain tumors, the ideal and 

most effective therapy should be treatment personalized for each individual patient. Clinical 

therapies could be developed based on assessing the differentially expressed signaling networks, 

and targeting of specific network alone or in combination with traditional therapy.  
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CHAPTER 4 

MATERIALS AND METHODS 

4.1 Collection of microarray data 

Raw microarray CEL files (Affymetrix, Santa Clara, CA) were retrieved from previous studies 

deposited to the publicly accessible microarray database, the NCBI Gene Expression Omnibus 

(GEO) between year 2005 and 2010. The data selection criterion is that the RNA of the tumor 

samples had to be hybridized to either one of the two platforms, Affymatrix HG-U133A or its 

complimentary version, HG-U133-plus 2 GeneChips. Affymatrix HG-U133B was not chosen 

since it does not include any probes common with U133A; this mutual exclusiveness of probes 

would add heterogeneity into the data, which would increase noise in separating different 

phenotypes. The GEO accession number, year of publication, together with number and grades 

of samples reported in each original study are listed in Table 7. 

4.2 Integration of microarray data 

A unique “consensus preprocessing” method was used on microarray CEL files to normalize 

differences introduced by different studies and individual preprocessing methods. Common 

probes (22277 probes) shared by two microarray chips (U133A and U133-Plus 2.0) were 

identified according to publicly available array descriptions, followed by GeneChip RMA 

(GCRMA) with the default settings from Matlab (MATLAB version 7.7, The MathWorks Inc., 

2008). GCRMA was selected because its performance was observed to be superior to RMA and 

other normalizations for background adjustment of multi-arrays on the unified gene expression 

matrix [22].   

In order to convert the probe intensity matrix to a gene expression matrix, the probe set lists were 

annotated according to definitions of these Affymatrix GeneChips. Probes mapping to multiple 

genes were removed from the probe lists; in cases where multiple probes correspond to the same 

gene, the maximum intensity was computed to determine the corresponding expression value for 

that gene.  In the last step of preprocessing, all absolute intensity values were replaced by their 

relative ranks within each array. 
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4.3 Classification using DIRAC 
 
Networks consist of components (nodes) and interactions (edges) between them. The nodes 

could be metabolites and macromolecules such as proteins, RNA molecules and gene sequences, 

while the edges are physical, biochemical and functional interactions. Our study considered three 

manually curated gene sets (BIOCARTA, Cancer Module and GO-BP) collected from various 

sources such as online pathway databases, publications in PubMed, and knowledge of domain 

experts [40].  

For each selected network, DIRAC computes the expected ranking of network genes (rank 

template) by averaging the individual ordered gene expression profile within each phenotype, 

and measures how closely each sample’s network ordering matches the phenotype-specific 

template (rank matching score). Class labels were assigned based on similarity of the patient’s 

individual profile to one particular template of the two templates, and apparent accuracy was 

calculated based on percentage of correct prediction of phenotypes; the estimated classification 

accuracies for all networks were calculated likewise [14]. A null-distribution of network 

classification rates were generated by randomly reassigning the original phenotype labels 1000 

times. A significance level was measured as the probability of observing classification rates in 

the null distribution greater than or equal to the real rates. To address the issue of multiple-

hypothesis testing, the significance level was adjusted to false discovery rate (FDR), representing 

the fraction of expected false positives [14].  

 

We used leave-one-out cross validation to estimate the error rate of DIRAC. Importantly, all 

processes including defining rank templates, and selecting the best network were done within 

cross-validation, using only the training samples (i.e., no information from test samples were 

used to train classifiers) [14]. The overall cross validation classification rate was calculated from 

the average of sensitivity and specificity of all predictions in each set. 
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4.4 Rank conservation indices 

The rank template for each phenotype and rank matching scores of each patient to the template 

were calculated as explained earlier (for details, please refer to [14]). The rank conservation 

index is the average of the all matching scores of samples within a certain phenotype. By 

averaging the rank conservation indices of all networks for a disease, we had a single value 

measuring the relative deregulation of the networks for that phenotype. 

