
c© 2011 Arushi Aggarwal



HYBRID STATIC/DYNAMIC TYPE SAFETY FOR C/C++
PROGRAMS

BY

ARUSHI AGGARWAL

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Adviser:

Professor Vikram S. Adve



ABSTRACT

C/C++ are the languages of choice for development of many widely used

system softwares. However, these languages do not provide the strong safety

guarantees that safe languages such as Java do. Programming mistakes can

introduce type errors that are not caught at compile time. These errors

may subsequently be triggered at runtime, and their sources maybe hard to

detect.

This thesis presents the design and implementation for a dynamic type

checker for C/C++ programs. It is built using the LLVM compiler infras-

tructure and provides type safety for programs that have been compiled to

the LLVM IR.

The thesis also discusses the design of static analysis to reduce the overhead

of the dynamic type checker. We present an implementation of the static

analysis and discuss how its results can be used to optimize the dynamic

type checker.

We also present performance evaluation on various benchmarks and system

software. We present results that show that we can catch most errors with

relatively low overhead.

ii



To all my teachers, specially my parents.

iii



ACKNOWLEDGMENTS

I would like to thank my adviser, Vikram Adve, for his support and patience

through the duration of this work. His drive and enthusiasm was a source

of inspiration and motivation. Involved discussion with him have been the

backbone of this thesis.

Brice Lin worked on the initial implementation of this tool. Andrew

Lenharth was instrumental in building most of the type inference infrastruc-

ture. Working on this project was made fun and interesting by the brilliant

people I worked with everyday, John Criswell and Will Dietz. Endless white-

board deliberations with them have helped make this research better. From

them I have learnt lessons in the art of writing good and robust tools.

Finally, the last two years have been great with the support of Nisha Som-

nath, and Ankit Singla who have great friends during this time in Urbana-

Champaign.

This research was funded by AFRL contract number FA8650-10-C-7022

and by DoD MURI AF Subcontract UCB 00006769.

iv



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 RELATED WORK . . . . . . . . . . . . . . . . . . . . 4

CHAPTER 3 BACKGROUND . . . . . . . . . . . . . . . . . . . . . 6
3.1 Motivating Examples . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Physical Subtyping . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 LLVM IR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

CHAPTER 4 DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1 Primitive Typing . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Static Type Rules . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . 15
4.5 Memory Mapping . . . . . . . . . . . . . . . . . . . . . . . . . 20

CHAPTER 5 IMPLEMENTATION . . . . . . . . . . . . . . . . . . . 21
5.1 Instrumenting with Runtime Checks . . . . . . . . . . . . . . 22
5.2 Type Tracking Runtime . . . . . . . . . . . . . . . . . . . . . 29
5.3 Instrumentation Options . . . . . . . . . . . . . . . . . . . . . 31

CHAPTER 6 OPTIMIZATION . . . . . . . . . . . . . . . . . . . . . 33
6.1 Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Optimizing the Runtime . . . . . . . . . . . . . . . . . . . . . 37

CHAPTER 7 ANALYSIS OF TYPE ERRORS . . . . . . . . . . . . 38
7.1 Sqlite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2 186.crafty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.3 464.h264ref . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.4 471.omnetpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.5 gs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.6 units-1.88 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.7 ks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.8 099.go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

CHAPTER 8 PERFORMANCE . . . . . . . . . . . . . . . . . . . . . 46

v



CHAPTER 9 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . 48

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

vi



CHAPTER 1

INTRODUCTION

C and C++ are popular in the field of system software development, as they

provide support for low level control over the system thereby helping write

more efficient tools 1. They allow arbitrary pointer arithmetic, casts between

pointers and integers, other unchecked type casts and explicit memory man-

agement. However, these advantages come at the cost of loss of the security

guarantees, such as those provided by safe languages like Java. Programming

bugs can introduce array out-of-bounds errors, null pointer dereferences, dan-

gling pointer errors and several kinds of type errors. The static type system

for C/C++ is weak and there are no runtime mechanisms to protect against

such errors.

Many tools exist to detect the first two types of errors, i.e. array out-

of-bound errors and null pointer dereferences, which are together broadly

classified as spatial memory safety errors. These include, among others,

Valgrind [1], Purify [2], Safe-C [3], and SAFECode [4]. These tools are also

helpful in protecting against temporal memory safety errors, such as dangling

pointers, double free’s and invalid free. In addition, garbage collection [5]

can be used to prevent such errors. However, these tools are not useful in

detecting type errors, which are caused due to the weak typing rules of C.

A type error occurs when the operands to an operation are not of com-

patible types. Passing the wrong number or type of arguments to functions,

adding two incompatible types or performing operations on wrong operand

types(shifts on floats or bools, addition of bools) are all examples of type

errors. Type errors are not as clearly defined as the memory safety errors,

making them hard to identify. Distinguishing incompatible casts from pro-

grammer intent is hard and enforcing a strict type system can lead to a

large number of errors. The key, thus, is to find a balance between enforcing

type safety and allowing programmers to take advantage of the language’s

1http://en.wikipedia.org/wiki/Fast inverse square root

1



weak typing features. We introduce the concept of Primitive Typing, which

we believe is strong enough to be used for detecting type errors in realistic

C programs while keeping the false positive rate low. We track and type

check primitive type values but only when these are used in a type sensitive

operation.

We describe the design and implementation of a dynamic type checking

tool for C/C++ programs. It is designed to be a useful debugging tool,

allowing programmers to catch problems before it is deployed. We instrument

the program to track types for each memory location, updating on writes,

and checking on uses. When a value is used in a type unsafe manner, the

tool flags an error.

The tool has been built using the LLVM compiler infrastructure [6], and

instruments the LLVM Intermediate Representation(IR). The LLVM IR uses

SSA [7] form and is typed. We are thus able to statically type check all SSA

values requiring runtime type checks only on the values that are stored in

memory. We use a shadow memory to track the type information, with-

out making any change to the pointer representation or data layout of the

program.

Other tools that provide similiar functionality include Loginov et al. [8],

Hobbes type checker [9] and Shen et al. [10]. Longinov et al. use source to

source translation for instrumentation, and can handle only those programs

that are written entirely in C. They also do not check for types on calls to

variadic functions. The Hobbes type checker runs on binary programs and

has the advantage of tracking through functions in compiled libraries. How-

ever, as it inserts checks in binary code, the overhead is rather high(∼141x).

Our tool provides a good balance between the two tools, as we instrument

the LLVM IR. We can thus type check functions in any libraries that can be

linked in as LLVM bitcode. We can also take advantage of the static analy-

ses and optimizations, that are available in a compiler infrastructure, both to

reduce the number of checks inserted, and to make them more efficient. Shen

et al. [10] provide a similiar tool. However they track types on all variables

in a program. In comparison, we track a reduced set of variables consisting

only of the values stored in memory. Furthermore, they also dynamically

keep track of aliasing information, increasing the overhead on each update

of type information; our runtime does not have this overhead.

We have also built a static type inference algorithm that uses our type

2



system. We have used its results to improve the performance of our dynamic

tool. The static type inference helps us recognize objects which are always

accessed in a type consistent manner and hence are type safe. The checks on

these objects can be removed, reducing the runtime overhead significantly.

Our type inference algorithm is built as a part of the Data Structure Analy-

sis(DSA) [11] algorithm.

We have tested our tool on a wide set of benchmark programs and a few

moderately sized system softwares. Our results indicate that our tool is

effective in finding several types of errors, while keeping false positives to

a minimum. We detected a format string error in Sqlite, which after we

reported it was fixed.

The main contributions of this thesis are

1. Primitive Typing: An extension of the C type system that enforces

type safety for uses of primitive types in C/C++ programs.

2. Dynamic Type Tracking Tool: A tool to enforce Primitive Typing dy-

namically. It is effective for real world programs, catching real problems

while keeping spurious warnings to a minimum.

3. Static Type Inference: A static type inference algorithm based on prim-

itive typing. We also discuss using static type inference results to reduce

the dynamic overheads.

3



CHAPTER 2

RELATED WORK

Identifying errors in C/C++ programs has been the focus of many projects.

Most of the effort has been concentrated on achieving memory safety for

these programs.

Purify [2] is a widely used memory access checker. Valgrind [1] is a similiar

tool for Linux binaries. They track status bits for each memory location and

on every memory operation check the status information and ensure that it is

appropriate for the operation. These are useful for detecting most memory

safety errors, though at high overheads. However, they are not useful for

detecting mosty type errors.

Loginov et al. [8] describe a debugging tool for type checking C programs

dynamically. It uses source to source transformation to instrument the code

with type checks. They track primitive types only similiar to our approach.

However, they are not as complete and do not track types through variadic

functions or indirect function calls. They, like us, enforce types only on some

uses of values and not all like our tool. They do not differentiate between

pointer types, similiar to our approach. They use a shadow memory approach

to track type information. However, they have high overheads (6-130x) as

they introduce complicated source code expressions to do the type tracking.

The Hobbes type checker [9] is a tool that type checks binary programs.

They instrument binary programs and are not dependent on source code for

the program or the libraries used. They use shadow memory to track the

type information. As it works on binary programs it tracks only primitive

types. Instrumenting binary code by using an interpreter is very high cost

and their total overhead is around 140x. Their instrumentation also has to

account for a lot of low level compiler optimizations which, though correct,

can cause spurious type warnings.

Shen et al. [10] provide a type checker that is based on Physical subtyp-

ing [12]. They record a dynamic type for each program variable, including

4



pointers during execution. They also track alias sets at runtime and pro-

pogate type information to the aliasing pointers, increasing the overhead on

each update of type information. They track structure and array types for

objects and follow prefix matching to determine subtyping relations. They

report a median overhead of 140x for their benchmarks.

Unlike the above approaches, we use a hybrid approach by using a static

type inference to supplement the dynamic tracking tool. The static analysis

helps reduce our overheads as compared to the techniques above. We are also

able to take advantage of the compiler optimizations available in a compiler

infrastructure like LLVM to reduce the number of checks inserted and making

them more efficient. We track types on a reduced set of variables that are

stored in memory. This is possible due to the typed nature of the LLVM IR.

CCured [13] uses static type inference to type check a program and re-

duce the number of type checks required. Their static inference is based on

structural typing, making it more restrictive than our approach. Also, we

restrict checks to operations that are type sensitive. As the representation of

WILD pointers is different from the representation of pointers in the program,

CCured requires that the programmer makes some changes to the source

code to run correctly, while our tool is fully automatic. Their static type

inference algorithm handles arrays much better than we do, helping to lower

their overhead.

Using static type checking to identify type errors in C programs is also an

option [12]. However, static analysis is flow insensitve and likely to cause

warnings when applied to real world C programs. The advantage of using

a hybrid approach is being able to make use of the static analysis results,

but only flagging errors if they happen during a particular execution of the

program.

5



CHAPTER 3

BACKGROUND

3.1 Motivating Examples

In this section we discuss some of the type errors that our tool will catch,

but are not caught by C compilers. These are the motivation for a dynamic

type checker like ours. We also present details of how we deal with each of

these error.

