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Abstract

In [5], Hopkins, Kuhn, and Ravenel discovered a generalized character theory that proved useful in studying

cohomology rings of the form E∗(BG). In this paper we use the geometry of p-divisible groups to describe

a sequence of “intermediate” character theories that retain more information about the cohomology theory

E and yield the related result of [5] as a special case.
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Chapter 1

Introduction

In [5], Hopkins, Kuhn, and Ravenel discovered a generalized character theory that proved useful in studying

cohomology rings of the form E∗(BG). In this paper we describe a sequence of “intermediate” character

theories that retain more information about the cohomology theory E and yield the related result of [5] as

a special case. We begin with a brief summary of the work and then expound on this in much more detail.

Let En be Morava E-theory and G be a finite group. Hopkins, Kuhn, and Ravenel study the rings

E∗n(BG) in terms of associated characters. They were inspired by Atiyah’s theorem that

K0(BG) ∼= R(G)∧I

the K-theory of BG is isomorphic to the complex representation ring of G completed at the ideal of virtual

representations of dimension 0. There is a natural map

R(G) −→ Cl(G,L)

taking a virtual representation to the sum of its characters in the class functions on G. As R(G) can be

studied via the associated character theory of the group, Hopkins, Kuhn, and Ravenel aimed to create a

character theory for E∗n(BG). They created a cohomology theory built out of E∗n that mimics the properties

of CL(G,L) and receives a map of equivariant cohomology theories from En.

En −→ L(En)

The cohomology theory that they construct is rational. The map they create therefore begins with a height

n cohomology theory, En, and lands in a height 0 cohomology theory. It is thus transchromatic in nature,

moving between cohomology theories of differing heights. In this paper we produce for every height t with

0 ≤ t < n generalizations of their map such that the cohomology theory in the codomain has height t instead

of 0 and their map is recovered when t = 0.

1



Let K be complex K-theory and let R(G) be the complex representation ring of a finite group G.

Consider a complex representation of G as a G-vector bundle over a point. Then there is a natural map

R(G) → K0(BG). This takes a virtual representation to a virtual vector bundle over BG by applying

the Borel construction EG ×G −. Work of Atiyah in the 50’s and 60’s shows that this map becomes an

isomorphism after completing R(G) with respect to the ideal of virtual bundles of dimension 0. [1]

Let L be the smallest characteristic zero field containing all roots of unity and let Cl(G;L) be the ring

of class functions on G taking values in L. A classical result in representation theory states that L is the

smallest field such that the character map

χ : R(G) −→ Cl(G,L)

taking a virtual representation to the sum of its characters induces an isomorphism L⊗R(G)
∼=−→ Cl(G;L)

for every finite G.

Hopkins, Kuhn, and Ravenel build, for each Morava E-theory, an equivariant cohomology theory that

mimics the properties of Cl(G,L) and is the receptacle for a map from Borel equivariant En. They begin by

constructing a ring L(En)∗ out of E∗n. We describe their construction. Let Λk = (Z/pk)n, Λ∗k = hom(Λk, S1),

and GEn
be the formal group associated to En. The identity map E∗n(BΛk) id−→ E∗n(BΛk) corresponds to

a map Λ∗k −→ GEn(E∗n(BΛk)). Localizing with respect to the nonzero image of this map gives a ring

S−1
k E∗n(BΛk) and then L(En)∗ is defined to be

L(En)∗ = colim
k

S−1
k E∗n(BΛk).

For X a G-space they define a G-space Fix(X) =
∐

α∈hom(Zn
p ,G)

X imα and their map takes the form

E∗n(EG×G X) ΦG−→ L(En)∗(Fix(X))G.

The codomain of this map is closely related to the class functions on G taking values in L(En)0. In fact,

when X is a point the codomain reduces to precisely class functions on

hom(Znp , G) = {(g1, . . . , gn)|gp
k

i = e for some k, [gi, gj ] = e}.
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As in the case of the representation theorem there is an isomorphism

L(En)0 ⊗E0
n
E0
n(EG×G X)

∼=−→ L(En)0(Fix(X))G.

The construction of L(En)0 may seem ad hoc, but in fact it satisfies an important universal property:

it is the smallest ring extension of E0
n such that GEn

, when pulled back over L(En)0, is isomorphic to the

constant group scheme (Qp/Zp)n.

Qp/Znp //

��

GEn

��
Spec(L(En)0) // Spec(E0

n)

This result can be rephrased in the language of p-divisible groups. Let R be a ring. A p-divisible group

over R of height n is an inductive system (Gv, iv) such that

1. Gv is a finite free commutative group scheme over R of order pvn.

2. For each v, there is an exact sequence

0 −→ Gv
iv−→ Gv+1

pv

−→ Gv+1

where iv is the natural inclusion and pv is multiplication by pv in Gv+1.

Associated to every formal group, G, over R is a p-divisible group

G G[p] i1−→ G[p2] i2−→ . . . .

the ind-group scheme built out of the pk-torsion for varying k. The only constant p-divisible groups are

products of Qp/Zp. The ring that Hopkins, Kuhn, and Ravenel construct is the smallest extension of En

such that GEn
pulls back to a constant p-divisible group.

For GEn , we have OGEn [pk]
∼= E0

n(BZ/pk) = π0F (BZ/pk, En), the homotopy groups of the function

spectrum. The pullback of GEn
[pk] constructed by Hopkins, Kuhn, and Ravenel in [5] factors through

π0LK(0)(F (BZ/pk, En)) the rationalization of the function spectrum. Spec of this Hopf algebra is the pk-

torsion of an ind-etale p-divisible group. Rezk noted that there are higher analogues of this: Fix an integer

t such that 0 ≤ t < n. Then Spec of π0(LK(t)F (BZ/pk, En)) gives the pk-torsion of a p-divisible group, G,

over LK(t)E
∗
n.
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Associated to G is a short exact sequence of p-divisible groups

0 −→ G0 −→ G −→ Get −→ 0

where G0 is the formal group associated to LK(t)En and Get is an ind-etale p-divisible group. The height of

G is the height of G0 plus the height of Get.

These facts suggest that there may be results similar to those of [5] over a ring for which the pulled back

p-divisible group actually has a formal component but for which the etale part has been made constant. The

main theorem of this paper is that this is so.

Theorem. For each 0 ≤ t < n there exists a ring extension of E0
n, Ct, such that the pullback

G0 ⊕Qp/Zn−tp
//

��

G //

��

GEn

��
Spec(Ct) // Spec(LK(t)E

0
n) // SpecE0

n

is the sum of a height t formal group by a constant height n− t p-divisible group. Ct is flat over E0
n and can

be used to make a height t cohomology theory. Let Gp = hom(Zn−tp , G) and Fix(X) =
∐

α∈Gp

X imα then for

all finite G there is a map of equivariant theories

E∗n(EG×G X) −→ C∗t (EG×G Fix(X))

so that when the domain is tensored with Ct the map becomes an isomorphism of equivariant cohomology

theories.

This map is intimately related to the algebraic geometry of the situation. In fact, when X = ∗ and

G = Z/pk this map recovers the global sections of the map on pk-torsion G0[pk] ⊕ (Z/pk)n−t −→ GEn [pk].

The map of Hopkins, Kuhn, and Ravenel is recovered when t = 0.

The thesis contains two chapters. In the first chapter we work with the algebraic geometry of p-divisible

groups and in the second chapter we construct the transchromatic generalized character maps and study

their basic properties.

The first chapter is split into two sections. We begin by proving that G is the middle term of a short

exact sequence of p-divisible groups and studying the etale quotient in the exact sequence. Then we move

on to constructing the ring extension of E0
n over which G splits as a sum of its formal part and a constant

p-divisible group.
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The second chapter contains three sections. The transchromatic generalized character maps can be split

into two parts, a topological part and an algebraic part. In the first section we describe the topological

part in terms of transport categories and work out some examples of the map for particular spaces. In the

second section we describe the algebraic part of the character map and put the topological and algebraic

parts together. In the third section we prove that the transchromatic character maps induce an isomorphism

when the source is tensored up to Ct.
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Chapter 2

Preliminaries

2.1 Conventions

Within this paper all rings are commutative with unit and all graded rings are graded commutative.

