
c© 2011 Musab Ahmad Al-Turki

REWRITING-BASED FORMAL MODELING, ANALYSIS AND IMPLEMENTATION
OF REAL-TIME DISTRIBUTED SERVICES

BY

MUSAB AHMAD AL-TURKI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Doctoral Committee:

Professor José Meseguer, Chair and Director of Research
Professor Gul Agha
Professor Carl A. Gunter
Professor Jayadev Misra, University of Texas at Austin
Associate Professor Grigore Rosu

ABSTRACT

The last decade has seen an explosive growth of both: (1) enterprise service-oriented software

systems, for managing enterprise resources and automating business processes, and (2) user-

centric, cloud-based web applications, which provide richer experiences and more intelligent

services to end-users than traditional, monolithic applications. The adoption of systems

that are based on Internet-accessible software components, a class of distributed software

systems to which we simply refer as Internet software, is expected to grow tremendously

in the future. Nevertheless, designing and developing dependable Internet software poses

a unique set of challenges, making the already difficult issue of whether a deployed system

meets its specification requirements even harder to address than for traditional software

systems.

In this dissertation, we develop formal specification, simulation, prototyping, and formal

analysis techniques and tools for distributed software services, based on rewriting logic, the

Maude system, and the theory of Orc, with the overall goal of improving the reliability of

Internet software. The dissertation focuses on the formal specification and analysis of two

fundamentally important aspects of Internet software systems: (1) the correctness of service

compositions, and (2) the availability of services.

For service composition specification and analysis, we systematically use and extend meth-

ods from the rewriting logic semantics project and apply them to service orchestrations in

Orc, providing a simple, elegant and efficient formal model for timed orchestration design

and analysis. The rewriting specifications of the semantics of Orc is presented in three main

semantics-preserving refinements in order to achieve maximum efficiency and expressive-

ness: (1) an SOS-based rewriting semantics, (2) a reduction rewriting semantics, and (3)

an object-based rewriting semantics. A specification of the the latter in Real-Time Maude

ii

is used as a back-end for a high-level, web-based tool, MOrc, enabling exhaustive formal

verification, including model checking, of service orchestrations in Orc. Moreover, the disser-

tation develops a natural transformation path from formal models of Orc programs to actual,

provably-correct, distributed implementations with physical timing, which enable observing

actual possible behaviors of service orchestrations in realistic environments.

For the service availability problem, the dissertation extends current methods based on

rewriting logic for the specification and analysis of availability properties to improve their

efficiency and scalability. In particular, the dissertation first presents parallel versions of the

statistical model checking algorithm of Sen, Viswanathan and Agha [1] and the statistical

quantitative analysis algorithm of Agha, Meseguer and Sen [2]. The parallel algorithms

we propose, which are implemented in a parallel, client/server extension of VeStA, called

PVeStA, exploit an inherent parallelization opportunity within these statistical analysis

algorithms, where multiple, independent Monte-Carlo simulations are performed. Perfor-

mance gains as a result of parallelization can in practice be remarkable, as demonstrated

using several experiments. Furthermore, using Maude and PVeStA, we apply the rewriting

logic approach to availability analysis to the Adaptive Selective Verification (ASV) protocol

and verify, in the presence of denial-of-service (DoS) attacks, several of its availability prop-

erties, which were previously shown either analytically or statistically by low-level network

simulations.

In addition, the dissertation proposes an expressive and modular method for the formal

specification and analysis of service availability against DoS in service compositions using

generic ASV object wrappers. This is achieved essentially by combining techniques developed

for Orc service orchestrations and service availability analysis. The method is illustrated by

specifying and analyzing an ASV-endowed service orchestration pattern in Orc.

iii

In memory of my beloved father, Ahmad B. AlTurki

Dedicated to my wife, Hanadi, and my sons, Faisal and Abdurrahman, for their

love and support

iv

ACKNOWLEDGMENTS

I, first and foremost, submit my thankful praises to Allah (God), the Almighty, the Most

Gracious and the Ever Merciful, for granting me strength, guidance and perseverance to

undertake and successfully complete this task. This accomplishment would not have been

possible without His sufficient grace and mercy.

I would like to express my sincere gratitude and appreciation to my thesis adviser, Prof.

José Meseguer, who has always been a source of inspiration for me. I thank him for all the

expert help, guidance, and continuous support and encouragement he has been patiently

providing throughout the years of my studies and research. Working with him has been an

exceptional privilege, and I hope I will be able to continue to enjoy this privilege for years

to come.

I would like to extend my sincere thanks and appreciation to my committee members:

Prof. Gul Agha, Prof. Carl A. Gunter, Prof. Jayadev Misra (University of Texas at Austin)

and Prof. Grigore Rosu, for their invaluable comments and suggestions to improve the thesis.

The time and effort they had spent to thoroughly review my thesis and provide feedback is

very much appreciated. I thank them for all the fruitful discussions and for their generous

words of encouragement.

I am also especially grateful to Prof. Peter Csaba Ölveczky for his invaluable advice and

help with several parts of the thesis. My gratitude also extends to Prof. Santiago Escobar,

Prof. Francisco J. Durán and Prof. Alberto Verdejo, for their extraordinary help and support,

especially with Maude-based formal analysis tools and implementations. Thanks are also

due to Dr. Steven Eker for his assistance with Maude, and to Prof. Mahesh Viswanthan for

his comments.

I would like to express my sincere gratitude to the Orc research team at the University of

v

Texas at Austin, led by Prof. Jayadev Misra and Prof. William R. Cook, for their comments

and helpful discussions. Special thanks to David Kitchin, for his fruitful thoughts and ideas

on Orc’s formal semantics, and also to Adrian Quark and Andrew Matsuoka.

I am thankful to my colleagues for their friendship and assistance, especially Traian Florin

Şerbănuţă, Mark Hills, Joe Hendrix, Michael Katelman, Ralf Sasse, Camilo Rocha, Kyung-

min Bae, Ravinder Shankesi, Fariba Khan, Omid Fatemieh and Raúl Gutiérrez. I thank the

Technical Support Group at the department of Computer Science and the IT Help desk at

the Coordinated Sciences Laboratory for providing prompt technical assistance whenever I

asked for it.

I am also thankful to King Fahd University of Petroleum and Minerals, Saudi Arabia, for

sponsoring my doctoral studies and research, and to King Abdullah University of Science and

Technology, Saudi Arabia, for their support through the prestigious King Abdullah Scholar

Award. The research reported in the thesis has also been partially supported by NSF grants

CNS 07-16638, and CCF 09-05584, and by AFOSR grant FA8750-11-22-0084.

I would like to express my unlimited thanks and sincere appreciation for the invaluable

advice, tremendous support, and unceasing guidance and encouragement of my late father,

my mother, my father-in-law and my mother-in-law. I would also like to express my special

thanks to my darling wife, who has patiently provided all peace of mind, comfort and care

for easy accomplishment of this task. My deep appreciation is also extended to my brothers,

my sister and my brothers-in-law for their prayers, continuous support and enthusiasm.

vi

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Problem Description . 3
1.2 Overview of the Approach . 6
1.3 Summary of Contributions . 8
1.4 Thesis Outline . 9

CHAPTER 2 BACKGROUND . 11
2.1 Rewriting Logic . 11
2.2 The Maude System . 14
2.3 The Orc Theory . 18

CHAPTER 3 REWRITING SEMANTICS OF ORC 26
3.1 The Semantic Infrastructure . 26
3.2 The SOS-based Rewriting Semantics Rsos

Orc 36
3.3 The Reduction Rewriting Semantics Rred

Orc 44
3.4 Equivalence of Rsos

Orc and Rred
Orc . 52

3.5 Specification in Maude . 54
3.6 Performance Comparison . 57

CHAPTER 4 OBJECT-BASED REWRITING SEMANTICS OF ORC AND THE
MORC TOOL . 61
4.1 Distributed Object-based Semantics ROrc . 61
4.2 The MOrc Tool . 67

CHAPTER 5 DISTRIBUTED IMPLEMENTATION OF ORC 80
5.1 Dist-Orc: A Distributed Implementation of Orc 81
5.2 Case Study: A Distributed Implementation of Auction 92
5.3 Formal Analysis of Distributed Orc Programs 94

CHAPTER 6 STATISTICAL MODEL CHECKING ANALYSIS 106
6.1 Parallel Statistical Model Checking and Quantitative Analysis Algorithms . . 107
6.2 Implementation in PVeStA . 111
6.3 Statistical Analysis of the Adaptive Selective Verification Protocol 115

vii

CHAPTER 7 AVAILABILITY ANALYSIS OF ORC SERVICES 127
7.1 Modular DoS Protection Using the ASV Protocol 128
7.2 Assumptions on the Underlying Language 129
7.3 The ASV Wrappers . 132
7.4 Case Study: Availability Analysis in a Service Composition Pattern in Orc . 143

CHAPTER 8 RELATED WORK . 153
8.1 Rewriting Logic Semantics . 153
8.2 Formal Semantics of Orc . 154
8.3 Formal Analysis of Service Compositions . 154
8.4 Implementations of Service Composition Languages 156
8.5 Statistical Analysis Methods of Probabilistic Models 157
8.6 Formal Specification and Analysis of Availability 158
8.7 Availability Analysis in Service Compositions 159

CHAPTER 9 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 161
9.1 Formal Specification and Analysis of Orc Service Orchestrations 161
9.2 Distributed Implementation of Orc Service Orchestrations 163
9.3 Statistical Model Checking Analysis . 164
9.4 Availability Analysis in Service Compositions 165

APPENDIX A PROOFS OF SOME ALGEBRAIC PROPERTIES OF ORC 166

APPENDIX B PROPERTIES OF RSOS
ORC AND RRED

ORC 168
B.1 Executability of Rsos

Orc . 168
B.2 Executability of Rred

Orc . 173
B.3 Proof of the Equivalence Theorem (Theorem 4) 175

APPENDIX C MAUDE SPECIFICATIONS OF THE REWRITING SEMAN-
TICS AND IMPLEMENTATION OF ORC . 182

APPENDIX D MAUDE SPECIFICATIONS OF THE ASV PROTOCOL 183

APPENDIX E MAUDE SPECIFICATIONS OF THE ASV WRAPPERS 184

REFERENCES . 185

AUTHOR’S BIOGRAPHY . 199

viii

CHAPTER 1

INTRODUCTION

The last decade has seen an explosive growth of service-oriented software systems across

various application domains, such as health care, e-commerce, finance and government.

Such enterprise software systems proved very effective in managing internal resources and

automating business processes of the enterprise in the open, and distributed environment

of the Internet. Furthermore, a new breed of user-centric, personalized web applications

that are based on aggregations of cloud services provided over the Internet has recently

emerged to provide richer experiences and more intelligent services to end-users on various

stationary and mobile platforms. The adoption of systems that are based on Internet-

accessible software components, a class of distributed software systems to which we simply

refer as Internet software, is expected to grow tremendously in the future.

Nevertheless, designing and developing dependable Internet software poses a unique set of

challenges. Internet software systems are geographically distributed, highly concurrent sys-

tems, in which service requests and responses are handled asynchronously over an unreliable

communication medium. Furthermore, communication and processing overhead may affect

the time it takes the system to complete a given task, and hence its overall performance

and usability. In addition, increased distribution and accessibility expose Internet software

to malicious uses and attacks. Consequently, such software systems admit fairly complex

interaction behaviors that are hard to predict or analyze. For these reasons, the already dif-

ficult issue of whether a deployed system meets its specification requirements is even harder

to address for Internet software.

In general, applying formal techniques and tools to the software development process has

gained noticeably increased interest within both the research community and industry over

the past few years. The mathematical rigor of formal methods, especially at the early stages

1

of specification and design, facilitate developing higher quality software systems. Moreover,

these methods are (at least partially) mechanizable in the form of supporting tools, which

can substantially improve their scalability and accessibility and reduce their adoption costs.

Research in formal methods has culminated in a wide variety of formalisms for specifying

systems and their behaviors, including automata-theoretic approaches [3, 4, 5, 6, 7, 8, 9],

logics and process calculi [10, 11, 12, 13, 14, 15], and (often semi-formal) visual modeling

languages [16, 17, 18, 19]. These formalisms target different classes of systems and may

differ widely in their underlying abstractions, expressive power, decidability properties, and

tool support. One such formalism that strikes a good balance between expressiveness and

verifiability is rewriting logic [10]. Rewriting logic provides a general and executable specifi-

cation and verification framework through the use of an expressive equational logic for data

representations and (conditional) rewrite rules for dynamic system transitions. This frame-

work, on which this thesis builds, can naturally model deterministic and non-deterministic

systems, sequential and concurrent languages, and probabilistic and real-time processes. A

feature-rich implementation of rewriting logic is available in the Maude system [20], along

with an ever expanding set of associated formal analysis tools.

In contrast to system specifications, which, as in the rewriting logic case, are often exe-

cutable, properties of systems are normally specified in typically non-executable formalisms,

such as modal logics [21], including most prominently temporal logic on computation trees

[22], and axiomatic assertions in some form of predicate logic, such as Hoare logic [23]

and JML [24]. Depending on the formalisms used, different formal techniques for property

verification may be used, including deductive reasoning with a theorem prover, reachability

analysis and model-checking. A significant amount of research in the area focuses on improv-

ing the efficiency and scalability of such verification techniques, and increasing automation

in supporting tools.

Industrial adoption of formal methods in software development has primarily focused

on embedded software systems mainly because of their safety critical concerns. A recent

survey by Woodcock et. al. [25] covered a wide range of fairly large industrial formal

methods projects that have been carried out over the last twenty years, including Rockwell

Collins’ AAMP7 microcode design verification against security policies using ACL2 [26] and

2

Airbus’s flight control design using the SCADE toolkit [27], based on the real-time language

Esterel [28]. The survey reports that the vast majority (over 90%) of these projects had

seen improvements in product quality, and over one-third had reduced project durations

and costs. Although most respondents to the survey were pleased with the final products,

some (about 15%) believed that the formal analysis and verification tools were lacking more

features and could be improved. The survey also shows an especially growing interest in

applying formal methods to real-time and distributed applications with emphasis on the

specification and design phases of development.

Despite these successes in the realm of embedded software systems, applications of formal

methods to Internet software in industry have not been as successful or as widely accepted,

sparking an increasingly growing research interest in this problem (see, for example, the

papers on automated formal specification and verification of web services and systems in

WWV’09 [29], WS-FM’10 [30], FACS’2010 [31], and earlier editions and references there).

The unique challenges associated with developing Internet software require extending current

formal methods and developing new techniques and tools to effectively and efficiently capture

their essential characteristics.

1.1 Problem Description

The thesis focuses on the formal specification and analysis of two fundamentally important

aspects of Internet software systems: (1) the correctness of service compositions, and (2) the

availability of services.

Service Composition. Service composition is a disciplined process of combining indi-

vidual service invocations into a larger, more useful service. Composability of services is one

of the most critical design principles of the service-oriented computing (SOC) paradigm and

its various instantiations, such as Software-as-a-Service architectures and business process

and workflow management. This is because composability promotes abstractions, modular-

ity, reusability, and interoperability of services, which are some of the fundamental goals of

SOC for developing and managing large, and distributed Internet software. Within the SOC

paradigm, services are normally implemented as web services, and their compositions are

3

specified using a web services orchestration language, such as the Business Process Execution

Language (BPEL), which is now an OASIS standard known as WS-BPEL [32], and is part

of an expansive set of industry standards for web services [33].

The correctness problem of timed service compositions asks whether a given composition

performs its intended task (functional correctness) while satisfying its timing requirements

(non-functional correctness). In practice, designing compositions of services is a heavily

error-prone activity. Given the inherent dependence of Internet-accessible software compo-

nents and business processes on composing services, the importance of specifying correct

service compositions is quite clear and cannot be overemphasized.

One of the most prominent research proposals to address this problem, which is centrally

relevant to this thesis, is J. Misra’s theory of orchestration, called Orc [34], which was further

developed by Misra and Cook [35]. Orc defines an elegant theory and programming model

for timed service compositions that, unlike other approaches, provides simple abstractions

for services with powerful and expressive orchestration primitives. Services are represented

by sites, which may produce values when invoked and whose names may be passed around

as values. The Orc theory inspired later developments of process-calculus-based formalisms

for various aspects of service compositions, such as the Calculus of Sessions and Pipelines

(CaSPiS) [36], which is a calculus for describing service sessions and their interactions, and

the the Signal Calculus (SC) [37], a variant of Ambient Calculus [38] for event-notification-

based service coordination. Other calculus-based approaches also exist (e.g. [39] and [40],

which are based, respectively, on λ-calculus and event calculus, both with emphasis on safety

properties).

Other approaches that are based directly on BPEL have also been proposed (see the

manuscript [41] for a fairly comprehensive survey). Given BPEL’s unfortunate lack of formal

semantics, these approaches essentially provide formalizations of (subsets of) BPEL in some

formal model of computation, like BPEL encodings in Petri Nets [42] and the π-calculus [43],

or devise new BPEL-inspired formal languages, such as Blite [44], a lightweight language for

service orchestrations that captures some of BPEL’s salient features, such as transactions

and process termination. However, as a result of its complexity and expansive feature-

set, a comprehensive and practical BPEL-based formal framework for the specification and

4

verification of service orchestrations remains elusive.

Service Availability. The second focal point of the thesis is the problem of formally

specifying and analyzing availability of services in a communication network against denial-

of-service (DoS) attacks, which are cyber attacks that exploit vulnerabilities in the underly-

ing communication protocol to deny service to legitimate users. In recent years, DoS attacks

have become an increasingly prevalent form of security threat as more complex distributed

systems are being deployed. Moreover, distribution and interconnectivity have enabled an

even more effective and powerful form of distributed DoS attacks (or DDoS), in which a large

number of compromised systems are used collectively to carry out the attack, such as the

fairly recent, highly publicized, DDoS flooding attack, in which an extremely large number

of malicious Domain Name Service (DNS) requests overloaded a major DNS server rendering

several large e-commerce web sites inaccessible, including Amazon, Wal-Mart, and Expedia1.

Despite quick mitigation efforts by the DNS provider, the system experienced a downtime

of about an hour, and continued to experience problems a few hours after recovery.

Despite having been a serious security threat for the last few years, most currently deployed

DoS countermeasures rely on ad-hoc solutions based on heuristics and remedial procedures.

In particular, current approaches tend to rely on a combination of three techniques: (1) basic

prevention measures, such as patching known vulnerabilities and increasing user awareness

of security issues; (2) detection procedures, including sniffing network traffic, router and

firewall filtering, and intrusion detection; and (3) mitigation procedures, such as bandwidth

throttling, server replication, and load balancing [45]. In practice, such techniques may have

helped in protecting against some known attacks. However, for these countermeasures to

be more effective and comprehensive, a deeper, more formal understanding of the commu-

nication protocols, the communication channels, and the characteristics of DoS attacks is

required.

Although formal modeling and analysis of DoS vulnerabilities and defense measures of

protocols have been studied before [46, 47, 48, 49, 50, 51], they remain a considerably less

understood subject than formal analysis of other, more traditional security properties, such

as secrecy, authentication and integrity. Part of the challenge is that availability proper-

1See the article at http://www.cnn.com/2009/TECH/12/24/cnet.ddos.attack/index.html.

5

ties are intimately related to performance and reliability, and therefore have an inescapable

quantitative nature that does not have an obvious formal model or analysis technique. In

addition, DoS attacks and countermeasures are probabilistic in nature due to the inherent

behavioral uncertainties, such as underlying attacker behaviors, and the use of randomized

algorithms. Moreover, as distributed systems increase in complexity, the intricacy of such

attacks and DoS-resilient measures continues to grow accordingly. Such complications un-

derscore the need for expressive probabilistic formal models as well as efficient and scalable

automatic formal analysis techniques and tools.

1.2 Overview of the Approach

The thesis develops formal specification, simulation, prototyping, and formal analysis tech-

niques and tools, based on rewriting logic and Maude, and the Orc theory, for distributed

software services, with the overall goal of improving the reliability of Internet software. The

key idea underlying the research approach of the the thesis is that rewriting logic is both a

theoretical model, with clear and well-defined mathematical foundations, and an expressive

computational formalism, providing a practical method for performing concurrent compu-

tations through its logical deduction system. The logic is also supported by an advanced

and efficient implementation in the Maude tool with generic formal analysis tools. Addi-

tionally, extensions to real-time and probabilistic rewrite theories and their implementations

in Maude provide a unified modeling and analysis framework for the systems of interest.

By combining rewriting logic with suitable models and algorithms, we are able to provide

novel, expressive, efficient and scalable formal specification and analysis methods for service

orchestration and availability problems.

More specifically, for the orchestration problem, we systematically use and extend methods

from the rewriting logic semantics project and apply them to Misra’s theory of orchestration,

Orc, to provide a clean and efficient formal model for timed orchestration design and analysis.

The choice of Orc over other languages and models is motivated by the simplicity, elegance,

and expressiveness of its programming model. Moreover, unlike other approaches, Orc ad-

dresses the problem of timed orchestrations using high-level abstractions and constructs that

6

neatly capture the essential features of an orchestration without any distracting lower-level

abstractions or implementation details. Moreover, the thesis develops a natural transfor-

mation path from formal models of Orc programs to actual, provably-correct, distributed

implementations that enable observing actual possible behaviors of service orchestrations

in realistic environments. In spite of its inherent simplicity, the formal semantics and dis-

tributed implementation of Orc present some major challenges, including: (1) the real-time

nature of the language, (2) the different priorities among its actions, (3) the efficiency of spec-

ification execution and analysis, and (4) formal analysis at the implementation level. While

some of these challenges are addressed by adapting existing techniques and tools, such as

modeling and analysis of real-time behaviors in rewrite theories, others are addressed by

new, specialized techniques that we propose as part of this work, as discussed in Chapters 3,

4 and 5 of the thesis.

For the service availability problem, the thesis extends current methods based on rewrit-

ing logic for the specification and analysis of availability properties against DoS attacks

with the goal of improving their efficiency and scalability. In particular, the thesis first

presents parallel versions of the statistical model checking and quantitative analysis algo-

rithms developed in [1] and [2], which have implementations in the VeStA tool. The parallel

algorithms are implemented in a parallel, client/server extension of VeStA’s implementa-

tion, namely PVeStA. This development takes advantage of an inherent parallelization

opportunity within the statistical model-checking algorithm, where multiple, independent

Monte-Carlo simulations are performed. Furthermore, since such simulations are usually

very time-consuming and tend to significantly dominate the cost of other computations in

the algorithm, performance gains and increased scalability are in practice remarkable, which

is demonstrated using several experiments. Despite the focus of the thesis on services, the

parallel statistical model checking algorithms remain fully generic.

In addition, the thesis proposes an expressive and modular method for the formal specifi-

cation and analysis of service availability against DoS in service compositions using generic

Adaptive Selective Verification (ASV) wrappers. This is achieved essentially by combining

techniques developed for Orc service orchestrations and service availability analysis based on

rewriting logic, Maude, and PVeStA. The method is illustrated by specifying and analyzing

7

an ASV-wrapped service orchestration pattern in Orc.

1.3 Summary of Contributions

In general, the thesis contributes to several ongoing research efforts, while creating new

possibilities for further research, within the broad areas of formal methods, programming

languages, and web services. The following list highlights the main research contributions

of the thesis:

1. An efficiently executable formal specification in rewriting logic of the real-time, syn-

chronous semantics of Orc capturing Orc’s intended operational semantics.

2. A high-level, web-based tool, MOrc, for the formal specification and analysis of Orc

orchestrations based on Orc’s rewriting semantics and Real-Time Maude.

3. A new, elegant and effective formal approach to the specification and analysis of web

service orchestrations using MOrc for improving Internet software reliability.

4. A verifiably correct, distributed implementation of Orc in Maude, based on its rewriting

semantics, with physical timing, endowed with formal analysis using Real-Time Maude.

5. Parallelization and optimization of existing algorithms for formal statistical model

checking and quantitative analysis, and their implementation in PVeStA.

6. Further developing the rewriting-based techniques for the probabilistic modeling and

statistical analysis of probabilistic systems, and using them to formally model and

verify quantitative properties of the ASV protocol.

7. An object-based, probabilistic, formal specification of the ASV protocol as a generic

protocol wrapper enabling modular specification of DoS-resilient communication sys-

tems.

8. A novel approach to the formal statistical analysis of availability of services under DoS

attacks of service orchestrations based on Orc and ASV wrappers.

8

1.4 Thesis Outline

This section gives a brief outline of the thesis, along with references to previous work on

which the different parts of the thesis are based.

The thesis begins in Chapter 2 by reviewing preliminaries on rewrite theories and their

real-time and probabilistic extensions. The chapter also describes at a high level how such

units of specifications in rewriting logic can be executed and analyzed in Maude and its

real-time extension in Real-Time Maude. This is followed in Section 2.3 by a quick overview

of Orc, its syntax, semantics, and some of its algebraic properties as used in the thesis.

Chapter 3 discusses in detail the first main contributions of the thesis by introducing the

SOS-based rewriting semantics Rsos
Orc and the semantically equivalent reduction rewriting

semantics Rred
Orc of Orc. The chapter gives proofs of desirable executability properties about

them and validates with experiments the efficiency advantage of Rred
Orc over Rsos

Orc. The work

presented in this chapter extends previous work that appeared in [52, 53] and in the extended

report [54].

Chapter 4 introduces a natural semantic extension to the reduction rewriting semantics

of Orc to an object-based semantics, ROrc, on which subsequent developments are based.

An initial version of this extension originally appeared in [54, 53]. This is followed by a

description of MOrc, a web-based tool, based on ROrc, enabling various formal analysis

methods, including LTL model checking, on Orc expressions at the level of Orc, using Real-

Time Maude as a back-end. The tool is illustrated with several examples.

In Chapter 5, we describe a general transformation method, based on Maude’s support

for communication with external objects through sockets, in which a real-time formal spec-

ification of a language such as Orc can be turned with minimal effort into a distributed

implementation with physical timing. The transformation is described in detail for Orc and

illustrated with a case study. This is followed by showing how such a distributed implemen-

tation, can be formally modeled and analyzed in Real-Time Maude. This chapter is based

on previously published work in [55] and the technical report [56].

In Chapter 6, we describe in detail parallel algorithms for statistical model checking of

probabilistic formulas in PCTL/CSL and statistical quantitative analysis of QuaTEx ex-

9

pressions, and their implementations in PVeStA. Substantial speedup gains as a result of

parallelization are validated through several statistical analysis examples, including statisti-

cal analysis of availability properties of the ASV protocol modeled as a probabilistic rewrite

theory. The parallel statistical model checking work presented in this chapter extends pre-

vious results that appeared in [57], and the formal analysis of the ASV protocol is based on

previous work in [58].

Chapter 7, introduces a modular approach to endow formal specifications of systems and

their distributed deployments with ASV-based DoS protection measures using generic ASV

protocol wrappers, specified as a probabilistic rewrite theory. This chapter, which is based

on previous work in [58], describes the specification of ASV wrappers in detail and discusses

the assumptions under which statistical model-checking analysis can be applied. This is

followed by an application of ASV Wrappers to Orc to analyze availability of services in an

Orc service orchestration pattern.

Finally, a discussion of related work is given in Chapter 8, followed by a discussion of

further research directions in Chapter 9.

10

CHAPTER 2

BACKGROUND

In this chapter, we review, at a high level, some preliminaries on rewriting logic, the Maude

system, and the theory of Orc. More details can be found in the cited references below.

2.1 Rewriting Logic

Rewriting logic [59] is a general formalism that unifies in a natural way different concurrency

models [10, 60]. It is also an expressive semantic framework that is well suited to give formal

semantic definitions of sequential and concurrent systems and languages (see [61, 62, 63]

and references there). Furthermore, with recent real-time and probabilistic extensions, the

logic is capable of succinctly modeling real-time, stochastic, and hybrid systems [64, 65, 66].

Moreover, with the availability of high-performance rewriting logic implementations, such

as Maude [20], specifications can both be executed and formally analyzed.

2.1.1 Rewrite Theories

The unit of specification in the logic is a rewrite theory, which gives a formal description of

a concurrent system including its static state structure and its dynamic behavior. Assuming

that t, u, v and w (and their decorated variants) are terms and s is a sort, a rewrite theory, in

its most general form, is a tuple R = (Σ, E∪A,R, φ), consisting of: (i) a theory (Σ, E∪A) in

membership equational logic (MEL) [67], where Σ is a MEL signature having a set of kinds,

a family of sets of operators, and a family of disjoint sets of sorts, E is a set of Σ-sentences,

which are universally quantified Horn clauses with atoms that are either equations (t = t′) or

memberships (t : s), and A is a set of equational axioms, such as commutativity, associativity

11

and/or identity axioms for some operators in Σ; (ii) a set R of universally quantified labeled

conditional rewrite rules of the form:

(∀X) r : t→ t′ if
∧
i

ui = u′i ∧
∧
j

vj : sj ∧
∧
l

wl → w′l (2.1)

where r is a label; and (iii) a function φ : Σ→ P(N) that assigns to each operator symbol f

in Σ of arity n > 0 a set of positive integers φ(f) ⊆ {1, . . . , n} representing frozen argument

positions where rewrites are forbidden.

While the MEL theory (Σ, E∪A) specifies the user-defined syntax and equational axioms,

which define the system states as elements of the initial algebra associated to (Σ, E ∪ A), a

rule r : t→ t′ if C in R gives a general pattern for a possible concurrent change or transition

in its state (modulo the restrictions imposed by φ), with the intuition that an instance θ(t)

of t (with θ a substitution) may rewrite to θ(t′) in the state of the system whenever the

condition θ(C) is satisfied. Such rewrites are deduced according to the inference rules of

rewriting logic, which are described in detail in [68]. Using these inference rules, a rewrite

theory R proves a statement of the form (∀X) t → t′, meaning that, in R, any instance of

the state term t can reach the corresponsing instance of the state term t′ in a finite number

of steps. A detailed discussion of rewriting logic as a unified model of concurrency and its

inference system can be found in [10]. [68] gives a precise account of the most general form

of rewrite theories and their models.

2.1.2 Probabilistic Rewrite Theories

Probabilistic rewrite theories [65] extend regular rewrite theories with probabilistic rules,

which can specify probabilistic behaviors of systems. Assuming −→x and −→y are disjoint sets

of variables, a probabilistic rewrite rule has the following form:

(∀−→x ,−→y) r : t(−→x) −→ t′(−→x ,−→y) if C(−→x) with probability −→y := π(−→x)

12

A probabilistic rule introduces on its right-hand side term new variables −→y , the values of

which depend on a probability distribution function π parametrized by θ(−→x), where θ is a

matching substitution satisfying the condition C. An example of a probabilistic rewrite rule,

borrowed from [20], is the following rule:

clock(t, c) −→ if B then clock(t+ 1, c− (c/1000.0)) else broken(t, c)

with probability B := Bernoulli(c/1000.0)

The rule specifies a battery-operated clock transition that is based on the outcome B of a

biased coin toss, where the bias is proportional to the current battery charge c. In general,

probabilistic rewrite theories can model different probabilistic systems with discrete or con-

tinuous probability distribution functions. Furthermore, they can express models involving

both probabilistic and non-deterministic features. The reader is referred to [2] for a more

rigorous definition of probabilistic rewrite theories.

2.1.3 Real-Time Rewrite Theories

A real-time rewrite theory [64] extends a regular rewrite theory with support for modeling

real-time behaviors of systems. In particular, in a real-time rewrite theory Rτ = (Στ , Eτ ∪

Aτ , Rτ , φ): (i) the equational theory (Στ , Eτ ∪Aτ) contains a sort for Time representing the

time domain, which can be either dense or discrete, and declares a system-wide operator

that encapsulates the whole system being modeled into a special sort GlobalSystem for

managing time elapse, and (ii) the set of rewrite rules Rτ is the disjoint union of two sets

RI and RT , where RI consists of instantaneous rewrite rules having the form (2.1) above

and representing instantaneous transitions in the system, and RT consists of tick rewrite

rules modeling system transitions that take a non-zero amount of time to complete. A tick

rewrite rule has the following form

r : {t} τ−→ {t′} if C

13

where τ is a term of sort Time representing the duration of time required to complete the

transition specified by the rule. The global operator { } encapsulates the whole system into

the sort GlobalSystem to ensure the correct propagation of the effects of time elapse to every

part of the system. A detailed discussion of real-time rewrite theories and their semantics,

including a detailed explanation of how they can be reduced to ordinary rewrite theories by

explicitly introducing a global clock as part of the global state, can be found in [64, 69].

2.2 The Maude System

Maude [20] is a high-performance implementation of rewriting logic and its underlying MEL

sublogic. A basic unit of specification in Maude can be either a functional module, corre-

sponding to a MEL theory E = (Σ, E ∪ A), or a system module, defining a rewrite theory

R = (Σ, E ∪ A,R, φ). A functional module may contain module inclusion assertions, sort

and subsort declarations, operator symbols declarations (optionally with some equational

attributes, including equational axioms A such as associativity, commutativity and/or iden-

tity), and conditional equations and membership axioms. Admissible functional modules,

which are modules that satisfy some reasonable executability requirements, including ground

confluence and termination (modulo the axioms A) and sort-decreasingness of the equations,

can be executed in Maude by equational simplification modulo axioms using the equations E

as simplification rules from left to right and Maude’s matching algorithms modulo A to sim-

plify a term to its canonical form with a least sort. Equational simplification modulo axioms

of an admissible functional module yields an operational semantics, defined by the algebra

of canonical forms CanΣ/E∪A, for its corresponding theory that coincides with its mathe-

matical, initial algebra semantics, given by the initial algebra TΣ/E∪A (see Sections 4.6–4.8

in [20] and cited references there). Simplification modulo axioms A can be performed by the

reduce command in Maude.

An admissible system module, which may additionally contain possibly conditional rewrite

rules, must satisfy the executability requirements for its equational part in addition to the

ground coherence of the rules R with respect to the equations in E and to admissibility

conditions on the rules, which ensures that all variables in the rules can be instantiated by

14

(incremental) matching. Such admissible modules can be executed in Maude by rewriting

with rules (abiding by the restrictions imposed by φ) and oriented equations modulo the

axioms A, which in this case corresponds exactly to the mathematical semantics of R, which

rewrites with R modulo the equational theory E ∪ A (see Section 6.3 in [20] and [68, 70]).

Rewriting of system modules can be performed in Maude by means of the rewrite command,

which applies a rule-fair strategy to explore a possible behavior of the system, the frewrite

command, which applies a position-fair and rule-fair strategy, or the search command,

which explores the entire reachable state space of the system, to find states instantiating a

given pattern and satisfying a given semantic condition, following a breadth-first strategy.

Furthermore, Maude provides a linear temporal logic (LTL) model checker for verifying safety

and liveness properties, under the assumption that the set of states reachable from a given

initial state is finite.

2.2.1 Simulating and Analyzing Probabilistic Rewrite Theories

In general, probabilistic rewrite theories are not directly executable, since probabilistic

rewrite rules are nondeterministic, as noted in Section 2.1.2 above. However, they can

be simulated in Maude by sampling values for the new variables appearing in the right-hand

sides of the probabilistic rewrite rules from appropriate probability distributions. Sampling

is performed using Maude’s built-in random number generator function random(s), with s

a seed, and a counter function counter that rewrites with an internal strategy to the next

natural number [2].

Monte Carlo simulations of probabilistic rewrite theories obtained in this way can be an-

alyzed statistically using statistical model checking and quantitative analysis algorithms,

provided any unquantified non-determinism is avoided [2, 1], which is easily achievable

for object-oriented probabilistic rewriting specifications. Statistical model checking veri-

fies, within a desired statistical confidence level, formulas in a probabilistic temporal logic,

such as the Continuous Stochastic Logic (CSL) [71]. Statistical quantitative analysis, on the

other hand, uses an expressive temporal language, called Quantitative Temporal Expressions

(QuaTEx) [2], that supports parametrized, real-valued recursive function declarations, an

15

if-then-else construct, and a next operator ©, to quantitatively specify richer properties

about probabilistic models. Both techniques rely on discrete-event simulations of the model,

obtained by Monte Carlo simulations of the form described above, and are implemented

in a tool called VeStA 2.0 (or simply VeStA in the rest of the thesis), with support for

probabilistic rewrite theories [72]. We will elaborate on these statistical analysis algorithms

in Chapter 6. Further details can be found in [2, 1, 73].

2.2.2 Real-Time Maude

While real-time rewrite theories with deterministic tick rules can be specified in Maude and

analyzed using its standard analysis tools, a more expressive and flexible implementation

and analysis of such theories, for both discrete and continuous time domains, is provided by

Real-Time Maude (RTM) [74], which is an extension to Maude written using its reflective

features. RTM modules provide the data types, operators, and execution strategies that

enable the specification of timed modules with built-in or user-defined time domains. For

example, the RTM module POSRAT-TIME-DOMAIN-WITH-INF specifies a dense time domain

represented by the non-negative rationals with the infinity element. Time tick rewrite rules

are in general non-deterministic, since the amount of time τ by which a system may ad-

vance its clock may be non-deterministic. Therefore, tick rules are in general not directly

executable, and, for this reason, RTM defines a number of time sampling strategies, such as

the general maximal sampling strategy (which advances time until the next instant when

some instantaneous rewrite rule becomes enabled), which can be used to execute timed

modules. Furthermore, RTM comes equipped with a range of formal analysis tools for timed

modules, including timed rewriting (the commands trewrite and tfrewrite), timed and

untime search (tsearch and utsearch), and time-bounded and time-unbounded LTL model

checking (the command mc). For timed modules with non-deterministic time tick rule(s),

the analysis is carried out with respect to a chosen time sampling strategy. Ölveczky and

Meseguer [75] characterized a very broad class of timed rewrite systems for which this model

checking analysis is sound and complete, when using the general maximal time sampling

strategy. A complete description of RTM and its formal analysis features can be found

16

in [74].

2.2.3 Sockets and External Objects in Maude

Maude provides a low-level implementation of sockets, which effectively enables a Maude pro-

cess to exchange messages with other processes, including other Maude instances, according

to the connection-oriented TCP communication protocol. More specifically, a Maude config-

uration CF, which is a Maude term of the sort Configuration corresponding to a multiset of

objects and messages, such that CF contains a socket portal, which is a predefined constant

<> of sort Portal (a subsort of Configuration), may communicate with objects external

to the Maude process executing CF through a set of special messages defining an interface

to Maude sockets. Assuming that O is an identifier for an object in CF, these messages are

as follows:

1. createClientTcpSocket(socketManager, O, ADDRESS, PORT), which asks Maude’s

socket manager, a factory for socket objects, for a client socket to a server located at

ADDRESS:PORT. Maude then responds with either a createdSocket(O, socketManager,

SOCKET) message, indicating successful creation of the client socket SOCKET, or a

socketError(O, socketManager, S) message, with S a string briefly describing the

reason for failure.

2. send(SOCKET, O, S), which asks for the string S to be sent through SOCKET. This

message elicits either a message sent(O, SOCKET), when the string is successfully

sent, or a message closedSocket (O, SOCKET, S), if an error occurred.

3. receive(SOCKET, O), which solicits a response through SOCKET. When a response

is received, Maude issues the message received(O, SOCKET, S), with S the string

received. In case of an error, the socket is closed with the message closedSocket(O,

SOCKET, S).

4. createServerTcpSocket(socketManager, O, PORT, BACKLOG), which asks Maude’s

socket manager to create a server socket at port PORT, with BACKLOG a positive inte-

ger specifying the maximum allowed number of queue requests. The message elicits

17

either a messagecreatedSocket(O, socketManager, SERVER-SOCKET), or a message

socketError(O, socketManager, S).

5. acceptClient(SERVER-SOCKET, O), which causes Maude to listen for incoming con-

nections at SERVER-SOCKET. If a client connection is accepted, Maude responds back

with the message acceptedClient (O, SERVER-SOCKET, ADDRESS, SOCKET), where

ADDRESS is the client’s address and SOCKET is a newly created socket for communicating

with the client. The message socketError(O, socketManager, S) is issued in case

of failure.

6. closeSocket(SOCKET, O), which causes Maude to close the socket and issue the mes-

sage closedSocket(O, SOCKET, S).

Rewriting a term with external objects in Maude is performed with the erewrite com-

mand (also abbreviated as erew). A more detailed discussion of sockets and support for

external objects in Maude can be found in [20].

2.3 The Orc Theory

Orc [34, 35] is a timed theory for orchestration of services. It provides an expressive and

elegant programming model for describing timed, concurrent computations. A site in Orc

represents a service, which may range in complexity from a simple function to a complex web

search engine, depending on the orchestration problem. A site may also represent the inter-

action with a human being, most commonly within the context of business workflows [76].

A site, when called, may produce, or publish, at most one value. A site may not respond to

a call, either by design or as a result of a communication problem. For example, if CNN is a

site that returns the news page for a given date d, then CNN (d) might not respond because

of a network failure or it may choose to remain silent because of an invalid input value d.

Site calls are strict, i.e., they assume call-by-value semantics.

Being a timed theory, different site calls in Orc may occur at different times. A site call

may be purposefully delayed using the internal site Rtimer(t), which publishes a signal after t

18

E ∈ ExpressionName x ∈ Variable w ∈ Value ∪ {stop}
Orc program ::= ~d ; f

d ∈ Declaration ::= E(~x) , f
f, g ∈ Expression ::= 0 | p(~p) | E(~p)

| f | g | f >x> g | g <x< f | f ; g
p ∈ Parameter ::= x | w

Figure 2.1: Syntax of Orc

time units. Furthermore, responses from calls to external sites may experience unpredictable

delays and communication failures, which could affect whether and when other site calls

are made. Unlike external sites, however, responses from internal sites, such as Rtimer , are

assumed to have completely predictable timed behaviors; for example, Rtimer(t) will publish

a signal in exactly t time units. Orc also assumes a few more internal sites, which are needed

for effective programming in Orc. They are: (1) the if (b) site, which publishes a signal (an

Orc value signal) if b is true and remains silent otherwise, (2) let(~x), which publishes a tuple

of the list of values in ~x, or the value of ~x itself if |~x| = 1, and (3) Clock , which publishes

the current time value.

2.3.1 Syntax of Orc

An Orc expression describes how site calls (and responses) are combined in order to perform

a useful computation. Orc expressions are built up from site calls using four combinators,

which were previously shown in [35] to be capable of expressing a wide variety of timed,

distributed computations succinctly and elegantly1. The abstract syntax of Orc is shown in

Figure 2.1.

We assume a syntactic category Value that contains not only standard Orc values, such as

numeric and boolean values and the signal value, but also site names as a distinguished sub-

category SiteName of values that can be called (i.e., SiteName ⊂ Value). We also assume

a special site response value stop, which may be used to indicate termination of a site call

without necessarily publishing a standard Orc value.

1The otherwise combinator was fairly recently added to Orc. Its syntax and a brief discussion on its
semantics can be found in [77].

19

An Orc program consists of an optional list of declarations, giving names to expressions,

followed by an Orc expression to be executed. An expression can be either: (1) the silent

expression (0), which represents a site that never responds; (2) a parameter or an expression

call having an optional list of actual parameters as arguments; or (3) the composition of two

expressions by one of the following four composition operators:

Symmetric parallel composition, f | g, which models concurrent execution of inde-

pendent threads of computation. For example, CNN (d) | BBC (d), where CNN and BBC

are sites, calls both sites concurrently and may publish up to two values depending on the

publication behavior of the individual sites.

Sequential composition, f >x> g, which executes f , and for every value v ∈ Value

published by f , creates a fresh instance of g, with x bound to v, and runs that instance in

parallel with the current evaluation of f >x> g. For example, if Email(x) is a site that sends

an e-mail message given by x to a fixed address a, then the expression CNN (d) >x> Email(x)

may cause a news page to be sent to a. If CNN (d) does not publish a value, Email(x) is

never invoked. Similarly, the expression (CNN (d) | BBC (d)) >x> Email(x) may result in

sending zero, one, or two messages to a.

Asymmetric parallel composition, f <x< g, which executes f and g concurrently but

terminates g once it has published its first value v ∈ Value, which is then bound to x in f .

For instance, the expression Email(x) <x< (CNN (d) | BBC (d)) sends at most one message,

depending on which site publishes a value first. If neither site publishes a value, the variable

x is not bound to a concrete value and, therefore, the call to Email is never made.

Otherwise composition, f ; g, which attempts to execute f to completion. If f ter-

minates without ever publishing a value v ∈ Value, g is then executed. Otherwise, if f

publishes a value v during its execution, g is ignored. For example, suppose CNN publishes

a stop value when called with invalid date values. Then, if d is a valid date value, the

composition CNN (d) ; Email(err msg) never invokes Email and may publish the news page

from CNN . Otherwise, if d is invalid, an e-mail is sent and the value published by Email is

the value published by the composition.

