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Abstract

In this thesis we consider several extremal problems for graphs and hypergraphs: packing,

domination, and coloring. Graph packing problems have many applications to areas such

as scheduling and partitioning. We consider a generalized version of the packing problem

for hypergraphs. There are many instances where one may wish to cover the vertices or

edges of a graph. A dominating set may be thought of as a covering of the vertex set

of a graph by stars. Similarly a proper coloring may be thought of as a covering of the

vertex set of a graph by independent sets. We consider special cases of domination and

coloring on graphs.

Two n-vertex hypergraphs G and H pack if there is a bijection f : V (G) → V (H)

such that for every edge e ∈ E(G), the set {f(v) : v ∈ e} is not an edge in H . Sauer and

Spencer showed that any two n-vertex graphs G and H with |E(G)| + |E(H)| < 3n−2
2

pack. Bollobás and Eldridge proved that, with 7 exceptions, if graphs G and H contain

no spanning star and |E(G)| + |E(H)| ≤ 2n − 3, then G and H pack. In Chapter 2 we

generalize the Bollobás – Eldridge result to hypergraphs containing no edges of size 0, 1,

n− 1, or n. As a corollary we get a hypergraph version of the Sauer – Spencer result.

In 1996 Reed proved that for every n-vertex graph G with minimum degree 3 the

domination number γ(G) is at most 3n
8
. While this result is sharp for cubic graphs with

no connectivity restriction, better upper bounds exist for connected cubic graphs. In

Chapter 3, improving an upper bound of Kostochka and Stodolsky, we show that for

n > 8 the domination number of every n-vertex connected cubic graph is at most ⌊5n
14
⌋.

This bound is sharp for 8 < n ≤ 18 and nears the best known lower bound of 7n
20
.

An acyclic coloring is a proper coloring with the additional property that the union

of any two color classes induces a forest. In Chapter 4 we show that every graph with

maximum degree at most 5 has an acyclic 7-coloring. We also show that every graph

with maximum degree at most r has an acyclic (1 + ⌊ (r+1)2

4
⌋)-coloring.
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Chapter 1

Introduction

Many mathematical and real-world problems have natural graph-theoretic models. In this

thesis we will discuss several extremal problems on graphs and hypergraphs. Although

we approach the subject primarily from a theoretical viewpoint, many of these problems

have applications to real-world problems.

In Chapter 2 we discuss packing problems on hypergraphs. Problems such as laying

out circuits, building networks, scheduling, and partitioning may be thought of in terms

of packing appropriate graphs or hypergraphs. Covering problems arise very naturally.

Given a set of train stations (vertices) we may consider two stations adjacent if the

distance between them is at most k. Consider the problem of guaranteeing that a station

with greater amenities be located at a reasonable distance from any given station, but

minimizing the number of such costly upgraded stations. This is a covering problem

which can be solved by considering the domination number of the resulting graph. In

Chapter 3 we study the domination number of a specific class of graphs, namely 3-regular

or cubic graphs.

Coloring problems are well studied and appear in many varieties. While domination

may be considered a covering of a graph by stars, the problem of properly coloring the

vertices of a graph may be thought of as covering a graph by independent sets. In

Chapter 4 we consider a further restriction of the standard chromatic number on graphs

with bounded degree.

Section 1.1 gives some of the basic definitions used. Sections 1.2 – 1.4 describe the

results appearing in this thesis.

The results of Chapter 2 are in preparation [13], the results of Chapter 3 have been

accepted and will appear in Ars Mathematica Contemporanea [18], and the results of

Chapter 4 have been published [17].
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1.1 Basic Definitions

In this section we review some of the basic definitions, terms, and concepts used in this

thesis. In most cases we will follow the notation given in Introduction to Graph Theory

by West [33].

A graph G consists of two sets: a set V (G) of vertices and a set E(G) of edges, where

each element of E(G) consists of exactly two members of V (G). We call the vertices

contained in an edge its endpoints. We specify an edge with endpoints u and v as uv.

We say that two vertices u and v are adjacent or neighbors if uv is an edge in E(G). The

degree of a vertex v is the number of vertices adjacent to it. We generally denote the

degree of a vertex v as dG(v), or as d(v) when the graph is understood. We let ∆(G)

denote the maximum degree of G and δ(G) denote the minimum degree of G. A graph

is regular if every vertex has the same degree. We say that a graph is r-regular if every

vertex has degree r. We may say that a graph is cubic in the special case where it is

3-regular.

The neighborhood of a vertex v, denoted NG(v), is the set of all vertices adjacent to

v; note that dG(v) = |NG(v)|. The closed neighborhood of a vertex v, denoted NG[v], is

NG(v)∪ v. The neighborhood of a set X ⊆ V (G), denoted NG(X), is

(⋃

v∈X
NG(v)

)
−X .

The closed neighborhood of X , denoted NG[X ], is NG(X) ∪X .

A graph H is a subgraph of a graph G if there exists an injection f : V (H) → V (G)

such that for every edge uv ∈ E(H), f(e)f(v) ∈ E(G). Such a graph H is an induced

subgraph if it has the additional property that if uv /∈ E(H), then f(e)f(v) /∈ E(G). If

S ⊆ V (G), then the subgraph of G induced by S, denoted G[S], is the graph obtained

from G by deleting all vertices not in S and all edges incident to vertices not in S.

If G is a graph and F ⊆ E(G), then G− F is the subgraph of G with the vertex set

V (G) and the edge set E(G) − F . When F consists of a single edge e, we write G − e

instead of G−{e}. If X ⊆ V (G), then G−X denotes the subgraph of G induced by the

vertices in V (G)−X . Again when X consists of a single vertex v we write G− v instead

of G− {v}.
A path is a graph whose vertices may be ordered so that two vertices are adjacent

if and only if they are consecutive in the list. The endpoints of a path are the vertices

having degree 1. The remaining vertices are internal vertices. The length of a path is the

number of edges contained in the path. The (unlabeled) path with n vertices is denoted

Pn. A cycle is a graph whose vertices may be placed in a cycle so that two vertices are

adjacent if and only if they are consecutive in the cycle. The (unlabeled) cycle with n
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vertices is denoted Cn. A cycle is even if it has an even number of vertices and odd if it

has an odd number of vertices. A graph is acyclic if it contains no cycles. We call an

acyclic graph a forest. An n-vertex graph is called hamiltonian if it contains a copy of

Cn as a subgraph.

Given a graph G with vertices u and v, a u,v-path is a path with endpoints u and v.

We say that G is connected if for any two vertices u, v ∈ V (G), there exists a u, v-path in

G. A graph that is not connected is disconnected. The components of G are the maximal

connected subgraphs. The distance between vertices u and v in G, denoted dG(u, v) or

simply d(u, v), is the length of the shortest u, v-path in G (if such a path exists).

A tree is a connected forest or, equivalently, an acyclic connected graph. A leaf in a

tree is a vertex of degree 1. A star is an n-vertex tree with a vertex of degree n − 1. A

clique is a set of pairwise adjacent vertices. The complete graph is the n-vertex graph

whose vertices are pairwise adjacent. The (unlabeled) complete graph with n vertices is

denoted Kn. A graph is bipartite if its vertices can be partitioned into two sets X and

Y such that each of X and Y induces a subgraph containing no edges. We denote the

(unlabeled) bipartite graph where |X| = m, |Y | = n, and all of X is adjacent to all of Y

by Km,n. A set S ⊆ V (G) that induces no edges is an independent set. A matching in a

graph G is a set of edges with no shared endpoints. A perfect matching is a matching in

which every vertex of G is an endpoint of some edge in the matching.

A proper coloring of a graph G is an assignment of labels to the vertices so that

adjacent vertices receive different colors. The chromatic number of a graph G, denoted

χ(G), is the minimum number of colors in a proper coloring of G. The color classes in a

proper coloring of G are the sets of like colored vertices.

A hypergraph is a generalization of a graph where edges are not required to have size

2. We may call the edges of a hypergraph with size 2 graph edges and the edges with size

greater than 2 hyperedges.

1.2 Hypergraph Packing

Two n-vertex graphs G and H are said to pack if there exists a bijection f : G → H such

that every edge of G is mapped to a non-edge of H . An important equivalent statement

is that G and H pack if and only if H is a subgraph of the complement of G.

Graph packing has been well studied, and many of the results can be found in survey

papers by Yap [35] and Wozniak [34]. If the total number of edges in two graphs G

and H is small, a natural assumption is that G and H are more likely to pack. Sauer
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and Spencer [31] showed that this intuition is, in fact, correct. They proved that if

|E(G)| + |E(H)| < 3n−2
2

, then G and H pack. To see that this result is sharp, we let G

be a spanning star and define H as follows: If n is even we let H = n
2
K2 and if n is odd,

we let H = P3 +
n−3
2
K2. In proving this result Sauer and Spencer also showed that if

|E(G)||E(H)| ≤
(
n
2

)
, then G and H pack.

Bollobás and Eldridge [7] realized that the most important feature of the above ex-

ample was the vertex of degree n − 1 in G. They proved that with 7 exceptions, if G

and H are n-vertex graphs with maximum degree at most n− 2 and at most 2n− 3 total

edges, then G and H pack.

Similar questions can be asked for hypergraphs. As in the graph case, two n-vertex

hypergraphs G and H pack if and only if there exists a bijection from G to H that maps

every edge of G to a non-edge of H . Piĺsniak and Woźniak [29] proved that if an n-

vertex hypergraph G has at most n/2 edges and V (G) is not an edge in G, then G packs

with itself. They also asked whether such a hypergraph G packs with every n-vertex

hypergraph H satisfying the same conditions. Recently, Naroski [26] proved the stronger

result that if the total number of edges in G and H is at most n and neither contains

the edge of size n, then G and H pack. Naroski also extended the second result of Sauer

and Spencer by proving that if G and H have no edges of size less than k or greater than

n− k and |E(G)||E(H)| ≤
(
n
k

)
, then G and H pack.

We say that a universal vertex in a hypergraph G is a vertex contained in a 2-edge

with every other vertex of G. We will then prove the following hypergraph generalization

of Bollobás and Eldridge’s result:

Theorem 1.2.1. Let G and H be n-vertex hypergraphs with |E(G)| + |E(H)| ≤ 2n − 3

containing no 1-edges and no edges of size at least (n−1). With 14 exceptions, G and H

do not pack if and only if one of G or H has a universal vertex and every vertex of the

other hypergraph is incident to a graph edge, or G and H or one of G or H has n − 1

edges of size n − 2 not containing a given vertex v, and for every vertex x of the other

hypergraph some edge of size n− 2 does not contain x.

As a corollary we get the following hypergraph generalization of the main result of

Sauer and Spencer:

Corollary 1.2.1. Let G and H be n-vertex hypergraphs containing no 1-edges and no

edges of size at least n− 1. If |E(G)|+ |E(H)| < 3n−2
2

, then G and H pack.

These results are based on joint work with P. Hamburger and A. V. Kostochka [13].
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1.3 Domination in Cubic Graphs

A set D of vertices in a graph G dominates itself and its neighbors at distance 1. If a set

D dominates all vertices of G, then it is a dominating set in G. The domination number,

γ(G), of a graph G is the minimum size of a dominating set in G.

We may think of domination problems as covering problems. A number of covering

problems can be reduced to the problem of finding the domination number of an ap-

propriate graph. Recreational problems such as dominating the spaces of a n × n grid

with a specific chess piece as well as practical problems such as minimizing the number of

higher-level nodes in a computer network may easily be modeled as domination problems.

Naturally, graphs G with high minimum degree have small domination number.

Ore [27] proved that γ(G) ≤ n/2 for every n-vertex graph without isolated vertices

(i.e., with δ(G) ≥ 1). Blank [6] and independently McCuaig and Shepherd [24] proved

that γ(G) ≤ 2n/5 for every n-vertex graph with δ(G) ≥ 2 when n ≥ 8. Reed [30] proved

that γ(G) ≤ 3n/8 for every n-vertex graph with δ(G) ≥ 3. Each of these bounds is sharp.

Reed [30] conjectured that the domination number of each connected 3-regular n-vertex

graph is at most ⌈n/3⌉. Kostochka and Stodolsky [19] disproved this conjecture. They

gave a sequence {Gk}∞k=1 of connected cubic graphs such that for every k, |V (Gk)| = 46k

and γ(Gk) ≥ 16k. This gives γ(Gk)
|V (Gk)| ≥

8
23

= 1
3
+ 1

69
.

Kelmans [15] gave a sequence {Gk}∞k=1 of cubic 2-connected graphs such that for every

k, |V (Gk)| = 60k and γ(Gk) ≥ 21k. This implies γ(Gk)
|V (Gk)| ≥

1
3
+ 1

60
, which is currently

the best lower bound. In particular, for infinitely many n there exists an n-vertex cubic

graph G with

γ(G) ≥
(
1

3
+

1

60

)
n.

Kelmans also found a 54-vertex connected cubic graph L with γ(L) = 19 =
(
1
3
+ 1

54

)
|V (L)|.

Improving Reed’s upper bound of 3n/8, Kostochka and Stodolsky [20] proved that for

connected cubic n-vertex graphs G with n > 8,

γ(G) ≤ 4n

11
=

(
1

3
+

1

33

)
n.

A large portion of this thesis will be devoted to strengthening this upper bound. We will

prove the following theorem:
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Theorem 1.3.1. Let n > 8. If G is a connected cubic n-vertex graph, then

γ(G) ≤ 5n

14
=

(
1

3
+

1

42

)
n.

The bound
⌊
5n
14

⌋
is sharp for 8 < n ≤ 18. For example, a 3-connected cubic 14-vertex

hamiltonian graph G with γ(G) = 5 is presented in [10].

Our proofs exploit the ideas and techniques of Reed’s seminal paper [30] and of [20].

We modify and elaborate the technique of [20] substantially.

These results are based on joint work with A. V. Kostochka [17].

1.4 Acyclic Coloring

A proper coloring of a graph G is acyclic if the union of any two color classes induces

a forest. The acyclic chromatic number, a(G), is the smallest integer k such that G is

acyclically k-colorable.

We may think of the traditional vertex coloring problem as a type of covering problem.

In particular, we seek to cover the vertices of a graph by some number of independent

sets. Under this model we are allowing a vertex to cover only itself. The chromatic

number is then the minimum number of independent sets needed to cover the vertices of

a graph. If we add the additional constraint that any two independent sets cannot induce

a cycle we then get the acyclic chromatic number.

The notion of acyclic coloring was introduced in 1973 by Grünbaum [12] and turned

out to be interesting and closely connected to a number of other ideas in graph coloring.

Grünbaum proved that every planar graph has an acyclic 9-coloring and conjectured

that, in general, 5 colors suffice. Mitchem [25], Albertson and Berman [2], and Kos-

tochka [21] improved this result by proving that every planar graph is acyclically 8, 7,

and 6-colorable, respectively. Borodin [8] showed that every planar graph is acyclically

5-colorable, thereby proving Grünbaum’s conjecture.

Grünbaum also studied a(r), which is the maximum value of the acyclic chromatic

number over all graphs G with maximum degree at most r. He conjectured that always

a(r) = r + 1 and proved this for r ≤ 3. In 1979, Burstein [9] proved the conjecture

for r = 4; this result was also proved independently by Kostochka [16]. It was also

proved in [16] that for k ≥ 3, the problem of deciding whether a graph is acyclically

k-colorable is NP-complete. It turned out that for large r, Grünbaum’s conjecture is

incorrect in a strong sense. Albertson and Berman mentioned in [1] that Erdős proved
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that a(r) = Ω(r4/3−ǫ) and conjectured that a(r) = o(r2). Alon, McDiarmid and Reed [4]

sharpened Erdős’ lower bound to a(r) ≥ c r4/3/(log r)1/3 and proved that a(r) ≤ 50 r4/3.

While we now have a reasonable understanding of the order of the magnitude of a(r) for

large r, the problem of estimating a(r) for small r is less well understood and has received

recent attention.

Fertin and Raspaud [11] showed among other results that a(5) ≤ 9 and gave a linear-

time algorithm that acyclically 9-colors any graph with maximum degree 5. Furthermore,

for r ≥ 3, they gave a fast algorithm that uses at most r(r − 1)/2 colors to acyclically

color any graph with maximum degree r. For large r this is much worse than the up-

per bound of Alon, McDiarmid, and Reed, but for r < 1000, it is better. Hocquard

and Montassier [14] showed that every 5-connected graph G with ∆(G) = 5 has an

acyclic 8-coloring. Kothapalli, Varagani, Venkaiah, and Yadav [23] showed that a(5) ≤ 8.

Kothapalli, Satish, and Venkaiah [22] proved that every graph with maximum degree r

is acyclically colorable with at most 1+ r(3r+4)/8 colors. This is better than the bound

r(r − 1)/2 in [11] for r ≥ 8. In this thesis we will prove the following theorem:

Theorem 1.4.1. Every graph with maximum degree 5 has an acyclic 7-coloring, i.e.,

a(5) ≤ 7.

The proof yields a linear-time algorithm to provides an acyclic coloring for any graph

with maximum degree 5 using at most 7 colors. We also show that for r ≥ 6, there exists

a linear-time algorithm giving an acyclic coloring of any graph with maximum degree r

using at most 1 + ⌊ (r+1)2

4
⌋ colors. This is better than the bounds in [11] and [22] cited

above for every r ≥ 6 and better than the bounds in [4] for r ≤ 2825.

These results are based on joint work with A. V. Kostochka [18].
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Chapter 2

Hypergraph Packing

2.1 Introduction

Recall that a hypergraph is a pair (V,E) where V is a finite set (elements of V are called

vertices) and E is a family of nonempty subsets of V (members of E are called edges).

An important instance of combinatorial packing problems is that of (hyper)graph packing.

Two n-vertex hypergraphs G and H pack, if there is a bijection f : V (G) → V (H) such

that for every edge e ∈ E(G), the set {f(v) : v ∈ e} is not an edge in H . For graphs, this

means that G is a subgraph of the complement H of H , or, equivalently, H is a subgraph

of the complement G of G. A universal vertex in a hypergraph G is a vertex v which is

contained in a 2-edge (graph edge) with every other vertex in G.

Many important results on extremal graph packing problems were obtained in the

seventies. At this time, fundamental papers by Bollobás and Eldridge [7] and Sauer and

Spencer [31] appeared. In particular, Sauer and Spencer [31] proved the following.

Theorem 2.1.1. [31] Let G and H be n-vertex graphs with |E(G)| + |E(H)| < 3n−2
2

.

Then G and H pack.

The examples showing that Sauer and Spencer’s result is sharp rely upon the existence

of a universal vertex. Bollobás and Eldridge [7] obtained the following refinement of

Theorem 2.1.1.

Theorem 2.1.2. [7] Let G and H be n-vertex graphs with |E(G)|+ |E(H)| ≤ 2n− 3. If

neither of G and H has an universal vertex, and the pair {G,H} is not one of the seven

pairs in Figure 2.1, then G and H pack.

Corollary 1 in [7] gives that Theorem 2.1.2 can be restated as follows:
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Figure 2.1: Bad pairs in Theorem 2.1.2.
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Theorem 2.1.3. [7] Let G and H be n-vertex graphs with |E(G)|+|E(H)| ≤ 2n−3. Then

G and H do not pack if and only if either {G,H} is one of the seven pairs in Fig. 2.1,

or one of G and H has an universal vertex and the other has no isolated vertices.

If G and H are n-vertex non-uniform hypergraphs, packing may be more complicated.

In general we will use i-edge to denote edges of size i in a hypergraph. We will sometimes

distinguish edges of size 2 by calling them graph edges, and edges of size at least 3 by

calling them hyperedges.

Edges of size 0, 1, n − 1 or n make harder for hypergraphs to pack. For example, if

V (G) is an edge in G and V (H) is an edge in H , then G and H do not pack. Similarly,

if ∅ is an edge in both G and H , then G and H do not pack. Also if the total number

of 1-edges or the total number of (n − 1)-edges in G and H is at least n + 1, then

G and H again do not pack. These examples indicate that edges of size i and n − i

behave similarly. Indeed, a bijection f : V (G) → V (H) maps edge e ∈ E(G) onto edge

g ∈ E(H) if and only if it maps set V (G)− e onto V (H)− g. This motivates the notion

of the orthogonal hypergraph: For a hypergraph F , the orthogonal hypergraph F⊥ has the

same set of vertices as F and E(F⊥) := {V (F ) − e : e ∈ E(F )}. By definition, two

n-vertex hypergraphs G and H pack if and only if G⊥ and H⊥ pack.

Piĺsniak and Woźniak [29] proved that if an n-vertex hypergraph G has at most n/2

edges and V (G) is not an edge in G, then G packs with itself. They also asked whether

such G packs with any n-vertex hypergraph H satisfying the same conditions. Recently,

Naroski [26] proved the following stronger result.

Theorem 2.1.4. Let G and H be n-vertex hypergraphs with no n-edges. If |E(G)| +
|E(H)| ≤ n, then G and H pack.

By the above examples, the bound of n in Theorem 2.1.4 is sharp. We will prove

a refinement of this theorem to hypergraphs with no 1-, (n − 1)-, and n-edges. This

refinement also generalizes and extends to hypergraphs Theorem 2.1.3.

We define a bad pair of hypergraphs to be either one of the pairs (G(i),H(i)) in

Fig. 2.1, or one of the pairs (G(i)⊥,H(i)⊥).

Our main result is the following:

Theorem 2.1.5. Let G and H be n-vertex hypergraphs with |E(G)| + |E(H)| ≤ 2n − 3

containing no 0-, 1-, (n− 1)-, and n-edges. Let |E(G)| ≤ |E(H)|. Then G and H do not

pack if and only if either

(i) (G,H) or (H,G) is a bad pair, or
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(ii) H has a universal vertex and every vertex of G is incident to a graph edge, or

(iii) H⊥ has a universal vertex and every vertex of G⊥ is incident to a graph edge.

Since each of the graphs in Fig. 2.1 has at most 9 vertices, for n ≥ 10 the theorem says

that . . . G and H do not pack if and only if either H has a universal vertex and every

vertex of G is incident to a graph edge or H⊥ has a universal vertex and every vertex of G⊥

is incident to a graph edge. Note that the theorem is sharp even for graphs: for infinitely

many n there are n-vertex graphs Gn and Hn such that |E(G)|+ |E(H)| = 2n−2, neither

of Gn and Hn has a universal vertex, and Gn and Hn do not pack (see, e.g., [7, 32]).

In the same way Theorem 2.1.3 yields Theorem 2.1.1, Theorem 2.1.5 yields the fol-

lowing extension of Theorem 2.1.1 to hypergraphs.

Corollary 2.1.1. Let G and H be n-vertex hypergraphs with |E(G)|+ |E(H)| < n− 1+

⌈n/2⌉ containing no 0-, 1-, (n− 1)-, and n-edges. Then G and H pack.

To prove Theorem 2.1.5, we consider a counter-example (G,H) with the fewest ver-

tices. In the next section we set up the proof and derive simple properties of (G,H). In

Section 3 we prove two more advanced properties of (G,H). In the last section we deliver

the proof of Theorem 2.1.5.

2.2 Preliminaries

Consider a counterexample (G,H) to Theorem 2.1.5 with the least number of vertices n.

This means that |E(G)|+ |E(H)| ≤ 2n− 3, |E(G)| ≤ |E(H)|, neither (G,H) nor (H,G)

is a bad pair, G and H do not pack, and if H (respectively, H⊥) has a universal vertex,

then G (respectively, G⊥) has a vertex not incident with graph edges. If at least one of

G, H , G⊥ and H⊥ is an ordinary graph, then the statement holds by Theorem 2.1.3. So

we will assume that

each of G, H , G⊥ and H⊥ has at least one hyperedge. (2.1)

Naroski [26] used the following hypergraph operation: For an n-vertex hypergraph F ,

the hypergraph F̃ is obtained from F by replacing each edge e ∈ E(F ) of size at least

(n + 1)/2 with V (F ) − e and deleting multiple edges if they occur. This operation has

the following useful property.

11



Lemma 2.2.1 ([26]). Let F1 and F2 be n-vertex hypergraphs with no edge with size less

than k and no edge with size greater than n− k. Then

(a) |E(F̃1)| ≤ |E(F1)| and |E(F̃2)| ≤ |E(F2)|,
(b) both F̃1 and F̃2 have no edges of size less than k and no edges of size greater than

⌊n
2
⌋, and

(c) if F̃1 and F̃2 pack, then F1 and F2 pack.

Lemma 2.2.2. If H̃ has a universal vertex and every vertex of G̃ is incident to a graph

edge, then G and H pack.

Proof. Let S be the set of 2-edges of G̃ and H̃ that are 2-edges in G and H . Let S ′

be the set of 2-edges of G̃ and H̃ whose complementary (n− 2)-edges exist in G and H .

Suppose that H̃ contains a universal vertex v. Then G̃ contains at most n− 2 edges and

hence some vertex of G̃ is contained in at most one 2-edge. We consider two cases.

Case 1: All 2-edges in H̃ that contain v are contained in S (respectively, S ′). By the

symmetry between H and H⊥, we may assume that they all are in S. Then under the

conditions of the theorem, some vertex w ∈ V (G̃) is not contained in any edge in S. We

let H ′ be the hypergraph obtained from H by deleting v, and all 2-edges containing v, and

replacing each hyperedge e ∈ E(H) that contains v by e−v. We let G′ be the hypergraph

obtained from G by deleting w and replacing each edge e ∈ E(G) containing w by the

edge e − w. Then since |E(G′)| + |E(H ′)| ≤ 2n − 3 − (n − 1) = n − 2, Theorem 2.1.4

yields that G′ and H ′ pack. We extend this packing to a packing of G and H by mapping

v to w.

Case 2: Vertex v is contained in a 2-edge of H̃ that is not in S and in a 2-edge of H̃

that is not in S ′. Let w1 be a vertex of G̃ which is contained in exactly one 2-edge (if

no such vertex exists, then some vertex w of G̃ is not incident to 2-edges at all, and we

proceed as in Case 1 (deleting all 2-edges of H̃ incident with v)). Let w1w2 be the 2-edge

in G̃ containing w1. By symmetry, we may assume that w1w2 ∈ S. Let vv′ be an edge of

H̃ which is not in S. We let H ′′ be the hypergraph obtained from H⊥ by first deleting v,

v′, and all 2-edges containing v and then removing v and v′ from each edge e that contains

any of them. We let G′′ be the hypergraph obtained from G⊥ by first deleting w1, w2, and

the edge w1w2 and then truncating all edges containing either of w1 and w2. Then since

|E(G′)|+ |E(H ′)| ≤ 2n− 3− (n− 1)− 1 = n− 3, Theorem 2.1.4 yields that G′′ and H ′′

pack. We extend this packing to a packing of G andH by mapping v to w1 and v′ to w2. 2

In view of Lemmas 2.2.1 and 2.2.2, we will assume that G and H have no edges of
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size greater than n
2
. We will study properties of the pair (G,H) and finally come to a

contradiction.

Throughout the proof, for i ∈ {2, . . . , ⌊n
2
⌋}, Gi (respectively, Hi) denotes the subgraph

of G (respectively, of H) formed by all of its edges of size i, and di(v,G) (respectively,

di(v,H)) denotes the degree of vertex v in Gi (respectively, in Hi). In particular, G2 and

H2 are formed by graph edges in G and H , respectively. Then we let li := |E(Gi)| and
mi := |E(Hi)|. Also, for brevity, let m :=

∑n
i=1mi, l :=

∑n
i=1 li, m = m−m1 −m2 and

l = l − l1 − l2. In other words, l is the number of hyperedges in G, and m is the number

of hyperedges in H . Recall that by the choice of G,

l ≤ n− 2. (2.2)

For n-vertex hypergraphs F1 and F2, let x(F1, F2) denote the number of bijections

from V (F1) onto V (F2) that are not packings. Since we have chosen G and H that do

not pack,

x(G,H) = n!. (2.3)

A nice observation of Naroski is:

Lemma 2.2.3 ([26]).

x(G,H) ≤ 2(n− 2)! m2l2 + 3!(n− 3)! ml. (2.4)

Proof. For edges e ∈ G and f ∈ H , let Xef be the set of bijections in X that map the

edge e onto the edge f . Then

x(G,H) =

∣∣∣∣∣∣
⋃

e∈E(G),f∈E(H)

Xef

∣∣∣∣∣∣
≤
∑

e,f

|Xef | =
⌊n
2
⌋∑

i=2

∑

e,f :|e|=|f |=i

|Xef |

=

⌊n
2
⌋∑

i=2

∑

e,f :|e|=|f |=i

i!(n− i)! =

⌊n
2
⌋∑

i=2

milii!(n− i)!

≤ 2(n− 2)!m2l2 + 3!(n− 3)!

⌊n
2
⌋∑

i=3

mili ≤ 2(n− 2)!m2l2 + 3!(n− 3)!

⌊n
2
⌋∑

i=3

mi

⌊n
2
⌋∑

i=3

li

= 2(n− 2)!m2l2 + 3!(n− 3)! ml.

2
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Lemma 2.2.4. n ≥ 8.

Proof. If n ≤ 5, then ⌊n
2
⌋ ≤ 2, and G andH are graphs, a contradiction to (2.1). Suppose

now that n = 7. By (2.4), x(G,H) ≤ 2 · 5!m2l2 + (3!)(4!)ml. By (2.1), m ≥ 1 and l ≥ 1.

And the maximum of the expression 2 · 5!m2l2 + (3!)(4!)ml under the conditions that

m2 + l2 +m + l ≤ 11, m ≥ 1 and l ≥ 1 is attained at l2 = 4, m2 = 5, m = l = 1 and is

equal to

2 · 5! · 4 · 5 + (3!)(4!) = 4800 + 144 < 5040 = 7!,

a contradiction to (2.3).

Finally, suppose that n = 6. Similarly to the case for n = 7, x(G,H) ≤ 2 · 4!m2l2 +

(3!)2ml, m ≥ 1 and l ≥ 1. Since 2 ·4! ≥ (3!)2, for nonnegative integers m2, l2 and positive

integers m, l, the maximum of the expression 2 ·4!m2l2+(3!)2ml under the condition that

m2 + l2 +m + l ≤ 9 is exactly 6! and is attained only if m2 = l2 = 0, l = 4 and m = 5.

So, G and H are 3-uniform hypergraphs with 4 and 5 edges, respectively.

Now we show that even in this extremal case x(G,H) < 6!. In the proof of Lemma 2.2.3,

for every pair of edges e ∈ G and f ∈ H , we considered the cardinality of the set of bi-

jections Xef from V (G) onto V (H) that map the edge e onto the edge f and estimated

Σ :=
∑

e∈E(G)

∑
f∈E(H) |Xef |. We will show that some bijection F : V (G) → V (H) maps

at least two edges of G onto two edges of H , thus this bijection counts at least twice in

Σ. For this, it is enough to (and we will) find edges e1, e2 ∈ E(G) and f1, f2 ∈ E(H) such

that |e1 ∩ e2| = |f1 ∩ f2|, since in this case we can map e1 onto f1 and e2 onto f2.

If G has two disjoint edges e and e′, then any third edge of G shares one vertex with

one of e and e′ and two vertices with the other. So, we may assume that any two edges

in G intersect. Similarly, we may assume that any two edges in H intersect.

Now we show that

H has a pair of edges with intersection size 1 and a pair with intersection size 2. (2.5)

If the intersection of each two distinct edges in H contains exactly one vertex, then each

vertex belongs to at most two edges, which yields |E(H)| ≤ 2 · 6/3 = 4, a contradiction

to m = 5. Finally, suppose that |f1∩f2| = 2 for all distinct f1, f2 ∈ E(H). If two vertices

in H , say v1 and v2, are in the intersection of at least three edges, then every other edge

also must contain both v1 and v2. Since n = 6 and m = 5, this is impossible. Hence we

may assume that each pair of vertices is the intersection of at most two edges. Given the

edges {v1, v2, v3} and {v1, v2, v4}, every other edge must contain v3, v4, and one of v1 or

v2. Hence each edge of H is contained in {v1, v2, v3, v4}. Thus H has at most 4 edges, a

14



contradiction. This proves (2.5). Hence the lemma holds. 2

Lemma 2.2.5. m2l2 >
(n−2)2

2
.

Proof. Suppose that m2l2 = C ≤ (n−2)2

2
. It suffices to show that x(G,H) < n!. So,

by Lemmas 2.2.3 and 2.2.4, it is enough to show that for n ≥ 8 and any nonnegative

integers m2, l2 and positive integers m, l such that m2+ l2+m+ l ≤ 2n−3, the expression

Y := 2(n − 2)! m2l2 + 3!(n − 3)! ml is less than n!. Since C ≤ (n−2)2

2
, m2 + l2 ≥ 2

√
C.

Therefore, m+ l ≤ 2n− 3− 2
√
C and so ml ≤ (n− 1.5−

√
C)2. It follows that

Y ≤ 2! (n− 3)!

(
(n− 2)C + 3(n− 1.5−

√
C)2
)

= 2! (n− 3)!

(
(n+ 1)C + 3(n− 1.5)2 − 6(n− 1.5)

√
C

)
.

The second derivative w.r.t. C of the last expression is positive, and so it is enough to

check C = 0 and C = (n−2)2

2
. If C = 0, then Y ≤ 2! (n − 3)!3(n − 1.5)2, which is less

than n! for n ≥ 8. Similarly, if C = (n−2)2

2
and n ≥ 8, then

Y

n!
<

2(n− 2)! (n−2)2

2
+ 3!(n− 3)!(n− n−2√

2
)2

n!

=
(n− 2)3 + 6(n− n−2√

2
)2

n(n− 1)(n− 2)

=
n3 − 6n2 + 12n− 8 + 6n2 − 6n(n− 2)

√
2 + 3(n− 2)2

n(n− 1)(n− 2)

=
n3 − 6n(n− 2)

√
2 + 3n2 + 4

n(n− 1)(n− 2)

< 1,

a contradiction to (2.3). 2

Corollary 2.2.1. m2 > n/2.

Proof. Suppose that m2 ≤ n/2. By Lemma 2.2.5, l2m2 >
(n−2)2

2
. Therefore

l2 >
(n− 2)2

2
· 2
n
> n− 4.
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Also, by (2.2) and (2.1), l2 ≤ n − 3. So, l2 = n− 3, and thus l = n − 2 and m ≤ n− 1.

