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Abstract

This thesis is composed of two parts. In the first part we introduce a higher rank analog of the

Pandharipande-Thomas theory of stable pairs [28] on a Calabi-Yau threefold X. More precisely, we

develop a moduli theory for frozen triples given by the dataO⊕rX (−n)
φ−→ F where F is a sheaf of pure

dimension 1. The moduli space of such objects does not naturally determine an enumerative theory:

that is, it does not naturally possess a perfect symmetric obstruction theory. Instead, we build a

zero-dimensional virtual fundamental class by hand, by truncating a deformation-obstruction theory

coming from the moduli of objects in the derived category of X. This yields the first deformation-

theoretic construction of a higher-rank enumerative theory for Calabi-Yau threefolds. We calculate

this enumerative theory for local P1 using the Graber-Pandharipande [10] virtual localization tech-

nique.

In the second part of the thesis we compute the Donaldson-Thomas type invariants associated

to frozen triples using the wall-crossing formula of Joyce-Song [18] and Kontsevich-Soibelman

[22].
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Chapter 1

Introduction

The work of algebraic geometers to understand the rigorous mathematical structure of Gromov-

Witten invariants has led to introduction of new theories such as Donaldson-Thomas [32] and

Pandharipande-Thomas theories [28]. The numerical invariants computed in each theory are con-

jecturally related to each other but the complete understanding of the connection between these

invariants and invariants in Gromov-Witten theory has not yet been achieved. During several

past years there has been a growth of interest in computing invariants associated to higher rank

analogue of these theories. Toda [33] and Nagao [23] have succeeded in computing a class of

higher rank Donaldson-Thomas type invariants using the the wall-crossing technology developed

by Kontsevich-Soibelman [22] and Joyce-Song [18]. In this thesis we introduce two different tech-

niques in computing the higher rank Donaldson-Thomas type invariants. The first involves the

deformation theoretic higher rank enumerative theory for Calabi-Yau threefolds. One of our main

results is the construction of a zero-dimensional virtual fundamental class for objects given as higher

rank analogue of stable pairs in [28]. We carry out calculations over toric Calabi-Yau threefolds

such as local P1 to compute invariants associated to these objects using the method of virtual

localization [10]. In what follows we explain some of the required background in more detail:

In [27] and [28] the authors introduce stable pairs given by a tuple (F, s) where s ∈ H0(X,F ) and

F is a pure sheaf with fixed Hilbert polynomial and fixed second Chern character which has one

dimensional support. It is shown that there exists a virtual fundamental class of degree zero over

the moduli space of stable pairs and the invariants are defined by integration against this class. In

this thesis we define a higher rank analogue of stable pairs:

Let X be a nonsingular Calabi-Yau 3-fold over C with H1(OX) = 0 and with a fixed polarization L.
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A triple of type (P1, P2) over X is given by a tuple (E1, E2, φ) where E1 and E2 have fixed Hilbert

polynomials P1 and P2 respectively, E2 is a pure sheaf with one dimensional support over X and

φ : E1 → E2 is a holomorphic morphism.

We will introduce the notion of frozen triples of type (P2, r) which means that in a given triple

(E1, E2, φ), E1
∼= O⊕rX (−n) and E2 has fixed Hilbert polynomial P2. In other words we “freeze” E1

to be isomorphic to O⊕rX (−n) but the choice of this isomorphism is not fixed. We will also work

with closely related objects called highly frozen triples given as quadruples (E1, E2, φ, ψ) where E1,

E2 and φ have the same definition as before but this time we have “highly” frozen the triple by

fixing a choice of isomorphism ψ : E1
∼= O⊕rX (−n).

We study the frozen and the highly frozen triples in families. The key strategy in construction of

the moduli space of triples is to view a triple (E1, E2, φ) as an oriented tree with two vertices • φ−→ •

which is decorated with the data associated to E1 and E2 (such as their Hilbert polynomials).

Schmitt in [30] has given a GIT construction of moduli space of oriented trees with n vertices com-

posed of torsion free sheaves. In addition, a more general treatment for similar GIT constructions

when the corresponding sheaves are pure is given by Malte wandel [35]. However, since the GIT

constructions normally give rise to coarse (rather than fine) moduli spaces we switch gears and

essentially give a stacky construction of our moduli spaces.

One obtains a numerical stability condition by considering stability of points in the underlying

(coarse GIT) moduli space using the Hilbert-Mumford criterion. In special case, for moduli space

of frozen triples, it is shown that via some rearrangements the stability condition for frozen triples

is written as the stability used by Le Potier for coherent systems. Schmitt’s and, more specifically,

Le Potier’s stability conditions depend on choice of a stability parameter q. In the first part of

this thesis (where we compute the invariants using virtual localization tecchnique) we consider the

large limit stability which is equivalent to choosing q →∞, hence our stability becomes compatible

with the stability used in [28] by Pandharipande and Thomas. Later, in the second part of the

thesis, we consider the q → 0 limit stability and we compute similar higher rank invariants using

the wallcrossing technique developed by Kontsevich-Soibelman [22] and Joyce-Song [18].

The computation of invariants associated to frozen or highly frozen triples depends on construction
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of the virtual fundamental class over their moduli spaces. The key ingredient in construction of the

virtual class is a well-behaved deformation-obstruction theory. The description of the deformation

obstruction theory differs from case to case depending on the geometric structure of the moduli

space under consideration, hence it is important to study the geometry of the moduli spaces of

frozen and highly frozen triples.

We show that, M
(P2,r,n)
s,FT (τ ′), the moduli space of stable frozen triples of type (P2, r) is an Artin

stack. Moreover, M
(P2,r,n)
s,HFT (τ ′), the moduli space of stable highly frozen triples of type (P2, r), is a

Deligne-Mumford stack. It is crucial to find the relationship between M
(P2,r,n)
s,FT (τ ′) and M

(P2,r,n)
s,HFT (τ ′).

It is shown that M
(P2,r,n)
s,HFT (τ ′) is a principal GLr(C) bundle over M

(P2,r,n)
s,FT (τ ′) and there exists a for-

getful map πM
FT : M

(P2,r,n)
s,HFT (τ ′)→M

(P2,r,n)
s,FT (τ ′).

It is important to note that throughout this thesis we work over the open substacks H
(P2,r,n)
s,HFT (τ ′) ⊂

M
(P2,r,n)
s,HFT (τ ′) and H

(P2,r,n)
s,FT (τ ′) ⊂M

(P2,r,n)
s,FT (τ ′) as follows:

1. H
(P2,r,n)
s,HFT (τ ′) = {(E1, E2, φ, ψ) ∈M

(P2,r,n)
s,HFT (τ ′) | H1(E2(n)) = 0}.

2. H
(P2,r,n)
s,FT (τ ′) = {(E1, E2, φ) ∈M

(P2,r,n)
s,FT (τ ′) | H1(E2(n)) = 0}.

We construct a well-behaved deformation obstruction theory for DM stack of highly frozen triples

H
(P2,r,n)
s,HFT (τ ′) and hence obtain a virtual fundamental class:

The first step is to understand the deformations of frozen and highly frozen triples. Take a

parametrizing scheme S of finite type over C. A family of frozen triples is given by a tuple (E ,F , φ)

where E ∼= O⊕rX×S(−n), F denotes a family of pure one dimensional sheaves flat over S and

φ : E → F .

Moreover, the fiber of this family over every point s ∈ S is given by a stable frozen triple over

X. Take a family of stable pairs (stable frozen triples of rank 1) over S. Let I•S be the family of

complexes associated to this family. Consider a nilpotent thickening, S′ of S. Define the deformation

of I•S as a complex I•S′ such that the derived restriction of I•S′ to S is quasi-isomorphic to I•S . In

Theorem 2.7 [28] the authors show that for such nilpotent thickenings to all orders, the complex
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I•S′ is quasi-isomorphic to the complex

OX×S′(−n)→ F .

Here we follow a similar strategy. We show how the frozen triples of rank r > 1 deform in

families. Take any point p ∈ H
(P2,r,n)
s,FT (τ ′). Here p is given as a stable frozen triple represented by a

complex

I• : E → F.

We compute the tangent space of H
(P2,r,n)
s,FT (τ ′) at p. We show that there exists a map of groups

End(OX(−n)⊕r)
g−→ Hom(I•, F )

and the tangent space is obtained as the quotient of Hom(I•, F ) by the image of End(OX(−n)⊕r)

under g. The following theorem describes this statement.

Theorem (5.15): Use notation in Definition 2.10. Fix a map f : S → H
(P2,r,n)
s,FT (τ ′). Let S′ be

a square-zero extension of S with ideal I. Let DefS(S′,H(P2,r,n)
s,FT (τ ′)) denote the deformation space

of the map f obtained by the set of possible deformations, f ′ : S′ → H
(P2,r,n)
s,FT (τ ′). The following

statement is true:

DefS(S′,H(P2,r,n)
s,FT (τ ′)) ∼= Hom(I•S , F )⊗ I/ Im

(
(End(MS)→ Hom(I•S ,F))⊗ I

)
(1.1)

We show that the tangent space at p is isomorphic to deformations of the complex I• with fixed

determinant that represents p. The deformation theory of this complex is obtained by Ext1(I•, I•)0

and Ext2(I•, I•)0 where sub-index 0 indicates the trace-free group:

Theorem (5.10): Let p ∈ H
(P2,r,n)
s,FT (τ ′) be a point represented by a τ ′-limit-stable frozen triple

{(OX(−n)⊕r, F, φ)}. Let

I• := OX(−n)⊕r
φ−→ F

4



be a complex with trivial determinant. The following is true:

TpH
(P2,r,n)
s,FT (τ ′) ∼= Ext1(I•, I•)0. (1.2)

More generally we prove that the deformation I•S′ of I•S for nilpotent thickenings of S to all orders

is quasi-isomorphic to the complex given by

O⊕rX×S′(−n)→ F .

As mentioned above, the moduli stack of highly frozen triples has the structure of a DM stack. In

this case, the deformation obstruction theory is given by a morphism in the derived category:

ob : G• → L•
H

(P2,r,n)
s,HFT (τ ′)

,

where G• is a perfect complex of amplitude [−1, 0] and moreover, h0(ob) is an isomorphism and

h−1(ob) is an epimorphism. Here L•
H

(P2,r,n)
s,HFT (τ ′)

denotes the 2 term truncated cotangent complex, in

degrees −1 and 0, associated to the moduli stack.

For the case of Artin stack of stable frozen triples, the truncated cotangent complex contains a

nonzero term in degree 1 and for deformation-obstruction theory, we require a morphism in the

derived category:

ob : E• → L•
H

(P2,r,n)
s,FT (τ ′)

,

where E• is a perfect complex of amplitude [−1, 1] and moreover h1(ob) and h0(ob) are isomor-

phisms and h−1(ob) is an epimorphism [25].

We construct a deformation obstruction theory over H
(P2,r,n)
s,FT (τ ′) which has all the nice cohomolog-

ical properties however it is perfect of amplitude [−2, 1].

Theorem (6.7): There exists a map in the derived category,

RπH∗ (RHom(I•, I•)0 ⊗ π∗XωX) [2] ob−→ L•
H

(P2,r,n)
s,FT (τ ′)

.
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After suitable truncations, there exists a 4 term complex E• of locally free sheaves , such that E•∨

is self-symmetric of amplitude [−2, 1] and there exists a map in the derived category,

E•∨ obt−−→ L•
H

(P2,r,n)
s,FT (τ ′)

(1.3)

such that h−1(obt) is surjective, and h0(obt) and h1(obt) are isomorphisms. .

The computation of invariants over H
(P2,r,n)
s,FT (τ ′) or H

(P2,r,n)
s,HFT (τ ′) using the conventional methods is

not possible because of the following main reasons:

Key obstacles: The truncation of E•∨ in Theorem 6.7 from 4 terms to 3 terms is not possible

over H
(P2,r,n)
s,FT (τ ′), otherwise one may use Noseda’s conjectural construction in [25] to directly define

a virtual fundamental class for H
(P2,r,n)
s,FT (τ ′). On the other hand constructing a well-behaved defor-

mation obstruction theory over H
(P2,r,n)
s,HFT (τ ′) using the techniques discussed in [28] is not possible

either, hence we propose the following strategy:

Strategy: Pullback E•∨ in Theorem 6.7 to H
(P2,r,n)
s,HFT (τ ′) via the forgetful map πM

FT. Consider a

Deligne-Mumford affine cover of H
(P2,r,n)
s,HFT (τ ′). Then show that locally one may apply a suitable

truncation mechanism to the pulled-back complex so that it is ensured that the truncated complex

satisfies the conditions for the perfect deformation-obstruction theory of perfect amplitude [−1, 0]

over the DM stack of stable highly frozen triples:

Theorem (6.12) Consider the 4-term deformation obstruction theory E•∨ of perfect amplitude

[−2, 1] over H
(P2,r,n)
s,FT (τ ′).

1. Locally in the étale topology over H
(P2,r,n)
s,HFT (τ ′) there exists a perfect two-term deformation ob-

struction theory of perfect amplitude [−1, 0] which is obtained from the suitable local truncation of

the pullback (πM
FT)∗E•∨.

2. This local theory defines a globally well-behaved virtual fundamental class over H
(P2,r,n)
s,HFT (τ ′).

The construction mentioned above can be extended to the case where X is given as a toric Calabi
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Yau threefold. There exists an action of G = T×T0 on the DM stack of highly frozen triples. The

action of T is induced by (C∗)3 action on X, and T0 denotes the action of (C∗)r such that over a

point p ∈ Hr
s,HFT(τ ′) represented by OX(−n)⊕r → F , each factor of C∗ in (C∗)r scales each factor

in the fibers of OX(−n)⊕r independently. We show that when X = Tot(OP1(−1)⊕OP1(−1)→ P1)

then H
(P2,r,n)
s,HFT (τ ′) = M

(P2,r,n)
s,HFT (τ ′) and H

(P2,r,n)
s,FT (τ ′) = M

(P2,r,n)
s,FT (τ ′). It is shown that the action of

G on Mr
s,HFT(τ ′) induces a weight decomposition on the G-equivariant stable highly frozen triples

due to which the triples decompose as:

I•,G ∼=
r⊕
i=1

(OX(−n)→ Fi) . (1.4)

This decomposition, in particular, is due to the action of T0 on the highly frozen triples. The

consequence of identifying G-equivariant stable highly frozen triples as multiple copies of stable

pairs as in (1.4), is that the G-fixed components of the moduli stack of highly frozen triples is

obtained as an r-fold product of T-fixed components of the moduli stack of stable pairs which are

conjectured by Pandharipande and Thomas in [28] (Conjecture 2) to be nonsingular and compact.

Let Q denote a G-fixed component of Mr
s,HFT(τ ′). Let (G0,Q)G and (G1,Q)G denote the G-

equivariant terms in degrees 0 and 1 of the restriction to Q of the dual of G• in Theorem 6.12.

Given that Q is nonsingular and compact, by the virtual localization formula [10], the virtual

fundamental class of Mr
s,HFT(τ ′) is obtained as:

[
Mr

s,HFT(τ ′)
]vir

=
∑

Q⊂Mr
s,HFT(τ ′)

ιQ∗

(
e(G1,Q)
e(G0,Q)

· e(TQ) ∩ [Q]
)
. (1.5)

The invariants associated to the highly frozen triples can be obtained by

HFT(r, n, β) =
∫

[Mr
s,HFT(τ ′)]vir

1.

We generalize the method of box counting in [27] and compute the invariants associated to highly

frozen triples for r = 2 over total space of OP1(−1) ⊕ OP1(−1) → P1 (Example 11.2). We also

present an algorithm for similar computations when X is given as total space of OP2(−3) → P2

7



(Example 11.3).

In Chapter 12 we use a different approach to compute the invariants of objects with similar prop-

erties to frozen and highly frozen triples for when the stability parameter q → 0. Here we use

the wall-crossing techniques. Assuming that the sheaf F appearing in frozen triples is given as

a quotient sheaf with zero-dimensional support, using our calculations one obtains compatible re-

sults with computations in [23]. Our strategy here is to use both ideas of Joyce-Song [18] and

Kontsevich-Soibelman [22] in wall-crossings to compute the invariants, however our computations

and notations mainly follow the work of Joyce and Song [18].
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Chapter 2

Definition of triples

Definition 2.1. Let X be a nonsingular projective Calabi-Yau 3-fold over C (i.e KX
∼= OX and

π1(X) = 0 which implies H1(OX) = 0) with a fixed polarization L . A holomorphic triple supported

over X is given by (E1, E2, φ) consisting of a torsion free coherent sheaf E1 and a pure sheaf with

one dimensional support E2, together with a holomorphic morphism φ : E1 → E2.

A homomorphism of triples from (É1, É2, φ́) to (E1, E2, φ) is a commutative diagram:

É1 É2

E1 E2

φ́

φ

Remark 2.2. A triple (E1, E2, φ) of type (P1, P2, β) is given by a triple such that P (E1(m)) = P1

and P (E2(m)) = P2 and β = ch2(E2) as defined in Definition 2.8. During the discussion, for

simplicity, we omit β and write a triple of type (P1, P2).

Remark 2.3. Since by assumption the sheaf E2 has one dimensional support, the Hilbert polyno-

mial of E2 in variable m satisfies:

P (E2(m)) = χ(E2(m)) = m

∫
β
c1(L) + d. (2.1)

Here c1(L) is the first Chern class of the fixed polarization L over X and d ∈ Z and β as before is

ch2(E2). Note that P2 is a polynomial of degree= dim(Supp(E2)) = 1 and by rank of E2 (denoted

by rk(E2)) we mean the leading coefficient of P2.

Definition 2.4. A frozen triple of rank r is a special case of a holomorphic triple where E1
∼=

9



OX(−n)⊕r for some n ∈ Z.

Remark 2.5. By freezing the triple we mean fixing E1 to be isomorphic withOX(−n)⊕r. We do not

make a choice of such an isomorphism here. Later we fix an isomorphism ψ : E1
∼=−→ OX(−n)⊕rand

we call the triples highly-frozen triples.

Definition 2.6. Use the notation above. Let S be a C scheme of finite type and let πX : X×S → X

and πS : X×S → S be the corresponding projections. An S-flat family of triples over X is a triple

(E1, E2, φ) consisting of a morphism of OX×S modules E1
φ−→ E2 such that E1 and E2 are flat over S

and for every point s ∈ S the fiber (E1, E2, φ) |s is given by a holomorphic triple as in Definitions

2.1.

Two S-flat families of triples (E1, E2, φ) and (E ′1, E ′2, φ′) are isomorphic if there exists a commutative

diagram of the form:

É1 É2

E1 E2

φ́

∼= ∼=
φ

Definition 2.7. An S-flat family of frozen-triples is a triple (E1, E2, φ) consisting of a morphism of

OX×S modules φ : E1 → E2 such that E1 and E2 satisfy the condition of Definition 2.6 and moreover

E1
∼= π∗XOX(−n)⊗ π∗SMS where MS is a vector bundle of rank r on S.

Two S-flat families of frozen-triples (E1, E2, φ) and (E ′1, E ′2, φ′) are isomorphic if there exists a com-

mutative diagram:

É1 É2

E1 E2

φ́

∼= ∼=
φ

Definition 2.8. A frozen-triple of class β and of fixed Hilbert polynomial P2 is a frozen-triple

(E1, E2, φ) such that the Hilbert polynomial of E2 is equal to P2 and β = ch2(E2). Having fixed r

in E1
∼= O⊕rX (−n), we denote these frozen triples as frozen triples of type (P2, r).

Now we define highly frozen triples.
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Definition 2.9. A highly frozen triple is a quadruple (E1, E2, φ, ψ) where (E1, E2, φ) is a frozen

triple as in Definition 2.4 and ψ : E1
∼=−→ OX(−n)⊕r is a fixed choice of isomorphism. A morphism

between highly frozen triples (E′1, E
′
2, φ
′, ψ′) and (E1, E2, φ, ψ) is a morphism E′2

ρ−→ E2 such that

the following diagram is commutative.

OX(−n)⊕r E′1 E′2

OX(−n)⊕r E1 E2

φ́

id

ψ′−1

ρ
ψ−1 φ

Definition 2.10. An S-flat family of highly frozen-triples is a quadruple (E1, E2, φ, ψ) consisting

of a morphism of OX×S modules E1
φ−→ E2 such that E1 and E2 satisfy the condition of Definition

2.6 and moreover ψ : E1
∼=−→ π∗XOX(−n)⊗ π∗SO

⊕r
S is a fixed choice of isomorphism.

Two S-flat families of highly frozen-triples (E1, E2, φ, ψ) and (E ′1, E ′2, φ′, ψ′) are isomorphic if there

exists a commutative diagram:

π∗XOX(−n)⊗ π∗SO
⊕r
S E ′1 E ′2

π∗XOX(−n)⊗ π∗SO
⊕r
S E1 E2

φ́

id

ψ′−1

ψ−1
∼=

φ

Definition 2.11. Let q1(m) and q2(m) be positive rational polynomials of degree at most 2. A triple

T = (E1, E2, φ) of type (P1, P2) is called τ́ -semistable (respectively, stable) if for any subsheaves

F1 of E1 and F2 of E2 such that 0 6= F1 ⊕ F2 6= E1 ⊕ E2 and φ(F1) ⊂ F2:

q2(m)
(
PF1 − rk(F1)

(
P1

rk(E1)
− q1(m)
rk(E1)

))
+ q1(m)

(
PF2 − rk(F2)

(
P2

rk(E2)
+

q2(m)
rk(E2)

))
≤ 0/resp. < 0.

(2.2)

The construction of the parametrizing scheme of stable frozen and highly frozen triples is a spe-

cialization of Schmitt’s construction of moduli space of oriented trees with n vertices [30] to the

case where n = 2. Although it is straightforward to specialize Schmitt’s construction to our setup,
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in order to keep completeness, we have included this construction in the later sections.

2.1 Stability for frozen triples and higher rank PT pairs

Comparison between τ́-stability and Le Potier’s stability for coherent systems

Consider the special case in which the triples are given as coherent systems, i.e when E1
∼= Γ⊗OX

such that Γ ⊂ H0(E2). For simplicity we denote this coherent system by (Γ, E2). Recall that by

a sub-coherent system we mean a pair (Γ́, É2) ⊂ (Γ, E2) which is given by Γ́ ⊗ OX → É2, i.e a

sub-sheaf 0→ É2
i−→ E2 and Γ́ ⊂ H0(É2) such that i(Γ́) ⊂ Γ.

Remark 2.12. We intend to work with one stability parameter. We use the rational function q(m)

instead of q1(m) and q2(m) by setting q2(m)/q1(m) := q(m).

Assume Γ⊗OX → E2 is τ́ -semistable, i.e for all (Γ́, É2) ⊂ (Γ, E2):

q(m)
(
dim(Γ′) · POX − dim(Γ′) ·

(
dim(Γ) · POX

dim(Γ)
− q1(m)
dim(Γ)

))
+
(
PÉ2
− rk(É2)

(
PE2

rk(E2)
+

q2(m)
rk(E2)

))
≤ 0,

(2.3)

Hence one obtains:

q(m)
(
((((

(((dim(Γ′) · POX −(((((
((

dim(Γ′) · POX +
dim(Γ′) · q1(m)

dim(Γ)

)
+
(
PÉ2
− rk(É2)

(
PE2

rk(E2)
+

q2(m)
rk(E2)

))
≤ 0,

(2.4)
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By carefully rewriting, one obtains:

PE2

rk(E2)
+

q2(m)
dim(Γ)

· dim(Γ)
rk(E2)

≥
PÉ2

rk(É2)
+

q2(m)
dim(Γ)

· dim(Γ́)
rk(É2)

(2.5)

Which is similar to Le Potier’s criteria for stability of (Γ, E2) if we require this inequality to hold for

every choice of sub-coherent systems (Γ́, É2). We explain this similarity in the remark below.

Remark 2.13. One may rescale the stability parameter with constant numbers. For example

choosing the stability parameter to be q(m) = q2(m)
q1(m)·dim(Γ) gives the stability condition for coherent

systems. The coherent systems are naively a subset of frozen triples in Definition 2.8 and so far

we have shown that every τ́ -semistable triple, given as a coherent system, is stable in the sense of

Le Potier [29] and with more effort it can be shown that a stable coherent system (thought of as a

frozen triple) would also be stable with respect to stability condition for frozen triples. We leave

the proof of this fact to the interested reader.

2.1.1 Statement of τ́-stability for frozen triples of type (P2, r)

Use notation of Definition 2.8 and Remark 2.3. We study stability for frozen triples of type (P2, r).

Fix a frozen triple (E1, E2, φ) of type (P2, r). The subtriples of this frozen triple are given by triples

of the form (G1, G2, ψ) for which the following diagram commutes:

0 0

G1 G2

E1
∼= OX(−n)⊕r E2

ψ

φ

. (2.6)
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The stability assumption means that for (E1, E2, φ) the following condition is satisfied:

∀G1 ⊂ E1 and ∀G2 ⊂ E2 such that 0 6= G1 ⊕G2 6= OX(−n)⊕r ⊕ E2 6= 0 and φ(G1) ⊂ G2:

q2(m)
(
PG1 − rk(G1)

(
PE1

r
− q1(m)

r

))
+

q1(m)
(
PG2 − rk(G2)

(
PE2

rk(E2)
+

q2(m)
rk(E2)

))
≤ 0.

(2.7)

Taking the sub-triple to be OX(−n)⊕r
ψ−→ G2 such that G2 ⊂ E2 then the stability condition is

written as:

q2(m)
(
���

���POX(−n)⊕r −���
���

��
r

(
POX(−n)⊕r

r

))
+ q2(m) · q1(m)

+ q1(m)
(
PG2 − rk(G2)

(
PE2

rk(E2)
+

q2(m)
rk(E2)

))
< 0.

(2.8)

As in Remark 2.12, since we are interested in the ratio q2(m)
q1(m) , we assume q2(m) = q(m) and

q1(m) = 1, so dividing by rk(G2) we obtain:

PG2

rk(G2)
+

q(m)
rk(G2)

≤ PE2

rk(E2)
+

q(m)
rk(E2)

. (2.9)

Which is again somewhat similar to Le Potier’s condition for coherent systems [29]. We are now

ready to give a complete τ́ -stability condition for frozen triples of type (P2, r):

Definition 2.14. Let q(m) be given by a polynomial with rational coefficients such that its leading

coefficient is positive. A frozen triple (E1, E2, φ) of type (P2, r) is τ́ -stable with respect to q(m) if

and only if:

1. for all proper nonzero subsheaves G ⊂ E2 for which φ does not factor through G we have:

PG
rk(G)

<
PE2

rk(E2)
+

q(m)
rk(E2)

.
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2. For all subsheaves, G ⊂ E2 which the map φ factors through:

q(m) +
(
PG − rk(G)

(
PE2

rk(E2)
+

q(m)
rk(E2)

))
< 0.

(2.10)

Remark 2.15. It is trivially seen that equations (2.9) and (2.10) are exactly equivalent to each

other.

2.1.2 q(m)→∞ limit stability for frozen triples of type (P2, r)

As we discussed in the previous sections, whether we study a triple of type (P1, P2) or a frozen

triple of type (P2, r) the stability condition depends on the parameter q(m). As a consequence,

the moduli of τ́ -(semi)stable objects depends on this parameter too. We consider moduli of frozen

triples when q(m) → ∞. In [28] (Lemma 3.1) Pandharipande and Thomas study the stable pairs

φ : OX → F and show that asymptotically their notion of stability is equivalent to requiring the

sheaf F to be given as a pure one dimensional sheaf and the map φ to be generically surjective.

We show below that the statement of asymptotic stability condition for frozen and highly frozen

triples is similar to stability of PT pairs [28].

Definition 2.16. Fix q(m) to be given as a polynomial of degree at least 2 with rational coefficients

such that its leading coefficient is positive. A frozen (respectively highly frozen) triple of type (P2, r)

is called to be q(m) → ∞ τ ′-limit-stable if it is stable in the sense of Definition 2.14 with respect

to this fixed choice of q(m).

Lemma 2.17. Let q(m) be a polynomial as in Definition 2.16. A frozen triple (E1, E2, φ) of type

(P2, r) is τ́ -limit-stable if and only if the map E1
φ−→ E2 has zero dimensional cokernel.

Proof. For simplicity, we use O⊕rX (−n) instead of E1. The exact sequence 0→ K → OX(−n)⊕r
φ−→

E2 → Q→ 0 induces a short exact sequence:

0→ Im(φ)→ E2 → Q→ 0

15



Therefore one obtains the following commutative diagram of the triples:

OX(−n)⊕r Im(φ)

OX(−n)⊕r E2

φ

=

Now we assume that OX(−n)⊕r
φ−→ E2 is a q(m)→∞τ́ -limit-stable triple :

q(m) +
(
PIm(φ) − rk(Im(φ)) ·

(
PE2

rk(E2)
+

q(m)
rk(E2)

))
< 0.

(2.11)

In other words by rearrangement:

q(m)
(

1− rk(Im(φ)
rk(E2)

)
< rk(Im(φ))

PE2

rk(E2)
− PIm(φ).

Consider the polynomials on both sides of inequality (2.11) with respect to the variable m. One

sees that the right hand side of (2.11) is a polynomial in m of degree at most 1. However by the

choice q(m) as in Definition 2.16 one sees that the left hand side of the inequality is given by a

polynomial of degree at least two with positive leading coefficient. Hence the left hand side becomes

larger than the right hand side and the only way for the inequality to make sense is to have the left

hand side to be equal to zero, i.e rk(Im(φ)) = rk(E2) and therefore Q must be a zero dimensional

sheaf. For the other direction: Assume that Q is not a zero dimensional sheaf and the triple is

τ́ -limit-stable. Now by similar argument, since degree of q(m) is chosen to be sufficiently large

enough, rk(Im(φ)) = rk(E2) which contradicts the assumption of Q not being zero dimensional

sheaf and this finishes the proof.

By Lemma 2.17 it is seen that q(m)→∞ τ ′-limit stable pairs are given as the higher rank analog

of PT stable pairs [28].

Remark 2.18. We proved in Lemma 2.17 that the notion of q(m)→∞ coincides with the notion

of q(m)-stability for a suitable choice of q(m) given in Definition 2.16. The important outcome of
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this conclusion is that for a suitable choice of q(m) the notion of q(m)→∞ τ ′-limit-stability comes

from a GIT notion of stability.
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Chapter 3

Construction of moduli stacks

To construct a well-behaved moduli space of stable triples or frozen-triples the first step is to make

sure that the family of (semistable triples of a given type (P1, P2) is bounded.

3.1 Boundedness

In this section we quote the results obtained by Malte Wandel in [35] which helps us to get a

well-behaved scheme that parametrizes the triples of a fixed given type. In [35] (Definition 1.1)

Wandel studies the construction of the moduli space of objects φ : D → E denoted as pairs. These

objects are defined similar to triples in Definition 2.1. The author introduces the notion of Hilbert

polynomial and reduced Hilbert polynomial for a pair [35] (Definition 1.3). Moreover, the author

defines a semistability condition denoted as δ-semistability [35] (Definition 1.4) where δ is given

as stability parameter. Replacing δ with q(m), it is easily seen that the Wandel’s notion of δ-

semistability is completely compatible with our notion of τ ′-semistability in Definition 2.14. In

order to construct the underlying parameter scheme of triples one needs a boundedness criterion

for the family of triples of type (P1, P2). Here we state some of the theorems in [35] without any

proofs which ensure one to obtain the required boundedness conditions for the family of triples.

The following statements can all be adapted to our case once one replaces the notion of pairs and

δ-semistability in [35] with our notion of triples and τ ′-smeistability respectively.

Proposition 3.1. [35](Proposition 2.1) Given a pair φ : D → E, Let P and δ be polynomials.

Then there is a constant C depending only on P and D such that for every OX-module E occurring

in a δ-semistable pair we have µmax(E) ≤ C . In particular, the family of pairs which are semistable
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with respect to any stability parameter δ having the fixed Hilbert polynomial P is bounded.

Following this proposition it is shown in [35] (Proposition 2.4) that a family of δ-semistable pairs

with given fixed numerical data (such as fixed Hilbert polynomial) satisfy n-regularity condition.

Hence, it is shown that given a bounded family of δ-semistable pairs, the sheaves D and E appearing

in the family satisfy the condition that for some large enough integer n the sheaves D(n) and E(n)

are globally generated [35] (look following Definition 3.2).

3.2 Definition of moduli stacks as categories fibered in

groupoids

Definition 3.2. Use Definition 2.9. Define M
(P2,r,n)
s,HFT (τ ′) to be the fibered category p : M

(P2,r,n)
s,HFT (τ ′)→

Sch/C such that:

1. For all S ∈ Sch/C the objects in M
(P2,r,n)
s,HFT (τ ′) are S-flat families of τ ′-stable highly frozen triples

of type (P2, r) as in Definition 2.10.

2. Given a morphism of C-schemes g : S → K and two families of highly frozen triples TS :=

(E1, E1, φ, ψ)S and T́K := (E ′1, E ′1, φ′, ψ′)K as in Definition 2.10 (sub-index indicates the base param-

eter scheme over which the family is constructed), a morphism TS → T́K in M
(P2,r,n)
s,HFT (τ ′) is defined

by an isomorphism:

νS : TS
∼=−→ (g × 1X)∗T́K .

Definition 3.3. Use Definition 2.7. Define M
(P2,r,n)
s,FT (τ ′) to be he fibered category p : M

(P2,r,n)
s,FT (τ ′)→

Sch/C such that:

1. For all S ∈ Sch/C the objects in M
(P2,r,n)
s,FT (τ ′) are S-flat families of frozen triples of type (P2, r)

as in Definition 2.7.

2. Given a morphism of C-schemes g : S → K and two families of frozen triples TS := (E1, E1, φ)S

and T́K := (E ′1, E ′1, φ′)K as in Definition 2.7 (sub-index indicates the base parameter scheme over
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which the family is construced), a morphism TS → T́K in M
(P2,r,n)
s,FT (τ ′) is defined by an isomorphism:

νS : TS
∼=−→ (g × 1X)∗T́K .

Proposition 3.4. Use definitions 3.2 and 3.3. The fibered categories M
(P2,r,n)
s,HFT (τ ′) and M

(P2,r,n)
s,FT (τ ′)

are stacks.

Proof. This is immediate from faithfully flat descent of coherent sheaves and homomorphisms of

coherent sheaves [34] (Theorem 4.23).

Remark 3.5. There exists a forgetful morphism g′ : M
(P2,r,n)
s,FT (τ ′) → BGLr(C) which is given by

taking a frozen triple {(E1, E2, φ)} ∈M
(P2,r,n)
s,FT (τ ′) to {E1} ∈ BGLr(C) by forgetting E2 and φ.

Proposition 3.6. The natural diagram:

M
(P2,r,n)
s,HFT (τ ′) pt = Spec(C)

M
(P2,r,n)
s,FT (τ ′) BGLr(C) =

[
Spec(C)
GLr(C)

]
g

πM
FT i

ǵ

, (3.1)

is a fibered diagram in the category of stacks. In particular M
(P2,r,n)
s,HFT (τ ′) is a GLr(C)-torsor over

M
(P2,r,n)
s,FT (τ ′). It is true that locally in the flat topology M

(P2,r,n)
s,FT (τ ′) ∼= M

(P2,r,n)
s,HFT (τ ′) ×

[
Spec(C)
GLr(C)

]
.

This isomorphism does not hold true globally unless r = 1.

Proof. We show that there exists a forgetful map πM
FT : M

(P2,r,n)
s,HFT (τ ′)→M

(P2,r,n)
s,FT (τ ′) which induces

a map from M
(P2,r,n)
s,HFT (τ ′)×

[
Spec(C)
GLr(C)

]
to M

(P2,r,n)
s,FT (τ ′) and show that this map has an inverse locally

but not globally unless r = 1. First we prove the claim for r = 1.

By definition M
P2,1
s,HFT(τ ′) stands for the moduli stack of rank 1 τ ′-stable highly frozen triples.

Moreover M
(P2,1)
s,FT (τ ′) stands for the moduli stack of rank 1 τ ′-stable frozen triples. For r = 1,

GL1(C) = Gm. For a C-scheme S, an S-point of M
(P2,1)
s,HFT(τ ′)× [Spec(C)

Gm ] is identified with the data

(OX×S(−n)→ E2,LS) where LS is a Gm line bundle over S. Let πS : X × S → S be the natural

projection onto the second factor. There exists a map that sends this point to an S-point a ∈
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(M(P2,1)
s,FT (τ ′))(S) which is obtained by tensoring with LS , i.e OX(−n) �LS

φL−−→ E2 �LS . Note that

tensoring OX×S(−n) with π∗SLS does not change the fact that OX×S(−n) |s∈S∼= OX(−n)�LS |s∈S

fiber by fiber.

Moreover there exists a section map s : M
(P2,1)
s,FT (τ ′) → M

(P2,1)
s,HFT(τ ′) × [Spec(C)

Gm ]. Simply take an S-

point [OX(−n)�LS → E2] ∈ (M(P2,1)
s,FT (τ ′))(S) and send to an S-point in (M(P2,1)

s,HFT(τ ′)×[Spec(C)
Gm ])(S)

by the map

[OX(−n) � LS → E2] 7→ ([OX×S(−n)→ E2 ⊗ π∗SL−1
S ],LS).

Note that since LS is a line bundle over S then it is invertible and hence a section map is always

well defined and M
(P2,1)
s,FT (τ ′) is a gerbe over M

(P2,1)
s,HFT(τ ′). To proceed further we state the following

definition.

Definition 3.7. Consider a stack (Y, pY : Y→ Sch/C). Given Two morphism of stacks p1 : X→

Y and p2 : X′ → Y, the fibered product of X and X′ over Y is defined by the category whose objects

are defined by triples (x, x′, α) where x ∈ X and x′ ∈ X′ respectively and α : p1(x) → p2(x′) is an

arrow in Y such that pY(α) = id. Moreover the morphisms (x, x′, α)→ (y, y′, β) are defined by the

tuple (φ : x→ y, ψ : x′ → y′) such that

p2(ψ) ◦ α = β ◦ p1(φ) : p1(x)→ p2(y′).

Now let r > 1. There exists a forgetful map πM
FT : M

(P2,r,n)
s,HFT (τ ′) → M

(P2,r,n)
s,FT (τ ′) which takes

(E1, E2, φ, ψ) to (E1, E2, φ) by forgetting the choice of isomorphism, ψ. Moreover, there exists a

map g′ : M
(P2,r,n)
s,FT (τ ′) → BGLr(C) by Remark 3.5. Finally there exists the natural projection

i : Spec(C)→
[

Spec(C)
GLr(C)

]
= BGLr(C). It follows directly from Definition 3.7 that the diagram:

M
(P2,r,n)
s,HFT (τ ′) pt = Spec(C)

M
(P2,r,n)
s,FT (τ ′) BGLr(C) =

[
Spec(C)
GLr(C)

]
g

πM
FT i

ǵ
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is a fibered diagram and M
(P2,r,n)
s,HFT (τ ′) = M

(P2,r,n)
s,FT (τ ′) ×BGLr(C) pt. Here one cannot use the

same argument used for frozen triples of rank 1 to conclude that there exists a section map

s : M
(P2,r,n)
s,FT (τ ′)→M

(P2,r,n)
s,HFT (τ ′)×

[
Spec(C)
GLr(C)

]
, since as we showed, the S-point of BGLr(C) is a GLr(C)

bundle of rank r over S and this vector bundle is trivializable locally but not globally. Therefore

locally in the flat topology one may think of M
(P2,r,n)
s,FT (τ ′) as isomorphic to M

(P2,r,n)
s,HFT (τ ′)× [Spec(C)

GLr(C) ]

but not globally.

3.3 Moduli stacks as algebraic stacks

3.3.1 The Parameter Scheme of τ́-stable highly frozen triples of type

(P2, r)

Replacing the pairs and δ-semistability in [35] (Section 2) with triples and τ ′-semistability and

adapting the results of propositions 2.1 and 2.4 in [35] to our case one finds that there exists an

integer n′ such that for all coherent sheaves E1 and E2 appearing in a family of τ́ -(semi)stable

triples (E1, E2, φ), E1(n′) and (in particular) E2(n′) are globally generated. Now use notation

of Definition 2.6. One first constructs an S-flat family of coherent sheaves E2 with fixed Hilbert

polynomial P2. By construction the family of coherent sheaves E2 appearing in a τ ′-stable triple

is bounded and moreover the large enough twist E2(n′) is globally generated. Fix such n′ and

let V2 be a complex vector space of dimension d2 = P (n′) given as V2 = H0(E2 ⊗ Ln
′
). Let Q2

denote QuotP2
(V2 ⊗OX(−n′)). Now we fix a large enough integer n (not necessarily equal to n′).

We construct a scheme which parameterizes morphisms O⊕rX (−n) → E2: There exists a bundle P

over Q2 whose fibers parametrize H0(E2(n)). It is trivially seen that the fibers of the bundle P⊕r

parametrize H0(E2(n))⊕r. In other words the fibers of P⊕r parametrize the maps E1 → E2 such

that E1 = O⊕rX (−n). Now let

S(P2,r,n)
s (τ ′) ⊂ P⊕r (3.2)
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be given as an open subscheme of P⊕r whose fibers parametrize τ ′-stable highly frozen triples

E1 → E2.

V2 ⊗OX(−n′)

OX(−n) E2

φ

Remark 3.8. Given a C-scheme, S, a quasi-projective C-scheme A and a complex group G, the

quotient stack
[A
G

]
consists of pairs (P, π) such that P is a principal G-bundle over S and π : P→ A

is a G-equivariant morphism.

Theorem 3.9. Let S
(P2,r,n)
s (τ ′) be the stable locus of the parametrizing scheme of highly frozen

triple of type (P2, r) as in (3.2). Let
[

S
(P2,r,n)
s (τ ′)
GL(V2)

]
be the stack-theoretic quotient of S

(P2,r,n)
s (τ ′) by

GL(V2) where V2 is defined as in Section 3.3.1. There exists an isomorphism of groupoids

M
(P2,r,n)
s,HFT (τ ′) ∼=

[
S

(P2,r,n)
s (τ ′)
GL(V2)

]
. (3.3)

Proof. Consider the scheme S
(P2,r,n)
s (τ ′). First one shows that there exists a functor q :

[
S

(P2,r,n)
s (τ ′)
GL(V2)

]
→

M
(P2,r,n)
s,HFT (τ ′). Then one shows that there exists a functor in the opposite direction and finally one

proves that the composition of the two functors is a natural isomorphism of categories fibered in

groupoids. Look at [8] for more general treatment. Diaconescu [6] uses a similar proof to construct

the moduli stack of ADHM sheaves supported over a curve as a quotient stack. Fix a parametrizing

scheme S over C. The fiber of the quotient stack
[

S
(P2,r,n)
s (τ ′)
GL(V2)

]
S

over S consists of pairs (P, πS)

as in Remark 3.8 (where A in Remark 3.8 is replaced by S
(P2,r,n)
s (τ ′)). Let T := E1

φ−→ E2 be the

universal τ ′-stable frozen triple of type (P2, r) over X ×S
(P2,r,n)
s (τ ′). Given:

P S
(P2,r,n)
s (τ ′)

S

πS

p

, (3.4)

23



one obtains a diagram:

P×X S
(P2,r,n)
s (τ ′)×X

S ×X

(πS)X

(p× 1X)

Let K be a C-scheme and let g : S → K be a morphism of C-schemes. A morphism in
[

S
(P2,r,n)
s (τ ′)
GL(V2)

]
between two objects:

P S
(P2,r,n)
s (τ ′)

S

πS

p

and

P′ S
(P2,r,n)
s (τ ′)

K

π′S

p′

is given by a commutative diagram:

S
(P2,r,n)
s (τ ′)

P g∗Ṕ

S S

ν

πS

p g∗p′

g∗π́S

=
(3.5)
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such that ν is an isomorphism of principal GL(V2)-bundles over S. Note that by the construction in

Section 3.3.1 the objects parametrized by S
(P2,r,n)
s (τ ′) are given by a morphism OX(−n)⊕r → E2

such that E2 (itself) is given as a flat quotient V2 ⊗OX(−n′) � E2. Now define a morphism

q′ : S(P2,r,n)
s (τ ′)→M

(P2,r,n)
s,HFT (τ ′)

by forgetting the surjection V2 ⊗ OX(−n′) � E2. Note that by construction and since the map

πS in diagram (3.4) is GL(V2)-equivariant then one obtains a map from S to M
(P2,r,n)
s,HFT (τ ′) i.e one

obtains an induced diagram:

P S
(P2,r,n)
s (τ ′)

S M
(P2,r,n)
s,HFT (τ ′)

πS

q′p

. (3.6)

Since g∗π′S ◦ ν = πS, it is guaranteed that (πS × 1X)∗T ∼= (g × 1X)∗( ´(πS) × 1X)∗T and this

isomorphism descends to TS
∼=−→ (g × 1X)∗T́K where TS and T́K are as in Definition 3.2. Hence the

map q′ in (3.6) factors through a map q :
[

S
(P2,r,n)
s (τ ′)
GL(V2)

]
→M

(P2,r,n)
s,HFT (τ ′).