As can be noted from the informal description above, the execution of an Orc expression

may in general involve several concurrently running threads, and may result in publishing a

20

(time-ordered) stream of values.

A variable x occurs bound in an expression g when g is the right (resp. left) subexpression

of a sequential composition f >x> g (resp. an asymmetric parallel composition g <x< f).

If a variable is not bound in either of the two above ways, it is said to be free. We use the

syntactic sugar f � g (resp. g� f) for sequential composition (resp. asymmetric parallel

composition) when no value passing from f to g takes place, which corresponds to x being

not a free variable in g. To minimize use of parentheses, we assume the following precedence

order: � � | � � � ; , with the otherwise combinator having the least precedence.

2.3.2 Some Small Examples

We now list a few example Orc expressions, borrowed from [35]. Many more examples and

larger programs can be found in [35, 78, 79, 80].

Consider the Orc expression below, which specifies a timeout t on the call to a site M :

let(x) <x< (M() | Rtimer(t) � let(signal))

Upon executing the expression, both sites M and Rtimer are called. If M publishes a value

v before t time units, then v is the value published by the expression. But if M publishes v

in exactly t time unites, then either v or signal is published. Otherwise, signal is published.

Another example is the standard programming idiom of the two-branch conditional if b

then f else g, which can be written in Orc as the expression if (b) � f | if (¬b) � g. Given

the behavior of the internal site if , only one of the expressions f and g is executed, depending

on the truth value of b.

A third example is the following Orc expression declaration, which defines an expression

that recursively publishes a signal every t time units, indefinitely.

Metronome(t) , let(signal) | Rtimer(t) � Metronome(t)

The expression named Metronome can be used to repeatedly initiate an instance of a task

every t time units. For example, the expression Metronome(100) � UpdateLocation() calls

21

on the task of updating the current location of a mobile user every hundred time units.

2.3.3 Operational Semantics of Orc

A structural operational semantics for the instantaneous (untimed) behaviors of Orc was

originally given by Misra and Cook [35]. Figure 2.2 lists an updated set of small-step SOS

rules, based on the original SOS specification, that includes rules for the semantics of the

otherwise combinator and stop site responses. The semantics uses two forms of internal

expressions to represent intermediate transitional steps in the execution of an Orc expression,

namely “!v”, which publishes the value v ∈ Value, and “?h”, with h a handle name, which

is used to uniquely identify an unfinished site call.

The SOS semantics specifies the possible behaviors of an Orc expression as a labeled transi-

tion system with four label schemes corresponding to four types of actions an Orc expression

may take: (1) publishing a value, !v, (2) calling a site, M〈~v, h〉, with h a fresh handle name

uniquely identifying this site call instance, (3) making an unobservable transition, τ , which

may represent an expression call or a substitution event, and (4) consuming a site response,

h?w, with h the handle for the corresponding site call and w ∈ Value∪{stop}. In Figure 2.2,

n ranges over labels for non-publishing events, namely labels of types (2)–(4), while l ranges

over all labels.

Two important refinements to the SOS specifications that are of central relevance to this

work were proposed. First, as discussed by Misra and Cook in [35], the SOS semantics

is highly non-deterministic, allowing internal transitions within an Orc expression (value

publishing, site calls, and τ transitions) and the external interaction with sites in the en-

vironment (through site return events) to be interleaved in any order. This high degree of

non-determinism may be undesirable. For example, in the expression

let(x) <x< Rtimer(1) �N() |M()

which is supposed to give M priority over N , the call to M may actually be delayed in this

semantics, thus defeating the purpose of prioritizing it over the call to N . In order to rule

22

h fresh

M(~v)
M〈~v,h〉
↪−→ ?h

(SiteCall)

?h
h?v
↪−→ !v (SiteRetV)

?h
h?stop
↪−→ 0 (SiteRetN)

!v
!v
↪−→ 0 (Publish)

E(~x) , f ∈ D

E(~p)
τ
↪−→ [~p/~x]f

(Def)

f
!v
↪−→ f ′

f ; g
!v
↪−→ f ′

(OtherV)

f
n
↪−→ f ′

f ; g
n
↪−→ f ′ ; g

(OtherN)

f
l

↪−→ f ′

f | g l
↪−→ f ′ | g

(Sym)

f
!v
↪−→ f ′

f >x> g
τ
↪−→ (f ′ >x> g) | [v/x]g

(Seq1V)

f
n
↪−→ f ′

f >x> g
n
↪−→ f ′ >x> g

(Seq1N)

f
!v
↪−→ f ′

g <x< f
τ
↪−→ [v/x]g

(Asym1V)

f
n
↪−→ f ′

g <x< f
n
↪−→ g <x< f ′

(Asym1N)

g
l

↪−→ g′

g <x< f
l

↪−→ g′ <x< f
(Asym2)

Figure 2.2: Instantaneous, asynchronous structural operational semantics of Orc

out such undesirable behaviors, a synchronous semantics was proposed in [35] by placing

further constraints on the application of SOS semantic rules. The synchronous semantics

was arrived at by distinguishing between internal and external events, and splitting the

SOS transition relation ↪→ into two sub-relations ↪→R, and ↪→A, and characterizing set-

theoretically, the complementary subsets of expressions (quiescent vs. non-quiescent) to

which they are respectively applied. In previous work [52], we have presented two different

approaches, namely strategy expressions and equational conditions, in which this splitting

into ↪→R and ↪→A can be faithfully captured in a rewriting logic semantics of Orc by enforcing

an execution strategy that gives transitions corresponding to internal actions precedence over

the external site return action. In Section 3.1.2 of Chapter 3, we describe a third, typed

approach, based on sorts and subsorts, that is both more elegant and, in practice, more

efficiently executable than the two previous approaches just mentioned.

A second refinement of the Orc SOS, by Wehrman et. al [81], endowed the original SOS

specification with timing semantics in a way similar to timed process algebras [14]. This

was achieved mainly by refining the SOS transition relation into a relation on time-shifted

Orc expressions and timed labels of the form (l, t), where t is the amount of time taken by a

23

(f | g) | h = f | (g | h) (2.2)

f | g = g | f (2.3)

f | 0 = f (2.4)

(f ; g) ; h = f ; (g ; h) (2.5)

f ; 0 = 0 ; f = f (2.6)

0 >x> f = 0 (2.7)

f <x< 0 = [stop/x]f (2.8)

!v ; f = !v (2.9)

M(~p) = 0 if stop ∈ ~p (2.10)

w(~p) = 0 if w /∈ SiteName (2.11)

! stop = 0 (2.12)

Figure 2.3: Some algebraic properties of Orc expressions

transition. In this extended relation, a transition step of the form f
(l,t)

↪−→ f ′ states that f may

take an action l to evolve to f ′ in time t, and, if t 6= 0, no other transition could have taken

place during the t time period. To properly reflect the effects of time elapse, parts of the

expression f may also have to be time-shifted by t. However, for simplicity of presentation,

the semantics described in [81], abstracted away the non-publishing events as unobservable

transitions and considered only the asynchronous semantics of Orc. Sections 3.2 and 3.3

present a rewriting logic approach to capturing timed behaviors of Orc expressions, which

also takes into account the synchronous semantics of Orc as described above.

2.3.4 Some Algebraic Properties

Orc was shown to posses several desirable structural properties, either using bisimulations

based on the original and timed SOS semantics [82, 83], or, alternatively, using graph iso-

morphisms in a tree-based denotational semantics [84]. We focus our attention here on the

subset of these algebraic properties shown in Figure 2.3. Our choice of this subset is mo-

tivated by the fact that the equations (2.7)–(2.12) are confluent and terminating modulo

the axioms (2.2)–(2.6), so that equality under (2.2)–(2.12) becomes decidable by rewriting.

Furthermore, since a rewrite theoryR = (Σ, E,R) has both rules R and equations E, so that

states are equivalence classes modulo E, we can obtain a more abstract and more efficient

rewriting logic semantics of Orc by adding equations (2.2)–(2.12) to the set E of equations

in the rewrite theory R axiomatizing Orc.

Associativity, commutativity and identity axioms for symmetric parallel composition were

24

proved in [82, 83, 84]. Associativity and right identity axioms of the otherwise combinator

can also be proved by strong bisimulation (see Appendix A), and its left identity is assumed

as a structural equivalence rule that is required to achieve its intended semantics. Proofs of

the identities (2.7) and (2.10)–(2.12) are trivial, since both sides of these identities have no

behavioral transitions, and are, thus, strongly bisimilar. The remaining two laws, namely

(2.8) and (2.9), are also easy to show, and their proofs are given in Appendix A.

Other algebraic properties of Orc expressions, which were shown in [82, 83, 84], are not

suitable for algebraic simplification purposes because, when viewed as equations, they either

fail to satisfy executability requirements, such as confluence and/or coherence with the Orc

semantic rules, or they do not necessarily compute simpler normal forms. In particular,

algebraic laws shown using weak bisimulations that ignore τ transitions, such as the law

f >x> let(x) = f [83], may break coherence of the semantic rules when used as equational

properties, since they may cause an Orc expression to miss some behavioral transitions.

Other identities may result in equations that are not confluent, such as the restricted left

associativity law of sequential composition [82, 83], where FV (h) computes the set of free

variables in h:

f >x> (g >y> h) = (f >x> g) >y> h if x /∈ FV (h)

(consider for example the term f1 >x> (f2 >y> (f3 >z> f4)), with x /∈ FV (f3)∪FV (f4) and

y /∈ FV (f4)). Finally, some identities, when used as oriented equations, may compute normal

forms that are not necessarily structurally simpler than the original expressions, such as, for

example, the law of distributivity of parallel composition over sequential composition [82, 83]:

(f | g) >x> h = f >x> g | g >x> h. Such equations add extraneous “simplification” steps

that may adversely affect execution performance without actually arriving at simpler normal

forms. We prove in Sections 3.2.4 and 3.3.4 that the identities listed in Figure 2.3 satisfy all

the desirable executability requirements when used as equations in both the SOS-based and

the reduction rewriting semantics specifications of Orc.

25

CHAPTER 3

REWRITING SEMANTICS OF ORC

Orc is a language for orchestration of services that offers simple, yet powerful and ele-

gant, constructs to program sophisticated orchestration applications. Despite its simplicity,

developing an efficiently executable formal semantics of Orc poses interesting challenges,

including, most importantly, its real-time nature and the urgency of internal actions over

external actions. The rewriting logic semantics of Orc described in this chapter captures the

real-time, synchronous semantics of Orc, and is based on the operational semantics of Orc by

Misra and Cook [35] and Orc’s algebraic properties, as described in Section 2.3 of Chapter 2.

We begin by describing the specification of the two variants of the rewriting semantics of

Orc: the SOS-based rewriting semantics Rsos
Orc and the reduction rewriting semantics Rred

Orc.

3.1 The Semantic Infrastructure

The different styles of the rewriting logic semantics of Orc share a common infrastructure,

which can be specified as a sub-theory RΩ ⊂ Rsos
Orc and RΩ ⊂ Rred

Orc describing the structures

for the semantic entities and the common behaviors that are needed for a complete specifica-

tion of Orc’s Semantics. We, therefore, begin by describing the most important components

of RΩ, on which all later developments are based.

3.1.1 Parameters and Substitution

We assume a sort Var for Orc variables. To account for substitution of variables with

other parameters, we use the CINNI calculus of explicit substitution [85]. This is consistent

with our choice of a first-order representation of Orc in rewriting logic and does not im-

26

ParamList

ResValueList Param

ValueList ResValue IVar

Value SpecialValue

SiteName OrcValue

Figure 3.1: Parameter subsort structure

pair readability, since the CINNI notation is just a slight refinement of the usual textbook

notation for higher-order syntax with explicit names. Therefore, in instantiating CINNI to

Orc, we introduce indexed variables, captured by the sort IVar and declared with syntax:

{ } : Var Nat → IVar, with Nat the sort of natural numbers. An indexed variable repre-

sents either a free or a bound occurrence of a variable (as opposed to non-indexed names

of variables in binding operators, which are captured by the sort Var). The index of an

indexed variable name indicates the level at which the variable may be bound. For example,

in the specialization of CINNI to Orc, the standard representation of the Orc expression

f(x) >x> g(x) in CINNI is f(x0) >x> g(x0), where the index 0 means that the variable

represented by x0 may be bound by the closest binding instance of x, if available, i.e., since

x in f >x> g binds the occurrences of x in g, x is free in f but bound in g. This is in contrast

to, for example, the representation f(x0) >x> g(x1), in which both instances of x occur free

in the expression.

In addition, we assume a sort Param for Orc parameters, which, according to Orc’s syntax

in Figure 2.1, are either (indexed) variables of the sort IVar or site response values (including

the special value stop) of the sort ResValue. Furthermore, response values other than stop

are identified as either standard data types, such as integers and booleans, of the sort

OrcValue, or as site names of the sort SiteName, which are values representing sites that can

also be called. This classification of parameters is crucial to the semantics and is neatly

captured by the subsorted structure illustrated in Figure 3.1. In this figure, a separate sort

SpecialValue is used to represent the stop value, and three list super-sorts are declared.

27

[p/x] ↑x ⇑xα

x{0} p x{1} x{0}
x{1} x{0} x{2} ↑x (α (x{0}))

...
...

...
...

x{n} x{n− 1} x{n+ 1} ↑x (α (x{n− 1}))
y{n} y{n} y{n} ↑x (α (y{n}))

Table 3.1: The effects of applying CINNI’s explicit substitution operators to indexed
variables

The sort Subst is the sort of substitutions, which, according to the CINNI calculus of

explicit substitutions [85], may have one of three forms: (1) the simple substitution [p/x],

which accounts for substituting a parameter for a free variable (assuming no free variable

capture), (2) the shift-up substitution ↑x , having the effect of substituting fresh variable

names for free variables, and (3) the lift substitution ⇑xα , which represents a more general

substitution that avoids capturing free instances of x while applying the substitution α.

Table 3.1 illustrates the effects of these substitutions on indexed variables, where we assume

that x 6= y and α is a meta-variable ranging over terms of sort Subst. A more detailed

discussion of the CINNI calculus can be found in [85].

3.1.2 Orc Expressions

The set of Orc expressions that can be constructed from the syntax of Figure 2.1, in addition

to the internal publishing and handle expressions of the forms !w and ?h, is represented by a

sort Expr, which is subsorted into the (singleton) zero expression subsort ZExpr, containing

only 0 (which is declared as 0 :→ ZExpr), and the subsort of non-zero expressions, NZExpr.

This distinction between 0 and other expression will simplify the specification and will help

achieve a more efficiently executable semantics, as we will see later.

In the synchronous semantics of Orc, the contrast between internal actions (publishing

of values, site calls, and τ transitions) and the external action of a site return induces

a corresponding distinction between expressions that can make an internal transition and

others that cannot. To capture the synchronous semantics, we make this distinction explicit

in the type structure by introducing the notions of active and inactive Orc expressions.

28

Expr

NZExpr ZExpr

AExpr IExpr

Figure 3.2: The subsort structure of Orc expressions

Intuitively, an expression is active if it contains as a sub-expression a value publishing, a

site call, or an expression call sub-expression that is enabled, and is inactive otherwise. This

notion is made more precise in the following definition.

Definition 1 (Active and inactive Orc expressions). The set of active expressions Fa is the

smallest set generated by the following rules:

1. M(~v), E(~p), and !v are in Fa.

2. If f ∈ Fa, then f >x> g ∈ Fa and f ; g ∈ Fa .

3. If f ∈ Fa or g ∈ Fa, then f | g ∈ Fa and g <x< f ∈ Fa.

A non-zero expression f is called active if f ∈ Fa; otherwise, f is inactive.

Note that this notion of active expressions corresponds exactly to that of non-quiescent

expressions in [35] (see Section 3.2.3 there). This notion can be elegantly captured in the

type structure of the rewriting semantics by further subsorting NZExpr into two subsorts:

AExpr, for active expressions, and IExpr for inactive expressions. The subsorting structure

of Orc expressions is shown in Figure 3.2.

Since any non-zero Orc expression must either be active or inactive (and cannot be both),

the subsorts must partition the sort NZExpr. This is achieved by a combination of subsort-

overloaded function symbol declarations for Orc’s syntax, along with appropriate equational

axioms and frozenness information, and a few simple membership axioms based on Defini-

tion 1, as we explain below.

Basic Orc expressions. An expression call E(~p), which is always active, has a corre-

sponding declaration of the form () : ExprName×ParamList→ AExpr, whereas a parameter

29

call expression p(~p), which has the general declaration () : Param× ParamList→ Expr, is

active if and only if p is a site name M ∈ SiteName and ~p is a list of values ~v ∈ ValueList,

and hence we have the following subsort-overloaded declaration

() : SiteName× ValueList→ AExpr

which precisely characterizes active parameter calls. For Inactive calls, which are calls that

fail to satisfy the condition above (and are not semantically equivalent to 0), a third decla-

ration () : IVar × ValueList→ IExpr and two membership predicates

M(~p) : IExpr if ~p /∈ ValueList ∧ stop /∈ ~p

x(~p) : IExpr if ~p /∈ ValueList ∧ stop /∈ ~p

capture precisely when a parameter call is inactive. Given the parameter subsort structure

in Figure 3.1, this declaration and the two membership predicates define inactive parameter

calls as those in which either: (1) the called parameter is a site name and the list of arguments

contains at least one variable and no stop values, or (2) the called parameter is a variable

and the argument list may contain variables or non-stop values. Note that by identities

(2.10) and (2.11) in the structural equivalence properties of Figure 2.3, the other cases, in

which the called parameter is a value or the argument list contains a stop value, are all

semantically equivalent to 0, and are, therefore, of the sort ZExpr.

The other basic expressions, comprising handle expressions ?h and publishing expressions

!p are similarly specified. In particular, handle expressions ?h are always inactive and are

simply specified by the declaration ? : Handle → IExpr. Publishing expressions !p, which

are active when p ∈ Value and inactive when p ∈ IVar, are specified by the following subsort-

overloaded family of declarations:

! : Param→ Expr ! : Value→ AExpr ! : IVar→ IExpr

Note that the third case, when p is stop, is equivalent to 0, according to identity (2.12) in

30

Figure 2.3, and is, therefore, of the sort ZExpr.

Composed Orc expressions. To complete the specification of active and inactive

expressions, function symbol declarations for the four Orc combinators are also subsort-

overloaded according to Definition 1. Specifically, the symmetric parallel composition combi-

nator, which has associativity, commutativity and 0 as its identity all specified as equational

axioms, has the following subsort-overloaded family of declarations:

| : Expr × Expr→ Expr [assoc comm id : 0]

| : AExpr × Expr→ AExpr [ditto]

| : IExpr × IExpr→ IExpr [ditto]

which precisely define when a symmetric parallel composition is active or inactive, according

to Definition 1. Similarly, the following declarations specify the sequential composition

operator:

> > : Expr × Var × Expr→ Expr [frozen(3)]

> > : AExpr × Var × Expr→ AExpr [ditto]

> > : IExpr × Var × Expr→ IExpr [ditto]

Since the right subexpression of a sequential composition has no behavioral transitions,

the sequential combinator symbol is declared frozen on its third argument; i.e., we define

φ(> >) = {3}, so that no rewriting is allowed on the third argument. The declarations

state that a sequential composition is active (resp. inactive) if and only if its left subex-

pression is active (resp. inactive). The operator declarations for the asymmetric parallel

combinator are similar to those of symmetric composition:

< < : Expr × Expr→ Expr < < : Expr × AExpr→ AExpr

< < : IExpr × IExpr→ IExpr < < : AExpr × Expr→ AExpr

Function symbol declarations for the otherwise combinator are similar, except that the

31

α(0) = 0

α(?h) =?h

α(p(~p)) = (α p)(α ~p)

α(E(~p)) = E(α ~p)

α(!p) = !(α p)

α(f >x> g) = (α f) >x> (⇑xα g)

α(f | g) = (α f) | (α g)

α(f <x< g) = (⇑xα f) <x< (α g)

α(f ; g) = (α f) ; (α g)

Figure 3.3: CINNI Substitutions on Orc expressions

symbol is declared associative with the identity 0, and frozen on its second argument:

; : Expr × Expr→ Expr [frozen(2) id : 0]

; : AExpr × Expr→ AExpr [ditto]

; : IExpr × Expr→ IExpr [ditto]

Substitution. To complete the specification of Orc’s instance of the CINNI calculus,

substitution is extended from Orc parameters to Orc expressions. In general, a CINNI

substitution α is extended to language expressions by adding, for each syntactic constructor

f of arity n in the language, an equation of the form (with ⇑x α a lift substitution):

α f(P1, . . . , Pn) = f(⇑Pj1,1
. . . ⇑Pj1,m1

α P1, . . . ,⇑Pjn,1
. . . ⇑Pjn,mn

α Pn) (3.1)

where each Pi is an expression in the language, and Pji,1, . . . , Pji,mi
are the variable argu-

ments that f binds in the ith expression argument Pi. In the case of Orc, the substitutions

are defined using the equations shown in Figure 3.3, which are instances of the equation

3.1 above. Intuitively, when a substitution is applied to an expression, the substitution is

propagated down the expression tree while keeping track of bound variable instances, so that

the substitution can be correctly performed with no free variable capture.

Algebraic properties. To fully account for the algebraic properties of Orc expressions,

the semantic infrastructure includes equations that correspond to the algebraic identities

(2.7)–(2.12) in Figure 2.3. As mentioned above, identities (2.2)–(2.6) are specified as equa-

tional axioms of the respective Orc combinators, declared by the assoc, comm and id at-

32

tributes in their operators’ declarations.

3.1.3 Orc Configurations

Following the strongly bisimilar MSOS-to-rewriting logic transformation of [86], a state in

the execution of an Orc program is defined by an Orc configuration, which is a pair 〈f, r〉,

where f is the Orc expression to be executed and r is a record structure consisting of fields of

the form ai : ui, with ai the field index and ui its value. The fields of the record r hold state

information required for the semantics of f . In the Orc semantics, five fields are used: (1)

a label field lbl : l, (2) an environment for expression names env : σ, (3) a pool of pending

messages msg : ρ, (4) a set of currently used handle names hdl : η, and (5) a clock clk : t. A

more detailed description of these semantic fields follows.

Clock. Time is abstracted by the sort Time, which is specified as a totally ordered set

with a least element zero. A supersort TimeInf of Time also includes ∞ as a top element,

which is useful for specifying the proper timed semantics of Orc. An instantiation of the

sort TimeInf can, therefore, be either discrete or dense. In our specifications we assume a

dense time domain implemented by the non-negative rationals and maintained by the clock

field in a configuration.

Environment. Since expressions may be referred to by their expression names, an en-

vironment σ is maintained by the configuration to resolve references to such names. An

environment, a term of sort Env, is defined as a set of declarations, which are terms of sort

Decl, with Decl < Env, formed with an associative and commutative multiset union operator

, , with the empty set as its identity element. Initially, an environment is created out of the

declaration list ~d of an Orc program ~d ; f so that the following conditions hold: (1) a later

declaration in the list hides all previous declarations with the same expression name; and

(2) all declarations in the resulting environment are visible to each other. This implies that

an expression name has a unique defining declaration in an environment, and that (mutual)

recursion is directly available.

Handles. A handle is a name of sort Handle that uniquely identifies a pending site call,

which is a call waiting for a response from the environment. Since, by the SiteCall rule of

33

Figure 2.2, fresh handle names need to be generated, a configuration maintains in its handles

field a set η of currently used handles against which new names may be created. Sets of

handles, of sort HandleSet, are constructed by an associative, commutative comma-denoted

union operator, with the empty set of handles as its identity element.

Messages. To simulate interactions of an Orc expression with its environment, we main-

tain in an Orc configuration a message pool (MsgPool) as a multiset of messages, constructed

by the empty juxtaposition operator with the empty set as the identity element. A message,

which is a term of the sort Msg, is either a site call message or a site return message. A site

call message is of the form [M,~v, h], with M the name of the called site, ~v the list of actual

parameters of the call, and h the handle name identifying the site call. Since in the SOS

semantics the environment is treated as a “black box”, which is reasonable, since responses

from external sites are unpredictable, we need to simulate environment responses to obtain

an executable Orc semantics. This is achieved by equationally converting site call messages

into potential site return messages of the form [app(M,~v, t), h], which represents a potential

response back to the Orc expression for the call identified by h. The operator app, which is

of sort PreValue, a supersort of ResValue, serves two purposes. First, it provides a uniform

and abstract means by which the response of a particular site M can be modularly defined.

Second, it may optionally associate a (possibly random) delay, given by t, to responses of

external sites. The operational meaning is that a well-formed response is not generated until

the delay reaches the value zero. Once the delay is zero (and assuming the external site was

known to the environment), the term app(M,~v, 0) is evaluated according to the value of M

to an actual response value w (a ground term of sort ResValue), and the message becomes a

site return message of the form [w, h]. Only then, the site response is ready to be consumed

by the Orc expression.

Labels. The label field keeps track of the last event generated as a result of a configuration

evolving into another, which is needed in the SOS semantics for inferring one-step transitions.

To represent the four labels in the SOS rules in Figure 2.2, we define a sort Label, and declare

34

four operators of this sort:

〈 , 〉 : SiteName× ValueList× Handle→ Label τ :→ Label

? : Handle× Value→ Label ! : Value→ Label

The label constructors above have syntax that is identical to that of the labels in the SOS

specification. We also introduce a special constant ε :→ Label to represent absence of a label.

Therefore, given an Orc program ~d ; f , its initial configuration, which can be constructed

by an operator [] : Program→ Config, is of the form:

〈f, lbl : ε | env : init(~d) | msg : ∅ | hdl : ∅ | clk : 0〉

where init is a function that initializes an environment structure from a list of declarations

~d according to the description given above.

Additionally, as part of the semantic infrastructure, we define two notions about Orc

configurations (borrowed from Real-Time Maude (RTM) [69]) that will be useful for defining

the timed behaviors of Orc for both the SOS-based and the reduction rewriting semantics.

The first is the notion of eager configurations, which are configurations that can make an

instantaneous (internal or external) transition, i.e., configurations of the form 〈f, r〉 where

either f is active or r has a pending site response that can be consumed. This notion is

made more precise in the following definition, where f̂ ranges over active Orc expressions

and f̄ over inactive expressions.

Definition 2 (Eager Orc configuration). An Orc configuration C is eager if C is of one of

the following forms: (i) 〈f̂ , r〉; or (ii) 〈f̄ ,msg : ρ[w, h] | r〉 with h a handle in f̄ .

This notion is easily captured by a (partial) predicate eager : Config → [Bool] that evalu-

ates to true if and only if the given configuration is eager using two equations corresponding

to cases (i) and (ii) in Definition 2 above. The second notion is that of the maximal time

elapse (or mte) of an Orc configuration, which specifies the maximum time shift until the

next point in time when an instantaneous event (corresponding to the evaluation of an Orc

expression as opposed to just advancing time on the configuration) may be enabled.

35

Definition 3 (mte of an Orc configuration). The maximum time elapse (mte) of an Orc

configuration 〈f, msg : ρ | r〉 is the minimum time delay across all messages in ρ if ρ is

non-empty, and is ∞ otherwise.

The time shift needed to advance the clock of an Orc configuration to the next point

in time when an instantaneous action becomes enabled is determined by a function mte :

Config→ TimeInf, which is defined equationally according to the definition above.

3.2 The SOS-based Rewriting Semantics Rsos
Orc

We now present a rewriting logic semantics of Orc that is based directly on the SOS semantics

of Orc of Section 2.3.3. The rewriting logic semantics is obtained by mapping the SOS rules

in Figure 2.2 into a corresponding rewrite theory Rsos
Orc = (Σs, Es ∪ As, Rs, φs) according

to Meseguer and Braga’s semantics-preserving transformation from Modular SOS [86] to

rewriting logic. An initial version of the SOS-based rewriting semantics of Orc appeared

in [52], where we described two different ways of capturing Orc’s synchronous semantics: (1)

strategy expressions, and (2) additional equational conditions. The semantics in [52] also

captured timed behaviors in Orc, although timing, as specified there, was limited to discrete

time domains, such as the natural numbers.

Since the initial version in [52], the rewriting semantics of Orc given byRsos
Orc has been thor-

oughly refined and extended to achieve a more complete, elegant, and efficiently executable

specification. First, using order-sorted structures for Orc values, a concise representation

of the new otherwise combinator and its semantics has been achieved. Moreover, order-

sorted declarations for Orc expressions and action labels, and membership equations enable

a simpler and more elegant specification of instantaneous actions that can be executed and

analyzed more efficiently than with just the many-sorted specifications used before. Fur-

thermore, the semantics is now capable of handling dense time domains, using ideas from

real-time rewrite theories [64] and Real-Time Maude [69], with implementations in both

(Core) Maude and Real-Time Maude.

Therefore, in summary, the semantics Rsos
Orc we present here is characterized primarily by

36

being:

1. comprehensive, as it captures all the essential features of Orc, including, most notably,

urgency of internal actions and timed behaviors,

2. provably correct with respect to the semantics in [35], since its instantaneous part fol-

lows almost immediately from the SOS semantics and exploits the strong bisimulation

meta-theorem between MSOS and rewriting logic specifications in [87],

3. executable, so that one may simulate Orc programs and observe their possible behav-

iors, and

4. formally analyzable using exhaustive verification methods, such as breadth-first search

and model checking.

The rewriting semantics Rsos
Orc builds on the semantic infrastructure discussed in Sec-

tion 3.1, i.e., Rsos
Orc ⊃ RΩ. Below, we describe how Rsos

Orc captures the timed, synchronous

semantics of Orc expressions, and discuss some of its important properties.

3.2.1 Instantaneous Rewriting Semantics Rules

Since, by rewriting logic’s transitivity inference rule, a rewrite computation t −→ t′ may

involve a sequence of one-step rewrites t −→ t1 −→ t2 −→ . . . −→ tn −→ t′, we need to

restrict rewrites of Orc configurations to be exactly one-step rewrites, corresponding to the

single-step SOS behavior, as explained in [87]. For this purpose, we employ the SOS one-step

modifier technique of [86, 62], in which two operators are declared: (1) a (frozen) prefix dot

operator · : Config → Config, and (2) a non-frozen operator smallstep : Config → Config.

By defining the rewrite rules that correspond to the SOS rules in Figure 2.2 in the following

format

·〈f, r〉 → 〈f ′, r′〉 if
n∧
i=1

·〈fi, ri〉 → 〈f ′i , r′i〉 ∧ C

with C an equational condition, we effectively restrict rewriting to single steps using the

equation:

smallstep(〈f, lbl : l | r〉) = smallstep(·〈f, lbl : ε | r〉)

37

SiteCall : ·〈M(~v), lbl : l | msg : ρ | hdl : η | r〉
→ 〈?h, lbl : M〈~v, h〉 | msg : ρ[M,~v, h] | hdl : η, h | r〉 if h := fresh(η)

SiteRetV : ·〈?h, lbl : l | msg : ρ[v, h] | hdl : η, h | r〉 → 〈!v, lbl : h?v | msg : ρ | hdl : η | r〉

SiteRetN : ·〈?h, lbl : l | msg : ρ[stop, h] | hdl : η, h | r〉
→ 〈0, lbl : h?stop | msg : ρ | hdl : η | r〉

Publish : ·〈!v, lbl : l | r〉 → 〈0, lbl : !v | r〉

Def : ·〈E(~p), lbl : l | env : σ,E(~x) , f | r〉 → 〈[~p/~x]f, lbl : τ | env : σ,E(~x) , f | r〉

Figure 3.4: Rewrite rules in Rsos
Orc for basic expressions

where the label field is reset in preparation for the next transition step, which is enabled by

the newly introduced prefix dot.

The rewrite rules inRsos
Orc that specify the semantics of the basic Orc expressions are shown

in Figure 3.4. The rules precisely match the correspondingly labeled SOS rules in Figure 2.2.

When executing a site call, according to the site call rewrite rule, the call expression is

replaced by the handle expression (?h), where h is a fresh handle name generated by a

function fresh with respect to the currently used set of handle names η, using a matching

equation in the condition (see [88], Section 4.3). Furthermore, the rule emits a message

targeted to M into the message pool, adds a site call event label, and updates the handles

set. When a site response that corresponds to the call with handle h appears in the message

pool, one of the site return rules applies, depending on whether the response is the stop

value or not. In both cases, the site return rules replace the handle expression with the

appropriate Orc expression, add a site return event label, remove the message from the pool,

and update the set of handles. The rules for publishing expressions and expression calls are

very similar to their counterparts in the SOS specification.

Figure 3.5 lists the rewrite rules in Rsos
Orc that specify the synchronous, instantaneous se-

mantics of the Orc combinators. In the figure, we let f̂ , ĝ range over active expressions (of

the sort AExpr), f̄ , ḡ over inactive expressions (IExpr), and f̃ , g̃ over non-zero expressions

38

(NZExpr). We also let i denote an internal action label (i.e., a non-site-return label), and n

a non-publishing internal action label (i.e., a site call or a τ label). An important distinction

between the rewrite rules in Rsos
Orc and the SOS rules in Section 2.3.3, is that the former

capture the synchronous semantics of Orc expressions whereas the rules in Section 2.3.3

describe the unrestricted asynchronous semantics. This explains the larger number of rules

in Figure 3.5 compared to those in Figure 2.2. Indeed, for each rule in the SOS rules for

Orc’s combinators in Figure 2.2, there are one or more rewrite rules in Rsos
Orc that correspond

to it. For example, The SOS rule Sym for symmetric parallel composition has two corre-

sponding rewrite rules in Rsos
Orc, one capturing internal actions for active expressions (SymI),

while the other deals with inactive expressions consuming site returns (SymE). Since the

symmetric combinator is commutative with identity 0, the two rewrite rules fully specify

the synchronous semantics of parallel composition. Similar observations also apply to the

remaining rewrite rules in Figure 3.5.

3.2.2 The Tick Rule

Following the standard approach for specifying time in rewriting semantic definitions of

real-time systems [64] – using either regular or real-time rewrite theories, the theory Rsos
Orc

includes a time tick rewrite rule to capture the timed semantics of Orc, in addition to the

instantaneous rewrite rules in Figure 3.4 and Figure 3.5. The tick rule in Rsos
Orc is a one-step

rule defined as follows (with t′ of the sort Time):

Tick : ·〈f, clk : t | r〉 → 〈f ′, clk : t+ t′ | δ(r, t′)〉

if eager(〈f, clk : t | r〉) 6= true ∧ t′ := mte(r) ∧ t′ 6= 0

Note that the variable t′ only appears in the righthand side. The value of t′ is determined,

by the matching equation t′ := mte(r) in the condition, to be the maximum time elapse (see

Definition 3). The function δ propagates the effect of a clock tick t′ down the record structure

of a configuration (somewhat similar to time-shifting in [81]). It essentially updates delays

of messages in the message pool, which makes response messages from site calls become

39

SymI : ·〈f̂ | g̃, lbl : l | r〉 → 〈f ′ | g̃, lbl : i | r′〉 if ·〈f̂ , lbl : ε | r〉 → 〈f ′, lbl : i | r′〉

SymE : ·〈f̄ | ḡ, lbl : l | r〉 → 〈f ′ | ḡ, lbl : h?w | r′〉 if ·〈f̄ , lbl : ε | r〉 → 〈f ′, lbl : h?w | r′〉

Seq1V : ·〈f̂ >x> g, lbl : l | r〉 → 〈(f ′ >x> g) | [v/x]g, lbl : τ | r′〉
if ·〈f̂ , lbl : ε | r〉 → 〈f ′, lbl : !v | r′〉

Seq1NI : ·〈f̂ >x> g, lbl : l | r〉 → 〈f ′ >x> g, lbl : n | r′〉 if ·〈f̂ , lbl : ε | r〉 → 〈f ′, lbl : n | r′〉

Seq1NE : ·〈f̄ >x> g, lbl : l | r〉 → 〈f ′ >x> g, lbl : h?w | r′〉
if ·〈f̄ , lbl : ε | r〉 → 〈f ′, lbl : h?w | r′〉

Asym1V : ·〈g <x< f̂ , lbl : l | r〉 → 〈[v/x]g, lbl : τ | r′〉 if ·〈f̂ , lbl : ε | r〉 → 〈f ′, lbl : !v | r′〉

Asym1NI : ·〈g <x< f̂ , lbl : l | r〉 → 〈g <x< f ′, lbl : n | r′〉 if ·〈f̂ , lbl : ε | r〉 → 〈f ′, lbl : n | r′〉

Asym1NEa : ·〈ḡ <x< f̄ , lbl : l | r〉 → 〈ḡ <x< f ′, lbl : h?w | r′〉
if ·〈f̄ , lbl : ε | r〉 → 〈f ′, lbl : h?w | r′〉

Asym1NEb : ·〈0 <x< f̄ , lbl : l | r〉 → 〈0 <x< f ′, lbl : h?w | r′〉
if ·〈f̄ , lbl : ε | r〉 → 〈f ′, lbl : h?w | r′〉

Asym2I : ·〈ĝ <x< f̃ , lbl : l | r〉 → 〈g′ <x< f̃ , lbl : i | r′〉 if ·〈ĝ, lbl : ε | r〉 → 〈g′, lbl : i | r′〉

Asym2E : ·〈ḡ <x< f̄ , lbl : l | r〉 → 〈g′ <x< f̄ , lbl : h?w | r′〉
if ·〈ḡ, lbl : ε | r〉 → 〈g′, lbl : h?w | r′〉

OtherV : ·〈f̂ ; g̃, lbl : l | r〉 → 〈f ′, lbl : !v | r′〉 if ·〈f̂ , lbl : ε | r〉 → 〈f ′, lbl : !v | r′〉

OtherNI : ·〈f̂ ; g̃, lbl : l | r〉 → 〈f ′ ; g̃, lbl : n | r′〉 if ·〈f̂ , lbl : ε | r〉 → 〈f ′, lbl : n | r′〉

OtherNE : ·〈f̄ ; g̃, lbl : l | r〉 → 〈f ′ ; g̃, lbl : h?w | r′〉 if ·〈f̄ , lbl : ε | r〉 → 〈f ′, lbl : h?w | r′〉

Figure 3.5: Rewrite rules in Rsos
Orc for the combinators

40

eventually available.

Ticking the clock and updating the record structure accordingly are not enough for the

proper timed semantics of Orc, because if not appropriately controlled, new undesirable

behaviors may be introduced, such as advancing time indefinitely or beyond a point when

an instantaneous action was enabled (and, in effect, missing that action). This is avoided by

defining a maximal, time-synchronous execution semantics, in which an Orc configuration

with no enabled instantaneous actions is allowed to advance its clock all the way up to the

next point in time when an instantaneous action will be enabled1. This restriction is formally

specified by making the tick rule conditional on: (1) the configuration not being eager, i.e.,

being incapable of making an instantaneous transition as defined by the eager predicate, and

(2) the time shift t′ being equal to the maximal time elapse of the configuration, as defined

by the mte function, which must be non-zero (see Section 3.1.3 for definitions of eagerness

and maximal time elapse of configurations). These conditions ensure that time is advanced

as much as possible in every application of the tick rule, but only enough so as to be able

to capture all events of interest.

3.2.3 Correctness of Rsos
Orc

The original SOS transition relation ↪→ proposed in [35] (a variant of which was shown in

Figure 2.2) and it’s refinement, also in [35], into two sub-relations ↪→R and ↪→A for quiescent

and non-quiescent Orc expressions, respectively, defined the synchronous semantics of the

instantaneous actions in Orc. Although a non-trivial timed extension of the original SOS

specification was later proposed in [81], the extension did not consider the synchronous

semantics, and abstracted non-publishing actions as unobservable actions for simplicity of

presentation. We, therefore, show correctness of the rewriting semantics given by Rsos
Orc with

respect to the SOS semantics in [35] by comparing the transition systems defined by the

refined SOS relation ↪→R ∪ ↪→A and the instantaneous part of the rewrite theory Rsos
Orc,

1For the analysis to be mechanizable, we also assume Orc programs with “non-Zeno” behaviors [75], such
that only a finite number of instantaneous transitions are possible within any finite period of time.

41

namely, the theory Rsos
Orc without the Tick rule.2

First, a simple lemma relating the notions of non-quiescent expressions in [35] and active

expressions as defined in Section 3.1.2.

Lemma 1. f is non-quiescent (resp. quiescent) iff f is active (resp. inactive).

Proof. Straightforward by structural induction on f .

We denote by Rsos
Orc ` t →1

I t
′ a single rewrite step obtained by an application of an

instantaneous (non-tick) rewrite rule, i.e., a rule I ∈ Rs − {Tick}. Correctness of Rsos
Orc is

expressed by the following theorem.

Theorem 1 (Correctness of Rsos
Orc). For any two Orc expressions f and f ′, and for X ∈

{A,R},

f ↪→X f ′ ⇐⇒ Rsos
Orc ` smallstep(·〈f, lbl : l | r〉)→1

I smallstep(〈f ′, lbl : lX | r′)

with lA an internal action label and lR a site return action label.

Proof. The proof follows trivially by construction of Rsos
Orc, based on the correctness of the

MSOS-to-rewriting logic transformation methodology, given by the strong bisimulation the-

orem (Theorem 1) in [87], and from Lemma 1.

3.2.4 Executability Properties of Rsos
Orc

As we show in this section, the specification of the theory Rsos
Orc is not only correct with

respect to Orc’s synchronous semantics but also satisfies some desirable admissibility and

executability properties that make it computable and amenable to sound and complete

formal analysis and verification. In particular, the signature Σs is As-preregular [20] and

the equations Es and the rules Rs are deterministic. Furthermore, the equations Es are

operationally terminating, confluent, and sort-decreasing modulo the axioms As, and the

2Further refining the timed semantics in [81] to capture Orc’s synchronous semantics within the SOS
framework, and investigating its relationship to the rewriting semantics Rsos

Orc is an interesting direction for
future work.

42

rules Rs are coherent with Es. As a result, the specificationRsos
Orc, through its implementation

in Maude as the system module named SOS-ORC, can be executed and formally analyzed.

Since the current Maude tools for checking confluence of equations and coherence of rules

with respect to equations [89, 90] only support order-sorted specifications (as opposed to

more general membership equational specifications), we apply a simple, semantics-preserving

transformation to convert the underlying conditional membership equational logic theory

(Σs, Es ∪As) into a semantically equivalent conditional order-sorted equational logic theory

(Σ̂s, Ês∪As) with no kinds or membership assertions so that the original theory is executable

iff the transformed one is. The resulting rewrite theory is denoted R̂sos
Orc (see Appendix B.1

for details on this transformation). Moreover, the corresponding Maude specification in

SOS-ORC is also transformed so that it is order-sorted, and does not use the owise attribute

or any built-in function [89, 90].

While the syntactic requirements of preregularity and determinism can be easily checked

automatically by Maude, the other properties require a more thorough and careful investi-

gation.

Operational termination of the conditional membership rewrite theory associated with

(order-sorted) equational theory (Σs, Es∪As) can be automatically proved using the Maude

Termination Tool (MTT) [91] with AProVE [92] as the back-end tool. When supplied with

the specification of the theory (Σs, Es ∪ As), MTT applies a sequence of non-termination-

preserving theory transformations (see [93]) to convert the conditional order-sorted equa-

tional theory into an unsorted, unconditional term rewriting system (TRS) T , which is then

fed into AProVE for an automatic termination check3. Therefore, we have the following

result.

Lemma 2 (Operational Termination). The set of equations Ês in R̂sos
Orc = (Σ̂s, Ês∪As, Rs, φs)

is operationally terminating modulo the axioms As.

Since Ês is terminating modulo As, the ground confluence and descent properties of Ês can

be verified (semi-)automatically using Maude’s Church-Rosser Checker (CRC) tool [89]. The

3The TRS T was obtained using the C;Uk;B transformation in MTT [93]. Its specification in TPDB
notation and the generated termination proof script are available online at http://www.cs.illinois.edu/

~alturki/.

43

CRC tool, when given R̂sos
Orc as input, computes all the (conditional) critical pairs between

the equations in Ês and attempts, using various techniques, to show them either unfeasible

or context joinable. For Ês in R̂sos
Orc, the tool was able to discharge the vast majority of

the critical pairs generated, leaving only a few that can be easily discharged by inductive

reasoning. Some more details about such proof obligations generated by the tool can be

found in Appendix B.1.

Lemma 3 (Ground Church-Rosser). The set of equations Ês in R̂sos
Orc = (Σ̂s, Ês∪As, Rs, φs)

is ground confluent modulo the axioms As and ground sort-decreasing.