Hence by Lemma 2.2.3, for n ≥ 8

x(G,H) ≤ 2(n− 2)! m2(n− 3) + 3!(n− 3)! (m−m2) · 1

≤ 2 · (n− 3)!

(
(n− 2)(n− 3)m2 + 3(n− 1−m2)

)

≤ 2 · (n− 3)!

(
(n− 2)(n− 3)

n

2
+ 3(0.5n− 1)

)

= (n− 2)!

(
(n− 3)n+ 3

)

< n!,

a contradiction to (2.3). 2

2.3 Two more lemmas

We need some definitions.

Definition. For a hypergraph F without 1-edges and A ⊂ V (F ), the hypergraph F−A

has vertex set V (F )− A and E(F − A) := {e− A : e ∈ E(F ) and |e− A| ≥ 2}, where
multiple edges are replaced with a single edge.

An edge e of G belongs to a component C of G2 if strictly more than |e|/2 vertices

of e are in V (C). By definition, each e belongs to at most one component of G2. A

component C of G2 is clean if no hyperedge belongs to C. A clean tree-component of G

is a clean component of G2 which is a tree. In particular, each single-vertex component

of G2 is a clean tree-component. By definition, for each component C of G2, at least

|V (C)| − 1 graph edges belong to C. Moreover,

if exactly |V (C)| − 1 edges belong to C, then C is a clean tree-component. (2.6)

Since l2 ≤ n−3, G2 has at least 3 tree-components. Since l ≤ n−2, by (2.6), at least

two components of G2 are clean tree-components. Since each non-clean component has

at least two vertices,

the smallest clean tree-component of G2 has at most max{n
3
, n−2

2
} = n−2

2
vertices.

(2.7)
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Lemma 2.3.1. Among the smallest clean tree-components of G2, there exists a component

T such that G− T does not have a universal vertex.

Proof. Let T be the vertex set of a smallest clean tree-component of G2 and let |V (T )| =
t.

Case 1: |E(G)| ≤ n− 3. Since G− T is an n − t vertex hypergraph containing only

n− t− 2 edges, G− T cannot have a universal vertex.

Case 2: |E(G)| = n−2. Assume that G−T contains a universal vertex, say w. Since

G−T has at most n− t− 1 edges, each edge in G−T is a graph edge connecting w with

some other vertex. In particular, every hyperedge in G has all but 2 of its vertices in T .

Hence for each hyperedge e in G, the edge e− T connects an isolated vertex of G2 to w.

Since G2 contains at least 3 components, we get that G2 contains at least one isolated

vertex. Then since any isolated vertex is a clean tree-component, t = 1.

Assume that G2 contains k isolated vertices v1, v2, . . . , vk. Each of these vertices then

forms a smallest clean tree-component. If G− vi does not contain a universal vertex for

some i ≤ k, we are done. Hence we may assume that G−vi contains a universal vertex wi

for each i ≤ k. It follows that every edge of G has size at most 3 and contains wi for every

i. In particular, G2 has at most one non-singleton component. Since l2 ≤ l − 1 ≤ n− 3,

G2 has at least 3 components. Hence k ≥ 2. Furthermore, each of the v′is is contained

in each 3-edge, hence k ≤ 3. If k = 3, then we have exactly one 3-edge v1v2v3 in G. But

then one the vertices of this edge is wi for some i and hence is incident with n−3 graph

edges. Since n ≥ 8, vertex of degree n− 2 is not isolated. So, k = 2.

Since G contains a 3-edge, we have an edge v1v2w where w is necessarily the universal

vertex in G− v1 and in G− v2. Thus v1v2w is the only 3-edge in G, and so wu is an edge

of G2 for every u ∈ V (G)− v1 − v2 − w.

Case 2.1: H2 contains an isolated vertex y. Since m = n − 1 and n ≥ 8, there exist

vertices y1 and y2 such that {y, y1, y2} is not a 3-edge in H . Then we may map w to y, v1

to y1 and v2 to y2, and the rest of V (G) arbitrarily to the rest of V (H) to get a packing

of G and H , a contradiction to their choice.

Case 2.2: H2 has no isolated vertices. Since |E(H2)| ≤ n− 2, H2 necessarily contains

a vertex y of degree 1. Suppose yy1 ∈ E(H2). Since H contains at most n − 1 − n/2

3-edges, there exists some y2 ∈ V (H) which is not in a 3-edge with y and y1. Then we

may pack G and H as in Case 2.1. 2

Lemma 2.3.2. Let t ≤ (n−2)/2. Let T be a t-vertex clean tree in G2 and let S ⊂ V (H)
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with |S| = t be such that S intersects at least t + 1 graph edges. If G[T ] and H [S] pack,

then either G′ := G− T or H ′ := H − S has a universal vertex.

Proof. Assume that the lemma does not hold. Since the (graph) edges of T and the

graph edges in H incident with S do not correspond to any edge in G′ and H ′, we have

|E(G′)|+ |E(H ′)| ≤ |E(G)|+ |E(H)| − (t− 1)− (t + 1) ≤ 2(n− t)− 3. (2.8)

We claim that if G′ and H ′ pack, then so do G and H . Indeed suppose that σ′ is a

packing of G′ onto H ′ and σ′′ is a packing of G[T ] onto H [S]. We will check that σ′ ∪ σ′′

is a packing of G onto H . Suppose the contrary: that an edge A of G is mapped onto

edge B of H . If A ⊂ T , this is impossible, since σ′′ is a packing of G[T ] onto H [S]. So,

suppose A′ := A∩ V (G′) 6= ∅ and B′ := B ∩ V (H ′) 6= ∅. Since T is a clean component of

G2, |A′| ≥ 2. So, |B′| is also at least 2. Then, by the definition of G−T and H−S, A′ is

an edge of G′ and B′ is an edge of H ′. Hence σ′ does not send A′ to B′, a contradiction

to the choice of A and B. Thus since G and H do not pack, neither do G′ and H ′. So by

(2.8) and the minimality of n, either (G′, H ′) is a bad pair or the lemma holds. Hence

we may assume that (G′, H ′) is a bad pair.

Let k = n− t. Note that for each bad pair (G(i), H(i)) in Fig. 1, the total number of

edges in G(i) and H(i) is 2|V (G(i))|−3 = 2|V (H(i))|−3. Hence |E(H)|− |E(H−S)| =
t+ 1 and S covers exactly t + 1 graph edges. Then

|E(G(i))|+ |E(H(i))| = 2k − 3 and |V (G)| = |V (H)| ≤ 2k − 2. (2.9)

By the definition of bad pairs, either all edges in G′ and H ′ are graph edges or all

of them are (k − 2)-edges. In the latter case, H has only t + 1 ≤ n/2 graph edges, a

contradiction to Corollary 2.2.1. Thus, we may assume that {G′, H ′} = {G(i), H(i)} in

Fig. 1 for some i ∈ {1, . . . , 8}.
Case 1: l +m ≥ 2k − 3. Then l2 +m2 ≤ (2n− 3)− (2k − 3) = 2n − 2k, and hence

l2m2 ≤ (n− k)2. Since 4 ≤ k ≤ 9 and k ≥ (n+ 2)/2, we get

l2m2 ≤ (n− k)2 ≤
(
n− 2

2

)2

<
(n− 2)2

2
,

a contradiction to Lemma 2.2.5.

Since we proved that l +m < 2k − 3 at least one edge of G′ or H ′ is a graph edge in

G or H . Furthermore, since T was a clean component, all the hyperedges of G become
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graph edges of G′. Let eG be some such edge of G′. If none of the edges of H ′ was

obtained from a hyperedge of H , then it is enough to pack G′ − eG with H ′, which is

possible by Theorem 2.1.3. So, there are e ∈ E(G′) and f ∈ E(H ′) such that one of them

is a graph edge and the other is a hyperedge in (G,H).

Case 2: (G′, H ′) is one of the unordered pairs {G(1), H(1)}, {G(3), H(3)},
{G(4), H(4)}, {G(7), H(7)}. By symmetry, we may assume that e = x1x2 and f = y1y2.

In all cases, we define mapping φ(xj) = yj for j = 1, . . . , k. This mapping together with

the packing of G[T ] with H [S] yields a packing of G with H , a contradiction.

Case 3: (G′, H ′) is one of the unordered pairs {G(2), H(2)}, {G(5), H(5)},
{G(6), H(6)}. By symmetry, we may assume that e = x1x2 and either f = y1y2 or

f = yk−1yk. If f = y1y2, then we let φ(xj) = yj for j = 1, . . . , k, and if f = yk−1yk, then

we let φ(xj) = yk+1−j for j = 1, . . . , k.

2

Remark. Practically the same proof will verify the lemma with the roles of G and

H switched, that is, with T being be a t-vertex clean tree in H2 and S being a subset

of V (G) with |S| = t such that S intersects at least t + 1 graph edges in G. The only

difference is that if all edges of G′ and H ′ are (k− 2)-edges, then H has only t− 1 ≤ n/2

graph edges (those that are the graph edges of T ), and we get the same contradiction to

Corollary 2.2.1.

2.4 Proof of Theorem 2.1.5

By Lemma 2.3.1, there is a smallest clean tree-component T of G2 such that

G− T does not contain a universal vertex. (2.10)

We let t = |V (T )|.
Case 1: t = 1. Let V (T ) = {u}. By Corollary 2.2.1, ∆(H2) ≥ 2. Let w ∈ V (H) with

d2(w,H) = ∆(H2). Let G′ = G − u and let H ′ = H − w. By Lemma 2.3.2 and (2.10),

H ′ contains a universal vertex, say w′.

Let y = ∆(H2). Since H contains at least n − 2 edges forming the star in H ′ plus y

graph edges incident to w, we get that l+ (n− 2)+ y ≤ l+m ≤ 2n− 3. Since l2 ≤ l− 1,

we get l2 + y ≤ n − 2. By Lemma 2.2.5, m2 > (n−2)2

2l2
. Also, w′ is contained in at least
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n− 2− y 3-edges, hence

(l2 + 1) +
(n− 2)2

2l2
+ (n− 2− y) < l +m ≤ 2n− 3,

which gives that l2 − y + (n−2)2

2l2
< n− 2. Adding these expressions gives

(l2 + y) + (l2 − y +
(n− 2)2

2l2
) < 2(n− 2)

or l2 +
(n−2)2

4l2
< n− 2. This can be rewritten as (2l2 − (n− 2))2 < 0 which is false. This

contradiction finishes Case 1, so below we assume that t > 1.

Case 2: t = 2. Let V (T ) = {v1, v2}. If H contains a vertex w with d2(w,H) > n/2,

let w′ be a non-neighbor of w in H2. Then G′ = G − v1 − v2, and H ′ = H − w − w′

are (n − 2)-vertex graphs with |E(G′)| + |E(H ′)| < 3(n−2)−2
2

, so G′ and H ′ pack by the

minimality of n (we simply apply Corollary 2.1.1). Mapping v1 to w and v2 to w′ will

complete the packing of G with H . So, ∆(H2) ≤ n/2.

Case 2.1: ∆(H2) ≥ 3. Given non-adjacent vertices w1 and w2 in H2 with d2(w1, H) =

∆(H2), we let G′ = G− v1 − v2 and H ′ = H −w1 − w2. By Lemma 2.3.2 and (2.10), H ′

contains a universal vertex.

Let y = ∆(H2) ≤ n/2. Then l + (n − 3) + y ≤ l +m ≤ 2n− 3. Since H ′ contains a

universal vertex, m−m2 ≥ n− 3− y, so l +m2 + (n− 3− y) ≤ l+m ≤ 2n− 3. Adding

these gives 2(2n− 3) ≥ 2l +m2 + 2(n− 3), or

2n ≥ 2l +m2. (2.11)

By Lemma 2.2.5, l2 > (n−2)2

2m2
. So if l − l2 ≥ 2 or m − m2 ≥ n − 1 − y, then 2n >

4 + m2 +
(n−2)2

m2
. And since m2 +

n−2)2

m2
≥ 2(n − 2), we get 2n > 2n, a contradiction.

Hence we may assume that l − l2 = 1 and that m − m2 ≤ n − 2 − y. Furthermore, if

l2m2 ≤ (n−1)2

2
, Lemma 2.2.3 gives

x(G,H) ≤ 2(n− 2)!
(n− 1)2

2
+ 3!(n− 3)! 1(n− 2− y)

≤ 2(n− 2)!
(n− 1)2

2
+ 3!(n− 3)! 1(n− 5)

= (n− 1)!

[
(n− 1) +

6(n− 5)

(n− 1)(n− 2)

]

< n! (since n ≥ 8),
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a contradiction to (2.3). Thus l2m2 >
(n−1)2

2
which gives l = 1+ l2 > 1+ (n−1)2

2m2
. Applying

this to (2.11) we obtain 2n > 2 +m2 +
(n−1)2

m2
≥ 2 + 2(n− 1) = 2n, a contradiction.

Case 2.2: ∆(H2) ≤ 2. By Corollary 2.2.1, ∆(H2) ≥ 2. Thus ∆(H2) = 2. Let w1

be a vertex with d2(w1, H) = 2. If there exists some w2 in H with w1w2 /∈ E(H) and

d2(w2, H) ≥ 1, then we proceed as in Case 2.1. Hence we may assume that every vertex

in H2 that is not adjacent to w1 is an isolated vertex. We then have that m2 ≤ 3, and

m2l2 ≤ 3(n− 3). Lemma 2.2.5 then gives that 3(n− 3) > (n− 2)2/2 or (n− 5)2 < 3, a

contradiction to n ≥ 8.

Case 3: t ≥ 3 and H2 has an isolated vertex w. Let y be a leaf of T and let x be

the neighbor of y in G2. Let G
′ = G− x and let H ′ = H − w. Since t ≥ 3, d2(x,G) ≥ 2

and hence |E(G′)| ≤ n− 4. Therefore, |E(G′)|+ |E(H ′)| ≤ 2(n− 1)− 3, and G′ does not

have a universal vertex. Thus by the remark to Lemma 2.3.2, H ′ has a universal vertex,

say w′. Let G′′ = G′ − y and let H ′′ = H ′ − w′. Since w′ was universal in H ′,

|E(G′′)|+ |E(H ′′)| = |E(G′)|+ |E(H ′)| − (n− 2)

≤ 2(n− 1)− 3− (n− 2)

= n− 3

<
3(n− 2)− 2

2
.

So by the minimality of n and Corollary 2.1.1, G′′ and H ′′ pack. We may then extend

the packing of G′′ and H ′′ to a packing of G and H by mapping x to w and y to w′. This

finishes Case 3.

If n1 vertices of G are in clean tree-components, then l ≥ n1(t−1)
t

+(n−n1). Moreover,

if n = n1, then (since G has a hyperedge) l ≥ 1+ n1(t−1)
t

≥ 2+ (n−2)(t−1)
t

. Since n−n1 6= 1,

we conclude that l ≥ n− ⌊n−2
t
⌋. So

m ≤ 2n− 3− l ≤ n− 3 + ⌊n− 2

t
⌋. (2.12)

We consider two cases depending on the maximum degree of H2.

Case 4: t ≥ 3 and ∆(H2) ≥ ⌊n−2
t
⌋. Let w1 be a vertex of maximum degree in

H2. Let v1 be a leaf in T and choose v2, v3, . . . , vt in T so that for each i with 2 ≤
i ≤ t, the set {v1, v2, . . . , vi} induce a tree in G2 with vi as a leaf with neighbor v(i−1)′ .

We map v1 to w1 and proceed by induction to pack V (T ) into V (H) so that for every

i = 1, . . . , t, the image, Wi, of {v1, v2, . . . , vi} is incident to at least ⌊n−2
t
⌋ + i − 1 graph

edges. Assume that v1, v2, . . . , vi have been mapped in this way to w1, w2, . . . , wi, so that
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Wi = {w1, w2, . . . , wi}. In particular, Wi is incident to at least ⌊n−2
t
⌋+ i− 1 graph edges

in H .

Case 4.1: Wi is incident to at least ⌊n−2
t
⌋ + i graph edges. It suffices to map vi+1 to

a vertex wi+1 in V (H) such that for each j ≤ i, wj 6= wi+1 and wjwi+1 is not an edge.

Since vi+1 is adjacent only to vi′ in {v1, v2, . . . , vi}, if i + d2(wi′, H − Wi) < n, then we

can choose as wi+1 any vertex in V (H) −Wi not adjacent to wi′ in H2. Hence we may

assume that d2(wi′, H−Wi) ≥ n− i. Since G2 contains no isolated vertices, by the choice

of G and H , ∆(H2) ≤ n− 2, so i 6= 1. Since v1 is a leaf in T and i ≥ 2, i′ 6= 1. So, by the

choice of w1,

m2 ≥ d2(wi′, H −Wi) + d2(w1, H − wi′) ≥ 2d2(wi′, H −Wi) ≥ 2(n− i).

Also, i ≤ t − 1. Hence m ≥ 1 + m2 ≥ 1 + 2(n − i) ≥ 2n − 2t + 3. So, by (2.12),

2n− 2t+ 3 ≤ n− 3 + n−2
t
. This gives 0 ≤ 2t2 − (n + 6)t+ (n− 2), but for 2 ≤ t ≤ n−2

2
,

this expression is at most −6.

Case 4.2: Wi is incident to exactly ⌊n−2
t
⌋ + i − 1 graph edges. If there exists some

wi+1 ∈ V (H)−Wi not adjacent to Wi in H2, then we can map vi+1 onto this wi+1. Hence

we may assume that i+ ⌊n−2
t
⌋+ i− 1 ≥ n. This yields 0 ≤ 2t2 − (n+ 3)t+ (n− 2), but

for 2 ≤ t ≤ n−2
2
, this expression is at most −3.

So, we can pack T into H in such a way that at least ⌊n−2
t
⌋+ t− 1 graph edges of H

are covered. Let G′ = G− v1 − v2 − . . .− vt and H ′ = H −w1 −w2 − . . .−wt. Since by

(2.7), ⌊n−2
t
⌋ ≥ 2, Lemma 2.3.2 and (2.10) yield that H ′ has a universal vertex. But

|E(H ′)| ≤ n− 3 + ⌊n− 2

t
⌋ − ⌊n− 2

t
⌋ − t+ 1 = n− t− 2,

a contradiction.

Case 5: t ≥ 3 and ∆(H2) ≤ ⌊n−2
t
⌋ − 1. By Corollary 2.2.1, ∆(H2) ≥ 2. Hence

2 ≤ ⌊n−2
t
⌋ − 1, which yields t ≤ (n− 2)/3. Define v1, v2, . . . , vt as in Case 4. We map v1

to a vertex w1 of maximum degree in H2. Since ∆(H2) ≥ 2, we may proceed as in Case 4,

to get a packing of T into H which covers at least ∆(H2)+ t−1 ≥ t+1 graph edges in H .

Again by Lemma 2.3.2 and (2.10), H ′ has a universal vertex, say z. Then z is contained

in at least n−t−1−∆(H2) hyperedges in H . Hence m−m2 ≥ n−t−⌊n−2
t
⌋ ≥ n−t− n−2

t
.

We also have that m −m2 ≤ 2n − 3 − (l2 + m2) − (l − l2). These inequalities together

give

(l2 +m2) + (l − l2) ≤ n− 3 + t+
n− 2

t
. (2.13)
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By Lemma 2.2.5, l2 +m2 >
√
2(n− 2).

We consider two cases.

Case 5.1: l − l2 ≥ 2. Then by (2.13) and Lemma 2.2.5 we have
√
2(n − 2) + 2 <

n−3+t+n−2
t
. As n−3+t+n−2

t
achieves its maximum for extremal values of t, we need only

to check the inequality for t = 3 and t = n−2
3
. For t = 3 we get

√
2(n− 2) < (4/3)(n− 2)

and for t = n−2
3

we get
√
2 < 4/3; both inequalities are false.

Case 5.2: l − l2 = 1. By (2.13), we have l2 +m2 ≤ n− 2 + t + n−2
t
. For fixed n, the

expression n − 2 + t + n−2
t

achieves its maximum at extremal values of t. So, we check

t = 3 and t = n−2
3
. In either case,

l2 +m2 ≤
4(n− 2)

3
+ 1. (2.14)

Since l − l2 = 1 and l +m ≤ 2n− 3, by Lemma 2.2.3, the number x(G,H) of “bad”

bijections from V (G) onto V (H) satisfies

x(G,H) ≤ m2l22(n−2)!+3!(n−3)!(m−m2) ≤ m2l22(n−2)!+3!(n−3)!(2n−3−l2−1−m2).

So, denoting y := (l2 +m2)/2, we have

x(G,H) ≤ h(y) := y22 · (n− 2)! + 3!(n− 3)!(2n− 4− 2y).

Since y ≥ m2/2 > n/4 ≥ 2, we have h′(y) = 4 · (n− 2)!y− 3!(n− 3)!2 = 4 · (n− 3)!((n−
2)y − 3) > 0. Thus by (2.14),

x(G,H)

n!
≤ h(2(n− 2)/3 + 1/2)

n!

=
|X|
n!

≤ 1

n!

[
2(n− 2)!(

2

3
(n− 2) +

1

2
)2 + 3!(n− 3)!

2n− 7

3

]

=
16n3 − 72n2 + 177n− 302

18n(n− 1)(n− 2)
.

As this is less than 1 for n ≥ 8, x(G,H) < n!, a contradiction to (2.3). 2
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Chapter 3

Domination in Cubic Graphs

3.1 Introduction

Recall that the domination number, γ(G), of a graph G is the minimum size of a domi-

nating set in G.

Given an n-vertex graphG with no restrictions, the domination number can be as large

as n when G consists only of isolated vertices. Forbidding isolated vertices or equivalently

requiring that G have minimum degree at least one gives that every vertex cover is a

dominating set. It is natural to conclude that graphs with higher minimum degree should

in general have a smaller domination number. Arnautov [5] and Payan [28] independently

gave the following bound on the domination number in terms of the minimum degree:

Theorem 3.1.1. ( [5], [28]) Every n-vertex graph G with minimum degree k satisfies

γ(G) ≤ n

(
1 + ln(k + 1)

k + 1

)
.

Since every vertex in a k-regular graph can dominate at most k + 1 vertices giving a

domination number of at least n
k+1

this bound is relatively strong. For large k, Alon [3]

proved the following:

Theorem 3.1.2. [3] For all sufficiently large k and for infinitely many n there exist

k-regular n-vertex graphs G with

γ(G) ≥ (n + o(1))
ln k

k
.

As the two above bounds are asymptotically equal for large k, interest turned to
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v1 v2

Figure 3.1

establishing bounds on the domination number of graphs with small minimum degree.

Ore [27] proved that γ(G) ≤ n/2 for every n-vertex graph with δ(G) ≥ 1. Blank [6]

proved that γ(G) ≤ 2n/5 for every n-vertex graph with δ(G) ≥ 2 if n ≥ 8. Reed [30]

proved that γ(G) ≤ 3n/8 for every n-vertex graph with δ(G) ≥ 3. All these bounds are

sharp. Reed [30] conjectured that the domination number of each connected 3-regular

(cubic) n-vertex graph is at most ⌈n/3⌉. Kostochka and Stodolsky [19] disproved this

conjecture. They proved:

Theorem 3.1.3. [19] There is a sequence {Gk}∞k=1 of cubic connected graphs such that

for every k, |V (Gk)| = 46k and γ(Gk) ≥ 16k, and thus γ(Gk)
|V (Gk)| ≥

8
23

= 1
3
+ 1

69
.

The current best lower bounds come from an example of Kelmans [15] which gives

the following:

Theorem 3.1.4. [15] There is a sequence {Gk}∞k=1 of cubic 2-connected graphs such that

for every k, |V (Gk)| = 60k and γ(Gk) ≥ 21k, and thus γ(Gk)
|V (Gk)| ≥

1
3
+ 1

60
.

These graphs are created by replacing each edges in a cycle by a copy of the graph in

Figure 3.1 where the endpoints of the original edge are replaced by v1 and v2.

Kostochka and Stodolsky [20] improved Reed’s upper bound of 3n/8 for connected

cubic graphs to the following:

Theorem 3.1.5. [20] Let n > 8. If G is a connected cubic n-vertex graph, then

γ(G) ≤ 4n

11
=

(
1

3
+

1

33

)
n.

The main result of this chapter is the following improvement:

Theorem 3.1.6. Let n > 8. If G is a connected cubic n-vertex graph, then

γ(G) ≤ 5n

14
=

(
1

3
+

1

42

)
n.
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The bound
⌊
5n
14

⌋
is sharp for 8 < n ≤ 18. One 3-connected cubic 14-vertex hamiltonian

graph G with γ(G) = 5 is presented in [10]. There are four such nonisomorphic graphs.

Our proofs exploit the ideas and techniques of Reed’s seminal paper [30] and of [20].

We modify and elaborate the technique of [20] substantially. In the next section, we

describe the setup of the Reed’s paper [30] with some small changes and the procedure

of constructing a dominating set. In the same section we state the basic lemmas that we

will prove later. In Section 3.3, we describe a discharging that proves the bound modulo

basic lemmas. In the next three sections we prove the basic lemmas.

This chapter is based on joint work with A. V. Kostochka.

3.2 The setup

We elaborate and extend the proof in [20]. A vdp-cover of a graph G is a covering of

V (G) by vertex- disjoint paths. The order, |P |, of a path P is the number of its vertices.

When describing a specific path with vertices v1, v2, . . . , vk where vi is adjacent to vj if

and only if |i− j| = 1 we will write (v1v2 . . . vk). For i ∈ {0, 1, 2}, a path P is an i-path, if

|P | ≡ i (mod 3). If P is a path, x ∈ V (P ) and P −x consists of an i-path and a j-path,

then x is called an (i, j)-vertex of P .

Let G be a connected cubic graph and S be a vdp-cover of G. An endpoint x of a path

P ∈ S is an out-endpoint if x has a neighbor outside of P . An endpoint x of a 2-path

P ∈ S is a (2, 2)-endpoint if x is not an out-endpoint and is adjacent to a (2, 2)-vertex of

P . By Si we denote the set of i-paths in S.

A vdp-cover S of G is optimal if

(R1) 2|S1|+ |S2| is minimized;

(R2) Subject to (R1), |S2| is minimized;

(R3) Subject to (R1) and (R2),
∑

P∈S0
|P | is minimized;

(R4) Subject to (R1)–(R3),
∑

P∈S1
|P | is minimized;

(R5) Subject to (R1)–(R4), the total number of out-endpoints of all paths in S is maxi-

mized;

(R6) Subject to (R1)–(R5), the total number of (2, 2)-endpoints of all 2-paths in S is

maximized.

It turns out that optimal vdp-covers possess several useful properties. The next lemma

is Lemma 1 in [20].

Lemma 3.2.1. Suppose that an out-endpoint x of a 1-path or a 2-path Pi in an optimal

vdp-cover S is adjacent to a vertex y ∈ Pj, where j 6= i. Let Pj = P ′
jyP

′′
j . Then
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(B1) Pj is not a 1-path;

(B2) If Pj is a 0-path, then both P ′
j and P ′′

j are 1-paths;

(B3) If Pj is a 2-path, then both P ′
j and P ′′

j are 2-paths;

(B4) If Pj is a 2-path and z is the common endpoint of Pj and P ′
j, then each neighbor of

z on P ′′
j should be a (2, 2)-vertex.

Properties (B3), (R1), (R2) and (R3) yield the following fact.

Lemma 3.2.2. If a path (v1, . . . , v5) in an optimal vdp-cover S has chord v1v4 (see Fig.

1a), or chord v1v5, then none of its vertices is adjacent to an end vertex of another path

in S.

We also will use the following result.

Theorem 3.2.1. [10] If G is a hamiltonian cubic (3k+1)-vertex graph, then γ(G) ≤ k.

A path P in a vdp-cover S is a special path of type 1 (respectively, of type 2), if P

has 35 vertices (respectively, 38 vertices) and none of the hamiltonian paths on V (P ) has

an out-endpoint or a (2, 2)-endpoint. A special vertex in a special path P is a vertex at

distance 17 in P from some of its end. By definition, each special path of type 1 has

exactly one special vertex (its center), and each special path of type 2 has two special

vertices (at distance 3 from each other). A special path P in a vdp-cover S will be called

very special if there exists a path P1 in S whose end-vertex is adjacent to the special

vertices of at least two special paths one of which is P . The other special paths in the

definition of a very special path are, by definition, also very special.

Now we essentially repeat construction in [20] of a dominating set with some modifi-

cations. Let S be an optimal vdp-cover.

(C1) If a 1-path P ∈ S has no dominating set of size at most (|P | − 1)/3, but has an

out-endpoint, choose a vertex y /∈ V (P ) which is a neighbor of an out-endpoint x(P ) of

P . Call this y /∈ V (P ) an acceptor for P . If x(P ) or the other endvertex of P has an

outneighbor that is not a special vertex of a special path, then let the acceptor of P be

not the special vertex of a special path. Furthermore, if there is a choice between special

paths of type 1 and type 2, then we choose the acceptor in a path of type 2. In particular,

if |P | = 4 and G[V (P )] is a 4-cycle, then we choose, if possible, an outneighbor of V (P )

that is not a special vertex of a special path.

(C2) Say that a path P ∈ S with |P | = 5 forms a δ-subgraph, if for some hamiltonian

path on P , the center vertex, x′ is adjacent to an endpoint of the path (see Fig 1.b) and

the other end of P has an outneighbor. For each P forming a δ-subgraph, choose an

27



a

b

b

b

b

bx x′

v

b

b b

b

b

b

x′

x

Figure 3.2

outneighbor of x and call it an acceptor for P . If G[V (P )] is the 5-cycle, then choose

as acceptors the outneighbors of two adjacent vertices of G[V (P )]. If G[V (P )] is K2,3,

then choose as acceptors the outneighbors of two vertices of degree two in G[V (P )]. In

all cases, if there is a choice, we try to minimize the number of acceptors that are special

vertices of special paths.

(C3) Let P ∈ S be a 2-path not described in (C2). If either P has two out-endpoints,

or |P | ≤ 11 and P has one out-endpoint, then for each of the out-endpoints of P , choose

a neighbor outside P and designate it as an acceptor corresponding to that endpoint. If

possible, choose the acceptors that are not special vertices of special paths.

Call a path accepting if at least one of its vertices was designated as an acceptor.

(C4) Construct a family A ⊆ S of 2-paths as follows. Initially, let A be the set of

accepting 2-paths in S. While there is any out-endpoint x of a path in A for which

we have not already chosen an acceptor (because the path has only one out-endpoint),

choose a neighbor y of x in G− P and designate it as an acceptor for x. Moreover, if we

can choose an acceptor that is not a special vertex of a special path, we do not choose a

special vertex. If we have choice between special vertices of special paths of type 1 and

type 2, then we choose the vertex in a special path of type 2. If y is on a previously non-

accepting 2-path P ′, then add P ′ to A. Continue this process until there is an acceptor

for every out-endpoint in A. In addition, for each (2, 2)-endpoint x of each path P in A,

designate a (2, 2)-vertex y adjacent to x as an in-acceptor for x.

(C5) When we finish the procedure above, we look at special paths again. If a special

vertex y of a special path P ∈ S was designated as the acceptor for a path P1 with an

endvertex x1 adjacent to y and some other vertex of P also is an acceptor, then we leave

the situation as it is. If y is the only acceptor in P and x1 has an outneighbor y′ in a
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path that has other acceptors, then we redesignate the y′ as the acceptor for x1 (and

P1). Moreover, if P1 is a path with 4 vertices, and G[P1] is a 4-cycle, then we choose y

as an acceptor only if each other outneighbor of this 4-cycle also is a special vertex of a

special path and no other vertices on all these paths are acceptors. If P1 is a path with

5 vertices, and G[P1] is a 5-cycle or K2,3, then we also, if possible switch to an acceptor

in a path that contains another acceptor.

Each accepting 2-path P ∈ S can be written in the form P1P2P3, where P1 and P3

are both 1-paths containing no acceptors (including in-acceptors) and are maximal with

this property. By (B3), the second and the penultimate vertices of P2 are acceptors. The

paths P1 and P3 are called tips of P , and P2 is the central path of P . Now a dominating

set D is defined as follows.

(C6) For each 0-path P ∈ S, every (1, 1)-vertex of P is included in D.

(C7) For each accepting 2-path P ∈ S, every (2, 2)-vertex of P that is in the central

path of P is included in D.

(C8) Let P ∈ S be a 1-path. If G[P ] has a dominating set D′ with |D′| ≤ ⌊|P |/3⌋,
then we include D′ into D. If no such set exists and P has an out-endpoint, then P

has an out-endpoint, say x(P ), adjacent to the acceptor of P . In this case, choose some

⌊|P |/3⌋ vertices that dominate all vertices of P except for x(P ), and include these ⌊|P |/3⌋
vertices in D.

(C9) For each non-accepting 2-path in S on 5 vertices that forms a δ-subgraph, include

vertex x′ from the definition of δ-subgraphs into D. If G[V (P )] is K2,3, then include into

D the vertex of degree two in G[V (P )] that is not adjacent to the acceptors of P . If

G[V (P )] = C5, then include into D the vertex not adjacent to the two vertices adjacent

with the acceptors of P .

(C10) For each other non-accepting 2-path P ∈ S in which each of the ends is either

an out-endpoint or a (2, 2)-endpoint, include in D all (2, 2)-vertices of P . Note that there

are ⌊|P |/3⌋ of them and these (2, 2)-vertices dominate all vertices of P except possibly

for the out-endpoints of P . If a non-accepting 2-path P ∈ S has exactly one out-endpoint

x and |P | ≤ 11, then include into D a smallest subset of V (P ) that dominates V (P )−x.

(C11) Let P ∈ S be a 1-path, or a non-accepting 2-path with no out-endpoints, or

a non-accepting 2-path with exactly one out-endpoint and |P | ≥ 14. Choose a smallest

dominating set in G[V (P )] and include it in D. Note that in any case, this set has at

most ⌈|P |/3⌉ vertices.

