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In this thesis, we provide connections between analytic properties in Euclidean

Rn and analytic properties in sub-Riemannian Carnot groups. We introduce weak

s-John domains, in analogy with weak John domains, and we prove that weak s-John

is equivalent to a localized version. This is applied in showing that a bounded C1,α

domain in R3 will be a weak s-John domain in the first Heisenberg group. This result

is sharp, giving a precise value of s that depends only on α. We follow upon this

by showing that a weak s-John domain in a general Carnot group will be a (q, p)-

Poincaré domain for certain p and q that depend only on s and the homogeneous

dimension of the Carnot group. The final result gives, in a general Carnot group,

an upper bound on the lower box dimension of the graph of an Euclidean Hölder

function, with application to the dimension of a Sobolev graph.
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CHAPTER 1

Introduction

1.1 Main results

Carnot groups, which are described in detail in Chapter 2, are sub-Riemannian spaces

that provide a rich setting for analysis. One by-product of their unusual geometry,

however, is that direct calculation is often more difficult than in a Riemannian space.

One strategy for circumventing this problem is to bootstrap our way from properties

in Euclidean Rn to sub-Riemannian properties.

Monti and Morbidelli used this idea, proving that bounded domains with Eu-

clidean C1,1 boundary in two-step Carnot groups are “non-tangentially accessible” in

the intrinsic Carnot geometry [49, Theorem 3.2]. In our first theorem, we establish a

similar statement that yields weak s-John domains in the Heisenberg group H1. Weak

s-John domains are defined in analogy with weak John domains [32, Section 9.1]:

Definition 1.1.1. Let Ω be a bounded domain in a metric space X, and let s ≥ 1.

We say Ω is a weak s-John domain if there exists a constant λ > 0 and a point x0 ∈ Ω

such that, for every point x ∈ Ω, there exists a continuous curve γ : [0, 1] → Ω with

γ(0) = x and γ(1) = x0 and

dist(γ(t),Ωc) ≥ λ d(γ(t), x)s (1.1.1)

for every t ∈ [0, 1].

We make this definition easier to verify by establishing one particularly useful
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tool (Corollary 3.2.13), which shows that, in a broad class of spaces, it is sufficient

to check that (1.1.1) holds for points arbitrarily close to the boundary. This result

also leads to a similar statement for John domains (Corollary 3.2.15), although we

are not certain the John domain result is new.

Theorem 1.1.2. Let Ω be a bounded C1,α domain in Euclidean R3, 0 < α ≤ 1. Then

Ω is a weak s-John domain in H1 for s ≥ 2/(α + 1).

This theorem is sharp: there exist C1,α domains in R3, for any α ∈ (0, 1), which

fail to be weak s-John domains in H1 for all s < 2/(α + 1) (see Example 3.4.1).

It is natural that (weak) s-John domains would arise in a sub-Riemannian setting.

The sub-Riemannian metric does not scale linearly in all directions, which can lead

to smooth curves (in Euclidean geometry) exhibiting cusp-like behavior within the

Carnot-Carathéodory geometry. As s-John domains permit some types of cusps, they

can appear as a natural consequence of Euclidean regularity hypotheses.

To demonstrate the usefulness of the first theorem, we establish a Poincaré in-

equality with weak s-John as a hypothesis:

Theorem 1.1.3. Let G be a Carnot group with homogeneous dimension Q, and let

Ω ⊂ G be a weak s-John domain, for some s ∈ (1, Q/(Q − 1)). Then Ω is a (q, p)-

Poincaré domain for each p and q satisfying 1 ≤ p < Q
Q−(Q−1)s

and

p ≤ q < Qp
Q−p(Q−(Q−1)s)

.

The definition of a (q, p)-Poincaré inequality can be found at the beginning of

Section 4.1. In an expository paper [34], Heinonen highlights Poincaré inequalities as

critical tools for analysis on non-smooth spaces. These inequalities serve a role similar

to the Fundamental Theorem of Calculus, providing information about a function

through knowledge of its derivative.

Theorem 1.1.3 mirrors a result by Haj lasz and Koskela for s-John domains in Rn

[31, Corollary 5]. In Chapter 4, we offer an alternate proof of their result in Rn (sans
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borderline exponents), using an approach adapted from [40]. Further adaptations

enable us to prove a similar result for general Carnot groups.

In our final result, we bootstrap from Euclidean smoothness of a function to the

sub-Riemannian (lower box) dimension of its graph set, contributing to a program of

similar questions. Consider a function F : R2 → R. It is known that, if F is Euclidean

C1, then its graph has Hausdorff dimension exactly three when considered as a subset

of the Heisenberg group H1 (a consequence of Pansu’s isoperimetric inequality [51]).

It was shown in [4] that if F is Lipschitz, then its graph will have Hausdorff dimension

at least three in H1. Yet, there are examples of functions of bounded variation whose

graphs have dimension two [4, 7]. It is natural to ask how the dimensions of graphs

interpolate between these results, particularly as there is a class of functions, Sobolev

functions, whose regularity lies between Lipschitz and BV.

Our approach to this question is to extend a result established in Rn: Cuzick [22]

proved estimates for the lower box dimensions of graphs of Euclidean Hölder functions

in Rn. We address the same question in Carnot-Carathéodory geometry and obtain

the following result:

Corollary 1.1.4. Let F : Ω → R be an Euclidean α-Hölder function, defined on a

bounded set Ω in R2. Let GrF = {(x, F (x)) | x ∈ Ω} in R3 be the graph of F . Then

CC-dimB GrF ≤ 4− α,

where we have viewed GrF as a subset of the Heisenberg group H1 equipped with its

Carnot-Carathéodory metric.

An upper bound on the dimensions of Hölder graphs yields an upper bound on the

graphs of supercritical Sobolev functions. Recent work by Magnani [43] in this setting

has provided a sharp lower bound of three for the dimension of graphs of Sobolev

functions. Both our upper bound and Magnani’s lower bound are independent of
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which coordinates are used for the domain and which is used for the range. While we

currently lack examples to demonstrate sharpness of our upper bound, the program

has still been substantially advanced.

1.2 Historical background

In 1961, Fritz John [35] studied conditions under which bi-Lipschitz mappings are

good approximations of isometries. The appropriate setting — now called a John do-

main — has proven useful in many other capacities, and similarly-conceived domains

have also become established as fundamental.

We will use the term “geometric domains” to refer to these various classes of

domains, as their definitions only rely on basic elements of geometry: lengths of curves

and distance to the boundary. The importance of geometric domains comes from their

ease of use, their hefty analytic implications, and their natural appearance in diverse

branches of mathematics. Such domains allow us to remove specific smoothness

hypotheses on the boundary, extending analysis into non-smooth settings.

John domains have appeared in many fields. There are numerous examples in

quasiconformal mapping theory; for example, if the target of a quasiconformal map-

ping is a John domain, Heinonen [33] showed quantitatively that the mapping is also

quasisymmetric and that the domain is linearly locally connected. In the study of

complex dynamics, Carleson, Jones, and Yoccoz [18] characterized when the basin of

attraction at infinity and the bounded Fatou components of complex polynomials of

degree at least two are John domains.

John domains are particularly important in partial differential equations (PDE).

John domains support Sobolev-Poincaré inequalities, essential tools for establishing

regularity of solutions to PDE. Demonstrating this aspect of John domains was the

work of many hands: Boman [12] introduced Boman domains (i.e., domains which

satisfy the Boman chain condition); Bojarski [11] showed that Boman domains sup-
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port a Sobolev-Poincaré inequality with optimal exponents; Buckley, Koskela, and

Lu [15] showed that “Boman equals John” under rather general circumstances. The

utility of making this last connection comes about because the John condition is typi-

cally much simpler to check than the Boman chain condition, and we receive a robust

analytic tool for this light work.

The essential aspect of the definition of any geometric domain is understanding

how the domain is shaped at its boundary. For a John domain, the defining condition

requires escaping from the boundary toward the interior of the domain with a certain

amount of elbow-room. More specifically, fix a central point in the domain as the

endpoint of the escape. Then, from every other point in the domain, there needs to

be an escape curve to this central point such that a “twisted cone” around the curve

stays inside the set. (The escape curve acts as the central axis of the cone, so that

the cone twists along with the curve. The tip of the cone is at the starting point of

the curve.) The opening angles of the cones must be uniformly bounded away from

zero.

This twisted cone requirement may not seem like much control, but, in the work

mentioned above, each ball in a Boman chain supports a Sobolev-Poincaré inequality,

and this local condition is stitched into a global condition along the chain of over-

lapping balls. A chain of such balls can access any point in a John domain since the

chain can descend into each twisted cone. So, a minor constraint on the geometry of

the boundary — the John condition — is just enough to make this work.

In Chapter 4 of this thesis, we operate in a philosophically similar manner, em-

ploying local Poincaré inequalities to guarantee certain global Poincaré inequalities

hold on weak s-John domains. The mediator in our case is a Whitney decomposition,

and the weak s-John condition provides crucial quantitative information about the

decomposition.

A generalization of John domains are s-John domains, for s ≥ 1 (see Definition
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2.3.5). (A 1-John domain is the same as a John domain.) These domains allow a more

degenerate access to the boundary, as we replace the twisted cones of John domains

with “twisted power cusps.” Domains with outward-pointing cusps are not John but,

depending on the severity of the cusp, can be s-John domains for some s. A simple

example in R2 is given by the bounded set Ω = B(0, 1) ∩ {(x, y) | y > |x|1/s}. This

set demonstrates exactly how severe the cusp can be for an s-John domain. (It fails

to be s′-John for any s′ < s.)

A consequence of weakening the definition of John domains is a loss of some

implications; for example, while Martio and Vuorinen [46] showed that the dimension

of the boundary of a John domain in Rn is bounded away from n, Nieminen [50]

demonstrated that the boundary of an s-John domain in Rn (for s > 1) can have

dimension n. (In fact, he showed the stronger statement: the boundary of an s-John

domain in Rn can have positive Lebesgue n-measure.)

In the two decades since their inception, s-John domains have not received much

attention. Nevertheless, there is some profit to be obtained from them, as the results

in Chapter 4 demonstrate.

Sub-Riemannian spaces (also called Carnot-Carathéodory spaces) embody the

idea of constrained motion, and are the setting for our work. At each point, the

allowed directions of motion are constrained to a subspace of the tangent space. The

natural (Carnot-Carathéodory) distance between points is given by the shortest curve

joining them that always follows allowed directions, if such a curve exists. Geodesic

curves have great value in applications as they describe the most efficient path from

one position to another. In applications to robotic control theory, the space describing

the robot’s possible configurations is a sub-Riemannian space, and geodesics result

in faster/cheaper/more energy-efficient changes of state. The sub-Riemannian model

applies equally well to more abstract applied settings: the precession of a Foucault

pendulum is understandable as a geodesic in the parameter space of its Hamiltonian,
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a consequence of “Berry phase” [48]. (For an introduction to this area, the text by

Montgomery [48] is an excellent starting point. The existence of “singular” geodesics

in sub-Riemannian spaces is one surprise awaiting the interested reader.)

Carnot groups are a fruitful class of sub-Riemannian spaces. A Carnot group

can be identified pointwise with Rn (for some n), but, being sub-Riemannian, it

can look very different from the inside: the restrictions on allowed movement distort

distances and dimensions away from Euclidean expectations. (In the special case of no

restrictions on movement, the Carnot group is abelian and coincides with Euclidean

Rn.) Further, it has been shown that non-abelian Carnot groups are not bi-Lipschitzly

embeddable — even locally — into any Euclidean Rn, Hilbert space, or many other

Banach spaces. (This follows from works by Pansu [52], Semmes [53], Cheeger [19],

and Cheeger-Kleiner [20].) In other words, the distortion in these spaces makes them

locally quite different from many familiar spaces.

This fact alone motivates some interest in these spaces. For example, in the

context of general metric measure spaces, there is a program to classify spaces into

bi-Lipschitz equivalence classes. As such, a non-abelian Carnot group lies in a different

equivalence class than does Euclidean Rn and thus exemplifies a distinct geometry.

Recently, it was shown by LeDonne [42] that a sub-Riemannian space of topologi-

cal dimension n embeds in Rn+1 via a path isometry. This result shows that perhaps

sub-Riemannian spaces and Rn are not immeasurably different after all. This di-

rect analytic connection between sub-Riemannian spaces and Rn opens a promising

direction for proving new results in sub-Riemannian spaces.

There are other good reasons to study Carnot groups. Mitchell [47] showed metric

tangent cones of a general, regular sub-Riemannian space are isometric to Carnot

groups. (In sub-Riemannian analysis, the tangent cone is the replacement for the

concept of tangent space.) In hyperbolic geometry, Carnot groups were used in the

proof of Mostow’s Rigidity Theorem; also, the boundary of complex hyperbolic space
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can be identified with the Heisenberg group, a relatively simple Carnot group. In

PDE, Hörmander’s condition, which is satisfied by Carnot groups, leads to existence

of solutions of nonhomogeneous hypoelliptic equations; this overlap has led to some

interplay between the topics.

While Carnot groups are attractive locations for new developments, they are dif-

ficult settings for calculations. The Carnot-Carathéodory metric mentioned above

is defined somewhat abstractly, and precise formulas are not forthcoming in general.

(We often abandon this natural metric in favor of a more explicit “equivalent” metric.

However, even these metrics are unwieldy, due to the complicated nature of the group

multiplication and the desire that any equivalent metric we use be invariant under

left-multiplication.) Each non-abelian Carnot group has a unique arrangement of

non-commutativity among its directions, and this variation complicates establishing

specific analytic properties for a broad class of Carnot groups by direct computation.

To partially avoid this mess, one strategy is to work with two pairs of glasses: one

pair sees the space as Euclidean Rn and the other sees the Carnot structure. We have

great practice in establishing analytic properties in Euclidean Rn, so we exploit this by

creating implications of the form: “Euclidean hypothesis” implies “sub-Riemannian

conclusion.”

Examples of this strategy abound. In [8], Balogh, Tyson, and Warhurst showed

that sharp bounds on the Hausdorff and box dimensions of subset in Carnot groups

can be stated based on their respective dimensions as subsets in Euclidean Rn. Ar-

cozzi and Ferrari [2] showed that certain Euclidean smoothnesses of surfaces in R3

guarantee related levels of regularity (in both Carnot and Euclidean terms) for the

functions describing the Carnot-Carathéodory distance to the surfaces. As discussed

in Section 1.1, the main results in this dissertation also pursue this strategy.
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1.3 Organization

Chapter 2 provides the necessary background material, which can be broadly bro-

ken into three subjects: analysis on general metric spaces, geometric domains, and

Carnot groups. We establish conventions of notation in Section 2.1. Section 2.2 has

a few selected definitions from analysis on general metric spaces that will be needed.

Section 2.3 contains the definitions, examples, and important theorems for geometric

domains. Section 2.4 gives an introduction to Carnot groups and provides specific

information about the Heisenberg group.

In Chapter 3, we show “C1,α smoothness implies weak s-John” and various ancil-

lary results. After placing our result in context in Section 3.1, we use Section 3.2 to

recharacterize the weak s-John condition, making it easier to verify. In Section 3.3,

we consider a motivating example set in a model domain, introduce some technical

lemmas, and then prove the main theorem. Sections 3.4 and 3.5 contain noteworthy

examples: the first shows that the main theorem is sharp, and the second shows that

weak s-John and s-John differ in a setting where weak John and John do not.

Chapter 4 establishes an implication from weak s-John to Poincaré inequalities

in Carnot groups. Such an implication was previously shown in Rn by Haj lasz and

Koskela. Section 4.1 provides necessary background information and recalls the def-

inition of a Whitney decomposition in Rn. Section 4.2 offers a new proof of Haj lasz

and Koskela’s result in Rn. In Section 4.3, we extend this new approach to prove the

implication in general Carnot groups, utilizing a generalization of Whitney decompo-

sition appropriate to more general spaces.

Chapter 5 tells the story of dimensions of graphs in H1. In Section 5.1, we discuss

the current state of knowledge for this general question, including our result, which

provides an upper bound on the dimensions of graphs of Euclidean Hölder functions.

Section 5.2 looks at the background related to my result and summarizes my result

as applied to H1. After some preliminary definitions in Section 5.3, we prove theo-
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rems giving upper bounds on the lower box dimension of graphs of Euclidean Hölder

functions in general two-step Carnot groups.
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CHAPTER 2

Background

2.1 Notations and conventions

2.1.1 Notations

We will use the following notations in this dissertation. Let (X, d) be a metric space,

and let x ∈ X. We represent the open ball of radius r centered at x as B(x, r) and a

similar closed ball as D(x, r). We will write the ε-neighborhood of a set K as

Nε(K) := {x ∈ X | d(x, k) < ε for some k ∈ K}.

For a set Ω, we write its diameter as diam Ω and its cardinality as card Ω.

The distance between two sets A and B is denoted by

dist(A,B) := inf{d(a, b) | a ∈ A, b ∈ B}.

Similarly, the distance between a set A and a point x is written as

dist(A, x) := inf{d(a, x) | a ∈ A}.

Several different metrics on Rn will be used. The standard Euclidean distance

between two points x and y will be denoted d(x, y). Other metrics on Rn will be indi-

cated via a subscript (e.g., dK(x, y)). We will also use subscripts on the notations for
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balls, distance, and diameter (e.g., BK(x, r), distK(A,B), diamK Ω) when a different

metric is being used in their definitions.

For a curve γ(t), the notation γ|[a,b] denotes the subcurve of γ formed as t ranges

from a to b. For points x and y in the trace of γ, the subcurve of γ from x to y will

be written γx,y. (If γ should encounter x or y multiple times, then γx,y indicates the

subcurve from the first encounter with x to the final encounter with y.) The length

of a rectifiable arc γ is denoted by l (γ). Recall that the length of a rectifiable curve

γ with domain [a, b] is given by

l (γ) = sup

{∑
i

d(γ(ti), γ(ti+1))

∣∣∣∣∣ a = t1 < · · · < tn = b is a finite partition

}
.

The class C1,1(Ω,R) is the set of all differentiable functions from Ω ⊂ Rn into

R whose derivative is Lipschitz continuous. The class C1,α(Ω,R) is the set of all

differentiable functions from Ω ⊂ Rn into R whose derivative is Hölder continuous

with exponent α.

A C1,α domain is a domain whose boundary can be described locally as the graph

of a C1,α function. (A more formal statement is given in Definition 3.1.1.)

2.1.2 Conventions

For a curve γ, we will make no distinction between the curve and its trace, denoting

both as simply γ.

In general, we will use C to indicate a constant, and we will reuse this letter

from one instance to the next, even if the value of the constant has changed. In

circumstances where the dependence of a constant on certain data is being established,

we will use notation to indicate this dependence: for example, “C = C(k, α)” would

indicate the dependence of C on k and α. To help trace these dependencies during

the course of a proof, we may employ subscripts, primes, or tildes as needed.
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Finally, we will use the term domain to indicate an open, connected set.

2.2 Basic definitions from analysis on metric spaces

Let X be a metric measure space with metric d and measure µ, denoted (X, d, µ).

Definition 2.2.1. We say that µ is a doubling measure if there exists a constant

C > 0 such that, for every x ∈ X,

µ(B(x, 2r)) ≤ Cµ(B(x, r))

holds for all r > 0. We call (X, d, µ) a doubling space if µ is a doubling measure.

Definition 2.2.2. We call (X, d, µ) an Ahlfors Q-regular space if µ is a Borel regular

measure and there exists a constant C > 0 such that

rQ

C
≤ µ(B(x, r)) ≤ CrQ

holds for every x ∈ X and 0 < r < diamX.

Definition 2.2.3. The box dimension (or Minkowski dimension) of a bounded set Ω

is given by

dimB Ω = lim
δ→0

logMδ(Ω)

− log δ

where Mδ(Ω) is the number of boxes of diameter δ required to cover Ω, if the limit

exists. The lower box dimension, on the other hand, is always defined:

dimBΩ = lim inf
δ→0

logMδ(Ω)

− log δ
.

Remark 2.2.4. The preceding definition is flexible: the boxes of diameter δ may be

replaced by other sets of diameter δ, such as balls. See, for example, Falconer [24,

p. 43] for several equivalent definitions.
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Definition 2.2.5. The Hausdorff s-measure Hs of a set Ω ⊂ X is given by

Hs(Ω) = lim
δ→0

inf

{
∞∑
i=1

µ(Ui)
s

∣∣∣∣∣ {Ui} is a cover of Ω, diamUi < δ for each i

}
.

Since the infimum increases as δ decreases, this limit either exists or is infinite.

Definition 2.2.6. The Hausdorff dimension of Ω ⊂ X is given by

dimH Ω = inf{s ≥ 0 | Hs(Ω) = 0}.

Remark 2.2.7. For a bounded set Ω, we always have the inequality: dimH Ω ≤

dimBΩ.

2.3 Basic definitions and properties of geometric domains

The geometry of the boundary of a domain has implications for analytic questions

such as existence of solutions to partial differential equations on a given domain,

extension domains, compactness of function spaces, integrability of functions, and

so on. As such questions have been considered in various contexts, a hierarchy of

domains has arisen, classified by certain geometric behaviors of the boundary. One

rendition of this hierarchy is:

Lipschitz ⊂ NTA ⊂ uniform ⊂ John ⊂ s-John.

Variations of these types (uniformly John, weak s-John, etc.) could be placed in this

sequence, but this listing is sufficient to visualize the progression.
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2.3.1 John domains

The type of domain that came to be called a John domain was introduced by Fritz

John in 1961, in the context of approximations of bi-Lipschitz mappings [35]. The

term itself was first used in a paper by Martio and Sarvas [45].

Definition 2.3.1. Let Ω be a bounded domain in a metric space X. We say Ω is a

John domain if there exists a constant λ > 0 and a point x0 ∈ Ω (the John center)

such that, for every point x ∈ Ω, there exists a rectifiable curve γ : [0, 1] → Ω with

γ(0) = x and γ(1) = x0 and

dist(γ(t),Ωc) ≥ λ l
(
γ|[0,t]

)
(2.3.1)

for all t ∈ [0, 1].

Remarks 2.3.2. 1. The condition (2.3.1) is often referred to as a “twisted cone

condition.” The twisted cone is formed by taking the union of the balls

B
(
γ(t), λ l

(
γ|[0,t]

))
over all t ∈ [0, 1]. The condition amounts to the assertion

that this twisted cone lies in Ω. This recasting allows us to verify the condition

by checking that each of these balls individually lies in Ω.

2. The John constant λ places a uniform lower limit on how narrow the opening

angle of the twisted cone can be.

3. The specific choice of the John center x0 is not important. If Ω is a John domain

with center x0 and if x̃0 ∈ Ω, then Ω is also a John domain with center x̃0. The

John constant λ generally will depend upon the choice of center point and will

become worse (i.e., smaller) as the center point is taken closer to the boundary.

(An analogous result for weak s-John domains is given by Proposition 3.2.1.)

4. The requirement that γ be rectifiable can be problematic – a metric space may

have few (or no) rectifiable curves. Also, rectifiability is not preserved under
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quasiconformal mappings. To bypass such issues, alternate definitions have been

introduced which avoid the issue of rectifiability. Typically, the new definitions

have been shown to be equivalent to the original one in many circumstances.