By a cohomology theory we mean a generalized cohomology theory on the category of finite spaces (spaces

equivalent to a finite CW-complex), Topf . That is a functor

(Topf)op −→ AB*

from finite spaces to graded abelian groups that satisfies all of the Eilenberg-Steenrod axioms except for

the dimension axiom. We choose finite spaces as our source category because it allows for flat extension of

cohomology theories. By an equivariant cohomology theory we will always mean a Borel-equivariant theory.

For G an abelian group, let G∗ be the dual group hom(G,S1).

For any L-algebra R and ideal I ⊆ L, by R/I we mean R/(I · R) the quotient of R by the extension of

I to R.

We always use the symbol ⊗ without a subscript although one is needed. Context provides sufficient

information to work out what it ought to be.

2.2 Commutative Algebra

There are several basic theorems from commutative algebra that are important in the following chapters.

Let R be a ring, I an ideal of R and M a finitely generated R-module. On several occasions a basis for

M/IM as an R/I-module needs to be lifted to a basis for M as an R-module. The main result we need in

this direction is a corollary of Nakayama’s Lemma:

Proposition 2.2.1. [9] Let R, I, and M be as above. If M = IM then there exists r ∈ R such that rM = 0

and r ≡ 1 mod I. If in addition I is contained in the Jacobson radical of R then M = 0.
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Corollary 2.2.2. [9] Let R be a ring, I an ideal contained in the Jacobson radical of R and M an R-module.

Suppose that N ⊆M is a submodule such that M/N is a finite R-module. Then M = N + IM implies that

M = N .

Corollary 2.2.3. Let R and I be as in the previous corollary. Let M be a finite R-module such that M/IM

is a free R/I-module. Then every lift of a minimal basis of M/IM as an R/I-module to M is a minimal

basis of M as an R-module.

Proof. Let u1, . . . , un be a basis for M/IM and m1, . . . ,mn a lifting of the basis to M . M =
∑
Rmi +

IM , application of the previous corollary implies that M =
∑
Rmi and the minimality follows from the

minimality of the basis in the quotient.

2.3 Algebraic Geometry

Let R be a commutative ring. For the purposes of this paper a p-divisible group over R of height h is an

inductive system (Gv, iv) = G1
i1−→ G2

i2−→ . . . such that

(i) Gv is a finite free commutative group scheme over R of order pvh

(ii) For each v, there is an exact sequence

0 −→ Gv
iv−→ Gv+1

pv

−→ Gv+1.

For more information about p-divisible groups see [3] and [10].
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Chapter 3

Transchromatic Geometry

Let 0 ≤ t < n and fix a prime p. In this chapter we study the p-divisible group obtained from GEn by base

change to π0LK(t)En. In the first section we prove that it sits inside an exact sequence of p-divisible groups

0 −→ G0 −→ G −→ Get −→ 0

where the first group is formal and the last is ind-etale. In the second section we construct the ring extension

of π0LK(t)En over which the p-divisible group splits as a sum of a height t formal group and a constant

height n− t ind-etale p-divisible group.

3.1 The Exact Sequence

This paper will be concerned with the Morava E-theories En and their localizations with respect to Morava

K(t)-theory for 0 ≤ t < n: LK(t)En. En is an even periodic height n theory and LK(t)En is an even periodic

height t theory. Basic properties of these cohomology theories can be found in ([15], [6], [5], [13]) for instance.

The coefficients of these theories are

E0
n
∼= W (k)[[u1, . . . , un−1]]

LK(t)E
0
n
∼= W (k)[[u1, . . . , un−1]][u−1

t ]∧(p,...,ut−1)

The second isomorphism follows from [6]. Thus the ring LK(t)E
0
n is obtained from E0

n by inverting the

element ut and then completing with respect to the ideal (p, u1, . . . , ut−1).

Let E be one of the cohomology theories above. Classically it is most common to study these cohomology

theories in terms of the associated formal group FE = Spf(E0(BS1)). However, in this paper we will be

studying these cohomology theories in terms of their associated p-divisible group. First we fix a coordinate

for the formal group OFE
∼=x E

0[[x]], this provides us with a formal group law FE(x, y) ∈ E0[[x, y]]. This

coordinate can be used to understand the associated p-divisible group.

8



Let GE [pk] = Spec(E0(BZ/pk)) = homE0−alg(E0(BZ/pk),−). As BZ/pk is an H-space, E0(BZ/pk) is

a Hopf algebra and GE [pk] is a commutative group scheme. It is a classical theorem ([5],[14]) that

Theorem 3.1.1. Given a generator βk ∈ (Z/pk)∗ = hom(Z/pk, S1) there is an isomorphism E0(BZ/pk) ∼=βk

E0[[x]]/([pk](x)) where [pk](x) is the pk-series for the formal group law associated to E.

The dual is needed because Z/pk −→ S1 induces E0(BS1) −→ E0(BZ/pk) and allows us to use the

coordinate for the formal group in order to understand the codomain. Now the Weierstrass preparation

theorem implies that

Proposition 3.1.2. ([5]) If the height of E is n then E0[[x]]/([pk](x)) is a free E0-module with basis

{1, x, . . . xpkn−1}.

Thus we see that GE [pk] is a finite free group scheme of order pkn. We now have the group schemes that

we would like to use to form a p-divisible group. We must define the maps that make them into a p-divisible

group.

For each k fix a generator βk ∈ (Z/pk)∗. Define ik : Z/pk −→ Z/pk+1 to be the unique map such that

βk+1 ◦ ik = βk. Then, with the coordinate,

i∗k = E0(Bik) : E[[x]]/([pk+1](x)) −→ E[[x]]/([pk](x)) : x 7→ x.

Spec of this map is the inclusion ik : GE [pk] −→ GE [pk+1] and makes the inductive sequence GE [p] i1−→

GE [p2] i2−→ . . . a p-divisible group.

Before continuing we establish some notation. Let L = LK(t)E
0
n (remember that this depends on t) and

mL = (p, u1, . . . ut−1). Note that mL is not necessarily a maximal ideal. For a scheme X over Spec(R) and

a ring map R −→ S let

S ⊗X = Spec(S)×Spec(R) X.

Given a p-divisible group GE over E0 and a ring map E0 −→ S let S ⊗ GE be the p-divisible group such

that (S ⊗GE)[pk] = S ⊗ (GE [pk]).

There are a few facts ([15]) regarding the pk-series for the formal group law FEn
(x, y) that we will need

later that are best collected here. For 0 ≤ h < n

[p](x) = [p]h(xp
h

) = uhx
ph

+ . . . mod (p, u1, . . . uh−1)

[pk](x) = [pk]h(xp
kh

) = (uh)k(xp
kh

) + . . . mod (p, u1, . . . uh−1)
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There is a localization map En −→ LK(t)En that induces E0
n −→ L and FLK(t)En(x, y) is obtained from

FEn
(x, y) by applying this map to the coefficients. Proposition 3.1.2 implies that in E0

n[[x]]

[pk](x) = fk(x)wk(x)

where fk(x) is a monic degree pkn polynomial and wk(x) is a unit. In L[[x]]

[pk](x) = gk(x)vk(x)

where gk(x) is a monic degree pkt polynomial and vk(x) is a unit. Sometimes, when there is no reason to be

pedantic about notation, we will write [pk](x) = f(x)w(x) and ignore the k subscripts.

Now we focus our attention on the p-divisible group L⊗GEn
.

Proposition 3.1.3. L⊗GEn is a p-divisible group of height n with formal part of height t.

Proof. The idea of the proof is the following: we have the pullback square

L⊗GEn
//

��

GEn

��
Spec(L) // Spec(En)

and we show at the level of pk-torsion that L ⊗ GEn
[pk] is a disjoint union by exhibiting OL⊗GEn [pk] as a

product. We will see that the factor that contains the identity is isomorphic to the pk-torsion of a formal

group over L and thus connected. We prove this for the case k = 1. The other cases follow analogously.

