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Abstract

In this thesis, we study extremal problems concerning cycles and paths in graphs, graph

packing, and graph decomposition. We use “graph” in the general sense, allowing loops and

multi-edges.

The Chvátal–Erdős Theorem states that every graph whose connectivity is at least its

independence number has a spanning cycle. In 1976, Fouquet and Jolivet conjectured an

extension: If G is an n-vertex k-connected graph with independence number a, and a ≥ k,

then G has a cycle with length at least k(n+a−k)
a

. In Chapter 2 we prove this conjecture.

Nash-Williams and Tutte independently characterized when a graph has k edge-disjoint

spanning trees; a consequence is that 2k-edge-connected graphs have k edge-disjoint spanning

trees. Kriesell conjectured a more general statement: defining a set S ⊆ V (G) to be j-edge-

connected in G if S lies in a single component of any graph obtained by deleting fewer than j

edges from G, he conjectured that if S is 2k-edge-connected in G, then G has k edge-disjoint

trees containing S. In Chapter 3, we show that it suffices for S to be 6.5k-edge-connected

in G.

A shortcutting operation on a graph G replaces a path in G by an edge joining its end-

points. An S-connector of G is a subgraph of G from which after some shortcutting opera-

tions we get a connected graph with vertex set S. In Chapter 3, we also show that if S is

10k-edge-connected in G, then G has k edge-disjoint S-connectors.

Say that a graph with maximum degree at most d is d-bounded. In chapter 4, we prove

a sharp sparseness condition for decomposability into k forests plus one d-bounded graph
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when d > k. Consequences are that every graph with fractional arboricity at most k+ d
k+d+1

has such a decomposition. When d = k+1, and also in the case where k = 1 and d ≤ 6, the

d-bounded graph in the decomposition can also required to be a forest. For d ≤ k + 1, we

prove that every graph with fractional arboricity at most k+ d
2k+2

decomposes into k forests

plus one d-bounded forest.
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Chapter 1

Introduction

The Hamiltonian cycle problem, determining whether a graph contains a spanning cycle, is a

central problem in graph theory. A more general problem is finding the length of the longest

cycle in a graph. In Section 1.1, we give some results on the Hamiltonian cycle problem

and state our main results about cycles and paths in a graph with given connectivity and

independence number.

Given a family F of graphs, an F-packing of a graph G is a set of edge-disjoint subgraphs

of G such that each of them is in F . Starting from the theorem of Nash-Williams and Tutte

on tree packing, Section 1.2 will generalize to Steiner tree packing and S-connector packing.

Also, our result on S-connector packing is related to Mader’s Splitting Lemma on preserving

local edge-connectivity.

Dual to packing, an F-decomposition of a graph G consists of edge-disjoint subgraphs

such that each of them is in F and their union is G. Many problems in graph theory can be

viewed as graph decomposition problems. Starting from Nash-William’s Arboricity Theorem

on forest decomposition, Section 1.3 will strengthen it to decomposition of graphs into forests

plus one graph with bounded degree.

In Section 1.4, we give definitions of basic terminology we use in this thesis.

1



1.1 Extremal problem on cycles

A Hamiltonian cycle in a graph is a cycle covering all vertices of the graph. A graph is

Hamiltonian if it contains a Hamiltonian cycle. Named after Sir William Rowan Hamilton,

Hamiltonian cycle problems date from the 1850s. As of now, there are more than ten survey

papers, dozens of open problems, and a flood of papers on this topic.

Testing whether a graph is Hamiltonian is a fundamental problem in computer science.

This problem is NP-complete. In 1952, Dirac [13] proved for n ≥ 3 that any n-vertex graph

with minimum degree at least n/2 is Hamiltonian. In 1960, Ore [36] strengthened Dirac’s

result to the following: if d(u) + d(v) ≥ n for any two nonadjacent vertices u and v in G,

then G is Hamiltonian. Another well-known theorem, published by Chvátal and Erdős [12]

in 1972, gives a sufficient condition in terms of the connectivity kappa(G) and independence

number α(G) of the graph G.

Theorem 1.1.1. (Chvátal–Erdős [12]) If G is a graph such that κ(G) ≥ α(G), then G has

a cycle through all its vertices.

When a sufficient condition for a graph being Hamiltonian fails slightly, we may still

expect that the graph has a long cycle. The long-cycle version of Dirac’s Theorem states

that every 2-connected graph has a cycle with length at least min{n, 2δ(G)}, where δ(G)

denotes the minimum vertex degree of G. The long-cycle version of Ore’s Theorem was

published by Bondy [3] in 1971; it states that if d(u) + d(v) ≥ m whenever u and v are

distinct nonadjacent in G, then G has a cycle with length at least min{n,m}.

It is natural to seek a long-cycle version of the Chvátal–Erdős Theorem. That is, can

we give a lower bound on the circumference of a graph in terms of its independence number

and connectivity? In 1976, Fouquet and Jolivet conjectured an answer.

Conjecture 1.1.2. (Fouquet–Jolivet [15]) If G is a k-connected n-vertex graph with inde-

pendence number a, and a ≥ k, then G has a cycle with length at least k(n+a−k)
a

.
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The case k = a simplifies to the Chvátal–Erdős Theorem. The conjecture is in fact sharp:

infinitely often the circumference of G equals k(n+ a− k)/a as shown in Example 2.0.1.

The following result of Kouider [34] has been used in partial results toward Conjec-

ture 1.1.2.

Theorem 1.1.3. (Kouider [34]) If H is a subgraph of a k-connected graph G, then either

V (H) can be covered by a cycle in G, or there is a cycle C in G such that α(H − V (C)) ≤

α(H)− k.

A single application of Theorem 1.1.3 with H = G implies the Chvátal and Erdős

Theorem (Theorem 1.1.1) when κ(G) ≥ α(G); a spanning cycle is guaranteed. When

κ(G) < α(G), repeatedly applying Theorem 1.1.3 with H being the subgraph left by deleting

the vertices of earlier cycles shows that the vertices of a graph G can be covered by at most

⌈α(G)
κ(G)

⌉ cycles.

Inspired by Kouider’s result and her proof, we prove an analogous theorem about paths

joining two specified vertices.

Theorem 1.1.4. Let G be a k-connected graph. If H ⊆ G, and u and v are distinct vertices

in G, then G contains a u, v-path P such that V (H) ⊆ V (P ) or α(H−V (P )) ≤ α(H)−(k−1).

To prove the Fouquet-Jolivet Conjecture, we will only need the case k = 2 of Theo-

rem 1.1.4.

After we announced our proof for the Fouquet-Jolivet Conjecture, Fujita et al. proved a

analogous result about paths joining two specified vertices.

Theorem 1.1.5 (Fujita–Halperin–Magnant [19]). If G is a k-connected n-vertex graph with

independence number a, and u and v are distinct vertices in G, then G has a u, v-path with

length at least min{ (k−1)(n−k)
a

+ k, n}.
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Recently, Chen et al. [11] strengthened our lower bound for circumference to k⌊n+2a−2k
a

⌋.

Inspired by their result, we improve the bound on circumference, which is sharp when the

vertex number, independence number and connectivity are given.

Theorem 1.1.6. Let G be a k-connected n-vertex graph with independence number a. If

m and d are the integers such that n = k + ma + d and 0 ≤ d ≤ a − 1, then either G is

Hamiltonian or G has a cycle with length at least k +mk +min{d, k}.

The result is sharp: as show in Example 2.0.1, for any integers n, a, k with n ≥ a+k and

n, we can construct a k-connected n-vertex graph with independence number a having the

given circumference.

The results of Chapter 2 are joint work with Suil O and Douglas B. West and appear in

[35].

1.2 Steiner Tree packing and local connectivity

Given a family F of graphs, an F -packing of a graph G is a set of edge-disjoint subgraphs of

G such that each of them is in F . For example, we may let F be the family of trees having

the same number of vertices as G. In 1961, Nash-Williams [32] and Tutte [38] independently

obtained a necessary and sufficient condition for a graph to have k edge-disjoint spanning

trees.

Theorem 1.2.1 (Tree Packing Theorem; Nash-Williams [32], Tutte [38]). A graph G con-

tains k edge-disjoint spanning trees if and only if
∑

Ai∈P δ(Ai) ≥ 2k(|P | − 1) for every

partition P of V (G).

An easy consequence is that every 2k-edge-connected graph has k edge-disjoint spanning

trees. Given a specified subset S of the vertices, a tree T contained in G such that S ⊆ V (T )
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is an S-Steiner-tree or simply S-tree in G. Kriesell [25] conjectured a generalization of the

Tree Packing Theorem that seeks edge-disjoint S-trees.

Given a graph G, a vertex set S is connected in G if S lies in a single component of G.

A set S is k-edge-connected in G if S remains connected in every graph obtained by deleting

fewer than k edges from G. The local edge-connectivity κ′
G(x, y) of a pair {x, y} of vertices

in G is the maximum number k such that {x, y} is k-edge-connected in G.

Conjecture 1.2.2 (Kriesell’s Conjecture [25]). If S is 2k-edge-connected in G, then G con-

tains k edge-disjoint S-trees.

Finding the most such trees for given S is the Steiner-Tree Packing Problem. Lap Chi

Lau [27] gave a partial result toward Kriesell’s Conjecture, showing that S being 24k-edge-

connected in G suffices for the existence of k edge-disjoint S-trees. In Chapter 3, we improve

Lau’s result.

Theorem 1.2.3. If S is 6.5k-edge-connected in G, then G contains k edge-disjoint S-trees.

To prove this result, we use a stronger concept called S-connector. In a graph G, let S

be a set of distinguished vertices called terminals. An S-path is a path in G with both ends

in S and no internal vertices in S. Short-cutting a u, v-path means replacing its edges with

one edge uv. An S-connector in G is the union of a family of edge-disjoint S-paths such

that short-cutting them yields a connected graph with vertex set S. We prove the following

result:

Theorem 1.2.4. If S is 10k-edge-connected in G, then G contains k edge-disjoint S-

connectors.

We also pose the following conjecture:

Conjecture 1.2.5. If S is 3k-edge-connected in G, then G contains k edge-disjoint S-

connectors.
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Furthermore, in Chapter 3, we define a concept called (k, g)-family, which is the union of

edge-disjoint subgraphs in which k of them are S-connectors and the others are paths, with

g(v) such paths starting from each vertex v and ending in S. Our main result in Chapter 3

gives a necessary and sufficient condition for existence of a (k, g)-family. This result is a

generalization of the Tree Packing Theorem, and the necessary and sufficient condition has

a similar form to the one in the Tree Packing Theorem.

In our S-tree Packing Problem and S-connector Packing Problem, the hypothesis is a

local edge-connectivity condition. How to preserve the local edge-connectivity of the graph

after shortcutting is the key issue. In this topic, Mader’s Splitting Lemma plays an important

role.

Let uv and vw be two edges of G. The uv, vw-shortcut of G is the graph obtained from

G by replacing uv and vw with an edge joining u and w, and we call it a shortcut of G at

v. Shortcutting a path can be accomplished by shortcutting at all its internal vertices one

by one. We call a graph a shortcut of G if it can be obtained from G by a succession of

shortcutting of paths.

Theorem 1.2.6 (Mader’s Splitting Lemma [28]). Let x be a non-cut-vertex of G. If x has

degree at least 2 (except when dG(x) = 3 and x has three distinct neighbors), then there is a

shortcut G′ of G at x such that κ′
G(u, v) = κ′

G′(u, v) whenever u, v ∈ V (G)− {x}.

Mader’s Splitting Lemma guarantees that we can preserve the local edge-connectivity

between other vertices by shortcutting at any non-cut-vertex with degree at least 4. For

any even vertex x, after iteratively applying Mader’s Splitting Lemma on it until there is no

edge incident to it, we get a new graph H on vertex set V (G)− x such that the local edge-

connectivity for any pair of vertices in H is the same as it is in G. This can be generalized

to the following:

Theorem 1.2.7. For any vertex set S of G, if every vertex in S has even degree, then there
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is a shortcut H of G such that for any pair of vertex (x, y) in S,

κ′
H[S](x, y) = κ′

G(x, y).

The above theorem is not true when there are some odd vertices in S. It is natural to

ask what ratio of the local edge-connectivity we can preserve. Theorem 1.2.4 on S-connector

Packing implies that if S is 10k-edge-connected graph, then there is a shortcut H of G such

that S is k-edge-connected in H[S].

More generally, we have the following conjecture:

Conjecture 1.2.8. There exists some positive constant c such that, for any vertex set S of

any graph G, there exists a shortcut H of G such that

κ′
H[S](x, y) ≥ ⌊cκ′

G(x, y)⌋,∀x, y ∈ S,

The results in Chapter 3 are joint work with Douglas B. West and appear in [40].

1.3 Graph decomposition

A decomposition of a graph G consists of edge-disjoint subgraphs with union G. The ar-

boricity of G, written Υ(G), is the minimum number of forests needed to decompose it. The

famous Nash-Williams Arboricity Theorem states that a necessary and sufficient condition

for Υ(G) ≤ k is that no subgraph H has more than k(|V (H)|−1) edges. This is a sparseness

condition. A slightly different sparseness condition places a bound on the average vertex

degree in all subgraphs. The maximum average degree of a graph G, denoted Mad(G), is

maxH⊆G
2|E(H)|
|V (H)| ; it is the maximum over subgraphs H of the average vertex degree in H.

(Our model of “graph” allows multi-edges but no loops.)

Many papers have obtained various types of decompositions from bounds on Mad(G).
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Our results extend some of these and the Nash-Williams Theorem, which states that Υ(G) =⌈
maxH⊆G

|E(H)|
|V (H)|−1

⌉
. We consider the fractional arboricity maxH⊆G

|E(H)|
|V (H)|−1

, introduced by

Payan [37]; for this we use the notation Arb(G), by analogy with Mad(G).

Three forests are needed to decompose a graph with fractional arboricity 2+ ϵ, but since

this is just slightly above 2 one may hope that some restrictions can be placed on the third

forest. Say that a graph is d-bounded if it has maximum degree at most d. Montassier et

al. [31] posed the Nine Dragon Tree (NDT) Conjecture (honoring a famous tree in Kaohsiung,

Taiwan that is far from acyclic):

Conjecture 1.3.1 (NDT Conjecture). If Arb(G) ≤ k + d
k+d+1

, then G decomposes into k

forests plus one d-bounded forest.

They proved the cases (k, d) = (1, 1) and (k, d) = (1, 2).

They also posed a weaker version of the Nine Dragon Tree Conjecture, which does not

require the d-bounded subgraph to be a forest:

Conjecture 1.3.2 (Weak NDT Conjecture). If Arb(G) ≤ k + d
k+d+1

, then G decomposes

into k forests plus one d-bounded subgraph.

They showed that no larger value of Arb(G) is sufficient even for the weak NDT Conjec-

ture.

Our main purpose in Chapter 4 is proving some partial results of the NDT Conjecture and

the weak NDT Conjecture. Before showing our results, we will give some more background

about decomposition of sparse graphs.

Another line of research considers decomposing a planar graph into a forest plus one d-

bounded graph, following the seminal paper [22], which motivated the topic by its application

to “game coloring number”. For a planar graph with girth g to decompose into a forest plus

one matching, g ≥ 8 suffices [31, 39] (earlier, sufficiency was proved for g ≥ 11 in [22], for

g ≥ 10 in [2], and for g ≥ 9 in [7]). Also, the graph left by deleting the edges of a forest can
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be guaranteed to be 2-bounded when g ≥ 7 [22] (improved to g ≥ 6 in [24]) and 4-bounded

when g ≥ 5 [22]. Borodin, Ivanova, and Stechkin [4] disproved the conjecture from [22] that

every planar graph G decomposes into a forest plus one (⌈∆(G)/2⌉ + 1)-bounded graph.

In [5], there are sufficient conditions for a planar graph with triangles to decompose into a

forest plus one matching, and [6] shows that a planar graph without 4-cycles (3-cycles are

allowed) decomposes into a forest plus one 5-bounded graph.

Many conclusions on planar graphs with large girth hold more generally when only the

corresponding bound on Mad(G) is assumed. If G is a planar graph with girth g, then G

has at most g
g−2

(n − 2) edges, by Euler’s Formula. This holds for all subgraphs, so girth

g implies Mad(G) < 2g
g−2

. Montassier et al. [30] posed the question of finding the weakest

bound on Mad(G) to guarantee decomposition into one forest plus one d-bounded graph.

They proved that Mad(G) < 4− 8d+12
d2+6d+6

is sufficient and that Mad(G) = 4− 4
d+2

is not (seen

by subdividing every edge of a (2d+2)-regular graph). The case k = 1 of our Theorem 1.3.3

completely solves this problem, implying that Mad(G) < 4− 4
d+2

suffices.