(a) Martio and Sarvas showed [45, Lemma 2.7] that a bounded domain Ω ⊂ Rn

is John if and only if there exists a constant λ > 0 such that, for any x ∈ D,

there exists an arc γ in Ω from x to x0 which satisfies

γx,y ⊂ B

(
y,

1

λ
d(y,Ωc)

)

for all y ∈ γ. Capogna and Tang verified this equivalent definition applies

in the setting of the Heisenberg group [17, Proposition 2.6].

(b) Haj lasz and Koskela introduced the following definition [32, Chapter 9],

which also utilizes distance instead of length.

Definition 2.3.3. A bounded domain Ω is a weak John domain if there

exists a constant λ and a point x0 ∈ Ω such that, for every point x ∈ Ω,

there exists a curve γ : [0, 1]→ Ω with γ(0) = x and γ(1) = x0 and

dist(γ(t),Ωc) ≥ λ d(x, γ(t)) (2.3.2)

for all t ∈ [0, 1].

In [32, Theorem 9.6], Haj lasz and Koskela showed that weak John is equiv-

alent to John under rather general circumstances.

(c) Another noteworthy equivalent class of domains are Boman domains, i.e.,

domains which satisfy a Boman chain condition. The advantages of the

Boman chain condition are twofold: it is stated in terms of properties that

only require a metric, and it lends itself to constructive approaches.

In [15, Theorem 3.1] it was shown that John and Boman domains coincide
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(at least) when the domains are proper and bounded and satisfy a “strong

geodesic condition.”

5. It is worth noting, in passing, that one of the alternative definitions for John

allows us to define a John property for unbounded domains [41]. The idea is to

abandon using a John center point and instead require any two points be joined

by two twisted cones which avoid the boundary and meet at the midpoint of

the John curve.

2.3.2 s-John domains

This type of domain is a generalization of John domains; in particular, some outward-

pointing cusps are allowed. The concept was introduced in 1990 by Smith and Ste-

genga [54].

Remark 2.3.4. In a 1994 paper, Buckley and Koskela [14] refer to these as “John-α

domains”; this nomenclature was likely influenced by the general use of the term

“C-John domain” when the John constant needed to be explicitly referenced. Their

choice did not become widespread, so one should check the definitions in a paper to

identify which domain is really under consideration.

Definition 2.3.5. Let Ω be a bounded domain in a metric space X, and let s ≥ 1.

We say Ω is an s-John domain if there exists a constant λ > 0 and a point x0 ∈ Ω

such that, for every point x ∈ Ω, there exists a rectifiable curve γ : [0, 1] → Ω with

γ(0) = x and γ(1) = x0 and

dist(γ(t),Ωc) ≥ λ l
(
γ|[0,t]

)s
(2.3.3)

for every t ∈ [0, 1].
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Remarks 2.3.6. 1. A 1-John domain is a John domain, as the definitions coincide

when s = 1.

2. The s-John condition (2.3.3) is often referred to a “twisted cusp condition.”

As before, we may consider alternate definitions for s-John that are well-behaved

in general spaces. We introduce the following class of domains, naming it in analogy

with the weak John domains described above.

Definition 2.3.7. Let Ω be a bounded domain in a metric space X, and let s ≥ 1.

We say Ω is a weak s-John domain if there exists a constant λ > 0 and a point x0 ∈ Ω

such that, for every point x ∈ Ω, there exists a continuous curve γ : [0, 1] → Ω with

γ(0) = x and γ(1) = x0 and

dist(γ(t),Ωc) ≥ λ d(γ(t), x)s (2.3.4)

for every t ∈ [0, 1].

On occasion, we will use a scale-invariant version of this definition, where the

effect on the constant λ of rescaling the space X is explicitly separated from λ. The

only change required for a scale-invariant definition is to replace (2.3.4) by:

dist(γ(t),Ωc) ≥ λ(diam Ω)1−s d(γ(t), x)s (2.3.5)

for every t ∈ [0, 1].

Remarks 2.3.8. 1. In Proposition 3.2.1, we prove that, as with John domains,

the particular choice of center point for a weak s-John domain is unimportant.

2. In Section 3.5, we show with an example that s-John and weak s-John are not

equivalent in a setting where John and weak John are equivalent.
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2.3.3 Uniform domains

Definition 2.3.9. A domain Ω in a metric space is a uniform domain if there are

constants α and β such that, for each pair of points x, y in Ω, there exists a rectifiable

curve γ : [0, 1]→ Ω with γ(0) = x, γ(1) = y, that satisfies the two conditions:

i. l (γ) ≤ α d(x, y), and

ii. min
{

l (γ|[0,t]), l (γ|[t,1])
}
≤ β dist(γ(t),Ωc)

for all t ∈ [0, 1].

Remark 2.3.10. As was the case with John domains, one could choose to use any

of the many equivalent definitions of uniform domain (see [44,57]).

Martio and Sarvas introduced uniform domains in the same paper [45] in which

they named John domains. This connection was natural, as uniform domains are

similarly dependent upon purely metric conditions, and their conditions build upon

the strictures imposed by the John domain definition.

These refinements of John domains also possess the features that make John

domains fruitful: ease of verification and numerous, widespread analytic implications.

Uniform domains are extension domains for different function classes: quasiconformal

functions in R2 and locally Hölder functions [28], Sobolev functions [37], and functions

of bounded mean oscillation [29,36]; in the last case, uniform domains were shown to

be precisely the extension domains for BMO functions. It should seem quite natural

that geometric domains were put to this use: extending a function from a subset

to the entire space requires being able to control and predict the behavior of the

function near the boundary in order to preserve the function’s regularity. Controlling

the actual geometry of the boundary lets us control the behavior of the function.

Gehring [26,27] has collected a few dozen implications of being a uniform domain.

For example, uniform domains are linearly locally connected and satisfy a useful
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quasihyperbolic boundary condition, and the set of proper, simply connected uniform

domains in R2 can be identified with the set of quasidisks. (In particular, interactions

with complex analytic theory in R2 have made for a rich collection of results there.)

More recently, Bonk, Heinonen, and Koskela [13] showed a deep connection between

uniform domains and Gromov hyperbolic spaces.

2.4 Carnot groups

We now define Carnot groups. In Section 2.4.1, I will provide the background nec-

essary to make sense of this definition. Basic analytic tools in Carnot groups are

discussed in Section 2.4.2. Finally, we specifically consider the Heisenberg group in

Section 2.4.3.

Definition 2.4.1. A Carnot group is a homogeneous, connected, simply connected

Lie group with a nilpotent, graded Lie algebra.

Remark 2.4.2. Carnot groups are sometimes defined as having a stratified Lie al-

gebra instead of a graded Lie algebra. These terms are used interchangeably in the

literature.

2.4.1 Lie groups

We start by recalling the definition of a Lie group. The following definitions and basic

results can be found in most standard texts on Lie groups.

Definition 2.4.3. A Lie group is a group with a smooth manifold structure such

that the group operation and its associated inverse are C∞-smooth operations.

I will limit my discussion to real matrix Lie groups, i.e., Lie groups which can be

realized as a subgroup of GL(n,R) for some n, since all Carnot groups are of this
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type. Here, the group operation is matrix multiplication, and the inverse operation

is the matrix inverse.

Definition 2.4.4. The Lie algebra g of a matrix Lie group G is a real vector space

that is isomorphic to the tangent space at the group identity, along with an operation,

the Lie bracket [·, ·]:

[X, Y ] := XY − Y X

for all X, Y ∈ g.

Remark 2.4.5. The Lie bracket is bilinear, antisymmetric, and satisfies Jacobi’s

equation:

[[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

We will develop the Carnot groups by building them from their Lie algebras.

For this purpose, imagine that we are beginning with only a Lie algebra, i.e., an n-

dimensional real vector space with basis {Xi} and with values chosen for the n2 Lie

brackets {[Xi, Xj]} such that the conditions in the above remark are satisfied.

Definition 2.4.6. The exponential map for matrix Lie groups, exp: g→ G, is

exp(A) = I +
∞∑
i=1

1

i!
Ai.

The exponential map is the bridge from the Lie algebra to the Lie group. For a

connected, simply connected Lie group, exp is a diffeomorphism onto the group. So,

given a Lie algebra, we can generate the set of elements for the associated Lie group

via the exponential map.

Now, given elements exp(X) and exp(Y ) in the Lie group, we need to define the

Lie group operation, exp(X)·exp(Y ). The Baker-Campbell-Hausdorff (BCH) formula
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shows us how to infer this group operation from the Lie brackets:

exp(X) · exp(Y ) = exp

(
X + Y +

1

2
[X, Y ] +R(X, Y )

)
(2.4.1)

where R(X, Y ) is an infinite weighted sum of higher-order (i.e., iterated) brackets in

X and Y .

This would be an awkward definition for the group operation if R(X, Y ) was an

infinite sum. In the case of Carnot groups, the property of nilpotency saves the day.

Definition 2.4.7. A Lie algebra g is nilpotent if there exists an integer k such that

the k-iterated Lie brackets are zero for all choices of entries from g. A Lie group is

nilpotent if its Lie algebra is nilpotent.

For Carnot groups, the infinite sum R(X, Y ) has only finitely many non-zero

terms, which makes this a viable method of determining the group operation.

Carnot groups have additional structure on their Lie algebra, which will have

significant implications for the analytic features on the spaces. Specifically, their Lie

algebras are graded.

Definition 2.4.8. A Lie algebra g is graded (or stratified) if it admits a vector space

decomposition g = v1 ⊕ ... ⊕ vk where [v1, vj] = vj+1 for all j ≥ 1, with vj = {0} for

j > k. For such a graded Lie algebra, the step or depth of the grading is k.

Remark 2.4.9. Note that graded Lie algebras are necessarily nilpotent.

Definition 2.4.10. The operation of multiplication from the left in a Carnot group

is called left-translation. We write Lg to denote left-translation by g ∈ G. Hence,

Lg(h) := g · h, for every h ∈ G.

Remark 2.4.11. The name “left-translation” is intended to be suggestive. In Eu-

clidean Rn (a simple example of a Carnot group), left-multiplying by the element
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(x1, . . . , xn) translates the space by the vector 〈x1, . . . , xn〉. In any Carnot group,

left-translation is the fundamental method for re-centering the space.

Definition 2.4.12. An operation φ which acts on subsets of a Lie group G is left-

invariant if φ(H) = φ
(
Lg(H)

)
for any element g ∈ G and any subset H ⊂ G.

Remark 2.4.13. In a connected, simply connected Lie group, we may view the Lie

algebra as the set of all left-invariant vector fields on the manifold.

We will explicitly demonstrate how this equivalent form is generated for a simple

Carnot group, the Heisenberg group, in Section 2.4.3. (Essentially, we will use left-

multiplication to carry a vector from the tangent space at the identity to vectors

elsewhere in the space. Since the vector field was created using left-translation, it

will be left-invariant.)

Definition 2.4.14. A Lie group G is homogeneous if left-translation is transitive on

the group: that is, for every two elements x, y ∈ G, there exists an element g ∈ G

such that Lg(x) = y.

The effect of being homogeneous is, roughly speaking, that no point is distin-

guished. Every point is just a left-translation different from any other, which also

means they all have a similarly structured tangent space, observed by left-translating

the tangent space at the origin to each point in the space.

Left-invariance is a fundamentally useful tool in Carnot groups. If a point g ∈ G

is under consideration, we may left-translate the space by g−1 and do our work at the

origin. This manipulation would not be useful if our analytic results were disrupted

by this action; indeed, we expressly choose our measures, metrics, norms, etc. to be

left-invariant for this reason.

Example 2.4.15. Euclidean Rn is a one-step Carnot group. The Lie brackets in its

Lie algebra are all zero, which makes the space abelian. The converse is also true: an
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abelian Carnot group is Euclidean Rn for some n. Consequently, most of our interest

is in non-abelian Carnot groups.

One more basic operation on a graded Lie algebra is dilation, which we can push

forward to an operation on the group via the exponential map.

Definition 2.4.16. The dilation δ̃t : g → g, t > 0, is a Lie algebra automorphism

such that δ̃t(X) := tiX, where X ∈ vi. In the Lie group, we have the related dilation

δt : G→ G, defined as δt := exp ◦ δ̃t ◦ exp−1.

Remark 2.4.17. Once you have defined the dilation on v1 as mapping X to tX,

which is natural, the definition on vi, i > 1, is completely determined by dilation

being a Lie algebra automorphism (such maps must interact in a specific manner

with the Lie brackets, and the given definition follows).

2.4.2 Analysis on Carnot groups

With the underlying Lie structure of the Carnot groups now established, we can define

analytic concepts for the space that interact well with its Lie structure. Consider a

Carnot group G with Lie algebra g. As in the definition in the previous section, let

v1 ⊕ ...⊕ vk be a stratification of the Lie algebra g. Here we will consider v1, not as

a subspace of T0(G), but as the collection of left-invariant vector fields on G created

from the vectors in that subspace.

Notation 2.4.18. Let p ∈ G. We will write (v1)p to indicate the subspace of Tp(G)

spanned by the left-invariant vector fields in v1 evaluated at p.

Definition 2.4.19. The horizontal distribution on G is the linear subbundle HG of

the tangent bundle TG given by

HG = {(p, V ) | p ∈ G, V ∈ (v1)p}.
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Definition 2.4.20. A curve γ : [a, b] → G is horizontal if γ′(t) ∈ (v1)γ(t) for all

t ∈ [a, b]. In other words, γ is horizontal if it is tangent to the horizontal distribution

everywhere.

Remark 2.4.21. In the above definition, it is sufficient that γ be piecewise C1.

Fix a non-degenerate, positive definite inner product 〈·, ·〉H defined on v1.

Definition 2.4.22. Let γ : [a, b]→ G be an absolutely continuous, horizontal curve.

The length of γ is given by

l (γ) =

∫ b

a

(〈
γ′(t), γ′(t)

〉
H

)1/2

dt.

Definition 2.4.23. A curve γ : [a, b] → G is a geodesic in G if it is the shortest

horizontal curve joining γ(a) and γ(b).

It is clear that we are distinguishing the first level of the stratification; the purpose

is illuminated by the following definition and theorem.

Definition 2.4.24. Let M be a manifold, and let K ⊂ TM be a distribution (i.e., a

linear subbundle). Let {Xi} be a local frame for K. Then K is bracket-generating if

{Xi} together with all iterated Lie brackets of elements from {Xi} span TM .

Theorem 2.4.25 (Chow-Rashevsky). If K is a bracket-generating distribution on a

connected manifold M , then any two points in M can be connected with a horizontal

(i.e., tangent to K) curve.

From the definitions, we can see that v1 in our stratification is bracket-generating,

and hence any two points in G can be connected by some horizontal curve. This fact

leads us to define a natural distance in G.

Definition 2.4.26. The Carnot-Carathéodory metric dCC on G is

dCC(p, q) := inf{l (γ) | γ horizontal, joining p to q}
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for points p, q ∈ G.

Remark 2.4.27. The metric dCC respects dilations of G:

dCC
(
δt(p), δt(q)

)
= t dCC(p, q)

for all p, q ∈ G.

Remark 2.4.28. On Carnot groups, there is always a bi-invariant measure defined,

the Haar measure. For a Carnot group G with topological dimension n, this measure

is equivalent to Lebesgue n-measure. The Haar measure respects dilations, which

leads to the following useful consequences:

• Carnot groups are Ahlfors Q-regular spaces, where

Q =
k∑
i=1

i dim vi.

The value Q is called the homogeneous dimension of the Carnot group.

• For any Carnot-Carathéodory ball BCC(x, r) in G and Haar measure µ, we have

µ
(
BCC(x, r)

)
= rQ µ

(
BCC(0, 1)

)
.

Definition 2.4.29. Fix a basis {X1, ..., Xn} for the Lie algebra g. We define canonical

coordinates of the first kind in G as (a1, ..., an)↔ exp(a1X1 + ...+ anXn).

2.4.3 The Heisenberg group

Now we will focus more precisely on the Heisenberg group, which will be the setting

for the work in Chapter 3.

Definition 2.4.30. The nth Heisenberg group Hn has topological dimension 2n + 1,

and its non-trivial Lie brackets are [Xi, Yi] = T for all i ∈ 1, ..., n for the Lie algebra

basis {X1, ..., Xn, Y1, ..., Yn, T}.
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Remark 2.4.31. We see that Hn has grading v1 = span{X1, ..., Xn, Y1, ..., Yn} and

v2 = span{T}, hence all Heisenberg groups are two-step Carnot groups.

We will concern ourselves primarily with the first Heisenberg group, H1. An al-

ternate way to define H1 is as the unique non-abelian Carnot group of topological

dimension three. For topological dimensions one and two, no non-abelian Carnot

groups exist, which makes H1 a common initial testing ground for exploring conse-

quences of non-commutativity.

Let {X, Y, T} be a basis for the Lie algebra h of H1. Note [X, Y ] = T is the

only non-trivial Lie bracket, and h has grading v1 = span{X, Y } and v2 = span{T}.

Consequently, dilations on h by a factor of r will scale X and Y by r and T by r2.

This yields the dilation function in the group H1: δr(x, y, t) = (rx, ry, r2t). We define

an inner product 〈·, ·〉H on v1 in the obvious way:

〈a1X + b1Y, a2X + b2Y 〉H := a1a2 + b1b2. (2.4.2)

If we use canonical coordinates of the first kind on H1 (see Definition 2.4.29), we

obtain the group operation:

(x, y, t) · (x′, y′, t′) =

(
x+ x′, y + y′, t+ t′ +

1

2
(xy′ − yx′)

)
. (2.4.3)

Remark 2.4.32. Left-translation Lg in H1 is an affine map. Let g = (x, y, t) and

p = (x′, y′, t′). Then the group operation given above gives:

Lg(p) =


1 0 0

0 1 0

−y/2 x/2 1



x′

y′

t′

+


x

y

t

 .

Note that the t-direction is the only one that experiences a skew under this map.
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Notation 2.4.33. There are two common alternate notations for points in H1.

1. The first alternate notation uses x1, x2, and x3 in place of x, y, and t, respec-

tively.

2. The second employs complex notation. Let the xy-plane be viewed as C, and

set z = x + iy; the value t remains a real number. Then points in H1 have the

form (z, t), and the group operation (2.4.3) becomes:

(z, t) · (z′, t′) =

(
z + z′, t+ t′ − 1

2
Im(z · z̄′)

)
.

Remark 2.4.34. As mentioned in Remark 2.4.13, the Lie algebra of a Carnot group

is isomorphic to the tangent space at the identity, but is also isomorphic to the set

of left-invariant vector fields in the group. We will now take the time to demonstrate

this equivalence explicitly in H1. Note that the identity in the group is the origin,

and a basis for the tangent space there would be: X = ∂
∂x

, Y = ∂
∂y

, and T = ∂
∂t

.

Consider X, and choose a point g = (x, y, t) ∈ H1. First, we represent the vector

in a form which lies in the group. Let γ : [−1, 1] → H1, γ(s) = (s, 0, 0). Note that

γ(0) = 0 and γ′(0) = ∂
∂x

.

We define the left-translation of X essentially by pulling back left-translation in

the group:

(Lg)∗(X) :=
d

ds
Lg(γ(s))

∣∣∣∣
s=0

.

With this straightforward calculation, we find X = ∂
∂x
− 1

2
y ∂
∂t

. Similar calculations

for Y and T yield their left-invariant vector fields:

X =
∂

∂x
− y

2

∂

∂t
,

Y =
∂

∂y
+
x

2

∂

∂t
,
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T =
∂

∂t
.

Remark 2.4.35. A consequence of the descriptions for X, Y , and 〈·, ·〉H on HH1 is

that the length of a horizontal curve is equal to the length of its orthogonal projection

into the xy-plane.

Example 2.4.36. Geodesics in H1 are both known and easily described, which is

unusual for Carnot groups. Consider a circle in R2 that passes through the origin,

and let c(t) =
(
x(t), y(t)

)
describe an arc of this circle. Let z(t) be a solution of

the ODE z′(t) = 1
2

(
x(t)y′(t) − x′(t)y(t)

)
. Then the curve γ(t) =

(
x(t), y(t), z(t)

)
is a geodesic in H1. The arbitrary choice of integration constant when finding z(t)

indicates that any geodesic can be shifted vertically and remain a geodesic (albeit

between new endpoints).

In the limiting case where the radius of the circle is infinite, c(t) is a line through

the origin, and the related curve γ(t) is again a geodesic.

For an insightful derivation of this example, see [48, Chapter 1].

Remark 2.4.37. In practice, the CC metric can be awkward to use. For example,

the unit ball using this metric, BCC(0, 1), is unusual to our Euclidean eyes: it is not

convex and has two cusps. Explicitly describing the geodesics required is possible,

but cumbersome.

Therefore, we often utilize two other metrics which are bi-Lipschitz equivalent to

the CC metric, are left-invariant and respect dilations. Both metrics take the form

d(p, q) = ‖p−1 · q‖, where the norm ‖ · ‖ is defined:

‖(x, y, t)‖K =
(
(x2 + y2)2 + t2

)1/4
for the Korányi (or gauge) norm;

‖(x, y, t)‖M = max
{

(x2 + y2)1/2, |t|1/2
}

for the max norm.
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In complex notation, the norms are

‖(z, t)‖K = (|z|4 + t2)1/4 and ‖(z, t)‖M = max
{
|z|, |t|1/2

}
.

These “norms” are not norms, strictly speaking, since H1 is not a vector space.

However, in the spirit of Belläıche [9], we may view the Carnot group as similar

to a vector space, using the group operation as “addition” and dilations as “scalar

multiplication.”

For reference, we give the explicit forms of these metrics, where p = (x, y, t) and

q = (x′, y′, t′):

dK(p, q) =
[(

(x′ − x)2 + (y′ − y)2
)2

+ (t′ − t)2
]1/4

(Korányi metric) (2.4.4)

dM(p, q) = max
{(

(x′ − x)2 + (y′ − y)2
)1/2

, |t′ − t|1/2
}

(max metric) (2.4.5)

(Note that p−1 = (−x,−y,−t).)

Definition 2.4.38. A homogeneous norm is a continuous function ‖ · ‖ : G→ R that

respects the dilation and satisfies ‖p‖ = ‖p−1‖.

Both of the norms given above are homogeneous; also, a norm defined using the

CC metric, ‖p‖CC := dCC(0, p), is homogeneous.

Remark 2.4.39. Note that (H1, dCC) is Ahlfors 4-regular, hence it has Hausdorff

dimension four. The Haar measure on H1 is the Lebesgue 3-measure, but one may

equivalently use the Hausdorff 4-measure.

Remark 2.4.40. Finally, let us enumerate the class of isometries on H1. The class

can be decomposed into three basic types of maps:

• left-translations Lg, g ∈ G;

• rotations about the t-axis by any angle; and
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• a “reflection” which sends (x, y, t) to (x,−y,−t).