For the other direction one uses Lemma 4.3.1 in [14] and the methods described in [6]. Let πS :

X × S → S and πX : X × S → X. Let E2 denote the S-flat family of coherent shaves appearing

in τ ′-stable family of triples of type (P2, r). By Definition 3.3 M
(P2,r,n)
s,HFT (τ ′)(S) is given by an S-flat

family of frozen highly triples if type (P2, r). Since the Hilbert polynomial of E2 in the family is

fixed then there exists a large enough integer n such that E2 appearing in the family is n-regular and

E2(n) is globally generated. This ensures that the direct image sheaves of E2(n) via πS : X×S → S

is globally generated and the higher direct image vanishes. i.e.:

B := (πS)∗(E2 ⊗ π∗XOX(n′)) (3.7)

is globally generated. Then there exists a surjective morphism:

π∗SB ⊗X×CS π
∗
X(OX(−n′))→ E2 → 0. (3.8)
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Let the principal GL(V2)-bundle p : P→ S be defined as:

P = Isom(V2 ⊗OS → B). (3.9)

Since P is given by a frame bundle over S then one has:

p∗B ∼= V2 ⊗OP.

Now pull back by (p× 1X) :→ S ×X and obtain:

(p× 1X)∗(π∗SB ⊗X×CS π
∗
X(OX(−n′)))→ (p× 1X)∗E2 → 0. (3.10)

On the other hand:

(p× 1X)∗(π∗SB ⊗X×CS π
∗
X(OX(−n′))) ∼= V2 ⊗ (p× 1X)∗(π∗X(OX(−n′))).

Let EP2 = (p× 1X)∗E2. One obtains an isomorphism:

p∗B ∼= (πP)∗
[
EP2 ⊗X×P (p× 1X)∗(π∗XOX(n′))

]
. (3.11)

Let {b} ∈ P be a closed point. By evaluation at {b} one obtains:

p∗B |X×{b}∼= V2 ⊗OX×{b}

and

(πP)∗
[
EP2 ⊗X×P (p× 1X)∗(π∗XOX(n′))

]
|X×{b}∼= H0

[
EP2 (n′) |X×{b}

]
. (3.12)

twisting the map:

V2 ⊗OX×{b}(−n)→ EP2 |X×{b}
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by n and taking the zero cohomology one obtains an isomorphism:

H0
[
V2 ⊗OX×{b}

] ∼=−→ H0
[
EP2 (n′) |X×{b}

]
. (3.13)

Hence for every closed point {b} ∈ P one gets an isomorphism in the level of zero cohomologies. We

use this fact to construct a family of stable highly frozen triples parametrized by P. This family is

obtained by applying (πP)∗ to the following morphism over P:

V2 ⊗X×P (p× 1X)∗(π∗XOX(−n′))→ EP2 . (3.14)

This family is naturally GL(V2)-equivariant by construction and it gives rise to a classifying GL(V2)-

equivariant morphism P→ S
(P2,r,n)
s (τ ′).

Now consider two objects in M
(P2,r,n)
s,HFT (τ ′) and a morphism between them. This data by Definition

3.3 is a pair (g, νS) such that g : S → K and νS : TS → (g × 1X)∗T́K . However since these two

families determine principal GL(V2)-bundles over S and K respectively, we obtain a morphism of

principal GL(V2)-bundles:

P ∼= (g × 1X)∗Ṕ Ṕ

S K

ν

p ṕ
g

(3.15)

Let h : P
∼=−→ (g × 1X)∗Ṕ, it is verified that the family h∗ν∗T́K and TS are isomorphic. Therefore

there exists a functor j : M
(P2,r,n)
s,HFT (τ ′)→

[
S

(P2,r,n)
s (τ ′)
GL(V2)

]
and also it is verified that q ◦ j and j ◦ q are

natural isomorphisms.

One may use the above results (i.e the natural isomorphism in Theorem 3.9) in order to obtain

an alternative definition of the moduli stack of τ ′-stable highly frozen triples of type (P2, r) as the

quotient stack
[

S
(P2,r,n)
s (τ ′)
GL(V2)

]
.

Remark 3.10. By Definition 3.2 and construction of S
(P2,r,n)
s (τ ′) in Section 3.3.1 GLr(C) acts

compatibly on both sides of the isomorphism (3.3). The next corollary gives the algebraic structure

of the moduli stack of frozen triples.
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Corollary 3.11. Use Proposition 3.6, Theorem 3.9 and Remark 3.10. Let
[

S
(P2,r,n)
s (τ ′)

GLr(C)×GL(V2)

]
be the

stack-theoretic quotient of S
(P2,r,n)
s (τ ′) by GLr(C)×GL(V2) where V2 is defined as in Section 3.3.1.

There exists an isomorphism of groupoids:

M
(P2,r,n)
s,FT (τ ′) ∼=

[
S

(P2,r,n)
s (τ ′)

GLr(C)×GL(V2)

]
.

Theorem 3.12. Consider q(m) → ∞ τ ′-limit stability as in Lemma 2.17. The moduli stack

M
(P2,r,n)
s,HFT (τ ′) for such choice of stability parameter q(m) is a Deligne-Mumford (DM) stack.

Proof. It is enough to show that for every C-point p ∈M
(P2,r,n)
s,HFT (τ ′)(Spec(C)) its’ stabilizer group

Stab
M

(P2,r,n)
s,HFT (τ ′)

(p) is finite. Since the point p is represented by a τ ′-stable highly frozen triple

(E1, E2, φ, ψ), then Stab
M

(P2,r,n)
s,HFT (τ ′)

(p) is obtained by the automorphism group of (E1, E2, φ, ψ).

Hence it is enough to show that the automorphism group of any such (E1, E2, φ, ψ) is a finite

group. The following lemma shows that the automorphism group of a τ ′-limit-stable highly frozen

triple has one element which is the identity.

Lemma 3.13. Given a τ ′-limit-stable highly frozen triple (E1, E2, φ, ψ) as in Definition 2.9 and a

commutative diagram

OX(−n)⊕r E1 E2

OX(−n)⊕r E1 E2

φ

id

ψ−1

ρ
ψ−1 φ

,

the map ρ is given by idE2.

Proof. Since ψ is a choice of isomorphism, for simplicity replace E1 by OX(−n)⊕r and consider the

diagram:

OX(−n)⊕r E2

OX(−n)⊕r E2

φ

id ρ
φ

, (3.16)
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The diagram (3.16) induces:

OX(−n)⊕r Im(φ) E1

OX(−n)⊕r Im(φ) E1

id

φ

ρ |Im(φ) ρ
φ

.

By commutativity of (3.16) ρ ◦ φ = φ ◦ id = φ, then ρ(Im(φ)) = Im(φ). Hence ρ(Im(φ)) ⊂

Im(φ). It follows that ρ |Im(φ)= idIm(φ). Indeed if s ∈ Im(φ)(U) where U ⊂ X is affine open with

s̃ ∈ OX(−n)⊕r(U) satisfying φ(s̃) = s, then ρ(s) = ρ(φ(s̃)) = φ(id(s̃)) = φ(s̃) = s. Now apply

Hom(−, E2) to the short exact sequence

0→ Im(φ)→ E2 → Q→ 0

where Q denotes the corresponding cokernel. One obtains:

0→ Hom(Q,E2)→ Hom(E2, E2)→ Hom(Im(φ), E2).

Since (E1, E2, φ, ψ) is q(m)→∞ τ ′-limit-stable then by Lemma 2.17 Q is a sheaf with 0-dimensional

support. Hence by purity of E2, Hom(Q,E2) ∼= 0. Hence one obtains an injection

Hom(E2, E2) ↪→ Hom(Im(φ), E2).

Now

ρ |Im(φ)= idIm(φ) = (idE2) |Im(φ) .

So ρ = idE2 .

This finishes the proof of Lemma 3.13 as well as Theorem 3.12.

Remark 3.14. It is seen from work of Malte Wandel [35] (Section 3) that M
(P2,r,n)
s,HFT (τ ′) more than

being a DM stack has the structure of a quasi-projective scheme. We will use this fact later in

discussing the construction of deformation obstruction theory over M
(P2,r,n)
s,HFT (τ ′).

29



Now we compare the infinitesimal structure, i.e the deformations of objects in M
(P2,r,n)
s,HFT (τ ′) with

that of objects in M
(P2,r,n)
s,FT (τ ′). Note that throughout the rest of this study by τ ′-stability we mean

the q(m)→∞ τ ′-limit-stability.

?

M
GLr(C)

M
(P2,r,n)
s,FT (τ ′)

M
(P2,r,n)
s,HFT (τ ′)

πM
FT

•

•
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Chapter 4

Further discussions on stability

The material in this chapter is included for completeness. Although we constructed the moduli of

stable frozen and highly frozen triples as stacks, one finds it interesting to study the GIT properties

of these moduli spaces. The motivation behind this attempt is to show that our notion of τ ′-

stability comes from a GIT notion of stability. We state our observations in the most general

setting. In other words we study triples of type (P1, P2). We consider the GIT stability for the

coarse moduli space which is underlying the moduli stack of triples of type (P1, P2). To start,

consider Qi = Quot(Vi ⊗OX(−n), Pi) as in Section 3.3.1 for i = 1, 2.

Lemma 4.1. [14] (Lemma 4.3.2). Let {ai} = [Vi ⊗ OX(−n) → Ei] ∈ Qi be a closed point such

that Ei(n) are globally generated and H0(ai(n)) : H0(Vi ⊗ OX) → H0(E1(n)) is an isomorphism.

Then there exists a natural injective homomorphism Aut(Ei)→ GL(Vi) such that the image is the

stabilizer of the point {ai} in Qi.

Proof. Given an element ei ∈ Aut(Ei) consider the map Aut(Ei)→ GL(Vi) defined by

ei 7→ H0(ai(n))−1 ◦H0(ei(n)) ◦H0(ai(n)) (4.1)

Since n is chosen to be large enough, the above map automatically is injective. Now by definition of

isomorphism of quotients, an element gi ∈ GL(Vi) belongs to stabilizer of the point {ai} under the

action of GL(Vi) if and only if there exists an automorphism of Ei, ei, such that ai ◦gi = ei ◦ai.
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There exists a left action of GL(Vi) which, on the closed points of Qi, is defined by:

gi · [ai : Vi ⊗OX(−n)→ Ei] =

[Vi ⊗OX(−n)
g−1
i ⊗id|OX (−n)−−−−−−−−−−→ Vi ⊗OX(−n)→ Ei].

(4.2)

Since the center of the group Zi ⊂ GL(Vi) lies in stabilizer of {ai}, for all {ai} ∈ Qi one may take

the group acting on Qi to be the quotient of GL(Vi) by Zi, i.e: PGL(Vi). On the other hand,

since the composite map of groups SL(Vi) → GL(Vi) → PGL(Vi) is surjective, then by choosing

the group to be SL(Vi) one will not loose any information. Hence essentially we take the group

acting on Qi to be given by SL(Vi) however for the moment we stick to GL(Vi). Consider S as a

subscheme of A = Q1 × P × Q2 where P is given by the projective Hom-bundle P(Hom(V1, V2)).

One can show that there exists an action of GL(V1)×GL(V2) on S that leaves S invariant.

4.1 Linearization over S and Hilbert-Mumford criterion

We state the main result of this section:

Theorem 4.2. Let G = GL(V1) × GL(V2). Then there exists a G-linearized ample line bundle

LGL(V1)×GL(V2) over S such that for every closed point {u} ∈ S, {u} is (semi)stable with respect to

the Hilbert-Mumford criterion if and only if it is τ́ -(semi)stable.

Proof. Since S ⊂ Q1 × P × Q2, to obtain a G-linearized line bundle over S we start from the

scheme A = Q1×P ×Q2. Here we explain how to choose a linearization over A which provides us

with a numerical stability condition which is compatible with the criterion of Definition 2.11.

Consider the universal quotient over Qi×X for i = 1, 2. Let π̃Qi : Qi×X → Qi be the projection.

Since the Hilbert polynomial of Ei is fixed and n � 0, π̃Qi∗Ẽi(n) is globally generated. There

exists an embedding of Qi into the Grassmannian which parametrizes the locally free quotients of

π̃Qi∗(Vi⊗OQi×X) with rank Pi(n). To further embed the obtained Grassmannian into a projective

scheme one uses the Plücker embedding of the Grassmannian. If [π̃Qi∗(Vi ⊗OQi×X)→ π̃Qi∗Ẽi(n)]
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is the tautological quotient on Grass(π̃Qi∗(Vi ⊗OQi×X), Pi(n)), then the Pi(n)’th exterior power

h :
Pi(n)∧

π̃Qi∗(Vi ⊗OQi×X)→ det(π̃Qi∗Ẽi(n)),

induces a closed immersion

Grass(π̃Qi∗(Vi ⊗OQi×X), Pi)
ki2
↪−→ P(

Pi(n)∧
π̃Qi∗(Vi ⊗OQi×X)),

hence one obtains the composite inclusion:

Qi
ki1
↪−→ Grass(π̃Qi∗(Vi ⊗OQi×X), Pi(n))

ki2
↪−→ P(

Pi(n)∧
π̃Qi∗(Vi ⊗OQi×X)) := Pi. (4.3)

Take the ample line bundle OPi(1), pull back via Qi
ki2◦ki1
↪−−−→ Pi and obtain the following isomorphism

of coherent sheaves over Qi:

LQi := (ki2 ◦ ki1)∗OPi(1) ∼= det(π̃Qi∗Ẽi(n)). (4.4)

Note that det(π̃Qi∗Ẽi(n)) are line bundles over Qi which are equivariant with respect to the action

of GL(Vi) for i = 1, 2. The linearized line bundle over S is given as

L(GL(V1)×GL(V2)) = Ld1Q1
� Ld2Q2

�OP(1)d3 , (4.5)

Remark 4.3. To define a linearized line bundle over S which satisfies the condition of Theorem

4.2, one needs to assign particular values to d1, d2 and d3 in (4.5) such that the stability (in the

sense of Hilbert-mumford criterion) of a point in S with respect to L results in the τ́ -stability of

the triple represented by this point. We will see that what highly affects the stability of triples is

the values assigned to the ratios d1
d2

, d1
d3

and d2
d3

rather than di’s themselves.

We state the following theorem without proof which is the special case of a result obtained by

Schmitt in [30].
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Theorem 4.4. [30] (Theorem. 4.6). The categorical good quotient

Sss(τ ′)//(GL(V1)×GL(V2))

exists as a projective scheme and moreover the stable locus Ss(τ ′)//(GL(V1) × GL(V2)) is a geo-

metric quotient for Ss(τ ′) with respect to the action of GL(V1)×GL(V2).

By arguments in [14] (Lemma. 4.3.1) it is proved that the categorical quotient Ss(τ ′)//(GL(V1)×

GL(V2)) co-represents the moduli functor which induces the moduli functor M
(P1,P2)
T of τ́ -(semi)stable

triples of type (P1, P2). Next we briefly review the Hilbert-Mumford criterion for the linearized line

bundle over S. We pick a particular linearized line bundle over S by assigning suitable values to

d1
d2

, d1
d3

and d2
d3

. Eventually we use the Hilbert-Mumford criterion to show that when closed points

in S are GIT-(semi)stable with respect to L(GL(V1)×(GL(V2))), then their corresponding triples are

τ́ -(semi)stable and vice versa.

Let G be a reductive group acting on a scheme X equipped with a G-equivariant linearization LG.

Let λ(t) : Gm → G, be a nontrivial one-parameter subgroup of G. Given a point x ∈ X acted on

by G, the Hilbert-Mumford character of the linearized line bundle LG is defined as:

µL
G

(x, λ) := −r, (4.6)

where r is the weight of the action of Gm on the fibers of LG over the fixed point x0 of the action

of Gm on X induced by λ. For more clarification, let σ : G → X be defined as it is shown in the

diagram below:

Gm G

A1 X

λ(t)

σ

j

(4.7)

where σ : G → X is defined as σ(g) : g → σ(x, λ(t)) and j : A1 → X is the unique extension of

action of σ ◦ λ(t) to action of A1 on X. Since the ample line bundle LG is linearized with respect
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to the action of G, the restriction of the line bundle to any two points on X which are in the same

orbit of G produces isomorphic fibers.

LG |x
∼=

GGGGGA

Φ
LG |g·x, (4.8)

for all g ∈ G. Now let x0 = limt→0 σ(x, λ(t)) be a fixed point of this action. We conclude that

Φ(x0, λ(t)) = tα · idLG|x0 . Now define µL
G

(x, λ(t)) = α for every one parameter subgroup λ of G

and define the weight r of the action of G as

r = −α (4.9)

We state the Hilbert-Mumford theorem.

Theorem 4.5. [14](Theorem 4.2.11). Let G be a reductive group acting on a scheme X equipped

with a G-equivariant linearized line bundle LG. A point {x} ∈ X is semistable if and only if for all

nontrivial one-parameter subgroups λ : Gm → G, one has

µL
G

(x, λ) ≥ 0,

and {x} is stable if and only if strict inequality holds for all non-trivial λ.

Next we apply this criterion to our setup. We take the groups acting on Qi to be given by SL(Vi).

Consider points {ai} : [Vi ⊗ OX(−n) → Ei] over Qi. In order to determine the limit point for

the action of any one-parameter subgroup λ of GL(Vi) we need to decompose Vi in to their weight

spaces Vi =
⊕

j∈Z V
j
i . Let Eji be defined as the image of V j

i under ai. It is seen that

limt→0λ(t) · [ai] = [Vi ⊗OX(−n)→
⊕
j

Eji ]. (4.10)

For proof look at [14] (Lemma 4.4.3). The weight of the action of one parameter subgroup of SL(Vi)
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via λ(t) on the fiber of LQi for i = 1, 2 is given by

∑
j∈Z

j · P (Eji , n).

Let λ1 : Gm → SL(V1) and λ2 : Gm → SL(V2) be the one parameter sub-groups of SL(V1) and

SL(V2) respectively. The weight of the action of Gm×Gm via λ1(t)×λ2(s) on the fiber of Ld1Q1
�Ld2Q2

over a point {a1} × {a2} ∈ Q1 ×Q2 is given as

P12 := d1 ·
∑
j∈Z

j · P (Ej1, n) + d2 ·
∑
j∈Z

j · P (Ej2, n), (4.11)

Remark 4.6. Vi’s decompose in to the weight spaces such that:

∑
j∈Z

j · dim(V j
i ) = 0

Therefore we obtain the following identities for i = 1, 2:

∑
j∈Z

j · P (Eji , n) =
1

dim(Vi)

∑
j∈Z

j · (dim(Vi)P (Eji , n)− dim(V j
i )P (Ei, n)).

Over Q1 ×Q2 this identity is written as:

P12 =
d1

dim(V1)
·
∑
j∈Z

j · (dim(V1)P (Ej1, n)− dim(V j
1 )P (E1, n))

+
d2

dim(V2)
·
∑
j∈Z

j · (dim(V2)P (Ej2, n)− dim(V j
2 )P (E2, n)). (4.12)

The character of the action of Gm ×Gm on the fiber of OP(1)d3 over a point φ ∈ P is given by

PP = − d3

dim(V1)
·
∑
j∈Z

j · dim(V j
1 ) +

d3

dim(V2)
·
∑
j∈Z

j · dim(V j
2 ).

Hence by adding the characters P12 and PP one obtains the character of the action of Gm×Gm via

λ1(t) × λ2(s) on the fiber of LSL(V1)×SL(V2) = Ld1Q1
⊗ Ld2Q2

⊗ OP(1)d3 over a point ({a1}, {a2}, φ) ∈
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Q1 ×Q2 × P:

r = P12 −
d3

dim(V1)
·
∑
j∈Z

j · dim(V j
1 ) +

d3

dim(V2)
·
∑
j∈Z

j · dim(V j
2 )

=
d1

dim(V1)
·
∑
j∈Z

j · (dim(V1)P (Ej1, n)− dim(V j
1 )P (E1, n))

+
d2

dim(V2)
·
∑
j∈Z

j · (dim(V2)P (Ej2, n)− dim(V j
2 )P (E2, n))

− d3

dim(V1)
·
∑
j∈Z

j · dim(V j
1 ) +

d3

dim(V2)
·
∑
j∈Z

j · dim(V j
2 ).

(4.13)

By rearranging the terms in identity (4.13) we obtain:

r = −
∑
j∈Z

j · dim(V j
1 )
(

d1

dim(V1)
· P (E1, n) +

d3

dim(V1)

)

−
∑
j∈Z

j · dim(V j
1 )
(

d2

dim(V2)
· P (E1, n) +

d3

dim(V2)

)
d1

dim(V1)
·
∑
j∈Z

j · dim(V1)P (Ej1, n) +
d2

dim(V2)
·
∑
j∈Z

j · dim(V2)P (Ej2, n) (4.14)

Now assigning the right choice of weights to d1, d2, d3 would enable one to obtain a stability condition

compatible with the numerical stability condition for triples as in Definition 2.11. Set d3
d1

= q1(n) and

d3
d2

= q2(n) where q1(n) and q2(n) are defined as in Definition 2.11. To show the compatibility of the

two notions of stability the usual procedure is to pick a filtration with two terms 0 ⊂ V 1
i ⊂ V 2

i = Vi

which induces 0 ⊂ E1
i ⊂ E2

i = Ei for i = 1, 2. Then putting −r > 0 provides the required numerical

stability condition as an inequality. Given the commutative diagram:

V 2
1 ⊗OX(−n) • •V 2

2 ⊗OX(−n)

V 1
1 ⊗OX(−n)• •V 1

2 ⊗OX(−n)

E1 = E2
1• •E2 = E2

2

E1
1• •E1

2 (4.15)
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The triple (E1, E2, φ) is stable in the sense of Hilbert-Mumford criterion if and only if:

q2(n)
(
PE1

1
− rk(E1

1)
(

PE1

rk(E1)
− q1(n)
rk(E1)

))
+

q1(n)
(
PE2

1
− rk(E2

1)
(

PE2

rk(E2)
+

q2(n)
rk(E2)

))
< 0,

(4.16)

For which we have used the description of r mentioned above, we have used the fact that dim(Vi) =

dim(H0(Ei ⊗ OX(n))) and finally we have used some rearrangements. The inequality (4.16) is

identical with the inequality in 2.11. This finishes the proof of Theorem 4.2.

38



Chapter 5

Deformations of frozen triples

In this section, we describe the deformation theory of frozen and highly frozen triples.

5.1 Preliminaries

As we showed, the construction of the moduli stack of stable frozen triples depends on a choice of

two fixed large enough integers n � 0 and n′ � 0. The first integer appears in the description of

a stable highly frozen triple OX(−n)⊕r → E2 and the second integer is the one for which E2(n′)

becomes globally generated and hence there exists a surjective map V2 ⊗OX(−n′) � E2. We also

observed that according to Wandel [35] (Proposition 2.4) given a bounded family of stable triples

E1 → E2 there exists an integer n′ such that for every tuple (E1, E2) appearing in the family E1(n′)

and E2(n′) are globally generated over X. The fact that the sheaf E2(n′) is globally generated for

large enough values of n′ does not a priori imply that Hi(E2(n)) = 0 for all i > 0 and our fixed

choice of n. Hence we introduce the following definition:

Definition 5.1. Consider M
(P2,r,n)
s,HFT (τ ′) and M

(P2,r,n)
s,FT (τ ′) in definitions 3.2 and 3.3 respectively.

Define the open substacks H
(P2,r,n)
s,HFT (τ ′) ⊂M

(P2,r,n)
s,HFT (τ ′) and H

(P2,r,n)
s,FT (τ ′) ⊂M

(P2,r,n)
s,FT (τ ′) as follows:

1. H
(P2,r,n)
s,HFT (τ ′) = {(E1, E2, φ, ψ) ∈M

(P2,r,n)
s,HFT (τ ′) | H1(E2(n)) = 0}.

2. H
(P2,r,n)
s,FT (τ ′) = {(E1, E2, φ) ∈M

(P2,r,n)
s,FT (τ ′) | H1(E2(n)) = 0}.

Remark 5.2. From now on all our calculations are carried out over H
(P2,r,n)
s,HFT (τ ′) and H

(P2,r,n)
s,FT (τ ′)

and the results in chapters 5, 6 and 7 hold true for H
(P2,r,n)
s,HFT (τ ′) and H

(P2,r,n)
s,FT (τ ′) only. Also we

assume that it is implicitly understood that in the following sections by the ”moduli stack of frozen

or highly frozen triples“ we mean the open substack of the corresponding moduli stacks as defined
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in Definition 5.1.

Remark 5.3. As we will see in Chapter 8 there exist situations such as when X is given as a toric

variety given by the total space of OP1(−1)⊕OP1(−1)→ P1 where it is seen that one obtains the

vanishing of higher cohomologies of E2(n) assuming thatO(−n)⊕r → E2 is τ ′-stable. In other words

for such fixed choice of X one has H
(P2,r,n)
s,HFT (τ ′) = M

(P2,r,n)
s,HFT (τ ′) and H

(P2,r,n)
s,HFT (τ ′) = M

(P2,r,n)
s,FT (τ ′).

Hence later for such specific situations we will not distinguish between M
(P2,r,n)
s,HFT (τ ′), M

(P2,r,n)
s,FT (τ ′)

and their corresponding open substacks in Definition 5.1.

Lemma 5.4. Let [OX(−n)⊕r
φ−→ E2] correspond to a point of H

(P2,r,n)
s,HFT (τ ′) or H

(P2,r,n)
s,FT (τ ′). Then:

Ext2(F,OX(−n)) ∼= 0 ∼= Ext1(F,OX(−n)). (5.1)

Proof. Use Serre duality and obtain:

Exti(F,OX(−n)) ∼= (Ext3−i(OX(−n), F ⊗ ωX)∨

∼= Ext3−i(OX(−n), F )∨ ∼= H3−i(F (n))∨. (5.2)

The statement follows from the definitions of H
(P2,r,n)
s,HFT (τ ′) and H

(P2,r,n)
s,FT (τ ′).

Let Db(X) be the bounded derived category of coherent sheaves on X. Let I• be an object of the

derived category given by the complex represented by a τ ′-stable frozen triple

I• := OX(−n)⊕r
φ−→ E2

with OX(−n)⊕r in degree 0 and E2 in degree 1. Let K := Ker(φ) and Q := Coker(φ). There exist

the following exact triangles in the derived category:

E2[−1]→ I• → OX(−n)⊕r → E2 → · · · (5.3)

K → I• → Q[−1]→ K[1]→ · · · (5.4)
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Lemma 5.5. Suppose that O(−n)⊕r → E2 is τ ′-stable. Then the following statement is true:

Ext≤−1(I•, I•) = 0. (5.5)

Proof. Note that Extk(I•, I•) = 0 for k ≤ −2 by degree considerations. We now consider k = −1.

Apply Hom(I•, ·) to (5.3) and obtain:

· · · → Ext−2(I•, E2)→ Ext−1(I•, I•)

→ Ext−1(I•,O⊕rX (−n))→ Ext−1(I•, E2)→ · · ·

(5.6)

Now apply Hom(·, E2) to (5.4) and obtain:

· · · → Exti(Q[−1], E2)→ Exti(I•, E2)→

Exti(K,E2)→ Exti+1(Q[−1], E2) · · ·

(5.7)

Combining the exact sequence (5.6) and exact sequences obtained from (5.7) for i = −2 and i = −1

we obtain the following commutative diagram:

...
...

Ext−2(Q[−1], E2) Ext−1(Q[−1], E2)

· · · Ext−2(I•, E2) Ext−1(I•, I•) Ext−1(I•,O⊕rX (−n)) Ext−1(I•, E2) · · ·

Ext−2(K,E2) Ext−1(K,E2)

Ext−1(Q[−1], E2) Hom(Q[−1], E2)

...
...

(5.8)

It is easy to see that Ext−2(Q[−1], E2) ∼= 0, Ext−2(K,E2) ∼= 0 and Ext−1(K,E2) ∼= 0 for degree
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reasons. Moreover, Ext−1(Q[−1], E2) = Hom(Q,E2) ∼= 0 since Q is zero dimensional (by limit

stability) and E2 is of pure dimension one. Hence the above commutative diagram takes the

following form:

...
...

0 0

· · · Ext−2(I•, E2) Ext−1(I•, I•) Ext−1(I•,O⊕rX (−n)) Ext−1(I•, E2) · · ·

0 0

0 0

...
...

(5.9)

hence

Ext−2(I•, E2) ∼= 0 and Ext−1(I•, E2) ∼= 0, (5.10)

and therefore

Ext−1(I•, I•) ∼= Ext−1(I•,O⊕rX (−n)).

Now apply Hom(·,O⊕rX (−n)) to (5.3) and obtain:

· · · → Ext−1(E2,O⊕rX (−n))→ Ext−1(O⊕rX (−n),O⊕rX (−n))

→ Ext−1(I•,O⊕rX (−n))→ Hom(E2,O⊕rX (−n))→ · · · .

(5.11)

Now Ext−1(O⊕rX (−n),O⊕rX (−n)) ∼= 0 by degree reasons and Hom(E2,O⊕rX (−n)) ∼= 0 by purity of

O⊕rX (−n). Hence Ext−1(I•,O⊕rX (−n)) ∼= 0 and

Ext−1(I•, I•) ∼= Ext−1(I•,O⊕rX (−n)) ∼= 0.
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From now on for simplicity we change our notation and replace E2 with F .

5.1.1 Deformations of [OX(−n)→ F ]

Throughout this section we consider a rank 1 τ ′-stable frozen triple. We also emphasize that for

the results of this section we do not require H1(OX) to vanish.

Lemma 5.6. The complex I• that represents a τ́ -limit-stable frozen triple OX(−n)
φ−→ F is simple

as an object in the derived category i.e:

Hom(I•, I•) = OX . (5.12)

Proof. Look at the proof of Lemma 1.15 in [28]. The proof follows by replacing OX appearing in

stable pairs by OX(−n).

Proposition 5.7. Let I• := OX(−n)
φ−→ F . Given a point p ∈ H

(P2,1,n)
s,FT (τ ′) represented by the

frozen triple {(OX(−n), F, φ)}, the following is true:

TpH
(P2,1,n)
s,FT (τ ′) ∼= Ext1(I•, I•)0, (5.13)

where TpH
(P2,1,n)
s,FT (τ ′) denotes the tangent space at p and the sub-index 0 denotes the trace-free group.

Proof. It is known that the first order deformation of a stable pair (a stable rank 1 frozen triple)

is governed by the group Ext0(I•, F ) [28]. Hence we know that TpH
(P2,1,n)
s,FT (τ ′) = Ext0(I•, F ). On

the other hand by the work of Huybrechts and Thomas [15] the deformations of I• with trivial

determinant is obtained by Ext1(I•, I•)0. Apply Hom(I•, ·) to the exact triangle I• → OX(−n)→

F and obtain the following exact sequence:

· · · → Hom(I•, I•)→ Hom(I•,OX(−n))→ Hom(I•, F )

→ Ext1(I•, I•)→ Ext1(I•,OX(−n))→ Ext1(I•, F )→ · · ·

(5.14)
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Apply Hom(·,OX(−n)) to I• → OX(−n)→ F and obtain the following long exact sequence:

· · · → Ext1(OX(−n),OX(−n))→ Ext1(I•,OX(−n))

→ Ext2(F,OX(−n))→ · · ·

(5.15)

Now combine these two exact sequences and obtain:

...

Ext1(F,OX(−n))

H1(OX) Ext1(OX(−n),OX(−n))

· · · Hom(I•, F ) Ext1(I•, I•) Ext1(I•,OX(−n)) Ext1(I•, F )

Ext2(F,OX(−n))

...

∼=

(5.16)

Since p ∈ H
(P2,1,n)
s,FT (τ ′), we may apply Lemma 5.4 and the diagram 5.16 takes the form:

0

H1(OX) Ext1(OX(−n),OX(−n))

· · · Hom(I•, F ) Ext1(I•, I•) Ext1(I•,OX(−n)) Ext1(I•, F )

0

∼=
∼=

α

(5.17)

Because

Ext1(I•, I•) ∼= Ext1(I•, I•)0 ⊕ Im[H1(OX)→ Ext1(I•, I•)],

we conclude from the middle square of (5.17) that the canonical map Ker(α)→ Ext1(I•, I•)0 is an
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isomorphism. Hence one obtains the exact sequence:

Hom(I•,OX(−n))→ Hom(I•, F )→ Ext1(I•, I•)0

→ 0→ Ext1(I•, F )→ Ext2(I•, I•)0. (5.18)

Remark 5.8. Note that in obtaining the exact sequence (5.18) one could have assumed that the

condition H1(OX) ∼= 0 holds true. Then one obtains

0

0 ∼= H1(OX) Ext1(OX(−n),OX(−n)) ∼= 0

· · · Hom(I•, F ) Ext1(I•, I•) Ext1(I•,OX(−n)) Ext1(I•, F )

0

∼=
∼=

α

(5.19)

Hence it is easy to see that in this case:

Ext1(I•, I•) ∼= Ext1(I•, I•)0 ⊕ Im[H1(OX)→ Ext1(I•, I•)] ∼= Ext1(I•, I•)0.

Now consider the exact sequence:

· · · → Hom(F,OX(−n))→ Hom(OX(−n),OX(−n))

→ Hom(I•,OX(−n))→ Ext1(F,OX(−n))→ · · · , (5.20)

where Hom(F,OX(−n)) and Ext1(F,OX(−n)) vanish by Lemma 5.4. Hence one concludes that

45



Hom(I•,OX(−n)) ∼= Hom(OX ,OX) = C. Therefore (5.18) is written as:

0→ Hom(I•, I•)→ C→ Hom(I•, F )

→ Ext1(I•, I•)0 → 0→ Ext1(I•, F )→ Ext2(I•, I•)0.

(5.21)

Now Hom(I•, I•) ∼= C by Lemma 5.6 and so (5.21) takes the form:

0→ C
∼=−→ C→ Hom(I•, F ) ∼=

Ext1(I•, I•)0 → 0→ Ext1(I•, F )→ Ext2(I•, I•)0

(5.22)

and this finishes the proof of Proposition 5.7.

5.2 Deformations of OX(−n)⊕r
φ−→ F

Now return to a frozen triple of rank r. Let X be a Calabi-Yau threefold with H1(OX) ∼= 0.

Lemma 5.9. Let OX(−n)⊕r
φ−→ F be a τ́ -limit-stable frozen triple represented by the complex I•.

Then there exists an injective map:

Hom(I•, I•) ↪→ End(OX(−n)⊕r). (5.23)

Proof. Apply Hom(I•, ·) to F [−1]→ I• → OX(−n)⊕r and obtain the following exact sequence:

Ext−1(I•, F )→ Hom(I•, I•)→ Hom(I•,OX(−n)⊕r)→ Hom(I•, F )→ · · · (5.24)

46



Now apply Hom(·,OX(−n)⊕r) to the same exact triangle and obtain:

Hom(F,OX(−n)⊕r)→ End(OX(−n)⊕r)

→ Hom(I•,OX(−n)⊕r)→ Ext1(F,OX(−n)⊕r)→ · · ·

(5.25)

Using Lemma 5.4 one gets the following isomorphism:

End(OX(−n)⊕r) ∼= Hom(I•,OX(−n)⊕r). (5.26)

Now apply (5.10) to conclude via (5.24) that Hom(I•, I•)→ Hom(I•,OX(−n)⊕r) is injective.

Now we state the main theorem in this section.

Theorem 5.10. Let p ∈ H
(P2,r,n)
s,FT (τ ′) be a point represented by a τ ′-limit-stable frozen triple

{(OX(−n)⊕r, F, φ)}. Let

I• := OX(−n)⊕r
φ−→ F

be a complex with trivial determinant. The following is true:

TpH
(P2,r,n)
s,FT (τ ′) ∼= Ext1(I•, I•)0. (5.27)

Proof. We repeat the same argument in Proposition 5.7. and obtain the diagram:

...

Ext1(F,O⊕rX (−n))

H1(OX) Ext1(OX ,OX)⊗ glr(C)

· · · Hom(I•, F ) Ext1(I•, I•) Ext1(I•,OX(−n)⊕r) · · ·

Ext2(F,OX(−n)⊕r)

...
(5.28)
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By Lemma 5.4 we get:

...

0

H1(OX) Ext1(OX ,OX)⊗ glr(C)

· · · Hom(I•, F ) Ext1(I•, I•) Ext1(I•,OX(−n)⊕r) · · ·

0

...
(5.29)

Now recall that H1(OX) ∼= 0 by assumption. As in Remark 5.8 we obtain:

0→ Hom(I•, I•)→ Hom(I•,OX(−n)⊕r)→ Hom(I•, F )

→ Ext1(I•, I•)0 → 0→ Ext1(I•, F ),

(5.30)

apply the functor Hom(·,OX(−n)⊕r) to F [−1]→ I• → OX(−n)⊕r and obtain:

Hom(F,OX(−n)⊕r)→ glr(C)

→ Hom(I•,OX(−n)⊕r)→ Ext1(F,OX(−n)⊕r)→ · · · . (5.31)

By purity of OX(−n)⊕r and Lemma 5.4, we have Hom(F,OX(−n)⊕r) ∼= 0 ∼= Ext1(F,OX(−n)⊕r)

hence

Hom(I•,OX(−n)⊕r) ∼= glr(C),
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and one obtains the following exact sequence:

0→ Hom(I•, I•)→ glr(C)→ Hom(I•, F )

k−→ Ext1(I•, I•)0 → 0→ Ext1(I•, F ).

(5.32)

In order to continue the proof of Theorem 5.10 one needs to study the deformation space of frozen

triples. In order to carry this out first one obtains the deformation space of a highly frozen triple,

then one uses the result of Proposition 3.6 to obtain a comparison between deformation spaces of

frozen triples and highly frozen triples:

Proposition 5.11. Given a τ ′-stable highly frozen triple (E1, F, φ, ψ) represented by the complex

I• : [OX(−n)⊕r → F ] its space of infinitesimal deformations is given by Hom(I•, F ).

Proof. A square zero embedding S ↪→ S′ is a closed immersion whose defining ideal I satisfies

I2 = 0. Given a square zero embedding and a family of highly frozen triples over S, a flat

deformation of this family over Ś is a completion of the following commutative diagram with the

missing arrows (and exact rows).

0 OX×Ś(−n)⊕r ⊗ I OX×Ś(−n)⊕r OX×S(−n)⊕r 0

0 F ⊗ I F́ F 0.
(5.33)

Following a method described by Illusie in [16] (Chapter IV) for deformation of graded modules

and graded morphisms of graded modules, one needs to think of OX×CS as a graded algebra in

degree zero. Therefore one obtains from F the graded OX×S-algebra, Fgr := OX×S ⊕F such that

OX×S sits in degree zero and the second summand sits in degree one. We similarly define F ′gr.
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Hence one obtains a commutative diagram of graded OX×S-algebras.

0
(
OX×S ⊕OX×Ś(−n)⊕r

)
⊗ I OX×Ś ⊕OX×Ś(−n)⊕r OX×S ⊕OX×S(−n)⊕r 0

0 F ⊗ I F́gr OX×S ⊕F 0
,

(5.34)

here the bottom row in degree zero is given by ([16], 3.1):

0→ 0→ OX×S → OX×S → 0 (5.35)

and in degree one it is given by the bottom row in (5.33). We know that the obstruction to complete

this diagram is given by composition of morphisms:

LOX×S⊕F/OX×S⊕OX×S(−n)⊕r → LOX×S⊕OX×S(−n)⊕r/OX ⊗F [1]

→ I ⊗ (OX×S(−n)⊕OX×S(−n)⊕r)⊗ (OX×S ⊕F)→ I ⊗F [2]

(5.36)

where L is the cotangent complex. Let k1(−) of a graded module denote the degree one component

of that module. Now we state Illusie’s result in [16] (Chapter IV 3.2.12):

Theorem 5.12. Given I• := [OX×S(−n)⊕r
φ−→ F ], there exists an element

ob ∈ Ext2
Db(X×S)(Cone(φ), I ⊗ F)

whose vanishing is necessary and sufficient to complete Diagram (5.34). If ob = 0 then the set of

isomorphism classes of completions forms a torsor under Ext1
Db(X×S)(Cone(φ), I ⊗ F).

Here, Cone(φ) = I•S [1]. Moreover, the obstructions ob : Cone(φ)→ I⊗F are given by the composite
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morphism [16] (3.2.14.3):

Cone(φ)→ k1
(
LOX×S⊕OX×S(−n)⊕r/OX ⊗F [1]

)
→ k1

(
I ⊗ (OX×S(−n)⊕OX×S(−n)⊕r)⊗ (OX×S ⊕F)

)
→ I ⊗F [2].

(5.37)

Another way of stating this theorem is to say that the obstructions are given by:

Cone(φ)→ LOX×S/OX ⊗F [1]→ I ⊗F [2], (5.38)

the set of such composite homomorphisms is given by Hom(I•S [1], I ⊗ F [2]) ∼= Ext1(I•S , I ⊗ F) ∼=

Ext1(I•S ,F) ⊗ I, similarly if ob = 0, then the set of isomorphism classes of deformations of highly

frozen triples makes a torsor under Ext1(I•S [1], I ⊗ F) ∼= Hom(I•S , I ⊗ F) ∼= Hom(I•S ,F) ⊗ I and

this finishes the proof of Proposition 5.11

Now we use the result of Proposition 5.11 and Proposition 3.6 to study the space of infinitesimal

deformations of a frozen triple.