Since Rs contains conditional rewrite rules with rewrites in their conditions, the Maude

Coherence Checker (ChC) tool [90], which assumes that the conditions of rules are equational,

cannot be directly used to show coherence of the specification. It turns out, however, that

the coherence property for R̂sos
Orc can be shown manually fairly easily, primarily because R̂sos

Orc

is a top-most theory, with Config as the top sort. A fairly detailed proof showing sufficient

conditions checked for ground coherence can be found in Appendix B.1.

Lemma 4 (Ground coherence). The set of rewrite rules Rs in R̂sos
Orc = (Σ̂s, Ês ∪As, Rs, φs)

is ground coherent with respect to Ês.

Executability of R̂sos
Orc (and, hence, executability of Rsos

Orc) follows immediately from its

admissibility properties and Lemmas (2)–(4) above.

Theorem 2 (Executability of R̂sos
Orc). The specification given by R̂sos

Orc satisfies the executabil-

ity requirements of generalized rewrite theories.

3.3 The Reduction Rewriting Semantics Rred
Orc

Although the rewriting specification Rsos
Orc is readily understandable and its correctness with

respect to the SOS semantics in [35] is straightforward, its execution, in practice, is quite

expensive and inefficient. This is partly because Rsos
Orc makes extensive use of conditional

rewrite rules (corresponding to the rules in the SOS specifications) which are particularly

expensive to execute as compared to unconditional rules. Moreover, most of these rewrite

44

rules, besides being conditional, have rewrites (as opposed to equations) in their conditions,

which is typical of the SOS specification style. Rewrite conditions, as opposed to equational

conditions, can be particularly expensive to find a proof for or to disprove as they are

non-deterministic in nature. In addition, the relatively large number of such rules in the

specification can potentially cause nested (recursive) rewrite checks when checking a rule’s

conditions, which adversely affect performance of execution and analysis.

This section introduces a specification for a rewrite theory Rred
Orc that is not directly based

on the SOS specifications but is instead more akin to a reduction semantics. It utilizes the

inherently distributed semantics of rewriting logic, and uses both equations, for modeling

deterministic computation steps, and rewrite rules, for modeling the non-deterministic tran-

sitions. This is achieved primarily by localizing the rewrite rules as much as possible, and

specifying equationally any required propagation of information between the subexpression

to be rewritten (the redex) and the enclosing Orc configuration (the context). In effect,

this approach minimizes the number of rewrite rules needed and reduces their complexity,

and thus achieves a simpler and superior semantic specification that can be executed and

analyzed much more efficiently.

Despite the superior execution and analysis efficiency of Rred
Orc over Rsos

Orc, the semantics

defined by Rred
Orc is still operational, in that it describes in detail how Orc programs are

evaluated, and is, in fact, equivalent to Rsos
Orc, in the sense that, given any Orc program

P , the state transition systems of the semantics of P given by Rsos
Orc and Rred

Orc are strongly

bisimilar, assuming that program configurations are closed4. This implies thatRred
Orc captures

precisely the intended semantics of Orc while providing an efficient means for execution and

formal analysis of Orc programs.

The specification of the reduction rewriting semantics builds on the semantic infrastructure

introduced in Section 3.1, with the main difference that, unlike for Rsos
Orc, action labels are

not essential to Rred
Orc, since label information is implicitly managed by auxiliary operators

in Rred
Orc. However, to maintain equivalence with Rsos

Orc, the label field lbl : l is maintained

in Orc configurations as before. Furthermore, the one-step modifier strategy used in the

4Roughly speaking, a configuration 〈f, r〉 is closed if every expression name referenced in f has a decla-
ration in r. This is discussed in more detail when we introduce the equivalence theorem in Section 3.4.

45

SOS-based semantics to implement one-step rewrites is no longer needed, as the semantics

is not a direct translation of the SOS specification in Figure 2.2, but is instead a rewriting

logic semantics.

We describe next the specification of the synchronous, timed semantics given by the theory

Rred
Orc.

3.3.1 The Internal Actions

Transition steps that correspond to internal actions of Orc expressions are specified using

the IAction rewrite rule (with act↑ an auxiliary function symbol, which will be described

shortly):

IAction : 〈f̂ , r〉 → 〈act↑(f ′, i), r〉 if f̂ → act↑(f ′, i)

The rule simply states that an (eager) configuration with an active expression may make

an internal transition if the expression is able to make that transition. Note that, this rule

is global at the configuration level, which is required in order to maintain equivalence with

the interleaving semantics defined by the original Orc semantics, and is also essential for

executability of the specification. An active expression may make an internal transition

according to one of the following rules:

SiteCall : M(~v)→ act↑(tmp, siteCall(M,~v))

ExprCall : E(~p)→ act↑(tmp, exprCall(E, ~p))

Publish : !v → act↑(0, publish(v))

Therefore, an active, basic sub-expression may rewrite to a frozen, auxiliary operator symbol

act↑ : Expr × InternalEvent → [Expr], whose purpose is to propagate the action up the

expression tree all the way to the top so that: 1) its effects are reflected in the configuration

(e.g. emitting a site call message into the configuration) , and 2) any necessary information

in the configuration can be propagated back to the sub-expression (e.g. getting globally

fresh handle names for site calls). This process of propagating information back and forth

between redexes and contexts is specified equationally by induction on the structure of

46

Orc expressions. In particular, for site and expression calls, act↑ replaces the call with a

temporary placeholder expression tmp and propagates the action up to the configuration

according to the following equations (where c stands for a site call event siteCall(M,~v), or

an expression call event exprCall(E, ~p)):

act↑(f, c) | g̃ = act↑(f | g̃, c) act↑(f, c) >x> g = act↑(f >x> g, c)

act↑(f, c) <x< g̃ = act↑(f <x< g̃, c) act↑(f, c) ; g̃ = act↑(f ; g̃, c)

g <x< act↑(f, c) = act↑(g <x< f, c)

Once the call reaches the root of the expression, the effect of the call is reflected in the

containing configuration, using one of the following equations, depending on the call type:

〈act↑(f, siteCall(M,~v)), lbl : l | msg : ρ | hdl : η | r〉

= 〈act↓(f, ?h), lbl : ε | msg : ρ[M,~v, h] | hdl : η, h | r〉 if h := fresh(η)

〈act↑(f, exprCall(E, ~p)), lbl : l | env : σ,E(~x) , g | r〉

= 〈act↓(f, [~p/~x]g), lbl : ε | env : σ,E(~x) , g | r〉

which capture precisely the semantics of site and expression calls, respectively. The specifica-

tions of the effects of site calls and expression calls on the record structure of a configuration

are identical to those in the SiteCall and Def rules of the SOS-based semantics of Rsos
Orc,

except that the label field is reset to ε. Note that since both the handle h in a site call and

the instantiated body g of the expression definition in an expression call need to propagate

back to the subterm where the call was made (which was temporarily substituted by the

expression tmp), act↑ does not rewrite immediately to f , but rather to another (frozen) op-

erator, act↓ : Expr × Expr → Expr, that traverses down the expression tree until it reaches

47

the appropriate subterm, using the following equations:

act↓(f̃ | f̃ ′, g) = act↓(f̃ , g) | act↓(f̃ ′, g) act↓(f̃ ; f̃ ′, g) = act↓(f̃ , g) ; f̃ ′

act↓(f̃ >x> f ′, g) = act↓(f̃ , g) >x> f ′ act↓(b, g) = b

act↓(f <x< f̃ ′, g) = act↓(f, g) <x< act↓(f̃ ′, g) act↓(tmp, g) = g

where b is a basic Orc expression, and g is either a handle expression (for a site call), or the

body expression of a declaration (for an expression call).

The internal action of publishing a value is defined slightly differently, although the overall

operational behavior is similar. This is primarily because published values may be bound

in an expression by sequential or asymmetric parallel compositions. In particular, if the

published value v is not bound in the expression, the value is propagated all the way to the

top, using the following equations:

act↑(f, publish(v)) | g̃ = act↑(f | g̃, publish(v))

act↑(f, publish(v)) <x< g̃ = act↑(f <x< g̃, publish(v))

act↑(f, publish(v)) ; g̃ = act↑(f, publish(v))

In this case, the published value reaches the top of the expression in the enclosing config-

uration: 〈act↑(f, publish(v)), lbl : l | r〉 = 〈f, lbl : ε | r〉. Otherwise, if the value published

is bound by a sequential composition expression or an asymmetric parallel composition ex-

pression, then one of the following equations applies:

act↑(f, publish(v)) >x> g = act↑(f >x> g | [v/x]g, publishτ)

g <x< act↑(f, publish(v)) = act↑([v/x]g, publishτ)

These equations reflect the semantics specified by the SOS rules Seq1V and Asym1V

of Figure 2.2 (and the corresponding rewrite rules in Rsos
Orc). They also change the value

publishing event to a τ publishing event publishτ , which ultimately causes the label field of

the configuration to reset (the equations for terms of the form act↑(f, publishτ) are similar).

48

f

act

actact

(a) Site and expression calls

f

act

actact

(b) Publishing and τ actions

Figure 3.6: Schematic diagrams of the equational propagation of information in an
expression tree

Notice that in both cases, when a publishing (or a τ) event reaches the configuration, no

further information needs to be communicated back down the expression, unlike the cases

of site and expression calls. Figure 3.6 gives a schematic representation of the mechanics of

the internal actions. The figure shows that the structures of a site call and an expression

call are similar, although the information propagated in both directions (and the side effects

on the enclosing configurations) are different.5

3.3.2 The Site Return Action

The external action of a site return is modeled by the following rewrite rule:

SiteReturn : 〈f̄ , lbl : l | msg : ρ[w, h] | hdl : η, h | r〉

→ 〈sret(f̄ , w, h), lbl : ε | msg : ρ | hdl : η | r〉 if h ∈ handles(f̄)

which corresponds to the SiteRetV and SiteRetStop rules in the SOS rules and the SOS-

based rewrite rules of Rsos
Orc. Note that application of the site return rule above is subjected

to the condition that the handle name of the message to be consumed is referenced in f̄ .

This is to avoid useless transitions that could take place when a thread, having an unfinished

site call, is pruned using asymmetric parallel composition, and thus, maintains a comparable

behavior to site returns in the SOS specification. In addition, the rule SiteReturn captures

the synchronous semantics of Orc by matching an inactive expression f̄ to consume the

5Unwanted concurrent execution of site calls, expression calls and publishing of values is avoided by
equations that will introduce an error constant of the kind [Expr] in such cases. For reasons of confluence of
the equations Er, an expression having error as a subterm immediately collapses to error (see [54]).

49

site return message. By this rule, the expression f̄ rewrites to a frozen auxiliary operator

sret : Expr × ResValue × Handle → Expr which carries the response parameters down to the

appropriate pending handle expression, using a set of equations with a similar structure to

the equations defining the semantics of the operator act↓ above, except for handle expressions,

which are specified with the following equations:

sret(?h′, v, h) = if (h′ == h) then !v else ?h′ fi

sret(?h′, stop, h) = if (h′ == h) then 0 else ?h′ fi

3.3.3 Timed Semantics

Like the SOS-based rewriting semanticsRsos
Orc, time and the effects of time elapse are specified

in the reduction semantics Rred
Orc using a tick rewrite rule and the δ methodology. In fact, the

tick rewrite rule is almost identical to that of Rsos
Orc – but without the SOS one-step modifier:

Tick : 〈f, clk : t | r〉 → 〈f ′, clk : t+ t′ | δ(r, t′)〉

if eager(〈f, clk : t | r〉) 6= true ∧ t′ := mte(r) ∧ t′ 6= 0

The rule uses in its condition the eager and mte functions to capture the maximal, time-

synchronous execution semantics, described before in Section 3.1.3.

3.3.4 Executability Properties of Rred
Orc

This section shows that, like Rsos
Orc, the theory Rred

Orc = (Σr, Er ∪ Ar, Rr, φr) is executable,

which implies that formal analysis using its implementation in Maude, as a system mod-

ule RED-ORC, is both sound and complete. However, the additional equations defining the

auxiliary operators for propagating event information and the fact that rewrite proofs for

applications of the IAction rule may contain rewrites at the expression level (using the rules

SiteCall , ExprCall, and Publish), all make the task of checking these executability

properties slightly more involved.

50

As before, the membership equational logic sub-theory of the rewrite theory Rred
Orc is trans-

formed to a semantically equivalent order-sorted equational theory, so that we may leverage

existing Maude tools for checking executability properties. The transformed theory is de-

noted R̂red
Orc = (Σ̂r, Êr∪Ar, Rr, φr). The transformation is also reflected in the corresponding

Maude module ORC-RED.

Operational termination of the conditional membership rewrite theory associated with

(Σ̂r, Êr ∪Ar) can be shown automatically using the MTT [91] and AProVE [92], using the

same sequence of transformations as for the SOS-based rewriting semantics specification in

Section 3.2.4, yielding the following result.

Lemma 5 (Operational termination). The set of equations Êr in R̂red
Orc is operationally

terminating modulo the axioms Ar.

The ground confluence and descent properties can be shown using Maude’s CRC tool and

inductive reasoning. More details can be found in a proof sketch in Appendix B.2 of the

following lemma.

Lemma 6 (Ground Church-Rosser). The set of equations Êr in Rred
Orc is ground confluent

modulo the axioms Ar and ground sort-decreasing.

For ground coherence, the specification of R̂red
Orc cannot be directly checked using Maude’s

ChC tool because Rr has a rule with a rewrite condition, namely the rule IAction. However,

since there is only one such rule and since the rewrite condition is the only condition of this

rule, we may consider the sub-theory R̂◦ of R̂red
Orc without the IAction rule, show that it is

ground coherent using Maude’s ChC tool and induction on ground terms, and then reason

inductively on the case when a rewrite is made by IAction in R̂red
Orc. The details of this

proof technique are given in Appendix B.2.

Lemma 7 (Ground coherence). The set of rewrite rules Rr in R̂red
Orc = (Σ̂r, Êr ∪Ar, Rr, φr)

is ground coherent with respect to Êr.

We now have the following essential theorem, which is an immediate consequence of the

admissibility properties of Rred
Orc and Lemmas (5)–(7) above.

51

Theorem 3 (Executability ofRred
Orc). The specification given by Rred

Orc satisfies the executabil-

ity requirements of generalized rewrite theories.

3.4 Equivalence of Rsos
Orc and Rred

Orc

We shall now show that the SOS-based rewriting semantics, Rsos
Orc, and the reduction-based

rewriting semantics, Rred
Orc, are semantically equivalent, in the sense that an Orc program

behaves in exactly the same way in both semantic models. We show this by proving a more

general result, stating that the semantic models given by Rsos
Orc and Rred

Orc of any closed Orc

configuration are strongly bisimilar. We first define what we mean by a configuration being

closed.

Definition 4 (Closed configurations). An Orc configuration 〈f, r〉 is well-formed if: (i) f

does not contain any auxiliary function symbol, such as act↑, sret, or tmp; and (ii) r contains

at least the five fields introduced in Section 3.1, namely: (1) lbl : l, with l ∈ Label, (2) hdl : η,

with η ∈ HandleSet, (3) env : σ, with σ ∈ Env, (4) msg : ρ, with ρ ∈ MsgPool, and (5) clk : t,

with t ∈ Time. Moreover, a closed configuration is a well-formed configuration in which no

expression name appears free in f or σ.

We observe that a closed configuration in Rsos
Orc is also a closed configuration in Rred

Orc

and vice versa. This is due to the fact that both Rsos
Orc and Rred

Orc use the same semantic

infrastructure. Moreover, we have the following easy lemma.

Lemma 8 (Preservation of closed configurations). Let C be a closed configuration. If Rsos
Orc `

C → C ′ for some configuration C ′, then C ′ is closed. Similarly, if Rred
Orc ` C → C ′, then C ′ is

closed.

Proof. This can be proved by rule induction on the rewriting relations induced by Rsos
Orc and

Rred
Orc, respectively.

Intuitively, preservation of well-formedness is trivial in both Rsos
Orc and Rred

Orc by a quick

examination of the rewrite rules. It is also easy to see that closed configurations in Rsos
Orc

rewrite to configurations that are also closed. Essentially, the only rule in Rsos
Orc that might

52

introduce expression names in an expression is the [Def] rule. But since all expression

declarations are closed (have no free occurrences), and since actual parameters cannot be

expression names, the resulting expression must also be closed. A similar argument also

applies to Rred
Orc. In what follows, we assume all configurations are closed.

The following lemma states that the definitions of eager configurations in Rsos
Orc and Rred

Orc

coincide. The lemma is an easy consequence of the fact that the definitions of the eager pred-

icate, the mte function, active and inactive expressions, messages, and auxiliary functions

for the time domain and handle names, are all shared in the same semantic infrastructure

given by RΩ.

Lemma 9 (Timing strategy equivalence). For any configuration C, Rsos
Orc ` eager(C) = true

iff Rred
Orc ` eager(C) = true, and, similarly, Rsos

Orc ` mte(C) = t iff Rred
Orc ` mte(C) = t, for any

t ∈ Time.

Now we are ready to present the equivalence theorem, for which a detailed proof can be

found in Appendix B.3

Theorem 4. For any configurations C and C ′, the following equivalence holds,

Rsos
Orc ` smallstep(·C)→1 smallstep(·C ′) ⇐⇒ Rred

Orc ` C →1 C ′

The main result of this section can be derived as a consequence of Theorem 4 by taking

as C the initial configuration of a program P given by [P] (see Section 3.1.3).

Corollary 1. For any Orc program P and configuration C, we have

Rsos
Orc ` [P]→1 smallstep(·C) ⇐⇒ Rred

Orc ` [P]→1 C

Proof. Immediate from Theorem 4 and the fact that [P] is closed, by definition.

Therefore, for any Orc program P , the state transition systems defined by Rsos
Orc and Rred

Orc

are strongly bisimilar.

53

3.5 Specification in Maude

Both rewrite theories Rsos
Orc, for the SOS-based rewriting semantics, and Rred

Orc for the reduc-

tion rewriting semantics, have been specified as admissible and executable system modules

in Maude, namely SOS-ORC and RED-ORC, respectively. These modules can be used to exe-

cute Orc programs, explore traces of computations, and verify safety and liveness properties

about them by model checking. The desirable executability properties of both theories shown

in Section 3.2.4 and Section 3.3.4 guarantee that the formal analysis performed using the

corresponding Maude modules is both sound and complete. To take advantage of some of

the time-based versions of the analysis tools available in Real-Time Maude (RTM), such as

timed search and timed model checking, we have also developed corresponding timed modules

in RTM for Rsos
Orc and Rred

Orc
6.

Since Maude supports mixfix user-definable syntax, the syntax in the Maude specification

is a readable, typewriter version of the Orc syntax shown in Figure 2.1. For example, the

declarations (introduced by the keyword op) below specify the syntax of active and inactive

otherwise compositions:

op _;_ : Expr Expr -> Expr [assoc id: zero frozen(2)] .

op _;_ : AExpr Expr -> AExpr [ditto] .

op _;_ : IExpr Expr -> IExpr [ditto] .

where the combinator ; is declared associative with the expression zero as its identity, and

frozen in its second argument. Similarly, equational properties of the combinators, corre-

sponding to the algebraic laws in Figure 2.3, and definitions and properties of other auxiliary

operators, such as substitution, operations on handle sets and environment initializers, are

all specified as (possibly conditional) equations and membership predicates. For instance,

laws (2.7) – (2.9) in Figure 2.3 are declared using the following equations (introduced with

the eq keyword):

6The RTM specification is almost identical to that of Maude, with the main exception that configurations
in the RTM specification do not have to maintain a clock field since a global clock is implicitly managed
by the tool. Furthermore, our specifications of Rsos

Orc and Rred
Orc can be easily shown to model time-robust

systems [75], for which formal analysis with respect to the maximal time-synchronous execution strategy is
complete.

54

eq zero > X > F = zero . eq ! V ; NZF = ! V .

eq F < X < zero = [X := stop] F .

assuming that F, X, V and NZF are Maude meta-variables representing, respectively, terms

of the sorts Expr, Var, Value, and NZExpr. The term [X := stop] F represents a substi-

tution applied to F mapping the Orc variable given by X to the special value stop. Finally,

rewrite rules in Rsos
Orc and Rred

Orc are introduced in the corresponding Maude modules using

the keyword rl (and crl for conditional rules). An example is the OtherV rule in Rsos
Orc

(shown in Figure 3.5):

crl [OtherV] : . < AF ; NZF , lbl : L | R > => < F’ , lbl : ! V | R’ >

if . < AF , lbl : nl | R > => < F’ , lbl : ! V | R’ > .

with AF and F’ ranging, respectively, over terms of the sorts AExpr and Expr, and R, R’

over records in a configuration. The variable L ranges over labels while the constant nl

corresponds to ε and represents absence of a label.

The full specification is available for download online at http://www.cs.illinois.edu/

~alturki/.

To illustrate the use of the Maude specifications for formal analysis of Orc programs,

we use an Orc program timeout based on the timeout expression given in Section 2.3.2 to

demonstrate simple use cases of rewriting-based simulation and breadth-first search analysis.

A discussion of more sophisticated analysis of LTL properties using Maude’s model checker

is given in Section 4.2.

Suppose that the initial configuration of timeout is given by the constant to-config,

which is defined using the following equations (assuming that x, t, y are Orc variables, and

Timeout is an expression name):

eq to-decl = Timeout(x,t) := let(y{0}) < y < x{0}() | Rtimer(t{0})

>> let(signal)

eq to-config = [to-decl ; Timeout(M, 3)] .

55

in which the expression to be evaluated is the expression call Timeout(M, 3), which times

out in 3 time units a call to a site M. Recall that the operator [] constructs an initial

configuration of a given Orc program (see Section 3.1.3).

We first obtain a sample execution of the program using the rewrite command (assuming

no message transmission delays):

rewrite in RED-ORC : to-config .

result Config: < zero, lbl : nl | env : ... | clk : 3 |

msg : [signal,h(1)] | hdl : h(1) >

We observe that the call to M did not timeout as the site response signal caused by the

call to let in the message [signal,h(1)] was never consumed. To investigate the sequence

of rewrites that led to this (final) state, we may use Maude’s trace command to output a

trace of equations and rules applied with different display and detail options [20]. An easier,

although much less powerful, approach, which we demonstrate here for its simplicity, is to

use the print attribute to selectively annotate equations and rules of interest with output

messages that get displayed whenever the corresponding statement is applied [88]. Using

such annotations, the following trace can be produced using the rewrite command above:

Maude> rew to-config .

rewrite in RED-ORC : to-config .

Tau (Expr Call): Timeout(M,3)

Site Call: M(); with Handle h(0)

Site Call: Rtimer(3); with Handle h(1)

Site Return: value 1 for handle h(0)

Tau (bound value)

Site Call: let(1); with Handle h(0)

Site Return: value 1 for handle h(0)

Publishing: value 1

Time Tick : from 0 by 3

result Config: < zero, lbl : nl | env : ... | clk : 3 |

msg : [signal,h(1)] | hdl : h(1) >

56

The trace lists the types of the actions taken, each of which is followed by some instantiation

details. We note that, since execution begins at time 0 and time is not advanced until the

very last step, all the instantaneous actions of this trace occur at time 0. The last step

time-shifts the configuration by 3 time units, which is the timeout period, but no site return

action takes places after that, since the thread that had the corresponding site call was

already pruned at the second tau event in the trace. The (fairly obvious) fact that, in the

absence of transmission delays, the call to M will never timeout can be exhaustively verified

by, for example, the following search command:

Maude> search to-config =>* < F:Expr, msg : [self, 1, H:Handle]

MS:MsgPool | clk : T:Time | R:Record > such that T:Time >= 3 .

No solution.

states: 18 rewrites: 371 in 1ms cpu (10ms real) (247498 rewrites/second)

which searches for a configuration having a pending response from M after 3 time units have

passed, and fails to find a solution as expected. However, when the possibility of message

transmission delays of 3 time units or longer are introduced, the response from M may now

timeout, which may be witnessed by a simulation, or – when the set of possible delays is

finite – shown by breadth-first search.

3.6 Performance Comparison

Despite being bisimilar, the reduction rewriting semantics given by Rred
Orc enjoys a significant

performance advantage over the SOS-based rewriting semantics given by Rsos
Orc. This section

validates this claim by comparing the formal simulation and analysis performance of the two

rewrite theories through their specifications in Maude.

Throughout all experiments, performance is measured in terms of the CPU time – in

milliseconds – taken to perform a particular task as reported by Maude. The tasks are:

(1) simulating six Orc programs using Maude’s rewrite command, (2) exploring the state

space of these six programs using Maude’s breadth-first search command, and (3) model

checking deadlock-freeness in four problem instances of a deadlock-free specification of the

57

BCast(m,x) , (if (empty(x)) � let(signal)

| if (¬empty(x)) � head(x) >a> a(m) � BCast(m, tail(x)))

CList(x) , (if (empty(x)) � let([])

| if (¬empty(x)) � head(x) >a> (append(y, ys)

<y< (a() | Rtimer(5) � let(signal))

<ys< CList(tail(x))))

Figure 3.7: Expression declarations for BCast and CList examples

timeout priority par-or timed-m BCast CList

RsosOrc rewrite 1.0 1.0 8.0 14.0 3.0 10.0
search 1.0 2.0 84.0 326.0 5,492.0 6.0× 105

RredOrc rewrite 1.0 1.0 1.0 1.0 1.0 1.0
search 1.0 1.0 3.0 4.0 56.0 4.7× 104

Table 3.2: A performance comparison of the rewriting semantics of Orc using Maude’s
rewrite and search commands (times in milliseconds)

the dining philosophers problem using Maude’s LTL model checker. The Orc programs used

as benchmarks for these tasks were borrowed or inspired from examples in [35]. In particular,

timeout, which was also given in Section 2.3.2, priority, which prioritizes a site call over

another, par-or, which specifies a parallel (lazy) disjunction function, and timed-m, which

makes four timed calls to a site, were all borrowed from [35]. The Orc programs BCast,

which implements a sequential broadcast, and CList, which constructs in parallel a tuple

of responses from external sites with timeout, were both inspired by examples in [35]. The

expression definitions for BCast and CList are shown in Figure 3.7, where empty, head,

tail and append are (local) sites implementing list functions. . For the dining philosophers

benchmark, we use the deadlock-free specification given in [35]. For simplicity, we assume

no message delays for all the benchmarking tasks above.

The results of these experiments are summarized in Table 3.2 and Table 3.3. To guarantee

fairness in comparison, the experiments were carried out on the same machine, using the

same version of Maude, and under similar operating conditions7. The results clearly show

7The experiments were carried out on a 2.93GHz quad-core machine with 24GB of memory using Maude
2.6.

58

Problem Size 2 3 4 5

RsosOrc 22.0 2,423.0 4.8× 105 ∞
RredOrc 3.0 107.0 3,230.0 1.6× 105

Table 3.3: A performance comparison of the rewriting semantics of Orc using Maude’s LTL
model checker applied to four instances of the dining philosophers problem (times in
milliseconds)

that the reduction semantics of Orc is much more efficiently executable than the SOS-based

semantics. This is mainly because the SOS-based semantics makes extensive use of rewrite

rules that are mostly conditional with rewrites in their conditions, which are, by their non-

deterministic nature, more expensive to compute than unconditional rules. The reduction

semantics, on the other hand, minimizes both the number of rewrite rules and the number of

rewrites in the conditions, while using equations to specify the deterministic features of the

language. Furthermore, unlike the SOS-based semantics, where several rules may have to

be attempted before successfully making a transition, attempts to apply the instantaneous

action rules in Rred
Orc never fail (as can be verified by Maude’s profiler) since transition steps

corresponding to instantaneous actions are specified only by two rules that match active

expressions for internal actions (the rule labeled IAction), and inactive expressions for the

external action of site return (the SiteReturn) rule). This significantly reduces the need

for backtracking-like behaviors when (recursively) searching for proofs of rewrite conditions.

As Table 3.2 shows, the performance difference between Rred
Orc and Rsos

Orc is only marginal

for small expressions with limited parallelism, such as timeout and priority. However, as

expressions get more complex, the performance gap between the SOS-based semantics and

the reduction semantics increases considerably, especially with the search command, since

searching tries to build proofs of all reachable states, exposing it to the limitations of the

SOS-based semantics even more. This is justified since the more complex an expression is,

the larger the number of (parallel) compositions used, which translates into a larger number

of conditional rewrite checks in the SOS-based semantics8.

8It is important to note that, like the original synchronous SOS specification of Orc, both the SOS-based
semantics and the reduction semantics are fairly detailed, operational semantics of Orc, and are, as a result,
vulnerable to the state space explosion problem, when using the search or LTL model checking commands,
particularly for programs with increasing levels of non-determinism (the CList instance, for example, had
over 8.5× 105 states).

59

The performance advantage of Rred
Orc over Rsos

Orc is more pronounced in the model checking

experiments of the notoriously non-deterministic dining philosophers specification, as shown

by Table 3.3. For the SOS-based semantics, the model checker did not finish within a

reasonable amount of time for the problem instance with five philosophers.

60

CHAPTER 4

OBJECT-BASED REWRITING SEMANTICS OF
ORC AND THE MORC TOOL

The Orc semantics, as described above in the SOS and the reduction rewriting semantics

specifications, focuses on the, possibly concurrent, evaluation of a single Orc expression,

abstracting away its interactions with external sites in an environment as if the environment

were a black box. It is however very natural to view both Orc expressions and sites as dis-

tributed objects, which interact with each other through message passing. Indeed, in practical

applications, many orchestration problems, especially relatively large ones, can be thought of

as compositions of multiple Orc subexpressions that independently orchestrate different but

related tasks. For example, an online auction management expression may be composed of

subexpressions managing: (1) seller inventories and product auction announcements, (2) bid

collection and winner announcements, and (3) payments and shipping coordination. Such

subexpressions need not be located on the same machine for the orchestration effort to be

completed, but are, in fact, more often run on physically distributed nodes spread across

the web. Furthermore, sites normally maintain local states to support the services they

provide, such as counter sites and channel (buffer) sites. Below, we describe a simple seman-

tic extension of the Orc theory to a distributed, object-based programming model that is

both natural and useful in specifying and analyzing distributed computations with explicit

treatment of external sites and messages.

4.1 Distributed Object-based Semantics ROrc

The distributed object-based semantics encapsulates the Orc programming model as the

underlying model for Orc expressions, and in this respect, its rewriting specification, denoted

ROrc, directly builds on the reduction semantics specification Rred
Orc using rewriting logic’s

61

approach to distributed objects [94]. ROrc generalizes the reduction semantics to multiple

Orc expressions and models the environment explicitly by (possibly external) site objects

and asynchronous message passing. Although still a formal specification, this distributed

object semantics can be seamlessly transformed into a distributed Orc implementation using

Maude, as we discuss in Chapter 5.

4.1.1 Object-based Orc Configurations

In the distributed object semantics ROrc, an Orc program configuration is defined as a multi-

set of objects and messages, specified by associative and commutative empty juxtaposition,

with none as the identity element. An object is a term of the form 〈O : C | A〉, with O

a unique object identifier, C the class name of the object, and A a set of attribute-value

pairs, each of the form attr : value, where attr is the attribute’s name, and value is its corre-

sponding value. There are two main classes of Orc objects: Expression objects (of the class

Expr) and Site objects (of the class Site), corresponding, respectively, to Orc expressions and

sites. An expression object for an Orc program ~d ; f has three attributes: (i) env , which

holds the set of expression declarations corresponding to ~d, (ii) exp, which maintains the

Orc expression f to be evaluated, and (iii) hdl , which keeps a set of handle names that are

currently being used by the expression. For instance, a timeout expression object may have

the following initial form:

〈O : Expr | env : Timeout(x, t) , let(y) <y< x() | Rtimer(t) � let(signal),

exp : Timeout(M, 10), hdl : ∅〉

In contrast, an Orc site object has the following three attributes: (i) name, which holds the

site’s name, such as if, CNN, M, . . . etc, (ii) state, which abstractly maintains the current

state of the site (the concrete definition of the state is site-specific), and (iii) op, which

tells whether the site object is currently blocking (performing some operation) or accepting

62

incoming messages. For example, a simple CNN site object may have the following form:

〈O : Site | name : CNN , op : ready , state : (d0, p0), · · · (dn, pn)〉

where ready is a constant signifying that the site is ready to accept calls, and the state is

a list of dated news pages. Note that fundamental sites, such as if and Rtimer, and other

basic sites, such as arithmetic functions, are stateless and thus make no use of the state field.

In keeping with the philosophy of the Orc theory, expression objects are modeled as active

objects with one or more threads of control (given as an Orc expression), and are capable

of initiating (asynchronous) message exchange. Site objects, on the other hand, are reactive

objects having internal states but only capable of responding to incoming requests. In

order to capture timing behaviors, an additional simple Clock object is also included in the

configuration.

Messages in an Orc configuration are either site call or site return messages. Within

an expression object O, a site call expression M(~v) causes a site call message of the form

M ← sc(O,~v, t) to be emitted into the object configuration, with t a non-negative value

representing the delay of the message; that is, the time it takes for the message to reach the

site M . Once the message is received and processed by M , the site may reply back with a

site return message O ← sr(M,w, t′), with w the value published by M , and t′ the message

delay.

4.1.2 Object-based Semantics of Orc

The distributed semantics of an object-based Orc configuration is essentially given by the

semantics of the individual expression objects within the configuration, which is precisely

the semantics specified by the reduction rewriting semantics of Rred
Orc, with two exceptions:

(i) messages are now managed by the object-based Orc configuration, and (ii) site responses,

which were only simulated in the reduction semantics (and the SOS-based semantics), are

now generated based on the internal states of site objects, in addition to the site call param-

eters.

63

Since Orc expressions and sites are now encapsulated within expression and site objects,

respectively, in the object-based configuration, rewrite rules that capture the instantaneous

actions are no longer global rules that match the entire state, like in Rred
Orc, but are instead

localized to individual objects. In effect, the distributed semantics adds a new level of

concurrency between objects in a configuration, in addition to concurrency within an Orc

expression using parallel composition combinators. In particular, the rewrite rule in ROrc

specifying internal action transitions is of the following form (using object-oriented notation

where attributes that are not used in the rule need not be mentioned):

IAction : 〈O : Expr | exp : f̂〉 → 〈O : Expr | exp : act↑(f ′, i)〉 if f̂ → act↑(f ′, i)

The rule states that an expression object (possibly among other expression objects in the

configuration) may perform an internal transition if its active expression is able to perform

that transition. As in Rred
Orc, an expression f̂ may perform an internal action using one

of the expression-level rules SiteCall, ExprCall, and Publish, given in Section 3.3.1.

Equations that reflect the effects of an internal action on the state of an expression object

and the configuration are also localized to the relevant expression objects. For instance, the

equation that captures the effects of a site call has the following form:

〈O : Expr | exp : act↑(f, siteCall(M,~v)), hdl : η〉

= 〈O : Expr | exp : act↓(f, ?h), hdl : h, η〉 M ← sc(O,~v, h, t) if h := fresh(η)

which causes a site call message M ← sc(O,~v, h, t) to be emitted into the configuration,

with t a (possibly random) time delay. The two equations capturing the effects of expression

calls and publishing of values are similarly specified.

When a site call message to a site M becomes ready for consumption (i.e., its transmission

delay reaches zero), a site object for M may consume the message according to the following

64

rule:

ProcessCall : 〈O′ : Site | name : M, op : ready〉 M ← sc(O,~v, h, 0)

→ 〈O′ : Site | name : M, op : app(~v, h,O)〉

where app(~v, h,O) indicates that the site object is about to process the call from the expres-

sion object identified by O. In general, the behavior of a site M in response to a site call may

depend on its current state, given by the state field, and the call parameters in app(~v, h,O).

Fundamental sites, such as Rtimer and Clock, and functional sites, like arithmetic add and

logical or, have no internal states, and their behaviors are specified equationally in ROrc. For

example, the behavior of the Rtimer site object is defined simply by the following equation:

〈O′ : Site | name : Rtimer , op : app(t, h, O)〉

= O ← sr(signal , h, t) 〈O′ : Site | name : Rtimer , op : ready〉

where the response is purposefully delayed to achieve the semantics of Rtimer. This is in

contrast to, say, a remote counter site counter that responds to a next message based on the

current value of its counter:

〈O′ : Site | name : counter , op : app(next , h, O), state : count(k)〉

= O ← sr(k, h, d) 〈O′ : Site | name : counter , op : ready , state : count(k + 1)〉

with d a suitable message transmission delay.

Likewise, the external action of a site return, in which an available site return message of

the form O ← sr(w, h, 0) is consumed by the expression object O, is also specified at the

level of expression objects using the following rule:

SiteReturn : 〈O : Expr | exp : f̄ , hdl : h, η〉 O ← sr(w, h, 0)

→ 〈O : Expr | exp : sret(f̄ , w, h), hdl : η〉 if h ∈ handles(f̄)

65

which consumes an incoming site return message only when its delay is zero. It is important

to note that all the auxiliary operators, including act↑, act↓, sret and handles, are defined

exactly as before (see Sections 3.1 and 3.3).

The tick rewrite rule, however, must be specified globally at the configuration level to

properly propagate the effects of a time tick across all objects and messages in the config-

uration. This is accomplished by encapsulating the entire object-based configuration using

an operator { } : Config→ System, and specifying the tick rule as follows (cf. [69]):

Tick : {〈O : Clock | clk : t〉 C} → {〈O : Clock | clk : t+ t′〉 δ(C, t′)}

if eager(C) 6= true ∧ t′ := mte(C) ∧ t′ 6= 0

where C is the configuration with all the concurrent expression and site objects, and the

operators eager and mte are defined similarly as before in Section 3.1.

In summary, the distributed, object-based semantics given by ROrc generalizes the re-

duction semantics of Rred
Orc to multiple Orc expressions, and provides an explicit treatment

of sites and message exchanges between expression and site objects. An implementation

of ROrc in Maude (and Real-Time Maude – RTM) as the module OO-ORC has also been

developed, and is used as the back-end of the tool MOrc, which we describe in Section 4.2.

4.1.3 Executabilty of ROrc

Like the rewriting logic specifications for the SOS-based rewriting semantics Rsos
Orc and the

reduction rewriting semantics Rred
Orc, the specification of the distributed object-based seman-

tics given by ROrc = (Σ, E ∪ A,R, φ) satisfies the executability requirements of rewrite

theories. Indeed, the membership equational theory (Σ, E ∪ A) can be shown operationally

A-terminating using the MTT and AProVE, and ground confluent and sort-decreasing using

Maude’s CRC as before. Moreover, a proof of ground coherence of R with E can be given

using a modular argument similar to that in the proof of Lemma 7 in Section 3.3.4.

66

4.1.4 Object-level Concurrency vs. Orc’s Parallel Composition in ROrc

As noted before, ROrc localizes the rewrite rules capturing the untimed semantics to objects,

which implies that behavioral transitions across different objects may be taken concurrently,

adding a new dimension of concurrency to Orc’s semantics that is orthogonal to Orc’s in-

ternal concurrency using its parallel combinators. A key observation is that object-level

concurrency and symmetric parallel composition in ROrc both model independent threads

of computation running in parallel. When the Orc expression of an Orc expression object

O is a symmetric parallel composition of the form f | g, the possible behavioral transitions

of O are essentially identical to those of two separate objects Of and Og whose underlying

Orc expressions are f and g, respectively. Intuitively, this is because any enabled internal

transition in f | g is enabled either in f or in g (the IAction rule), and by assuming that

the enclosing configurations of O and of Of and Og have the same set of Orc site objects

and the same set of pending messages (with appropriate renaming of object references), the

object O and the pair of objects Of and Og will exhibit identical external and time tick

transitions (using SiteReturn, ProcessCall and Tick).

Despite being semantically equivalent, having both concurrency constructs (that is, the

Orc operator | and the configuration multiset union operator) incorporated inROrc pro-

vides a conceptual advantage for modeling distributed concurrent systems. In particular, an

Orc symmetric parallel composition may be preferred when modeling tightly-coupled multi-

threaded computations that typically run on the same node, while concurrency across objects

may be preferred when modeling loosely-coupled parallel computations that are more often

distributed across different, independent nodes. This distinction for modeling distributed

systems is exploited when we introduce the distributed implementation of Orc in Chap-

ter 5. Object-level concurrency in ROrc is also used in Chapter 7 to arrive at simpler models

amenable to statistical model checking analysis.

4.2 The MOrc Tool

MOrc is a web-based formal specification and analysis tool for Orc programs based on

67

RTM and the real-time, object-oriented, rewriting logic specification of Orc, ROrc. MOrc

provides a user-friendly interface for specifying the Orc program or expression to be ana-

lyzed, any custom sites and their definitions, and the desired formal analysis task and its

parameters. The tool supports three kinds of formal analyses: (1) rewriting-based simulation

using the timed rewrite command trew; (2) untimed and timed breadth-first search using,

respectively, the utsearch and tsearch commands; and (3) untimed and time-bounded

model-checking analysis using the mc command. The tool is designed to balance both sim-

plicity and expressiveness by supporting user inputs in standard Orc notation, by hiding

interactions with RTM, and by providing generic templates for specifying parametric pred-

icates (for both searching and model-checking), using which a wide range of properties can

be specified.

4.2.1 Components of MOrc

MOrc is implemented as a dynamic web-based application with both: (1) a front-end

client process (implemented using Javascript and the JQuery library) to display appropriate

interactive visual elements and manage interactions with the user, and (2) a back-end server

(implemented in PHP and C) that pre-processes user input, handles communication with

RTM, and post-processes Maude’s output. The diagram in Figure 4.1 shows the main

components of the tool and illustrates their interactions. MOrc can be accessed online at

http://www.cs.illinois.edu/~alturki/.

The front-end of MOrc provides an intuitive interface for specifying inputs and displaying

analysis results. The main screen, shown in a screen-shot in Figure 4.2, is divided into

three main sections: (1) an Orc program/expression and site input section, (2) a preloaded

examples section, and (3) a tabbed analysis input/output section. The user may wish to

load, and then perhaps edit, one of the examples by clicking on it on the right panel,

or he/she may specify an entirely different Orc program/expression, essentially using the

mathematical notation of the syntax of Orc defined in Section 2.3.1 (a more precise definition

of MOrc-admissible Orc syntax will be discussed in Section 4.2.2 below). Furthermore,

custom sites can be defined in the “Custom Sites” panel of the program input area. Currently,

68

Orc parser

Orc
program P

Analysis
parameters A

Request
object

Orc Front-end
(Web client)

Orc Back-end
(Web server)

Orc code
generator

P AST(P)

Real-Time
Maude

Maude input
pre-processor

A

Maude term
T(P)

Maude module
& analysis command

Maude output
post-processor

Maude output
Response

object Processed
output

User-accessible
analysis results

Figure 4.1: The architecture of MOrc

only a limited form of functional sites can be defined, which is achieved by specifying the

site’s name, its messaging interface, and its (possibly time-sensitive) behavior. Finally, the

formal analysis section presents a tabbed interface with three tabs corresponding to the

three analysis modes supported, namely, simulation, search, and model-checking. Each tab

provides a customized panel for specifying analysis parameters for the corresponding analysis

mode, such as an expression pattern for searching, or custom atomic predicates for model-

checking.

Upon specifying these parameters and pressing an analysis submission button, the front-

end constructs a request object (in Javascript Object Notation format, or JSON) encapsulat-

ing all relevant input parameters, submits it to the back-end server, and waits for a response.

As illustrated in Figure 4.1, the back-end server passes the Orc program text P to a parser

and a code generator (both written in C) to build the Maude term T (P) corresponding to

the initial state of P . The term T (P), along with the user-supplied analysis parameters, is

then fed into a RTM pre-processor that is responsible for generating the appropriate RTM

formal analysis command and, for searching and model-checking, a user module that extends

the RTM Orc module ORC with custom predicates capturing the analysis parameters. After

that, the generated module and command are supplied to RTM for execution. The analysis

output of RTM is parsed and processed before a server, JSON-encoded object is created and

69

Figure 4.2: The main screen of MOrc’s front-end

70

Figure 4.3: The main screen of MOrc showing the results of executing a search command

sent to the client.

When the client receives the server response object, the front-end replaces the analysis

panel in the user interface with a results panel that displays in a structured way the analysis

results extracted from the response object. For example, Figure 4.3 shows the results of

a timed search analysis command. The user may then press the “Back to analysis panel”

button to navigate back to the last used analysis panel.