(The last map is equivalent to rotating about the x axis by 180◦.) All three types of

maps are isometries, and compositions of these maps generate all possible isometries

on H1, as noted in [3]. (This fact appears somewhat obscurely in [39] and more

explicitly in [56, Section 10], but the idea may predate both references.)
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CHAPTER 3

Euclidean C1,α implies weak s-John in H1

3.1 Motivation and historical context

We begin with two important definitions.

Definition 3.1.1. A domain Ω ⊂ Rn is a C1,α domain if, for every point x on the

boundary of Ω, there exists a neighborhood V of x and a function Φ ∈ C1,α(V,R)

such that Ω∩ V = {y ∈ V | Φ(y) > 0}. We say Ω is an Euclidean C1,α domain if the

regularity of Φ is established using the Euclidean metric in its domain and range.

Definition 3.1.2. (i) Let V ⊂ Rn be bounded. A function Φ: V → R is a C1,α

function if Φ ∈ C1 and the following norm is finite:

‖Φ‖C1,α := sup
x∈V
|Φ(x)|+

n∑
i=1

sup
x∈V

∣∣∣∣ ∂Φ

∂xi
(x)

∣∣∣∣+
n∑
i=1

sup
x,y∈V
x 6=y


∣∣∣ ∂Φ
∂xi

(x)− ∂Φ
∂xi

(y)
∣∣∣

d(x, y)α

 .

(ii) The partial derivatives of a C1,α function satisfy a Hölder condition with ex-

ponent α. In analogy with usual Hölder functions, we will associate a Hölder

constant C0 with a C1,α function by using the final group of values in the norm:

C0 :=
√
n max

1≤i≤n

 sup
x,y∈V
x6=y


∣∣∣ ∂Φ
∂xi

(x)− ∂Φ
∂xi

(y)
∣∣∣

d(x, y)α


 . (3.1.1)

Remark 3.1.3. The definition of C1,α functions can be found, for example, in [23,

Section 5.1]. My definition for the Hölder constant of such a function has been chosen
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for convenience.

Remark 3.1.4. Euclidean C1,1 domains and C1,1 functions can be defined in a similar

fashion by taking α = 1.

In a 1998 paper by Capogna and Garofalo [16], we find two theorems which con-

clude a domain is “non-tangentially accessible” (NTA) under assumptions about the

Euclidean regularity of its boundary. (Recall that NTA domains are a type of geo-

metric domain that is weaker than Lipschitz domains, but stronger than uniform and

John domains.)

Theorem 3.1.5 (Capogna-Garofalo). Let G be a Carnot group of step 2. If Ω ⊂ G

is a bounded open set with Euclidean C1,1 boundary having cylindrical symmetry in a

neighborhood of every characteristic point, then Ω is NTA under the CC metric.

Theorem 3.1.6 (Capogna-Garofalo). If Ω ⊂ R2n+1 is a bounded, Euclidean C1,1

domain, then Ω is an NTA domain in (Hn, dCC).

The second theorem does not appear in the paper but can be constructed from

the pieces therein; specifically, combining Propositions 9 and 10 with Proposition 4.2

from the 1995 paper by Capogna and Tang [17], the theorem follows.

One of the major results in a subsequent paper by Monti and Morbidelli [49,

Theorem 3.2] is the following, which supersedes both of these:

Theorem 3.1.7 (Monti-Morbidelli). Let Ω ⊂ Rn be a bounded, Euclidean C1,1 do-

main. If (Rn, dCC) is a Carnot group of step two, then Ω is an NTA domain in

(Rn, dCC).

They show that this result is sharp in two aspects. First, there exists a bounded

domain Ω ⊂ R4 with Euclidean C∞ boundary which fails to be a John domain in a

3-step Carnot group on R4 (specifically, the “Engel group” in R4) [49, Example 5.3].
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Second, for any α ∈ (0, 1), there exists a bounded domain Ω ⊂ R3 with Euclidean

C1,α boundary which fails to be a John domain in H1 [49, Example 5.1].

Taking particular notice of the second aspect, we see that not only are C1,α do-

mains potentially not NTA, but they can fail the much weaker requirements to be

John domains. In Section 3.3 below, I extend Monti and Morbidelli’s theorem into

the class of C1,α domains (α < 1) using weak s-John domains (see Definition 2.3.7).

Specifically, we will prove the following:

Theorem 3.1.8. Let Ω be a bounded, Euclidean C1,α domain in R3. Then Ω is a

weak s-John domain in H1 for s ≥ 2/(α + 1).

In Section 3.4, we demonstrate sharpness of this result with an example of a

bounded, Euclidean C1,α domain in R3 which fails to be weak s-John for any s <

2/(α + 1).

3.2 Results to simplify verification of a weak s-John domain

We begin by establishing the following result, which is analogous to a similar state-

ment about John domains. We show that, if a domain is weak s-John, then any point

in the domain may be used as the weak s-John center.

Proposition 3.2.1. Let Ω be a bounded domain in a metric space (X, d). Assume

Ω is a weak s-John domain with weak s-John center x0 and weak s-John constant λ.

Let x1 ∈ Ω, and let ε ∈ (0, 1) such that dist(x1, ∂Ω) = ε diam Ω. Then Ω is a weak

s-John domain with weak s-John center x1 and weak s-John constant λ′ = λ′(λ, s, ε).

Proof. Let D = diam Ω, and choose x ∈ Ω. Let γ1 : [0, 1] → Ω be a weak s-John

curve from x1 to x0, and let γ2 : [0, 1]→ Ω be a weak s-John curve from x to x0. We
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now define a curve from x to x1 by concatenating the curves γ2 and γ−1
1 :

γ(t) =


γ2(2t), if 0 ≤ t ≤ 1/2;

γ1(2− 2t), if 1/2 < t ≤ 1.

We claim γ is a weak s-John curve with weak s-John constant λ′ = min
{
λ
(
ε
2

)s
, ε

2

}
.

Proving this claim will complete the proof. We proceed by considering γ in three

parts.

Let t ∈ [0, 1/2]. Since γ2 is a weak s-John curve and λ′ ≤ λ, we get

dist(z,Ωc) ≥ λD1−sd(x, z)s ≥ λ′D1−sd(x, z)s

for every point z = γ(t), t ∈ [0, 1/2].

Suppose there exists t ∈ (1/2, 1] such that z := γ(t) satisfies d(x1, z) >
1
2

dist(x1, ∂Ω) =

εD
2

. Then we verify the weak s-John condition:

dist(z, ∂Ω) ≥ λD1−s d(x1, z)
s as γ1 is a weak s-John curve

>
(ε

2

)s
λD

≥
(ε

2

)s
λD1−s d(x, z)s

≥ λ′D1−s d(x, z)s.

Finally, let t ∈ (1/2, 1] such that z := γ(t) satisfies d(x1, z) ≤ 1
2

dist(x1, ∂Ω) = εD
2

.

We again verify the weak s-John condition:

dist(z, ∂Ω) ≥ εD

2
≥ λ′D ≥ λ′D1−s d(x, z)s.

The focus of the remainder of this section is to localize the verification of being

weak s-John to a neighborhood of the boundary. This localization will be necessary
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for the proof of Theorem 3.3.1 since C1,α is expressed as a local condition, holding on

neighborhoods of boundary points.

It is reasonable to presume that such a result could hold. After all, the essence

of the condition for John and s-John domains is ensuring that we can “escape the

boundary efficiently enough” as we journey to the center point. If points near the

boundary can do it, one imagines that points farther into the interior should have no

trouble. It is also reasonable that we might only need to verify that the weak s-John

curve from a point near the boundary satisfies the weak s-John condition for a short

distance, enough to get a bit away from the boundary. The condition usually becomes

easier to satisfy the farther we get into the interior, so it seems that we should only

be truly concerned about the initial progress of the curve.

We will now establish rigorously that it suffices simply to check points lying within

δ of the boundary, for any fixed δ > 0, and that we only need to verify the escape

curves satisfy the weak s-John condition until they are a distance δ from the boundary.

This is proven as Corollary 3.2.13, the culmination of several incremental advances.

Remark 3.2.2. This localization is not achieved without cost. A consequence of

only checking points near the boundary is that the weak s-John constant produced

is not optimal and gets worse the smaller δ is. However, we usually have no need

for the constant, seeking mainly the classification of the domain as weak s-John or

not. (For example, the implication in the next chapter, that weak s-John leads to

certain Poincaré inequalities, depends quantitatively on s but not on the weak s-John

constant.)

First, we must introduce a connectivity condition, which we will then work very

hard to remove.

Notation 3.2.3. Recall that Nε(K) represents the (open) ε-neighborhood of a set

K. Additionally, we define the following notations for this section of the thesis. Let

Ω be a bounded domain in a metric space. We define:
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• the ε-core of Ω as A(ε) := {x ∈ Ω | dist(x, ∂Ω) > ε}, and

• the δ-edge of Ω as E(δ) := Ω ∩Nδ(∂Ω).

Finally, recall the scale-invariant weak s-John condition, given by (2.3.5).

Lemma 3.2.4. Let Ω be a bounded domain in a metric space (X, d). Assume there

exists ε ∈ (0, 1/2) such that A := A(ε diam Ω) is a non-empty, pathwise-connected

set. If there exists a curve γ from x ∈ Ω to x0 ∈ A satisfying (2.3.5) with weak

s-John constant λ, then for any x̃0 ∈ A there exists a curve γ̃ from x to x̃0 satisfying

(2.3.5) with weak s-John constant λ̃ = λ̃(λ, ε).

Proof. Let γ̃ be the curve formed by concatenating γ and γ′, where γ′ is a path in A

from x0 to x̃0. As γ is a weak s-John curve, we have d(z, ∂Ω) ≥ λ(diam Ω)1−s d(x, z)s

for all z ∈ γ.

Now consider z ∈ γ′. We have d(z, ∂Ω) ≥ ε diam Ω ≥ ε(diam Ω)1−s d(z, x)s. So,

the weak s-John condition is satisfied here with constant ε.

Then λ̃ = min{λ, ε} is a valid weak s-John constant for γ̃.

Suppose we wish to show Ω is a weak s-John domain. Since we proved in Proposi-

tion 3.2.1 that the center point can be arbitrarily chosen, we may choose a prospective

weak s-John center in the interior region A. It is clear from Lemma 3.2.4 that if it

is possible to “escape” from points near the boundary into A with a uniform weak

s-John constant, then we can extend each escape curve to the chosen center point in

A with uniform control over the ultimate weak s-John constant, verifying the domain

is weak s-John. We formally state this consequence in the following corollary.

Corollary 3.2.5. Let Ω be a bounded domain in a metric space X. Assume there

exists ε ∈ (0, 1/2) such that A := A(ε diam Ω) is a non-empty, pathwise-connected

set. If there exists λ > 0 such that, for every point x ∈ Ω− A, there is a curve from

x to some point of A satisfying (2.3.5) with weak s-John constant at least λ, then Ω

is a weak s-John domain.
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Remarks 3.2.6. 1. This corollary is the weak s-John version of a similar result

regarding John domains [49, Proposition 2.4].

2. Note that, for different points in Ω−A, the endpoints in A of their weak s-John

curves need not be the same. (In the proof of Lemma 3.2.4, the weak s-John

constant of the extension to γ̃ did not depend on the first endpoint in A.)

3. It can occur that there exists an ε-core A(ε) which is non-empty and path-

connected, but such that A(ε′) is not path-connected for all ε′ < ε.

4. Also, there exist John domains (hence also weak s-John) for which A(ε diam Ω)

is non-empty and not path-connected for all ε ∈ (0, 1/2), which means that this

requirement is sufficient but not necessary.

The last two remarks motivate the refinement presented in the next lemma.

Lemma 3.2.7. Let Ω be a bounded domain in a metric space X. Assume there exist

ε ∈ (0, 1/2) and ε̃ ∈ (0, ε] such that A := A(ε diam Ω) is a non-empty set with the

property: every pair of points in A are connected by a path in A(ε̃ diam Ω). If there

exists a curve γ from x ∈ Ω to x0 ∈ A satisfying (2.3.5) with weak s-John constant λ,

then for any x̃0 ∈ A there exists a curve γ̃ from x to x̃0 satisfying (2.3.5) with weak

s-John constant λ̃ = λ̃(λ, ε̃).

Proof. The proof is as for Lemma 3.2.4, replacing all appearances of ε in the calcula-

tions with ε̃.

We now get a refined corollary, as well.

Corollary 3.2.8. Let Ω be a bounded domain in a metric space X. Assume there

exists ε ∈ (0, 1/2) and ε̃ ∈ (0, ε] such that A := A(ε diam Ω) is a non-empty set with

the property: every pair of points in A are connected by a path in A(ε̃ diam Ω). If

there exists λ > 0 such that, for every point x ∈ Ω − A, there is a curve from x to



39

some point of A satisfying (2.3.5) with weak s-John constant at least λ, then Ω is a

weak s-John domain.

We have established a need for an ε-core which is connected by paths lying in-

side some (potentially) larger ε̃-core. We show in a fairly general setting that this

requirement is satisfied by any core set.

Proposition 3.2.9. Let Ω be a path-connected, bounded domain in a doubling, geodesic

metric space (X, d). Let ε > 0, and let A := A(ε). Then there exists ε̃ > 0 such that

the path-components of A are path-connected in A(ε̃).

Proof. Let {Pα}α∈I be the path-components of A. First, we show that there are only

finitely many components Pα that are (pairwise) not path-connected to each other

inside A(ε/2).

Let x ∈ Pα1 and y ∈ Pα2 be points in two such path-components of A. We

immediately note that B(x, ε) ⊂ Ω and B(y, ε) ⊂ Ω. Further, for every curve γ

joining x to y in Ω, there must exist some point z ∈ γ such that dist(z, ∂Ω) < ε/2

(else there would be a curve path-connecting Pα1 and Pα2 in A(ε/2)).

We briefly assume that d(x, y) < ε/2, and show why this cannot occur. If it did,

then a geodesic from x to y would lie inside B(x, ε/2), and hence it would entirely lie

at least ε/2 from the boundary of Ω. This would contradict the previously established

fact about the existence of z ∈ γ, and therefore cannot occur.

So, it is necessary that d(x, y) ≥ ε/2. As X is a doubling space and Ω is bounded,

a standard argument shows that there are only finitely many pairs of points in Ω that

can be pairwise at least ε/2 distant from each other. Hence, there are only finitely

many path-components of A that are still not path-connected in A(ε/2).

To finish our proof, we note that, for this finite collection {Pαi}ni=1, the Pαi are all

path-connected in Ω, and hence there exists an exact value ε̃ > 0 at which the first Pαi

becomes path-disconnected from the others in A(2ε̃). (The value ε̃ is distinct from
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zero since the collection {Pαi}i is finite.) So, in A(ε̃), the entire collection {Pα}α∈I is

path-connected.

Remark 3.2.10. The conditions placed on the metric in Proposition 3.2.9 are sat-

isfied, for example, by the Euclidean metric on Rn or the CC metric associated with

any Carnot structure on Rn. Also, any domain in these spaces will necessarily be

path-connected, since these spaces are locally path-connected.

We can require weaker hypotheses on the metric. Close inspection of the proof of

Proposition 3.2.9 reveals that the geodesic condition on the space can be weakened to

a connectivity condition such as the following, from the monograph by Haj lasz and

Koskela [32, Proposition 9.6]. (Recall that, given a ball B(x, r), the ball δB denotes

B(x, δr).)

Definition 3.2.11. Let Ω be a bounded domain in a doubling metric space (X, d).

We say Ω satisfies a H-K connectivity condition if there exists a constant δ ≥ 1 such

that for every ball B with δB ⊂ Ω, every two points x, y ∈ B can be connected by a

rectifiable curve which is

(i) contained in δB, and

(ii) of length less than or equal to δ d(x, y).

The purpose of the geodesic condition in the proof of Proposition 3.2.9 was to

guarantee that if x and y are close to each other, then there is a curve joining them

which is far from the boundary. We can adapt the proof as follows: for the set

B(x, ε/2), which is contained in Ω, the H-K connectivity condition says that any two

points in B(x, ε/2δ) can be connected by a (rectifiable) curve contained in B(x, ε/2).

So, if d(x, y) < ε/2δ, then we arrive at our contradiction, as before.

This weakening of the hypothesis actually offers a substantial improvement as we

no longer need actual length metrics but can use metrics which are, for example,
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equivalent to a length metric, such as the Korányi metric (in place of the CC metric)

in a Carnot group.

As a final observation, note that we actually only required part (i) of the H-K

connectivity condition. Let me formally restate the preceding discussion, for reference.

Proposition 3.2.12. Let Ω be a path-connected, bounded domain in a doubling metric

space (X, d). Further, assume Ω satisfies part (i) of the H-K connectivity condition.

Let ε > 0, and let A := A(ε). Then there exists ε̃ > 0 such that the path-components

of A are path-connected in A(ε̃).

Corollary 3.2.13. Let Ω be a path-connected, bounded domain in a doubling metric

space (X, d). Further, assume Ω satisfies part (i) of the H-K connectivity condition.

Let ε ∈ (0, 1/2). Then to conclude that Ω is a weak s-John domain, it suffices to

show that there exists λ > 0 such that, for every point x in the edge set E(ε diam Ω),

there is a curve in Ω from x to some point of A(ε diam Ω) satisfying (2.3.5) with weak

s-John constant at least λ.

Proof. We check that E(ε diam Ω) is connected by weak s-John curves into the interior

set A(ε diam Ω). The path components of A( ε
2

diam Ω) are path-connected in A(ε̃),

as in the conclusion of Proposition 3.2.12, which means we can apply Corollary 3.2.8

to conclude that Ω would be a weak s-John domain.

Remark 3.2.14. As noted in the discussion preceding Proposition 3.2.12, the com-

plicated conditions on the space given in the hypotheses are satisfied, for example,

by any doubling space with a metric equivalent to a length metric.

If we take s = 1, this corollary provides a localization for weak John domains.

By [32, Proposition 9.6], if we amend the hypotheses of Corollary 3.2.13 to include the

entire H-K connectivity condition, then we are in a setting where John domains and

weak John domains are equivalent. This yields a result that localizes the verification

of the John condition to a neighborhood of the boundary. While we are aware of a
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similar result for uniform domains [49, Proposition 2.5], this may be a new result for

John domains, so we will state it here for reference.

Corollary 3.2.15. Let Ω be a path-connected, bounded domain in a doubling metric

space (X, d). Further, assume Ω satisfies the H-K connectivity condition. Let ε ∈

(0, 1/2). Then to conclude that Ω is a John domain, it suffices to show that there

exists λ > 0 such that, for every point x in the edge set E(ε diam Ω), there is a curve

in Ω from x to some point of A(ε diam Ω) satisfying the John condition (2.3.1) with

John constant at least λ.

3.3 Main theorem

The proof of the following theorem is the goal of this section.

Theorem 3.3.1. Let Ω be a bounded, Euclidean C1,α domain in R3. Then Ω is a

weak s-John domain in H1 for s ≥ 2/(α + 1).

To clarify the structure of the proof, we first will introduce a motivating example

which suggests our approach. Then we will discuss the setup for the proof and present

a series of technical lemmas that are necessary to pursue this approach rigorously.

Finally, we will give the proof itself.

3.3.1 Motivating example

Example 3.3.2. Let us consider a model C1,α domain. Based on this model do-

main, we will understand why the Theorem 3.3.1 is reasonable and also what our

fundamental strategy will be for its proof.

Let Ω ⊂ H1 be a domain, given near the origin by the set
{

(z, t)
∣∣ |z|1+α < t < 1

}
.

(Recall the use of complex notation in the Heisenberg group, introduced in Notation

2.4.33.) This is the same domain as appears in [49, Example 5.1]; there, it was noted

that this is a C1,α domain.
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Let s = 2/(1 + α), and consider the point p = (0, ε), ε > 0, on the t-axis. We will

construct (the beginning of) a weak s-John curve from p. As we saw in Section 3.2,

we are only concerned about the weak s-John curves escaping from points near the

boundary, so we may assume that ε is small.

Why is this model domain — and this point p — a good test for the weak s-

John condition? The boundary of the model domain is tangent to the horizontal

distribution at the origin. This tangency makes it costly (in terms of distance) to

move away from the boundary when starting near the origin. The cheapest directions

to travel are horizontal directions, but those are ineffective ways to gain distance from

the boundary where such tangency occurs. So, this setup gives a worst-case scenario

for trying to satisfy the weak s-John condition in H1, meaning success here would

strongly suggest that the domain is weak s-John.

To simplify our calculations, we will use the max metric (2.4.5) in H1.

Note that, by the symmetry of Ω, an optimal weak s-John curve from p towards

the interior of Ω will follow the t-axis. (This curve maximizes the distance to the

boundary over the set of points lying a fixed distance from p. Under the max metric,

this set of points is a cylinder with top and bottom. The point on this cylinder furthest

from the boundary lies above p on the t-axis.) Let the curve γ(u) := (0, ε+u) be our

candidate for a weak s-John curve leaving p.

Fix u > 0, u small; we will verify the weak s-John condition holds at γ(u). Our

major task is to determine the distance from γ(u) to the boundary. Given (z, t) ∈ ∂Ω

near the origin, the distance to γ(u) is:

dM
(
(z, t), γ(u)

)
= max{|z|, |t− ε− u|1/2} = max

{
|t|

1
α+1 , |t− ε− u|1/2

}
.

To find the minimal distance to the boundary, we note that we may restrict t to

the range [0, ε+ u]. The first term in the max expression strictly (and continuously)

increases in t and the second strictly (and continuously) decreases in t. Hence, the
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minimal value of the distance occurs when the two terms are equal, i.e., |z| = |t −

ε − u|1/2. Let (z0, t0) be a point on the boundary for which this equation holds.

(Note, then, that distM
(
γ(u), ∂Ω

)
= |z0|.) Combining this equation with the defining

equation for the boundary, we get the relationship:

|z0|2 + |z0|1+α = ε+ u.

Trivially, we get 2|z0|α+1 ≥ u; hence, distM
(
γ(u), ∂Ω

)
= |z0| ≥ Cu1/(α+1).

Since dM
(
p, γ(u)

)
= u1/2, we get

CdM
(
p, γ(u)

)s
= Cu1/(1+α) ≤ distM

(
γ(u), ∂Ω

)
.

This shows that the curve γ is weak s-John for u small.

Remark 3.3.3. Let’s elaborate on how this model domain underlies our approach to

proving Theorem 3.3.1.

First, note that for any C1,α domain which is tangent to the horizontal distribution

at the origin and lies above the origin, there is a positive constant C0 such that a

modified form of the model domain, {(z, t) | C0|z|1+α < t}, will (locally) fit inside of

that domain. (This claim is proven below as Lemma 3.3.13.) This allows us to work

within the more-easily-described model domain for our calculations.

Second, we can define a model domain to use in the cases where the tangent

plane of the C1,α domain is not horizontal (or vertical) at the origin. Let P denote

the tangent plane. We vertically sum the previous model domain with P : if (z0, t0)

lies on the boundary of the model domain, and (z0, t1) lies on P , then the point

(z0, t0 + t1) is on the boundary of the new model domain. This new model domain

then has a tangent plane at the origin coinciding with P . As before, by choosing

C0 appropriately, we can fit this model domain inside of a C1,α domain with tangent

plane P at the origin, and our calculations are performed inside of this skewed model
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domain.