Proposition 5.13. The tangent space of the moduli stack of τ́ -limit-stable frozen triples at a point

{p} : (E,F, φ) represented by a complex I• := [E → F ] (where E ∼= O⊕rX (−n)) is given by:

T{p}H
(P2,r,n)
s,FT (τ ′) ∼= Hom(I•, F )/ Im(glr(C)→ Hom(I•, F )). (5.39)

Equivalently

T{p}M
(P2,r,n)
s,FT (τ ′) ∼= Coker

[
Hom(I•,OX(−n)⊕r)→ Hom(I•, F )

]
. (5.40)

Proof. Since our analysis is over a point in the moduli stack, we assume that S = Spec(C) and

S′ is a square-zero extension over S. Therefore via S � S′ one writes OS′ ∼= OS ⊕ OS′ ⊗ I as an

OS-module. Now use the result of Proposition 5.11. The tangent space of H
(P2,r,n)
s,FT (τ ′) at a stable

frozen triple of type (P2, r) is given by the space of infinitesimal deformations of that triple. Use
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the notation in Definition 2.10. Suppose that OX(−n)⊗ π∗SMS′
φ′−→ F́ is a flat deformation of the

family of frozen triples OX(−n)⊗π∗SMS
φ−→ F over Ś. Similar to 5.33 to obtain the set of such flat

deformations one needs to consider the commutative diagram below:

0 (OX(−n)⊗ π∗SMS′)⊗ I OX(−n)⊗ π∗SMS′ OX(−n)⊗ π∗SMS 0

0 F ⊗ I F́ F 0
(5.41)

The tangent space T{p}H
(P2,r,n)
s,FT (τ ′), i.e the set of extensions in (5.41) is given by:

Ext1

(
OX(−n)⊗ π∗SMS′

φ′−→ F́ , (OX(−n)⊗ π∗SMS′)⊗ I
φ′−→ F ⊗ I

)
, (5.42)

we use the isomorphisms
(
OX×Ś(−n)⊕r

)
⊗ I ∼= (OX×S(−n)⊕r) ⊗ I and the notation introduced

earlier. Now fix a trivialization ψM : MS
∼=−→ O⊕rS . This induces a fixed choice of isomorphism

ψ : OX(−n) ⊗ π∗SMS
∼=−→ O⊕rX×S(−n). Now use the fact that S is a point hence S′ is split over S.

Therefore one obtains the following splitting of OX×S-modules:

OX×Ś(−n)⊕r ∼= OX×S(−n)⊕r ⊕
(
OX×Ś(−n)⊕r

)
⊗ I, (5.43)

Now replace OX(−n)⊗π∗SMS with the fixed choice of O⊕rX×S(−n) in the top row of (5.41). Moreover

use the splitting property in (5.43). The commutative diagram in 5.41 induces:

0 0 OX×S(−n)⊕r OX×S(−n)⊕r 0

0 F ⊗ I F́ F 0

∼=

, (5.44)

where the OX×S(−n)⊕r appearing in the upper row are given as a choice of trivialization of E

appearing in the frozen triple (E,F, φ). The set of extensions in (5.44) is given by:

Ext1(O⊕rX×S(−n)
φ−→ F , (F ⊗ I)[−1]) ∼= Ext0(I•S ,F ⊗ I) ∼= Hom(I•S ,F)⊗ I (5.45)
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where by Proposition 5.11 Hom(I•S ,F) is the space of infinitesimal deformations of the highly frozen

triple represented by the complex I•S := OX×S(−n)⊕r → F .

Hence it is seen that when S = Spec(C) one obtains the deformation space of a C-point in

H
(P2,r,n)
s,HFT (τ ′) from the deformation space of a C-point in H

(P2,r,n)
s,FT (τ ′) by making a choice of isomor-

phism ψ : OX(−n)⊗ π∗SMS
∼=−→ O⊕rX×S(−n). It is also seen that there exists a map Hom(I•S ,F)→

T{p}H
(P2,r,n)
s,FT (τ ′) and the kernel of this map corresponds to the choices of trivialization of OX(−n)⊗

π∗SMS which were not fixed in obtaining the diagram in (5.44), i.e glr(C). In other words over a

C-point in the moduli stack one obtains a short exact sequence of C-vector spaces

Hom(I•, I•)→ glr(C)→ Hom(I•S ,F)→ T{p}H
(P2,r,n)
s,FT (τ ′)→ 0. (5.46)

Note that when S = Spec(C) then I•S
∼= I• canonically. Also it is true that for large n one has

Hom(I•,OX(−n)⊕r) ∼= End(OX(−n)⊕r) ∼= glr(C). Now replace glr(C) with Hom(I•,OX(−n)⊕r)

and conclude that the space of infinitesimal deformations of a frozen triple in H
(P2,r,n)
s,FT (τ ′), i.e the

tangent space of the moduli stack at a C-point, is obtained as

T{p}H
(P2,r,n)
s,FT (τ ′) ∼= Coker

[
Hom(I•,OX(−n)⊕r)→ Hom(I•, F )

]
(5.47)

and this finishes the proof of Proposition 5.13 as well as Theorem 5.10

.

Remark 5.14. Another way of observing the result obtained in 5.13 is to compare the tangent

spaces of the moduli stacks of τ ′-stable highly frozen triples and frozen triples. Since H
(P2,r,n)
s,HFT (τ ′)

is a GLr(C) torsor over H
(P2,r,n)
s,FT (τ ′), therefore at every point {p} one obtains the following exact

sequence of the corresponding tangent spaces:

glr(C)→ T{p}H
(P2,r,n)
s,HFT (τ ′)→ T{p}H

(P2,r,n)
s,FT (τ ′)→ 0, (5.48)

hence it is immediately seen that H
(P2,r,n)
s,FT (τ ′) ∼= Coker[glr(C)→ T{p}H

(P2,r,n)
s,HFT (τ ′)]. But T{p}H

(P2,r,n)
s,HFT (τ ′) ∼=

Hom(I•,F) by Proposition 5.11 and this proves the result obtained in 5.13.
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Now we analyze the infinitesimal deformations of frozen triples in more generality, i.e we do not

assume that S is a point or S′ is an S-scheme. We assume that S is an affine scheme of finite type

over C and S ↪→ S′ is a square-zero embedding of C-schemes.

Theorem 5.15. Use notation in Definition 2.10. Fix a map f : S → H
(P2,r,n)
s,FT (τ ′). Let S′ be a

square-zero extension of S with ideal I. Let DefS(S′,H(P2,r,n)
s,FT (τ ′)) denote the deformation space

of the map f obtained by the set of possible deformations, f ′ : S′ → H
(P2,r,n)
s,FT (τ ′). The following

statement is true:

DefS(S′,H(P2,r,n)
s,FT (τ ′)) ∼= Hom(I•S , F )⊗ I/ Im

(
(End(MS)→ Hom(I•S ,F))⊗ I

)
(5.49)

Proof. Let g : S → H
(P2,r,n)
s,HFT (τ ′) denote the map of C-stacks. Given the square-zero extension S′

one may ask if the map g is extendable to a map g′ : S′ → H
(P2,r,n)
s,HFT (τ ′). If g is extendable, then

by Proposition 5.11 we know that the set of such extensions is given by Hom(I•S ,F) ⊗ I. Let

πM
FT : H

(P2,r,n)
s,HFT (τ ′) → H

(P2,r,n)
s,FT (τ ′) denote the forgetful map in Proposition 3.6. Via composition,

one obtains a map πM
FT ◦ g : S → H

(P2,r,n)
s,FT (τ ′). One may ask further if the map πM

FT ◦ g can be

extended to a map πM
FT ◦ g′ : S′ → H

(P2,r,n)
s,FT (τ ′). We consider the following commutative diagram:

H
(P2,r,n)
s,HFT (τ ′) S

H
(P2,r,n)
s,FT (τ ′) S′

πM
FT

g

πM
FT ◦ g

, (5.50)

by Theorem 5.10 we have shown that the following exact sequence exists over X × S.

glr(C)⊗OS → Hom(I•S ,F)→ Ext1(I•S , I
•
S)→ 0.

Let DefS(S′,H(P2,r,n)
s,HFT (τ ′)) denote the deformation space of the map πM

FT ◦ g obtained by set of

possible extensions πM
FT ◦ g′. By Proposition 5.11 we have shown that

DefS(S′,H(P2,r,n)
s,HFT (τ ′)) ∼= Hom(I•S ,F)⊗ I.
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Moreover, by Definition 2.10 and via evaluating the moduli functor associated to the moduli stack

of frozen triples on S′, one obtains a family of frozen triples represented by the complex O⊕rX (−n)�

MS → F over X × S. By assumption both S and S′ are chosen to be affine schemes therefore it

is not hard to see that the flat deformation of the locally free sheaf MS over S′ is trivial:

Lemma 5.16. Let MS be a vector bundle of rank r over S such that MS
∼= O⊕rS . Given a square-

zero extension S ↪→ S′ of affine C-schemes, the flat deformations of MS over S′ is trivial, i.e the

flat extension ofMS over S′ is given byM′S a vector bundle of rank r over S′ such thatM′S ∼= O
⊕r
S′

Proof. Replace MS with O⊕rS . There exists an exact sequence

0→ O⊕rS ⊗ I →M
′
S → O⊕rS → 0.

Since S′ is affine, we get an exact sequence:

0→ H0(O⊕rS ⊗ I)→ H0(M′S)→ H0(O⊕rS )→ 0.

Let e1, e2, · · · , er be the canonical generators of O⊕rS . Choose lifts e′1, e
′
2, · · · , e′r ∈ H0(M′S). These

sections define a homomorphism φ : O⊕rS′
e′1,e
′
2,··· ,e′r−−−−−−→M′S . Moreover the homomorphism φ becomes

an isomorphism upon restriction to S. Since S ⊂ S′ is a nilpotent thickening, by Nakyama’s lemma,

this implies that φ is an isomorphism. �

Hence there exists a surjective map

DefS(S′,H(P2,r,n)
s,HFT (τ ′))→ DefS(S′,H(P2,r,n)

s,FT (τ ′))→ 0.

Moreover by construction, there exists a natural map DefS(S′,H(P2,r,n)
s,FT (τ ′)) → Ext1(I•S , I

•
S) ⊗ I,

therefore one obtains the following commutative diagram:

glr(OS)⊗ I Hom(I•S ,F)⊗ I Ext1(I•S , I
•
S)⊗ I 0

End(MS)⊗ I DefS(S′,H(P2,r,n)
s,HFT (τ ′)) DefS(S′,H(P2,r,n)

s,FT (τ ′)) 0

e k

∼=
e′ k′

∼=

, (5.51)
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by commutativity of the above diagram and surjectivity of the maps k and k′, one concludes the

following isomorphisms:

Ext1(I•S , I
•
S)⊗ I ∼= Hom(I•S ,F)⊗ I/ Im(e)

∼= DefS(S′,H(P2,r,n)
s,HFT (τ ′))/ Im(e′) ∼= DefS(S′,H(P2,r,n)

s,FT (τ ′)),

(5.52)

therefore

DefS(S′,H(P2,r,n)
s,FT (τ ′)) ∼= Hom(I•S ,F)⊗ I/ Im

(
(End(M′S)→ Hom(I•S ,F))⊗ I

)
.

Remark 5.17. There exists several ways to obtain the deformation space of a family of highly

frozen triples in Proposition 5.11 with respect to the complex I•S that represents this family. For

example in some special cases such as when F is a locally free sheaf, one may deform the highly

frozen triple in Proposition 5.11 using a different method discussed in [3] and [9]. The S-flat family

F in this case parametrizes the locally free, S-flat sheaves over S. Given a family of highly frozen

triples represented by the complex OX×S(−n)⊕r
φ−→ F one may consider the complex:

C• : 0→ End(OX×S(−n)⊕r ⊕ End(F))

∆−→ Hom(OX×S(−n)⊕r,F)→ 0,

(5.53)

where ∆(ψ1, ψ2) = φ ◦ ψ1 − ψ2 ◦ φ. By the results in [3], there exists a long exact sequence of
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Hyper-cohomologies:

0→ H0(C•)→ H0(X × S, End(OX×S(−n)⊕r)⊕ End(F)))

→ H0(X × S,Hom(OX×S(−n)⊕r,F))→ H1(C•)

→ H1(X × S, End(OX×S(−n)⊕r)⊕ End(F)))

→ H1(X × S,Hom(OX×S(−n)⊕r,F))→ H2(C•)→ ·

(5.54)

the space of infinitesimal deformations of the highly frozen triple is given by H1(C•) and the

obstructions are given by H2(C•), [3]. One proves that when H1(OX) = 0, H1(C•) ∼= Hom(I•S , F ):

Using the local to global spectral sequence, the fact that H1(OX) = 0, Serre duality and n� 0 one

simplifies (5.54) as follows:

0→ H0(C•)→ glr(OS)⊕ End(F)→ H0(F(n))⊕r → H1(C•)

→ Ext1(F ,F)→ 0→ H2(C•)→ ·

(5.55)

recall that by applying Hom(·,F) to the exact triangle I•S → OX×S(−n)⊕r → F , one obtains

0→ End(F )→ H0(F(n))⊕r → Hom(I•S ,F)→ Ext1(F ,F)→ 0. (5.56)

Now compare these two exact sequences and obtain a commutative diagram:

glr(OS)⊕ End(F ) H0(F(n))⊕r H1(C•) Ext1(F ,F) 0

End(F) H0(F(n))⊕r Hom(I•S ,F) Ext1(F ,F) 0
∼= ∼=

(5.57)

The first and fifth vertical maps in (5.57) are surjective and injective respectively and the second and

fourth are isomorphisms, therefore by 5-Lemma the map H1(C•)→ Hom(I•S ,F) is an isomorphism
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as we expected. Before finishing this section, for completeness, we state two theorems which can

be proved as a corollary of Theorem 5.10.

Corollary 5.18. Let I•S be defined as in Theorem 5.10. The first order deformation I•S′ over S′ of

I•S with trivial determinant is quasi-isomorphic to a complex:

{OX×CS′(−n)⊕r
φ−→ F ′}

Proof. This is a direct consequence of Theorem 5.10.

Now we consider higher order deformations:

Corollary 5.19. Let I•S be defined as in Theorem 5.10. The higher order deformation I•S′ over Ś

of I•S with trivial determinant is quasi-isomorphic to a complex:

{OX×CŚ
(−n)⊕r

φ′−→ F́}

Proof. This is a direct consequence of Theorem 5.10.

Remark 5.20. In conclusion, by applying Illusie’s method to the deformation theory of highly

frozen triples, we concluded that the highly frozen triples do not deform in general as objects in

the derived category (which are associated to them), but the frozen triples satisfy this property.

The schematic picture below explains this conclusion pictorially.
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?

M
GLr(C)

H
(P2,r,n)
s,FT (τ ′)(S′)

H
(P2,r,n)
s,HFT (τ ′)(S′)

• p

•p′
�

Tp′H
(P2,r,n)
s,FT (τ ′) := Coker(glr(C)→ Hom(I•, F )) ∼= Ext1(I•, I•)0

=

TpH(P2,r,n)
s,HFT (τ ′) := Hom(I•, F ) � Ext1(I•, I•)0
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Chapter 6

Deformation-obstruction theories

By Theorem 3.9 the moduli stack of stable frozen triples H
(P2,r,n)
s,FT (τ ′) is an Artin stack.

Notation 1: By a perfect complex E• in D(X) of perfect amplitude [a, b] we mean a complex

satisfying the condition that for every point p ∈ X there exists an open neighborhood Up over

which there exists a complex of vector bundles R• whose terms Ri vanish for i < a and i > b and

E• |Up is quasi-isomorphic to R•.

Notation 2: By a perfect complex of strongly perfect amplitude [a, b] we mean a complex E• in

D(X) satisfying the condition that there exists globally a complex of vector bundles R• such that

Ri = 0 for i < a or i > b and such that E• ∼= R• in D(X).

Definition 6.1. Following [21] and [26]) by definition a perfect deformation-obstruction theory for

H
(P2,r,n)
s,FT (τ ′) is given by a perfect 3-term complex E•∨ of strongly perfect amplitude [−1, 1] and a

map in the derived category:

E•∨ φ−→ L•
H

(P2,r,n)
s,FT (τ ′)

such that h1(φ) and h0(φ) are isomorphisms and h−1(φ) is an epimorphism.

Remark 6.2. Notation: The reason for having superscript ∨ in E•∨ appearing in statement of

Definition 6.1 will be justified through our construction later.

Remark 6.3. Here L•
H

(P2,r,n)
s,FT (τ ′)

is the truncated cotangent complex of the Artin moduli stack of

τ ′-stable frozen triples concentrated in degrees −1, 0 and 1 whose pullback via the projection map

πM
FT : H

(P2,r,n)
s,HFT (τ ′)→ H

(P2,r,n)
s,FT (τ ′) has the form:

(πM
FT)∗L•

H
(P2,r,n)
s,FT (τ ′)

: I/I2 → ΩA |H(P2,r,n)
s,HFT (τ ′)

→ K∨ ⊗O
H

(P2,r,n)
s,HFT (τ ′)

,
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where K∨, by construction, is the dual of the Lie algebra of GLr(C). Here, A denotes the smooth

Artin stack that one needs to embed H
(P2,r,n)
s,HFT (τ ′) into, in order to obtain the truncated cotangent

complex, L•
H

(P2,r,n)
s,FT (τ ′)

. Finally I is the ideal corresponding to this embedding.

We will show later that there exists a complex E•∨ ∈ Db(H(P2,r,n)
s,FT (τ ′)) which satisfies the cohomo-

logical properties of a perfect deformation-obstruction theory for H
(P2,r,n)
s,FT (τ ′). However as we will

see, this complex is perfect of wrong amplitude. In other words it is perfect of amplitude [−2, 1]

(instead of being perfect of amplitude [−1, 1] as in Definition 6.1).

(1). By Theorem 3.12 H
(P2,r,n)
s,HFT (τ ′) is a DM stack. In this situation the truncated cotangent complex

takes the form:

L•
H

(P2,r,n)
s,HFT (τ ′)

: I/I2 → ΩA |H(P2,r,n)
s,HFT (τ ′)

.

Here as Behrend and Fantechi define in [2], a perfect deformation-obstruction theory is given

by a perfect 2 term complex G• of strongly perfect amplitude [−1, 0] and a map in the derived

category:

G• φ−→ L•
H

(P2,r,n)
s,HFT (τ ′)

,

such that h0(φ) is an isomorphism and h−1(φ) is an epimorphism. Unfortunately, using usual direct

methods, the construction of such G• for our setup fails in general.

(2). To solve the issue in (1), first we show that there exists a 4-term perfect deformation obstruc-

tion theory of strongly perfect amplitude [−2, 1] over H
(P2,r,n)
s,FT (τ ′). Then we pullback this complex

via the projection map πM
FT : H

(P2,r,n)
s,HFT (τ ′)→ H

(P2,r,n)
s,FT (τ ′) and we apply a suitable local truncation to

the pulled-back complex and define a perfect deformation obstruction theory of perfect amplitude

[−1, 0] over H
(P2,r,n)
s,HFT (τ ′). Finally we show that locally we can construct virtual fundamental cycles

which (under Assumption 7.15) glue to each other to give rise to a globally well-defined virtual

fundamental class over H
(P2,r,n)
s,HFT (τ ′).

Remark 6.4. From now on by a perfect complex of perfect amplitude [a, b] we mean a perfect

complex of strongly perfect amplitude [a, b].
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6.1 Discussion on perfect obstruction theory over H
(P2,r,n)
s,FT (τ ′)

Given X a smooth projective Calabi-Yau threefold over C and S a parametrizing scheme of finite

type over C, by Theorem 5.10, we showed that the tangent space at every point of the moduli stack

of τ́ -limit-stable frozen triples is isomorphic to the space of deformations of the complex with fixed

determinant which represents the stable frozen triple. In this section we use this result to construct

a deformation obstruction complex for H
(P2,r,n)
s,FT (τ ′).To save space let us temporarily introduce the

following notation:

1. H := H
(P2,r,n)
s,FT (τ ′)

2. A := OX×H ⊕M ⊗OX×H(−n) where M is a vector bundle of rank r.

3. πH : X × H→ H

Consider the universal exact triangle determined by the universal complex representing a universal

stable frozen triple over X × H:

I• →M ⊗OX×H(−n)→ F (6.1)

Now consider the following commutative diagram:

X × H H

X C

πH

πX

(6.2)

Apply RHom(·, I•)⊗ π∗XωX [2] to this triangle and obtain the composition of morphisms:

RHom(I•, I•)⊗ ωπH
[2]→ RHom(F, I•)⊗ ωπH

[3]→

RHom(M ⊗OX×H(−n), I•)⊗ ωπH
[3]

(6.3)
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There exists a map from the trace-free RHom to RHom so we get the following composition of

morphisms in Db(X × H):

RHom(I•, I•)0 ⊗ ωπH
[2]→ RHom(I•, I•)⊗ ωπH

[2]

→ RHom(F, I•)⊗ ωπH
[3]→ RHom(M ⊗OX×H(−n), I•)⊗ ωπH

[3]

(6.4)

Theorem 6.5. There exists a map in Db(H):

RπH ∗(RHom(F, I•)⊗ ωπH
[3])

ψ−→ L•H (6.5)

Proof. One needs to apply the result of Illusie [16] (Section 4.2) in Theorem 5.12 to the universal

complex I• : M ⊗OX×H(−n)
φ̃−→ F. Since we will not eventually use RπH ∗(RHom(F, I•)⊗ ωπH

[3])

as a suitable candidate for the deformation obstruction theory of H := H
(P2,r,n)
s,FT (τ ′) and since

the proof follows directly from the proof of Joyce and Song in [18] (Theorem 14.7) applied to

I• : M ⊗OX×H(−n)
φ̃−→ F we omit providing a detailed proof here and leave this to the reader.

Remark 6.6. Note that the complex RHom(F, I•)⊗ ωπH
[3] is neither perfect of amplitude [−1, 1]

nor it defines a deformation theory for moduli stack of frozen triples. However by (6.4) one obtains:

RHom(I•, I•)0 ⊗ ωπH
[2]→ RHom(I•, I•)⊗ ωπh

[2]

→ RπH ∗ (RHom(F, I•)⊗ ωπH
[3])→ L•H

(6.6)

Now consider the composite morphism in the derived category:

RHom(I•, I•)0 ⊗ ωπH
[2]→ L•H. (6.7)

Note that for every point {p} ∈ H
(P2,r,n)
s,FT (τ ′) represented by a complex I• the fiber ofRHom(I•, I•)0⊗

ωπH
[2] over I• is a complex which has 4 non-vanishing cohomologies (by taking cohomologies in
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degrees −2, · · · , 1) equal to Ext2+i(I•, I•)0.

6.2 Non-perfect deformation-obstruction theory of amplitude

[−2, 1] over H
(P2,r,n)
s,FT (τ ′)

Theorem 6.7. There exists a map in the derived category,

RπH∗ (RHom(I•, I•)0 ⊗ π∗XωX) [2] ob−→ L•
H

(P2,r,n)
s,FT (τ ′)

.

After suitable truncations, there exists a 4 term complex E• of locally free sheaves , such that E•∨

is self-symmetric of amplitude [−2, 1] and there exists a map in the derived category,

E•∨ obt−−→ L•
H

(P2,r,n)
s,FT (τ ′)

(6.8)

such that h−1(obt) is surjective, and h0(obt) and h1(obt) are isomorphisms.

Proof. In what follows we use the notation H := H
(P2,r,n)
s,FT (τ ′).

Consider the universal complex:

I• = [M ⊗OX×H(−n)→ F] ∈ Db(X × H).

Since the composition of the maps id : OX×H → Hom(I•, I•) and tr : Hom(I•, I•) → OX×H is

multiplication by rk(I•), one obtains a splitting Hom(I•, I•) ∼= Hom(I•, I•)0 ⊕OX×H. Recall that

by discussions in Section 3.3.1 H = [S
(P2,r,n)
s (τ ′)

G ] where G = GLr(C)×GL(V2).

For simplicity denote S := S
(P2,r,n)
s (τ ′). Let I•S denote the pullback of I• to X × S. We write

L• to mean the full, untruncated cotangent complex, and write L• = τ≥−1L• for the truncated

cotangent complex. Consider the Atiyah class I•S → L•X×S ⊗ I•S[1] defined by Illusie [16] (Section
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IV2.3.6). The Atiyah class can be identified with a class in Ext1(IS, L•X×S ⊗ I•S). The composite

I•S → L•X×S ⊗ I•S[1]→ τ≥−1L•X×S ⊗ I•S[1] = L•X×S ⊗ I•S[1]

is the truncated Atiyah class of [15], Section 2.2.

By [14] (Proposition 2.1.10) the complex I• is perfect. It then follows from Corollaire IV.2.3.7.4 of

[16] that the composite I•S → L•X×S ⊗ I•S[1] → Ω1
X×S ⊗ I•S[1], when identified with a 1-extension,

agrees with the canonical 1-extension

0→ Ω1
X×S ⊗ I•S → P1

X×S ⊗ I•S → I•S → 0 (6.9)

defined by tensoring with the first-order principal parts P1
X×S.

We want to show that the Atiyah class descends to X ×H = X × [S
G ] where G = GLr(C)×GL(V2)

(where this identification comes from discussions in Section 3.3). More precisely, this means the

following. Let qH : X × S → X × H denote the projection. Then we want a morphism I• →

L•X×H ⊗ I•[1] on H, such that the natural composite q∗HI• → q∗HL
•
X×H ⊗ q∗HI•[1] → L•X×S ⊗ I•S[1]

agrees with the Atiyah class of Illusie. The complex I•S is G-equivariant by construction (it comes

via pullback from X × H), and the construction of the Atiyah class shows that it too is naturally

G-equivariant. The pulled back cotangent complex q∗HL
•
X×H has the following description. There

is a natural composite map L•X×S → Ω1
X×S → g∨ ⊗ OX×S, where the second map is dual to the

infinitesimal g-action (and g = Lie(G)). Then q∗HL
•
X×H ' Cone[L•X×S → g∨ ⊗ OX×S][−1]. Thus,

to prove that the Atiyah class descends to X × H in the sense explained above, it suffices to show

that the composite I•S → L•X×S⊗I•S[1]→ Ω1
X×S⊗I•X×S[1]→ g∨⊗I•S[1] represents an equivariantly

split extension. By the above discussion, this extension is obtained by pushing out the principal

parts extension (6.9) along the natural map Ω1
X×S ⊗ I•S → g∨ ⊗ I•S. Just as a splitting of the

principal parts extension corresponds to a choice of connection, however, a splitting of its pushout

corresponds to a choice of an L-connection [5] (Section 4) where L = g ⊗ OX×S is the action Lie

algebroid associated to the infinitesimal G-action. Since I• is G-equivariant, it comes equipped
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with a g⊗OX×S-connection, hence a G-equivariant splitting of the required 1-extension. It follows

that the Atiyah class descends to X × H.

We now have the truncated Atiyah class of the universal complex, given by a class in

Ext1
X×H(I•, I• ⊗ L•X×H) ∼= Ext1

X×H(RHom(I•, I•),L•X×H)

∼= Ext1
X×H(RHom(I•, I•)0 ⊕OX×H,L•X×H), (6.10)

where L•X×H denotes the truncated cotangent complex of X × H. Note that over X × H, L•X×H =

Lπ∗XL•X ⊕ Lπ∗HL•H. Since the projection maps are flat the derived pullbacks are the same as the

usual pullbacks. One obtains the following map between the Ext groups:

Ext1
X×H(RHom(I•, I•)0 ⊕OX×H,L•X×H)→ Ext1

X×H(RHom(I•, I•)0, π
∗
HL•H). (6.11)

On the other hand:

Ext1
X×H (RHom(I•, I•)0, π

∗
HL•H)

∼= Extdim(X)+dim(H)−1
X×H (Lπ∗HL•H, RHom(I•, I•)0 ⊗ ωX×H)∨

∼= Extdim(X)+dim(H)−1
H (L•H, RπH ∗ (RHom(I•, I•)0 ⊗ ωX×H))∨

∼= Extdim(H)−[dim(X)+dim(H)−1]

MP
FT

(
RπH ∗ (RHom(I•, I•)0 ⊗ ωX×H) ,L•H ⊗ ωH

)
∼= Ext−dim(X)+1

H

(
RπH ∗ (RHom(I•, I•)0 ⊗ ωX×H)⊗RπH ∗Lπ∗Hω−1

H ,L•H
)
, (6.12)

where the first isomorphism is obtained by Serre duality, the second isomorphism is induced by the

adjointness property of the left derived pullback and the right derived pushforward and the third

isomorphism is obtained by Serre duality. By projection formula and the definition of the relative

dualizing sheaf

ωπH
= ωX×H ⊗ ω−1

H = π∗XωX
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the last term in (6.12) is rewritten as:

Ext−dim(X)+1
H (RπH ∗ (RHom(I•, I•)0 ⊗ π∗XωX) ,L•H) . (6.13)

Since X is a three-fold, (6.13) is rewritten as:

RπH ∗ (RHom(I•, I•)0 ⊗ π∗XωX) [2]→ L•H. (6.14)

Therefore, it is seen that the truncated Atiyah class of the universal complex over the moduli stack

of τ ′-stable frozen triples, induces a well defined map in the derived category as in (6.7). Next we

show that this morphism in the derived category defines a relative deformation-obstruction theory

for H
(P2,r,n)
s,FT (τ ′).

Proposition 6.8. The morphism given by (6.14) defines a relative deformation-obstruction theory

for H
(P2,r,n)
s,FT (τ ′).

Proof. We follow the same strategy as in [15] , [28]. Given a morphism of C-stacks S
g−→ H

(P2,r,n)
s,FT (τ ′)

and a square zero embedding S ↪→ Ś, by the theory of cotangent complexes there exists a morphism

in Db(S): L•S → L•S/S′ ∼= [IS⊂S′ → ΩS′ |S ].There exists a morphism: [IS⊂S′ → ΩS′ |S ]→ IS⊂S′ [1],

hence we obtain a morphism in Db(S):

e : g∗L•
H

(P2,r,n)
s,FT (τ ′)

→ L•S → IS⊂Ś [1] (6.15)

where IS⊂Ś is the ideal of S ⊂ Ś and e ∈ Ext1(g∗L•
H

(P2,r,n)
s,FT (τ ′)

, IS⊂Ś). Now e is equal to zero if

and only if there exists a lift ǵ : Ś → H
(P2,r,n)
s,FT (τ ′) and moreover if such g′ exists then the set of

isomorphism extensions forms a torsor under Hom(g∗L•
H

(P2,r,n)
s,FT (τ ′)

, IS⊂Ś). Consider the following
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commutative diagram:

X × H
(P2,r,n)
s,FT (τ ′) X × S

X × Ś

H
(P2,r,n)
s,FT (τ ′) S

Ś

πH

g

πS
g

. (6.16)

Pullback the morphism in (6.14) by g and obtain:

g∗RπH ∗ (RHom(I•, I•)0 ⊗ π∗XωX) [2]→ g∗L•
H

(P2,r,n)
s,FT (τ ′)

(6.17)

This induces a natural composite morphism in Db(S):

o : g∗RπH ∗ (RHom(I•, I•)0 ⊗ π∗XωX) [2]→ g∗L•
H

(P2,r,n)
s,FT (τ ′)

→ L•S → IS⊂Ś [1], (6.18)

where o ∈ Ext−1(g∗RπH ∗ (RHom(I•, I•)0 ⊗ π∗XωX) , IS⊂Ś). One shows that there exists an exten-

sion of g to ǵ if and only if o vanishes and moreover the set of such extensions forms a torsor

under

Ext−2(g∗RπH ∗ (RHom(I•, I•)0 ⊗ π∗XωX) , IS⊂Ś).

By (6.16) and the flatness of πS one obtains the following isomorphism:

g∗RπH ∗ (RHom(I•, I•)0 ⊗ π∗XωX) [2] ∼= RπS ∗ (RHom(g∗I•, g∗I•)0 ⊗ π∗XωX) [2]. (6.19)

Hence one obtains:

RπS ∗ (RHom(g∗I•, g∗I•)0 ⊗ π∗XωX) [2]→ g∗L•MP,s
FT

→ L•S → IS⊂Ś [1] (6.20)
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therefore:

o ∈ Ext−1(RπS ∗ (RHom(g∗I•, g∗I•)0 ⊗ π∗XωX) , IS⊂Ś) ∼= Ext2
X×S(g∗I•, g∗I• ⊗ π∗SIS⊂Ś)0 (6.21)

by a similar argument to (6.12). By results of Thomas in [32] the trace of the obstruction class

is the obstruction to deform det(g∗I•). So this is enough to conclude that o = 0 if and only if

there exist deformations of g∗I• from X × S to X × Ś. Moreover the set of such deformations

forms a torsor under Ext1
X×S(g∗I•, g∗I• ⊗ π∗SIS⊂Ś)0. By definition of relative moduli stack, the

deformations of g∗I• are in one to one correspondence with deformations of g to ǵ and this finishes

the proof of Proposition 6.8.

Now we show that the deformation-obstruction theory in Proposition 6.8 is globally quai-isomorphic

to a 4 term complex of vector bundles.

6.3 Truncation to a perfect 4 term complex of vector

bundles

Lemma 6.9. Given S a smooth scheme of finite type over C and X → S a smooth projective

morphism of relative dimension n, If F is a flat family of coherent sheaves on the fibers of f : X → C

then there exists a locally free resolution

0→ Fn → Fn−1 → · · · → F0 → F

Such that Rnf∗Fm is locally free for m = 0, · · · , n, Rif∗Fm = 0 for i 6= n and m = 0, · · · , n.

Proof. Look at [14] (Proposition 2.1.10).

Proposition 6.10. The complex RπH ∗ (RHom(I•, I•)0 ⊗ π∗XωX) [2] in (6.14) is quasi-isomorphic

to a 4 term complex of locally free sheaves.
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Proof. Consider the universal complex I• over X×H
(P2,r,n)
s,FT (τ ′). By Lemma 6.9 there exists a finite

locally free resolution A• of I•. There exists an isomorphism (A•)∨⊗A• ∼= O
X×H

(P2,r,n)
s,FT (τ ′)

⊕((A•)∨⊗

A•)0. Now define the quasi-isomorphism class of trace-free Homs by RHom(I•, I•)0
∼= ((A•)∨⊗A•)0.

Each term in the complex ((A•)∨ ⊗ A•)0 is a coherent locally free sheaf over X × H
(P2,r,n)
s,FT (τ ′) flat

over H
(P2,r,n)
s,FT (τ ′). Since the projection map πH : X × H

(P2,r,n)
s,FT (τ ′) → H

(P2,r,n)
s,FT (τ ′) has relative

dimension 3, by Lemma 6.9 there exists a locally free resolution of length 4 associated to each term

in ((A•)∨ ⊗ A•)0. From this point the proof follows Lemma 2.10 [28] . Let the complex B• be a

sufficiently negative locally free resolution of ((A•)∨⊗A•)0 trimmed to start at least 4 places earlier

than ((A•)∨ ⊗A•)0, then R≤2π
H

(P2,r,n)
s,FT (τ ′)∗B

m = 0 for all m and R3π
H

(P2,r,n)
s,FT (τ ′)∗B

m is locally free.

Let E•∨ be defined as the complex with

Ej ∼= R3π
H

(P2,r,n)
s,FT (τ ′)∗B

j+3. (6.22)

The complex E• is a complex of locally free sheaves, and quasi-isomorphic to RπH ∗RHom(I•, I•)0.

Restricting this complex to a point {b} ∈ H
(P2,r,n)
s,FT (τ ′) (i.e base change) one obtains a complex

whose cohomologies compute Exti(I•, I•)0. By the property of I• shown earlier, the negative

Ext groups vanish. Hence, one obtains a complex whose nonvanishing cohomologies are given by

Ext0(I•, I•)0, · · ·Ext4(I•, I•)0, · · · . However since X is Calabi-Yau, by Serre duality Exti(I•, I•) ∼=

Ext3−i(I•, I•). Hence for i > 3, Exti(I•, I•)0
∼= 0 and the only non-vanishing cohomologies are

Ext0(I•, I•)0 · · ·Ext3(I•, I•)0. Note that, by Serre duality, Hom(I•, I•)0
∼= Ext3(I•, I•)∨0 . Now

apply Lemma 2.10 in [28] to E•∨ in (6.22). The complex E•∨ is quasi-isomorphic to a 4 term

complex of locally free sheaves.

The truncated cotangent complex of H
(P2,r,n)
s,FT (τ ′) is concentrated in degrees −1,0 and 1:

L•
H

(P2,r,n)
s,FT (τ ′)

: I/I2 → ΩA |H(P2,r,n)
s,FT (τ ′)

→ (glr(C))∨ ⊗O
H

(P2,r,n)
s,FT (τ ′)

.

By Theorem 6.7 and Proposition 6.8 one obtains a morphism in the derived category

E•∨ obt−−→ L•
H

(P2,r,n)
s,FT (τ ′)

.
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Restrict to a point b ∈ H
(P2,r,n)
s,HFT (τ ′) and obtain:

h−1(obt |b) : Ext2(I•, I•)0 → Ext1(I•, F )

which is surjective by the construction and the exact sequence in (5.22). Moreover, by Propositions

5.13 and 5.15, the cohomology map in degree zero

h0(obt |b) : Ext1(I•, I•)0 → Coker(glr(C)→ Hom(I•, F ))

is an isomorphism. Finally, h1(obt |b) is an isomorphism mapping the automorphisms of the object

in the derived category to the automorphisms of the associated frozen triple. This finishes the proof

of theorem 6.7.

To obtain a relative deformation obstruction theory over H
(P2,r,n)
s,FT (τ ′) one needs to truncate the

complex E•∨ so that it does not have any cohomology in degree -2. The cohomological truncation

of E•∨ on degree -2 over H
(P2,r,n)
s,FT (τ ′) can not solve this issue since the truncated complex may not

be perfect of amplitude [−1, 1]. We will show in the next section that the pull back of the complex

E•∨ via the map

πM
FT : H

(P2,r,n)
s,HFT (τ ′)→ H

(P2,r,n)
s,FT (τ ′)

and a suitable truncation over H
(P2,r,n)
s,HFT (τ ′) provide a candidate for deformation obstruction theory

over H
(P2,r,n)
s,HFT (τ ′).

6.4 A perfect Deformation-obstruction theory of amplitude

[−1, 0] over H
(P2,r,n)
s,HFT (τ ′)

In this section we propose a strategy to find a suitable deformation-obstruction theory over the

smooth components of the moduli stack of highly frozen triples. First we prove a statement about

the self duality of the complex E• obtained in Proposition 6.10.
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Lemma 6.11. The complex E• in Proposition 6.10 is self-dual in the sense of [1]. In other words

there exists a quasi-isomorphism of complexes:

E•
∼=−→ E•∨[1]

Proof. Use the notation in Section 6.1. The derived dual of E• over H
(P2,r,n)
s,HFT (τ ′) is given by

E•∨ := RHom(E•,OH).

By Proposition 6.10 E• is quasi-isomorphic toRπH ∗ (RHom(I•, I•)0 ⊗ π∗XωX) [2]. Now use Grothendieck

duality and obtain the following isomorphisms:

RHom(E•,OH) ∼= RπH ∗(RHomX×H (RHom(I•, I•)0 ⊗ π∗XωX) [2], π!OH))

∼= RπH ∗(RHomX×H (RHom(I•, I•)0 ⊗ π∗XωX) [2], π∗XωX [3])

∼= RπH ∗RHom(OX×H, RHom(I•, I•)0[1]) ∼= E•[−1]. (6.23)

Hence we conclude that E•∨[1] ∼= E•. Note that the second isomorphism in (6.23) is obtained using

the fact that X is a Calabi-Yau threefold and hence ωX ∼= OX .

An alternative obstruction bundle for HFT

Consider the forgetful map πM
FT : H

(P2,r,n)
s,HFT (τ ′) → H

(P2,r,n)
s,FT (τ ′). We pullback the four-term de-

formation obstruction theory of perfect amplitude [−2, 1] over H
(P2,r,n)
s,FT (τ ′) via πM

FT. After suitably

truncating the pulled-back complex we define a perfect two-term deformation obstruction theory

of amplitude [−1, 0] over H
(P2,r,n)
s,HFT (τ ′).

Theorem 6.12. Consider the 4-term deformation obstruction theory E•∨ of perfect amplitude

[−2, 1] over H
(P2,r,n)
s,FT (τ ′).

1. Locally in the Zariski topology over H
(P2,r,n)
s,HFT (τ ′) there exists a perfect two-term deformation

obstruction theory of perfect amplitude [−1, 0] which is obtained from the suitable local truncation

of the pullback (πM
FT)∗E•∨.
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2. This local theory (under Assumption 7.15) defines a globally well-behaved virtual fundamental

class over H
(P2,r,n)
s,HFT (τ ′).

Proof : Here we prove the first part of the theorem. For notational simplicity, denote π = πM
FT. As

we showed before, since H
(P2,r,n)
s,FT (τ ′) is an Artin stack, the cotangent complex of H

(P2,r,n)
s,FT (τ ′) has a

term in degree 1. By the canonical exact triangle of relative cotangent complexes in the derived

category, we have:

π∗L•
H

(P2,r,n)
s,FT (τ ′)

→ L•
H

(P2,r,n)
s,HFT (τ ′)

→ Ωπ → π∗L•
H

(P2,r,n)
s,FT (τ ′)

[1], (6.24)

By Theorem 6.7, E•∨ ob−→ L•
H

(P2,r,n)
s,FT (τ ′)

is a perfect deformation obstruction theory of amplitude

[−2, 1] for H
(P2,r,n)
s,FT (τ ′), such that h0(ob), h1(ob) are isomorphisms and h−1(ob) is an epimorphism.

Proposition 6.13. Let U =
∐
i Ui be an atlas of affine schemes for H

(P2,r,n)
s,HFT (τ ′). Fix one the maps

q : Ui → H
(P2,r,n)
s,HFT (τ ′). The following isomorphism holds true in Db(Ui):

Hom(q∗Ωπ, q
∗(π∗E•

H
(P2,r,n)
s,FT (τ ′)

[1])) ∼= Hom(q∗Ωπ, q
∗(π∗L•

H
(P2,r,n)
s,FT (τ ′)

[1])). (6.25)

Proof. Consider the exact triangle

q∗(π∗E•∨)
obti−−→ q∗(π∗L•

H
(P2,r,n)
s,FT (τ ′)

)→ Cone(obti) (6.26)

induced by the pulling back (via π ◦ q : Ui → H
(P2,r,n)
s,FT (τ ′)) the deformation obstruction theory in

Theorem 6.7. By Proposition 3.6, and the exact triangle in (6.24):

Ωπ
∼= K∨ ⊗O

H
(P2,r,n)
s,HFT (τ ′)

,

where K∨ by construction is the dual of the Lie algebra of GLr(C). Hence q∗Ωπ
∼= K∨ ⊗OUi . Now
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apply Hom0(q∗Ωπ, ) to the exact triangle (6.26) and obtain

Hom0(q∗Ωπ,Cone(obti))→ Hom0(q∗Ωπ, q
∗(π∗E•∨)[1])

→ Hom0(q∗Ωπ, q
∗(π∗L•)[1])→ Hom0(q∗Ωπ,Cone(obti)[1]). (6.27)

We prove the statement of the theorem by showing that

Hom0(q∗Ωπ,Cone(obti)) ∼= 0 ∼= Hom0(q∗Ωπ,Cone(obti)[1]). (6.28)

Now consider the long exact sequence of cohomology induced by the exact triangle in 6.26:

0→(((((
(((h−3(q∗(π∗E•∨))→(((((

((h−3(q∗(π∗L•))→ h−3(Cone(obti))
∼=−→ h−2(q∗(π∗E•∨))

→(((((
((h−2(q∗(π∗L•))→ h−2(Cone(obti))→ h−1(q∗(π∗E•∨)) � h−1(q∗(π∗L•))

→(((((
(((h−1(Cone(obti))→ h0(q∗(π∗E•∨))

∼=−→ h0(q∗(π∗L•))→(((((
((h0(Cone(obti))

→ h1(q∗(π∗E•∨))
∼=−→ h1(q∗(π∗L•))→(((((

((h1(Cone(obti))

→(((((
((h2(q∗(π∗E•∨))→���

���
�

h2(q∗(π∗L•))→ 0 (6.29)

where we have used the fact that q∗(π∗L•) and q∗(π∗E•∨) are perfect complexes of amplitudes

[−1, 1] and [−2, 1] respectively and hi(obti) is an isomorphism for i = 0, 1 and a surjection for

i = −1. Hence we conclude that Cone(obti)) has cohomologies on degrees −2 and −3 only. Now use

the fact that one can replace the complex Cone(obti)) with a representative complex A• such that

Ak = 0 for k ≥ −1. Now we use the following lemma.