(C12) Let P1 be a tip of an accepting 2-path P ∈ S and x be the common end of P

and P1. If x is an out-endpoint or a (2, 2)-endpoint, then include in D all (2, 2)-vertices
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of P that are in P1. There are ⌊|P1|/3⌋ of them and these (2, 2)-vertices dominate all

vertices of P1 except for x (which is dominated by a vertex already included in D by

(C6) or (C7)). If x is neither an out-endpoint nor a (2, 2)-endpoint, then include in D a

smallest dominating set in the subgraph of G induced by P1. Similarly to (C11), this set

has at most ⌈|P1|/3⌉ vertices.

(C13) An exceptional path is a non-accepting 2-path P ∈ S such that

(i) both ends of P are out-endpoints and P does not form a δ-subgraph,

(ii) the acceptors of both ends are vertices of 2-paths P ′ = P ′
1P

′
2P

′
3 and P ′′ = P ′′

1 P
′′
2 P

′′
3

with no outneighbors,

(iii) |P ′
1| ≥ 16, |P ′

3| ≥ 16, |P ′′
1 | ≥ 16, and |P ′′

3 | ≥ 16,

(iv) paths P ′ and P ′′ do not contain other acceptors, |P ′
2| = |P ′′

2 | = 3, and

(v) according to (C12), |D ∩ V (P ′)| = (|P ′|+ 4)/3 and |D ∩ V (P ′′)| = (|P ′′|+ 4)/3.

The paths P ′ and P ′′ in the definition of an exceptional path P are called dependants

of P .

For every exceptional path, we replace the ⌊|P |/3⌋ vertices of D in P (they dominated

P apart from the endpoints) by a set of size 1+ ⌊|P |/3⌋ dominating all vertices of P , but

replace the (|P ′|+4)/3+(|P ′′|+4)/3 vertices of D in P ′∪P ′′ by (|P ′|+1)/3+(|P ′′|+1)/3

vertices dominating V (P ′ ∪ P ′′).

This finishes the definition of D.

By construction (see [30, P. 283]), the set D is dominating. We will prove that

|D| ≤ 5|V (G)|/14 if |V (G)| > 8 and G is connected. Note that a path P (or P1) can

contribute to D more than |P |/3 (or |P1|/3) vertices only in cases (C11), (C12) or (C13).

Thus the following lemmas will be helpful (and are extensions of Lemmas 2, 3, and 4

in [20]).

Lemma 3.2.3. If a 1-path P in an optimal vdp-cover is such that each of the hamiltonian

paths in G[V (P )] has no out-endpoints, then either some (|P | − 1)/3 vertices dominate

all vertices of P or P has at least 28 vertices.

Lemma 3.2.4. If a 2-path P in an optimal vdp-cover is such that each of the hamiltonian

paths in G[V (P )] has at most one out-endpoint, then either some (|P | − 2)/3 vertices

dominate all vertices of P apart from an out-endpoint or P has at least 14 vertices.

Lemma 3.2.5. Let P1 = (x1, . . . , xk) be a tip of an accepting 2-path P in an optimal

vdp-cover. Let X(P1) be the set of the hamiltonian paths in G[V (P1)] one of whose ends

is xk. If none of the other ends of any path in X(P1) is an out-endpoint of P or a

(2, 2)-endpoint, then either some (k − 1)/3 vertices dominate V (P1), or k ≥ 16.
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In the next section, we will use discharging in order to prove our upper bound on |D|
provided that Lemmas 3.2.3, 3.2.4 and 3.2.5 hold. In the subsequent sections we prove

these lemmas.

3.3 Discharging

Consider the following discharging. Initially, every vertex in D has charge 1 and every

other vertex of G has charge 0, so the total sum of charges is |D|. We will change the

charges of vertices in such a way that

(a) the sum of charges does not decrease, and

(b) the charge of every vertex becomes at most 5/14.

The properties (a) and (b) together imply that |D| ≤ 5|V (G)|/14. We do the dis-

charging in several steps and at every step check that the charge of each so far involved

vertex is not greater than 5/14.

Step 1: For each 0-path P , every (1, 1)-vertex of P gives 1/3 of its charge to either

of the two neighbors on P . After this step, each vertex of each 0-path P has charge 1/3.

Step 2: For each accepting 2-path P , every (2, 2)-vertex of P that is in the central

path of P gives 1/3 of its charge to either of the two neighbors on P . After this step,

each vertex in the central path of each accepting 2-path P has charge 1/3.

Step 3: If P is a 1-path and D∩V (P ) dominates all vertices in P , then we distribute

the charges of vertices in D∩V (P ) evenly among vertices in P . If |D∩V (P )| ≤ ⌊|P |/3⌋,
then each vertex of P will have charge less than 1/3. If |D ∩ V (P )| > ⌊|P |/3⌋, then, by
(C8) and (C11), P has no out-endpoints and |D ∩ V (P )| = (|P |+2)/3. Furthermore, by

Lemma 3.2.3, |P | ≥ 28 and hence the charge of each vertex will be at most 1
3
+ 2

3|P | ≤
1
3
+ 2

3·28 = 5
14
.

Step 4: If P is a 1-path and D ∩ V (P ) does not dominate all vertices in P , then

by (C8) and (C11), P has an out-endpoint, say x(P ), adjacent to the acceptor of P .

Distribute the charges of the ⌊|P |/3⌋ vertices of D in V (P ) evenly among the vertices in

V (P )− {x(P )}. After this step, the vertex x(P ) has charge 0 and every other vertex of

P has charge 1/3.

Step 5: Let P be a non-accepting and non-exceptional 2-path that does not form a

δ-subgraph and in which each of the ends is either an out-endpoint or a (2, 2)-endpoint.

Distribute the charges of the ⌊|P |/3⌋ vertices of D in V (P ) evenly among the internal

vertices of P . After this step, either of the ends of P has charge 0 and every other vertex

of P has charge 1/3.
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Step 6: For each 2-path P on 5 vertices forming a δ-subgraph, the only vertex x′ of

P in D gives 1/4 to each of its neighbors. After this step, the out-endpoint x of P has

charge 0 and every other vertex of P has charge 1/4.

Step 7: Let P be a non-accepting 2-path with at most one out-endpoint that does

not form a δ-subgraph. Since P has at most one out-endpoint, it is not exceptional. If

|V (P )| ≥ 14 or P has no out-endpoints, then similarly to Step 3, distribute the charges

of the vertices in D ∩ V (P ) evenly among the vertices of P . In this case, if |V (P )| < 14,

then by Lemma 3.2.4, |D∩V (P )| < |V (P )|/3, and each vertex of P will have charge less

than 1/3. If |V (P )| ≥ 14, then

|D∩V (P )| ≤ (|V (P )|+1)/3 = (1+1/|V (P )|)|V (P )|/3 ≤ (1+1/14)|V (P )|/3 = 5|V (P )|/14,

and, hence, each vertex of P has charge at most 5/14. Suppose now that |V (P )| ≤ 11 and

P has exactly one out-endpoint x(P ). Distribute the charges of the vertices in D ∩V (P )

evenly among the vertices of P − x(P ). By (C10) and Lemma 3.2.4, |D ∩ V (P )| ≤
(|V (P )| − 2)/3, and so each vertex of P − x(P ) has the charge less than 1/3, and x(P )

has charge 0.

Step 8: Let P be an exceptional path and P ′ and P ′′ be its dependants. By the

definition of exceptional paths, P is non-accepting, and P ′ and P ′′ contain acceptors only

for P . Distribute the charges of the vertices in D∩(V (P )∪V (P ′)∪V (P ′′)) evenly among

vertices in V (P )∪V (P ′)∪V (P ′′). Recall that |V (P )∪V (P ′)∪V (P ′′)| ≥ 2+35+35 = 72.

By (C13),

|D ∩ (V (P ) ∪ V (P ′) ∪ V (P ′′))| = |V (P )|+ |V (P ′)|+ |V (P ′′)|
3

+ 1.

Hence, the charge of each vertex in V (P ) ∪ V (P ′) ∪ V (P ′′) is at most 1/3 + 1/72 =

25/72 < 5/14.

Step 9: Let P1 be a tip of an accepting 2-path P such that the common end, x(P1),

of P and P1 is either an out-endpoint or a (2, 2)-endpoint of P . Distribute the charges

of the ⌊|P1|/3⌋ vertices of D in V (P1) evenly among the vertices of P1 apart from x(P1).

After this step, x(P1) has charge 0 and each other vertex of P1 has charge 1/3.

Step 10: Let P1 be a tip of an accepting 2-path P such that the common end, x(P1),

of P and P1 is neither an out-endpoint nor a (2, 2)-endpoint of P , and the central path of

P has more than 3 vertices. Since the central path of P has more than 3 vertices, P is not

a dependant of an exceptional path. Suppose that P1 = (x1 . . . xk), P2 = (y1 . . . ym), and

P3 = (z1 . . . zl), so that P = (x1 . . . xky1 . . . ymz1 . . . zl). Recall that, by definition, y2 is an
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acceptor for an out-endpoint y′ of a path or for y′ = zl if zl is a (2, 2)-endpoint. Recall also

that so far all out-endpoints and (2, 2)-endpoints of non-exceptional paths had charges

equal to 0. If |V (P1)| ≥ 16, then we distribute the charges of at most (|V (P1)| + 2)/3

vertices of D ∩ V (P1) as follows: each vertex of P1 gets 5/14, then we add 1/42 to the

charge of each of y1, y2 and y3 and give 3/14 to the vertex y′ whose acceptor is y2. The

total charge that the vertices of P1∪{y1, y2, y3, y′} get at this step is 5|P1|/14+3/42+3/14

which is at least (|V (P1)| + 2)/3 when |P1| ≥ 16. Each of y1, y2 and y3 had charge 1/3

after Step 2 and for each of them the charge changed to 5/14. Note that, since m > 3,

the vertices y1, y2, y3, and y′ will not get any charge from the tip P3.

If |V (P1)| < 16, then since x(P1) is not an out-endpoint, by Lemma 3.2.5, |D ∩
V (P1)| < |V (P1)|/3, and after distributing the charges of vertices of D ∩ V (P1) evenly

among vertices of P1, each vertex of P1 will have charge less than 1/3.

Step 11: Let P be an accepting 2-path such that exactly one endpoint of P is an

out-endpoint or a (2, 2)-endpoint, and the central path of P has exactly 3 vertices. By

definition, P is not a dependant of an exceptional path. Suppose that P1 = (x1 . . . xk),

P2 = (y1y2y3), and P3 = (z1 . . . zl), so that P = (x1 . . . xky1y2y3z1 . . . zl). We may assume

that x1 is neither an out-endpoint nor a (2, 2)-endpoint of P . By definition, y2 is an

acceptor for an out-endpoint y′ of a path P ′ or for y′ = zl if zl is a (2, 2)-endpoint. Since

zl is either a (2, 2)-endpoint or an out-endpoint of P , the charges of vertices in P3 were

defined at Step 9 (if the acceptor of zl is on a 2-path, then the charge of zl could be

changed at Step 10 or Step 11). We define the charges of vertices in P1, P2 and the

charge of y′ exactly as at Step 10.

Step 12: Let P be an accepting 2-path such that each of the endpoints of P is neither

an out-endpoint nor a (2, 2)-endpoint, the central path of P has exactly 3 vertices, and

|D ∩ V (P )| ≤ (|V (P )| + 1)/3. By Lemma 3.2.5, |P | ≥ 16. Hence, after distributing the

charges of vertices of D∩V (P ) evenly among all vertices of P , each vertex of P will have

charge at most
|V (P )|+ 1

3|V (P )| =
1

3
+

1

3|V (P )| ≤
1

3
+

1

48
<

5

14
.

Step 13: Let P be an accepting 2-path such that each of the endpoints of P is neither

an out-endpoint nor a (2, 2)-endpoint, the central path of P has exactly 3 vertices, and

|D ∩ V (P )| > (|V (P )| + 1)/3. If P is a dependant of an exceptional path, then we

are done at Step 8. Suppose not. Let P1, P2, and P3 be defined as at Step 11. Then

|D ∩ V (P )| = (|V (P )| + 4)/3 and this may happen only if |D ∩ V (P1)| = (|P1| + 2)/3

and |D ∩ V (P3)| = (|P3| + 2)/3. In this case, by Lemma 3.2.5, k ≥ 16 and l ≥ 16. If
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k+3+ l > 38, then k+3+ l ≥ 41 and |D∩V (P )| ≤ ⌈k/3⌉+1+ ⌈l/3⌉ = (|V (P )|+4)/3.

Distributing the charge evenly among the vertices of V (P ) ∪ {y′}, where y′ is the out-

endpoint of another path P ′ whose acceptor is y2, we obtain that the charge of each

vertex in V (P ) ∪ {y′} is at most

|V (P )|+ 4

3(|V (P )|+ 1)
=

1

3
+

3

3(|V (P )|+ 1)
≤ 1

3
+

1

42
=

5

14
.

This is the only case so far that the end-vertex of a tip of a non-exceptional path gets

charge greater than 3/14. Note that it happens only when each of the tips of P has at

least 16 vertices, P has no out-endpoints or (2, 2)-endpoints, |D∩V (P )| = (|V (P )|+4)/3,

and P accepts only one vertex. Recall that the other possibility for an end-vertex y∗ of

a 1-path or of a tip of a 2-path to get a positive charge occurs only at Step 10 or 11. In

such a case, the following conditions hold:

(r1) y∗ receives at most 3/14 of charge;

(r2) the accepting vertex y is either the second or the penultimate vertex in the central

path, say P ∗
2 , of some 2-path P ∗;

(r3) if P ∗
2 has more than 3 vertices (Case 10), then the closest to y tip of P ∗ has at least

16 vertices and no out-endpoints;

(r4) if P ∗
2 has exactly 3 vertices (Case 11), then one of the tips of P ∗ has at least 16 vertices

and no out-endpoints and the other tip has either an out-endpoint or a (2,2)-endpoint.

The only case we have not yet considered is that |P2| = 3, k, l ≥ 16 and k+ l+3 ≤ 38.

In particular, this means that P is a special path. In this case, |D∩V (P )| = 13, when P

has type 1 and |D ∩ V (P )| = 14, when P has type 2. In both cases, the only accepting

vertex is a special vertex. In both cases, y′ has the current charge 0. We give to y′ and to

every vertex of P charge 5/14, but (35+1)·5/14 = 13−1/7 and (38+1)·5/14 = 14−1/14;

so we need to distribute either 1/7 (when P has type 1) or 1/14 (when P has type 2)

among some other vertices. Consider the following cases for distributing this charge.

Case 1: Vertex y′ is the out-endpoint of a 1-path P ′ of length at least 4. In this

case, we add 1/42 to the charge of each of the vertices of P ′ − y′. At Step 3 or Step 4,

each of these vertices got charge 1/3, so now each of them has charge 5/14. If P is a

special path of type 2 or P ′ has at least 7 vertices, then we are done; so suppose that

P has type 1 and |P ′| = 4. Let P ′ = (w1w2w3w4), where y′ = w1. If w1 has another

outneighbor v apart from its acceptor, then by (C1) and (C5), v is a special vertex of

a special path P ′′ of type 1, and this path is non-accepting. In this case, every vertex

of P ′′ has charge 12/35, and after distributing evenly our surplus charge of 1/14 among
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vertices of P ′′, each of these vertices will have charge 12/35 + 1/(14 · 35) < 5/14. So,

w1 has no other outneighbors. By (C1), no vertex in P ′ dominates all the others. If w1

has two neighbors in P ′ and no vertex in P ′ dominates all the others, then G(P ′) is the

4-cycle (w1, w2, w3, w4). By (C5), the outneighbors of w2, w3 and w4 are special vertices

of special paths which are not accepting. So, we can distribute our surplus 1/14 among

these vertices, as above.

Case 2: Vertex y′ is the out-endpoint of a tip of an accepting 2-path P ′. Then P ′

can be written as P ′
1P

′
2P

′
3, where P ′

1 and P ′
3 are the tips, and P ′

2 is the center. Suppose

that P ′
2 = (v1v2 . . . vt). Note that by the definition of a center, v2 is the acceptor for a

vertex v′ and the charge of v′ (maybe received because of P ′
3 at Step 10 or 11) is at most

3/14. We give 1/7 to v′.

Case 3: Vertex y′ is the out-endpoint of a 2-path P ′ that forms a δ-subgraph. From

(B3) we get that the center vertex is the only possible accepting vertex, but it has degree

3 in P ′. Hence P ′ is non-accepting. We give 1/28 to each of the remaining vertices of F .

Since each of them got the charge 1/4 at Step 6, now it will have 1/4 + 1/28 = 2/7.

Case 4: Vertex y′ is the out-endpoint of a non-accepting 2-path P ′ that does not

form a δ-subgraph. Let P ′ = (w1 . . . ws), where y
′ = w1. Since P

′ is not accepting and we

chose an acceptor for w1, according Rules (C2)-(C5), either ws also is an out-endpoint or

s ≤ 11. Suppose first that s ≤ 11 and ws has no outneighbors. Then s ∈ {5, 8, 11} and

on Step 7 each of the vertices of P ′ − w1 got the charge s−2
3(s−1)

. We distribute 1/7 evenly

among these vertices so that each of them will now have charge

s− 2

3(s− 1)
+

1

7(s− 1)
=

7s− 11

21(s− 1)
<

1

3
.

Suppose now that ws is an out-endpoint. Since P ′ is not an exceptional path, the path P ′′

accepting ws does not give charge to any vertex apart from ws and by (r1) ws has charge

at most 3/14. Adding the surplus to this vertex leaves it with charge 3/14+ 1/7 = 5/14.

Case 5: The path P ′ containing y′ has no other vertices. Since P is special, by (C1)

this might happen only if P is very special and y′ is adjacent to special vertices in special

paths P1 and P2 that are non-accepting. We add 1/(14 · 35) to the charge of each vertex

in P1 and P2. This finishes the discharging.

Thus, what is left to prove Theorem 3.1.5 is to prove Lemmas 3.2.3, 3.2.4 and 3.2.5.

We will do it in the next sections. In Section 3.4 we describe the approach we use

and prove a number of auxiliary statements. Applying these statements, we prove Lem-

mas 3.2.4 and 3.2.5 in Section 3.5. Lemma 3.2.3 has the longest proof. It will be proved
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in Section 3.6.

3.4 Structure of proofs and technical statements

We will need some notation. Let G′ be a subgraph of a graph G and u, v ∈ V (G′), u 6= v.

Say that u is (G′, v)-distant if G′ contains a hamiltonian v, u-path. Sometimes, if it is

clear which G′ we have in mind, we will simply say that u is v-distant.

A v-lasso is a graph consisting of a cycle, say C, and a path connecting v with C. In

this case, C is the loop of this v-lasso, and H is the remaining path which we will call

the handle. If v ∈ V (C), then C itself is a v-lasso. A v-lasso with k vertices, l of whose

belong to the loop, will be sometimes called a (v, k, l)-lasso.

A typical structure used in the proofs of Lemmas 3.2.3, 3.2.4, and 3.2.5 will be as

follows. We will consider a path P1 = (v1 . . . vk) and let G1 = G[V (P1)]. We will know

that k is not large, for example, k ≤ 11. For some reasons, we will know that v1 has

no neighbors outside of P1 and, moreover, that no (G1, vk)-distant vertex has a neighbor

outside of P1. If k is 2 (mod 3), then we will want to prove that some (k − 2)/3 vertices

dominate V (P1)− vk. If k is 1 (mod 3), then we will want to prove that some (k − 1)/3

vertices dominate V (P1). We will show that we do not need to consider the case of k = 0

(mod 3). Thus, we need that some ⌊k/3⌋ vertices dominate the first 3⌊k/3⌋ + 1 vertices

of P1. For example, if P1 = P = (v1 . . . v8) and v8 is the only out-endpoint of P , then we

will prove that some two vertices dominate V (P1)− v8. We will do this as follows.

Since v1 has no neighbors outside of P1, it has two neighbors, vi and vj distinct from

v2 on P1. Path P1 together with edge v1vi forms a vk-lasso. Among all vk-lassos on V (P1)

choose a lasso L with the largest loop C. By renumbering vertices, we may assume that

L consists of the cycle C = (v1 . . . vr) and the path (vr . . . vk). If r is divisible by 3, then

the set D = {v3, v6, . . . , v3⌊k/3⌋} dominates what we need. So, we will need to consider

only r 6= 0 (mod 3). The problem of finding ⌊k/3⌋ vertices that dominate the first

3⌊k/3⌋+ 1 vertices of P1 reduces to the problem of finding ⌊r/3⌋ vertices that dominate

{v1, . . . , v3⌊r/3⌋+1}, since the remaining 3(⌊k/3⌋ − ⌊r/3⌋) vertices of P1 that we need to

dominate are easily dominated by the vertices v3(⌊r/3⌋+1), v3(⌊r/3⌋+2), . . . , v3(⌊k/3⌋).

Let G′ = G[V (C)]. By the above condition on P1, no (G′, vr)-distant vertex has a

neighbor outside of P1. By the maximality of |C|, no (G′, vr)-distant vertex has a neighbor

in V (P1)−V (C). Thus, no (G′, vr)-distant vertex has a neighbor outside of C. In the rest

of this section we will prove that under these conditions, some ⌊r/3⌋ vertices dominate

{v1, . . . , v3⌊r/3⌋+1} for r = 4, 5, 7, 8, 10, 11, 13 and 14. This will be heavily used later.

36



Lemma 3.4.1. Let G′ be the subgraph of a cubic graph G induced by vertices v1, v2, v3,

and v4. If v1 has no neighbor outside of G′, then v1 dominates V (G′).

Proof. This is because the only possible neighbors of v1 are v2, v3, and v4. 2

Lemma 3.4.2. Let G′ be the subgraph of a cubic graph G induced by the vertices of a

path (v1v2v3v4v5). If no (G′, v5)- distant vertex has a neighbor outside of V (G′), then

some vertex dominates V (G′)− v5.

Proof. If v1v3 ∈ E(G), then v3 dominates V (G′)− v5. Suppose that v1v3 /∈ E(G). Then

v1v4, v1v5 ∈ E(G). The paths (v3v2v1v4v5) and (v2v3v4v1v5) show that each of v2 and v3

can play the role of v1 and thus by the above argument should be adjacent to v5 if no

vertex dominates V (G′)− v5. But v5 cannot be adjacent to all of v1, v2, v3, v4. 2

Lemma 3.4.3. If a graph G′ on 3k+1 vertices has a hamiltonian path P = (v1 . . . v3k+1)

and an edge vivi+3j−1, where i is not divisible by 3, then G′ has a dominating set of size

k.

Proof. If i = 3m + 1, then we let D = {v2, v5, . . . , v3m−1, v3m+3, v3m+6, . . . , v3k}. Note

that then vi+3j−1 ∈ D. Thus every v ∈ D dominates its neighbors on P , and vi+3j−1 also

dominates vi.

If i = 3m + 2, then we let D = {v2, v5, . . . , v3m+3j−1, v3m+3j+3, v3m+3j+6, . . . , v3k}. In

this case vi ∈ D, every v ∈ D dominates its neighbors on P , and vi = v3m+2 also domi-

nates vi+3j−1 = v3m+3j+1. 2

An immediate corollary of this lemma is the following fact.

Lemma 3.4.4. If a graph G′ on 3k+1 vertices has a hamiltonian cycle (v1 . . . v3k+1) and

an edge vivj with j − i+ 1 divisible by 3, then G′ has a dominating set of size k.

Lemma 3.4.5. Let graph G′ on 3k + 1 vertices form a subdivision of K4 with the set R

of the 4 branching vertices. Then either G′ has a dominating set of size k or the lengths

(mod 3) of the paths between the vertices in R in this subdivision of G′ are equivalent to

those in one of the three graphs in Figure 3.3 (graphs D,E, and F ).

Proof. A thread in a graph is a path connecting two vertices of degree at least 3 whose

all internal vertices have degree 2. Say that two subdivisions of K4 are equivalent if
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Figure 3.3: Graphs D, E, and F

the lengths of their threads are the same (mod 3). Since every vertex of degree 2

dominates exactly three consecutive vertices in a thread, it is enough to prove the lemma

for subdivisions of K4 in which the length of each thread is in {1, 2, 3}. Since every edge

subdivision in a graph adds one vertex and one edge, each K4 subdivision with 3k + 1

vertices has 3k + 3 edges.

Case 1: Two threads of length 2 share an endvertex v. Then v dominates all but a path

with 3k− 3 vertices. Taking the natural dominating set in this path yields a dominating

set of G′ with size k.

Case 2: G′ contains two vertex disjoint threads of length 2, but Case 1 does not hold.

Since G′ has 3k + 3 edges, the other threads necessarily have the lengths 1, 1, 3, and 3.

This yields two possible graphs. The graphs and their dominating sets are shown as

graphs G and H in Figure 3.4.

Case 3: Exactly one thread has length 2. The possible lengths of the remaining threads

are 1, 1, 1, 1, 3 or 1, 3, 3, 3, 3. This yields four possible graphs, the bad case shown as F ,

and the three graphs shown with their dominating sets of size k are shown as graphs I, J ,

and K.

Case 4: All threads have the same length (mod 3). This yields the graphs L and M

each of which has a dominating set of size k.

Case 5: The lengths of the threads in our subdivision are 1, 1, 1, 3, 3, 3. The three pos-

sible graphs with these thread lengths are graphs D, E in Figure 3.3, and graph N in

Figure 3.4. 2

Sometimes, it will be simpler to check that Case 1 of Lemma 3.4.5 holds. We state

this case as a separate claim:

Lemma 3.4.6. Suppose that a graph G′ on 3k + 1 vertices has a spanning subgraph G′′
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Figure 3.4: Graphs G,H, I, J,K, L,M , and N along with their dominating sets

consisting of 3 internally disjoint paths P1, P2 and P3 connecting some vertices x and y.

Suppose that the distances on P1 from an internal vertex z of P1 to x and to y are 2

(mod 3). Then either G′ has a dominating set of size k, or z has no third neighbor in

G′, or the third neighbor of z belongs to P1.

Lemma 3.4.7. Let G′ be the subgraph of a cubic graph G induced by vertices v1, v2, . . . , v7.

If G′ contains a hamiltonian cycle (v1v2 . . . v7) and v7 has an outneighbor, then either some

two vertices dominate V (G′), or there are two (G′, v7)-distant vertices such that each of

them has an outneighbor.

Proof. Suppose that the lemma does not hold for some choice of G and G′. For each

i = 1, . . . , 7, the third neighbor of vi is the in-neighbor different from vi−1 and vi+1 (if

it exists). Since both v1 and v6 are (G′, v7)-distant, under conditions of the lemma, at

least one of them has no outneighbors. By symmetry, we may assume that v1 has no

outneighbors. By Lemma 3.4.4, the only possible third neighbors of v1 are v4 and v5.

Case 1: v1v5 ∈ E(G′). By Lemma 3.4.4, v4 has no third neighbors in G′. Thus it has

an outneighbor. But the path (v4v3v2v1v5v6v7) is hamiltonian in G′. So if the lemma does

not hold, then v6 has no outneighbors. Symmetrically to v1, the possible third neighbors

of v6 are v2 and v3. If v6v3 ∈ E(G′), then {v1, v3} dominates V (G′). If v6v2 ∈ E(G′), then

symmetrically to v4, v3 must have an outneighbor, a contradiction to our assumptions.

Case 2: v1v4 ∈ E(G′). If {v1, v6} dominates V (G′), then we are done. Suppose

not. Then v6v3 /∈ E(G). Thus by Lemma 3.4.4, v3 has an outneighbor. Since the path

(v3v2v1v4v5v6v7) is hamiltonian in G′, v3 is v7-distant. Hence if the lemma does not hold,
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then v6 has the third neighbor in G′. By the symmetry with v1, it should be v2 or v3.

But we assumed that v6v3 /∈ E(G). Hence, v6v2 ∈ E(G) and we have Case 1 again. 2

Lemma 3.4.8. Let G′ be the subgraph of a cubic graph G induced by vertices v1, v2, . . . , v8.

If G′ contains a hamiltonian cycle (v1v2 . . . v8) and v8 has an outneighbor, then either

some two vertices vi and vj dominate V (G′)− v8, or some (G′, v8)-distant vertex has an

outneighbor.

Proof. Suppose that the lemma does not hold for some choice of G and G′. In particular,

this implies that v1 and v7 have third neighbors in G′. If v1v7 ∈ E(G′), then Lemma 3.4.7

yields our lemma. Let v1v7 /∈ E(G′). By Lemma 3.4.3, v1v6 /∈ E(G′) and v1v3 /∈ E(G′).

Hence, the only possible third neighbors for v1 are v4 and v5, and by symmetry, the only

possible third neighbors for v7 are v4 and v3. If v4 is not a neighbor of {v1, v7}, then
v7v3, v1v5 ∈ E(G′) and hence {v3, v5} dominates V (G′) − v8. Thus, (by symmetry) we

may assume that v1v4 ∈ E(G′) and hence v7v3 ∈ E(G′).

The existence of the path (v6v5v4v1v2v3v7v8) yields that v6 has no outneighbors. The

only possible third in-neighbor for v6 is v2. Then v5 must have an outneighbor, but this

contradicts the existence of the hamiltonian path (v5v4v3v7v6v2v1v8). 2

Lemma 3.4.9. [20] Let G′ be the subgraph of a cubic graph G induced by vertices

v1, v2, . . . , v10. Suppose that G′ contains a hamiltonian cycle (v1v2 . . . v10), and that v10

has an outneighbor. Then either some three vertices dominate V (G′), or some (G′, v10)-

distant vertex has an outneighbor.

Lemma 3.4.10. [20] Let G′ be the subgraph of a cubic graph G induced by vertices

v1, v2, . . . , v10, v11. Suppose that G′ contains a hamiltonian cycle (v1v2 . . . v11), and that

v11 has an outneighbor. Then either some three vertices dominate V (G′)− v11, or some

(G′, v11)-distant vertex has an outneighbor.

Lemma 3.4.11. Let G′ be the subgraph of a cubic graph G induced by vertices v1, v2, . . . , v13.

Suppose that G′ contains a hamiltonian cycle (v1v2 . . . v13) and v13 has an outneighbor.

Then either some four vertices dominate V (G′), or some (G′, v13)-distant vertex has an

outneighbor.

Proof. Suppose that the lemma does not hold for some choice of G and G′. By

Lemma 3.4.4,

no edge of the form vivi+3j−1 is present in G′. (3.1)
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Further, if the hamiltonian cycle is drawn as a planar graph, then any two crossing

edges along with the hamiltonian cycle determine a K4 subdivision on 13 vertices. Hence

Lemma 3.4.5 may be applied whenever a potential edge crosses an edge already forced.

Since v1 is v13-distant, it has a third neighbor in G′.

Case 1: v1v4 ∈ E(G′). The path (v13v12...v4v1v2v3) forces v3 to have its third neighbor

in G′. Since any such neighbor forces an edge crossing v1v4, Lemma 3.4.5 restricts this

neighbor to one of v7 and v10.

Case 1.1: v3v7 ∈ E(G′). Then Lemmas 3.4.4 and 3.4.5 forbid edges v12v2, v12v5, and

v12v10. So, the third neighbor of v12 is one of v6, v8, and v9. If v12v6 ∈ E(G′), then

the set {v1,v6,v7,v10} dominates G′. Suppose that v12v8 ∈ E(G′). Then the path

(v13v1v2...v8v12v11v10v9) forces v9 to have its third neighbor in G′. By (3.1) and by Lemma

3.4.5 with R = {v1, v2, v4, v9} and R = {v3, v5, v7, v9}, we have v9v6 ∈ E(G′). So, the

set {v1, v6, v7, v11} dominates G′. Thus, v12v9 ∈ E(G′), and by symmetry, v10v6 ∈ E(G′).

Then {v1, v6, v7, v12} dominates G′.

Case 1.2: v3v10 ∈ E(G′). Lemma 3.4.5 applied successively with R ⊃ {v1, v4, v12} and

R ⊃ {v3, v10, v12} restricts the third neighbor of v12 to one of v6 and v9. In either case,

the set {v1, v6, v9, v10} dominates G′.

Hence v1v4 /∈ G′, and symmetry gives v12v9 /∈ G′.

Case 2: v1v5 ∈ E(G′). The path (v13v12...v5v1v2v3v4) forces v4 to have its third neighbor

in G′. By (3.1), this neighbor is one of v7,v8,v10, or v11.

Case 2.1: v4v7 ∈ E(G′). The path (v13v12 . . . v7v4v3v2v1v5v6) forces v6 to have its third

neighbor in G′. By Lemma 3.4.5 with R ⊃ {v6, v4, v7} and R ⊃ {v6, v1, v5}, this neighbor
must be v10. Then by Lemma 3.4.5 with R ⊃ {v12, v6, v10} and R ⊃ {v12, v1, v5}, the
third neighbor of v12 must be v2 and hence the set {v1, v2, v7, v10} dominates G′.

Case 2.2: v4v8 ∈ E(G′). By Lemma 3.4.5 with R ⊃ {v12, v4, v8} and R ⊃ {v12, v1, v5},
the third neighbor of v12 must be v2. Then the path (v13v1v2v12v11 . . . v3) forces v3 to have

its third neighbor in G′, but Lemma 3.4.5 with R ⊃ {v3, v1, v5} eliminates all possible

neighbors of v3.

Case 2.3: v4v10 ∈ E(G′). By Lemma 3.4.5 with R ⊃ {v12, v4, v10} and R ⊃ {v12, v1, v5},
the third neighbor of v12 must be v2. But then the set {v1, v2, v7, v10} dominates G′.

Case 2.4: v4v11 ∈ E(G′). By Lemma 3.4.5 with R ⊃ {v12, v4, v11} and R ⊃ {v12, v1, v5},
the third neighbor of v12 is either v2 or v8. If v12v2 ∈ E(G′), then the path

(v13v12v2v1v5v6 . . . v11v4v3) forces v3 to have its third neighbor in G′, but Lemma 3.4.5

with R ⊃ {v3, v1, v5} eliminates all possible neighbors of v3. So, v12v8 ∈ E(G′). The path

(v13v12v11v4v3v2v1v5v6 . . . v10) forces v10 to have its third neighbor in G′, but Lemma 3.4.5

41



with R ⊃ {v12, v8, v10} eliminates all possible neighbors of v10.