In the case of a vertical tangent plane, some horizontal curve will efficiently carry

us away from the boundary.

3.3.2 Technical lemmas

Throughout this section, let Ω be a bounded, Euclidean C1,α domain in R3.

The broad strategy of the proof is simple: pick a point “near” the boundary of

Ω and build a “sufficiently long” weak s-John curve from it. By Corollary 3.2.13, we

know this is enough, and the corollary gives us flexibility in choosing what “near” and

“sufficiently long” will be. The majority of the work in the proof will be in verifying

that the constructed curves are weak s-John curves in H1 and that the weak s-John

constant for the curve doesn’t depend on the particular point chosen.

The full setup for the proof is conceptually straightforward. First, we choose a

point p in Ω “near” the boundary. Let q be a nearest boundary point to p, and

let V be a neighborhood containing both p and q, with the boundary of Ω inside V

described by an Euclidean C1,α function. (Keep in mind that this neighborhood is

the only place we have any specific functional description of the domain, so all of our

work happens inside of this neighborhood.)

We then want to relocate our work near the origin in order to make our calculations

easier. Specifically, we left-translate the space by q−1. This maps q to the origin, p

maps somewhere nearby, and V maps to a neighborhood of the origin. We use the C1,α

function describing the boundary of Ω inside V to (essentially) fit a model domain

inside of Ω. Finally, we define a curve exiting from p and perform the necessary

calculations to show it is a weak s-John curve, with weak s-John constant independent

of the choice of p. (The curve chosen will depend on the model domain fitted inside

Ω, which depends on the tangent plane at the origin. Four cases will have to be

considered.)
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There are a host of technical details to be careful about lurking in this setup.

• The model domain to be fitted inside of Ω depends on the tangent plane at the

origin and the Hölder constant C0 of the derivative of the C1,α function that

describes the boundary of Ω in the neighborhood being considered. We need to

understand how C0 will be affected by our choice of p and by the left-translation

that moves our work to the origin.

– Since the point p could be located anywhere in the domain, we need to have

“C1,α uniformity” in the domain. That is, when we describe the boundary

of the domain near p using a C1,α function, we must have a uniform value

for the Hölder constant of the function’s derivative. Lemma 3.3.4 shows

this is possible for any C1,α domain.

– Recall, left-translation in a sub-Riemannian space applies a skew to the

space. Having already described the boundary near p using a C1,α function

with known Hölder constant C0, we must determine how the skew has

changed the function. In fact, it is still C1,α, but the Hölder constant

of its derivative can change by a bounded amount. (Since the change is

bounded, we can simply change our uniform C0 value to a new, uniform,

worst-case value.) This is detailed in Lemma 3.3.5.

• The left-translation that moved q to the origin moved p somewhere, and we need

to figure out where. The distance of p to the boundary, together with infor-

mation about the tangent plane at the origin (which now lies on the relocated

boundary), is sufficient to uniquely locate where p was moved to. Lemma 3.3.6

gives the new location.

• The neighborhood that contains p and q needs to be considered carefully. First,

the definition for C1,α domains gives the existence of a neighborhood about

q on which a C1,α function describes the domain, but it does not guarantee
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that p would lie in this neighborhood. Further, to verify the weak s-John

condition holds for a “sufficiently long” weak s-John curve exiting p, we need to

have a description of the boundary on a large enough neighborhood around p.

Lemma 3.3.9 guarantees that there is a minimum size of neighborhood available

to us, which solves both issues. Choosing our values for “near” and “sufficiently

long” small enough will guarantee that p lies in the neighborhood and that the

curve’s construction and verification take place entirely within these minimum-

sized neighborhoods.

• In a final technical point, for our calculations, we will need an explicit function

that describes the boundary of Ω, instead of an implicit one. In Definition 3.1.1

of a C1,α domain, the boundary of the domain is described as the level set of a

C1,α function from R3 to R. In order to write the boundary as the graph of a

C1,α function from R2 to R, we need to apply the Implicit Function Theorem.

Lemma 3.3.11 justifies the application of this step.

Lemma 3.3.4. There exists a uniform constant C0 such that, for any point q on the

boundary of Ω, there is an Euclidean C1,α function Φ: R3 → R which describes Ω in

a neighborhood of q and whose derivative has Hölder constant at most C0.

Proof. By the definition of an Euclidean C1,α domain, at each point q on the boundary

of Ω, there is a neighborhood Vq of q and an Euclidean C1,α function Φq : R3 → R

such that Ω ∩ Vq = {Φq > 0}. The neighborhoods Vq form an open cover of ∂Ω,

which is a closed and bounded subset of R3, hence compact. Thus, there exists a

finite subcover {Vqi} of ∂Ω. Let C0 be the largest Hölder constant associated with

the derivatives of the functions Φqi .

Lemma 3.3.5. Let M be a bound for the (bounded) set Ω. Let q ∈ ∂Ω, and let V

be a neighborhood of q. Let Φ: V → R be an Euclidean C1,α function such that Ω is

described in V by {(x, y, t) | Φ(x, y, t) > 0}. We left-translate the entire space by q−1,
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and define Φ̃ as the left-translated version of Φ:

Φ̃(p) := Φ(Lq(p)). (3.3.1)

Then the function Φ̃ is also an Euclidean C1,α function, and if the Hölder constant

of the derivative of Φ is C0, then the Hölder constant of Φ̃ is no worse than C C0,

where C is a constant that depends only on M .

Proof. Recall from Remark 2.4.32 that left-translation in H1 is an affine transforma-

tion:

Lq(p) =


1 0 0

0 1 0

−q2/2 q1/2 1



p1

p2

p3

+


q1

q2

q3

 =: Ap+ q.

Note that we have the bound |Aji| ≤ max{M/2, 1}. Also, since Lq is a smooth

function, the composition Φ ◦ Lq is still C1,α.

Before working with the Hölder constant for the derivative of Φ̃, it is useful to

develop a bound. Let V ′ denote the domain of Φ̃. Let x and y be points in V ′.

∣∣∣∣∣ ∂Φ̃

∂xi
(x)− ∂Φ̃

∂xi
(y)

∣∣∣∣∣ =

∣∣∣∣∣
3∑
j=1

∂Φ

∂xj
(Lq(x)) · Aji −

3∑
j=1

∂Φ

∂xj
(Lq(y)) · Aji

∣∣∣∣∣
≤ max{M/2, 1} ·

3∑
j=1

∣∣∣∣ ∂Φ

∂xj
(Lq(x))− ∂Φ

∂xj
(Lq(y))

∣∣∣∣ .
Note that, if x ∈ V ′, then Lq(x) lies in V . We now find an upper bound on the



49

Hölder constant for the derivative of Φ̃.

√
3 max

i

 sup
x,y∈V ′
x 6=y

∣∣∣ ∂Φ̃
∂xi

(x)− ∂Φ̃
∂xi

(y)
∣∣∣

d(x, y)α


≤
√

3 max
i

 sup
x,y∈V ′
x6=y

max{M/2, 1} ·
∑3

j=1

∣∣∣ ∂Φ
∂xj

(Lq(x))− ∂Φ
∂xj

(Lq(y))
∣∣∣

d(x, y)α


= 3 max{M/2, 1} ·

√
3 max

j

 sup
x,y∈V ′
x 6=y

∣∣∣ ∂Φ
∂xj

(Lq(x))− ∂Φ
∂xj

(Lq(y))
∣∣∣

d(x, y)α


= 3 max{M/2, 1}C0.

In the above, we used the fact that left-translation is an isometry, hence d(x, y)α is

the same as d(Lq(x), Lq(y))α (which is what Φ would expect in the denominator for

its Hölder constant).

In domains in Rn with smooth enough boundary, variational arguments show that

the line joining a point and its nearest boundary point will be normal to the boundary.

Available theorems do not extend to C1,α smoothness — much less C1,α domains in

the setting of the Heisenberg group — so it becomes a reasonable concern whether the

positional relationship between interior points and their nearest boundary points can

be ascertained. In this technical lemma, we address this question, set in the specific

circumstances that will be seen in the proof of Theorem 3.3.1.

Lemma 3.3.6. Let O = (0, 0, 0) ∈ ∂Ω. Assume that the tangent plane at O has

normal vector 〈A, 0, C〉, where A ≥ 0 and C ≥ 0, and that this vector is an inward-

pointing normal for Ω. Assume p := (a, b, c) is a point in Ω that has O as (one of)

its closest boundary point(s) when distances are measured with the Korányi metric.

(i) If A = 0, then p = (0, 0, c) for some c > 0.

(ii) If C = 0, then p = (a, 0, 0) for some a > 0.
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(iii) If A and C are both non-zero, let ν = A
C

. Then p = (a(δ), b(δ), c(δ)) for some

δ ∈ (0,∞), where

a(δ) =
2νδ1/2

δ + 1
, b(δ) =

2νδ

δ + 1
, c(δ) =

16ν2δ3/2

δ + 1
.

Remark 3.3.7. The points (a(δ), b(δ), c(δ)) lie on a spiral path, but one which is

unrelated to Heisenberg geodesics. The projection of the path into the x1x2-plane is

an open semicircle with radius ν, centered at (0, ν) and lying in the first quadrant.

When δ is small and positive, we are near the origin. As δ goes to infinity, we approach

(0, 2ν) in the x1x2-plane, and x3 goes to infinity. It is worth noting, for reference, its

distance to the origin:

dK
(
(a(δ), b(δ), c(δ)),O

)
= 2ν

(
δ

δ + 1

)1/2

(1 + 16δ)1/4. (3.3.2)

Remark 3.3.8. There is no guarantee of the existence of a point p ∈ Ω for a given

distance and tangent plane at O. However, if such a point is presumed to exist,

then the distance from p to the origin, in conjunction with the tangent plane at O,

uniquely specifies the location of p.

Proof of Lemma 3.3.6. The main strategy here is to employ a variational argument:

since we assume that dK(p,O) is minimal among points in the boundary, we can

generate equations and inequalities which constrain the possible location of p. (This

is, essentially, the Euler-Lagrange method.)

To perform the calculations, we need to describe the boundary near the origin

as the graph of a C1,α function, which requires that we use the Implicit Function

Theorem. The easiest way to do this is to separate the proof into two parts: C > 0

and C = 0.

Part I. C > 0.
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By the Implicit Function Theorem, the domain Ω is described in a neighborhood of

the origin by {x3 > φ(x1, x2)}, where φ(x1, x2) is a C1,α function. Since O ∈ ∂Ω, then

φ(0, 0) = 0. Further, the normal of the tangent plane atO implies that φx1(0, 0) = −ν,

ν ≥ 0, and φx2(0, 0) = 0.

We explicitly separate out the linear behavior of φ by defining ψ(x1, x2):

φ(x1, x2) = −νx1 + ψ(x1, x2)

for all (x1, x2) in the domain of φ. Note that ψ(0, 0) = 0 and ∇ψ(0, 0) = 0.

Case (i): A = 0 (i.e., ν = 0).

1. Our first equation comes from variation of the x1-coordinate. Let q = (ε, 0, ψ(ε, 0)) ∈

∂Ω. By minimality, the derivative of the distance function dK(p, q) with respect

to ε is zero when ε = 0. This yields the constraint:

4a(a2 + b2) + bc = 0. (3.3.3)

2. Our second equation comes from variation of the x2-coordinate. Let q =

(0, ε, ψ(0, ε)) ∈ ∂Ω. Again, the derivative of the distance function dK(p, q)

with respect to ε is zero when ε = 0. This yields the constraint:

4b(a2 + b2)− ac = 0. (3.3.4)

3. Let q = (0, 0,−ε), with ε > 0. This point is in Ωc for ε small enough. As

distK(p, ∂Ω) = distK(p,Ωc), we get the inequality dK(p, q) − dK(p,O) ≥ 0. It

is equivalent that dK(p, q)4 − dK(p,O)4 ≥ 0, which yields the inequality:

dK(p, q)4 − dK(p,O)4 = (a2 + b2)2 + (c+ ε)2 − (a2 + b2)2 − c2

= 2εc+ o(ε).
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As we are working in a neighborhood of O, we may take ε small enough that

the O(ε) terms are dominant. For ε small and positive, we get the constraint:

c ≥ 0. (3.3.5)

We now consider what the constraints imply. Squaring and adding equations

(3.3.3) and (3.3.4), we get:

0 =
(
4a(a2 + b2) + bc

)2
+
(
4b(a2 + b2)− ac

)2
= (a2 + b2)

(
16(a2 + b2) + c2

)
.

Clearly, we get a = b = 0. Thus, for Case (i), the point p has the form (0, 0, c), where

c > 0.

Case (iii): A > 0 (i.e., ν > 0).

We seek a similar approach in this case. Since ν > 0 here, it will appear in the

description for q in the x1-variation. It does not appear in the other variations, so

the constraints (3.3.4) and (3.3.5) will also apply in this case.

We perform the variation of the x1-coordinate. Let q =
(
ε, 0,−νε+ψ(ε, 0)

)
∈ ∂Ω.

By minimality, the derivative of the distance function dK(p, q) with respect to ε is

zero when ε = 0. This yields the constraint:

4a(a2 + b2) + bc = 2νc. (3.3.6)

Now we consider the consequences. First, it is straightforward to verify, using the

constraints and the fact that ν > 0, that a, b, and c must either all be zero or all be

non-zero. As (0, 0, 0) /∈ Ω, the coordinates of p must all be non-zero. The constraints

also imply that the coordinates must all be positive.

Finally, we derive the coordinates of p as functions of δ. Proper rearranging of

the equations (3.3.6) and (3.3.4) yields a2 + b2 = 2νb, which shows that a and b are
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constrained to the open semicircle with center (0, ν) and radius ν, lying in the first

quadrant.

The given expressions for a(δ) and b(δ) can be verified to satisfy this constraint.

Further, b(δ) is a strictly increasing function of δ, going from zero at δ = 0 and

limiting to 2ν as δ goes to infinity. Hence, this particular parametrization of the open

semicircle covers the entire open semicircle.

Substituting a(δ) and b(δ) into (3.3.4) and solving will produce the desired c(δ).

From this method of proof, it should be clear that the given parametrization is not

unique, nor does the proof guarantee the existence of p for given values of dK(p,O)

and ν. If such a p exists, however, it must be located as described.

Part II. C = 0.

By the Implicit Function Theorem, the domain Ω is described in a neighborhood of

the origin by {x1 > φ(x2, x3)}, where φ(x2, x3) is a C1,α function. Since O ∈ ∂Ω, then

φ(0, 0) = 0. Further, the normal of the tangent plane at O implies that ∇φ(0, 0) = 0.

Case (ii): C = 0.

1. Our first equation comes from variation of the x2-coordinate. Let q =
(
φ(ε, 0), ε, 0

)
∈

∂Ω. By minimality, the derivative of the distance function dK(p, q) with respect

to ε is zero when ε = 0. This yields the constraint:

4b(a2 + b2) = ac. (3.3.7)

2. Our second equation comes from variation of the x3-coordinate. Let q =(
ψ(0, ε), 0, ε

)
∈ ∂Ω. Again, the derivative of the distance function dK(p, q)

with respect to ε is zero when ε = 0. This yields the constraint:

c = 0. (3.3.8)
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3. Let q = (−ε, 0, 0), where ε > 0. Thus, q is in Ωc, and, as we saw earlier, we

can proceed using the inequality dK(p, q)4 − dK(p,O)4 ≥ 0. This yields the

inequality:

4a(a2 + b2) + bc ≥ 0. (3.3.9)

These constraints imply that b = c = 0 and a ≥ 0. As (0, 0, 0) is not a point in Ω,

we can conclude in Case (ii) that p has the form (a, 0, 0) where a > 0.

Lemma 3.3.9. Let q be a boundary point of Ω. Then there exists a positive constant

κ such that the left-translated domain Lq−1Ω is given by {p | Φ(p) > 0} inside the ball

BK(O, κ), where Φ is an Euclidean C1,α function.

Remark 3.3.10. The point here is, since the left-translated domain is still C1,α,

there will be a C1,α function which describes it on some neighborhood of the origin.

The lemma guarantees a minimum size for this neighborhood, which will give us the

necessary room for building a weak s-John curve later on.

Proof. For every boundary point x, there is a neighborhood Vx on which an Euclidean

C1,α function Φx describes Ω inside Vx. These sets Vx form an open cover of the

compact set ∂Ω, so, by Lebesgue’s Number Lemma, there is a value κ > 0 such that

BK(q, κ) is entirely contained in some Vx0 . Consequently, we treat this BK(q, κ) as

our neighborhood for q, and Ω is described in BK(q, κ) by the function Φx0 .

Let Φ be the left-translated version of Φx0 , as in Lemma 3.3.5: that is, Φ(p) :=

Φx0(Lq(p)). When we left-translate the space by q−1, the C1,α function Φ then de-

scribes Lq−1Ω inside BK(O, κ).

Lemma 3.3.11. Let O = (0, 0, 0) ∈ ∂Ω. Assume that the tangent plane at O has

normal vector 〈A, 0, C〉, where A ≥ 0 and C ≥ 0, and that this vector is an inward-

pointing normal for Ω. Then there exists a positive constant κ such that:

(i) If A ≤ C, we may write ∂Ω ∩ B(O, κ) in the form x3 = φ(x1, x2), where

φ ∈ C1,α(R2,R).
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(ii) If A > C, we may write ∂Ω ∩ B(O, κ) in the form x1 = φ(x2, x3), where

φ ∈ C1,α(R2,R).

Proof. Let Φ be an Euclidean C1,α function which describes Ω inside BK(O, κ), as

given by Lemma 3.3.9. If needed, we reduce κ so that κ < 1/(2C0)1/α. Also, we may

renormalize Φ such that |∇Φ(O)| ≥ 2.

Case (i): A ≤ C.

The goal is to apply the Implicit Function Theorem on Φ to produce φ; note that φ

would inherit the necessary regularity from Φ.

To guarantee that the IFT may be used, we must show that the third component of

∇Φ is non-zero in BK(O, κ). We argue by contradiction: assume ∇Φ(x) = 〈A′, B′, 0〉

for some x ∈ BK(O, κ). The Hölder condition on ∂Φ
∂x3

gives:

C =

∣∣∣∣ ∂Φ

∂x3

(x)− ∂Φ

∂x3

(O)

∣∣∣∣ ≤ C0 d(x,O)α. (3.3.10)

As |∇Φ(O)| =
√
A2 + C2 ≥ 2 and C ≥ A ≥ 0, we know that C ≥ 1. So, the above

inequality shows 1 ≤ C0 d(x,O)α. For κ less than 1/(2C0)1/α, such a point x will not

lie inside of BK(O, κ), which is our contradiction. (Note also that this condition on

κ guarantees that ∂Φ
∂x3

is bounded away from zero in BK(O, κ), a fact which is useful

in verifying the regularity of φ.)

The second case is shown similarly.

Remark 3.3.12. In both cases above, the Hölder constant C0 of the function φ is

related to the Hölder constant C̃0 of Φ:

C0 ≤ 4
√

2(1 + C̃0) max
i

{
sup

x∈B(O,κ)

∣∣∣∣ ∂Φ

∂xi
(x)

∣∣∣∣
}
.

In a manner similar to the proof of Lemma 3.3.4, we can show that there is a uniform

bound on the C1,α norm of Φ. If M is this bound, then we have a uniform bound on
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the Hölder constant for φ:

C0 ≤ 4
√

2M(1 + C̃0).

For the final technical lemma, we have arrived at the setup referred to in Re-

mark 3.3.3. Specifically, we have an Euclidean C1,α domain described near the origin

by {(x, y, t) | ψ(x, y) < t} with∇ψ(0, 0) = 〈0, 0〉. Geometrically, this lemma says that

the model domain {(z, t) | C0|z|1+α < t} will lie inside of this one, shown by compar-

ing the t-coordinates of their boundaries, for any choice of x and y. Computationally,

this lemma lets us convert “C1,α regularity” into a very usable form.

Lemma 3.3.13. Let O := (0, 0) and let B := B(O, r) ⊂ R2. Let ψ : B → R be a

C1,α function such that ψ(O) = 0 and ∇ψ(O) = 〈0, 0〉. Then there exists a constant

C0 > 0 such that

|ψ(x1, x2)| ≤ C0(x2
1 + x2

2)(α+1)/2. (3.3.11)

Proof. Let x ∈ B. Recall the definitions for a C1,α function and its associated Holder

constant C0 (see Definition 3.1.2). Since ψ ∈ C1,α,

∣∣∣∣ ∂ψ∂xi (x)

∣∣∣∣ =

∣∣∣∣ ∂ψ∂xi (x)− ∂ψ

∂xi
(O)

∣∣∣∣ ≤ 1√
2
C0 d(x,O)α,

for i = 1, 2.

Let γ be a geodesic from O to x in B. We integrate ∇ψ along γ:

|ψ(x1, x2)| = |ψ(x1, x2)− ψ(O)| =
∣∣∣∣∫
γ

∇ψ ds
∣∣∣∣

≤ max
y∈γ
|∇ψ(y)| · l (γ)

≤
√

2 max
i=1,2

{
max
y∈γ

∣∣∣∣ ∂ψ∂xi (y)

∣∣∣∣} · d(x,O)

≤ C0 d(x,O)α+1

= C0 (x2
1 + x2

2)(α+1)/2.
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3.3.3 Proof of main theorem

Proof of Theorem 3.3.1. Let s = 2/(α+1). It is sufficient to demonstrate Ω is a weak

s-John domain in H1, as this implies Ω is a weak s′-John domain for all s′ > s.

Let D := diamK Ω, and let ε > 0 such that εD << 1. We apply Corollary 3.2.13:

it suffices to choose an arbitrary point within a distance εD of the boundary, construct

a curve from that point toward the interior of Ω, and verify that the curve satisfies the

weak s-John condition (2.3.5) until it has reached a distance of εD from the boundary.

(Note that (H1, dK) is a doubling metric space, with the Korányi metric dK equivalent

to the length metric dCC ; by Remark 3.2.14, we may apply Corollary 3.2.13 here.)

In Corollary 3.2.13, ε may be chosen as small as desired, and this freedom is

needed in order to adapt to the particular features of Ω. Ultimately, our choice for ε

will depend on α, s, diam Ω, λ, and the Hölder constant C0 of the domain. We will

see in (3.3.39) what choice of ε is required.

Let p̃ ∈ Ω be chosen such that distK(p̃, ∂Ω) < εD, and let q ∈ ∂Ω be a nearest

boundary point to p̃. We now left-multiply the space by q−1 to relocate our work

near the origin. This will succeed in making our subsequent calculations easier.

Let O := (0, 0, 0). By Lemmas 3.3.4 and 3.3.5, there is an Euclidean C1,α function

Φ: R3 → R which describes the left-translated domain Lq−1Ω near O and whose

derivative has Hölder constant (at most) C0. By Lemma 3.3.9, the neighborhood on

which Φ describes Ω is (at least) a ball BK(O, κ), where κ is some positive constant.