Our result also implies the previous girth results for decomposition of planar graphs into

one forest plus one d-bounded graph. Girth 8, 6, and 5 imply that Mad(G) is less than

8/3, 3, and 10/3, respectively, which are precisely the bounds that by our result guarantee

decomposition into one forest plus one graph with maximum degree at most 1, 2, or 4,

respectively.

Other work brought these problems closer together, requiring the leftover d-bounded

graph to be a forest or considering the leftover after deleting more than one forest. For

convenience, let a (k, d)-decomposition of a graph G be a decomposition of G into k forests

plus one d-bounded graph, and let a (k, d)∗-decomposition be a (k, d)-decomposition in which

the “leftover” d-bounded graph also is a forest. Graphs having such decompositions are

(k, d)-decomposable or (k, d)∗-decomposable, respectively.

Examples of planar graphs with girth 7 having no (1, 1)-decomposition and examples
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with girth 5 having no (1, 2)-decomposition appear in [31, 24]. Gonçalves [20] proved the

conjecture of Balogh et al. [1] that every planar graph is (2, 4)∗-decomposable. He also

proved that planar graphs with girth at least 6 are (1, 4)∗-decomposable and with girth at

least 7 are (1, 2)∗-decomposable.

The NDT Conjecture State that Arb(G) ≤ k+ d
k+d+1

guarantees a (k, d)∗-decomposition.

The fractional arboricity of a planar graph can be arbitrarily close to 3, which is not

small enough for the NDT Conjecture to guarantee (2, d)∗-decomposability for any con-

stant d. However, requiring girth at least 6 or 7 yields fractional arboricity less than 6/4

or 7/5, respectively, in which case the NDT Conjecture would guarantee (1, 4)∗- or (1, 2)∗-

decompositions, respectively. Hence the NDT Conjecture implies the results of Gonçalves

for (1, d)∗-decomposition of planar graphs with large girth, but not his result on (2, 4)∗-

decomposition.

Let ∥A∥ be the number of edges with both endpoints in A. That is ∥A∥ = |E(G[A])|.

Instead of using the bound on Arb(G) or Mad(G) to describe the sparseness of the graph,

we introduce the intermediate condition we call (k, d)-sparse: (k + 1)(k + d) |A| − (k + d +

1) ∥A∥ − k2 ≥ 0 for all A ⊆ V (G). We obtain the following theorem, which holds whenever

d > k:

Theorem 1.3.3. For d > k, every (k, d)-sparse graph is (k, d)-decomposable. Furthermore,

the condition is sharp.

Since Arb(G) ≤ k + d
k+d+1

implies that G is (k, d)-sparse, our Theorem 1.3.3 proves the

weak NDT Conjecture for the case d > k. Further motivation for introducing the (k, d)-

sparseness condition comes from the sharpness example in Section 3.0.7.

Meanwhile, Theorem 1.3.3 says nothing about the case d ≤ k. In Chapter 4, we prove a

result implying that a stronger condition on Arb(G) than in the NDT Conjecture suffices to

guarantee the stronger property of (k, d)∗-decomposability when d ≤ k + 1.
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Theorem 1.3.4. For d ≤ k + 1, if Arb(G) ≤ k + d
2k+2

, then G is (k, d)∗-decomposable.

When d = k+1, this bound equals k+ d
k+d+1

, so this theorem implies the case d = k+1

of the NDT Conjecture.

Also, we prove the NDT Conjecture for (k, d) = (1, d) with d ≤ 6 by using discharging

argument.

Meanwhile, Montassier et al. [31] also pose a stronger version of the NDT Conjecture.

Conjecture 1.3.5 (Strong NDT Conjecture). If Arb(G) ≤ k+ d
k+d+1

, then G has a (k, d)∗-

decomposition in which every component of the d-bounded forest has at most d edges.

We prove this for (k, d) = (1, 2) as in the following statement:

Theorem 1.3.6. If Mad(G) < 3, then G decomposes into one forest plus one graph in which

each component has at most 2 edges.

The results in Chapter 4 are joint work with Kim, Kostochka, West, and Zhu and appear

in [23].

1.4 Basic terminology and notation

In this section we review basic terminology and standard elementary results used throughout

this thesis. For other notions on graph theory not listed here, please refer to the introductory

textbook on graph theory by Douglas B. West [41].

A graph G is a triple consisting of a vertex set V (G), an edge set E(G), and an incidence

relation between V (G) and E(G). Elements of V (G) and E(G) are vertices and edges,

respectively. Each edg is incident to two vertices (not necessary distinct). The vertices

incident to an edge are the endpoints of the edge. We write xy for an edge with endpoints x

and y, and we say x and y are adjacent to each other or are neighbors of each other. Given a
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vertex set X, if an edge e has at least one endpoint in X, then we also say that e and X are

incident. The neighborhood of a vertex v is the set of all neighbors of v, denoted by N(v).

The closed neighborhood, denoted by N [x], is N(x) ∪ {x}.

Parallel edges or a multi-edge are two or more edges incident to the same two vertices.

A loop is an edge whose endpoints are identical. In this thesis, we use “graph” to mean

the general model, which allows loops and multi-edges, except in Chapter 4, where we allow

multi-edges but not loops.

The degree of v is the number of edges incident to it, denoted by d(v), or dG(v) when

we need to specify the graph G. When a vertex has even degree, we call it an even vertex;

otherwise, we call it an odd vertex.

A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G). A

spanning subgraph of G is a subgraph H such that V (H) = V (G). Given S ∈ V (G), let

S = V (G)−S. The induced subgraph of G induced by S is the subgraph obtained by deleting

the vertices of S; this may be written as G[S] or G − S. When S = {v}, we write G − v

instead of G−{v}. We also write G−e for the (non-induced) subgraph obtained by deleting

an edge e. A proper subgraph of G is a subgraph of G not equal to G. Two graphs G and

H are isomorphic if there is a bijection f from V (G) to V (H) such that any two vertices u

and v of G are adjacent in G if and only if f(u) and f(v) are adjacent in H.

A path with n vertices is a graph whose vertices can be named v1, . . . , vn so that the

edges are {vivi+1 : 1 ≤ i ≤ n− 1}. In terms of the vertices, we use ⟨v1, . . . , vn⟩ to denote the

path with these edges and we say the length of the path is n− 1. Without vertex names, Pn

denotes the isomorphism class of paths with n vertices; we think of Pn as a single “unlabled”

graph. A path with endpoints x and y is an x, y-path.

A cycle consists of a path plus an edge consisting of its endpoints. That is, the vertices

can be named v1, . . . , vn so that the edges are {vivi+1 : 1 ≤ i ≤ n− 1} ∪ {vnv1}. In terms of

the vertices, we use [v1, . . . , vn] to denote the cycle with these edges, and we say the length

12



of the cycle is n. Without vertex names, Cn denotes the isomorphism class of cycles with n

vertices; again, we think of Cn as a single “unlabeled” graph.

A graph G is connected if for each pair x, y ∈ V (G), there is an x, y-path in G. A graph G

is k-connected if it has more than k vertices and every subgraph obtained by deleting fewer

than k vertices is connected; the connectivity of G, written κ(G), is the maximum k such

that G is k-connected. Similarly, a graph G is k-edge-connected if every subgraph obtained

by deleting fewer than k edges is connected; the edge-connectivity of G, written κ′(G), is the

maximum k such that G is k-connected.

An independent set is a set of pairwise nonadjacent vertices, and the independence number

of G, written α(G), is the maximum size of such a set. The circumference is the maximum

length of a cycle in G. A component of G is a maximal connected subgraph.

Given a function f and a set A in its domain, let f(A) =
∑

a∈A f(a).

A hereditary system M is a pair (E, I), where E is a finite set (called the ground set)

and I is a collection of subsets of E (called the independent sets) with the following two

properties:

1. ∅ is an independent set.

2. Every subset of an independent set is an independent set.

A hereditary system is a matroid if it also satisfy the following property:

3. If A and B are two elements of I and |A| ≥ |B|, then there exists an element x in A

that is not in B such that adding x to B still gives an independent set.

The rank function rM of a hereditary system M is the function on 2E defined by r(X) =

max{|Y | : Y ⊆ X,Y ∈ I}.

A partial order is a binary relation “≤” over a set P that is reflexive, antisymmetric, and

transitive. That is, for all a, b, and c in P , we have:

1. a ≤ a (reflexivity);

2. If a ≤ b and b ≤ a, then a = b (antisymmetry);
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3. If a ≤ b and b ≤ c, then a ≤ c (transitivity).

A set equipped with a partial order is a partially ordered set

If x ≤ y in a poset P , then x is a lower bound for y and y is an upper bound for x. If

some common upper bound z for x and y satisfies z ≤ w for every common upper bound w,

then z is the least upper bound or join of x and y, written x∨ y. Similarly, the meet x∧ y, if

it exists, is the greatest lower bound of x and y. A lattice is a poset in which meets and joins

exist for all pairs of elements; a finite lattice has a unique maximal element and a unique

minimal element. The rank of an element in a poset is one less than the size of a largest

chain on which it is the top element.
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Chapter 2

Extremal Problem for Longest Cycles

In this chapter, we present our result on longest cycles in graphs, we prove the following

theorem:

Theorem 1.1.6. If G is a k-connected n-vertex graph with independence number a, and m, d

are the integers such that n = k +ma+ d and 0 ≤ d ≤ a− 1, then either G is Hamiltonian

or G has a cycle with length at least k +mk +min{d, k}.

Since k(n+a−k)
a

= k(a+ma+d)
a

= k +mk + kd
a

≤ k +mk + kd
max{d,k} = k +mk + min{d, k},

Theorem 1.1.6 implies the Fouquet-Jolivet Conjecture:

Theorem 1.1.2. If G is a k-connected n-vertex graph with independence number a, and

a ≥ k, then G has a cycle with length at least k(n+a−k)
a

.

Theorem 1.1.6 is sharp, as shown by the following example:

Example 2.0.1. Given any n, k, a such that a > k and n ≥ k+a, let m and d be the integers

such that n = k +ma+ d and 0 ≤ d ≤ a− 1. Construct a graph G as follows: form G from

a+1 complete graphs, of which one has k vertices, d have m+1 vertices, and a− d have m

vertices, by making every vertex in the copy of Kk adjacent to all the other vertices. Now G

has n vertices, α(G) = a, κ(G) = k, and the maximum cycle length is k +mk +min{d, k}.

In 1982, Fournier [16] proved Conjecture 1.1.2 for a ∈ {k + 1, k + 2}. Two years later,

he also proved it for k = 2 [17], using the fact that if C1 and C2 are distinct cycles in a 2-

connected graph G, then there are distinct cycles C ′
1 and C ′

2 in G such that V (C1)∪V (C2) ⊆
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V (C ′
1) ∪ V (C ′

2) and |V (C ′
1) ∩ V (C ′

2)| ≥ 2. In 2009, Manoussakis [29] proved the case k = 3

using a similar fact. This leads to a general conjecture.

Conjecture 2.0.2. (Chen–Chen–Liu) If C1 and C2 are distinct cycles in a k-connected graph

G, then there are distinct cycles C ′
1 and C ′

2 in G such that V (C1)∪ V (C2) ⊆ V (C ′
1)∪ V (C ′

2)

and |V (C ′
1) ∩ V (C ′

2)| ≥ k.

Recently, Chen, Hu, and Wu [9] proved Conjecture 1.1.2 for k = 4. In another pa-

per [10], they proved that Conjecture 2.0.2 implies Conjecture 1.1.2, and they also proved

Conjecture 1.1.2 for a < 2k − 1.

In Section 2.1, we will prove the Path Lemma (Theorem 1.1.4) which is analogous to

Kouider’s result(Theorem 1.1.3).

In Section 2.2, we prove Conjecture 1.1.2 in full by proving Theorem 1.1.6. To get our

main result, instead of proving the stronger Conjecture 2.0.2, we prove two theorems on

cycles, Theorems 2.2.1 and 2.2.2.

2.1 The Path Lemma

Recall that Kouider gave the following result about cycles:

Theorem 1.1.3. If H is a subgraph of a k-connected graph G, then either V (H) can be

covered by a cycle in G or there is a cycle C in G such that α(H − V (C)) ≤ α(H)− k.

In this section, we prove our theorem that is analogous to Kouider’s result.

Theorem 1.1.4. If H is a subgraph of a k-connected graph G, and u and v are distinct

vertices in G, then G contains a u, v-path P such that V (H) ⊆ V (P ) or α(H − V (P )) ≤

α(H)− (k − 1).

Our proof of Theorem 1.1.4 is obtained by slightly modifying Kouider’s proof of The-

orem 1.1.3. First, we define notation for subpaths of a path. Let u and v be distinct
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vertices in a graph G. A u, v-path is a path with first vertex u and last vertex v. Given a

path P and vertices a, b ∈ V (P ), let P [a, b] be the a, b-path contained in P . Similarly, let

P (a, b) = P [a, b]− {a, b}, let P [a, b) = P [a, b]− b, and let P (a, b] = P [a, b]− a.

Proof. Suppose that no u, v-path P contains V (H). For each u, v-path P , let FP be a

smallest component of G− V (P ) that intersects H. Choose a u, v-path P such that:

(i) α(H − V (P )) is smallest;

(ii) subject to (i), FP has the fewest vertices.

Let p1, . . . , pm be the vertices of P (in order) having neighbors in V (FP ). Since G is k-

connected, m ≥ k. For 1 ≤ i < m, let Qi be a pi, pi+1-path whose internal vertices lie in FP ,

and let Ui = V (P (pi, pi+1)); note that Ui ⊂ V (P ).

Claim 1: α(H − V (P − Ui)) > α(H − V (P )) for 1 ≤ i < m. Let P ′ be the u, v-path

obtained from P by deleting Ui and adding Qi. If α(H − V (P − Ui)) = α(H − V (P )),

then V (FP ) ∩ V (H) ⊆ V (P ′) would yield α(H − V (P ′)) < α(H − V (P )), because FP is a

component of G − V (P ) that intersects H. The resulting inequality violates (i). We may

therefore assume that P ′ does not cover V (FP )∩ V (H). Since V (P − Ui) ⊆ V (P ′), we have

α(H − V (P ′)) ≤ α(H − V (P − Ui)). By hypothesis, the latter value equals α(H − V (P )).

Since there remains a vertex of FP ∩ H outside P ′, we have |V (FP ′)| < |V (FP )|, which

contradicts (ii). This proves the claim.

By Claim 1, restoring Ui to the induced subgraph H − V (P ) increases the independence

number. Restoring the vertices of Ui in order, starting from pi, let qi be the first vertex

at which the independence number increases. That is, with U ′
i = V (P (pi, qi]), we have

α(H − V (P − U ′
i)) = α(H − V (P )) + 1, but α(H − V (P − U ′

i)− qi) = α(H − V (P )).

Claim 2: For 1 ≤ i < j < m, no path with internal vertices outside P joins U ′
i and U ′

j.

Otherwise, let ri ∈ U ′
i and rj ∈ U ′

j be the endpoints of such a path P̂ , with ri and rj chosen

closest to pi and pj along P , respectively. Since FP is a component of G − V (P ), and no
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Figure 2.1: Finding a better path (Claim 2)

vertices of U ′
i or U

′
j have neighbors in FP , the path P̂ does not visit FP . Let P ′ be a path

obtained from P by deleting V (P (pi, ri)) and V (P (pj, rj)) and adding P̂ and a pi, pj-path

through FP .

Since ri ∈ U ′
i and rj ∈ U ′

j, restoring the vertices in P (pi, ri) or P (pj, rj) to H−V (P ) does

not produce a larger independent set than exists in H−V (P ). Furthermore, the choice of ri

and rj implies that these sets lie in different components of the subgraph obtained from G

by deleting all of V (P ) except these sets. Hence both sets can be restored without increasing

the independence number.

We conclude that α(H − V (P ′)) ≤ α(H − V (P )). If V (FP ) ∩ V (H) ⊆ V (P ′), then

strict inequality holds, violating (i). Hence V (FP )∩ V (H) ̸⊆ V (P ′) and equality holds; now

choosing P ′ instead of P violates (ii). Hence P ′ must not exist, which completes the proof

of the claim.

By the choice of qi, we have α(H − V (P − U ′
i)) ≥ α(H − V (P )) + 1. Let G′ = G −

V (P −
∪m−1

i=1 U ′
i). By Claim 2, the sets U ′

1, . . . , U
′
m−1 lie in different components of G′. Hence

α(H − V (P −
∪m−1

i=1 U ′
i)) ≥ α(H − V (P )) +m− 1. Since α(H) ≥ α(H − V (P −

∪m−1
i=1 U ′

i))

and m ≥ k, we have α(H − V (P )) ≤ α(H)− k + 1 for the chosen path P .

Theorem 1.1.4 implies a conjecture stated in Chen, Hu, and Wu [9].

Corollary 2.1.1. Given a graph G, if G admits no vertex partition (V1, V2) such that α(G) =

α(G[V1]) + α(G[V2]), then G is 2-connected or G ∈ {K1, K2}. Also, for distinct vertices
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u, v ∈ V (G), there is a u, v-path P such that α(G− V (P )) < α(G).