Hence v1v5 /∈ G′, and symmetry gives v12v8 /∈ G′.

Case 3: v1v7 ∈ E(G′). Each allowable edge from v12 crosses v1v7, and Lemma 3.4.5 gives

a dominating set of size 4.

Hence v1v7 /∈ G′, and symmetry gives v12v6 /∈ G′.

Case 4: v1v10 ∈ E(G′). Each allowable edge from v12 crosses v1v10, and Lemma 3.4.5

gives a dominating set of size 4.

Hence v1v10 /∈ G′, and symmetry gives v12v3 /∈ G′.

Case 5: v1v8 ∈ E(G′). The two possible third neighbors of v12 are v2, and v5.

Case 5.1: v12v2 ∈ E(G′). The path (v13v1v8v7 . . . v2v12v11v10v9) forces v9 to have its third

neighbor inG′. By (3.1), this third neighbor is not in {v4, v7, v11}. Then Lemma 3.4.5 with

R = {v1, v9, v8, vi} for i ∈ {4, 6} forces v9v5 ∈ E(G′). Now the path (v13v12 . . . v8v1v2 . . . v7)

forces v7 to have its third neighbor in G′. This contradicts Lemma 3.4.6 with x = v5,

y = v9 and z = v7.

Case 5.2: v12v5 ∈ E(G′). The path (v13v1v2 . . . v5v12v11 . . . v6) forces v6 to have its third

neighbor in G′. Lemma 3.4.6 with x = v1, y = v8 and z = v6 forces this neighbor to be one

of v2 and v3. If v6v3 ∈ E(G′), then the set {v1, v5, v6, v10} dominates G′. So, v6v2 ∈ E(G′).

By the symmetry between v6 and v7, v7v11 ∈ E(G). The path (v13v1v2v6v7 . . . v12v5v4v3)

forces v3 to have its third neighbor in G′, a contradiction to Lemma 3.4.6 with x = v1,

y = v8 and z = v3.

Hence v1v8 /∈ G′, and symmetry gives v12v5 /∈ G′.

Case 6: v1v11 ∈ E(G′), and v12v2 ∈ E(G′). The path (v13v12v2v1v11v10 . . . v3) forces v3

to have its third neighbor in G′. By (3.1), this neighbor is one of v6,v7,v9, and v10. Note

that v10 is symmetric with v3.

Case 6.1: v3v6 ∈ E(G′). The path (v13v12v2v1v11v10 . . . v6v3v4v5) forces v5 to have its

third neighbor in G′. Lemma 3.4.5 with R ⊃ {v6, v3, v5} restricts this neighbor to v9. By

(3.1), v10v8 /∈ E(G). By Lemma 3.4.6 with x = v5, y = v9 and z = v7, v10v7 /∈ E(G). So,

v10v4 ∈ E(G). So, the path (v13v12v2v1v11v10v4v3v6v5v9v8v7) forces v7 to have its third

neighbor in G′, but no possible third neighbor remains.

Case 6.2: v3v7 ∈ E(G′). By symmetry, we may assume that v10 is adjacent to either

v4 or v6. If v10v4 ∈ E(G′), then the path (v13v1v11v12v2v3v4v10v9 . . . v5) forces v5 to have

its third neighbor in G′, a contradiction to Lemma 3.4.6 with x = v3, y = v7 and

z = v5. So, v10v6 ∈ E(G′). The path (v13v1v11v12v2v3v7v8v9v10v6v5v4) forces v4 to have

its third neighbor in G′. By (3.1), this neighbor must be v8, but Lemma 3.4.5 with

R = {v4, v8, v6, v10} gives a dominating set of size 4.
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Case 6.3: v3v9 ∈ E(G′), and necessarily v10v4 ∈ E(G′). The path

(v13v12v2v1v11v10v4v3v9v8 . . . v5) forces v5 to have its third neighbor in G′, and (3.1) forces

it to be v8. Finally the path (v13v12v2v1v11v10v4v3v9v8v5v6v7) forces v7 to have its third

neighbor in G′ which is impossible.

Case 6.4: v3v10 ∈ E(G′). The path (v13v1v11v12v2v3v10v9 . . . v4) forces v4 to have its third

neighbor in G′. By (3.1), this neighbor is one of v7 and v8. Note that v9 is symmetric

with v4. If v4v7 ∈ E(G′), then Lemma 3.4.5 with R ⊃ {v4, v7, v9} eliminates v5 and v6 as

possible third neighbors of v9. So, v4v8 ∈ E(G′), and by symmetry, v9v5 ∈ E(G′). The

path (v13v1v11v12v2v3v10v9v5v4v8v7v6) forces v6 to have its third neighbor in G′ which is

impossible. This proves the lemma. 2

Lemma 3.4.12. Let G′ be the subgraph of a cubic graph G induced by vertices v1, v2, . . . , v14.

Suppose that G′ contains a hamiltonian cycle (v1v2 . . . v14) and v14 has an outneighbor.

Then either some four vertices dominate V (G′)−v14, or some (G′, v14)-distant vertex has

an outneighbor.

Proof. Suppose that the lemma does not hold for some choice of G and G′. Then by

Lemma 3.4.3, for every hamiltonian path (u1 . . . u13) in G′ − v14,

if uiui+3j−1 ∈ E(G′), then i = 0 (mod 3). (3.2)

By (3.2) for the path P=(v1v2 . . . v13), the only possible third neighbors of v1 are

v4,v5,v7,v8,v10,v11, and v13. Note that v13 is symmetric with v1.

Case 1: v1v4 ∈ E(G′). The path (v13v12 . . . v4v1v2v3) forces v3 to have its third neighbor

in G′. By (3.2) for this path, this neighbor is amongst v5,v7,v8,v10,v11, and v13.

Case 1.1: v3v5 ∈ E(G′). The path (v13v12 . . . v5v3v4v1v2) forces v2 to have its third

neighbor in G′. By (3.2) for this path and for P , this neighbor is either v8, or v11. In

either case, the set {v5,v8,v11,v14} dominates G′.

Case 1.2: v3v7 ∈ E(G′). The third neighbor of v13 is amongst v6,v9, and v10.

Case 1.2.1: v13v6 ∈ E(G′). The path (v1v4v5v6v13v12 . . . v7v3v2) forces v2 to have its

third neighbor in G′. By (3.2) for P , this neighbor is among v5,v8,v9,v11, and v12. If

v2v8 ∈ E(G′), then the set {v4, v8, v10, v13} dominates G′. If v2v9 ∈ E(G′), then the

set {v4, v6, v9, v11} dominates G′ − v14. If v2v11 ∈ E(G′), then the set {v4,v6,v8,v11}
dominates G′ − v14. If v2v12 ∈ E(G′), then the set {v4,v6,v9,v12} dominates G′ − v14.

Thus, v2v5 ∈ E(G′). The path (v13v6v5v2v1v4v3v7v8 . . . v12) forces v12 to have its third

neighbor in G′. By (3.2) for P , this neighbor is either v8, or v9. If v12v8 ∈ E(G′), then
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the path (v13v6v5v2v1v4v3v7v8v12v11 . . . v9) forces v9 to have its third neighbor in G′. Then

(3.2) for this path disallows all possible third neighbors. If v12v9 ∈ E(G′), then the

path (v13v6v5v2v1v4v3v7v8v9v12v11v10) forces v10 to have its third neighbor in G′. Thus

v10v8 ∈ E(G′), and the set {v2, v3, v10, v13} dominates G′.

Case 1.2.2: v13v9 ∈ E(G′). The path P ′ = (v1v2 . . . v9v13v12 . . . v10) forces v10 to have its

third neighbor in G′, and (3.2) for P ′ forces v10v6 ∈ E(G′). The path

(v1v4v5v6v10v11v12v13v9v8v7v3v2) forces v2 to have its third neighbor in G′. If v2v5 ∈ E(G′),

then the path (v13v9v8v7v3v2v1v4v5v6v10v11v12) forces v12 to have its third neighbor in G′,

and hence v12v8 ∈ E(G′). Then the set {v2, v3, v10, v12} dominatesG′−v14. If v2v8 ∈ E(G′)

or v2v12 ∈ E(G′), then the set {v4, v6, v8, v12} dominates G′−v14. Finally, if v2v11 ∈ E(G′),

then the set {v4, v6, v9, v11} dominates G′ − v14.

Case 1.2.3: v13v10 ∈ E(G′). The path (v1v2 . . . v10v13v12v11) forces v11 to have its third

neighbor in G′. By (3.2) for P and the symmetry between v11 and v3, v11v6 ∈ E(G′).

The path (v1v4v5v6v11v12v13v10v9v8v7v3v2) forces v2 to have its third neighbor in G′. If

v2v5 ∈ E(G′), then the path (v1v2v5v4v3v7v6v11v12v13v10v9v8) forces v8 to have the third

neighbor in G′, hence v8v12 ∈ E(G′). Then the set {v2, v5, v8, v10} dominates G′ − v14.

If v2v8 ∈ E(G′), then the set {v4, v8, v11, v14} dominates G′. If v2v9 ∈ E(G′), then the

set {v4, v6, v9, v12} dominates G′ − v14. If v2v12 ∈ E(G′), then the set {v4, v6, v9, v12}
dominates G′ − v14.

Case 1.3: v3v8 ∈ E(G′). The path (v13v12 . . . v8v3v2v1v4v5 . . . v7) forces v7 to have its third

neighbor in G′. By (3.2) for this path this neighbor must be amongst v10, v11, and v13.

Case 1.3.1: v7v10 ∈ E(G′). Then (3.2) with the path (v13v12v11v10v7v6v5v4v1v2v3v8v9)

forces v13v6 /∈ G′. Hence by 3.2) for P v13v9 ∈ E(G′). Then the path

(v13v9v8v3v2v1v4v5v6v7v10v11v12) forces v12 to have its third neighbor in G′. Using (3.2)

on this path forces v12v6 ∈ E(G′). Then the set {v3, v6, v10, v14} dominates G′.

Case 1.3.2: v7v11 ∈ E(G′). The path (v13v12v11v7v6v5v4v1v2v3v8v9v10) forces v10 to have

its third neighbor in G′. Then (3.2) for this path and P forces v10v13 ∈ E(G′). This is

then symmetric with Case 1.2.

Case 1.3.3: v7v13 ∈ E(G′). The path (v13v7v6v5v4v1v2v3v8v9 . . . v12) forces v12 to have its

third neighbor in G′. By (3.2) for this path, this neighbor is amongst v2, v5, v6, and v9.

If v12v2 ∈ E(G′), then the set {v2, v4, v7, v10} dominates G′ − v14. If v12v5 ∈ E(G′), then

the set {v2, v5, v7, v10} dominates G′ − v14. If v12v6 ∈ E(G′), then the set {v3, v6, v10, v14}
dominates G′. If v12v9 ∈ E(G′), then the path

(v13v7v6v5v4v1v2v3v8v9v12v11v10) forces v10 to have its third neighbor in G′, and (3.2) for

P forces v10v6 ∈ E(G′). Then the set {v3, v6, v12, v14} dominates G′.
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Case 1.4: v3v10 ∈ E(G′). The path (v13v12v11v10v3v2v1v4v5 . . . v9) forces v9 to have

its third neighbor in G′. By (3.2) for this path and for P , this neighbor is amongst

v2, v5, v6, v11, and v13.

Case 1.4.1: v9v2 ∈ E(G′). The set {v4, v6, v9, v12} dominates G′ − v14.

Case 1.4.2: v9v5 ∈ E(G′). The path (v13v12v11v10v3v2v1v4v5v9v8v7v6) forces v6 to have its

third neighbor in G′. By (3.2) for this path, this neighbor is amongst v2, v11, and v13. If

v6v2 ∈ E(G′), then the set {v4, v6, v9, v12} dominates G′ − v14. If v6v11 ∈ E(G′), then by

(3.2) for P v13v8 /∈ E(G′) and hence v13v7 ∈ E(G′). So, in this case {v2, v5, v7, v11}
dominates G′ − v14. Thus, v6v13 ∈ E(G′). The path (v1v2 . . . v6v13v12 . . . v7) forces

v7 to have its third neighbor in G′. By (3.2) for P , v7v11 ∈ E(G′). Then the path

(v1v4v5v9v8v7v6v13v12v11v10v3v2) forces v2 to have the third neighbor in G′, and (3.2) for

this path yields v2v12 ∈ E(G′). Thus the set {v4, v6, v9, v12} dominates G′ − v14.

Case 1.4.3: v9v6 ∈ E(G′). The path (v13v12v11v10v3v2v1v4v5v6v9v8v7) forces v7 to have its

third neighbor in G′. By (3.2) for P , this neighbor is one of v11, and v13. If v7v11 ∈ E(G′),

then by (3.2) for P , no vertex in G′ can be adjacent to v13. If v7v13 ∈ E(G′), then the

path (v1v2 . . . v6v9v10 . . . v13v7v8) forces v8 to have its third neighbor in G′. By (3.2) for

this path, this neighbor is one of v11, or v12. If v8v11 ∈ E(G′), then the set {v3, v6, v11, v14}
dominates G′. If v8v12 ∈ E(G′), then the set {v3, v6, v12, v14} dominates G′.

Case 1.4.4: v9v11 ∈ E(G′). The path (v13v12v11v9v10v3v2v1v4v5 . . . v8) forces v8 to have its

third neighbor in G′. By (3.2) for this path and for P , this neighbor is one of v2, and v5.

If v8v2 ∈ E(G′), then the path (v13v12v11v9v10v3v4v1v2v8v7v6v5) forces v5 to have its third

neighbor in G′. Then by (3.2) for this path (3.2) for P eliminates the remaining possible

neighbors of v5. So, v8v5 ∈ E(G′). The path

(v13v12v11v9v10v3v2v1v4v5v8v7v6) forces v6 to have its third neighbor in G′. By (3.2) for

this path this neighbor is one of v2 and v13. If v6v2 ∈ E(G′), then the set {v4, v6, v9, v12}
dominates G′ − v14. If v6v13 ∈ E(G′), then the set {v1, v8, v10, v13} dominates G′.

Case 1.4.5: v9v13 ∈ E(G′). The path (v13v9v8 . . . v4v1v2v3v10v11v12) forces v12 to have its

third neighbor in G′. By (3.2) for this path and for P , this neighbor is amongst v2, v5, and

v8. If v12v2 ∈ E(G′), then the set {v4, v6, v9, v12} dominates G′ − v14. If v12v5 ∈ E(G′),

then the set {v1, v7, v10, v12} dominates G′. If v12v8 ∈ E(G′), then the set {v1, v6, v10, v12}
dominates G′.

Case 1.5: v3v11 ∈ E(G′). The path (v13v12v11v3v2v1v4v5 . . . v10) forces v10 to have its third

neighbor in G′. By (3.2) for P , this neighbor is amongst v6, v7, and v13.

Case 1.5.1: v10v6 ∈ E(G′). The path (v13v12v11v3v2v1v4v5v6v10v9v8v7) forces v7 to have

its third neighbor in G′. By (3.2) for P , this neighbor is v13. Now the path
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(v1v2 . . . v7v13v12 . . . v8) forces v8 to have its third neighbor in G′. By (3.2) for this path,

v8v12 ∈ E(G′). Then the set {v3, v6, v8, v14} dominates G′.

Case 1.5.2: v10v7 ∈ E(G′). The path (v13v12v11v3v2v1v4v5v6v7v10v9v8) forces v8 to have

its third neighbor in G′. By (3.2) for this path and for P , v8v6 ∈ E(G′). Then by (3.2)

for P v13v9 ∈ E(G′), and the set {v1, v6, v9, v11} dominates G′.

Case 1.5.3: v10v13 ∈ E(G′). The path (v1v4v5 . . . v10v13v12v11v3v2) forces v2 to have its

third neighbor in G′. By (3.2) for P , this neighbor is amongst v5, v6, v8, v9, and v12. If

v2v5 ∈ E(G′) or v2v8 ∈ E(G′), then the set {v5, v8, v11, v14} dominates G′. If v2v6 ∈ E(G′)

or v2v9 ∈ E(G′), then the set {v4, v6, v9, v12} dominates G′ − v14. If v2v12 ∈ E(G′), then

the set {v2, v4, v7, v10} dominates G′ − v14.

Case 1.6: v3v13 ∈ E(G′). The path (v1v4v5 . . . v13v3v2) forces v2 to have its third neighbor

in G′. By (3.2) for this path and for the path (v2v1v4v3v13v12 . . . v5) this neighbor is

amongst v5, v8, and v11.

Case 1.6.1: v2v5 ∈ E(G′). Identifying the vertices v13, v14, v1, v2, v3, and v4 as one vertex

v gives a new graph G′′ on 8 vertices. A hamiltonian path in G′′ starting at v has

a corresponding hamiltonian path in G′ which starts at v14 by using either the path

(v14v13v3v2v1v5) or the path (v14v1v4v5v2v3v13). A dominating set of G′′ − v not using v

can be extended to a dominating set of G′−v14 with size 2 greater by including the vertices

v3 and v4. A dominating set of G′′ which contains v can be extended to a dominating set

of G′ with size 2 greater by replacing v by the vertices v2, v5, and v13. Hence Lemma 3.4.8

gives the desired result for G′′ which extends to G′.

Case 1.6.2: v2v8 ∈ E(G′). The path (v13v3v2v1v4v5 . . . v12) forces v12 to have its third

neighbor in G′. By (3.2) for this path and P , this neighbor is one of v5 or v9. Also the path

(v1v4v5 . . . v8v2v3v13v12 . . . v9) forces v9 to have its third neighbor in G′. By (3.2) for this

path and P , this neighbor is one of v5 or v12. This then forces the edge v9v12 ∈ E(G′).

Next the paths (v1v4v5 . . . v8v2v3v13v12v9v10v11) and (v1v2v8v7 . . . v3v13v12v9v10v11) force

v11 to have its third neighbor in G′, and these paths along with (3.2) force this edge to be

to v5. Finally the path (v13v3v2v1v4v5 . . . v9v12v11v10) forces v10 to have its third neighbor

in G′, and (3.2) on this path forces this edge to be to v6. Then the set {v2, v4, v6, v12}
dominates G′ − v14.

Case 1.6.3: v2v11 ∈ E(G′). The path (v1v4v5 . . . v11v2v3v13v12) forces v12 to have its third

neighbor in G′. The set {v2, v3, v6, v9} is a dominating set if v12 is adjacent to either of

v6 or v9. By (3.2) on the path P the third neighbor of v12 must be either v5 or v8.

Case 1.6.3.1: v12v5 ∈ E(G′). The path (v1v2v11v12v13v3v4 . . . v10) forces v10 to have its

third neighbor inG′. By (3.2) on P this vertex must be either v6 or v7. The inclusion of the
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edge v10v6 gives the amended path (v1v2v11v12v13v3 . . . v6v10 . . . v7) forcing v7v9 /∈ E(G′).

Then the path (v1v2v11v12v13v3 . . . v6v10v9v7v8) gives the (G′, v14)-distant vertex v8 with

an outneighbor. Hence the edge v10v7 ∈ E(G′). Then the path (v1v2v11v12v13v3v4 ∈
v7v10v9v8) forces v8 to have its third neighbor in G′. Hence v8v6 ∈ E(G′). Then the set

D = {v1, v6, v10, v13} dominates G′.

Case 1.6.3.2: v12v8 ∈ E(G′). The path (v1v2v11v12v13v3v4 . . . v10) forces v10 to have its

third neighbor in G′. Since G′ − {v14, v9, v10, v11} has the hamiltonian cycle

(v1v2v3v13v12v8v7 . . . v4), v10 dominates all but a P9 in G′−v14 so G
′−v14 has a dominating

set of size 4.

Case 2: v1v5 ∈ E(G′). The path (v13v12 . . . v5v1v2v3v4) forces v4 to have its third neighbor

in G′. By (3.2) for P , this neighbor is amongst v7, v8, v10, v11, and v13.

Case 2.1: v4v7 ∈ E(G′). Then by the symmetry with v1, the third neighbor of v13 is in

{v3, v6, v9}.
Case 2.1.1: v13v3 ∈ E(G′). The set {v1, v7, v10, v13} dominates G′.

Case 2.1.2: v13v6 ∈ E(G′). The path (v13v6v5v1v2v3v4v7v8 . . . v12) forces v12 to have its

third neighbor in G′. By (3.2) for this path and for P , this neighbor is amongst v3, v8,

and v9. If v12v3 ∈ E(G′), then the set {v1, v7, v9, v12} dominates G′. If v12v8 ∈ E(G′),

then the path (v13v6v5v1v2v3v4v7v8v12v11v10v9) forces v9 to have its third neighbor in G′,

and (3.2) for this path, forces v9v3 ∈ E(G′). Then the set {v1, v7, v9, v12} dominates G′.

If v12v9 ∈ E(G′), then the path (v13v6v5v1v2v3v4v7v8v9v12v11v10) forces v10 to have its

third neighbor in G′, and (3.2) for P forces v10v3 ∈ E(G′). Then the set {v1, v3, v7, v12}
dominates G′.

Case 2.1.3: v13v9 ∈ E(G′). The path (v1v2 . . . v9v13v12v11v10) forces v10 to have its third

neighbor in G′. If v10v3 ∈ E(G′), then the set {v1, v7, v10, v12} dominates G′. So, v10v6 ∈
E(G′). The path

(v1v5v6v10v11v12v13v9v8v7v4v3v2) forces v2 to have its third neighbor in G′. By (3.2) for

this path, this neighbor is one of v8 and v12. If v2v8 ∈ E(G′), then the set {v2, v4, v10, v12}
dominates G′ − v14. If v2v12 ∈ E(G′), then the set {v2, v4, v9, v10} dominates G′ − v14.

Case 2.2: v4v8 ∈ E(G′). The path (v13v12 . . . v8v4v3v2v1v5v6v7) forces v7 to have its third

neighbor in G′. By (3.2) for this path and for P , this neighbor is amongst v10, v11, and

v12.

Case 2.2.1: v7v10 ∈ E(G′). The path (v13v12 . . . v10v7v6v5v1v2v3v4v8v9) forces v9 to have its

third neighbor in G′. By (3.2) for P , v9v11 /∈ E(G). If v9v12 ∈ E(G) or for some i ∈ {2, 3},
v9vi ∈ E(G), then the set {vi, v5, v7, v12} dominates G′ − v14. Thus, v9v6 ∈ E(G). Now

by (3.2) for P , only v3 can be the third neighbor of v13. Then the set {v3, v5, v8, v11}
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dominates G′ − v14.

Case 2.2.2: v7v11 ∈ E(G′). The path (v13v12v11v7v6v5v1v2v3v4v8v9v10) forces v10 to have

its third neighbor inG′. By (3.2) for this path, this neighbor is one of v3, or v13. Symmetry

with Case 1 forces v10v3 ∈ E(G′). The set {v3, v5, v8, v12} dominates G′ − v14.

Case 2.2.3: v7v13 ∈ E(G′). The path (v13v7v6v5v1v2v3v4v8v9 . . . v12) forces v12 to have its

third neighbor in G′. By (3.2) for this path, this neighbor is amongst v2, v3, v6, and v9.

If v12v2 ∈ E(G′), then the set {v2, v4, v7, v10} dominates G′ − v14. If v12v3 ∈ E(G′), then

the set {v1, v3, v7, v10} dominates G′. So, either v12v6 ∈ E(G′) or v12v9 ∈ E(G′).

Case 2.2.3.1: v12v6 ∈ E(G′). The path (v1v5v6v7v13v12 . . . v8v4v3v2) forces v2 to have its

third neighbor in G′. By (3.2) for the path P , this neighbor is one of v9 and v11. If

v2v9 ∈ E(G′), then the set {v2, v4, v7, v11} dominates G′ − v14. If v2v11 ∈ E(G′), then the

set {v2, v5, v9, v13} dominates G′.

Case 2.2.3.2: v12v9 ∈ E(G′). The path (v13v7v6v5v1v2v3v4v8v9v12v11v10) forces v10 to have

the third neighbor in G′. By (3.2) for P , this neighbor is one of v3, or v6. If v10v3 ∈ E(G′),

then the set {v1, v3, v7, v12} dominates G′. If v10v6 ∈ E(G′), then the set {v1, v4, v6, v12}
dominates G′.

Case 2.3: v4v10 ∈ E(G′). The path (v13v12v11v10v4v3v2v1v5v6 . . . v9) forces v9 to have its

third neighbor in G′. By (3.2) for this path, this neighbor is amongst v2, v3, v6, v11, and

v13.

Case 2.3.1: v9v2 ∈ E(G′). The set {v2, v4, v7, v12} dominates G′ − v14.

Case 2.3.2: v9v3 ∈ E(G′). The path (v13v12v11v10v4v5v3v9v8 . . . v5v1v2) forces v2 to have

its third neighbor in G′. By (3.2) for this path and for P , this neighbor is one of v6, or

v11. If v2v6 ∈ E(G′), then the set {v2, v4, v8, v12} dominates G′ − v14. So, v2v11 ∈ E(G′).

The third neighbor of v13 is one of v6, or v7. If v13v6 ∈ E(G′), then the set {v2, v4, v8, v13}
dominates G′. If v13v7 ∈ E(G′), then the set {v1, v3, v7, v11} dominates G′.

Case 2.3.3: v9v6 ∈ E(G′). The path (v13v12v11v10v4v3v2v1v5v6v9v8v7) forces v7 to have

its third neighbor in G′. By (3.2) for P , this neighbor is amongst v3, v11, and v13. If

v7v3 ∈ E(G′), then the set {v1, v3, v9, v12} dominates G′. If v7v11 ∈ E(G′), then the path

(v13v12v11v7v6v5v1v2v3v4v10v9v8) forces v8 to have its third neighbor in G′. So (3.2) for this

path and for P forces v8v3 ∈ E(G′). Then the set {v3, v6, v11, v14} dominates G′. Thus,

v7v13 ∈ E(G′). The path (v1v2 . . . v7v13v12 . . . v8) forces v8 to have its third neighbor in

G′. By (3.2) for this path, this neighbor is amongst v3, v11, and v12. If v8v3 ∈ E(G′), or

v8v11 ∈ E(G′), then the set {v3, v6, v11, v14} dominates G′. If v8v12 ∈ E(G′), then the set

{v1, v4, v6, v12} dominates G′.

Case 2.3.4: v9v11 ∈ E(G′). The path (v13v12v11v9v10v4v3v2v1v5v6v7v8) forces v8 to have
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its third neighbor in G′, and (3.2) for this path and for P , forces v8v3 ∈ E(G′). Then the

set {v3, v6, v11, v14} dominates G′.

Case 2.3.5: v9v13 ∈ E(G′). The path (v1v5v6 . . . v9v13v12v11v10v4v3v2) forces v2 to have its

third neighbor in G′. By (3.2) for this path and for P , this neighbor is one of v6, or v11.

If v2v6 ∈ E(G′), then the set {v2, v4, v8, v12} dominates G′ − v14. If v2v11 ∈ E(G′), then

the set {v2, v4, v7, v13} dominates G′.

Case 2.4: v4v11 ∈ E(G′). The path (v13v12v11v4v3v2v1v5v6 . . . v10) forces v10 to have its

third neighbor in G′. Then (3.2) for this path and for P limits this neighbor to one of

v6, v7, and v13. By the symmetry between v1 and v13, v10v13 /∈ E(G).

Case 2.4.1: v10v6 ∈ E(G′). The path (v13v12v11v4v3v2v1v5v6v10v9v8v7) forces v7 to have

its third neighbor in G′. By (3.2) for P and this path, this neighbor is v13. The path

(v1v2 . . . v6v10v11v12v13v7v8v9) forces v9 to have its third neighbor in G′. By (3.2) for this

path, this neighbor is one of v3 and v12. If v9v3 ∈ E(G′), then the set {v1, v3, v7, v11}
dominates G′. If v9v12 ∈ E(G′), then the set {v1, v4, v7, v9} dominates G′.

Case 2.4.2: v10v7 ∈ E(G′). The path (v13v12v11v4v3v2v1v5v6v7v10v9v8) forces v8 to have

its third neighbor in G′, and (3.2) for this path and for P , forces v8v2 ∈ E(G′). Then the

set {v2, v5, v10, v13} dominates G′.

Case 2.5: v4v13 ∈ E(G′). The path (v1v5v6 . . . v13v4v3v2) forces v2 to have its third

neighbor in G′. Then v2 dominates v1, v2, v3 and one vertex of the cycle (v4v5 . . . v13)

leaving only a P9 (i.e., a path with 9 vertices) undominated. Hence G′ − v14 can be

dominated by 4 vertices.

Case 3: v1v7 ∈ E(G′). The path (v13v12 . . . v7v1v2 . . . v6) forces v6 to have its third

neighbor in G′. By (3.2) for this path, this neighbor is amongst v2, v3, v8, v10, v11, and v13.

Case 3.1: v6v2 ∈ E(G′). By the symmetry between v1 and v13 and by (3.2) for P ,

the third neighbor of v13 is either v4 or v3. If v13v4 ∈ E(G), then as in Case 2.5, the set

{v2, v4, v8, v11} dominatesG′−v14. So, v13v3 ∈ E(G). The path (v13v3v4v5v6v2v1v7v8 . . . v12)

forces v12 to have its third neighbor in G′. By (3.2) for P , this neighbor is amongst v5, v8,

and v9. If v12v5 ∈ E(G′), then the set {v3, v5, v7, v10} dominates G′−v14. If v12v8 ∈ E(G′),

then the path (v13v3v4v5v6v2v1v7v8v12v11v10v9) forces v9 to have its third neighbor in G′,

and (3.2) for this path and P forces v9v5 ∈ E(G′). In this case, the set {v3, v5, v7, v11}
dominates G′ − v14. Thus, v12v9 ∈ E(G′). The path (v13v3v4v5v6v2v1v7v8v9v12v11v10)

forces v10 to have the third neighbor in G′, and (3.2) for P forces v10v4 ∈ E(G′). Then

{v1, v4, v7, v12} dominates G′.

Case 3.2: v6v3 ∈ E(G′). By the symmetry between v1 and v13 and by (3.2) for P ,

v13v4 ∈ E(G′). The path (v1v7v8 . . . v13v4v5v6v3v2) forces v2 to have its third neighbor
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in G′. As in Case 2.5, v2 dominates v1, v2, v3 and one vertex of the cycle (v4v5 . . . v13)

leaving only a path with 9 vertices undominated. Hence G′ − v14 can be dominated by 4

vertices.

Case 3.3: v6v8 ∈ E(G′). The path (v13v12 . . . v8v6v7v1v2 . . . v5) forces v5 to have its third

neighbor in G′. By (3.2) for this path and for P this neighbor is one of v2 and v11. If

v5v11 ∈ E(G′), then the set {v3, v8, v11, v14} dominates G′. Thus, v5v2 ∈ E(G′). By the

symmetry between v1 and v13, the third neighbor of v13 is either v4 or v3. If v13v4 ∈ E(G),

then as in Case 2.5, the set {v2, v8, v11, v13} dominates G′. If v3v13 ∈ E(G′), then the set

{v2, v3, v8, v11} dominates G′ − v14.

Case 3.4: v6v10 ∈ E(G′). The path (v13v12v11v10v6v5 . . . v1v7v8v9) forces v9 to have its

third neighbor in G′. By (3.2) for this path and for P , and by the symmetry with

Case 2, this neighbor is in {v2, v5, v11}. If v9v2 ∈ E(G′), then the set {v4, v7, v9, v12}
dominates G′ − v14. If v9v5 ∈ E(G′), then the set {v3, v7, v9, v12} dominates G′ − v14.

Thus, v9v11 ∈ E(G′). Then v13 is adjacent to one of v3 and v4. If v13v3 ∈ E(G′), then the

set {v1, v5, v9, v13} dominates G′. If v13v4 ∈ E(G′), then the set {v1, v4, v7, v11} dominates

G′.

Case 3.5: v6v11 ∈ E(G′). The path (v13v12v11v6v5 . . . v1v7v8v9v10) forces v10 to have its

third neighbor in G′. By (3.2) for P and the symmetry with Case 2, this neighbor is one

of v3 and v4. If v10v3 ∈ E(G′), then v13v4 ∈ E(G′), and the set {v1, v4, v8, v11} dominates

G′. So, v10v4 ∈ E(G′). Then v13v3 ∈ E(G′). The path (v1v2v3v13v12v11v10v4v5 . . . v9)

forces v9 to have its third neighbor in G′, and (3.2) for this path forces v9v5 ∈ E(G′).

Then the set {v1, v3, v9, v11} dominates G′.

Case 3.6: v6v13 ∈ E(G′). The path (v13v6v5 . . . v1v7v8 . . . v12) forces v12 to have its third

neighbor in G′. By (3.2) for this path and for P , this neighbor is in {v2, v5, v8, v9}. If

v12v2 ∈ E(G′), then the set {v4, v7, v9, v12} dominates G′−v14. If v12v5 ∈ E(G′), then the

set {v3, v7, v9, v12} dominates G′ − v14. If v12v9 ∈ E(G′), then the path

(v13v6v5 . . . v1v7v8v9v12v11v10) forces v10 to have its third neighbor in G′, and (3.2) for this

path and for P forces v10v4 ∈ E(G′). In this case, the set {v1, v4, v7, v12} dominates G′.

Thus, v12v8 ∈ E(G′). The path (v13v6v5 . . . v1v7v8v12v11v10v9) forces v9 to have its third

neighbor in G′. By (3.2) for this path and for P , this neighbor is either v2 or v5. If

v9v2 ∈ E(G′), then the set {v4, v7, v9, v12} dominates G′ − v14. If v9v5 ∈ E(G′), then the

set {v3, v7, v9, v12} dominates G′ − v14.

Case 4: v1v8 ∈ E(G′). The third neighbor of v13 is amongst v3, v4, and v6.

Case 4.1: v13v3 ∈ E(G′). The set {v3, v5, v8, v11} dominates G′ − v14.

Case 4.2: v13v4 ∈ E(G′). The path (v13v12 . . . v8v1v2 . . . v7) forces v7 to have its third
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neighbor in G′. By (3.2) for this path, this neighbor is amongst v3, v10, and v11.