71

<program> ::= <declarations> ‘.’ <expr> | <expr>

<declarations> ::= <declarations> ‘.’ <declaration> | <declaration>

<declaration> ::= ID ‘(’ ‘)’ ‘:=’ <expr>

| ID ‘(’ <call_expr_list> ‘)’ ‘:=’ <expr>

<expr> ::= <expr> ‘>’ ID ‘>’ <expr> | <expr> ‘>>’ <expr>

| <expr> ‘<’ ID ‘<’ <expr> | <expr> ‘<<’ <expr>

| <expr> ‘|’ <expr> | <expr> ‘;’ <expr>

| ‘(’ <expr> ‘)’ | <call_expr_list>

| ‘zero’

<call_expr_list> ::= <call_expr_list> ‘,’ <call_expr> | <call_expr>

<call_expr> ::= ID ‘(’ <call_expr_list> ‘)’ | <local_call_expr>

| ID | NUMBER | STRING

| ‘signal’ | ‘true’ | ‘false’

<local_call_expr> ::= ID [NUMBER]

| <call_expr> <infix_bin_sn> <call_expr>

| <infix_un_sn> <call_expr>

| <prefix_bin_sn> (<call_expr> , <call_expr>)

<infix_bin_sn> ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’

| ‘==’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’ | ‘!=’

| ‘&&’ | ‘||’

<infix_un_sn> ::= ‘!’

<prefix_bin_sn> ::= ‘min’ | ‘max’

Table 4.1: BNF grammar of Orc syntax accepted by MOrc

4.2.2 Formal Analysis Using MOrc

This section explains and illustrates with examples how MOrc may be used to formally

analyze Orc programs. We begin by first defining the syntax of Orc accepted by the tool.

Admissible Orc Syntax

An Orc program can be specified in MOrc according to the BNF grammar shown in Ta-

ble 4.1, which is essentially an extension of standard Orc syntax, as defined in Section 2.3.1,

with built-in site names for standard arithmetic, relational, and logical operators. The gram-

mar also defines syntax for a local site call that returns the i-th element of a k-tuple x, with

0 ≤ i < k and k > 0, using the site call x[i]. Identifiers, represented by the token ID, are

sequences of alphanumeric characters beginning with an alphabetic letter. The tokens NUMBR

and STRING denote, respectively, natural numbers and double-quoted string literals.

72

Simulating Orc Programs

The simulation analysis panel implements RTM’s timed rewrite command trew. For simu-

lating Orc programs, one or more limits on the simulation task may optionally be specified,

which are particularly useful for simulating non-terminating Orc programs. The possible

simulation limits are: (1) a logical time limit, which specifies an upper bound on the logical

time value of the state of the program; (2) a publications limit, which specifies an upper

bound on the number of publications allowed before stopping the simulation; and (3) a

rewrite steps limit, which specifies an upper bound on the number of rewrite steps allowed,

where a rewrite step corresponds to a transition in the semantics of Orc (i.e. an applica-

tion of one of the rewrite rules in the rewriting semantics of Orc: a site call, an expression

call, the publishing of a value, a site return, or a time tick transition). If more than one

limit is specified, simulation proceeds until one of the limits is reached. As an example, we

can load the Metronome example, whose declaration was given in Section 2.3.2, from the

“Examples” panel on MOrc’s interface:

Metronome(t) := let(signal) | rtimer(t) >> Metronome(t) .

Metronome(5)

Giving a logical time limit of 20 time units, and a publications limit of 2 causes the simulation

to stop once the second publication of signal is made at logical time 5, with the resulting

Orc expression being of the form: ?h >> Metronome(5). Finally, a timeout - in seconds

- should be specified to guard against having simulations running forever. For instance,

running the simulation command on Metronome without specifying any simulation limits

will cause the tool to display a timeout message.

Reachability Analysis Using Search

The search analysis panel implements the breadth-first search command of RTM, which is

either timed (using tsearch), or untimed (using utsearch). Timed search takes into account

explicit time-stamps of states, and allows reasoning about timed properties of the timed

transition system of the subject Orc program, such as the number of publications within

73

$F[0-9]* Expressions $E[0-9]* Expr. names $M[0-9]* Site names
$V[0-9]* Values $X[0-9]* Variables $P[0-9]* Parameters
$VL[0-9]* Value lists $XL[0-9]* Variable lists $PL[0-9]* Param. lists

Table 4.2: Definitions of supported Orc expression pattern meta-variables

the first t time units, the time at which a specific value is published, or whether a pattern

is reachable after a given timeout. When timed search is selected, the user may specify the

type and value of the search time bound, or leave it unspecified for a timed search with no

time limit. Untimed search, on the other hand, ignores time-stamps on states. Therefore,

to allow for a potentially more efficient analysis, untimed search is performed with respect

to a slightly more abstract version of the rewriting semantics of Orc, ORC-UT, in which the

clock object is not maintained and only an untimed publications trace is recorded in the

state, which potentially reduces the reachable state space of a given program. This implies,

however, that only untimed properties can be specified and checked, as we will see below.

There are three configurable search parameters. First, an optional upper bound on the

number of solutions to be found can be specified. Otherwise, if left unspecified, the tool

will try to find all possible solutions. The second parameter, which is required, is the search

timeout, which specifies the timeout - in seconds - on the RTM process performing the

search. Finally, the third parameter is an option that when checked causes the search to

consider solutions corresponding only to terminal (deadlocked) states (i.e. states that cannot

be further rewritten). By default, if this option is not specified, the search considers all states

reachable by one or more rewrite steps.

To perform a search, the user may optionally provide an Orc expression pattern that a

solution state must satisfy. If specified, the search command will look for states whose Orc

expression components match at the top the given pattern. An Orc expression pattern can

be either a concrete Orc program specified according to the Orc syntax BNF grammar above

in Section 4.2.2, for example let(x) and if(x == y) >> let(true), or a symbolic pattern

containing pattern meta-variables ranging over terms of appropriate types. Syntactically,

a pattern meta-variable is an identifier of the form $[A-Z][A-Z]?[0-9]*, where the prefix

dollar sign $ distinguishes pattern meta-variables from Orc variables, and the first one or two

uppercase letters specify the type of the terms over which the pattern meta-variable ranges.

74

Table 4.2 lists the currently supported meta-variables and their corresponding types. For

example, the pattern $F > $X > $F matches a sequential composition of two identical sub-

expressions, while the pattern $M($VL) | $E(1, $P) matches a parallel composition of an

enabled site call and an expression call with two parameters, the first of which is the value

1. Pattern meta-variables, which are internally translated into Maude meta-variables of

appropriate sorts, enable symbolic reachability analysis without requiring users of MOrc to

be familiar with underlying Maude.

In addition to Orc expression patterns, semantic constraints on publications of Orc values

can also be specified when using search. First, the reachable state space of an Orc program

can be constrained by an upper bound on the number of publications allowed. Further-

more, it is possible to specify timed constraints (for timed search) or untimed constraints

(for untimed search) on what values are published (Type I constraints) or the number of

values published (Type II constraints) in a state. MOrc provides two generic templates,

corresponding to both types, for the specification of such constraints, which are internally

translated into state predicates in RTM. For example, a timed Type I constraint may be

that the Orc program must have published a signal within the first five time units of its

execution, whereas an untimed Type II constraint may require that the program must have

published at least two values. The user may specify as many such constraints as desired

through MOrc’s interface. For a search task, the solution states will have to satisfy all the

specified publication constraints (i.e., the conjunction of the corresponding state predicates

in RTM).

As an example, consider the Delayed Response example from the list of examples on

the right pane, which is specified as:

DelayedResponse(x,t) := rtimer(t) >> let(z) < z < x() .

DelayedResponse(clock, 5) | let(signal)

Using timed search with a strict upper bound of 5 time units (i.e. t < 5), and using the

default values for the other search parameters, we may verify the simple property that the

site response from clock (which is the value 0) is never published before 5 time units have

passed. This can be achieved by adding a Type I constraint that looks for states with time-

75

stamps strictly less than 5 in which the value 0 has been published, and making sure that

no solution is found.

Model-checking LTL formulas

The model checking analysis panel implements the linear temporal logic (LTL) model check-

ing command mc of RTM. As for search, model checking is either untimed, so that state

time-stamps are abstracted away, or time-bounded, (normally) with a given time bound, in

which a property is checked in the reachable (timed) state space up to the given time bound.

For efficiency of analysis, untimed model checking is based on a version of the rewriting se-

mantics of Orc, namely ORC-NT, in which publication traces are not kept in the state, which

implies that properties that can be verified for this type of model checking analysis cannot

refer to what, or how many, publications are made. This is in contrast to time-bounded

model checking, for which properties may refer to publications and the times at which they

were made. Other parameters include specifying: (1) an optional upper bound on the num-

ber of publications (for time-bounded model-checking), which restricts the analysis to the

subset of the reachable state space satisfying this bound, and (2) a model checking timeout,

which is required, on the RTM process.

The LTL property to be verified in MOrc can be either the generic absence-of-deadlock

property, which is a safety property that stipulates that no reachable state is terminal, or

deadlocked, or, alternatively, a custom, user-defined formula, typically based on user-defined

atomic predicates. When the custom LTL property radio button is pressed, the form fields

for specifying the property and any atomic predicates are displayed. MOrc provides three

generic templates for specifying named, parametric atomic predicates:

1. Expression pattern predicate, which specifies a predicate that is true in a state whose

expression component matches at the top the given pattern. The pattern can be

specified as described before in Section 4.2.2. Expression pattern predicates can be

used in both untimed and time-bounded model checking analyses.

2. Publication predicate, which specifies a predicate that is true in a state in which the

76

<formula> ::= ‘True’ | ‘False’

| AP (* An atomic proposition *)

| ‘O’ <formula> (* Next *)

| <formula> ‘U’ <formula> (* Until *)

| ‘<>’ <formula> (* Eventually *)

| ‘[]’ <formula> (* Always *)

| <formula> ‘W’ <formula> (* Weak until *)

| <formula> ‘R’ <formula> (* Release *)

| <formula> ‘/\’ <formula> (* And *)

| <formula> ‘\/’ <formula> (* Or *)

| ‘~’ <formula> (* Not

| <formula> ‘->’ <formula> (* Implies *)

| <formula> ‘<->’ <formula> (* Equivalent *)

| <formula> ‘|->’ <formula> (* Leads to *)

| <formula> ‘=>’ <formula> (* Always implies *)

| <formula> ‘<=>’ <formula> (* Always equivalent *)

Table 4.3: BNF grammar of LTL formulas

given value is published within the given time constraints. This predicate is only

meaningful for time-bounded model checking.

3. Publication length predicate, which specifies a predicate that is true in a state in which

at least the given number of publications are made within the given time constraints.

This predicate is also only meaningful for time-bounded model checking.

The LTL formula field, which is a required field when specifying a custom formula, allows

for specifying an LTL formula that may make use of user-defined atomic predicates according

to the BNF grammar shown in Table 4.3.

In addition to the user-defined predicates above, the set of atomic predicates AP currently

includes as a predefined predicate (that may also be used in the specification of the LTL

formula) the predicate ”deadlock”, which is true in deadlocked states.

We illustrate how the model-checking interface panel may be used by means of two spec-

ifications of the Dining Philosophers problem in Orc, DF1 and DF2, given in the examples

panel on the right. We first verify the mutual exclusion property for both specifications,

which entails that no two philosophers (processes) are eating (the critical section) at the

same time, using untimed model-checking and the custom formula:

77

[] ~ ((eat1 /\ eat2) \/ (eat2 /\ eat3) \/ (eat1 /\ eat3))

where eat1, eat2 and eat3 are user-defined Orc expression pattern predicates that are true

in a state when the corresponding philosopher process is about to call the site eat, i.e. when

the expression component of the state matches the pattern eat(i) >> $F | $F1 for atomic

predicate eati. We may also show that the no-deadlock property holds for DF2 but not for

DF1, using untimed model-checking and the predefined property “Absence of Deadlock” in

MOrc.

To illustrate time-bounded model checking in MOrc, we use a specification in Orc of

Fischer’s protocol with two processes, which is a timed, shared-variable-based, synchroniza-

tion protocol (assuming atomic reads and writes) for controlling multi-process access to

a critical section (see [95] for a detailed discussion of the protocol and variations). The

specification in Orc, named FPNT , uses two sites: (1) shared, which represents the shared

(synchronization) variable, which can be set to a positive value, reset to 0, or waited on (for

a possibly unbounded amount of time) to be reset again; and (2) csection, which represents

the critical section and blocks, when called, for a fixed (finite) period of time before re-

sponding back (current specification of csection responds after 2/3 time units elapses). The

mutual exclusion property can be verified in FPNT using untimed model checking of the for-

mula: [] ~ (cs1 /\ cs2), where cs(i), for i ∈ {1, 2}, are user-defined atomic predicates

specified using pattern expressions of the form csection(i) >> $F1 | $F2. Alternatively,

time-bounded model checking (with a reasonable time bound, say 15) may also be used to

verify this property up to the given bound. Another important property that is desired in

such a protocol is absence of livelock, so that some progress is being made by either process

in the protocol. This can be verified using untimed (or time-bounded – with a reasonable

time bound) model checking and the formula: [] <> (cs1 \/ cs2).

Finally, we briefly describe a third example, illustrating the use of publication predicates,

based on the specification of a simplified online auction management application Auction,

which manages posting new items for auction, coordinates the bidding process, and an-

nounces winners (the reader is referred to [55] for a detailed description of this example).

The specification of Auction, which can be loaded from the examples menu on the right,

78

publishes the pair of values (N, “bidStarted ′′) when a bidding process is started for item N ,

and the pair (N, “won ′′) when its auction ends. Also, for this instance of Auction, we

assume a single seller with an item, labeled 1910, available for auction for 5 time units. A

property that is typically required in an auction management system is that an item with at

least one bid is eventually sold. This property can be specified using Type I publication pred-

icates, which specify constraints on what values are published, using the values published

by the expression. In particular, we first add a Type I atomic predicate, named bid, and

specify the tuple (1910, ‘‘bidStarted’’) as the published value with no time constraints

(i.e. time ≥ 0). Similarly, we add a second Type I predicate, “won”, with value (1910,

‘‘bidStarted’’) and no particular time constraint. Time-bounded model checking with a

time bound greater than or equal to 5 of the formula bid |-> won verifies that the desired

property holds in Auction.

79

CHAPTER 5

DISTRIBUTED IMPLEMENTATION OF ORC

In this chapter, we propose a seamless, semantics-preserving transformation path from a

language specification to a distributed language implementation, which substantially nar-

rows the gap between the theoretical level of a distributed language like Orc and an actual

implementation. In addition to its formal correctness guarantees, the transformation path

enables formally reasoning about programs written in such a language in their implemented

form. To demonstrate its effectiveness, the transformation method is applied to Orc to arrive

at a distributed implementation of Orc with physical timing. This semantics-based trans-

formation builds on the object-based rewriting logic semantics of Orc, given by ROrc and

discussed in Chapter 4, and which we have shown semantically equivalent to Orc’s intended

semantics.

The key idea behind this transformation methods is that concurrent rewriting is both

a theoretical model and a practical method of distributed computation. Specifically, in

Maude, asynchronous message-passing between distributed objects can be accomplished by

concurrent rewriting via sockets. For Orc, the objects are either Orc expressions, which play

the role of clients, or sites, which play the role of servers. But since for Orc real time is of

the essence, an important issue that must be addressed is how real time is supported in the

implementation. Here, the key observation is that Orc programs assume an asynchronous and

possibly unreliable distributed environment such as the Internet, and therefore implicitly rely

on their local notion of time for their computations. As a consequence, time is supported by

local ticker objects, that interact in a tightly-coupled way with their co-located Orc objects.

Formal verification of Orc programs running in the rewriting-based distributed implemen-

tation can be performed indirectly by formally specifying both Maude sockets, supporting

external communication, and the ticker objects, supporting the real-time behavior of Orc

80

expressions. In this way, both distributed message-passing computation between Orc expres-

sion clients and web sites, and time elapse are faithfully simulated in the formal specification,

in which our desired program can then be model checked. As we explain in this chapter,

under reasonable assumptions about the granularity of time chosen for the tickers and the

Orc expressions, this simulated formal analysis gives us corresponding guarantees about the

actual Orc programs running in the actual distributed Orc implementation.

5.1 Dist-Orc: A Distributed Implementation of Orc

In general, the method of transforming a real-time, object-based rewriting semantics into a

real-time distributed implementation consists of three fundamental steps:

1. Defining the distributed structure of the system being specified by specifying locations

and a globally unique naming mechanism for objects

2. Specifying the rewriting semantics of the underlying communication model for dis-

tributed objects in the system

3. Devising a mechanism for capturing physical, wall clock timing information and ex-

tending the rewriting semantics of time to incorporate this information

As explained below, a crucial enabling feature for steps (2) and (3) above is Maude’s support

for socket-based communication [20]. Through sockets, a Maude process is able to exchange

messages with other processes, including other Maude instances, according to the connection-

oriented TCP communication protocol.

By applying these transformation steps to the provably correct real-time, object-based

rewriting semantics of Orc, ROrc, we obtain in Maude a real-time, distributed implemen-

tation of Orc, which we call Dist-Orc, which is deployable on a physically distributed

communication network. The transformation entails only minor modifications to ROrc, such

as the changes of data representation needed to exchange data through sockets. This consid-

erably increases our confidence in the correctness of the implementation and greatly narrows

the gap between implementation and formal analysis.

81

Below, we discuss in some detail how this method is applied to Orc’s rewriting se-

mantics, outline the design and implementation choices in Dist-Orc and explain how

they are specified in Maude. The full specification of Dist-Orc is available online at

http://www.cs.illinois.edu/homes/alturki/dist-orc.

5.1.1 Distributed Orc Configurations

In the distributed implementation, an Orc configuration may span multiple nodes in an

interconnected network, and is thus called a distributed Orc configuration. Both expression

and external site objects in a distributed configuration are identified partly by their location

(a term of the sort Loc), which is defined as a combination of an address (such as a URI or

an IP address) and a port number.

sort Loc . op loc : String Nat -> Loc [ctor] .

To fully identify expression and external site objects, expression object identifiers, of sort

EOid, and external site identifiers, of sort XSOid, also include a locally unique sequence

number.

op s : Loc Nat -> XSOid [ctor] . op e : Loc Nat -> EOid [ctor] .

Internal site objects, such as if and rtimer , are identified simply by their names, since

their locations are implicit.

Within a distributed Orc configuration, a local configuration (a term of sort LocalSystem),

or simply a configuration, which is a configuration that is located at some node, is managed

by an independent instance of Maude. In addition to expression and site objects, each

such configuration contains a clock object for maintaining local time and a socket portal for

exchanging messages with external objects in other configurations (more on this below).

sort LocalSystem . op [_] : Configuration -> LocalSystem [ctor] .

The operator [] encapsulates a local configuration to support managing the local clock and

the effects of time elapse (similar to the ideas presented in Real-Time Maude (RTM) [69]).

82

5.1.2 Sockets and Messaging

In agreement with the Orc theory, the communication model between Orc expressions and

sites follows very closely that of the client-server architecture, where Orc expressions are

client objects requesting and using services from sites as server objects. In particular, when

an expression object O within some Orc configuration makes a site call with actual parameters

C to an external site N located at loc(SR, PT), with SR and PT the node’s address and port,

a site call message of the form s(loc(SR, PT), N) <- sc(O, C, H) is created within the

configuration, where S(loc(SR, PT), N) is the site object identifier, as described above,

and H is a temporary handle that uniquely identifies this call. This message then triggers

the creation of a client socket to the called site through the following equation:

eq s(loc(SR, PT), N) <- sc(O, C, H)

= < p(O, H) : Proxy | param : C, response : "" >

createClientTcpSocket(socketManager, p(O, H), SR, PT) .

Beside asking Maude’s socket manager for a client socket to the site, the rule creates a

temporary proxy object identified by p(O, H), which manages external communication for

this particular site call on behalf of the expression object O. The proxy object also serves

as a buffer for the site’s response, since TCP sockets do not preserve message boundaries in

general.

If a client TCP socket to loc(SR, PT) is successfully created, Maude introduces the

message createdSocket(OP, socketManager, SC) targeted to the proxy OP into the con-

figuration, which causes the proxy to send the site call message to the external site object

through the socket SC, as specified by the following rewrite rule (the variable AS denotes the

rest of the attributes in the object):

rl [SendExtCall] :

< OP : Proxy | param: C, AS > createdSocket(OP, socketManager, SC)

=> < OP : Proxy | param: C, AS > send(SC, OP, (toString(C) + sep)) .

where toString is a function that properly serializes Orc values into strings that can be

transmitted through sockets. The function uses a separator sep to distinguish message

83

boundaries. At the other end, Orc values are built back from such strings using another

function toValue. Orc value serialization is described in detail in Section 5.1.3 below.

There is also the possibility of an unsuccessful client socket creation attempt due, for

example, to an unavailable server or a network failure. In this case, Maude reports the error

by issuing the message socketError(OP, socketManager, S), with S a string describing

the cause of the error. Such an error is a run-time error, which, for simplicity, is considered

fatal in Dist-Orc, so that the site call and any subsequent transitions that depend on it

will fail.

Once the site call message is sent, the reply sent(OP, SC) appears in the configuration

and the proxy object waits for a response by introducing a receive(SC, OP) message:

rl [RecExtResponse] :

sent(OP, SC) < OP : Proxy | AS > => < OP : Proxy | AS > receive(SC, OP) .

When some string S is received through the socket, the message received(OP, OD, S)

appears, and the proxy object stores S in its buffer and waits for further input.

rl [AccumExtResponse] :

< OP : Proxy | param: C, response: S’ > received(OP, SC, S)

=> < OP : Proxy | param: C, response: S’ + S > receive(SC, OP) .

The proxy will keep waiting for and accumulating input through the socket until it is remotely

closed by the site, when the reply closedSocket appears. At this point, the site response

is reconstructed and handed in to its expression object:

rl [ProcessExtResponse] :

< p(O,H) : Proxy | response: S’ , AS > closedSocket(p(O,H), SC, S)

=> O <- sr(toValue(S’), H) .

On the server side, when a site is first initialized, it creates a server TCP socket, through

which it keeps listening for incoming connections.

eq [InitializeSite] :

84

< s(loc(SR, PT), N) : Site | op : free, status : idle, AS >

= < s(loc(SR, PT), N) : Site | op : free, status : initializing, AS >

createServerTcpSocket(socketManager, s(loc(SR, PT), N), PT, 10) .

rl [CreatedServerSocket] :

createdSocket(xOS, socketManager, LISTENER)

< xOS : Site | op : free, status : initializing , AS >

=> < xOS : Site | op : free, status : active , AS >

acceptClient(LISTENER, xOS) .

Once a client has been connected with a socket CLIENT, the site becomes ready for an

incoming site call through CLIENT, while listening for other potential clients:

rl [AcceptedClient] :

acceptedClient(xOS, LISTENER, IP, CLIENT)

< xOS : Site | op : free, status : active, AS >

=> < xOS : Site | op : free, status : active , AS > receive(CLIENT, xOS)

acceptClient(LISTENER, xOS) .

The site then accumulates the request from CLIENT (which contains the actual parameters

for the site call):

crl [AccumulateRequest] :

< xOS : Site | op : free , buffer : S, AS > received(xOS, CLIENT, S’)

=> < xOS : Site | op : free , buffer : S + S’, AS > receive(CLIENT, xOS)

if find(S + S’, sep, 0) == notFound .

The rule above buffers the serialized request by checking whether the message boundary

indicator, given by sep, has been received. Once the message is received in its entirety, the

following rule fires:

crl [PrepareReply] :

received(xOS, CLIENT, S’) < xOS : Site | op : free , buffer : S, AS >

=> < xOS : Site | op : exec(toValue(substr(S’’, 0, length(S’’)

85

+ (- length(sep)))), CLIENT),

buffer : "", AS >

if S’’ := S + S’ /\ n := find(S’’, sep, 0) .

This rule causes the site to process the call using the function exec(...), whose definition

is site-dependent. When appropriate, the site might publish a value as a result of this site

call, which then causes a response to be sent back to the client:

eq CLIENT <- sr(c, xOS, 0) < xOS : Site | AS >

= < xOS : Site | AS > send(CLIENT, xOS, toString(c)) .

Once the response is sent, the site closes the socket:

rl [ReplySent] :

sent(xOS, CLIENT) < xOS : Site | AS >

=> < xOS : Site | AS > closeSocket(CLIENT, xOS) .

rl [ClosedClientSocket] :

closedSocket(xOS, CLIENT, S) < xOS : Site | AS >

=> < xOS : Site | AS > .

Note that, when a site remains silent, no response is generated, and the client blocks waiting

for a response through the other end of the open socket CLIENT.

It is worth noting here that, just like in any other physically distributed communication

mechanism, messaging through sockets is inherently prone to various potential communi-

cation problems. In addition to the socket creation errors mentioned above, these include

dropped connections, lossy channels and unpredictably long delays. In Dist-Orc, such

problems are dynamic errors that might be exposed while executing a distributed Orc pro-

gram, and typically cause the Orc objects in which they appear to fail.

5.1.3 Serialization of Orc Values

Local Orc configurations communicate with each other by external site calls and returns,

which involve exchanging Orc values either as actual parameters to calls or as return values.

86

Since this communication takes place through Maude’s TCP sockets, Orc values need to be

serialized as transferable strings just before they are transmitted, and then reconstructed

back to Orc values just after they are received. Similarly to how this issue was previously

approached in Maude [96, 97], we utilize Maude’s meta-level capabilities, provided by the

module META-LEVEL, to produce proper serialization and reconstruction procedures for Orc

values. More specifically, we define a module VALUE-STRING-CONVERSION that imports both

the PARAMETER module, containing declarations of Orc value sorts and operators, and the

META-LEVEL module.

mod VALUE-STRING-CONVERSION is

inc PARAMETER .

pr META-LEVEL .

...

endm

Within this module, two main operators are defined: toString and toValue, which were

briefly introduced above. The operator toString defines a partial function that attempts

to convert an Orc value or a list C of values (a term of sort ValueList) into a string S in

Maude.

op toString : ValueList ~> String .

eq toString(c(S)) = S .

eq toString(C) = qidListString(metaPrettyPrint(

upModule(’PARAMETER, false), upTerm(C), none)) [owise] .

Encapsulated strings of the form c(S) are easily converted into strings by using their

underlying string values, while conversion of any other value or list of values is performed

by building up a string out of their meta-representations. The operator qidListString

creates a string out of the list of quoted identifiers returned by the meta-level operator

metaPrettyPrint representing the different values in C (see [20] for a detailed description

of the meta-level operators).

The dual operator is toValue, which is defined in VALUE-STRING-CONVERSION and is

partially shown below.

87

op toValue : String -> Value .

ceq toValue(S) = downTerm(getTerm(metaParse(

upModule(’PARAMETER, false), stringQidList(S), ’Value)), error(S))

if substr(S, 0, 6) == "signal" ---- signal value

or substr(S, 0, 4) == "b ‘(" ---- bool

or substr(S, 0, 4) == "l ‘(" ---- tuple

or substr(S, 0, 4) == "s ‘(" ---- site object id

or substr(S, 0, 3) == "let" ---- ‘let’ site id

...

or substr(S, 0, 7) == "_‘,_ ‘(" . ---- ValueList

eq toValue(S) = c(S) [owise] . ---- arbitrary string

If the input string S to the function toValue matches the meta-representation of a known

Orc value (or list of values), which is decided by examining an appropriate prefix of S,

the first equation applies and the conversion process is carried out by Maude’s meta-level

operators. Otherwise, the string is considered an encapsulated Orc string value. The op-

erator stringQidList converts a string built by qidListString back into a list of quoted

identifiers to be processed by the meta-level (see [56] for more details).

5.1.4 Timed Behavior

Orc is a timed theory. Therefore, a faithful implementation of Orc requires capturing its

timed behaviors. The notion of time in a language implementation is typically captured

by a clock against which events in a program in that language may take place. There are

several different ways in which clocks can be used to maintain timing information. For our

distributed implementation, however, a number of requirements influence the design choices

we have made. First, Orc’s communication model is asynchronous. This suggests the use

of distributed clocks (as opposed to a centralized clock), where each node in the distributed

configuration maintains its local clock. Indeed, the distributed clocks architecture empha-

sizes Orc’s philosophy of having the communicating expressions and sites as loosely coupled

as possible. Furthermore, for all the applications we have so far specified in Orc, distributed

88

Maude Instance
[... < Orc Expr > ...]

Ticker

Node A

Maude Instance
[... < Orc Site > ...]

Ticker

Node B

Figure 5.1: A schematic diagram illustrating the general structure of a distributed Orc
configuration. Dashed rectangles represent node boundaries, solid rounded rectangles
represent local configurations, and darkened circles represent endpoints of TCP sockets.

clock synchronization is not required for preserving program correctness. This is primarily

due to the fact that in most of the applications clocking information is used either locally (for

example with the local rtimer site) or to time incoming responses. This greatly simplifies

the implementation, since no clock synchronization mechanism, such as Lamport counters

[98] or vector clocks [99, 100], is needed. Finally, since the implementation supports com-

munication using sockets with external objects, which is inherently unpredictable given the

possible transmission delays and network failures, any design of a clocking mechanism that

depends on external communication with expressions or sites would also be unpredictable

and unreliable.

Therefore, in Dist-Orc, for each node in the distributed configuration, the local clock is

managed by an independent and local ticker object with access to the node’s real-time system

clock. Since in Maude there is currently no direct support for accessing the system clock,

we employ sockets as a means of transmitting clock time ticks to Maude. It is important

to note here that, although we use sockets to implement it, the ticker object is local to its

corresponding Orc configuration and is thus guaranteed to provide fairly accurate clocking

information. Figure 5.1 illustrates schematically the deployment architecture of a distributed

Orc configuration with timing.

The diagram in Figure 5.2 outlines the steps involved in initializing a connection with

the co-located ticker object and receiving the first clock tick. Upon initialization, the

clock object within an Orc configuration requests a server socket, by issuing the message

89

Maude Process

Ticker
Process

Orc configuration

< OC:Clock | ... >

socketManager 1

2

5

3

6

1: createServerTcpSocket(socketManager, OC, PORT, ...)
 - creates the server socket LISTENER,
 - elicits createdSocket(OC, socketManager, LISTENER)

LISTENER

TICKER

2: acceptClient(LISTENER, OC)
3: Ticker requests a connection through LISTENER
4: acceptedClient(OC, LISTENER, IP, TICKER)
 - creates the client socket TICKER

5: receive(TICKER, OC)
6: Ticker sends a tick string S to TICKER
7: received(OC, TICKER, S)

4

7

Figure 5.2: The steps involved in establishing a connection with the ticker object and
receiving clock ticks.

createServerTcpSocket(...), to be used for listening for a connection from the local ticker

process, which is a Java process that is run in every node of a distributed configuration. The

ticker process uses the built-in Java classes Timer and Socket to generate and send a tick

message every t milliseconds to its corresponding Maude process, where t is a positive integer

value. The clock object waits for a connection as soon as the server socket is created:

rl [InitClockSocket1] :

< OC : Clock | AS > createdSocket(OC, socketManager, LISTENER)

=> < OC : Clock | AS > acceptClient(LISTENER, OC) .

where LISTENER is the newly created clock server socket. Once the ticker object is con-

nected, the message acceptedClient(OC, LISTENER, IP, TICKER) appears, with IP the

originating address of the ticker object, and TICKER the newly created client socket for com-

municating with the ticker object. This causes the clock object to become ready for incoming

clock ticks according to the following rule:

rl [InitClockSocket2] :

90

acceptedClient(OC, LISTENER, IP, TICKER) < OC : Clock | AS >

=> < OC : Clock | AS > receive(TICKER, OC) .

Upon receiving a clock tick, the clock object updates its clock and reflects the effect of

time elapse on the rest of the Orc configuration using the time-updating function delta,

which decrements the relative time delays in pending messages.

crl [tick] :

[received(OC, TICKER, S) < OC : Clock | clk: c(N) > CF]

=> [< OC : Clock | clk: c(N + 1) > receive(TICKER, OC) delta(CF)]

if find(S, "#", 0) =/= notFound .

The variable CF denotes the rest of the local configuration. Recall that the operator [

CF] encapsulates the local configuration CF. The equational condition in the above tick

rule checks whether the tick message has been fully received, as buffering is (again) required

to ensure proper message transmission (which is specified by a different rule similar to the

rule [AccumulateRequest] shown in Section 5.1.2 for sites). The process of receiving and

processing time tick messages keeps repeating as long as the Ticker object is supplying those

ticks through the clock socket.

An important observation is that the use of physical, wall clock time in Dist-Orc to

time Orc transitions eliminates the possibility of Zeno behaviors, which are a well-known

artifact of logical time. This implies that for the intended semantics to be preserved, and

hence for the correctness of the analysis later in Section 5.3, the transitions internal to

an Orc configuration must be completed before the next real-time clock tick arrives. In

other words, a single clock tick should be long enough to accommodate the instantaneous

transitions of an Orc configuration. The minimum length of a clock tick so that this property

is satisfied is specific to the Orc application and the machines used to run it. For example,

for the distributed auction case study below, and using a 2.0GHz dual-core node with 4GB

of memory, the clock tick can be made as short as 0.2 seconds. In general, deciding on a

minimum size for a clock tick given an application is hard to anticipate and is typically

accomplished through experimentation.

91

Posting(seller) =def seller(“postNext”) > x > Auction(“post”, x)� rtimer(1)�
Posting(seller)

Bidding =def Auction(“getNext”) > (id, d,m) > Bids(id, d,m, 0) > (wn,wb) >
(if (wn = 0)� Bidding()
| if (wn 6= 0)� Auction(“won”, wn, id, wb)� Bidding())

Bids(id, d, wb, wn) =def (if (d ≤ 0)� let(wb,wn)
| if (d > 0)� clock() > ta > min(d, 1) > t > TimeoutRound(id, wb, t) > x >

(if (x = signal)� Bids(id, d− t, wb, wn)
| if (x 6= signal)� rtimer(1)� clock() > tb > Bids(id, d− (tb − ta), x0, x1)))

TimeoutRound(id, bid, t) =def

let(x) < x < (rtimer(t) | Bidders(“nextBidList”, id, bid) > bl > MaxBid(bl))

Figure 5.3: Orc expressions in the Auction program

5.2 Case Study: A Distributed Implementation of Auction

To illustrate Dist-Orc, we describe a distributed implementation Dist-Auction of the

online auction management application in Orc, Auction, which was first introduced in [55],

and whose expression declarations are also shown in Figure 5.3 for reference. The distributed

configuration of the auction application contains two expression configurations: one with the

Posting expression object, which is responsible for retrieving and posting items for sale by a

given seller, and the other contains the Bidding expression object for managing the bidding

process. For instance, the initial local configuration for the Posting expression object has

the form:

[<>

< C : Clock | clk : c(0) >

createServerTcpSocket(socketManager, C, 54200, 10)

< e(loc("10.0.0.2", 44200), 0) : Expr |

env: Posting s := s("postNext") > x > AUCTIONID("post",x) >> rtimer(1) >>

Posting(s),

exp: Posting(SELLERID), ... > ...]

where SELLERID and AUCTIONID are object identifiers for the Seller and Auction sites, re-

spectively. The Posting expression declaration is stored in the environment attribute env of

92

Posting Expr Bidding Expr

Seller

Auction Bidders

MaxBid

10.0.0.2:44200 10.0.0.3:44300

10.0.0.4:44800

10.0.0.5:44600 10.0.0.6:44400

10.0.0.7:44700

Figure 5.4: The deployment architecture of the Dist-Auction Orc program

the expression object, while the attribute exp keeps the actual expression to be evaluated.

The configuration also includes objects for internal (fundamental) sites, such as if and let ,

which are omitted here for brevity.

In addition to the Posting and Bidding expression configurations, there are four site object

configurations in the distributed configuration of Dist-Auction, one configuration for each

of the sites assumed by Auction, namely Seller , Bidders , MaxBid , and Auction. For

example, the initial local configuration for a Seller site with two items for auction (identified

by numbers 1910 and 1720) may have the form:

[<>

< C : Clock | clk : c(0) >

createServerTcpSocket(socketManager, C, 54800, 10)

< s(loc("10.0.0.4", 44800), 0) : Site |

name : ’seller, state : (item(1910, 5, 500), item(1720, 7, 700)) , ... >

createServerTcpSocket(socketManager, s(loc("10.0.0.4", 44800), 0), 44800, 10)]

We note that the site attempts to create two server sockets: one for listening to expression

object requests and the other for listening to the local ticker object.

Each local configuration in Dist-Auction may run on a different node in a communication

network. The diagram in Figure 5.4 depicts a physical deployment of Dist-Auction, with

bidirectional arrows representing communication patterns. A physical deployment can be

93

conveniently achieved using an appropriate shell script to run Maude, load the Dist-Orc

module and Dist-Auction, and execute the external rewrite command erew. For example,

with initAuction, an operator that creates the initial state of the Auction site configuration,

the following command executes the Auction site:

echo "erew initAuction ." | maude orc-distributed.maude auction-manager.maude

with the following sample output, generated by the print attribute of Maude statements

(with auction items 1910 and 1720):

00 erewrite in DIST-AUCTION : initAuction .

01 Site "10.0.0.5":44600 0 initializing... Site is ready.

02 Clock server socket created.

03 Awaiting connection from ticker ...

04 Ticker connected.

05 Received "post"

06 Item 1910 posted

07 Received "getNext"

08 Bidding to start for 1910

09 Tick! ... (5 time ticks)

10 Received "won"

11 Item 1910 won by Bidder 3

12 Received "getNext"

13 Tick!

14 Received "post"

15 Item 1720 posted

16 Bidding to start for 1720

17 Tick! ... (6 time ticks)

18 Received "won"

19 Item 1720 won by Bidder 3

20 Received "getNext"

21 ...

In this particular run, the auction site receives a post request from the Posting expression

object and posts item 1910. Meanwhile, a request for the next item to be auctioned is

received from the Bidding expression object. The auction site then publishes the item

details back to the Bidding expression, which takes care of orchestrating the bidding process

for this item. After five time units (the duration of the auction for item 1910), Bidder 3 is

announced as the winner and a similar process is repeated for the second item 1720.

5.3 Formal Analysis of Distributed Orc Programs

The real-time, distributed implementation of Orc described above is very useful in proto-

typing and deploying Orc programs on physically distributed nodes in an interconnected

network. As we saw in Section 5.2, the implementation enables observing actual possible

94

behaviors in practical environments, in which the effects of physical limitations of commu-

nication networks are taken into account.

However, the implementation technique as outlined above does not result in a language

specification that is immediately amenable to more rigorous formal analysis such as reach-

ability analysis and model-checking. This is fundamentally due to the fact that the imple-

mentation technique makes use of facilities that are outside the scope of the Maude formal

analysis tools. In particular, there are two fundamental facilities in the implementation that

complicate formal analysis: TCP sockets and the ticker objects. While support for sockets is

built into Maude, sockets do not have a direct and immediate logical representation that can

be subjected to formal analysis. Furthermore, the ticker objects, being written in another

general-purpose language with access to the system’s real, wall-clock time, introduce yet

another obstacle in achieving a formally analyzable specification.

Our solution to this problem, which we explain in some detail in the rest of this section,

is to develop rewriting logic specifications for these facilities, so that the distributed imple-

mentation can be turned, with minimal effort, into a formally analyzable specification in

Maude. In particular, both Maude sockets and externally defined configuration clocks must

be formally modeled at the object-level. This is discussed next.

5.3.1 Formal Specification of TCP Sockets

Maude’s TCP sockets can be formally specified by defining abstractions of Maude instances,

sockets, and their behaviors. We develop a rewriting specification RSocket of sockets, which

is based on previous work on Mobile Maude [97, 20] and algorithmic skeletons in Maude [96].

The specification models sockets as a rewrite theory RSocket, in which Maude instances are

abstracted with objects of the class Process , and server and client sockets as objects of

ServerSocket and Socket classes, respectively. Abstract processes and sockets in RSocket in-

troduce a higher layer of abstraction in which socket objects mediate communication between

processes, which encapsulate local Orc configurations.

More specifically, a process object has the form 〈PID : Process | sys : S〉, with PID an

object identifier and S an encapsulated local configuration. A client socket object of the

95

form

〈SID : Socket | endpoints : [PID1,PID2]〉

abstracts a bidirectional client TCP socket set up between processes PID1 and PID2 (where

[PID1,PID2] is an unordered pair), while a server socket has the form:

〈SID : ServerSocket | address : A, port : N, backlog : K〉

where K is a positive integer specifying the maximum allowed number of queue requests.

While client sockets are created and destroyed during the course of execution of the different

configurations, server sockets are created for server objects using a Manager object, which

abstracts Maude’s socket manager (which we first encountered in Section 5.1.2). The man-

ager object itself is a simple object maintaining a counter for creation of fresh socket object

identifiers.

To maximize specification modularity and reusability, socket objects in RSocket have in-

terfaces (i.e. message formats) that are almost identical to those of Maude sockets. This

minimizes the need for making any changes in the distributed implementation of Orc when

switching between Maude sockets and their abstractions given by RSocket.

Different useful abstractions of socket behaviors can be defined. For the formal model

of Dist-Orc, we choose an abstraction level that captures most interesting behaviors and

yet can be efficiently analyzed. The abstraction essentially considers potential client socket

creation errors and a somewhat limited form of communication delays and failures. This

design choice abstracts away uninteresting behaviors, such as server socket creation problems,

and approximates actual messaging problems, such as unavailable or unreachable servers,

and unreliable networks. The main features of RSocket are explained below.

Server socket creation is straightforward, and is modeled with the following rewrite rule:

rl [CreateServerTcpSocket] :

< PID : Process | sys : [createServerTcpSocket(socketManager, O, PT) CF] >

< socketManager : Manager | counter : N >

=> < PID : Process | sys : [createdSocket(O, socketManager, server(N)) CF] >

96

< socketManager : Manager | counter : (N + 1) >

< server(N) : ServerSocket | address : "localhost", port : PT > .

This rule creates a server socket object, identified by server(N), with an arbitrary address

and a given port, and transforms the socket creation request message into an appropriate

response.

When an Orc object within a process attempts to create a client socket to a server by is-

suing the message createClientTcpSocket (socketManager, O’, SR, PT), two different

transitions are possible, depending on whether the client socket creation is successful or not.

The success case is modeled by the following rule:

rl [CreateClientSocketSuccess] :

< PID : Process | sys : [acceptClient(server(N), O) CF] >

< PID’ : Process | sys : [createClientTcpSocket(socketManager, O’, SR, PT) CF’] >

< socketManager : Manager | counter : M >

< server(N) : ServerSocket | address : SR, port : PT >

=> < PID : Process | sys : [acceptedClient(O, server(N), SR, socket(M)) CF] >

< PID’ : Process | sys : [createdSocket(O’, socketManager, socket(M)) CF’] >

< socketManager : Manager | counter : (M + 1) >

< server(N) : ServerSocket | address : SR, port : PT >

< socket(M) : Socket | endpoints : [PID : PID’] > .

In this rule, the server is in a state accepting incoming connections from clients, specified

by matching a server at address and port SR:PT that is accepting connections using the

message acceptClient(...). The rule also creates a socket object socket(M) that will

mediate communication between the client and the server.

Client socket creation may also fail, representing situations where the server is unreachable

or unavailable. This case is modeled by a similar rule, labeled [CreateClientSocketFail],

with the same starting state as the rule above but with a different resulting state, where

now the client process gets the socketError (O’, socketManager, "") message from the

socket manager, and no new socket object is created.

97

Once a socket is successfully created, a connection through this socket is established,

and bidirectional message exchanges may take place using send(...) and receive(...)

messages. The following rule specifies message exchange between two processes:

crl [exchange] :

< PID : Process | sys : [send(SOCKET, O, C) CF] >

< PID’ : Process | sys : [receive(SOCKET, O’) CF’] >

< SOCKET : Socket | endpoints : [PID : PID’] >

< DID : Delays | ds : DS >

=> < PID : Process | sys : [sent(O, SOCKET) CF] >

< PID’ : Process | sys : [received(O’, SOCKET, C, R) CF’] >

< SOCKET : Socket | endpoints : [PID : PID’] >

< DID : Delays | ds : DS >

if DS’ R DS’’ := DS .

The send(...) and receive(...) messages are respectively transformed into a sent(O,

SOCKET) message, acknowledging the send action to the sender, and a received(O’, SOCKET,

C, R) message, signaling delayed delivery of the sent message to the receiver in R time units.

That is, the value(s) sent, C, are delayed by some amount of time R and will only be available

to the receiver object after R time units have elapsed. The delay value for any transmitted

message is non-deterministically extracted using a matching equation in the condition from

a non-empty, set of delays DS maintained by a special object < DID : Delays | ds : DS

> in the global configuration. To maintain feasibility of exhaustive formal analysis tech-

niques, the set DS should obviously be finite. In fact, for most reasonably sized distributed

Orc programs, the delay set should have a fairly small size. An appropriate delay set for a

given distributed Orc application can be specified as part of its initial state using the Delays

object. It is worth noting here that different behaviors may result by giving different delay

sets. Two special cases of interest are: (1) DS = {0}, in which case messages are assumed to

experience no delays, and (2) ∞ ∈ DS , which represents the case of a lossy communication

channel. As we will see in Section 5.3.2 below, the real-time semantics of the model will

eventually make such delayed messages available to the receiver for processing.