Lemma 6.14. If U is an affine scheme and A• is a complex with Ak = 0 for k ≥ −1, then

Hom0(OU ,A•[l]) ∼= 0 for all l ≥ 0.

Proof. We use the general fact that given complexes G and F, in order to compute the Grothendieck

hypercohomolgy Homi(G,F), one replaces F with its injective resolution F → K•. Moreover

replacing F with K• is equivalent with replacing G with P• such that P• → G is a projective

resolution. Now use the fact that locally over U , OU is given as a free and in particular projective
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module hence its projective resolution consists of one term and one can use OU itself instead of the

complex P• in order to compute Hom0(OU ,A•[l]) which is isomorphic to zero since OU is a flasque

sheaf sitting in degree zero. �

Now use the fact that by construction q∗Ωπ
∼= K∨ ⊗ OU and apply the result of Lemma 6.14 by

replacing OU with q∗Ωπ and obtain the vanishings in (6.28). This finishes the proof of Proposition

6.13.

Lemma 6.15. Let q : U → H
(P2,r,n)
s,HFT (τ ′) and q′ : U ′ → H

(P2,r,n)
s,HFT (τ ′) be given as fixed affine charts

over H
(P2,r,n)
s,HFT (τ ′) such that the isomorphism in Proposition 6.13 holds true over U and U ′. Let

p1 : U ×q×q′ U ′ → U and p2 : U ×q×q′ U ′ → U ′ be the corresponding projections. Then

Hom0(p∗2(q∗Ωπ, q
∗(π∗E•∨)[1])) ∼= Hom0(p∗2(q∗Ωπ, q

∗(π∗L•∨)[1]))

Proof. Because H
(P2,r,n)
s,HFT (τ ′) is a quasi-projective scheme (Remark 3.14) then an intersection of affine

subschemes of H
(P2,r,n)
s,HFT (τ ′) is affine. Now apply Proposition 6.13 to U ×q×q′ U ′.

In what follows in order to save space we denote by HFT := H
(P2,r,n)
s,FT (τ ′) and HHFT := H

(P2,r,n)
s,HFT (τ ′).

Now fix Ui, by the local existence of the map gi in Proposition 6.13 there exists a commutative

diagram over Ui:

π∗E•∨ |Ui Cone(gi)[−1] Ωπ |Ui π∗E•∨[1] |Ui Cone(gi)

π∗L•HFT
|Ui L•HHFT

|Ui Ωπ |Ui π∗L•HFT
[1] |Ui L•HHFT

[1] |Ui

π∗(ob) |Ui ob′

gi

id π∗ob[1] |Ui

(6.30)

Lemma 6.16. The map ob′ : Cone(gi)[−1]→ L•
H

(P2,r,n)
s,HFT (τ ′)

|Ui defines a perfect 3-term deformation

obstruction theory of amplitude [−2, 0] for H
(P2,r,n)
s,HFT (τ ′) over Ui.

Proof. : We show that Cone(g)[−1] is concentrated in degrees −2, −1 and 0, moreover h0(ob′)

is an isomorphism and h−1(ob′) is an epimorphism. The proof uses the long exact sequence of

cohomologies. For h−1(ob′) one obtains:
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0 h−1(π∗E•∨ |Ui) ∼= π∗h−1(E•∨ |Ui) h−1(Cone(gi)[−1]) 0

0 h−1(π∗L•HFT
|Ui) ∼= π∗h−1(L•HFT

|Ui) h−1(L•HHFT
|Ui) 0

∼=

π∗(h−1(ob))
∼=

h−1(ob′)

, (6.31)

the top horizontal isomorphism is due to the fact that

Cone(gi)[−1] : E−2 → E−1 → E0 ⊕ Ωπ → E1,

where Ei correspond to the terms of the complex E•∨ |Ui . The vanishings on the left and right of

the top and bottom rows of (6.31) are due to the fact that Ωπ is a sheaf concentrated in degree

zero. By Theorem 6.7, the second vertical map (from left) is a surjection and by commutativity of

the diagram (6.31) the map h−1(ob′) is surjective. In degrees 0 and 1 one obtains:

0 π∗ h0(E•∨ |Ui) h0(Cone(gi)[−1]) Ωπ |Ui π∗ h1(E•∨ |Ui) h1(Cone(g)[−1]) 0

0 π∗ h0(L•Hs,FT
|Ui) h0(L•HHFT

|Ui) Ωπ |Ui π∗ h1(L•HFT
|Ui) h1(L•HHFT

|Ui) 0

π∗ h0(ob) |Ui h0(ob′) id π∗ h1(ob) |Ui h1(ob′)

.

(6.32)

In this diagram, h1(L•
H

(P2,r,n)
s,HFT (τ ′)

|Ui) ∼= 0 since over H
(P2,r,n)
s,HFT (τ ′) the truncated cotangent complex

does not have cohomology in degree 1. Moreover π∗h1(ob) |Ui is an isomorphism by Theorem

6.7. Hence h1(ob′) ∼= 0. Moreover by Theorem 6.7, π∗h0(ob) is an isomorphism, hence by the

commutativity of the diagram (6.32), h0(ob′) is an isomorphism. This finishes the proof of Lemma

6.16.

In order to obtain a perfect deformation obstruction theory of amplitude [−1, 0], one needs to

truncate the complex Cone(gi)[−1] so that it does not have any cohomology in degree −2.
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The self-duality of E• gives a diagram of morphisms in the derived category:

E• E•∨[1] Cone(gi)

Tπ |Ui [1]

g∨i

q-isom

∼=

(6.33)

Lemma 6.17. The natural map

Hom0
D(Ui)(E

•,Tπ |Ui [1])← Hom0
D(Ui)(Cone(gi),Tπ |Ui [1]) (6.34)

is an isomorphism.

Proof. Note that Ui is affine and Tπ |Ui [1] ∼= Odim(K)
Ui [1], so the statement reduces to knowing

that H1(E•∨) → H1(Cone(gi)∨) is an isomorphism. This follows since E•∨[1] → Cone(gi) is an

isomorphism on H−1 as shown in diagram (6.31).

By Lemma 6.17 g∨i factors through a map

Cone(gi)→ Tπ |Ui [1]

which is unique up to homotopy. We make such a choice of lift and denote it again by g∨i . Now

consider the exact triangle

Cone(g∨i )[−1]→ Cone(gi)[−1]
g∨−→ Tπ |Ui→ Cone(g∨i ). (6.35)

Denote G• |Ui := Cone(g∨i )[−1]. In order to finish the proof of Theorem 6.12, we need one more

lemma.

Lemma 6.18. The complex G• |Ui defines a perfect deformation obstruction theory of amplitude

[−1, 0] for Ui.
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Proof. : By construction

G• |Ui := π∗E−2 → π∗E−1 ⊕ Tπ |Ui→ π∗E0 ⊕ Ωπ |Ui→ π∗E1.

This complex has no cohomology in degree 1 and −2, i.e in the following commutative diagram,

the top row is quasi-isomorphic to the bottom row:

π∗E−2 π∗E−1 ⊕ Tπ |Ui π∗E0 ⊕ Ωπ |Ui π∗E1

0 Coker(d′) Ker(d) 0

d′ d

, (6.36)

moreover there exists a morphism

G• |Ui→ L•
H

(P2,r,n)
s,HFT (τ ′)

|Ui

which is given by the composition of

G• |Ui→ Cone(g)[−1]

and

Cone(g)[−1]→ L•
H

(P2,r,n)
s,HFT (τ ′)

|Ui .

By Lemma 6.16, this map satisfies the condition of being a deformation obstruction theory. This

finishes the first part of the proof of Theorem 6.12.

To prove that the local deformation obstruction theory in Theorem 6.12 under Assumption 7.15

defines a globally well-behaved virtual fundamental class, we need some preparation in the next

section.

Remark 6.19. The difference between the construction in Theorem 6.12 and the construction in

[28] (2.3) for rank 1 triples (stable pairs) is that, for theory of stable pairs, the terms Hom(I•, I•)0

and Ext3(I•, I•)0 are equal to zero by stability, however in higher rank, the stability condition does
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not ensure that the stable objects, I•, in the derived category are simple objects. Hence applying

Theorem 6.12 is necessary to obtain a perfect deformation obstruction theory of amplitude [−1, 0]

for Ui.
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Chapter 7

Virtual fundamental class for HFT

In Proposition 6.13 we proved the local existence of a map in the derived category

Ωπ |Ui
g−→ π∗E•∨[1] |Ui ,

where Ui were open subsets given as elements of a smooth cover U =
∐
i Ui of H

(P2,r,n)
s,HFT (τ ′) (Noseda

in [25] refers to charts in Proposition 6.13 as charts with lifting property). We locally constructed

the perfect deformation obstruction theory in the first part of Theorem 6.12. To prove the second

part of Theorem 6.12 we need to check that the virtual fundamental cycles obtained from this

construction are independent of choice of local charts. In other words, we need to prove that the

local virtual cycles obtained from Theorem 6.12 glue to each other and define a well-behaved global

virtual fundamental cycle. We also emphasize here that in gluing the local virtual fundamental

cycles we will require an addition assumption (Assumption 7.15) which we will discuss later. First,

we need some background.

7.1 Background

Definition 7.1. [2](Section 1). Let M be a DM stack and S =
⊕

i S
i be a quasi- coherent sheaf

of OM-algebras such that S0 = OM, S1 is coherent and S is locally generated by S1. Then the

affine M-scheme, C = Spec(S) is called the cone over M if the following additional conditions are

satisfied:

There exists a zero section:

M
0−→ C
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and a multiplication map

A1 × C → C

induced by (λ, c) 7→ λ·c. Moreover the multiplication map satisfies the axiom that for any λ, µ ∈ A1

and c ∈ C, λ · (µ · c) = (λµ) · c, 1 · c = c and 0 · c = 0.

Definition 7.2. [2](Section 1). Given a coherent sheaf F over M we get an associated cone (a

linear space):

C(F ) : Spec(Sym•(F ))→M

such that for any M-stack T we get

C(F )(T ) = Hom(FT ,OT ).

Any cone C = Spec(
⊕

i S
i) is a closed subcone of the associated cone A(C) = Spce(Sym•(S1)),

called the Abelian Hull of C.

Definition 7.3. [2](Section 1). If E is a vector bundle and d : E → C is a morphism of cones, we

say that C is an E-cone if C is invariant under the action of E on A(C):

E × C → C,

induced by (ν, γ) 7→ dν + γ.

Here we include some statements proved by Seibert in [31] without proof.

Lemma 7.4. [31](Lemma 2.1). Let Φ• : E• → F• be a commutative square between the complexes

of linear spaces E• : E0 → E1 and F• : F0 → F1 and let C ↪→ E1 be an E0-cone, then Φ−1
1 (C) ↪→ F1

is an F0-cone.

Definition 7.5. [31](Definition 2.2). Let Φ• : E• → F• be a commutative square in Lin(M) and

C ⊂ E1 an E0-cone. Then the F0-cone

Φ!
•C = Φ−1

1 (C)
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in F1 is called the pullback of C under Φ•

Lemma 7.6. [31](Lemma 2.5). Given Φ• : E• → F•, a commutative square in Lin(M) and F0 a

vector bundle such that Φ• induces an isomorphism on h0 and a closed embedding of linear spaces

on h1, then

0→ F0
(Φ0,−d′)−−−−−→ E0 ⊕ F1

q−→ E1

is exact. In this case we say that going down is applicable to Φ•.

Definition 7.7. Let Φ• : E• → F• be a commutative square in Lin(M) such that going down is

applicable to Φ•. Let C ⊂ F1 be an F0-cone. The unique cone C ⊂ Im(q) ⊂ E1 with q−1(C) =

E0 ⊕ C is called pushforward of C by Φ•, denoted by

(Φ•)!(C).

Lemma 7.8. [25](Lemma 24). Given a square diagram of linear spaces over M

A• B•

C• D•

α

δ β
γ

. (7.1)

which commutes up to homotopy. Assume that going down is applicable to δ and β and h1(C•)→

h1(D•) is injective. Then

δ!α
! = γ!β!

7.2 Gluing the local cone stacks

Followed by constructions in [2], we choose a local embedding over H
(P2,r,n)
s,HFT (τ ′) over which we

construct the normal cone. Then we prove that the normal cone is independent of this local

embedding, i.e it remains invariant under base change. Then we glue the local normal cones

constructed over each local embedding and obtain a global cone stack. Eeventually a global virtual
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fundamental class is constructible from a global normal cone stack [2].

Definition 7.9. [2](Definition 3.7). A local embedding of H
(P2,r,n)
s,HFT (τ ′) is given a by a tuple (U ,M)

fitting in a diagram:

U M

H
(P2,r,n)
s,HFT (τ ′)

f

πU

, (7.2)

where

1. U is an affine C-scheme of finite type.

2. M is an affine C-scheme of finite type.

3. πU is an étale morphism.

4. f is a local immersion.

Given a local embedding (U ,M), let I be the ideal corresponding to embedding of U in M . By

restricting the cotangent complex to U we obtain a map

φ : f∗L•M →
[
I/I2 → ΩM |U

]
,

such that φ induces an isomorphism in h−1 and h0. Moreover, by [2] (Proposition 2.6), we obtain

a morphism of cone stacks

φ∨ :
[
NU/M/TM |U

]
→ π∗UNH

(P2,r,n)
s,HFT (τ ′)

,

where NU/M = Spec(Sym•(I/I2)) is the normal sheaf of U in M . The normal cone of U in M is

obtained by C(Uα,M) = Spec(
⊕

i Ii/Ii+1) which is a TM |U -cone inside NU/M . In what will follow

N
H

(P2,r,n)
s,HFT (τ ′)

denotes the intrinsic normal sheaf over H
(P2,r,n)
s,HFT (τ ′).

Fix the open smooth chart U πU−−→ H
(P2,r,n)
s,HFT (τ ′), a local embedding with the lifting property [25] as

83



in Theorem 6.12. Consider the perfect deformation obstruction theory

G• |U→ π∗UL•H(P2,r,n)
s,HFT (τ ′)

in Lemma 6.18. To continue we need some background about semi-perfect obstruction theories

from [12]. First we state the definition of the numerical equivalence . LetM be an artin stack and

X →M a representable morphism of a DM stack to an Artin stack. Now let U =
∐
α Uα∈Λ be a

DM cover of X by affine schemes. Consider Uα →M for some α ∈ Λ.

Definition 7.10. [12] (Definition 2.5) Let ι : T → T ′ be a closed subscheme with T ′ local Artinian.

Let I be the ideal sheaf of T in T ′ and let m be the ideal sheaf of the closed point of T ′. We call

ι a small extension if I ·m = 0. Given a small extension (T, T ′, I,m) that fits into a commutative

square

T Uα

T ′ M

g

ι

, (7.3)

so that the image of g contains a closed point p ∈ Uα, finding a morphism g′ : T ′ → Uα that

commutes with the arrows in (7.3) is called ”infinitesimal lifting problem of Uα/M at p“.

Given a perfect relative deformation obstruction theory G• → L•X/M denote by G• |Uα the restric-

tion of G• to Uα. Let φ : G• |Uα→ L•Uα/M and φ′ : G′• |Uα→ L•Uα/M be given as two perfect relative

deformation obstruction theories over Uα →M.

Definition 7.11. Given a Uα →M let φ : G• → L•Uα/M be a perfect obstruction theory. For the

infinitesimal lifting problem in Definition 7.10 we call the image

ob(φ, g, T, T ′) := H1(φ∨)(ω(g, T, T ′)) ∈ Ext1(g∗G•, I) = Ob(φ, p)⊗ I (7.4)

the obstruction class (of φ) to the lifting problem

Definition 7.12. [12] (Definition 2.9) We call φ and φ′ ν-equivalent if there exists an isomorphism
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of sheaves:

ψ : H1(G•)→ H1(G′•) (7.5)

so that for every closed point p ∈ Uα and any infinitesimal lifting problem of Uα/M at p as in

Definition 7.10 we have

ψ |p (ob(φ, g, T, T ′)) = ob(φ′, g, T, T ′) ∈ Ob(φ′, p)⊗k I.

Now let Uα and Uβ be given as two charts with the lifting property as in Theorem 6.12. More-

over let Uαβ = Uα ∩ Uβ. Let Uαβ
fα−→ Uα and Uαβ

fβ−→ Uβ be the corresponding maps. By our

construction, one locally obtains perfect deformation obstruction theories of amplitude[−1, 0] given

by φα : G• |Uα→ L•Uα/M and φβ : G• |Uβ→ L•Uβ/M. For the notational convenience denote

G• |Uα→ L•Uα/M and G• |Uβ→ L•Uβ/M by G•α → L•α and G•β → L•β respectively.

Proposition 7.13. Let f∗αφα and f∗βφβ denote the pullback of φα and φβ to Uαβ. Then f∗αφα and

f∗βφβ are ν-equivalent over Uαβ.

Proof. We have to show that given a diagram

T Uαβ

T ′ M

gαβ

ι

, (7.6)

there exists a map ψ : H1(f∗αG•α)∨
∼=−→ H1(f∗βG•β)∨ such that given a class ob(f∗αφα, gαβ, T, T

′) ∈

H1(f∗α(L•HHFT
|Uα)∨) (Look at diagram (7.6)) and for every point p ∈ Uαβ we have

ψ |p ob(f∗αφα, gαβ, T, T ′) = ob(f∗βφβ, gαβ, T, T
′).

Apply the result of Proposition 6.13 to Uα and Uβ and obtain unique isomorphisms as in (6.25)

over Uα and Uβ. Now use the fact that Uαβ is affine and pull back the obtained isomorphisms via
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fα and fβ to Uαβ and obtain a unique isomorphism

Hom(Ωπ |Uαβ ,E
•
αβ) ∼= Hom(Ωπ |Uαβ ,L

•
αβ).

Now apply Lemma 6.18 and conclude that by the uniqueness property there exists an isomorphism

in Db(Uαβ) given by

καβ : f∗αE•α → f∗βE•β.

By assumption Uα and Uβ are given as charts with lifting property (Theorem 6.12), hence there

exists lifts Hom(Ωπ |Uα ,E•α[1]) and Hom(Ωπ |Uβ ,E•β[1]) given by gα : Ωπ |Uα→ E•α[1] and gβ :

Ωπ |Uβ→ E•β[1] over Uα and Uβ respectively. Now consider the pullbacks f∗αΩπ |Uα [−1] → f∗αE•α

and f∗αΩπ |Uα [−1] → f∗αE•α and note that by Proposition 6.13 f∗αgα and f∗βgβ are homotopic to

each other over Uαβ and satisfy the equation:

f∗αgα − f∗βgβ = d ◦ hαβ + hαβ ◦ d

where hαβ is given as a choice of homotopy. Now take the cone of f∗αgα and f∗βgβ and obtain the

following commutative diagram:

Cone(f∗αgα)[−1] f∗αΩπ |Uα f∗αE•α[1] Cone(f∗αgα)

Cone(f∗βgβ)[−1] f∗βΩπ |Uβ f∗βE•β[1] Cone(f∗βgβ),

Jαβ[−1]

f∗αgα

id Jαβ
f∗βgβ

id

(7.7)

where Jαβ :=

 id hαβ

0 id

. Since the first and the second rows in diagram (7.7) are given by

exact triangles one computes the long exact sequence of cohomologies and obtains the following
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commutative diagram:

· · · Hi(f∗αΩπ |Uα [−1]) Hi(f∗αE•α) Hi(Cone(f∗αgα))[−1] · · ·

· · · Hi(f∗βΩπ |Uβ [−1]) Hi(f∗βE•β) Hi(Cone(f∗βgβ))[−1] · · · ,

id id Hi(Jαβ)[−1]

(7.8)

Now use [7] (Proposition 4.10) and conclude that the left, middle and right squares in (7.8) are

commutative square diagrams for all i. By computing the cohomologies in the level of i = −1 one

obtains:

0 H−1(f∗αE•α) H−1(Cone(f∗αgα)[−1]) 0

0 H−1(f∗βE•β) H−1(Cone(f∗βgβ)) 0,

H−1(Jαβ[−1])

∼=
ρ1

id
∼=
ρ2 (7.9)

where the vanishings on the ends are due to the fact that Hi(f∗αΩπ |Uα [−1]) ∼= 0 and Hi(f∗βΩπ |Ubeta

[−1]) ∼= 0 for i = −1, 0. Hence we conclude that by commutativity of the middle square H−1(Jαβ[−1])

is an isomorphism of cohomologies and moreover, given any ν ∈ H−1(Cone(f∗αgα)[−1]):

id ◦ρ−1
1 (ν) = ρ−1

2 ◦H−1(Jαβ[−1])(ν). (7.10)

Note that given a choice of homotopy h∨αβ satisfying

f∗αg
∨
α − f∗βg∨β = d ◦ h∨αβ + h∨αβ ◦ d

and via restriction of the exact triangle in (6.35) to Uαβ and similar to the above procedure we
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obtain a commutative diagram:

Cone(f∗αg
∨
α)[−1] Cone(f∗αgα)[−1] f∗α Tπ |Uα Cone(f∗αg

∨
α)

Cone(f∗βg
∨
β )[−1] Cone(f∗βgβ)[−1] f∗β Tπ |Uβ Cone(f∗βg

∨
β ).

J∨αβ[−1]

f∗αg
∨
α

Jαβ[−1] J∨αβ
f∗βg
∨
β

id

(7.11)

Similarly obtain a commutative diagram induced by the long exact sequences of cohomologies:

· · · Hi(Cone(f∗αg
∨
α)[−1]) Hi(Cone(f∗αgα)[−1]) Hi(f∗α Tπ |Uα) Hi(Cone(f∗αg

∨
α) · · ·

· · · Hi(Cone(f∗βg
∨
β )[−1]) Hi(Cone(f∗βgβ)[−1]) Hi(f∗β Tπ |Uβ ) Hi(Cone(f∗βg

∨
β ) · · · ,

Hi(J∨αβ[−1]) Hi(Jαβ[−1]) Hi(J∨αβ)id

(7.12)

Now use [7] (Proposition 4.10) and conclude that the left, middle and right squares in (7.8) are

commutative square diagrams for all i and in particular for i = −1:

0 H−1(Cone(f∗αg
∨
α)[−1]) H−1(Cone(f∗αgα)[−1]) 0 H−1(Cone(f∗αg

∨
α) · · ·

0 H−1(Cone(f∗βg
∨
β )[−1]) Hi(Cone(f∗βgβ)[−1]) 0 H−1(Cone(f∗βg

∨
β ) · · · .

H−1(J∨αβ[−1])

q1

H−1(Jαβ[−1]) H−1(J∨αβ)
q2

id

(7.13)

Hence by commutativity of the left square and the fact that H−1(Jαβ[−1]) is an isomorphism, then

H−1(J∨αβ[−1]) is an isomorphism and moreover, for any µ ∈ H−1(Cone(f∗αg
∨
α)[−1]) we have:

H−1(Jαβ[−1]) ◦ q1(µ) = q2 ◦H−1(J∨αβ[−1])(µ) (7.14)

Now take an element µ ∈ H−1(Cone(f∗αg
∨
α)[−1]) and note that by (7.10) and (7.14) we have:

id ◦ρ−1
1 ◦H−1(Jαβ[−1]) ◦ q1(µ) = ρ−1

2 ◦H−1(Jαβ[−1]) ◦ q2 ◦H−1(J∨αβ[−1])(µ) (7.15)
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Moreover L•HHFT
and L•HFT

satisfy the condition that H−1(L•HHFT
) ∼= H−1(L•HFT

) hence one can

easily see that there exist maps λ1 : H−1(f∗αE•α) → H−1(f∗α(L•HHFT
|Uα)) and λ2 : H−1(f∗βE•β) →

H−1(f∗β(L•HHFT
|Uβ )) such that the following diagram commutes:

H−1(f∗αE•α) H−1(f∗α(L•HHFT
|Uα))

H−1(f∗βE•β) H−1(f∗β(L•HHFT
|Uβ )).

λ1

id
λ2

id

(7.16)

Now by (7.16) and (7.15) it is seen that given µ ∈ H−1(Cone(f∗αg
∨
α)[−1]) we obtain an identity

id ◦λ1 ◦ id ◦ρ−1
1 ◦H−1(Jαβ[−1]) ◦ q1(µ) = λ2 ◦ id ◦ρ−1

2 ◦H−1(Jαβ[−1]) ◦ q2 ◦H−1(J∨αβ[−1])(µ). (7.17)

Let ψ∨ := id ◦ρ−1
2 ◦ H−1(Jαβ[−1]) ◦ q2 ◦ H−1(J∨αβ[−1]). So far we have seen that in the level of

H−1 cohomology there exists a map ψ∨ : H−1(Cone(f∗αg
∨
α)[−1])

∼=−→ H−1(Cone(f∗βg
∨
α)[−1]) such

that λ2 ◦ Im(ψ∨) = Im(λ1). Recall that by our notation G• |Ui := Cone(g∨)[−1]. Now dualize

the construction and conclude that there exists a map ψ : H1(f∗αG•α)∨
∼=−→ H1(f∗βG•β)∨ such that

given a class ob(f∗αφα, gαβ, T, T
′) ∈ H1(f∗α(L•HHFT

|Uα)∨) (Look at diagram (7.6)) and for every point

p ∈ Uαβ we have

ψ |p ob(f∗αφα, gαβ, T, T ′) = ob(f∗βφβ, gαβ, T, T
′).

This finishes the proof of Proposition 7.13.

Definition 7.14. [12](Definition 3.1). A semi perfect obstruction theory over X → M consists

of an étale covering U =
∐
α∈Λ Uα of X by schemes, and a truncated perfect relative obstruction

theory

φα : G•α → L•Uα/M

for each α ∈ Λ such that
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1. for each α, β in Λ there is an isomorphism

ψαβ : H1(G•α |Uαβ )
∼=−→ H1(G•β |Uαβ )

so that the collection (H1(G•α), ψαβ) forms a descent datum of sheaves.

2. For any pair α, β ∈ Λ the obstruction theories φα |Uαβ and φβ |Uαβ are ν-equivalent.

The condition (1) above, that the ν-equivalences we have constructed induce a descent datum of

sheaves on H1, seems hard to guarantee in our setting. Namely, it requires that we carefully choose

homotopies hαβ and h∨αβ on Uαβ so that the induced composite quasi-isomorphisms ψγα ◦ψβγ ◦ψαβ

induce the identity maps on H1. For now, we do not see how to make such choices. Thus, we

assume:

Assumption 7.15. The homotopies hαβ and h∨αβ can be chosen so that the collection (H1(G•α), ψαβ)

forms a descent datum of sheaves.

Theorem 7.16. Suppose that Assumption 7.15 holds. Then the local deformation obstruction

theory obtained in Proposition 6.18 defines a semi-perfect obstruction theory over H
(P2,r,n)
s,HFT (τ ′).

Proof. For part (2) apply Proposition 7.13 and conclude that φα |Uαβ= f∗αφα and φβ |Uαβ= f∗βφβ

are ν-equivalent. Now we prove part (1). First apply Proposition 7.13 and obtain the map

ψαβ : H1(G•,∨α |Uαβ )
∼=−→ H1(G•,∨β |Uαβ ).

By Assumption 7.15, (H1(G•,∨α ), ψαβ) forms a descent datum. This completes the proof.

Remark 7.17. The assumption that the descent condition holds should, morally speaking, be

unnecessary. The local models G•α can always be glued up to higher homotopies, and thus should

always give an∞-stack in which the virtual normal cone lives. We expect that in the future a good

intersection theory for ∞-stacks would allow one to construct a virtual cycle using this ∞-stack.

Such a construction is beyond the scope of the present thesis, however.

Since we proved the existence of a semi-perfect obstruction theory over H
(P2,r,n)
s,HFT (τ ′) now we can
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apply the result of [12] (Theorem 3.3) and obtain a virtual fundamental class [H(P2,r,n)
s,HFT (τ ′)]vir over

H
(P2,r,n)
s,HFT (τ ′):

Given

φα : G•α → L•Uα/M

apply Spec(Sym•) to both sides of this morphism and obtain a map between the complexes of linear

spaces over Uα, i.e:

Lα• := Spec(Sym•)(L•Uα/M)→ Spec(Sym•)(G•α) := Gα• .

which induces an isomorphism in h0 and a closed embedding in h1. Let Gα• : G0 → G1. It is easily

seen that C(Uα,M) is a G0-cone inside G1.

Now choose another local embedding (Uβ,Mβ) with the lifting property and obtain a commutative

diagram:

Uβ Mβ

H
(P2,r,n)
s,HFT (τ ′) Uα Mα.

f ′

πα p

f

q

πβ

(7.18)

Consider the following notation:

Lα• =
[
TM |Uα → NUα/M

]
Lβ• =

[
TMβ |Uβ

→ NUβ/Mβ

]
φα : Lα• → Gα•

φβ : Lβ• → Gβ• .

(7.19)

By construction we have seen that there exists a commutative square diagram in the derived
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category of complexes of linear spaces over Uβ:

Lβ• p∗Lα•

Gβ• p∗Gα• ,

φβ p∗φα

a

b

(7.20)

Note that by the definition of perfect deformation obstruction theory, the vertical maps in (7.20)

induce isomorphisms in H0 and closed embedding in H1.

Lemma 7.18. Given the local normal cone C(Uα,M) ⊂ NUα/Mα
as a π∗αG0-cone inside π∗αG1.

Consider the diagram in (7.20). Then

φβ! a
!(p∗C(Uα,Mβ)) = b!(p∗φα)!(C(Uα,Mα)).

Proof. By Proposition 7.13 H1(b) is given by ψβα which is isomorphism and in particular injective.

Moreover by Lemma 6.18 the two vertical maps in (7.20) induce isomorphisms in H0 and closed

embeddings in H1, i.e going down is applicable to both vertical maps in (7.20). Now apply Lemma

7.8.

Lemma 7.19. Consider the commutative diagram (7.20). It is true that

a!(p∗C(Uα,Mα)) = C(Uβ,Mβ),

where C(Uβ,Mβ) is a π∗βG0-cone inside π∗βG1.

Proof. Apply Lemma 46 in [25] to charts (Uα,Mα) and (Uβ,Mβ).

Proposition 7.20. Given the commutative diagram in (7.20), it is true that

φβ! (C(Uβ,Mβ)) = b!(p∗φα)!(C(Uα,M)).
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Proof. By Lemma 7.18,

φβ! a
!(p∗C(Uα,M)) = b!(p∗φα)!(C(Uα,M)).

On the other hand, by Lemma 7.19,

a!(p∗C(Uα,M)) = C(Uβ,Mβ),

hence one obtains

φα! (C(Uβ,Mβ)) = φβ! (a!(p∗C(Uα,M))) = b!(p∗φα)!(C(Uα,M)).

Now use the compatibility obtained in Proposition 7.20 and obtain a compatibility statement for

the virtual fundamental classes as in Proposition 3.4 in [12] and conclude that the local virtual

fundamental classes obtained from local virtual normal cones over Uα glue to each other and give

rise to a global virtual moduli cycle over H
(P2,r,n)
s,HFT (τ ′). This finishes the proof of the second part of

Theorem 6.12.
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Chapter 8

Classification of torus-fixed HFT

In this section we classify the torus equivariant stable highly frozen triples. We assume that the

base threefold X is given by the total space of OP1(−1)⊕OP1(−1)→ P1 (local P1) or OP2(−3)→ P2

(local P2). For now, to explain our strategy, we stick to local P1, the constructions and results can

all be extended to local P2. In order to have a well-defined definition of stability for triples over a

quasi-projective variety X, as we explain below, we use the geometric analogue of τ ′-limit stability

to define the stable frozen triples.

8.0.1 Torus actions on the moduli stack of highly frozen triples supported on

local P1

Let X be given as total space of OP1(−1) ⊕ OP1(−1) → P1. Consider the ample line bundle over

X given by OX(1). By our earlier notation, M
(P2,r,n)
s,HFT (τ ′) denotes the moduli stack of stable rank

r highly frozen triples OX(−n)⊕r → F in which F has Hilbert polynomial P2. However in the

setting of this section X is given as a toric non-compact variety and the Hilbert polynomial of F

is not well-defined. Therefore in order to define stability, we use the geometric stability criteria for

triples which is equivalent to τ ′-limit stability.

Definition 8.1. Given X as total space of OP1(−1) ⊕ OP1(−1) → P1, the highly frozen triples

(E,F, φ, ψ) and frozen triples (E,F, φ) are called stable if Coker(φ) has zero-dimensional support.

Let Mr
s,HFT(τ ′) denote the stack of τ ′-stable highly frozen triples over X. The reason to change

our notation is that from now on we use a geometric criterion for stability of triples and we omit
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the superscript P2 in the notation. Since X is a toric threefold, there exists a canonical T= (C∗)3

action on X. Now fix an equivariant structure for OX(−n)⊕r. We will show that having fixed

this equivariant structure the action of T on X induces an action of T on Mr
s,HFT(τ ′) by pullback.

Moreover there exists an extra T0 = (C∗)r action on Mr
s,HFT(τ ′) for which the points in T0-fixed

loci corresponding to this action take the form of direct sums of Pandharipande-Thomas stable

pairs. In the following section we describe each induced action more carefully.

8.1 The geometric action of T = (C∗)3 on Mr
s,HFT(τ ′) over local

P1

Background (the T action on X)

We study the natural induced action of T = (C∗)3 on the moduli stack of highly frozen triples sup-

ported over a local Calabi-Yau threefold X given by the total space of N = OP1(−1)⊕OP1(−1)→ C

where C ∼= P1:

X = Spec(Sym•(OP1(1)⊕OP1(1))).

Let L1 and L2 denote the first and second copy of OP1(−1) in N . Let Uα be given as the local

patch around 0 ∈ C. By fixing equivariant structures on L1 and L2 we can see that there exists an

action of (C∗)3 on X which is given locally over Uα by

(λ1, λ2, λ3) ∗ (l1, l2, s) = (λ1l1, λ2l2, λ3s),

where l1 and l2 denote any local non-vanishing sections of L1 and L2 respectively and s denotes

the local coordinate along C . Later in Example 11.2 we carry out computations with a two

dimensional sub-torus of T which fixes the Calabi-Yau form of X, however for now we stick to this

notation.

Definition 8.2. Define the divisor D1 ⊂ X as the fiber of X over 0 ∈ C. Moreover, define D2 ⊂ X

and D3 ⊂ X as Tot(L1 → C) and Tot(L2 → C) respectively.
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Let l∨1 and l∨2 denote any local sections of L∨1 and L∨2 in Uα. Here we give a local description of the

modules associated to the structure sheaves of D1, D2, D3 in Uα. It follows by the usual arguments

that there exists an equivalence of categories

F : Coh(X)
∼=−→ ModSym•(N∨) .

Locally over Uα the module over C[l∨1 , l
∨
2 , s] associated to the structure sheaf of X is given by the

polynomial ring itself:

F(OUα) = C[l∨1 , l
∨
2 , s].

Let t1 and t2 and t3 denote the weights of the action of (λ1, λ2, λ3) on (0, l∨1 , 0), (0, 0, l∨2 ) and (s, 0, 0)

respectively. One observes that the action of T on the localized structure module obtained above

gives it a decomposition into torus weight spaces, i.e locally:

F(OUα) =
⊕

(m,n,l)

C[l∨1 , l
∨
2 , s](m,n, l). (8.1)

Remark 8.3. Locally over Uα the divisor D1 is understood by the vanishing locus of s, therefore

inorder to obtain the module associated to OUα(kD1) we consider the C[l∨1 , l
∨
2 , s]-module generated

by 1
sk

:

F(OUα(kD1)) = (
1
s

)kC[s, l∨1 , l
∨
2 ] (8.2)

In this case this module is generated by (1
s )k which lies in 1

tk3
weight space. Similarly one may

consider divisors D2 and D3 in X. For completeness we describe the module structure associated

to OUα(kD2) and OUα(kD3):

F(OUα(kD2)) = (
1
l∨1

)kC[s, l∨1 , l
∨
2 ],

F(OUα(kD3)) = (
1
l∨2

)kC[s, l∨1 , l
∨
2 ],

(8.3)
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8.1.1 The induced action of T on Mr
s,HFT(τ ′)

We show that the T-action on X induces an action on Mr
s,HFT(τ ′). Given a τ ′-stable highly frozen

triple (E,F, φ, ψ) represented by the complex OX(−n)⊕r
φ−→ F and t ∈ T we obtain a new highly

frozen triple as follows: Let U ⊂ X be an open subset. Given t ∈ T. Identify OX(−1) with

OX(−D1) where D1 is defined in Definition 8.2. Hence locally over U sections of OX(−n) are

identified with sections of OX(−nD1). Now given a section s ∈ Γ(O⊕rX (−n) |t−1U ), the composition

s ◦ t−1 defines a map:

t∗O⊕rX (−n) |U
ψ−→ O⊕rX (−n) |U ,

which is an isomorphism. In other words we have chosen an equivariant structure for O⊕rX (−n).

Therefore the induced inverse isomorphism ψ−1 defines a map O⊕rX (−n)
ψ−1

−−→ t∗O⊕rX (−n). Now

compose with sections of F and obtain a highly frozen triple:

O⊕rX (−n)

t∗O⊕rX (−n) t∗F,

ψ−1

t∗φ

(8.4)

Hence we are able to obtain a new τ ′-stable highly frozen triple (E, t∗F, φ′, ψ) represented by the

complex O⊕rX (−n)
φ′−→ t∗F such that φ′ = t∗φ ◦ψ−1 in (8.4). One needs to show that the composite

morphism in (8.4) induces a well-behaved pointwise action of T on Mr
s,HFT(τ ′). We prove this fact in

several steps. First we show in more generality that there exists an action of T on the moduli stack

of triples of type (P1, P2) (i.e M(P1,P2),s(τ ′)). Then we specialize to frozen triples and show that

there exists a well-behaved action of T on Mr
s,FT(τ ′) induced by the pullback. Then by Definition

8.4 and since the pointwise action of T on highly frozen triples is induced by the composition of

the isomorphism ψ−1 and pulling back by the torus (t∗φ), the existence of a well-behaved action of

T on Mr
s,HFT(τ ′) follows as a corollary.

Proposition 8.4. Let X be given as the total space of OP1(−1) ⊕ OP1(−1). Let T be the (C∗)3

action on X. Having fixed an equivariant structure on OX(1), there exists an induced action of T
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on moduli stack of stable highly frozen triples given by:

mT : T×Mr
s,HFT(τ ′)→Mr

s,HFT(τ ′)

mT(t, (E,F, φ, ψ)) = mt ∗(E,F, φ, ψ)

(8.5)

where mt ∗(E,F, φ, ψ) is defined by the composite morphism in 8.4.

Proof. The proof of this statement is completely borrowed from arguments in [20] (Proposition

4.1). Since Pic(T) = 0 any line bundle on X acquires an equivariant structure. Moreover, a fixed

equivariant structure on OX(1) induces an equivariant structure on any twist of OX(1). Let n3 be a

suitable integer as in Section 3.3.1. We know that for any n ≥ n3 the sheaves E and F appearing in

the family of triples are globally generated. Consider the Quot schemes Q1 and Q2 that parametrize

the flat quotients E1 and E2 of sheaves V1 ⊗OX(−n) and V2 ⊗OX(−n) respectively with Hilbert

polynomial P1 and P2.

The moduli stack of triples E1 → E2 is obtained as the quotient stack of a scheme S by the action

of the group GL(V1)×GL(V2). Note that S is defined as a closed subscheme of A = Q1 ×Q2 ×P

where P is the projective Hom bundle given as P = P(Hom(V1, V2)∨). Let H1 = V1⊗OX(−n) and

H2 = V2⊗OX(−n). Let σ : T×X → X denote the action of T on X and p2 : T ×X → X denote

the projection onto the second factor. The T-equivariant structure on X induces the isomorphisms

φHi : σ∗Hi
∼=−→ p∗2Hi for i = 1, 2 (where T acts trivially on V1 and V2). It is easy to see that the

action of T on X lifts to Q1 ×Q2:

Let Quot(H1, P1) × Quot(H1, P1) be the functor which is representable by the product of Quot

schemes Q1 ×Q2. In other words there exists an isomorphism of functors:

Θ : Quot(H1, P1)×Quot(H1, P1)
∼=−→ Q1 ×Q2, (8.6)

where Q1 ×Q2 = Hom(−,Q1 ×Q2). Our goal is to define a regular action of T on Q1 ×Q2 given

by the map mT : T × Q1 × Q2 → Q1 × Q2. Let pQ1×Q2
12 : T × X × Q1 × Q2 → T × X be the
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projection onto the first two factors and mQ1×Q2 = σ × 1Q1×Q1 be the lift of the action of T on

X ×Q1 ×Q2. Let (HQ1

u1−→ E1,HQ2

u2−→ E2) be the universal family over Q1 ×Q2. It is seen that

pre-composing (mQ1×Q2)∗(u1, u2) with (pQ1×Q2
12 )∗(φ−1

H1
, φ−1
H2

) gives an element of

Quot(H1, P1)×Quot(H1, P1)(T×Q1 ×Q2) ∼= Hom(T×Q1 ×Q2,Q1 ×Q2),

which defines the regular action of T on Q1 ×Q2. Let t = (λ1, λ2, λ3) ∈ T be a closed point. Let

it : X ↪→ T×X denote the injection. Let

φH1×H2,t = i∗t (φH1 , φH2) = (i∗tφH1 , i
∗
tφH2) : t∗(H1,H2)

∼=−→ (H1,H2).

Let q ∈ Q1 ×Q2 : ([H1
u1−→ E1], [H2

u2−→ E2]) be a closed point. It is easy to see that there exists a

lift of the action of t ∈ T on Q1 ×Q2 which is obtained by mT(t, q) = q · t and it corresponds to

([H1

(i∗tφH1
)−1

−−−−−−→ t∗H1
t∗u1−−→ t∗E1], [H2

(i∗tφH2
)−1

−−−−−−→ t∗H2
t∗u2−−→ t∗E2]). (8.7)

The composite morphisms in (8.7) define the lifted action of T on Q1 × Q2. Since the action of

T on points of P is trivial one lifts the action of T to Q1 × Q2 × P where T acts on Q1 × Q2 as

described above and it acts trivially on the points p = Hom(V1, V2)∨ ∈ P. Let S be the scheme

parametrizing triples of type (P1, P2). Let U ⊂ S be the open subscheme of τ ′-limit stable triples

of type (P1, P2). The regular action of T on Q1 ×Q2 × P restricts to the action of T on U:

T× U U

T×M
(P1,P2)
s (τ ′) M

(P1,P2)
s (τ ′).

mT

idT × π π

(8.8)

Note that the action of G = GL(V1) × GL(V2) is trivial on T and the maps mT, π and π ◦ mT

are G-equivariant. By the property of quotient stacks, this induces a G-equivariant map T ×

M
(P1,P2)
s (τ ′) → M

(P1,P2)
s (τ ′) which defines the induced action of T on M

(P1,P2)
s (τ ′). This proof
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restricts easily to the case where M
(P1,P2)
s (τ ′) is replaced by M

(P2,r,n)
s,FT (τ ′) and one obtains the

action of T in Proposition 8.4 over moduli stack of stable frozen triples. Now we use the fact

that given any t ∈ T the action of T on highly frozen triples is obtained by pre-composition of

the the map t∗ and the map defined by fixed choice of ψ−1 which we denoted by the choice of

equivariant structure on OX(−n)⊕r. This by construction will automatically define an action of T

on M
(P2,r,n)
s,HFT (τ ′) (and hence on Mr

s,HFT(τ ′)).