Case 4.2.1: v7v3 ∈ E(G′). The path (v1v8v9 . . . v13v4v5v6v7v3v2) forces v2 to have its third

neighbor in G′. Then v2 dominates v1, v2, v3 and one vertex of the cycle (v4v5 . . . v13)

leaving only a P9 undominated. Hence G′ − v14 can be dominated by 4 vertices.

Case 4.2.2: v7v10 ∈ E(G′). The path (v1v2v3v4v13v12 . . . v5) forces v5 to have its third

neighbor in G′. By (3.2) for this path, this neighbor is in {v3, v9, v11, v12}. If v5v3 ∈ E(G′),

then the set {v1, v5, v10, v12} dominates G′. If v5v9 ∈ E(G′), then the set {v2, v5, v7, v12}
dominates G′ − v14. If v5v12 ∈ E(G′), then the set {v1, v4, v5, v10} dominates G′. Thus,

v5v11 ∈ E(G′). The path (v1v8v9v10v7v6v5v11v12v13v4v3v2) forces v2 to have its third

neighbor in G′. Then v2 dominates v1, v2, v3, and one vertex of the cycle (v4v5 . . . v13)

leaving only a P9 undominated. Hence G′ − v14 can be dominated by 4 vertices.

Case 4.2.3: v7v11 ∈ E(G′). The path (v1v2v3v4v13v12 . . . v5) forces v5 to have its third

neighbor in G′. By (3.2) for this path, this neighbor is amongst v3, v9, and v12.

Case 4.2.3.1: v5v3 ∈ E(G′). The path (v1v2v3v5v4v13v12 . . . v6) forces v6 to have its third

neighbor in G′. By (3.2) for this path, this neighbor is amongst v9, v10, and v12. If

v6v9 ∈ E(G′), then the set {v3, v9, v11, v14} dominates G′. If v6v10 ∈ E(G′), then the set

{v3, v8, v10, v13} dominates G′. If v6v12 ∈ E(G′), then the set {v1, v4, v6, v10} dominates

G′.

Case 4.2.3.2: v5v9 ∈ E(G′). The set {v1, v4, v5, v11} dominates G′.

Case 4.2.3.3: v5v12 ∈ E(G′). The path (v1v8v9v10v11v7v6v5v12v13v4v3v2) forces v2 to

have its third neighbor in G′. Then v2 dominates v1, v2, v3, and one vertex of the cycle

(v4v5 . . . v13) leaving only a P9 undominated. Hence G′ − v14 can be dominated by 4

vertices.

Case 4.3: v6v13 ∈ E(G′). The set {v3, v6, v8, v11} dominates G′ − v14.

Case 5: v1v10 ∈ E(G′). Then v13 is adjacent to one of v3 and v4.

Case 5.1: v13v3 ∈ E(G′). The path (v1v2v3v13v12 . . . v4) forces v4 to have its third neighbor

in G′. By (3.2) for this path, this neighbor is amongst v7, v8, and v11.

Case 5.1.1: v4v7 ∈ E(G′). The path (v1v2v3v13v12 . . . v7v4v5v6) forces v6 to have its

third neighbor in G′. By (3.2) for this path, this neighbor is one of v8 and v11. If

v6v8 ∈ E(G′), then the set {v1, v4, v8, v12} dominates G′. So, v6v11 ∈ E(G′). The path

(v13v3v2v1v10v9v8v7v4v5v6v11v12) forces v12 to have the third neighbor in G′. Then v12

dominates v11, v12, v13 and one vertex of the cycle (v1v2 . . . v10) leaving only a P9 undom-

inated. Hence G′ − v14 can be dominated by 4 vertices.

Case 5.1.2: v4v8 ∈ E(G′). The path (v1v2v3v13v12 . . . v8v4v5v6v7) forces v7 to have its

third neighbor in G′, and (3.2) for the path P forces v7v11 ∈ E(G′). Now the path
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(v13v3v2v1v10v9v8v4v5v6v7v11v12) forces v12 to have its third neighbor in G′. So v12 domi-

nates v11, v12, v13, and one vertex of the cycle (v1v2 . . . v10) leaving only a P9 undominated.

Hence G′ − v14 can be dominated by 4 vertices.

Case 5.1.3: v4v11 ∈ E(G′). The path (v13v3v2v1v10v9 . . . v4v11v12) forces v12 to have

its third neighbor in G′. Then v12 dominates v11, v12, v13, and one vertex of the cycle

(v1v2 . . . v10) leaving only a P9 undominated. Hence G′ − v14 can be dominated by 4

vertices.

Case 5.2: v13v4 ∈ E(G′). The path (v1v2v3v4v13v12 . . . v5) forces v5 to have its third

neighbor in G′. By (3.2) for this path and for the path (v5v6 . . . v10v1v2v3v4v13v12v11), this

neighbor is amongst v8, v9, and v11. Note that a similar argument works for v9.

Case 5.2.1: v5v8 ∈ E(G′). The path (v1v2v3v4v13v12 . . . v8v5v6v7) forces v7 to have its

third neighbor in G′. By (3.2) for the path P , this neighbor is one of v3 and v11. If

v7v3 ∈ E(G′), then the set {v3, v5, v10, v12} dominates G′ − v14. So, v7v11 ∈ E(G′). The

path (v13v4v3v2v1v10v9v8v5v6v7v11v12) forces v12 to have its third neighbor in G′. Then

v12 dominates v11, v12, v13, and one vertex of the cycle (v1v2 . . . v10) leaving only a P9

undominated. Hence G′ − v14 can be dominated by 4 vertices.

Case 5.2.2: v5v9 ∈ E(G′). The path (v13v12v11v10v1v2 . . . v5v9v8v7v6) forces v6 to have its

third neighbor in G′, and (3.2) for this path and for the path

(v6v7v8v9v5v4v13v12v11v10v1v2v3) forces v6v3 ∈ E(G′). Similarly, v8v11 ∈ E(G′), and then

the set {v1, v6, v8, v13} dominates G′.

Case 5.2.3: v5v11 ∈ E(G′). The path (v13v4v3v2v1v10v9 . . . v5v11v12) forces v12 to have

its third neighbor in G′. Then v12 dominates v11, v12, v13, and one vertex of the cycle

(v1v2 . . . v10) leaving only a P9 undominated. Hence G′ − v14 can be dominated by 4

vertices.

Case 6: v1v11 ∈ E(G′). By the symmetry between v1 and v13, v13v3 ∈ E(G′), and the

set {v3, v5, v8, v11} dominates G′ − v14.

Case 7: v1v13 ∈ E(G′). As in the proof of Lemma 3.4.11, for the cycle C = (v1v2 . . . v13)

(3.1) holds. The path (v1v13v12 . . . v2) forces v2 to have its third neighbor in G′. By (3.1),

this neighbor is amongst v5, v6, v8, v9, v11, and v12. Note that a similar argument works

for v12.

Case 7.1: v2v5 ∈ E(G′). The path (v1v13v12 . . . v5v2v3v4) forces v4 to have the third

neighbor in G′. By (3.2) for this path and (3.1) for C, this neighbor is one of v8 and v11.

Case 7.1.1: v4v8 ∈ E(G′). The path (v1v13v12 . . . v8v4v3v2v5v6v7) forces v7 to have its

third neighbor in G′. By (3.2) for this path and (3.1) for C, this neighbor is one of v3

and v11. If v7v3 ∈ E(G′), then the set {v5, v7, v10, v13} dominates G′. So, v7v11 ∈ E(G′).
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The path (v1v13v12v11v7v6v5v2v3v4v8v9v10) forces v10 to have its third neighbor in G′. By

(3.2) for this path and (3.1) for C, this neighbor is one of v3 and v6. If v10v3 ∈ E(G′),

then the set {v5, v7, v10, v13} dominates G′. If v10v6 ∈ E(G′), then the set {v1, v4, v10, v11}
dominates G′.

Case 7.1.2: v4v11 ∈ E(G′). The path (v1v13v12v11v4v3v2v5v6 . . . v10) forces v10 to have its

third neighbor inG′. By (3.2) for this path and (3.1) for C, this neighbor is amongst v3, v6,

and v7. If v10v3 ∈ E(G′), then the set {v5, v7, v10, v13} dominates G′. If v10v7 ∈ E(G′),

then the path (v1v13v12v11v4v3v2v5v6v7v10v9v8) forces v8 to have its third neighbor in G′.

So (3.2) for this path and (3.1) for C force v8v12 ∈ E(G′). Then the set {v2, v5, v10, v12}
dominates G′ − v14. Thus, v10v6 ∈ E(G′). The path (v1v13v12v11v4v3v2v5v6v10v9v8v7)

forces v7 to have its third neighbor in G′. So (3.2) for this path and (3.1) for C force

v7v3 ∈ E(G′). Then the set {v5, v7, v10, v13} dominates G′.

Case 7.2: v2v6 ∈ E(G′). The path (v1v13v12 . . . v6v2v3v4v5) forces v5 to have its third

neighbor in G′. By (3.1) for C, this neighbor is amongst v8, v9, v11, and v12.

Case 7.2.1: v5v8 ∈ E(G′). The path (v1v13v12 . . . v8v5v4v3v2v6v7) forces v7 to have its

third neighbor in G′. By (3.2) for this path, and the path (v7v6v2v1v13v12 . . . v8v5v4v3),

this neighbor is one of v3 and v11.

If v7v3 ∈ E(G′), then the set {v3, v5, v10, v13} dominates G′. Thus, v7v11 ∈ E(G′). Then

the path

(v1v13v12v11v7v6v2v3v4v5v8v9v10) forces v10 to have its third neighbor in G′. So, (3.2) for

this path and (3.1) for C force v10v4 ∈ E(G′). Then the set {v2, v4, v8, v12} dominates

G′ − v14.

Case 7.2.2: v5v9 ∈ E(G′). The path (v1v13v12 . . . v9v5v4v3v2v6v7v8) forces v8 to have its

third neighbor in G′. By (3.2) for this path and (3.1) for C, this neighbor is either v11 or

v12. If v8v12 ∈ E(G′), then the path (v13v1v2v6v7v8v12v11v10v9v5v4v3) forces v3 to have its

third neighbor in G′, and (3.2) for this path forces v3v10 ∈ E(G′). In this case, the set

{v1, v5, v8, v10} dominates G′. So, v8v11 ∈ E(G′). By (3.1) for C, we need v12v3 ∈ E(G′).

Then the path (v1v13v12v11v8v7v6v2v3v4v5v9v10) forces v10 to have its third neighbor in G′.

If v10v4 ∈ E(G′), then the set {v2, v4, v8, v12} dominates G′ − v14. If v10v7 ∈ E(G′), then

the set {v1, v5, v7, v12} dominates G′.

Case 7.2.3: v5v11 ∈ E(G′). The path (v1v13v12v11v5v4v3v2v6v7 . . . v10) forces v10 to have its

third neighbor in G′. By (3.2) for the path (v10v9 . . . v6v2v1v13v12v11v5v4v3) this neighbor

is either v3 or v7. If v10v3 ∈ E(G′), then the set {v3, v5, v8, v13} dominates G′. So,

v10v7 ∈ E(G′). The path (v1v13v12v11v5v4v3v2v6v7v10v9v8) forces v8 to have its third

neighbor in G′. Then (3.1) for C and (3.2) for the path (v8v9v10v7v6v2v1v13v12v11v5v4v3)
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eliminate all possible third neighbors of v8.

Case 7.2.4: v5v12 ∈ E(G′). The path P ′ = (v13v1v2v6v7 . . . v12v5v4v3) forces v3 to have

its third neighbor in G′, and (3.2) for P ′ and (3.1) for C force v3v9 ∈ E(G′). Now

path (v1v13v12v5v4v3v2v6v7 . . . v11) forces v11 to have its third neighbor in G′. By (3.2)

for the path (v10v11v12v13v1v2v3v9v8 . . . v4), v11v8 ∈ E(G′). Hence, the set {v3, v6, v11, v14}
dominates G′.

Case 7.3: v2v8 ∈ E(G′). By the symmetry between v2 and v12 and by (3.1) for C, v12 is

adjacent to one of v3, v5 and v6.

Case 7.3.1: v12v5 ∈ E(G′). The path (v13v1v2 . . . v5v12v11 . . . v6) forces v6 to have its

third neighbor in G′. By (3.1) for C, this neighbor is amongst v3, v9, and v10. The case

v6v10 ∈ E(G) contradicts Lemma 3.4.6 with x = v6, y = v10 and z = v8.

Case 7.3.1.1: v6v3 ∈ E(G′). The path (v13v1v2v8v9 . . . v12v5v4v3v6v7) forces v7 to have

its third neighbor in G′. By (3.1) for C, this neighbor is amongst v4, v10, and v11. If

v7v4 ∈ E(G′), then the set {v2, v7, v9, v12} dominates G′ − v14. If v7v10 ∈ E(G′), then the

set {v2, v5, v10, v14} dominates G′. Thus, v7v11 ∈ E(G′). The path

(v13v1v2v8v7v6v3v4v5v12v11v10v9) forces v9 to have its third neighbor in G′, and (3.1) for

C eliminates all possible third neighbors of v9.

Case 7.3.1.2: v6v9 ∈ E(G′). The path (v1v13v12v5v4v3v2v8v7v6v9v10v11) forces v11 to have

its third neighbor in G′, and (3.2) for this path and (3.1) for C force v11v7 ∈ E(G′). Then

the set {v1, v4, v9, v11} dominates G′.

Case 7.3.2: v12v6 ∈ E(G′). The path (v1v13v12 . . . v8v2v3 . . . v7) forces v7 to have its third

neighbor in G′. By (3.2) for this path and the symmetric path, this neighbor is one of v3

and v11. W.l.o.g. assume that v7v3 ∈ E(G′). Then the path (v1v13v12 . . . v8v2v3v7v6v5v4)

forces v4 to have its third neighbor in G′, and (3.2) for this path and (3.1) for C force

v4v11 ∈ E(G′). So, the set {v1, v4, v6, v9} dominates G′.

Case 7.3.3: v12v3 ∈ E(G′). The path (v13v1v2v8v7 . . . v3v12v11v10v9) forces v9 to have its

third neighbor in G′. By (3.1) for C, this neighbor is in {v5, v6}. The path

(v13v1v2v8v9 . . . v12v5v4v3v6v7) forces v7 to have its third neighbor in G′. If v5v9 ∈ E(G),

this contradicts Lemma 3.4.6 with x = v5, y = v9 and z = v7. Thus v6v9 ∈ E(G). Then

the path (v1v13v12 . . . v9v6v7v8v2v3v4v5) forces v5 to have its third neighbor in G′. By (3.1)

for C, it is v11. Now the path (v1v13v12v11v5v4v3v2v8v7v6v9v10) forces v10 to have its third

neighbor in G′. This contradicts Lemma 3.4.6 with x = v8, y = v2 and z = v10.

Case 7.4: v2v9 ∈ E(G′). The path (v1v13v12 . . . v9v2v3 . . . v8) forces v8 to have its third
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neighbor in G′; so by Lemma 3.4.6 with x = v6, y = v10 and z = v8,

v6v10 /∈ E(G). (3.3)

By the symmetry between v2 and v12 and by (3.1) for C, v12 is adjacent to either v3 or

v5.

Case 7.4.1: v12v3 ∈ E(G′). The path (v13v1v2v9v8 . . . v3v12v11v10) forces v10 to have its

third neighbor in G′. By (3.1) for C, this neighbor is in {v4, v6, v7}. By (3.3), it is in

{v4, v7}, and the set {v2, v4, v7, v12} dominates G′ − v14.

Case 7.4.2: v12v5 ∈ E(G′). The path (v13v1v2 . . . v5v12v11 . . . v6) forces v6 to have its

third neighbor in G′. By (3.1) for C and (3.3), this neighbor is v3. Symmetrically,

v8v11 ∈ E(G′). The path (v1v13v12v11v8v7 . . . v2v9v10) forces v10 to have its third neighbor

in G′, and similarly v4 has its third neighbor in G′. Thus v4v10 ∈ E(G′), and the set

{v2, v4, v7, v12} dominates G′ − v14.

Case 7.5: v2v11 ∈ E(G′) and symmetrically v12v3 ∈ E(G′). Let G′′ be obtained from

G′ − {v1, v2, v13, v12} by identifying v3 and v11 into a new vertex v∗. Graph G′′ with

8-cycle C ′′ = (v4v5 . . . v10v
∗) satisfies the conditions of Lemma 3.4.8. So by this lemma,

either (a) some v∗-distant vertex x ∈ G′′ has an outneighbor in G, or (b) a set {y, z}
of two vertices dominates G′′ − v∗. Suppose (a) holds. By symmetry, we may assume

that a hamiltonian path P in G′′ from v∗ to x starts from the edge v∗v4. Then adding

to P − v∗ the path v14v13v1v2v11v12v3v4 we produce a hamiltonian in G′ path from v14 to

the vertex x having an outneighbor, a contradiction. Thus (b) holds. Since v∗ has only

two neighbors in G′′ − v∗, v∗ /∈ {y, z}. Hence the set {y, z, v2, v12} dominates G′ − v14.

Case 7.6: v2v12 ∈ E(G′). The path (v13v1v2v12v11 . . . v3) forces v3 to have its third

neighbor in G′. By (3.1) for C, this neighbor is amongst v6, v7, v9, and v10.

Case 7.6.1: v3v6 ∈ E(G′). The path (v13v1v2v12v11 . . . v6v3v4v5) forces v5 to have its third

neighbor in G′, and (3.2) for this path and (3.1) for C force v5v9 ∈ E(G′). The path

(v13v1v2v12v11v10v9v5v4v3v6v7v8) forces v8 to have its third neighbor in G′, and (3.2) for

this path and (3.1) for C force v8v4 ∈ E(G′), a contradiction to Lemma 3.4.6 with x = v4,

y = v8 and z = v6.

Case 7.6.2: v3v7 ∈ E(G′). Symmetry forces v11 to be adjacent to one of v4 and v5. By

Lemma 3.4.6 with x = v3, y = v7 and z = v5, v11v5 /∈ E(G′). Thus, v11v4 ∈ E(G′). The

path (v1v13v12v2v3v7v6v5v4v11v10v9v8) forces v8 to have its third neighbor in G′, and (3.1)

for C forces v8v5 ∈ E(G′). Then the set {v1, v7, v8, v11} dominates G′.

Case 7.6.3: v3v9 ∈ E(G′). Then v11 is adjacent to one of v4 and v5. Both cases are
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forbidden by Lemma 3.4.6 with x = v9, y = v3 and z = v11.

Case 7.6.4: v3v10 ∈ E(G′). This forces v11v4 ∈ E(G′). Then the path

(v13v1v2v12v11v4v3v10v9 . . . v5) forces v5 to have its third neighbor in G′. By (3.1) for C,

this neighbor is one of v8 and v9. If v5v8 ∈ E(G′), then v9v6 ∈ E(G′). Now the path

(v13v1v2v12v11v4v3v10v9v6v5v8v7) forces v7 to have its third neighbor in G′, but no possible

neighbor exists. Thus, v5v9 ∈ E(G′). The path (v13v1v2v12v11v4v3v10v9v5v6v7v8) forces

v8 to have its third neighbor inG′, but (3.1) for C eliminates all possible neighbors of v8. 2

3.5 Proofs of Lemmas 3.2.4 and 3.2.5

For convenience, we restate Lemma 3.2.4 here.

Lemma 3.2.4 If a 2-path P in an optimal vdp-cover is such that each of the hamiltonian

paths in G[V (P )] has at most one out-endpoint, then either some (|P | − 2)/3 vertices

dominate all vertices of P apart from an out-endpoint or P has at least 14 vertices.

Proof. If a 2-path P = (v1v2 . . . vk) has at most 11 vertices, then k ∈ {2, 5, 8, 11}. If

k = 2, then clearly both vertices of P are out-endpoints. The case k = 5 was considered

in Reed’s paper [30], and the case k = 8 is proved in [20]. Hence we may assume that

k = 11. If one of v1 and v11 is an out-endpoint, then we may assume that it is v11.

Consider a v11-lasso on V (P ) with a largest loop. As described in Section 3.4, we may

assume that this loop is the cycle C = (v1 . . . vr). Let G
′ = G[V (P )] and G′′ = G[V (C)].

Case 1: Vertex v11 is an out-endpoint of P . By Lemma 3.4.3, if r ∈ {3, 6, 9}, then there

exists a dominating set of G′− v11 of size 3. If r = 11, then by Lemma 3.4.10, some three

vertices dominate V (P )− v11. Consider the remaining cases.

Case 1.1: r = 10. Since v11 is an out-endpoint of P , it has at most two neighbors in

V (G′′) (one of which is v10), and we are done by Lemma 3.4.9.

Case 1.2: r = 8. By Lemma 3.4.8 either there exists a dominating set of G′′ − v8 of size

two, and this set together with v9 dominates V (P ) − v11, or a (G′′, v8)-distant vertex is

adjacent to a vertex in {v9, v10, v11}, a contradiction to the maximality of r.

Case 1.3: r = 7. By Lemma 3.4.7, either there exists a dominating set of G′′ with size

two, or a (G′′, v7)-distant vertex is adjacent to a vertex in {v8, v9, v10, v11}, a contradiction

to the maximality of r.

Case 1.4: r ≤ 5. Since dG′′(v1) = 3 and by Lemma 3.4.3 v1v3 /∈ E(G), r = 5 and

v1v4, v1v5 ∈ E(G′′). Then the path P1 = (v2v3v4v1v5v6...v11) shows that v2 is (G′, v11)-
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distant. Hence, v2 has a neighbor in G′ distinct from v1 and v3. This neighbor is not in

{v4, v5}, since v1v4, v1v5 ∈ E(G). This contradicts the maximality of r.

Case 2: P has no out-endpoints. We consider a lasso on G′ with the largest loop. Since

a cubic graph must have an even number of vertices, some vertex of G′ must have an

outneighbor. In particular, some vertex in G′ is not the end of a hamiltonian path in G′.

This then gives that r 6= 11. Consider the remaining cases.

Case 2.1: r = 10. Since G′ has no out-endpoints, v11 has all three of its neighbors in G′.

Viewing G′ as the 10-cycle C together with the extra vertex v11, we conclude that each

vertex vi adjacent along C to a neighbor of v11 is the end of a hamiltonian path on G′

connecting vi with v11. It follows that

each vi adjacent along C to a neighbor of v11 has no outneighbors. (3.4)

If two neighbors of v11 are adjacent along C, then G′ is hamiltonian contradicting the

maximality of r. If the shortest distance along C between two neighbors of v11 is at

least 3, then we may assume that v11v3 ∈ E(G′) and v11v7 ∈ E(G′). Then by (3.4), only

v5 has an outneighbor. Then any choice of neighbors for v4 gives a hamiltonian path

starting at v5. Hence every vertex of G′ is the end of a hamiltonian path in G′ which is

a contradiction. Thus, the shortest distance along C between two neighbors of v11 is 2.

We may assume that v11v2 ∈ E(G′).

Case 2.1.1: v8v11 ∈ E(G′). By (3.4), v1 has its third neighbor in G′. Each of the edges

v1v3, v1v7, or v1v9 then forces a hamiltonian cycle in G′. Hence this third neighbor is

amongst v4, v5, and v6. If v1v5 ∈ E(G′), then every vertex of G′ is the end of some

hamiltonian path, a contradiction. Hence v1 is adjacent to one of v4 or v6. Symmetry

forces v9 to be adjacent to the other of these vertices, and again every vertex in G′ is the

end of some hamiltonian path. Hence v8v11 /∈ E(G′) and v4v11 /∈ E(G′) by symmetry.

Case 2.1.2: v7v11 ∈ E(G′). Then adding an edge from v1 to v3, v6, v8, or v9 gives

the hamiltonian cycles (v1v3v4 . . . v11v2), (v1v6v5 . . . v2v11v7v8v9v10), (v8v9v10v11v7v6 . . . v1),

and (v1v10v11v2v3 . . . v9) respectively. Thus v1 must be adjacent to one of v4 or v5. How-

ever, if v1 is adjacent to either v4, or v5, the other is the start of a hamiltonian path in G′,

so G′ has an out-endpoint for some hamiltonian path which contradicts the assumption

of Case 2. Hence v11 is not adjacent to v7 or v5.

Case 2.1.3: v6v11 ∈ E(G′). Then by the symmetry between v11 and v1, in order to avoid

Cases 2.1.1 and 2.1.2, we need v6v1 ∈ E(G′). But v6 cannot have 4 neighbors.

Case 2.2: r = 9. The maximality of r restricts the neighbors of v11 to v3, v4, v5, or v6. If
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v11 is adjacent to either of v3, or v6, then the set {v3, v6, v9} dominates G′. Hence v11 is ad-

jacent to both of v4, and v5. This then gives the lasso having the loop (v1 . . . v4v11v5 . . . v9)

which contradicts the maximality of r.

Case 2.3: r = 8. The maximality of r restricts the neighbors of v11 to v4 and v9. Then

v10 has a third neighbor in G′, but any possible neighbor contradicts the maximality of

r.

Case 2.4: r = 7. The only possible neighbors of v11 not contradicting the maximality of

r are v8 and v9. Then the path (v1 . . . v9v11v10) is also hamiltonian in G′, and similarly

we have v10v8 ∈ E(G). Then d(v8) > 3, a contradiction.

Case 2.5: r = 6. Since G′ has maximum degree 3, the lowest indexed neighbor of v11 is

at least v7. So, by Lemmas 3.4.1 and 3.4.2, a single vertex dominates {v11, v10, v9, v8},
and this vertex along with v3 and v6 gives a dominating set of G′ with size 3. 2

Case 2.6: r ≤ 5. The highest indexed neighbor of v1 is smaller than the lowest indexed

neighbor of v11. So, by Lemmas 3.4.1 and 3.4.2, a vertex dominates {v1, v2, v3, v4}, a
vertex dominates {v11, v10, v9, v8}, and a v6 dominates v5 and v7. 2

For convenience, we also restate Lemma 3.2.5.

Lemma 3.2.5 Let P1 = (x1, . . . , xk) be a tip of an accepting 2-path P in an optimal

vdp-cover. Let X(P1) be the set of the hamiltonian paths in G[V (P1)] one of whose ends

is xk. If none of the other ends of any path in X(P1) is an out-endpoint of P or a

(2, 2)-endpoint, then either some (k − 1)/3 vertices dominate V (P1), or k ≥ 16.

Proof. For k ≤ 7, it was proved in [30][Fact 11], for k = 10 it was proved in [20][Lemma

14]. Both cases will also be clear from the proof for k = 13 below. So, suppose that a tip

P1 = (v1v2 . . . v13) of an accepting 2-path P has no out-endpoint and no (2, 2)-endpoint.

Let v14 be the second (i.e. the other than v12) neighbor of v13 in the path P . Let G′

be the subgraph of G induced by V (P1) + v14. Since our system of paths was chosen to

maximize the number of out-endpoints and (2, 2)-endpoints and taking into account (B4)

of Lemma 3.2.1,

no (G′, v14)-distant vertex in G′ has an outneighbor (with respect to V (G′)). (3.5)

We choose a (G′, v14)-distant vertex in G′ and an edge incident to this vertex so that to

maximize the length of the loop of a v14-lasso in G′. We renumber the vertices in G′ so

that this vertex is v1 and this loop is (v1v2 . . . vr). Then let G′′ be the graph induced by
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the set {v1, v2, . . . , vr}. By the maximality of r and (3.5),

no (G′′, vr)-distant vertex in G′′ has an outneighbor with respect to G′′. (3.6)

If r = 14, then we are done by Lemma 3.4.12.

Let r < 14. Then v1 has two neighbors in G′′ − v2. By Lemma 3.4.3,

v1v3j /∈ E(G) for j = 1, 2, 3, 4, (3.7)

and hence r /∈ {3, 6, 9, 12}.
Case 1: r = 13. By Lemma 3.4.11, either some 4 vertices dominate V (P1) (in which

case we are done), or some (G′′, v13)-distant vertex vj has an outneighbor with respect to

G′′, a contradiction to (3.6).

Case 2: r ∈ {10, 11}. By Lemma 3.4.10 (if r = 11) or Lemma 3.4.9 (if r = 10), either

some 3 vertices dominate v1, v2, . . . , v10 (then this set along with v12 dominates G′− v14),

or some (G′′, vr)-distant vertex vj has an outneighbor, a contradiction to (3.6).

Case 3: r ∈ {7, 8}. By Lemma 3.4.8 (if r = 8) or Lemma 3.4.7 (if r = 7), either some

2 vertices dominate v1, v2, . . . , v7 (then this set along with v9 and v12 dominates G′), or

some (G′′, vr)-distant vertex vj has an outneighbor, a contradiction to (3.6).

Case 4: r ≤ 5. By (3.7) r = 5 and the three neighbors of v1 are v2, v4, and v5. Since

there is the path (v3v2v1v4v5 . . . v13), by (3.6), v3 has no neighbors outside of G′′. So

by (3.7), v3v5 ∈ E(G), but v5 already has 3 other neighbors. 2

3.6 Proof of Lemma 3.2.3

Recall that Lemma 3.2.3 states that each 1-path P in an optimal vdp-cover S that

does not have an out-endpoint and does not contain a dominating set of size at most

(|P | − 1)/3, has at least 28 vertices. Fact 9 in [30] states that such a path must have at

least 16 vertices. Lemma 2 in [20] extends this by proving that such a path has at least

22 vertices. Hence we need to prove that such path cannot have 25 vertices and cannot

have 22 vertices. We will prove this in two big lemmas. But first we introduce the notion

of (H, v)-distant vertices for v /∈ V (H). If H is a subgraph of G and x ∈ V (G)− V (H),

then a vertex y ∈ V (H) is (H, x)-distant, if H contains a hamiltonian path connecting y

with a neighbor of x.
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Lemma 3.6.1. If a 1-path P in an optimal vdp-cover S does not have an out-endpoint

and does not contain a dominating set of size at most (|P | − 1)/3, then P cannot have

22 vertices.

Proof. Let P = (v1v2 . . . v22) be a counter-example to the lemma, and let G′ = G[V (P )].

Consider a v22-lasso on V (P ) with a largest loop C = (v1 . . . vr). Let H = G′ − C. If

r = 22, then by the definition of P , no vertex of P has an outneighbor. So in this case

G′ is a cubic hamiltonian graph and by Theorem 3.2.1 is dominated by 7 vertices. Thus

r ≤ 21. Also by Lemma 3.4.3, r is not divisible by 3. If r ≤ 14, then since each end

of every hamiltonian path in G′ has no outneighbors, Lemmas 6, 7 and 12–17 imply

that for some i, some set D of i vertices dominates the set {v1, . . . , v3i+1}. Then the set

D ∪ {v3(i+1), v3(i+2), . . . , v21} dominates G′ and has 7 vertices. Thus r ∈ {16, 17, 19, 20}.
Case 1: r = 16. By the maximality of r, for each (H, v16)-distant vertex of H , only v7, v8,

and v9 are possible neighbors on C. By Lemma 3.4.3, v22v8 /∈ E(G). So N(v22)− v21 ⊂
{v7, v9, v18, v19}.
Case 1.1: |N(v22) ∩ {v7, v9}| = 1. By symmetry, we may assume that v22v7 ∈ E(G′).

Case 1.1.1: v22v18 ∈ E(G′). Because of the path (v16v17v18v22v21v20v19), vertex v19 is

(H, v16)-distant. By Lemma 3.4.3 for P , v19 has only two neighbors in H . Since v7

already has 3 neighbors, v19 is adjacent to v9. If v17 has two neighbors in C, then since it

is (H, v7)-distant, the second (apart from v16) neighbor in C should be v14. On the other

hand, since v17 is (H, v9)-distant, this neighbor should be v2, a contradiction. So v17 has

two neighbors in H . If v17v20 ∈ E(G), then the path (v16v17v20v19v18v22v21) shows that v21

is (H, v16)-distant. Hence the third neighbor of v21 is in H ∪ {v7, v9}. But all vertices in
this set already have degree 3. Thus v17v21 ∈ E(G). Then the path (v16v17v21v22v18v19v20)

shows that v20 is (H, v16)-distant, and all possible neighbors of v20 already have degree 3.

Case 1.1.2: v22v19 ∈ E(G′). If v17v20 ∈ E(G), then the set {v17, v22, v2, v5, v8, v11, v14}
dominates G′. If v17v21 ∈ E(G), then we have Case 1.1.1 with v17 in place of v22.

So v17v14 ∈ E(G). The path (v17v18v19v22v21v20) shows that v20 is (H, v16)-distant and

(H, v14)-distant. So if its third neighbor is in C, then it should be v9 because of v16 and

v5 because of v14, a contradiction. So v20v18 ∈ E(G′), a contradiction to Lemma 3.4.3 for

the path (v17v18 . . . v22v7v8 . . . v16v1 . . . v6).

Case 1.2: v22v18 ∈ E(G′) and v22v19 ∈ E(G′). Because of the path

H ′ = (v16v17v18v22v19v20v21), vertex v21 can play the role of v22. By Lemma 3.4.3, v21v17 /∈
E(G′). So we have Case 1.1 for C and H ′.

Case 1.3: v22v9 ∈ E(G′) and v22v7 ∈ E(G′). Consider G′ as a lasso with the cycle

C ′ = (v7v8 . . . v22) and handle H ′ = (v16v1v2 . . . v6). As above, only v7 and v9 can be the
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neighbors of v6 on C ′. Since v9 already has 3 neighbors, we are in Case 1.1 for C ′ and

H ′, which is proved.

Case 2: r = 17. By the maximality of r and Lemma 3.4.3, only v7, and v10 can be

the neighbors on C of any (H, v17)-distant vertex. So as in Case 1, by Lemma 3.4.3,

N(v22)− v21 ⊂ {v7, v10, v18, v19}.
Case 2.1: Exactly one of v7 and v10 is a neighbor of v22. Again, we may assume that

v22v7 ∈ E(G′). If v22v18 ∈ E(G), then v21 is (H, v7)-distant and v19 is (H, v17)-distant.

They are not adjacent by Lemma 3.4.3 for P , and so v21v14 ∈ E(G′) and v19v10 ∈ E(G′).