Finally, closing a socket is straightforwardly modeled by the following equation:

98

eq [close] :

< PID : Process | sys : [closeSocket(SOCKET, O) CF] >

< PID’ : Process | sys : [receive(SOCKET, O’) CF’] >

< SOCKET : Socket | endpoints : [PID : PID’] >

= < PID : Process | sys : [closedSocket(O, socketManager, "") CF] >

< PID’ : Process | sys : [closedSocket(O’, socketManager, "") CF’] > .

The equation drops the closed socket, and issues the closedSocket(...) message to its

endpoints.

5.3.2 Global Logical Time

As before, time and its effects on the distributed Orc configuration are formally specified

using the standard and general technique of capturing logical time in real-time rewrite the-

ories [64], and facilitated by RTM [74]. Essentially, the time domain is represented by a sort

TimeInf (time with infinity), and a global tick rewrite rule is used to synchronously advance

time and propagate its effects across the encapsulated global configuration, a term of the sort

GlobalSystem, of the form {C}, where C is the Orc configuration consisting of all process and

socket objects. configuration at a given point in time. Furthermore, the tick rule, which

plays the role of the ticker objects in the distributed implementation, is defined globally as

follows (with R’ a variable ranging over the positive rational numbers):

crl [tick] :

{CF} => {delta(CF, R’)} in time R’

if eager({CF}) =/= true /\ R’ <= mte(CF) [nonexec] .

The tick rule computes on the global Orc configuration the function delta, which advances

time for all local clock objects and updates time delays in all site calls and returns present

in the configuration. For example, clocks and delayed external messages are updated, re-

spectively, by the following two equations (plus and monus define addition and subtraction

on time domains):

99

eq delta(< O : Clock | clk : c(R) > CF, R’)

= < O : Clock | clk : c(R plus R’) > delta(CF, R’) .

eq delta(received(O, O’, C, R) CF, R’)

= received(O, O’, C, R monus R’) delta(CF, R’) .

The tick rule above is not immediately executable (which is indicated by the [nonexec]

attribute), as it introduces a new variable R’ representing the amount of time elapse on

its right hand side. A strategy for sampling time needs to be specified for the rule to be

executable. As before, we assume a general maximal strategy that in each tick advances time

by the maximum time elapse, which is defined by the function mte as the minimum delay

across all site call messages and returns in the global Orc configuration. The combination

of the maximal time sampling strategy and the condition R’ <= mte(Conf) in the tick rule

ensures that time is advanced as much as possible in every tick but only enough to be able

to capture all events of interest.

To properly capture the synchronous semantics of Orc [52, 53], the tick rule is also made

conditional on the fact that no other behavioral (instantaneous) transition is possible. This

imposes a precedence of rule application, where time ticks have the lowest priority among all

transitions. This is precisely captured by the eager predicate in the tick rule’s condition.

As was discussed before in Chapter 3, the condition is necessary to precisely capture the

intended semantics of the Orc theory.

It is important to note that the abstraction of time and how it affects the global Orc

configuration as specified by the tick rule is consistent with the real-time distributed im-

plementation Dist-Orc in that, in Dist-Orc, we assumed that the granularity of a single

time tick in real-time is always large enough for instantaneous transitions within a configu-

ration to complete. Furthermore, the tick rule synchronously updates all clock objects in all

processes. This also defines yet another abstraction over Dist-Orc, where individual clocks

are not necessarily synchronized. However, since clock synchronization is not required for

Dist-Orc, as was discussed in Section 5.1.4, the abstraction considers only those behaviors

in Dist-Orc that make sense under these assumptions about time.

100

5.3.3 Further Abstractions For Performance

Unlike the formal specifications of sockets and time described above, the abstractions out-

lined below are not essential for formal reasoning about distributed Orc programs. They

describe further optional abstractions that are useful for obtaining a more efficiently exe-

cutable specification without affecting the kinds of properties that one would want to verify

about Orc programs. The first optimization is to drop the meta-level operations in the

definition of external communication between Orc objects across different processes, and

define socket-based messaging at the level of Orc values rather than at the lower-level of

strings. This results in a higher abstraction that does not have to deal with serialization

and de-serialization of Orc values, as was required in the Dist-Orc implementation (see

Section 5.1.3). It also entails a slight modification to the syntax of the socket specification

in Rsocket. In particular, send and received messages each now take a list of Orc values

rather than a string as a parameter:

op send : Oid Oid ValueList -> Msg [ctor msg] .

op received : Oid Oid ValueList Time -> Msg [ctor msg] .

The rules and equations defining external, socket-based message exchange are also appro-

priately updated.

Another optimization, which aims at reducing the reachable state space of a distributed

Orc program without changing the semantics of the underlying Orc expressions and sites, is

to impose a slightly more restrictive rule application strategy. More specifically, we may give

internal transitions of an Orc expression (site calls, expression calls, and publishing of values)

priority over socket-based transitions (creating sockets, and sending and receiving external

messages). Besides being natural, this strategy does not conflict with Orc’s synchronous

semantics, as internal transitions still have precedence over the external transition of con-

suming a site return. Furthermore, it turns out that this extension can be easily specified by

simply changing the relevant rewrite rules in Rsocket so that the underlying Orc expression

objects have expressions that are inactive. For instance, here is a fragment of the modified

rule specifying successful client socket creation [CreateClientSocketSuccess]. The rule

101

matches an inactive expression iF in the Orc expression object trying to make a connection

with an external site:

rl [CreateClientSocketSuccess] :

< PID : Process | sys : [acceptClient(server(N), O) CF] >

< PID’ : Process |

sys : [createClientTcpSocket(socketManager, p(OE,H), ADDRESS, PORT)

< p(OE,H) : Proxy | > < OE : Expr | exp : iF > CF’] >

< socketManager ... > < server(N) ... >

=> < PID : Process |

sys : [acceptedClient(O, server(N), ADDRESS, socket(M)) CF] >

< PID’ : Process |

sys : [createdSocket(p(OE,H), socketManager, socket(M))

< p(OE,H) : Proxy | > < OE : Expr | exp : iF > CF’] >

< socketManager ... > < server(N) ... > < socket(M) ... > .

5.3.4 Formal Analysis of Dist-Auction

The formal specification of sockets and logical time provides a formal model of Dist-Orc

that can be used to verify properties about distributed applications in Orc, which take

into account some of the actual problems that can take place, not only in Orc expressions,

but also in socket communications. To illustrate this formal verification capability, we use

RTM to formally analyze the distributed implementation Dist-Auction of the auction case

study. In particular, we perform time- bounded linear temporal logic model checking with

commands of the form (mc term |=t formula in time <= timeLimit .), and timed

search using (find earliest term =>* pattern such that condition .), which finds

a state reachable within the shortest possible time that matches the given pattern and

satisfies the given condition. Verification is applied on a closed system specification that

includes definitions of all required sites (servers) and expressions (clients) in the Auction

application.

In our analysis, we assume a single seller site with two items for sale, labeled 1910 and

102

1720, and offered for auction for 5 and 7 time units, respectively. The function initial(DS)

constructs an initial state for Dist-Auction in which the set of possible message transmission

delays is DS, which, in the analysis examples below, is the singleton set {0.1}, unless otherwise

indicated. The atomic predicates used are:

1. commError , which is true in states with communication errors:

op commError : -> Prop .

eq {< PID: Process | sys: [socketError(O, O’, S) CF] > CF’}

|= commError = true .

2. sold(id), which is true in states where the item id has been sold:

op sold : Nat -> Prop .

eq {< PID : Process |

sys : [< O : XSite | name : ’auction,

state : won(winner(N, id, M), WN) OST > CF] > CF’}

|= sold(id) = true .

where the term winner(N, id, M) matches a winning bid M on item id by the Nth

bidder.

3. hasBid(id), which is true when the item id has been bid on:

op hasBid : Nat -> Prop .

eq {< PID : Process |

sys : [< O : XSite | name : ’bidders,

state : bidders(b(N, [id, M] IBS) BS) OL > CF] > CF’}

|= hasBid(id) = true .

where the term b(N, [id, M] IBS) matches a bid M on item id by the Nth bidder.

4. conflict(id), which is true when item id has two different winners:

103

op conflict : Nat -> Prop .

eq {< PID : Process |

sys : [< O : XSite | name : ’auction ,

state : won(winner(N, id, M),

winner(N’, id, M’), WN)

OST > CF] > CF’}

|= conflict(id) = true .

A property that is typically required in an auction management system is that an item with

at least one bid is eventually sold: �
∧
i(hasbid(idi) → ♦sold(idi)). This can be shown to

be guaranteed by Dist-Auction in the absence of communication problems and excessively

large delays. The property itself is specified in Real- Time Maude as the following formula

commitAllNoErrors (with ~ denoting the LTL negation operator) :

op commit : Nat -> Formula .

eq commit(id) = hasBid(id) -> <> sold(id) .

op commitAllNoErrors : -> Formula .

eq commitAllNoErrors = ([] ~ commError) -> [] (commit(1910) /\ commit(1720)) .

The property is then verified with the time-bounded model checking command:

Maude> (mc initial(1/10) |=t commitAllNoErrors in time <= 15 .)

rewrites: 7052663 in 14413ms cpu (14420ms real) (489317 rewrites/second) ...

Result Bool : true

The property is satisfied with a communication delay of 0.1 time units. In fact, the property

is satisfied when communication delays are bounded by 0.25 time units. This is because the

timeout value for collecting bids in a single bidding round in the TimeoutRound expression

is 1.0, while a delay of 0.25 translates into a cumulative round trip delay of 1.0 for its two

sequential site calls, which may result in an uncommitted bid. This can be verified by the

resulting counterexample when executing the command above but with initial(1/4).

Another property an auction management system must guarantee is that every item

sold has a unique winner: �
∧
i ¬conflict(idi). This property can be shown satisfiable in

104

Dist-Auction regardless of communication errors. The property is specified in RTM as the

formula uniqueWinnerAll:

op uniqueWinner : Nat -> Formula .

eq uniqueWinner(id) = ~ conflict(id) .

op uniqueWinnerAll : -> Formula .

eq uniqueWinnerAll = [] (uniqueWinner(1910) /\ uniqueWinner(1720)) .

The property is verified by the following command :

Maude> (mc initial(1/10) |=t uniqueWinnerAll in time <= 15 .)

rewrites: 8613539 in 19627ms cpu (19800ms real) (438843 rewrites/second) ...

Result Bool : true

Finally, given a delay of 0.1, one can verify that the first item cannot be won before 5.5

time units have passed using the following command:

Maude> (find earliest initial(1/10) =>* {C:Configuration}

such that {C:Configuration} |= sold(1910) .)

rewrites: 268287407 in 1525921ms cpu (1544117ms real) (175819 rewrites/second) ...

Result: {< did : Delays | ds : 1/10 > ... } in time 11/2

105

CHAPTER 6

STATISTICAL MODEL CHECKING ANALYSIS

Statistical model checking (see, e.g., [1, 101]) is an attractive formal analysis method for

probabilisitic systems. Although the properties model checked can only be ensured up to a

user-specified level of statistical confidence (as opposed to the absolute guarantees provided

by standard probabilistic model checkers), the approximate nature of the formal analysis is

compensated for by its better scalability, the fact that the models to be analyzed can often

be known only approximately, and the interest in analyzing quantitative properties for which

an approximate result within known bounds is quite acceptable.

There are many systems for which this kind of statistical model checking analysis can be

very useful. For example, distributed real-time systems, including so-called cyber-physical

systems, are often probabilistic in nature, both because they often use probabilistic algo-

rithms, and due to the uncertain, stochastic nature of the environments with which they

interact. Furthermore, quality of service properties may be as important as traditional

boolean-valued properties such as safety properties. For example, in a secure communi-

cations system, availability of vital information may be as important as its secrecy, but

availability may be utterly lost due to a denial of service (DoS) attack with no loss of

secrecy. Suppose that such a system is hardened against DoS attacks. How should one for-

mally analyze the effectiveness of such a hardening? What is needed is not a Boolean-valued

yes/no answer, but a quantitative one in terms of the expected latency of messages under

certain assumptions about the attacker and the network. Quantitative information may in-

clude probabilities p ∈ [0, 1], but need not be reducible to probabilities. For this reason, it is

important to support statistical model checking not only of standard probabilistic temporal

logics such as PCTL/CSL, but also of quantitative temporal logics like QuaTEx [2], where

the result of evaluating a temporal formula on a path is a real number. This of course

106

includes the case of probabilities, as values p ∈ [0, 1], and even of standard truth values, as

values in {0, 1}, as special cases.

In this chapter, we introduce parallel algorithms that drastically increase the scalability of

statistical model checking, and also make such scalability of analysis available to tools like

Maude, where probabilistic systems can be specified at a high level as probabilistic rewrite

theories [2], which are theories in rewriting logic [10] that may contain, in addition to regular

rewrite rules, probabilistic rewrite rules modeling probabilistic transitions of such systems.

We present PVeStA, an extension and parallelization of the VeStA statistical model

checking tool [72]. PVeStA supports statistical model checking of probabilistic real-time

systems specified as either: (i) discrete or continuous Markov Chains; or (ii) probabilistic

rewrite theories in Maude. Furthermore, the properties that it can model check can be

expressed in either: (i) PCTL/CSL, or (ii) QuaTEx. Since statistical model checking is

based on Monte-Carlo simulations, which are naturally parallelizable, the performance gains

can be very high, as our experiments show.

This chapter also further develops a rewriting-based approach to the formal specification

and verification of probabilistic systems initiated in [102] and further applied to other systems

in [103, 104], and applies it to a novel DoS protection mechanism, namely the Adaptive

Selective Verification protocol [105]. In this approach, real-time and probabilistic protocols

and DoS attackers are naturally modeled using probabilistic rewrite theories, while properties

are expressed by quantitative, real-valued formulas in QuaTEx, whose formal verification is

based on statistical quantitative analysis [2], using Maude and PVeStA.

6.1 Parallel Statistical Model Checking and Quantitative Analysis

Algorithms

Sen et. al. [1] described an algorithm A based on simple hypothesis testing for statistical

model checking of formulas in both: (1) Probabilistic CTL (PCTL) [106], which extends

standard CTL by associating probability measures to computation paths of a probabilistic

system and qualifying the temporal logic formulas with probability bounds, and (2) Contin-

uous Stochastic Logic (CSL) [107, 108], which further extends PCTL by continuous timing

107

and qualifying temporal logic operators by time bounds. Given a probabilistic model M,

a PCTL/CSL formula P./p(ϕ), with ϕ a state or path formula1, and error bounds α and

β, the algorithm A checks satisfiability of the formula by setting up a statistical hypothesis

testing experiment such that its Type I and Type II errors are bounded, respectively, by

α and β. The test is based on the sample mean of n random samples of ϕ computed over

n Monte-Carlo simulations of the model. The algorithm uses standard statistical methods

to precompute the total number n of samples needed to achieve the desired test strength

(see [1] for more details).

To be able to express not just probabilities of satisfaction of temporal logic formulas but

also quantitative properties such as, for example, the expected latency of a probabilistic

communication protocol, PCTL and CSL have been generalized to a logic of Quantitative

Temporal Expressions (QuaTEx) in [2], in which state formulas and path formulas are

generalized to user-definable, real-valued state expressions and path expressions. In [2],

Agha et. al. proposed a statistical quantitative analysis algorithm Q for estimating the

expectation of a temporal expression in QuaTEx. Given a probabilistic model M, an

expectation QuaTEx formula of the form E[Exp], with Exp a QuaTEx state or path

expression, and bounds α and δ, the algorithm Q approximates the value of E[Exp] within

a (1−α)100% confidence interval, with size at most δ, by generating a large enough number

n of random sample values x1, x2, . . . , xn of Exp computed from n independent Monte Carlo

simulations of M. The value returned by the algorithm as the estimator for E[Exp] is the

sample mean x̄ =
Σi∈[1,n]xi

n
. To guarantee the quality and size requirements of the confidence

interval (given respectively by α and δ) for x̄, the number n of sample values must be large

enough. In general, the more accurate the estimator, the larger the number of samples

required. To generate enough samples, the algorithm Q uses student’s t-distribution to

compute a (1 − α)100% confidence interval by iteratively generating them in batches of N

samples each (with N > 5). Once the size of the computed interval falls below the threshold

δ, Q halts and the sample mean x̄ is returned (more details can be found in [2]).

A key observation is that the both statistical analysis algorithmsA andQ expose a real op-

1We restrict our attention to non-nested probabilistic formulas here, although the algorithm of [1] can
handle nested formulas as well.

108

Algorithm 1 A parallel algorithm Ap for checking (non-nested) probabilistic CSL formulas

Input: Model M, Probabilistic formula P./p(ϕ), α, β, Parameters ~p, Resources R
Output: True or false, with Type I and II errors bound by α and β, respectively (see

Theorem 1 in [1])
1: n← computeSampleSize(p, ./, α, ~p)
2: sum ← 0,
3: sims ← bN / |R|c, r sims ← N mod |R|
4: for i← 1 to |R| do
5: mi ← (i < r sims) ? sims + 1 : sims

6: for i← 1 to |R| do in parallel
7: sum i ← 0
8: for j ← 1 to mi do
9: xij ← sat(ϕ, p, ./, π(M)

10: sum i ← sum i + xij

11: for i← 1 to |R| do
12: sum ← sum + sum i

13: b← performHT(sum, n, α, β, ~p)
14: return b

portunity for parallelization through their dependence on performing batches of independent

Monte Carlo simulations. Moreover, the cost of performing a single discrete-event simula-

tion from a model of a probabilistic or cyber-physical system is usually high compared with

other computations in the algorithms, due to the typically complex nature of these systems.

Consequently, by exploiting this opportunity, performance gains through parallelization can

be significant and the scalability of this kind of statistical model checking analysis can be

substantially improved.

We develop parallel, map-reduce versions Ap and Qp of both algorithms in which the

task of computing a set of n sample values for a state or path formula in PCTL/CSL or

QuaTEx is done in parallel by performing n Monte Carlo simulations in parallel. Both

parallel algorithms make no assumptions about the underlying parallel architecture. For

PCTL/CSL, Ap assumes non-nested probabilistic formulas.

An outline of Ap is shown in Algorithm 1. In addition to the model M, the probabilistic

formula P./p(ϕ) and the verification parameters, the algorithms take as input a list of avail-

able computing resources R on which the task of generating random samples is mapped.

This task is first distributed as evenly as possible by determining the number of simulations

109

Algorithm 2 A parallel algorithmQp for estimating expected values of QuaTEx expressions

Input: Model M, QuaTEx expression Exp, α, δ, load factor k, Resources R
Output: An estimator for E[Exp], with a (1−α)100% confidence interval of size at most δ

1: sum ← 0, n← 0, d←∞
2: if N < |R| then
3: N ← k · |R|
4: else
5: N ← k · dN / |R|e · |R|
6: m← N / |R|
7: while d > δ do
8: n← n+N
9: for i← 1 to |R| do in parallel

10: sum i ← 0, sumSquare i ← 0
11: for j ← 1 to m do
12: xij ← eval(Exp, π(M))
13: sum i ← sum i + xij
14: sumSquare i ← sumSquare i + x2

ij

15: for i← 1 to |R| do
16: sum ← sum + sum i

17: sumSquare ← sumSquare + sumSquare i
18: d← computeCISize(sum, sumSquare, n, α)

19: return sum / n

mi to be performed by each available computing resource Ri in R. Since the total number

of samples n is precomputed, mi is either bn/|R|c or bn/|R|c+ 1. The body of the for loop

at line (6) is done in parallel, where each resource Ri checks satisfiability of the formula

ϕ on mi random executions of the model M obtained by discrete-event simulations of M,

generating mi random sample results. The function sat(ϕ, p, ./, π(M) verifies the state or

path formula ϕ on the given computation path π(M), and returns 1 if the formula is satis-

fied and 0 otherwise. Each resource Ri then returns the sum sum i of its computed random

samples. Once all partial sums are collected, the algorithm performs the simple hypothesis

testing experiment (denoted by the function performHT) as explained in [1], using the total

sum of all random samples generated by the resources R.

The parallel QuaTEx evaluation algorithm Qp is outlined in Algorithm 2. Like Ap,

the algorithm takes as input a list of available computing resources R. The number m of

simulations to be performed by each computing resource Ri is computed as a positive integer

110

multiple of |R| and the load factor k, which is a parameter to Qp that can be used to increase

the number of simulations performed by each resource in a round. Given a verification

task, the load factor k can be tuned to optimize performance, especially for lightweight

simulations when the desired statistical confidence is high, as we will see in Section 6.2.

Once m is determined, each resource Ri computes m random samples using the function

eval(ϕ, π(M)), which evaluates a QuaTEx state or path expression ϕ on a computation

path π, obtained by a discrete-event simulation of M, according to the semantics of such

expressions given in [2]. Each resource Ri returns a partial sum, sum i, and a partial sum of

squares, sumSquare i, of sample values, which are then used in the sequential computation

of the size d of the new confidence interval (denoted by the function computeCISize). The

algorithm halts and returns the overall sample mean once d becomes less than or equal to

the confidence interval size bound δ.

6.2 Implementation in PVeStA

We have implemented a client-server prototype, PVeStA, of both parallel algorithms Ap

and Qp, in Java, based on the Java implementation of the original algorithms in VeStA [72].

The tool, which is available for download online at http://www.cs.illinois.edu/~alturki/

pvesta, consists of two command-line-based executable programs: (1) a client program

pvesta-client, which implements the sequential parts of the algorithms performing sim-

ple hypothesis testing for PCTL/CSL formulas and confidence interval computations for

QuaTEx expressions, and (2) a server program pvesta-server, which implements the role

of a resource Ri that computes random samples by performing discrete-event simulations of

a given model expressed as a Markov chain or as a probabilistic rewrite theory. Figure 6.1

presents a schematic diagram of the structure and interactions of the client and server parts

of the tool.

The client program first reads a list of servers R that are available for performing sim-

ulations. It then creates, using Java’s managed concurrency library, a thread pool of |R|

callable computation threads, which are Java threads that implement the Callable interface

by specifying a run method to be called when the thread is invoked. Each thread, which

111

PVeStA Client

PVeStA Server1

PVeStA ServerR

model
formula

parameters
server list

m1 simulations request

results list

mR simulations request
results list

......

Maude

CTMC Engine

Maude

CTMC Engine

Figure 6.1: Components and interactions of PVeStA

will manage simulation requests and responses with a particular server in R, is supplied

with a pseudo-random seed to be used by its corresponding server to guarantee statistical

independence of the simulations. The thread pool is then submitted to an executor object,

which invokes all the threads in the pool, commencing communication with the servers in

R. Upon receiving the simulations request, each PVeStA server performs the requested

number of simulations using either Maude (for models expressed as probabilistic rewrite

theories) or the built-in Continuous-Time Markov Chain (CTMC) engine (for CTMC mod-

els) and produces a list of sample results. The client collects all samples in an array of |R|

Future Java class objects, from which the results are extracted and then used in performing

the appropriate sequential computations. For confidence interval computations, the client

may need to repeat this process until enough samples are collected.

Experimental Evaluation. We have conducted two sets of experiments with PVeStA

to evaluate the performance gains of parallelization using two different parallel architectures:

(1) a high-performance computing (HPC) architecture, in which simulation tasks are dis-

tributed over different nodes in a PC cluster, and (2) a multi-core architecture, in which

simulations are distributed over different processing cores within a single node. The HPC

benchmarks were executed on a PC cluster consisting of 256 nodes, each of which has two

(single-core) AMD Opteron 2.2GHz CPUs with 2GB of RAM. The second set of experiments

was performed on a server machine having two quad-core 2.66GHz Intel Xeon processors with

16GB of RAM.

We use two examples from [72]: (1) a simplified server polling system, Polling, and (2) a

simple tandem queuing system, Tandem, both expressed as continuous-time Markov chains.

In addition, we use two variants of a larger case study, described in some detail in Section 6.3

112

Polling (CSL) Tandem (CSL) Tandem (Q) ASV 0 (CSL) ASV 0 (Q) ASV 1 (Q)
Simulations 16,906 16,906 46,380 1051 706 1,308

Servers HPC Cluster
1 6.78 9.54 17.36 494.9 770.8 1,584.3
2 2.61 4.06 8.56 248.4 385.4 798.5
4 1.24 2.01 4.26 124.2 197.1 410.5
8 0.70 1.02 2.19 62.1 103.4 221.9
12 0.59 0.77 1.53 41.4 65.3 144.3
16 0.44 0.63 1.27 31.1 52.3 116.6
20 0.42 0.56 1.14 25.1 39.4 89.9
30 0.37 0.46 0.93 16.9 26.7 63.1
60 0.38 0.43 0.82 8.7 13.7 34.2

Servers Multi-core Computer
1 3.83 5.53 11.26 367.7 559.7 1,167.9
2 1.70 2.60 5.43 184.5 281.1 589.5
3 1.15 1.62 3.36 122.9 189.4 396.5
4 0.86 1.24 2.53 92.3 138.7 298.3
5 0.74 1.03 2.09 74.2 113.1 243.0
6 0.66 0.86 1.84 61.8 94.5 204.5
7 0.62 0.78 1.66 53.1 85.1 181.2

Table 6.1: The (average) times in seconds taken by PVeStA to complete six verification
tasks using a PC cluster and a multi-core computer

below, that specifies a probabilistic model in rewriting logic of the Adaptive Selective Veri-

fication (ASV) protocol [105] for thwarting DoS attacks. The first variant, denoted ASV 0,

assumes a reliable communication channel, a fixed attack rate, and no message transmission

delays, while the second variant, ASV 1, is more realistic, as it assumes a lossy channel, a

variable attack rate, and random delays. Benchmarking is performed by measuring the total

time required (including any additional time required for file and network I/O, thread and

object management, and so on) to verify a probabilistic CSL formula in Polling, Tandem,

and ASV 0, or a QuaTEx expectation expression in Tandem (load factor, k = 100), ASV 0

(k = 1), and ASV 1 (k = 1). The results are summarized in Table 6.1.

As the table clearly shows, performance gains as a result of parallelization can be substan-

tial. For example, in the analysis of ASV 1, a verification task that would normally require

about 27 minutes, can be completed in about 34 seconds on an HPC cluster using 60 nodes,

and a 20-minute task can be done in just above 3 minutes on a multi-core machine using seven

cores in parallel. In practice, several factors influence the speedups achieved by PVeStA,

including the complexity of the model and the formula, and the statistical strength of the

result. Figure 6.2(a) plots the speedups achieved against the number of servers used for

HPC experiments in Table 6.1. We note that while performance scales almost linearly with

the number of servers used for ASV 0 and ASV 1, the speedups for both Polling and Tandem

113

0	

10	

20	

30	

40	

50	

60	

1	
 4	
 8	
 12	
 16	
 20	
 30	
 60	

Sp
ee
du

p	

Servers	

Polling	
 Tandem	
 (CSL)	
 Tandem	
 (Q)	

ASV0	
 (CSL)	
 ASV0	
 (Q)	
 ASV1	
 (Q)	

(a) HPC cluster

0	

1	

2	

3	

4	

5	

6	

7	

8	

1	
 2	
 3	
 4	
 5	
 6	
 7	

Sp
ee
du

p	

Servers	

Polling	
 Tandem	
 (CSL)	
 Tandem	
 (Q)	

ASV0	
 (CSL)	
 ASV0	
 (Q)	
 ASV1	
 (Q)	

(b) Multi-core computer

Figure 6.2: The speedup using multiple PVeStA servers

begin to decelerate beyond 20 servers. This is primarily because the models Polling and

Tandem are so simple that, as the number of servers increases, the time needed to gener-

ate random samples begins to be dominated by other computations in the tool. For the

Tandem-Q experiment, which requires a fairly high statistical confidence, and thus a higher

number of random samples, achievable speedups are greatly influenced by the chosen load

factor k. In general, for such simple models, a higher value of k (and thus a higher number

of simulations performed by a server in each round) translates into reduced processing and

communication overhead and increased efficiency. For example, speedup tripled when using

k = 100 compared with k = 1 for Tandem-Q with 60 servers. Of course, excessively high

values of k result in an unnecessarily excessive number of simulations and degrade perfor-

mance. Appropriate values of k can be determined by experimentation using the above

ideas as guidelines. Figure 6.2(b), which plots speedups on a multi-core architecture, shows

a similar pattern to Figure 6.2(a).

114

6.3 Statistical Analysis of the Adaptive Selective Verification

Protocol

For the formal analysis of availability under DoS attacks, we often need to define protocol

and attacker models that are real-time and probabilistic in nature. Such models are usually

too complex to analyze manually or through symbolic manipulations. For such systems,

it is well known that statistical methods, such as statistical quantitative analysis, provide

effective and flexible means for automatically approximating properties about their behaviors

with reasonable levels of statistical confidence. But when these methods are paired with

executable formal models, a much stronger level of assurance can be achieved.

We apply the rewriting-based approach to the formal specification and verification of

DoS resilience initiated in [102] to the Adaptive Selective Verification protocol [105] by:

(1) modeling the behavior of both the protocol and the DoS attacker by means of prob-

abilistic rewrite rules [2], (2) specifying properties using quantitative, real-valued formulas

in QuaTEx [2], and (3) formally verifying these properties using statistical quantitative

analysis with PVeStA and Maude.

In general, this approach provides a useful middle ground for the analysis of availability

properties between manual mathematical analysis and simulation-based analysis, adding

significant analytic power to these approaches. Specifically, the results obtained confirm

by automatic statistical quantitative analysis techniques analytic results proved by hand in

[105]. They also confirm, with a much stronger level of assurance, various protocol properties

suggested by the simulation analyses reported as well in [105]. In this way, a considerably

higher level of assurance can be gained for both analytical properties proved by hand, and

for properties suggested by simulation analyses. Furthermore, this assurance can be gained

for scenarios and realistic deployment conditions too complex to be amenable to manual

mathematical analysis.

115

6.3.1 The Shared Channel Model and the ASV Protocol

Unlike the Dolev-Yao model [109], in which an attacker has full control over the commu-

nication channel, the shared channel model is a more appropriate model for the analysis

of availability properties [110], since attackers can only probabilistically share a channel

with legitimate clients to the server. However, an attacker may also replay modified (or

faked) versions of previously seen legitimate packets at some maximum rate, specified as a

parameter in the model.

The Adaptive Selective Verification (ASV) protocol [105] is a cost-based, DoS-resistant

protocol in which bandwidth is the currency. ASV assumes the shared channel model as

its underlying attack model, in which the goal of each legitimate client is to get a service

from the server represented in the protocol by an acknowledgment message. The key idea

of DoS-resilience in the protocol is for clients to spend more bandwidth to compete with

attacker bandwidth usage, and for the server to selectively process incoming requests.

More precisely, we denote the server’s mean processing rate by S, and the server and client

timeout periods by Ts and Tc, respectively. The current client request rate is denoted by ρ,

with the assumption that ρ ∈ [ρmin, ρmax]. Similarly, The current attack rate is denoted by

α ∈ [αmin, αmax]. The client replication threshold is specified by the protocol as 2J , where

J = dlog(αmax/ρmin)/ log(2)e (called the retrial span). Under the ASV protocol, the server

and clients behave as follows:

Client. When a client first arrives, it initializes its retries count j ← 0, and then sends a

single copy of its request to the server. If the client receives and acknowledgment within

Tc time units, the client succeeds and quits. Otherwise, it increments j (j ← j + 1)

and then sends 2j copies of its request to the server. This process is repeated until

either an acknowledgment is received, or the retrial threshold is reached, i.e. j > J .

In the latter case, the client fails and quits.

Server. The server first initializes its window count k ← 1, and its request count j ←

bSTsc + 1. During the kth window, the server attempts to collect the first bSTsc

incoming requests. At this point, there are two cases:

116

1. If it times out before the reservoir is filled, the server sends an acknowledgment for

each request in the reservoir, empties its reservoir, increments its window count

k, and repeats the process for the next window.

2. If the reservoir is filled before a timeout occurs, the server places the jth incoming

request in the reservoir with probability p← bSTsc/j and discards it with prob-

ability 1− p. If the request is to be placed in the reservoir, the server replaces a

request in the reservoir selected uniformly at random with the accepted request.

The server increments its request count and processes the next request in the

same way. This step is repeated until the server times out (signaling the end of

the current window). Once a timeout occurs, the server empties its reservoir after

acknowledging its requests, increments k, resets j to bSTsc + 1, and the whole

process is repeated for the next window.

Despite the simplicity of the protocol, analyzing it manually under simplifying assumptions

turns out to be a fairly demanding task [105]. In the following, we describe a model of the

protocol that enables automatic statistical verification of its properties and analyze the

results in simple scenarios, and also under circumstances that would be too complex for

manual analysis.

6.3.2 Formal Probabilistic Modeling of ASV in Rewriting Logic

Our model of the ASV protocol is based on a representation of actors with asynchronous

message passing in rewriting logic [2], which is built using the logic’s Maude object-based

programming framework [20]. Within this framework, the system state is represented by a

configuration, which is a soup of objects and messages, in which an object is a term of the

form 〈name : O | A〉, with O a unique object identifier, and A a set of attribute-value pairs

representing the state of the object, and a message is a term of the form O ← C, with O

the target object id and C the contents of the message.

There are three main classes of objects, namely client, attacker, and server objects. A

client object represents a legitimate client trying to get a service from the server. The object

117

maintains, among other attributes, the current number of retries and the current replication

count, which are required to implement the adaptive protocol. The attacker object is a

simple object that maintains only a reference to the server object on which the attack is to

be carried out. The server object maintains at least two attributes: a buffer attribute buffer ,

which holds incoming requests between server timeouts, and a request packet count attribute

reqcnt , which is used in determining the probability of accepting an incoming request when

the buffer is full: 〈name : Os | buffer : L, reqcnt : R〉. A server object, with id Os, accepts

two kinds of messages: (i) a connection request message of the form Os ← req(O), with O

the object id of the client or attacker object which initiated the request, and (ii) an internal

timeout message Os ← timeout , which signals a new server time window. Self-addressed

messages are commonly used in actor-based systems to schedule internal events [2].

In addition to the three classes above, a fourth, auxiliary class of objects is the generator

class, of which a single object is used in the configuration to model new clients coming in

at a rate ρS, with S the server’s mean processing rate. The generator object maintains a

counter for generating fresh client identifiers and the name of the server to which generated

clients will attempt to connect: 〈name : G | cnt : I, server : Os〉. The generator object G

uses a self-addressed message of the form G ← spawn to schedule the creation of the next

client object every 1/ρS time units.

Beside the objects described above, a configuration contains a few other components

that support its dynamic behavior. First, in order for it to properly support statistical

model checking and quantitative analysis, the specification must avoid any unquantified

non-determinism. We adopt a specification style originally developed in [102] to support this

requirement. In this style, the configuration uses a scheduler that stores a list of scheduled

messages to be made active and ready for consumption by the appropriate object in the

configuration. The scheduler, which is a term of the form {T | S}, with T the current global

clock of the configuration and S a list of scheduled messages, enforces the property that only

one message becomes active at any given instant of time. A scheduled message is a term of

the form [t,m, d], where t is the time at which the message is scheduled for delivery, m is

the message itself, and d is a drop flag that is used when modeling lossy channels to indicate

whether the message is to be dropped or kept.

118

The use of the scheduler object also provides a mechanism for managing the elapse of time

and its effect on the configuration. This is achieved with the help of an operator mytick ,

which is used to extract the next message from the scheduler and update the current global

time accordingly. The specification uses this operator repeatedly to advance time and process

successive messages from the scheduler until the given time limit, specified by a parameter

in the model, is reached. This flexible mechanism enables us to specify the granularity of a

round in terms of the amount of time we wish to run a Monte Carlo simulation.

The behavior of the model is specified (mostly) by rewrite rules, some of which are prob-

abilistic. As an example, the following is a simplified version of the probabilistic rule for

capturing the event of handling an incoming request by the server.

[ProcessReq] :

{T | S} Os ← req(O) 〈name : Os | buffer : L, reqcnt : P 〉

→ mytick({T | S})

if the request buffer L is full then

if B then 〈name : Os | buffer : replace(L, req(O), U), reqcnt : P + 1〉

else 〈name : Os | buffer : L, reqcnt : P + 1〉 fi

else 〈name : Os | buffer : add(L, req(O)), reqcnt : P 〉 fi

with probability B := Bernoulli(A(P)) ∧ U := Uniform(|L|)

When a server receives a connection request message req(O), it first checks whether its

request buffer stored in the buffer attribute is full. If the buffer is not yet full, the request is

simply added to the list. Otherwise, if the buffer has already reached its maximum capacity,

the server tosses a biased coin with success probability B, given by a function of its reqcnt

attribute P , and uses the outcome of this experiment to decide on whether to replace an

existing request selected uniformly at random with the incoming request or to drop the

incoming request altogether.

A detailed discussion of the specification of the model can be found in [58].

119

6.3.3 Properties of ASV as QuaTEx Expressions

We have used the ASV model described above to perform statistical quantitative model

checking analysis of various QuaTEx formulas using PVeStA and Maude to produce

a point estimator of the quantity of interest for each of these formulas, given a desired

confidence interval for the experiment and its maximum tolerable size. For this purpose, we

specify the nature of the quantities to be statistically estimated. The quantities specified as

QuaTEx formula declarations are listed below.

Connection ratio. This is the ratio of clients successfully connected to the total number

of clients in a configuration:

connRatio(t) = if time() > t then countConnected()/countClients()

else © (connRatio(t))

with time() a state function that returns the global clock time in the current configu-

ration. The number of accepted clients countConnected() is computed by equationally

counting the number of clients whose status field is connected, while the total num-

ber of clients countClients() can be easily extracted from the client counter attribute

maintained in the client generator object.

Average TTS. This is the ratio of the total time-to-service added up over all accepted

clients to the number of accepted clients:

avgTTS (t) = if time() > t then sumTTS ()/countConnected()

else © (avgTTS (t))

The total TTS sumTTS () is computed by adding up the time intervals given by the ar-

rival time and service time attributes of every accepted client. The number of accepted

clients is computed as described above.

Bandwidth usage. This is the amount of bandwidth used by legitimate clients attempting

to establish a connection with the server. Bandwidth usage is measured in terms of

120

the number of legitimate requests and is given by the legitimate client request counter

attribute of the server object.

bw(t) = if time() > t then bwUsage() else © (bw(t))

Connection Confidence. This is the probability that a given client will successfully es-

tablish a connection to the server:

connConfidence(i, t) = if time() > t then hasConnected(i)

else © (connConfidence(i, t))

This is computed using a simple function hasConnected(i) that, given a client id,

returns 1.0 if the client has actually connected to the server and 0.0 otherwise.

Throughout this section, we assume a 95% confidence interval with size at most 0.05. We

also fix S, the mean server processing rate, to 600 packets per time units, the server and

client timeouts, Ts and Tc, to 0.4 time units, unless otherwise specified.

6.3.4 Verification of ASV Properties

In this section, we use the ASV model to formally verify two important properties of the

protocol, which were given in [105]. The properties provide guarantees on the connection

confidence and legitimate bandwidth consumption of ASV.

To provide a benchmark for the performance of ASV with respect to these properties,

a simpler protocol, namely, the omniscient protocol, in which the server and clients are

always aware of the current ρ and α is also described in the cited paper. We modeled the

omniscient protocol to compare the bounds given by these theorems and provide formal

statistical evidence of their correctness. In the omniscient model, the server accepts client

requests with probability that depends only on the (now known) ρ and α, which implies

a simpler server object specification as it no longer needs to maintain a buffer reqlist nor

a client request replication count reqcnt . Furthermore, a client uses the value dα/ρe as its

121

(a) The ASV protocol (b) The omniscient protocol

Figure 6.3: Connection confidence: Theorem bound vs. estimated values

replication count, and fails if no ACK is received after Tc units of time.

Connection confidence (Theorems 1 and 2 of [105]). The property gives a lower

bound on the probability with which a given client will be able to establish a connection to

the server, given a condition on the client request rate ρ. In particular, for the omniscient

protocol, Theorem 1 states that if ρmax is at most 1/(−2 log δ), with δ a given confidence

parameter, then any given client will be accepted with probability at least 1− δ. A similar

lower bound is guaranteed for ASV under a slightly stronger condition on ρmax, which is that

ρmax ≤ 1/(−5 log δ). These properties are verified by fixing a client i (say the first client2)

and then estimating the expectation of the connConfidence(i, t) formula. Figure 6.3 plots

the estimated probabilities of the first client getting connected versus the bound given by

the theorem at different confidence parameter values, giving rise to different upper bounds

on ρmax, and assuming three different levels of attack (low, medium, and high). For this

analysis, we assume a worst-case analysis with ρ = ρmax. As both Figures 6.3(a) and 6.3(b)

show, the estimated success probabilities under both protocols are always higher than the

respective theorem bounds over the whole range of values of ρ, which confirms the statements

of the theorems. We also note that, with respect to the connection confidence property, both

protocols are able to maintain high success probabilities at higher attack levels compared to

those at low attack levels.

2For this analysis, the choice of the client is immaterial since all clients behave identically and are
introduced to statistically similar attack conditions.

122

Figure 6.4: Bandwidth Usage: Theorem bound vs. estimated values

Bandwidth usage (Theorem 4 of [105]). This property gives a bound on the band-

width consumed by legitimate clients in ASV. In particular, Theorem 4 states that, under

the assumption of bounded variability in ρ, the ratio of the legitimate bandwidth consumed

in ASV to that in the omniscient protocol is bounded above by log(αmax)/ log(1
ρmax

). As

discussed in [105], the restriction on the variability of ρ is imposed only to simplify manual

analysis and the statement of the theorem. Besides giving an independent confirmation of

the theorem by model checking analysis, we confirm the conjecture that the upper bound

holds even when the restrictions on ρ are lifted. This is achieved by estimating the expecta-

tion of the formula bw(t), while fixing ρmin to a very low value (close to 0.0) and allowing ρmax

to vary from very small values all the way up to almost 1.0. Figure 6.4 plots the estimated

ratios at three different attack levels as well as the upper bound given by the theorem at

the lowest level of attack (α = 3.0). The bounds corresponding to medium and high attack

rates are not shown, as both are too high to appear within the figure’s scale. The important

observation here is that the ratios of the legitimate bandwidth consumed by ASV to that

of the omniscient protocol are always below the theorem’s bound. The figure also suggests

that these ratios change only slightly across different attack conditions.

123

6.3.5 ASV versus Non-adaptive Selective Verification Schemes

In [105], the results of various NS-2 simulations comparing ASV to two non-adaptive selective

verification variations under various attack conditions were reported. The non-adaptive

schemes are: (i) the Naive protocol, in which a client does not increase its replication

count with time, and (ii) the Aggressive protocol, in which a client sends the maximum

number of requests (2J) at once upon entering the configuration. The simulations reported

validated the different trade-offs associated to the adaptive versus the non-adaptive schemes

in terms of the ratio of successful connections, the average time-to-service, and the legitimate

bandwidth used. We show here that using the ASV model in Maude along with two variants

of it, corresponding to the non-adaptive protocols above, we obtain similar results through

statistical quantitative analysis with PVeStA, independently confirming, and giving greater

strength to, the simulation analyses.

Since the non-adaptive protocols differ from the ASV protocol only in client request be-

havior, the Naive and Aggressive models are very similar to that of ASV. In fact, their

models differ from the ASV model in essentially one rewrite rule, which is the one labeled

[CSend]. In the Naive protocol model specification, the [CSend] rule maintains the initial

replication count, which is equal to 1, causing the client to send exactly one REQ at every

client timeout until connected or failed. On the other hand, the [CSend] rule of the Ag-

gressive model distinguishes two cases. During the first attempt at making a request to the

server (indicated by the retires attribute being 0), the rule replicates the request 2J times

(the replication count is simply ignored). Otherwise, if the client has already sent its initial

set of requests (0 < retries ≤ J), the client remains silent.

Since we intended to independently confirm the results of the NS-2 simulations of [105], we

instantiate the model using essentially the same values for the parameters. That is, we set ρ

to 0.08, J to 7, and Limit (the simulation duration) to 30.0 time units. The expectation of

the connection ratios, average TTS values, and legitimate bandwidth usage are estimated at

different attacker rates (given in terms of the number of attackers). The results are shown

in Figure 6.5.