Proof. If G is disconnected, then such a partition exists. Suppose that G is connected and

has a cut-vertex x. Let A be a component of G − x, and let B = G − x − V (A). Let

A′ = G− V (B) and B′ = G− V (A). If α(A) = α(A′), then

α(G) ≤ α(A′) + α(B) = α(A) + α(B) ≤ α(G).

Equality holds throughout, and (V (A′), V (B)) is the required partition.

The remaining alternative is α(A) = α(A′) − 1. Now there is an independent set S of

size α(A) that contains no neighbor of x. We compute

α(G) ≤ α(A) + α(B′) = |S|+ α(B′) ≤ α(G),

and (V (A), V (B′)) is the required partition.

We conclude that G is 2-connected when G has at least three vertices and no such

partition exists. Now Theorem 1.1.4 applies with k = 2 and H = G.

The sufficient condition given is not a necessary condition, as shown by the union of two

complete graphs sharing one vertex. Examples where the conclusion fails include graphs

consisting of two disjoint complete graphs plus one edge joining them.

2.2 Finding a Good Cycle

Given disjoint subgraphs F and H of a graph G, let an F,H-path in G be a path with

endpoints in V (F ) and V (H) and no internal vertex in V (F )∪ V (H); this generalizes “u, v-

path”. Given a specified orientation of a cycle C and vertices a, b ∈ V (C), let C[a, b] be the

a, b-path on C in the given orientation. Similarly, let C(a, b) = C[a, b]− {a, b}. A block in a
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graph is a maximal subgraph having no cut-vertex; a graph is the union of its blocks.

Theorem 2.2.1. Let k be an integer greater than 1. If C is a cycle with length at least k

in a k-connected graph G, then for any nonempty subgraph H of G − V (C), there exists a

cycle C ′ in G such that |V (C)− V (C ′)| ≤ |V (C)|
k

− 1 and α(H − V (C ′)) ≤ α(H)− 1.

Proof. Consider a minimal counterexample H for some graph G and cycle C. Let L =

|V (C)|. If H is disconnected or has a cut-vertex, then α(H) = α(H[V1])+α(H[V2]) for some

partition (V1, V2) of V (H), by Corollary 2.1.1. By the minimality of H, there is a cycle C ′

in H[V1] such that |V (C)− V (C ′)| ≤ (L/k)− 1 and α(H[V1 − V (C ′)]) ≤ α(H[V1])− 1. Now

α(H − V (C ′)) ≤ α(H[V1 − V (C ′)]) + α(H[V2]) ≤ α(H[V1])− 1 + α(H[V2]) = α(H)− 1.

We may therefore assume that H is 2-connected or H ∈ {K1, K2}. Let B be the block

of G− V (C) that contains H. For B,C-paths P1 and P2, define the C-distance between P1

and P2 to be the distance in C between the endpoints of P1 and P2 in C.

For b ∈ V (B), a standard consequence of Menger’s Theorem yields k paths from b to C

that pairwise share only b; call this a b, C-fan. By the pigeonhole principle, the C-distance

between some two paths in a b, C-fan is at most L/k. If b is the only vertex of B (and hence

H = B), then using those two paths to replace the part of C between their endpoints yields

the desired cycle C ′. Hence we may assume |V (B)| > 1.

Let P1 and P2 be two disjoint B,C-paths, with Pi having endpoints ui ∈ B and vi ∈ C.

Since B is connected and has no cut-vertex, Theorem 1.1.4 guarantees a u1, u2-path P in B

such that α(H−V (P )) ≤ α(H)−1. If |C(v1, v2)| ≤ L/k−1, then (C−C(v1, v2))∪P1∪P ∪P2

is the desired cycle C ′ (see Figure 2.2). Hence we may assume (∗) the C-distance between any

two disjoint B,C-paths is more than L/k. Note also that B,C-paths with distinct endpoints

in B are internally disjoint, since B is a block in G− V (C).

Let c1, . . . , cm be the endpoints in C of B,C-paths, indexed so that c1, . . . , cm appear in

that order along a fixed orientation of C. Let Pi = C[ci, ci+1] (indices modulo m); call Pi the
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L= |V (C)| B=
block of
G−V (C)

Figure 2.2: A detour to reduce α(H)

ith segment of C. Let t be the number of indices i (modulo m) such that ci and ci+1 are the

endpoints of B,C-paths from distinct vertices of B. By (∗), each such segment has length

more than L/k, and hence t < k.

For b ∈ V (B), a b, C-fan has k endpoints in C. Some k − t of the paths along C join-

ing consecutive endpoints of the fan must not contain endpoints of B,C-paths from other

vertices of B. Hence these paths are distinct for distinct vertices of B. Consider a segment

within each such path.

Since these segments avoid the t excluded segments, their total length is less than

L − t(L/k), which equals L(k − t)/k. For each vertex of B, choose a shortest among these

k − t segments. The total length of the union of the chosen segments is less than L/k.

Form C ′ from C by deleting the chosen segments and adding, for each b ∈ B, the

two paths in the b, C-fan whose endpoints are the ends of the segment chosen for b (see

Figure 2.3). The subgraph C ′ is a cycle, because B,C-paths from distinct vertices of B

are internally disjoint. Since the total length of the chosen segments is less than L/k and

V (H) ⊆ V (B) ⊆ V (C ′), the cycle C ′ has the desired properties.

C
B

C ′
• • •

••

• • •

••

Figure 2.3: Skipping the chosen segments
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Lemma 2.2.2. If G is a k-connected graph with independence number a, and 0 ≤ l ≤ a−k,

then there exist cycles C0, . . . , Cl satisfying the following conditions:

(1) α(G−
∪l

i=0 V (Ci)) ≤ a− k − l,

(2)
∣∣∣V (Ci)−

∪i−1
j=0 V (Cj)

∣∣∣ ≤ |V (C0)|
k

− 1 for 1 ≤ i ≤ l.

Proof. We prove the claim by induction on l. For l = 0, Theorem 1.1.3 with H = G

provides a cycle C0 such that α(G−V (C0)) ≤ a− k. For the induction step, consider l with

0 < l ≤ a− k, and suppose that cycles C0, . . . , Cl−1 exist satisfying the claim for l − 1. We

observe first that |V (C0)| ≥ k; when l = 1 this holds because the case l = 0 of (1) states that

α(G− V (C0)) ≤ a− k, and when l > 1 it holds because the left side of (2) is nonnegative.

Let H = G −
∪l−1

i=0 V (Ci); by hypothesis, α(H) ≤ a − k − (l − 1). We may assume

α(H) ≥ 1; otherwise, just let Cl = C0. Since |V (C0)| ≥ k, we can apply Theorem 2.2.1

using C0 as C to obtain a cycle C ′ in G such that |V (C0)− V (C ′)| ≤ |V (C0)|
k

− 1 and

α(H − V (C ′)) ≤ α(H)− 1 ≤ a− k − l. Now adding C ′ to the list as Cl satisfies (1), but we

must also satisfy (2).

Case 1: |V (C ′)| ≤ |V (C0)|. Note that

∣∣∣∣∣V (C ′)−
l−1∪
j=0

V (Ci)

∣∣∣∣∣ ≤ |V (C ′)− V (C0)| ≤ |V (C0)− V (C ′)| ≤ |V (C0)|
k

− 1.

In this case it suffices to add C ′ as Cl.

Case 2: |V (C ′)| > |V (C0)|. Define a new list C ′
0, . . . , C

′
l of cycles by letting C ′

0 = C ′ and

letting C ′
i = Ci−1 for 1 ≤ i ≤ l. Now α(G−

∪l
i=0 V (C ′

i)) = α(H−V (C ′)) ≤ a−k−l, satisfying

(1). Also, for i = 1 we have V (C ′
i) −

∪i−1
j=0 V (C ′

j) = V (C ′
1) − V (C ′

0) = V (C0) − V (C ′), and

for 2 ≤ i ≤ l we have V (C ′
i)−

∪i−1
j=0 V (C ′

j) ⊆ V (Ci−1)−
∪i−2

j=0 V (Cj). In both cases,

∣∣∣∣∣V (C ′
i)−

i−1∪
j=0

V (C ′
j)

∣∣∣∣∣ ≤ |V (C0)|
k

− 1 ≤ |V (C ′
0)|

k
− 1.
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Hence C ′
0, . . . , C

′
l satisfies the required conditions.

We can now prove the Theorem 1.1.6, which implies the conjecture of Fouquet and Jolivet

(Conjecture 1.1.2).

Theorem 1.1.6. If G is a k-connected n-vertex graph with independence number a, and m, d

are the integers such that n = k +ma+ d and 0 ≤ d ≤ a− 1, then either G is Hamiltonian

or G has a cycle with length at least k +mk +min{d, k}.

Proof. Consider l = a − k in Lemma 2.2.2. By (1), the resulting cycles C0, . . . , Cl cover

V (G). Using this and then summing the inequalities in (2), we obtain

n = |V (C0)|+
l∑

i=1

∣∣∣∣∣V (Ci)−
i−1∪
j=0

V (Cj)

∣∣∣∣∣ ≤ |V (C0)|+ (a− k)⌊|V (C0)|
k

− 1⌋.

Suppose |V (C0)| < k +mk +min{d, k}, then ⌊ |V (C0)|
k

− 1⌋ ≤ m. Hence n ≤ |V (C0)| + (a−

k)m < k +mk + d+ (a− k)m = k +ma+ d = n. Contradictions!

So we have |V (C0)| ≥ k +mk +min{d, k}.
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Chapter 3

Extremal Problems for Packing of
Graphs

In This chapter, givena set S of terminals in a graph G, we considre packing of edge-disjoint

paths, S-trees, and S-connectors into G when G is highly edge-connected.

Recall that Kriesell gave the following conjecture:

Conjecture 1.2.2 (Kriesell’s Conjecture [25]). If S is 2k-edge-connected in G, then G con-

tains k edge-disjoint S-trees.

In this chapter, always |S| ≥ 2.

Known partial results toward Kriesell’s Conjecture include the following.

Theorem 3.0.3 (Kriesell [25]). If S is 2k-edge-connected in G, and every vertex outside S

has even degree, then G contains k edge-disjoint S-trees.

Theorem 3.0.4 (Frank–Király–Kriesell [18]). If S is 3k-edge-connected in G, and G − S

has no edges, then G contains k edge-disjoint S-trees.

Theorem 3.0.5 (Lau [27]). If S is 24k-edge-connected in G, then G has k edge-disjoint

S-trees.

We obtain the following improvements.

Theorem 1.2.3. Given a vertex set S of a graph G, if S is 6.5k-edge-connected in G, then

G contains k edge-disjoint S-trees.

Theorem 1.2.4. Given a vertex set S of a graph G, if S is 10k-edge-connected in G, then

G contains k edge-disjoint S-connectors.
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An S-tree need not be an S-connector. For example, when |S| ≥ 3, a star whose leaf

set is S is an S-tree but not an S-connector. Thus stricter conditions may be needed to

guarantee S-connectors. We pose an analogue for S-connectors of Kriesell’s Conjecture.

Conjecture 3.0.6. If S is 3k-edge-connected in G, then G contains k edge-disjoint S-

connectors.

We will show that Conjecture 3.0.6 holds when G − S has no edges; this strengthens

Theorem 3.0.4. For each of these conjectures, infinitely many examples prove sharpness.

Sharpness examples for Kriesell’s Conjecture are well known. Let G be the graph obtained

from K2k,2k by deleting a perfect matching. With S = V (G), the set S is (2k − 1)-edge-

connected in G, since κ′(G) = 2k − 1. However, G does not have k edge-disjoint S-trees,

since k spanning trees would need k(4k − 1) edges, while |E(G)| = (2k)2 − 2k. Sharpness

for Conjecture 3.0.6 takes a bit more work.

Example 3.0.7. To show that Conjecture 3.0.6 is sharp, we construct an infinite family of

graphs G with specified sets S such that S is (3k − 1)-edge-connected in G but G does not

contain k edge-disjoint S-connectors. For b ∈ N, let S be a set of size 3b. For 1 ≤ i < k, let

Gi be a 3-connected 3-regular bipartite graph with partite sets S and Ti. Form the graph

Gk by subdividing every edge in a 2-connected 3-regular graph with vertex set Tk of size 2b,

using S as the set of 3b vertices of degree 2 added to subdivide the edges.

The graphs G1, . . . , Gk all contain the vertex set S; let G =
∪k

i=1Gi. Note that G is

bipartite with partite sets S and T , where T =
∪k

i=1 Ti. Every vertex of T has degree 3 in

G; vertices of S have degree 3k − 1. Any two vertices of S are joined by three internally

disjoint paths in G1, . . . , Gk−1 and two in Gk, so S is (3k − 1)-edge-connected in G.

Finding k edge-disjoint S-connectors in G would require k(|S| − 1) edge-disjoint paths

passing through vertices of T . Each vertex of T has degree 3 and hence lies in at most one such

path. Hence there are at most |T | such paths. We compute |T | = (k− 1)3b+2b = (3k− 1)b.
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Comparing (3k − 1)b and k(3b− 1), we find that not enough paths exist when b > k.

In contrast, there is an S-tree in each Gi, so G does have k-edge-disjoint S-trees.

In Section 3.1, we define the notion of (k, g)-family: this is the union of edge-disjoint

subgraphs of k are S-connectors, and the others are paths ending in S, with g(v) of them

starting from each vertex v. Theorem 3.1.2 gives a necessary and sufficient condition, called

the Strong Partition Condition, for the existence of a (k, g)-family. In Section 3.2 and

Section 3.3, we prove Theorem 3.1.2. We prove Theorem 1.2.3 in Section 3.4 and we prove

Theorem 1.2.4 in Section 3.5.

3.1 (k, g)-family and the Strong Partition Condition

To obtain our results, we will prove a theorem that generalizes the Tree Packing Theorem

of Nash-Williams and Tutte. Stating it requires some terminology and notation.

Definition 3.1.1. For S ⊆ V (G), write S for V (G) − S. Write [A,B] for the set of edges

in G having endpoints in A and B. When A or B has only one vertex v, we write v instead

of {v} in this notation. Following Lovász, let δ(S) =
∣∣[S, S]∣∣.

A partition A1, . . . , Al of a set containing S in V (G) is an S-partition if each Ai intersects

S. For an S-partition P , we generally write P = {A1, . . . , Al} and let BP = V (G)−
∪l

i=1Ai.

Also let TP be the set of vertices in S that are in blocks of P containing only one vertex of

S. We write |P | for the number of blocks in an S-partition P , since P is a set of blocks. Let

P(S) be the set of all S-partitions of G.

Let N0 be the set of nonnegative integers. Given a graph G, an S-parity function is a

function g : V (G) → N0 such that g(v) ≡ dG(v) (mod 2) for all v ∈ S (there is no restriction

on g(v) for v ∈ S). For any vertex set A and function h, let h(A) =
∑

v∈A h(v).

In a graph G with terminal set S and S-parity function g, a g-family is a set of g(V (G))

positive-length paths that can be oriented (from beginning to end) to satisfy the following
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two properties: (1) each path ends in S, and (2) for each v ∈ V (G), there are g(v) paths in

the family starting at v. A (k, g)-family is a set of k+ g(V (G)) edge-disjoint subgraphs such

that k are S-connectors and the others form a g-family.

Our main result gives a necessary and sufficient condition for existence of a (k, g)-family.

Theorem 3.1.2. Let S be a set of terminals in G. If g is an S-parity function on G, then

G has a (k, g)-family if and only if fg(P ) ≥ 0 for all P ∈ P(S), where fg is defined by

fg(P ) =
( ∑

Ai∈P

δ(Ai)
)
− 2k(|P | − 1)− g(BP )− 2g(TP ). (3.1)

We call the condition that fg(P ) ≥ 0 for all P ∈ P(S) the Strong Partition Condition

(SPC). The notion of S-parity function enables us to generalize the problem of packing S-

connectors in a way (existence of (k, g)-families) that permits a characterization of existence

and facilitates the proof of our results about packing of S-trees and S-connectors. The

statement of Theorem 3.1.2 is the reason why we restrict to |S| ≥ 2 throughout the paper.

If |S| = 1, then every S-partition has one block, so we can make k arbitrarily large without

affecting the SPC. However, when S = {v} there is only one subgraph that is an S-connector,

namely the one subgraph consisting of the vertex v and no edges. We also use the condition

|S| ≥ 2 in Proposition 3.1.4.

Proposition 3.1.3. The SPC is a necessary condition for existence of a (k, g)-family.