Now the set {v19, v21, v2, v5, v8, v12, v16} dominates G′. Thus v22v19 ∈ E(G). Then v20 is

(H, v17)-distant. If v20v18 ∈ E(G′), then the set {v18, v22, v2, v5, v9, v12, v15} dominates G′.

So, v20v10 ∈ E(G′). If v18v21 ∈ E(G′), then the set {v18, v2, v5, v7, v10, v12, v15} dominates

G′. Otherwise, since v18 is (H, v7)-distant it is adjacent to v14, but since it also is (H, v10)-

distant it is adjacent to v3, a contradiction.

Case 2.2: v22v18 ∈ E(G′) and v22v19 ∈ E(G′). We just repeat the proof of Case 1.2.

Case 2.3: v22v7 ∈ E(G′) and v22v10 ∈ E(G′). Then by symmetry v18 has its third

neighbor, say vi. Since Case 2.1 is proved, i < 17, and vi is at distance 7 along C from

both v7, and v10, an impossibility.

Case 3: r = 19. First note that if v21 has its third neighbor in G′, then v21 dominates

all but a P18, which can be dominated by 6 vertices. Thus v21’s third neighbor is outside

of G′. Also if v20v22 ∈ E(G′), then v20 dominates all but a P18. Thus we may assume

that each of v20 and v22 has two neighbors on C. Furthermore, each vertex in G′ that is

adjacent to a neighbor of v20 or v22 is an endpoint of a hamiltonian path in G′, and hence

has its third neighbor in G′.

Case 3.1: The neighbors of v20 and v22 on C do not alternate. Let d be the maximum of

the distance between the neighbors of v20 on C and the distance between the neighbors

of v22 on C. We can assume that v20 is adjacent to v19 and vd on C. We can further

assume that the neighbors of v22 on C are vd+a and vd+a+c. Let b = 19 − d − a − c (See

the left graph in Figure 3.5). By symmetry, we may assume that a ≤ b. Maximality of

r forces the neighbors of v20 to be at least distance 4 apart on C from the neighbors of

v22, in particular, b ≥ a ≥ 4. It also forces c, d ≥ 2. Lemma 3.4.3 for P and symmetry

eliminate all cases where neighbors of v20 are distance 5, 8, 11, or 14 apart on C from the

neighbors of v22. Summarizing, we have

b ≥ a ≥ 4, a, b, a+ c, b+ c, a+ d, b+ d /∈ {5, 8, 11, 14}, and 2 ≤ c ≤ d. (3.8)
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Case 3.1.1: d > 9. Then c = 19− (a+ b+ d) ≤ 19− (4 + 4+ 10) = 1, a contradiction to

(3.8).

Case 3.1.2: d = 9. Then a + b = 19 − c − 9 = 10 − c ≤ 8. So by (3.8), a = b = 4. By

Lemma 3.4.4, the third neighbor of v14 is one of v1, v2, v4, v5, v7, v8, v10, v11, v17, and v18.

The path (v14v15 . . . v22v13v12 . . . v1) along with Lemma 3.4.3 restricts this set of possible

neighbors to {v1, v4, v7, v10, v17, v18}. Then Lemma 3.4.3 with the path

(v14v13 . . . v9v20v21v22v15v16 . . . v19v1v2 . . . v8) restricts the set of possible neighbors of v14

to {v10, v18}. Since either of these edges forms a 4-arc in G′ and since v16, and v12 both

have third neighbors in G′, by Lemma 3.4.6, no good third neighbor exists for v14.

Case 3.1.3: d = 8. If a = 6, then a + d = 14, a contradiction to (3.8). Simi-

larly, b 6= 6. Hence a = b = 4. By Lemma 3.4.4, the third neighbor of v14 is one

of v1, v2, v4, v5, v7, v10, v11, v17, and v18. The path (v13v14 . . . v22v12v11 . . . v1) along with

Lemma 3.4.3 restricts this set of possible neighbors to {v2, v5, v11, v17, v18}. The symme-

try of the role of H with the role of the set {v18, v17, v16} eliminates v17 as a possible

neighbor of v14. If v14v18 ∈ E(G′), then Lemma 3.4.6 with x = v14, y = v18 and z = v16

yields that v16 has no third neighbor in G′, a contradiction to the fact it is adjacent to

a neighbor of v22. Thus v14v18 /∈ E(G′). Now Lemma 3.4.6 with x = v12, y = v14 and

z = v19 eliminates all remaining potential neighbors of v14.

Case 3.1.4: d = 7. If a = 4, then a + d = 11, a contradiction to (3.8). Similarly, b 6= 4.
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Then a, b ≥ 6, and a+ b+ c+ d ≥ 6 + 6 + 2 + 7 = 21, a contradiction.

Case 3.1.5: d = 6. Then a+ b ≤ 19− 2− 6 = 11.

Case 3.1.5.1: a = b = 4. Let vi be the third neighbor of v14. By Lemma 3.4.4,

i ∈ {1, 2, 4, 5, 7, 8, 11, 17, 18}. The path (v14v13 . . . v6v20v21v22v15v16 . . . v19v1v2 . . . v5) with

Lemma 3.4.3 restricts this set to {2, 5, 7, 8, 11, 18}. The path (v11v12 . . . v22v10v9 . . . v1)

with Lemma 3.4.3 shrinks this set to {7, 11, 18}. If i = 18, then by Lemma 3.4.6 with

x = v14, y = v16 and z = v18, graph G′′ = G′ − {v20, v21, v22} has a dominating set of

size 6. If i = 7, then the path (v8v9 . . . v14v7v6 . . . v1v19v18 . . . v15v22v21v20) forces the third

neighbor of v8 to be in G′, which contradicts the fact that the role of H can be switched

with {v7, v8, v9}. Thus i = 11. Then the path (v12v13v14v11v10 . . . v1v19v18 . . . v15v22v21v20)

forces v12 to have its third neighbor in G′. By Lemma 3.4.3 for this path and Lemma 3.4.4

for C, this neighbor is in {v2, v5, v8, v18}. For j ∈ {2, 5, 8}, Lemma 3.4.5 with R =

{vj, v10, v12, v19} eliminates vj from the list. Thus v12v18 ∈ E(G′). Then the hamiltonian

cycle (v11v10 . . . v1v19v20v21v22v15v16v17v18v12v13v14) contradicts the maximality of r.

Case 3.1.5.2: a = 4, b = 6. Let vi be the third neighbor of v11. By Lemma 3.4.4,

i ∈ {1, 2, 4, 5, 7, 8, 14, 15, 17, 18}. The path (v11v12 . . . v22v10v9 . . . v1) and Lemma 3.4.3

further reduces this set to {1, 4, 7, 14, 15, 17, 18}. The path

(v12v11 . . . v6v20v21v22v13v14 . . . v19v1v2 . . . v5) and Lemma 3.4.3 eliminate 15 and 18 from

this list. If i ∈ {1, 4, 14, 17}, then Lemma 3.4.5 with R = {v6, v11, v13, vi} gives a dom-

inating set of size 7. Thus i = 7. Then Lemma 3.4.6 with x = v7, y = v11 and z = v9

gives a dominating set of size 7 in G′.

Case 3.1.5.3: a = 4, b = 7. Lemma 3.4.4 limits the third neighbor of v11 to one of

v1, v2, v4, v5, v7, v8, v14, v15, v17, and v18. The path

(v11v10 . . . v6v20v21v22v12v13 . . . v19v1v2 . . . v15) and Lemma 3.4.3 limit this neighbor to one

of v2, v5, v7, v8, v15 and v18. The path (v11v12 . . . v22v10v9 . . . v1) and Lemma 3.4.3 further

limit this neighbor to one of v7, v15 and v18. Now Lemma 3.4.6 with x = v7, y = v9 and

z = v11 (respectively, with x = v11, y = v13 and z = v15) yields a dominating set of size 7

if v11v7 ∈ E(G) (respectively, if v11v15 ∈ E(G)). So v11v18 ∈ E(G). Then the hamiltonian

cycle (v12v13 . . . v18v11v10 . . . v1v19v20v21v22) contradicts the maximality of r.

Thus a, b ≥ 6, and hence a+ b+ c+ d ≥ 20, a contradiction.

Case 3.1.6: d = 5. By (3.8), a, b 6= 11 − d = 6. If a, b ≥ 7, then a + b + c + 5 >

19, a contradiction. So one of a and b, say a, is 4. Then by the maximality of d,

b ≥ 5, and so b ∈ {5, 6, 7, 8}. Hence by (3.8), b = 7. Then Lemma 3.4.4 lim-

its the third neighbor of v11 to one of v1, v2, v4, v7, v8, v14, v15, v17, and v18. The path

(v11v10, . . . v1v19v20v21v22v12v13 . . . v18) and Lemma 3.4.3 eliminate v14 and v17 from the
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list of possible neighbors. The path (v10v11 . . . v22v9v8 . . . v1) and Lemma 3.4.3 limit this

neighbor to one of v2, v8, v15, and v18. By Lemma 3.4.6 with x = v11, y = v15, and

z = v13, v15v11 /∈ E(G). Lemma 3.4.5 with R = {v9, v11, v19, v2} and R = {v9, v11, v19, v8}
eliminates v2, and v8 as neighbors of v11. Thus v11v18 ∈ E(G′). Then the hamiltonian

cycle (v18v17 . . . v12v22v21v20v19v1v2 . . . v11) contradicts the maximality of r.

Case 3.1.7: d = 4. By (3.8), a, b /∈ {4, 5, 7, 8}. Then if max{a, b} ≥ 9, then a+b+c+d ≥
6 + 9 + 2 + 4 = 21, hence a, b = 6. By Lemma 3.4.4, the third neighbor of v11 is in

{v1, v2, v5, v7, v8, v14, v15, v17, v18}. The path (v11v12 . . . v22v10v9 . . . v1) and Lemma 3.4.4

shrink this set to {v1, v7, v14, v15, v17, v18}. The path (v12v11 . . . v1v19v20v21v22v13v14 . . . v18)

and Lemma 3.4.4 yield that this neighbor is in {v1, v7, v14, v17}. By Lemma 3.4.6 with

x = v11, y = v7, and z = v9, v7v11 /∈ E(G). If v11v1 ∈ E(G′), then the hamiltonian cycle

(v1v2 . . . v10v22v21 . . . v11) contradicts the maximality of r. If v11v17 ∈ E(G′), then the set

{v2, v5, v8, v11, v15, v19, v22} dominates G′. Finally, if v11v14 ∈ E(G′), then symmetry gives

v12v9 ∈ E(G′), and hence the set {v1, v3, v6, v9, v14, v17, v21)} dominates G′.

Case 3.1.8: d = 3. In this case, 2 ≤ c ≤ 3. If a = 4, then b ∈ {19−4−3−3, 19−4−2−3} =
{9, 10}. If a = 6, then similarly, 7 ≤ b ≤ 8, but by (3.8), b 6= 8. Finally, if a ≥ 7, then

b ≤ 19− 7− 2− 4 = 7, and hence in this case a = b = 7.

Case 3.1.8.1: a = 4, b = 9. Lemma 3.4.4 limits the third neighbor of v8 to one of

v1, v2, v4, v5, v11, v12, v14, v15, v17, and v18. The path (v8v9 . . . v22v7v6 . . . v1) and

Lemma 3.4.3 limit this neighbor to one of v1, v4, v11, v12, v14, v15, v17, and v18. The path

(v9v8 . . . v3v20v21v22v10v11 . . . v19v1v2) and Lemma 3.4.3 limit this neighbor to one of v1, v4,

v11, v14 or v17. By Lemma 3.4.6 with x = v4, y = v8, and z = v6, v8v4 /∈ E(G). For

i ∈ {1, 11, 14, 17}, Lemma 3.4.6 with x = v8, y = vi, and z = v3 eliminates vi as a

neighbor of v8.

Case 3.1.8.2: a = 4, b = 10. By Lemma 3.4.5 with R ⊃ {v19, v2, v7}, the third neighbor

of v2 is in {v4, v5, v6}. Lemma 3.4.3 for P yields v2v4 /∈ E(G). By Lemma 3.4.6 with

x = v2, y = v6, and z = v4, v2v6 /∈ E(G). Thus v2v5 ∈ E(G′). Then the 21-cycle

(v3v4v5v2v1v19v18 . . . v7v22v21v20) contradicts the maximality of r.

Case 3.1.8.3: a = 6, b = 7. Lemma 3.4.4 for C limits the third neighbor of v11 to one of

v1, v2, v4, v5, v7, v8, v14, v15, v17, and v18. The path (v11v10 . . . v3v20v21v22v12v13 . . . v19v1v2)

limits this neighbor to one of v2, v4, v5, v7, v8, v15, and v18. The path

(v10v11 . . . v22v9v8 . . . v1) limits the neighbor to one of v2, v5, v8, v15, and v18. For i ∈
{2, 5, 8}, Lemma 3.4.6 with x = vi, y = v11, and z = v19 eliminates vi as a neighbor of

v8. By Lemma 3.4.6 with x = v11, y = v15, and z = v13, v11v15 /∈ E(G). Thus v11v18 ∈
E(G′). Then the Hamiltionian cycle (v19v20v21v22v12v13 . . . v18v11v10 . . . v1) contradicts the
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maximality of r.

Case 3.1.8.4: a = 7, b = 7. Lemma 3.4.6 with x = v12, y = v3, and z = v1 yields that

the third neighbor of v1 is in {v13, v14, . . . , v18}. Lemma 3.4.4 for C shortens the list to

{v13, v14, v16, v17}. For i = 14, 17, Lemma 3.4.5 with R = {v1, v3, v19, vi} gives v1vi /∈
E(G′). If v1v13 ∈ E(G), then the cycle (v1v2 . . . v12v22v21v20v19v18 . . . v13) contradicts the

maximality of r. So v1v16 ∈ E(G). By symmetry, v2v6 ∈ E(G). Again by symmetry and

by Lemma 3.4.4 for C, we may assume that the third neighbor of v11 is in {v7, v8}. Edge
v7v11 contradicts Lemma 3.4.6 with x = v11, y = v7, and z = v9. So v8v11 ∈ E(G). Then

the set {v1, v3, v5, v8, v14, v18, v22)} dominates G′.

Case 3.1.9: d = 2. By (3.8), a, b /∈ {5, 6, 8, 9, 11, 12}. Since c = 2, we have d+ c = 4 and

hence a, b /∈ {4, 7, 10}. This proves the case.

Case 3.2: The neighbors of v20 and v22 alternate on C. Let v22vd, v20vd+a, v22v19−b ∈
E(G′). Define c = 19 − a − b − d (see the graph on the right in Figure 3.5). By

symmetry, we may assume that d = max{a, b, c, d}. By Lemma 3.4.3, 5 /∈ {a, b, c, d}.
By the maximality of r, min{a, b, c, d} ≥ 4, and so d ≤ 7. Furthermore, if d = 7, then

a, b, c = 4, and the set {v2, v5, v9, v13, v17, v20, v22} dominates G′. If d = 6, a+ b+ c = 13,

a contradiction to 5 /∈ {a, b, c, d}. Finally, if d = 4, then a+ b+ c+ d = 16 < 19.

Case 4: r = 20. Lemma 3.4.3 for the paths P and {v22v21v20v1v2 . . . v19} gives the

possible neighbors of v22 as vi, i ∈ {1, 4, 7, 10, 13, 16, 19}. By the maximality of r, i ∈
{4, 7, 10, 13, 16}. It follows that the distance on C from a neighbor of v22 to both neighbors

of v21 is the same modulo 3 (and vice versa). Thus the distance on C between the two

neighbors of v ∈ {v21, v22} is 0 (mod 3). Since r ≡ 2 (mod 3) and the neighbors of

v21 and v22 are distance 1 (mod 3) apart on C, these neighbors cannot alternate. Let

v22vd, v22vd+a, v21v20−b ∈ E(G′). Define c = 20 − a − b − d. We may assume that d ≤ c

and a ≤ b. Therefore,

d ≤ c, a ≤ b, d+ a ≤ 10, c, d ≡ 1 (mod 3), and a, b ≡ 0 (mod 3). (3.9)

Case 4.1: d = 4. By (3.9), d + a ∈ {7, 10}. Then v5 has its third neighbor. By

Lemma 3.4.3 for the paths (v5v6 . . . v20v1v2v3v4v22v21) and

(vd+a−1vd+a−2 . . . v1v20v19 . . . vd+av22v21), for either choice of d+ a, the possible neighbors

of v5 are in {v1, v8, v9, v12, v15, v18}. If v5v1 ∈ E(G′), then the hamiltonian cycle

(v5v6 . . . v22v4v3v2v1) contradicts the maximality of r. By Lemma 3.4.6 with x = v20,

y = vd+a, and z = v5, the third neighbor of v5 must be in the set {v1, v2, . . . , vd+a−1}.
This contradicts the above statement when d+a = 7 and leaves v8 and and v9 as possible
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neighbors of v5 when d + a = 10. In this case by (3.9), c = 4. Note that now v5 is

symmetric with v9, v15, and v19.

Case 4.1.1: v5v9 ∈ E(G). The path (v8v7v6v5v9v10 . . . v4v22v21) yields that v8 has its

third neighbor in G′. By Lemma 3.4.6 with x = v20, y = v10, and z = v8, this

neighbor is in {v1, v2, v3}. By Lemma 3.4.3 for paths (v9v8 . . . v1v20v19 . . . v10v22v21) and

(v8v7v6v5v9v10 . . . v20 . . . v4v22v21) eliminates v3 and v2 from this list. So v8v1 ∈ E(G).

Then the cycle (v8v7v6v5v9v10 . . . v20v21v22v4v3v2v1) contradicts the minimality of r.

Case 4.1.2: v5v9 /∈ E(G). Then v5v8 ∈ E(G). Since v5 is symmetric with v9, v15, and v19,

we conclude that v6v9, v15v18, v19v16 ∈ E(G). The path (v7v6v9v5v4 . . . v1v20 . . . v10v22v21)

yields that v7 has its third neighbor, say vi, in G′. If i ∈ {3, 12, 13, 17}, then for j ∈
{12, 13} the set {v3, v5, v10, vj, v14, v17, v20} dominates G′. Since vertices v1, v2 and v11

with respect to v8 are symmetric to v13, v12 and v3, respectively, no possible neighbors for

v8 left.

Case 4.2: d = 7. By (3.9), d + a = 10 and so c = 7. By Lemma 3.4.6 with x = v17,

y = v7, and z = v19, the third neighbor of v19 is in {v1, v2, . . . , v6}. Lemma 3.4.3 for

P and the 16-vertex path (v19v18v17v21v22v10v9 . . . v1v20) reduces this list to {v3, v6}. If

v19v6 ∈ E(G), then the cycle (v19v18 . . . v7v22v21v20v1 . . . v6) contradicts the maximality of

r. So v19v3 ∈ E(G). Symmetrically, v8v4 ∈ E(G). Now the hamiltonian cycle

(v19v18 . . . v8v4v5v6v7v22v21v20v1v2v3) contradicts the maximality of r. 2

Lemma 3.6.2. If a 1-path P in an optimal vdp-cover S does not have an out-endpoint

and does not contain a dominating set of size at most (|P | − 1)/3, then |P | 6= 25.

Proof. Let P = (v1v2 . . . v25) be a counter-example to the lemma, and let G′ = G[V (P )].

Consider a v25-lasso on V (P ) with the largest loop. Call the loop C, and the remaining

handle H . We may assume that it is a (v25, 25, r)-lasso. If r = 25, then no vertex of

G′ has an outneighbor, and hence G = G′. But a cubic graph cannot have 25 vertices.

Thus r ≤ 24. Also r is not divisible by 3 by Lemma 3.4.3. If r ≤ 17, then by the

maximality of r each neighbor of an (H, vr)-distant vertex must lie in H . Thus again by

the maximality of r, considering the largest lasso L in H with vr+1 as the endpoint of the

handle, we know that the loop in L has at most 12 vertices. So, we may apply one of the

Lemmas 3.4.1, 3.4.2, 3.4.7, 3.4.8, 3.4.9, and 3.4.10 to L. This then gives a contradiction

to the maximality of the loop in L or a dominating set extendable to a dominating set

of size 8 of G′. Thus r ∈ {19, 20, 22, 23}.

Case 1: r = 19. By the maximality of r, and Lemma 3.4.3, each (H, v19)-distant vertex
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of H has only v7, v9, v10, and v12 as possible neighbors in C. Also by the maximality of r,

if a vertex z of C is adjacent to the end of a handle H , then a vertex adjacent to z along

C cannot have neighbors in H .

Case 1.1: Vertex v25 has two neighbors on C. By symmetry and the maximality of r, we

have the following three cases:

Case 1.1.1: v25v7 ∈ E(G′) and v25v9 ∈ E(G′). By Lemma 3.4.3 for the paths

(v20v21 . . . v25v7v8 . . . v19v1v2 . . . v6) and (v20v21 . . . v25v9v10 . . . v19v1v2 . . . v8), the third neigh-

bor of v20 is in {v16, v23, v24}.
Case 1.1.1.1: v20v16 ∈ E(G′). In this case, v8 has its third neighbor in G′, and by

Lemma 3.4.3 for the paths

(v8v9 . . . v19v1v2 . . . v7v25v24 . . . v20), (v8v9 . . . v16v20v21 . . . v25v7v6 . . . v1v19v18v17), and

(v8v7 . . . v1v19v20 . . . v25v9v10 . . . v18), this neighbor is in {v1, v4, v12, v15}. If v8v1 ∈ E(G′)

(which is symmetric with the case v8v15 ∈ E(G′)), then the cycle (v1v2 . . . v7v25v24 . . . v8)

contradicts the maximality of r. If v8v4 ∈ E(G′) (which is symmetric with the case v8v12 ∈
E(G′)), then the cycle (v8v9 . . . v25v7v6v5v4) gives r ≥ 22 contradicting the maximality of

r.

Case 1.1.1.2: v20v23 ∈ E(G′). The path (v8v9 . . . v19v1v2 . . . v7v25v24v23v20v21v22) forces

v22 to have its third neighbor in G′. By Lemma 3.4.3 for this path,

(v8v7 . . . v1v19v18 . . . v9v25v24v23v20v21v22), and P , and by the maximality of r, v22v16 ∈
E(G′). Then by Lemma 3.4.3 for the paths

(v8v9 . . . v19v1v2 . . . v7v25v24 . . . v20), (v8v9 . . . v16v22v21v20v23v24v25v7v6 . . . v1v19v18v17), and

(v8v7 . . . v1v19v20 . . . v25v9v10 . . . v18), the third neighbor of v8 is in {v1, v4, v12, v15}. Just

as in Case 1.1.1.1, each of these possibilities forces r > 19.

Case 1.1.1.3: v20v24 ∈ E(G′). The path (v8v7 . . . v1v19v18 . . . v9v25v24v20v21v22v23) forces

v23 to have its third neighbor in G′. Since the path (v25v24v20v21v22v23) covers H ,

Lemma 3.4.3 forces v23v16 ∈ E(G′). Then just as in Case 1.1.1.1, we eliminate all neigh-

bors of v8.

Case 1.1.2: v25v7 ∈ E(G′) and v25v10 ∈ E(G′). The maximality of r and Lemma 3.4.3

for the path

(v20v21 . . . v25v7v6 . . . v1v19v18 . . . v8) force the third neighbor of v20 to be in {v17, v23, v24}.
Note that equivalent paths restrict the third neighbor of each (H, v25)-distant vertex to be

in H or to be v17. If an (H, v25)-distant vertex vi is adjacent to v17, then v18 has its third

neighbor in G′, and by Lemma 3.4.3 for the paths (v18v17 . . . v10v25v24 . . . v19v1v2 . . . v9) and

(v18v19v1......v7v25 . . . viv17v16 . . . v8), this neighbor is either in H or in {v3, v6, v11, v14}. In
any case, as in Case 1.1.1, any such neighbor contradicts the maximality of r. If v20v23 ∈
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E(G′), then v22 is (H, v25)-distant and hence its third neighbor is in H . In this case,

v22v24 ∈ E(G), a contradiction to Lemma 3.4.3 for P . Thus, v20v24 ∈ E(G′). Similarly

v23 is an (H, v25)-distant vertex; hence its third neighbor is in H , but Lemma 3.4.3 for

the path (v23v22v21v20v24v25v10v9 . . . v1v19v18 . . . v11) eliminates all possible neighbors.

Case 1.1.3: v25v7 ∈ E(G′), and v25v12 ∈ E(G′). In this case, no (H, v25)-distant vertex

can have a neighbor in C other than v19. Hence the third neighbor of v20 lies in H . By

Lemma 3.4.3 for the path (v20v21 . . . v25v7v6 . . . v1v19v18 . . . v8), this neighbor is one of v23

and v24. If v20v23 ∈ E(G′), then the path (v22v21v20v23v24v25v7v6 . . . v1v19v18 . . . v8) forces

v22 to have its third neighbor in G′. But then Lemma 3.4.3 for P forces this neighbor to

be in C, a contradiction. If v20v24 ∈ E(G′), then the path

(v8v9 . . . v19v1v2 . . . v7v25v24v20v21v22v23) forces v23 to have its third neighbor in G′. But

then Lemma 3.4.3 for this path forces this neighbor to be in C, a contradiction.

Hence v25 (and by symmetry v20) has at most one neighbor in C.

Case 1.2: Each of v20 and v25 has exactly one neighbor in C. Lemma 3.4.3 for P re-

stricts the second neighbor of v25 in H to one of v21 and v22. Similarly, the second

neighbor of v20 in H is in {v23, v24}. If v20v23 ∈ E(G′) and v25v21 ∈ E(G′), then the

path (v1v2 . . . v20v23v22v21v25v24) forces v24 to have its third neighbor in G′. There is no

room for this neighbor in H , so it is in C. Hence the set {v21, v24} dominates all G′ but

a P18. If v20v23 ∈ E(G′), and v25v22 ∈ E(G′), then the set {v20, v25} dominates the set

{v19, v20,...,v25} leaving only a P18 undominated. If v20v24 ∈ E(G′) and v25v21 ∈ E(G′),

then the path (v1v2 . . . v20v24v25v21v22v23) forces v23 to have its third neighbor in G′. By

Lemma 3.4.3 for P , this neighbor is in C. Hence the set {v21, v23} dominates all but a P18.

Finally, suppose that v20v24 ∈ E(G′) and v25v22 ∈ E(G′). In our case, v25 has a neighbor

vi in C. Then the path (vi+1vi+2 . . . v19v1v2 . . . viv25v22v23v24v20v21) forces v21 to have its

third neighbor in G′. Lemma 3.4.3 for the path (vi+1vi+2 . . . v19v1v2 . . . viv25v24 . . . v20)

forces this neighbor to be in C. Then the set {v21, v24} dominates all but a P18.

Case 1.3: Vertex v25 has no neighbors in C. By Lemma 3.4.3, N(v25) = {v24, v22, v21}.
Then both, v23 and v24 are (H, v20)-distant, and hence at least one of them has a neighbor

in C. Thus we have Case 1.2.

Case 2: r = 20. Let distC(x, y) denote the distance on C between the vertices x and y.

Suppose that i, j ≥ 21 and that vi is an (H, vj)-distant vertex. If vi′ is a neighbor of vi

in C, and vj′ is a neighbor of vj in C, then the maximality of r and Lemma 3.4.3 imply

that

distC(vi′, vj′) ∈ {7, 10}. (3.10)
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Case 2.1: Some (H, v21)-distant vertex, say v25, has two neighbors in C. We claim that

an (H, v25)-distant vertex has a neighbor in C distinct from v20. (3.11)

Indeed, otherwise v21 has a neighbor in H distinct from v22. It could be only v24. Then

v23 is (H, v25)-distant and cannot have 3 neighbors in H . This proves (3.11).

By (3.11) and (3.10), v25 cannot be adjacent to both of v7, and v13. So we may assume

that v25v7, v25v10 ∈ E(G′). By (3.10), a neighbor of H − v25 in C distinct from v20 can be

only v17. Then the path (v21v22 . . . v25v7v6 . . . v1v20v19 . . . v8) forces v8 to have the third

neighbor in G′. By Lemma 3.4.6 with x = v20, y = v10, and z = v8, this third neighbor

is in {v1, v2, . . . , v6}. By Lemma 3.4.3 for the paths

(v9v8 . . . v1v20v19 . . . v10v25v24 . . . v21) and (v8v9 . . . v17 H v7v6 . . . v1v20v19v18), this third

neighbor is either v1 or v4. If v8v1 ∈ E(G′), then the hamiltonian cycle

(v1v2 . . . v7v25v24 . . . v8) contradicts the maximality of r. If v8v4 ∈ E(G′), then the cycle

(v4v5v6v7v25v24 . . . v8) forces r ≥ 22.

Case 2.2: No (H, v21)-distant vertex has two neighbors in C. We claim that

an (H, v21)-distant vertex, say v25, has a neighbor in C. (3.12)

Indeed, otherwise v25 has 3 neighbors in H , which implies v25v22, v25v21 ∈ E(G). Then

v24 is (H, v21)-distant and has no room in H for the third neighbor. This proves (3.12).

Suppose that vj is the neighbor of v25 in C. By Lemma 3.4.3 for P , the neighbor of v25

in H − v24 is either v21 or v22. Similarly, the neighbor of v21 in H − v22 is either v24 or

v25.

Case 2.2.1: v25v22 ∈ E(G′). Then v25v21 /∈ E(G′) and hence v21v24 ∈ E(G′). The path

(v25v22v21v24v23) shows that v23 is (H, v25)-distant. Also, v23 is (H, v21)-distant. Since

v23 cannot have the third neighbor in H , it has a neighbor, vi, in C. Since r = 20,

min{distC(vi, v20), distC(vj, v20), distC(vi, vj)} ≤ 6, a contradiction to (3.10).

Case 2.2.2: v25v21 ∈ E(G′). In this case, v22 is (H, v21)-distant and by Lemma 3.4.3

has no third neighbor in H . Therefore, v22 has a neighbor, vh, in C. Similarly, v23 is

(H, v22)-distant and hence has a neighbor, vℓ, in C and v24 is (H, v25)-distant and hence

has a neighbor, vq, in C. By (3.10) for vh and v20, and for v20 and vj, distC(vh, v20) ≡ 1

(mod 3) and distC(v20, vj) ≡ 1 (mod 3). Vertices vh, v20 and vj partition C into three

paths that we will call Pj,h, Pj,20, and P20,h, where Pi1,i2 connects vi1 with vi2 and does

not contain vi3 for distinct i1, i2, i3 ∈ {j, h, 20}. Since 20 ≡ 2 (mod 3), the number of

edges in Pj,h is 0 (mod 3). If vℓ /∈ V (Pj,h), then distC(vℓ, vj) ≡ 1 (mod 3) and hence vq
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cannot have distC(vℓ, vq) ≡ 1 (mod 3) and distC(vq, vj) ≡ 1 (mod 3) at the same time.

So, vℓ ∈ V (Pj,h). But then by the maximality of r, Pj,h has at least 7 edges. Since each

of Pj,20 and P20,h also has at least 7 edges, this is impossible for the 20-cycle C.

Case 3: r = 22. If v24 has its third neighbor in G′, then v24 dominates all G′ but a P21

which can be dominated by 7 vertices. Thus v24’s third neighbor is outside of G′. Also if

v23v25 ∈ E(G′), then v23 dominates all but a P21. Thus we may assume that each of v23

and v25 has exactly two neighbors in C. These four neighbors of v23 and v25 partition C

into four paths. Suppose that the lengths of these paths are a, b, c, and d.

Case 3.1: The two neighbors of v23 in C and the two neighbors of v25 in C alternate

on C for each representation of G′ as a lasso with r = 22. We may assume that

v25vd, v23vd+a, v25v22−b ∈ E(G′), c = 22 − a − b − d and that d = max{a, b, c, d}. By the

maximality of r, min{a, b, c, d} ≥ 4 and hence d = max{a, b, c, d} ≤ 22− a− b− c ≤ 10.

So, by Lemma 3.4.3,

each of a, b, c, d is in {4, 6, 7, 9, 10}. (3.13)

Case 3.1.1: d ≥ 8. If d = 10, then by (3.13), a = b = c = 4 and the set

{v2, v5, v8, v12, v16, v20, v23, v25} dominates G′. If d = 9, then a + b + c = 13, which

contradicts (3.13). By (3.13), d 6= 8.

Case 3.1.2: d = 7. By (3.13), {a, b, c} = {4, 4, 7}. By symmetry, there are two subcases:

either (d, a, c, b) = (7, 4, 4, 7) or (d, a, c, b) = (7, 4, 7, 4). If (d, a, c, b) = (7, 4, 4, 7), then the

set {v2, v5, v9, v13, v17, v20, v23, v25} dominates G′. If (d, a, c, b) = (7, 4, 7, 4), then the set

{v2, v5, v9, v13, v16, v20, v23, v25} dominates G′.

Case 3.1.3: d ≤ 6. If d ≤ 5 then by the maximality of d, we have a + b + c + d ≤
20 < 22. So, d = 6. By (3.13), {a, b, c} = {4, 6, 6}. So by symmetry we may assume

that (d, a, c, b) = (6, 6, 6, 4). Then the cycle (v1v2 . . . v18v25v24v23v22) with the handle

v19, v20, v21 is a new lasso L with r = 22. By our assumption, the neighbors of v21 and

the neighbors of v20 also alternate along the cycle in L. Since d = 6, each such adjacent

pair of such neighbors along the cycle in L must be at distance 4 or 6. Since only one

such distance can be 4, v19 is adjacent to v6, but v6 already has 3 neighbors.

Case 3.2: There exists a representation of G′ as a lasso with r = 22 such that the

neighbors of v23 along C, and the neighbors of v25 along C do not alternate. We may

assume that v23vd, v25vd+a, v25v22−b ∈ E(G′), and c = 22 − a − b − d. We may assume

further that d ≥ c and a ≤ b. By the maximality of r, a, b ≥ 4 and c, d ≥ 2. Similarly

to (3.8) in the proof of Lemma 3.6.1, we have

b ≥ a ≥ 4, a, b, a+ c, b+ c, a+ d, b+ d /∈ {5, 8, 11, 14, 17}, and 2 ≤ c ≤ d. (3.14)
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By (3.14), d ≤ 22− 4− 4− 2 = 12.