For more detailed discussion look at [20] (Proposition 4.1).

Proposition 8.5. Let S be a parametrizing scheme of finite type over C. Let (E ,F , φ, ψ)S denote

a family of stable highly frozen triples over S. Suppose that for all t = (λ1, λ2, λ3) ∈ T:

t∗((E ,F , φ, ψ)S) ∼= (E ,F , φ, ψ)S . (8.9)

then (E ,F , φ, ψ)S admits a T-equivariant structure.

Proof. We give an adaptation of the proof given in [24] (Lemma 3.3) to our case. By assumption

for any t ∈ T one has

t∗((E ,F , φ, ψ)S ∼= (E ,F , φ, ψ)S .

Let σ : T×X → X denote the torus action on X and p2 : T×X → X be the projection onto the

second factor. Let q : X × S → S be the projection onto S. One needs to show that there exists a

map:

ρ : Ext0
idT×q((p2 × idS)∗(E ,F , φ, ψ)S , (σ × idS)∗(E ,F , φ, ψ)S)→ OT×S , (8.10)

which is an isomorphism of line bundles over T× S. Here

Ext0
idT×q((p2 × idS)∗(E ,F , φ, ψ)S , (σ × idS)∗(E ,F , φ, ψ)S)

:= R0(q × idT)∗(Hom((p2 × idS)∗(E ,F , φ, ψ)S , (σ × idS)∗(E ,F , φ, ψ)S)). (8.11)

By definition of Mr
s,HFT(τ ′), choosing a family of stable highly frozen triples over S is equivalent to

choosing a unique map S →Mr
s,HFT(τ ′). Since (σ × idS)∗(E ,F , φ, ψ)S and (p2 × idS)∗(E ,F , φ, ψ)S
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are two families over Mr
s,HFT(τ ′), they both define maps f : T× S →Mr

s,HFT(τ ′) and g : T× S →

Mr
s,HFT(τ ′) respectively. By the uniqueness property, both maps are uniquely isomorphic to each

other. On the other hand by Lemma 3.13 the complexes representing τ ′-stable highly frozen triples

are simple objects hence:

Ext0
idT×q((p2 × idS)∗(E ,F , φ, ψ)S , (σ × idS)∗(E ,F , φ, ψ)S)

∼= Ext0
idT×q((E ,F , φ, ψ)T×S , (E ,F , φ, ψ)T×S) ∼= OT×S . (8.12)

Now the inverse image of 1 ∈ OT×S via the map ρ in (8.10) gives a section of

Ext0
idT×q((E ,F , φ, ψ)T×S , (E ,F , φ, ψ)T×S)

which induces a section of

Ext0
idT×q((p2 × idS)∗(E ,F , φ, ψ)S , (σ × idS)∗(E ,F , φ, ψ)S)

which induces a morphism (p2 × idS)∗(E ,F , φ, ψ)S → (σ × idS)∗(E ,F , φ, ψ)S . Moreover, it can be

checked that this morphism is an isomorphism (pointwise) for every point in the moduli stack of

stable highly frozen triples hence it is an isomorphism and this finishes the proof.

8.2 The non-geometric action of T0 = (C∗)r on Mr
s,HFT(τ ′) and the

splitting property of stable highly frozen triples

Let p ∈ M
(P2,r,n)
s,HFT (τ ′) be represented by a highly frozen triple (E,F, φ, ψ). We introduce a non-

geometric action of T0 = (C∗)r on Mr
s,HFT(τ ′). By definition φ = (s1, s2, · · · , sr) where si ∈

H0(F (n)).

Definition 8.6. Define the action σ0 of T0 = (C∗)r on a point p ∈ Mr
s,HFT(τ ′) given by a stable

highly frozen triple (E,F, φ, ψ) via rescaling each copy of OX(−n) independently by an element of
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C∗, i.e multiplication of each section of F (n) independently by an element of C∗:

σ0((z1, z2, · · · , zr), [OX×S(−n)⊕r
φ−→ F ]) =

[OX(−n)⊕r

ν=

0BBBBBBB@
z−1

1 · · · 0
...

. . .
...

0 · · · z−1
r

1CCCCCCCA
−−−−−−−−−−−−−−−−−→ OX(−n)⊕r

φ−→ F ], (8.13)

Equivalently the action σ0 is obtained via the morphism ν from a τ ′-stable highly frozen triple

(E,F, φ, ψ) to (E,F, φ ◦ ν, ψ) as given in (8.13).

Lemma 8.7. The action of T0 satisfies the axioms of an action of T0 on M
(P2,r,n)
s,HFT (τ ′).

Proof. One needs to prove that:

1. There exists an identity element e ∈ T0 such that e ∗ p = p for all p ∈M
(P2,r,n)
s,HFT (τ ′).

2. For all g, h ∈ T0 one has (gh) ∗ p = g ∗ (h ∗ p) for all p ∈M
(P2,r,n)
s,HFT (τ ′)

Let the identity element of T0 be given by e = (1, 1, · · · , 1). It is easily seen that e ∗ p = p for all

p ∈M
(P2,r,n)
s,HFT (τ ′). Now let g = (z1, · · · , zr) and h = (z′1, · · · , z′r) be two elements of T0. Note that

g ∗ h = (z1z
′
1, · · · , zrz′r). Therefore g ∗ (h ∗ p) is obtained by the following composite map

σ0(h, σ0(g, [OX(−n)⊕r
φ−→ F ])) =

[OX(−n)⊕r ν−→ OX(−n)⊕r ν′−→ OX(−n)⊕r
φ−→ F ], (8.14)

where ν ′◦ν =


z−1

1 z′−1
1 · · · 0

...
. . .

...

0 · · · z−1
r z′−1

r

. Therefore, T0 obviously satisfies the second axiom.

Proposition 8.8. Let S be a parametrizing scheme of finite type over C. Let (E ,F , φ, ψ)S denote

a family of stable highly frozen triples over S. Suppose that for all t0 = (z1, · · · , zr) ∈ T0:

σ0(t0, (E ,F , φ, ψ)S) ∼= (E ,F , φ, ψ)S (8.15)
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then (E ,F , φ, ψ)S admits a T0-equivariant structure:

σ∗0(E ,F , φ, ψ)S ∼= p̃∗2(E ,F , φ, ψ)S ,

where p̃2 : T0×Mr
s,HFT(τ ′)→Mr

s,HFT(τ ′) is the projection onto the second factor.

Proof. The action of T0 is directly defined over Mr
s,HFT(τ ′) hence one may directly apply the proof

of Proposition 8.5 to T0 instead of T and the universal family (E,F, φ, ψ) instead of (E ,F , φ, ψ)S

and use the simpleness property of τ ′-limit stable highly frozen triples.

Remark 8.9. Since the stable highly frozen triples are T0-equivariant, by Proposition 8.8 it is

easily seen that the action of T0 on a point p ∈Mr
s,HFT(τ ′) (represented by a stable highly frozen

triple (E,F, φ, ψ)) given by the morphism ν in (8.13) induces a T0-weight decomposition on E ∼=

O⊕rX (−n). Let (w1, · · · , wr) denote the r-tuple of weights. In fact the only nontrivial weights due

to action of T0 are

(1, 0, · · · , 0), (0, 1, · · · , 0), · · · , (0, · · · , 0, 1).

Now consider the module M associated to the sheaf O⊕rX (−n) and denote by M0 the module

associated to the sheaf OX(−n). The graded piece of MT0 which sits in (1, 0, · · · , 0) wight space

is given by the module M0⊕ 0⊕ · · · ⊕ 0 which we denote by M0
1 and so on. On the other hand the

T-weight decomposition of (M)T is given by (8.1). Therefore the T×T0-weight decomposition of

(M)T×T0 is given by

(M)T×T0 ∼=
( ⊕

(m1,m2,m3)

M0(m1,m2,m3)
)

(1, 0, · · · , 0)⊕

· · · ⊕
( ⊕

(m1,m2,m3)

M0(m1,m2,m3

)
(0, · · · , 0, 1),

∼=
r⊕
i=1

 ⊕
(m1,m2,m3)

M0
i (m1,m2,m3)


(8.16)
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According to Propositions 8.5 and 8.8 the T × T0-fixed points of Mr
s,HFT(τ ′) are represented by

highly frozen triples which admit T × T0-equivariant structure. Now let N denote the module

associated to F . Given a T × T0-equivariant highly frozen triple (M)T×T0 → NT×T0 , by the

property of morphism between two graded sheaves of modules, the sheaf NT×T0 admits a weight

decomposition compatible to that of MT×T0 . Hence it is seen that a torus equivariant highly frozen

triple admits a T× T0-weight decomposition of the following form:

[MT×T0 → NT×T0 ] ∼=

∼=
r⊕
i=1

 ⊕
(m1,m2,m3)

M0
i (m1,m2,m3)→

⊕
(m′1,m

′
2,m
′
3)

Ni(m′1,m
′
2,m

′
3)


(8.17)

Remark 8.10. The weight decomposition in (8.17) clarifies the fact that a T × T0-equivariant

τ ′-limit stable highly frozen triple is decomposable into r copies of T-equivariant τ ′-limit stable

highly frozen triples of the form OX(−n)→ Fi:

[O⊕rX (−n)→ F ]T×T0 ∼=
r⊕
i=1

[OX(−n)→ Fi]
T . (8.18)

Hence the T × T0-equivariant highly frozen triples are given as a direct sum of r copies of T-

equivariant stable pairs in [28]. The important point to note is that what makes it possible to

think of stable highly frozen triples in this setup as r copies of stable pairs is that our notion of

τ ′-limit-stability is compatible with the notion of stability in [28].

The following picture schematically shows the corresponding tori acting on Mr
s,HFT(τ ′) and Mr

s,FT(τ ′).
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Chapter 9

Equivariant obstruction theory on
HFT

The discussions in this section, except for some computational parts, are similar in nature to

discussions in [27] (4.2). As we have showed in the last chapter there exists an action of T on

Mr
s,FT(τ ′) while Mr

s,HFT(τ ′) is acted on by G = T×T0. Using the deformation obstruction theory

obtained by Theorem 6.12, we compute a G-invariant obstruction theory for the G-fixed locus of

Mr
s,HFT(τ ′).

Remark 9.1. Note that since the construction of the virtual fundamental class in the second

part of Theorem 6.12 depends on Assumption 7.15, we emphasize that all our virtual localization

computations in this chapter and the following two chapters similarly hold true if Assumption 7.15

holds true.

Strategy

We assume that the G-fixed components of Mr
s,HFT(τ ′) are compact and nonsingular: a conse-

quence of identifying the highly frozen triple as multiple copies of PT pairs (Remark 8.10) is that

the G-fixed components of the moduli stack of highly frozen triples are obtained as r-fold products

of T-fixed components of the moduli stack of stable pairs which are conjectured by Pandharipande

and Thomas in [28] (Conjecture 2) to be nonsingular and compact.

Let Q denote the G-fixed locus of Mr
s,HFT(τ ′). We assume that Q is nonsingular, connected and

compact. Let ιQ : Q ↪→Mr
s,HFT(τ ′) denote the natural embedding.

Let G•Q := (ιQ)∗G• where G• is the deformation obstruction theory obtained in Theorem 6.12. Let

G•,GQ and G•,mQ denote the sub-bundles of G•Q with zero and nonzero characters respectively. By

Theorem 6.12 and the G-fixed deformation obstruction theory restricted to Q is given by a map of
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perfect complexes:

G•,GQ

φ−→ L•Q. (9.1)

Here G•,GQ is represented by a two term complex of vector bundles G−1,G
Q → G0,G

Q . By the virtual

localization formula:

[
Mr

s,HFT(τ ′)
]vir

=
∑

Q⊂Mr
s,HFT(τ ′)

ιQ∗

(
e(Gm

1,Q)
e(Gm

0,Q)
∩ [Q]vir

)
. (9.2)

Where Gm
0,Q and Gm

1,Q denote the dual of G0,m
Q and G−1,m

Q respectively. Now we rewrite (9.2) with

respect to the Euler classes e(G1,Q) and e(G0,Q) where G0,Q and G1,Q denote the dual of G0
Q and

G−1
Q respectively. In order to do this ones needs to have the description of the virtual tangent space

with respect to the G-fixed deformation obstruction theory. If Q is assumed to be nonsingular,

then

L•Q := 0→ ΩQ.

The G-fixed deformation obstruction theory (9.1) induces a composite morphism

G−1,G
Q → G0,G

Q

φ−→ ΩQ.

The kernel of this composite morphism is the obstruction bundle K and by definition:

[Q]vir = e(K∨) ∩ [Q].

One computes the K-theory class of K∨ as follows:

[K∨] = [GG
1,Q]− [GG

0,Q] + [TQ], (9.3)

where GG
0,Q and GG

1,Q denote the dual of G0,G
Q and G−1,G

Q respectively. Therefore one has:

e(K∨) =
e(GG

1,Q)

e(GG
0,Q)

· e(TQ). (9.4)
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By (9.2) and (9.4) the virtual fundamental class of Mr
s,HFT(τ ′) is obtained as

[
Mr

s,HFT(τ ′)
]vir

=
∑

Q⊂Mr
s,HFT(τ ′)

ιQ∗

(
e(G1,Q)
e(G0,Q)

· e(TQ) ∩ [Q]
)
. (9.5)

Now we compute the difference [G0,Q]− [G1,Q] in the G-equivariant K-theory of Q. Now consider

a point p ∈ Q represented by the complex

I•G := [O⊕rX (−n)→ F ]G.

The difference [G0,Q]− [G1,Q] over this point is the virtual tangent space at this point. We use the

quasi isomorphism in diagram (6.36) to compute the virtual tangent space:

T Q
I• = [Coker(d′)]− [Ker(d)] =(
[π∗E1]− [π∗E0] + [π∗E−1]− [π∗E−2]

)
+
(
�
��[Tπ]−���[Ωπ]

)
,

(9.6)

where Ei for i = −1, · · · , 2 are the corresponding terms of E•∨ in Lemma 6.10 and the cancellation

in the second row is due to isomorphism of Ωπ and Tπ which is seen from their triviality.

By the construction of E•∨ in Proposition 6.10 and since the point p ∈ Q is represented by I•,G

the following identities hold true:

[π∗E1]− [π∗E0] + [π∗E−1]− [π∗E−2] =

= −[Hom(I•, I•)0] + [Ext1(I•, I•)0]− [Ext2(I•, I•)0] + [Ext3(I•, I•)0].

(9.7)
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Hence the virtual tangent space in (9.6) is written as:

T Q
I• = −[Hom(I•, I•)0] + [Ext1(I•, I•)0]− [Ext2(I•, I•)0]

+ [Ext3(I•, I•)0] = [χ(OX ,OX)]− [χ(I•, I•)].

(9.8)

9.1 Computation of χ(OX ,OX)− χ(I•, I•)

By definition

χ(I•, I•) =
3∑

i,j=0

(−1)i+jH i(Extj(I•, I•))

and

χ(OX ,OX) =
3∑

i,j=0

(−1)i+jH i(Extj(OX ,OX)),

here one may replace the cohomology terms with the Čech complex obtained with respect to an

affine open cover
⋃
α Uα:

χ(I•, I•) =
3∑

i,j=0

(−1)i+jCi(Extj(I•, I•))

and

χ(OX ,OX) =
3∑

i,j=0

(−1)i+jCi(Extj(OX ,OX)).

By definition the sheaf F appearing in the stable highly frozen triples is pure of dimension 1

therefore the restriction of F over the triple and quadruple intersections of Uα’s vanishes and over

such intersections I• ∼= O⊕rX (−n).
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Definition 9.2. Define:

T 1
[I•] =

⊕
α

H0(Uα,OX)−
∑
j

(−1)j H0(Uα, Extj(I•, I•)))


T 2

[I•] =
⊕
α,β

H0(Uαβ,OX)−
∑
j

(−1)j H0(Uαβ, Extj(I•, I•)))


T 3

[I•] =
⊕
α,β,γ

(
(1− r2) H0(Uαβγ ,OX)

)
T 4

[I•] =
⊕
α,β,γ,δ

(1− r2) H0(Uαβγδ,OX).

(9.9)

By Definition 9.9 and (9.8) the virtual tangent space is obtained as:

T[I•] = T 1
[I•] − T

2
[I•] + T 3

[I•] − T
4

[I•] (9.10)
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Chapter 10

Virtual localization-vertex and edge
calculation

Let T and T0 be defined as before and G = T × T0. Let (t1, t2, t3) be defined as the weights of

T. Moreover let (w1, · · · , wr) be defined as weight of the action of T0. Here wi is given by tuples

(0, · · · , 1, · · · , 0) where 1 is positioned in the i’th position in the tuple. In this section we compute

the G-character of T i[I•] for i = 1, · · · 4 in (9.10). We compute the vertex for G-equivariant stable

highly frozen triples which are identified with

[
r⊕
i=1

(
OT
X(−n)→ FT

i

)]
. (10.1)

Recall that super-index T indicates equivariance with respect to the action of T.

Choose a Čech cover U =
⋃
α Uα of X. The restriction of each copy of OT

X(−n)→ FT
i in (10.1) to

the underlying supporting curve Cα of FT
i induces an exact sequence of the form:

0→ OT
Cα(−n)→ (FT

i )α → (QT
i )α → 0, (10.2)

By τ ′-stability the sheaf (FT
i )α may be zero and if it is nonzero then the cokernel (QT

i )α has to

be zero dimensional. Moreover by the splitting property of G-equivariant highly frozen triples it is

easily seen that

QG
α :=

r⊕
i=1

(QT
i )α,

such that each (QT
i )α has zero dimensional support: one has Supp(QG

α ) :=
r⋃
i=1

Supp(QT
i )α and if

there exists (QT
i )α for some i with one dimensional support then it contradicts with stability of

the original highly frozen triple. Given FG
α =

⊕r
i=1(FT

i )α, we use the procedure similar to [27]
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(Section 4.4) and [4] (Section 4.7) to compute the T character of each summand, (FT
i )α. Let

Ch(FT
i )α denote the T-character of each summand. Let (Pi)α(t1, t2, t3) denote the associated

Poincaré polynomial of (I•i )α :=
(
OT
X(−n)→ FT

i

)
|α. The Poincaré polynomial of (I•i )α is related

to T character of Fi as:

Ch(FT
i )α =

Bn
α + (Pi)α

(1− t1)(1− t2)(1− t3)
, (10.3)

where the correction term Bn
α is the T-character of OX(−n) with the chosen equivariant structure.

Now the G-character of Fi is given by:

Ch(FG
i )α = wi · Ch(FT

i )α =
Bn
α · wi + wi · (Pi)α

(1− t1)(1− t2)(1− t3)
, (10.4)

where wi is the weight corresponding to the action of T0 on the i’th copy of OX(−n) and on FT
i .

The description of Bn
α depends on one’s choice of equivariant structure. The T-character of each

trχ((I•i )α, (I•i )α) as computed in [4] (Section 4.7) is given as follows:

trχ((I•i )α, (I•i )α) =
wi · w−1

i · (Pi)α(Pi)α
(1− t1)(1− t2)(1− t3)

=
(Pi)α(Pi)α

(1− t1)(1− t2)(1− t3)
. (10.5)

The dual bar operation is negation on K(Q |Uα) and

ti →
1
ti

on the equivariant variables ti. Since I•,Gα :=
⊕r

i=1(I•,Ti )α the G-character of χ(I•,Gα , I•,Gα ) is

obtained as:

trχ(I•,Gα , I•,Gα ) =
∑

1≤i≤r
1≤j≤r

wiw
−1
j · (Pi)α(Pj)α

(1− t1)(1− t2)(1− t3)
. (10.6)

Moreover the G-character of Fα appearing in I•,Gα is given by :

Ch(FG)α =
∑r

i=1wi ·Bn
α +

∑r
i=1wi · (Pi)α

(1− t1)(1− t2)(1− t3)
, (10.7)
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since the G-character of the α-summand of T 1
[I•] in (9.9) is given by:

1−
∑

1≤i≤r
1≤j≤r

wiw
−1
j · (Pi)α(Pj)α

(1− t1)(1− t2)(1− t3)
, (10.8)

one computes the of the α-summand of the G-character of T 1
[I•] as a function of Ch(FG

α ):

trR−
χ((I•,G)α,(I•,G)α)

= Ch(FG
α ) · (

r∑
j=1

w−1
j ) ·Bn

α −
Ch(FG

α ) · (
∑r

i=1wi) ·Bn
α

t1t2t3

+ Ch(FG
α )Ch(FG

α )
(1− t1)(1− t2)(1− t3)

t1t2t3
+

1− (
∑r

i,j=1wiw
−1
j ) ·Bn

αB
n
α

(1− t1)(1− t2)(1− t3)

(10.9)

10.0.1 Edge calculation

In this section we compute the G-character of T 2
[I•], T

3
[I•] and T 4

[I•]. Assume that Uαβ is the affine

patch over which the equivariant parameter t1 is invertible. Given F =
⊕r

i=1 Fi, Let (Fi)αβ denote

the restriction of Fi to Uαβ. Let

Ch(FT
αβ)i =

∑
k2,k3∈µαβ

tk22 t
k3
3 ,

denote the T-character associated to this restriction (Look at [4] (4.10)). The G-character of Fαβ

is obtained as

Ch(FG
αβ) =

r∑
i=1

Ch(FT
αβ)i · wi.
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By the same argument as above and similar to computations in [4] (4.10) one relates the G-character

of αβ’th summand of the virtual tangent space T 2
[I•] in (9.9) to Ch(FG

αβ):

trR−χ((I•)αβ,(I•)αβ)
=
[

Ch(FG
αβ)(

r∑
j=1

w−1
j ) ·Bn

αβ −
Ch(FG

αβ) · (
∑r

i=1wi) ·Bn
αβ

t2t3
+

Ch(FG
αβ)Ch(FG

αβ)
(1− t2)(1− t3)

t2t3
+

1− (
∑r

i,j=1wiw
−1
j ) ·Bn

αβB
n
αβ

(1− t2)(1− t3)

]
· δ(t1),

(10.10)

here Bn
αβ is a function of n and the correction term that needs to be inserted into Poincaré polyno-

mial of OX |Uαβ in order to obtain the Poincaré polynomial of OX(−n) |Uαβ also we have used the

notation δ(t1) =
∑

k∈Z t
k
i . Now assume Uαβγ is the affine patch over which the equivariant param-

eters t1 and t2 are invertible. The α, β, γ’th summand of T 3
[I•] in (9.9) is obtained as follows:

trR−χ((I•)αβγ,(I•)αβγ )
=

(1−
∑r

i,j=1wiw
−1
j )

(1− t3)
δ(t1)δ(t2).

(10.11)

Finally the T-character of T 4
[I•] in (9.9) is obtained as:

trR−χ((I•)αβγδ,(I•)αβγδ)
= (1−

r∑
i,j=1

wiw
−1
j )δ(t1)δ(t2)δ(t3). (10.12)

Based on above discussion the G-character of the virtual tangent space over a point is obtained as

follows:

trR−χ(,I•) =
∑
α

trR−χ((I•)α,(I•)α)
−
∑
α,β

trR−χ((I•)αβ,(I•)αβ)

+
∑
α,β,γ

trR−χ((I•)αβγ,(I•)αβγ )
−
∑
α,β,γ,δ

trR−χ((I•)αβγδ,(I•)αβγδ)

(10.13)
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10.1 PT Redistribution

As It is seen the G-character of the virtual tangent space in (10.13) is equal to the addition of

vertex contributions (the first summand on right hand side of (10.13)) and the remaining edge

contributions. Similar to discussions in [27] (Section 4.6) one may redistribute the terms in (10.9),

(10.10), (10.11) and (10.12) so that they become Laurent polynomials in the variables ti:

Define

Gαβ = Ch(FG
α )(

r∑
j=1

w−1
j ) ·Bn

αβ −
Ch(FG

αβ) · (
∑r

i=1wi) ·Bn
αβ

t2t3
+

Ch(FG
αβ)Ch(FG

αβ)
(1− t2)(1− t3)

t2t3
+

1− (
∑r

i,j=1wiw
−1
j ) ·Bn

αβB
n
αβ

(1− t2)(1− t3)
. (10.14)

In that case one can rewrite the edge character (10.10) similar to [27] (Equation 4.11). Similarly

define

Gαβγ =
(1−

∑r
i,j=1wiw

−1
j )

(1− t3)
. (10.15)

Hence (10.11) is rewritten as

(
Gαβγ(t3)

1− t1
+ t−1

1

Gαβγ(t3)
1− t−1

1

)
1

1− t2
+ t−1

2

(
Gαβγ(t3)

1− t1
+ t−1

1

Gαβγ(t3)
1− t−1

1

)
1

1− t−1
2

. (10.16)

Note that here we expand the first term of the edge character in
(

Gαβγ(t3)
1−t1 + t−1

1
Gαβγ(t3)

1−t−1
1

)
in as-

cending powers of t1 and the second term in descending powers of t1. We follow the same rule

and expand the first term in (10.16) in ascending powers of t2 and the second term in descending

powers of t2. Finally define

Gαβγδ = (1−
r∑

i,j=1

wiw
−1
j ). (10.17)
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Hence (10.12) is rewritten as

((
Gαβγδ

1− t1
+ t−1

1

Gαβγδ

1− t−1
1

)
1

1− t2
+ t−1

2

(
Gαβγδ

1− t1
+ t−1

1

Gαβγδ

1− t−1
1

)
1

1− t−1
2

)
1

1− t3

+ t−1
3

((
Gαβγδ

1− t1
+ t−1

1

Gαβγδ

1− t−1
1

)
1

1− t2
+ t−1

2

(
Gαβγδ

1− t1
+ t−1

1

Gαβγδ

1− t−1
1

)
1

1− t−1
2

)
1

1− t−1
3

, (10.18)

where we expand the first term in (10.18) in ascending powers of t3 and the second term in de-

scending powers of t3. Now for each Uα define a new vertex character similar to [27] (Equation

4.12):

Vα = trR−
χ((I•,G)α,(I•,G)α)

+
3∑
i=1

Gαβi(ti′ , ti”)
1− ti

(10.19)

where β1, β2, β3 are the three neighboring vertices and

(ti, ti′ , ti”) = (t1, t2, t3).

Moreover redefine the edge character Eαβ as in [27] (Section 4.6):

Eαβ = t−1
1

Gαβ(t2, t3)
1− t−1

1

−
Gαβ(t2t

−mαβ
1 , t3t

−m′αβ
1 )

1− t−1
1

(10.20)

Here the integers mαβ and m′αβ are determined by the normal bundle NCαβ/X to the supporting

curve Cαβ := Supp(Fαβ):

NCαβ/X = O(mαβ)⊕O(m′αβ).

Similarly redefine Eαβγ and Eαβγδ respectively as:

Eαβγ =

t−1
2

t−1
1

Gαβγ(t3)
1− t−1

1

−
Gαβγ(t3t

m′αβ
1 )

1− t−1
1

 1
1− t−1

2

−

t−1
1

Gαβ(t3)
1− t−1

1

−
Gαβγ(t3t

−m′αβ
1 )

1− t−1
1

 1
1− t−1

2

(10.21)
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and

Eαβγδ =

t−1
3

(
t−1
2

(
t−1
1

Gαβγδ

1− t−1
1

−
Gαβγδ

1− t−1
1

)
1

1− t−1
2

−
(
t−1
1

Gαβγδ

1− t−1
1

−
Gαβγδ

1− t−1
1

)
1

1− t−1
2

)
1

1− t−1
3

−

(
t−1
2

(
t−1
1

Gαβγδ

1− t−1
1

−
Gαβγδ

1− t−1
1

)
1

1− t−1
2

−
(
t−1
1

Gαβγδ

1− t−1
1

−
Gαβγδ

1− t−1
1

)
1

1− t−1
2

)
1

1− t−1
3

(10.22)

According to the above redistributions the G-character of the virtual tangent space in (10.13) can

be rewritten as:

trR−χ(,I•) =
∑
α

Vα +
∑
αβ

Eαβ +
∑
αβγ

Eαβγδ +
∑
αβγδ

Eαβγδ (10.23)

Remark 10.1. Given a torus fixed component Q of the moduli stack of highly frozen triples denote

VQ =
∑

α Vα where Vα are defined as in (10.19). By discussions in [27] (Section 4.7) on can define

the integral of the evaluation of the contribution of (10.9) on Q, i.e:

w(Q) =
∫
Q
e(TQ)e(−VQ). (10.24)

Hence by substituting w(Q) in (10.24) in Equation 4.14 of [27] one obtains a definition for the

equivariant vertex of the moduli stack of highly frozen triples.
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Chapter 11

Calculation of examples

In this section for computational purposes we restrict to the case where r = 2.

Proposition 11.1. Use result obtained in Lemma 2.17. and Remark 8.9. Given a τ́ -limit stable

G-equivariant highly frozen triple OX(−n)⊕2,G φG

−−→ FG of type (P2, 2) with supporting curve C for

F consider the finite length G-equivariant cokernel QG given by Coker(φ)G. Then QG ∼= QT
1 ⊕QT

2

such that each QT
i for i = 1, 2 is given as a subsheaf of

H = lim−→
r

(Hom(mr,OC)/OC) . (11.1)

In other words a τ ′-limit stable G-equivariant highly frozen triple of rank 2 with support C is

equivalent to a subsheaf of H in (11.1) for r � 0. Look at similar statement for rank 1 highly

frozen triples in [28] (Proposition 1.8).

Proof. Since

OX(−n)⊕2,G → FG :=
2⊕
i=1

(OT
X(−n)→ FT

i ),

each OT
X(−n)→ FT

i restricted to the supporting curve of Fi, is identified with QT
i appearing in

0→ OT
C (−n)→ FT

i → QT
i → 0,

and by Proposition 1.8 of [28] Qi is identified with a subsheaf of the quasi-coherent sheaf

lim−→
r

Hom(mr,OC)/OC .
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It is easily seen that the cokernel of the original G-equivariant highly frozen triple , restricted to C

and identified with
⊕2

i=1Q
T
i , is a subsheaf of direct sum of two copies of the same quasi-coherent

sheaf.

The above proposition enables one to use the method of melting crystals as described in Section 2.2

in [27]. Here we omit discussion about monomial ideals since they are discussed in the literature and

instead we directly apply the method of PT in [27] to our setup. We solve two examples over two

specific partitions. First we do a calculation for X given by total space of OP1(−1)⊕OP1(−1)→ P1.

We will also give a computational recipe for the case where X is given by total space of OP2(−3)→

P2.

11.0.1 Examples

Example 11.2. (Local P1). Assume that X is given as the total space of OP1(−1) ⊕ OP1(−1)

over P1. There exists two affine patches Uα and Uβ covering X. The partitions associated to

the Newton polyhedron of X on each patch are given as three dimensional partitions with µ1 =

(1), µ2 = (0), µ3 = (0) [27] (Example 4.9). We compute the vertex associated to the moduli stack

of highly frozen triples of rank=2. The following picture describes the fibers of X over 0 and ∞ on

the base P1. The hyperplane H is given as a fixed choice of equivariant structure.

0 ∞

P1H

Uα Uβ

Let Uα,Uβ denote affine open patches over the divisors 0,∞ on the base P1 respectively. In order

to obtain the Poincaré polynomial of F one needs a fixed choice of equivariant structure. Let C∗
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act on C4 by

t(x0, x1, x2, x3) = (tx0, tx1, t
−1x2, t

−1x3).

We identify X as a quotient X ∼= (C4\Z)/C∗ where Z ⊂ C4 is obtained by setting x0 = x1 = 0. Let

([x0 : x1], x2, x3) denote the coordiantes in X where [x0 : x1] denote the homogeneous coordinates

along the base P1 and x2, x3 denote the fiber coordinates. Locally in the Uα and Uβ patches the

defining coordinates are given as (x1
x0
, x2x0, x3x0) and (x0

x1
, x2x1, x3x1) respectively. Consider the

Uα patch. Let us denote the local coordinates in this patch by (x̃1, x̃2, x̃3) where x̃1 = x1
x0
, x̃2 =

x2x0, x̃3 = x3x0. Let H ⊂ X denote the hyperplane obtained as the fiber of X over 0 ∈ P1, i.e

locally in Uα by setting x̃1 = 0. Now consider the action of T = C3 on X where locally over Uα is

given by

(λ1, λ2, λ3) · x̃i = λi · x̃i.

We identify an action of (C∗)2 on X which preserves the Calabi-Yau form by considering a subtorus

T′ ⊂ T such that

T′ = {(λ1, λ2, λ3) ∈ T | λ1λ2λ3 = 1}. (11.2)

Let t̃1, · · · , t̃3 denote the characters corresponding to the action of λi. Identify OX(−1) ∼= OX(−H).

Locally over Uα the Poincaré polynomial of OX(−n) |Uα is obtained as,

t̃n1
(1− t̃2)(1− t̃2)(1− t̃3)

.

Restriction to the affine open patch β is equivalent to the change of local variables,

t̃1 7→ t̃−1
1

t̃2 7→ t̃2t̃1

t̃3 7→ t̃3t̃1,

(11.3)
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hence the Poincaré polynomial of OX(−n) |Uβ is obtained by:

1
(1− t̃−1

1 )(1− (t̃2t̃1))(1− (t̃3t̃1))
.

Note that in this case the terms Bn
α and Bn

β in (10.9) are t̃n1 and 1 respectively. Finally the

T-character of the Poincaré polynomial of OX(−n) |Uαβ is obtained as,

(
1

(1− t̃2)(1− t̃3)

)
δ(t̃1),

here the term Bn
αβ in (10.10) is equal to 1. The vertex in (10.9) over the two patches α and β is

obtained as follows:

trR−χ((I•)α,(I•)α)
= Ch(FT

α ) · (w−1
1 + w−1

2 )
t̃n1

− Ch(FT
α ) · (w1 + w2) · t̃n1

t̃1t̃2t̃3

+ Ch(FT
α )Ch(FT

α )
(1− t̃1)(1− t̃2)(1− t̃3)

t̃1t̃2t̃3
+

1− (w1+w2)2

w1w2

(1− t̃1)(1− t̃2)(1− t̃3)

trR−χ((I•)β,(I•)β)
= Ch(FT

β ) · (w−1
1 + w−1

2 )−
Ch(FT

β ) · (w1 + w2)

t̃−1
1 (t̃2t̃1)(t̃3t̃1)

+ Ch(FT
β )Ch(FT

β )
(1− t̃−1

1 )(1− (t̃2t̃1))(1− (t̃3t̃1))
t̃−1
1 (t̃2t̃1)(t̃3t̃1)

+
1− (w1+w2)2

w1w2

(1− t̃−1
1 )(1− (t̃2t̃1))(1− (t̃3t̃1))

.

(11.4)

Similarly the edge character in (10.10) is obtained as follows:

trR−χ((I•)αβ,(I•)αβ)
=
(

Ch(FT
αβ) · (w−1

1 + w−1
2 )−

Ch(FT
αβ) · (w1 + w2)

t̃2t̃3
+

Ch(FT
αβ)Ch(FT

αβ)
((1− t̃2)(1− t̃3)

t̃2t̃3
+

1− (w1+w2)2

w1w2

(1− t̃2)(1− t̃3)

)
δ(t̃1).

(11.5)

Now we compute Ch(FT
α ),Ch(FT

β ),Ch(FT
αβ). Let us for the moment assume that the G-fixed locus
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of the moduli stack is composed of only one component. Later we extend our computation to the

more general case. Let QG denote the cokernel Coker(φG) associated to OX(−n)⊕2,G φG

−−→ FG. Let

L(QG) = k be the length of QG. Suppose L(QG |Uα) = k1 and L(QG |Uβ ) = k2 hence k1 + k2 = k.

Now use the fact that by construction QG ∼= QT
1 ⊕QT

2 . Let L(QT
1 |Uα) = n1 and L(QT

2 |Uα) = n2.

Moreover assume L(QT
1 |Uβ ) = c1 and L(QT

2 |Uβ ) = c2. So this means that we have the constraint

that

n1 + n2 = k1 and c1 + c2 = k2.

It is seen that the box contribution associated to QG is obtained by considering the box contribu-

tions associated to QT
1 and QT

2 as follows:

Ch(FG
α ) =

t̃−n1
1

(1− t̃1)
+

t̃−n2
1

(1− t̃1)

Ch(FG
β ) =

t̃c11

(1− t̃−1
1 )

+
t̃c21

(1− t̃−1
1 )

(11.6)

6

-

6

-

n1 n2

x1
x0

x2
x0

QT
1 |Uα : QT

2 |Uα :

x1
x0

x2
x0

	 	

x3
x0

6

-

6

-

c1 c2

x0
x1

x2
x1

x0
x1

x2
x1

QT
1 |Uβ : QT

2 |Uβ :

	 	
x3
x1

x3
x1

x3
x0
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Now we consider the case that the G-fixed locus of the moduli stack contains more than one

component. In this case to compute the contribution of box configurations one needs to consider

all possible tuples of six integers (k1, k2, n1, n2, c1, c2) such that for a fixed value of k the following

three relations are satisfied:

n1 + n2 = k1, c1 + c2 = k2 and k1 + k2 = k.

Hence we obtain the following identities:

Ch(FG
α ) =

∑
n1+n2=k1

(
t̃−n1
1

(1− t̃1)
+

t̃−n2
1

(1− t̃1)

)

Ch(FG
β ) =

∑
c1+c2=k2

(
t̃c11

(1− t̃−1
1 )

+
t̃c21

(1− t̃−1
1 )

)
for all k1, k2 such that k1 + k2 = k . (11.7)

Moreover over the G-character of FG restricted to Uαβ is given by Ch(FG
αβ) = 2 · δ(t1). Hence the

vertex character over Uα is obtained as:

trR−χ(I•α,I•α) = (w−1
1 + w−1

2 ) ·
∑

n1+n2=k1

(
t̃−n1−n
1

(1− t̃1)
+
t̃−n2−n
1

(1− t̃1)

)

− (w1 + w2) · 1
t̃1t̃2t̃3

∑
n1+n2=k1

(
t̃n+n1
1

(1− t̃−1
1 )

+
t̃n+n2
1

(1− t̃−1
1 )

)

−
∑

n1+n2=k1
m1+m2=k1

[
t̃m1−n1+1
1

(1− t̃1)2
+
t̃m2−n1+1
1

(1− t̃1)2
+
t̃m1−n2+1
1

(1− t̃1)2
+
t̃m2−n2+1
1

(1− t̃1)2

]

· (1− t̃1)(1− t̃2)(1− t̃3)
t̃1t̃2t̃3

+
1− (w1+w2)2

w1w2

(1− t̃1)(1− t̃2)(1− t̃3)
.

(11.8)
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The vertex character over Uβ is obtained as:

trR−χ(I•β ,I
•
β) = (w−1

1 + w−1
2 ) ·

∑
c1+c2=k2

(
t̃c11

(1− t̃−1
1 )

+
t̃c21

(1− t̃−1
1 )

)

− (w1 + w2) · 1
t̃−1
1 (t̃2t̃1)(t̃3t̃1)

∑
c1+c2=k2

(
t̃−c11

(1− t̃1)
+

t̃−c21

(1− t̃1)

)

−
∑

c1+c2=k2
m1+m2=k2

[
t̃c1−m1+1
1

(1− t̃1)2
+
t̃c1−m2+1
1

(1− t̃1)2
+
t̃c2−m1+1
1

(1− t̃1)2
+
t̃c2−m2+1
1

(1− t̃1)2

]

· (1− t̃−1
1 )(1− (t̃2t̃1))(1− (t̃3t̃1))
t̃−1
1 (t̃2t̃1)(t̃3t̃1)

+
1− (w1+w2)2

w1w2

(1− t̃−1
1 )(1− (t̃2t̃1))(1− (t̃3t̃1))

.

(11.9)

The edge character over Uαβ is obtained as:

trR−χ(I•αβ ,I
•
αβ) =

2(w−1
1 + w−1

2 )− 2 · (w1 + w2)
t̃2t̃3

+ 2 · (1− t̃2)(1− t̃3)
t̃2t̃3

+
1− (w1+w2)2

w1w2

(1− t̃2)(1− t̃3)

 δ(t̃1).

(11.10)

The G-character of the virtual tangent space in (10.13) is obtained by the following equation:

trR−χ(I•,I•) = trR−χ(I•α,I•α) + trR−χ(I•β ,I
•
β) − trR−χ(I•αβ ,I

•
αβ) (11.11)

The computation of the right hand side of (11.11) would immediately become complicated for large

values of k, hence we only do the calculations for k = 1. Let Q1 denote the G-fixed component of the

moduli stack of rank 2 highly frozen triples over which the highly frozen triples OX(−n)⊕2,G φ−→ FG

satisfy the condition that L(Coker(φ)G) = 1. By definition of the equivariant vertex in Remark

10.1 the coefficient of the degree 1 term in the vertex is obtained by the integral of the evaluation

of the contribution of VQ1 on Q1, i.e:

w(Q1) =
∫
Q1
e(TQ1)e(−VQ1) =

(s1)(−ns1 + s2 + s3)(s1 + ns1)
(s2 + s3)3

, (11.12)

where si denote the equivariant characters corresponding to t̃i, for similar discussions look at [27]
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(Section 4.7) as well as the calculation in [27] (Lemma 5). Here we omit the calculations required

for obtaining the right hand side of (11.12) however, we point out that the right hand side of (11.12)

contains no contribution of wi characters firstly because of so many cancelations involving the terms

whose coefficients are given by polynomials in characters wi and secondly because some of such

terms are coupled with non-homogeneous polynomials of degree 1 in ti (for example w1w2+1+ti for

i = 1, 2, 3) whose G-equivariant Euler class vanishes since e(w1w2+1+ti) = (d1+d2)·e(1)·e(ti) = 0

(here di = c1(Lwi) ∈ A∗G where Lwi are the line bundles associated to the characters wi). By the

definition of the Calabi-Yau torus T′ in (11.2), si satisfy the property that s1 + s2 + s3 = 0.

Hence:

w(Q1) = (n+ 1)2. (11.13)

Example 11.3. (Local P2). This means that X is given as the total space of OP2(−3)→ P2. In

this case there exists 3 torus fixed curves in the base P2 each of which are isomorphic to P1 and

they intersect over the 3 torus fixed points [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1]. Let Uα,Uβ,Uγ , denote

the affine open patches respectively. The outgoing partitions associated to the Newton polyhedron

of X on each patch are given as three dimensional partitions with µ1 = (1), µ2 = (1), µ3 = (0), look

at [27] (Section 2.3) for more detail about partitions. To avoid unnecessary repetitions, we only

provide the formula to compute the vertex, the interested reader can pursue the computations on

his/her own.

Uα

Uγ

Uβ
P2

H

•

• •

C1 C2

C3
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Let C∗ acts on C4 by

t(x0, x1, x2, x3) = (tx0, tx1, tx2, t
−3x3).

We identify X as a quotient X ∼= (C4\Z)/C∗ where Z ⊂ C4 is defined by setting x0 = x1 = x2 = 0.