The height of L ⊗ GEn
is an immediate consequence of Proposition 3.1.2. To discover the height of

the formal part of L ⊗ GEn we must work out the height of the connected component of the identity of

L⊗GEn
[p].

L⊗ E0
n(BZ/p) ∼= L⊗ E0

n[[x]]/([p](x)) ∼= L⊗ E0
n[x]/(f(x)) ∼= L[x]/f(x)

where f(x) is a monic degree pn polynomial. The second isomorphism follows from the Weierstrass prepa-

ration theorem.

In E0
n[[x]], [p](x) = f(x)w(x) and in L[[x]], [p](x) = g(x)v(x) with g(x) a monic degree pt polynomial and

both power series w(x) and v(x) units. Both factorizations hold true in L[[x]] and thus f(x) = g(x)h(x) as

polynomials where h(x) = v(x)/w(x).

L[x]/f(x), L[x]/g(x), and L[x]/h(x) are all free as the polynomials are monic and thus the natural map

induced by quotienting L[x]/f(x) −→ L[x]/g(x) × L[x]/h(x) has the correct rank on both sides. We must

10



show that it is surjective.

Initially we work mod mL. Mod mL, g(x) = xp
t

and h(x) has constant term a unit, ut, and smallest

nonconstant term degree xp
t

thus the ideals (g(x)) and (h(x)) are coprime. The isomorphism mod mL can

be lifted by Corollary 2.2.3 to L by choosing generators for the free modules mod mL and choosing lifts to

the modules over L. For instance we could choose the basis consisting of powers of x for the domain and

tensors of powers of x for the codomain.

Now L[x]/g(x) is isomorphic to the p-torsion of the formal group associated to LK(t)En and thus contains

the identity and is connected. Its height is as specified in the proposition.

We conclude that the connected component of the identity of L⊗GEn [pk] is isomorphic to GLK(t)En [pk].

Let G = L⊗GE and G0 = GLK(t)En
.

Recall that we are working to prove that the p-divisible group G lives in a short exact sequence

0 −→ G0 −→ G −→ Get −→ 0

where the first group is formal and the last is ind-etale. This will come from an exact sequence at each level

0 −→ G0[pk] −→ G[pk] −→ Get[pk] −→ 0.

Next we show that Get[pk] is in fact etale (as its nomenclature suggests). We begin by giving a description

of the global sections of Get[pk].

Get[pk] is the quotient of G[pk] by G0[pk]. It can be described as the coequalizer of

G0[pk]×G[pk]
µ //
π

// G[pk]

where the two maps are the multiplication, µ, and the projection, π.

The following general discussion on norms and quotients of group schemes follows that of Strickland in

[16] or Demazure-Gabriel in [4] and is included for completeness. Given a finite free map of affine schemes

f : X −→ Y and a u ∈ OX , multiplication by u is an OY -linear endomorphism of OX . Thus its determinant

is an element in OY . Let Nf : OX → OY be the multiplicative norm map

Nf (x) = det(−× x)

the map that sends u ∈ OX to the determinant of multiplication by u. Nf is not additive.

11



Two important properties of the norm are the following:

Lemma 3.1.4. [16] Let

V
s //

g

��

p

X

f

��
W

t // Y

be a pullback square of affine schemes where f and thus g are finite and free then Ng ◦ s∗ = t∗ ◦Nf .

Lemma 3.1.5. [16] Suppose that s : Y −→ X is a section of f and that s∗u = 0. Then Nfu = 0.

Above we described Get[pk] as a coequalizer of group schemes, the global sections of the diagram gives

a description of OGet[pk] as an equalizer

OGet[pk] −→ OG[pk] ⇒ OG[pk] ⊗OG0[pk].

Using this description and the lemmas about norms we can show that y = Nπµ
∗(x), naturally an element

of OG[pk], in fact lives in OGet[pk] and generates it as an algebra.

Let π12 : G[pk] × G0[pk] × G0[pk] −→ G[pk] × G0[pk] be the projection on the first two factors. By

considering the functor of points it is clear that the following two diagrams are pullback squares:

G[pk]×G0[pk]×G0[pk]
1×µ //

π12

��

p

G[pk]×G0[pk]

π

��
G[pk]×G0[pk] π // G[pk]

and

G[pk]×G0[pk]×G0[pk]
µ×1 //

π12

��

p

G[pk]×G0[pk]

π

��
G[pk]×G0[pk]

µ // G[pk].

As π is finite and free we have that π∗Nπ = Nπ12(1×µ)∗ and µ∗Nπ = Nπ12(µ× 1)∗. Thus as µ(1×µ) =
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µ(µ× 1) we have

µ∗y = µ∗Nπµ
∗x

= Nπ12(µ× 1)∗µ∗x

= Nπ12(1× µ)∗µ∗x

= π∗Nπµ
∗x

= π∗y.

It follows that y is an element of the equalizer.

Let i : G0[pk] −→ G[pk] be the inclusion.

Lemma 3.1.6. [16] i∗y = 0.

Proof. Let j : G0[pk] −→ G[pk]×G0[pk] be the map that sends a 7→ (0, a). Consider the following diagram:

G0[pk]
j //

s

��

p

G[pk]×G0[pk]
µ //

π

��

G[pk]

Spec(L) 0 // G[pk]

We have that πj = 0 and µj = i. Thus i∗y = j∗µ∗y = j∗π∗y = 0∗y. Also from the first lemma on norms

we have that 0∗y = Nsj
∗µ∗x = Nsi

∗x. Now as 0 : Spec(L) −→ G0[pk] is a section of s and 0∗(i∗x) = 0 the

second lemma on norms implies that Nsi∗x = 0.

Proposition 3.1.7. There is an isomorphism OGet[pk]
∼= L[y]/(jk(y)) where jk(y) is a monic polynomial of

degree pk(n−t).

Proof. For readability we will drop the k subscript from the polynomials g, f and j. Recall that we have

given more explicit descriptions of OG[pk] and OG0[pk]:

OG[pk]
∼= L[x]/(f(x))

OG0[pk]
∼= L[x]/(g(x)).

The previous proposition implies that g(x)|y in L[x]/(f(x)).

It turns out to be easy to understand y mod mL. This is because the norm commutes with quotienting.

When working mod mL, g(x) = xp
kt

. So OG[pk]×G0[pk]
∼= (L/mL)[x, z]/(f(x), zp

kt

) and µ∗x = x mod z be-

cause µ∗x is the image of the formal group law in (L/mL)[x, z]/(f(x), zp
kt

). So the matrix for multiplication
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by µ∗x in the basis 1, z, . . . , zp
kt−1 is upper triangular with diagonal entries x. Thus y = Nπµ

∗x = xp
kt

mod

mL.

OGet[pk] is a subalgebra of OG[pk] that is free as an L-module. As y ∈ OGet[pk] so is yl = Nπµ
∗xl. Now as

each of {1, y, . . . , yp(n−t)k−1} are linearly independent mod mL, they are linearly independent in L[x]/(f(x)).

Also Nakayama’s lemma implies that they are part of a basis for L[x]/(f(x)), because the set is part of a

basis mod mL. Together these facts along with the fact that there are enough of them to span OGet[pk]

implies that they in fact do span. Thus OGet[pk]
∼= L[y]/(j(y)) where j(y) is the monic polynomial relation

between the exponents of y.

Strickland also shows that 0∗(y) = 0, where 0 : Spec(L) −→ Get[pk] is the identity of the group, this

implies that x|y. Thus for a ring R, Get[pk](R) is a group with identity the 0 ∈ R. This in turn implies that

y|j(y) as 0 must be a root of j(y).

We have shown that OGet[pk] is a free module of rank p(n−t)k. In our final analysis of Get[pk] we would

like to conclude that j′(y) is a unit. This will imply Get[pk] is etale [11].

We begin with a trivial lemma.