As the figure shows, the results obtained confirm the effectiveness and efficiency of ASV

124

(a) Connection success ratio (b) Average TTS

(c) Bandwidth usage

Figure 6.5: Performance of ASV compared to non-adaptive schemes

125

compared to non-adaptive selective verification schemes. In Figure 6.5(a), ASV is statis-

tically shown to be effective even under high rates of attack, where it outperforms both

non-adaptive protocols. ASV is able to achieve this high performance at the expense of

some latency inherent in its adaptive behavior (See Figure 6.5(b)), which is higher than

that of the Naive protocol during periods of medium to heavy attacks. For legitimate band-

width consumption, Figure 6.5(c) shows that at low to medium attack levels, ASV is able

to maintain low bandwidth consumption levels that are comparable to those of the Naive

protocol. Even at higher attack levels, ASV manages to outperform the aggressive protocol

by a respectable margin.

126

CHAPTER 7

AVAILABILITY ANALYSIS OF ORC SERVICES

In general, compositions of services may create new possibilities for DoS attacks by exploiting

the newly created inter-dependencies between these services, which constitute an emerging

threat to service- and cloud-based software systems. For example, knowledge of an interme-

diary forwarding service within an orchestration may be exploited to dramatically amplify

an otherwise limited flooding attack on other services1. Another example is a CPU- and

memory-exhaustion attack on orchestration processes, described in [113] as an instantiation

flooding attack on BPEL processes, in which the orchestration process itself is flooded with

bogus requests for creating and managing new instances of parts of the orchestration. A

third example, which is discussed in detail in [114], illustrates a cross-site scripting attack

using the specification of a service composition to destroy the integrity of the target service

(and hence deny meaningful service to its clients). While some of these DoS vulnerabilities

may be specific to current web service standards, such as BPEL and WS-Security, most of

these vulnerabilities fundamentally represent variations on familiar DoS attack opportuni-

ties, including most notably distributed network-based flooding attacks, which are the kind

of attacks this chapter focuses on.

This chapter presents a formal method for the specification and analysis of availability

properties against DoS in distributed service compositions based on: (1) the rewriting logic

approach to formal specification and analysis of probabilistic systems using probabilistic

rewrite theories and statistical model checking discussed in Chapter 6, (2) the object-based,

rewriting logic semantics of Orc, ROrc, introduced in Chapter 4, and (3) the shared channel

model and the Adaptive Selective Verification (ASV) protocol briefly reviewed in Section 6.3

1See a concrete instance of this kind of DoS attacks in the context of the Session Initiation Protocol (SIP)
in [111] and a formal, rewriting logic approach to characterizing it in [112].

127

of Chapter 6. In particular, we introduce a generalization of the ASV specification as generic

wrapper objects, similar in principle to the generic cookie-based DoS protection wrappers

in [115], that can be used in a modular way to endow the specification of a communica-

tion system with ASV DoS protection. Using a somewhat simplified form of the onion skin

model [116] specified in rewriting logic [117, 118], we introduce the ASV wrapper specifi-

cation as object-based, real-time probabilistic rewrite theories and discuss the assumptions

under which statistical model checking and quantitative analysis of the kind discussed in

Chapter 6 can be correctly applied. We then demonstrate how these wrappers can be used

to analyze availability properties of services in arbitrary service compositions using service

orchestrations in Orc.

7.1 Modular DoS Protection Using the ASV Protocol

The ASV protocol identifies three main roles of nodes in a communication system: (1) a

server, which attempts to service incoming requests, (2) a client, which represents a legiti-

mate user requesting services from the server at some predictable, reasonable rate, and (3)

an attacker, which poses as a legitimate user and tries to flood the server with fake requests

to deny service to clients. As explained in [105], and briefly reviewed in Section 6.3, in the

presence of an attack, a legitimate client attempts to adapt to the current level of attack,

which is estimated by the prolonged absence of a response from the server, by exponentially

replicating its requests (up to a threshold) as the sensed severity of attack increases. At the

other end, the server implements a reservoir-sampling algorithm to collect a random sample

of the incoming requests and process them at its mean processing rate.

Therefore, when the roles of servers and clients in a communication system are identifiable,

the ASV behavior can be naturally applied as a DoS defense layer over nodes in the system

against adversaries probabilistically sharing communication channels with legitimate clients

according to the shared channel model. This layer of protection can be achieved by defining

both server ASV wrappers, which implement the ASV server reservoir sampling algorithm

for incoming requests, and client ASV wrappers, which implement the ASV client adaptive

exponential replication strategy. The server ASV wrapper maintains a buffer with which

128

Client 1 Client 2

Server A Server B

Figure 7.1: An example of an ASV-wrapped communication system

random sampling of incoming requests is performed. Once the wrapper times out, it forwards

all the messages in the buffer to the underlying server. Server responses are forwarded to

clients as soon as they become available. The Client ASV wrapper, on the other hand,

maintains a message queue for outgoing requests. When the underlying client sends out

a request, the request is placed in the wrapper queue in preparation for replication. A

request remains in the queue until either it is serviced or its retrial span is exhausted.

Server responses for pending requests in the queue are forwarded immediately to the client.

Figure 7.1 depicts an example communication pattern of ASV-wrapped servers and clients,

in which Client 1 requests services from Server A, while Client 2 uses services from both

Server A and Server B.

Below, we describe formally the components and behaviors of generic ASV wrappers and

how they can be used.

7.2 Assumptions on the Underlying Language

To be able to specify ASV wrappers that are both generic and amenable to statistical anal-

ysis of the kind discussed in Chapter 6, we make a few, reasonable assumptions about the

language in which the underlying communication system is specified as follows. We assume

that the language is specified as a (possibly probabilistic) rewrite theoryR = (Σ, E∪A,R, φ).

129

The equational theory (Σ, E ∪ A) defines the following sorts and data structures:

1. A sort Configuration, which is constructed by an associative and commutative empty

juxtaposition operator with the constant none :→ Configuration as its identity element:

: Configuration × Configuration → Configuration [assoc comm id: none]

In addition, we assume two sorts: Object and Msg, which are subsorts of Configura-

tion, for objects and messages, respectively. Intuitively, a term of sort Configuration

represents the state of a system as a multiset of objects and messages in transit. In

addition, objects within a configuration are assumed uniquely identifiable using terms

of sort Oid of object identifiers. These data structures and their properties are already

assumed when using Maude’s object-based programming facilities [20].

2. Two subsorts, CMsg and SMsg, of the sort Msg, representing, respectively, client re-

quest and server response messages, which can be formed using the following (subsort-

overloaded) constructors:

← : Oid × CContent → CMsg ← : Oid × SContent → SMsg

where the sorts CContent and SContent (which are subsorts of the sort Content), model

client and server message payloads, respectively. What actually constitutes a term of

the sort Content or any of its subsorts is application-specific.

3. A sort MsgID for globally unique message identifiers, which will be used by the ASV

wrappers to match server response messages to the corresponding client request mes-

sages that prompted them. We assume that messages produced or consumed by the

system configuration are encapsulated with a message identifier and a sequence number

using the following constructors:

[, ,] : Nat × MsgID × CMsg → EncapCContent

[, ,] : Nat × MsgID × SMsg → EnacpSContent

130

where the sorts EncapCContent and EnacpSContent are subsorts of both the sort Msg, as

messages in the underlying system state, and the sort Content, as payloads of (wrapped)

messages at the level of ASV wrappers. The sequence numbers used in encapsulated

messages define a linear order in which these messages can be processed by the wrappers

(see below).

In addition to the structural assumptions (1) – (3) above, we also have to make a behavioral

assumption about the semantics of the underlying language, so that systems specified in

this language do not exhibit any non-deterministic behavior that is not probabilistically

quantified. In particular, we assume that the semantics of the language is either deterministic

(optionally specified entirely by the equations E inR = (Σ, E∪A,R, φ)), or probabilistic such

that any potential non-determinism is resolved by a probabilistic choice. This implies that

(encapsulated) messages (terms of the sort EncapCContent or EnacpSContent) can only be

introduced in the system configuration or consumed by objects in the configuration according

to the deterministic or probabilistic semantics of the language. Consequently, we may assume

two linear orderings: one ordering on the outgoing messages produced by an object in the

configuration, and the other linear ordering on the messages to be consumed by an object in

the configuration. The orderings are assumed to be maintained by the configuration of each

object to be wrapped, and are exposed to the wrappers using the sequence number field of

an encapsulated message, which is represented as a natural number. Therefore, a sequence

of internal (possibly probabilistic) transitions of an object 〈O : CID | AS 〉 in the system

may have the form:

〈O : CID | AS 〉 →+
R/E∪A 〈O : CID | AS ′〉 [N, IMi

,Mi]

→+
R/E∪A 〈O : CID | AS ′′〉 [N, IMi

,Mi] · · · [N + k, IMi+k
,Mi+k]

where the order in which the messages are produced is captured by their assigned numbers

from the sequence [N, · · · , N + k]. In general, at any given point in time, the configuration

may contain a set of outgoing messages that are waiting to be forwarded to their target

objects ordered by a sub-sequence of the natural numbers [N low
out , · · · , N

high
out], where N low

out

denotes the sequence number of the next message to be forwarded, and Nhigh
out denotes the

131

input output

lowhigh highlow

Object

Object wrapper

Figure 7.2: Input and output queues of a wrapped object simulated by sequence numbers

sequence number of the next output message to be produced by the configuration.

Similarly, the configuration may contain a set of incoming messages that are waiting

to be consumed by the target object ordered by a sub-sequence of the natural numbers

[N low
in , · · · , Nhigh

in], where N low
in denotes the sequence number of the next message to be con-

sumed by the object, and Nhigh
in denotes the sequence number of the next input message to

be forwarded to the object.

As Figure 7.2 illustrates, each pair of sequence numbers, (N low
in , Nhigh

in) and (N low
out , N

high
out),

defines a moving window in an infinite queue of messages, where the low sequence number

denotes the current index of the front of the queue, and the high sequence number denotes

the current index of the back of the queue. The queue is empty when the low and high

numbers coincide.

7.3 The ASV Wrappers

Given a (probabilistic) rewrite theory R = (Σ, E ∪ A,R, φ) specifying a communication

system and satisfying the assumptions above in Section 7.2, the ASV wrappers of R are

specified in a probabilistic rewrite theory RW = (ΣW , EW ∪ AW , RW , φW) that extends

R with definitions of ASV wrapper objects, declarations of ASV model parameters and

interface functions, and with ASV behaviors. This is described next.

132

Server Wrapper

〈O : SASV | conf : C the underlying server object configuration

reqlist : M̄ the incoming request buffer

reqcnt : P the current value of the request count parameter

selv : B〉 the selective verification flag

Client Wrapper

〈O : CASV | conf : C the underlying client object configuration

buffer : M̄ the client request retrial buffer

repcnt : K the current client replication count

gen : O′ the corresponding client generator

rep : B〉 the client replication flag

Client Generator Wrapper

〈O : GASV | id : O′ the object identifier of the client to be generated

conf : C〉 the object configuration of the client

Attacker Wrapper

〈O : AASV | conf : C the underlying attacker object configuration

buffer : M̄〉 the attacker’s attack buffer

Table 7.1: The ASV wrapper classes

7.3.1 ASV Wrapper Configurations

The theory RW declares four classes of ASV wrapper objects: server wrappers, client wrap-

pers, client generator wrappers, and attacker wrappers, which, in some sense, generalize the

classes of objects declared in the ASV model described in Section 6.3. The four classes and

their fundamental class attributes are summarized in Table 7.1.

Server Wrapper. The server wrapper object maintains in an attribute named conf

a server object configuration (of the sort Configuration), which is assumed to contain the

underlying server object as well as any supporting objects required for the proper behavior

of the server as defined by the language in which the system is specified. The server wrapper

also includes: (1) a buffer attribute reqlist that holds incoming requests between server

timeouts, (2) a request count attribute reqcnt that is used in determining the probability

of accepting an incoming request when the buffer is full, and (3) a selective verification

133

Boolean flag selv , which can be used to switch selective verification on and off. In addition

to client request messages, a server wrapper object, with id O , accepts two kinds of internal

scheduling messages: (i) a timeout message O ← timeout , which signals a new server time

window causing the processing of messages in the buffer, and (ii) an internal poll message

O ← poll , which signals a check for possible internal transitions within the underlying

configuration and results in encapsulating and lifting up any outgoing server responses to

the wrappers level.

Client Wrapper. A client wrapper object maintains a client object configuration, which

is assumed to contain the underlying client object and any supporting objects for its proper

semantics. Additionally, a client wrapper maintains a client replication buffer attribute

buffer , which stores a queue of pending client requests that have not yet been serviced. The

client buffer is constructed using an associative juxtaposition operator with empty syntax and

with nil as an identity element. An entry in the buffer is a pair of the form {I,CMsg}, where

I is the current retrial count for the buffered client message CMsg. Other client wrapper

attributes include the current (global) client replication count repcnt , which is required to

implement the adaptive protocol, and a Boolean replication flag, which can be used to turn

the adaptive replication behavior on or off. In addition to incoming server responses, a client

wrapper object, identified by O , accepts two kinds of internal scheduling messages, which

are syntactically identical to those described above for server wrappers but have different

semantics. These messages are: (i) an internal poll message O ← poll , which signals a

check for possible internal transitions within the underlying configuration causing any client

request messages in the configuration to be lifted up and stored in the wrapper’s request

queue, and (ii) a timeout message O ← timeout , which initiates the process of appropriately

replicating the next message in the queue, when the queue is non-empty.

Client Generator Wrapper. Like the generator objects of the ASV model described

in Section 6.3, the generator wrapper class is a utility wrapper that is declared essentially

for analysis purposes to model new clients coming in at a specified rate. It maintains the

next object identifier and the next configuration of the client object to be generated in

the attributes id and conf, respectively. The client configuration maintained is assumed

to contain the underlying client object and any of its supporting objects. The generator

134

wrapper accepts a message of the form O ← spawn to schedule the creation of the next

client object. Note that, unlike the ASV model in Section 6.3, in which only one generator

object is used, there can in general be more than one instance of the generator wrapper

class, as we will see in the Orc example in Section 7.4.

Attacker Wrapper. The attacker wrapper is another utility wrapper declared for anal-

ysis purposes. The wrapper is a simple class that maintains only two attributes: (1) the

attacker configuration in an attribute conf, which holds the underlying attacker object con-

figuration defining the attacker behavior, and (2) an attack request queue, having a structure

similar to a client request buffer (described above), in an attribute buffer. The queue, which

holds the attacker’s (fake) requests, serves as a launching pad for the attack. An attacker

wrapper ignores incoming server responses and accepts the same two kinds of internal mes-

sages accepted by the client wrapper with similar semantics.

7.3.2 Parameters and Interface Functions

To support the generic nature of the ASV wrappers, the theory RW declares a number of

operators representing (partial) functions that capture parameters of the ASV model and

define an interface with the underlying communication system. First, the ASV wrappers

assume a simple object identification scheme that maps object identifiers O in the underlying

configuration to object identifiers at the wrappers layer of the form f(O), where f is one

of the four constructor symbols: sv, cv, gv, av, for server, client, generator and attacker

object wrapper identifiers, respectively. Clearly, uniqueness of wrapper object identifiers is

guaranteed by the assumption of uniqueness of wrapped object identifiers in the underlying

configuration, which are constructor terms of the sort Oid. This object identification scheme

is essential to the proper semantics of the wrappers, as it impacts how messages are processed

across the two different layers.

Furthermore, the ASV wrappers define several ASV parameters and interface functions,

which are listed in Table 7.2, where the first set of declarations captures the ASV model

parameters, and the second set the interface functions. We note that, since we may have

multiple server, client or generator wrapper objects in a configuration, some of the ASV

135

µ : Oid → [Float] mean processing rate of a server

ρmin, ρmax : Oid → [Float] min and max request rates of a client

αmin, αmax : → [Float] min and max attack rates

Timeout : Oid → [Float] timeout period of a given server or client

JBound : Float× Float → [Nat] client retrial span given ρ and α

Delay : → [Float] message transmission delay

Drop : → [Float] message drop probability

Limit : → [Float] time duration of a sample run

getLX : Configuration → [Nat] get the value of a sequence number

setLX : Configuration× Nat → [Configuration] set the value of a sequence number

eager : Configuration → [Bool] is a configuration eager?

nextOid : Oid → [Oid] next client object id to be generated

nextConf : Configuration → [Configuration] next client configuration to be generated

nextID : MsgID → [MsgID] next client message id to be used

nextCC : CContent → [CContent] next client message content to be used

Table 7.2: The ASV wrapper interface functions

model parameters are parametric to wrapper object identifiers, including µ(O), which defines

the mean processing rate of the server wrapped by O, ρmin(O) and ρmax(O), which define

the minimum and maximum client request rate for the client object wrapped by O, and

timeout(O), which defines the server timeout window, if O identifies a server wrapper object,

or the client timeout period, if O identifies a client wrapper object.

The interface functions decouple the specification of the wrappers from the specification of

the underlying system by hiding some of the system specification details. In particular, the

theory RW declares a set of four getter and four setter functions for the message sequence

numbers maintained by the configuration, which are of the forms getLX and setLX , with

X ∈ {in, out} for input and output messages to the underlying configuration, and L ∈

{low , high} for the low and high sequence number handlers (as described in Section 7.2). For

instance, given a system configuration C, the function call gethighin (C) returns the sequence

number Nhigh
in + 1 to be used for the next input message to the configuration, while the

call set lowout (C,K), with K a natural number, returns the configuration C with its sequence

136

number N low
out of the next output message to be processed by the enclosing wrapper set to K.

In addition, the theory declares a function eager, which, given a configuration C, evaluates

to true if and only if the configuration has an enabled transition.

Interface functions also provide added flexibility in the specification and analysis of an

ASV-wrapped system by giving further control over its possible behaviors. In particular,

the functions nextOid and nextConf can be used to specify how new client objects are

introduced in the configuration by a generator wrapper, while the functions nextID and

nextCC can be used to define how the attacker generates fake requests to the server. The

example discussed in Section 7.4 illustrates how these parameters and interface functions

can be instantiated.

7.3.3 Wrapper Behaviors

Like the ASV model in rewriting logic described in Section 6.3, the configuration of ASV

wrappers maintains a few other objects required for defining the wrappers behaviors, in-

cluding, most notably, a global scheduler object of the form {T | S}, with T the current

global time, and S a list of scheduled, encapsulated messages, of the form [T,M,B], where

T is the time at which the message is scheduled for delivery, M the encapsulated message,

and B a message drop flag for modeling lossy channels. As before, the scheduler object

provides two important benefits: (1) it enables resolving any potential non-determinism by

enforcing a deterministic order on message delivery, and (2) it provides a flexible mechanism

for specifying time and its effects in a configuration and controlling the time length of a

simulation of the model using an auxiliary function, mytick, as described in Section 6.3.

The behaviors of the different wrappers are explained below, where we show slightly

simplified versions of the rewrite rules to improve readability and to highlight the important

aspects of wrapper behaviors.

Server Wrapper. When a server wrapper O receives an incoming client message O ←

[N, ID ,CMsg], it first checks whether its request buffer stored in the reqlist attribute is full

or not, where the buffer size is given by bµ(O) · timout(O)c. If the buffer is not yet full, the

request is simply added to the list. Otherwise, if the buffer has already reached its maximum

137

capacity, the server tosses a biased coin with success probability A(P), parametrized by its

reqcnt attribute P , and uses the outcome of this experiment to decide whether to either

replace an existing request selected uniformly at random with the incoming request, or to

drop the incoming message altogether. The server wrapper also increments its client request

count reqcnt in preparation for the next incoming client request. This behavior is modeled

by the following probabilistic rewrite rule:

ProcessReq :

〈O : SASV | reqlist : L, reqcnt : P 〉 O ← [N, ID ,CMsg] {T | S}

→ mytick({T | S})

if the request buffer L is full then

if B then 〈O : SASV | reqlist : replace(L, [N, ID ,CMsg], U), reqcnt : P + 1〉

else 〈O : SASV | reqlist : L, reqcnt : P + 1〉 fi

else 〈O : SASV | reqlist : add(L, [N, ID ,CMsg], reqcnt : P 〉 fi

with probability B := Bernoulli(A(P)) ∧ U := Uniform(|L|)

Once a server wrapper times out, indicated by the self-addressed timeout message, the

server resets its reqcnt counter to the value bµ(O) · timout(O)c+1.0, which is specified using

the function resetP , and forwards all the messages in its buffer (if any) down to the enclosed

configuration using the auxiliary function call emitMsgs(L,N), which emits an ordered set

of messages in L starting with the next sequence number N provided by the configuration

through the function gethighin .

STimeout :

〈O : SASV | conf : C, reqlist : L, reqcnt : P 〉 O ← timeout {T | S}

→ 〈O : SASV | conf : sethighin (C,N + |L|) emitMsgs(L,N), reqlist : nil , reqcnt : resetP(O)〉

O ← poll {T | S}

if N := gethighin (C)

The wrapper also updates the next input message sequence number in the configuration

appropriately using the function sethighin , and schedules an internal poll message O ← poll

138

to allow for internal transitions in the underlying configuration, which is captured by the

following rule:

SInternal1 :

〈O : SASV | conf : C〉 O ← poll {T | S}

→ 〈O : SASV | conf : pullUp(C ′)〉

mytick({T | insert(insert(S,makeSL(C ′, T)), [timeout(O) + T, (O ← timeout), 0])})

if eager(C) ∧ C → C ′ ∧ eager(C ′) 6= true

The rule can be applied when the underlying configuration C is eager, as defined by the en-

closed system specification, implying that an internal transition is possible. In this case, the

configuration C is allowed to make one or more transitions all the way to a configuration C ′

that is not eager, where no internal transition is possible. Therefore, when the condition is

satisfiable, the server wrapper’s configuration C rewrites to the next non-eager configuration

in which all outgoing server response messages are removed and submitted to the scheduler

using: (1) the auxiliary functions pullUp, which removes available outgoing messages from

the configuration according to their sequence numbers and appropriately updates the con-

figuration’s output sequence number N low
out , and (2) the auxiliary function makeSL, which

constructs a list of scheduled, encapsulated outgoing messages from the configuration given

the current global time. The rule also schedules a timeout message to be made available after

timeout(O) time units. The other case, when the configuration is not eager, is modeled by

a rule labeled SInternal2 (not shown), which simply ignores the poll message and sched-

ules a timeout message. We note that, since the poll message is scheduled to be processed

immediately after the timeout message, the two transitions defined by these two messages

can in principle be combined into one rewrite transition step. However, we have chosen to

define the internal server wrapper behavior as two consecutive transition steps to a achieve

a simpler and more readable specification.

Client Wrapper. When it is time for the client wrapper to make an internal transition

in the underlying configuration C, which is signaled by the self-addressed timeout message,

and if C is indeed eager, the client wrapper advances C to the next non-eager state C ′, and

139

updates its configuration and buffer attributes according to the following rewrite rule:

CInternal1 : 〈O : CASV | conf : C, buffer : Ē〉 O ← timeout {T | S}

→ 〈O : CASV | conf : pullUp(C ′), buffer : makeCB(C ′, T) Ē〉 O ← poll {T | S}

if eager(C) ∧ C → C ′ ∧ eager(C ′) 6= true

The rule removes any outgoing client request messages from C ′ while updating the appropri-

ate sequence number handler (namely N low
out), using the function pullUp, constructs a buffer

of these messages and appends them to the queue, using the function makeCB, given the

current global time. If the configuration is not eager, a corresponding rule CInternal2

applies, in which the timeout message is simply ignored. In either case, both rules, CInter-

nal1 and CInternal2, schedule a poll message to initiate the client message replication

step. If the client wrapper’s buffer is non-empty, the CSend1 rule may fire, which has the

following form:

CSend1 :

rateρ(Og, R) rateα(A) {T | S}

〈O : CASV | conf : C, buffer : Ē{J, [N, ID , Os ← CC]}, repcnt : K, gen : Og〉 O ← poll

→ rateρ(Og, R) rateα(A)

if (J = 0) then

〈O : CASV | conf : C, buffer : {s(J), [N, ID , Os ← CC]}Ē, repcnt : K, gen : Og〉

mytick({T | schedule a timeout msg and sv(Os)← [N, ID , Os ← CC]})

else if (J ≤ JBound(R,A)) then

〈O : CASV | conf : C, buffer : {s(J), [N, ID , Os ← CC]}Ē, repcnt : 2 ·K, gen : Og〉

mytick({T | schedule a timeout msg, replicate sv(Os)← [N, ID , Os ← CC] K times })

else

〈O : CASV | conf : C, buffer : Ē, repcnt : K, gen : Og〉

mytick({T | schedule a timeout msg only }) fi fi

The rule considers the next message in the buffer (the head of the queue), having a retrial

140

count J and targeted to server object Os. There are three cases. The first case is when J is

0, meaning that the message has not yet been forwarded to the server. In this case, a single

copy of the encapsulated message sv(Os)← [N, ID , O ← CC] is submitted to the scheduler

(no replication), and the buffered message is moved to the back of the queue with its retrial

count J incremented by 1. The second case is when J is non-zero, but smaller than or equal

to the current retrial span limit given by JBound(R,A), a function of the current client rate

R and the current attack rate A. In this case, the client wrapper sends K replicated copies

of the encapsulated message to the server, with K the value of its repcnt attribute, and

updates the replication count for the next attempt. Here, again, the message is moved to

the back of the message queue with its J incremented. In the third case, when the message’s

retrial count exceeds the current retrial span limit JBound(R,A), the wrapper gives up on

the message and drops it from the queue. In all of the three cases, the wrapper schedules

another timeout message after timeout(O) time units. The specification also includes a

corresponding rule, namely CSend2, for the case when the buffer is empty, which simply

ignores the current poll message.

When a client wrapper receives a server response corresponding to a pending request in

its buffer, which is determined by matching the messages’ identifiers, the wrapper consumes

the message and forwards it to the underlying configuration while properly updating the

incoming message sequence number handlers, using the function pushDown, according to

the following rule:

CRec1 :

〈O : CASV | conf : C, buffer : Ē1{J, [N, ID ,CMsg]}Ē2, repcnt : K〉

O ← [N ′, ID , SMsg] {T | S}

→ 〈O : CASV | conf : pushDown(C, [N ′, ID, SMsg]), buffer : Ē1Ē2, repcnt : dK/2e〉

mytick({T | S})

This rule uses matching modulo associativity and identity to match the ID field of the

incoming message with the appropriate buffered message in the queue. The rule drops

the matched buffered message from the queue and updates the client replication count by

141

dividing it by 2 in response to the successful completion of the request. If the client wrapper

receives a server response for a request that is no longer in the buffer, implying that the

response corresponds either to a request that has already been serviced (a duplicated response

message) or to a request that has already failed (a response that is too late), the client

wrapper simply ignores the message. This is captured by a corresponding rewrite rule

labeled CRec2.

Generator Wrapper. The behavior of the generator is modeled by a single rewrite rule

of the form:

SpawnClient :

〈Og : GASV | id : O, conf : C〉 Og ← spawn rateρ(Og, R) {T | S}

→ 〈Og : GASV | id : nextOid(O), conf : nextConf (C)〉 rateρ(Og, R)

〈cv(O) : CASV | conf : C, buffer : φ, repcnt : 1, gen : Og, · · · 〉

O ← poll {T | schedule in S the next spawn message })

When the Og ← spawn message is the next message to be processed, the generator wrapper

object Og creates a new client wrapper object cv(O) that is initialized with the configuration

C, an empty buffer, and a replication count of 1. The generator wrapper updates its client

object id and client configuration for the next client wrapper to be generated, using the

interface function nextOid and nextConf, and schedules the next spawn message.

Attacker Wrapper. The attacker wrapper assumes a similar behavior to client wrap-

pers, in that an attacker wrapper object first, upon receiving a timeout message, makes

an internal transition (if possible) to pull up client request messages from the underlying

configuration and store them in its message queue, according to the rules labeled AInter-

nal1 and AInternal2 (not shown), corresponding, respectively, to client wrapper rules

CInternal1 (shown above) and CInternal2. Then, using a subsequent poll message,

the attacker wrapper forwards a copy of the next message in its (non-empty) queue to the

142

appropriate server wrapper according to a rule of the following form:

ASend1 :

〈O : AASV | buffer : Ē{J, [N, ID , Os ← CC]}〉 O ← poll rateα(A) {T | S}

→ 〈O : AASV | buffer : {s(J), [N, nextID(ID), Os ← nextCC (CC)]}Ē〉 rateα(A)

mytick({T | schedule in S a timeout msg and sv(Os)← [N, ID , Os ← CC] })

In this rule, the attacker wrapper encapsulates the request message appropriately and sub-

mits it to the scheduler. The wrapper also updates the message’s identifier (to generate

uniquely distinguishable copies of the same request), and optionally the message’s content,

using the interface functions nextID and nextCC. A next timeout message is also scheduled

using the current attack rate A. Another rewrite rule labeled ASend2, which ignores the

wrapper’s poll message, applies when the queue is empty. Finally, the attacker wrapper

ignores incoming server responses, regardless of where they come from, which is modeled by

a simple rewrite rule labeled ARec.

7.4 Case Study: Availability Analysis in a Service Composition

Pattern in Orc

To illustrate how the generic ASV wrappers can be used, we describe a case study in which

we analyze service availability in an Orc service composition. The aim of this case study is

twofold: (1) to provide a concrete instantiation of ASV wrappers and the type of analysis

that can be performed, and (2) to illustrate a formal method for analysis of availability

of services in Orc service compositions. Due to the generality and flexibility of both the

ASV wrappers, and the Orc language, much more complex case studies can be designed and

analyzed in many different ways. The case study presented here was designed for simplicity

to emphasize these two goals.

143

7.4.1 The Underlying Language

Being a concurrent programming model, the semantics of an Orc orchestration expression

may naturally be non-deterministic, using either symmetric parallel composition or asym-

metric parallel composition (angelic and demonic types of non-determinism, respectively,

as explained in [35]). Consequently, the SOS semantics of Orc as originally defined in [35],

and the rewriting semantics introduced in Chapters 3 and 4 cannot be directly used as the

semantics of the language in which the underlying system of an ASV wrapper object is

specified, if we are to apply the statistical model checking methods described in Chapter 6,

which assume that all non-determinism has been removed and the model is purely proba-

bilistic. One possible solution is to develop and use a probabilistic semantics of Orc, in which

non-determinism is replaced by probabilistic choice (cf. [119]). However, this development is

outside the scope of this work, and is, furthermore, unnecessary, since the object-level con-

currency inherent in the object-based semantics of of Orc, given by ROrc, already provides a

semantically equivalent alternative to (symmetric) parallel composition in Orc, as discussed

in Section 4.1.4. The non-determinism resulting from object-level concurrency can then be

readily eliminated using the wrapper-level scheduler.

Therefore, we use here a sequential subset of Orc, denoted

Orc, which is Orc without the

parallel composition operators | and < < . The object-based semantics of

Orc is captured

by a theory R
Orc
⊂ ROrc, a sub-theory of the ROrc that excludes operator declarations and

semantic equations pertaining to parallel compositions2.

To support the assumed messaging behavior of ASV wrappers, discussed in Section 7.2, the

theoryR
Orc

includes sort and operator declarations for messages identifiers, sequence number

handlers, and encapsulated messages. A message identifier in R
Orc

is a pair of the form

id(O,H), where O is the Orc object identifier of the caller object and H is the handle name of

the site call in O that caused the message. Sequence numbers in an Orc configuration inR
Orc

are maintained by sequence number handlers of the form in(N low
in , Nhigh

in) for input messages

and out(N low
out , N

high
out) for output messages, so that each object maintains the appropriate

2Currently, only the untimed sequential subset of Orc is used. This limitation is compensated for by timing
out self-addressed messages at the wrappers layer. Extending wrappers to support real-time behaviors of
underlying objects is part of future work.

144

Local Client Intermediary

Enterprise Back-end

Remote Client

Figure 7.3: The underlying Orc orchestration pattern of the case study

sequence numbers in its configuration when consuming an incoming message or producing

and outgoing message, as explained in Section 7.2 above.

7.4.2 The Orc Orchestration Pattern

The Orc orchestration example underlying the communication system to be analyzed is de-

picted in Figure 7.3, where round rectangles represent Orc expression objects and ellipses

represent Orc site objects. The example models a common pattern of communication in

service-based systems, in which a group of enterprise clients (Local Clients in Figure 7.3)

use services provided by a local server in the enterprise (Enterprise). The enterprise server

is also expected to simultaneously serve other users beyond the boundaries of the enterprise

(Intermediary), which compose these services with services provided by other back-end ser-

vice providers (Back-end) to complete a given task. Other clients (Remote Clients) who do

not depend on services from the enterprise, but use services from the back-end server, also

exist.

In the Orc program specification, a local client is modeled by an Orc expression object

that attempts to make a site call to the enterprise server, represented by a simple site object,

with object identifier ep, that simply echos back the actual parameter list of the site call.

The initial configuration of the ith local client object, given by an operator localConf (i), is

of the form:

〈local i : Expr | env : ∅, exp : ep(), hdl : ∅〉 in(0, 0) out(0, 0)

145

Since there may be more than one local client Orc expression object present, the enterprise

Orc site object may receive multiple, distinct messages corresponding to site calls from local

clients. The intermediary Orc expression object, on the other hand, makes three sequential

site calls using the Orc expression ep() � be() � ep(), which calls the enterprise server first

and waits for a response, calls and waits for the back-end server (with object identifier be),

and then calls the enterprise server again. The initial state of the ith intermediary expression

object has the form:

〈interm i : Expr | env : E() , ep() � be() � ep(), exp : E(), hdl : ∅〉 in(0, 0) out(0, 0)

Finally, a remote client is modeled by an Orc expression object that makes a site call to the

back-end server, and its specification is similar to that of the local client expression object.

7.4.3 Availability Analysis

In the instantiation of ASV wrappers to

Orc, a server ASV wrapper encloses an Orc site

object configuration, whereas a client ASV wrapper encloses an Orc expression object. In

addition, a client generator ASV wrapper may optionally be used to generate new instances

of (wrapped) Orc expression objects of a certain type, such as local client objects, and an

attacker wrapper may be used to simulate an instance of an attack.

In this example, we use three generator wrappers, one for each of the three Orc expres-

sion objects: local clients, intermediaries, and remote clients, to model clients requesting

services at some specified request rates, and two server wrappers, one for each of the two

Orc site objects: ep and be. Assuming that the initial configurations for the Orc site and

expression objects described above are constructed using the respective defined functions

epConf , beConf , localConf i, intermConf i and otherConf i, the initial wrapper-level configu-

ration (with no attackers) is a term of the following form (the scheduler and other supporting

146

µ(sv(ep)) = 200 Timeout(sv(ep)) = 0.4

µ(sv(be)) = 50 Timeout(sv(be)) = 0.4

ρ(gv(local)) = 0.02 Timeout(cv(local)) = 0.4

ρ(gv(interm)) = 0.04 Timeout(cv(interm)) = 0.4

ρ(gv(remote)) = 0.16 Timeout(cv(remote)) = 0.4

Table 7.3: An instantiation of the ASV parameters

objects are not shown):

〈sv(ep) : SASV | conf : epConf , reqcnt : resetP(sv(ep)), reqlist : nil , · · · 〉

〈sv(be) : SASV | conf : beConf , reqcnt : resetP(sv(be)), reqlist : nil , · · · 〉

〈gv(local) : GASV | conf : localConf 0, id : local0〉

〈gv(interm) : GASV | conf : intermConf 0, id : interm0〉

〈gv(remote) : GASV | conf : remoteConf 0, id : remote0〉

To complete the specification of the ASV-wrapped system, we instantiate the ASV model

parameters as listed in Table 7.3. For simplicity, we assume no message transmission delays

or drops (Delay = Drop = 0.0), and a simulation length of 10.0 time units.

In addition, we define the ASV wrapper interface functions given in Table 7.2 as follows.

The eager function coincides with the eager predicate for Orc configurations, defined in

Chapter 3, so that a configuration is eager if and only if an instantaneous Orc action is

enabled. The definitions of the getter and setter functions for sequence number handlers

in an Orc configuration are trivial. The functions nextOid and nextConf simply increment

the appropriate object identifier counters to create fresh new identifiers to be used by the

generator wrappers, while the functions nextID and nextCC, which are used by attackers,

generate unique message identifiers and message contents by using fresh handle names. For

example, the function nextOid has the defining equation nextOid(local i) = local i+1, and the

function nextID is defined as nextID(id(O, hi)) = id(O, hi+1).

To be able to compare the performance of ASV to other non-adaptive schemes in this

147

setting, we develop variations of the ASV wrappers corresponding to the naive selective ver-

ification protocol and the aggressive selective verification protocols discussed in Section 6.3.5,

in addition to a third variation in which no selective verification is performed, referred to

below as the basic variant.

In our analysis, we consider two different attack scenarios with varying attack rates: at-

tacks on the enterprise server ep, and attacks on the back-end server be. As in the ASV

analysis reported in Section 6.3, we analyze the system in terms of three classes of proper-

ties: (1) connection ratio, which is the number of clients successfully served over the total

number of clients, (2) average time to service, which is the average amount of time, over

all successfully served clients, to get served, and (3) bandwidth usage, which is measured by

the total number of legitimate client requests reaching the server. These properties have

identical specifications as QuaTEx expressions as those presented in Section 6.3.3. Unlike

the previous analysis of ASV, where we had only one server and one client generator objects

(i.e. one type of multiple, identical client objects), these properties are analyzed here for

each of the two server wrappers, and the three client generator wrappers. Throughout the

experiments, we assume a 95% confidence interval of size at most 0.05. The analysis results

are shown in Figures 7.4–7.7.

Figure 7.4 plots the expected client connection ratio and the average time to service against

different attack rates for the three types of clients for the first attack scenario. The connection

ratio plots for local and intermediary clients (in Figures 7.4(a) and 7.4(b)) show similar

results as those obtained before, in which the ASV protocol performs fairly well against

extreme rates of attack. All four variants performed slightly less effectively for intermediary

clients than for local clients, which is to be expected, due to the more demanding underlying

behavior of intermediary clients. The connection ratio plot for remote clients in Figure 7.4(c)

shows the effects of the attack on the enterprise server are only barely noticeable, except for

the aggressive protocol, which consistently performs suboptimally due to the consistently

high replication count on the slower back-end server. The average time to service results

reaffirms latency side-effects of ASV as the severity of attack increases. We note that the

service latencies suffered by the intermediary clients are more pronounced because of the

fact that an intermediary client requests two sequential services from the enterprise server

148

under attack. Figure 7.5 shows a similar, somewhat symmetric, set of results when the back-

end server is subjected to the attack. Due to the slower server being attacked, connection

ratios are in general lower than in the previous attack scenario. We also note that the

average service latency for intermediary clients is less affected by this attack due to their

underlying behavior. Finally, legitimate client bandwidth consumption plots in Figures 7.6

and 7.7, show that the ASV behavior performs exceptionally well for both servers, under

both attack scenarios. The figures also show that, in moderate to severe attack situations,

the bandwidth consumption in the aggressive behavior becomes extremely high compared

to the other variants, which is due to the computed (rather than fixed) retrial span using

the function JBound.

149

(a) Local Clients

(b) Intermediary Clients

(c) Remote Clients

Figure 7.4: The expected connection ratio and average time to service for local,
intermediary, and remote clients when attacking the enterprise server

150

(a) Local Clients

(b) Intermediary Clients

(c) Remote Clients

Figure 7.5: The expected connection ratio and average time to service for local,
intermediary, and remote clients when attacking the back-end server

151

(a) Enterprise server (b) Back-end server

Figure 7.6: Bandwidth usage when attacking the enterprise server

(a) Enterprise server (b) Back-end server

Figure 7.7: Bandwidth usage when attacking the back-end server

152

CHAPTER 8

RELATED WORK

In this chapter, we briefly review related work in the different areas to which this dissertation

contributes. The intent is not to document every related development in the literature, but

rather to highlight fundamentally related, exemplary results. We also provide references to

some surveys, where more background information and related cited publications can be

found.

8.1 Rewriting Logic Semantics

The fact that rewriting logic is a general semantic framework in which languages and sys-

tems can be naturally specified is now well established, as discussed in Meseguer’s and Rosu’s

survey of the rewriting logic semantics project [61] as well as in [62], and in the upcoming

survey [63]. The generality and flexibility of rewriting logic make it suitable for specify-

ing both deterministic computations (algebraically using equations) and non-deterministic

computations (using rewrite rules) within a uniform model, providing a convenient way to

control the level of abstraction desired in a specification.

Several recent research projects within the rewriting logic semantics project, which are

closely related to the work presented in the thesis, have been conducted (some are discussed

in the upcoming survey [63]). For example, a formal framework for the specification and anal-

ysis of timing properties in software design based on Real-Time Maude was presented at [120].

The framework uses a flexible intermediate language with timeouts to specify software com-

ponents in a design, and allows for both static analysis (using abstract interpretations) and

dynamic analysis (searching and model checking) of timed properties. Another recent ex-

ample is a Real-Time-Maude-based tool for specifying and analyzing synchronous, real-time

153

embedded software systems in Ptolemy II [121, 122]. The tool implements a code generation

infrastructure, similar to MOrc’s, minimizing exposure to the underlying Maude model. A

third example, also for embedded software components, but with emphasis on safety-critical

systems, is given in [123], where an object-based, formal semantics of a behavioral subset of

AADL in Real-Time Maude is used as a formal analysis back-end for AADL specifications.

8.2 Formal Semantics of Orc

In addition to the operational SOS semantics of Orc in [35] and its timed SOS extension

in [81], several denotational formalizations of Orc’s semantics, which are more well-suited

for reasoning about algebraic properties in the language than for describing the operational

behavior of Orc programs, have been developed [84, 82, 124]. Encodings of Orc in some

other formal models of concurrency, including encodings in π-calculus [125], Petri nets and

the join calculus [126], and networks of timed automata [127] were also given, indirectly

providing formal semantics to Orc and highlighting some of its semantic subtleties.

The SOS-based rewriting semantics of Orc, along with some of the operational approaches

cited above, has similarities with the various SOS semantics that have been given for different

timed process calculi, such as ATP [128] and TLP [129], and real-time extensions to various

process calculi, such as extensions of ACP [130, 14], CCS [131], and CSP [132].

8.3 Formal Analysis of Service Compositions

Over the last few years, a considerable amount of foundational research has been conducted

to address the problem of formally specifying and analyzing different forms of service com-

positions, including most importantly service orchestrations, which can be broadly classified

into four categories: (1) automata-theoretic, (2) Petri net-based, (3) process-algebraic, and

(4) BPEL-oriented approaches. We selectively highlight some of the most relevant results

below.

The automata-theoretic approach proposed in [127] leverages available model checking

tools for timed automata models, namely Uppaal [133], by modeling the semantics of an Orc

154

expression as a network of timed automata. Unlike MOrc, the resulting Uppaal-based tool

enables formal verification of only a subset of Orc with limited recursion, where the number

of threads in an Orc expression is fixed. A fundamentally similar approach, but based on an

abstraction of BPEL activities instead of Orc, is used in [134], where an abstracted BPEL

process is transformed into a network of Web Service Timed Transition Systems (WSTTS),

which are essentially timed automata tailored in design for web service compositions. An

implementation of the underlying model enables model checking analysis of timed properties,

which are specified in discrete-time Duration Calculus. In comparison to the rewriting-based

approach of the thesis, automata-based methods are limited in expressiveness and are, as a

result, insufficient for modeling the full generality of service compositions.

Models of service compositions using Petri nets, and their extensions, have been developed.

Most of these approaches, such as [135, 136, 137], tend to first define a process calculus in

which service composition constructs are specified, and give such constructs formal semantics

as Petri nets. Correctness of composition specifications can then be verified using standard

reachability analysis methods for Petri net models. A recent, introductory book on modeling

business processes using Petri nets is also available [138].

Several other (non-Petri-net-based) process-algebraic approaches to service composition

specification were developed. The general theme of these methods is to first specify a pro-

cess calculus with specialized constructs for the targeted aspects of a service composition,

like persistent sessions, error handling (exceptions), or security properties, and then develop

their formal semantics in some form of a transition system, on which formal verification is

based. Examples of such efforts, many of which were partially supported by the Sensoria

project [139], include: (1) Service-Centered Calculus (SCC) [140], an Orc-inspired process

calculus of service compositions with persistent sessions; (2) Service Oriented Computing

Kernel (SOCK) [141], which defines a layered process calculus for modularly specifying ser-

vice behaviors, service sessions, and service compositions; (3) the Calculus for Orchestration

of Web Services (COWS) [142], a timed process calculus with termination constructs; (4)

Event Calculus for Web Services [143], a process calculus with events and event scopes for

error handling; and (5) Signal Calculus (SC) [37], a variant of the Ambient Calculus [38]

for event-notification-based service coordination. Most of these calculi emphasize expres-

155

siveness and conciseness by providing constructs that capture different aspects of services,

and demonstrate them with examples. It is not clear, however, how mechanizable such for-

malisms are for performing automatic formal analysis. Bruni [36] provided a fairly recent

survey of such process calculus-based approaches, and described one of his own, called the

Calculus of Sessions and Pipelines (CaSPiS) [36], which is a calculus for describing service

sessions and their interactions.