Using isometries (see Remark 2.4.40), we rotate (and possibly reflect) the domain

Lq−1Ω until the inward-pointing normal for the tangent plane at O is 〈A, 0, C〉, where

A and C are non-negative. Call this domain Ω′. By Lemma 3.3.11, if we take κ such

that κ < 1/(2C0)1/α, then:

• If A ≤ C, we may write Ω′ ∩ BK(O, κ) in the form {x3 > φ(x1, x2)}, where

φ ∈ C1,α(R2,R).
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• If A > C, we may write Ω′ ∩ BK(O, κ) in the form {x1 > φ(x2, x3)}, where

φ ∈ C1,α(R2,R).

The original point p̃ has been relocated as a consequence of these gyrations. Call

its new location p. We apply Lemma 3.3.6 to see where p may actually lie. From here

on, we consider four cases, distinguished by the tilt of the tangent plane at O.

Case 1: A = 0 (a horizontal tangent plane).

According to Lemma 3.3.6, the point p is given by (0, 0, c), where c is some positive

constant. Note that the domain Ω′ ∩ BK(O, κ) is given by {x ∈ BK(O, κ) | x3 >

φ(x1, x2)}.

We will employ the curve γ(t) = (0, 0, c+ t), t ≥ 0, as the weak s-John curve.

The scale-invariant weak s-John condition requires

distK(γ(t), ∂Ω) ≥ λD1−s dK(γ(t), p)s (3.3.12)

for t > 0, for some λ > 0 independent of p̃. We only need to check this condition until

the left-hand side is at least εD; to assure this, it is sufficient to verify the right-hand

side is greater than εD.

Now we recast the weak s-John condition given above, noting that the point

γ(t) being a certain distance from the boundary is equivalent to having a ball of that

radius, centered at γ(t), that lies wholly inside the domain. We begin by reformulating

such a Heisenberg ball:

BK

(
γ(t), λD1−s dK(γ(t), p)s

)
= Lγ(t)

(
B
(
O, λD1−s dK(γ(t), p)s

))
=
{
γ(t) · h

∣∣ h ∈ H1, |h|K < λD1−sdK(γ(t), p)s
}
.

(3.3.13)

So, satisfying the weak s-John condition is equivalent to having γ(t) · h ∈ Ω′ for all

h ∈ H1 such that |h|K < λD1−s dK(γ(t), p)s.
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Let subscripts on a point denote which coordinates of the point are being refer-

enced. We can rewrite γ(t) · h ∈ Ω′ as

(γ(t) · h)3 > ψ
(
(γ(t) · h)1,2

)
. (3.3.14)

We use the C1,α regularity of φ, writing C0 to indicate the uniform Hölder constant

for φ (see Remark 3.3.12). Applying Lemma 3.3.13 to (3.3.14 and rearranging the

result, we find it suffices to show

C0

[
(γ(t) · h)2

1 + (γ(t) · h)2
2

](α+1)/2
< (γ(t) · h)3 (3.3.15)

holds for all appropriate h and t ≥ 0, until we are far enough from the boundary.

With our chosen curve γ(t), we get γ(t) · h = (h1, h2, c+ t+ h3), which makes the

condition to be verified

C0

[
h2

1 + h2
2

](α+1)/2 − h3 < c+ t. (3.3.16)

We moved the term h3 to the left-hand side because it may be negative, which would

work against our efforts to maintain the inequality. (We will do this maneuver in

later cases also, each time we encounter a term which depends on h.)

To help verify this and later inequalities, we will employ some standard inequalities

and a few observations:

• Jensen’s inequality: for a ≥ 0, b ≥ 0, and s ≥ 1, we have (a+b)s ≤ 2s−1(as+bs).

• For a ≥ 0, b ≥ 0, and 0 < α ≤ 1, we have (a+ b)α ≤ aα + bα.

• Young’s inequality: for a ≥ 0, b ≥ 0, 1 < p <∞, 1 < q <∞, and 1/p+1/q = 1,

we have ab ≤ ap/p+ bq/q.

• ±h1 ≤ |h1| ≤ |h|K .
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• ±h2 ≤ |h2| ≤ |h|K .

• ±h3 ≤ |h3| ≤ |h|2K .

Further, we have a bound on |h|K :

|h|K < λD1−sts/2.

This bound depended on γ, so it will change in each case.

Additionally, note that |h|K is less than εD. (Once it’s bigger than that, the curve

γ is sufficiently far from the boundary and our work is done.) As εD << 1, we can

always assume that |h|K is smaller than one.

With these tools, we can now dispatch this case, the easiest one, in a single bite.

We assume that ε is small enough that 0 ≤ t ≤ 1, an assumption we will justify at the

very end of our proof. (Determining this is a valid assumption will require knowing

how small λ needs to be chosen, and we will only have that answer after seeing all of

the constraints placed on it by each case.)

C0(h2
1 + h2

2)(α+1)/2 − h3 ≤ 2C0|h|α+1
K + |h|2K

≤ 2C0(λD1−s)α+1ts(α+1)/2 + (λD1−s)2ts

< c+ t,

where the last inequality holds if the exponents s(α + 1)/2 and s are at least one

(which is true) and if λ ≤ 2−1/2Ds−1 and

λ < Ds−1

(
1

4C0

)1/(α+1)

. (3.3.17)

Note that (3.3.17) supersedes the requirement on λ immediately preceding it. As new

restrictions appear on λ, we will keep track of which is the most constraining.

We now observe two issues that recur and one that doesn’t. First, the need for
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s(α + 1)/2 to be at least one, from which derives the condition in the hypotheses of

the theorem, only appears this one time. In the other three cases, the situation with

the exponent is never as tight as it is here. (As discussed in Example 3.3.2, this is not

unexpected.) We’ll find the later verifications become more complicated, but that is

mainly a consequence of the general difficulty of doing calculations in a Carnot group.

Second, note that c played no part in the ultimate verification of the inequality.

Since c can be arbitrarily small (and positive), the burden must be carried by the

other term.

Finally, the extra factors of 2 which crept into the constraints on λ arise because

there were two terms, both of which needed to be bounded by a single t. So, each

term was individually bounded by 1
2
t. In future cases, we will see such small integers

appearing in a predictable fashion. They are all small and finite, so their involvement

in the upper bounds on λ will not be a cause for concern.

Case 2: C = 0 (a vertical tangent plane).

The setup is quite similar, so we will primarily note the differences. The point p

is located at (a, 0, 0), where a > 0, and the domain Ω′ ∩ B(O, κ) is given by {x ∈

B(O, κ) | x1 > φ(x2, x3)}. We will employ the weak s-John curve γ(t) = (a+ t, 0, 0),

t ≥ 0.

The recharacterization given by (3.3.13) still applies. The condition γ(t) · h ∈ Ω′

becomes

(γ(t) · h)1 > ψ
(
(γ(t) · h)2,3

)
(3.3.18)

Again employing Lemma 3.3.13 and rearranging the result, we find it suffices to

show

C0

[
(γ(t) · h)2

2 + (γ(t) · h)2
3

](α+1)/2
< (γ(t) · h)1 (3.3.19)

holds for all appropriate h and t ≥ 0, until we are far enough from the boundary.

For this choice of γ, we get γ(t) ·h = (a+ t+h1, h2, h3 + 1
2
(a+ t)h2), which makes
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the condition to be verified

C0

[
h2

2 +
(
h3 + 1

2
(a+ t)h2

)2
](α+1)/2

− h1 < a+ t. (3.3.20)

The bound on |h|K in this case is |h|K < λD1−sts.

This verification is not as easy as the first, but still quite manageable. We begin

by bounding the left-hand side of our desired inequality:

C0

[
h2

2 +
(
h3 + 1

2
(a+ t)h2

)2
](α+1)/2

− h1

≤ C0|h|α+1
K + C0

∣∣h3 + 1
2
(a+ t)h2

∣∣α+1
+ |h|K

≤ C0|h|α+1
K + C02α|h|2α+2

K + 1
2
C0(a+ t)α+1|h|α+1

K + |h|K

≤ 3C02α|h|K + 1
2
C0(a+ t)α+1|h|α+1

K .

We seek to bound each of the final terms by 1
2
(a + t). The first term is readily

bounded:

3C02α|h|K < 3C02αλD1−sts ≤ 1

2
t,

where the last inequality holds if

λ ≤ Ds−1

3C02α
. (3.3.21)

This constraint supersedes (3.3.17) for certain values of α and C0.

To bound the second term, let M := max{a, t}. Note that M < 1, which follows

from t < 1 and

a = dK(p,O) = dist(p̃, ∂Ω) < εD << 1.
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We bound the second term:

1

2
C0(a+ t)α+1|h|K <

1

2
C0(2M)α+1(λD1−sM s)

≤ C02αMα+1+s(λD1−s)

≤ 1

2
(a+ t),

where the final inequality holds if

λ ≤ Ds−1

C02α+1
, (3.3.22)

which is superseded by the constraint (3.3.21).

This concludes case (2). Notice that bounding the first term required s ≥ 1; for

the other bounds, the exponentsgave us a generous amount of room and led to no

new constraints.

Case 3: 0 < A ≤ C (a not-very-steep tangent plane).

Let ν = A/C. The point p = (a, b, c) is given by

a(δ) =
2νδ1/2

δ + 1
, b(δ) =

2νδ

δ + 1
, c(δ) =

16ν2δ3/2

δ + 1
.

The domain Ω′ ∩B(O, κ) is given by {x ∈ B(O, κ) | x3 > φ(x1, x2)}.

Part of the reasoning behind employing four cases is to specify the linear behavior

of φ at the origin. In the next two cases, it will be useful for us to separate out this

term. To do this, we define the function ψ by extracting φ’s linear behavior:

φ(x1, x2) = −νx1 + ψ(x1, x2).

As φ is C1,α, so is ψ; we also note that ψ(0, 0) = 0 and ∇ψ(0, 0) = 〈0, 0〉.

The recharacterization given by (3.3.13) still applies. The condition γ(t) · h ∈ Ω′
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becomes

(γ(t) · h)3 > −ν(γ(t) · h)1 + ψ((γ(t) · h)1,2).

Again employing Lemma 3.3.13 and rearranging the result, we find it suffices to

show

C0

[
(γ(t) · h)2

1 + (γ(t) · h)2
2

](α+1)/2
< (γ(t) · h)3 + ν(γ(t) · h)1 (3.3.23)

holds for all appropriate h and t ≥ 0, until we are far enough from the boundary.

The not-very-steep tangent plane at the origin means that, while this isn’t a

“worst-case” for escaping the boundary, it is a bad case. To manage the verification,

we need to make further manipulations to the space before we begin. The point p lies

above the boundary point r = (a, b, φ(a, b)). We left-translate the space by r−1 (an

isometry), which takes r to the origin and p to a point p′ = (0, 0, c−φ(a, b)) on the +x3-

axis. Next, we rotate the space about the x3-axis (another isometry) until the inward-

pointing normal of the tangent plane to the boundary at the origin has the form

〈A′, 0, C ′〉, with A′ and C ′ both non-negative. After these operations, the boundary

near the origin will be described by a C1,α function φ̃(x1, x2) = −νx1 + ψ̃(x1, x2),

where now ν = A′/C ′. (The function ψ̃ serves the same role as ψ did.)

Before continuing, let us address why the ratio A′/C ′ is well-defined. To under-

stand this ratio, we develop values for A′ and C ′ by relating the original normal

〈A, 0, C〉 to 〈A′, 0, C ′〉.

Recall that, by our preparatory steps, ∇φ(0, 0) = 〈−ν, 0〉 = 〈−A/C, 0〉. By p̃

being chosen within distance εD of the boundary, we know that |p|K = dK(p,O) <

εD. Also, we are assuming that εD << 1. Since φ ∈ C1,α, we have:

|∇φ(r)−∇φ(0, 0)| ≤ C0(a2 + b2)α/2 ≤ C0|p|αK < C0(εD)α.
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Let ∇φ(r) = 〈M,N〉. The preceding inequality implies (M + ν)2 + N2 ≤ C2
0(εD)2α.

Thus, there exists values µ1 and µ2 (not necessarily positive) smaller than C0(εD)α

such that M = −ν + µ1 = (−A/C) + µ1 and N = µ2. Hence, the tangent plane to

the surface at r has inward-pointing normal vector 〈(A/C) − µ1,−µ2, 1〉, which we

normalize to 〈A− Cµ1,−Cµ2, C〉.

Left-translating the space by r−1 sends this normal vector to the vector

〈
A− Cµ1,−Cµ2, C −

b

2
(A− Cµ1) +

a

2
(−Cµ2)

〉

at the origin. Finally, the rotation sends this vector to the vector

〈√
(A− Cµ1)2 + (Cµ2)2, 0, C − b

2
(A− Cµ1) +

a

2
(−Cµ2)

〉
.

Hence, the ratio A′/C ′ is given by:

ν =

√
(A− Cµ1)2 + (Cµ2)2

C − b
2
(A− Cµ1) + a

2
(−Cµ2)

.

We note that the numerator is bounded above by |A − C C0(εD)α| + C C0(εD)α. If

A ≥ C C0(εD)α, then the upper bound on the numerator is A. If A < C C0(εD)α,

then we have the upper bound 2C C0(εD)α.

For the denominator, we have the lower bound C(1− b
2
− a

2
). The values of both

a and b are bounded above by |p|K , which is less than εD, giving us the lower bound

C(1− εD).

Thus, we arrive at

A′

C ′
≤ max{A, 2C C0(εD)α}

C(1− εD)
. (3.3.24)

We now need to assume that ε is chosen small enough that εD < 1/C
1/α
0 . (As

mentioned earlier, we will see in (3.3.39) how small ε will need to be.) This, together

with the fact that A/C ≤ 1 in this case, shows that A′/C ′ is bounded above, hence
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C ′ is not zero, and the ν associated with φ̃ and ψ̃ is well-defined.

Continuing on, we wish to escape from p′ with a weak s-John curve. This is shown

by first escaping the origin with a curve γ that satisfies the weak s-John condition

for t > 0. (At t = 0, it is on the boundary, so the condition fails there.) Specifically,

we choose:

γ(t) =


(t, 0, 0), if 0 < t ≤ t1;

(t1, 0, t− t1), if t ≥ t1.

(3.3.25)

We set the choice of t1 as t1 = (ν/4C0)1/α. (This is not an optimal choice, but it is

good enough.) Close inspection of (3.3.24) shows ν ≤ 4; hence, t1 ≤ ν. In the case

where ν = 0, we have t1 = 0, and γ would have only one segment.

When this curve is translated upward so that it escapes from p′, the translation

only increases the distance to the boundary for each point on the curve, since the

boundary lies beneath the domain. The weak s-John condition is maintained, with

the same weak s-John constant.

Verification on the first piece of γ: t ∈ (0, t1]

Note γ(t) · h = (t + h1, h2, h3 + th2) for the first piece of γ. The inequality (3.3.23)

becomes

C0

[
(t+ h1)2 + (h2)2

](α+1)/2
< (h3 + th2) + ν(t+ h1),

which rearranges to the form

C0

[
(t+ h1)2 + (h2)2

](α+1)/2 − h3 − th2 − νh1 < νt.

For the first piece of γ, the condition |h|K < λD1−sd(γ(t),O)s gives |h|K < λD1−sts.

Also, t < t1 yields tα < ν/(4C0).
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We now demonstrate the bound:

C0

[
(t+ h1)2 + (h2)2

](α+1)/2 − h3 − th2 − νh1

≤ C0

[
|t+ h1|α+1 + |h2|α+1

]
+ |h|2K + t|h|K + ν|h|K

≤ C02αtα+1 + C02α|h|α+1
K + C0|h|α+1

K + |h|2K + t|h|K + ν|h|K

≤ C02αtα+1 + 4C0|h|α+1
K + t|h|K + ν|h|K

< 2α−2νt+ 4C0(λD1−sts)α+1 + t(λD1−sts) + ν(λD1−sts)

< 2α−2νt+ (λD1−s)α+1t2−αν + λD1−sts+1−α ν

4C0

+ λD1−stsν

≤
[
2α−2 + λ

(
λαD(1−s)(α+1) +

D1−s

4C0

+D1−s
)]

νt

≤ νt,

where the final inequality is satisfied if

λ

(
λαD(1−s)(α+1) +

D1−s

4C0

+D1−s
)
≤ 1

2
.

This condition will hold, for example, if

λ ≤ 1

6
Ds−1. (3.3.26)

Taking this as our constraint, note that it supercedes the previous constraints (3.3.17)

and (3.3.21) for certain values of α and C0.

Finally, note that the choice of t1 was guided by the 2α−2 term above; without λ

to control that term, we needed to ensure that it was bounded away from one by an

appropriate choice of t1.

Verification on the second piece of γ: t > t1
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Note that, for this segment of γ,

γ(t) · h = (t1 + h1, h2, t− t1 + h3 + t1h2).

Thus, (3.3.23) becomes

C0

[
(t1 + h1)2 + h2

2

](α+1)/2 ≤ (t− t1 + h3 + t1h2) + ν(t1 + h1)

which rearranges to the form

C0

[
(t1 + h1)2 + h2

2

](α+1)/2 − h3 − t1h2 − νh1 ≤ (t− t1) + νt1.

We begin by bounding the left-hand side:

C0

[
(t1 + h1)2 + h2

2

](α+1)/2 − h3 − t1h2 − νh1

≤ C0

[
(t1 + h1)α+1 + |h2|α+1

]
+ |h|2K + t1|h|K + ν|h|K

≤ C02αtα+1
1 + C02α|h|α+1

K + C0|h|α+1
K + |h|2K + t1|h|K + ν|h|K

≤ 2α−2νt1 + 4C0|h|α+1
K + 2ν|h|K

=: I1 + I2 + I3.

For the second part of γ, |h|K < λD1−s d(γ(t),O)s leads to the following bound:

|h|K < λD1−s(t41 + (t− t1)2)s/4

≤ λD1−s(ts1 + (t− t1)s/2).

We now address the three pieces (I1, I2, I3) separately. For I1, it is trivially true
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that I1 < (1/2)νt1. For I2:

I2 = 4C0|h|α+1
K < 4C0

(
λD1−s[ts1 + (t− t1)s/2

])α+1

≤ C02α+2(λD1−s)α+1(t21 + (t− t1))

= 2α(λD1−s)α+1νt2−α1 + 2α+2C0(λD1−s)α+1(t− t1)

≤ 1

4
νt1 +

1

2
(t− t1),

where the last inequality holds if

λ ≤ Ds−1

(
1

C02α+3

)1/(α+1)

.

A simpler, slightly stricter constraint on λ would be

λ ≤ Ds−1

16C0

, (3.3.27)

which supercedes all previous conditions on λ.

I3 = 2ν|h|K < 2νλD1−s(ts1 + (t− t1)s/2)

≤ 2λD1−sνts1 + 2λD1−s
(

α

α + 1

)
ν(α+1)/α + 2λD1−s

(
1

α + 1

)
(t− t1)

≤ 2λD1−sνts1 + 2λD1−s
(

α

α + 1

)
(4C0)1/ανt1 + 2λD1−s

(
1

α + 1

)
(t− t1)

≤ 1

8
νt1 +

1

8
νt1 +

1

2
(t− t1)

where the last inequality holds if

λ ≤ 1

8(4C0)1/α
Ds−1. (3.3.28)

This is a stronger condition than (3.3.27) and will be the ultimate requirement on λ.
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Note that the bound on λ is independent of ε; this is important since the choice of ε

will depend on λ.

This concludes the bounds on the second part of γ. We did not encounter any

constraints on how large t could be, so we can continue the curve until we have

achieved a distance of εD from the boundary. This distance will certainly have been

achieved once t = t1 + (εDs/λ)2/s. Finally, as indicated earlier, the curve is now

shifted up so that it originates from p′ on the +x3-axis, to produce the desired weak

s-John curve.

Case 4: A > C > 0 (a steep tangent plane).

Let ν = A/C, as before; the point p = (a, b, c) is the same as in Case 3, as well.

However, we are forced to approach this case differently than Case 3. Here, ν can

be arbitrarily large. Not only would this prevent some of our previous calculations

from working, but we cannot trust that we could perform the initial manipulation of

the space needed to prepare for the calculations: the boundary point r (as defined in

Case 3) may not lie within B(O, κ)!

So, unlike in Case 3, we perform this case without any further manipulations of the

space. The unwieldy description of p, given by Lemma 3.3.6, must be used explicitly.

As a consequence, the calculations that follow are rather intricate.

The domain Ω′ ∩ B(0, κ) is given by {x ∈ B(0, κ) | x1 > φ(x2, x3)}. We employ

the weak s-John curve γ(t) = (a + t, b, c), t ≥ 0. Again, we separate out the linear

behavior of φ at the origin, thereby defining ψ:

φ(x2, x3) = −1

ν
x3 + ψ(x2, x3).

The recharacterization given by (3.3.13) still applies. The condition γ(t) · h ∈ Ω′

becomes

(γ(t) · h)1 > −
1

ν
(γ(t) · h)3 + ψ

(
(γ(t) · h)2,3

)
. (3.3.29)
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Again employing Lemma 3.3.13 and rearranging the result, we find it suffices to

show:

C0

[
(γ(t) · h)2

2 + (γ(t) · h)2
3

](α+1)/2
< (γ(t) · h)1 +

1

ν
(γ(t) · h)3 (3.3.30)

holds for all appropriate h and t ≥ 0, until we are far enough from the boundary.

For the chosen curve γ, we get γ(t)·h =
(
a+t+h1, b+h2, c+h3+ 1

2
((a+t)h2−bh1)

)
.

We multiply both sides of the condition by ν to arrive at the inequality to be verified:

C0ν
[
(b+ h2)2 +

(
c+ h3 + 1

2
((a+ t)h2 − bh1)

)2
](α+1)/2

− h3 − 1
2
((a+ t)h2 − bh1)− νh1 < c+ ν(a+ t). (3.3.31)

The bound on |h|K in this case is |h|K < λD1−s(t4 + (1
2
tb)2
)s/4

.

The fact that ν ≥ 1 in this case has some interesting ramifications. As mentioned

in a remark following Lemma 3.3.6, the distance from p to the origin is given by:

dK(p,O) = 2ν

(
δ

δ + 1

)1/2

(1 + 16δ)1/4. (3.3.32)

As the point p̃ was initially chosen within εD of the boundary, this equation leads

to several useful inequalities. Assume that ε < 1
D
√

2
. We avoid the awkward term

(1 + 16δ)1/4 in the following work by bounding it below by one.

I. νb < 1
2
ε2D2, and hence also b < 1.

This inequality comes from rearranging the terms:

εD > 2ν

(
δ

δ + 1

)1/2

=
√

2ν

(
2νδ

δ + 1

)1/2

=
√

2νb. (3.3.33)

II. δ ≤ 1 and δ1/2 < εD.

εD
2ν

>
(

δ
δ+1

)1/2
and ν ≥ 1 implies that 1

2
εD >

(
δ
δ+1

)1/2
. This inequality easily
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leads to δ ≤ 1 (using our standing assumption on ε), and hence δ1/2 < εD.

III. c < 4ε2D2.

Again, this inequality comes from rearranging the terms:

εD > 2ν

(
δ

δ + 1

)1/2

=
1

2δ1/4

(
16ν2δ3/2

δ + 1

)1/2

=

√
c

2δ1/4
. (3.3.34)

Hence, c < 4ε2D2
√
δ ≤ 4ε2D2.