Lemma 3.1.8. Given a ring of the form R[x]/(p(x)) where p(x) is some monic polynomial and an ideal

I ⊂ R the following diagram commutes.

R[x]/(p(x))
∂

∂x //

��

R[x]/(p(x))

��
(R/I)[x]/(p(x))

∂
∂x // (R/I)[x]/(p(x))

Proof.

We prove that Get[pk] is etale for the case k = 1 in order to ease the notational burden. The other cases

follow almost identically. Let’s recall and establish some notation.

Recall that OG[p]
∼= L⊗E0

n[[x]]/([p](x)) ∼= L[x]/(f(x)) because [p](x) = f(x) · w(x) where w(x) is a unit.

Also

[p](x) = [p]t(xp
t

) = utx
pt

+ . . . mod mL

Thus [p]t(xp
t

) = f∗(xp
t

)w∗(xp
t

) mod mL where w∗ is a unit. Studying Get[p] above we showed that j(y) =

f∗(y) mod mL. Thus

OGet[p]
∼= L[y]/(j(y)) ∼= L⊗ E0

n[[y]]/[p]t(y) mod mL.
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Recall that

[p](x) = [p]t+1(xp
t+1

) mod mL + (ut).

Thus [p]t(y) = [p]t+1(yp) mod ut.

Lemma 3.1.9. Modulo mL, [p]′t(y) = 1⊗ [p]′t(y) ∈ (L/mL)⊗ E0
n[[y]]/[p]t(y) is a unit

Proof. We show that ut|[p]′t(y) in E0
n[[y]]/([p]t(y)) or in other words that [p]′t(y) = 0 mod ut. From above we

have that

[p]t(y) = [p]t+1(yp) mod ut

and the derivative of this is zero as we are working in characteristic p. Now the previous lemma (applied to

module-finite power series rings) implies that [p]′t(y) = 0 mod ut. This implies that

1⊗ [p]′t(y) = ut ⊗ (1 + . . .)

which is a unit.

Proposition 3.1.10. Get[p] is an etale group scheme over L.

Proof. We show that j′(y) is a unit. Recall that

[p]t(y) = j(y)w∗(y) mod mL

[p]′t(y) = j′(y)w∗(y) + j(y)(w∗)′(y) mod mL

but j(y)(w∗)′(y) = 0 in (L/mL)[y]/(j(y)) and now we see that j′(y) = [p]′t(y)/w∗(y) is a unit modmL. The

previous lemma now tells us that working in L[y]/(j(y)) (no longer working modulo mL) j′(y) maps to a

unit and as mL is in the Jacobson radical of the ring j′(y) must be a unit.

3.2 Splitting the Exact Sequence

Our goal is to algebraically construct the initial extension of L over which the p-divisible group L ⊗ GEn

splits as the sum of the connected part and a constant etale part. This is similar to work of Katz-Mazur in

Section 8.7 of [7]. Although we often suppress the notation, all groups in this section are considered to be

constant group schemes.

Initially we want to find the ring that represents hom(Qp/Zn−tp ,G). This was done for t = 0 in [5] and

the construction here is analogous but stated more algebro-geometrically. It turns out to be convenient for
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working with the coordinate and for reasons of variance to use the duals of groups as well as the groups

themselves.

Let Λk = (Z/pk)n−t. It is a corollary of Theorem 3.1.1 that

Corollary 3.2.1. Given Λk and a set β1, . . . , βn−t of generators of Λ∗k there is an isomorphism E0
n(BΛk) ∼=

E0
n[[x1, . . . , xn−t]]/([pk](x1), . . . , [pk](xn−t)).

In this case one uses the map to the product β1 × . . .× βn−t : Λk −→ S1 × . . .× S1 to obtain the result

using the fixed coordinate.

Given a sequence of epimorphisms Λ1
ρ2←− Λ2

ρ3←−, let a coherent set of generators for the dual sequence

be, for each i, a set of generators {βi1, . . . , βin−t} for Λ∗i such that p · βi+1
h = ρ∗i+1(βih). It is clear that a

coherent system of generators for the dual sequence exists for any sequence of epimorphisms of the form

above.

Proposition 3.2.2. Given a coherent system of generators for the dual sequence of the above sequence of

epimorphisms the map E0
n(Bρk) : E0

n(BΛk) −→ E0
n(BΛk+1) is induced by xi 7→ [p](xi).

Proof. This follows immediately from the proof of the previous corollary and the definition of a coherent

system of generators.

Given βi : Λk −→ S1 a generator of the dual group and βk : Z/pk −→ S1 as defined earlier, there exists a

unique fi : Λk −→ Z/pk making the triangle commute. Using {βi}i∈{1,...,n−t}, this provides an isomorphism

E0
n(BZ/pk)⊗n−t

∼=−→ E0
n(BΛk).

Next consider the functor from L-algebras to sets given by

hom(Λ∗k,G[pk]) : R 7→ homgp−scheme(R⊗ Λ∗k, R⊗G[pk])

Lemma 3.2.3. There is an isomorphism of functors between hom(L⊗En(BΛk),−) and hom(Λ∗k,G[pk]) for

every choice of generators for the group Λ∗k.

Proof. Let {β1, . . . , βn−t} be generators of Λ∗k. Recall that these generators determine L ⊗ En(BΛk) ∼=

L⊗ En(BZ/pk)⊗n−t = O⊗(n−t)
G[pk]

.

Let f : Λ∗k −→ G[pk], then f∗ : OG[pk] −→
∏
Λ∗k

L. The generators {β1, . . . , βn−t} induce n − t maps

gi : OG[pk] −→ L which induces a map L⊗ En(BΛk) −→ L.

Now we permanently fix a sequence of epimorphisms

Λ1
ρ2←− Λ2

ρ3←− Λ3 ←− . . .
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and a coherent set of generators for the duals, {βki }i∈1,...,(n−t) ∈ Λ∗k.

Let C ′t = colim
k

L⊗ En(BΛk) where the colimit is over the maps L⊗ En(Bρk).

Proposition 3.2.4. Over C ′t there is a canonical map of p-divisible groups Qp/Zn−tp −→ G.

Proof. We show this at one level of torsion at a time. Because C ′t is a colimit there is a canonical map

L ⊗ E0
n(BΛk) −→ C ′t inducing Λ∗k −→ G[pk]. We must show that these maps are compatible with each

other. This follows from our choice of generators. The following square commutes for all k

Λ∗k−1

ρ∗k //

��

Λ∗k

��
G[pk−1]

ik // G[pk]

We can show this easily with the coordinate. Fix two generators βk−1
i and βki . Then for βki the map

OG[pk]
∼= C ′t[[x]]/[pk](x) −→ C ′t maps x 7→ xi ∈ L⊗En(BΛk) ↪→ C ′t. Thus x maps to [p]xi for p · βki , but this

is the element of Λ∗k that βk−1
i maps to under ρ∗k.

Using the same reasoning it is clear that C ′t represents the functor

hom(Qp/Zn−tp ,G) : R 7→ homp-divisible (R⊗Qp/Zn−tp , R⊗G)

and the previous proposition describes the map associated to IdC′t .

Because over C ′t there is a canonical map Qp/Zn−tp −→ G there is also a canonical map G0⊕Qp/Zn−tp −→

G using the natural inclusion G0 −→ G.

G0⊕Qp/Zn−tp is a p-divisible group of height n with etale quotient the constant p-divisible group Qp/Zn−tp .

Over C ′t the map G0⊕Qp/Zn−tp −→ G induces a map Qp/Zn−tp −→ Get; our next goal is to find the minimal

ring extension of C ′t over which this map is an isomorphism. To understand this we must analyze Get and

prove an analogue of Proposition 6.2 in [5].

We move on to analyzing Get over C ′t, that is, we study the canonical map Qp/Zn−tp −→ Get and

determine the minimal ring extension of C ′t over which it is an isomorphism. We begin with a fact about

Get and some facts about finite group schemes.

Proposition 3.2.5. Let K be an algebraic closure of the fraction field of L/mL. Then K ⊗ Get
∼=

(Qp/Zp)n−t.