Other approaches that are based directly on BPEL (and related industrial languages) have

also been proposed. Given the fact that BPEL and similar languages are descriptive and

verbose, and lack any sort of formal semantics, these approaches essentially try to provide

formalizations of (subsets of) these industrial languages in some formal model of computa-

tion, like BPEL encodings in Petri Nets [42], the π-calculus [43], Event Calculus [144], and

Message Sequence Charts [145]. Alternatively, they may devise new BPEL-inspired core

languages for service orchestrations that capture some of BPEL’s salient features, such as

transactions and process termination, including, for example, Blite [44], and the BPEL-based

process calculi of [146] and [147], focusing on studying correlations between orchestration

processes within service choreographies. The manuscript [41] provides a comprehensive (but

perhaps fairly outdated) survey of BPEL formalizations. Nevertheless, as a result of BPEL’s

complexity and expansive feature-set, a comprehensive and practical BPEL-based formal

framework for the specification and verification of service orchestrations remains elusive.

8.4 Implementations of Service Composition Languages

There are numerous implementations of service compositions (including implementations in

general purpose programming languages, like Java and C#) providing tools and frameworks

for designing business processes. Unfortunately, most of these tools are not in any way based

on formal models against which formal analysis and verification can be carried out, but rely

solely on forms of static analysis and traditional non-exhaustive dynamic analysis methods

like testing. However, There are a few recent proposals for tools that are based on formal

(or at least semi-formal) models. Bruni et. al. [148] described an implementation approach

based on abstract state machines (ASMs), in which a formal model of service compositions

156

is first compiled into the intermediate language of the underlying Service-Oriented Abstract

Machine (SOAM), for which a code generator exists. An implementation of Orc, among

other service composition formal models, was given using this approach [148]. Compared

to our rewriting-based implementation approach in Maude, the ASM approach seems less

generic as the underlying SOAM has to be tailored to the specific model to be implemented,

which may re-introduce possibilities for implementation errors. Moreover, SOAM’s model

of services defines specialized constructs for messaging and maintaining multiple program

states (corresponding to different services running in parallel) with specialized semantics,

which makes it less intuitive than the object-based model with asynchronous message pass-

ing employed in our transformation. Finally, it is not clear whether truly distributed imple-

mentations can be obtained from their SOAM specifications.

Other approaches to implementations of service compositions, which can be classified un-

der the model-driven software engineering methodology, have also been proposed. These

include: (1) VFT [149], which is a tool based on a visual language (with semi-formal seman-

tics) for specifying semantic web service compositions in OWL-S [33]; (2) DecSerFlow [150],

which is an extensible, graphical language with formal semantics, endowed with LTL model

checking; (3) The UML-based specification framework of [151], which is rooted at Hoare’s for-

malism of Communicating Sequential Processes (CSP) [13] to formally check conformance

of service compositions with a given choreography specification; and (4) LTSA-WS [152],

which is a UML-based specification language, developed as an Eclipse plug-in, in which

service composition specifications are translated into labeled transition systems, where ver-

ification is performed by trace equivalence.

8.5 Statistical Analysis Methods of Probabilistic Models

Statistical model checking of formal models of probabilistic systems has seen a growing

interest in the formal methods community over the last few years, mainly due to its higher

scalability and wider applicability, when compared to numerical probabilistic methods. In

general, in statistical model checking, the problem of checking whether the probability that

a certain property holds is within some specified threshold (expressed as a probabilistic

157

formula in a probabilistic temporal logic, such as PCTL [106] and CSL [107, 108]) is solved

using statistical means, such as statistical hypothesis testing, as described by Sen et. al. [1].

A similar approach based on hypothesis testing is presented in [101, 153], where, instead

of pre-computing the sample size and performing a simple hypothesis test as in [1], the

authors describe a testing strategy based on sequential acceptance sampling, where after each

observation, a testing step is performed to decide whether further observations are needed to

satisfy the required statistical strength of the result. Although the simple hypothesis testing

strategy of [1] is more amenable to parallelization, it is argued in [101] that sequential

sampling may reduce generated sample size. Other statistical model-checking algorithms

for checking properties of “black-box” systems, in which samples cannot be generated on

demand, have been proposed [154, 155].

In statistical quantitative analysis, a quantitative measure of some aspect the probabilistic

system is estimated, as demonstrated here and in [2] using QuaTEx and the statistical

quantitative analysis algorithm of [2]. A similar algorithm was also described in [104], in

which, instead of fixing a sample size N , samples are generated until a standard normality

test (e.g. the JB test [156]) succeeds. The standard normal distribution is then used in the

computation of the confidence interval.

8.6 Formal Specification and Analysis of Availability

The VeStA tool [72], along with Maude, has been used for statistical model checking

and quantitative analysis in several projects, including analysis of TCP SYN floods-based

DoS attacks within the shared channel model [102], analysis and redesign of a wireless

sensor networks protocol [103], and a few case studies in object-based stochastic hybrid

systems [66]. A similar rewriting-based approach using Maude was also described in [104],

which was applied to a resource optimization problem in embedded systems.

Other statistical model checking and quantitative analysis tools have been developed.

They include PRISM [157], a BDD-based model checker with a simple state-language for

system specification, and APMC [158], which is based on a randomized algorithm for ap-

proximating probabilities in Discrete Markov Chains and, like PVeStA [57], supports

158

client-server architectures for parallel computations. Other tools include Rapture [159]

(which is also a BDD-based model checker) and Erlangen-Twente Markov Chain Checker

E ` MC2 [160]. Compared to the VeStA/PVeStA and Maude approach, most of these

tools sacrifice expressiveness and generality for algorithmic decidability.

There have been several works in the literature to formally analyze DoS attacks. These

include Meadow’s formal framework for evaluating protocols against DoS attacks [46], an

information flow-based framework using the Security Protocols Process Algebra (SPPA) for

the detection of DoS vulnerabilities [47], and an observation-equivalence approach based on

π-calculus for DoS detection [48]. Other formal approaches and extensions and applications

of these approaches have also been developed [49, 50, 51].

8.7 Availability Analysis in Service Compositions

Service availability issues in service compositions in the presence of DoS attacks have only

been recently recognized. Jensen and colleagues studied distributed flooding attacks on

services in web service compositions in [161, 162], where they highlighted the challenges in

maintaining availability, defending against such attacks, and tracing sources of attack in this

context. These issues were also described in recent, general surveys of attacks, including

DoS attacks, on web services [113, 163] and cloud-based services [164].

Much of the work in the literature addressing availability of services in service-oriented

architectures deals with Quality-of-Service (QoS) properties of services, including reliability,

latency and bandwidth usage. In general, several different approaches to the analysis of QoS

properties of communication networks exist. The approach that is most closely related to our

work is based essentially on the use of a probabilistic process calculus for the specification of

services and service compositions, and a quantitative temporal logic for QoS properties. An

exemplary work using this approach appeared in [165], where the author proposed an exten-

sion of Milner’s CCS [166] with costs, which can be used to represent a QoS property such

time delays and drop probabilities. The semantics of the extended calculus, called Quality

CCS (QCCS), was given as a cost-extended labelled transition system (Quality Extended

Labeled Transition System - QELTS), in which a transition is labeled by a pair (a, c), with a

159

an action and c the cost associated with the transition. To compare cost-enriched behaviors

of processes in QCCS, a notion of quantified bisimulation was also presented. The author

also gave a Quantified extension of CTL [167] (QCTL) endowed with costs, with semantics so

that satisfaction of QCTL formulas is preserved under quantified bisimulation. A similar ap-

proach, given in [168, 169], extends the timed calculus COWS [142] with probabilities, called

Stochastic COWS. Analysis is performed by translating processes in Stochastic COWS into

Continuous Time Markov Chains (CTMCs), on which probabilistic or statistical verification

can be applied using available tools, like PRISM.

160

CHAPTER 9

CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

This dissertation has presented formal methods and tools for the specification, analysis

and implementation of distributed services, based on rewriting logic, it implementation in

Maude, and the theory of Orc. A fundamental contention of this work is that in order to

be able to provide effective formal tools for the design and analysis of current- and next-

generation distributed Internet software systems, the underlying formalism should be both

very expressive, so that their features can be naturally represented, and efficiently executable,

which is required for efficient and mechanizable formal analysis, and for seamlessly deriving

system implementations from formal specifications.

Below, we provide a summary of the results obtained, while highlighting possible future

research directions.

9.1 Formal Specification and Analysis of Orc Service

Orchestrations

We have presented a formal semantics in rewriting logic of Orc that provably captures Orc’s

intended synchronous, real-time semantics, which is a unique contribution to previous ef-

forts to Orc’s formal semantics. Two specification styles of Orc’s rewriting semantics were

first discussed: (1) the SOS-based rewriting semantics, given by the theory Rsos
Orc, which

was obtained directly from ORC’s original SOS semantics through a semantics-preserving

transformation method, and (2) the reduction rewriting semantics, given by Rred
Orc, which

exploits the distinction between equations and rules in rewriting logic to arrive at a much

more efficiently executable specification. Both specifications were shown semantically equiv-

alent through a strong bisimulation theorem, which implies correctness of the (untimed)

161

reduction rewriting semantics with respect to Orc’s original SOS semantics. Through their

specifications in Maude (and Real-Time Maude), both rewriting semantics can be immedi-

ately used for simulating Orc programs, and exhaustively analyzing their possible behaviors

using breadth-first search and model-checking formal analysis tools of Maude. Experimental

results, which were obtained by formally analyzing several Orc programs, have demonstrated

the execution efficiency advantage of the reduction rewriting semantics over the SOS-based

semantics.

The reduction rewriting semantics paved the ground for a more distributed, object-based

semantics, ROrc, which extended Orc’s semantics to multiple Orc expressions and provided

explicit treatment of the environment by modeling Orc sites and asynchronous message pass-

ing. A specification of ROrc in Real-Time Maude was then used as a back-end engine for the

MOrc tool, which is a web-based application enabling the formal specification and verifica-

tion of Orc expressions without exposing its user to the underlying Maude representation.

The tool was described in detail with several examples.

There are several possible future research directions that will further advance the results

obtained as part of this work. First, the object-based semantics given by ROrc already

improves on the other two semantics by introducing a level of true concurrency (object-level

concurrency) as opposed to simulated concurrency by interleaving semantics, inherited from

the original SOS semantics. However, it would be interesting to further develop an object-

based semantics of Orc that is not based on the original SOS semantics, but is instead based

on the truly concurrent, distributed semantics of rewriting logic. Recent developments in the

rewriting logic semantics project, and, in particular, the K framework [170, 62], may be used

as a vehicle towards achieving this semantics. An investigation of how this semantics relates

to the original SOS semantics of Orc would also be interesting. Another possible future

direction is to incorporate into Orc’s rewriting semantics the notion of Orc classes (Professor

J. Misra, personal communication, August 2010), which are data structures encapsulating

Orc expressions and defining interfaces to external objects. The addition of Orc classes

will have the desirable side effect of enabling the specification of behaviors of Orc sites as

expressions in Orc. This is particularly useful for MOrc, since custom site behaviors can

only be specified internally in Maude. A third possible future development is to improve

162

on the expressiveness of constraints in MOrc, to allow more general constraint patterns,

and MOrc’s current post-processing functions, to provide a more user-accessible analysis

results.

9.2 Distributed Implementation of Orc Service Orchestrations

We described a general transformation methodology through which a real-time, object-based

rewriting specification can be turned with minimal effort into a distributed implementation

with physical timing, bridging the gap considerably between formal specifications and actual,

deployable implementation. The transformation methodology is fundamentally enabled by

Maude’s support for external communication with external objects through sockets. We

have demonstrated this method by applying it to the real-time, object-based semantics of

Orc, obtaining as a result, a distributed implementation, Dist-Orc. A case study was

described, in which the Orc specification of an auction application was deployed on a phys-

ically distributed network of nodes. Finally, we showed how programs in their implemented

form (according to this transformation) can still be subjected to formal analysis by building

appropriate abstractions of external objects.

Since the transformation method described above is generic, an interesting possible future

research direction is to develop a precise characterization of the class of real-time rewrite

theories for which this semantics-preserving transformation can be applied to arrive at a

provably correct implementation. This development will provide the necessary theoretical

foundation for automating the transformation process, perhaps as a meta-level function in

Maude.

Furthermore, while the distributed implementation of Orc, Dist-Orc, currently enables

prototyping and experimenting with an Orc program in a distributed environment, it does

not provide an easily accessible interface beyond that of the Maude interpreter, which may

not be as intuitive and natural as the user of an Orc program would expect when experi-

menting with or observing its behavior. In addition, the process of setting up the required

environment, including management of the ticker objects, can be burdensome since it in-

volves a fairly large number of steps that must be customized for each Orc program (this is

163

currently partially automated using shell scripts). Therefore, an interesting future develop-

ment is to extend Dist-Orc with a more user-friendly, visual interface for its applications,

using, for example, the IOP+IMaude approach [20] or an external GUI server, such as the

GTK+ server [171]. This extension will automate most of the steps required to setup and

execute an Orc program, while providing a visual representation of its most relevant aspects.

9.3 Statistical Model Checking Analysis

This dissertation has proposed architecture-independent, map-reduce parallelizations of two

statistical analysis algorithms: (1) the statistical model checking algorithm of PCTL/CSL

formulas given in [1], and (2) the statistical quantitative analysis algorithm of QuaTEx

expressions given in [2]. The parallel algorithms were implemented in PVeStA, which is

based on the implementation of the original sequential algorithms in VeStA. Like VeStA,

PVeStA supports probabilistic models of systems given either as probabilistic rewrite theo-

ries in Maude, or as continuous-time Markov chains in a PRISM-like input syntax. We have

also demonstrated the performance gains as a result of parallelization through several statis-

tical analysis tasks of varying complexities, run on two different parallel architectures: a HPC

cluster, and a multi-core machine. One important goal of this contribution was to make this

increased scalability and efficiency available to expressive probabilistic models of systems,

such as probabilistic rewrite theories in Maude. To this effect, we have demonstrated and

further developed a rewriting-based approach to the analysis of availability properties of ser-

vices (specified as QuaTEx expressions) in the presence of DoS attacks in the ASV protocol

and its non-adaptive variants. Automatic statistical quantitative analysis results confirmed

previously manually proved theorems, in addition to properties shown by statistical analy-

sis of low-level network simulations. In this formal statistical model checking approach, a

considerably higher level of assurance can be gained for both analytical properties proved

by hand, and for properties suggested by simulation analyses.

An interesting future research direction related to this work is to extend the parallel

statistical PCTL/CSL model checking algorithm, and its corresponding implementation in

PVeStA, to nested probabilistic formulas of the form P./p(ϕ), where ϕ may itself be a

164

probabilistic formula. While the original sequential algorithm in [1] already supports nested

probabilistic formulas, parallelization of the algorithm for nested formulas is not entirely

trivial, since nested probabilistic operators will eventually require generating further sample

executions along previously generated sample paths. A naive solution is to limit paralleliza-

tion to the outermost probabilistic operator. Another possible solution is to use techniques

from statistical model checking of black-box systems [154, 155].

9.4 Availability Analysis in Service Compositions

By building on the ASV model in rewriting logic, presented in Chapter 6, we proposed

a method for modular protection of availability properties of systems using generic ASV

wrappers, which are objects that encapsulate lower-layer configurations of objects, mediating

communication between sub-configurations of the wrapped system. We provided a detailed

description of the design of wrappers, their behaviors, and the assumptions under which

statistical model checking and quantitative analysis becomes applicable. As a demonstration

of the use of wrappers and an illustration of an expressive and flexible method for analysis

of availability in service compositions, we described an instantiation of the ASV wrappers

to Orc, given by its object-based semantics in ROrc, and conducted a set of experiments

analyzing a simple Orc orchestration pattern.

There is much more to be done in this direction. In particular, to further refine the design

of wrappers and demonstrate the generality and effectiveness of the approach, we will need

to: (1) further experiment with the Orc instantiation of ASV wrappers using more complex

orchestration examples, (2) develop other different instantiations of the wrappers beyond

Orc and experiment with them, and (3) extend the specification of wrappers to support

timing in underlying system specifications. Another possible research direction is to extend

the adaptive behavior of clients in the ASV protocol (specified in the ASV client wrappers)

to the area of cloud computing, in which dynamic resource allocation in the could is made

adaptive to potential DoS attacks, to try to maintain a level of service comparable to that

in the absence of such attacks. The generic wrappers method can be extended to support

such adaptive behaviors in server wrappers.

165

APPENDIX A

PROOFS OF SOME ALGEBRAIC PROPERTIES OF
ORC

Equivalence of arbitrary Orc expressions is shown here using a strong bisimulation based

on the operational semantics specified by the rules in Figure 2.2. At the risk of abusing

notation, the symbol = is used here to denote strong bisimulation.

• (f ; g) ; h = f ; (g ; h). The behavioral transitions of f are the only transitions possible

in each side of the identity. So suppose f publishes a value, i.e., f
!v
↪−→ f ′. Then, by

OtherV, f ; g
!v
↪−→ f ′, which, again by OtherV, implies (f ; g) ; h

!v
↪−→ f ′. Applying

OtherV to the right-hand side of the identity yields f ; (g ; h)
!v
↪−→ f ′, which concludes

this case.

Suppose now that f takes a non-publishing action n, i.e., f
n

↪−→ f ′. Then, by OtherN,

we have:

(f ; g) ; h
n

↪−→ (f ′ ; g) ; h and f ; (g ; h)
n

↪−→ f ′ ; (g ; h)

which concludes the proof, assuming that (f ′ ; g) ; h = f ′ ; (g ; h).

• f ; 0 = f . There are two cases corresponding to f taking a publishing or a non-

publishing action. If f publishes a value, then by OtherV, we have f
!v
↪−→ f ′ iff

f ; 0
!v
↪−→ f ′. Otherwise, if f takes a non-publishing action n, then by OtherN,

f
n

↪−→ f ′ iff f ; 0
n

↪−→ f ′ ; 0 . Assuming f ′ ; 0 = f ′, the property is proved.

• f <x< 0 = [stop/x]f . We need to show that, for some label l and expression f ′:

f <x< 0
l

↪−→ f ′ <x< 0 iff [stop/x]f
l

↪−→ [stop/x]f ′

By Asym2, we have f <x< 0
l

↪−→ f ′ <x< 0 iff f
l

↪−→ f ′. Therefore, the goal reduces

to: f
l

↪−→ f ′ iff [stop/x]f
l

↪−→ [stop/x]f ′, which can be shown by structural induction

166

on f (this property is called Substitution Independence in [83] and is proved there for the

timed SOS semantics). Therefore, the property holds assuming f ′ <x< 0 = [stop/x]f ′.

• !v ; f = !v . The only possible behavioral transition for both !v and !v ; f is the

Publish action. Therefore, !v
!v
↪−→ 0 and, by OtherV, !v ; f

!v
↪−→ 0 , and hence

the conclusion.

167

APPENDIX B

PROPERTIES OF RSOS
ORC AND RRED

ORC

In this appendix, we refer to the theories Rsos
Orc and Rred

Orc respectively by Rs and Rr, and

use C →R C ′ to denote R ` C →1 C ′, for brevity and notational convenience.

B.1 Executability of Rsos
Orc

Before going through the proofs of executability of R̂s, we outline the transformation method

applied to the underlying conditional membership equational logic theory (Σs, Es∪As) of Rs

into a semantically equivalent conditional order-sorted equational logic theory (Σ̂s, Ês ∪As)

in R̂s with no kinds or membership assertions, so that the current Maude tools for checking

confluence of equations and coherence of rules with respect to equations can be used. In this

transformation, a new top sort sK is introduced for each kind K in Σ. The sort sK in Σ̂s

replaces the kind K in all kind-level operator and variable declarations in Σs. In particular,

a top sort s[Bool] is introduced and used to represent terms of the kind [Bool]. Then, each

membership clause of the form f(t1, · · · , t2) : s, with f an operator of a sort s′ ≥ s, is

transformed into the equation s?(f(t1, · · · , t2)) = true, where s? is a newly introduced

(partial) predicate, declared as s? : s′ → s[Bool]. This transformation, which is also applied

to Rr in Appendix B.2, can be straightforwardly shown to preserve the semantics of the

original membership equational logic-based rewrite theory.

Proof of Lemma 3 – ground confluence and descent properties of R̂s. The proof is automatic

using Maude’s Church-Rosser Checker (CRC) tool [89] and the Maude module SOS-ORC cor-

responding to the rewrite theory R̂s. In particular, by loading the Full Maude specifica-

tion of CRC and the Maude module SOS-ORC, and by issuing the CRC command (check

Church-Rosser .), we obtain the following output:

168

...

Church-Rosser checking of SOS-ORC

Checking solution:

The following critical pairs cannot be joined:

cp for syn04d and cin12a1

zero = M:SiteName(VL:ValueList).

ccp for syn04c and cin12b

zero = (S:Subst ix:IVar)(S:Subst P:AParamList)

if not hasSV?(P:AParamList)= true .

ccp for syn04d and cin12a

zero = M:SiteName(S:Subst P:AParamList)

if not hasSV?(P:AParamList)= true .

The specification is sort-decreasing.

The current version of the tool has a known bug that, in some specific cases, may cause

the checker to miss some conjuncts in the conditions of conditional critical pairs, caus-

ing the reported (apparently not joinable) critical pairs above (personal communication

with Prof. Francisco J. Durán, November 2010). In particular, the first reported critical

pair between equations labeled syn04d and cin12a1 should actually be a conditional crit-

ical pair with the condition hasSV?(VL:ValueList) = true, which can be easily shown

unfeasible. The other two reported conditional critical pairs are missing the conjunct

hasSV?(P:AParamList) = true in their conditions, which clearly makes both pairs trivially

unfeasible. Finally, the tool correctly reports that the specification is sort-decreasing.

Proof of Lemma 4 – ground coherence of R̂s. By definition of ground coherence (see [90]),

R̂s is ground coherent iff for every ground Σ̂s term t such that t →E,A u and t →R,A v, we

have

t
R,A //

E,A
��

v
E,A

∗ &&u

E,A ∗
��

w
A

w′

u′
R,A
// u′′

E,A

∗ 99

169

where solid and dotted arrows denote, respectively, universal and existential quantification.

Likewise, for local ground coherence we have,

t
R,A //

E,A
��

v
E,A

∗ &&u

E,A !
��

w
A

w′

u′
R,A
// u′′

E,A

∗ 99

We first note that Theorem 3 in [90], which states that the notions of coherence and local

coherence coincide for the considered class of conditional rewrite theories with equational

conditions, also applies to rewrite theories with rules having rewrites in their conditions

(The proof of Theorem 3 in [90] is essentially the same because the property follows mainly

by confluence and termination of the equational rewriting relation →E,A). Therefore, the

problem of checking ground coherence of R̂s reduces to checking local ground coherence.

Consequently, as in [90], we may reason about coherence of R̂s by cases on u E,A← t→R,A v,

depending on whether they are overlap or non-overlap situations as follows:

Overlap Case. We note that R̂s is a top-most theory so that rewrites by rules occur only

at the top of an Orc configuration (the top sort is Config) with no function symbols that

equationally rewrite above a configuration. Therefore, a (conditional) critical pair may only

be the result of an overlap between the left-hand side of an equation in Es and a non-variable

position in the left-hand side of a rewrite rule in Rs (Type I critical pairs in [90]). That is, the

overlap case reduces to checking for every rule l→ r if C in Rs, equation l′ = r′ if C ′ in Ês,

non-variable position p in l, and substitution θ such that θ(l′) = θ(l|p), that the conditional

critical pair θ(C ′)∧ θ(C) =⇒ θ(l[r′]p)→ θ(r) is either unfeasible or can be shown joinable.

It is easy to see from the equations and rules in R̂s that the only possible overlap of this kind

is between the equation corresponding to identity (8) in Figure 2.3, namely that !v ; f = !v,

and the rewrite rule OtherV:

·〈f̂ ; g, lbl : l | r〉 → 〈f ′, lbl : !v′ | r′〉 if ·〈f̂ , lbl : ε | r〉 → 〈f ′, lbl : !v′ | r′〉

170

The overlap occurs at the top of the expression component of the configuration given by the

lhs of the rule OtherV, which results in the following conditional critical pair:

·〈!v, lbl : ε | r〉 → 〈f ′, lbl : !v′ | r′〉 =⇒ ·〈!v, lbl : l | r′〉 → 〈f ′, lbl : !v′ | r′〉

The rewrite in the condition ·〈!v, lbl : ε | r〉 → 〈f ′, lbl : !v′ | r′〉 can only be an application

of the Publish rule in Rs (see Figure 3.4) with the substitution {f ′ 7→ 0, v′ 7→ v, r′ 7→ r},

which makes the critical pair joinable by the Publish rule.

Non-overlap Case. Again, since R̂s is top-most, we need only to consider non-overlap

situations of Ês under Rs. That is, we need to show local ground coherence of situations

of the form ·〈f1, r1〉 E,A← ·〈f, r〉 →R,A 〈f ′, r′〉, where rewriting with Ês occurs in variable

positions in f and/or r. This can be shown by induction on the size of (or the number of

applications of the Replacement inference rule of rewriting logic [10] in) a proof of the

one-step rewrite ·〈f, r〉 →R,A 〈f ′, r′〉.

The base cases correspond to applications of rules with no rewrites in their conditions,

i.e., when the rewrite step ·〈f, r〉 →R,A 〈f ′, r′〉 is an instance of one of the following rules:

SiteCall, SiteRetV, SiteRetStop, Publish, ExprCall or Tick. We will discuss the

cases for SiteCall and Tick only, as the other cases are similar. Suppose that the rewrite

is proved by SiteCall. Then, the configuration ·〈f, r〉 is of the form:

·〈M(~v), lbl : l | msg : ρ | hdl : η | r〉

Since M(~v) and any label instance of l are constructor terms, the configuration may rewrite

with equations in a substitution of the variables ρ, η, or r. In other words, the configuration

may rewrite with Ês to ·〈M(~v), lbl : l | msg : ρ′ | hdl : η′ | r′〉, with ρ′, η′, and r′ of the

171

respective appropriate sorts. Therefore, we have:

·〈M(~v), l | ρ | η | r〉 R,A //

E,A
��

〈?h, M〈~v, h〉 | ρ[M,~v, h] | η, h | r〉
E,A

∗ ,,· · ·

E,A !
��

w
A

w′

·〈M(~v), l | ρ′ | η′ | r′〉
R,A
// 〈?h, M〈~v, h〉 | ρ′[M,~v, h] | η′, h | r′〉

E,A

∗ 33

since h = fresh(η) = fresh(η′), as the only equation that could apply to an instance of η is

the idempotency of handle sets.

For the case of the Tick rule, the configuration is of the form ·〈f, clk : t | r〉 such that

eager(〈f, clk : t | r〉) 6= true and m = mte(r) is non-zero. Using Ês, the configuration

may rewrite to one of the form ·〈f ′, clk : t′ | r′〉. Note that f in the original configuration

cannot be an active expression (because otherwise the configuration would be eager), which

implies that f has either the sort IExpr or ZExpr. Since these sorts are minimal, and by

the descent property of Ês, the sort of f ′ is the same as the sort of f . Moreover, since the

original configuration is not eager, the record r does not contain a message identified by a

handle h that is being used in f (i.e., neither an incoming message [w, h] nor an outgoing

message [M,~v, h]). Therefore, the configuration ·〈f ′, clk : t′ | r′〉 is also not eager. Finally,

since definitions of mte and δ are entirely based on message delays, which must always have

identical canonical forms in r and r′, it is easy to see that mte(r) = mte(r′) and δ(r) = δ(r′),

and hence the desired conclusion.

The inductive cases correspond to applications of the remaining rewrite rules in R̂s, which

are the rules with rewrites in their conditions. In particular, suppose that the rewrite step is

proved by SymI. Then, the configuration has the form ·〈f̂ | g̃, lbl : l | r〉, which may rewrite

by Ês to the term ·〈f̂1 | g̃1, lbl : l | r1〉 (note that f̂1 and g̃1 are of the respective appropriate

172

sorts). By the rewrite condition of SymI and the induction hypothesis, we have

·〈f̂ , lbl : ε | r〉 R,A //

E,A
��

·〈f ′, lbl : i | r′〉
E,A

∗))· · ·

E,A !
��

w
A

w′

·〈f̂1, lbl : ε | r1〉 R,A
// ·〈f ′1, lbl : i | r′1〉

E,A

∗ 55

Then, by SymI:

·〈f̂1 | g̃1, lbl : l | r1〉 →R,A 〈f ′1 | g̃1, lbl : i | r′1〉

=A 〈f ′ | g̃1, lbl : i | r′〉

and, thus, the property holds. The other cases are similar. This completes the proof.

B.2 Executability of Rred
Orc

Proof of Lemma 6 – ground confluence and descent properties of R̂r. As for Lemma 3, the

proof of this lemma is almost fully automatic using Maude’s Church-Rosser Checker (CRC)

and the Maude module RED-ORC corresponding to R̂r. The current version of Maude’s

CRC tool, however, reports a few additional, superfluous conditional critical pairs to those

reported for R̂s in the proof of Lemma 3 in Appendix B.1 as a result of a known problem

in the tool, as discussed before. The missing conditions, when correctly taken into account,

render the conditional critical pairs unfeasible. The tool correctly reports that the Maude

module RED-ORC is sort-decreasing.

Proof of Lemma 7 – ground coherence of R̂r. Let R̂r
◦ = (Σ̂r, Êr ∪ Ar, R◦, φr), where R◦ =

Rr − {IAction}. That is, R̂r
◦ is almost identical to R̂r except without the IAction rule,

which is the only conditional rule in R̂r with a rewrite condition. Therefore, ground co-

herence of R̂r
◦ can be shown by Maude’s ChC tool. As was argued in the proof of ground

coherence of R̂s (proof of Lemma 4 in Appendix B.1), by Theorem 3 in [90], it is enough

173

to show ground local coherence of R̂r to show ground coherence. That is, we have to show

that, for every ground Orc configuration 〈f, r〉, the following diagram commutes:

〈f, r〉 R,A //

E,A
��

〈f ′, r′〉
E,A

∗ ''· · ·

E,A !
��

w
A

w′

〈f1, r1〉 R,A
// 〈f ′1, r′1〉

E,A

∗ 88

We note that, by the ground descent property of Êr and the sorts ZExpr and IExpr being

minimal, if f is not an active expression, then neither is f1, and, thus, the diagram commutes

by ground local coherence of R̂r
◦. So suppose f is an active expression. Then, the one-step

rewrite must be an instance of the IAction rule. Therefore, we have to show:

〈f, r〉 R,A //

E,A
��

〈β(f ′), r〉
E,A

∗ ((· · ·

E,A !
��

w
A

w′

〈f1, r1〉 R,A
// 〈β′(f ′1), r1〉

E,A

∗ 66

where β and β′ stand for auxiliary functions for internal actions, namely siteCall, exprCall,

publish and publishτ . Note that, since f is active, f1 must also be active, and hence the

use of the β′ in the diagram. Therefore, the problem now reduces to showing that the

diagram commutes by applying IAction on 〈f1, r1〉 using the same internal action rule in

the condition as the one used in the rewrite step for 〈f, r〉. It can be easily shown by cases

on the equations in Êr that sub-expressions in non-frozen positions in any expression g are

preserved. That is, if l → r if C is an equation in Êr such that θ(l) = g|q, for some non-

frozen position q, and g◦ is a sub-term of g|q then there exists a corresponding non-frozen

position q′ in g[θr]q with g◦ = g[θr]q|q′ . In particular, if f has a basic active expression b

as a subterm in a non-frozen position, then b is also a non-frozen subterm of f1. Therefore,

f1 →R,A β(f ′1), and, hence, the conclusion.

174

B.3 Proof of the Equivalence Theorem (Theorem 4)

Proof. (=⇒) By induction on a proof of smallstep(·C) →Rs smallstep(·C ′), which is abbrevi-

ated below as (·C) →Rs (·C ′). There are six base cases, corresponding to the rules [Site-

Call], [Publish], [Def], [SiteRetV], [SiteRetStop], and [Tick] in Rs:

• [SiteCall]: If h is a fresh handle with respect to a handle set η, and

(·〈M(~v), lbl : l | msg : ρ | hdl : η | r〉)

→Rs (〈?h, lbl : M〈~v, h〉 | msg : ρ[M,~v, h] | hdl : η, h | r〉)

=Rs (·〈?h, lbl : ε | msg : ρ[M,~v, h] | hdl : η, h | r〉)

then, by [IAction] (and [SiteCall]) in Rr, and using the substitution {f ′ 7→ γ, i 7→

siteCall(M,~v)}, we have

〈M(~v), lbl : l | msg : ρ | hdl : η | r〉

→Rr 〈act↑(γ, siteCall(M,~v)), lbl : l | msg : ρ | hdl : η | r〉

=Rr 〈act↓(γ, ?h), lbl : ε | msg : ρ[M,~v, h]) | hdl : η, h | r〉

=Rr 〈?h, lbl : ε | msg : ρ[M,~v, h] | hdl : η, h |r〉

The base cases for the remaining internal actions, [Publish] and [Def], are similar.

• [SiteRetV]: Suppose

(·〈?h, lbl : l | msg : ρ[v, h] | hdl : η, h | r〉)

→Rs (〈!v, lbl : h?v | msg : ρ | hdl : η | r〉)

=Rs (·〈!v, lbl : ε | msg : ρ | hdl : η | r〉)

175

Since ?h is an inactive expression and h ∈ handles(?h) = true is provable from Rr, we

use the rule SiteRet in Rr (with the substitution {f̄ 7→?h}) to get:

〈?h, lbl : l | msg : ρ[v, h] | hdl : η, h | r〉

→Rr 〈sret(?h, v, h), lbl : ε | msg : ρ | hdl : η | r〉

=Rr 〈!v, lbl : ε | msg : ρ | hdl : η | r〉

The base case for [SiteRetStop] is similar.

• [Tick]: Suppose

(·〈f̄ , clk : t | r〉)→Rs (〈f̄ , clk : t+ t′ | δ(r, t′)〉)

Then, Rs proves t′ = mte(C), which is non-zero, and eager(C) 6= true. By Lemma 9,

Rr, too, proves that that t′ is the maximum time elapse of C and that C is not an eager

configuration. Therefore, by the Tick rule in Rr, we have:

〈f̄ , clk : t | r〉 →Rs 〈f̄ , clk : t+ t′ | δ(r, t′)〉

For the inductive step, there are fourteen cases corresponding to the inductive rules listed

in Figure 3.5. We discuss below representative cases for symmetric parallel and sequential

compositions. The remaining cases for asymmetric parallel and otherwise compositions are

similar.

• [SymI]. Suppose (·〈f̂ | g, lbl : l | r〉) →Rs (〈f ′ | g, lbl : i | r′〉), which is equationally

equivalent to (·〈f ′ | g, lbl : ε | r′〉), then we have

(·〈f̂ , lbl : ε | r〉)→Rs (〈f ′, lbl : i | r′〉) =Rs (·〈f ′, lbl : ε | r′〉)

By the inductive assumption, this implies 〈f̂ , lbl : ε | r〉 →Rr 〈f ′, lbl : ε | r′〉, by

an application of [IAction] in Rr such that there exists an active base expression

as a subexpression of f̂ . Therefore, f̂ →Rr act↑(f ′′, i), with f ′′ = f̂ [p ← b], for some

176

position p in f̂ and b is either tmp or 0, depending on whether the internal action is

a (site or expression) call or a publishing of a value, respectively. By congruence, this

implies f̂ | g →Rr act↑(f ′′, i) | g, which is equal to act↑(f ′′ | g, i). If the action i is a

call, then by the rule [IAction]:

〈f̂ | g, lbl : l | r〉 →Rr 〈act↑(f ′′ | g, i), lbl : l | r〉

=Rr 〈act↓(f ′′ | g, e), lbl : ε | r′〉

=Rr 〈f ′ | g, lbl : ε | r′〉

where e is a handle expresion if i is a site call, or the instantiation of a body of an

appropriate expression declaration if i is an expression call. The remaining case when

the action i is a publishing action is similar.

• [SymE]. Let u be a site return label, and suppose

(·〈f̄ | ḡ, lbl : l | r〉)→Rs (〈f ′ | ḡ, lbl : u | r′〉) =Rs (·〈f ′ | ḡ, lbl : ε | r′〉)

Then (·〈f̄ , lbl : ε | r〉) →Rs (〈f ′, lbl : u | r′〉) =Rs (·〈f ′, lbl : ε | r′〉). By the inductive

assumption, this implies 〈f̄ , lbl : ε | r〉 →Rr 〈f ′, lbl : ε | r′〉, by an application

of [SiteReturn] in Rr such that there exists a handle base expression of the form

?h as a subexpression of f̄ at some position p, that a message [w, h] exists in the

set of handles in the handles field of r, and that f ′ is either f̄ [p ← 0] or f̄ [p ←!v],

depending on whether the return value is a stop value or not, respectively. Therefore,

by [SiteReturn], we have:

〈f̄ | g, lbl : l | r〉 →Rr 〈sret(f̄ | g, w, h), lbl : ε, | r′〉

=Rr 〈sret(f̄ , w, h) | sret(g, w, h), lbl : ε, | r′〉

=Rr 〈f ′ | g, lbl : ε, | r′〉

177

• [Seq1V]. Suppose

(·〈f̂ >x> g, lbl : l | r〉)→Rs (〈(f ′ >x> g) | [v/x]g, lbl : τ | r′〉)

which is equationally equivalent to (·〈(f ′ >x> g) | [v/x]g, lbl : ε | r′〉). Then, (·〈f̂ , lbl :

ε | r〉) →Rs (〈f ′, lbl : !v | r′〉) =Rs (·〈f ′, lbl : ε | r′〉). By the inductive assumption,

this implies 〈f̂ , lbl : ε | r〉) →Rr (〈f ′, lbl : ε | r′〉 by an application of [IAction] in Rr

such that there exists a publishing base expression of the form !v as a subexpression

of f̂ and that v is not bound in f̂ . Therefore, f̂ →Rr act↑(f ′, publish(v)), with f ′ =

f̂ [p ← 0], for some position p in f̂ . By congruence, this implies, f̂ >x> g →Rr

act↑(f ′, publish(v)) >x> g, which is equal to act↑(f ′ >x> g | [v/x]g, publishτ), and,

thus, by the rule [IAction]:

〈f̂ >x> g, lbl : l | r〉 →Rr 〈act↑(f ′ >x> g | [v/x]g, publishτ), lbl : l | r〉

=Rr 〈f ′ >x> g | [v/x]g, lbl : ε | r′〉

• [Seq1NI]. Suppose

(·〈f̂ >x> g, lbl : l | r〉)→Rs (〈f ′ >x> g, lbl : n | r′〉)

=Rs (·〈f ′ >x> g, lbl : ε | r′〉)

for some internal, non-publishing label n. Then, (·〈f̂ , lbl : ε | r〉) →Rs (〈f ′, lbl :

n | r′〉) =Rs (·〈f ′, lbl : ε | r′〉). By the induction hypothesis, this implies 〈f̂ , lbl :

ε | r〉) →Rr (〈f ′, lbl : ε | r′〉 by an application of [IAction] in Rr such that f̂ has

as a subexpression a base expression of one of the folowing forms: (i) a site call

expression M(~v), (ii) an expression call expression E(~p), or (iii) a publishing expression

!v with v bound in f̂ . For case (i), f̂ →Rr act↑(ftmp, siteCall(M,~v)), with ftmp =

f̂ [p ← tmp], for some position p in f̂ . By congruence, this implies, f̂ >x> g →Rr

act↑(ftmp, siteCall(M,~v)) >x> g, which is equal to act↑(ftmp >x> g, siteCall(M,~v)), and,

178

thus, by the rule [IAction]:

〈f̂ >x> g, lbl : l | r〉 →Rr 〈act↑(ftmp >x> g, siteCall(M,~v)), lbl : l | r〉

=Rr 〈act↓(ftmp >x> g, ?h), lbl : ε | r′〉

=Rr 〈f ′ >x> g, lbl : ε | r′〉

Cases (ii) and (iii) can similarly be checked using IAction and the appropriate equa-

tions in Rr.

• [Seq1NE]. Let u be a site return label, and suppose

(·〈f̄ >x> g, lbl : l | r〉 →Rs 〈f ′ >x> g, lbl : u | r′〉)

=Rs (·〈f ′ >x> g, lbl : ε | r′〉)

Then, (·〈f̄ , lbl : ε | r〉 →Rs 〈f ′, lbl : u | r′〉). By the induction hypothesis, this implies

〈f̄ , lbl : ε | r〉 →Rr 〈f ′, lbl : ε | r′〉 by an application of [SiteReturn] in Rr such that

there exists a handle base expression of the form ?h as a subexpression of f̄ at some

position p, that a message [w, h] exists in the set of handles in the handles field of r,

and that f ′ is either f̄ [p ← 0] or f̄ [p ←!v], depending on whether the return value is

a stop value or not, respectively. Therefore, we have by [SiteReturn]:

〈f̄ >x> g, lbl : l | r〉 →Rr 〈sret(f̄ >x> g, w, h), lbl : ε, | r′〉

=Rr 〈sret(f̄ , w, h) >x> g, lbl : ε, | r′〉

=Rr 〈f ′ >x> g, lbl : ε, | r′〉

The inductive cases for [Asym2I] and [Asym2E] are, respectively, similar to [SymI] and

[SymE]. The cases for [Asym1V] and [OtherV] are similar to the value publishing case of

[Seq1V], while the cases for [Asym1NI] and [OtherNI] are similar to the internal non-

publishing case of [Seq1NI]. Finally, the cases for the external site return action, namely

[Asym1NEa], [Asym1NEb] and [OtherNE] are similar to [Seq1NE].

179

(⇐=) If C →Rr C ′ is an instance of the [Tick] rule (i.e., C is not an eager configuration),

then the implication holds trivially by the corresponding [Tick] rule in Rs by Lemma 9.

So, suppose that the rewrite in the hypothesis is not an instance of the tick rule. Then,

we observe that it must be an instance of an instantaneous action, which can either be an

internal action (with the [IAction] rule) or a site return action (using the [SiteReturn]

rule). This implies that the expression component f of C is either active or inactive (i.e.,

non-zero). To complete the proof, we proceed by induction on f .

If f is a base active expression (i.e. M(~v), E(~p), or !v), then the implication holds easily

by the equations in Rr, the assumption that C is closed, and the corresponding base rules

([SiteCall], [Def], and [Publish]) for these expressions in Rs. Similarly, if f is a base

inactive expression, namely the handle expression ?h, then the implication follows using the

corresponding site return rules in Rs ([SiteRetV] and [SiteRetStop], for the cases of

returning an Orc value or a stop value, respectively).

Suppose that the expression f is of the form f | g. If the hypothesis is an instance of an

internal action i, then, modulo commutativity, it must be of the form

〈f̂ | g, lbl : l | r〉 →Rr 〈f ′ | g, lbl : ε | r′〉

with f̂ having as a sub-expression a base active expression at some position p. Then, f̂ →Rr

act↑(f ′′, i), with f ′′ = f̂ [p← b], for some position p in f̂ and b is either tmp or 0, depending on

whether the internal action is a (site or expression) call or a publishing of a value, respectively.

By the equations defining act↑ for internal actions, this implies 〈f̂ , lbl : ε | r〉 →Rr 〈f ′, lbl :

ε | r′〉, which by the induction hypothesis implies (·〈f̂ , lbl : ε | r〉) →Rs (〈f ′, lbl : i | r′〉),

and thus the conclusion holds by the rule SymI in Rs. If the action is an instance of a site

return u, then the hypothesis is of the form:

〈f̄ | ḡ, lbl : l | r〉 →Rr 〈f ′ | ḡ, lbl : ε | r′〉

with f̄ having as a sub-expression a handle expression of the form ?h, and r having in its

messages field an incoming message of the form [w, h], and in its handles field a handle h. By

180

the [SiteReturn] rule and the equations defining sret for site return actions, this implies

〈f̄ , lbl : l | r〉 →Rr 〈f ′, lbl : ε | r′〉. The induction hypothesis, and the [SymE] rule in Rs

imply the desired conclusion.