IV. |h|K ≤ 1.

We’ve noted this inequality before: it derives from |h|K ≤ εD << 1.

Recall what needs to be established:

C0ν
[
(b+ h2)2 +

(
c+ h3 + 1

2
((a+ t)h2 − bh1)

)2
](α+1)/2

− h3 − 1
2
((a+ t)h2 − bh1)− νh1 < c+ ν(a+ t). (3.3.35)

We begin by bounding the left-hand side:

C0ν
[
(b+ h2)2 +

(
c+ h3 + 1

2
((a+ t)h2 − bh1)

)2
](α+1)/2

− h3 −
1

2
((a+ t)h2 − bh1)− νh1

≤ C0ν
[
(b+ h2)α+1 +

(
c+ h3 + 1

2
((a+ t)h2 − bh1)

)α+1
]

+ |h|2K +
1

2
(a+ t)|h|K

+
(

1
2
b− ν

)
h1

≤ C0ν
[
2αbα+1 + 2α|h|α+1

K + 22αcα+1 + 22α|h|2α+2
K + 22α

(
1
2
(a+ t)|h|K

)α+1

+ 22α(1
2
b|h|K)α+1

]
+ |h|2K + 1

4
(a+ t)2 + 1

4
|h|2K + ν

δ+1
|h|K

≤ C02ανbα+1 + C02αν|h|α+1
K + C022ανcα+1 + C022αν|h|2α+2

K + C022α−1ν(a+ t)2α+2

+ C022α−1ν|h|2α+2
K + C022α−1νb2α+2 + C022α−1ν|h|2α+2

K + |h|2K +
1

4
(a+ t)2

+ 1
4
|h|2K + ν

δ+1
|h|K

=: I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9 + I10 + I11 + I12.
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Before we start to despair over the number of terms, we cut our work down to man-

ageable proportions.

• By tool I, we know that I1 ≥ I7.

• Since I12 ≥ 1
2
|h|K (by tool II and ν ≥ 1), we have 2I12 ≥ I9 + I11.

• By tool IV, 3I2 ≥ I4 + I6 + I8.

• By tools II and IV, C02αI12 ≥ I2.

It remains to show 2I1, I3, I5, I10, and (2 + 3C02α)I12 can be bounded explicitly.

Bounding 2I1

We employ the definition of b to bound 2I1 by 1
6
νa:

2I1 = C02α+1νbα+1 = C02α+2bαν2 δ

δ + 1
(changing one power of b)

= C02α+1δ1/2νabα (into a power of a)

≤ C02α+1εDνa (since b ≤ 1)

≤ 1

6
νa,

where the last inequality holds if

ε ≤ 1

6C02α+1D
. (3.3.36)

Bounding I3
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We begin by using the definition of c:

I3 = C022ανcα+1 = C025α+ 5
2 δ(α+1)/2(δ + 1)1/2

(
ν

2νδ

δ + 1

)α+ 1
2
(
ν

2νδ1/2

δ + 1

)
≤ C025α+ 5

2 δ(α+1)/2(δ + 1)1/2

(
1

2
ε2D2

)α+ 1
2

νa (using tool I)

≤ C024α+ 5
2 (εD)2α+1 νa (since δ ≤ 1)

≤ 1

6
νa,

where the last inequality holds if

ε ≤ 1

(6C024α+5/2)1/(2α+1)D
. (3.3.37)

Bounding I5

Our desired bound for I5 is

I5 = 22α−1C0ν(a+ t)2α+2 ≤ 1
6
ν(a+ t)

which holds if

a+ t ≤
(

1

6C022α−1

)1/(2α+1)

. (3.3.38)

We will return to this condition after looking at the next two bounds.

Bounding I10

Our desired bound for I10 is

I10 =
1

4
(a+ t)2 ≤ 1

6
ν(a+ t)

which holds if

a+ t ≤ 2

3
.

This condition is superceded by (3.3.38).



75

Bounding (2 + 3C02α)I12

Recall that |h|K < λD1−s(ts +
(

1
2
bt
)s/2)

in Case 4.

I12 =
ν

δ + 1
|h|K < ν|h|K

< νλD1−s(ts + (1
2
bt)s/2

)
≤ νλD1−s(3

2
ts + 1

2
bs)

≤ 3
2
λD1−sνt+ 1

2
λD1−s(bs−1δ1/2)νa

≤ 3
2
λD1−sνt+ 1

2
λD1−sνa

≤ 1
6(2+3C02α)

νt+ 1
6(2+3C02α)

νa,

where the final inequality holds if

λ ≤ 1

9(2 + 3C02α)
Ds−1,

which is weaker than the previous constraint (3.3.28).

Now we go back to (3.3.38). Our concerns are that a might be too large (as an

initial condition!) or that, in escaping to the desired distance from the boundary, t

would need to get too large.

To address these concerns, we first note that a < εD, by the choice of p̃. Also, the

distance of γ(t) to the boundary is bounded below by λD1−sts, so we are unconcerned

about all t such that λD1−sts ≥ εD, as we would be done already. That is, we are

only concerned for t < ( εD
s

λ
)1/s. Putting these together, we get our answers:

a+ t ≤ εD + (
εDs

λ
)1/s

= ε1/sD(1 + 1/λ1/s)

≤
(

1

6C022α−1

)1/(2α+1)

,
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where the last inequality holds if

ε ≤

[
1

D(1 + 1/λ1/s)

(
1

6C022α−1

)1/(2α+1)
]s
. (3.3.39)

This completes case (4).

As promised, we saw that the required upper bound on λ, given by (3.3.28), does

not depend on ε, and the bounds on ε are explicit enough that we can be assured

that it may be chosen appropriately.

3.4 Sharpness example for main theorem

In this example, we consider a bounded, Euclidean C1,α domain in H1, where α can

be chosen as any value in (0, 1). We will verify that the domain fails to be weak

s-John for all s < 2/(α + 1). This would show Theorem 3.3.1 is sharp.

Example 3.4.1. Let Ω ⊂ H1 be a bounded, Euclidean C1,α domain, given near the

origin by the set {(z, t) | |z|α+1 < t}. This is the same domain considered in the

motivating example, Example 3.3.2. We assume that Ω is a weak s-John domain, for

some s < 2/(α+ 1), and seek a contradiction. Let λ be the weak s-John constant for

Ω.

Consider the point p = (0, ε), ε > 0, on the t-axis. We may assume that ε is small.

We saw in Example 3.3.2 that the (locally) optimal weak s-John curve exiting from

p will travel directly up the t-axis; let us parametrize this curve as γ(u) = (0, ε+ u),

u ≥ 0.

As before, to simplify our calculations, we will use the max metric (2.4.5) in H1.

Consider the point on the curve γ(ε) = (0, 2ε). We need to find the inequality

that arises from the weak s-John condition applied at this point.The distance from
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(0, 2ε) to a boundary point (z, t) near the origin is:

dM
(
(z, t), (0, 2ε)

)
= max

{
|z|, |t− 2ε|1/2

}
= max

{
|t|

1
α+1 , |t− 2ε|1/2

}
.

To find the minimal distance to the boundary, note that we may restrict t to the

range [0, 2ε].

So, consider both terms in the max expression as t ranges from 0 to 2ε. The first

term strictly (and continuously) increases and the second strictly (and continuously)

decreases. Hence, the minimal value of the max occurs when the two terms are equal,

i.e., |z| = |t− 2ε|1/2. Let (z0, t0) be a point on the boundary for which this equation

holds. (Note, then, that distM
(
(0, 2ε), ∂Ω

)
= |z0|.) Combining this equation with the

defining equation for the boundary, we get the relationship:

|z0|2 + |z0|α+1 = 2ε.

Trivially, we get |z0|α+1 ≤ 2ε; hence, distM
(
(0, 2ε), ∂Ω

)
= |z0| ≤ (2ε)1/(α+1).

From the weak s-John condition on γ at (0, 2ε), we have the inequality:

λ(diamM Ω)1−s dM
(
(0, ε), (0, 2ε)

)s ≤ distM
(
(0, 2ε), ∂Ω

)
≤ (2ε)1/(α+1).

The max-metric distance from (0, ε) to (0, 2ε) is easily calculated to be ε1/2, so we

make this substitution and rearrange the previous inequality:

2−1/(α+1)(diamM Ω)1−sλ ≤ ε
1

α+1
− s

2 .

For s < 2/(α + 1), the exponent of ε here is positive. Hence, for ε small enough,

this inequality fails to hold, and the optimal weak s-John curve exiting (0, ε) (for this

small ε) will fail to satisfy the weak s-John condition (with λ as its constant). This

is our contradiction.
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3.5 Weak s-John is not s-John in H1

The motivation for this example, a weak s-John domain which is not also s-John,

comes from a result by Haj lasz and Koskela [32, Proposition 9.6].

Theorem 3.5.1 (Haj lasz-Koskela). Let X be a metric space which is doubling on

Ω ⊂ X. Assume that Ω has the following local connectivity property: there exists a

constant δ ≥ 1 such that for every ball B with δB ⊂ Ω, every two points x,y ∈ B can

be connected by a rectifiable curve contained in δB and of length less than or equal to

δd(x, y). Then Ω is a John domain if and only if Ω is a weak John domain.

The conditions on the metric space are fairly easy to satisfy. One space in which

this theorem applies is (H1, dCC); this fact is notable because (H1, dCC) is the setting

for my counterexample in the s-John case (s > 1).

Example 3.5.2. Fix α ∈ (0, 1). We let Ω be as it was in Section 3.4; specifically,

recall that Ω coincides with {(z, t) | |z|1+α < t} in a neighborhood of the origin.

This bounded, Euclidean C1,α domain in H1 is weak s-John for any s ≥ 2/(1 + α),

by Theorem 3.3.1. Let s = 2/(1 + α); we will show that Ω is not s-John, thereby

demonstrating that weak s-John and s-John domains do not coincide in H1.

We showed explicitly in Section 3.4 that this domain is C1,α near the origin, and

we assume that it is fully a C1,α domain. We do not need explicitly to define the

domain elsewhere, as the demonstration of the failure to be s-John will occur near

the origin.

We argue by contradiction. Assume that Ω is s-John with s-John constant λ and

s-John center x0 = (z0, t0), with t0 > 0.

Let 0 < ε < δ < t0. Then there are integers k0 and k1 such that

2−k0−1 ≤ ε < 2−k0 and 2−k1 ≤ δ < 2−k1+1.
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Let γ̃ be an s-John curve joining (0, ε) to x0. Hence, by the continuity of γ̃, there is

at least one point where γ̃ intersects the plane {t = δ}. Let the first such intersection

be at the point (z, δ) ∈ Ω. Let γ denote the subcurve of γ̃ from (0, ε) to (z, δ). We

will show, for small enough ε and δ, the s-John condition will fail to hold, providing

our contradiction. For such an approach, we need estimates for the length of γ and

for the distance from (z, δ) to the boundary of Ω.

To estimate the length of γ, we will use the constructive approach employed by

Balogh and Monti in [5, pp. 101-102].

A Heisenberg box is given by Box(x, r) := {xy | ‖y‖M ≤ r}, where ‖·‖M is the max

norm. The construction is to cover (most of) the set {(z, t) | 2−k−1 ≤ t ≤ 2−k} ∩ Ω

with Heisenberg boxes with disjoint interiors. The boxes will be very short and

stacked vertically, and they will extend (in the z direction) well past the boundary of

Ω. We will bound the length of γ from below by bounding its length inside each box.

A standard piece of Carnot group machinery is the Box-Ball Theorem, stated here

as in [5]:

Theorem 3.5.3 (Box-Ball Theorem). There exists a constant λ ∈ (0, 1) such that

‖y−1x‖M ≤ dCC(x, y) ≤ λ−1‖y−1x‖M for all x, y ∈ H1.

Let φ(t) = t1/(α+1). Then Ω near the origin is given by {(z, t) | |z| < φ(t)}. For

k ∈ Z, let pk = (0, 2−k) and rk = 4φ(2−k).

Consider the line segment [pk+1, pk] on the vertical axis. This interval has change

in its t-coordinate, ∆t, equal to 2−k−1. A Heisenberg box of radius rk covers a t-

interval with ∆t = 2r2
k. Hence, the number of vertically-stacked Heisenberg boxes

with radius rk needed to cover this segment is at least bNkc, where Nk is given by:

Nk =
2−k−1

2r2
k

.

We call these boxes Boxkj := Box((0, 2−k−1 + (2j − 1)r2
k), rk), where j = 1, . . . , bNkc.
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To verify that Nk ≥ 1 (and hence there are such boxes), we simplify the right-hand

side:

2−k−1

2r2
k

= 2−6−k+2k/(α+1).

Thus, Nk is at least one if the exponent above is positive, that is, if k( 2
α+1
− 1) > 6.

As we ultimately will be achieving our result for any ε and δ small enough, we can

assume that we will only be using boxes with k as large as needed to satisfy this

inequality.

We denote the upper point of intersection of ∂ Boxkj with the t-axis as p+
kj and

the lower point of intersection as p−kj. Let γkj denote the intersection of γ with Boxkj.

Finally, we denote a point of intersection of γ with the top of ∂ Boxkj as q+
kj and with

the bottom of ∂ Boxkj as q−kj.

To bound the length of γkj, we first use the triangle inequality:

l(γkj) ≥ dCC(q+
kj, q

−
kj) ≥ dCC(p+

kj, p
−
kj)− dCC(p+

kj, q
+
kj)− dCC(p−kj, q

−
kj). (3.5.1)

By the Box-Ball Theorem, dCC(p+
kj, p

−
kj) ≥ ‖(p

+
kj)
−1p−kj‖M ≥ rk = 4φ(2−k). For the

other two distances on the right side of (3.5.1), note that the “p” point lies on the

t-axis and the “q” point has the same t-coordinate, so the CC-geodesic is a straight

line with length equal to its usual Euclidean length. Also, the z-coordinate of each

“q” point has norm bounded by φ(2−k), since the points must lie inside of Ω. Hence,

dCC(p+
kj, q

+
kj) ≤ φ(2−k) and dCC(p−kj, q

−
kj) ≤ φ(2−k). Hence, we arrive at the simplified

bound:

l(γkj) ≥ 2φ(2−k),

for all k and j = 1, . . . , bNkc.

Let γk be the intersection of γ with
⋃bNkc
j=1 Boxkj. We bound the length of γk from
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below:

l(γk) ≥ bNkcl(γkj) ≥
Nk

2
l(γkj) ≥ Nkφ(2−k) =

2−k−1φ(2−k)

2r2
k

=
2−k−6

φ(2−k)
.

Now, for the lower bound on l(γ), we note that we cannot say how many (if any)

of the boxes {Boxk0j}
bNk0c
j=1 or {Box(k1+1)j}

bNk1+1c
j=1 are intersected by γ. (These are the

boxes covering where (0, ε) and (z, δ) lie.) So, we will only count through the boxes

lying between these. Let tk = 2−k.

l(γ) ≥
k0−1∑
k=k1

l(γk) ≥
k0−1∑
k=k1

2−k−6

φ(2−k)
=

1

26

k0−1∑
k=k1

tk−1 − tk
φ(tk)

≥ 1

26

∫ 2−k1

2−k0+1

t−1/(α+1) dt =
α + 1

26α

[
2−k1α/(α+1) − 2(−k0+1)α/(α+1)

]
.

For ε < 2−(2α+1)/αδ, the difference in brackets above is at least one half the first

term in the brackets:

l(γ) ≥ α + 1

27α
2−k1α/(α+1)

>
α + 1

27α

(
δ

2

)α/(α+1)

>
α + 1

28α
δα/(α+1).

Now, we bound from above the distance from (z, δ) to the boundary:

distCC((z, δ), ∂Ω) ≤ dCC((z, δ), p) ≤ φ(δ) = δ1/(α+1), (3.5.2)

where the point p = (z̃, δ) lies on the boundary and is found by moving radially

outward from the point (z, δ). (This radial motion away from the t-axis is a CC-

geodesic.)
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We now consider the s-John condition, along with our two bounds:

λ

(
α + 1

28α
δα/(α+1)

)s
≤ λ(l(γ))s ≤ dist((z, δ), ∂Ω) ≤ δ1/(α+1). (3.5.3)

Recalling that we chose s = 2/(α + 1), we can simplify to the inequality:

λ

(
α + 1

27α

)s
≤ δ(1−α)/(1+α)2 .

The exponent of δ is positive, and we may apply these calculations for ε and δ as

small as we wish (provided that we maintain the relationship between ε and δ asserted

above). This limiting of ε to zero forces λ = 0, which is a contradiction. Hence, Ω is

not an s-John domain.
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CHAPTER 4

Weak s-John implies Poincare in Rn and in Carnot
groups

4.1 Preliminaries

First, we recall two definitions.

Definition 4.1.1. Let G be a Carnot group with stratified Lie algebra g = v1⊕· · ·⊕vk.

Let X1, . . . , Xm be a basis for v1. Let Ω ⊂ G and u ∈ C∞(Ω,R). Then the horizontal

gradient of u, ∇0u, is given by the vector field

∇0u =
m∑
i=1

(Xiu)Xi.

Definition 4.1.2. Let G be a Carnot group with Haar measure µ, and let Ω ⊂ G be

a domain with finite µ-measure. Let 1 ≤ p ≤ q < ∞. We say Ω is a (q, p)-Poincaré

domain if there exists C > 0 such that

(∫
Ω

|u− uΩ|q dµ
)1/q

≤ C

(∫
Ω

|∇0u|p dµ
)1/p

(4.1.1)

for all u ∈ C∞(Ω,R), where uΩ = µ(Ω)−1
∫

Ω
u dµ is the average of u on Ω.

Remark 4.1.3. Recall that we fixed an inner product on the horizontal subspace v1

(just before Definition 2.4.22); hence, the norm on ∇0u above is given by

|∇0u|2 = 〈∇0u,∇0u〉H = (X1u)2 + · · ·+ (Xmu)2.

Remark 4.1.4. A few words on nomenclature: We may generically refer to a domain
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which satisfies the above for some p and q as a Poincaré domain. Some instead

use the term Sobolev-Poincaré domain in this manner, but this usage conflicts with

another purpose for that term: in the literature the term Sobolev-Poincaré domain

sometimes refers to a domain that satisfies the above with q = Qp
Q−p , the optimal

exponent possible, where Q is the (homogeneous) dimension of the space.

In [31], Haj lasz and Koskela showed that an s-John domain Ω in Rn will necessarily

be a (q, p)-Poincaré domain for certain p and q (see Theorem 4.2.12 for the precise

statement). We first reproduce this result using a different approach, and then we

will generalize our approach to demonstrate a similar result in Carnot groups.

Our approach closely follows that in [40], where Koskela, Onninen, and Tyson

showed that domains satisfying a specific quasihyperbolic boundary condition are

(q, p)-Poincaré domains, quantitatively. We begin with a different kind of geometric

condition on the boundary but similarly arrive at such an analytic consequence. An

important mediator between the geometry and the Poincaré inequality is a Whitney

decomposition of the domain.

Definition 4.1.5. Let Ω be a bounded domain in Rn. A Whitney decomposition W

of Ω is a collection of closed cubes with edges parallel to the coordinate axes with the

following properties:

i. Q ⊂ Ω, for all Q ∈ W .

ii. The interiors of the cubes are disjoint.

iii. The diameter of each cube is 2−i diam Ω, for some i ∈ Z. We denote by Wk the

collection of all cubes in W with diameter 2−k diam Ω.

iv. Ω = ∪Q∈WQ.

v. diamQ ≤ dist(Q, ∂Ω) ≤ 4 diamQ for all Q ∈ W .
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A proof of the existence of such a decomposition can be found, for example, in

Stein’s book [55, pp. 167-168].

The approach stitches together local Poincaré inequalities – valid on individual

Whitney cubes – into a global Poincaré inequality. We use our control on the geometry

of the boundary to produce constraints on chains of Whitney cubes which allow us

ultimately to achieve the stitching.

4.2 A new proof showing s-John implies Poincaré in Rn

Throughout this section, let Ω ⊂ Rn be an s-John domain for some s ≥ 1, and let W

be a Whitney decomposition of Ω.

Remark 4.2.1. The s = 1 case is the John case; John domains in Rn satisfy (q, p)-

Poincaré inequalities for all p and q such that 1 ≤ p < n and p ≤ q ≤ np
n−p . The upper

limit q = np
n−p is the optimal exponent possible for Ω ⊂ Rn. The original sources for

this work are Gol′dshtĕın and Reshetnyak [30] on the Russian side of the Iron Curtain

and, five years later, Bojarski [11] in the West.

Lemma 4.2.2. Let s > 1, and let γ be a weak s-John curve in Ω from x to x0 with

weak s-John constant λ. Then

card{Q ∈ W1 ∪ · · · ∪Wk | Q ∩ γ 6= ∅} ≤ C2nk(s−1)/s

where C = C(n, s, λ).

Proof. Recall, for Q ∈ Wi, we have diamQ = 2−i diam Ω and that

dist(Q, ∂Ω) ≤ 4(2−i diam Ω).
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If z ∈ Q ∩ γ, Q ∈ Wi, it follows that

dist(z, ∂Ω) ≤ 5(2−i diam Ω).

Combining this inequality with the (scale-invariant) weak s-John condition for γ, we

get

d(x, z) ≤
(

dist(z, ∂Ω)

λ(diam Ω)1−s

)1/s

≤
(

5

λ

)1/s

2−i/s diam Ω. (4.2.1)

Consequently,

⋃
{z | z ∈ γ and z lies in some Q ∈ Wi} ⊂ D

(
x,

(
5

λ

)1/s

2−i/s diam Ω

)
. (4.2.2)

(Recall that D(x, r) denotes the closed ball centered at x with radius r.)

Suppose Q ∩ γ 6= ∅. Then there is some z ∈ Q ∩ γ; by (4.2.2), such a point z lies

within a known distance of x. By adding diamQ to the radius used in (4.2.2), we

obtain a ball centered at x which contains Q as well. Recall that all Q in Wi have

diameter 2−i diam Ω:

⋃
{Q | Q ∈ Wi, Q ∩ γ 6= ∅} ⊂ D

(
x,

(
5

λ

)1/s

2−i/s diam Ω + 2−i diam Ω

)

= D

(
x, 2−i diam Ω

[(
5

λ

)1/s

2i(s−1)/s + 1

])

⊂ D
(
x, 2−i diam Ω

[
C2i(s−1)/s

])
, (4.2.3)

where C = C(s, λ).

We address the cardinality of {Q | Q ∈ Wi, Q∩γ 6= ∅} using volume considerations:
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∑
Q∈Wi
Q∩γ 6=∅

|Q| = card{Q | Q ∈ Wi, Q ∩ γ 6= ∅} · n−n/2(2−i diam Ω)n

=
∣∣∣⋃ {Q | Q ∈ Wi, Q ∩ γ 6= ∅}

∣∣∣
≤ C

(
2−i diam Ω

)n
2ni(s−1)/s,

where C = C(n, s, λ). The second equality above follows by the disjointness of the

interiors of the Q’s, and the inequality is from the containment shown in (4.2.3) and

monotonicity of the measure.