Case 3.2.1: d = 12. By (3.14), a = b = 4, and c = 2. By Lemma 3.4.4 for C and

Lemma 3.4.3 for the paths (v17v18 . . . v25v16v15 . . . v1) and

(v17v16 . . . v12v23v24v25v18v19 . . . v22v1v2 . . . v11), the third neighbor of v17 is either v13 or

v21. Assume by symmetry that v17v13 ∈ E(G′). Since v15 has its third neighbor in G′,

by Lemma 3.4.6 with x = v13, y = v17, and z = v15, G
′[C] has a dominating set of size 7

and hence G′ has a dominating set of size 8.

Case 3.2.2: d = 11. By (3.14), a = b = 4, and c = 3. Then Lemma 3.4.4 for C and

Lemma 3.4.3 for the path (v16v17 . . . v25v15v14 . . . v1) forces the third neighbor of v17 to be

amongst v2, v5, v8, v14, v20, and v21. If v17v21 ∈ E(G), then since v19 has its third neighbor

in G′, Lemma 3.4.6 with x = v17, y = v21, and z = v19 yields a dominating set in G′[C] of

size 7. If v17vi ∈ E(G′) for i ∈ {2, 5, 8, 14}, then the set {v17, v19, v22, v25} dominates 13

vertices and leaves only a collection of paths whose lengths are divisible by 3. So, in this

case G′ can be dominated by 8 vertices. If v17v20 ∈ E(G′), then v20 dominates all but a

P21 in G′, and hence G′ has a dominating set of size 8.

Case 3.2.3: d = 10. In this case, a + b + c = 12, and no combination of values for a, b,

and c satisfies (3.14): if a = 4, then b+ c = 8, a contradiction; otherwise 6 ≤ a ≤ b, and

a+ b+ c ≥ 14.

Case 3.2.4: d = 9. By (3.14), (a, b, c) ∈ {(4, 4, 5), (4, 6, 3), (4, 7, 2)}.
Case 3.2.4.1: a = b = 4, and c = 5. Let vi be the third neighbor of v17. By Lemma 3.4.4

for C and Lemma 3.4.3 for the paths (v14v15 . . . v25v13v12 . . . v1) and

(v17v16 . . . v9v23v24v25v18v19 . . . v22v1v2 . . . v8), i ∈ {10, 14, 21}. Since v19 has its third

neighbor in G′, if v17v21 ∈ E(G′), then Lemma 3.4.6 with x = v17, y = v21, and z = v19

yields a dominating set of G′[C] of size 7. Suppose that v17v10 ∈ E(G′). Since v12 has

a common neighbor with v25, it has a third neighbor vj . By Lemma 3.4.6 with x = v17,

y = v10, and z = v12, j ∈ {14, 15, 16}. By Lemma 3.4.4 for C, j 6= 14. Then the cycle

(v1v2 . . . v9v23v24v25v13v14 . . . vjv12v11v10v17v18 . . . v22) contradicts the maximality of r. So

v17v14 ∈ E(G′). The path (v23v24v25v13v12 . . . v1v22v21 . . . v17v14v15v16) forces v16 to have

its third neighbor in G′. By Lemma 3.4.3 for this path and Lemma 3.4.4 for C, this

third neighbor is in {v1, v4, v7, v10, v20}. If the neighbor is in {v1, v4, v7, v20}, then the

set {v1, v4, v7, v9, v11, v14, v20, v25} dominates G′. Hence v16v10 ∈ E(G′). Symmetry then

forces v15v21 ∈ E(G′), and the set {v1, v4, v7, v10, v13, v18, v21, v23} dominates G′.

Case 3.2.4.2: a = 4, b = 6, c = 3. Then v14 has its third neighbor in G′, and by

Lemma 3.4.4 for C and Lemma 3.4.3 for the paths (v14v15 . . . v25v13v12 . . . v1) and

(v15v14 . . . v9v23v24v25v16v17 . . . v22v1v2 . . . v8), this neighbor is in {v1, v4, v7, v10, v17, v20}.
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Since v12 has its third neighbor inG′, Lemma 3.4.6 with x = v10, y = v14, and z = v12 elim-

inates v10 as the third neighbor. Now for each of the remaining vertices vi, Lemma 3.4.6

with x = vi, y = v14, and z = v9 yields a dominating set of G′[C] of size 7.

Case 3.2.4.3: a = 4, b = 7, c = 2. Then v14 has its third neighbor in G′. By Lemma 3.4.4

for C and Lemma 3.4.3 for the paths (v14v13 . . . v9v23v24v25v15v16 . . . v22v1v2 . . . v8) and

(v14v15 . . . v25v13v12 . . . v1), this neighbor is in {v10, v18, v21}. Since both of v12, and v16

have third neighbors in G′, Lemma 3.4.6 with x = v10, y = v14, and z = v12 and with

x = v14, y = v18, and z = v16 forces v14v21 ∈ E(G′). This then forces the hamiltonian

cycle (v14v13 . . . v1v22v23v24v25v15v16 . . . v21) contradicting the maximality of r.

Case 3.2.5: d = 8. By (3.14), (a, b, c) ∈ {(4, 4, 6), (4, 7, 3)}.
Case 3.2.5.1: a = b = 4, c = 6. Since v25v12 ∈ E(G′), v13 has its third neighbor in G′. By

Lemma 3.4.4 for C and Lemma 3.4.3 for the paths

(v17v16 . . . v8v23v24v25v18v19 . . . v22v1v2 . . . v7) and

(v9v10 . . . v18v25v24v23v8v7 . . . v1v22v21v20v19), this neighbor is in {v9, v10, v16, v17}. Since

v11 has its third neighbor in C, by Lemma 3.4.6 with x = v9, y = v13, and z = v11,

v9v13 /∈ E(G′). If v13v10 ∈ E(G′), then the set {v2, v5, v8, v10, v15, v18, v21, v25} domi-

nates G′. If v13v16 ∈ E(G′), then symmetry gives v17v14 ∈ E(G′). Thus Lemma 3.4.4

for C and Lemma 3.4.3 for the paths (v15v14v17v16v13v12 . . . v1v22v21 . . . v18v25v24v23) and

(v15v16v13v14v17v18 . . . v22v1v2 . . . v12v25v24v23) eliminates all possible neighbors of v15. The

last possibility is that v13v17 ∈ E(G′). The path

P ′ = (v23v24v25v18v19 . . . v22v1v2 . . . v13v17v16v15v14) forces v14 to have its third neigh-

bor, say vi, in G′. By Lemma 3.4.3 for the path (v13v14 . . . v25v12v11 . . . v1) and for P ′,

i ∈ {2, 5, 11, 20, 21}. By Lemma 3.4.6 with x = v14, y = vi, and z = v22, i /∈ {2, 5, 11}.
So, i ∈ {20, 21}. If i = 20, then the set {v3, v6, v9, v12, v16, v20, v22, v25} dominates G′. If

i = 21, then the cycle (v18v19v20v21v14v15v16v17v13 v12 . . . v1v22v23v24v25) contradicts the

maximality of r.

Case 3.2.5.2: a = 4, b = 7, c = 3. Since v25v12 ∈ E(G′), v13 has its third neighbor in G′.

Lemma 3.4.4 for C and Lemma 3.4.3 for the paths

(v14v13 . . . v8v23v24v25v15v16 . . . v22v1v2 . . . v7),

and (v13v14 . . . v22v1v2 . . . v8v23v24v25v12v11v10v9) forces this neighbor to be in {v3, v6, v9}.
Since v11 has its third neighbor in G′, by Lemma 3.4.6 with x = v9, y = v13, and z = v11,

v9v13 /∈ E(G′). Finally, for i = 3, 6, Lemma 3.4.6 with x = v13, y = vi, and z = v8

eliminates the remaining possible neighbors for v13.

Case 3.2.6: d = 7. In this case, by (3.14), a = b = 6, and c = 3. So, v14 has its third

neighbor in G′. Lemma 3.4.4 for C and Lemma 3.4.3 for the paths
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(v15v14 . . . v1v22v23v24v25v16v17 . . . v21) and (v14v15 . . . v25v13v12 . . . v1), forces this neighbor

to be in {v1, v4, v10, v17, v20}. Since v12 has its third neighbor in C, by Lemma 3.4.6 with

x = v10, y = v14, and z = v12, v14v10 /∈ E(G′). Furthermore, for i = 17, 20, Lemma 3.4.6

with x = v14, y = vi, and z = v22 yields that the possible neighbor of v14 is either v1

or v4. If v14v1 ∈ E(G′), then the hamiltonian cycle (v25v24 . . . v14v1v2 . . . v13) contradicts

the maximality of r. If v14v4 ∈ E(G′), then by symmetry v15v3 ∈ E(G) and the 23-cycle

(v1v2v3v15v14v4v5 . . . v13v25v16v15 . . . v22) contradicts the maximality of r.

Case 3.2.7: d = 6. By (3.14), (a, b, c) ∈ {(4, 6, 6), (4, 7, 5), (4, 9, 3), (4, 10, 2), (6, 6, 4),
(6, 7, 3), (7, 7, 2)}.
Case 3.2.7.1: a = 4, b = c = 6. Since v10v25 ∈ E(G′), v11 has its third neighbor

in G′. Lemma 3.4.4 for C and Lemma 3.4.3 for the paths (v11v12 . . . v25v10v9v8 . . . v1)

and (v15v14 . . . v1v22v23v24v25v16v17 . . . v21), this neighbor is in {v1, v4, v7, v14, v15, v17, v20}.
Since v9 has its third neighbor in G′, by Lemma 3.4.6 with x = v11, y = v7, and z = v9,

v11v7 /∈ E(G′). Also for i ∈ {4, 1, 20, 17}, Lemma 3.4.6 with x = v11, y = vi, and z = v6

eliminates vi as a neighbor of v11. Thus v11 is adjacent to either v14 or v15.

Case 3.2.7.1.1: v11v15 ∈ E(G′). Then v14 has its third neighbor in G′. By Lemma 3.4.4

for C and Lemma 3.4.3 for and the paths (v15v14 . . . v6v23v24v25v16 . . . v22v1v2 . . . v5) and

(v14v13v12v11v15v16v17 . . . v25v10v9 . . . v1), this neighbor is in {v1, v4, v7, v17, v20}. By
Lemma 3.4.6 with x = v6, y = v16, and z = v14, v14 is not adjacent to vi for i ∈
{1, 4, 17, 20}. Thus v14v7 ∈ E(G′), and the hamiltonian cycle

(v1v2 . . . v6v23v24v25v10v9v8v7v14v13v12v11v15v16 . . . v22) contradicts the maximality of r.

Case 3.2.7.1.2: v11v14 ∈ E(G′) and by symmetry v5v2 ∈ E(G′). Then v15 has a neighbor

in G′, and by Lemma 3.4.4 for C and Lemma 3.4.3 for the path

(v15v14 . . . v10v25v24v23v22v1v2 . . . v9), this neighbor is in {v3, v9, v12, v18, v19, v21}. Since v17

has its third neighbor in G′, by Lemma 3.4.6 with x = v15, y = v19, and z = v17,

v15v19 /∈ E(G′). If v15v3 ∈ E(G′), then the 23-cycle

(v1v2v3v15v14 . . . v6v23v24v25v16v17 . . . v22) contradicts the maximality of r. If v15v9 ∈ E(G′),

then the 23-cycle (v1v2 . . . v9v15v14 . . . v10v25v16v17 . . . v22) contradicts the maximality of r.

If v15v12 ∈ E(G′), then the path (v23v24v25v10v9 . . . v1v22v21 . . . v15v12v11v14v13) forces v13

to have the third neighbor in G′. Then Lemma 3.4.3 for this path, C, and the path

(v23v24v25v16v17 . . . v22v1v2 . . . v11v14v15v12v13) eliminates all possible neighbors of v13. If

v15v21 ∈ E(G′), then the cycle (v1v2 . . . v15v21v20 . . . v16v25v24v23v22) contradicts the max-

imality of r. Thus, v15v18 ∈ E(G′) and, by symmetry, v1v20 ∈ E(G′). Then the set

{v2, v5, v7, v10, v13, v16, v20, v23} dominates G′.

Case 3.2.7.2: a = 4, b = 7, c = 5. Since v6v23 ∈ E(G′), v5 has its third neighbor in G′.
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By Lemma 3.4.3 for C and Lemma 3.4.6 with x = v22, y = v10, and z = v5, this neighbor

is in {v1, v2, v8, v9}. Since v7 has its third neighbor in G′, by Lemma 3.4.6 with x = v5,

y = v9, and z = v7, v5v9 /∈ E(G′). If v8v5 ∈ E(G′), then v8 dominates all but a P21, hence

v5 is adjacent to either v1 or v2.

Case 3.2.7.2.1: v5v1 ∈ E(G′). Then v2 has its third neighbor in G′, and by Lemma 3.4.4

for C and Lemma 3.4.6 with x = v22, y = v10, and z = v2, this neighbor is either v8 or

v9. If v2v8 ∈ E(G′), then v8 dominates all but a P21 and hence v2v9 ∈ E(G′). Then the

hamiltonian cycle (v1v22v21 . . . v10v25v24v23v6v7v8v9v2v3v4v5) contradicts the maximality

of r.

Case 3.2.7.2.2: v5v2 ∈ E(G′). The path (v25v24v23v6v7 . . . v22v1v2v5v4v3) forces v3 to have

its third neighbor in G′. By Lemma 3.4.4 for C and Lemma 3.4.3 for this path, this third

neighbor is one of v9, v12, v18, and v21. If this neighbor is in {v12, v18, v21}, then the set

{v2, v3, v7, v10, v23} dominates all but a P9 or but a P3 and a P6. In both cases, G′ can

be dominated by 8 vertices. Hence v3v9 ∈ E(G′). In this case, the hamiltonian cycle

(v1v2v5v4v3v9v8v7v6v23v24v25v10v11 . . . v22) contradicts the maximality of r.

Case 3.2.7.3: a = 4, b = 9, c = 3. Since v10v25 ∈ E(G′), v11 has its third neighbor in G′.

By Lemma 3.4.4 for C and Lemma 3.4.3 for the paths

(v12v11 . . . v6v23v24v25v13v14 . . . v22v1v2 . . . v5) and

(v7v8 . . . v13v25v24v23v6v5 . . . v1v22v21 . . . v14), this neighbor is either v7 or v8. Since v9 has

its third neighbor in G′, by Lemma 3.4.6 with x = v11, y = v7, and z = v9, v11v7 /∈ E(G′).

Hence v11v8 ∈ E(G′), and so v8 dominates all but a P21 in G′.

Case 3.2.7.4: a = 4, b = 10, c = 2. Since v5 is a neighbor of vd, it has its third neigh-

bor, say vi, in G′. By Lemma 3.4.3 for P , i ∈ {1, 2, 8, 9, 11, 14, 15, 17, 18, 20, 21}. By

Lemma 3.4.6 with x = v10, y = v22, z = v5, i ∈ {1, 2, 8, 9}. If v5v9 ∈ E(G′), the hamil-

tonian cycle (v1v2 . . . v5v9v8v7v6v23v24v25v10v11 . . . v22) contradicts the maximality of r. If

v8 has its third neighbor in G′ then v8 dominates all but a P21 in G′. Hence i ∈ {1, 2}.
Case 3.2.7.4.1: v5v1 ∈ E(G′). The path (v25v24v23v6v7 . . . v22v1v5v4v3v2) forces v2 to have

its third neighbor, say vj, in G′. By Lemma 3.4.3 for this path

j ∈ {8, 9, 11, 14, 15, 17, 18, 20, 21}. By Lemma 3.4.6 with x = v10, y = v22, z = v2,

j ∈ {8, 9}. Since v8 does not have its third neighbor in G′, v2v9 ∈ E(G′). Then the

hamiltonian cycle (v1v5v4v3v2v9v8v7v6v23v24v25v10v11 . . . v22) contradicts the maximality

of r.

Case 3.2.7.4.2: v5v2 ∈ E(G′). The path (v25v24v23v6v7 . . . v22v1v2v5v4v3) forces v3 to

have its third neighbor, say vj , in G′. By Lemma 3.4.3 for this path and P , j ∈
{8, 9, 11, 14, 15, 17, 18, 20, 21}. By Lemma 3.4.6 with x = v12, y = v22, z = vj, j ∈
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{8, 9, 11, 15, 18, 21}. Since v8 does not have its third neighbor in G′, j ∈ {9, 11, 15, 18, 21}.
If v3v9 ∈ E(G′), the hamiltonian cycle (v1v2v5v4v3v9v8v7v6v23v24v25v10v11 . . . v22) contra-

dicts the maximality of r. If v3v11 ∈ E(G′), the cycle

(v1v2v5v4v3v11v10 . . . v6v23v24v25v12v13 . . . v22) contradicts the maximality of r. If v3v21 ∈
E(G′), the 23-cycle (v1v2v5v4v3v21v20 . . . v6v23v22) contradicts the maximality of r. Hence

j ∈ {15, 18}. Since v7 is a neighbor of vd, it has its third neighbor, say vh, in G′. By

Lemma 3.4.3 for P and the path (v7v8 . . . v12v25v24v23v6v5 . . . v22v21 . . . v13),

h ∈ {11, 13, 16, 19}. Since v9 has its third neighbor in G′, by Lemma 3.4.6 with x =

v11, y = v7, and z = v9, v11v7 /∈ E(G′). If v13v7 ∈ E(G′) the hamiltonian path

(v12v11 . . . v7v13v14 . . . v22v1 . . . v6v23v24v25) contradicts the maximality of r. So h ∈ {16, 19}.
If h = j + 1, then the 23-cycle (v1v2v5v4v3vjvj−1 . . . v10v25v24v23v6v7vhvh+1 . . . v22) contra-

dicts the maximality of r. If j = 15 and h = 19, the set {v2, v3, v7, v10, v13, v17, v21, v24}
dominates G′. Hence j = 18, h = 16, and the set {v5, v7, v10, v14, v18, v20, v22, v25} domi-

nates G′.

Case 3.2.7.5: a = b = 6, c = 4. Since v11 has its third neighbor in G′, by Lemma 3.4.4

for C and Lemma 3.4.3 for the paths (v11v10 . . . v6v23v24v25v12v13 . . . v22v1v2 . . . v5), and

(v15v14 . . . v6v23v24v25v16v17 . . . v22v1v2 . . . v5) this neighbor is in {v7, v8, v15}. Since v13 has
its third neighbor in G′, by Lemma 3.4.6 with x = v11, y = v15, and z = v13, v11v15 /∈
E(G′).

Case 3.2.7.5.1: v11v7 ∈ E(G′). The path (v23v24v25v12v13 . . . v22v1v2 . . . v7v11v10v9v8)

forces v8 to have its third neighbor in G′. By Lemma 3.4.3 for this path and the paths

(v7v8 . . . v16v25v24v23v6v5 . . . v1v22v21 . . . v17), (v15v14 . . . v6v23v24v25v16v17 . . . v22v1v2 . . . v5),

and (v8v9v10v11v7v6v23v24v25v12v13 . . . v22v1v2 . . . v5), this neighbor is v15. Then the 23-

cycle (v1v2 . . . v7v11v10v9v8v15v14v13v12v25v16v17 . . . v22) contradicts the maximality of r.

Case 3.2.7.5.2: v11v8 ∈ E(G′). The path (v23v24v25v12v13 . . . v22v1v2 . . . v8v11v10v9) forces

v9 to have its third neighbor in G′. By Lemma 3.4.3 for this path and Lemma 3.4.4

for C, this neighbor is in S = {v2, v5, v15, v18, v21}. For each vi ∈ S except v15, the

set {v2, v5, v6, v11, v14, v18, v21, v25} dominates G′. So, v9v15 ∈ E(G′). Then the 23-cycle

(v1v2 . . . v8v11v10v9v15v14v13v12v25v16v17 . . . v22) contradicts the maximality of r.

Case 3.2.7.6: a = 6, b = 7, c = 3. Let vi be the third neighbor of v14. By Lemma 3.4.4

for C and Lemma 3.4.3 for the paths (v21v20 . . . v12v25v24v23v22v1v2 . . . v11),

(v14v13 . . . v6v23v24v25v15v16 . . . v22v1v2 . . . v5), and (v13v14 . . . v25v12v11 . . . v1), i ∈ {18, 21}.
Since now v16 has its third neighbor in G′, by Lemma 3.4.6 with x = v14, y = v18, and

z = v16, v14v18 /∈ E(G′). Hence v14v21 ∈ E(G′) and the hamiltonian cycle

(v1v2 . . . v14v21v20 . . . v15v25v24v23v22) contradicts the maximality of r.
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Case 3.2.7.7: a = b = 7, c = 2. Then v14 has its third neighbor in G′. By Lemma 3.4.4

for C and Lemma 3.4.3 for the paths (v14v13 . . . v6v23v24v25v15v16 . . . v22v1v2 . . . v5), and

(v14v15 . . . v25v13v12 . . . v1), this neighbor is in {v7, v10, v18, v21}. By symmetry, we may

assume that it is in {v7, v10}. Since v12 has its third neighbor in G′, Lemma 3.4.6 with

x = v10, y = v14, and z = v12 eliminates v10 as a possible neighbor of v14. Thus

v14v7 ∈ E(G′), and the hamiltonian cycle (v1v2 . . . v6v23v24v25v13v12 . . . v7v14v15 . . . v22)

contradicts the maximality of r.

Case 3.2.8: d = 5. By (3.14), (a, b, c) ∈ {(4, 10, 3), (7, 7, 3)}.
Case 3.2.8.1: a = 4, b = 10, c = 3. Then v10 has its third neighbor in G′. If this

neighbor lies on the 19-cycle (v5v4 . . . v1v22v21 . . . v12v25v24v23), the set {v7, v10} dominates

all but a P18, hence this neighbor is in {v6, v7, v8}. By Lemma 3.4.4 for C, v8 cannot be

this neighbor. Since v8 has its third neighbor in C, if v10v6 ∈ E(G′), Lemma 3.4.6 with

x = v10, y = v6, and z = v8 gives a dominating set of G′[C] of size 7. Hence v10v7 ∈ E(G′).

Then the set {v2, v5, v7, v12, v15, v18, v21, v25} dominates G′.

Case 3.2.8.2: a = b = 7, c = 3. Since v25v12 ∈ E(G′), v13 has its third neighbor in G′. By

Lemma 3.4.4 for C and Lemma 3.4.3 for the paths

(v14v13 . . . v5v23v24v25v15v16 . . . v22v1v2 . . . v4) and

(v13v14 . . . v22v1v2 . . . v5v23v24v25v12v11 . . . v6), this neighbor is in {v3, v6, v9, v16, v19}.
Lemma 3.4.6 with x = v5, y = v15, and z = v3 shrinks the list to {v6, v9}. Since v11

has its third neighbor in G′, by Lemma 3.4.6 with x = v9, y = v13, and z = v11 yields

v9v13 /∈ E(G′). Hence v13v6 ∈ E(G′). Now the hamiltonian cycle

(v1v2 . . . v5v23v24v25v12v11 . . . v6v13v14 . . . v22) contradicts the maximality of r.

Case 3.2.9: d = 4. By (3.14), (a, b, c) = (6, 9, 3). Let vi be the third neighbor of

v5. By Lemma 3.4.6 with x = v22, y = v10, and z = v5, i ≤ 9. Then Lemma 3.4.3

for the path (v5v6 . . . v10v25v24v23v4v3v2v1v22v21 . . . v11), and Lemma 3.4.4 for C further

yield that i ∈ {1, 8, 9}. Since v3 has its third neighbor in G′, by Lemma 3.4.6 with

x = v1, y = v5, and z = v3, v5v1 /∈ E(G′). If v5v9 ∈ E(G′), then by the same

argument, v8 is adjacent to one of v1 and v5. So v8v1 ∈ E(G′). Then the 23-cycle

(v1v2v3v4v23v22 . . . v9v5v6v7v8) contradicts the maximality of r. Thus, v5v8 ∈ E(G′). The

path (v25v24v23v4v3v2v1v22v21 . . . v8v5v6v7) forces v7 to have its third neighbor, say vi, in

G′. By Lemma 3.4.3 for this path and Lemma 3.4.4 for C, i ∈ {1, 11, 14, 17, 20}. If

v7v1 ∈ E(G′), then the 23-cycle (v1v2v3v4v23v22 . . . v8v5v6v7) contradicts the maximality

of r. If i ∈ {11, 14, 17, 20}, then the set {v2, v5, v10, v11, v14, v17, v20, v23} dominates G′.

Case 3.2.10: d = 3. Since a ≤ b and c ≥ 2, a ≤ (22 − 3 − 2)/2 = 8.5. So by (3.14),

a ∈ {4, 6, 7}.
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Case 3.2.10.1: a ∈ {4, 7}. Since v2 shares a neighbor with v23, it has its third neighbor,

say vi in G′. By Lemma 3.4.6 with x = v22, y = va+d, and z = v2, 4 ≤ i ≤ d + a − 1 ≤
9. By Lemma 3.4.3 for P , i 6= 4, 7. If d + a − 2 ≤ i ≤ d + a − 1, then the cycle

(v23v24v25vd+avd+a+1 . . . v22v1v2vivi−1 . . . v3) contradicts the maximality of r. This means

that a = 7 and 5 ≤ i ≤ 6. The edge v2v5 contradicts Lemma 3.4.6 with x = v3, y = v10,

and z = v5. So v2v6 ∈ E(G), a contradiction to Lemma 3.4.6 with x = v2, y = v6, and

z = v4.

Case 3.2.10.2: a = 6. Then by (3.14), c = 3. Since v1 shares a neighbor with v23, it

has its third neighbor, say vi in G′. By Lemma 3.4.6 with x = v12, y = v3, and z = v1,

13 ≤ i ≤ 21. By Lemma 3.4.3 for P , i 6= 15, 18, 21. If 13 ≤ i ≤ 14, then the cycle

(v12v11 . . . v1vivi+1 . . . v25) contradicts the maximality of r. Lemma 3.4.6 with x = v12,

y = v22, and z = vi, shows that i 6= 20, 17. So i ∈ {16, 19}. The same lemma with x = vi,

y = v1, and z = v21, shows that the third neighbor of v21 is some vj with i+ 1 ≤ j ≤ 19.

It follows that i = 16 and 17 ≤ j ≤ 19. By Lemma 3.4.3 for P , j 6= 19. By the symmetry

between v1 and v11, v11v18 ∈ E(G) and hence j = 17. But then symmetrically v13 also is

adjacent to v17, a contradiction.

Case 3.2.11: d = 2. Since c ≤ d, c = 2, and again no triple (a, b, c) satisfies (3.14).

Case 4: r = 23. Since v25 is the endpoint of a hamiltonian path in P , it has two neighbors

in C. This forces v24 to be the endpoint of another hamiltonian path, and so v24 also has

two neighbors in C. By the maximality of r, the distance on C between any neighbor

of v24 and any neighbor of v25 is at least 3. Then Lemma 3.4.3 for P and the path

(v25v24v23v1v2 . . . v22) forces the neighbors of v25 in C to be in {v4, v7, v10, v13, v16, v19}.
By symmetry, we conclude that

the distance on C between any neighbor of v24 and any neighbor of v25 is in {4, 7, 10}.
(3.15)

In particular, since each of these values is 1 modulo 3, the neighbors of v24, and v25

cannot alternate around C. So, we may assume that v25vd, v25vd+a, v24v23−b ∈ E(G′),

and c = 23 − a − b − d. We may assume further that d ≤ c and a ≤ b. In particular,

d + a ≤ 11 and hence d ∈ {4, 7}. Furthermore, since a is divisible by 3, d + a ≤ 10.

As a neighbor of vd, vd+1 has its third neighbor, say vi, in C. By Lemma 3.4.6 with

x = v23, y = vd+a, and z = vd+1, i ≤ d + a − 1. If i = 1, then the hamiltonian cycle

(vdvd−1 . . . v1vd+1vd+2 . . . v25) contradicts the maximality of r. By Lemma 3.4.3 for the

path (vd+1vd+2 . . . v23v1v2 . . . vdv25v24), i /∈ {2, 5, d + 3, d + 6}. By Lemma 3.4.3 for the

path (vd+a−1vd+a−2 . . . v1v23v22 . . . vd+av25v24), i 6= 3, d−1. Summarizing and remembering
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that d ∈ {4, 7} and d+ a ≤ 10, we have

if d = 4, then 8 ≤ i ≤ d+ a− 1 ≤ 9; if d = 7, then i = 4. (3.16)

Case 4.1: d = 4. By above, d+ a ∈ {7, 10}. So, by (3.16), i ∈ {8, 9}.
Case 4.1.1: i = 9. The path (v24v25v4v3v2v1v23v22 . . . v9v5v6v7v8) forces v8 to have its

third neighbor, say vj , in G′. By Lemma 3.4.3 for this path, j 6= 2, 6. By Lemma 3.4.6

with x = v23, y = v10, and z = v8, j ≤ 9. Thus, j ∈ {1, 3}. If j = 1, then the hamiltonian

cycle (v8v7v6v5v9v10 . . . v25v4v3v2v1) contradicts the maximality of r. Thus, v3v8 ∈ E(G′).

Then the set {v3, v6, v10, v11, v14, v17, v20, v23} dominates G′.

Case 4.1.2: i = 8. By (3.15), c ∈ {4, 7}. The path P ′ = (v7v6v5v8v9 . . . v25v4v3v2v1) forces

v7 to have its third neighbor, say vj , in G′.

Case 4.1.2.1: c = 4. By the symmetry between v5 and v9, v6v9 ∈ E(G′). By Lemma 3.4.3

for P ′ and the symmetric path (v7v8v9v6v5 . . . v1v23v22 . . . v14v24v25v10v11v12v13), we have

j ∈ {3, 11, 17, 20}. By symmetry, we may assume that either j = 11 or j = 17. Then the

set {v1, v4, v9, v11, v14, v17, v18, v21} dominates G′.

Case 4.1.2.2: c = 7. Recall that vj is the third neighbor of v7. By Lemma 3.4.3 for P , P ′,

and the path (v7v6v5v8v9v10v25v24v17v18 . . . v23v1v2v3v4), we have j ∈ {1, 11, 14}. If j = 1,

then the hamiltonian cycle (v1v2v3v4v25v24 . . . v8v5v6v7) contradicts the maximality of r.

If j = 11, then the 24-cycle

(v1v2v3v4v25v10v9v8v5v6v7v11v12 . . . v23) contradicts the maximality of r. Finally, if j = 14,

then the set {v2, v7, v8, v12, v16, v19, v22, v25} dominates G′.

Case 4.2: d = 7. By above, d+ a = 10. By (3.16), i = 4. The path

P ′ = (v1v2v3v4v8v9 . . . v25v7v6v5) forces v5 to have its third neighbor, say vj , in G′. By

Lemma 3.4.6 with x = v23, y = v7, and z = v5, j ≤ 6. Thus, j ∈ {1, 2, 3}. Lemma 3.4.3

for P ′ and for the path (v9v8 . . . v1v23v22 . . . v10v25v24) yields j 6= 2 and j 6= 3, respectively.

So, v5v1 ∈ E(G′). Now the cycle (v1v2v3v4v8v9 . . . v25v7v6v5) contradicts the maximality

of r. 2
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Chapter 4

Acyclic Coloring

4.1 Introduction

Remember that a proper coloring of the vertices of a graph G is an assignment of colors

to the vertices of the graph such that no two adjacent vertices receive the same color. A

proper coloring of a graphG is acyclic if the union of any two color classes induces a forest.

The acyclic chromatic number, a(G), is the smallest integer k such that G is acyclically

k-colorable. The notion of acyclic coloring was introduced in 1973 by Grünbaum [12]

and turned out to be interesting and closely connected to a number of other notions in

graph coloring. Several researchers felt the beauty of the subject and started working on

problems and conjectures posed by Grünbaum.

In particular, Grünbaum studied a(r) – the maximum value of the acyclic chromatic

number over all graphs G with maximum degree at most r. He conjectured that always

a(r) = r + 1 and proved this for r ≤ 3. In 1979, Burstein [9] proved the conjecture for

r = 4. This result was proved independently by Kostochka [16]. It was also proved in [16]

that for k ≥ 3, the problem of deciding whether a graph is acyclically k-colorable is NP-

complete. It turned out that for large r, Grünbaum’s conjecture is incorrect in a strong

sense. Albertson and Berman mentioned in [1] that Erdős proved that a(r) = Ω(r4/3−ǫ)

and conjectured that a(r) = o(r2). Alon, McDiarmid and Reed [4] sharpened Erdős’

lower bound to a(r) ≥ c r4/3/(log r)1/3 and proved that

a(r) ≤ 50 r4/3. (4.1)

This established almost the order of the magnitude of a(r) for large r. Recently, the

problem of estimating a(r) for small r was considered again.
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Fertin and Raspaud [11] showed among other results that a(5) ≤ 9 and gave a linear-

time algorithm that acycliclically 9-colors any graph with maximum degree 5. Further-

more, for r ≥ 3, they gave a fast algorithm that uses at most r(r− 1)/2 colors for acyclic

coloring of any graph with maximum degree r. Of course, for large r this is much worse

than the upper bound (4.1), but for r < 1000, it is better. Hocquard and Montassier [14]

showed that every 5-connected graph G with ∆(G) = 5 has an acyclic 8-coloring. Kotha-

palli, Varagani, Venkaiah, and Yadav [23] showed that a(5) ≤ 8. Kothapalli, Satish, and

Venkaiah [22] proved that every graph with maximum degree r is acyclically colorable

with at most 1 + r(3r + 4)/8 colors. This is better than the bound r(r− 1)/2 in [11] for

r ≥ 8. The main result of this chapter is

Theorem 4.1.1. Every graph with maximum degree 5 has an acyclic 7-coloring, i.e.,

a(5) ≤ 7.

We do not know whether a(5) is 7 or 6, and do not have a strong opinion about it.

Our proof is different from that in [11, 14, 23] and heavily uses the ideas of Burstein [9].