Proof. We have shown that over L/mL, OGet[pk]
∼= L/mL[y]/(j(y)). As Get[pk] is etale j(y) and j′(y), the

derivative of j(y), are coprime. This implies that they have no common roots over an algebraically closed
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field K, which implies that K⊗Get[pk] is constant. Thus as the pullback of p-divisible groups is a p-divisible

group we see that K⊗Get is constant of height n− t which implies it is isomorphic to Qp/Zn−tp . For further

information see Demazure [3].

Prior to proving our analogue of Prop 6.2 in [5] we need a key lemma.

Lemma 3.2.6. Let G be a finite free commutative group scheme over a ring R such that OG ∼= R[x]/(f(x))

where f(x) is a monic polynomial such that x|f(x). Then in OG×G ∼= R[x]/(f(x)) ⊗ R[y]/(f(y)) the two

ideals (x− y) and (x−G y) are equal. That is x−G y = (x− y) · u where u is a unit.

Proof. Consider the two maps, ∆ : G −→ G × G and i : ker(−) −→ G × G the inclusion of the kernel of

G×G −−→ G. By considering the functor of points it is clear that both are the equalizer of

G×G
π1 //
π2

// G.

Thus we have the commutative triangle

ker(−G)
∼= //

%%KKKKKKKKK G

||yy
yy

yy
yy

y

G×G

After applying global sections it suffices to find the generators of the kernels of ∆∗ and i∗. For a ring S,

∆(S) : G(S) −→ G(S)×G(S) : a 7→ (a, a) for a ∈ G(s) thus ∆∗ : R[x]/(f(x))⊗R[y]/(f(y)) −→ R[x]/(f(x))

must send x 7→ x and y 7→ x, so (x − y) must be in ker(D∗) and as ∆∗ is surjective and the quotient

R[x]/(f(x))⊗R[y]/(f(y))/(x− y) ∼= R[x]/(f(x)), (x− y) must be the whole kernel.

To understand i∗ we note that ker(−) is the pullback

ker(−) //

��

p

G×G

−
��

e // G

Global sections gives Oker(−)
∼= R⊗R[x]/(f(x)) (R[x]/(f(x))⊗R[y]/(f(y))) where x is sent to 0 ∈ R and x−G y

in R[x]/(f(x))⊗R[y]/(f(y)). Thus the kernel of i∗ is the ideal (x−G y).

The following is our analogue of Prop 6.2 in [5]. Given a homomorphism

φ : Λ∗k −→ R⊗Get[pk],
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for α ∈ Λ∗k let φ(α) be the image of y ∈ R[y]/jk(y) in the R corresponding to the factor of α in
∏
Λ∗k

R.

Proposition 3.2.7. Let R be an L-algebra. The following conditions on a homomorphism

φ : Λ∗k −→ R⊗Get[pk]

are equivalent:

i. For all α 6= 0 ∈ Λ∗k, φ(α) is a unit.

ii. The Hopf algebra homomorphism

R[y]/(j(y)) ∼= R⊗L OGet[pk] −→ RΛ∗k

is an isomorphism.

Proof. The proof of this proposition follows the proofs of Proposition 6.2 and Lemma 6.3 in [5]. With respect

to the bases consisting of the powers of x and the obvious basis of the product ring corresponding to the

elements of Λ∗k, the matrix of the Hopf algebra map is the Vandermonde matrix of the set φ(Λ∗k).

Assuming i. we must show that the determinant, ∆ of the Vandermonde matrix is a unit. As in [5], for

elements x, y of a ring S, we will write x ∼ y if x and y are associates, that is, if x = uy for u a unit. As the

matrix is Vandermonde, ∆ ∼
∏

αi 6=αj∈Λ∗k

(φ(αi)− φ(αj)).

Using Prop 3.2.6 we have

∏
(φ(αi)− φ(αj)) ∼

∏
(φ(αi)−Get

φ(αj))

=
∏

(φ(αi − αj))

=
∏

αi−αj=α

∏
α6=0

φ(α)

=
∏
α 6=0

φ(α)|Λ
∗
k|

In a ring a product of elements is a unit if and only if each of the elements is a unit. Thus the formulas

above imply the reverse implication, ii. implies i..

As an aside, in [5] it is also shown that p must be inverted for φ to be an isomorphism. This is not the

case in our situation. The analagous statement is that uh must be inverted, and it was already inverted in

order to form Get.

Prop 3.2.7 seems to imply that, in order to make the canonical map Qp/Zn−tp
φ−→ Get an isomorphism,
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we must invert φ(α) for all α ∈ Qp/Zn−tp . This is essentially what we do.

Proposition 3.2.8. The functor from L-algebras to sets given by

Iso(G0[pk]⊕ Λ∗k,G[pk]) : R 7→ Iso(R⊗G0[pk]⊕ Λ∗k, R⊗G[pk])

is representable by a nonzero ring Ckt with the property that the map L/mL
i−→ Ckt /(mL ·Ckt ) is faithfully

flat.

Proof. Let Sk be the multiplicative subset of L ⊗ E0
n(BΛk) generated by φ(Λ∗k) for the canonical map

φ : Λ∗k −→ (L⊗E0
n(BΛk))⊗Get[pk]. Let Ckt = S−1

k (L⊗E0
n(BΛk)). For an L-algebra R, a map from Ckt to

R is a map Λ∗k
φ−→ R ⊗ Get[pk] such that φ(α) is a unit in R for all α 6= 0 ∈ Λ∗k, by Prop 3.2.7 above this

means precisely that φ is an isomorphism. Then

Hom(L⊗ E0
n(BΛk), R) ∼= Hom(Λ∗k, R⊗G[pk])

and

Hom(Ckt , R) ∼= IsoG0[pk]/(R⊗G0[pk]⊕ Λ∗k, R⊗G[pk]),

the isomorphisms under G0[pk]. The last isomorphism is due to the 5-lemma applied to (see [12] for embed-

ding categories of group schemes in abelian categories)

0 // R⊗G0[pk] //

=

��

R⊗G0[pk]⊕ Λ∗k //

��

Λ∗k //

∼=
��

0

0 // R⊗G0[pk] // R⊗G[pk] // R⊗Get[pk] // 0

.

Thus over Ckt there is a canonical isomorphism G0[pk]⊕ Λ∗k −→ G[pk].

It is vital that we show that Ckt is nonzero. We will do this by showing that L/mL
i−→ Ckt /mL is

faithfully flat and thus an injection. The map i is flat because (L ⊗ E0
n(BΛk))/mL is a finite module over

L/mL and localization is flat. To prove that it is faithfully flat we use the same argument found in [5].

Consider a prime P ⊂ L/mL. Let L/mL
θ−→ K be a map to an algebraically closed field with kernel

exactly P. This can be achieved by taking the algebraic closure of the fraction field of the integral domain

(L/mL)/P.

We have shown in Prop 3.2.5 that Get[pk](K) ∼= Λ∗k, fixing an isomorphism provides a map Ckt /mL
Ψ−→ K
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that extends θ. We have

Ckt /mL
Ψ // K

L/mL

OO

θ

<<xxxxxxxxx

and ker(Ψ) is a prime ideal of Ckt that restricts to (or is a lift of) P. The map i is a flat map that is surjective

on Spec. This implies that it is faithfully flat.

The localization in the above proposition can be applied to both sides of L ⊗ En(Bρk) and the map is

well-defined. Thus over the colimit Ct = colim
k

Ckt , using the same reasoning as with C ′t, there is a canonical

isomorphism Ct ⊗G ∼= Ct ⊗ (G0 ⊕Qp/Zn−tp ).

It follows that there is a canonical map

ik : E0
n(BΛk) −→ L⊗ E0

n(BΛk) −→ Ct.

Corollary 3.2.9. The ring Ct is the initial ring extension of L over which G splits as a sum G0 ⊕Qp/Zp.