Hence, we get

card{Q ∈ Wi | Q ∩ γ 6= ∅} ≤ C2ni(s−1)/s, (4.2.4)

where C = C(n, s, λ).

Now, we can put together the upper bounds for 1 ≤ i ≤ k.

card{Q ∈ W1 ∪ · · · ∪Wk | Q ∩ γ 6= ∅} ≤
k∑
i=1

C2ni(s−1)/s

≤ C2nk(s−1)/s

where C = C(n, s, λ), as desired.

Remark 4.2.3. For the case where s = 1, the above lemma holds with a resulting

bound that is linear in k:

card{Q ∈ W1 ∪ · · · ∪Wk | Q ∩ γ 6= ∅} ≤ Ck,

with C = C(n, λ), which essentially coincides with the statement in [40].

We now introduce two definitions based on similar definitions in [40]. The first

specifies paths within the Whitney decomposition which play the role of weak s-John
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chains; the second gives a related concept.

Definition 4.2.4. Fix Q̃ ∈ W , and let x be the center of Q̃. Let x0 ∈ Ω, and

fix a weak s-John curve γ from x to x0 in Ω. We define the path P (Q̃, γ) in W as

{Q ∈ W | Q ∩ γ 6= ∅}.

Remark 4.2.5. For a point x in a weak s-John domain Ω, there is typically not a

unique weak s-John curve from x to the center point x0. However, it will not be

important which of these weak s-John curves we choose in the above definition; what

is needed is that our choice of curve remains fixed going forward. As such, we will

henceforth suppress the dependence on γ in the notation: P (Q̃) := P (Q̃, γ).

Definition 4.2.6. For each cube Q̃ ∈ W , fix a choice of weak s-John curve from its

center point xQ̃ to x0. (These choices determine the paths P (Q̃) for all Q̃ ∈ W .) For

a cube Q ∈ W , we define the shadow of Q as S(Q) := {Q̃ ∈ W | Q ∈ P (Q̃)}.

Remarks 4.2.7. 1. The name “shadow” is intended to be suggestive. Suppose

a light source is placed at x0, and the light travels backward along the weak

s-John curves that were chosen. If Q is opaque, it casts a shadow backward

along any paths that pass through it. (Specifically, we define its shadow to be

comprised of the cubes that originate these obscured paths.)

2. There is a reciprocal relationship between paths and shadows that will be ex-

ploited below. First, we observe that Q ∈ P (Q̃) if and only if Q̃ ∈ S(Q). This

idea leads later to more delicate interchanges; see, for example, the transition

from (4.2.9) to (4.2.10).

3. As before, the specific choices of weak s-John curves do not play an important

role beyond generating the paths P (Q̃), so we suppress (in the notation) the

dependence of the shadow on the choices of curves.

Now we see what quantitative control the weak s-John condition impresses on

paths and shadows.
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Lemma 4.2.8. For ε > (s − 1)/s, there exists a constant C = C(n, ε, s, λ, diam Ω)

such that

sup
Q̃∈W

∑
Q∈P (Q̃)

|Q|ε ≤ C.

Proof. Let Q ∈ W , and let i ∈ Z such that Q ∈ Wi. Then Q has side length

n−1/22−i diam Ω, making its Lebesgue measure

|Q| = n−n/22−in(diam Ω)n.

Let Q̃ ∈ W . We now sum the terms |Q|ε for all Q in P (Q̃), noting we can utilize

the i-dependence of |Q|ε. To find the i-distribution of cubes in P (Q̃), we apply the

previous lemma.

∑
Q∈P (Q̃)

|Q|ε =
∞∑
i=1

∑
Q∈Wi∩P (Q̃)

|Q|ε

=
∞∑
i=1

n−nε/22−inε(diam Ω)nε · card{Q | Q ∈ P (Q̃) ∩Wi} (4.2.5)

≤ C̃n−nε/2(diam Ω)nε
∞∑
i=1

2−ni(ε−
s−1
s ).

The final sum converges if and only if ε > (s − 1)/s. The upper bound depends

(clearly) on n, ε, diam Ω, and s; by the presence of C̃ from the previous lemma, the

sum also depends on λ.

The upper bound does not depend on any data about Q̃, so we obtain the same

bound when the supremum is taken over all Q̃ ∈ W .

Remark 4.2.9. If s = 1, we apply the bound from the remark following Lemma 4.2.2

when substituting into (4.2.5). In this way, we find that the final sum converges in

this case if and only if ε > 0, which is again essentially the same as the result in [40].

Lemma 4.2.10. There exists a constant C = C(n, s, λ, diam Ω) such that diamS(Q) ≤



90

C(diamQ)1/s. Hence, |S(Q)| ≤ C ′|Q|1/s, where C ′ = C ′(C, n).

Proof. Let Q ∈ W and Q̃ ∈ S(Q). Hence, Q ∈ P (Q̃), i.e., there exists a weak s-John

curve γ from the center point x of Q̃ to x0 which passes through Q.

Let z ∈ Q∩γ. Since dist(Q, ∂Ω) ≤ 4 diamQ, we have dist(z, ∂Ω) ≤ 5 diamQ. We

combine this inequality with the weak s-John condition to get

dist(x,Q) ≤ d(x, z) ≤
(

5 diamQ

λ(diam Ω)1−s

)1/s

.

To see how big S(Q) could be in diameter, we start at the center of Q and stretch

outwards. The above calculation shows that for any Q̃ in S(Q), its center point is

within a certain distance of Q, and this distance does not depend upon any data

about Q̃. So, an upper bound on the reach of S(Q) in any given direction from the

center of Q is comprised of: half the diameter of Q, plus the upper bound on the

distance from Q to the center of any cube in the shadow, plus half of the diameter of

the biggest cube in the shadow (excluding Q, since we’ve already accommodated the

distance to exit from it). The diameter of S(Q) is then twice this amount:

diamS(Q) ≤ diamQ+ 2

(
5 diamQ

λ(diam Ω)1−s

)1/s

+ max
Q̃∈S(Q)

Q̃6=Q

diam Q̃. (4.2.6)

For Q̃ ∈ S(Q), Q̃ 6= Q, the weak s-John curve γ associated with Q̃ must travel

(at least) to the edge of Q̃ to reach Q. Starting from the center x of Q̃, this journey

requires at least 1
2
√
n

diam Q̃ length along γ in order to exit Q̃. Hence, d(x, z) ≥
1

2
√
n

diam Q̃ for any z ∈ γ ∩Q. So,

diam Q̃ ≤ 2
√
n d(x, z) ≤ 2

√
n

(
5 diamQ

λ(diam Ω)1−s

)1/s

(4.2.7)

for every Q̃ ∈ S(Q), Q̃ 6= Q.
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Using (4.2.7), (4.2.6) simplifies to

diamS(Q) ≤ 2(1 +
√
n)

(
5 diamQ

λ(diam Ω)1−s

)1/s

+ diamQ.

Let i ∈ Z such that Q ∈ Wi. Then

diamS(Q) ≤ 2(1 +
√
n)

(
5(2−i diam Ω)

λ(diam Ω)1−s

)1/s

+ 2−i diam Ω

= C2−i/s diam Ω + 2−i diam Ω

≤ C2−i/s diam Ω

= C(diamQ)1/s,

where C = C(n, s, λ, diam Ω).

Remark 4.2.11. If s = 1, the previous lemma extends to this case without modifi-

cation, concluding diamS(Q) ≤ C diamQ.

The following theorem (a slight variation of Proposition 3.1 in [40]) brings the

story together.

Theorem 4.2.12. Let Ω ⊂ Rn, n ≥ 2, be a weak s-John domain, for some 1 < s <

n/(n − 1), with diam Ω = 1. Then Ω is a (q, p)-Poincaré domain for each p and q

satisfying 1 ≤ p < n
n−(n−1)s

and p ≤ q < np
n−p(n−(n−1)s)

.

The proof of this theorem proceeds exactly as in [40]. That proof employs a

technical lemma ( [40][Lemma 3.8]); we provide the following substitute, which gives

an identical conclusion as the original lemma.

Lemma 4.2.13. Let Ω, p, and q be as in the statement of Theorem 4.2.12. Fix p

and q. Then there exists a constant C = C(n, p, q, s) such that

∑
Q∈W

|S(Q) ∩ E|p′ |Q|−p′/p∗ ≤ C|E|p′/q′
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for any E ⊂ Ω, where p∗ = np
n−p is the Sobolev conjugate of p.

Proof. First, we’ll establish a preliminary bound.

|S(Q) ∩ E|p′ = |S(Q) ∩ E|p′−1|S(Q) ∩ E|

= |S(Q) ∩ E|p′−1
∑

Q̃∈S(Q)

|Q̃ ∩ E| (4.2.8)

≤ |E|
p′
p
− p
′
q |S(Q)|

p′
q

∑
Q̃∈S(Q)

|Q̃ ∩ E|.

Then

∑
Q∈W

|S(Q) ∩ E|p′ |Q|−
p′
p∗ ≤ |E|p

′−1− p
′
q

∑
Q∈W

(
|S(Q)|1/q

|Q|1/p∗
)p′ ∑

Q̃∈S(Q)

|Q̃ ∩ E| (4.2.9)

= |E|p
′−1− p

′
q

∑
Q̃∈W

|Q̃ ∩ E|
∑

Q∈P (Q̃)

(
|S(Q)|1/q

|Q|1/p∗
)p′

. (4.2.10)

Now, to establish the desired bound, it is sufficient that

∑
Q∈P (Q̃)

(
|S(Q)|1/q

|Q|1/p∗
)p′
≤ C, (4.2.11)

for every Q̃, as
∑

Q̃∈W C|Q̃ ∩ E| = C|E|, and p′ − 1− p′

q
+ 1 = p′

q′
.

By Lemma 4.2.10, for diam Ω = 1 and s > 1 we have diamS(Q) ≤ C(diamQ)1/s.

Hence, |S(Q)| ≤ C|Q|1/s, and so (4.2.11) is satisfied if

∑
Q∈P (Q̃)

|Q|(
1
qs
− 1
p∗ )p′ ≤ C, (4.2.12)

which happens via Lemma 4.2.8 as long as ( 1
qs
− 1

p∗
)p′ > s−1

s
.

Recall our assumption that q < np
n−p(n−(n−1)s)

, and recall that p′ = p
p−1

and p∗ =

np
n−p . Below, we substitute for p′ and p∗ and use the upper bound for q; the remainder
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is simple algebra.

(
1

qs
− 1

p∗

)
p′ =

(
1

qs
− n− p

np

)
p

p− 1

>

(
n− p(n− (n− 1)s)

nps
− n− p

np

)
p

p− 1

=
s− 1

s
.

Remark 4.2.14. In the s = 1 case, the critical convergence (4.2.12) becomes

∑
q∈P (Q̃)

|Q|(
1
q
− 1
p∗ )p′ ≤ C, (4.2.13)

which holds if ε = 1
q
− 1

p∗
> 0 by the remark following Lemma 4.2.8, i.e., if q <

np
n−p . Hence, this approach does recover the result for John domains, excepting the

borderline case q = np
n−p .

4.3 Weak s-John implies Poincaré in Carnot groups

We pursue a proof similar to the one in the previous section, with necessary adjust-

ments. The first step in the generalization is to introduce a more general Whitney

decomposition. This generalization is sometimes instead called a Whitney covering,

which is more appropriate here as the targeted open set is not decomposed into dis-

joint pieces, but rather covered by sets in a highly prescribed manner.

General Whitney coverings appear in various places in the literature. An early

example is by Coifman and Weiss [21]; more recent examples come from Vodop’yanov

and Greshnov [58] and Björn, Björn, and Shanmugalingam [10]. As noted in the last

paper, it can be more convenient simply to define a custom Whitney covering – and

prove the basic results needed to make it useful – than to use an ill-suited one.

We, however, will borrow directly, as the Whitney covering described in [10] is
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basically what we need.

Let (X, d, µ) be a metric space with a doubling measure µ. (Doubling measures

were defined in Definition 2.2.1.) Let F be a non-empty closed subset of X, fix a

constant R > 0, and define V := {x ∈ X | 0 < dist(x, F ) ≤ 16R}.

Let us adopt here the notational convention that λB = λB(x, r) := B(x, λr).

Theorem 4.3.1 (Björn-Björn-Shanmugalingam). There exists a countable family of

balls

W = {Bi,j = B(xi,j, ri) | i ∈ N, j ∈ Ji}

such that for all i ∈ N and j ∈ Ji,

(i) V ⊂ ∪B∈WB ⊂ X − F ;

(ii) ri = 2−iR;

(iii) 8ri < dist(xi,j, F ) ≤ 16ri;

(iv) the balls {1
2
B | B ∈ W} are pairwise disjoint.

Remark 4.3.2. If Ω is a bounded open set with non-empty boundary (as we will be

using), then choosing F = Ωc and R ≥ 1
16

diam Ω will yield a Whitney covering of Ω.

A further lemma from [10] will be useful for our work.

Lemma 4.3.3 (Björn-Björn-Shanmugalingam). Let 0 < λ < 8. Then there exists a

constant M > 0, depending only on λ and the doubling constant of µ, such that we

have the following.

(i) If λBi,j ∩ λBk,l 6= ∅, then ri < (16 + λ)rk/(8− λ) and hence

i− log2

(
16 + λ

8− λ

)
< k < i+ log2

(
16 + λ

8− λ

)
.
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(ii) If Bi,j ∈ W , then card{B ∈ W | λBi,j ∩ λB 6= ∅} ≤ M , and hence for each

x ∈ X,
∑

B∈W χλB(x) ≤M .

Let G be a Carnot group with stratification v1 ⊕ · · · ⊕ vm of its Lie algebra. We

recall the following, in order to establish notation which will be used throughout

the remainder of this section. Let Q denote the homogeneous dimension of G; recall

Q :=
∑m

i=1 i dim vi. Let µ denote a Haar (volume) measure on G. Recall that (G, µ) is

Ahlfors Q-regular, indeed there exists a constant K > 0 such that µ(B(x, r)) = KrQ

for every x; note that K = µ(B(0, 1)). Finally, observe that Ahlfors regularity for

µ implies that µ is a doubling measure, so we may use the aforementioned Whitney

covering.

Lemma 4.3.4. Let s > 1, and let γ be a weak s-John curve in Ω ⊂ G from x to x0

with weak s-John constant λ. Then

card{Q ∈ W1 ∪ · · · ∪Wk | Q ∩ γ 6= ∅} ≤ C2Qk(s−1)/s,

where C = C(Q, s, λ).

Proof. The proof here largely follows the proof of Lemma 4.2.2, which established

this result in the Rn case. We note only the following adaptations:

• Let R = 1
16

diam Ω in the definition of the Whitney covering of Ω. Then, for

B ∈ Wi, we have ri = 2−iR = 2−(i+4) diam Ω.

• If z ∈ Bi,j ∩ γ, Bi,j ∈ Wi, it follows that

dist(z, ∂Ω) ≤ dist(xi,j, ∂Ω) + d(xi,j, z) ≤ 16ri + ri = 17ri.

Consequently, we get

d(x, z) ≤
(

17

16λ

)1/s

2−i/s diam Ω (4.3.1)
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in place of (4.2.1). This inequality leads, by the same steps, to the containment:

⋃
B∈Wi
B∩γ 6=∅

B ⊂ D
(
x, 2−i diam Ω

[
C2i(s−1)/s

])
, (4.3.2)

where C = C(s, λ).

• By our definition of Whitney covering, the set {1
2
B | B ∈ Wi, B ∩ γ 6= ∅} is

pairwise disjoint, and µ(1
2
B) = K(1

2
ri)

Q for B ∈ Wi. We again bound the

cardinality using volume considerations:

∑
B∈Wi
B∩γ 6=∅

µ

(
1

2
B

)
= card{B ∈ Wi | B ∩ γ 6= ∅} ·K

(
1

2
ri

)Q

= µ

(⋃{
1

2
B

∣∣∣∣ B ∈ Wi, B ∩ γ 6= ∅
})

≤ CK
(
2−i diam Ω

)Q
2Qi(s−1)/s,

where C = C(Q, s, λ). The second equality above follows by the disjointness of

the 1
2
B’s, and the inequality is from the containment in (4.3.2) and monotonicity

of the measure.

Hence, we get

card{B ∈ Wi | B ∩ γ 6= ∅} ≤ C2Qi(s−1)/s,

where C = C(Q, s, λ).

• The rest of the proof proceeds as before.

Recall the definition of a (Whitney) path P (B), introduced in the previous section.

Definition 4.3.5. Fix B̃ ∈ W , and let x be the center of B̃. Let x0 ∈ Ω, and fix a

weak s-John curve γ from x to x0 in Ω. We define the path P (B̃, γ) (or simply P (B̃))

in W for this weak s-John curve as {B ∈ W | B ∩ γ 6= ∅}.
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Lemma 4.3.6. Let s > 1. For ε > (s−1)/s, there exists a constant C = C(Q, ε, s, λ, diam Ω, K)

such that

sup
B̃∈W

∑
B∈P (B̃)

|B|ε ≤ C.

Proof. The proof proceeds essentially as for Lemma 4.2.8, with two slight modifica-

tions.

• Let B ∈ W , and let i ∈ Z such that B ∈ Wi. Then B has measure

µ(B) = KrQi = 2−Q(i+4)K(diam Ω)Q = C2−Qi(diam Ω)Q.

• We apply Lemma 4.3.4 to bound the cardinality of the set in (4.2.5); Lemma 4.3.4

is the Carnot version of Lemma 4.2.2 and has an analogous result, so its effect

on the calculations is the same.

• The rest follows as before.

Recall the definition of a Whitney shadow S(B), from the previous section.

Definition 4.3.7. For each ball B̃ in W , fix a choice of weak s-John curve from its

center point xB̃ to x0. (These choices determine the paths P (B̃) for all B̃ ∈ W .) For

a ball Bi.j ∈ W , we define the shadow of Bi,j as S(Bi,j) := {B̃ ∈ W | Bi,j ∈ P (B̃)}.

Lemma 4.3.8. There exists a constant C = C(s, λ, diam Ω, K,Q) such that µ(S(B)) ≤

Cµ(B)1/s.

Proof. Let B := Bi,j ∈ W and B̃ ∈ S(B). Hence, B ∈ P (B̃), i.e., a weak s-John

curve γ from the center point x̃ of B̃ to x0 was chosen which passes through B.

So, let z ∈ B ∩ γ. Hence, dist(z, ∂Ω) ≤ dist(xi,j, ∂Ω) + d(xi,j, z) ≤ 17ri. We

combine this inequality with the weak s-John condition to get

d(x̃, z) ≤
(

17ri
λ(diam Ω)1−s

)1/s

=

(
17

16λ

)1/s

2−i/s diam Ω. (4.3.3)
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Further, dist(x̃, B) ≤ d(x̃, z), trivially, so we get

dist(x̃, B) ≤
(

17

16λ

)1/s

2−i/s diam Ω.

To see how big S(B) could be in diameter, we start at the center of B and stretch

outwards. The above calculation shows that for any B̃ in S(B), its center point is

within a certain distance of B, and this distance does not depend upon the particulars

of B̃. So, an upper bound on the reach of S(B) in any given direction from the center

of B is comprised of: the radius of B, plus the upper bound on the distance from B

to the center of any cube in the shadow, plus the radius of the biggest cube in the

shadow. The diameter of S(B) is then twice this amount:

diamS(Q) ≤ 2ri + 2

(
17

16λ

)1/s

2−i/s diam Ω

+ 2 max{rk | there exists B̃ ∈ S(B) ∩Wk}. (4.3.4)

By Lemma 4.3.3(i), for any B̃ ∈ Wk∩S(B) such that B∩B̃ 6= ∅, we know i−2 < k

(using λ = 1 in the lemma).

For B̃ ∈ Wj ∩ S(B) such that B̃ ∩B = ∅, we must travel (at least) to the edge of

B̃ to reach B, so d(x̃, z) ≥ rj. Combining this inequality with (4.3.3), we bound rj:

rj ≤
(

17

16λ

)1/s

2−i/s diam Ω.

We can now get control of the max’s value:

max{rk | there exists B̃ ∈ S(B) ∩Wk} ≤ max

{(
17

16λ

)1/s

2−i/s diam Ω, 2−i−2 diam Ω

}

=

(
17

16λ

)1/s

2−i/s diam Ω.
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Now, (4.3.4) can be simplified and pushed to the end.

diamS(Q) ≤ 2ri + 4

(
17

16λ

)1/s

2−i/s diam Ω

=

(
1

8
2−i + 4

(
17

16λ

)1/s

2−i/s

)
diam Ω

=

(
1

8
+ 4

(
17

16λ

)1/s
)

2−i/s diam Ω

= 16

(
1

8
+ 4

(
17

16λ

)1/s
)

(diam Ω)1−1/s(2−i diam Ω)1/s

= C̃r
1/s
i .

Finally, µ(S(B)) ≤ µ(B(xi,j, C̃r
1/s
i )) = K(C̃r

1/s
i )Q = C(KrQi )1/s = Cµ(B)1/s. Note

that C absorbs both C̃Q and a factor of K1−1/s. Hence, C = C(s, λ, diam Ω, K,Q),

as expected.

We finish, as we did before, by relying on a variation of Proposition 3.1 in [40].

Theorem 4.3.9. Let Ω ⊂ G be a weak s-John domain, for some 1 < s < Q/(Q− 1),

with diamCC Ω = 1. Then Ω is a (q, p)-Poincaré domain for each p and q satisfying

1 ≤ p < Q
Q−(Q−1)s

and p ≤ q < Qp
Q−p(Q−(Q−1)s)

.

Remark 4.3.10. The proof of this theorem proceeds essentially as in [40]. One

encounters the following adaptations for the proof in the Carnot case.

• The recharacterization of what needs to be shown, taken from [31, Lemma 1

and Theorem 1(I)], was originally written for Rn. However, the proofs require

only obvious modifications (e.g., the gradient must be replaced by the horizontal

gradient) to hold also in the Carnot case.

• In producing the bound 1
C
µ(Ag)

p/q ≤
∫

Ω
|∇0u|pdµ:

– We require a (p∗, p)-Poincaré inequality to hold on balls from the Whitney
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covering. This result is known; see, for example, Garofalo and Nhieu [25,

Theorem 1.5, together with Remark 1.2 and Theorem 1.15(I)].

– We use part (ii) of Lemma 4.3.3, which says that any point in Ω is contained

in at most M of the Whitney covering balls, to make the inequality chain:

∑
µ(Ag)

p/q ≤
∑

µ(A ∩B)p/q ≤
∑∫

B

|∇0u|pdµ ≤M

∫
Ω

|∇0u|pdµ,

(4.3.5)

where the sums are taken over all balls in the Whitney covering that in-

tersect Ag and have uB ≤ 1/2.

• In producing the bound 1
C
µ(Ab)

p/q ≤
∫

Ω
|∇0u|pdµ:

– We require a (1, 1)-Poincaré inequality to hold on balls from the Whitney

covering. This fact follows from the known result mentioned above.

– The standard chaining argument referenced works for the general Whitney

covering, with slightly worse constant.