Let ([x0 : x1 : x2], x3) denote the coordiantes in X where [x0 : x1 : x2] denote the homogeneous

coordinates over the base P2 and x3 denotes the fiber coordinate. Locally in the Uα, Uβ and

Uγ patches the defining coordinates are given as (x1
x0
, x2
x0
, x3x

3
0) and (x0

x1
, x2
x1
, x3x

3
1) and (x0

x2
, x1
x2
, x3x

3
2)

respectively. Consider the Uα patch. Let us denote the local coordinates in this patch by (x̃1, x̃2, x̃3)

where x̃1 = x1
x0
, x̃2 = x2

x0
, x̃3 = x3x

3
0. Let H ⊂ X denote the hyperplane obtained by x̃1 = 0. Now

consider the action of T = C3 on X where locally over Uα is given by

(λ1, λ2, λ3) · x̃i = λi · x̃i.

Here again we identify an action of (C∗)2 on X which preserves the Calabi-Yau form as in (11.2).

Let t̃1, · · · , t̃3 denote the characters corresponding to the action of λi. Identify OX(−1) ∼= OX(−H).

Locally over Uα the Poincaré polynomial of OX(−n) |Uα is obtained as,

t̃n1
(1− t̃2)(1− t̃2)(1− t̃3)

.

Restriction to the affine open patch β is equivalent to change of local variables,

t̃1 7→ t̃−1
1

t̃2 7→
t̃2

t̃1

t̃3 7→ t̃3t̃
3
1,

(11.14)

hence the Poincaré polynomial of OX(−n) |Uβ is obtained by:

1

(1− t̃−1
1 )(1− ( t̃2

t̃1
))(1− (t̃3t̃31))

.
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Restriction over the affine patch Uγ is equivalent to the change of local variables:

t̃1 7→
t̃1

t̃2

t̃2 7→ t̃−1
2

t̃3 7→ t̃3t̃
3
2.

(11.15)

Note that unlike the case for local P1, OX(−H) has nontrivial module structure over Uα and Uγ ,

hence the Poincaré polynomial of OX(−n) |Uγ is obtained by:

( t̃1
t̃2

)n

(1− ( t̃1
t̃2

))(1− t̃−1
2 )(1− (t̃3t̃32))

.

The terms Bn
α, Bn

β and Bn
γ in (10.9) are t̃n1 , 1 and t̃n1

t̃n2
respectively. The T-character of the Poincaré

polynomial of OX(−n) |Uαβ , OX(−n) |Uαγ and OX(−n) |Uβγ are obtained respectively as:

(
1

(1− t̃2)(1− t̃3)

)
δ(t̃1)(

t̃n3
(1− t̃1)(1− t̃3)

)
δ(t̃2)(

1
(1− t̃−1

1 )(1− t̃3t̃31)

)
δ(
t̃2

t̃1
).

(11.16)

The terms Bn
αβ, Bn

αγ , Bn
βγ in (10.10) are equal to 1, t̃n3 and 1 respectively.
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The vertex in (10.9) over the two patches α and β is obtained as follows:

trR−χ((I•)α,(I•)α)
= Ch(FT

α ) · (w−1
1 + w−1

2 )
t̃n1

− Ch(FT
α ) · (w1 + w2)t̃n1
t̃1t̃2t̃3

+ Ch(FT
α )Ch(FT

α ) · (1− t̃1)(1− t̃2)(1− t̃3)
t̃1t̃2t̃3

+
1− (w1+w2)2

w1w2

(1− t̃1)(1− t̃2)(1− t̃3)

trR−χ((I•)β,(I•)β)
= Ch(FT

β ) · (w−1
1 + w−1

2 )−
Ch(FT

β ) · (w1 + w2)

t̃−1
1 ( t̃2

t̃1
)(t̃3t̃31)

+ Ch(FT
β )Ch(FT

β ) ·
(1− t̃−1

1 )(1− ( t̃2
t̃1

))(1− (t̃3t̃31))

t̃−1
1 ( t̃2

t̃1
)(t̃3t̃31)

+
1− (w1+w2)2

w1w2

(1− t̃−1
1 )(1− ( t̃2

t̃1
))(1− (t̃3t̃31))

.

(11.17)

Moreover:

trR−χ((I•)γ,(I•)γ )
= Ch(FT

α ) · (w−1
1 + w−1

2 ) · t̃n2
t̃n1

−
Ch(FT

γ ) · (w1 + w2)t̃n−1
1

t̃n+1
2 t̃3

+ Ch(FT
γ )Ch(FT

γ ) ·
(1− t̃1

t̃2
)(1− t̃−1

2 )(1− t̃3t̃32)

t̃1t̃2t̃3
+

1− (w1+w2)2

w1w2

(1− t̃1t̃−1
2 )(1− t̃−1

2 )(1− t̃3t̃32)
.

(11.18)

Similarly the edge characters over Uαβ,Uαγ ,Uβγ are obtained as follows:

trR−χ((I•)αβ,(I•)αβ)
=
(

Ch(FT
αβ) · (w−1

1 + w−1
2 )−

Ch(FT
αβ) · (w1 + w2)

t̃2t̃3
+

Ch(FT
αβ)Ch(FT

αβ) · (1− t̃2)(1− t̃3)
t̃2t̃3

+
1− (w1+w2)2

w1w2

(1− t̃2)(1− t̃3)

)
δ(t̃1).

(11.19)
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trR−χ((I•)αγ,(I•)αγ )
=
(

Ch(FT
αγ) · (w−1

1 + w−1
2 ) · t̃−n3 −

Ch(FT
αγ) · (w1 + w2) · t̃n3

t̃1t̃3
+

Ch(FT
αγ)Ch(FT

αγ) · (1− t̃1)(1− t̃3)
t̃1t̃3

+
1− (w1+w2)2

w1w2

(1− t̃1)(1− t̃3)

)
δ(t̃2).

(11.20)

trR−χ((I•)βγ,(I•)βγ )
=
(

Ch(FT
βγ) · (w−1

1 + w−1
2 )−

Ch(FT
βγ) · (w1 + w2)

t̃21t̃3
+

Ch(FT
βγ)Ch(FT

βγ) · (1− t̃−1
1 )(1− t̃3t̃31)
t̃21t̃3

+
1− (w1+w2)2

w1w2

(1− t̃−1
1 )(1− t̃3t̃31)

)
δ(
t̃2

t̃1
).

(11.21)

Given the characters corresponding to FT over each patch, by substitution in equation (10.13),

one computes the vertex for arbitrary length k contributions. Note the difference in the box

configurations in this case, in each patch the box configuration is given by the Young diagrams

below.

6

-

6

-

n1 n2
x1
x0

x2
x0

QT
1 |Uα : QT

2 |Uα :

QT
2 |Uβ :QT

1 |Uβ :

x1
x0

x2
x0

	 	

x3
x0

x3
x0

m2m1

6

-

6

-

c1 c2
x0
x1

x2
x1

x0
x1

x2
x1

	 	

x3
x1

x3
x1

l2l1
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6

-

6

-

d1 d2
x1
x2

x0
x2

x1
x2

x0
x2

	 	
x3
x2

x3
x2

QT
1 |Uγ : QT

2 |Uγ :
s2s1

Here the condition for L(Q) = k (for fixed k) is given by:

m1+m2+n1+n2−2 = k1, l1+l2+c1+c2−2 = k2 , s1+s2+d1+d2−2 = k3 and k1+k2+k3 = k.
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Chapter 12

Background on Wallcrossing

Joyce and Song in [18] compute the invariants of rank 1 frozen triples using the method of wall cross-

ing. The general philosophy is to exploit the existence of an auxiliary category Bp whose objects

consist of frozen triples (E,F, φ) but this time F , instead of only being pure and one dimensional,

needs to be semistable with fixed reduced Hilbert polynomial equal to p. In this analysis, the

authors classify the objects in Bp based on their numerical class (β, r), where β denotes the Chern

character of F and r denotes the rank of E.

Strategy:

The key strategy is to define two suitable weak stability conditions τ• and τ̃ for the objects of

the category Bp. The τ̃ -stable objects in Bp are given by objects closely related to the stable frozen

triples and naively, (on the other side of the wall), the τ•-stable objects in Bp are given by simpler

objects such as Giseker semistable sheaves. Changing the weak stability condition, from τ• to τ̃

and using the machinery of the Ringel-Hall algebra of stack functions discussed in [18], provides

one with a wall-crossing identity in Bp. Eventually one relates the weighted Euler characteristic of

the moduli stack of τ̃ -(semi)stable objects to the weighted Euler characteristic of the moduli stack

of τ•-stable objects, which contains the Giseker (semi)stable sheaves. In the remaining chapters

we discuss the computation of invariants of τ̃ -semistable objects in Bp with numerical class (β, 2),

following the Kontsevich-Soibelman [22] and Joyce-Song [18] wallcrossing machinery.
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12.1 Preliminary Definitions

Definition 12.1. (Joyce and Song) [18] (Definition 13.1). Let X be a Calabi-Yau threefold

equipped with ample line bundle OX(1). Let τ denote the Giseker stability on the abelian category

of coherent sheaves supported over X. Define Ap to be the sub-category of coherent sheaves whose

objects are zero sheaves and non-zero τ -semistable sheaves with reduced Hilbert polynomial p.

Definition 12.2. (Joyce and Song) [18]. Define category Bp to be the category whose ob-

jects are triples (F, V, φ), where F ∈ Obj(Ap), V is a finite dimensional C-vector space, and

φ : V → Hom(OX(−n), F ) is a C-linear map. Given (F, V, φ) and (F́ , V́ , φ́) in Bp define morphisms

(F, V, φ) → (F́ , V́ , φ́) in Bp to be pairs of morphisms (f, g) where f : F → F́ is a morphism in Ap

and g : V → V́ is a C-linear map, such that the following diagram commutes:

V Hom(OX(−n), F )

V́ Hom(OX(−n), F́ )

φ

g f

φ́

(12.1)

Now we define the numerical class of objects in Bp:

Definition 12.3. Let A denote any abelian category. Let K0(A) denote the Grothendieck group

of A generated by isomorphism classes [E] of objects E in A which satisfy the relation [E] =

[F ] + [G] if there exists a short exact sequence 0 → F → E → G → 0 in A. The Euler form

χ̄ : K0(A)×K0(A)→ Z is defined as:

χ̄([E], [F ]) =
∑
i≥0

(−1)i dimExti(E,F ).

Definition 12.4. Let I = {α ∈ K0(A) | χ̄(α, β) = χ̄(β, α) = 0,∀β ∈ K0(A)}. Define the

numerical Grothendieck group of A to be the quotient of K0(A) by the two sided kernel of χ̄, i.e
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Knum(A) = K0(A)/I. Define the positive cone of A , C(A) ⊂ K(A) = Knum(A) to be

C(A) = {[E] ∈ K(A) | E � 0, E ∈ A}. (12.2)

The above definitions extend to the case where the abelian category is Ap:

Definition 12.5. Define K(Bp) = K(Ap)⊕ Z where for (F, V, φ) ∈ Bp, [(F, V, φ)] = ([F ],dim(V )).

We state following results by Joyce and Song without proof.

Lemma 12.6. (Joyce and Song) [18] (Lemma 13.2). The category Bp is abelian and Bp satisfies

the condition that for the underlying sheaves F the following is true:

If [F ] = 0 ∈ Knum(Ap) then F ∼= 0, moreover Bp is noetherian and artinian and the moduli stacks

M
(β,d)
Bp are of finite type ∀(β, d) ∈ C(Bp).

Remark 12.7. The category Ap embeds as a full and faithful sub-category in Bp by F → (F, 0, 0),

moreover it is shown by Joyce and Song in [18] that every object (F, V, φ) sits in a short exact

sequence.

0→ (F, 0, 0)→ (F, V, φ)→ (0, V, 0)→ 0 (12.3)

Definition 12.8. (Joyce and Song) [18]. Define χ̄Bp : Knum(Bp)×Knum(Bp)→ Z by:

χ̄Bp((β, d), (γ, e)) = χ̄(β − d[OX(−n)], γ − e[OX(−n)])

= χ̄(β, γ)− dχ̄([OX(−n)], γ) + eχ̄([OX(−n)], β)

(12.4)

Definition 12.9. (Joyce and Song) [18] (Definition. 13.5). Define the positive cone of Bp by:

C(Bp) = {(β, d) | β ∈ C(Ap) and d ≥ 0 or β = 0 and d > 0}.

Next we recall the definition of weak (semi)stability from [18] for a general abelian categoryA.

Definition 12.10. (Joyce and Song)[18](Definition. 3.5). Let A be an abelian category, K(A) be

the quotient of K0(A) by some fixed subgroup, and C(A) the positive cone of A. Suppose (T,≤)

is a totally ordered set and τ : C(A) → T a map. We call (τ, T,≤) a stability condition on A if
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whenever α, β, γ ∈ C(A) with β = α+ γ then either τ(α) < τ(β) < τ(γ) or τ(α) > τ(β) > τ(γ) or

τ(α) = τ(β) = τ(γ). We call (τ, T,≤) a weak stability condition on A if if whenever α, β, γ ∈ C(A)

with β = α+ γ then either τ(α) ≤ τ(β) ≤ τ(γ) or τ(α) ≥ τ(β) ≥ τ(γ).

For such (τ, T,≤), we say that a nonzero object E in A is

1. τ -semistable if ∀S ⊂ E where S � 0, we have τ([S]) ≤ τ([E/S])

2. τ -stable if ∀S ⊂ E where S � 0, we have τ([S]) < τ([E/S])

3. τ -unstable if it is not semistable.

In our analysis we apply the Definition 12.10 to objects in Ap.

Remark 12.11. Note that the crucial point in understanding the weak stability of an object in

an abelian category is that the criterion for stability is given by a comparison between sub-objects

of this given object and its quotients which is different from the usual notion of stability.

Next we define the notion of permissible stability condition from [18] for the moduli stack of objects

in a general abelian category A. Here we assume that the moduli stack of τ -(semi)stable objects

in A exists.

Definition 12.12. (Joyce and Song) [18] (Definition. 3.7). Let (τ, T,≤) be a weak stability con-

dition on A. For α ∈ K(A) let Mα
ss and Mα

st denote the moduli stacks of τ -(semi)stable objects

E ∈ A with class [E] = α in K(A). We call (τ, T,≤) permissible if

1. A is τ -Artinian (There exists no infinite chains of sub-objects with reducing slope of the subse-

quent quotients).

2. Mα
ss(τ) is a finite type sub-stack of Mα

A ∀α ∈ C(A).

One example of an abelian category for which there exists a moduli stack of (semi)stable objects

which satisfy the condition in Definition 12.12 is the category of coherent sheaves, Coh(X). In that

case τ is the Giseker stability condition and from usual arguments, it is clear that there exist finite

type open substacks Mα
s (τ) and Mα

ss(τ) of τ stable and τ -semistable sheaves F ∈ A with numerical

class α ∈ Knum(Coh(X)).

Definition 12.13. (Joyce and Song) [18] (Definition. 13.5). Define the weak stability conditions

τ•, τ̃ and τn in Bp by:
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1. τ•(β, d) = 0 if d = 0 and τ•(β, d) = −1 if d > 0.

2. τ̃(β, d) = 0 if d = 0 and τ̃(β, d) = 1 if d > 0.

3. τn(β, d) = 0 ∀(β, d).
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Chapter 13

Moduli stack of objects in Bp

In this chapter we describe the moduli stack of semistable objects in Bp. We construct this moduli

stack of for the τ̃ -(weak)semistability condition. The constructions are similar for the case of the

τ•-(weak)semistability condition. In order to construct the moduli stack we give the definition of

a new set of objects called the rigidified objects in Bp.

Remark 13.1. By [18] (Page 185) there exists a natural embedding functor F : Bp → D(X) which

takes (F, V, φV ) ∈ Bp to an object in the derived category given by · · · → 0→ V ⊗OX(−n)→ F →

0→ · · · where V ⊗OX(−n) and F sit in degree −1 and 0. Assume that dim(V ) = r. In that case

V ⊗ OX(−n) ∼= OX(−n)⊕r. Hence one may view an object (F, V, φV ) ∈ Bp as a triple (E,F, φ)

represented by a complex φ : E → F such that E ∼= OX(−n)⊕r (note the similarity between the

objects in Bp and frozen triples in Definition 2.4).

Definition 13.2. Fix a parametrizing scheme of finite type S. Let πX : X × S → X and πS :

X × S → S denote the natural projections. Use the natural embedding functor F : Bp → D(X)

[18] (Page 185). Define the S-flat family of objects in Bp of type (β, r) as a complex

π∗SM ⊗ π∗XOX(−n)
ψS−−→ F

sitting in degree −1 and 0 such that F is given by an S-flat family of semistable sheaves with

fixed reduced Hilbert polynomial p with Ch(F ) = β and M is a vector bundle of rank r over

S. A morphism between two such S-flat families is given by a morphism between the complexes

π∗SM ⊗ π∗XOX(−n)
ψS−−→ F and π∗SM

′ ⊗ π∗XOX(−n)
ψ′S−−→ F ′:
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π∗SM ⊗ π∗XOX(−n) F

π∗SM
′ ⊗ π∗XOX(−n) F ′.

ψS

ψ′S

Moreover an isomorphism between two such S-flat families in Bp is given by an isomorphism between

the associated complexes π∗SM ⊗ π∗XOX(−n)
ψS−−→ F and π∗SM

′ ⊗ π∗XOX(−n)
ψ′S−−→ F ′:

π∗SM ⊗ π∗XOX(−n) F

π∗SM
′ ⊗ π∗XOX(−n) F ′.

ψS

∼= ∼=
ψ′S

Note the similarity between definition of isomorphism between S-flat families of objects of type

(β, r) in Bp and the isomorphism between two S-flat families of frozen triples of type (P2, r) in

Definition 2.7.

From now on whenever we mention objects in Bp we mean the objects which lie in the image of

the natural embedding functor F : Bp → D(X) [18] (Page 185). Moreover by the S-flat family

of objects in Bp, their morphisms (or isomorphisms) we mean the corresponding definitions as in

Definition 13.2. Now we define the rigidified objects in Bp. We give the category of these objects

a new name BR
p . However, we emphasize that it is implicitly understood that for us the category

BR
p is the same as Bp together with an additional structure:

Definition 13.3. Define the category BR
p to be the category of rigidified objects in Bp whose objects

are defined by tuples (F,C⊕r, ρ) where F is a coherent sheaf with reduced Hilbert polynomial p

and Ch(F ) = β and ρ : Cr → Hom(OX(−n), F ) (for some r). Given two rigidified objects of fixed

given type (β, r) as (F,C⊕r, ρ) and (F ′,C⊕r, ρ′) in BR
p define morphisms (F,C⊕r, ρ)→ (F ′,C⊕r, ρ′)
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to be given by a morphism f : F → F ′ in Ap such that the following diagram commutes:

C⊕r Hom(OX(−n), F )

C⊕r Hom(OX(−n), F́ ).

ρ

ρ′
fid

(13.1)

Remark 13.4. There exists a natural embedding functor FR : BR
p → D(X) which takes (F,C⊕r, ρ) ∈

BR
p to an object in the derived category given by · · · → 0→ C⊕r⊗OX(−n)→ F → 0→ · · · where

C⊕r ⊗ OX(−n) sits in degree −1 and F sits in degree 0. One may view an object in BR
p as a

quadruple (E,F, φ, ψ) represented by a complex φ : E → F such that ψ : E ∼= OX(−n)⊕r is a fixed

choice of isomorphism (note the similarity between the objects in BR
p and highly frozen triples in

Definition 2.9).

Definition 13.5. Fix a parametrizing scheme of finite type S. Let πX : X × S → X and πS :

X × S → S denote the natural projections. Use the natural embedding functor FR : BR
p → D(X)

in Remark 13.4. An S-flat family of objects of type (β, r) in BR
p is given by a complex

π∗SO⊕rS ⊗ π
∗
XOX(−n)

ψS−−→ F

sitting in degree −1 and 0 such that F is given by an S-flat family of semistable sheaves with

fixed reduced Hilbert polynomial p with Ch(F ) = β. A morphism between two such S-flat families

in BR
p is given by a morphism between the complexes π∗SO

⊕r
S ⊗ π∗XOX(−n)

ψS−−→ F and π∗SO
⊕r
S ⊗

π∗XOX(−n)
ψ′S−−→ F ′:

π∗SO
⊕r
S ⊗ π∗XOX(−n) F

π∗SO
⊕r
S ⊗ π∗XOX(−n) F ′.

ψS

idOX×S
ψ′S

Moreover an isomorphism between two such S-flat families in BR
p is given by an isomorphism

between the associated complexes π∗SO
⊕r
S ⊗ π∗XOX(−n)

ψS−−→ F and π∗SO
⊕r
S ⊗ π∗XOX(−n)

ψ′S−−→ F ′:
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π∗SO
⊕r
S ⊗ π∗XOX(−n) F

π∗SO
⊕r
S ⊗ π∗XOX(−n) F ′.

ψS

idOX×S ∼=
ψ′S

Note the similarity between definition of isomorphism between S-flat families of objects of type

(β, r) in BR
p and the isomorphism between two S-flat families of highly frozen triples of type (P2, r)

in definitions 2.9 and 2.10.

Similar to the way that we treated objects in Bp from now on whenever we mention objects in BR
p

we mean the objects which lie in the image of the natural embedding functor FR : BR
p → D(X) in

Remark 13.4. Moreover by the S-flat family of objects in BR
p , their morphisms (or isomorphisms)

we mean the corresponding definitions as in Definition 13.5.

One associates the notion of weak τ̃ -semistability (or τ•-stability) to objects in Bp and BR
p . Now

we show that there exists a moduli functor M
(β,r)
Bp,ss(τ̃) : Sch/C→ Sets which sends a C-scheme S to

an S-flat family of τ̃ -semsistable objects of type (β, r) in Bp. Moreover we show that this moduli

functor (as a functor with groupoid sections) is equivalent to a quotient stack. Finaly we show that

the moduli stack M
(β,r)
Bp,ss(τ̃) is given by a stacky quotient of M

(β,r)

BR
p ,ss

(τ̃) (which itself is defined as

the moduli stack of τ̃ -semistable objects of type (β, r) in BR
p ).

According to Definition 12.2 an object in the category Ap consists of semistable sheaves with fixed

Hilbert polynomial p. As discussed in [13] (Theorem 3.37), the family of τ -semistable (i.e Giseker

semistable) sheaves F on X such that F has a fixed Hilbert polynomial is bounded. Hence the

family of τ -semistable sheaves F on X with Hilbert polynomial P = k
d! ·p(t) for any k = 0, 1, · · · , N

is also bounded. We consider a rigidified object [O⊕rX (−n) → F ] of type (β, r). Moreover, we use

the fact that by the Grothendieck-Riemann-Roch theorem fixing the Chern character (and hence

the second Chern character) of a pure sheaf with one dimensional support is equivalent to fixing

its Hilbert polynomial. Hence we start our construction with the assumption that the sheaf F

appearing in the corresponding rigidified objects has a fixed Hilbert polynomial.
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13.1 The underlying parameter scheme

Given a bounded family of τ -semistable sheaves F with fixed Hilbert polynomial P there exists an

integer m such that for every sheaf F in the family, F (m) is globally generated. First we construct

an S-flat family of coherent sheaves F with fixed Hilbert polynomial P . To avoid confusion, here

we slightly change our notation. We denote by F the family as a coherent OX×S-module and by

F we mean the fiber of this family over a geometric point of S. By construction, the family of

coherent sheaves F appearing in a τ̃ -semistable rigidified object is bounded and moreover F (n) is

globally generated for all n ≥ m.

Fix such n and let V be a complex vector space of dimension d = P (n) given as V = H0(F ⊗ Ln).

The line bundle L, as defined before, is the fixed polarization over X. Twisting the sheaf F

by the fixed large enough n would ensure one to get a surjective morphism of coherent sheaves

V ⊗ OX(−n) → F . One can construct a scheme parametrizing the flat quotients of V ⊗ OX(−n)

with fixed given Hilbert polynomial. This by usual arguments provides us with Grothendieck’s

Quot-scheme. Here to shorten the notation we use Q to denote QuotP (V ⊗OX(−n)).

Now consider a sub-locus Qss ⊂ Q which parametrizes the Giseker semistable sheaves F with fixed

Hilbert polynomial P .

Definition 13.6. Define P over Qss to be the bundle whose fibers parametrize H0(F (n)). The

fibers of the bundle P⊕r parametrize H0(F (n))⊕r.

In other words the fibers of P⊕r parametrize the maps O⊕rX (−n)→ F (which define the complexes

representing the objects in BR
p ). Now let S

P,r
ss (τ̃) ⊂ P⊕r be given as an open subscheme of P⊕r

whose fibers parametrize τ̃ -semistable objects in BR
p .

13.2 Stacky structure of M
(β,r)
Bp,ss

(τ̃) and M
(β,r)
BR

p,ss
(τ̃).

By definitions 13.2 and 13.5 it is easily seen that we have already given the strategy to construct

the moduli stack of objects of type (β, r) in Bp and BR
p in Chapter 3:

Theorem 13.7. Let S
(β,r)
ss (τ̃) be the underlying scheme in Section 13.1 parametrizing τ̃ -semistable
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rigidified objects of type (β, r). Let G := GLr(C) × GL(V ) where V is as in Section 13.1. Let[
S

(β,r)
ss (τ ′)
G

]
be the stack theoretic quotient of S

(β,r)
ss (τ̃) by G. There exists an isomorphism of

groupoids

M
(β,r)
Bp,ss(τ̃) ∼=

[
S

(β,r)
ss (τ̃)
G

]
.

In particular M
(β,r)
Bp,ss(τ̃) is an Artin stack.

Proof. Use the fact that (for F ∈ Coh(X)) fixing β is equivalent to fixing the Hilbert polynomial

P . Now replace τ ′-stability and S
P2,r
ss (τ ′) in Theorem 3.9 with τ̃ -stability and S

β,r
ss (τ̃) respectively.

The rest of the proof follows directly from proof of Theorem 3.9 and Corollary 3.11.

Corollary 13.8. Apply the proof of Theorem 13.7 to S
(β,r)
ss (τ̃) and G = GL(V ) and obtain a

natural isomorphism between M
(β,r)

BR
p ,ss

(τ̃) and
[

S
(β,r)
ss (τ̃)
GL(V )

]
.

One may use this natural isomorphism in order to obtain an alternative definition of the moduli

stack of τ̃ -semistable rigidified objects of type (β, r) as the quotient stack
[

S
(β,r)
ss (τ̃)
GL(V )

]
Corollary 13.9. By Theorem 13.7 and Corollary 13.8 it is true that:

M
(β,r)
Bp,ss(τ̃) =

M
(β,r)

BR
p,ss

(τ̃)

GLr(C)

 (13.2)

Proposition 13.10. The moduli stack, M
(β,r)

BR
p ,ss

(τ̃), is a GLr(C)-torsor over M
(β,r)
Bp,ss(τ̃). It is true

that locally in the flat topology, M
(β,r)
Bp,ss(τ̃) ∼= M

(β,r)

BR
p ,ss

(τ̃) ×
[

Spec(C)
GLr(C)

]
. This isomorphism does not

hold true globally unless r = 1.

Proof. Replace τ ′-stability and S
P2,r
ss (τ ′) in Proposition 3.6 with τ̃ -stability and S

β,r
ss (τ̃) respec-

tively. The rest of the proof follows directly from proof of Proposition 3.6.

Via replacing τ̃ with τ• stability one constructs M
(β,r)
ss,Bp(τ

•) similarly. We state a proposition which

we need later for our computations.

Proposition 13.11. (a). ∀(β, d) ∈ C(Bp) we have natural stack isomorphisms M
(β,0)
ss,Bp(τ

•) ∼=

M
β
ss(τ) (τ stands for Giseker semistability condition and M

β
ss(τ) stands for moduli stack of Giseker
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semistable coherent sheaves with K-theory class β.) which is obtained by identifying (F, 0, 0) with

F , moreover M
(0,1)
ss,Bp(τ

•) ∼= [Spec(C)/Gm] with the unique point given by (0,C, 0). Furthermore,

M
(β,2)
ss,Bp(τ

•) = ∅ for β 6= 0.

(b). M
(0,2)
ss,Bp(τ

•) ∼= [Spec(C)/GL2(C)] with the unique point given by (0,C2, 0).

Proof. The first two parts of part (a) of Proposition 13.11 are proved in [18] (Prop. 15.6). We start

by proving the last part of (a). We know that every object [(F, V, φ)] = (β, 2) fits in a short exact

sequence

0→ (F, 0, 0)→ (F, V, φ)→ (0, V, 0)→ 0,

here [(F, 0, 0)] = (β, 0) and [(0, V, 0)] = (0, 2). By Definition 12.13 τ•(F, 0, 0) = 0 > τ•(0, V, 0) = −1

therefore (F, 0, 0) τ•-destabilizes (F, V, φ) ∀[(F, V, φ)] = (β, 2) and this finishes the proof of last part

of (a).

(b). Note that (0,C2, 0) is a unique point in M
(0,2)
ss,Bp(τ

•) which is made of two copies of (0,C, 0)

which is the unique object in M
(0,1)
ss,Bp(τ

•). Moreover, the only nonzero sub-object that can destabilize

(0,C2, 0) is (0,C, 0). There exists a short exact sequence:

0→ (0,C, 0)→ (0,C2, 0)→ (0,C, 0)→ 0. (13.3)

It is easily seen that τ•(0,C, 0) = τ•(0,C2, 0) = −1 and therefore the sub-object (0,C, 0) does not

destabilize (0,C2, 0) and (0,C2, 0) is weak τ•-semistable. Since the automorphisms of (0,C2, 0) are

given by GL2(C) then M
(0,2)
ss,Bp(τ

•) ∼= [Spec(C)/GL2(C)].
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Chapter 14

Stack function identities in Ringel
Hall algebra

14.1 Stack functions for moduli stack of semistable sheaves

Definition 14.1. (Joyce and Song) [18] (Definition 2.5). Let S be a C-stack with affine geometric

stabilizers. Consider pairs (R, ρ) where R is a finite type algebraic C-stack with affine geometric

stabilizers and ρ : R→ S is a 1-morphism. Two pairs (R, ρ) and (Ŕ, ρ́) are called to be equivalent

if there exists a 1-morphism ι : R→ Ŕ such that in the diagram below:

R Ŕ

S S

ι

ρ ρ́

∼=
(14.1)

the two vertical maps are 2-isomorphic with each other. Write [(R, ρ)] for the equivalence class

of (R, ρ). If (G, ρ |G) represents a sub-pair of (R, ρ) where G is closed in R, then (G, ρ |G) and

(R/G, ρ |R/G) are pairs of the same kind. Define SF(S) to be the Q-vector space generated by

equivalence classes of [R, ρ] subject to the relations

[(R, ρ)] = [(G, ρ |G)] + [(R/G, ρ |R/G)] (14.2)

for each subpair (G, ρ |G) of (R, ρ). Elements of SF(S) are called stack functions on S.

Definition 14.2. (Joyce and song) [18] (Definition 2.16.). Define the space of stack functions

S F(S, χ,Q) to be the Q-vector space generated by equivalence classes [(R, ρ)] with the following

relations imposed:
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1. Given a sub-pair (G, ρ |G) ⊂ (R, ρ) we have [(R, ρ)] = [(G, ρ |G)] + [(R/G, ρ |R/G)] as above.

2. Let R be a C-stack of finite type with affine geometric stabilizers and let U denote a quasi-

projective C-variety and πR : R × U → R the natural projection and ρ : R → S a 1-morphism.

Then [(R× U , ρ ◦ πR)] = χ([U ])[(R, ρ)].

3. Assume R ∼= [X/G] where X is a quasiprojective C-variety and G a very special algebraic

C-group acting on X with maximal torus TG, we have

[(R, ρ)] =
∑

Q∈Q(G,TG)

F (G,TG, Q)[([X/Q], ρ ◦ ιQ)], (14.3)

where the rational coefficients F (G,TG, Q) have a complicated definition explained in [17] (Section

6.2). Here Q(G,TG) is the set of closed C-subgroups Q of TG such that Q = TG ∩ C(G) and ιQ :

[X/Q] → R ∼= [X/G] is the natural projection 1-morphism, where C(G) denotes the center of the

group G. Similarly we can define SF(S, χ,Q) by restricting the 1-morphisms ρ to be representable.

Remark 14.3. There exist notions of multiplication, pullback, pushforward of stack functions

in S F(S, χ,Q) and SF(S, χ,Q) and to save space we do not construct them here. For further

discussions look at (Joyce and Song) [18] (Definitions. 2.6, 2.7) and (Theorem. 2.9).

Now we restrict to the moduli stack of semistable sheaves and define Ringel-Hall identities for

moduli stack of semistable sheaves as in [18].

Definition 14.4. (Joyce and Song) [18] (Definition 3.3). For α ∈ C(A) write Mα
A for the substack

of objects F ∈ A in class α ∈ K(A). Let ExactA denote the moduli stack of short exact sequences

0 → E1 → E2 → E3 → 0 in A. For i = 1, 2, 3 let πi : Exact → MA denote the 1-morphism of

Artin stacks projecting the short exact sequence 0 → E1 → E2 → E3 → 0 to Ei. Define bilinear

operations ∗ on the stack function spaces SF , SF (MA), SF and SF (MA, χ,Q) by

f ∗ g = (π2)∗((π1 × π3)∗(f ⊗ g)). (14.4)

Definition 14.5. Let (τ, T,≤) be a permissible stability condition on A. Define the stack functions

δ
α
ss(τ) = δ

α
Mα
ss

(τ) in SFal(MA) (for definition of SFal look at [18] (Definition 3.3) for α ∈ C(A).

One thinks of δαMα
ss

(τ) as the characteristic stack function of the component of the moduli stack of
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τ -semistable objects in A whose class in K(A) is α. Define elements εα(τ) in SFal(MA)

εα(τ) =
∑

n≥1,α1,··· ,αn∈C(A)
α1+···+αn=α
τ(αi)=τ(α)∀i

(−1)n−1

n
δ
α1

ss (τ) ∗ δα2

ss (τ) ∗ · · · ∗ δαnss (τ), (14.5)

where ∗ is the Ringel-Hall multiplication defined in 14.4. Here each δαiss(τ) denotes the characteristic

stack function associated to the moduli stack of objects F ∈ A in class αi ⊂ C(A) as defined in

[18] (Definition 3.3).

Next we briefly review the wall crossings in moduli stack of semistable sheaves under change of

stability condition from (say) τ to τ̃ .

14.2 Wall crossings over moduli of semistable sheaves under

change of stability condition

Definition 14.6. (Joyce and Song)[18] (Definition. 3.12.). Let (τ, T,≤) and (τ̃ , T̃ ,≤) be two weak

stability conditions on A. Let n ≥ 1 and α1, · · · , αn ∈ C(A). If for all i = 1, · · · , n − 1 we have

either

(a). τ(αi) ≤ τ(αi+1) and τ̃(α1 + · · ·+ αi) > τ̃(αi+1 + · · ·+ αn) or

(b). τ(αi) > τ(αi+1) and τ̃(α1 + · · ·+ αi) ≤ τ̃(αi+1 + · · ·+ αn)

then define S(α1, · · · , αn; τ, τ̃) = (−1)r where r is the number of times that for some i = 1, · · · , n

condition (a) is satisfied. Otherwise define S(α1, · · · , αn; τ, τ̃) = 0.

The function S(α1, · · · , αn; τ, τ̃) is a combinatorial ingredient that we need in order to compute

the wall-crossing identities. We need another ingredient that we review here from [18] (Definition.

3.12.). Given n ≥ 1 and α1, · · · , αn ∈ C(A), choose two numbers l and m such that 1 ≤ l ≤ m ≤ n.

Now for this choice choose numbers 0 = a0 < a1 < · · · < am and 0 = b0 < b1 < · · · < bl = m.

Given m and a1, · · · , am, define elements β1, · · · , βm ∈ C(A) by βi = αai−1+1 + · · ·αai . Also given

l and b1, · · · , bl define elements γ1, · · · , γl ∈ C(A) by γi = βbi−1+1 + · · ·βbi . Let Λ denote the set of

choices (l,m, a1, · · · , am, b1, · · · , bl) for which the elements γi and βi that we defined above satisfy
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the condition that τ(βi) = τ(αj) for i = 1, · · · ,m and ai−1 < j ≤ ai and τ̃(γi) = τ̃(α) for i = 1, · · · l

(here α =
∑

i
αi). Given such (l,m, a1, · · · , am, b1, · · · , bl) ∈ Λ define:

U(α1, · · · , αn; τ, τ̃) =
∑

Λ

(−1)l−1

l

l∏
i=1

S(βbi−1+1, βbi−1+2, · · · , βbi ; τ, τ̃) ·
m∏
i=1

1
(ai − ai−1)!

. (14.6)

Joyce and Song give a formula to compute εα(τ̃) that uses the function U in (14.6). To state the

theorem they define the notion of a stability condition dominating another stability condition as

follows.

Definition 14.7. The triple (τ̃ , T̃ ,≤) is said to dominate (τ, T,≤) if τ(α) ≤ τ(β) implies τ̃(α) ≤

τ̃(β), ∀α, β ∈ C(A).

With this notion we state the following theorem from [18].

Theorem 14.8. (Joyce and Song) [18] (Theorem 3.13.). Let (τ, T,≤), (τ́ , T́ ,≤), (τ̃ , T̃ ,≤) be

permissible weak stability conditions on A such that (τ́ , T́ ,≤) dominates (τ, T,≤) and (τ̃ , T̃ ,≤).

Then ∀α ∈ C(A) we have

εα(τ̃) =
∑
n≥1

∑
(α1,··· ,αn)∈C(A)n:
α1+···+αn=α

U(α1, · · · , αn; τ, τ̃)εα1(τ) ∗ εα2(τ) ∗ · · · ∗ εαn(τ). (14.7)

There are only finitely many nonzero terms in this equation.

Our introduction to background material on stack functions and Ringel Hall identities over the

moduli stack of semistable sheaves ends here. We go back to the moduli stack of semistable objects

in Bp and obtain similar identities.

14.2.1 Stack functions and similar identities over moduli stack of objects in

Bp

Consider the weak stability conditions on Bp given in 12.13. Note that (τ•, T • = {−1, 0},≤)

and (τ̃ , T̃ = {0, 1},≤) are permissible stability conditions on Bp, so similar to the above there

exist elements δ(β,d)
ss (τ̃), δ(β,d)

ss (τ•) in the stack function space SFal(MBp). Moreover, we can define
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ε(β,d)(τ̃) and ε(β,d)(τ•). Also similar to (14.6) we can define the combinatorial ingredients S and

U as follows. Consider the weak permissible stability conditions (τ•, T •,≤) and (τ̃ , T̃ ,≤) and the

dominating stability condition (τn, Tn = {0}, 0) in 12.13:

Definition 14.9. Let n ≥ 1 and

(β1, d1), · · · , (βn, dn) ∈ C(Bp).

We define a number, S((β1, d1), · · · , (βn, dn); τ•, τ̃), associated to the function U in (14.6) as follows.

If for all i = 1, · · · , n we have either:

(a). τ•(βi, di) ≤ τ•(βi+1, di+1) and

τ̃((β1, d1) + · · ·+ (βi, di)) > τ̃((βi+1, di+1) + · · ·+ (βn, dn)).

or

(b). τ•(βi, di) > τ•(βi+1, di+1) and

τ̃((β1, d1) + · · ·+ (βi, di)) ≤ τ̃((βi+1, di+1) + · · ·+ (βn, dn)),

then define S((β1, d1), · · · , (βn, dn); τ•, τ̃) = (−1)r, where r is the number of times that for all

i = 1, · · · , n− 1 condition (a) is satisfied and otherwise if for some i = 1, · · · , n− 1 neither (a) nor

(b) is true, then set S = 0.

Given n ≥ 1 and (β1, d1), · · · , (βn, dn) as above, choose two numbers l and m such that 1 ≤

l ≤ m ≤ n. Now for this choice choose numbers 0 = a0 < a1 < · · · < am and 0 = b0 <

b1 < · · · < bl = m. Given such m and a1, · · · , am, define elements θ1, · · · , θm ∈ C(Bp) by θi =

(βai−1+1, dai−1+1) + · · · (βai , dai) (To add two pairs just add them coordinate-wise in C(Bp)). Also

given such l, b1, · · · , bl define elements γ1, · · · , γl ∈ C(Bp) by γi = θbi−1+1 + · · · θbi . Let Λ denote

the set of choices (l,m, a1, · · · , am, b1, · · · , bl) for which the two following conditions are satisfied:

(1). τ•(θi) = τ•(βj , dj) for i = 1, · · · ,m and ai−1 < j ≤ ai.
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(2). τ̃(γi) = τ̃(β, d) for i = 1, · · · l (here β =
∑

i
βi and d =

∑
i
di). Now define:

U((β1, d1), · · · , (βn, dn); τ•, τ̃) =
∑

Λ

(−1)l−1

l

l∏
i=1

S(θbi−1+1, θbi−1+2, · · · , θbi ; τ
•, τ̃) ·

m∏
i=1

1
(ai − ai−1)!

.

(14.8)

By applying Theorem 3.13 in [18] we obtain a wall crossing identity over the moduli stack of objects

in Bp.

Proposition 14.10. (Joyce and Song) [18] (Proposition 13.7). For all (β, d) in C(Bp), the following

identity holds in the Ringel Hall algebra of Bp.

1. There are only finitely many choices of n ≥ 1 and (βi, di) ∈ C(Bp) for which the function U

defined in (14.8) is nonzero.

2. For these nonzero terms the following identity holds in the Ringel Hall algebra of Bp:

ε̄(β,d)(τ̃) =
∑
n≥1

∑
((β1,d1),··· ,(βn,dn))∈C(Bp)n:
(β1,d1)+···+(βn,dn)=(β,d)

U((β1, d1), · · · (βn, dn); τ•, τ̃) · ε̄(β1,d1)(τ•) ∗ · · · ∗ ε̄(βn,dn)(τ•).