Proof. This follows from Lemma 3.2.3. Corresponding to a map R ⊗ Λ∗k
f−→ R ⊗ G[pk] there is a map

L⊗ E0
n(BΛk) −→ R and we have that the following diagram commutes

R⊗ (L⊗ E0
n(BΛk))⊗ Λ∗k //

∼=
��

R⊗ (L⊗ E0
n(BΛk))⊗G[pk]

∼=
��

R⊗ Λ∗k
f // R⊗G[pk]

.

The top arrow is R⊗− the map corresponding to IdL⊗E0
n(BΛk) in 3.2.3. The result follows.
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Chapter 4

Transchromatic Generalized
Character Maps

We move on to defining the character map and we show that it induces an isomorphism over Ct. The point

of all of the preceding discussion and the construction of Ct is that we are going to use Ct to construct a

map of equivariant cohomology theories for every finite group G

ΦG : E∗n(EG×G X) −→ C∗t (EG×G Fix(X)).

The domain of ΦG is Borel equivariant En and the codomain is Borel equivariant Ct applied to Fix(X). It

is constructed in such a way that if G ∼= Z/pk the map of theories on a point is the global sections of the

map on pk-torsion Ct ⊗ (G0[pk]⊕ (Z/pk)n−t) −→ G[pk].

The map ΦG can be split into two parts, a topological part and an algebraic part. We will begin by

describing the topological part. It is topological because it is induced by a map of topological spaces. After

some preliminary discussion on the Borel construction and transport categories we will describe the map of

topological spaces.

4.1 The Topological Part

Let G be a finite group and X a left G-space. Associated to X as a topological space is a category, X,

that has objects the points of X and only the identity morphisms (we remember the topology on the set

of objects). Including the action of G we arrive at the transport category, TX, of X, that is the category

that has objects the points of X and a morphism g : x1 −→ x2 when gx1 = x2. This process associates to a

group action on a topological space a category object in topological spaces.

Let EG be the category with objects the elements of G and a unique isomorphism between any two

objects representing left multiplication in G. The realization of the nerve of this groupoid is a model for the

classical space EG, a contractible space with a free G-action.

There are both left and right G actions on the category EG. Let g1
k−→ g2 be a morphism in EG, that

is kg1 = g2. Then for g ∈ G, the action is given by g · (g1
k−→ g2) = gg1

gkg−1

−→ gg2 and (g1
k−→ g2) · g =
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(g1g
k−→ g2g). When viewing G as the category with objects the elements of G and only identity morphisms,

the multiplication for G makes G a monoidal category and the two actions above are left and right actions

of the monoidal category G on the category EG.

Proposition 4.1.1. As categories, EG ×G X ∼= TX where the left G-action on the objects of X is the

G-action on the points of X. The realization of either of these categories is a model for the classical Borel

construction.

Proof. We view EG×G X as a quotient of the product category (in fact a coequalizer). We have

(g1, x)
(k,idx)−→ (g2, x) = (e, g1x)

(k,idx)−→ (e, g2x) 7→ (g1x
k−→ g2x) ∈ Mor(TX)

which is clearly an isomorphism.

The category EG is monoidal as well with multiplication m : EG × EG −→ EG using the group

multiplication for objects and sending unique morphisms to unique morphisms. Explicitly:

m : (g1, h1)
(k,l)−→ (g2, h2) 7→ g1h1

g2lg
−1
1−→ g2h2.

EG ×G X has a left action by G induced by the left action of G on EG. This action can be uniquely

extended to a left action of EG as a monoidal category. This leads to

Proposition 4.1.2. EG×EG (EG×G X) ' EG×G X

Proof. We may view EG×G X as TX. On objects (g, x) = (e, gx) 7→ gx. On morphisms

((g1, x1)
(k,h)−→ (g2, x2)) = ((e, g1x1)

(1,g2hg
−1
1 )

−→ (e, g2x2)) 7→ (g1x1
g2hg

−1
1−→ g2x2).

The equivalence is clear as every morphism (g1, x1)
(k,h)−→ (g2, x2) can be put in a canonical form (e, g1x1)

(1,g2hg
−1
1 )

−→

(e, g2x2).

Let X be a finite G-space. Let Gp = Hom(Zn−tp , G). Also for each G fix a k ≥ 0 so that any map

α : Zn−tp → G factors through Λk = (Z/pk)n−t. Define Fix(X) =
∐

α∈Gp

X imα. Note that Gp and Fix(X)

both depend on t.

Lemma 4.1.3. Fix(X) is a G-space.

Proof. Let x ∈ X im(α) then for g ∈ G, gx ∈ Xg im(α)g−1
.
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Consider the inclusion

X imα ↪→ X.

Using α we may define

EΛk ×Λk
X imα → EG×G X.

As the action of Λk on X imα through G is trivial, EΛk ×Λk
X imα ∼= BΛk ×X imα. This provides us with a

map
∐

α∈Gp

BΛk ×X imα → EG×G X.

Proposition 4.1.4. The map
∐
BΛk ×X imα → EG ×G X extends to a map EG ×G

∐
BΛk ×X imα →

EG×G X.

The G-action on
∐
BΛk ×X imα comes from the action of G on FixX together with the trivial action

on BΛk. With this action the G-space
∐
BΛk ×X imα is G-homeomorphic to BΛk × FixX.

Proof. We will use the categorical formulation developed above. Applying the functor EG×G (−) gives the

map

EG×G
∐

BΛk ×X imα → EG×G (EG×G X).

Now the inclusion G ↪→ EG induces

EG×G (EG×G X) −→ EG×EG (EG×G X) ' EG×G X.

The composite of the two maps is the required extension. Explicitly:

((g1, e)
(k,a)−→ (g2, e), x ∈ X imα) 7→ (g1

g2α(a)g−1
1−→ g2α(a), x ∈ X).

We can do some explicit computations of this map that will be useful in the sequel. Let X = ∗ and G

be a finite abelian group. Then we have that

EG×G
∐

BΛk ×X imα ∼=
∐

BG×BΛk

and EG×G X is just BG. For a given α we can compute explicitly the map defined in Prop 4.1.4.

Proposition 4.1.5. For a fixed α : Λk −→ G, X = ∗, G abelian and + : Λk ×G −→ G the addition in G,

the map t : BΛk ×BG −→ BG is just B+. In other words B of the map that sends (a, g) 7→ α(a) + g.
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Proof. The map t : BG×BΛk ' EG×GBΛk −→ EG×GBG −→ EG×EGBG ' BG sends on morphisms

(all that is important here)

(e, e)
(g,a)−→ (e, e) 7→ (e, e)

(g,a)−→ (g, e)

7→ ((e, e)
(g,α(a))−→ (g, e))

= ((e, e)
g+α(a)−→ (e, e))

7→ g + α(a).

Next we compute the map with X = G/H for H an abelian subgroup of a finite group G. These

computations will be used in our discussion of complex oriented descent.

When the notation Fix(X) may be unclear we will use FixG(X) to clarify that we are using X as a

G-space. We begin by analyzing Fix(G/H) as a G-set.

Proposition 4.1.6. For H ⊆ G abelian, EG×G FixG(G/H) ' EH ×H FixH(∗).

Proof. Fix an α : Zn−tp −→ G. For (G/H)imα to be non empty imα ⊆ g−1Hg for some g ∈ G. Why? Let

a ∈ imα assume that gH is fixed by a, then agH = gH so g−1ag ∈ H. Thus for gH to be fixed by all

a ∈ imα, imα must be contained in g−1Hg.

We will show the equivalence in the proposition by considering both spaces in terms of their transport

categories. Thus EG×GFixG(G/H) is the groupoid with objects the elements of FixG(G/H) and morphisms

coming from the action of G.

Every object in FixG(G/H) is isomorphic to one of the form eH. Indeed, let gH ∈ (G/H)imα then

g−1gH = eH ∈ (G/H)g
−1 imαg. The only objects of the form eH come from maps α that are contained in

H, thus we have one connected component of the groupoid FixG(G/H) for every α : Zn−tp −→ H.