Proof. Consider a (k, g)-family F in G. For an S-partition P , let t =
∑

Ai∈P δ(Ai). Each

S-connector in F contributes at least 2k(|P | − 1) to t. For each vertex v in BP , the paths

starting from v reach S and hence contribute at least g(v) to t. Finally, for v ∈ TP , the

oriented paths starting from v contribute at least 2g(v) to t, since they end in some other

block of P . Thus t ≥ 2k(|P | − 1) + g(BP ) + 2g(TP ), so fg(P ) ≥ 0.
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The content of Theorem 3.1.2 is the converse: the Strong Partition Condition suffices

for the existence of a (k, g)-family. We show next that the SPC implies a property that is

obviously necessary for the existence of a (k, g)-family; hence we will be able to assume this

property when we are proving Theorem 3.1.2. (The stronger inequality d(v) ≥ k+ g(v) that

we obtain in the case v ∈ S is also necessary for a (k, g)-family.)

Proposition 3.1.4. If the SPC holds for an S-parity function g on a graph G, then g(v) ≤

d(v) for all v ∈ V (G), where d(v) denotes the degree of v in G.

Proof. For v /∈ S, let P be the single-block S-partition {V (G) − {v}}. With |S| ≥ 2, we

have d(v)− 0− g(v)− 0 = fg(P ) ≥ 0, so g(v) ≤ d(v). For v ∈ S, let P = {{v}, V (G)− {v}}

(using |S| ≥ 2). Now 2d(v)− 2k − 0− 2g(v) ≥ fg(P ) ≥ 0, so d(v) ≥ k + g(v).

A natural S-parity function yields a notable application of Theorem 3.1.2. Given a vertex

set A ⊆ V (G), let no(A) be the number of vertices of A having odd degree in G.

Theorem 3.1.5. Let S be a set of terminals in a graph G. If each P ∈ P(S) satisfies

∑
Ai∈P

δ(Ai) ≥ 2k(|P | − 1) + no(BP ),

then G contains k edge-disjoint S-connectors.

Proof. Define an S-parity function by g(v) = 1 when v is a vertex of S having odd degree

in G and otherwise g(v) = 0. For P ∈ P(S), always BP ⊆ S, and hence g(BP ) = no(BP ).

Also, g(TP ) = 0. Hence the difference between the two sides of the specified inequality is

fg(P ), and the assumption that it holds is precisely the assumption that the SPC holds

for this S-parity function. By Theorem 3.1.2, G has a (k, g)-family, and hence there are k

edge-disjoint S-connectors.

The condition in Theorem 3.1.5 is sufficient but not necessary, as seen by adding to

such a graph G a large component in which every vertex has odd degree. The case of Theo-
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rem 3.1.5 when no vertex of S has odd degree implies Theorem 3.0.3 in the same way that the

Tree Packing Theorem implies that 2k-edge-connected graphs have k edge-disjoint spanning

trees. Indeed, we obtain S-connectors instead of S-trees with the same hypothesis, thereby

strengthening Theorem 3.0.3. Theorem 3.1.5 also enables us to strengthen Theorem 3.0.4.

Theorem 3.1.6. If S is 3k-edge-connected in G, and G− S has no edges, then G contains

k edge-disjoint S-connectors.

Proof. Deleting a vertex of degree 1 outside S does not affect the hypothesis, so we may

assume that every vertex in S̄ has degree at least 2. By Theorem 3.1.5, it suffices to prove

that
∑

Ai∈P δ(Ai)−no(BP ) ≥ 2k(|P |−1) for every S-partition P . Since G−S has no edges,

δ(BP ) ≤
∑

δ(Ai). Hence no(BP ) ≤ 1
3
δ(BP ) ≤ 1

3

∑
δ(Ai), and we have

∑
δ(Ai)− no(BP ) ≥

2/3
∑

δ(Ai) ≥ 2k|P | > 2k(|P | − 1).

Two other special cases are classical results.

Theorem 1.2.1 (Nash-Williams [32], Tutte [38]). A graph G contains k edge-disjoint span-

ning trees if and only if
∑

Ai∈P δ(Ai) ≥ 2k(|P | − 1) for every partition P of V (G).

Proof. Set S = V (G), and make g identically 0. The S-partitions are the partitions of V (G),

and the terms in the SPC involving g are always 0. Hence the stated hypothesis is just the

SPC for this S and g, and the resulting S-connectors are the spanning trees.

Theorem 3.1.7 (Hakimi [21]). Given a graph G and a function g : V (G) → N0, there is an

orientation D of G such that each vertex v has outdegree at least g(v) in D if and only if for

all T ⊆ V (G) there are at least g(T ) edges incident to T .

Proof. Set S = V (G) and k = 0. Every S-partition P satisfies BP = ∅. Hence the only

requirement imposed on
∑l

i=1 δ(Ai) in the SPC is from the singleton blocks; the sum must

be at least 2g(TP ). In fact, the sum counts edges leaving singleton blocks twice, and it counts

nothing else when the remainder of V (G) is in one block.
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Hence Hakimi’s condition implies the SPC, and by Theorem 3.1.2 a (0, g)-family exists.

Since S = V (G), the paths can be single edges. Obtain the desired orientation by orienting

the g(v) edges chosen for each v outward from v (orient non-chosen edges arbitrarily).

The special case of Theorem 3.1.2 when S = V (G) generalizes the Tree Packing Theorem

and can be proved using only the Matroid Union Theorem. No special results about S-

partitions are needed when S-partitions are just partitions of V (G). We present this proof

first because it is needed for the proof of Theorem 3.1.2, needs no further lemmas, and

provides motivation for the definition of fg.

Given matroids M1, . . . ,Mℓ defined on the same set E of elements, their union M is the

hereditary system whose independent sets are {
∪t

i=1 Ii : Ii is an independent set in Mi}.

The Matroid Union Theorem (Edmonds [14]) states that M is a matroid on E and that the

maximum size of an independent set in M is minX⊆E(G)

∣∣X∣∣+∑h
i=1 ri(X), where X = E−X

and ri(X) denotes the maximum size of a subset of X that is independent in Mi.

In the conclusion of the next theorem, reducing H1, . . . , Hn to stars and directing them

outward from the centers yields a g-family. When S = V (G), every spanning tree is an

S-connector, so H1, . . . , Hk+n is a (k, g)-family.

Theorem 3.1.8. Let S = V (G) = {v1, . . . , vn}. If the Strong Partition Condition holds for

a function g : V (G) → N0, then G contains edge-disjoint subgraphs H1, . . . , Hn+k such that

dHi
(vi) = g(vi) for 1 ≤ i ≤ n and Hn+1, . . . , Hn+k are spanning trees.

Proof. For vi ∈ V (G), let E(vi) denote the set of edges incident to vi in G. We introduce

matroids M1, . . . ,Mk+n on E(G). Let Mn+1, . . . ,Mn+k be copies of the cycle matroid of

G. For 1 ≤ i ≤ n, let Mi be the matroid on E(G) whose independent sets are {X ⊆

E(vi) : |X| ≤ g(vi)} (edges not incident to vi are loops in Mi).

Let M =
∪k+n

i=1 Mi; a subset of E(G) is independent in M if and only if it is the disjoint

union of sets X1, . . . , Xn+k such that Xi is independent in Mi for each i. The desired sets
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exist if and only if M has an independent set of size k(n− 1) + g(V (G)), in which case the

independent sets X1, . . . , Xn+k decomposing it are the edge sets of the desired subgraphs.

By the Matroid Union Theorem, the maximum size of an independent set in M is

minX⊆E(G) t(X), where t(X) =
∣∣X∣∣ + ∑k+n

i=1 ri(X). Hence it suffices to show for each

X ⊆ E(G) that t(X) ≥ k(n− 1) + g(V (G)).

If 0 < ri(X) < g(vi), then deleting X ∩ E(vi) from X shifts the amount ri(X) from the

term for Mi to the term for X without increasing other terms. Hence we may restrict our

attention to sets X such that ri(X) ∈ {0, g(vi)} for 1 ≤ i ≤ n. Given such X, let P be

the partition of V (G) whose blocks are the vertex sets of the components of the spanning

subgraph of G with edge set X. We express t(X) in terms of P and then apply the SPC.

The set X consists of all edges joining blocks of P and possibly some edges within blocks

of P . Hence |X| ≥ 1
2

∑
Ai∈P δ(Ai). Note that BP = ∅, since S = V (G).

A vertex vi is a singleton block of P if and only if it has no incident edge in X. Thus

TP = {vi : ri(X) = 0}. With ri(X) ∈ {0, g(V (G))}, we have
∑n

i=1 ri(X) = g(V (G))−g(TP ).

For i > n, the rank function of the cycle matroid yields ri(X) = n− |P |.

By these computations, 2t(X) ≥
∑

Ai∈P δ(Ai)− 2k(|P | − n)− 2g(TP ) + 2g(V (G)). Thus

2t(X) ≥ fg(P ) + 2k(n− 1) + 2g(V (G)). By the SPC, fg(P ) ≥ 0, so the desired independent

set and desired subgraphs exist.

The proof of Theorem 3.1.2 (Section 3.3) has many ingredients, including a submodularity

inequality for fg (Section 3.2), a variant of Mader’s Splitting Lemma, and Theorem 3.1.8.

Proving the S-tree result (Theorem 1.2.3) in Section 3.4 uses the characterization of (k, g)-

families (Theorem 3.1.2) and Mader’s Splitting Lemma. Section 3.5 presents the analogous

argument to prove the S-connector result (Theorem 1.2.4).
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3.2 S-partitions and submodularity of fg

As mentioned, we will need a submodularity lemma for fg to complete our inductive proof of

Theorem 3.1.2. Recall that a lattice is a poset in which meets and joins exist for all pairs of

elements. A function ϕ defined on a lattice is submodular if ϕ(x∧y)+ϕ(x∨y) ≤ ϕ(x)+ϕ(y)

for all elements x and y. For any S-parity function g, we will prove that fg is submodular

for special pairs in this poset (the poset is a lattice).

The partition lattice ΠG on V (G) is the poset of all partitions of V (G), ordered by

refinement. That is, when Q and Q′ are partitions of V (G), we put Q ≤ Q′ in ΠG if for every

block Ai ∈ Q, there is a block A′
j ∈ Q′ such that Ai ⊆ A′

j. The unique minimal element

is the partition into singleton blocks, and in general the rank of a partition Q in Π(G) is

|V (G)| − |Q|, where |Q| denotes the number of blocks of a partition Q.

To define the order relation on P(S), we map an S-partition P to a partition QP of

V (G) by defining QP = {A1, . . . , Al, {b1}, . . . , {b|BP |}}, where P = {A1, . . . , Al} and BP =

{b1, . . . , b|BP |}. This mapping is injective; it simply splits BP into singleton sets and adds

them as blocks to P . Define the order relation on P(S) by putting P ≤ P ′ if and only if

QP ≤ Q′
P in ΠG. This makes P(S) isomorphic to a subposet Q(S) of ΠG.

We will study meet and join in P(S) by relating it to meet and join in Q(S) as a subposet

of ΠG. Let ∧Π and ∨Π denote the meet and join operations in ΠG. We use two well-known

properties of the partition lattice (after subtracting each term from |V (G)|, statement (2)

becomes the statement that the rank function of ΠG is submodular).

Proposition 3.2.1. For partitions Q and Q′ of V (G),

(1) Q ∧Π Q′ = {Ai ∩ Aj : Ai ∈ Q,Aj ∈ Q′};

(2) |Q ∧Π Q′|+ |Q ∨Π Q′| ≥ |Q|+ |Q′|.

Let the symbols ∧ and ∨ without subscripts denote the meet and join in P(S).
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Proposition 3.2.2. For P, P ′ ∈ P(S), the meet and join of P and P ′ are well defined, with

(1) P ∧ P ′ = {Ai ∩ A′
j : Ai ∈ P,A′

j ∈ P ′, Ai ∩ A′
j ∩ S ̸= ∅};

(2) QP∨P ′ = QP ∨Π QP ′;

(3) BP∨P ′ = BP ∩BP ′.

Proof. (1) Let P̂ = {Ai ∩ A′
j : Ai ∈ P,A′

j ∈ P ′, Ai ∩ A′
j ∩ S ̸= ∅}. By definition, P̂ ∈ P(S)

and P̂ ≤ P, P ′. For any block A′′ in any common lower bound P ′′, exist Ai ∈ P and A′
j ∈ P ′

such that A′′ ⊆ Ai ∩ A′
j. Since A′′ ∩ S ̸= ∅, we have Ai ∩ A′

j ∈ P̂ . Hence P ′′ ≤ P̂ .

(2) Let Q′′ = QP ∨Π QP ′ . If Q′′ /∈ Q(S), then there exists A ∈ Q′′ such that A ∩ S = ∅

and |A| ≥ 2. For a ∈ A, the block C containing a in QP is contained in A. Since A∩ S = ∅

and P is an S-partition, C must be {a}. Similarly, {a} ∈ QP ′ . Now {a} is a block in

QP ∨Π QP ′ , contradicting |A| ≥ 2.

Hence Q′′ ∈ Q(S), making Q′′ the least upper bound in Q(S) for QP and QP ′ . Since

P(S) and Q(S) are isomorphic, also P ∨ P ′ exists, with QP∨P ′ = QP ∨Π QP ′ .

(3) follows immediately from (2).

Common lower bounds in P(S) do not always translate so nicely to Q(S). Fortu-

nately, they do for the pairs of S-partitions we will need. Two S-partitions {A1, . . . , Al}

and {A′
1, . . . , A

′
l} form a good pair if Ai ∩ A′

j ̸= ∅ implies Ai ∩ A′
j ∩ S ̸= ∅.

Proposition 3.2.3. If S-partitions P and P ′ form a good pair, then:

(1) QP∧P ′ = QP ∧Π QP ′;

(2) BP∧P ′ = BP ∪BP ′;

(3) |P ∧ P ′|+ |P ∨ P ′| ≥ |P |+ |P ′|.

Proof. (1) Since P and P ′ form a good pair, the expression for their meet simplifies to

P ∧ P ′ = {Ai ∩ A′
j : Ai ∈ P,A′

j ∈ P ′, Ai ∩ A′
j ̸= ∅}, which maps to QP ∧Π QP ′ .

(2) BP∧P ′ and BP ∪BP ′ both equal the set of elements outside all Ai ∩ A′
j.
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(3) Note that |P | = |QP | − |BP | and |P ′| = |QP ′| − |BP ′|. Using (2) and Proposi-

tion 3.2.2(3),

|BP |+ |BP ′| = |BP ∩BP ′|+ |BP ∪BP ′| = |BP∧P ′|+ |BP∨P ′|.

Now the claim follows from |QP ∧Π QP ′ |+ |QP ∨Π QP ′| ≥ |QP |+ |QP ′ | (Proposition 3.2.1(2)).

Definition 3.2.4. For two sets A,B ⊆ V (G), write [A,B] for the set of edges with endpoints

in both A and B. When A or B consists of one vertex v, we write v instead of {v} in this

notation. Let G[A] denote the subgraph induced by A. Given an S-partition P with blocks

A1, . . . , Al, assign each edge e ∈ E(G) a weight hP (e) by

hP (e) =


2, if e ∈ [Ai, Aj] for some i and j;

1, if e ∈ [Ai, BP ] for some i;

0, otherwise.

Grouping the sum by edges yields
∑

Ai∈P δ(Ai) =
∑

e∈E(G) hP (e) for any S-partition P .

Proposition 3.2.5. If S ⊆ V (G) and P and P ′ form a good pair in P(S), then

hP∧P ′(e) + hP∨P ′(e) ≤ hP (e) + hP ′(e)

for all e in E(G). Also, if the endpoints of e lie in different blocks in both P and P ′, but in

the same block in P ∨ P ′, then the two sides of the inequality differ by 2.

Proof. For uv ∈ E(G), let W = {u, v}. Note that hP (uv) = 2− |W ∩BP | − 2tP (uv), where

tP (uv) = 1 if W ∈ Ai for some Ai ∈ P , and otherwise tP (uv) = 0. Since BP∧P ′ = BP ∪ BP ′

and BP∨P ′ = BP ∩ BP ′ , we have |W ∩ BP | + |W ∩ BP ′| = |W ∩ BP∨P ′| + |W ∩ BP∧P ′|.

Therefore hP∧P ′(uv) + hP∨P ′(uv) ≤ hP (uv) + hP ′(uv) if and only if tP∧P ′(uv) + tP∨P ′(uv) ≥
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tP (uv)+tP ′(uv). This holds when P and P ′ form a good pair, since max{tP (uv), tP ′(uv) = 1}

implies tP∨P ′(uv) = 1.

If u and v lie in different blocks in P and P ′ but in the same block in P ∨ P ′, then

tP∧P ′(uv) + tP∨P ′(uv) = tP (uv) + tP ′(uv) + 1, so the difference between the two sides of the

claimed inequality is then 2.