3.1.1 Unions

In this example, borrowed from Loginov et al. [8], an error occurs because

we write into one field of a union, and then read it as another.

union U {

int u1;

int *u2;

} u;

u.u1 = 10;

int *p = u.u2;

*p = 0;

The read of u.u2 generates a type error, allowing us to identify the source

of a potentially harmful pointer dereference later on. Since we track types of

all memory locations, we would catch the mismatch when the same memory

was read as an int∗ after having been written as an int earlier.

6



3.1.2 Simulating Inheritance

C programmers often use structures to simulate hierarchy of classes in an

object oriented fashion. In this example, also borrowed from Loginov et

al. [8], the following declarations are used to simulate a superclass Sup and

subclass Sub.

struct Sup {int a1; int a2};

struct Sub {int b1; int b2; char b3};

Functions which operate on objects of type Sup and access only the first 2

fields and can thus take an argument of either type, e.g.

void f(struct Sup *s) {

s->a1 = ...

s->a2 = ...

}

If we were to check the type of the object stored in s and enforce it to

be of type struct Sup, we would cause a lot of false positives. By checking

types only on those fields of a structure that are actually accessed, we allow

for such uses of structs, with fewer false positives.

Since the subtyping is done manually in C, it is quite possible for the

programmer to do so incorrectly. If a programmer were to wrongly subclass

struct Sup by not maintaining the same types as the super class at the

offsets accessed, our tool would detect an error.

3.1.3 Uninitialized Memory

Our tool also detects uses of uninitialized memory locations, as shown in the

following example.

void foo() {

int a;

...

if(flag)

a = 5;

i = a;

...

}

7



The initialization of a is dependent on flag. In certain executions it may

be false, and a and i may not get initialized. Reading a is flagged as a type

error by our tool since we use a special type to track uninitialized memory.

Any subsequent uses of either a or i, will also get flagged, till these are

initialized.

This is a simple example in which the compiler will generate a warning,

flagging the use of an uninitialized variable. However, more complicated

examples can be easily constructed where this is not the case.

3.2 Physical Subtyping

The concept of physical type checking for C was introduced by Chandra and

Reps [12]. They argued that C with casts and pointers, needs stronger type

checking than without it. They based their type inference on the physical

layout of structs in memory, to help reduce the number of false positives.

They defined that

“... to be physically type safe, each pointer dereference should point to ”valid

memory”, and refer to a ”valid type”. By valid memory, we mean that the

address computed for the load of the specified field from memory must be

within the bounds of the allocation unit that the pointer currently points to.

By valid type, we mean that the ground type being referred to must be the

same as the one stored at the memory location.”

They use the above concept to infer types statically for C programs by

taking into consideration the layout of C struct fields. They allow structure

types to be subclassed as long as they have a common prefix when their layout

is considered. We use this idea as the basis of Primitive Typing, introduced

in the next chapter.

3.3 LLVM IR

The instrumentation for the type tracking is done at the LLVM IR level.

The IR is a typed SSA representation of the source level program. All scalar

values are in SSA form, whereas aggregate and address-taken variables are

left in non-SSA form. The LLVM IR is strictly typed, and each SSA value

8



has an associated type and all obey strict type rules. All instructions are

typed too, and have restrictions on their operands. For example, an add

instruction requires that both the operands be of the same type, which must

be an arithmetic type, and it produces a value of that type [14].

bitcast instructions are the only way to get type unsafety in the LLVM

IR. They can be used to cast values in virtual registers from one type to the

other. Bitcasted pointers can be used to cause type unsafe behavior through

memory, when a value is written using one pointer, and read using the casted

one.

The LLVM types are source language independent data representations

that are mapped from higher level language types [14]. The primitive types

in the system are void, bool, integers of all sizes, and floating point val-

ues of varying precisions (float, double, x86 fp80, fp128, ppc fp128).

Arrays, vectors1, structures, pointers and function types are constructed us-

ing other types. High-level source types are lowered to LLVM types by the

front end, e.g classes in C++ are represented as LLVM structure types which

show the layout of the fields and a function table for the functions.

1Our design does not presently handle vector types or operations on them.

9



CHAPTER 4

DESIGN

In this chapter, we introduce our type system for the LLVM IR that is en-

forced by the tool. The static typing rules are discussed first. The operational

semantics detail the dynamic type checks required for a safe execution. The

design of the runtime checks is discussed later in the section.

4.1 Primitive Typing

We introduce a new type system for C called Primitive Typing. It is an

extension of the physical subtyping algorithm as it is based on the physical

layout of types in memory. However, instead of tracking structure types we

restrict tracking to primitive types. We only enforce checks on operations

which are type sensitive. We do not restrict pointer arithmetic or casts as

these are not affected by the operand types. Structure and array types (for

an object) are not tracked. The program passes all type checks as long as

the actual values used in operations are of the correct type.

Instead of enforcing subtyping via prefix matching of structures, we enforce

types only on a specific field(at a specific offset) of the object. This provides

more flexibility to the programmer while also ensuring that no type error

is goes undetected. We do not enforce multiple pointer types, treating all

pointers types as the same type. We believe that it is only the final use of

a pointer to access a primitive type value that needs a type match with the

used type.

The type system is both strong enough to catch real errors when they

occur and permissive enough to allow most real world C programs. This is

the key to reducing the number of false positivies. If any value is used in

an operation with the wrong type, an error will be flagged. We do not flag

errors on out-of-bounds array access or on casting an integer to a pointer,



.
T ≤ ⊤

.
⊥≤ T

.
⊥≤ ⊤

Figure 4.1: Subtyping relations

as long as the value being accessed has the correct type and alignment. A

separate memory-safety checking tool like SAFECode [4], SoftBound [15],

Baggy Bound Checking [16], etc., can be used to detect these errors.

4.2 Syntax

4.2.1 Types

The types in our system are the primitive LLVM types. These include in-

tegers of all sizes(iN , 1 ≤ N), float(float, double, x86 fp80, fp128,

ppc fp128) and pointer type(ptr). All LLVM pointer types are assumed

to be of type ptr. These types are supplemented by the bottom(⊥) and

top(⊤) types which help form a lattice of types. ⊥ indicates uninitialized

memory which cannot be used in any type sensitive operation. ⊤ indicates

initialized memory without a specific type. It is compatible with every type

in the system and takes the type of its first use. ⊤ is used primarily for

library functions, when the exact type of the value is not known, to specify

that the memory has been written to. The subtyping relation is described in

Figure 4.1.

4.2.2 Language Constructs

The type system is based on the LLVM IR [17]. The static type rules and

the operational semantics operate on LLVM instructions. We have simplified

some instructions to make the rules easier to read, without loss of generality.

Some of the important details of the IR used in the rules are

11



1. All gep instructions take types as an argument. The size of the type

before an index indicates the multiplier for that index.

2. We assume all gep indexes are i64 for simplicity of the design. Only

structure indexes are i32.

3. We store all aggregate values in memory. Thus, there are no insertvalue

and extractvalue instructions in the semantics.

4. We also assume that all phi nodes have been eliminated by inserting

copies into the predecessor blocks.

4.3 Static Type Rules

The typing rules are used for type checking programs statically. All programs

that type check correctly statically, when instrumented with runtime checks,

will be type safe dynamically. The static type checker ensures the program is

well constructed and according to the LLVM IR. The dynamic type checker

ensures that the type system we describe is being enforced and no type

sensitive operation operates on operands of the wrong type.

The typing judgements used by the system are described below. These are

similiar to the typing rules for LLVM instructions. The static type system

is expressed by typing judgements as Γ ⊢ v : T where v is an LLVM value

and T is a type in our lattice. Γ is the typing environment that maps each

variable to its type. We also use int, float and ptr to indicate the class of

types. inti denotes an integer of size i bytes. Similiarly, floati denotes a

floating point value of i bytes.

Binary Operations

Γ ⊢ v1 : T Γ ⊢ v2 : T T : int
[add]

Γ ⊢ addT v1, v2 : T

Γ ⊢ v1 : T Γ ⊢ v2 : T T : float
[fadd]

Γ ⊢ faddT v1, v2 : T

Γ ⊢ v1 : T Γ ⊢ v2 : T T : int
[sub]

Γ ⊢ subT v1, v2 : T

12



Γ ⊢ v1 : T Γ ⊢ v2 : T T : float
[fsub]

Γ ⊢ fsubT v1, v2 : T

Γ ⊢ v1 : T Γ ⊢ v2 : T T : int
[mul]

Γ ⊢ mulT v1, v2 : T

Γ ⊢ v1 : T Γ ⊢ v2 : T T : float
[fmul]

Γ ⊢ fmul T v1, v2 : T

Γ ⊢ v1 : T Γ ⊢ v2 : T T : int
[udiv]

Γ ⊢ udivT v1, v2 : T

Γ ⊢ v1 : T Γ ⊢ v2 : T T : int
[sdiv]

Γ ⊢ sdivT v1, v2 : T

Γ ⊢ v1 : T Γ ⊢ v2 : T T : float
[fdiv]

Γ ⊢ fdivT v1, v2 : T

Γ ⊢ v1 : T Γ ⊢ v2 : T T : int
[urem]

Γ ⊢ uremT v1, v2 : T

Γ ⊢ v1 : T Γ ⊢ v2 : T T : int
[srem]

Γ ⊢ sremT v1, v2 : T

Γ ⊢ v1 : T Γ ⊢ v2 : T T : float
[frem]

Γ ⊢ fremT v1, v2 : T

Binary Bitwise Operations

Γ ⊢ v1 : T Γ ⊢ v2 : T T : int
[shl]

Γ ⊢ shlT v1, v2 : T

Γ ⊢ v1 : T Γ ⊢ v2 : T T : int
[lshr]

Γ ⊢ lshrT v1, v2 : T

Γ ⊢ v1 : T Γ ⊢ v2 : T T : int
[ashr]

Γ ⊢ ashrT v1, v2 : T

Γ ⊢ v1 : T Γ ⊢ v2 : T T : int
[and]

Γ ⊢ andT v1, v2 : T

Γ ⊢ v1 : T Γ ⊢ v2 : T T : int
[or]

Γ ⊢ orT v1, v2 : T

Γ ⊢ v1 : T Γ ⊢ v2 : T T : int
[xor]

Γ ⊢ xorT v1, v2 : T

13



Conversion Operations

Γ ⊢ v : T1 T1 : inti T2 : intj, j < i
[trunc]

Γ ⊢ trunc T1 v to T2 : T2

Γ ⊢ v : T1 T1 : floati T2 : floatj, j < i
[fptrunc]

Γ ⊢ fptrunc T1 v to T2 : T2

Γ ⊢ v : T1 T1 : inti T2 : intj , j > i
[zext]

Γ ⊢ zext T1 v to T2 : T2

Γ ⊢ v : T1 T1 : inti T2 : intj, j > i
[sext]