Now to determine the groupoid up to equivalence it suffices to work out the automorphism group of

eH ∈ (G/H)imα. Clearly the only possibilities for g ∈ G that fix eH are the g ∈ H. All of these fix eH.

For if g ∈ H, geH ∈ (G/H)g imαg−1
, but since H is abelian this is just (G/H)imα. So Aut(eH) ∼= H for any

eH ∈ FixG(G/H).

The equivalence is now clear. We can, for example, send ∗ ∈ ∗imα to eH ∈ (G/H)imα for the same α as

imα ∈ H.
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Proposition 4.1.7. For H ⊆ G abelian the following diagram commutes:

EH ×H BΛk × FixH(∗) //

'
��

EH ×H ∗

'
��

EG×G BΛk × FixG(G/H) // EG×G G/H

Proof. We will represent a morphism in EH×HBΛk×FixH(∗) as a triple (h1
h−→ h2, z1

z−→ z2, ∗). Checking

commutativity on morphisms suffices (checking on identity morphisms checks it on objects). Fix an α as

above. We have the following diagram morphism-wise:

((h1, e)
(h,z)−→ (h2, e), ∗ ∈ ∗imα) //

��

(h1
h2α(z)h−1

1−→ h2α(z), ∗)

��

((h1, e)
(h,z)−→ (h2, e), eH ∈ (G/H)imα) // (h1

h2α(z)h−1
1−→ h2α(z), eH ∈ (G/H))

The map BΛk×EG×G Fix(X) ' EG×G
∐
BΛk×X imα → EG×GX is the map of spaces that is used

to define the first part of the character map. Applying En we get

E∗n(EG×G X) −→ E∗n(BΛk × EG×G Fix(X)).

4.2 The Algebraic Part

The algebraic part of the character map begins with the codomain above. The description of this part of

the character map is much simpler. However we must begin with a word on gradings.

Until now we have done everything in the ungraded case. This is somewhat more familiar and it is a

bit easier to think about the algebraic geometry in the ungraded situation. This turns out to be acceptable

because En and LK(t)En are even periodic theories. We need two facts to continue.

Proposition 4.2.1. The ring extension E0
n −→ Ct is flat implies the graded ring extension E∗n −→ C∗t is

flat.

Proof. Here C∗t means the graded ring with Ct in even dimensions and the obvious multiplication.
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There is a pushout of graded rings

E0
n

//

��

Ct

��
E∗n // C∗t

where E0
n and Ct are taken to be trivially graded. As flatness is preserved under pushouts the proposition

follows.

Proposition 4.2.2. E∗n(BΛk) is an even periodic ring.

Proof. E∗n(BΛk) is a free E∗n-module [5]. Even more, the function spectrum EBΛk
n is a free En-module as a

spectrum.

This is necessary to know because we will lift the map E0
n(BΛk) −→ Ct to a map of graded rings

E∗n(BΛk) −→ C∗t . And now that we have discussed this point we will suppress the ∗ in C∗t and let context

decide if by Ct we mean the periodic graded ring, the classical ring, or the cohomology theory obtained by

flat extension from En.

We return to the character map. A Kunneth theorem available in this situation gives

E∗n(BΛk × EG×G Fix(X)) ∼= E∗n(BΛk)⊗ E∗n(EG×G Fix(X))

Now we have maps from Section 3.2

ik : E∗n(BΛk) −→ L⊗ E∗n(BΛk) −→ Ct

also there is a map of cohomology theories En −→ Ct coming from base extension and using the flatness of

Ct over E0
n. Together these induce

E∗n(BΛk)⊗ E∗n(EG×G Fix(X)) −→ C∗t (EG×G Fix(X)).

Precomposing with the topological part we get the character map:

ΦG : E∗n(EG×G X) −→ C∗t (EG×G Fix(X)).

It is a result of Kuhn’s in [8] that the codomain is in fact an equivariant cohomology theory. Several

things must be proved to verify the original claims.
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Recall that Λk is defined so that all maps Zn−tp −→ G factor through Λk. First we show that this map

does not depend on k.

Proposition 4.2.3. The character map does not depend on the choice of k in Λk.

Proof. Let j > k and let s = ρk+1◦. . .◦ρj where ρi is the fixed epimorphism from Section 3.2. Precomposition

with s provides an isomorphism hom(Λk, G) ∼= hom(Λj , G). We can use s to create a homeomorphism

EG×G
∐

α∈hom(Λk,G)

X imα ∼= EG×G
∐

α∈hom(Λj ,G)

X imα

that we quite reasonably (although just slightly incorrectly) call the identity map Id. Begin by noting that

the following two diagrams commute.

BΛk × EG×G Fix(X)

uukkkkkkkkkkkkkk
E∗n(BΛk)

E∗n(Bs)

��

ik

$$HHHHHHHHH

EG×G X Ct

BΛj × EG×G Fix(X)

Bs×Id

OO

iiSSSSSSSSSSSSSS
E∗n(BΛj)

ij

::vvvvvvvvv

where the diagonal arrows in the left hand diagram come from the topological part of the character map

and the diagonal arrows in the right hand diagram come from the definition of Ct. The right hand diagram

commutes by definition.

Putting these diagrams together gives the commutative diagram

E∗n(BΛk)⊗ E∗n(EG×G Fix(X))

++VVVVVVVVVVVVVVVVVV

��

E∗n(EG×G X)

44iiiiiiiiiiiiiiiii

**UUUUUUUUUUUUUUUUU
C∗t (EG×G Fix(X))

E∗n(BΛj)⊗ E∗n(EG×G Fix(X))

44hhhhhhhhhhhhhhhhhh

that shows the map is independent of k.

Proposition 4.2.4. For G ∼= Z/pk and X = ∗ the codomain of the character map is the global sections of

Ct ⊗G[pk] ∼= Ct ⊗ (G0[pk]⊕ Λ∗k).
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Proof. Let G ∼= Z/pk and X = ∗, as G is abelian it acts on Fix(X) component-wise. As X = ∗,

EG×G Fix(X) = EG×G
∐
∗imα

∼=
∐

Hom(Zn−t
p ,G)

BG.

Applying cohomology and using βk ∈ (Z/pk)∗ = G∗ to identify Hom(Zn−tp , G) and Λ∗k gives

C0
t (

∐
Hom(Zn−t

p ,G)

BG) ∼=
∏

Hom(Zn−t
p ,G)

C0
t (BG)

∼=
∏
Λ∗k

C0
t (BG).

Spec of which is precisely G0[pk]⊕ Λ∗k.

The next step is to compute the character map on cyclic p-groups. We begin by giving an explicit

description, with the coordinate, of the global sections of the canonical map Ct⊗ (G0[pk]⊕Λ∗k) −→ GEn
[pk].

We describe the map from each summand of the domain separately.

The global sections of the map Ct ⊗G0[pk] −→ GEn [pk] are clearly given by

E0
n[[x]]/([pk](x)) x 7→x−→ Ct[[x]]/[pk](x).

The global sections of the canonical map φ[pk] : Λ∗k −→ GEn
[pk] were essentially described in Section

3.1. For β = c1 · β1 + . . .+ cn−t · βn−t ∈ Λ∗k the map

E0
n[[x]]/([pk](x)) −→ Ct

factors through L⊗ E0
n(BΛk) ik−→ Ct mapping x 7→ [c1](x1) +GEn

. . .+GEn
[cn−t](xn−t) = φ[pk](β).

Putting these maps together for all β ∈ Λ∗k gives

E0
n[[x]]/([pk](x)) −→ Ct[[x]]/([pk](x))⊗ CΛ∗k

t
∼=
∏
Λ∗k

Ct[[x]]/([pk](x))

mapping

x 7→ x+G (φ[pk](l))l∈Λ∗k
7→ (x+ φ[pk](l))l∈Λ∗k

.

Proposition 4.2.5. For G ∼= Z/pk and X = ∗ the character map is the global sections of G0[pk]⊕ Λ∗k −→
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GEn [pk] described above.