Lemma 3.2.6. Let g be a S-parity function. If P and P ′ form a good pair in P(S), then

fg(P ∧ P ′) + fg(P ∨ P ′) ≤ fg(P ) + fg(P
′). (3.2)

Proof. Let Q be an S-partition. From the definition of fg and the observation in Defini-

tion 3.2.4 that
∑

Ai∈P δ(Ai) =
∑

e∈E(G) hP (e), we have

fg(Q) =
∑

e∈E(G)

hQ(e)− 2k(|Q| − 1)− g(BQ)− 2g(TQ). (3.3)

We consider the contributions of these terms to (3.2). Proposition 3.2.5 yields

∑
e∈E(G)

[hP∧P ′(e) + hP∨P ′(e)] ≤
∑

e∈E(G)

[hP (e) + hP ′(e)].

By Proposition 3.2.3(3),

2k(|P ∧ P ′| − 1) + 2k(|P ∨ P ′| − 1) ≥ 2k(|P | − 1) + 2k(|P ′| − 1).

Since BP∧P ′ = BP ∪BP ′ and BP∨P ′ = BP ∩BP ′ ,

g(BP∧P ′) + g(BP∨P ′) = g(BP ) + g(BP ′).

For the last term, recall the definition: TP = {v ∈ S : |CP (v) ∩ S| = 1}, where CP (v) is
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the block containing v in P . If v ∈ TP ∪ TP ′ , then v ∈ TP∧P ′ ; if v ∈ TP ∩ TP ′ , then since P

and P ′ form a good pair, v ∈ TP∨P ′ . Summing the contributions made by each vertex yields

g(TP∧P ′) + g(TP∨P ′) ≥ g(TP ) + g(TP ′).

Summing the formulas for all four terms completes the proof of (3.2).

Sometimes we will need a stronger inequality than (3.2), ensuring a difference of 4. For

x ∈ V (G), let NG(x) = {y ∈ V (G) : xy ∈ E(G)}. We write G − uv to mean the graph

obtained from G by deleting one copy of the edge uv when uv has multiplicity at least 1.

Lemma 3.2.7. Let P and P ′ be S-partitions that form a good pair. Let uv be an edge such

that u and v lie in different blocks in both P and P ′ but in the same block in P ∨ P ′. If

NG−uv(v) intersects both CP (u) and CP ′(u), then fg(P )+fg(P
′)−fg(P ∧P ′)−fg(P ∨P ′) ≥ 4.

Proof. We showed in proving Lemma 3.2.6 that the terms in (3.3) involving g make a non-

negative contribution to fg(P ) + fg(P
′)− fg(P ∧ P ′)− fg(P ∨ P ′). Hence it suffices to gain

4 from the other terms.

For each edge e, let ĥ(e) = hP (e)+hP ′(e)−hP∧P ′(e)−hP∨P ′(e). Proposition 3.2.5 implies

that always ĥ(e) ≥ 0 and that the locations of u and v yield ĥ(uv) ≥ 2. It suffices to find

another edge e with ĥ(e) ≥ 2 or gain 2 from the term involving the number of blocks.

By the hypothesis on N(v), deleting (one copy of) the edge vu leaves v with a neighbor

in each of CP (u) and CP ′(u). Suppose that v still has a neighbor w in CP (u) − CP ′(v) or

CP ′(u) − CP (v) (possibly w = u). In either case, w and v lie in different blocks in both P

and P ′, and w and u lie in the same block of P ∨ P ′. By hypothesis, this block of P ∨ P ′

also contains v, so Proposition 3.2.5 yields ĥ(wv) ≥ 2, which suffices.

Therefore, we may assume that the given vertices w,w′ ∈ NG−uv(v) are in CP (u)∩CP ′(v)

and CP ′(u) ∩ CP (v), respectively. Since u and v lie in distinct blocks in both P and P ′, we

have w ̸= w′ (and neither of them is u).
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Obtain P ′′ from P by splitting CP (v) into CP (v)− CP ′(u) and CP (v) ∩ CP ′(u). Since P

and P ′ form a good pair, P ′′ is an S-partition. Since all intersections of blocks in P ′′ and P ′

are intersections of blocks in P and P ′, also P ′′ and P ′ form a good pair, and P ′′∧P ′ = P∧P ′.

Furthermore, P ′′ ∨ P ′ = P ∨ P ′, since CP ′(v), CP (u), and CP ′(u) successively put the pairs

{v, w}, {w, u}, and {u,w′} into the same block of P ′′ ∨ P ′ (using CP ′′(u) = CP (u)).

Now, since |P ′′ ∧ P ′| + |P ′′ ∨ P ′| − |P ′′| − |P ′| ≥ 0 (by Proposition 3.2.3(3)) and |P ′′| =

|P | + 1, we obtain |P ∧ P ′| + |P ∨ P ′| − |P | − |P ′| ≥ 1. Since it has the coefficient 2k, this

term now provides the additional contribution of 2 that completes the proof.

Proposition 3.2.8. If P is an S-partition and g is an S-parity function, then fg(P ) is even.

Proof. For A ⊆ V (G), recall that no(A) is the number of vertices of A having odd degree in

G. Using BP ⊆ S and the definition of S-parity function,

fg(P ) =
(∑

Ai∈P δ(Ai)
)
− 2k(l − 1)− g(BP )− 2g(TP )

≡
[∑l

i=1

(∑
v∈Ai

dG(v)
)
− 2|E(G[Ai])|

]
+ no(BP )

≡
[∑l

i=1 no(Ai)
]
+ no(BP ) ≡ no(V (G)) ≡ 0 (mod 2).

For X ⊆ S and P = (A1, . . . , Al), let P −X = (A1 −X, . . . , Al −X). Note that if P is

an S-partition, then so is P −X. Recall that [A,B] = {xy ∈ E(G) : x ∈ A, y ∈ B}.

Proposition 3.2.9. If P is an S-partition and X ⊆ Ai ∩ S, where Ai is a block of P , then

fg(P )− fg(P −X) ≥
∣∣[X,Ai]

∣∣− ∣∣[X,Ai −X]
∣∣.

Proof. Since fg(P ) =
∑l

i=1 δ(Ai)− 2k(|P | − 1)− g(BP )− 2g(TP ), we have

fg(P )− fg(P −X) = δ(Ai)− δ(Ai −X) + g(X)

≥ δ(Ai)− δ(Ai −X) =
∣∣[X,Ai]

∣∣− ∣∣[X,Ai −X]
∣∣
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3.3 Existence of (k, g)-families

The goal of this section is to prove Theorem 3.1.2, which states that a (k, g)-family exists

if and only if the Strong Partition Condition holds for (G,S, k, g). After proving further

properties of good pairs of S-partitions, our inductive proof of the main theorem will use

Theorem 3.1.8 as the basis and a variant of Mader’s Splitting Lemma in the induction step.

Let uv and vw be two edges of G. The uv, vw-shortcut of G is the graph obtained from

G by replacing uv and vw with uw. When u is already adjacent to w, an extra copy of uw

is added; when u = w, a double-edge is replaced with a loop. Fix an edge uv with u ∈ S.

For w ∈ NG−uv(v), let Gw denote the uv, vw-shortcut of G. By G− uv, we mean the graph

obtained from G by deleting one copy of uv; this means that w = u is possible when uv has

multiplicity greater than 1 in G.

In order to prove Theorem 3.1.2 inductively, we will show that if uv is an edge in G with

u ∈ S and v ̸∈ S, and G satisfies the Strong Partition Condition (SPC) for an S-parity func-

tion g such that dG(v) > g(v), then there exists w ∈ NG−uv(v) such that Gw also satisfies the

SPC. This is the main technical result of our paper. Mader’s Splitting Lemma (Lemma 1.2.6)

is analogous; it guarantees shortcuts that preserve local connectivity conditions.

Definition 3.3.1. Given S ⊆ V (G), suppose that G satisfies the SPC for an S-parity

function g. Fix an edge uv ∈ E(G) with u ∈ S and v /∈ S such that dG(v) > g(v). A vertex

w is dangerous for an S-partition P (relative to uv) if fg(P ) < 0 for the graph Gw. Let

D(P ) = {w ∈ V (G) : fg(P ) < 0 for Gw}.

When w ∈ D(P ), we have fg(P ) ≤ −2 for Gw and fg(P ) ≥ 0 for G, since fg(P ) is always

even (Proposition 3.2.8). The contributions to fg(P ) forG andGw differ only in
∑

Ai∈P δ(Ai),

which decreases when replacing uv and vw with uw only if u,w ̸∈ CP (v) (recall that CP (x)

is the member of {A1, . . . , Al, BP} containing x, where A1, . . . , Al are the blocks of P ). Since

u ∈ S and v /∈ S, the ways a decrease can occur are shown in Figure 3.1. The shortcut
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decreases fg(P ) by 2 if v ∈ BP and w ∈ CP (u), by 2 if v /∈ BP and w /∈ CP (v) ∪CP (u), and

by 4 if v /∈ BP and w ∈ CP (u). Otherwise, fg(P ) does not change.

• • •u w v
Ai BP

down by 2

• • •u v w
Ai Aj

down by 2

• • •u w v
Ai Aj

down by 4

Figure 3.1: Dangerous locations for w

Vertex w will be dangerous with a decrease of 2 when fg(P ) = 0 or a decrease of 4 when

fg(P ) ∈ {0, 2}. We group the cases as “Types” by the value of fg(P ) and the location

of v in P . These types determine the location of all w such that fg(P ) < 0 for Gw. For

simplicity, write N ′(v) for NG−uv(v); thus N
′(v) = NG(v)− {u} when uv has multiplicity 1,

and otherwise N ′(v) = NG(v). The distinction between Type 2 and Type 3 is that decreasing

fg(P ) by 2 instead of 4 is enough when fg(P ) = 0, so vertices in all of N ′(v) − CP (v) are

dangerous instead of just those in CP (u). If P is none of these types, then D(P ) = ∅.

Type fg(P ) for G location of v dangerous set D(P )

1 0 v ∈ BP N ′(v) ∩ CP (u)

2 0 v ̸∈ BP ∪ CP (u) N ′(v)− CP (v)

3 2 v ̸∈ BP ∪ CP (u) N ′(v) ∩ CP (u)

Our goal is to find w ∈ N ′(v) such that w is outside D(P ) for everyDefine an S-parity

function by g(v) = 1 when v is a vertex of S having odd degree in G and otherwise g(v) = 0.

For P ∈ P(S), always BP ⊆ S, and hence g(BP ) = no(BP ). Also, g(TP ) = 0. Hence

the left side of the assumed equality is fg(P ), and we have assumed that the SPC holds

for this S-parity function. By Theorem 3.1.2, G has a (k, g)-family, and hence there are k

edge-disjoint S-connectors. S-partition P ; in that case, Gw satisfies the SPC. We will need

two lemmas about S-partitions.
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With D(P ) defined relative to a fixed edge uv, let M be the set of minimal S-partitions

among those with maximal dangerous sets. That is, P ∈ M when there is no S-partition P ′

such that D(P ) ⊂ D(P ′) or such that D(P ) = D(P ′) and P ′ < P in P(S). The next lemma

will help us find an S-partition whose dangerous set contains D(P ) for all P ∈ P(S).

Lemma 3.3.2. If P, P ′ ∈ M, then P and P ′ form a good pair.

Proof. We prove the contrapositive. When P and P ′ do not form a good pair, there exist

Ai ∈ P and A′
j ∈ P ′ such that ∅ ̸= Ai ∩ A′

j ⊆ S. Let X = Ai ∩ A′
j; we have remarked that

P −X ∈ P(S). Changing P to P −X splits elements of X from blocks in P (and in Q(P ))

to become singletons in Q(P −X), so P −X ≤ P (also, P ′ −X ≤ P ′). Hence it suffices to

prove D(P ) ⊆ D(P −X) or D(P ′) ⊆ D(P ′ −X), since then P and P ′ are not both in M.

Claim (∗): If P is Type 1 or 3 and fg(P −X) ≤ fg(P ), then D(P ) ⊆ D(P −X) unless

u ∈ Ai and P −X is not Type 2 (and similarly for P ′). Since v /∈ CP (u), also v /∈ CP−X(u).

If u /∈ Ai, then CP−X(u) = CP (u), so D(P ) = N ′(v) ∩ CP (u) = N ′(v) ∩ CP−X(u) ⊆

D(P − X). Hence u ∈ Ai, so v /∈ Ai and CP−X(v) = CP (v). If P − X is Type 2, then

D(P ) ⊆ N ′(v)− CP (v) = N ′(v)− CP−X(v) = D(P −X).

If
∣∣[X,Ai − X]

∣∣ < δ(X)/2, then
∣∣[X,Ai]

∣∣ > ∣∣[X,Ai − X]
∣∣, so fg(P ) > fg(P − X), by

Proposition 3.2.9. However, the SPC yields fg(P −X) ≥ 0, so fg(P −X) = 0 and P is Type

3. By (∗), we have u ∈ Ai and P −X is Type 1. Since P is Type 3, v /∈ BP , so P −X being

Type 1 requires v ∈ X, which contradicts u ∈ Ai.

This eliminates the case
∣∣[X,Ai − X]

∣∣ < δ(X)/2, and similarly for A′
j. Since

∣∣[X,Ai −

X]
∣∣+ ∣∣[X,A′

j −X]
∣∣ ≤ δ(X), the remaining case is

∣∣[X,Ai −X]
∣∣ = ∣∣[X,A′

j −X]
∣∣ = δ(X)/2,

and [X,X] = [X, (Ai ∪ A′
j) − X]. Also fg(P − X) ≤ fg(P ) and fg(P

′ − X) ≤ fg(P
′) for

G, by Proposition 3.2.9. Since X ⊆ S, we know u /∈ Ai ∩ A′
j. By symmetry, we may take

u /∈ Ai, and hence P is Type 2 by (∗). Thus fg(P −X) = fg(P ) = 0.

If v ∈ X, then v ̸∈ CP (u) ∪ CP ′(u) yields u ̸∈ Ai ∪ A′
j. Since all edges leaving X go to
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Ai−X or A′
j−X, now [X, {u}] = ∅, which contradicts the existence of uv. Hence we may

assume v /∈ X. Since fg(P−X) = 0 and P is Type 2, v /∈ X implies P−X is Type 2, so

D(P ) = N ′(v)− CP (v) ⊆ N ′(v)− CP−X(v) = D(P−X).
We now obtain a single S-partition whose dangerous set contains all dangerous sets.

Lemma 3.3.3. There exists an S-partition whose dangerous set contains
∪

P∈P(S)D(P ).

Proof. If the dangerous sets for all S-partitions in M are the same, then every member of M

has the desired property. Suppose P, P ′ ∈ M exist with D(P ) ̸= D(P ′). By Lemma 3.3.2,

P and P ′ form a good pair. Let P̌ = P ∨ P ′ and P̂ = P ∧ P ′. If P̂ is a Type 2 partition,

then D(P ) ⊆ N ′(v)− CP (v) ⊆ N ′(v)− CP̂ (v) = D(P̂ ), which contradicts P ∈ M.

Case 1: u and v lie in the same block of P̌ . By Lemma 3.2.7 and the SPC, fg(P ) +

fg(P
′) ≥ fg(P̂ ) + fg(P̌ ) + 4 ≥ 4. Since D(P ), D(P ′) ̸= ∅ requires f(P ), f(P ′) ≤ 2, we

have fg(P̂ ) = fg(P̌ ) = 0. Also fg(P ) = fg(P
′) = 2, so P and P ′ are both Type 3, and

v /∈ BP ∪BP ′ = BP̂ . We conclude that P̂ is Type 2.

Case 2: u and v do not lie in the same block of P̌ . Suppose first that fg(P̌ ) ≥ 4, so both

P and P ′ are Type 3 and fg(P̂ ) = 0. Also v /∈ BP ∪BP ′ = BP̂ , so P̂ is Type 2.

Next suppose that fg(P̌ ) = 2. By submodularity, P or P ′ must be Type 3; let P be

Type 3. Hence v /∈ BP . Since always BP̌ = BP ∩BP ′ (Proposition 3.2.2), we obtain v /∈ BP̌ .

Hence we may assume that fg(P̌ ) = 0 or that fg(P̌ ) = 2 and v /∈ BP̌ . Now D(P̌ ) ⊇

N ′(v) ∩ CP̌ (u) ⊇ N ′(v) ∩ (CP (u) ∪ CP ′(u)). If neither P nor P ′ is Type 2, then this last set

is D(P )∪D(P ′). Since D(P ) ̸= D(P ′) and P, P ′ ∈ M, neither of D(P ) and D(P ′) contains

the other. Hence D(P̌ ) strictly contains both, which contradicts P, P ′ ∈ M.

If both P and P ′ are Type 2, then submodularity yields fg(P̂ ) = 0. Also v ̸∈ BP ∪BP ′ =

BP∧P ′ , so P̂ is Type 2. If P (and not P ′) is Type 2, then D(P ) = N ′(v) − CP (v) and

D(P ′) = N ′(v) ∩ CP ′(u). Since u and v are not in the same block of P̌ , the sets CP (v) and

CP ′(u) are disjoint. Hence have D(P ′) ⊂ D(P ), contradicting P ′ ∈ M.
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Next we prove an analogue of Mader’s Splitting Lemma (Lemma 1.2.6). Recall that

N ′(v) = NG(v)− {u} if uv has multiplicity 1, and otherwise N ′(v) = NG(v). When A or B

has only one vertex v, we write v instead of {v} in the notation [A,B].