 
4.5 Monotonically increasing/decreasing genes 

In each adjacent pair of astrocytoma grades in the progression sequence, differentially expressed 

genes (DEGs) were selected based on the Wilcoxon ranksum test (P < 0.05 after Bonferroni 

correction). The intersection of these gene sets represented consistently deregulated genes. 27 

DEGs showed consistently positive log2 expression ratios in each gene set and thus are the 

monotonically increasing genes in progression, while another 19 decreased their expression as 

the disease progresses.  

 
4.6 Subtyping HGA 

Time of survival (days or weeks) and subtype designations were available for 239 patients. The 

microarray expression matrix of this subset of patients was normalized as previously described. 

A distance matrix was constructed for each selected network based on the pairwise orderings of 

the genes within the network. For example, if a network P consisted of six genes, there could be 

( ) 156
2 = distinct ordered pairs. For a gene pair i and j, let X denote their corresponding expression 

values. If Xi<Xj or Xi>Xj for both patient A and B, the distance of these two patients was 0; 

otherwise the distance was 1. We summed up the distances for all 15 possible comparisons and 

recorded it as the total distance of patients A and B on network P. This procedure was repeated 

for all patients to get a 239 × 239 distance matrix. 

Hierarchical clustering in MATLAB was used to group the patients into two groups (linkage 

method: weighted average distance, Figure A.2). The two largest branches were considered first; 

each group must have more than 10% of all samples (24 for this case) to be called a subtype, 

otherwise these samples are considered as outliers and the next largest group is taken as a 

possible subtype.  
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After two groups with reasonable sizes were determined, the Kaplan-Meier method was used to 

estimate the survival distributions. Log-rank tests were used to test the difference between 

survival groups. 
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APPENDIX 

 
Figure A.1: Effect of filtering genes on accuracy. Average accuracies of 10 individual 

classifications by DIRAC do not vary significantly with number of genes present. 

 

Figure A.2: Hierarchical clustering of HGA tumors. Two distinct clusters are formed; the 
distance matrix is defined by gene pair ordering matches in EPONFKB network.  
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Table A.1 

Gene Name Full Name/Atlas Encoded protein function and association 
with cancer 

AHCY adenosylhomocysteinase Hydrolase,  
upregulated in colorectal cancer 

AK2 adenylate kinase 2 Induces apoptosis, upregulated in  epilepsy 
patients 

BCL2L11 BCL2-like 11/BIM Induces apoptosis, upregulated in cancer cells 
CANX calnexin Apoptosis and protein folding 

DCLRE1B DNA cross-link repair 1B/ 
APOLLO 

DNA damage repair 

ENY2 enhancer of yellow 2 Chromatin regulation 
ESPL1 extra spindle pole bodies 

homolog 1 
Chromatin regulation  

Oncogene, overexpressed in breast, prostate 
cancers and osteosarcoma. 

GBE1 glucan (1,4-alpha-), 
branching enzyme 1 

glycogen branching enzyme 

GEMIN4 gem associated protein 4 part of a complex functioning in spliceosomal 
snRNP assembly in the cytoplasm 

GNPAT glyceronephosphate O-
acyltransferase 

essential to the synthesis of ether phospholipids; 
implicated in  schizophrenia 

GRM8 glutamate receptor, 
metabotropic 8 

G protein-coupled receptors for excitatory 
neurotransmitter 

inhibition of the cyclic AMP cascade 
implicated in  schizophrenia 

KIF15 kinesin family member 15 neuronal development 
NCAPG non-SMC condensin I 

complex, subunit G 
chromatin regulation 

 
NUP107 nucleoporin 107kDa Depletion induces apoptosis 
NUP205 nucleoporin 205kDa Essential component of nuclear pore complex 
PALB2 partner and localizer of 