Proof. Choose an α : Λk −→ G, postcomposing with our fixed generator of (Z/pk)∗ = G∗ we get an element

c1 · β1 + . . .+ cn−t · βn−t ∈ Λ∗k. By Prop 4.1.5 the topological part of the character map is induced by B of

the addition map Λk ×G
+−→ G. Using the coordinate and applying E0

n we see that

E0
n[[x]]/([pk](x)) −→ E0

n[[x1, . . . , xn−t]]/([pk](x1), . . . , [pk](xn−t))⊗ E0
n[[x]]/([pk](x)).

is the map sending

x 7→ [c1](x1) +GEn
. . .+GEn

[cn−t](xn−t) +GEn
x

which maps via the algebraic map

E0
n[[x1, . . . , xn−t]]/([pk](x1), . . . , [pk](xn−t))⊗ E0

n[[x]]/([pk](x)) −→ Ct[[x]]/([pk](x))

to (x+GEn
φ[pk](α)), where φ[pk] is the same as above. Putting these together for all α gives a map

E0
n[[x]]/([pk](x)) −→

∏
Λ∗k

Ct[[x]]/([pk](x))

which is precisely the one shown to be the global sections prior to the proposition.

4.3 The Isomorphism

We continue to prove that the map of cohomology theories defined above

ΦG : E∗n(EG×G X) −→ C∗t (EG×G Fix(X)).

is in fact an isomorphism when the domain is tensored up to Ct. We follow the steps outlined in [5] with

some added complications.

Given a finite G-CW complex X, let G ↪→ U(n) be a faithful complex representation of G. Let T be a

maximal torus in U(n). Then F = U(n)/T is a finite G-space with abelian stabilizers. This means that it

has fixed points for every abelian subgroup of G but no fixed points for non-abelian subgroups of G. We first

show that the cohomology of X is determined by the cohomology of the spaces X × F×h so we can reduce

to the case of spaces with abelian stabilizers. This is called complex oriented descent. Using Mayer-Vietoris
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for the cohomology theories we can then reduce to spaces of the form G/H×Dn ' G/H where H is abelian.

Then induction implies that we only need to check the isomorphism on finite abelian groups. This will follow

from our previous work.

We begin by proving the descent property for finite G-CW complexes. Thus we assume that the map is

an isomorphism for spaces with abelian stabilizers and show that this implies it is an isomorphism for all

finite G-spaces.

Proposition 4.3.1. F is a space with abelian stabilizers.

Proof. Let A ⊆ G be an abelian subgroup. Then under the faithful representation above A ⊂ uTu−1 for

some u ∈ G. Thus for a ∈ A, a = utu−1 for some t ∈ T and now it is clear that A fixes the coset uT .

Proposition 4.3.2. As F is a space with abelian stabilizers the realization of the simplicial space where

the arrows are just the projections

EF =
∣∣∣F F × Foo

oo
F × F × F . . .

∣∣∣
oo
oo
oo

is a space such that for H ⊆ G

EFH '

 ∅ if H not abelian

∗ if H is abelian

Proof. Because realization commutes with finite limits we just need to check that for F a non-empty space,

EF is contractible. Then it is a basic fact that there is a contracting homotopy.

Now EG×G X ' EG×G (X × EF ) and exchanging homotopy colimits gives

EG×G X '
∣∣∣EG×G (X × F ) EG×G (X × F × F )oo

oo
. . .
∣∣∣

oo
oo
oo

It is important to know that Fix preserves realizations.

Proposition 4.3.3. Fix preserves realizations. That is, given a simplicial G-space X•, Fix(|X•|) '

|Fix(X•)|.

Proof. Recall that for a G-space X, Fix(X) =
∐

α∈Hom(Zn−t
p ,G)

X imα.

Also recall that geometric realization as a functor from simplicial G-spaces to G-spaces is a colimit (in
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fact a coend), geometric realization commutes with finite limits, and that the following diagram commutes:

G-Spaces∆op | | //

��

G-Spaces

��
Spaces∆op | | // Spaces

where the vertical arrows are the forgetful functor. Thus it suffices to check that Fix commutes with the

realization of simplicial spaces as we already know that it lands in G-spaces.

As colimits commute with colimits we only need to check the fixed points. But for H ⊆ G and a G-space

X, XH ∼= lim
H
X and as H is finite so is the limit.

We will use the Bousfield-Kan Spectral Sequence. For a cosimplicial spectrum S• it is a spectral sequence

Es,t2 = πsπtS
• ⇒ πt−s TotS•

As Σ∞+ : Top −→ Spectra is a left adjoint it commutes with colimits and so preserves realizations. We

work in a spectral model category of spectra. Let E be a cohomology theory, then Hom(|Σ∞+ X•|, E) ∼=

Tot Hom(Σ∞+ X•, E). The Bousfield-Kan spectral sequence begins with the homotopy of the cosimplicial

spectrum Hom(Σ∞+ X•, E) and abuts to the homotopy of Tot Hom(Σ∞+ X•, E).

This applies to our situation. We want to resolve

C∗t (EG×G Fix(X)) ∼= π−∗Hom(Σ∞+ EG×G Fix(X), Ct)

∼= π−∗Hom(Σ∞+ EG×G Fix(|X × F •|), Ct)

∼= π−∗Hom(|Σ∞+ EG×G Fix(X × F •)|, Ct)

∼= π−∗Tot Hom(Σ∞+ EG×G Fix(X × F •), Ct).

It follows from Prop 2.4 and 2.6 in [5] that E∗n(EG ×G (X × F×h)) is a free E∗n(EG ×G X)-module for all

h. Now as

E∗n(EG×G (X × F × F )) ∼= E∗n(EG×G (X × F )×(EG×GX) EG×G (X × F ))

the cosimplicial graded E∗n-module

E∗n(EG×G X × F )
//
// E
∗
n(EG×G X × F × F )

//
//
//
. . .
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is in fact the Amitsur complex of the faithfully flat (even free) map E∗n(EG ×G X) −→ E∗n(EG ×G (X ×

F )) induced by the projection. This implies that its homology is concentrated in the zeroeth degree and

isomorphic to E∗n(EG ×G X). In other words the associated chain complex is exact everywhere but at the

first arrow.

This is the E1 term for the Bousfield-Kan spectral sequence and we have shown that it collapses. Tensor-

ing with Ct retains this exactness as Ct is flat over E∗n. Using our assumption regarding spaces with abelian

stabilizers we now have a map of E1-terms that is an isomorphism

Ct ⊗ E∗n(EG×G X × F )
//
//

∼=
��

Ct ⊗ E∗n(EG×G X × F × F )

∼=
��

//
//
//
. . .

Ct(EG×G Fix(X × F ))
//
// Ct(EG×G Fix(X × F × F ))

//
//
//
. . ..

As the homology of these complexes is the E2 = E∞ page of the spectral sequence and the spectral sequence

does converge (Ch. 9, Section 5, [2]) to an associated graded (in this case with one term), this implies that

Ct ⊗ E∗n(EG×G X) and C∗t (EG×G Fix(X)) are isomorphic. This gives us complex oriented descent.

We are reduced to proving the isomorphism for spaces with abelian stabilizers. Using an equivariant cell

decomposition Mayer-Vietoris reduces this to spaces of the form G/H ×Dn where H is abelian and Dn is

the n-disk. Now homotopy invariance reduces this to spaces of the form G/H with H abelian.

Proposition 4.3.4. The induction property holds for G/H where H ⊆ G is abelian. That is the following

diagram commutes:

Ct ⊗ E∗n(EG×G G/H)
Ct⊗ΦG//

∼=
��

Ct(EG×G FixG(G/H))

cong

��
Ct ⊗ E∗n(EH ×H ∗)

Ct⊗ΦH // Ct(EH ×H FixH(∗))

Proof. This follows from Prop 4.1.7 and the independence of the character map on k.

We are left having to show it is an isomorphism for finite abelian groups, but we can use the Kunneth

theorem to reduce to cyclic p-groups and the isomorphism there has already been proved in Prop 4.2.5.
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