(14.9)

Our introduction to stack functions and identities in Ringel Hall algebra of Bp ends here. For

further discussions look at [18] (Propositions 15.6, 15.7). Now we apply this machinery to the case

where the numerical class of objects is fixed to be (β, 2).
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Chapter 15

Lie algebra identities related to
wallcrossing in rank 2

Our main goal is to compute the wall-crossing identity for the invariants of objects of type (β, 2)

in Bp by changing the stability condition from τ• to τ̃ . Based on above discussions one needs to

take into account all possible decompositions of β and d = 2 into smaller pieces and compute their

contributions. At first, keeping track of all possible decompositions may seem harder than it really

is. However based on results obtained in Proposition 13.11 there exist restrictions that one exploits

in favor of computational simplification. For example, M
(β,1)
ss,Bp(τ

•) and M
(β,2)
ss,Bp(τ

•) are both empty

by [18] (Proposition 15.6) and the second part of (a) in 13.11 respectively. One needs to first break

d = 2 into smaller dimensions and then decompose β. The only two possible ways to break d = 2 is

to write 2 = 2 + 0 and 2 = 1 + 1. Now for each choice of decomposition of d one decomposes β into

smaller classes βi. For example for the case 2 = 2 + 0, the decomposition of β into smaller classes

produces elements in C(Bp) of type (β1, d1), · · · (βn, dn) where β1+· · ·+βn = β and d1+· · ·+dn = 2,

hence there exists a tuple in this sequence which is of type (βi, 2) and the remaining objects are of

type (βj , 0). Now use Proposition 13.11 and note that M
(βi,2)
ss (τ•) = ∅ unless βi = 0. Hence the set

of numerical classes is given as (β1, 0), · · · , (0, 2), · · · , (βn, 0). Similarly for the decomposition of type

2 = 1 + 1 one obtains elements of type (β1, 0), · · · , (βk−1, 0), (0, 1), · · · , (βm−1, 0), (0, 1), · · · , (βn, 0)

for 1 ≤ k 6= m ≤ n. In order to ease the bookkeeping we use a re-parameterization of (βi, di) which

is consistent with work of Joyce and Song. For a decomposition 2 = 2 + 0 define (ψi, di) = (βi, 0)

for i ≤ k − 1, and (ψi, di) = (βi+1, 0) for i ≥ k. For decomposition of type 2 = 1 + 1 define

(ψi, di) = (βi, 0) for i ≤ k − 1, (ψi, di) = (βi+1, 0) for k ≤ i ≤ m − 1 and (ψi, di) = (βi+2, 0) for
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i ≥ m. Equation 14.10 for the case of (β, 2) is written as:

ε̄(β,2)(τ̃) =
∑

1≤k≤n
U((ψ1, 0), · · · (ψk−1, 0), (0, 2), (ψk, 0), · · · , (ψn−1, 0); τ•, τ̃)

· ε̄(ψ1,0)(τ•) ∗ · · · ∗ ε̄(ψk−1,0)(τ•) ∗ ε̄(0,2)(τ•) ∗ ε̄(ψk,0)(τ•) ∗ · · · ∗ ε̄(ψn−1,0)(τ•)

+
∑

k,m:
1≤k 6=m≤n

U((ψ1, 0), · · · , (ψk−1, 0), (0, 1), (ψk, 0), · · · , (ψm−1, 0), (0, 1), (ψm, 0), · · · , (ψn−2, 0); τ•, τ̃)

· ε̄(ψ1,0)(τ•) ∗ · · · ∗ ε̄(ψk−1,0)(τ•) ∗ ε̄(0,1)(τ•) ∗ ε̄(ψk,0)(τ•)

∗ · · · ∗ ε̄(ψm−1,0)(τ•) ∗ ε̄(0,1)(τ•) ∗ ε̄(ψm,0)(τ•) ∗ · · · ∗ ε̄(ψn−2,0)(τ•).

(15.1)

Let A and B denote the first and second sums respectively on the right hand side of (15.1). Next

we simplify A.

Remark 15.1. Here we calculate the function U ’s for our case. In doing so and to avoid notational

confusion, we denote the function U appearing in A by UA and the one in B by UB, moreover for

the function S defined in 14.9 we use SA and SB if it appears in A or B respectively.

Simplification of A

We recall the definition of UA appearing in A,

UA = U((ψ1, 0), · · · (ψk−1, 0), (0, 2), (ψk, 0), · · · , (ψn−1, 0); τ•, τ̃) =

∑
Λ

(−1)l−1

l
·

l∏
i=1

SA(θbi−1+1, θbi−1+2, · · · θbi ; τ
•, τ̃) ·

m∏
i=1

1
(ai − ai−1)!

.

(15.2)

Before we simplify this identity (to have a pictorial perspective of this calculation) we work out

some examples. First we work out an example showing a configuration which is not allowed in our

analysis, i.e a set of choices (l,m, a1, · · · , am, b1, · · · , bl) /∈ Λ (the values for ai and bi in the next
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example do not contribute to the wall crossing formula).

Example 15.2. Let n in (15.2) be equal to 13. Choose l = 2 and m = 4. The sequence for case A

is shown pictorially in the picture below in which each •i represents the element (ψi, di) ∈ C(Bp).

Assume that the term (0, 2) appears in between positions 7 and 8 . Now we compute UA for this

choice of l and m . Choose the configuration 0 = a0 < · · · < a4 = 13 and 0 = b0 < b1 < b2 = 4 to

be given respectively as: a0 = 0, a1 = 3, a2 = 6, a3 = 9 a4 = 13

and b0 = 0, b1 = 2, b2 = 4

• • • • • • • • • • • • •
1 2 3 4 5 6 7 8 9 10 11 12

a1 a2 a3 a4

θ1 θ2 θ3 θ4

(0, 2)

Using the formula θi = (ψai−1+1, dai−1+1)+ · · ·+(ψai , dai) for i = 1, · · · , 4, one computes the values

of θi for i = 1, · · · , 4 as follows:

θ1 = (ψa0+1, da0+1) + · · ·+ (ψa1 , da1) = (ψ1, d1) + (ψ2, d2) + (ψ3, d3) = (β1 + β2 + β3, 0).

θ2 = (ψa1+1, da1+1) + · · ·+ (ψa2 , da2) = (ψ4, d4) + (ψ5, d5) + (ψ6, d6) = (β4 + β5 + β6, 0).

θ3 = (β7 + β8, 2).

θ4 = (ψa3 , da3) + · · · (ψa4−1, da4−1) = (ψ8, d8) + (ψ9, d9) + (ψ10, d10) + (ψ11, d11) + (ψ12, d12) =

(β9 + β10 + β11 + β12 + β13, 0)

Next step is to use the results obtained above and to compute γi’s using the formula γi = θbi−1+1 +

· · ·+ θbi for i = 1, 2. We obtain the following: γ1 = θb0+1 + · · ·+ θb1 = θ1 + θ2 = (β1 + · · ·+ β6, 0).

γ2 = θb1+1 + · · ·+ θb2 = θ3 + θ4 = (β7 + · · ·+ β13, 2).

From this computation, it is obvious that the condition τ̃(γi) = τ̃(β, 2) for i = 1, 2 is not satisfied

since in this case, τ̃(γ1) = 0 6= τ̃(γ2) = τ̃(β, 2) = 1. Therefore we need to have l = 1 in order

to satisfy this condition. Moreover the second condition τ•(θi) = τ•(βj , dj) ∀i = 1, · · · 4 and

∀j, ai−1 < j ≤ ai is not satisfied since for i = 3 there exists a2 = 6 < j = 7 ≤ 9 = a3 (a3 corresponds

to (β9, d9) or •8 = (ψ8, d8) which corresponds to (β9, d9) because of re-parameterization) for which
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τ•(θ3) = τ•(β7 + β8, 2) = −1 6= τ•(β7, 0) = 0. So we need to choose a configuration in which (0, 2)

is the only term appearing in between ai−1 and ai. (i.e the should exist some p = 1, · · · , 4 so that

ap−1 = 7 and ap = 8).

Example 15.3. Fix m = 4 and n = 13. Let us compute the value of SA for the configuration

shown in the figure below:

• • • • • • • • • • • • •
1 2 3 4 5 6 7 8 9 10 11 12

a1 a2 a4

θ1 θ2

θ3

θ4

(0, 2)

γ1

a3

Similar to Example 15.2 first we compute the values of θi’s for i = 1, · · · , 4.

θ1 = (ψa0+1da0+1) + · · ·+ (ψa1 , da1) = (ψ1 + ψ2 + ψ3, d1 + d2 + d3) = (β1 + β2 + β3, 0)

θ2 = (ψa1+1da1+1) + · · ·+ (ψa2 , da2) = (ψ4 + · · ·+ ψ7, d4 + · · · d7) = (β4 + · · ·+ β7, 0)

θ3 = (0, 2)

θ4 = (ψa3da3) + · · ·+ (ψa4−1, da4−1) = (ψ8 + · · ·+ ψ12, d8 + · · ·+ d12) = (β9 + · · ·+ β13, 0)

Next step is to compute γ1 using the formula γ1 = θ1 + · · ·+ θ4.

γ1 = (β1 + · · ·+ β13, 2). Consider Definition 14.9. If neither condition (a) nor (b) are satisfied, for

any i, we set SA = 0, otherwise, SA(θ1, · · · , θ4; τ•, τ̃) = (−1)r where r is equal to number of times

that for i = 1, · · · , 4− 1 = 3, condition (a) is satisfied, i.e:

(a). τ•(θi) ≤ τ•(θi+1) and τ̃(θ1 + · · ·+ θi) > τ̃(θi+1 + · · ·+ θ4).

For i = 1, 0 = τ•(θ1) ≤ τ•(θ2) = 0 and 0 = τ̃(θ1) ≯ τ̃(θ2 + · · ·+ θ11) = 1

For i = 2, 0 = τ•(θ2) > τ•(θ3) = −1 and 0 = τ̃(θ1 + θ2) ≤ τ̃(θ3 + θ4) = 1
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For i = 3, −1 = τ•(θ3) ≤ τ•(θ4) = 0 and 1 = τ̃(θ1 + θ2 + θ3) > τ̃(θ4) = 0

As it is seen, for i = 1 neither condition (a) nor (b) are satisfied therefore SA = 0. Considering

the particular choice of m = 4 and n = 13 as in Example 15.3 the pictures below show the only

allowable configurations for which one obtains nonzero values for SA:

• • • • • • • • • • • • •

a4

(0, 2)

γ1

θ1

a1

θ2

a3

θ3

(β12, 0)(βk−1, 0) (βj , 0)

θ4

a2

• • • • • • • • • • • • •

a4

(0, 2)

γ1

θ1

a3

θ4

(β12, 0)(βj , 0)

a1

θ2

a2

θ3

Here we summarize the above observations and apply them to the general case:

1. In order to have τ̃(γi) = τ̃(β, 2) for all i = 1, · · · , l one should set l = 1, [18] (Proposition

15.8). Therefore the set Λ reduces to the set of choices of m where 1 ≤ m ≤ n.

2. It is clear that the only way that τ•(θi) = τ•(βj , dj) for i = 1, · · · ,m and ai−1 < j ≤ ai is

that there exists some p = 1, · · · ,m where ap−1 = k − 1 and ap = k (k =location of (0, 2)).
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In (15.2) τ•(θi) = 0 for i < p and τ•(θp) = −1 and τ•(θi) = 0 for i > p, therefore the following

hold true:

1. τ•(θi) = τ•(θi+1) = 0 and τ̃(θ1 + · · ·+ θi) ≯ τ̃(θi+1 + · · ·+ θn) for i < p− 1

2. 0 = τ•(θi) > τ•(θi+1) = −1 and 0 = τ̃(θ1 + · · ·+ θi) ≤ τ̃(θi+1 + · · ·+ θn) = 1 for i = p− 1

3. τ•(θi) ≤ τ•(θi+1) and τ̃(θ1 + · · ·+ θi) > τ̃(θi+1 + · · ·+ θn) for i ≥ p

From this analysis one conclude that in (15.2) for i < p−1 neither condition (a) nor (b) are satisfied

for i = p− 1 condition (b) is satisfied and for i ≥ p condition (a) is satisfied (this implies p = 1 or

p = 2). Finally similar to the above example, p = 1 when k = 1 and p > 1 when k > 1 and SA = 0

for p > 2. Now we can simplify UA as follows:

A =


∑
p=1,

0=a0<a1=1<a2
<···<am

∑
m

SA(θ1, θ2, · · · , θm; τ•, τ̃).
m∏
i=1

1
(ai − ai−1)!

 · ε̄(0,2) ∗ ε̄(ψ2,0) ∗ · · · ∗ ε̄(ψn−1,0)

+
∑

1<k≤n


∑
p=2,

0=a0<a1=k−1<a2=k<
···<am

∑
m

SA(θ1, θ2, · · · , θm; τ•, τ̃).
m∏
i=1

1
(ai − ai−1)!


· ε̄(ψ1,0) ∗ · · · ∗ ε̄(ψk−1,0) ∗ ε̄(0,2) ∗ ε̄(ψk,0) ∗ · · · ∗ ε̄(ψn−1,0)

=
∑

1≤m≤n,
1=a1<a2<···<am

(−1)m−1 ·
m∏
i=2

1
(ai − ai−1)!

· ε̄(0,2) ∗ ε̄(ψ2,0) ∗ · · · ∗ ε̄(ψn−1,0)

+
∑

1<k≤n

1
(k − 1)!

·
∑

1≤m≤n,k=a2<a3<···<am

(−1)m−2 ·
m∏
i=3

1
(ai − ai−1)!

· ε̄(ψ1,0) ∗ · · · ∗ ε̄(ψk−1,0) ∗ ε̄(0,2) ∗ ε̄(ψk,0) ∗ · · · ∗ ε̄(ψn−1,0)

(15.3)

Simplification of B
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Recall the definition of UB which appears in B,

UB = U((ψ1, 0), · · · , (ψk−1, 0), (0, 1), (ψk, 0), · · · , (ψk′−1, 0), (0, 1), (ψk′ , 0), · · · , (ψn−2, 0); τ•, τ̃)

=
∑

1≤l≤m≤n

(−1)l−1

l
·

l∏
i=1

SB(θbi−1+1, θbi−1+2, · · · θbi ; τ
•, τ̃) ·

m∏
i=1

1
(ai − ai−1)!

(15.4)

To compute SB we divide our analysis into three combinatorial cases based on how the (0, 1)

elements are located in the diagrams:

15.1 Case 1

Definition 15.4. Case 1 represents the configurations where, the two (0, 1) elements occur adjacent

to each other.

• • • • • • • • • • • • •

(0, 1) (0, 1)

• • • • • • • • • • • • •

(0, 1) (0, 1)

Now choose and distribute ai in order to obtain equation (14.8). The following diagrams describe

the two possible distribution types for ai, we call them by Type 1 and Type 2. As shown in both

Type 1 and Type 2 we assume that the first occurrence of a (0, 1) element is at k’th location. First

assume k > 1. In that case a1 = k − 1. Now for Type 1 we set a2 = k and a3 = k + 1. One
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may freely choose any value for a4 as far as a4 ≥ k + 2. The diagram below depicts what the

configuration would look like if one chooses a4 = k+ 2. The remaining possible configurations (for

a4 > k + 2) can be drawn similarly. The second diagram in Type 1 explains a situation where

k = 1.

• • • • • • • • • • • • •

θ1 θ2

(0, 1) (0, 1)

θ3

ama1 = k − 1

· · ·
θ4

a4 = k + 2

Type 1

a2 a3

θm

• • • • • • • • • • • • •

(0, 1) (0, 1)

am

· · ·
θ1 θ2 θ3 θm

· · ·

a2

After setting a1 = k − 1 what distinguishes Type 2 from Type 1 is the choice of a2. In Type 2

(diagram below) we set a2 = k+1 and a3 can be chosen freely (similar to a4 in Type 1) to have any

value as long as a3 ≥ k+ 2. The first diagram in Type 2 depicts what the configuration would look

like if k > 1 and one chooses a3 = k + 2. The remaining possible configurations (for a3 > k + 2)

can be drawn similarly. The second diagram in Type 2 explains a situation where k = 1
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• • • • • • • • • • • • •

θ1

(0, 1) (0, 1)

ama1 = k − 1

· · ·
θ3

Type 2

a3 = k + 2

θm

a2

θ2

• • • • • • • • • • • • •

(0, 1) (0, 1)

am

· · ·
θ2 θm

· · ·
a1

θ1

In this section, to avoid confusion we denote by SB1 the contribution to SB of Case 1. First, we

clarify the calculations for Case 1, via two simplified examples:

Example 15.5. Consider the case where (β, 2) = (0, 2). The stack function identity obtained from

the change of weak stability condition in category Bp is given by:

ε̄(0,2)(τ̃) = a · ε̄(0,2)(τ•) + b · ε̄(0,1)(τ•) ∗ ε̄(0,1)(τ•). (15.5)

Here, a and b are combinatorial coefficients. Note that the second term on the right hand side

of Equation (15.5) is the simplest possible example of the Case 1 which is described pictorially

as:
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• •

(0, 1) (0, 1)

We will show that b = 0. Similar to the general case discussed above, there exists two distrubution

types for ai’s.

• •

(0, 1) (0, 1)

• •

(0, 1) (0, 1)

Type 1

Type 2

a1

θ1

a2

θ2

a1

θ1

The function U for configuration in Type 1 is given as:

U = (
−1
2

)S(θ1)S(θ2)
2∏
i=1

1
(ai − ai−1)!

= (
−1
2

)(−1)0(−1)0 1
(a1 − a0)!

1
(a2 − a1)!

= (
−1
2

). (15.6)

Similarly the function U for configuration in Type 2 is given as:

U = S(θ1)
1

(a1 − a0)!
= (−1)0 1

(a1 − a0)!
=

1
2
. (15.7)

The second term on the right hand side of Equation (15.5) is obtained by adding the values of the
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function U obtained from configurations in Type 1 and Type 2:

(
−1
2

)ε̄(0,1)(τ•) ∗ ε̄(0,1)(τ•) +
1
2
ε̄(0,1)(τ•) ∗ ε̄(0,1)(τ•) = 0. (15.8)

Hence in Equation (15.5) b = 0.

To clarify how this calculation can be generalized to the computation in Equation (15.20), we

consider a more complicated example where our diagrams have 4 vertices.

Example 15.6.

• •
a1

(0, 1) (0, 1)

• •
a2 a3 a4

θ1 θ2 θ3 θ4

• •

Type 1

Type 2
a1

(0, 1) (0, 1)

• •

a2

a3

θ1

θ2

θ3

Let us compute the function U for Type 1. First we set l = 1. In this case one needs to compute

S(θ1, θ2, θ3, θ4). However note that τ•(θ2) = −1 = τ•(θ3) and 1 = τ̃(θ1 +θ2) ≯ τ̃(θ3 +θ4) = 1 hence

neither condition (a) nor condition (b) in Definition 14.9 are satisfied and hence S(θ1, θ2, θ3, θ4) = 0.

Now set l = 2 since for l > 2 one may always obtain a configuration in which τ̃(γi) = 0 6= τ̃(β, 2) = 1

for some i and so SB = 0 in that case. Therefore set l = 2 and obtain :

U1 =
(−1)1

2
S(θ1, θ2)S(θ3, θ4)

4∏
i=1

1
(ai − ai−1)!

= (
1
1

)(−1)0 · (−1)1 1
(a1 − a0)!

= (
−1
2

)(−1)0(−1)1 =
1
2
.

(15.9)

For Type 2, l needs to be set equal to 1 since similarly for l > 1 one may always obtain a config-

uration in which τ̃(γi) = 0 6= τ̃(β, 2) = 1 for some i and so SB = 0 in that case. Therefore, one
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obtains:

U2 =
(−1)0

1
S(θ1, θ2, θ3)

3∏
i=1

1
(ai − ai−1)!

= (
1
1

)(−1)1 1
(a2 − a1)!

= (−1)0(−1)1 1
2

= −1
2
. (15.10)

We emphasize that the presence of the term 1
2 in Equation (15.10) is because here, a2 − a1 = 2.

Therefore we obtain:

U((0, 1), (0, 1)) = U1((0, 1), (0, 1)) + U2((0, 1), (0, 1)) = −1
2

+
1
2

= 0 (15.11)

i.e, the contributions associated to Case 1 are obtained as:

(
−1
2

)ε̄(β1,0)(τ•) ∗ ε̄(0,1)(τ•) ∗ ε̄(0,1)(τ•) ∗ ε̄(β1,0)(τ•)

+
1
2
ε̄(β1,0)(τ•) ∗ ε̄(0,1)(τ•) ∗ ε̄(0,1)(τ•) ∗ ε̄(β2,0)(τ•) = 0 (15.12)

Here we compute SB1 coming from the fixed distributions of ai’s as shown in Type 1. Consider the

first diagram in Type 1. We set for the variable l in (14.8), l = 1 or l = 2, (for l > 2, SB1 = 0). If

l = 1 then according to formula (14.8) we need to compute SB1(θ1, · · · , θm). Note that τ•(θ2) = −1

and τ•(θ3) = −1 then τ•(θ2) ≤ τ•(θ3) however τ̃(θ1 +θ2) ≯ τ̃(θ3 + · · ·+θm), hence neither condition

(a) nor (b) in Definition 14.9 are satisfied and SB1(θ1, · · · , θm) = 0.

Now set l = 2. Setting l = 2 means that we need to choose 0 = b0 < b1 < b2 = m so that bi,

i = 0, 1, 2, satisfy the conditions in Definition (14.8). Note that one can choose b1 = 1, · · · ,m.

However the only allowed choice for b1 is to set b1 = 2. We explain this fact further.

Set b1 = 1, in that case γ1 = θ1 and γ2 = θ2 + · · ·+ θm. This configuration is not allowed, since for

γ1, τ̃(γ1) = 0 6= τ̃(β, 2) = 1. One easily observes that using similar arguments, the only allowable
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choice is to set b1 = 2. Define:

U1((β1, 0), · · · , (0, 1), (0, 1), · · · , (βn−2, 0); τ•, τ̃) :=∑
Λ

−1
2
SB1(θ1, θ2) · SB1(θ3, · · · , θm) ·

m∏
i=1

1
(ai − ai−1)!

,

(15.13)

where by similar arguments SB1(θ1, θ2) = (−1)0 = 1 and SB1(θ3, · · · , θm) = (−1)(m−3). Hence

U1((β1, 0), · · · , (0, 1), (0, 1), · · · , (βn−2, 0); τ•, τ̃) = (−1) ·
∑

Λ

1
2

(−1)(m−3) ·
m∏
i=1

1
(ai − ai−1)!

= (−1) ·
∑

Λ

1
2

(−1)(m−3) · 1
(a3 − a2)!

· 1
(a2 − a1)!

· 1
(a1 − a0)!

·
m∏
i=4

1
(ai − ai−1)!

.

(15.14)

By looking at first diagram in Type 1, it is easy to see that a0 = 0, a1 = k−1, a2 = k and a3 = k+1.

Hence (a2 − a1) = 1 and a1 − a0 = k− 1. Now we use the result of Lemma 13.9 of [18] and rewrite

this equation as follows:

U1((β1, 0), · · · , (0, 1), (0, 1), · · · , (βn−2, 0); τ•, τ̃) =

(−1
2

) · 1
(a3 − a2)!

· 1
(a2 − a1)!

· 1
(a1 − a0)!

∑
1≤m≤l

(−1)(m−3) ·
m∏
i=4

1
(ai − ai−1)!

=

(−1
2

) · 1
(k − 1)!

· (−1)(n−(1+k))

(n− (1 + k))!
.

(15.15)

A similar analysis is carried out for the second diagram in Type 1. The result would be equal to

the one obtained in equation (15.15) for k = 1.

Now consider the first diagram in Type 2. Note that in this case θ2 = (0, 1) + (0, 1) = (0, 2). We

can set l = 1 or l = 2. Setting l = 2 would result in obtaining a disallowed configuration, since

there would always exist at least one γi for i = 1, 2 so that τ̃(γi) = 0 6= τ̃(β, 2) = 1. Hence we set
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l = 1.

Define:

U2((β1, 0), · · · , (0, 1), (0, 1), · · · , (βn−2, 0); τ•, τ̃) :=
∑

Λ

SB1(θ1, θ2, θ3, · · · , θm) ·
m∏
i=1

1
(ai − ai−1)!

,

(15.16)

where by similar arguments, SB1(θ1, · · · , θm) = (−1)(m−2). Hence

U2((β1, 0), · · · , (0, 1), (0, 1), · · · , (βn−2, 0); τ•, τ̃) =
∑

Λ

(−1)(m−2) ·
m∏
i=1

1
(ai − ai−1)!

=
∑

Λ

(−1)(m−2) · 1
(a2 − a1)!

· 1
(a1 − a0)!

m∏
i=3

1
(ai − ai−1)!

.

(15.17)

By looking at first diagram in Type 2, it is easy to see that a0 = 0, a1 = k − 1 and a2 = k + 1,

hence (a2 − a1) = 2 and a1 − a0 = k − 1. Now we use the result of Lemma 13.9 of [18] and rewrite

this equation as follows:

U2((β1, 0), · · · , (0, 1), (0, 1), · · · , (βn−2, 0); τ•, τ̃) =

1
(a1 − a0)!

· 1
(a2 − a1)!

·
∑

1≤m≤l
(−1)(m−2) ·

m∏
i=3

1
(ai − ai−1)!

=
1
2
· 1

(k − 1)!
· (−1)(n−(1+k))

(n− (1 + k))!
.

(15.18)

By Equation (14.8):

U((β1, 0), · · · , (0, 1), (0, 1), · · · , (βn−2, 0); τ•, τ̃) =

U1((β1, 0), · · · , (0, 1), (0, 1), · · · , (βn−2, 0); τ•, τ̃)

+ U2((β1, 0), · · · , (0, 1), (0, 1), · · · , (βn−2, 0); τ•, τ̃)

(15.19)
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adding the values of the function Ui, i = 1, 2 obtained from the two distributions in Type 1 and

Type 2, we obtain:

U((β1, 0), · · · , (0, 1), (0, 1), · · · , (βn−2, 0); τ•, τ̃) =

1
2
· 1

(k − 1)!
· (−1)(n−1−k)

(n− 1− k)!
+ (−1

2
) · 1

(k − 1)!
· (−1)(n−1−k)

(n− 1− k)!
= 0

(15.20)

15.2 Case 2

Definition 15.7. Case 2 represents the configurations where there exists some 1 ≤ k ≤ n for

which there exists only one element of type (βk, 0) between the two elements of type (0, 1) such

that βk 6= 0.

• • • • • • • • • • • • •

(0, 1) (0, 1)

(βk, 0)

• • • • • • • • • • • • •

(0, 1) (0, 1)

(β1, 0)

The set of allowable distributions for ai’s is given as:
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• • • • • • • • • • • • •

θ1

(0, 1) (0, 1)

a1 = k − 1 am

· · ·

θ2 θm

a3 = k + 1
θ3

a2

θ4 θ5

a4

• • • • • • • • • • • • •

(0, 1) (0, 1)

am

· · ·

θmθ1

· · ·

θ4θ3

a2

a3

θ2

Consider the first diagram in Case 2. Similar to Type 1 in Case 1, we can argue that the only

possible value for l in both diagrams is l = 2. For l = 1, for example, consider θ2 and θ3 in the first

diagram. Note that τ•(θ2) ≤ τ•(θ3) but τ̃(θ1 + θ2) ≯ τ̃(θ3 + · · ·+ θm) hence SB2(θ1, · · · , θm) = 0.

Setting l = 2 means that we need to choose 0 = b0 < b1 < b2 = m so that bi, i = 0, 1, 2, satisfy the

conditions in Definition (14.8). Note that one can choose b1 = 2 or b1 = 3. Set b1 = 2. Define:

U1((β1, 0), · · · , (0, 1), (βk, 0), (0, 1), · · · , (βn−2, 0); τ•, τ̃) :=∑
Λ

−1
2
SB1(θ1, θ2) · SB1(θ3, · · · , θm) ·

m∏
i=1

1
(ai − ai−1)!

,

(15.21)
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where SB2(θ1, θ2) = (−1)0 = 1 and SB2(θ3, · · · , θm) = (−1)(m−4). Hence

U1((β1, 0), · · · , (0, 1), (βk, 0), (0, 1), · · · , (βn−2, 0); τ•, τ̃) = (−1) ·
∑

Λ

1
2

(−1)(m−4) ·
m∏
i=1

1
(ai − ai−1)!

.

(15.22)

Similar to before, we use the result of Lemma 13.9 of [18] and rewrite this equation as follows:

U1((β1, 0), · · · , (0, 1), (βk, 0), (0, 1), · · · , (βn−2, 0); τ•, τ̃) =

(−1
2

) · 1
(a4 − a3)!

· 1
(a3 − a2)!

· 1
(a2 − a1)!

· 1
(a1 − a0)!

∑
1≤m≤l

(−1)(m−4) ·
m∏
i=5

1
(ai − ai−1)!

=

(−1
2

) · 1
(k + 2− (k + 1))!

· 1
(k + 1− (k))!

· 1
(k − (k − 1))!

· 1
(k − 1)!

· (−1)(n−(k+2))

(n− (k + 2))!
=

(−1
2

) · 1
(k − 1)!

· (−1)(n−(k+2))

(n− (k + 2))!

(15.23)

Now Set b1 = 3. Define:

U2((β1, 0), · · · , (0, 1), (βk, 0), (0, 1), · · · , (βn−2, 0); τ•, τ̃) =∑
Λ

−1
2
SB1(θ1, θ2, θ3) · SB1(θ4, · · · , θm) ·

m∏
i=1

1
(ai − ai−1)!

,

(15.24)

where SB2(θ1, θ2, θ3) = (−1)1 = −1 and SB2(θ4, · · · , θm) = (−1)(m−4). Hence

U2((β1, 0), · · · , (0, 1), (βk, 0), (0, 1), · · · , (βn−2, 0); τ•, τ̃) =
∑

Λ

1
2

(−1)(m−4) ·
m∏
i=1

1
(ai − ai−1)!

.

(15.25)
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similar to before, we use the result of Lemma 13.9 of [18] and rewrite this equation as follows:

U2((β1, 0), · · · , (0, 1), (βk, 0), (0, 1), · · · , (βn−2, 0); τ•, τ̃) =

1
2
· 1

(a3 − a2)!
1

(a2 − a1)!
· 1

(a1 − a0)!

∑
1≤m≤l

(−1)(m−4) ·
m∏
i=5

1
(ai − ai−1)!

=

1
2
· 1

(k + 2− (k + 1))!
· 1

(k + 1− (k))!
1

(k − (k − 1))!
· 1

(k − 1)!
· (−1)(n−(k+2))

(n− (k + 2))!
=

1
2
· 1

(k − 1)!
· (−1)(n−(k+2))

(n− (k + 2))!
.

(15.26)

By adding the contributions due to the two choices of b1 = 2 and b1 = 3, we obtain

U((β1, 0), · · · , (0, 1), (βk, 0), (0, 1), · · · , (βn−2, 0); τ•, τ̃) =

U1((β1, 0), · · · , (0, 1), (βk, 0), (0, 1), · · · , (βn−2, 0); τ•, τ̃)+

U2((β1, 0), · · · , (0, 1), (βk, 0), (0, 1), · · · , (βn−2, 0); τ•, τ̃) =

(−1
2

) · 1
(k − 1)!

· (−1)(n−(k+2))

(n− (k + 2))!
+

1
2
· 1

(k − 1)!
· (−1)(n−(k+2))

(n− (k + 2))!
= 0

(15.27)

A similar analysis is carried out for the second diagram in Case 2. The result would be equal to

the one obtained in equation (15.26) for k = 1. However, setting k = 1 in Equation (15.26), will

still make Equation (15.27) equal to zero.

15.3 Case 3

Definition 15.8. Case 3 represents the configurations where for some 1 ≤ k < k′ ≤ n, there exists

at least 2 elements (βk, 0) and (βk′ , 0) between the two elements of type (0, 1) such that βk 6= 0 and

βk′ 6= 0.

166



• • • • • • • • • • • • •

(0, 1) (0, 1)

• • • • • • • • • • • • •

(0, 1) (0, 1)

The possible set of distributions for ai’s is given as:

• • • • • • • • • • • • •

θ1

(0, 1) (0, 1)

a1 = k − 1 am

θ2

θm

· · ·

· · ·
aq−1 = k′ − 1

θ3 θq−1

θq

θq+1

· · ·

a2 = k aq = k′

• • • • • • • • • • • • •

(0, 1) (0, 1)

am

θm

· · ·

· · ·
aq−1 = k′ − 1

θq−1

θq

θq+1

· · ·

· · ·

· · ·
θ2

a1

aq

We compute the function U for the general case shown in the first diagram in Case 3. Using an
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argument similar to before, to get a nonzero value for SB3 we set l = 2.

U((β1, 0), · · · , (0, 1), (βk, 0), · · · , (βk′−2, 0), (0, 1), · · · , (βn−2, 0); τ•, τ̃) =

∑
Λ

−1
2
·

l∏
i=1

SB3(θbi−1+1, θbi−1+2, · · · θbi ; τ
•, τ̃) ·

m∏
i=1

1
(ai − ai−1)!

=
∑

0=a0<···<am

∑
0=b0<b1<b2=m

−1
2
·

l∏
i=1

SB3(θbi−1+1, θbi−1+2, · · · θbi ; τ
•, τ̃) ·

m∏
i=1

1
(ai − ai−1)!

,

(15.28)

where ai and bi satisfy the conditions in Definition (14.8). Note that one can choose b1 = 2, · · · , q−1,

hence the function U can be computed as follows:

U((β1, 0), · · · , (0, 1), (βk, 0), · · · , (βk′−2, 0), (0, 1), · · · , (βn−2, 0); τ•, τ̃) =∑
0=a0<···<am

1
2

[
SB3(θ1, θ2) · SB3(θ3, · · · , θm)

+ SB3(θ1, θ2, θ3) · SB3(θ4, · · · , θm) + · · ·+ SB3(θ1, · · · , θq−1) · SB3(θq, · · · , θm)

]
·
m∏
i=1

1
(ai − ai−1)!

.

(15.29)

One sees that SB3(θ1, θ2) = (−1)0 and SB3(θ3, · · · , θm) = 0 (0 = τ•(θ3) ≤ τ•(θ4) and 0 = τ̃(θ3) ≯

τ̃(θ4 + · · ·+ θm) = 1 hence nor (a) neither (b) in Definition 14.9 are satisfied ). Following the same

argument the terms SB3(θ4, · · · , θm), · · ·SB3(θq−2, · · · , θm) vanish. The non-vanishing of the term

SB3(θq−1, · · · , θm) can be proved by observing that for θq−1 and θq, 0 = τ•(θq−1) > τ•(θq) = −1

and 0 = (̃θq−1) ≤ τ̃(θq + · · · + θm) = 1 hence condition (b) in Definition 14.9 is satisfied and

SB3(θq−1, · · · , θm) = (−1)(m−(q−1)−1) = (−1)(m−q). Finally SB3(θq, · · · , θm) = (−1)(m−q). Now

we use the fact that SB3(θ1, · · · , θq−2) = (−1)(q−3) and SB3(θ1, · · · , θq−1) = (−1)(q−2) hence the
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Equation (15.29) can be rewritten as follows:

UB = U((β1, 0), · · · , (0, 1), (βk, 0), · · · , (βk′−2, 0), (0, 1), · · · , (βn−2, 0); τ•, τ̃) =∑
0<a0<···<am

(−1)
2
·

[
(−1)(q−3) · (−1)(m−q) + (−1)(q−2) · (−1)(m−q)

]
·
m∏
i=1

1
(ai − ai−1)!

= 0.

(15.30)

We conclude that the contributions in Cases 1, 2 and 3 are all equal to zero i.e in Equation

(15.1):

B = 0.

Recall that for A in Equation (15.3), the (n − 1)’th K-theory class, βn−1 was placed in the n’th

spot, hence by change of variable l − 1, the equation for A is given as:

A =
(−1)l

(l)!
· ε̄(0,2)(τ•) ∗ · · · ∗ ε̄(βl,0)(τ•)

+
∑

1≤k≤l

(−1)l−k

(k − 1)!(l − k)!
· ε̄(β1,0)(τ•) ∗ · · · ∗ ε̄(βk,0)(τ•) ∗ ε̄(0,2)(τ•) ∗ ε̄(βk+1,0)(τ•) ∗ · · · ∗ ε̄(βl,0)(τ•)

=
∑

0≤k≤l

(−1)l−k

(k − 1)!(l − k)!
· ε̄(β1,0)(τ•) ∗ · · · ∗ ε̄(βk,0)(τ•) ∗ ε̄(0,2)(τ•) ∗ ε̄(βk+1,0)(τ•) ∗ · · · ∗ ε̄(βl,0)(τ•)

(15.31)

As we showed B = 0. On the other hand the coefficients in (15.31) are precisely equal to those

appearing on the right hand side of Equation (292) in [18]. By rewriting the product of stack

functions in terms of a nested bracket we obtain an equation analogous to the computation of

Joyce and Song in [18] (Proposition 15.10). Simply replace ε̄(0,1)(τ•) in Equation (292) in [18] with

ε̄(0,2)(τ•) and obtain:

ε̄(β,2)(τ̃) =
∑

1≤l,β1+···+βl=β

(−1)l

l!
[[· · · [[ε̄(0,2)(τ•), ε̄(β1,0)(τ•)], ε̄(β2,0)(τ•)], · · · ], ε̄(βl,0)(τ•)]

(15.32)
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Chapter 16

Calculation via Wallcrossing

Proposition 16.1. (a). Let ν(β,0)
MBp

and νβM denote Behrend’s constructible functions on the moduli

stack of objects in Bp with fixed class (β, 0) and the moduli stack of sheaves with second Chern

character β respectively. The following identity holds true:

ν
(β,0)
MBp

≡ π∗0(νβM) (16.1)

where π0 is the map π0 : M
(β,0)
Bp → Mβ which sends (F, 0, 0) with [(F, 0, 0)] = (β, 0) to F with

second Chern character β.

Proof. This is proven in [18] (Proposition 13.12).

Now we are ready to apply the Lie algebra morphism Ψ̃Bp defined in [18] (Section 13.4) to (15.32)

and obtain the wall-crossing equation. First we study the image of ε̄(β,2)(τ̃), ε̄(0,2)(τ•), ε̄(βi,0)(τ•)

and ε̄(0,1)(τ•) under the morphism Ψ̃Bp :

Definition 16.2. Define the invariant Bss
p (X,β, 2, τ̃) associated to τ̃ -semistable objects of type

(β, 2) in Bp by

Ψ̃Bp(ε̄(β,2)(τ̃)) = Bss
p (X,β, 2, τ̃) · λ̃(β,2),

where Ψ̃Bp is given by the Lie algebra morphism defined in [18] (Section 13.4).

Moreover, according to result of part (b) of Proposition 13.11 and the fact that [Spec(C)/GL2(C)]
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has dimension −4 we obtain the following:

Ψ̃Bp(δ̄(0,2)(τ•)) = λ̃(0,2) (16.2)

The next two identities that we list here are proved by Joyce and Song in [18] (13.5):

Ψ̃Bp(ε̄(0,1)(τ•)) = −λ̃(0,1). (16.3)

Now suppose that β =
∑

i
βi and βi is indecomposable or (equivalently) there exist no strictly

semistable sheaves with class βi, then by [18] (13.5):

Ψ̃Bp(ε̄(βi,0)(τ•)) = −DT βi(τ)λ̃(βi,0) (16.4)

where DT βi(τ) is the generalized Donaldson-Thomas invariant defined by Joyce and Song in Defi-

nition (5.15) in [18]. To derive the wall crossing equation one writes the identity in (15.32) as an

identity involving nested brackets of ε̄(βi,0)(τ•). Now apply the Lie algebra morphism Ψ̃Bp to both

sides of this equation and use the results obtained in (16.2), (16.3) and (16.4). One obtains the

following equation:

Bss
p (X,β, 2, τ̃) · λ̃(β,2) =∑

1≤l,β1+···+βl=β

(−1)l

l!
· [[· · · [[Ψ̃Bp(ε̄(0,2)(τ•)),−DT β1(τ)λ̃(β1,0)],−DT β2(τ)λ̃(β2,0)], · · · ],−DT βl(τ)λ̃(βl,0)]

(16.5)

16.1 Computation of Ψ̃Bp(ε̄(0,2)(τ •))

By part (b) of Proposition 13.11 the characteristic stack function of moduli stack of strictly τ•-

semistable objects in class (0, 2) is given by:

δ̄(0,2)(τ•) = δ̄(M(0,2),s
Bp (τ•)) =

[
Spec(C)
GL2(C)

]
.
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Joyce in [17] (6.2) has shown that given a stack function
[([

U
GL2(C)

]
, ν
)]

, where U is a quasi-

projective variety, one has the following identity of stack functions:

[([
U

GL2(C)

]
, a

)]
=

F (GL2(C),G2
m,G2

m)
[([

U
G2
m

]
, µ ◦ i1

)]
+ F (GL2(C),G2

m,Gm)
[([

U
Gm

]
, µ ◦ i2

)]
,

(16.6)

where

F (GL2(C),G2
m,G2

m) =
1
2

F (GL2(C),G2
m,Gm) = −3

4
,

(16.7)

and µ ◦ i1 and µ ◦ i2 are the obvious embeddings. Substitute the values in (16.7) and obtain:

δ̄(0,2)(τ•) =
1
2

[([
Spec(C)
G2
m

]
, µ ◦ i1

)]
− 3

4

[([
Spec(C)
Gm

]
, µ ◦ i2

)]
. (16.8)

In order to compute Ψ̃Bp(ε̄(0,2)(τ•)) one uses the definition of ε̄(0,2)(τ•):

ε̄(0,2)(τ•) = δ̄(0,2)(τ•)− 1
2
· δ̄(0,1)(τ•) ∗ δ̄(0,1)(τ•). (16.9)

Substitute the right hand side of (16.8) in (16.9) and obtain:

ε̄(0,2)(τ•) =
1
2

[([
Spec(C)
G2
m

]
, µ ◦ i1

)]
− 3

4

[([
Spec(C)
Gm

]
, µ ◦ i2

)]
− 1

2
· δ̄(0,1)(τ•) ∗ δ̄(0,1)(τ•).

(16.10)

Next we compute δ̄(0,1)(τ•) ∗ δ̄(0,1)(τ•) (which is equal to ε̄(0,1)(τ•) ∗ ε̄(0,1)(τ•) since there exist no

strictly τ•-semistable objects in Bp with class (0, 1)).
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16.2 Computation of ε̄(0,1)(τ •) ∗ ε̄(0,1)(τ •)

We know that ε̄(0,1)(τ•) ∈ SFBp is the stack function corresponding to the object (0,C), in C(Bp).

Consider objects (Fi, Vi, φi) in Bp of type (βi, di) for i = 1, · · · , 3. In order to compute ε̄(0,1)(τ•) ∗

ε̄(0,1)(τ•) as in Definition 14.4 consider the moduli stack of exact sequences of objects in Bp of the

form:

0→ (F1, V1, φ1)→ (F2, V2, φ2)→ (F3, V3, φ3)→ 0 (16.11)

and call it ExactBp . Let πi : ExactBp →MBp(τ•) for i = 1, 2, 3 be the projection map that sends the

exact sequence to the first, second and third objects respectively over the moduli stack of objects

in Bp. We also have the map π1×π3 : ExactBp →MBp(τ•)×MBp(τ•). By Joyce’s definition in [18]

(Definition 3.3):

ε̄(0,1)(τ•) ∗ ε̄(0,1)(τ•) = π2 ∗ ((π1 × π3)∗(ε̄(0,1)(τ•)⊗ ε̄(0,1)(τ•))) (16.12)

We also know that ε̄(0,1)(τ•) = [Spec(C)/Gm, ρ1] where ρ1 : [Spec(C)/Gm] → MBp(τ•) where

MBp(τ•) denotes the moduli stack of τ•-semistable objects in Bp with any given numerical class in

C(Bp). To make things more clear note that π2∗ : SF (ExactBp)→ SF (MBp(τ•)). Moreover

(π1 × π3)∗ : SF (MBp(τ
•)×MBp(τ

•))→ SF (ExactBp). (16.13)

and

π2 ∗ ((π1 × π3)∗) : SF (MBp(τ
•)×MBp(τ

•))→ SF (MBp(τ
•)) (16.14)

Moreover by [18] (Definition 2.7):

⊗ : SF (MBp(τ
•))× SF (MBp(τ

•))→ SF (MBp(τ
•)×MBp(τ

•)). (16.15)
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The first step is to compute ε̄(0,1)(τ•)⊗ ε̄(0,1)(τ•). By definition:

ε̄(0,1)(τ•)⊗ ε̄(0,1)(τ•) = [Spec(C)/Gm, ρ1]⊗ [Spec(C)/Gm, ρ2] = [Spec(C)/Gm × Spec(C)/Gm, ρ1 × ρ2].