He started from an uncolored graph G with maximum degree 4 and colored step by step

more and more vertices (with some recolorings) so that each of the partial acyclic 5-

colorings of G had additional good properties that enabled him to extend the coloring

further. The proof yields a linear-time algorithm which gives an acyclic coloring using at

most 7 colors of any graph with maximum degree 5. Using this approach we also show

that for every fixed r ≥ 6, there exists a linear-time algorithm giving an acyclic coloring

of any graph with maximum degree r using at most 1 + ⌊ (r+1)2

4
⌋ colors. This is better

than the bounds in [11] and [22] cited above for every r ≥ 6.

In the next section we introduce notation, prove two small lemmas and state the main

lemma. In Section 4.3 we prove Theorem 4.1.1 modulo the main lemma. In Section 4.4

we derive linear-time algorithms for acyclic coloring of graphs with bounded maximum

degree. In the last section we give the proof of the main lemma.

This chapter is based on joint work with A. V. Kostochka.

4.2 Preliminaries

Let G be a graph. A partial coloring of G is a coloring of some subset of the vertices of G.

A partial acyclic coloring is then a proper partial coloring of G containing no bicolored

cycles.
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Given a partial coloring f of G, a vertex v is

(a) rainbow if all colored neighbors of v have distinct colors;

(b) almost rainbow if there is a color c such that exactly two neighbors of v are colored

with c and all other colored neighbors of v have distinct colors;

(c) admissible if it is either rainbow or almost rainbow;

(d) defective if v is an uncolored almost rainbow vertex such that at least one of the two

of its neighbors receiving the same color is admissible.

A partial acyclic coloring f of a graph G is rainbow if f is a partial acyclic coloring

of G such that every uncolored vertex is rainbow.

A partial acyclic coloring f of a graph G is admissible if either f is rainbow or one

vertex is defective and all other uncolored vertices are rainbow. In these terms, a coloring

is rainbow if it is admissible and has no defective vertices. Note that both, rainbow and

admissible colorings are partial acyclic colorings where additional restrictions are put

only on uncolored vertices. The advantage of using admissible colorings is that they

provide a stronger induction condition that places additional restrictions only on coloring

of neighbors of uncolored vertices. So, the fewer uncolored vertices remaining, the weaker

these additional restrictions.

All colorings in this section will be from the set {1, 2, . . . , 7}.

Lemma 4.2.1. Let v be a vertex of degree 4 in a graph G with ∆(G) ≤ 5. Let f be an

admissible (respectively, rainbow) coloring in which v is colored with color c1, each of the

neighbors of v is colored, and exactly 3 colors appear on the neighbors of v. If at least

one of the two neighbors of v receiving the same color and one of the other two neighbors

of v each have a second (i.e., distinct from v) neighbor with color c1, then we can recolor

v and at most one of its neighbors so that the coloring remains admissible (respectively,

rainbow). In particular, the new partial acyclic coloring has no new defective vertices.

Moreover, if we need to recolor a vertex other than v, then we may choose a vertex with

5 colored neighbors and recolor it with a color incident to v in f .

Proof. Let N(v) = {z1, z2, z3, z4}, f(z1) = f(z2) = c2, f(z3) = c3, f(z4) = c4. Let z2 and

z3 be the neighbors of v with colors c2, and c3 that are also adjacent to another vertex

of color c1. We may assume that z2 is adjacent to a vertex of color c5, since otherwise

when we recolor v with c5, no bicolored cycles appear and the coloring remains admissible

(respectively, rainbow). Similarly, we may assume that z2 is adjacent to vertices of colors

c6 and c7. Then we may recolor z2 with c3 and repeat the above argument to get that

z3 also is adjacent to vertices with colors c5, c6, and c7. In this case, we may change the
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original coloring by recoloring z3 with c2 and v with c3. So, in this case only v and z3

change colors. Note that either only v changes its color, or z2 receives color c3, or z3

receives color c2. 2

For partial colorings f and f ′ of a graph G, we say that f ′ is larger than f if it colors

more vertices.

Lemma 4.2.2. Let v be a vertex of degree 4 in a graph G with ∆(G) ≤ 5. Let f be

a rainbow coloring in which v is colored with color c1, the neighbors z1, z2, and z3 of

v receive the distinct colors c2, c3, and c4, the neighbor z4 of v is an uncolored rainbow

vertex. Then either G has a rainbow coloring f1 that colors the same vertices and differs

from f only at v, or G has a rainbow coloring f ′ larger than f . Moreover, if the former

does not hold, then z4 has degree 5 and exactly one uncolored neighbor, say z4,4, and we

can choose the larger coloring f ′ so that all the following are true:

1. Every vertex colored in f is still colored.

2. Vertex z4 is colored.

3. The only uncolored vertex apart from z4 that may get colored is z4,4, and it does

only if it has neighbors of colors c1, c2, c3, and c4.

4. Apart from v, only one vertex w may change its color, and if it does, then (a) w is a

neighbor of z4, (b) w has four colored neighbors, (c) it changes a color in {c5, c6, c7}
to another color in {c5, c6, c7}, and (d) z4 gets the former color of w. In particular,

v is admissible in f ′.

Proof. Let v, z1, z2, z3, and v4 be as in the hypothesis. We may assume that z4 is

adjacent to a vertex z4,1 of color c5: otherwise, since v4 is rainbow, when we recolor v

with c5, the new coloring will be rainbow. Similarly, we may assume that z4 is adjacent to

vertices z4,2, and z4,3 of colors c6 and c7. If z4 has no other neighbors, then we can recolor

v with c5 and color z4 with c1. So, assume that z4 has the fifth neighbor, z4,4. If z4,4 is

colored, then f(z4,4) ∈ {c2, c3, c4}, since z4 is rainbow. In this case, we let f ′(z4) = c1 and

f ′(v) = c5. So, we may assume that z4,4 is not colored. If z4,4 has no neighbor of color c2,

then coloring z4 with c2 leaves the coloring rainbow and makes it larger than f . Thus,

we may assume that z4,4 has a neighbor of color c2 and similarly neighbors of colors c3

and c4. If z4,4 has no neighbor of color c1, then we let f ′(z4) = c1 and f ′(v) = c5. So, let

z4,4 have such a neighbor.
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If z4,1 has no neighbor of color c2, then by coloring z4 with c2 and z4,4 with c5, we

get a rainbow coloring larger than f . So, we may assume (by symmetry) that z4,1 has

neighbors of colors c2, c3, c4. If z4,1 has no neighbor of color c1, then we let f ′(z4) = c1,

f ′(z4,4) = c5, and f ′(v) = c6. Finally, if z4,1 also has a neighbor of color c1, then we let

f ′(z4,1) = c6 and f ′(z4) = c5. 2

The next lemma is our main lemma. We will use it in the next section and prove in

Section 5.

Lemma 4.2.3. Let f be an admissible partial coloring of a 5-regular graph G. Then G

has a rainbow coloring f ′ that colors at least as many vertices as f .

4.3 Proof of the Theorem

For convenience, we restate Theorem 4.1.1.

Theorem 4.1.1. Every graph with maximum degree 5 has an acyclic 7-coloring.

Proof. Let G be such a graph. If G is not 5-regular, form G′ from two disjoint copies

of G by adding for each v ∈ V (G) of degree less than 5 an edge between the copies of v.

Repeating this process at most five times gives a 5-regular graph G∗ containing G as a

subgraph. Since an acyclic 7-coloring of G∗ yields an acyclic 7-coloring of its subgraph

G, we may assume that G is 5-regular.

Let f be an admissible coloring of G from the set {1, 2, . . . , 7} with the most colored

vertices. By Lemma 4.2.3, we may assume that f is rainbow.

Let H be the subgraph of G induced by the vertices left uncolored by f . Let x be a

vertex of minimum degree in H . We consider several cases according to the degree dH(x).

Case 1: dH(x) = 0. Since f is rainbow, any color in {1, 2, . . . , 7} − f(NG(x)) can be

used to color x contradicting the maximality of f .

Case 2: dH(x) = 1. Since f is rainbow, we may assume that x is adjacent to vertices

of colors 1, 2, 3, and 4. Let y be the uncolored neighbor of x. Since y is rainbow, coloring x

with 5 gives either a rainbow coloring or an admissible coloring with the defective vertex

y having the admissible neighbor x, a contradiction to the maximality of f .

Case 3: dH(x) = 2. We may assume that x is adjacent to vertices with colors 1, 2, 3,

and two uncolored vertices y1 and y2. Since in our case y1 is adjacent to at most 3 colored

vertices, some color c ∈ {4, 5, 6, 7} does not appear on the neighbors of y1. Coloring x

with c then yields either a rainbow coloring, or an admissible coloring with defective

vertex y2 and its admissible neighbor x, a contradiction to the maximality of f .
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Case 4: dH(x) = 3. We may assume that x is adjacent to vertices of colors 1 and 2.

By the choice of x, each uncolored vertex of G has at most 2 colored neighbors. Since

the three uncolored neighbors of x have at most 6 colored neighbors in total, some color

c ∈ {3, 4, 5, 6, 7} is present at most once among these 6 neighbors. Then coloring x with

c again yields an admissible coloring, a contradiction to the maximality of f .

Case 5: dH(x) ≥ 4. Since each vertex of G has at most one colored neighbor, at

most 5 colors are used in the second neighborhood of x. Hence x may be colored to give

a rainbow coloring with more colored vertices.

We conclude that H is empty and that f is an acyclic 5-coloring of G. 2

4.4 Algorithms

Theorem 4.4.1. There exists a linear time algorithm for finding an acyclic 7-coloring

of a graph with maximum degree 5.

Proof. The proof of the Theorem 4.1.1, along with Lemmas 4.2.1–4.2.3 gives an algo-

rithm. In order to control the efficiency of the algorithm we make the following modifi-

cation: whenever the proof checks whether a vertex v is in a two-colored cycle, we check

only for such a cycle of length at most 12, and if we do not find such a short cycle,

then check whether two bicolored paths of length 6 leave v. This is enough, since the

existence of such paths already makes the proofs of Theorem 4.1.1 and all the lemmas

work. So, we need only to consider a bounded (at most 56) number of vertices around

our vertex. It then suffices to compute the running time of this algorithm. Let n be

the number of vertices in G. The process of creating a 5-regular graph takes O(n) time

since we apply this process at most 5 times, each time on at most 25n vertices, each of

degree at most 5. We may now assume that G is a 5-regular graph. We then create

and maintain 6 databases Dj , j = 0, 1, . . . , 5 (say doubly linked lists), each for the set

of vertices with degree j in the current H . At the beginning, all vertices are in D5, and

it is possible to update the databases in a constant amount of time each time a vertex

gains or loses a colored neighbor. Since there are at most 25n possible searches for a

vertex with the minimum number of uncolored neighbors, all the searches and updates

will take O(n) time. Note that the processes of Lemma 4.2.1 and Lemma 4.2.2 also take

a constant amount of time to complete. Observe that each of the cases in Lemma 4.2.3

either finds a rainbow coloring, or finds an admissible coloring with more colored vertices,

or reduces to a previous case in an amount of time bounded by a constant. Also when
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Lemma 4.2.3 processes a defective vertex, it yields either a rainbow coloring, or a larger

admissible coloring and the next defective vertex in a constant time. Finally, since we

start from an uncolored graph and color each additional vertex in a constant time, the

implied algorithm colors all vertices in O(n) time. 2

For a partial coloring f of a graph G and a vertex v ∈ V (G), we say that u ∈ V (G)

is f -visible from v, if either vu ∈ E(G) or v and u have a common uncolored neighbor.

Theorem 4.4.2. For every fixed r there exists a linear (in n) algorithm finding an acyclic

coloring for any n-vertex graph G with maximum degree r using at most 1+⌊ (1+r)2

4
⌋ colors.

Proof. We start from the partial coloring f0 that has no colored vertices, and for i =

1, . . . , n at Step i obtain a rainbow partial acyclic coloring fi from fi−1 by coloring one

more vertex (without recoloring). The algorithm proceeds as follows: at Step i choose an

uncolored vertex vi with the most colored neighbors. Greedily color vi with a color αi in

C := {1, . . . , 1 + ⌊ (1+r)2

4
⌋} that is distinct from the colors of all vertices fi−1-visible from

vi. We claim that we always can find such αi in C.

Suppose that at Step i, vi has exactly k colored neighbors. Then it has at most

r − k uncolored neighbors, and each of these uncolored neighbors has at most k colored

neighbors. So, the total number of vertices fi−1-visible from vi is at most

k + (r − k)k = k(r + 1− k) ≤ ⌊(r + 1)2

4
⌋ = |C| − 1,

and we can find a suitable color αi for vi.

It now suffices to show that for each i, the coloring fi is rainbow and acyclic. For f0,

this is obvious. Assume now that fi−1 is rainbow and acyclic. Since vi is rainbow in fi−1,

coloring it with αi does not create bicolored cycles. Thus, fi is acyclic. Also since αi is

distinct from the colors of all vertices fi−1-visible from vi, fi is rainbow.

For the runtime, note that at Step i the algorithm considers only vi and vertices at

distance at most 2 from vi. As in the proof of Theorem 4.4.1, it is sufficient to maintain

r+1 databases each containing all vertices with a given number of colored neighbors. This

allows a constant time search for a vertex with the greatest number of colored neighbors.

Moving a vertex as its number of colored neighbors changes takes a constant amount of

time. Choosing and coloring vi together with updating the databases then takes O(r2)

time. Hence the running time of the algorithm is at most crn, where cr depends on r. 2
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4.5 Proof of Lemma 4.2.3

We will prove that under the conditions of the lemma, either its conclusion holds or there

is an admissible coloring f ′′ larger than f . Since G is finite, repeating the argument

eventually yields either an acyclic coloring of the whole G or a rainbow coloring. In both

cases we do not have defective vertices.

Let H be the subgraph of G induced by the uncolored vertices. Let x be the sole

defective vertex under f and let y1, y2, . . . , y5 be its neighbors. By the definition of a

defective vertex, x has two neighbors of the same color. We will assume that f(y1) =

f(y2) = 1 and that y1 is admissible. When more then two neighbors of x are colored, we

assume for i = 3, 4, 5 that if yi is colored, then f(yi) = i − 1. Also for i = 1, . . . , 5, the

four neighbors of yi distinct from x will be denoted by yi,1, . . . , yi,4 (some vertices will

have more than one name, since they may be adjacent to more than one yi). We consider

several cases depending on dH(x).

Case 1: dH(x) = 0. First we try to color x with colors 5, 6, and 7. If this is not

allowed, then for j = 5, 6, 7, G has a 1, j-colored y1, y2-path. This forces that both of y1

and y2 have neighbors with colors 5, 6, and 7, each of which is adjacent to another vertex

of color 1. In particular, both y1 and y2 are admissible. For i = 1, 2 and j = 1, 2, 3, we

suppose that f(yi,j) = j + 4 and yi,j is adjacent to another vertex of color 1.

Case 1.1: For some i ∈ {1, 2}, yi,4 is colored and f(yi,4) /∈ {5, 6, 7}. By symmetry, we

may assume that i = 1 and f(y1,4) = 2. Recolor y1 with 3 and call the new admissible

coloring f ′. If we can now recolor y2 so that the resulting coloring f ′′ is rainbow on

G − xy2 − xy1 or the only defective vertex in f ′′ on G − xy2 − xy1 is y2,4, then we do

this recoloring and color x with 1. Since y1 and y2 have no neighbors of color 1 apart

from x, we obtained an admissible coloring of G larger than f . If we cannot recolor y2

to get such a coloring, then y2,4 is colored with a color c ∈ {5, 6, 7}. Moreover, in this

case by Lemma 4.2.1 applied to y2 in coloring f ′ of G − xy2 − xy1, we can change the

colors of only y2 and some y ∈ {y2,1, y2,2, y2,3, y2,4} to get an admissible coloring f1 of

G− xy2 − xy1. Moreover, by Lemma 4.2.1, f1(y) ∈ {5, 6, 7}. Then by coloring x with 1

we obtain a rainbow coloring of G, as above.

Case 1.2: y1,4 is not colored. By Lemma 4.2.2 for vertex y1 in G−xy1, either G−xy1

has a rainbow coloring f ′ that differs from f only at y1 (in which case by symmetry, we

may assume that f ′(y1) = 3 and proceed further exactly as in Case 1.1), or G−xy1 has a

larger rainbow coloring f ′ satisfying statements 1)–4) of Lemma 4.2.2. In particular, by

4), none of y2, y3, y4, y5 changes its color and y1 remains admissible. This finishes Case
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1.2.

By the symmetry between y1 and y2, the remaining subcase is the following.

Case 1.3: f(y1,4) = 5 and f(y2,4) = c ∈ {5, 6, 7}. By Lemma 4.2.1 applied to y1 in

G − xy1, we can recolor y1 and at most one other vertex (a neighbor of y1) to obtain

another admissible coloring f ′. If f ′(y1) ∈ {5, 6, 7}, then f ′ is a rainbow coloring, as

claimed. So, we may assume that f ′(y1) = c1 ∈ {2, 3, 4}. If all the colors 5, 6, 7 are

present on neighbors of y2, then again by Lemma 4.2.1 (applied now to y2 in coloring f ′

of G − xy2), G has an admissible coloring f ′′ that differs from f ′ only at y2 and maybe

at one neighbor of y2. Then coloring x with 1 we get a rainbow coloring. So, some color

in {5, 6, 7} is not present in f ′(N(y2)). By Lemma 4.2.1, this may happen only if y1,1 is

a common neighbor of y1 and y2, and c = f(y2,4) 6= 5. In particular, in this case, y1,1

has neighbors of colors 1 (they are y1 and y2), 2, 3, and 4. Since c 6= 5, we may assume

that c = 6. By the symmetry between y1 and y2, we conclude that, in f , vertex y2,2 also

is a common neighbor of y1 and y2 and has neighbors of colors 1 (they are y1 and y2),

2, 3, and 4. Returning to coloring f ′, we see that y2 has no neighbors of color 5, and

its neighbors y1,1 (formerly of color 5) and y2,2 (by the previous sentence) also have no

neighbors of color 5. So, recoloring y2 with 5 yields an admissible coloring of G. Now

coloring x with 1 creates a larger rainbow coloring.

Case 2: dH(x) = 1. We first try to color x with 4. If no bicolored cycle is formed,

then either we have a rainbow coloring or an admissible coloring with defective vertex

y5 and an admissible neighbor x. Hence we may assume that coloring x with 4 creates

a bicolored cycle. This then gives each of y1 and y2 a neighbor of color 4. A similar

argument gives each of y1 and y2 a neighbor of color 5, 6, and 7, i.e., both y1 and y2

are rainbow. Recoloring y1 with color 2 allows us to repeat the argument at y3. Then

y3 also has neighbors of each of the colors 4, 5, 6, and 7. If y5 has no neighbor of color

2, then recoloring (in the original coloring f) y3 with 1, and coloring x with 2 yields a

rainbow coloring. So, by the symmetry between colors 1, 2, and 3, we may assume that

for i ∈ {1, 2, 3}, f(y5,i) = i. Since y5 is rainbow, by the symmetry between colors 4, 5, 6,

and 7, we may assume that either f(y5,4) = 4, or y5,4 is not colored. In both cases, recolor

(in the original coloring f) y3 with 1, color x with 2 and y5 with 5. We get an admissible

coloring larger than f , where only y5,4 may be defective.

Case 3: dH(x) = 3. If one of the uncolored neighbors y3, y4, y5 (say, y3) of x has 4

colored neighbors, then we may color y3 with some c /∈ f(N(y3)) ∪ {1} and thus create

an admissible coloring larger than f . Hence we may assume that each of y3, y4, and y5

has at most 3 colored neighbors.
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Case 3.1: One of y1 and y2 has three neighbors of different colors such that each of

these neighbors has another neighbor of color 1. Suppose for example that for j = 1, 2, 3,

f(y1,j) = 1 + j and y1,j has another neighbor of color 1. If y1 has a fourth color, say c,

in its neighborhood, then we recolor y1 with a color c′ /∈ {1, c, 5, 6, 7} and get a rainbow

coloring of G. Suppose now that color c ∈ {5, 6, 7} appears twice on N(y1). Then by

Lemma 4.2.1 applied to y1 in G − xy1, we can change the color of y1 and at most one

other vertex that is a neighbor of y1 not adjacent to uncolored vertices to get another

rainbow coloring of G − xy1. Then this coloring will also be a rainbow coloring of G.

Finally, suppose that y1 has an uncolored neighbor y1,4. Applying Lemma 4.2.2 to y1 in

G − xy1 we either recolor only y1 and get a rainbow coloring of G (finishing the case),

or obtain a rainbow coloring f ′ of G − xy1 larger than f satisfying the conclusions of

the lemma. Since each of y3, y4 and y5 has at least two neighbors left uncolored by f ,

none of them may play role of z4 or z4,4 in Lemma 4.2.2 when they get colored. Then f ′

is an admissible coloring of G where only x could be a defective vertex with admissible

neighbor v. This proves Case 3.1.

Let T be the set of colors c such that more than one of the vertices y3, y4 and y5 has a

neighbor of color c. Since y3, y4 and y5 have in total at most 9 colored neighbors, |T | ≤ 4.

Case 3.2: |T | ≤ 3. By symmetry, we may assume that T ⊆ {2, 3, 4}. If coloring

x with c ∈ {5, 6, 7} does not create a bicolored cycle, then it will yield an admissible

coloring larger than f . So, we may assume that each of y1 and y2 has in its neighborhood

vertices of colors 5, 6, and 7, each of which is adjacent to another vertex of color 1. So,

we have Case 3.1.

Case 3.3: |T | = 4. Let T = {2, 3, 4, 5}. As in Case 3.1, we may assume that each of

y1 and y2 is adjacent to vertices of colors 6 and 7, each of which have another neighbor

of color 1.

Let y3 have exactly 3 colored neighbors labeled y3,1, y3,2, y3,3 with colors 2, 3, 4. Let

y3,4 be the uncolored neighbor of y3. Then if y3,4 has no neighbor of color 5, we may color

y3 with 5 to get a new admissible coloring. Hence y3,4 is adjacent to a vertex of color

5. Similarly, y3,4 has neighbors of color 6 and 7. By symmetry, we may assume that a

vertex of color 2 is adjacent to at most one of y4 and y5.

Case 3.3.1: y3,4 has no neighbor of color 1. We try to color y3 with 1 and x with 2.

If this does not produce a new admissible coloring, then one of y1 or y2, say y1, has a

neighbor of color 2 that is adjacent to another vertex of color 1. So, we again get Case

3.1.

Case 3.3.2: y3,4 has a neighbor of color 1. If y3,1 has no neighbor of color 1, then we

88



again try to color y3 with 1 and x with 2, but also color y3,4 with 2. Then we simply

repeat the argument of Case 3.3.1. So, suppose that y3,1 has a neighbor of color 1. If

y3,1 has no neighbor of some color α ∈ {5, 6, 7}, then we color y3,4 with 2 and y3 with α.

Thus y3,1 has neighbors of colors 1, 5, 6, 7. Then we recolor y3,1 with 3 and color y3 with

2.

Case 4: dH(x) = 2. As at the beginning of Case 3, we conclude that each of the

uncolored vertices y4 and y5 has at least one uncolored neighbor besides x.

Let B be the set of colors appearing in the neighborhoods of both, y4 and y5. By the

previous paragraph, |B| ≤ 3.

Case 4.1: |B| ≤ 1. We may assume that {4, 5, 6, 7} ∩ B = ∅. Try to color x with 4.

By the definition of B, either a two-colored cycle appears, or we get a new admissible

coloring larger than f . Hence we may assume that coloring x with 4 creates a bicolored

cycle. Since this cycle necessarily goes through y1, y1 is adjacent to a vertex with color

4. Similarly, y1 is adjacent to vertices with colors 5, 6, and 7. Then recoloring y1 with 3

yields a rainbow coloring of G.

Case 4.2: |B| = 2. If 1 ∈ B or 2 ∈ B, then the argument of Case 4.1 holds. Assume

that B = {3, 4}. Similarly to Case 4.1, we may assume that for i = 1, 2 and j = 1, 2, 3,

yi is adjacent to a vertex yi,j of color j + 4 that is adjacent to another vertex of color 1

(in particular, y1 and y2 may have a common neighbor of color j + 4).

If y1 is rainbow, then uncoloring y1 and coloring x with 7 gives Case 1 or Case 2.

Thus we may assume that y1 and (by symmetry) y2 are not rainbow. So, we may assume

that for i = 1, 2, the fourth neighbor yi,4 of yi distinct from x has color ci ∈ {5, 6, 7}. By
symmetry, we may assume that c1 = 5. Similarly to Case 1.3, by Lemma 4.2.1 applied to

y1 in G−xy1, we can recolor y1 and at most one other vertex (a neighbor of y1) to obtain

another rainbow coloring f ′ of G − xy1. If f ′(y1) ∈ {3, 4, 5, 6, 7}, then f ′ is a rainbow

coloring of G, as claimed. So, we may assume that f ′(y1) = 2. Now practically repeating

the argument of Case 1.3, we find a promised coloring.

Case 4.3: |B| = 3 (see Figure 4.1 on the left). If 2 ∈ B, then we can repeat the

argument of Case 4.2 for B′ = B −{2}. Hence we may assume that B ⊆ {1, 3, 4, 5, 6, 7}.
Case 4.3.0: 1 ∈ B. Let B = {1, 3, 4}. Then some color in {5, 6, 7}, say 7, is not

present on N(y4) ∪ N(y5). Again, we may assume that for i = 1, 2 and j = 1, 2, 3, yi is

adjacent to a vertex yi,j of color j + 4 that is adjacent to another vertex of color 1. If y1

is rainbow, then we may uncolor y1 and color x with 7 to get Case 1 or Case 2. Suppose

now that y1 and y2 are not rainbow. By Lemma 4.2.1 applied to y1 in G− xy1, we can

recolor y1 and at most one other vertex (a neighbor of y1) to obtain another admissible
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Figure 4.1

coloring f ′. If f ′(y1) ∈ {3, 4, 5, 6, 7}, then f ′ is a rainbow coloring, as claimed. So, we

may assume that f ′(y1) = 2. But then we can use the argument of Case 4.2 with the

roles of y3 and y2 switched. This proves Case 4.3.0.

So, from now on, B = {3, 4, 5}. For i = 4, 5 and j = 1, 2, 3, let yi,j be the neighbor

of yi of color j + 2. We write the neighbor, since y4 and y5 are rainbow. As observed

at the beginning of Case 4, y4 and y5 each have another uncolored neighbor, call them

y4,4 and y5,4. In particular, y4 and y5 have no neighbors colored with 6 or 7. If x can

be colored with either of 6 or 7 without creating a two-colored cycle, then we obtain a

rainbow coloring. Hence we assume that for i = 1, 2 and j = 1, 2, f(yi,j) = j + 5 and yi,j

has a neighbor of color 1 distinct from yi.

Case 4.3.1: One of y1 or y2, say y1, is rainbow. If y4,4 has no neighbor of color

c ∈ {6, 7}, then we can color y4 with c, a contradiction to the maximality of f . If y4,4 has

no neighbor of color c′ ∈ {1, 2}, then by uncoloring y1 and coloring y4 with c′ and x with

6, we obtain an admissible coloring larger than f . So, f(N(y4,4)) = {1, 2, 6, 7}. Then we

may color y4,4 with 3 and uncolor y1 to get a new admissible coloring as large as f with

one defective vertex y4, for which Case 2 holds. This finishes Case 4.3.1.

So, below y1 and y2 are not rainbow and hence each of them is adjacent to at least

three colored vertices.

Case 4.3.2: One of y1 or y2, say y1, is adjacent to an uncolored vertex y1,4 6= x. We

may assume that f(y1,1) = f(y1,2) = 6 and f(y1,3) = 7. First, we try to color x with 7
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and y1 with 3. Since the new coloring has at most one defective vertex, we may assume

that a two-colored cycle is created. Hence each of y1,1 and y1,2 is adjacent to a vertex of

color 3. The same argument gives these vertices neighbors of colors 4 and 5. Recall that

one of y1,1 and y1,2, say y1,1, has another neighbor of color 1. Then recoloring y1,1 with 2

gives an admissible coloring in which y1 is rainbow. Hence Case 4.3.1 applies to this new

coloring.

So, from now on each of y1 and y2 has 4 colored neighbors. Since y1 is admissible we

may assume w.l.o.g. that y1 is adjacent either to the colors 5, 6, 6, 7 or the colors 5, 5, 6, 7.

Case 4.3.3: y1 has one neighbor of color 5 and three neighbors with colors 6 or 7. We

may assume that f(y1,1) = 5, f(y1,2) = f(y1,3) = 6, and f(y1,4) = 7. If coloring y1 with 3

or 4 yields an admissible coloring, then we are done; so we may assume that a two-colored

cycle is formed in each case. It follows that each of y1,2 and y1,3 has neighbors colored

with 3 and 4. By the symmetry between y1,2 and y1,3, we may assume that y1,3 has a

neighbor of color 1 other than y1. If y1,3 is almost rainbow, then we can uncolor it, recolor

y1 with 3, and color x with 7: this will give an admissible coloring with the same number

of colored vertices as in f , and the only defective vertex y1,3. Then either Case 1 or Case

2 applies to this new coloring. Hence we may assume that y1,3 has two neighbors other

than y1 that receive the same color. Then since y1,3 has no neighbor of color 2, y1 may

now be recolored with color 2 without creating a bicolored cycle. Repeating the above

argument we derive that y1,2 has neighbors of colors 2, 3, and 4, and one of these colors

appears twice on N(y1,2)− y1. By Lemma 4.2.1 applied to y1,3 in the graph G− y1,3y1 for

the original coloring, we can change its color and the color of at most one other vertex

(that is a neighbor of y1,3, all of whose neighbors are colored) to get an admissible coloring

of G− y1,3y1. Since y2 and y3 are adjacent to the uncolored vertex x, their colors are not

changed. If y1,3 receives color 1, then we recolor y1 with 3 and get a rainbow coloring of

G. If y1,3 receives a color other than 1, then we color x with 6 and again get a rainbow

coloring of G.

Case 4.3.4: y1 has two neighbors of color 5 (see Figure 4.1 on the right). We may

assume that f(y1,1) = f(y1,2) = 5, f(y1,3) = 6, and f(y1,4) = 7. If y1 can be recolored

with either 3 or 4, this would give a rainbow coloring f ′. Hence we assume that both of

y1,1 and y1,2 are adjacent to vertices with colors 3 and 4.

Case 4.3.4.1: One of y1,1 or y1,2, say y1,1, is rainbow. Then uncoloring y1,1 and coloring

y1 with 3 and x with 7 yields either a rainbow coloring f ′ or a new admissible coloring

(with the same number of colored vertices) with the defective vertex y1,1 and admissible

colored neighbor y1. In the former case, we are done. In the latter, if one of the previous
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cases occurs, then we are done again. So, we may assume that Case 4.3.4 occurs. By

the symmetry between colors 3 and 4, we may assume that apart from y1, vertex y1,1

has a neighbor of color 3, a neighbor of color 4, and two uncolored neighbors, say z1 and

z2, each of whose has another uncolored neighbor and 3 colored neighbors. Moreover,

the same 3 colors appear on the neighborhoods of z1 and z2, and since Case 4.3.4 holds,

by the symmetry between colors 6 and 7, both of them are among these 3 colors. Then

either coloring y1,1 with 1 yields a rainbow coloring or coloring y1,1 with 2 does.

Case 4.3.4.2: Each of y1,1 and y1,2 has a neighbor of color 2 that has another neighbor

of color 5. Since y1,1 is not rainbow, the fourth neighbor of y1,1 has color c ∈ {2, 3, 4}.
Since y1 cannot be recolored with 3 or 4, some neighbor, say r, of y1,1 of color c has

another neighbor of color 5. If in the graph G− y1y1,1, y1,1 can be recolored with 1, then

we may recolor y1 with 3 and get a rainbow coloring of G. If y1,1 can be recolored with

either of 6 or 7, then we have Case 4.3.3. To disallow coloring y1,1 with 1, 6, and 7, r must

be adjacent to vertices with each of these colors. By the symmetry between colors 3 and

4, we assume that f(r) 6= 4. If the neighbor r′ of y1,1 with f(r′) = 4 has no neighbor of

color c′ ∈ {6, 7}, then we recolor r with 4 and y1,1 with c′ thus getting Case 4.3.3. If r′

has no neighbor of color 1, then we recolor r with 4, y1,1 with 1, and y1 with 3 obtaining

a rainbow coloring. Finally if f(N(r′)− y1,1) = {1, 5, 6, 7}, then we recolor r′ with 3, y1,1

with 4, and y1 with 3.

The last subcase is:

Case 4.3.4.3: y1,1 has no neighbor of color 2 that has another neighbor of color 5.

Then recoloring y1 with 2 creates another admissible coloring f ′. We may then repeat

our previous argument with y3 playing the role of y2 to conclude that y3 has neighbors of

color 6 and 7. If y3 is admissible, then repeating the above argument we conclude that

y3 may be recolored with color 1 in the original coloring f . Then after this recoloring,

by coloring x with 2 we get a rainbow coloring. Also, if y2 is admissible in f , then we

may recolor both of y1 and y2 with 2 and color x with 1 to get a rainbow coloring. Hence

we may assume that all the neighbors of y2 and y3 apart from x are colored with 6 or 7.

Recall that for i = 4, 5 and j = 1, 2, 3, f(yi,j) = j + 2 and yi,4 is uncolored. If for some

i ∈ {4, 5}, yi,4 has no neighbor of color c ∈ {6, 7}, then we can color yi with c and get a

better admissible coloring. Since none of y1, y2, or y3 has a neighbor with color 3, if y4,4

has no neighbor of color 1 or y5,4 has no neighbor of color 2, then by coloring y4 with 1,

y5 with 2 and x with 3 creates an admissible coloring with more colored vertices. By the

symmetry between colors 1 and 2, each of y4,4 and y5,4 has neighbors of colors 1, 2, 6, and

7.
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If y4,1 does not have a neighbor of color c′ ∈ {1, 2, 6, 7}, then coloring y4,4 with 3, y4

with c′ and x with 4 yields an admissible coloring. Otherwise, we recolor y4,1 with 4 and

color y4 with 3. This proves the lemma. 2
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