Γ ⊢ sext T1 v to T2 : T2

Γ ⊢ v : T1 T1 : floati T2 : floatj, j > i
[fpext]

Γ ⊢ fpext T1 v to T2 : T2

Γ ⊢ v : T1 T1 : float T2 : int
[fptoui]

Γ ⊢ fptoui T1 v to T2 : T2

Γ ⊢ v : T1 T1 : float T2 : int
[fptosi]

Γ ⊢ fptosi T1 v to T2 : T2

Γ ⊢ v : T1 T1 : int T2 : float
[uitofp]

Γ ⊢ uitofp T1 v to T2 : T2

Γ ⊢ v : T1 T1 : int T2 : float
[sitofp]

Γ ⊢ sitofp T1 v to T2 : T2

Γ ⊢ v : T1 T1 : ptr T2 : int
[ptrtoint]

Γ ⊢ ptrtoint T1 v to T2 : T2

Γ ⊢ v : T1 T1 : int T2 : ptr
[inttoptr]

Γ ⊢ inttoptr T1 v to T2 : T2

Γ ⊢ v : T1 T1 : ptr T2 : ptr
[bitcast]

Γ ⊢ bitcast T1 v to T2 : T2

Control Flow Instructions

Γ ⊢ v : T
[ret]

Γ ⊢ retT v :⊥

Γ ⊢ cond : i1
[br]

Γ ⊢ br cond lt lf :⊥

Γ ⊢ v : T Γ ⊢ vk : T, 1 ≤ k < n
[switch]

Γ ⊢ switchT v, v1 l1, v2 l2, ..., vn ln :⊥

.
[unreachable]

Γ ⊢ unreachable :⊥

14



Memory Access and Indexing Operations

.
[alloca]

Γ ⊢ v = alloca T : T ∗

Γ ⊢ p : T ∗

[load]
Γ ⊢ load T ∗ p : T

Γ ⊢ p : T ∗ Γ ⊢ v : T
[store]

Γ ⊢ store T v, p :⊥

Γ ⊢ p : T ∗ Γ ⊢ ik : i64 Γ ⊢ 1 ≤ k ≤ n
[gep]

Γ ⊢ gep T ∗ p, T1 i1, T2 i2, ..., Tn in : Tn
∗

Other Operations

Γ ⊢ cond : i1 Γ ⊢ v1 : T Γ ⊢ v2 : T
[select]

Γ ⊢ selectT cond v1, v2 : T

Γ ⊢ v1 : T
[phi copy]

Γ ⊢ v := v1 : T

Γ ⊢ v1 : T Γ ⊢ v2 : T T : int
[icmp]

Γ ⊢ icmpT condop v1, v2 : i1

Γ ⊢ v1 : T Γ ⊢ v2 : T T : float
[fcmp]

Γ ⊢ fcmpT condop v1, v2 : i1

Γ ⊢ vk : Tk, 1 ≤ k ≤ N Γ ⊢ f : T (T1, T2, ..., Tn)
[call]

Γ ⊢ call f(T1 v1, T2 v2, ..., Tn vn) : T

4.4 Operational Semantics

We now describe the runtime checks needed in the form of an operational

semantics for the LLVM IR. The execution environment consists of four parts.

1. S: A map from SSA variables to types

2. L: A map of memory locations to types.

3. M : A map of SSA variables to values.

4. H : A map of memory locations to values

15



The mappings S and L are provided externally and are similiar to the

typing environment Γ used earlier. L is a map to track types of values stored

at each memory location and L[p] = T states that the data at the memory

location p is of the type T . The map can be updated by L[p 7→ T ] which

sets the type for the memory location p to the type T . Similiarly for SSA

values S can be updated as S[v 7→ T ]. Each access of the map reads/writes

as many bytes as the size of the type being read/written. The design of the

type maps is discussed in more detail in the next section.

We use an additional type Mem(T ) to indicate type T for an object in

memory. This is a placeholder for type information read from the memory

type map L. No restrictions are imposed on Mem(T ) except on a type check,

in which case the type Mem(T ) is the same as T .

We now present the transitions allowed in the system; every other transi-

tion leads to an error. Each rule is of the form S, L, M, H, I → S ′, L′, M ′, H ′, I ′.

It indicates a transition from the execution environment on the left, with

the instruction stream I to the execution environment on the right and the

changed instruction stream. Each rule shows the transition for the state-

ment at the head of the instruction queue. We show the type checks and the

changes in the execution environment. The type equations shown in bold are

the dynamic type checks that are needed to ensure that a particular execu-

tion is type safe. Details of how the type check is performed are given in the

next section.

We use the notation convert(n, T1, T2, op) to indicate the convertion of the

value n of type T1 to a value of type T2 using the operation op. op can be

trunc for truncation, zext for zero extension, sext for sign extension and so

on. It retuns the converted value. The semantics for these functions are well

known and not detailed here. We use the operator ◦ as a place holder for

the return value of a function call.

Binary Operations
S[v1] == T S[v2] == T M [v1] = n1 M [v2] = n2

(S, L, M, H, v := addT v1, v2) → (S[v 7→ T ], L, M [v 7→ n1 + n2], H)
[add]

S[v1] == T S[v2] == T M [v1] = n1 M [v2] = n2

(S, L, M, H, v := subT v1, v2) → (S[v 7→ T ], L, M [v 7→ n1 − n2], H)
[sub]

S[v1] == T S[v2] == T M [v1] = n1 M [v2] = n2

(S, L, M, H, v := mulT v1, v2) → (S[v 7→ T ], L, M [v 7→ n1 ∗ n2], H)
[mul]

16



S[v1] == T S[v2] == T M [v1] = n1 M [v2] = n2

(S, L, M, H, v := sdivT v1, v2) → (S[v 7→ T ], L, M [v 7→ n1/n2], H)
[sdiv]

S[v1] == T S[v2] == T M [v1] = n1 M [v2] = n2

(S, L, M, H, v := udivT v1, v2) → (S[v 7→ T ], L, M [v 7→ n1/n2], H)
[udiv]

S[v1] == T S[v2] == T M [v1] = n1 M [v2] = n2

(S, L, M, H, v := sremT v1, v2) → (S[v 7→ T ], L, M [v 7→ n1%n2], H)
[srem]

S[v1] == T S[v2] == T M [v1] = n1 M [v2] = n2

(S, L, M, H, v := uremT v1, v2) → (S[v 7→ T ], L, M [v 7→ n1%n2], H)
[urem]

S[v1] == T S[v2] == T M [v1] = n1 M [v2] = n2

(S, L, M, H, v := faddT v1, v2) → (S[v 7→ T ], L, M [v 7→ n1 + n2], H)
[fadd]

S[v1] == T S[v2] == T M [v1] = n1 M [v2] = n2

(S, L, M, H, v := fsubT v1, v2) → (S[v 7→ T ], L, M [v 7→ n1 − n2], H)
[fsub]

S[v1] == T S[v2] == T M [v1] = n1 M [v2] = n2

(S, L, M, H, v := fmulT v1, v2) → (S[v 7→ T ], L, M [v 7→ n1 ∗ n2], H)
[fmul]

S[v1] == T S[v2] == T M [v1] = n1 M [v2] = n2

(S, L, M, H, v := fdivT v1, v2) → (S[v 7→ T ], L, M [v 7→ n1/n2], H)
[fdiv]

S[v1] == T S[v2] == T M [v1] = n1 M [v2] = n2

(S, L, M, H, v := fremT v1, v2) → (S[v 7→ T ], L, M [v 7→ n1%n2], H)
[frem]

Binary Bitwise Operations
S[v1] == T S[v2] == T M [v1] = n1 M [v2] = n2

(S, L, M, H, v := shlT v1, v2) → (S[v 7→ T ], L, M [v 7→ n1 << n2], H)
[shl]

S[v1] == T S[v2] == T M [v1] = n1 M [v2] = n2

(S, L, M, H, v := lshrT v1, v2) → (S[v 7→ T ], L, M [v 7→ n1 >>> n2], H)
[lshr]

S[v1] == T S[v2] == T M [v1] = n1 M [v2] = n2

(S, L, M, H, v := ashrT v1, v2) → (S[v 7→ T ], L, M [v 7→ n1 >> n2], H)
[ashr]

S[v1] == T S[v2] == T M [v1] = n1 M [v2] = n2

(S, L, M, H, v := andT v1, v2) → (S[v 7→ T ], L, M [v 7→ n1&n2], H)
[and]

S[v1] == T S[v2] == T M [v1] = n1 M [v2] = n2

(S, L, M, H, v := orT v1, v2) → (S[v 7→ T ], L, M [v 7→ n1|n2], H)
[or]

S[v1] == T S[v2] == T M [v1] = n1 M [v2] = n2

(S, L, M, H, v := xorT v1, v2) → (S[v 7→ T ], L, M [v 7→ n1 ⊕ n2], H)
[xor]

17



Conversion Operations
S[v1] == T1 M [v1] = n1

(S, L, M, H, v := trunc T1 v1 to T2) → (S[v 7→ T2], L, M [v 7→ convert(n1, T1, T2, trunc)], H)
[trunc]

S[v1] == T1 M [v1] = n1

(S, L, M, H, v := fptrunc T1 v1 to T2) → (S[v 7→ T2], L, M [v 7→ convert(n1, T1, T2, fptrunc], H)
[fptrunc]

S[v1] == T1 M [v1] = n1

(S, L, M, H, v := zext T1 v1 to T2) → (S[v 7→ T2], L, M [v 7→ convert(n1, T1, T2, zext)], H)
[zext]

S[v1] == T1 M [v1] = n1

(S, L, M, H, v := sext T1 v1 to T2) → (S[v 7→ T2], L, M [v 7→ (n1, T1, T2, sext)],H)
[sext]

S[v1] == T1 M [v1] = n1

(S, L, M, H, v := fpext T1 v1 to T2) → (S[v 7→ T2], L, M [v 7→ convert(n1, T1, T2, fpext)], H)
[fpext]

S[v1] == T1 M [v1] = n1

(S, L, M, H, v := fptoui T1 v1 to T2) → (S[v 7→ T2], L, M [v 7→ convert(n1, T1, T2, fptoui)], H)
[fptoui]

S[v1] == T1 M [v1] = n1

(S, L, M, H, v := fptosi T1 v1 to T2) → (S[v 7→ T2], L, M [v 7→ convert(n1, T1, T2, fptosi)], H)
[fptosi]

S[v1] == T1 M [v1] = n1

(S, L, M, H, v := uitofp T1 v1 to T2) → (S[v 7→ T2], L, M [v 7→ convert(n1, T1, T2, uitofp)], H)
[uitofp]

S[v1] == T1 M [v1] = n1

(S, L, M, H, v := sitofp T1 v1 to T2) → (S[v 7→ T2], L, M [v 7→ convert(n1, T1, T2, sitofp)], H)
[sitofp]

S[v1] == ptr M [v1] = n1

(S, L, M, H, v := ptrtoint T1 v1 to T2) → (S[v 7→ T2], L, M [v 7→ n1],H)
[ptrtoint]

S[v1] == T1 M [v1] = n1

(S, L, M, H, v := inttoptr T1 v1 to T2) → (S[v 7→ ptr], L, M [v 7→ n1], H)
[inttoptr]

S[v1] == T1 M [v1] = n1

(S, L, M, H, v := bitcast T1 v1 to T2) → (S[v 7→ T2], L, M [v 7→ n1], H)
[bitcast ssa]

S[v1] = Mem(T3) M [v1] = n1

(S, L, M, H, v := bitcast T1 v1 to T2) → (S[v 7→ Mem(T3)], L, M [v 7→ n1], H)
[bitcast mem]

Control Flow Instructions
S[cond] == i1 M [cond] = true

(S, L, M, H, br cond lt, lf ) → (S, L, M, H, lt)
[br true]

S[cond] == i1 M [cond] = false

(S, L, M, H, br cond lt, lf ) → (S, L, M, H, lf )
[br false]

S[v] == T M [v] = n n = ck 1 ≤ k ≤ n

(S, L, M, H, switchT v, c1 l1, c2 l2, ..., cn ln) → (S, L, M, H, lk)
[switch]

18



Memory Access and Indexing Operations
.