(16.16)

Therefore

(π1 × π3)∗([Spec(C)/Gm × Spec(C)/Gm, ρ1 × ρ2])

= [(Spec(C)/Gm × Spec(C)/Gm)×ρ1×ρ2,MBp (τ•)×MBp (τ•),π1×π3
ExactBp ,Φ]

(16.17)

where Φ is the map that embeds the resulting stack in ExactBp . By pushing forward along π2 we

obtain:

π2 ∗ ((π1 × π3)∗)([Spec(C)/Gm × Spec(C)/Gm, ρ1 × ρ2])

= [(Spec(C)/Gm × Spec(C)/Gm)×ρ1×ρ2,MBp (τ•)×MBp (τ•),π1×π3
ExactBp , π2 ◦ Φ] (16.18)

Let us denote by Z the fibered product

([Spec(C)/Gm]× [Spec(C)/Gm])×ρ1×ρ2,MBp (τ•)×MBp (τ•),π1×π3
ExactBp

simply put, the above formulation is described by the following diagram:

Z ExactBp MBp(τ•)

[Spec(C)/Gm]× [Spec(C)/Gm] MBp(τ•)×MBp(τ•)

Φ π2

π1 × π3

ρ1 × ρ2

(16.19)
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Let M
(0,1)
Bp (τ•) denote the moduli stack of objects in Bp with class (0, 1). Note that the embedding

of [Spec(C)/Gm] in MBp is obtained by the following composite morphism.

[Spec(C)/Gm]→M
(0,1)
Bp (τ•)→MBp(τ

•) (16.20)

Lemma 16.3. The product ε̄(0,1)(τ•) ∗ ε̄(0,1)(τ•) is given as

ε̄(0,1)(τ•) ∗ ε̄(0,1)(τ•) =
[(

Spec(C)
A1 oG2

m

, ι

)]
(16.21)

where ι is defined to be the corresponding embedding.

Proof. Let Ei ∈ M
(0,1)
Bp (τ•) for i = 1, 3 and E2 ∈ M

(0,2)
Bp (τ•). Consider the exact sequence in

ExactBp :

0→ E1 → E2 → E3 → 0 (16.22)

By definition this exact sequence can be written as a commutative diagram:

0 C⊗OX(−n) C⊕2 ⊗OX(−n) C⊗OX(−n) 0

0 0 0 0 0.
(16.23)

Hence the set of extensions and the automorphism of diagram (16.23) can be equivalently studied

by considering the simplified diagram:

0 C C⊕2 C 0.
(16.24)

As pointed out in [18] (page 155), given an exact sequence of vector spaces

0→ U → U ⊕ V → V → 0 (16.25)

the automorphism group of this exact sequence is given by the algebraic group (GL(U)×GL(V ))o
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Hom(V,U) with multiplication defined by:

(γ, δ, ε).(γ′, δ′, ε′) = (γ ◦ γ′, δ ◦ δ′, γ ◦ ε′ + ε′ ◦ δ).

for elements γ, γ′ ∈ GL(U), δ, δ′ ∈ GL(V ) and ε, ε′ ∈ Hom(V,U). Alternatively (GL(U)×GL(V ))o

Hom(V,U) is isomorphic to the subgroup of GL(U ⊕ V ) given by elements of the form

 γ ε

0 δ

.

Now replace U and V in (16.25) by C and find that the automorphism group of the exact sequence

in (16.24) is given by (Gm×Gm)oHom(C,C) which is canonically isomorphic to G2
moA1. The set

of exact sequences in (16.22) up to isomorphism is given by Ext1(E3, E1). Consider the action of

G2
moA1 on Ext1(E3, E1) induced by the identification of Ext1(E3, E1) with isomorphism classes of

exact sequences of the form in (16.24). This action is given by (γ, δ, ε) : e 7→ γµ−1e where γ, δ ∈ Gm

and e ∈ Ext1(E3, E1). On the other hand, since (0,C) ∼= E1
∼= E3

∼= (0,C) then Ext1(E3, E1) = 0

and the quasi projective variety parametrizing the split extensions in the exact sequence (16.22) is

given by Spec(C). Hence one obtains:

ε̄(0,1)(τ•) ∗ ε̄(0,1)(τ•) =
[(

Spec(C)
Hom(E3, E1)oG2

m

, ι

)]
=
[(

Spec(C)
A1 oG2

m

, ι

)]
(16.26)

This finishes the proof of 16.3.

Consider the notation in Definition 14.2. Let G = GL2(C). The maximal torus of G is given by

G2
m
∼= TG ⊂ GL2(C). The set Q(G,TG) in Definition 14.2 consists of TG and Gm given by elements

of the form

Gm =

 g 0

0 g

 (16.27)

where g ∈ C∗. Given G = A1 o G2
m for TG = {0} × G2

m and Gm ⊂ TG given as (16.27) by a

computation of Joyce and Song in [18] (page 158):

F (G,TG, TG) = 1 (16.28)

176



and

F (G,TG,Gm) = −1. (16.29)

Therefore by Definition 14.4 and Lemma 16.3:

ε̄(0,1)(τ•) ∗ ε̄(0,1)(τ•) =
[(

Spec(C)
A1 oG2

m

, ι

)]
= −

[(
Spec(C)
Gm

, e2

)]
+
[(

Spec(C)
G2
m

, e1

)]
,

(16.30)

where e1 = µ ◦ i1 and e2 = µ ◦ i2 denote the corresponding embedding maps. Since ε̄(0,1)(τ•) ∗

ε̄(0,1)(τ•) = δ̄(0,1)(τ•) ∗ δ̄(0,1)(τ•), by substituting the right hand side of (16.30) in (16.10) one

obtains:

ε̄(0,2)(τ•) =
1
2

[([
Spec(C)
G2
m

]
, µ ◦ i1

)]
− 3

4

[([
Spec(C)
Gm

]
, µ ◦ i2

)]
− 1

2

(
−
[(

Spec(C)
Gm

, µ ◦ i2
)]

+
[(

Spec(C)
G2
m

, µ ◦ i1
)])

= −1
4

[([
Spec(C)
Gm

]
, µ ◦ i2

)]
.

(16.31)

Now apply the Lie algebra morphism Ψ̃Bp to ε̄(0,2)(τ•). By definition and Equation (16.31):

Ψ̃Bp(ε̄(0,2)(τ•)) = χna(
−1
4

[
Spec(C)
Gm

]
, (µ ◦ i2)∗ν

M
(0,2)
Bp

)λ̃(0,2).

(16.32)

Note that by Proposition 13.11 M
(0,2)
ss,Bp(τ

•) ∼= [Spec(C)/GL2(C)] and hence
[

Spec(C)
Gm

]
has rela-

tive dimension 3 over M
(0,2)
ss,Bp(τ

•). Moreover,
[

Spec(C)
Gm

]
is given by a single point with Behrend’s

multiplicity −1 and

(µ ◦ i2)∗ν
M

(0,2)
Bp

)λ̃(0,2) = (−1)3 · νh
Spec(C)

Gm

i,
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therefore:

Ψ̃Bp(ε̄(0,2)(τ•)) = χna
(
−1
4

[
Spec(C)
Gm

]
, (−1)3 · νh

Spec(C)
Gm

i) λ̃(0,2) = (−1)1 · (−1)3 · −1
4
λ̃(0,2) =

−1
4
λ̃(0,2).

(16.33)

The wall-crossing identity for τ̃ -semistable objects in Bp is simplified as follows:

Bss
p (X,β, 2, τ̃) · λ̃(β,2) =

∑
1≤l,β1+···+βl=β

−1
4
· (1)
l!

l∏
i=1

DT
βi(τ) · [[· · · [[λ̃(0,2), λ̃(β1,0)], λ̃(β2,0)], · · · ], λ̃(βl,0)].

(16.34)

Now we use the fact that by definition the generators λ̃(β,d) satisfy the following property:

[λ̃(β,d), λ̃(γ,e)] = (−1)χ̄Bp ((β,d),(γ,e))χ̄Bp((β, d), (γ, e))λ̃(β+γ,d+e) (16.35)

this enables us to simplify (16.34) as follows:

Bss
p (X,β, 2, τ̃) · λ̃(β,2) =

∑
1≤l,β1+···+βl=β

−1
4
· (1)
l!
·

l∏
i=1

(
DT

βi(τ) · χ̄Bp((β1 + · · ·+ βi−1, 2), (βi, 0))
)

· (−1)χ̄Bp ((0,2),(β1,0))+
Pl
i=1 χ̄Bp ((β1+···βi−1,2),(βi,0)) · λ̃(β,2)

(16.36)

by canceling λ̃(β,2) from both sides we obtain the wallcrossing equation and this finishes our com-
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putation:

Bss
p (X,β, 2, τ̃) =

∑
1≤l,β1+···+βl=β

−1
4
·

[
(1)
l!
·

l∏
i=1

(
DT

βi(τ) · χ̄Bp((β1 + · · ·+ βi−1, 2), (βi, 0))

· (−1)χ̄Bp ((0,2),(β1,0))+
Pl
i=1 χ̄Bp ((β1+···βi−1,2),(βi,0))

)]
.

(16.37)
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Chapter 17

Partial progress on direct
calculations

In this chapter we introduce a direct approach to calculation of invariants of objects in Bp in some

specific examples without using any wallcrossing computation. As a result it will be seen that

our results in this chapter verify the results obtained in identity (16.37) through an example.

Example 17.1. Computation of Bss
p (X, [P1], 2, τ̃) where X is given by total space of O⊕2

P1 (−1)→

P1.

We compute the invariant of τ̃ -semistable objects (F,C2, φC2) of type ([P1], 2) in Bp. Note that In

this case F has rank 1 and p(n) = n + χ(F ). Assume χ(F ) = r. In this case by computations in

[19] and [11] the only semistable sheaf, F , with ch2(F ) = [P1] is given by OP1(r − 1) which is a

stable sheaf. First we give description of M
(2,[P1])
ss,Bp (τ̃). By definition an object of type ([P1, 2]) in Bp

is identified by a complex OX(−n)⊕2 → ι∗OP1(r − 1) where ι : P1 ↪→ X (from now on we suppress

ι∗ in our notation). By the constructions in Section 13.1 the parameter scheme of τ̃ -semistable

objects is obtained by choosing two sections (s1, s2) such that si ∈ H0((OP1(n+ r− 1)) for i = 1, 2.

More over since OP1(r − 1) is a stable sheaf, its stabilizer is given by Gm.

An important point to note is that given a τ̃ -semistable object (F,C2, φC2) one is always able to

obtain a an exact sequence of the form

0→ (F,C, φC)→ (F,C2, φC2)→ (0,C, 0)→ 0

for every object in the moduli stack and since τ̃(F,C2, φC) = 1 ≤ τ̃(0,C, 0) = 1 then one concludes

that all the objects parametrized by the moduli stack are given by extensions of rank 1 τ̃ -stable

objects and hence all objects are τ̃ -strictly-semistable. Moreover, note that giving a τ̃ -semistable
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object of the form OX(−n)⊕2 (s1,s2)−−−−→ F is equivalent to requiring the condition that (s1, s2) 6= (0, 0),

since other wise one may be able to obtain a an exact sequence:

0→ (C2, 0, 0)→ (C2, F, 0)→ (0, F, 0)→ 0

such that τ̃(C2, 0, 0) = 1 > τ̃(0, F, 0) = 0, hence (C2, 0, 0) weakly destabilizes (C2, F, 0) and one

obtains a contradiction. Now use Theorem 13.7 and obtain

M
(2,[P1])
ss,Bp (τ̃) =

[
(H0((OP1(n+ r − 1)))⊕2\{0}/Gm

GL2(C)

]
∼=
[
P(H0((OP1(n+ r − 1))⊕2)

GL2(C)

]
. (17.1)

Now we need to compute the element of the Hall algebra ε̄(β,2)(τ̃). By applying Definition 14.5 to

M
([P1],2)
ss,Bp (τ̃) we obtain:

ε̄(β,2)(τ̃) = δ̄([P1],2)
ss (τ̃)− 1

2

∑
βk+βl=[P1]

δ̄(βk,1)
s (τ̃) ∗ δ̄(βl,1)

s (τ̃). (17.2)

Now we use a stratification strategy in order to decompose M
([P1],2)
ss,Bp (τ̃) into a disjoint union of strata

as follows: Given the fact that the objects in the moduli stack under study are of type ([P1], 2)

one would immediately see that the only possible decomposition for a τ̃ -semistable object of type

([P1], 2) is given by decomposition of its class as ([P1], 2) = ([P1], 1) + (0, 1). This means that a

strictly τ̃ -semistable object of type ([P1], 2) is either given by (split or non-split) extensions of object

of type ([P1], 1) by objects of type (0, 1) or it is given by the extensions with reversed order, i.e the

extensions of objects of type (0, 1) by objects of type ([P1], 1). Our stratification technique involves

a study of the parametrizing moduli stacks for these objects depending on what extensions are used

to produce the objects. We decompose M
([P1],2)
ss,Bp (τ̃) into a disjoint union of split and non-split strata.

Definition 17.2. Define M
([P1],2)
sp,Bp (τ̃) ⊂M

([P1],2)
ss,Bp (τ̃) to be the locally closed stratum over which an

object of type ([P1], 2) is given by split extensions involving objects of type ([P1], 1) and (0, 1).

Define M
([P1],2)
nsp,Bp (τ̃) ⊂M

([P1],2)
ss,Bp (τ̃) to be a locally closed stratum over which an object of type ([P1], 2)

is given by non-split extensions involving objects of type ([P1], 1) and (0, 1).

181



Now we study the structure of each stratum separately.

17.1 Stacky structure of M
([P1],2)
sp,Bp

(τ̃)

It is easy to see that any τ̃ -semistable objects of type ([P1], 2) given as

OX(−n)⊕2 → OP1(r − 1) ∼=
(
OX(−n)⊕2 → OP1(r − 1)

)
⊕ (OX(−n)→ 0)

has the property that the sections s1, s2 for this object are linearly dependent on one another.

Hence by discussion in Section 13.1 the underlying parameter scheme of τ̃ -semistable objects of

this given form is given by chooing a nonzero section of OP1(n + r − 1) in other words we obtain

H0(OP1(n+ r− 1))\{0}. Now we need to take the quotient of this space by the stabilizer group of

points. We know that the condition required for a τ̃ -semistable object OX(−n)⊕2 (s1,s2)−−−−→ F to be

given by split extensions of rank 1 objects is that s1 and s2 are linearly dependent on one another.

Now pick such an object given by OX(−n)⊕2 (s1,0)−−−→ F . The automorphisms of this object are given

by the group which makes the following diagram commutative:

OX(−n)⊕2 OP1(r − 1)

OX(−n)⊕2 OP1(r − 1)

(s1, 0)

∼= ∼=
(s1, 0)

Hence it is seen that the left vertical map needs to be given by a subgroup of GL2(C) which

preserves s1, i.e the Borel subgroup of GL2(C) whose elements are given by 2× 2 upper triangular

matrices

 k1 k2

0 k3

 where k1, k3 ∈ Gm and k2 ∈ A1. Having fixed one of the automorphisms

via fixing k1, k2, k3, it is seen that by the commutativity of the square diagram the right vertical

map needs to be given by multiplication by k1 which is an element of Gm. Note that one needs

to take the quotient of the parameter scheme by all isomorphisms between any two objects in the

split stratum, not just the automorphisms of one fixed representative. In general for an object to

live in the split stratum one requires the sections (s1, s2) to be given by (s1, a · s1). We observed
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that fixing a representative for a split object of rank 2 (such as fixing (s1, s2) = (s1, 0) as above)

would tell us that its automorphisms are given by G2
moA1. Hence taking into account all possible

representatives implies that the stabilizer group of objects in spit stratum is given by G2
moA1×Gm.

Hence we obtain

M
([P1],2)
sp,Bp (τ̃) =

[
H0(OP1(n+ r − 1))\{0}

G2
m oA1 ×Gm

]
=
[
P(H0(OP1(n+ r − 1)))

G2
m oA1

]
. (17.3)

17.2 Stacky structure of M
([P1],2)
nsp,Bp

(τ̃)

In this case all the objects in M
([P1],2)
nsp,Bp (τ̃) are given by non-split extensions of the form:

0 OX(−n) O⊕2
X (−n) OX(−n) 0

0 OP1(r − 1) F 0 0,

s1 (s1, s2)
∼=

(17.4)

Note that switching the place of OP1(r − 1) and 0 in the bottom row of diagram (17.4) would

produce a split extension. Now in order to obtain non-split extensions one needs to choose two

sections s1, s2 such that s1 and s2 are linearly independent. The set of all linearly independent

choices of s1 and s2 spans a two dimensional subspace of H0(OP1(n+ r− 1)) which is given by the

Grassmanian:

G(2, n+ r).

Now we need to take the quotient of this scheme by the stabilizer group of points in the stratum.

We know that the condition required for a τ̃ -semistable object OX(−n)⊕2 (s1,s2)−−−−→ F to be given by

nonsplit extensions of rank 1 objects is that s1 and s2 are linearly independent. Now pick such an

object given by OX(−n)⊕2 (s1,s2)−−−−→ F . The automorphisms of this object are given by the group

which makes the following diagram commutative:
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OX(−n)⊕2 OP1(r − 1)

OX(−n)⊕2 OP1(r − 1)

(s1, s2)

∼= ∼=
(s1, s2)

Hence it is seen that the left vertical map needs to be given by a subgroup of GL2(C) whose elements

are given by 2× 2 diagonal matrices of the form

 k1 0

0 k1

 where k1 ∈ Gm. Having fixed one of

the automorphisms via fixing k1, it is seen that by the commutativity of the square diagram the

right vertical map needs to be given by multiplication by k1 which is an element of Gm.

Hence we obtain

M
([P1],2)
nsp,Bp (τ̃) =

[
G(2, n+ r)

Gm

]
. (17.5)

Now we compute
∑

βk+βl=[P1] δ̄
(βk,1)
s (τ̃) ∗ δ̄(βl,1)

s (τ̃) appearing on the right hand side of (17.2). We

use the fact that

∑
βk+βl=[P1]

δ̄(βk,1)
s (τ̃) ∗ δ̄(βl,1)

s (τ̃) = δ̄([P1],1)
s (τ̃) ∗ δ̄(0,1)

s (τ̃) + δ̄(0,1)
s (τ̃) ∗ δ̄([P1],1)

s (τ̃) (17.6)

and compute each term on the right hand side of (17.6) separately.

Remark 17.3. As we described above there exists an action of GL2(C) on S := P(H0(OP1(n+ r−

1))⊕2)). This action induces an action of the corresponding Lie algebra on the tangent space given

by the map:

OS ⊗ K→ TS, (17.7)

where K denotes the Lie algebra associated to the group GL2(C). The dimension of the automor-

phism group of objects representing the elements of S is given by the dimension of the stabilizer

(in GL2(C)) group of these elements, which itself is given by the dimension of the kernel of the

map in (17.7). On the other hand, the dimension of the kernel of the map in (17.7) is an upper-

semicontinious function. Therefore by the usual arguments, we obtain a stratification of S which
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induces a stratification of
[

S
GL2(C)

]
into locally closed strata such that over each stratum the di-

mension of the stabilizer group is constant as we vary over points inside that stratum. Hence in

Definition 17.2 we stated without proof that the defined strata are locally closed in M
([P1],2)
ss,Bp (τ̃).

17.3 Computation of δ̄
(βk,1)
s (τ̃) ∗ δ̄(βl,1)

s (τ̃) in general cases

Background:

In this section we describe the computation of the Ringel hall product of the stack functions

δ̄
(βk,1)
s (τ̃) ∗ δ̄(βl,1)

s (τ̃) for βk and βl in general cases and later we specialize to our specific example.

Similar to discussions in section 16.2, let πi : ExactBp → MBp(τ̃) for i = 1, 2, 3 be the projection

map that sends the exact sequence to the first,second and third objects respectively over moduli

stack of objects in Bp. We also have the map π1 × π3 : ExactBp → MBp(τ̃) ×MBp(τ̃). By Joyce’s

definition in [18]:

δ(βk,1)
ss (τ̃) ∗ δ(βl,1)

ss (τ̃) = π2 ∗ ((π1 × π3)∗(δ(βk,1)(τ̃)⊗ δ(βl,1)(τ̃))) (17.8)

Suppose that δ(βk,1) = [M(βk,1)(τ̃)/Gm, ρ1] and δ(βl,1) = [M(βk,1)(τ̃)/Gm, ρ3] whereM(βk,1)(τ̃) and

M(βk,1)(τ̃) denote some underlying parameter schemes and

ρ1 :
[
M(βk,1)(τ̃)/Gm

]
→MBp(τ̃),

and

ρ3 :
[
M(βl,1)(τ̃)/Gm

]
→MBp(τ̃).

Remark 17.4. To have a clear picture of our computation one may choose βk = [P1] and βl = 0

and see that M([P1],1)(τ̃) := P(H0(OP1(n + r − 1))) and M(0,1)(τ̃) := Spec(C). However as we

explained above, in this section we choose to carry out the computation in more generality and

later substitute for M(βk,1)(τ̃) and M(βl,1)(τ̃).
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Let us denote by Z ′ the fibered product

(
[
M(βk,1)(τ̃)/Gm

]
×
[
M(βl,1)(τ̃)/Gm

]
)×ρ1×ρ3,MBp (τ̃)×MBp (τ̃),π1×π3

ExactBp

the identity in (17.8) is described by the following diagram:

Z ′ ExactBp MBp(τ̃)

[
M(βk,1)(τ̃)/Gm

]
×
[
M(βl,1)(τ̃)/Gm

]
MBp(τ̃)×MBp(τ̃)

Φ π2

π1 × π3

ρ1 × ρ1

(17.9)

We compute the product of stack functions in (17.8) by computing it over the C-points of δ̄(βk,1)(τ̃)

and δ̄(βl,1)(τ̃) (these are induced from C-points of M(βk,1)(τ̃) and M(βl,1)(τ̃)) and then integrating

over all points in M(βk,1)(τ̃)×M(βl,1)(τ̃).

Consider the stack function

δ1 =
([

Spec(C)
Gm

]
, ρ1 ◦ ι1

)
,

with

ι1 :
[

Spec(C)
Gm

]
→

[
M(βk,1)(τ̃)

Gm

]
.

Moreover let

δ3 =
([

Spec(C)
Gm

]
, ρ3 ◦ ι3

)
,

with

ι3 :
[

Spec(C)
Gm

]
→

[
M(βl,1)(τ̃)
Gm

]
.

Note that δ1 and δ3 are the stack functions associated to C-points of M(βk,1)(τ̃) and M(βl,1)(τ̃)

respectively. Let E1 ∈ M
(βk,1)
Bp (τ̃) and E3 ∈ M

(βl,1)
Bp (τ̃) and E2 ∈ M

(β,2)
Bp (τ̃). Consider the exact

sequence in ExactBp :

0→ E1 → E2 → E3 → 0 (17.10)

Similar to computations in Section 16.2, the automorphism group of the extension 17.10 is given
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by Hom(E3, E1)oG2
m. The element (g1, g2) ∈ G2

m acts on Ext1(E3, E1) by multiplication by g−1
2 g1

and the action of Hom(E3, E1) on Ext1(E3, E1) is trivial. If the extensions in (17.10) are non-split,

then the parametrizing scheme of such extensions is obtained by P(Ext1(E3, E1)) and for split

extensions, it is obtained by Spec(C). In case of nonsplit extensions, the stabilizer group of the

action of G2
m is given by Gm and for split extensions, the stabilizer group of the action of G2

m is

G2
m itself, hence:

δ1 ∗ δ3 =
([

Spec(C)
Hom(E3, E1)oG2

m

]
, µ1

)
+
([

P(Ext1(E3, E1))
Hom(E3, E1)oGm

]
, µ3

)
.

(17.11)

Definition 17.5. Let R be a C-scheme. Consider BG given as a quotient stack
[

Spec(C)
G

]
. Define

motivic integration over R as an identity in the motivic ring of stack functions:

∫
R

[
Spec(C)

G

]
dµm :=

[
R

G

]
. (17.12)

Moreover assume that P→ R is a vector bundle over R. Then define:

∫
R

[
P
G

]
dµm :=

∫
R
χ(P) ·

[
Spec(C)

G

]
dµm := χ(P) ·

[
R

G

]
, (17.13)

where χ(P) denotes the topological Euler characteristic of P. Here The measure µm is the map

sending constructible sets on R to the their corresponding elements in the Grothendieck group of

schemes.
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Now integrate Equation (17.11) over M(βk,1)(τ̃)×M(βl,1)(τ̃):

δ̄(βk,1)
s (τ̃) ∗ δ̄(βl,1)

s (τ̃) =
∫

(E1,E3)∈M(βk,1)(τ̃)×M(βl,1)(τ̃)
δ1 ∗ δ3 =∫

(E1,E3)∈M(βk,1)(τ̃)×M(βl,1)(τ̃)

[
Spec(C)

Hom(E3, E1)oG2
m

]
dµm

+
∫

(E1,E3)∈M(βk,1)(τ̃)×M(βl,1)(τ̃)

[
P(Ext1(E3, E1))

Hom(E3, E1)oGm

]
dµm.

(17.14)

Remark 17.6. At this stage It is important to point out that in what follows we intend to

compute the product of characteristic stack functions ofM([P1],1)(τ̃) := P(H0(OP1(n+ r− 1))) and

M(0,1)(τ̃) := Spec(C) however we will not use the motivic integration in Definition 17.5. We rather

do the computations directly by computing the corresponding base parameter schemes and taking

their quotients by the stabilizer group of their points.

17.4 Computation of δ̄
([P1],1)
s (τ̃) ∗ δ̄(0,1)

s (τ̃)

Given δ̄([P1],1)
s (τ̃) = (

[
P(H0(OP1 (n+r−1)))

Gm

]
, ρ1) and δ̄(0,1)

s (τ̃) = (
[

Spec(C)
Gm

]
, ρ2) consider the diagram:

Z ′12 ExactBp

[
P(H0((OP1 (n+r−1))⊕2)

GL2(C)

]
[

P(H0(OP1 (n+r−1)))

Gm

]
×
[

Spec(C)
Gm

]
MBp(τ̃)×MBp(τ̃)

Φ π2

π1 × π3

ρ1 × ρ2

(17.15)

Here Z ′12 is given by the scheme parametrizing the set of commutative diagrams:

0 OX(−n) O⊕2
X (−n) OX(−n) 0

0 OP1(r − 1) F 0 0,

s1 (s1, s2)
∼=

(17.16)
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Note that the extensions in (17.16) have the possibility of being split or non-split. Hence we con-

sider each case separately and introduce a new notation:

Definition 17.7. Let [δ̄([P1],1)
s (τ̃) ∗ δ̄(0,1)

s (τ̃)]sp denote the stratum of (π2 ◦ Φ)∗Z ′12 over which the

points are represented by split extensions given by coomutative diagram in (17.16).

Definition 17.8. Let [δ̄([P1],1)
s (τ̃) ∗ δ̄(0,1)

s (τ̃)]nsp denote the stratum of (π2 ◦ Φ)∗Z ′12 over which the

points are represented by non-split extensions given by coomutative diagram in (17.16).

Now we compute [δ̄([P1],1)
s (τ̃) ∗ δ̄(0,1)

s (τ̃)]sp. This amounts to choosing sections s1, s2 so that s1

and s2 are linearly depending on one another. The scheme parametrizing the nonzero sections

s1 is given by P(H0(OP1(n + r − 1))). Now we take the quotient of this scheme by the stabilizer

group of points. Similar to arguments in Lemma 16.3 given any point in P(H0(OP1(n + r − 1)))

represented by the extension in diagram (17.16) its stabilizer group is given by the semi-direct

product G2
m o Hom(E3, E1) where each factor of Gm amounts to the stabilizer group of objects

given as E3 := OX(−n) → 0 and E1 := OX(−n) → OP1(r − 1) respectively. Note that the extra

factor of A1 will not appear as a part of the stabilizer group since by the given description of

E1 and E3 we know that Hom(E3, E1) = 0 for every such E1 and E3. We obtain the following

conclusion:

[δ̄([P1],1)
s (τ̃) ∗ δ̄(0,1)

s (τ̃)]sp =
[
P(H0(OP1(n+ r − 1)))

G2
m

]
. (17.17)

Now we compute [δ̄([P1],1)
s (τ̃) ∗ δ̄(0,1)

s (τ̃)]nsp. This amounts to choosing s1, s2 so that s1 and s2 are

linearly independent and the extension in diagram (17.16) becomes non-split . Note that for any

fixed value of s1 one has P1 worth of choices for s2. Now we need to consider all possible choices

of s1 and in doing so we require the pair s1, s2 to remain linearly independent. This gives the flag

variety F(1, 2, n+ r). Hence we obtain:

[δ̄([P1],1)
s (τ̃) ∗ δ̄(0,1)

s (τ̃)]nsp =
[

F(1, 2, n+ r)
Gm

]
. (17.18)

Note that the factor of Gm in the denominator of (17.18) is due to the fact that we have used one
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of the Gm factors in projectivising the bundle of s2-choices over the Grassmanian. We finish this

section by summarizing our computation. By (17.17) and (17.18) one obtains:

δ̄([P1],1)
s (τ̃) ∗ δ̄(0,1)

s (τ̃) =
[
P(H0(OP1(n+ r − 1)))

G2
m

]
+
[

F(1, 2, n+ r)
Gm

]
(17.19)

17.5 Computation of δ̄
(0,1)
s (τ̃) ∗ δ̄([P1],1)

s (τ̃)

Now change the order of δ̄(0,1)
s (τ̃) and δ̄

([P1],1)
s (τ̃) and obtain a diagram

Z ′21 ExactBp

[
P(H0((OP1 (n+r−1))⊕2)

GL2(C)

]
[

Spec(C)
Gm

]
×
[

P(H0(OP1 (n+r−1)))

Gm

]
MBp(τ̃)×MBp(τ̃)

Φ π2

π1 × π3

ρ2 × ρ1

(17.20)

Here Z ′21 is given by the scheme parametrizing the set of commutative diagrams:

0 OX(−n) O⊕2
X (−n) OX(−n) 0

0 0 F OP1(r − 1) 0,

0 (0, s2)
∼=

(17.21)

Note that the computation in this case is easier since the only possible extensions of the form given

in (17.21) are the split extensions. The computation in this case is similar to computation in (17.17)

except that one needs to take into account that over any point represented by an extension (as in

diagram (17.21)) of E1 := OX(−n)→ 0 and E3 := OX(−n)→ OP1(r− 1) we have Hom(E3, E1) ∼=

A1. Hence by similar discussions we obtain :

δ̄([P1],1)
s (τ̃) ∗ δ̄(0,1)

s (τ̃) =
[
P(H0(OP1(n+ r − 1)))

G2
m oA1

]
. (17.22)
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17.6 Computation of ε̄(β,2)(τ̃)

By (17.2), (17.3), (17.5), (17.6), (17.19) and (17.22) we obtain:

ε̄(β,2)(τ̃) =
[
P(H0(OP1(n+ r − 1)))

G2
m oA1

]
+
[

G(2, n+ r)
Gm

]
− 1

2
·
[
P(H0(OP1(n+ r − 1)))

G2
m

]
− 1

2
·
[

F(1, 2, n+ r)
Gm

]
− 1

2
·
[
P(H0(OP1(n+ r − 1)))

G2
m oA1

]
. (17.23)

Now use the decomposition used by Joyce and Song in [18] (page 158) and write

[
P(H0(OP1(n+ r − 1)))

G2
m oA1

]
=

F (G,G2
m,G2

m) ·
[
P(H0(OP1(n+ r − 1)))

G2
m

]
+ F (G,G2

m,Gm) ·
[
P(H0(OP1(n+ r − 1)))

Gm

]
, (17.24)

where F (G,G2
m,G2

m) = 1 and F (G,G2
m,Gm) = −1. Equation (17.23) simplifies as follows:

ε̄(β,2)(τ̃) =
���

���
���

���
�[

P(H0(OP1(n+ r − 1)))
G2
m

]
−
[
P(H0(OP1(n+ r − 1)))

Gm

]
+
[

G(2, n+ r)
Gm

]
−
((((

(((
((((

(((1
2
·
[
P(H0(OP1(n+ r − 1)))

G2
m

]
1
2
·
[

F(1, 2, n+ r)
Gm

]
−
((((

(((
((((

(((1
2
·
[
P(H0(OP1(n+ r − 1)))

G2
m

]
+

1
2
·
[
P(H0(OP1(n+ r − 1)))

Gm

]
(17.25)

Now use Definition 17.5 and write:

[
G(2, n+ r)

Gm

]
= χ(G(2, n+ r)) ·

[
Spec(C)
Gm

]
(17.26)
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and

[
F(1, 2, n+ r)

Gm

]
=

= χ(F(1, 2, n+ r)) ·
[

Spec(C)
Gm

]
= χ(P1) · χ(G(2, n+ r)) ·

[
Spec(C)
Gm

]
= 2 · χ(G(2, n+ r)) ·

[
Spec(C)
Gm

]
(17.27)

where the equality in the third line is due the fact that the topological Euler characteristic of a

vector bundle over a base variety is equal to the Euler characteristic of its fibers times the Euler

characteristic of the base. By (17.23) and (17.27) we obtain:

− 1
2
·
[
P(H0(OP1(n+ r − 1)))

Gm

]
+ χ(G(2, n+ r)) ·

[
Spec(C)
Gm

]
− 2 · 1

2
· χ(G(2, n+ r)) ·

[
Spec(C)
Gm

]
= −1

2
·
[
P(H0(OP1(n+ r − 1)))

Gm

]
= −1

2
χ(P(H0(OP1(n+ r − 1)))) ·

[
Spec(C)
Gm

]
= −1

2
(n+ r) ·

[
Spec(C)
Gm

]
. (17.28)

17.7 Computation of the invariant

Now apply the Lie algebra morphism Ψ̃Bp to ε̄([P
1],2)(τ̃). By definition:

Ψ̃Bp(ε̄([P
1],2)(τ̃)) = χna(−1

2
(n+ r) ·

[
Spec(C)
Gm

]
, (µ ◦ i2)∗ν

M
(0,2)
Bp

)λ̃([P1],2).

(17.29)

Note that by Equation (17.1) M
(2,[P1])
ss,Bp (τ̃) =

[
P(H0((OP1 (n+r−1))⊕2)

GL2(C)

]
and hence

[
Spec(C)

Gm

]
has relative

dimension −1 − (2n + 2r − 5) = 4 − 2n − 2r over M
(2,[P1])
ss,Bp (τ̃). Moreover,

[
Spec(C)

Gm

]
is given by a
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single point with Behrend’s multiplicity −1 and

(µ ◦ i2)∗ν
M

(0,2)
Bp

)λ̃([P1],2) = (−1)4−2n−2r · νh
Spec(C)

Gm

i = νh
Spec(C)

Gm

i,

therefore:

Ψ̃Bp(ε̄([P
1],2)(τ•)) = χna

(
−1

2
(n+ r) ·

[
Spec(C)
Gm

]
, νh

Spec(C)
Gm

i) λ̃([P1],2) = (−1)1 · −1
2

(n+ r) · λ̃([P1],2).

(17.30)

Finally by Definition 16.2 we obtain:

Bss
p (X,β, 2, τ̃) =

1
2

(n+ r). (17.31)

Note that it is easily seen that substituting ([P1], 2) for (β, 2) in identity (16.37) would give the

same answer as in (17.31).
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Chapter 18

Objects in Bp versus highly frozen
triples

As we showed in chapters 16 and 17, exploiting the nice properties of the auxiliary category Bp and

the wall-crossing machinery of Kontsevich-Soibelman [22] and Joyce-Song [18] enables one to obtain

a relationship between invariants of τ̃ -semistable objects of type (β, 2) in Bp and the generalized

Donaldson-Thomas invariants. In this chapter we investigate the relationship between τ̃ -semistable

objects in Bp and highly frozen triples with a given stability condition. The outcome is to claim

that the invariants of the highly frozen triples with this given stability condition are related to

generalized Donaldson-Thomas invariants. For the choice of stability condition we use the stability

condition associated to Joyce-Song pairs [18] (Definition 5.18):

Definition 18.1. Consider a highly frozen triple (E,F, φ, ψ) of rank r as in Definition 2.9. Let pF

denote the reduced Hilbert polynomial of F with respect to the ample line bundle OX(1). This

triple is said to be τ̂ -limit stable if:

1. pF́ ≤ pF for all proper subsheaves F ′ ⊂ F such that F́ 6= 0.

2. If φ factors through F́ (F́ a proper subsheaf of F ), then pF́ < pF .

Remark 18.2. It is obviously seen that the τ̂ -limit-stable highly frozen triples behave differently

than q(m)→∞ τ ′-limit-stable highly frozen triples in Section 2.1. The τ ′-limit-stable highly frozen

triples are higher rank analog of PT stable pairs in [28] and τ̂ -limit-stable highly frozen triples are

higher rank analog of Joyce-Song stable pairs [18] (Chapter 5).

Remark 18.3. The construction of the moduli stack of τ̂ -limit-stable highly frozen triples is

followed by replacing τ ′-stability with τ̂ -limit-stability in Chapter 3.

Definition 18.4. Given a highly frozen triple (E,F, φ, ψ) as in Definition 2.9 fix the Chern char-

acter of F to be equal to β. Let β2 = Ch2(F ) denote the second Chern character of F (fixing β
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results in fixing β2). Let Pβ = χ(F (m)) = m

∫
β2

c1(L) + χ(F ) denote the Hilber polynomial of F

(L is a fixed polarization over X). Define M
(Pβ ,r)
s,HFT(τ̂) to be the moduli stack of τ̂ -limit-stable highly

frozen triples of type (P, r).

Theorem 18.5. The moduli stack M
(Pβ ,r)
s,HFT(τ̂) is a principal GLr(C) bundle over

⋃
β|Pβ=P

M
(β,r)
Bp,ss(τ̃).

Proof. First prove that there exists a map πτ̂τ̃ : M
(Pβ ,r)
s,HFT(τ̂)→

⋃
β|Pβ=P

M
(β,r)
Bp,ss(τ̃):

Let p ∈ M
(Pβ ,r)
s,HFT(τ̂)(Spec(C)) be represented by (E,F, φ, ψ) as in Definition 2.9. Now forget the

choice of isomorphism ψ : E
∼=−→ O⊕rX (−n) and obtain (E,F, φ) which itself is represented by a

complex I• := [V ⊗OX(−n)→ F ] such that E ∼= V ⊗OX(−n) for V a Cr-vector space. Now use

[18] (Page 185) and identify the complex I• with an object (F, V, φV ) of type (β, r) in Bp. Now one

needs the following lemma:

Lemma 18.6. The highly frozen triple (E,F, φ, ψ) is τ̂ -limit-stable if and only if the associated

(F, V, φV ) of type (β, r) is τ̃ -semistable.

Proof. 1. τ̂ -limit-stability⇒ τ̃ -semistability:

One proves the claim by contradiction. Suppose (F, V, φV ) is not τ̃ -semistable. Then there exists

a subobject (F ′, V, φ′V ), a quotient object (Q, 0, 0) and an exact sequence

0→ (F ′, V, φ′V )→ (F, V, φV )→ (Q, 0, 0)→ 0,

such that τ̃(F ′, V, φ′V ) = 1 and τ̃(Q, 0, 0) = 0. Now use the identification of (F, V, φV ) and

(F ′, V, φ′V ) with the complexes I• := V ⊗OX(−n)→ F and I ′• := V ⊗OX(−n)→ F ′ respectively

[18] (Page 185) and consider the following commutative diagram:

0 0

O⊕rX (−n) F ′

OX(−n) F

0 Q

0 0

∼=

. (18.1)
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From the right vertical short exact sequence in diagram (18.1) it is seen that P (F ′) = P (F )−P (Q)

and rk(F ′) = rk(F ) − rk(Q). Note that F and Q are both objects in Ap and since Ap is an

abelian category it contains kernels and hence p(F ′) = p. Hence we obtain a contradiction with

τ̂ -limit-stability of (E,F, φ, ψ).

2. τ̃ -semistability⇒ τ̂ -limit-stability:

Similarly suppose (E,F, φ, ψ) is not τ̂ -limit-stable. Then there exists a proper nonzero subsheaf

F ′ ⊂ F such that φ factors through F ′ and p(F ′) = p(F ) = p. Now obtain the diagram in (18.1) and

consider the right vertical short exact sequence. By the same reasoning as above p(Q) = p. Hence

Q ∈ Ap and the complex 0 → Q represents an object in Bp given by (Q, 0, 0) with τ̃(Q, 0, 0) = 0.

Hence (F, V, φV ) is not τ̃ -semistable which contradicts the assumption.

Now in order to show that M
(Pβ ,r)
s,HFT(τ̂) is a principal GLr(C) bundle over M

(β,r)
Bp,ss(τ̃) replace M

(P2,r,n)
s,HFT (τ ′)

and M
(P2,r,n)
s,FT (τ ′) in proof of Proposition 3.6 with M

(Pβ ,r)
s,HFT(τ̂) and M

(β,r)
Bp,ss(τ̃) respectively. This fin-

ishes the proof of Lemma 18.6 as well as Theorem 18.5.

Remark 18.7. Let ν(Pβ ,r)
MHFT

denote Behrend’s constructible function on M
(Pβ ,r)
s,HFT(τ̂). Let ν(β,r)

MBp,ss

denote Behrend’s constructible function on M
(β,r)
Bp,ss(τ̃). By Theorem 18.5 the following identity

holds true:

ν
(Pβ ,r)
MHFT

= (−1)r
2 · (πτ̂τ̃ )∗ν(β,r)

MBp,ss
, (18.2)

where the map πτ̂τ̃ is defined as in Theorem 18.5.

Assuming that there exists a well-defined deformation-obstruction theory over M
(Pβ ,r)
s,HFT(τ̂) then the

identity (18.2) provides one with a way to relate the invariants of τ̂ -limit-stable frozen triples to

invariants of τ̃ -semistable objects in Bp.

As we showed in Section 2.1, a τ ′-limit-stable highly frozen triple is thought of as higher rank

analog of a PT stable pair [28] while a τ̂ -limit-stable highly frozen triple is thought of as a higher

rank analog of Joyce-Song stable pair [18] (Chapter 5). We constructed a well-behaved deformation

obstruction theory for higher rank PT pairs in Chapter 6 and our constructions depend heavily on

the properties of τ ′-limit stability. Our methods in Chapter 6 only hold true for PT-stability, hence
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we do not know if there exists any well-behaved deformation obstruction theory for higher rank JS

pairs (i.e τ̂ -limit-stable highly frozen triples). Hence the remaining statements in this chapter are

all conjectural:

Definition 18.8. Define the invariant of τ̂ -limit-stable highly frozen triples of rank r as follows:

HFT(X,Pβ, r, τ̂) = χ(M(Pβ ,r)
s,HFT(τ̂), ν(Pβ ,r)

MHFT
). (18.3)

Corollary 18.9. By Definition 18.3 and (18.2):

HFT(X,Pβ, r, τ̂) = χ(M(Pβ ,r)
s,HFT(τ̂), ν(Pβ ,r)

MHFT
) = (−1)r

2 ·χ(M(β,r)
Bp,ss(τ̃), ν(β,r)

MBp,ss
) = (−1)r

2 ·Bss
p (X,β, r, τ̃),

(18.4)

where Bss
p (X,β, r, τ̃) denotes the invariant of τ̃ -semistable objects of type (β, r) in Bp.

Remark 18.10. Assuming that there exists a well-behaved deformation obstruction theory for

M
(Pβ ,r)
s,HFT(τ̂), then it follows that the invariants defined in 18.8 are deformation invariants.

Corollary 18.11. Let r = 2. By Corollary 18.9 the invariants of rank 2 τ̂ -limit-stable highly frozen

triples can be expressed in terms of generalized Donaldson-Thomas invariants.
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