BRCA2 
DNA damage repair 

PDIA6 protein disulfide isomerase 
family A, member 6 

folding of disulfide-bonded proteins, a 
biomarker for prostate cancer 

PMS2L11 postmeiotic segregation 
increased 2 pseudogene 11 

unknown function 

PRMT5 protein arginine 
methyltransferase 5 

chromatin remodeling 

RBBP8 retinoblastoma binding 
protein 8/ CtIP 

DNA damage repair 

RSRC1 arginine/serine-rich coiled-
coil 1 

participate in multiple steps of mRNA splicing, 
implicated in  schizophrenia 

TFR2 transferrin receptor 2 involved in iron 
    metabolism, hepatocyte function and 

erythrocyte differentiation 
TMEM194A transmembrane protein unknown function 
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Table A.1, name and functions of 27 monotonically increasing transcripts 

 

Table A.2 

Gene Name Full Name/Atlas Encoded protein function and association 
with cancer 

AAK1 AP2 associated kinase 1 Regulation of clathrin-mediated endocytosis 
ACSL4 acyl-CoA synthetase long-

chain family member 4 
Axonal transport 

Blocks apoptosis and promotes carcinogenesis 
API5 apoptosis inhibitor 5 Inhibits apoptosis 

C10orf97 chromosome-10, open 
reading frame-97 

Pro-apoptosis, tumor-suppressor 

C6orf211 chromosome 6 open 
reading frame 211 

Unknown function 

DSTYK dual serine/threonine and 
tyrosine protein kinase 

Induce apoptosis 

GNAO1 guanine nucleotide binding 
protein (G protein), alpha 

activating activity 
polypeptide O 

Regulation of cAMP levels 
Implicated in schizophrenia 

ITM2B integral membrane protein 
2B 

Induce apoptosis 

NDUFB8 NADH dehydrogenase 
(ubiquinone) 1 beta 

subcomplex, 8, 

Accessory subunit of the mitochondrial 
membrane respiratory chain NADH 

dehydrogenase 
NMT2 N-myristoyltransferase 2 Depletion induced apoptosis 
PRNP prion protein neuronal development and synaptic plasticity, 

implicated in neurodegenerative diseases 
RAB33B RAB33B, member RAS 

oncogene family 
Protein transport 

RNF11 ring finger protein 11 May play a role in inflammatory pathways 
SACM1L SAC1 suppressor of actin 

mutations 1-like 
Hydrolase 

 
SDCCAG1 Serologically defined colon 

cancer antigen 1 
Plays a role in nuclear export 

SMARCA2 SWI/SNF related, matrix 
associated, actin dependent 

regulator of chromatin, 

Chromatin regulation 
DNA damage repair 

 

194A 
TMEM45A transmembrane protein 

45A 
unknown function 

TOP1 topoisomerase (DNA) I DNA damage repair 
WDR76 WD repeat domain 76 Unknown function 
ZNF282 zinc finger protein 282 Binds to a repressive element of the human T 

cell leukemia 
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subfamily a, member 
2/BRM 

 

STRN3 striatin, calmodulin binding 
protein 3 

scaffolding or signaling 

THOC7 THO complex 7 homolog mRNA export 
USP12 ubiquitin specific peptidase 

12 
Deubiquitinating enzyme, associated with 

Parkinson’s disease 
Table A.2, name and functions of 19 monotonically decreasing transcript 

 

Network Name P-value 
EPONFKB  2.5*10-8  

CARDIACEGF  2.7*10-5  
IL22BP  4.5*10-5  

EPO 4.6*10-5 
FIBRINOLYSIS  5.3*10-5  

 

Table A.3: Networks that significantly differentiate 239 HGA patients into two groups with 
survival difference. These networks are arranged in decreasing p-values; the most significant 

EPONFKB outperform histological grade; the others did not but still significant) 

 