(S, L, M, H, v := alloca T ) → (S[v 7→ ptr], L[v 7→⊥],M [v 7→ p],H)
[alloca]

S[v1] == ptr M [v1] = p H[p] = n

(S, L, M, H, v := load T ∗ v1) → (S[v 7→ Mem(T1)], L, M [v 7→ n],H)
[load]

S[v1] == ptr S[v] = T1 M [v1] = p M [v] = n

(S, L, M, H, store T v, v1) → (S, L[p 7→ T1], M, H[p 7→ n])
[store]

Other Operations
S[v1] = T1 M [v1] = n1 M [cond] = true

(S, L, M, H, v := selectT cond v1, v2) → (S[v 7→ T1], L, M [v 7→ n1], H)
[select true]

S[v1] = T2 M [v2] = n2 M [cond] = false

(S, L, M, H, v := selectT cond v1, v2) → (S[v 7→ T2], L, M [v 7→ n2], H)
[select false]

S[v1] = T M [v1] = n1

(S, L, M, H, v := v1) → (S[v 7→ T ], L, M [v 7→ n1], H)
[phi copy]

S[v1] == T S[v2] == T M [v1] = n1 M [v2] = n2

(S, L, M, H, v := icmpT condop v1, v2) → (S[v 7→ i1], L, M [v 7→ n1condopn2], H)
[icmp]

S[v1] == T S[v2] == T M [v1] = n1 M [v2] = n2

(S, L, M, H, v := fcmpT condop v1, v2) → (S[v 7→ i1], L, M [v 7→ n1condopn2], H)
[fcmp]

S[v0] == ptr S[v1] == i64 M [v0] = p M [vk] = nk 1 ≤ k ≤ n

(S, L, M, H, v := gep T ∗v0, T1 v1, T2 v2, ..., Tn vn) → (S[v 7→ ptr], L, M [v 7→ p + Σ(sizeof(Tk) ∗ nk)], H)
[gep]

S[vk] = Tk M [vk] = nk 1 ≤ k ≤ n

(S, L, M, H, v := call f(T1 v1, ..., Tn vn); I) → (S[f argk 7→ Tk)], L, M [f argk 7→ nk], H, v := ◦; I)
[call]

S[v] = T1 M [v1] = n1

(S, L, M, H, v := ◦; rett v1) → (S[v 7→ T1], L, M [v 7→ n1], H, lt)
[ret]

(S, L, M, H, I) → (S′, L′, M ′, H′) (S′, L′, M ′, H′, I2) → (S′′, L′′, M ′′, H′′)

(S, L, M, H, I1; I2) → (S′′, L′′, M ′′, H′′)
[seq]

The typechecks are inserted before all the type sensitive instructions by the

instrumentation phase of our tool. The type checks ensure that the operands

to the operation are of the correct type. If not, an error is flagged and the

program cannot proceed further. In the semantics we show checks for all

SSA values. However, for values that have a known type, e.g. the result of

an add of two integers is known to be an integer, we do not need checks. We

remove checks on such values as these can be proven statically to be true.

19



4.5 Memory Mapping

The memory map L tracks types for every byte in memory. For every byte,

we track the type stored and a flag indicating the start of a value. Thus, for

each pointer value we have a (type, bool) mapping. A similiar mapping is

used for SSA values.

The map is initialized to ⊥ indicating uninitialized memory. The mapping

is updated on stores to memory. If a value of type T of size n is written to

the location p, the following operations are performed.

L[p] = (T, true)

L[p + i] = (T, false), 1 ≤ i < n

Metadata for all bytes being written to, is updated.

When a type check is performed, the types are matched for all the bytes

being read. We also check that we are reading starting from the byte with

the start sentinel. As all types are treated to be compatible with ⊤, if

all the bytes being read are set to ⊤ the check passes. In such a case we

subsequently set the type for the bytes read to the type read. This ensures

that each location is only being used as a single type. The table 4.1 shows

the details of the map L.

In Table 4.1, the left hand side indicates the query sent to the runtime

from the instrumented program, while the right hand side illustrates the

corresponding changes to the runtime type information. The sizeof operator

for a type gives the number of bytes that are modified, when a value of that

type is written.

L[p 7→ T ] L[p] = (T, true)
sizeof(T ) = i L[p + k] = (T, false), 1 ≤ k < i

L[p] == T L[p] == (T, true)
sizeof(T ) = i L[p + k] == (T, false), 1 ≤ k < i

L[p] == T L[p + k] == ⊤, 0 ≤ k < i

sizeof(T ) = i L[p] = (T, true)
L[p + k] = (T, false), 1 ≤ k < i

Table 4.1: Updating and Reading Shadow Memory

20



CHAPTER 5

IMPLEMENTATION

Our tool is built using LLVM 2.7, with LLVM-GCC as the front end. It

handles all C/C++ language constructs, including indirect function calls

and variadic functions. The tool works on the whole program, though it can

be restructured to be run on individual files.

C/C++ program

llvm-gcc

Basic LLVM Optimizations

Instrumentation

LLVM LinkerRuntime Library

(in LLVM IR)

LLVM IPO Optimizations

Backend

Final Program

LLVM IR

Optimized LLVM IR

Instrumented LLVM IR

Linked LLVM IR

Optimized Linked LLVM IR

Figure 5.1: Tool Architecture

Figure 5.1 shows the various parts of the tool. The instrumentation phase

inserts calls to the runtime type checks and other tracking functions. The

instrumented program is then linked with the tool’s runtime, which provides

an implementation for the runtime checks. The instrumentation maintains

all the semantics of the original function, and does not break compatibility

with external code.

The instrumentation steps are described next, followed by a description of

the runtime.

21



5.1 Instrumenting with Runtime Checks

The instrumentation phase of our tool recognizes the instructions that need

type checks and adds calls to the runtime functions. In this section, we

describe the instrumentation inserted for different LLVM constructs.

5.1.1 Initialization

We insert a call to the runtime initialization function which initializes the

shadow memory. The initialization function is added to the list of constructor

functions using the llvm global ctors [17] global variable. The function is

added as the highest priority constructor, making it the first function invoked

at runtime.

5.1.2 Globals

All globals at the LLVM IR level are pointer values and may have initial-

izers [17]. Our tool instruments the program to insert calls to initialize the

metadata for all globals. For each initialized global, it looks at the type of

the initializer and creates calls to the runtime. Globals without initializers

are set to ⊥.

For globals of primitive types like,

@nbody = internal global i32 0

the instrumentation is simple, and looks as follows,

%1 = bitcast i32* @nbody to i8* ;

call void @trackGlobal(%1, i8 3, i64 4)

where the arguments in order are the pointer, the type tag, the size of the

type.

For globals of structure type, we initialize each field of the structure with

its correct type tag. For the structure object shown below,

%1 = type { i32, i32 }

@obj = common global %1 zeroinitializer

22



we get the following instrumentation.

%10 = getelementptr inbounds %1* @obj, i64 0, i32 0 ;

%11 = bitcast i32* %10 to i8* ;

call void @trackGlobal(i8* %11, i8 2, i64 4)

%12 = getelementptr inbounds %1* @obj, i64 0, i32 1 ;

%13 = bitcast i32* %12 to i8* ;

call void @trackGlobal(i8* %13, i8 2, i64 4)

For globals that contain an array type element, we initialize the first ele-

ment of the array to its type, and then copy the metadata value, to the rest

of the elements. For the structure below that contains an array,

%0 = type { float, [10 x %1], double }

%1 = type { i32, i32 }

@obj = common global %0 zeroinitializer, align 32 ;

we initialize the first element of the array using calls to trackGlobal using

%3 and %5. The metadata is then copied to the rest of the elements, using a

call to trackArray. A similiar approach is applied whenever an array type

is encountered. The trackArray function takes as arguments the starting

pointer, size of each element, and the total number of elements in the array.

%0 = getelementptr inbounds %0* @obj, i64 0, i32 0 ;

%1 = bitcast float* %0 to i8* ;

call void @trackGlobal(i8* %1, i8 1, i64 4)

%2 = getelementptr inbounds %0* @obj, i64 0, i32 1, i64 0, i32 0 ;

%3 = bitcast i32* %2 to i8* ;

call void @trackGlobal(i8* %3, i8 2, i64 4)

%4 = getelementptr inbounds %0* @obj, i64 0, i32 1, i64 0, i32 1 ;

%5 = bitcast i32* %4 to i8* ;

call void @trackGlobal(i8* %5, i8 2, i64 4)

%6 = getelementptr inbounds %0* @obj, i64 0, i32 1 ;

%7 = bitcast [10 x %1]* %6 to i8* ;

call void @trackArray(i8* %7, i64 8, i64 10)

%8 = getelementptr inbounds %0* @obj, i64 0, i32 2 ;

%9 = bitcast double* %8 to i8* ;

23



Calls to initialize the global variables are appended to the initialization

function, so that other global constructors that use the globals access the

correct type information.

5.1.3 main Function

If the main function takes two or more arguments, we insert calls to initialize

the metadata for the arguments at the entry to the main function. The

inserted call looks as follows.

define i32 @main(i32 %argc, i8** %argv) nounwind {

entry:

call void @trackArgvType(i32 %argc, i8** %argv)

...

For programs that also expect an enviroment argument to main, the trans-

formed code looks as follows.

define i32 @main(i32 %argc, i8** %argv, i8** %envp) nounwind {

entry:

call void @trackArgvType(i32 %argc, i8** %argv)

call void @trackEnvpType(i8** %envp)

...

5.1.4 Locals

Local variables in LLVM are allocated using alloca instructions [17]. It

allocates memory on the stack frame of the function, depending on the size

of the type, and returns a pointer. The tool instruments each alloca call,

and adds calls to set the metadata to ⊥. This ensures local variables are

allowed to be used only after these have been initialized.