Suppose f is of the form f >x> g. There are three cases. First, the hypothesis may be an

instance of a publishing action, and hence of the form

〈f̂ >x> g, lbl : l | r〉)→Rr (〈(f ′ >x> g) | [v/x]g, lbl : ε | r′〉

with f̂ having as a sub-expression a base publishing expression !v such that v is not bound

in f̂ . By the [IAction] and [Publish] rules, and the equations defining act↑ for publishing

actions, this implies 〈f̂ , lbl : ε | r〉)→Rr (〈f ′, lbl : ε | r′〉. By induction, and rule [Seq1V] in

Rs, the conclusion holds.

The second case is when the action is a non-publishing internal action (i.e. a site call or

a τ action). In this case the hypothesis has the form:

〈f̂ >x> g, lbl : l | r〉 →Rr 〈f ′ >x> g, lbl : ε | r′〉

where, by the [IAction] rule, f̂ has as a sub-expression either a site call, an expression call

or a publishing expression in a value-binding position. Again, [IAction] and the equations

defining act↑ for non-publishing internal actions, imply 〈f̂ , lbl : ε | r〉) →Rr (〈f ′, lbl : ε | r′〉.

Induction and rule [Seq1NI] in Rs complete the proof of this case

Finally, the action may be an external site return action, and the hypothesis has the form:

〈f̄ >x> g, lbl : l | r〉 →Rr 〈f ′ >x> g, lbl : ε | r′〉

which, by the [SiteReturn] rule, the equations defining sret, the inductive hypothesis and

the Rs rule [Seq1NE], implies the desired conclusion.

The inductive cases for the asymmetric parallel composition and the otherwise composition

are similar and follow by induction and the corresponding rules in Rs.

181

APPENDIX C

MAUDE SPECIFICATIONS OF THE REWRITING
SEMANTICS AND IMPLEMENTATION OF ORC

The complete specifications in Maude of the rewriting logic semantics of Orc discussed in

Chapter 3 and Chapter 4 can be found in supplemental files named as follows:

• orc-syntax.maude, which specifies the syntax of Orc and the CINNI substitution

instance of Orc.

• orc-infrastructure.maude, which specifies the semantic infrastructure, described in

Section 3.1.

• orc-sos-semantics.maude, which specifies the SOS-based rewriting semantics of Orc,

described in Section 3.2.

• orc-red-semantics.maude, which specifies the reduction rewriting semantics of Orc,

described in Section 3.3.

• orc-object-semantics.maude, which specifies the object-based rewriting semantics

of Orc, described in Section 4.1.

• orc-sites.maude, which specifies a set of basic Orc sites for simulation and analysis.

The complete specifications of the rewriting-based, distributed implementation of Orc in

Maude, discussed in Chapter 5 can be found in a supplemental file named dist-orc.maude.

The specifications of the formal model of the implementation specified in Real-Time Maude

can be found in a supplemental file named dist-orc-model.maude.

182

APPENDIX D

MAUDE SPECIFICATIONS OF THE ASV
PROTOCOL

The specifications in Maude of the rewriting logic model of the ASV protocol and its variants,

discussed in Section 6.3 can be found in supplemental files named as follows:

• apmaude.maude, which specifies the general structure of a communication system and

the Maude sampler module.

• common.maude, which specifies the common infrastructure and behavior across all vari-

ants of the protocol.

• omniscient.maude, which specifies behaviors specific to the omniscient protocol.

• asv.maude, which specifies behaviors specific to the ASV protocol.

• sv-aggressive.maude, which specifies behaviors specific to the aggressive, selective

verification protocol.

• sv-naive.maude, which specifies behaviors specific to the naive, selective verification

protocol.

183

APPENDIX E

MAUDE SPECIFICATIONS OF THE ASV
WRAPPERS

The specifications in Maude of the generic ASV protocol wrappers and their variants, dis-

cussed in Chapter 7 can be found in supplemental files named as follows:

• apmaude.maude, which specifies the general structure of a communication system and

the Maude sampler module.

• wrappers-common.maude, which specifies the common infrastructure and behavior

across all variants of the wrappers.

• wrappers-asv.maude, which specifies behaviors specific to the ASV wrappers.

• wrappers-aggressive.maude, which specifies behaviors specific to the aggressive, se-

lective verification wrappers.

• wrappers-naive.maude, which specifies behaviors specific to the naive, selective veri-

fication wrappers.

• wrappers-nosv.maude, which specifies behaviors specific to the naive wrappers with

no selective verification.

• orc-syntax.maude, which specifies the syntax and structure of sequential Orc expres-

sions.

• orc-semantics.maude, which specifies the semantics of sequential Orc.

• orc-analysis.maude, which specifies the Orc orchestration pattern used in the anal-

ysis of Section 7.4.3.

184

REFERENCES

[1] K. Sen, M. Viswanathan, and G. Agha, “On statistical model checking of stochastic
systems,” in Computer Aided Verification (CAV 2005), ser. LNCS, vol. 3576. Springer,
2005.

[2] G. Agha, J. Meseguer, and K. Sen, “PMaude: Rewrite-based specification language
for probabilistic object systems,” Electronic Notes in Theoretical Computer Science,
vol. 153, no. 2, pp. 213–239, 2006.

[3] M. A. Arbib, Theories of abstract automata (Prentice-Hall series in automatic com-
putation). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1969.

[4] T. L. Booth, Sequential Machines and Automata Theory (1st ed.). New York, USA:
John Wiley and Sons, Inc., 1967.

[5] R. Alur and D. L. Dill, “A theory of timed automata,” Theor. Comput. Sci., vol. 126,
no. 2, pp. 183–235, 1994.

[6] Y. Gurevich, “Evolving algebras 1993: Lipari guide,” in Specification and validation
methods, E. Börger, Ed. New York, NY, USA: Oxford University Press, Inc., 1995,
pp. 9–36.

[7] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of the
IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[8] K. Jensen and L. M. Kristensen, Coloured Petri Nets: Modelling and Validation of
Concurrent Systems. Springer, 2009.

[9] G. A. Agha, F. De Cindio, and G. Rozenberg, Concurrent object-oriented programming
and Petri nets: advances in Petri nets. Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2001.

[10] J. Meseguer, “Conditional rewriting logic as a unified model of concurrency,” Theor.
Comput. Sci., vol. 96, no. 1, pp. 73–155, 1992.

[11] G. Agha, Actors: a model of concurrent computation in distributed systems. Cam-
bridge, MA, USA: MIT Press, 1986.

[12] R. Milner, Communicating and Mobile Systems : The π-Calculus. Cambridge Uni-
versity Press, 1999.

185

[13] C. A. R. Hoare, Communicating sequential processes. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1985.

[14] J. C. M. Baeten and C. A. Middelburg, Process algebra with timing; Monographs in
theoretical computer science. Berlin; New York: Springer, 2002.

[15] C. Fournet and G. Gonthier, “The reflexive CHAM and the Join calculus,” in POPL
’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. New York, NY, USA: ACM Press, 1996, pp. 372–385.

[16] ITU-T, “Recommendation Z.100(08/02), languages and general software aspects for
telecom. systems - specification and description language (SDL),” August 2002.

[17] OMG, UML Profile for Schedulability, Performance, and Time Specification, Version
1.1, January 2005.

[18] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci. Comput. Pro-
gram., vol. 8, no. 3, pp. 231–274, 1987.

[19] D. Drusinsky, Modeling and Verification Using UML Statecharts. Elsevier, 2006.

[20] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Talcott,
All About Maude - A High-Performance Logical Framework, ser. LNCS. Secaucus,
NJ, USA: Springer-Verlag, 2007, vol. 4350.

[21] P. Blackburn, J. F. A. K. v. Benthem, and F. Wolter, Handbook of Modal Logic, Volume
3 (Studies in Logic and Practical Reasoning). New York, NY, USA: Elsevier Science
Inc., 2006.

[22] A. Pnueli, “The temporal logic of programs,” Foundations of Computer Science, An-
nual IEEE Symposium on, vol. 0, pp. 46–57, 1977.

[23] C. A. R. Hoare, “An axiomatic basis for computer programming,” Commun. ACM,
vol. 12, no. 10, pp. 576–580, 1969.

[24] G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary design of JML: a behavioral
interface specification language for java,” SIGSOFT Softw. Eng. Notes, vol. 31, no. 3,
pp. 1–38, 2006.

[25] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal methods: Prac-
tice and experience,” ACM Comput. Surv., vol. 41, no. 4, pp. 1–36, 2009.

[26] M. Wilding, D. Greve, and D. Hardin, “Efficient simulation of formal processor mod-
els,” Form. Methods Syst. Des., vol. 18, no. 3, pp. 233–248, 2001.

[27] G. Berry, “Synchronous design and verification of critical embedded systems using
SCADE and Esterel,” in Proceedings of the Formal Methods for Industrial Critical Sys-
tems, ser. Lecture Notes in Computer Science. Berlin, Heidelberg Germany: Springer-
Verlag, 2008, vol. 4916.

186

[28] G. Berry and G. Gonthier, “The Esterel synchronous programming language: Design,
semantics, implementation,” Science of Computer Programming, vol. 19, no. 2, pp.
87–152, 1992.

[29] D. Ballis and T. Kutsia, “WWV’09 - Automated Specification and Verification of
Web Systems,” Research Institute for Symbolic Computation (RISC), Johannes Kepler
University Linz, Austria, Tech. Rep. 09-10, July 2009.

[30] M. Bravetti and T. Bultan, Eds., Web Services and Formal Methods - 7th International
Workshop, WS-FM 2010, Hoboken, NJ, USA, September 16-17, 2010. Revised Selected
Papers, ser. Lecture Notes in Computer Science, vol. 6551. Springer, 2011.

[31] M. Lumpe and L. Barbosa, Eds., Formal Aspects of Component Software - 7th Inter-
national Workshop, FACS 2010, Guimaraes, Portugal, October 14-16, 2010. Revised
Selected Papers, ser. Lecture Notes in Computer Science (to appear). Springer, 2011.

[32] OASIS WSBPEL TC, Web Services Business Process Execution Language Version 2.0,
April 2007, http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf.

[33] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson, Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging and More. Upper Saddle River, NJ, USA: Prentice Hall PTR,
2005.

[34] J. Misra, “Computation orchestration: A basis for wide-area computing,” in Proc.
of the NATO Advanced Study Institute, Engineering Theories of Software Intensive
Systems, ser. NATO ASI Series, M. Broy, Ed., Marktoberdorf, Germany, 2004.

[35] J. Misra and W. R. Cook, “Computation orchestration: A basis for wide-area com-
puting,” Journal of Software and Systems Modeling, vol. 6, no. 1, pp. 83–110, March
2007.

[36] R. Bruni, “Calculi for service-oriented computing,” in Proceedings of SFM’09, ser.
LNCS, vol. 5569. Springer, 2009, pp. 1–41.

[37] G. L. Ferrari, R. Guanciale, and D. Strollo, “JSCL: A middleware for service coordi-
nation,” in Proceedings of FORTE’06, ser. Lecture Notes in Computer Science, vol.
4229. Springer, 2006, pp. 46–60.

[38] L. Cardelli and A. D. Gordon, “Mobile ambients,” Theor. Comput. Sci., vol. 240, no. 1,
pp. 177–213, 2000.

[39] M. Bartoletti, P. Degano, G. Ferrari, and R. Zunino, “Semantics-based design for
secure web services,” IEEE Transactions on Software Engineering, vol. 34, no. 1, pp.
33–49, 2008.

187

[40] M. Rouached and C. Godart, “Securing web service compositions: Formalizing au-
thorization policies using event calculus,” in Proc. of ICSOC’06: 4th International
Conference Service-Oriented Computing, ser. Lecture Notes in Computer Science, vol.
4294. Springer, 2006, pp. 440–446.

[41] F. van Breugel and M. Koshkina, “Models and verification of BPEL,” September 2006,
http://www.cse.yorku.ca/∼franck/research/drafts/tutorial.pdf.

[42] N. Lohmann, “A feature-complete Petri net semantics for WS-BPEL 2.0,” in Proceed-
ings of WS-FM’07, ser. Lecture Notes in Computer Science, vol. 4937. Springer, 2008,
pp. 77–91.

[43] R. Lucchi and M. Mazzara, “A pi-calculus based semantics for WS-BPEL,” Journal
of Logic and Algebraic Programming, vol. 70, no. 1, pp. 96–118, 2007.

[44] A. Lapadula, R. Pugliese, and F. Tiezzi, “A formal account of WS-BPEL,” Lecture
notes in computer science, vol. 5052, p. 199, 2008.

[45] S. M. Specht and R. B. Lee, “Distributed denial of service: Taxonomies of attacks,
tools, and countermeasures,” in Proceedings of the 17th International Conference on
Parallel and Distributed Computing Systems. ISCA, 2004, pp. 543–550.

[46] C. Meadows, “A cost-based framework for analysis of denial of service in networks,”
Journal of Computer Security, vol. 9, no. 1, pp. 143–164, 2001.

[47] S. Lafrance and J. Mullins, “An information flow method to detect denial of service
vulnerabilities,” J. UCS, vol. 9, no. 11, pp. 1350–1369, 2003.

[48] M. Abadi, B. Blanchet, and C. Fournet, “Just fast keying in the pi calculus,” in Prog.
Lang. and Systems, 13th European Symposium on Programming, ser. LNCS, vol. 2986.
Springer, 2004.

[49] C.-F. Yu and V. D. Gligor, “A specification and verification method for preventing
denial of service,” IEEE Trans. Softw. Eng., vol. 16, no. 6, pp. 581–592, 1990.

[50] A. Mahimkar and V. Shmatikov, “Game-based analysis of denial-of-service prevention
protocols,” in IEEE Computer Security Foundations Workshop, (CSFW-18 2005).
IEEE Computer Society, 2005.

[51] A. E. Goodloe, “A foundation for tunnel-complex protocols,” Ph.D. dissertation, Uni-
versity of Pennsylvania, 2008.

[52] M. AlTurki and J. Meseguer, “Real-time rewriting semantics of Orc,” in PPDP ’07:
Proceedings of the 9th ACM SIGPLAN international symposium on Principles and
practice of declarative programming. New York, NY, USA: ACM Press, 2007, pp.
131–142.

[53] M. AlTurki and J. Meseguer, “Reduction semantics and formal analysis of Orc pro-
grams,” Electron. Notes Theor. Comput. Sci., vol. 200, no. 3, pp. 25–41, 2008.

188

[54] M. AlTurki and J. Meseguer, “Rewriting logic semantics of Orc,” University of Illinois
at Urbana Champaign, Tech. Rep. UIUCDCS-R-2007-2918, November 2007.

[55] M. AlTurki and J. Meseguer, “Dist-Orc: A rewriting-based distributed implementation
of Orc with formal analysis,” in The 1st International Workshop on Rewriting Tech-
niques for Real-Time Systems (RTRTS), Longyearbyen, Spitsbergen, Norway, April
2010.

[56] M. AlTurki and J. Meseguer, “Dist-Orc: A rewriting-based distributed implementation
of Orc with formal analysis,” University of Illinois at Urbana Champaign, Tech. Rep.,
April 2010, http://hdl.handle.net/2142/15414.

[57] M. AlTurki and J. Meseguer, “PVeStA: A parallel statistical model checking and quan-
titative analysis tool,” in Proceedings of CALCO’11: The 4th International Conference
on Algebra and Coalgebra in Computer Science, Winchester, UK, August 2011.

[58] M. AlTurki, J. Meseguer, and C. A. Gunter, “Probabilistic modeling and analysis of
DoS protection for the ASV protocol,” Electron. Notes Theor. Comput. Sci., vol. 234,
pp. 3–18, 2009.

[59] J. Meseguer, “Rewriting as a unified model of concurrency,” in Proceedings of the
Concur’90 Conference, Amsterdam, August 1990. Springer LNCS 458, 1990, pp.
384–400.

[60] J. Meseguer, “Rewriting logic as a semantic framework for concurrency: a progress
report,” in CONCUR ’96: Concurrency Theory, ser. Lecture Notes in Computer Sci-
ence, U. Montanari and V. Sassone, Eds. Springer Berlin / Heidelberg, 1996, vol.
1119, pp. 331–372.

[61] J. Meseguer and G. Rosu, “The rewriting logic semantics project,” Theor. Comput.
Sci., vol. 373, no. 3, pp. 213–237, 2007.

[62] T. F. Serbanuta, G. Rosu, and J. Meseguer, “A rewriting logic approach to operational
semantics,” Information and Computation, vol. 207, no. 2, pp. 305 – 340, 2009, special
issue on Structural Operational Semantics (SOS).

[63] J. Meseguer and G. Rosu, “The rewriting logic semantics project: A progress report,”
in Proc. 18th Intl. Symp. on Fundamentals of Computation Theory (FCT 2011) (to
appear), ser. LNCS. Oslo, Norway: Springer, August 2011.

[64] P. C. Ölveczky and J. Meseguer, “Specification of real-time and hybrid systems in
rewriting logic,” Theoretical Computer Science, vol. 285, pp. 359–405, August 2002.

[65] K. Sen, N. Kumar, J. Meseguer, and G. Agha, “Probabilistic rewrite theories: Unifying
models, logics and tools,” University of Illinois at Urbana Champaign, Tech. Rep.
UIUCDCS-R-2003-2347, May 2003.

189

[66] J. Meseguer and R. Sharykin, “Specification and analysis of distributed object-based
stochastic hybrid systems,” in Hybrid Systems: Computation and Control (HSCC
2006), ser. LNCS, vol. 3927. Springer, 2006.

[67] J. Meseguer, “Membership algebra as a logical framework for equational specification,”
in Proc. WADT’97, ser. LNCS, F. Parisi-Presicce, Ed., vol. 1376. Springer, 1998, pp.
18–61.

[68] R. Bruni and J. Meseguer, “Semantic foundations for generalized rewrite theories,”
Theor. Comput. Sci., vol. 360, no. 1-3, pp. 386–414, 2006.

[69] P. C. Ölveczky and J. Meseguer, “Semantics and pragmatics of Real-Time Maude,”
Higher-Order and Symbolic Computation, vol. 20, no. 1-2, pp. 161–196, 2007.

[70] P. Viry, “Equational rules for rewriting logic,” Theor. Comput. Sci., vol. 285, no. 2,
pp. 487–517, 2002.

[71] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton, “Model-checking continuous-time
Markov chains,” ACM Trans. Comput. Logic, vol. 1, no. 1, pp. 162–170, 2000.

[72] K. Sen, M. Viswanathan, and G. A. Agha, “VESTA: A statistical model-checker and
analyzer for probabilistic systems,” in Second International Conference on the Quan-
titative Evaluation of Systems (QEST), 2005, pp. 251–252.

[73] H. L. S. Younes and R. G. Simmons, “Probabilistic verification of discrete event sys-
tems using acceptance sampling,” in Computer Aided Verification, ser. Lecture Notes
in Computer Science, vol. 2404. Springer, 2002, pp. 223–235.

[74] P. C. Ölveczky, “Real-Time Maude 2.3 manual,” August 2007, http://heim.ifi.uio.no/
∼peterol/RealTimeMaude/.

[75] P. C. Ölveczky and J. Meseguer, “Abstraction and completeness for Real-Time
Maude,” Electron. Notes Theor. Comput. Sci., vol. 176, no. 4, pp. 5–27, 2007.

[76] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros,
“Workflow patterns,” Distrib. Parallel Databases, vol. 14, no. 1, pp. 5–51, 2003.

[77] D. Kitchin, A. Quark, W. Cook, and J. Misra, “The Orc programming language,” in
Formal techniques for Distributed Systems; Proc. of FMOODS/FORTE, ser. LNCS,
D. Lee, A. Lopes, and A. Poetzsch-Heffter, Eds., vol. 5522. Springer, 2009, pp. 1–25.

[78] D. Kitchin, E. Powell, and J. Misra, “Simulation using orchestration,” Proceedings of
AMAST, Jan 2008.

[79] W. Cook, S. Patwardhan, and J. Misra, “Workflow patterns in Orc,” in Coordination
Models and Languages, ser. Lecture Notes in Computer Science, P. Ciancarini and
H. Wiklicky, Eds. Springer Berlin / Heidelberg, 2006, vol. 4038, no. 96, pp. 82–96.

190

[80] D. Kitchin, A. Quark, and J. Misra, “Quicksort: Combining concurrency, recursion,
and mutable data structures,” in Reflections on the Work of C.A.R. Hoare, ser. History
of Computing, A. Roscoe, C. B. Jones, and K. R. Wood, Eds. Springer London, 2010,
pp. 229–254.

[81] I. Wehrman, D. Kitchin, W. R. Cook, and J. Misra, “A timed semantics of Orc,”
Theor. Comput. Sci., vol. 402, no. 2-3, pp. 234–248, 2008.

[82] D. Kitchin, W. R. Cook, and J. Misra, “A language for task orchestration and its
semantic properties.” in CONCUR 2006, ser. Lecture Notes in Computer Science, vol.
4137. Springer, 2006, pp. 477–491.

[83] I. Wehrman, D. Kitchin, W. Cook, and J. Misra, “Properties of the timed operational
and denotational semantics of Orc,” University of Texas at Austin, Tech. Rep., 2007.
[Online]. Available: http://orc.csres.utexas.edu/papers/tcs07-tr.pdf

[84] T. Hoare, G. Menzel, and J. Misra, “A tree semantics of an orchestration language,”
Engineering Theories of Software Intensive Systems, pp. 331–350, 2005.

[85] M.-O. Stehr, “CINNI — A generic calculus of explicit substitutions and its application
to λ-, ς- and π-calculi,” in Proceedings Third International Workshop on Rewriting
Logic and its Applications, WRLA 2000, Kanazawa, Japan, September 18–20, 2000,
ser. Electronic Notes in Theoretical Computer Science, K. Futatsugi, Ed., vol. 36.
Elsevier, 2000, pp. 71–92.

[86] P. D. Mosses, “Modular structural operational semantics.” J. Log. Algebr. Program.,
vol. 60-61, pp. 195–228, 2004.

[87] J. Meseguer and C. Braga, “Modular rewriting semantics of programming languages,”
Algebraic Methodology and Software Technology, pp. 364–378, 2004.

[88] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. Talcott, Maude Manual (Version 2.6), January 2011, http://maude.cs.uiuc.edu/
maude2-manual/maude-manual.pdf.

[89] F. Durán and J. Meseguer, “A Church-Rosser checker tool for conditional order-sorted
equational Maude specifications,” in Rewriting Logic and Its Applications, ser. Lecture
Notes in Computer Science, P. Ölveczky, Ed. Springer Berlin / Heidelberg, 2010, vol.
6381, pp. 69–85.

[90] F. Durán and J. Meseguer, “A Maude coherence checker tool for conditional order-
sorted rewrite theories,” in Rewriting Logic and Its Applications, ser. Lecture Notes in
Computer Science, P. Ölveczky, Ed. Springer Berlin / Heidelberg, 2010, vol. 6381,
pp. 86–103.

[91] F. Durán, S. Lucas, and J. Meseguer, “MTT: The Maude termination tool (system
description),” in Automated Reasoning, ser. Lecture Notes in Computer Science, A. Ar-
mando, P. Baumgartner, and G. Dowek, Eds. Springer Berlin / Heidelberg, 2008,
vol. 5195, pp. 313–319.

191

[92] J. Giesl, P. Schneider-Kamp, and R. Thiemann, “AProVE 1.2: Automatic termination
proofs in the dependency pair framework,” in Automated Reasoning, ser. Lecture Notes
in Computer Science, U. Furbach and N. Shankar, Eds. Springer Berlin / Heidelberg,
2006, vol. 4130, pp. 281–286.

[93] F. Durán, S. Lucas, C. Marché, J. Meseguer, and X. Urbain, “Proving operational
termination of membership equational programs,” Higher-Order and Symbolic Com-
putation, to appear, vol. 21, no. 1-2, pp. 59–88, 2008.

[94] J. Meseguer, “A logical theory of concurrent objects and its realization in the
Maude language,” in Research Directions in Concurrent Object-Oriented Program-
ming, G. Agha, P. Wegner, and A. Yonezawa, Eds. MIT Press, 1993, pp. 314–390.

[95] L. Lamport, “A fast mutual exclusion algorithm,” ACM Trans. Comput. Syst., vol. 5,
pp. 1–11, January 1987.

[96] A. Riesco and A. Verdejo, “Distributed applications implemented in Maude with pa-
rameterized skeletons,” in Proc. of FMOODS ’07, ser. Lecture Notes in Computer
Science, M. M. Bonsangue and E. B. Johnsen, Eds., vol. 4468. Springer, 2007, pp.
91–106.

[97] F. Durán, A. Riesco, and A. Verdejo, “A distributed implementation of Mobile
Maude,” Electron. Notes Theor. Comput. Sci., vol. 176, no. 4, pp. 113–131, 2007.

[98] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Com-
mun. ACM, vol. 21, no. 7, pp. 558–565, 1978.

[99] F. Mattern, “Virtual time and global states of distributed systems,” in Proc. Workshop
on Parallel and Distributed Algorithms, C. M. et al., Ed., North-Holland / Elsevier,
1989, (Reprinted in: Z. Yang, T.A. Marsland (Eds.), ”Global States and Time in
Distributed Systems”, IEEE, 1994, pp. 123-133.). pp. 215–226.

[100] C. J. Fidge, “Timestamps in message-passing systems that preserve partial ordering,”
in Proceedings of the 11th Australian Computer Science Conference, Feb. 1988, pp.
56–66.

[101] H. L. S. Younes and R. G. Simmons, “Statistical probabilistic model checking with a
focus on time-bounded properties,” Inf. Comput., vol. 204, no. 9, pp. 1368–1409, 2006.

[102] G. Agha, C. A. Gunter, M. Greenwald, S. Khanna, J. Meseguer, K. Sen, and P. Thati,
“Formal modeling and analysis of DoS using probabilistic rewrite theories,” in Inter-
national Workshop on Foundations of Computer Security (FCS’05). Chicago, IL:
IEEE, June 2005.

[103] M. Katelman, J. Meseguer, and J. Hou, “Redesign of the LMST wireless sensor pro-
tocol through formal modeling and statistical model checking,” in Proc. of FMOODS
’08, ser. Lecture Notes in Computer Science, vol. 5051. Berlin, Heidelberg: Springer,
2008, pp. 150–169.

192

[104] M. Kim, M.-O. Stehr, C. L. Talcott, N. D. Dutt, and N. Venkatasubramanian, “A prob-
abilistic formal analysis approach to cross layer optimization in distributed embedded
systems,” in Proc. of FMOODS ’07, ser. LNCS, vol. 4468. Springer, 2007.

[105] S. Khanna, S. S. Venkatesh, O. Fatemieh, F. Khan, and C. A. Gunter, “Adaptive
selective verification,” in IEEE Conference on Computer Communications (INFOCOM
’08). Phoenix, AZ: IEEE, April 2008.

[106] H. Hansson and B. Jonsson, “A logic for reasoning about time and reliability,” Formal
Aspects of Computing, vol. 6, no. 5, pp. 512–535, 09 1994.

[107] A. Aziz, V. Singhal, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “It usually
works: The temporal logic of stochastic systems,” in 7th International Conference On
Computer Aided Verification, P. Wolper, Ed., vol. 939. Liege, Belgium: Springer
Verlag, 1995, pp. 155–165.

[108] C. Baier, J.-P. Katoen, and H. Hermanns, “Approximative symbolic model checking
of continuous-time markov chains,” in CONCUR’99 Concurrency Theory, ser. Lecture
Notes in Computer Science, J. Baeten and S. Mauw, Eds. Springer Berlin / Heidelberg,
1999, vol. 1664, pp. 781–781.

[109] D. Dolev and A. Yao, “On the security of public key protocols,” Information Theory,
IEEE Transactions on, vol. 29, no. 2, pp. 198–208, 1983.

[110] C. A. Gunter, S. Khanna, K. Tan, and S. S. Venkatesh, “DoS protection for reliably au-
thenticated broadcast,” in Proceedings of the Network and Distributed System Security
Symposium. The Internet Society, 2004.

[111] R. Sparks, S. Lawrence, A. Hawrylyshen, and B. Campen, “Addressing
an Amplification Vulnerability in Session Initiation Protocol (SIP) Forking
Proxies,” RFC 5393 (Proposed Standard), Dec. 2008. [Online]. Available:
http://www.ietf.org/rfc/rfc5393.txt

[112] R. Shankesi, M. AlTurki, R. Sasse, C. A. Gunter, and J. Meseguer, “Model-checking
DoS amplification for VoIP session initiation,” in Proc. of ESORICS’09: 14th European
Symposium on Research in Computer Security, ser. Lecture Notes in Computer Science,
vol. 5789. Springer, 2009, pp. 390–405.

[113] M. Jensen, N. Gruschka, and R. Herkenhöner, “A survey of attacks on web services,”
Computer Science - Research and Development, vol. 24, no. 4, pp. 185–197, 11 2009.

[114] A. Singhal, T. Winograd, and K. Scarfone, “Guide to secure web services: Recom-
mendations of the national institute of standards and technology,” Special Publication
800-95, pp. 800–95, August 2007, http://csrc.nist.gov/publications/nistpubs/800-95/
SP800-95.pdf.

193

[115] R. Chadha, C. A. Gunter, J. Meseguer, R. Shankesi, and M. Viswanathan, “Modular
preservation of safety properties by cookie-based DoS-protection wrappers,” in Proc.
of FMOODS ’08, ser. Lecture Notes in Computer Science, vol. 5051. Springer, 2008,
pp. 39–58.

[116] G. Agha, S. Frølund, R. Panwar, and D. Sturman, “A linguistic framework for dynamic
composition of dependability protocols,” in in C. E. Landwehr, B. Randell, and L.
Simoncini (editors), Dependable Computing and Fault-Tolerant Systems VIII, pp 345-
363, IFIP Transactions, Springer-Verlag, 1993.

[117] G. Denker, J. Meseguer, and C. Talcott, “Rewriting semantics of meta-objects and
composable distributed services,” Electronic Notes in Theoretical Computer Science,
vol. 36, pp. 405–425, 2000.

[118] J. Meseguer and C. L. Talcott, “Semantic models for distributed object reflection,”
in ECOOP 2002 - Object-Oriented Programming, 16th European Conference, Malaga,
Spain, June 10-14, 2002, Proceedings, ser. Lecture Notes in Computer Science, vol.
2374. Springer, 2002, pp. 1–36.

[119] G. Norman, C. Palamidessi, D. Parker, and P. Wu, “Model checking probabilistic and
stochastic extensions of the π-calculus,” IEEE Transactions on Software Engineering,
vol. 35, no. 2, pp. 209–223, March 2009.

[120] M. AlTurki, D. Dhurjati, D. Yu, A. Chander, and H. Inamura, “Formal specification
and analysis of timing properties in software systems,” in Fundamental Approaches
to Software Engineering, ser. Lecture Notes in Computer Science, M. Chechik and
M. Wirsing, Eds., vol. 5503. Springer, 2009, pp. 262–277.

[121] K. Bae, P. C. Ölveczky, T. H. Feng, and S. Tripakis, “Verifying ptolemy ii discrete-
event models using real-time maude,” in Formal Methods and Software Engineering,
11th International Conference on Formal Engineering Methods, ICFEM 2009, Rio
de Janeiro, Brazil, December 9-12, 2009. Proceedings, ser. Lecture Notes in Computer
Science, K. Breitman and A. Cavalcanti, Eds., vol. 5885. Springer, 2009, pp. 717–736.

[122] K. Bae and P. C. Ölveczky, “Extending the real-time maude semantics of ptolemy
to hierarchical de models,” in Proceedings First International Workshop on Rewriting
Techniques for Real-Time Systems, ser. EPTCS, P. C. Ölveczky, Ed., vol. 36, 2010,
pp. 46–66.

[123] P. Ölveczky, A. Boronat, and J. Meseguer, “Formal semantics and analysis of behav-
ioral aadl models in real-time maude,” in Formal Techniques for Distributed Systems,
ser. Lecture Notes in Computer Science, J. Hatcliff and E. Zucca, Eds. Springer Berlin
/ Heidelberg, 2010, vol. 6117, pp. 47–62.

[124] S. Rosario, D. Kitchin, A. Benveniste, W. Cook, S. Haar, and C. Jard, “Event structure
semantics of Orc,” in WS-FM 2007, ser. Lecture Notes in Computer Science, vol. 4937.
Springer, 2008, pp. 154–168.

194

[125] W. R. Cook and J. Misra, “A structured orchestration language,” July 2005, http:
//www.cs.utexas.edu/users/wcook/Drafts/OrcCookMisra05.pdf.

[126] R. Bruni, H. Melgratti, and E. Tuosto, “Translating Orc features into Petri nets and the
Join calculus,” in Web Services and Formal Methods, ser. Lecture Notes in Computer
Science, M. Bravetti, M. Núñez, and G. Zavattaro, Eds., vol. 4184. Springer, 2006,
pp. 123–137.

[127] J. S. Dong, Y. Liu, J. Sun, and X. Zhang, “Verification of computation orchestration
via timed automata,” in Formal Methods and Software Engineering, 8th International
Conference on Formal Engineering Methods, ICFEM 2006, Macao, China, November
1-3, 2006, Proceedings, ser. Lecture Notes in Computer Science, Z. Liu and J. He,
Eds., vol. 4260. Springer, 2006, pp. 226–245.

[128] X. Nicollin and J. Sifakis, “The algebra of timed processes ATP: Theory and applica-
tion,” Information and Computation, vol. 114, no. 1, pp. 131–178, 1994.

[129] M. Hennessy and T. Regan, “A process algebra for timed systems,” Inf. Comput., vol.
117, no. 2, pp. 221–239, 1995.

[130] J. C. M. Baeten and J. A. Bergstra, “Real time process algebra.” Formal Aspects of
Computing, vol. 3, no. 2, pp. 142–188, 1991.

[131] L. Chen, “An interleaving model for real-time systems,” in TVER ’92: Proceedings
of the Second International Symposium on Logical Foundations of Computer Science.
London, UK: Springer-Verlag, 1992, pp. 81–92.

[132] S. Schneider, J. Davies, D. M. Jackson, G. M. Reed, J. N. Reed, and A. W. Roscoe,
“Timed CSP: Theory and practice,” in Proceedings of the Real-Time: Theory in Prac-
tice, REX Workshop. London, UK: Springer-Verlag, 1992, pp. 640–675.

[133] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on UPPAAL,” in Interna-
tional School on Formal Methods for the Design of Computer, Communication and
Software Systems (SFM-RT), ser. Lecture Notes in Computer Science, M. Bernardo
and F. Corradini, Eds. Springer, 2004, vol. 3185, pp. 200–236.

[134] R. Kazhamiakin, P. Pandya, and M. Pistore, “Timed modelling and analysis in web
service compositions,” in ARES ’06: Proceedings of the First International Conference
on Availability, Reliability and Security. Washington, DC, USA: IEEE Computer
Society, 2006, pp. 840–846.

[135] R. Hamadi and B. Benatallah, “A Petri net-based model for web service composi-
tion,” Proceedings of the 14th Australasian database conference-Volume 17, pp. 191–
200, 2003.

[136] W. Zhao, Y. Huang, C. Yuan, and L. Wang, “Formalizing business process execution
language based on Petri nets,” in Intelligent Systems and Applications (ISA), 2010
2nd International Workshop on, 22-23 2010, pp. 1 –8.

195

[137] J. Su, S. Yu, and H. Guo, “Formal description and verification of web service compo-
sition based on oopn,” in Advanced Intelligent Computing Theories and Applications.
With Aspects of Theoretical and Methodological Issues, ser. Lecture Notes in Computer
Science, D.-S. Huang, D. Wunsch, D. Levine, and K.-H. Jo, Eds. Springer Berlin /
Heidelberg, 2008, vol. 5226, pp. 644–652.

[138] W. van der Aalst and C. Stahl, Modeling Business Processes: A Petri Net Oriented
Approach. Cambridge, MA: MIT Press, 2011.

[139] M. Wirsing, R. De Nicola, S. Gilmore, M. Hölzl, R. Lucchi, M. Tribastone, and G. Za-
vattaro, “Sensoria process calculi for service-oriented computing,” in Proceedings of
TGC’06, ser. Lecture Notes in Computer Science, vol. 4661, 2007, pp. 30–50.

[140] M. Boreale, R. Bruni, L. Caires, R. D. Nicola, I. Lanese, M. Loreti, F. Martins,
U. Montanari, A. Ravara, and D. Sangiorgi, “Scc: a service centered calculus,” Lecture
notes in computer science, vol. 4184, p. 38, 2006.

[141] C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and G. Zavattaro, “Sock: a calculus for
service oriented computing,” Lecture notes in computer science, vol. 4294, p. 327,
2006.

[142] A. Lapadula, R. Pugliese, and F. Tiezzi, “Cows: A timed service-oriented calculus,”
Lecture notes in computer science, vol. 4711, p. 275, 2007.

[143] C. Guidi, R. Lucchi, and M. Mazzara, “A formal framework for web services coordi-
nation,” Electronic Notes in Theoretical Computer Science, vol. 180, no. 2, pp. 55–70,
2007.

[144] M. Rouached, O. Perrin, and C. Godart, “Towards formal verification of web service
composition,” Lecture notes in computer science, vol. 4102, p. 257, 2006.

[145] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Model-based verification of web
service compositions,” in Automated Software Engineering, 2003. Proceedings. 18th
IEEE International Conference on, October 2003, pp. 152 – 161.

[146] M. Viroli, “Towards a formal foundation to orchestration languages,” Electronic Notes
in Theoretical Computer Science, vol. 105, pp. 51 – 71, 2004, proceedings of the First
International Workshop on Web Services and Formal Methods (WSFM 2004).

[147] F. Abouzaid and J. Mullins, “Formal specification of correlation in WS orchestrations
using BP-calculus,” Electronic Notes in Theoretical Computer Science, vol. 260, pp.
3 – 24, 2010, proceedings of the 5th International Workshop on Formal Aspects of
Component Software (FACS 2008).

[148] R. Bruni, R. De Nicola, M. Loreti, and L. Mezzina, “Provably correct implementations
of services,” in Trustworthy Global Computing, ser. Lecture Notes in Computer Science,
C. Kaklamanis and F. Nielson, Eds. Springer Berlin / Heidelberg, 2009, vol. 5474,
pp. 69–86.

196

[149] C. Ma, Y. He, N. Xiong, and L. Yang, “Vft: An ontology-based tool for visualiza-
tion and formalization of web service composition,” in Computational Science and
Engineering, 2009. CSE ’09. International Conference on, vol. 1, aug. 2009, pp. 271
–276.

[150] W. van der Aalst and M. Pesic, “Decserflow: Towards a truly declarative service flow
language,” Lecture notes in computer science, vol. 4184, p. 1, 2006.

[151] W. Yeung, “A formal and visual modeling approach to choreography based web services
composition and conformance verification,” Expert Systems with Applications, vol. 38,
no. 10, pp. 12 772 – 12 785, 2011.

[152] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “LTSA-WS: a tool for model-based
verification of web service compositions and choreography,” in Proceedings of the 28th
international conference on Software engineering, ser. ICSE ’06. New York, NY, USA:
ACM, 2006, pp. 771–774.

[153] H. Younes, E. Clarke, and P. Zuliani, “Statistical verification of probabilistic properties
with unbounded until,” in Formal Methods: Foundations and Applications, ser. Lecture
Notes in Computer Science, J. Davies, L. Silva, and A. Simao, Eds. Springer Berlin
/ Heidelberg, 2011, vol. 6527, pp. 144–160.

[154] K. Sen, M. Viswanathan, and G. Agha, “Statistical model checking of black-box prob-
abilistic systems,” Computer Aided Verification, pp. 399–401, 2004.

[155] H. Younes, “Probabilistic verification for “black-box” systems,” in Computer Aided
Verification, ser. Lecture Notes in Computer Science, K. Etessami and S. Rajamani,
Eds. Springer Berlin / Heidelberg, 2005, vol. 3576, pp. 275–278.

[156] C. Jarque and A. Bera, “A test for normality of observations and regression residuals,”
International statistical review, vol. 55, no. 2, pp. 163–172, 1987.

[157] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker, “PRISM: A tool for automatic
verification of probabilistic systems,” in Proc. 12th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’06), ser. LNCS,
H. Hermanns and J. Palsberg, Eds., vol. 3920. Springer, 2006, pp. 441–444.

[158] T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet, “Approximate probabilistic
model checking,” in Verification, Model Checking, and Abstract Interpretation, ser.
Lecture Notes in Computer Science, B. Steffen and G. Levi, Eds. Springer Berlin /
Heidelberg, 2004, vol. 2937, pp. 307–329.

[159] B. Jeannet, P. R. D’Argenio, and K. G. Larsen, “RAPTURE: A tool for verifying
markov decision processes,” in Tools Day, International Conference on Concurrency
Theory, CONCUR’02, Czech Republic, August 2002, technical Report, Faculty of
Informatics at Masaryk University Brno.

197

[160] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle, “A markov chain model
checker,” in TACAS’00: The 6th International Conference on Tools and Algorithms
for Construction and Analysis of Systems. London, UK: Springer-Verlag, 2000, pp.
347–362.

[161] M. Jensen, N. Gruschka, and N. Luttenberger, “The impact of flooding attacks on
network-based services,” in Proc. of ARES ’08: The International Conference on
Availability, Reliability and Security. Washington, DC, USA: IEEE Computer So-
ciety, 2008, pp. 509–513.

[162] M. Jensen and J. Schwenk, “The accountability problem of flooding attacks in service-
oriented architectures,” in Proc. of ARES ’09: The International Conference on Avail-
ability, Reliability and Security. Washington, DC, USA: IEEE Computer Society,
16-19 2009, pp. 25 –32.

[163] M. Gunestas, M. Mehmet, D. Wijesekera, and A. Singhal, “Forensic web services
framework,” IT Professional, vol. 13, no. 3, pp. 31 –37, may-june 2011.

[164] N. Gruschka and M. Jensen, “Attack surfaces: A taxonomy for attacks on cloud ser-
vices,” in Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference on,
july 2010, pp. 276 –279.

[165] S. Meng, “QCCS: A formal model to enforce QoS requirements in service composi-
tion,” in Theoretical Aspects of Software Engineering, 2007. TASE ’07. First Joint
IEEE/IFIP Symposium on, June 2007, pp. 389 –400.

[166] R. Milner, Communication and concurrency. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1989.

[167] J. Edmund M. Clarke, O. Grumberg, and D. A. Peled, Model checking. Cambridge,
MA, USA: MIT Press, 1999.

[168] D. Prandi and P. Quaglia, “Stochastic COWS,” in Service-Oriented Computing - IC-
SOC 2007, Fifth International Conference, Vienna, Austria, September 17-20, 2007,
Proceedings, ser. Lecture Notes in Computer Science, vol. 4749. Springer, 2007, pp.
245–256.

[169] P. Quaglia and S. Schivo, “Approximate model checking of stochastic cows,” in Trust-
worthly Global Computing - 5th International Symposium, TGC 2010, Munich, Ger-
many, February 24-26, 2010, Revised Selected Papers, ser. Lecture Notes in Computer
Science, M. Wirsing, M. Hofmann, and A. Rauschmayer, Eds., vol. 6084. Springer,
2010, pp. 335–347.

[170] G. Roşu and T. F. Şerbănuţă, “An overview of the K semantic framework,” Journal
of Logic and Algebraic Programming, vol. 79, no. 6, pp. 397 – 434, 2010.

[171] A. Krause, Foundations of GTK+ Development. Berkely, CA, USA: Apress, 2007.

198

AUTHOR’S BIOGRAPHY

Musab Ahmad Al-Turki was born in AlKhobar, Saudi Arabia, on December 25th, 1979. In

2002, He graduated with a first-honors B.Sc. degree in computer science from King Fahd Uni-

versity of Petroleum and Minerals, Dhahran, Saudi Arabia, where he subsequently worked

as a graduate assistant teaching introductory computer science courses. In 2003, He joined

the department of computer science at the University of Illinois at Urbana-Champaign as

a Master’s student, where he later received his M.Sc. degree in computer science in for-

mal methods and programming languages in December 2005, after which he immediately

started the Ph.D. program in January 2006. Mr. Al-Turki worked as a graduate research

assistant at the National Center of Supercomputing Applications in Urbana, Illinois, during

the summer of 2006, and as a summer research engineer intern at DOCOMO Labs in Palo

Alto, California, during the summer of 2008. He has also been a research assistant at the

Formal Methods laboratory in the computer science department at the University of Illi-

nois at Urbana-Champaign since September 2007. Mr. Al-Turki won Saudi Arabia’s Higher

Education Scholarship Award for graduate studies in 2003 and 2006, and received the pres-

tigious King Abdullah Scholar Award for scientific excellence in 2008 from King Abdullah

University of Science and Technology. Following completion of his Ph.D. in August 2011,

Mr. Al-Turki will start his academic career as an assistant professor in the Information and

Computer Science department at King Fahd University of Petroleum and Minerals.

199