Theorem 3.3.4. If G satisfies the Strong Partition Condition and has an edge uv with

u ∈ S, v ̸∈ S, and dG(v) > g(v), then there is a vertex w ∈ N ′(v) such that Gw satisfies the

SPC.

Proof. By Lemma 3.3.3, there exists an S-partition P whose dangerous set contains the

dangerous sets (relative to uv) for all S-partitions. If no desired vertex w exists, then

D(P ) = N ′(v). Thus
∣∣[v, CP (v)]

∣∣ = 0. Let P ′ be the S-partition obtained from P by moving

v to CP (u); note that |P ′| = |P | and TP ′ = TP .

Using the expression for fg in (3.1), we have fg(P )− fg(P
′) = dG(v)− g(v) > 0 when P

is Type 1, and fg(P )− fg(P
′) = 2

∣∣[v, CP (u)]
∣∣− 2

∣∣[v, CP (v)]
∣∣ > 0 when P is Type 2 or Type

3. Since fg(P
′) ≥ 0, this yields fg(P ) > 0. Hence P is Type 3.

Since N ′(v) = D(P ), now NG(v) ⊆ CP (u). Since g is an S-parity function, v /∈ S, and

dG(v) > g(v), we also have
∣∣[v, CP (u)]

∣∣ = dG(v) ≥ g(v) + 2 ≥ 2. Now 2 ≥ fg(P )− fg(P
′) =

2
∣∣[v, CP (u)]

∣∣ ≥ 4, a contradiction. We conclude that the desired vertex w exists.

We can now prove our main result.

Theorem 3.1.2. Let S be a set of terminals in G. If g is an S-parity function for G, then

G has a (k, g)-family if and only if fg(P ) ≥ 0 for all P ∈ P(S).

Proof. Proposition 3.1.3 proves necessity. For sufficiency, we use induction on the total

number of vertices and edges, with trivial basis. Theorem 3.1.8 is the case S = V (G), so we

may assume S ̸= ∅. We will reduce the claim to a special case where Theorem 3.1.8 applies.

Let R = S ∩N(S). We may assume R ̸= ∅; otherwise, the induction hypothesis applies

to G−S. If dG(v) > g(v) for some v ∈ R, then choose u ∈ N(v)∩S. Theorem 3.3.4 provides

w ∈ N ′(v) (for this u and v) such that Gw satisfies the SPC. Since Gw is smaller than G, it
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has a (k, g)-family. If any of the resulting S-connectors or paths contain the edge uw that is

not in G, then replacing that edge with the original uv and vw yields a (k, g)-family in G.

Hence we may assume dG(v) = g(v) for v ∈ R, by Proposition 3.1.4. We next reduce

to the case N(v) ⊆ S for all v ∈ R. Let P = {S}; that is, |P | = 1 and BP = S.

Since always |S| ≥ 2, we have TP = ∅, and hence fg(P ) =
∣∣[S, S]∣∣ − g(S). By the SPC,∣∣[S, S]∣∣ ≥ g(S) ≥

∑
v∈R dG(v). However,

∣∣[S, S]∣∣ ≤ ∑
v∈R dG(v). We conclude that R is an

independent set whose neighbors all lie in S and that g(v) = 0 for v ∈ S −R.

We argue that in this remaining case G[S] satisfies the SPC. Let P̂ be an S-partition

of G[S]; note that BP̂ = ∅. We may also view P̂ as an S-partition of G, in which case we

denote it by P , so BP = S. Comparing values of fg for G[S] and G, we have fg(P̂ )−fg(P ) =

g(BP )−
∣∣[S, S]∣∣. Since g(BP ) = g(R) =

∣∣[S, S]∣∣, we have fg(P̂ ) = fg(P ) ≥ 0.

Since G[S] satisfies the SPC, Theorem 3.1.8 yields k + g(S) edge-disjoint subgraphs of

G[S] such that k are S-connectors in G[S] and the others combine into disjoint sets of g(v)

edges at v for each v ∈ S. Since g(v) = 0 for v ∈ S −R and g(v) = dG(v) for v ∈ R, adding

the edges from R to S as directed paths completes a (k, g)-family for G.

3.4 Steiner tree packing

In this section we apply Theorem 3.1.2 to the problem of packing S-trees. Recall that E(v)

denotes the set of edges incident to a vertex v and that a vertex set S is j-edge-connected in

a graph G when deleting any set of fewer than j edges leaves S in a single component. Our

sufficient condition for k edge-disjoint S-trees uses the following theorem, which is the main

technical result of this section and is proved using Theorem 3.1.2.

Theorem 3.4.1. Let k and λk be positive integers λ ≥ 6.5. Let S be a vertex set that is

λk-edge-connected in a graph G. Fix a vertex v ∈ S with dG(v) = λk. Let E0, . . . , Ek be

a partition of E(v), and let Ni = {w : vw ∈ Ei}. If |E0| ≥ k, then G has edge-disjoint
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subgraphs H0, . . . , Hk such that

(1) Ei ⊆ E(Hi) for 0 ≤ i ≤ k;

(2) dH0(s) ≥ k for all s ∈ S; and

(3) for 1 ≤ i ≤ k, the vertex set (S − {v}) ∪Ni is connected in Hi − v.

We say Graphs H0, . . . , Hk satisfying the requirements in Theorem 3.4.1 properly extend

E0, . . . , Ek or form a proper extension of E0, . . . , Ek in G. By the meaning of “partition”,

each Ei is nonempty. This notion of proper extension refines the “extension property” used

by Lau in [27]. Lau had no special subgraph H0, and he required dHi
(s) ≥ 2 for each i

and each s ∈ S. In the special case where S is independent, distributing the edges of our

H0 to the other subgraphs yields H1, . . . , Hk satisfying his conditions. Lau used only the

Nash-Williams Theorem, which we have extended to a condition for (k, g)-families.

Theorem 3.4.1 immediately yields Theorem 1.2.3.

Theorem 1.2.3 If S is 6.5k-edge-connected in G, then G contains k edge-disjoint S-trees.

Proof. Form Ĝ by adding to G a vertex v and any ⌈6.5k⌉ edges joining v to S. Let Ŝ = S ∪

{v}; note that Ŝ is ⌈6.5k⌉-edge-connected in Ĝ. Partition E(v) into E0, . . . , Ek with |E0| ≥ k.

Applying Theorem 3.4.1 to Ĝ and Ŝ instead of G and S yields subgraphs H0, . . . , Hk. By

property (3) in Theorem 3.4.1, H1, . . . , Hk contain the desired S-trees.

Definition 3.4.2. Minimal counterexample G0. If Theorem 3.4.1 is not true, then there

is a graph G0 with fewest edges such that S, v, λ, k and E0, . . . , Ek satisfy the hypotheses

of Theorem 3.4.1 (where λk is an integer) and yet no proper extension of E0, . . . , Ek exists.

Among such structures, choose one such that S is smallest, where S = V (G0)−S. Henceforth

let G0 be such a minimal counterexample. In the lemmas of this section, we obtain properties

that G0 must satisfy, eventually obtaining a contradiction. Minimality implies that G0 is

connected. Also, a λk-edge-connected set of size at least 2 cannot have a loop at a vertex of

degree λk, so we may assume there is no loop at the fixed vertex v.
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Lemma 3.4.3. In G0, the set S of non-terminal vertices is independent.

Proof. Let e be an edge with endpoints in S. If S is λk-edge-connected in G0 − e, then

by the minimality of G0 there exist H0, . . . , Hk that properly extend E0, . . . , Ek in G0 − e.

These subgraphs also properly extend E0, . . . , Ek in G0.

Hence S is not λk-edge-connected in G0 − e. Let F be a subset of E(G0) with exactly

λk edges (including e) such that S is not connected in G0 − F . Exactly two components

of G0 − F contain vertices of S, since S is λk-edge-connected in G0. Let G1 and G2 be

the graphs obtained by contracting one of these components to a single vertex, calling that

vertex vj in Gj. For j ∈ {1, 2}, let Sj = (S∩V (Gj)∪{vj}; note that Sj is λk-edge-connected

in Gj. By symmetry, we may assume that the special vertex v in S lies in V (G1).

Since the endpoints of e are in S, the cut F does not isolate a vertex, so G1 and G2

are smaller than G0. Hence there exist H1
0 , . . . , H

1
k that properly extend E0, . . . , Ek in G1.

Let E2
i = E(H1

i ) ∩ F for 0 ≤ i ≤ k. In G2, we obtain H2
0 , . . . , H

2
k that properly extend

E2
0 , . . . , E

2
k . For 0 ≤ i ≤ k, let Hi be the subgraph of G with E(Hi) = E(H1

i )∪E(H2
i ). Now

H0, . . . , Hk properly extend E0, . . . , Ek in G0, a contradiction.

For x, y ∈ V (G), let κ′(x, y;G) denote the local edge-connectivity of x and y in G, which

is the minimum number of edges whose deletion leaves x and y in different components.

Mader’s Splitting Lemma is a powerful inductive tool involving local edge-connectivity.

Theorem 1.2.6 (Mader’s Splitting Lemma [28]). Let x be a non-cut-vertex of G. If x has

degree at least 2 (except when dG(x) = 3 and x has three distinct neighbors), then there is a

shortcut Ĝ of G at x such that κ′(u, v;G) = κ′(u, v; Ĝ) whenever u, v ∈ V (G)− {x}.

To simplify our subsequent proofs, we need a slightly stronger version of Mader’s Lemma

that is less well known.

Theorem 3.4.4 (Mader’s Splitting Lemma, variation). If x ∈ V (G) and x is not incident

to a cut-edge of G, then there is a shortcut Ĝ of G at x that preserves local edge-connectivity
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in V (G)− {x} unless dG(x) = 3 and x has three distinct neighbors.

Proof. By Lemma 1.2.6, we may assume that x is a cut-vertex of G. Since x is not incident

to a cut-edge, x has at least two neighbors in each component of G − x. Let G1, . . . , Gt be

the components of G−x. Let y and y′ be neighbors of x in G1, and let z and z′ be neighbors

of x in G2. Form G′ from G by the shortcut replacing yx and xz with yz. We show that

κ′
G′(u, v) ≥ κ′

G(u, v) for u, v ∈ V (G).

Suppose first that u, v ∈ V (Gi)∪ {x}. Any family of edge-disjoint u, v-paths in G lies in

the subgraph induced by V (Gi) ∪ {x} and remains in G′ unless it uses one of the shortcut

edges. Hence we may assume i = 1, by symmetry. In that case, the shortcut edge yx can

be replaced by a path through the edge yz, a zz′-path in G2, and the edge z2x to obtain a

family of the same size in G′.

Hence we may assume that u and v lie in different components of G − x. Let ℓ =

min{κ′
G(u, x), κ

′
G(v, x)}. We showed in the previous paragraph that no set of ℓ − 1 edges

separates x from u or v in G′. Hence also no set of ℓ − 1 edges separates u from v in G′.

Since u and v lie in different components of G − x, all u, v-paths in G pass through x, and

hence κ′
G(u, v) = ℓ, which completes the proof.

Since Theorem 3.4.1 trivially holds for a graph that has only two vertices (both in S),

the next structural property of G0 allows us to assume henceforth that |S| ≥ 3.

Lemma 3.4.5. In G0, every vertex of S has degree 3, with three distinct neighbors in S (and

hence |S| ≥ 3).

Proof. Consider x ∈ S. If x is incident to a cut-edge e, then S is contained within one

component of G−e, since S is λk-edge-connected in G. In this case, we can apply minimality

in the choice of G0, restricting the graph to that component.

We may therefore assume that x is not incident to a cut-edge. Except when dG0(x) = 3

and x has three distinct neighbors, Mader’s Splitting Lemma now implies that S is λk-edge-
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connected in some shortcut of G0 at x. By minimality in the choice of G0, that shortcut of

G0 has a proper extension of E0, . . . , Ek, which implies that G0 does also.

We may therefore assume that dG0(x) = 3 and x has three distinct neighbors. By

Lemma 3.4.3, those three distinct neighbors lie in S.

Definition 3.4.6. The modified set S ′ of terminals. Within G0, pick a vertex ui from Ni

for 1 ≤ i ≤ k. These vertices need not be distinct and may lie in S. Let U = {u1, . . . , uk},

S ′ = S − {v}, N ′
i = Ni − ui − S ′ and X =

∪k
i=1N

′
i (see Figure 3.2). Let M be the maximal

bipartite subgraph of G0 with partite sets X and S ′. Note that |S ′| ≥ 2.

N0

N1
Nk

•

•

•

•

• • •

u1

uk

· · ·

· · ·

v

N ′
1

N ′
k

X ⊆ V (M)

S ′ ⊆ V (M)

S −NG0(v)

E0 E1 Ek

Figure 3.2: Vertices and vertex sets in G0; let G
′ = G0 − v −X

Lemma 3.4.7. In G0, there exists a subgraph M ′ of M such that:

(1) dM ′(x) = 1 for all x ∈ X; and

(2) dM ′(s) ≥ ⌊dM(s)/2⌋ for all s ∈ S ′.

Proof. By Definition 3.4.6, X ⊆ S ∩ NG0(v). Hence every vertex in X has two distinct

neighbors in M , by Lemma 3.4.5. By adding one vertex adjacent to all vertices of odd

degree in M and following an Eulerian circuit in each component of the resulting graph, we

obtain an orientation D of M (ignoring the edges added to M) in which every vertex s ∈ S ′

has outdegree ⌊dM(s)/2⌋ or ⌈dM(s)/2⌉ and every vertex of M has indegree 1. The subgraph

of M whose edges are those oriented from S ′ to X in D is the desired subgraph M ′.
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Definition 3.4.8. The derived graph G′ and special parity function. Given G0 as in Defini-

tion 3.4.2, let G′ = G0 − v −X. Using S ′ as the set of terminals, where S ′ = S − {v} as in

Definition 3.4.6, we define a special S ′-parity function g as follows

g(u) =


0, u ∈ (N0 ∪ U)− S ′;

1, u ∈ S −NG0(v);

max{k − dM ′(u)− |E(u) ∩ E0| , 0}, u ∈ S ′.

We will prove that G′ has a (k, g)-family for the terminal set S ′ and this S ′-parity function

g. Because the proof is lengthy, we first motivate it by using such a (k, g)-family to complete

the proof of Theorem 3.4.1. Obtaining a proper extension of E0, . . . , Ek contradicts the

definition of G0, thus forbidding counterexamples and proving Theorem 3.4.1.

Lemma 3.4.9. If the graph G′ derived from G0 has a (k, g)-family for the S ′-parity function

g in Definition 3.4.8, then there is a proper extension of E0, . . . , Ek in G0.

Proof. We will use a (k, g)-family in G′ to extend E0, . . . , Ek in G0, adding edges to Ei to

form Hi, thereby satisfying (1) in Theorem 3.4.1. For 1 ≤ i ≤ k, we will add to Ei the edges

of one S ′-connector and additional edges needed to ensure (3) in Theorem 3.4.1. To extend

E0, we will use the oriented paths in the (k, g)-family, suitably adjusted.

In order to handle the vertices of U − S ′ (recall that U = {u1, . . . , uk}), we first ad-

just the (k, g)-family in G′. We are given S ′-connectors H ′
1, . . . , H

′
k and oriented paths

P1, . . . , Pg(V (G′)). We may assume that H ′
1, . . . , H

′
k are minimal S ′-connectors. Thus each

path joining vertices of S ′ in H ′
j is an edge or has length 2 with internal vertex in S.

Minimality also implies that short-cutting the paths forming H ′
j turns H

′
j into a tree T ′

j

with vertex set S ′. Mark an edge in T ′
j with label i if it arises by short-cutting the two-edge

path through ui for some ui ∈ U − S ′. Since such a vertex ui has degree 2 in G′, and

H ′
1, . . . , H

′
k are edge-disjoint, each label marks an edge in at most one tree. We will modify
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T ′
1, . . . , T

′
k so that each T ′

j contains at most one marked edge.

If some such tree T has two marked edges, then let e be one of them. At most k edges

are marked, so some tree T ′ in the list has none. Adding e to T ′ completes a unique cycle

via a path that crosses from one component of T − e to the other using an edge e′ of T ′.

Replacing T and T ′ with T − e+ e′ and T ′ − e′ + e yields a new set of trees in which fewer

have more than one marked edge. The edge switch corresponds in G′ to switching paths in

the edge-disjoint S ′-connectors.