%argc_addr = alloca i32 ;

%0 = bitcast i32* %argc_addr to i8* ;

%1 = sext i32 1 to i64 ; number of elements allocated

%2 = mul i64 4, %1 ; to get size of memory allocated

call void @trackUnInitInst(i8* %0, i64 %2)

24



5.1.5 Store Instructions

Each store instruction in the program is instrumented to update the metadata

for the pointer. We add a call to the runtime function trackStoreInst that

takes the pointer, the metadata value, and the size of the type.

%1 = bitcast i32* @NumNodes to i8* ;

call void @trackStoreInst(%1, i8 3, i64 4)

store i32 %tmp3, i32* @NumNodes, align 4

5.1.6 Load Instructions

Each load instruction in the program is instrumented to read the metadata

associated with the pointer being read. Every time the value that has been

loaded is used in an instruction we insert a type check. Adding the check

at the use of the loaded value ensures that no false positives occur due to

dynamically dead loads.

%ptr_src = bitcast i8** %tmp1 to i8* ;

;read type info for %211 into %MD

call void @getTypeTag(i8* %211, i64 8, i8* %MD)

%tmp2 = load i8** %tmp1, align 8

;compare %MD against the type tag 1 for 8 bytes.

call void @checkType(i8 1, i64 8, i8* %MD, i8* %ptr_src)

%tmp3 = call i32 (...)* @atoi(i8* %tmp2) nounwind ;

As per the design in the previous section, instrumentation at the uses

varies depending on the instruction the value is used in. Specifically, for

store instructions we simply copy the type metadata to the metadata for the

pointer used in the store. Similiarly, for casts, we push the checks to the uses

of the casts instead of the casts themselves as these do not modify the value

in any way.

%elt55 = getelementptr inbounds %1* %tmp257, i32 0, i32 0 ;

%295 = bitcast i64* %elt55 to i8* ;

;read type info for %295 into %126

call void @getTypeTag(i8* %295, i64 8, i8* %126)

%val56 = load i64* %elt55 ;

25



%tmp1 = getelementptr inbounds %1* %tmp, i32 0, i32 0 ;

%297 = bitcast i64* %tmp1 to i8* ;

;set type info for %297, using the type info in %126

call void @setTypeInfo(i8* %297, i8* %126, i64 8, i8 6)

store i64 %val56, i64* %tmp1

5.1.7 Function Calls

Type Tags for Arguments

We need to track types only for arguments that come from load instructions

since all other SSA values are statically typed in the IR. Where type informa-

tion is needed we clone functions to pass in the value in memory instead of

as an SSA value. This change is done recursively and hence the information

is propogated to all callees. This implies that we do not need to explicitly

add type tags at call sites. This cloning can be done as a pre-processing pass

and the checks are then inserted by the instrumentation phase. Types of all

actual arguments are checked at call sites.

Byval Functions

LLVM allows function arguments to have the byval [17] attribute. This im-

plies that the argument is passed by value i.e. a copy of the actual argument

is passed as argument. The byval attribute is only allowed on pointer argu-

ments. The tool must modify these functions to associate the type metadata

of the actual argument with the copy being passed.

This is achieved by making an internal clone of the function that makes

the copying of the parameter explicit. We remove the byval attribute, and

instrument the entry of the function to make a copy of the argument. We

copy the metadata to the new object, and modify all callers to instead call

the modified function without the byval attribute.

If the function in question is externally visible, we create an internal clone

which we modify as described above. For the externally callable function, we

set the metadata for the byval argument to ⊤.

26



Variadic Functions

To be able to typecheck the arguments passed into a vararg function, it

is necessary to know the types of all the arguments passed in the va list

structure. This ensures that the va arg calls made to the list are accessing

the correct types. We instrument all calls to internal varargs functions to add

arguments for the total number of arguments and an array with the type tag

for each argument. As the types of the arguments at the call site determine

how the arguments are passed, and the type of va arg call determines how

the arguments are accessed, the size of the argument types is not strictly

necessary, and hence we pass only type information.

%1 = call i32 (i32, ...)* @get(i32 0, i32* %i, float* %f) ;

is transformed to

%5 = alloca i8, i32 3 ;

%15 = getelementptr inbounds i8* %5, i32 0 ;

store i8 2, i8* %15

%16 = getelementptr inbounds i8* %5, i32 1 ;

store i8 1, i8* %16

%17 = getelementptr inbounds i8* %5, i32 2 ;

store i8 1, i8* %17

%18 = call i32 (i64, i8*, i32, ...)*

@get.vrg(i64 3, i8* %5, i32 0, i32* %i, float* %f) ;

At the entry to each vararg function, we subtract from the total arguments

passed, the number of fixed arguments and get the number of arguments in

the va list. Similiarly, we increment the pointer to the start of the metadata

array by the number of the fixed arguments to get the start of the metadata

for the elements in the va list. For the original function get shown,

define internal i32 @get(i32 %unused, ...)

the transformed function looks as follows

define internal i32 @get.vrg(i64 %TotalArgCount, i8* %MD,

i32 %unused, ...) {

entry:

%0 = alloca i8, i32 4 ;

27



%1 = alloca i8, i32 4 ;

%2 = alloca i8, i32 4 ;

%3 = alloca i8, i32 8 ;

%4 = alloca i8, i32 4 ;

%5 = alloca i8, i32 8 ;

%varargs.count = sub i64 %TotalArgCount, 1 ;

%varargs.MD = getelementptr inbounds i8* %MD, i64 1 ;

...

For every call to va start we insert a call to initialize the metadata for

the va list used in the call. For a call to va copy we add a call to copy the

metadata to the destination va list.

call void @setVAInfo(i8* %ap, i64 %varargs.count, i8* %varargs.MD)

call void @llvm.va_start(i8* %ap)

call void @copyVAInfo(i8* %ap_copy, i8* %ap)

call void @llvm.va_copy(i8* %ap_copy, i8* %ap)

On every call to va arg, we insert calls to the type of the value being read

against the metadata.

%24 = bitcast %struct.__va_list_tag* %ap_copy15 to i8* ;

call void @checkVAArgType(i8* %24, i8 1) // 1 = ptr type

%25 = va_arg %struct.__va_list_tag* %ap_copy15, i32* ;

Indirect Function Calls

We transform all indirect calls to add arguments as in the case of variadic

functions. This is to allow the instrumented version of the variadic function

to be called from an indirect call site. We also clone all the address taken

functions to add arguments. All internal uses of the original function are

replaced with the clone. A call graph analysis could be used to selectively

clone call sites that call variadic functions.

28



Library Functions

Linking instrumented code with uninstrumented library functions can lead

to false positives since the uninstrumented code does not update the type

metadata. Memory intialized by library functions will be marked as uninitial-

ized and result in warnings. Some standard C library functions like memcpy,

memset, strcpy, strcat are frequently used and lead to a lot of false posi-

tives if not handled. We identify calls to functions such as these and initialize

the type information as it should be. Similiarly, to handle C++ code, we

added wrappers for some C++ library functions, especially std::string

functions.

We also identify calls to functions like time, getrusage, ctype b loc

that return data in static buffers which are subsequently accessed by user

code. We initialize the metadata for the memory returned by such functions

to ⊤.

5.2 Type Tracking Runtime

The instrumented code is linked with a library that provides an implementa-

tion of the runtime functions to track and check for types. Different imple-

mentations of the runtime can be used as needed, e.g. with varying degrees

of debug information, with more efficient data structures to store the type

tags, and different behavior on error.

We implemented a runtime that uses byte granularity shadow memory to

track types. It is built to be efficient and only one operation is required

to get the location of the metadata in the common case. We flag warnings

when a type mismatch is encountered. The user can inspect the warnings

and modify the program to make it type safe. This is useful for debugging

purposes, giving multiple warnings in a single run.

The x86 64 architecture user space addresses range from 0x000000000000

to 0x7fffffffffff. We allocate 246 bytes of shadow memory. It is located

in the address range 0x2aaaac01e000 to 0x6aaaac01e000. The function to

map a pointer to its metadata is given below.

BASE = 0x2aaaac01e000 ;

END = 0x6aaaac01e000 ;

29



SIZE = 1L << 46 ;

meta_offset = (ptr >= END) ? ptr-SIZE : ptr ;

meta_ptr = BASE + meta_offset ;

Table 5.1 gives a summary of all the runtime functions. We describe some

of them in more detail below.

5.2.1 Initialization

The initialization function allocates the shadow memory for the storing the

type metadata. The shadow memory is located at a fixed address, and oc-

cupies half the address space. It is initialized to ⊥ (0).

5.2.2 Setting Metadata

The trackStoreInst and trackGlobal methods set metadata for a given

pointer. For a particular pointer, we calculate the location of its metadata

using the mapping function discussed above. The first byte of the metadata

is then set at the type value given and the size is used to set the remaining

bytes to a special middle of the object marker (0xFE).

5.2.3 Initialize Arguments to main

The tool assumes that the arguments passed to main are initialized and well

formed null terminated strings. We walk through the argv and envp arrays,

and initialize the metadata for the pointers stored in them.

5.2.4 Reading Metadata

The getTypeTag function reads the metadata for a given pointer and stores

it in the memory provided. It reads size bytes.

5.2.5 Checking Metadata

When we have to compare the metadata to a given type, we check that the

type information stored on the first byte matches the given type tag, and

30



that the rest of the bytes being read contain middle of the object markers.

This ensures that we do not read across object boundaries.

5.2.6 Metadata for va list

For each va list, we keep track of the total number of arguments it con-

tains, the metadata for each of them, and a counter to track the number of

arguments read. The counter is initialized to 0, when we initialize the meta-

data. Every call to check the type of the next argument in a given va list

increments the counter and ensures that it is within the total number of ar-

guments, and then checks the metadata for that argument. When we copy

the metadata to a new list, the counter is copied as well.

5.3 Instrumentation Options

To allow for different levels of type safety, the user can allow/disallow certain

instrumentations.

1. Check Pointer Types: The instrumentation by default treats all

pointer types as the same type. If the user desires stricter check-

ing, he may enable tracking of multiple pointer types, by using the

-enable-ptr-type-checks flag to the tool.

2. Track All Loads: By default, checks happen at the uses of the loads,

so as to reduce the number of false positives from dynamically dead

loads. But if a system were concerned about checking every load ex-

ectued, this can be enabled by using the -track-all-loads flag.

3. Checking Pointer Comparisons: A comparison operation depends

only on the value stored in a pointer, not its type. Pointers of different

types can be compared against each other. Checks on pointer compar-

isons can be turned off using the -no-ptr-cmp-checks. Turning off

these checks helps reduce overhead, and might reduce false positives in

some programs.