– We substitute the following technical lemma in place of ( [40][Lemma 3.8]);

the substitute arrives at an identical conclusion as the original lemma.

Lemma 4.3.11. Let Ω, p, and q be as in the statement of Theorem 4.3.9. Fix p and

q. Then there exists a constant C = C(Q, p, q, s) such that

∑
B∈W

|S(B) ∩ E|p′ |B|−
p′
p∗ ≤ C|E|

p′
q′

for any E ⊂ Ω, where p∗ = np
n−p is the Sobolev conjugate of p.

Proof. The proof proceeds exactly as for Lemma 4.2.13 with two slight differences.

• In (4.2.8), the equality is an inequality (“less than or equal to”), which does

not affect the calculation.
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• It is sufficient, as before, to verify that (4.2.11) holds, because

∑
B̃∈W

C|B̃ ∩ E| ≤ CM |E|.

We have invoked the second part of Lemma 4.3.3 to produce this inequality.
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CHAPTER 5

Box dimension of Hölder graphs in Carnot groups

5.1 History and motivation

Measurements of distance (typically, as diameters of covering sets) play an intrinsic

role in definitions of dimension taken from geometric measure theory. In Carnot

groups, it is natural to use the Carnot-Carathéodory metric in these definitions; we

will refer to such dimensions using a “CC” prefix to indicate a sub-Riemannian metric

is being used. Using this metric leads to some unusual results: for example, an

Euclidean line in a k-step Carnot group can have CC-Hausdorff dimension equal to

any integer from 1 to k, depending on how the line is situated.

A fruitful approach to Carnot groups has been to establish implications of the

form “Euclidean hypotheses yield a Carnot conclusion.” For questions of dimension

in Carnot groups, there have been two main types of Euclidean hypotheses. The first

compares the Euclidean and CC dimensions of a general subset of a Carnot group.

This question, known as Gromov’s dimension comparison problem, has been explored

in [4,6,7]; most recently, Balogh, Tyson, and Warhurst [8] gave sharp answers to this

question in general Carnot groups, for both Hausdorff and box dimensions. The

second type of Euclidean hypothesis connects the Euclidean smoothness of a function

to the CC-dimension of its graph.

We focus on the Heisenberg group. Let f : R2 → R. If f is a C1 smooth function,

then its graph will have CC-Hausdorff dimension exactly equal to three in H1. (This

follows from, for example, Pansu’s isoperimetric inequality [51].) In fact, if f is
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only Lipschitz, then its graph still has CC-Hausdorff dimension exactly three in H1;

[4, Proof of Theorem 6.7] shows the CC-Hausdorff dimension is at least three, and

Corollary 5.2.5 below shows the CC-Hausdorff dimension is at most three (take α =

1).

However, there is an example, the “Heisenberg square,” which is the graph of a

function f of bounded variation but has CC-Hausdorff dimension two [4]. This set

demonstrates that there is a change of behavior as the regularity of the function is

weakened. This example led us to explore the question of the dimensions of graphs

of Sobolev functions, whose regularity lies between BV and Lipschitz.

Definition 5.1.1. The Sobolev space W 1,p(Rn,R), p ≥ 1, is the set of all locally

integrable functions f : Rn → R such that f ∈ Lp(Rn) and the first weak partial

derivatives of f are also in Lp(Rn).

A locally integrable function g : Rn → R is a first weak partial derivative of f with

respect to xi, i ∈ {1, . . . , n}, if

∫
Rn
φg dx = −

∫
Rn
f
∂

∂xi
φ dx

for all φ ∈ C∞0 (Rn) (the space of smooth functions on Rn with compact support).

In H1, we will be working with functions from (Euclidean) W 1,p(R2,R). Con-

sideration of these functions can naturally split into three cases: p > 2, p = 2, and

1 ≤ p < 2. For each case, specific tools are available. Of particular benefit to our work,

for p > 2, Sobolev functions are α-Hölder functions, where α = 1− 2/p. I provide an

upper bound on the lower CC-box dimension for such Sobolev functions by producing

an upper bound in the case of Hölder functions. Hence, CC-dimB Gr f ≤ 3 + 2/p, for

all p > 2. Note that this upper bound limits to 4 as p limits toward 2 from above.

For 1 ≤ p ≤ 2, we still only have the trivial upper bound of 4 (the homogeneous

dimension of H1).
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1 2 ∞ p

CC-dimH GrF

3

4
(p, 3 + 2

p
)

Figure 5.1: Upper and lower bounds on the CC-Hausdorff dimension in H1 of the
graph of an Euclidean Sobolev function F ∈ W 1,p(R2,R).

The lower bound on the CC-Hausdorff dimension of the graph of a Sobolev func-

tion is 3 for 1 ≤ p <∞, as shown recently by Magnani [43, Theorem 2].

The lower bound is sharp; a Lipschitz function will be in W 1,p for all p, so its graph

realizes the lower bound of 3 on its CC-dimension. We do not currently have examples

showing sharpness of the upper bound for Sobolev functions or for Hölder functions.

We conjecture that an appropriately chosen, nowhere-differentiable function (e.g., a

Weierstrass function) might serve this purpose.

5.2 Prior results and Heisenberg group results

Kahane [38] is generally credited with the first theorem giving upper bounds on the

dimensions of graphs of α-Hölder functions f : R→ R, although it may have been a

classical result prior to that [1, p. 193].

Theorem 5.2.1 (Kahane). Let F : R → R satisfy an α-Hölder condition on an

interval I0 ⊂ R, where 0 < α ≤ 1. The graph of F , GrF := {(t, F (t)) | t ∈ I0},

satisfies:

dimH GrF ≤ 2− α.

A few years later Yoder [59] generalized the theorem to α-Hölder functions f : Rm →
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Rn, followed by a generalization by Cuzick [22] which utilized separate α-Hölder con-

ditions for each coordinate function.

Definition 5.2.2. A function F : Rm → Rn satisfies a Hölder condition of order

α = (α1, . . . , αn) if the ith coordinate function of F is αi-Hölder, for i = 1, . . . , n.

Theorem 5.2.3 (Cuzick). Let F : Rm → Rn satisfy a Hölder condition of order

α = (α1, . . . , αn) on a cube I0 ⊂ Rm, where 0 < α1 ≤ · · · ≤ αn ≤ 1. The graph of F ,

GrF := {(t, F (t)) | t ∈ I0}, satisfies:

dimH GrF ≤ min

[
m+

∑n
i=1(αn − αi)
αn

,m+
n∑
i=1

(1− αi)

]
.

Below are corollaries of the first two theorems in Section 5.4, applying the theorems

to the first Heisenberg group, respectively. The second corollary is the one applicable

to the dimension-of-graphs problem discussed in the previous section.

Corollary 5.2.4. Consider the Heisenberg group H1. Let I1 = [a1, b1] be an interval

on the x1-axis in H1. Let F : I1 → R2 satisfy an Euclidean Hölder condition of order

α = (α1, α2), 0 < α1 = α2 ≤ 1. Let GrF = {(t, F (t)) | t ∈ I1}. Then

CC-dimB GrF ≤


4− 2α1, if 0 < α1 ≤ 1

2
;

1 + 1
α1
, if 1

2
< α1 ≤ 1.

(5.2.1)

Corollary 5.2.5. Consider the Heisenberg group H1. Let Ω ⊂ R2 be a bounded set,

and let F : Ω → R be an Euclidean α-Hölder function, 0 < α ≤ 1. Let GrF =

{(t1, t2, F (t1, t2)) | (t1, t2) ∈ Ω}. Then

CC-dimB GrF ≤ 4− α. (5.2.2)

Remark 5.2.6. As shown in Theorem 5.4.6, the upper bounds in (5.2.1) and (5.2.2)

are independent of the choice of which directions contain the domain and which
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contain the range. The lower bound produced by Magnani [43, Theorem 2] is similarly

independent of this choice.

5.3 Preliminaries

Let G be a two-step Carnot group, and let the grading of its algebra g be given by

g = v1 ⊕ v2.

Definition 5.3.1. The growth vector of the distribution is the 2-tuple (d1, d2), where

di = dim vi.

Definition 5.3.2. The weighting {wi}d1+d2
i=1 associated with the growth vector is the

assignment

(w1, ..., wd1+d2) := (1, ..., 1︸ ︷︷ ︸
d1

, 2, ..., 2︸ ︷︷ ︸
d2

).

Let {Vi}d1+d2
i=1 be a basis for the algebra such that Vi ∈ vj iff wi = j. (Hence,

{V1, ..., Vd1} is a basis for v1, and {Vd1+1, ..., Vd1+d2} is a basis for v2.)

We describe G using canonical coordinates of the first kind (see Definition 2.4.29).

5.4 Theorems

Let m and n be positive integers such that m + n = d1 + d2. Let F : Rm → Rn

satisfy a Hölder condition of order α = (α1, ..., αn), where 0 < αi ≤ 1 for every

i = 1, ..., n. We view the graph of F , which is a subset of Rm+n, as a subset of the

Carnot group G and seek upper bounds on the lower box dimension of this subset

under the Carnot-Carathéodory metric. Note that we trivially have the lower bound

m.

We assume that the domain of F lies in some (Euclidean) m-dimensional coor-

dinate plane. We do not require that the coordinates which parameterize this plane
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are “first-step” coordinates (i.e., initially generated by exp(tVi), where 1 ≤ i ≤ d1).

Clearly, if m > d1, it would not even be possible. In particular, in Theorem 5.4.2,

using higher step coordinates in the domain may not be avoidable.

In the following theorem, the domain of F is one-dimensional (i.e., m = 1), and

we choose the domain to lie in a first-step coordinate interval.

Theorem 5.4.1. Let G be a two-step Carnot group with topological dimension 1 +n,

with a graded Lie algebra as indicated in the previous section. Let I1 = [a1, b1] be an

interval on the x1-axis in G. Let F : I1 → Rn satisfy an Euclidean Hölder condition

of order α = (α2, ..., αn+1), where 0 < αi ≤ 1 for every i = 2, ..., n + 1. Let GrF =

{(t, F (t)) | t ∈ I1}. Then

CC-dimB GrF ≤ min
0<β≤1

{
1 +

∑n+1
i=2 (βwi −min{β, αi})

β

}
.

Proof. We follow the approach employed by Cuzick [22]: for each coordinate in the

range of F , the Hölder condition constrains the amount that the graph can vary.

We require a certain amount of stacked, identically-sized boxes to cover this possible

variation of F . Then we subdivide the domain of F ; the Hölder condition yields a

possible variation of F on each subinterval, which lets us cover the graph of F with

stacks of smaller boxes. At each stage, we have a covering of the graph of F with

smaller and smaller boxes, leading to an upper bound on the lower box dimension.

As we want to bound the CC-lower box dimension, we must cover the graph of F

using stacks of Carnot boxes. Where the difficulty arises is in the awkward behavior

of Carnot boxes. To separate the issues involved, we will cover the graph of F using

Euclidean boxes and then cover those Euclidean boxes with stacks of Carnot boxes.

We begin by partitioning the interval I1 into 2tdb1 − a1e equal pieces, t ∈ Z+.
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Consider the consequent partitioning of GrF :

As := ([a1 + s2−t, a1 + (s+ 1)2−t]× Rn) ∩GrF,

where 0 ≤ s ≤ 2tdb1 − a1e − 1. Since Fi is αi-Hölder, we have

|Fi(x)− Fi(y)| ≤ C|x− y|αi ,

where x and y lie in [a1 + s2−t, a1 + (s + 1)2−t], for every i = 2, . . . , n + 1. Hence,

there are choices for a2, ..., an+1 ∈ R such that As is contained within the Euclidean

box:

Es := [a1 + s2−t, a1 + (s+ 1)2−t]× [a2, a2 + C2−tα2 ]× · · · × [an+1, an+1 + C2−tαn+1 ].

(I am using a single Hölder constant C here; even though the constants may differ,

we may simply take the maximum one as a uniform choice without weakening our

result.) Normally, the Euclidean box Es would be covered by a stack of smaller,

uniformly-sized Euclidean cubes; we will instead cover it with a stack of smaller,

uniformly-sized Carnot boxes.

Let β ∈ (0, 1]. We select a Carnot box at the origin:

Box(0, t) := {x = (x1, . . . , xn+1) ∈ G | |xi| ≤ 2−tβwi−1}.

The parameter β ultimately allows an optimization to the most efficient covering. To

get other Carnot boxes, we will left-translate this box; we denote the left-translated

box Lg(Box(0, t)) as Box(g, t).

An Euclidean cube optimizes the volume of a box for a given diameter; our choice

of Carnot box similarly aims to make the Carnot-Carathéodory lengths of the sides

the same to optimize our covering. As the lengths of the sides of Box(0, t) depend
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upon the step of the direction that the side resides in, our choice of Carnot box uses

the weights wi in the exponent to equalize the side lengths. Note that this Carnot

box and all left-translated versions of it have diameter proportional to 2−tβ.

Recall that left-translation is an affine map; in particular, it produces a skew in

directions that are not in the first step. So, we will describe the construction of our

covering in two parts: first-step directions and second-step directions.

Part I. First-step directions (wi = 1)

Using the BCH formula (see (2.4.1)), we note that, for wi = 1, left-translating an

xi-interval [ai, bi] by an element g sends [ai, bi] to [ai + gi, bi + gi], where gi is the ith

coordinate of g. Since there is no skew, the process of stacking left-translated boxes

to cover Es in that direction will be straightforward.

For Es, the ith-coordinate interval is [ai, ai + C2−tαi ]; for Box(0, t), the width of

its ith-coordinate interval is 2−tβ, which means we will stack

C2−tαi

2−tβ
= C2t(β−αi) boxes in this coordinate direction.

Note that if C2t(β−αi) ≤ 1, then the covering would only be one box deep in that

direction. Also, covering the x1 direction of Es (which is only 2−t thick) is always one

box deep.

Part II. Second-step directions (wi = 2)

Soon it will be useful to know that GrF is bounded. This fact follows from F being

continuous and the domain of F being compact.

There is a skew that applies to second-step directions when left-translating. This

is described by the BCH formula:

(g · x)i = gi + xi +
1

2

∑
1≤p<q≤d1+d2

cpq(gpxq − gqxp),

where g ∈ G, x ∈ Box(0, t), and cpq is the coefficient of vi when the Lie bracket [vp, vq]
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Es

xi

xj

Box(g, t)

xi

xj

Figure 5.2: Comparing sections of Es and Box(g, t) above a first-step direction xj.

is taken. Note that, by the BCH formula, the only possible p and q for which cpq 6= 0

are when both p and q correspond to first-step directions.

The skew in the ith direction during left-translation is described by the summation,

whose value we can bound. In Box(0, t), the values xq and xp can be uniformly

bounded by 2−tβ−1, as the values are first-step coordinates of some point x lying

within the box at the origin. The values of gi are bounded, as the point g lies in

(or very near) Es, which is bounded and intersects GrF , which is also bounded. We

bound the summation term:

∣∣∣∣∣12 ∑
1≤p<q≤d1+d2

cpq(gpxq − gqxp)

∣∣∣∣∣ ≤ 1

2

∑
1≤p<q≤d1+d2

|cpq|(|gp|+ |gq|)2−tβ−1 ≤ C2−tβ−1

where C depends only on the bracket relations of G and the bound on GrF .

The circumstance that we now encounter is represented by Figure 5.2. If we fix g

and xi, the value of (g · x)i is linear in the first-step coordinates. (This explains why

the top and bottom of Box(g, t) are linear and parallel.) The figure is essentially a

two-dimensional slice of Es and Box(g, t), capturing sets along the xi direction and

some first-step direction. This slice is a simplification of the actual situation, but

it embodies the essential elements: the Euclidean box Es has sides parallel to the
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Es

xi

xj

Figure 5.3: The upward stack of Carnot boxes leaves a part of Es uncovered due to
the skew.

axes, but the left-translation of Box(0, t) has skewed the Carnot box. As we stack the

Carnot boxes, they will not neatly cover Es. However, having bounded the extent of

the skew, we can bound the number of Carnot boxes required.

Consider the bottom of the box in the ith coordinate, i.e., the points g · x in

Box(g, t) with xi = −2−2tβ−1. The bottom ranges in its ith coordinate at most from

gi − 2−2tβ−1 − C2−tβ−1 to gi − 2−2tβ−1 + C2−tβ−1. A similar statement may be made

about the top of the box.

We begin our covering as before, by dividing the ith interval of Es by the width

of the ith interval of Box(0, t). This operation gives:

C2−tαi

2−2tβ
= C2t(2β−αi) subdivisions.

To understand what occurs next, picture Box(g, t) such that the lowest part of its

bottom is all that touches the ith bottom of Es, due to the skew of Box(g, t). From

this starting position, stacking C2t(2β−αi) Carnot boxes upward will cover all of Es in

this direction except for the lower “triangle” (see Figure 5.3). Note that, with this

particular covering, the top of Es in this direction is covered, despite the skew.

To cover the rest of the Es, we must stack additional Carnot boxes under the
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lowest Carnot box. By our previous calculation, the skew can add at most C2−t

to the interval that must be covered. Covering this portion contributes a few more

boxes:

C2−tβ

2−2tβ
= C2t(2β−β) subdivisions.

Overall, then, there are C(2t(2β−β) + 2t(2β−αi)) subdivisions required in a step-2

direction. The dominant term here may be summarized as C2t(2β−min{β,αi}).

Recall that there are 2tdb1 − a1e Euclidean boxes Es, and we have covered each

one using

(
d1∏
i=2

max
{

1, C2t(β−αi)
})( d1+d2∏

j=d1+1

max{1, C2t(2β−min{β,αj})}

)
Carnot boxes.

The lower box dimension of GrF is now bounded above:

CC-dimB GrF = lim inf
δ→0

logMδ(GrF )

− log δ

≤ lim
t→∞

log
(

(2tdb1 − a1e)
(∏d1

i=2 max{1, C2t(β−αi)}
)(∏d1+d2

j=d1+1 max{1, C2t(2β−min{β,αj})}
))

− log(2−tβ)

= lim
t→∞

t log 2 +
∑d1

i=2 max{0, logC + t(β − αi) log 2}
tβ log 2

+ lim
t→∞

∑d1+d2
j=d1+1 max{0, logC + t(2β −min{β, αj}) log 2}

tβ log 2

=
1 +

∑d1
i=2(1− αi) +

∑d1+d2
j=d1+1(2β −min{β, αj})
β

.

As wi = 1 for all first-step directions, we may condense the above result into the

final formulation:

CC-dimB GrF ≤ 1 +
∑n+1

i=2 (βwi −min{β, αi})
β

.

To finish, we observe that this bound holds for any choice of β in (0, 1], so we may

choose the minimum over such β of these upper bounds.
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Now we consider a second variation, where the range of F is 1-dimensional, thereby

producing a full-fledged “Hölder surface.” We choose the range to lie in a second-step

direction here.

Theorem 5.4.2. Let G be a two-step Carnot group with topological dimension m+1,

with a graded Lie algebra as indicated in the previous section. Let Ω ⊂ Rm be a

bounded set, and let F : Ω → R be a Euclidean α-Hölder function, where 0 < α ≤ 1.

Let GrF = {(t1, . . . , tm, F (t1, . . . , tm)) | (t1, . . . , tm) ∈ Ω}. Then

CC-dimB GrF ≤ d1 + 2d2 − α.

Remark 5.4.3. Recall that the Hausdorff dimension of G is d1+2d2, so the conclusion

above may be stated as CC-dimB GrF ≤ dimH G− α.

Proof. The proof proceeds as before, and we will only mention the necessary modifi-

cations.

• We begin by putting the domain Ω inside of an Euclidean box, I1× · · · × Im+1,

where Ii = [ai, bi] for each i.

• Each Ii is initially subdivided into 2−tdbi − aie equal pieces. For each first-

step direction, each piece will be one box deep when we cover using the left-

translated Carnot boxes. For second-step directions, it will require a depth of

2t(2β−1) boxes, plus additional boxes to cover the skew.

• The interval in the m + 1st direction for Es is C2−tα wide, from the Hölder

condition.

• The skew of the left-translated Boxes in second-step directions still occurs as

before, requiring an extra C2t(2β−β boxes in each direction to cover the skew,

even though some of these directions are part of the domain now.
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• There are C(2t)d1+d2−1 sets Es, and each one is covered by

max{1, C2tβ}d2−1 ·max{1, C2t(2β−min{β,α})} Carnot boxes. These values yield:

CC-dimB GrF ≤ min
0<β≤1

{
d1 + d2 − 1 + β(d2 − 1) + (2β −min{β, α})

β

}
= d1 + 2d2 − α.

We now state the general theorem in the case of two-step Carnot groups. Its proof

is largely an exercise in notation — the essential ideas have already been laid out in

detail in the two proofs above — and we will omit it.

Theorem 5.4.4. Let G be a two-step Carnot group with topological dimension m+n,

with a graded Lie algebra as indicated in the previous section. Let Ω ⊂ Rm be a

bounded set, and let F : Ω → Rn satisfy an Euclidean Hölder condition of order

α = (α1, ..., αn), where 0 < αi ≤ 1 for every i = 1, ..., n. Let GrF denote the graph

of F as a subset of Rm+n. We allow the domain of F to consist of any combination

of m-many first-step and second-step directions. Let R denote the set of indices for

directions in the range of F , and let D2 denote the number of second-step directions

in the domain of F . Then

CC-dimB GrF ≤ min
0<β≤1

{
D2 +

m+
∑

j∈R βwj −
∑n

i=1 min{β, αi}
β

}
. (5.4.1)

Remark 5.4.5. The situation in higher-step Carnot groups is similar in many ways,

and it can be approached in a similar manner. The most significant difference, con-

ceptually, is that the guiding picture (Figure 5.2) has changed: when left-translating

the Carnot box, the skew in a third-step direction is linear in second-step variables

and quadratic in first-step variables. This dependence means the bottom and top,

while still identical (except for a shift), are not planes. This doesn’t greatly affect

the calculations, however; the BCH formula still provides a bound for the amount of
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skew, and the dimension calculations proceed as before.

Finally, we can simplify Theorem 5.4.4 by a simple observation: swapping a

second-step direction in the domain for a first-step direction in the range will have

zero net effect on the upper bound in (5.4.1). The value of D2 will decrease by one,

but the sum
∑

j∈R βwj will increase by β. The result is that the upper bound is

independent of the assignment of coordinates to domain and range.

Theorem 5.4.6. Let G be a two-step Carnot group with topological dimension m+n,

with a graded Lie algebra as indicated in the previous section. Let Ω ⊂ Rm be a

bounded set, and let F : Ω → Rn satisfy an Euclidean Hölder condition of order

α = (α1, ..., αn), where 0 < αi ≤ 1 for every i = 1, ..., n. Let GrF denote the graph

of F as a subset of Rm+n. Then

CC-dimB GrF ≤ min
0<β≤1

{
d1 + 2d2 −m+

m−
∑n

i=1 min{β, αi}
β

}
. (5.4.2)

Remark 5.4.7. Again, recall that dimH G = d1 +2d2. Hence, we can write the upper

bound (5.4.2) as

CC-dimB GrF ≤ min
0<β≤1

{
dimH G−m+

m−
∑n

i=1 min{β, αi}
β

}
.
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