Repeat the switching argument until no tree has more than one marked edge. Re-index

the resulting S ′-connectors so that each ui ∈ U −S ′ occurs in none of H ′
1, . . . , H

′
k other than

H ′
i. For 1 ≤ i ≤ k, let Ĥi be the spanning subgraph of G0 with edge set Ei ∪ E(H ′

i) ∪ Bi,

where Bi is the set of edges in E(M) − E(M ′) incident to N ′
i . Let Ĥ0 be the spanning

subgraph of G0 with edge set E0 ∪ E(M ′) ∪
∪g(V (G))

j=1 E(Pj).

Since H ′
i is an S ′-connector in G′, all of S − {v} is connected in Ĥi − v. If x ∈ N ′

i , then

x has two incident edges in M ; one is in M ′ (by Lemma 3.4.7) and the other connects x to

S − {v} in Ĥi − v. Now all of (S − {v}) ∪ Ni is connected in Ĥi − v, except possibly ui if

ui ∈ U−S ′. In this case, ui is not in M but is in G′. By the switching argument given above,

if the two edges incident to ui in G′ are in
∪k

j=1 H
′
j, then they are in H ′

i, and we let Hi = Ĥi.

Otherwise, we add those two edges to Ĥi to form Hi, unless they form some path Pr in the

g-family (note that g(ui) = 0), in which case we add the edge leaving ui in Pr to Ĥi to form

Hi. In each case, ui is now connected to S ′, and we have satisfied (3) in Theorem 3.4.1.

In forming Hi, we may have removed one edge of one path Pr from Ĥ0. Let H0 be the

subgraph of Ĥ0 that remains after all such edges have been removed. No edges of E0 were

removed, so dH0(v) ≥ k, and we need only check that H0 has enough edges at each s ∈ S ′ to

satisfy (2) in Theorem 3.4.1. There remain at least g(s) edges from the paths in the g-family,

since we removed only edges leaving vertices of U − S ′. Adding E(s) ∩ E0 and the edges of

M ′ yields dH0(s) ≥ g(s) + |E(s) ∩ E0|+ dM ′(s) ≥ k.
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By Lemma 3.4.9, the next lemma completes the proof of Theorem 3.4.1 and hence also

Theorem 1.2.3. This is where we use λ ≥ 6.5. Although introducing the vertex set U

complicates the construction in Lemma 3.4.9, it enables us to improve our result from λ ≥ 10

to λ ≥ 6.5 by reducing the requirement on dH0(s) in (2) of Theorem 3.4.1 from 2k to k.

Lemma 3.4.10. Given G0, the derived graph G′ has a (k, g)-family for the S ′-parity function

g in Definition 3.4.8.

Proof. By Theorem 3.1.2, it suffices to prove that the SPC holds for G′ and g. That is,

fg(P ) ≥ 0 for each S ′-partition P of G′. Recall the definition:

fg(P ) =
∑
Ai∈P

δG′(Ai)− 2k(|P | − 1)− g(BP )− 2g(TP ). (3.4)

Our discussion of P and the sets BP and TP is always with respect to G′. It suffices to prove

fg(P ) ≥ 0 for a S ′-partition P with special properties among those that minimize fg.

By Lemma 3.4.5, every vertex of V (G0) − S has degree 3 in G0, with three distinct

neighbors in S. If w ∈ Ai − S ′ for some block Ai in P , and w has no neighbor in Ai, then

w has a neighbor in some block Aj other than Ai, and switching w from Ai to Aj produces

an S ′-partition P ′ of G′ with fg(P
′) < fg(P ). Hence we may assume that every vertex of

V (G′)− S ′ in a block of P has a neighbor in that block.

Next, the definition of g immediately yields g(BP ) = no(BP ) (computed in G′). If w ∈

BP , then dG′(w) ∈ {2, 3}, and the neighbors of w are distinct vertices of S ′. If dG′(w) = 2,

or if dG′(w) = 3 and w has two neighbors in one block of P , then let P ′ be the S ′-partition

formed from P by moving w into a block containing at least half of NG′(w). Regardless

of whether dG′(w) is 2 or 3, we obtain fg(P
′) ≤ fg(P ). Iterating this operation yields P

minimizing fg such that every vertex in BP has neighbors in three different blocks of P , and

g(BP ) = |BP |. Hence also v has no neighbor in BP .

We can now exclude |P | = 1. If |P | = 1, then |S ′| ≥ 2 implies TP = ∅. Since vertices of
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BP must have neighbors in three blocks, also BP = ∅. Hence δ(A1) = 0 and fg(P ) = 0.

To prove fg(P ) ≥ 0 when |P | > 1, we need lower bounds on δG′(Ai). We obtain these

using the λk-edge-connectedness of S in G0. Vertices of X are not in G′, but in G0 they

have exactly two neighbors in S ′. For x ∈ X and j ∈ {1, 2}, put x ∈ Xj when N(x)∩ V (G′)

intersects exactly j blocks in P ; thus X1 and X2 partition X. Add each vertex of X1 to

the block of P containing its neighbors, forming A′
1, . . . , A

′
|P | from A1, . . . , A|P |; we have

δG′(Ai) = δG0(A
′
i)−

∣∣[A′
i, X2∪{v}]

∣∣. Since S is λk-edge-connected in G0, its subset S
′ is also

λk-edge-connected in G0. Since |P | > 1, we thus have δG0(A
′
i) ≥ λk for 1 ≤ i ≤ |P |. Since

each vertex of X2 is adjacent to v and two vertices of S ′, and v has no neighbor in BP , in

G0 we have
∑|P |

i=1

∣∣[A′
i, X2 ∪ {v}]

∣∣ = dG0(v) + |X2|. These computations yield

∑
Ai∈P

δG′(Ai) =

|P |∑
i=1

(
δG0(A

′
i)−

∣∣[A′
i, X2 ∪ {v}]

∣∣)
≥ λk |P | − dG0(v)− |X2| = λk(|P | − 1)− |X2|. (3.5)

Also 3|BP | = δG′(BP ) ≤
∑

Ai∈P δG′(Ai), so g(BP ) ≤ 1
3

∑
Ai∈P δG′(Ai). Using (3.5),

∑
Ai∈P

δG′(Ai)− g(BP )− 2k(|P | − 1) ≥ 2

3
[(λ− 3)k(|P | − 1)− |X2|]. (3.6)

Now, to prove fg(P ) ≥ 0, using the definition in (3.4) and applying (3.6), it suffices to prove

(λ− 3)k(|P | − 1)− |X2| − 3g(TP ) ≥ 0. (3.7)

Our last preliminary computation bounds |X2|. Since X ⊆ S, vertices of X have no

incident multi-edges. Hence X ∩ N0 = ∅, and we explicitly discarded u1, . . . , uk to form

the sets comprising X. Hence E0 and the k edges from v to U do not reach X. Since
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dG0(v) = λk, we conclude

|X2| ≤ |X| ≤ (λ− 2)k. (3.8)

Let T ′
P = {s ∈ TP : g(s) > 0}; note that g(T ′

P ) = g(TP ). We complete the proof by

considering four cases in terms of |P | and |T ′
P |, showing in each that fg(P ) ≥ 0.

Case 1: |P | = 2 and |T ′
P | = 0. Since |P | < 3, we have BP = ∅. Using (3.5) and (3.8)

instead of (3.7) yields fg(P ) ≥ λk(|P | − 1)− (λ− 2)k− 2k(|P | − 1) = (λ− 2)k(|P | − 2) = 0.

Case 2: |T ′
P | ≤ |P | − 2. We may assume |P | ≥ 3. Let L denote the left side of (3.7).

Using g(s) = k − dM ′(s)− |E0 ∩ E(s)| for s ∈ T ′
P , we have

L ≥ (λ− 3)k(|P | − 2) + (λ− 2)k − |X2| − k − 3k |T ′
P |+ 3

∑
s∈T ′

P

dM ′(s)

If |P | ≥ 4 and |T ′
P | ≤ |P | − 2, then (3.8) and λ ≥ 6.5 yield L ≥ (λ − 6)k(|P | − 2) − k ≥ 0.

Hence we may assume |P | = 3. We obtain L ≥ (λ − 4)k ≥ 0 if |T ′
P | = 0, so we may also

assume |T ′
P | = 1. Now let s be the one vertex of T ′

P . The computation simplifies to

L ≥ −0.5k + (λ− 2)k − |X2|+ 3dM ′(s).

Now |X2| ≤ (λ− 2.5)k or dM ′(s) ≥ k/6 suffices. If both fail, then
∣∣[s, v]∣∣ ≤ dG0(v)− |X2| <

2.5k (since dG0(v) = λk) and
∣∣[s,X2]

∣∣ ≤ dM(s) ≤ 2dM ′(s) + 1 < k/3 + 1.

Now index the blocks of P so that s ∈ A1. Focusing on A1, we compute

fg(P ) =
∑
Ai∈P

δG′(Ai)− 4k − |BP | − 2g(s) ≥ 2
∣∣[A1, A2 ∪ A3]

∣∣+ 3|BP | − 4k − |BP | − 2k

= 2δG′(A1)− 6k = 2
(
δG0(A1)−

∣∣[s,X2 ∪ {v}]
∣∣)− 6k

> 13k − 2(k/3 + 1 + 2.5k)− 6k > 0.

Case 3: |T ′
P | = |P | − 1 ≥ 1. Each x ∈ X2 has neighbors in S in two blocks of P ; hence
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x has a neighbor in T ′
P . Thus

∑
s∈T ′

P
dM(s) ≥ |X2|. Also, g(T ′

P ) ≤ k |T ′
P | −

∑
s∈T ′

P
dM ′(s).

Starting again from L, the left side of (3.7), and using λk ≥ 6k + 1, we have

L ≥ (λ− 3)k(|P | − 1)− |X2| − 3k(|P | − 1) + 3
∑
s∈T ′

P

dM ′(s)

≥ (|P | − 1) +
∑
s∈T ′

P

dM ′(s) +
∑
s∈T ′

P

(dM(s)− 1)− |X2| ≥ 0.

Case 4: |T ′
P | = |P | ≥ 2. Here T ′

P = S ′, and each block of P contains just one vertex

of S ′, so X1 = ∅ and X = X2. Also, dM ′(T ′
P ) = dM ′(S ′) = dM ′(X) = |X|. Hence

g(T ′
P ) = k |P | − |X| −

∣∣[v, S ′] ∩ E0

∣∣.
We need to strengthen the lower bound on

∑
Ai∈P δG′(Ai) and upper bound on |BP |

used in (3.5). Let W = {w ∈ S : vw ∈ E0}. Note that
∣∣[v,W ]

∣∣ = |W |, since W ⊆ S. If

w ∈ W ∩Ai, then w is adjacent to the vertex of S ′ in Ai (by our initial reduction of P ) and

to a vertex of S ′ in another block Aj (by Lemma 3.4.5). Hence δG′(Ai) = δG′(Ai−W ). Since∣∣[S ′, X]
∣∣ = 2|X|, and X ⊆ N(v), and S ′ is λk-edge-connected in G0, we have

∑
Ai∈P

δG′(Ai) =
∑
Ai∈P

(
δG0(Ai −W )−

∣∣[Ai −W,X ∪ {v}]
∣∣)

≥ λk |P | − d(v)− |X|+ |W | = λk(|P | − 1)− |X|+ |W |.

Each vertex of BP supplies three of the edges leaving blocks of P , but not the edges leaving

blocks of P to or from vertices of W ; hence 3|BP | ≤
(∑

Ai∈P δG′(Ai)
)
− 2|W |. Now

fg(P ) =
∑
Ai∈P

δG′(Ai)− |BP | − 2k(|P | − 1)− 2g(T ′
P )

≥ 2

3
(λk(|P | − 1)− |X|) + 4

3
|W | − 2k(|P | − 1)− 2k |P |+ 2|X|+ 2

∣∣[v, S ′] ∩ E0

∣∣
=

(
2

3
λ− 4

)
k(|P | − 1) +

4

3
|W |+ 2

∣∣[v, S ′] ∩ E0

∣∣+ 4

3
|X| − 2k

≥ 1

3
k(|P | − 1) +

4

3
k − 2k.
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In the last step, we used |W | +
∣∣[v, S ′] ∩ E0

∣∣ = |E0| ≥ k, along with λ ≥ 6.5 and |X| ≥ 0.

The final expression is nonnegative when |P | ≥ 3.

This leaves the case |T ′
P | = |P | = 2. As in Case 2, BP = ∅, and we have

fg(P ) =
∑
Ai∈P

δG′(Ai)− 2k − 2g(T ′
P )

≥ λk − |X|+ |W | − 2k − 4k + 2|X|+ 2
∣∣[v, S ′] ∩ E0

∣∣ > 0.

3.5 S-connector packing

To prove Theorem 1.2.4, we prove a theorem for S-connectors analogous to Theorem 3.4.1.

Note that Theorem 3.5.1 immediately yields Theorem 1.2.4 in the way that Theorem 3.4.1

yields Theorem 1.2.3, by applying it to a graph obtained from the given graph by adding

one vertex. The difference from Theorem 3.4.1 is that, because we seek connectors instead

of trees in (3) and (4), the threshold we need in (2) is 2k instead of k. This leads to the later

computations needing λ ≥ 10 instead of λ ≥ 6.5.

Theorem 3.5.1. Fix k ∈ N and λk ∈ N such that λ ≥ 10. Consider S ⊆ V (G) and v ∈ S

such that S is λk-edge-connected in G and dG(v) = λk. If E0, . . . , Ek is a partition of E(v)

such that |E0| ≥ 2k, then there exist edge-disjoint subgraphs H0, . . . , Hk such that

(1) Ei ⊆ E(Hi);

(2) dH0(s) ≥ 2k for any s ∈ S;

(3) For i > 0, Hi is an S-connector; and

(4) For i > 0, deleting from the family of paths forming Hi the paths that use edges of Ei

leaves an (S − v)-connecting family.

The proof of Theorem 3.5.1 is similar to the proof of Theorem 3.4.1; we describe the

differences without repeating the full argument.
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As in Section 3.4, we consider a minimal counterexample G0. The arguments of Lem-

mas 3.4.3 and 3.4.5 show that the non-terminal vertices in G0 form an independent set in

which every vertex has degree 3, with three distinct neighbors in S. This time we do not

choose special vertices u1, . . . , uk. With S ′ = S − {v}, N ′
i = Ni − S ′, and X =

∪l
i=1N

′
i , we

let M be the maximal bipartite subgraph of G0 with partite sets X and S ′. The argument of

Lemma 3.4.7 yields the subgraphM ′ such that dM ′(x) = 1 for x ∈ X and dM ′(s) ≥ ⌊dM(s)/2⌋

for s ∈ S.

Again let G′ = G0 − v−X. This time we define a slightly different S ′-parity function on

G′: there is no set U , and for u ∈ S ′ we replace k with 2k in the definition.

g(u) =


0, u ∈ N0 − S ′;

1, u ∈ S −NG0(v);

max{2k − dM ′(u)− |E(u) ∩ E0| , 0}, u ∈ S ′.

(3.9)

We reduce the problem to showing that G′ has a (k, g)-family for S ′ and this g, by proving

as in Lemma 3.4.9 that E0, . . . , Ek extend in G0 as specified in Theorem 3.5.1 when G′ has

a (k, g)-family with g as in (3.9). This time the reduction is easier, since we have no chosen

vertices u1, . . . , uk to complicate the construction.

Lemma 3.5.2. If the graph G′ derived from G0 has a (k, g)-family for the S ′-parity function

g defined by (3.9), then E0, . . . , Ek extend in G0 as specified in Theorem 3.5.1.

Proof. Given a (k, g)-family in G′, let H ′
1, . . . , H

′
k be the S ′-connectors and P1, . . . , Pg(V (G′))

be the oriented paths. Constructing Hi by augmenting Ei yields (1) in Theorem 3.5.1.

Let H0 be the spanning subgraph of G with edge set E0 ∪ E(M ′) ∪
∪g(V (G))

j=1 E(Pj). For

1 ≤ i ≤ k, let Hi be the spanning subgraph of G with edge set Ei ∪E(H ′
i)∪Bi, where Bi is

the set of edges in E(M)− E(M ′) incident to N ′
i .

For (3), note for 1 ≤ i ≤ k that Ei ∪Bi is a nonempty set of paths that join v to vertices
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of S ′. We do not require H0 to be an S-connector.

For (4), when we delete the paths formed by Ei ∪ Bi, we return to H ′
i, which is an

S ′-connector in G′ and hence is an (S ′ − {v})-connector in G− v.

For (2), we check that H0 gains enough edges at each vertex of S ′. For s ∈ S ′, in H ′
0 there

are at least g(s) edges incident to s, provided explicitly by the paths in the (k, g)-family.

Adding E0 ∩ E(s) and the edges of M ′ yields dH0(s) ≥ g(s) + |E0 ∩ E(s)| + dM ′(s) ≥ 2k.

Also dH0(v) ≥ 2k, since |E0| ≥ 2k.

Finally, we prove the analogue of Lemma 3.4.10.