31



Runtime Function Description

void shadowInit() Allocates and initializes the shadow memory
void trackArgvType(int argc, char **argv) Initializes the metadata for the strings
void trackEnvpType(char **envp) passed as arguments to main

void trackGlobal(void *ptr, uint8 t typeNumber, uint64 t size) Initialize size bytes of metadata for the ptr

with the value typeNumber

void trackArray(void *ptr, uint64 t size, uint64 t count) Reads size bytes of metadata starting at the ptr and
stores it at (ptr + i*size) for 1 < i < size

void trackStoreInst(void *ptr, uint8 t typeNumber, uint64 t size) Sets the type for ptr to typeNumber. It updates
metadata for size bytes

void trackInitInst(void *ptr, uint64 t size) Sets the metadata for size bytes, starting at ptr to
void trackUnInitInst(void *ptr, uint64 t size) ⊤ and ⊥ respectively
void setVAInfo(void *va list, uint64 t totalCount, uint8 t *metadata arr) Initialize the metadata for the va list with

given count and metadata array. Initializes variables read to 0.
void copyVAInfo(void *va list dst, void *va list src) Copy the metadata for the source va list to the destination va list

void checkVAArgType(void *va list, uint8 t TypeAccessed) For the given va list, increments count of variables read,
compares it against the total number of variables.
Then checks the type being accessed against
the value in the metadata array.

void copyTypeInfo(void *dstptr, void *srcptr, uint64 t size) Copies size bytes of metadata for the given srcptr to the
metadata for dstptr

void trackStringInput(void *ptr) Initializes strlen(ptr) + 1 bytes of metadata starting at ptr

Used for library functions that return strings.
void getTypeTag(void *ptr, uint64 t size, uint8 t *dest) Reads size bytes of metadata for the pointer ptr

and stores it in dest

void checkType(uint8 t typeNumber, uint64 t size, uint8 t *metadata, void *ptr) metadata contains the metadata for ptr

read from the shadow memory. We now compare it against typeNumber.
We flag a warning if a mismatch is detected

void setTypeInfo(void *dstptr, uint8 t *metadata, uint64 t size, uint8 t type) Sets type metadata for dstptr. If metadata

not NULL, i.e. the value came from a load, we set the copy stored in metadata.
However, if it is NULL, the value came from an SSA value,
and we use the type tag type and size size

from the type of the SSA value.

Table 5.1: Runtime Functions

32



CHAPTER 6

OPTIMIZATION

To improve the performance of our dynamic type checker, we use static type

inference to reduce the number of dynamic checks required. The static type

inference algorithm finds objects used in a type consistent fashion allowing us

to eliminate checks on them. We can also reduce the amount of propogation

of type metadata needed for these objects.

6.1 Static Analysis

DSA [11] is a pointer analysis that also infers types for all pointer objects.

The original DSA algorithm inferred a single type for a DSNode, the rep-

resentation of a memory object, when possible. If such a type could not

be inferred, the node was Collapsed, merging all its outgoing pointers. In

this implementation, type safe nodes could be identified as the non-collapsed

nodes. We have enhanced the algorithm to improve the type inference by

basing it on primitive typing.

DSA now tracks types at each offset inside the object. Instead of inferring

single structure or array type for a given object, we can now infer a set of

types at a given offset in the object. If there are no conflicting type accesses at

all offsets inside an object we consider that object typesafe. We also restrict

the types we track to the primitive types. We believe this reflects the right

degree of flexibility in the use of structures and arrays in C/C++ by enforcing

types only on the primitive values which are being used in computation. The

inference is based only on the use of an object in a type sensitive operation,

like an add. Operations like bitcast which do not alter the representation of

a value and are not strictly type sensitive do not influence the type inference.

33



6.1.1 Structure Typing

The original type inference algorithm in DSA did not account for the physical

subtyping cases, such as the implementation of object oriented behaviour

using structs in C. In the following example [12], the function foo could

take an argument of any subclass of type Point.

typedef struct {

int x, y;

} Point;

typedef struct {

int x, y, color;

} ColorPoint;

void foo(Point *p_arg) {

p->x = ...

p->y = ...

}

main() {

Point *p;

ColorPoint *pcp;

...

foo(p);

foo(pcp);

}

As DSA only inferred a single type for a given object, we would have failed

to infer a type for p arg, once its DSNode is merged with p and cpc in the

context insensitive analysis.

The DSA algorithm has been extended to recognize types at various byte

offsets within a given DSNode. The new algorithm infers the following DS-

Graph for foo. All the fields of the object being accessed are recorded along

with the type used to read/write to them.

This allows us to remove all checks on accesses to p arg because all its

fields are only used as a single type.

34



Function foo

0: i32, 4: i32, 8: i32, : HM

%p_arg %0 %1

Figure 6.1: DSGraph for correct structure subtyping

However, if a user were to make an error while subtyping as in the following

example,

typedef struct {

float x,y;

} FloatPoint;

calling foo with this object would result in the following DSGraph. Such

a DSNode would still need checks on all accesses to it, reporting errors at

runtime.

Function foo

0: float, i32, 4: float, i32, 8: i32, : HME

%p_arg %0 %1

Figure 6.2: DSGraph for incorrect structure subtyping

6.1.2 Array Type Inference

The original DSA implementation did not identify arrays inside structure

objects in most cases, causing a large number of collapsed nodes. We have

modified DSA to identify the types of arrays inside structures in cases where

we use proper structure indexing to index the array. We do not distinguish

the outgoing pointers from different elements in the array, merging all the

nodes they point to. This is however still much better than collapsing the

node altogether. We get DSGraph shown for struct bpnode defined as

shown.

struct bpnode {

short i1;

short i2;

int j;

double k;

35



double arr[3];

};

Globals graph

0: %struct.bnode*, : GMR
@bp_free_list

0

0: i16, 8: double, 16: double, [3 x double], : HMR

 

Figure 6.3: DSGraph showing array typing

6.1.3 Optimizing the Dynamic Tracking

C/C++ program

llvm-gcc

Basic LLVM Optimizations

Instrumentation

DSA

Remove checks

LLVM LinkerRuntime Library

(in LLVM IR)

LLVM IPO Optimizations

Backend

Final Program

LLVM IR

Optimized LLVM IR

Instrumented LLVM IR

Instrumented LLVM IR + Static Analysis Results

Optimized Instrumented LLVM IR

Linked LLVM IR

Optimized Linked LLVM IR

Figure 6.4: Tool Architecture with Static Analysis

Figure 6.4 shows the tool architecture when the static analysis is used to

optimize the result. Two new stages are added as compared to Figure 5.1.

DSA is used to analyze the instrumented code to identify the type safe nodes.

Using the results of the static analysis, the instrumented code is modified as

follows,

36



1. For typesafe objects we remove all type checks.

2. We initialize all typesafe objects to be null because the static analysis

results are not sound in the presence of uninitialized memory.

3. For all typesafe memory objects, the metadata is initialized to ⊤. This

ensures that we are still able to catch uninitialized memory access er-

rors. This is also needed in cases where the non fully context insensitive

nature of DSA does not alias certain pointers, leaving them with differ-

ent completeness flags in different contexts. Unfortunately, this means

we incur the overhead of tracking type information, even if the program

is largely type safe. We hope to address this issue in the future.

The static analysis results are only applicable in the absence of memory

safety errors like dangling pointer errors and out-of-bounds accesses. These

can be detected by simultaneously checking with tools like SAFECode [18],

which ensures sound type inference in the presence of memory safety errors.

Overheads of this technique can be reduced by adopting faster runtimes

as suggested by Baggy Bounds Checking [16], WIT [19] or SoftBound [15].

Protection against dangling pointer attacks can also be achieved by using

garbage collection [5], as used by CCured [13].

6.2 Optimizing the Runtime

We have optimized our runtime type checking functions in the following way.

1. We allocate our shadow memory at a fixed address. This eliminates

extra loads needed to access the metadata.

2. We have also optimized the type check for the common case of a type

match by making it the fast path. This has been done by making this

the first condition checked. The checks for a mismatch or match with

⊤ have been placed in a slow path check.

3. We have reduced the number of typechecks inserted on the uses of a

particular load by removing checks that are dominated by other checks

for the same SSA value.

37



CHAPTER 7

ANALYSIS OF TYPE ERRORS

We now look at examples from the programs that reported type errors and

examine their sources.

7.1 Sqlite

7.1.1 Mismatched Format String

Listing 7.1: Format String Error
1 sqlite3MPrintf (db, "CREATE%s INDEX %.*s",

2 onError == OE_None ? "" : " UNIQUE",

3 pEnd ->z - pName ->z + 1,

4 pName ->z);

Sqlite defines its own version of the various printing functions. This allows

the tool to detect format string errors. In the Listing 7.1, the format string

expects an i32 as its 2nd parameter. However, the value passed is a function

of pEnd->z and pName->z, both pointers, and equivalent to i64 on our sys-

tem. As the function is variadic, no cast is inserted. We reported this error

and it has subsequently been fixed1.

7.1.2 Uninitialized Memory

Our tool also helps detect an error when uninitialized or unallocated memory

is being read. In the Listing 7.2, the contents of pFrom are copied to pTo. The

program then reads pTo->z. This is a utility function called from multiple

places in the code. When it is called from sqlite3VdbeExec, the value of pTo

1http://www.sqlite.org/src/ci/90cfeaf7b6

38



is initialized in sqlite3VdbeSerialGet which initializes the pTo structure;

however, in some cases it does not initialize the z field. This leads to an error

being flagged at this location when we try and read the value. However, the

variable zData is never used. This error is only flagged when we use the tool

with the -track-all-loads option, that checks every load.

Listing 7.2: Uninitialized variable read
1 SQLITE_PRIVATE int sqlite3VdbeMemCopy (Mem *pTo , const Mem *pFrom ){

2 int rc = SQLITE_OK ;

3 char *zBuf = 0;

4
5 /* If cell pTo currently has a reusable buffer , save a pointer to it

6 ** in local variable zBuf . This function attempts to avoid freeing

7 ** this buffer.

8 */

9 if( pTo ->flags &MEM_Dyn ){

10 if( pTo ->xDel ){

11 sqlite3VdbeMemRelease (pTo);

12 }else {

13 zBuf = pTo ->z;

14 }

15 }

16
17 /* Copy the contents of *pFrom to *pTo */

18 memcpy(pTo , pFrom , sizeof(*pFrom ));

19
20 if( pTo ->flags &( MEM_Str|MEM_Blob ) && pTo ->flags &MEM_Static ){

21 /* pFrom contained a pointer to a static string. In this case ,

22 ** free any dynamically allocated buffer associated with pTo.

23 */

24 sqlite3_free (zBuf );

25 }else {

26 char *zData = pTo ->z;

27
28 pTo ->z = zBuf ;

29 pTo ->flags &= ~( MEM_Static |MEM_Ephem );

30 pTo ->flags |= MEM_Dyn;

31 pTo ->xDel = 0;

32
33 if( pTo ->flags &(MEM_Str |MEM_Blob ) ){

34 if( sqlite3VdbeMemGrow (pTo , pTo ->n+2, 0) ){

35 pTo ->n = 0;

36 rc = SQLITE_NOMEM ;

37 }else {

38 memcpy(pTo ->z, zData , pTo ->n);

39 pTo ->z[pTo ->n] = ’\0’;

40 pTo ->z[pTo ->n+1] = ’\0’;

41 pTo ->flags |= MEM_Term ;

42 }

43 }

44 }

45 return rc;

46 }

7.2 186.crafty

7.2.1 Switching Union Fields

The 186.crafty benchmark in two functions interchangeably uses the two

fields of a union. Listing 7.3 shows one of them. The other function is

39



LastOne and does something similiar. Here, the same memory location is

written to as an i64, and read as multiple i16s.

The C standard allows programmers to read bytes from the middle of an

object, as long as they do not cross object boundaries. We still flag this as

an error to bring to the programmers attention such an access of an object.

Accessing bytes by doing pointer arithmetic, may be unsafe if the endianness

is not taken into consideration in certain applications. A better practice

would be to read the value and perform bitshifts to get the correct bytes.

The warning generated hints to the programmer to use the more typesafe

option.

Listing 7.3: Using Union Fields
1 int FirstOne (BITBOARD arg1 )

2 {

3 union doub {

4 unsigned short i[4];

5 BITBOARD d;

6 };

7 union doub x;

8 x.d=arg1 ;

9 # if defined(LITTLE_ENDIAN_ARCH )

10 if (x.i[3])

11 return (first_ones [x.i[3]]) ;

12 if (x.i[2])

13 return (first_ones [x.i[2]]+16) ;

14 if (x.i[1])

15 return (first_ones [x.i[1]]+32) ;

16 if (x.i[0])

17 return (first_ones [x.i[0]]+48) ;

18 # endif

19 # if !defined(LITTLE_ENDIAN_ARCH )

20 if (x.i[0])

21 return (first_ones [x.i[0]]) ;

22 if (x.i[1])

23 return (first_ones [x.i[1]]+16) ;

24 if (x.i[2])

25 return (first_ones [x.i[2]]+32) ;

26 if (x.i[3])

27 return (first_ones [x.i[3]]+48) ;

28 # endif

29 return (64) ;

30 }

7.3 464.h264ref

7.3.1 Testing Endianness

As Listing 7.4 shows, there is a type error when the values is written and

read as different types. However, this is most likely not security critical. We

currently do not allow reading subparts of an object. We hope to add that

in the future reducing false positives as these.

40



Listing 7.4: Testing Endianness
1 /*!

2 ************************************************************************

3 * \brief

4 * checks if the System is big - or little -endian

5 * \return

6 * 0, little -endian (e.g. Intel architectures )

7 * 1, big -endian (e.g. SPARC , MIPS , PowerPC)

8 ************************************************************************

9 */

10 int testEndian ()

11 {

12 short s;

13 byte *p;

14
15 p=( byte *)&s;

16
17 s=1;

18
19 return (*p==0) ;

20 }

7.4 471.omnetpp

7.4.1 Passing NULL to a varargs function

Listing 7.5: Passing NULL

1 static sEnumBuilder _EtherMessageKind ( "EtherMessageKind ",

2 JAM_SIGNAL , "JAM_SIGNAL ",

3 ETH_FRAME , "ETH_FRAME ",

4 ETH_PAUSE , "ETH_PAUSE ",

5 ETHCTRL_DATA , "ETHCTRL_DATA ",

6 ETHCTRL_REGISTER_DSAP , "ETHCTRL_REGISTER_DSAP ",

7 ETHCTRL_DEREGISTER_DSAP , "ETHCTRL_DEREGISTER_DSAP ",

8 ETHCTRL_SENDPAUSE , "ETHCTRL_SENDPAUSE ",

9 0, NULL

10 );

11
12
13 sEnumBuilder :: sEnumBuilder (const char *name , ...)

14 {

15 cEnum *e = findEnum (name );

16 if (!e)

17 {

18 e = new cEnum (name );

19 e-> setOwner (&enums );

20 }

21
22 va_list va;

23 va_start (va ,name );

24 for (;;)

25 {

26 int key = va_arg(va ,int);

27 const char *str = va_arg(va ,const char *);

28 if (!str)

29 break ;

30 e-> insert(key ,str);

31 }

32 }

As Listing 7.5 shows, NULL is passed to a varargs function without an

explicit cast. The compiler passes it as an i64 while the function being

called expects a string leading to a potential problem. For calls to varargs

41



functions if NULL is passed as a variable argument, it should be explicitly

cast to the correct type [20].

7.5 gs

7.5.1 Float Comparison Macros

Listing 7.6: Float comparison macros
1 # define _f_as_l(f) *(long *)(&(f))

2 # define is_fzero (f) ((_f_as_l (f) << 1) == 0) /* +0 or -0 */

3 # define is_fzero2 (f1 ,f2) ((( _f_as_l(f1) | _f_as_l(f2)) << 1) == 0)

4 # define is_fneg(f) (( _f_as_l(f)) < 0) /* -0 is negative , oh well */

Listing 7.6 shows code that attempts to determine whether a floating point

value is zero or not. The macros explicitly read a floating point value as a

long. Such tricks employed by programmers for efficiency reasons are hard

to differentiate from real type errors.

7.6 units-1.88

7.6.1 Uninitalized Variable Read

Listing 7.7 shows code that attempts to count the number of newline char-

acters read in the variable count. However, the function fgetslong uses

uninitialized variable dummy if the count is NULL. This variable is subse-

quently accessed in both fgetslong and fgetscont leading to warnings.

The value of dummy is not used for any result computation subsequently

in the code. If a programmer were to use these functions, without knowing

that dummy is uninitialized, it could lead to problems. Thus, the tool can be

useful in identifying benign errors before these cause problems.

42



Listing 7.7: Uninitialized variable dummy

1 /*

2 Fetch a line of data with backslash for continuation . The

3 parameter count is incremented to report the number of newlines

4 that are read so that line numbers can be accurately reported .

5 */

6
7 char *

8 fgetscont (char *buf , int size , FILE *file , int *count )

9 {

10 if (!fgets (buf ,size ,file ))

11 return 0;

12 (*count )++;

13 while (strlen(buf) >=2 && 0== strcmp(buf+strlen(buf) -2,"\\\ n")){

14 (* count )++;

15 buf[strlen(buf) -2] = 0; /* delete trailing \n and \ char */

16 if (strlen(buf)>=size -1) /* return if the buffer is full */

17 return buf;

18 if (! fgets (buf+strlen(buf), size - strlen(buf), file ))

19 return buf; /* already read some data so return success */

20 }

21 if (buf[strlen(buf) -1] == ’\\’) { /* If last char of buffer is \ then */

22 ungetc(’\\’, file ); /* we don ’t know if it is followed by */

23 buf[strlen(buf) -1] = 0; /* a \n, so put it back and try again */

24 }

25 return buf;

26 }

27
28
29 /*

30 Gets arbitrarily long input data into a buffer using growbuffer ().

31 Returns 0 if no data is read . Increments count by the number of

32 newlines read unless it points to NULL .

33 */

34
35 char *

36 fgetslong (char **buf , int *bufsize , FILE *file , int *count )

37 {

38 int dummy ;

39 if (!count )

40 count = &dummy ;

41 if (!* bufsize ) growbuffer (buf ,bufsize);

42 if (! fgetscont (*buf , *bufsize , file , count ))

43 return 0;

44 while ((* buf)[strlen (*buf) -1] != ’\n’ && !feof (file )){

45 growbuffer (buf , bufsize );

46 fgetscont (*buf+strlen(*buf), *bufsize -strlen (*buf), file , count );

47 (* count )--;

48 }

49 return *buf;

50 }

7.7 ks

7.7.1 Mismatched argument type

Listing 7.8 shows a macro used as an error handler. If the program cannot

open the input file, it tries to output an error message. The argument inFile

passed to fprintf is of FILE * type instead of the expected i8*. This error

is also reported by CCured [13]. We only detect this error if tracking is on

for tracking different pointer types.

43



Listing 7.8: Wrong argument type to printf

1 /* simple exception handler */

2 #define TRY(exp , accpt_tst , fn , fail_fmt , arg1 , arg2 , arg3 , fail_action ) { \

3 (exp); \

4 if (!( accpt_tst )) { \

5 fprintf(stderr , "(%s:%s():%d): ", __FILE__ , fn , __LINE__ ); \

6 fprintf(stderr , fail_fmt , arg1 , arg2 , arg3 ); \

7 fprintf(stderr , "\n"); \

8 fail_action ; \

9 } \

10 }

11 void

12 ReadNetList (char *fname )

13 {

14 FILE *inFile;

15 char line [BUF_LEN ];

16 char *tok;

17 unsigned long net , dest ;

18 ModulePtr node , prev , head ;

19
20 TRY(inFile = fopen (fname , "r"),

21 inFile != NULL , "ReadData ",

22 "unable to open input file [%s]", inFile , 0, 0,

23 exit (1));

24
25 TRY(fgets (line , BUF_LEN , inFile),

26 sscanf(line , "%lu %lu", &numNets , &numModules ) == 2, "ReadData ",

27 "unable to parse header in file [%s]", inFile , 0, 0,

28 exit (1));

29 ...

30 }

7.8 099.go

7.8.1 Out-of-bounds array access

Listing 7.9 shows a loop that access the array diffs4 beyond its declared

size. Even though we do not explictly track array bounds, since that memory

is uninitialized this access causes a type error and is detected. This is also

reported by CCured [13].

44



Listing 7.9: Array Bounds error
1 int diffs4 [5][3];

2 int diffs4i [7][3] =

3 {

4 { 1,18, 1 }, /* square */

5 { 1, 1,18 }, /* pyramid */

6 { 18, 1,19 }, /* pyramid */

7 { 18, 1, 1 }, /* pyramid */

8 { 19, 1,18 }, /* pyramid */

9 { 1, 1, 1 }, /* straight line */

10 { 19,19,19 }, /* straight line */

11 };

12
13 void deadshape (int g,int rn){

14 int pointlist ,size ,count ;

15 int ptr ,i,j,diffs [5], ldtmp ;

16 eyeval[rn] = eyepot[rn] = eyemin[rn] = 8;

17 size = grsize[g];

18 pointlist = EOL;

19 for(ptr = grpieces [g]; ptr != -1; ptr = mvnext[ptr ])

20 addlist(mvs[ptr ],& pointlist );

21
22 i = 0;

23 for(ptr = pointlist ; links [ptr] != EOL; ptr = links [ptr ]){

24 diffs [i] = list [links [ptr ]] - list [ptr];

25 ++i;

26 }

27 killist (& pointlist );

28 if(size == 4){

29 for(j = 0; j < 3; ++j)

30 if(diffs4 [0][ j] != diffs [j])break ;

31 else if(j == 2) return; /* 4 in square */

32 for(i = 1; i < 5; ++i)

33 for (j = 0; j < 3; ++j)

34 if(diffs4[i][j] != diffs [j])break ;

35 else if(j == 2) return; /* 4 in pyramid */

36 eyeval[rn] = eyemin[rn] = eyepot[rn] = 16; /* 4 in line */

37 for(i = 5; i < 7; ++i)

38 for (j = 0; j < 3; ++j)

39 if(diffs4[i][j] != diffs [j])break ;

40 else if(j == 2) return; /* 4 in straight line */

41 for(ptr = grlbp [g]; ptr != EOL; ptr = links [ptr ]){

42 i = fdir [list [ptr ]];

43 count = 0;

44 for (ldtmp = ldir [i]; i < ldtmp ; ++i)

45 if(board [list [ptr ]+nbr[i]] == g)++count ;

46 ...

47 }

45



CHAPTER 8

PERFORMANCE

In this section we provide a performance evaluation of our tool. To mea-

sure the execution time overhead introduced by our tool, we instrumented

examples from the Olden [21],PtrDist, SPECINT 2000 and SPECINT 2006

benchmark suites. The benchmarks were compiled using llvm-gcc 2.7, and

executed with the same inputs with and without instrumentation(with the

-no-ptr-cmp-checks flag) on an x86 64 machine running Linux with 8GB of

RAM. The times reported are the median of 3 executions. Error logging was

turned off as it caused large overheads. The baseline was calculated using

GCC with -O3. Table 8.1 shows the overhead of applying our tool, to these

benchmarks. The last column shows the reduced overhead after optimizing

using the static type inference discussed earlier. Some benchmarks were too

large for DSA and were not optimized.

The overheads are quite high as the type information is continually updated

throughout the execution. However, it is much lower than the reported

overheads for all the other dynamic type checking tools [10, 8, 9, 22]. This

is because all SSA variables are statically typed, and do not require runtime

type information. The overhead is significantly reduced when type checks

are removed based on the results of the static type inference.

The overheads with the static analysis in place are much lower, around

4x, though still higher than the reported overhead of CCured(3-87%). Their

type inference is more sophisticated than ours, specially in the case of arrays.

The reduced overhead of 4x on incorporating the static analysis allows the

use of this tool during the development cycle of a software, for the detection

of type errors. The fact that it is automatic and has a low false positive rate

also makes it feasible for real world C programs. We have used our tool on

system softwares like squid, sqlite, thhtpd.

46



Benchmark LOC Base Instrumented Instrumented Optimized Optimized
Time Time Overhead Time Overhead

(Ratio) (Ratio)

Olden

bh 2073 1.91 9.73 5.09 4.90 2.56
bisort 350 0.80 2.55 3.19 2.55 2.88
em3d 688 2.71 34.98 12.91 34.12 12.59
health 502 0.41 1.14 2.78 1.08 2.63
mst 428 0.12 0.50 4.17 0.42 3.50
perimeter 484 0.26 1.00 3.85 0.89 3.42
power 622 2.44 9.81 4.02 2.48 1.02
treeadd 245 4.38 13.24 3.02 6.94 1.58
tsp 582 1.99 5.90 2.96 5.93 2.98
voronoi 1129 0.33 1.73 5.24 1.11 3.36

PtrDist

anagram 650 1.04 16.81 16.16 2.34 2.25
ft 1767 1.09 2.46 2.26 2.45 2.25
bc 7297 0.58 4.08 7.03 2.61 4.50
yacr2 3986 .76 14.72 19.37 0.77 1.01
ks 783 1.86 22.37 12.03 28.70 15.43

SPEC95

099.go 29246 0.29 2.24 7.72 0.84 2.90
124.m88ksim 19233 0.02 0.36 18.00 0.28 14.00
130.li 7598 0.03 0.39 13.00 0.30 10.00
132.ijpeg 28178 0.22 1.97 8.95 0.54 2.45

SPEC2000

164.gzip 8616 10.06 84.84 8.43 21.87 2.17
175.vpr 17739 4.31 61.51 14.27 13.89 3.22
181.mcf 2412 6.35 47.76 7.52 40.23 6.34
186.crafty 29650 4.27 84.72 19.84 38.33 8.98
197.parser 11396 2.79 22.67 8.12 13.96 5.00
254.gap 71363 1.90 31.18 16.41 - -
255.vortex 67220 2.63 58.67 22.30 42.86 16.30
256.bzip2 4647 9.19 161.04 17.52 15.09 1.64
300.twolf 20508 3.58 38.93 10.87 7.67 2.14

SPEC2006

401.bzip2 8293 2.73 29.60 10.84 27.81 10.19
429.mcf 2685 3.19 20.46 6.41 18.10 5.67
445.gobmk 190119 0.24 1.20 5.00 - -
456.hmmer 35992 4.42 89.61 20.27 33.26 7.52
458.sjeng 13847 4.46 55.58 12.46 14.20 3.18
464.h264ref 51578 15.71 483.70 30.79 86.40 5.50
462.libquantum 4358 2.24 39.38 17.58 44.27 19.76
471.omnetpp 32500 0.43 6.14 14.28 5.43 12.63
473.astar 5842 9.16 80.07 8.71 33.57 3.66

Application

sqlite 135761 3.72 71.23 19.15 - -

median 9.90 3.42

average 11.12 5.86

Table 8.1: Performance overhead(Time in sec.)

47



CHAPTER 9

CONCLUSION

We presented the design of a dynamic type checking tool for C/C++ pro-

grams along with a static type inference algorithm to reduce the dynamic

tracking overhead. We also presented the implementation details of the tool

using the LLVM compiler infrastructure. The tool was tested on numerous

benchmarks and we provide an evaluation of the overhead of the tool.

With an overhead of about 4x, our tool is suitable for use as a debugging

tool by programmers. It is significantly faster than the tools that exist cur-

rently, with the exception of CCured. We plan to analyze the differences more

closely in the future and use it to improve our static inference. We also plan

to test the tool on larger programs and obtain performance characteristics

for those.

We also present a type system for C, which though it is more restrictive

than the C standard, ensures type safety of program on execution. The type

system is designed to give few false positives on real world C programs to

make debugging easier for the programmer. On the other hand, we believe

it is strict enough to detect type errors when they occur.

We also present a static analysis that helps reduce the overhead of the

tool. Presently, we use it to infer type safety for an object. In the future, we

hope to be able to interpret its results to prove type safety for fields inside an

object. This, we believe, will help us remove more checks than we currently

do and reduce the overhead further. Currently the static analysis does not

scale to programs with more thank 50K LOC. We shall work to improve the

scalability of the analysis.

We plan to improve the optimization of the instrumentation on the basis of

the static analysis results, and remove even more checks. We presently track

type information even though the node is type safe. Future work incorporates

removing tracking on type safe objects to lower overheads.

We also plan to incorporate it with our previous work that detects bounds

48



errors and dangling pointer errors [18], to provide comprehensive memory

and type safety. We believe this won’t present significant challenges as these

are all built using the LLVM infrastruture and use the DSA algorithm for

optimization.

49



REFERENCES

[1] J. Seward, “Valgrind, an open-source memory debugger for x86-
gnu/linux.” [Online]. Available: http://developer.kde.org/∼sewardj/

[2] R. Hastings and B. Joyce, “Purify: Fast detection of memory leaks and
access errors,” in Winter USENIX, 1992.

[3] T. M. Austin, S. E. Breach, and G. S. Sohi, “Efficient detection of
all pointer and array access errors,” in ACM SIGPLAN Conference on
Programming Language Design and Implementation, June 1994.

[4] D. Dhurjati and V. Adve, “Backwards-compatible array bounds checking
for C with very low overhead,” in Int’l Conf. on Softw. Eng., Shanghai,
China, May 2006, pp. 162–171.

[5] H.-J. Boehm, “Space efficient conservative garbage collection,” in
Proceedings of the ACM SIGPLAN 1993 conference on Programming
language design and implementation, ser. PLDI ’93. New York, NY,
USA: ACM, 1993. [Online]. Available: http://doi.acm.org/10.1145/
155090.155109 pp. 197–206.

[6] “LLVM,” http://llvm.org, 2006.

[7] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control
dependence graph,” ACM Transactions on Programming Languages and
Systems, pp. 13(4):451–490, October 1991.

[8] A. Loginov, S. H. Yong, S. Horwitz, and T. Reps, “Debugging via
run-time type checking,” Lecture Notes in Computer Science, 2001.
[Online]. Available: citeseer.ist.psu.edu/loginov01debugging.html

[9] M. Burrows, S. N. Freund, and J. L. Wiener, “Run-time type check-
ing for binary programs,” in In International Conference on Compiler
Construction. Springer, 2003, pp. 90–105.

[10] H. Shen, J. Wang, L. Ping, and K. Sun, “Securing c programs by dy-
namic type checking,” in Information Security Practice and Experience,
2006, pp. 343–354.

50



[11] C. Lattner, A. Lenharth, and V. Adve, “Making Context-Sensitive
Points-to Analysis with Heap Cloning Practical For The Real World,”
in Proceedings of the 2007 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’07), San Diego, California,
June 2007.

[12] S. Chandra and T. Reps, “Physical type checking for c,” SIGSOFT
Softw. Eng. Notes, vol. 24, pp. 66–75, September 1999. [Online].
Available: http://doi.acm.org/10.1145/381788.316183

[13] G. C. Necula, J. Condit, M. Harren, S. Mcpeak, and W. Weimer,
“Ccured: Type-safe retrofitting of legacy software,” in In ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 2004.

[14] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (CGO’04),
Palo Alto, California, Mar 2004.

[15] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound:
highly compatible and complete spatial memory safety for c,” SIGPLAN
Not., vol. 44, no. 6, pp. 245–258, 2009.

[16] P. Akritidis, M. Costa, M. Castro, and S. Hand, “Baggy bounds check-
ing: An efficient and backwards-compatible defense against out-of-
bounds errors,” in Proceedings of the Eighteenth Usenix Security Sym-
posium, August 2009.

[17] C. Lattner et al., “LLVM Language Reference Manual,”
http://llvm.org/docs/LangRef.html.

[18] D. Dhurjati, S. Kowshik, and V. Adve, “SAFECode: Enforcing alias
analysis for weakly typed languages,” in ACM SIGPLAN Conference on
Programming Language Design and Implementation, Ottawa, Canada,
June 2006, pp. 144–157.

[19] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Preventing
memory error exploits with WIT,” in SP ’08: Proceedings of the 2008
IEEE Symposium on Security and Privacy. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 263–277.

[20] M. P. Cline, G. A. Lomow, and M. Girou, C++ FAQs: Frequently Asked
Questions; 2nd ed. Reading, MA: Addison-Wesley, 1999, section 5.2.

[21] M. C. Carlisle, “Olden: parallelizing programs with dynamic data struc-
tures on distributed-memory machines,” Ph.D. dissertation, 1996.

51



[22] W. Ji-min, P. Ling-di, P. Xue-zeng, S. Hai-bin, and Y. Xiao-lang,
“Tools to make c programs safe: a deeper study,” Journal of Zhejiang
University - Science A, vol. 6, pp. 63–70, 2005, 10.1007/BF02842479.
[Online]. Available: http://dx.doi.org/10.1007/BF02842479

52