Lemma 3.5.3. Given G0, the derived graph G′ has a (k, g)-family for the S ′-parity function

g defined by (3.9).

Proof. By Theorem 3.1.2, it suffices to prove that the SPC holds for G′ and g. That is,

fg(P ) ≥ 0 for each S ′-partition of G′, where

fg(P ) =
∑
Ai∈P

δ(Ai)− 2k(|P | − 1)− g(BP )− 2g(TP ).

As in Lemma 3.4.10, we may assume that every vertex of S has degree 3 in G0, that

every vertex outside S ′ in a block of P has a neighbor in that block, that every vertex in BP

has neighbors in three different blocks of P , and that g(BP ) = |BP |. Similarly, vertices of

X have exactly two neighbors in S ′. Again let X2 be the subset of X whose vertices having

neighbors in distinct blocks of P . Arguing exactly as in Lemma 3.4.10 yields (3.5), (3.6),

(3.7), (3.8), except that now we use
∣∣[v,N0]

∣∣ = E0 ≥ 2k instead of
∣∣[v,N0 ∪ U ]

∣∣ ≥ 2k, since

there is no U and instead we increased the requirement on |E0| to 2k.

There remain only the computations in the Cases. Again let T ′
P = {s ∈ TP : g(s) > 0}.

The computations for |P | = 1 and Case 1 (|T ′
P | = |P | − 2 = 0) are unchanged.

Case 2: |T ′
P | ≤ |P | − 2 and |P | ≥ 3. Again let L be the left side of (3.7).Define an
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S-parity function by g(v) = 1 when v is a vertex of S having odd degree in G and otherwise

g(v) = 0. For P ∈ P(S), always BP ⊆ S, and hence g(BP ) = no(BP ). Also, g(TP ) = 0.

Hence the left side of the assumed equality is fg(P ), and we have assumed that the SPC

holds for this S-parity function. By Theorem 3.1.2, G has a (k, g)-family, and hence there

are k edge-disjoint S-connectors. Using (3.8) and λ ≥ 10 and g(T ′
P ) ≤ 2k|T ′

P |,

L/k ≥ (λ− 3)(|P | − 2)− 1− 6|T ′
P | ≥ −1 + (|P | − 2) + 6(|P | − 2− |T ′

P |) ≥ 0.

Case 3: |T ′
P | = |P |−1 ≥ 1. With g(T ′

P ) ≤ 2k |T ′
P |−

∑
s∈T ′

P
dM ′(s) and λk ≥ 10k ≥ 9k+1,

the computation becomes

L ≥ (λ− 3)k(|P | − 1)− |X2| − 6k(|P | − 1) + 3
∑
s∈T ′

P

dM ′(s)

≥ (|P | − 1) +
∑
s∈T ′

P

(dM ′(s)− 1) +
∑
s∈T ′

P

dM(s)− |X2| ≥ 0.

Case 4: |T ′
P | = |P | ≥ 2. As in Case 4 of Lemma 3.4.10, the computation starts with∑

Ai∈P δG′(Ai) ≥ λk(|P |−1)−|X|+ |W | and 3|BP | ≤
(∑

Ai∈P δG′(Ai)
)
−2|W |. It ends with

fg(P ) =
∑
Ai∈P

δG′(Ai)− |BP | − 2k(|P | − 1)− 2g(T ′
P )

≥ 2

3
(λk(|P | − 1)− |X|) + 4

3
|W | − 2k(|P | − 1)− 4k |P |+ 2|X|+ 2

∣∣[v, S ′] ∩ E0

∣∣
=

(
2

3
λ− 6

)
k(|P | − 1) +

4

3
|W |+ 2

∣∣[v, S ′] ∩ E0

∣∣+ 4

3
|X| − 4k

≥ 2

3
k(|P | − 1) +

8

3
k − 4k.

In the last step, we used |W | +
∣∣[v, S ′] ∩ E0

∣∣ ≥ |E0| ≥ 2k, along with λ ≥ 10 and |X| ≥ 0.

The final expression is nonnegative when |P | ≥ 3.
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This leaves the case |T ′
P | = |P | = 2. As in Case 2, BP = ∅, and λ ≥ 10 is enough to give

fg(P ) =
∑
Ai∈P

δG′(Ai)− 2k − 2g(T ′
P )

≥ λk − |X|+ |W | − 2k − 8k + 2|X|+ 2
∣∣[v, S ′] ∩ E0

∣∣ ≥ 0.
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Chapter 4

Extremal Problems for Decomposition
of Graphs

In this chapter, we consider decomposition of sparse graphs into k+1 subgraphs, where the

first k are forests and the last subgraph has bound degree. We will give results relevant to the

Nine Dragon Tree Conjecture and its weaker version which does not require the d-bounded

graph to be forest.

Conjecture 1.3.1 (NDT Conjecture). If Arb(G) ≤ k + d
k+d+1

, then G decomposes into k

forests plus one d-bounded forest.

Conjecture 1.3.2 (Weak NDT Conjecture). If Arb(G) ≤ k + d
k+d+1

, then G decomposes

into k forests plus one d-bounded subgraph.

Our model of “graph” in this chapter allows multi-edges but no loops.

Recall that the fractional arboricity Arb(G) is defined by Arb(G) = maxH⊆G
|E(H)|

|V (H)|−1
, and

the maximum average degree Mad(G) is defined by Mad(G) = maxH⊆G
2|E(H)|
|V (H)| To compute

Arb(G) or Mad(G), it suffices to perform the maximization only over induced subgraphs.

Letting G[A] denote the subgraph of G induced by a vertex set A, we write ∥A∥ for the

number of edges in G[A] (and |A| for the number of vertices). We restate the conditions as

integer inequalities and introduce an intermediate condition called (k, d)-sparseness. Since

k(k + d+ 1) + d = (k + 1)(k + d), we have the following comparison,:
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Condition Equivalent constraint (when imposed for all A ⊆ V (G))

Arb(G) ≤ k + d
k+d+1

(k + 1)(k + d) |A| − (k + d+ 1) ∥A∥ − (k + 1)(k + d) ≥ 0

Mad(G) < 2k + 2d
k+d+1

(k + 1)(k + d) |A| − (k + d+ 1) ∥A∥ − 1 ≥ 0

(k, d)-sparseness (k + 1)(k + d) |A| − (k + d+ 1) ∥A∥ − k2 ≥ 0

Since (k + 1)(k + d) > k2 ≥ 1, the condition on Arb(G) implies (k, d)-sparseness, which

in turn implies the condition on Mad(G). By showing that (k, d)-sparseness suffices, Theo-

rem 1.3.3 thus implies that Arb(G) ≤ k+ d
k+d+1

suffices for G to be (k, d)-decomposable, but

Mad(G) < 2k + 2d
k+d+1

might not. However, since k2 = 1 when k = 1, the (1, d)-sparseness

condition is the same as the desired condition Mad(G) < 4− 4
d+2

for the problem in [30].

In Section 4.1, we give the proof of Theorem 1.3.3, which implies the case d > k of the

Weak NDT Conjecture.

Theorem 1.3.3. For d > k, every (k, d)-sparse graph is (k, d)-decomposable. Furthermore,

the condition is sharp.

In Section 4.2, we give the proof of Theorem 1.3.4, which implies the case d = k + 1 of

the NDT Conjecture.

Theorem 1.3.4. For d ≤ k + 1, if Arb(G) ≤ k + d
2k+2

, then G is (k, d)∗-decomposable.

In Sections 4.3–4.5, we prove the NDT Conjecture for (k, d) = (1, d) with d ≤ 6, in a

form that requires only (k, d)-sparseness as long as small graphs violating Arb(G) ≤ k+1 are

forbidden. Meanwhile, the stronger version of the NDT Conjecture asserts that Arb(G) ≤

k + d
k+d+1

guarantees a (k, d)∗-decomposition in which every component of the d-bounded

forest has at most d edges. We prove this for (k, d) = (1, 2) in Section 4.6 (the result of [31]

implies it for (k, d) = (1, 1)). The results of Sections 4.3–4.6 use reducible configurations

and discharging.
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4.1 (k, d)-decomposition for d > k

We begin with a general example showing that Theorem 1.3.3 is sharp. This example also mo-

tivates the constant in the condition for (k, d)-sharpness. In studying (k, d)-decomposability

of a graph G, define β(A) = (k + 1)(k + d) |A| − (k + 1 + d) ∥A∥ − k2 for A ⊆ V (G). The

(k, d)-sparseness condition is that β(A) ≥ 0 for all nonempty A.

Example 4.1.1. We construct a bipartite graph G with partite sets X and Y of sizes s

and t, respectively. Let s = t(k + d) − k + 1, so |V (G)| = t(k + d + 1) − k + 1. With

X = {x1, . . . , xs} and Y = {y1, . . . , yt}, make xi adjacent to yi, . . . , yi+k, where indices are

taken modulo t. Every vertex in X has degree k + 1, so |E(G)| = (k + 1)(k + d)t− k2 + 1.

A d-bounded subgraph of G has at most dt edges. Deleting a d-bounded subgraph

thus leaves at least k(k + d)t + kt − k2 + 1 edges. However, k forests in G cover at most

k[t(k + d+ 1)− k] edges. Hence G is not (k, d)-decomposable.

On the other hand, G just barely fails to be (k, d)-sparse. If |A| = 1, then β(A) =

kd+ k + d. Now choose A to minimize β(A) among subsets of V (G) with size at least 2. If

some vertex v ∈ A has at most k neighbors in A, then β(A − v) ≤ β(A)− d, contradicting

the choice of A. Therefore, all k + 1 neighbors of each vertex in A ∩ X are also in A. Let

s′ = |A ∩X| and t′ = |A ∩ Y |. Now

β(A) = (k + 1)(k + d)(s′ + t′)− (k + d+ 1)(k + 1)s′ − k2

= (k + 1)(k + d)t′ − s′(k + 1)− k2 = (k + 1)[(k + d)t′ − s′ − k + 1]− 1.

We conclude that β(A) ≥ 0 if and only if s′ ≤ (k+d)t′−k. When t′ = t, this yields β(A) < 0

if and only if A = V (G).

If t′ < t, then each vertex of Y − A forbids all its neighbors from A. For fixed t′, we

maximize s′ and minimize β(A) for such A by letting Y ∩ A = {y1, . . . , yt′} (this makes the
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forbidden subsets of X overlap as much as possible). Writing i = qt + r with q ≥ 0 and

1 ≤ r ≤ t, this allows xi ∈ A only when 1 ≤ r ≤ t′ − k. With s = t(k + d)− k + 1, we have

s′ ≤ (k + d)(t′ − k) < (k + d)t′ − k.

We conclude that β(A) ≥ 0 except when A = V (G). The choice of the constant k2 in

the definition of β has enabled us to construct a graph that fails to be (k, d)-decomposable

with the slightest possible failure of (k, d)-sparseness.

We prove Theorem 1.3.3 in a seemingly more general form to facilitate the inductive

proof, but we will show at the end of this section that the more general form is equivalent to

Theorem 1.3.3. Prior results in this area have been proved by the discharging method, which

uses properties of a minimal counterexample G to contradict the hypothesized sparseness.

Replacing the constant bound d on vertex degrees by an individual bound for each vertex

permits a simple inductive proof without using discharging.

Definition 4.1.2. Fix positive integers d and k. A capacity function on a graph G is a

function f : V (G) → {0, . . . , d}. A (k, f)-decomposition of G decomposes it into k forests

and a graph D such that each vertex v has degree at most f(v) in D. For each vertex set A

in G, let

βf (A) = (k + 1)
∑
v∈A

(k + f(v))− (k + d+ 1) ∥A∥ − k2.

A capacity function f on G is feasible if βf (A) ≥ 0 for all nonempty A ⊆ V (G).

The idea is to reserve an edge uv for use in D by deleting it and reducing the capacity

of its endpoints (when both have positive capacity). If the reduced function f ′ is feasible on

G−uv, then the induction hypothesis will complete a (k, f)-decomposition. We will use this

idea to reduce to the case where the vertices with positive capacity form an independent set.

To prove feasibility for f ′, we must show βf ′(A) ≥ 0 for A ̸= ∅. The endpoints of the

deleted edge may be both outside A (no problem), both in A (still easy), or just one in A.

The latter case is problematic when βf (A) ≤ k, since βf ′(A) = βf (A) − (k + 1). In this
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situation we will assemble a (k, f)-decomposition inductively by combining a decomposition

of G[A] with a decomposition of the subgraph obtained by contracting A to one vertex. We

begin with the definitions and lemmas needed to do that.

Definition 4.1.3. For B ⊆ V (G), let GB denote the graph obtained by contracting B into

a new vertex z. The degree of z in GB is the number of edges joining B to V (G)−B in G;

edges of G with both endpoints in B disappear.

Lemma 4.1.4. If f is a feasible capacity function on G, and B is a proper subset of V (G)

such that |B| ≥ 2 and βf (B) ≤ k, then f ∗ is a feasible capacity function on GB, where

f ∗(z) = 0 and f ∗ agrees with f on V (G)−B.

Proof. For A ⊆ V (GB), we have βf∗(A) = βf (A) ≥ 0 if z /∈ A. When z ∈ A, we compute

βf∗(A) by comparison with βf (A
′), where A′ = (A− {z}) ∪B. Every edge in G[A′] appears

in GB[A] or G[B]; hence the edges contribute the same to both sides of the equation below.

Comparing the terms for constants and the terms for vertices (using f ∗(z) = 0) yields

βf (A
′) = βf∗(A)− (k + 1)k + βf (B) + k2.

If βf (B) ≤ k, then βf∗(A) ≥ βf (A
′) ≥ 0.

Lemma 4.1.5. Let f be a capacity function on a graph G, and let B be a proper subset of

V (G). If G[B] is (k, f|B)-decomposable and GB is (k, f ∗)-decomposable, where f ∗ is defined

from f as in Lemma 4.1.4, then G is (k, f)-decomposable.

Proof. Let (F,D) be a (k, f|B)-decomposition of G[B], where F is the union of k forests. Let

(F ′, D′) be a (k, f ∗)-decomposition of GB, where F ′ is the union of k forests. Each edge of

G is in G[B] or GB, becoming incident to z in GB if it joins B to V (G) − B in G. View

(F ∪ F ′, D ∪ D′) as a decomposition of G by viewing the edges incident to z in F ′ as the

corresponding edges in G.

63



The resulting decomposition is a (k, f)-decomposition of G. Since f ∗(z) = 0, vertex z

has degree 0 in D′, and all edges joining B to V (G) − B lie in F ′. Hence the restrictions

from f are satisfied by D ∪D′. For each forest Fi among the k forests in F , its union with

the corresponding forest F ′
i in F ′ is still a forest, since otherwise contracting the portion in

Fi of a resulting cycle would yield a cycle through z in F ′
i when viewed as a forest in G′.

Theorem 4.1.6. If d > k and G is a graph with a feasible capacity function f , then G is

(k, f)-decomposable.

Proof. We use induction on the number of vertices plus the number of edges; the statement

is trivial when there are at most k edges. For the induction step, suppose that G is larger.

If βf (B) ≤ k for some proper subset B of V (G) with |B| ≥ 2, then the capacity function

f ∗ on GB that agrees with f except for f ∗(z) = 0 is feasible, by Lemma 4.1.4. Since G[B]

is an induced subgraph of G, the restriction of f to B is feasible on G[B]. Since GB and

G[B] are smaller than G, by the induction hypothesis GB is (k, f|B)-decomposable and GB

is (k, f ∗)-decomposable. By Lemma 4.1.5, G is (kF ,Df )-decomposable.

Hence we may assume that βf (B) ≥ k+1 for all such B. Let S = {v ∈ V (G) : f(v) > 0}.

If S has adjacent vertices u and v, then let f ′ be the capacity function on G−uv that agrees

with f except for f ′(u) = f(u)− 1 and f ′(v) = f(v)− 1. If f ′ is feasible, then since G− uv

is smaller than G, it has a (k, f ′)-decomposition, and we add uv to the degree-bounded

subgraph to obtain a (k, f)-decomposition of G.

To show that f ′ is feasible, consider A ⊆ V (G′) = V (G). If u, v /∈ A, then βf ′(A) = βf (A).

If u, v ∈ A, then the reduction in f and loss of one edge yield βf ′(A) = βf (A)− 2(k + 1) +

(k + d + 1) ≥ βf (A), where the last inequality uses d > k. If exactly one of {u, v} is in A,

then A is a proper subset of V (G). If |A| ≥ 2, then βf ′(A) = βf (A)− (k+1) ≥ 0. If |A| = 1,

then βf ′(A) ≥ k, since G′ has no loops.

Hence we may assume that S is independent. In this case, we show that G decomposes

into k forests, yielding a (k, f)-decomposition of G in which the last graph has no edges. If
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Υ(G) > k, then V (G) has a minimal subset A such that ∥A∥ ≥ k(|A| − 1) + 1 (note that

|A| ≥ 2). By this minimality, every vertex of A has at least k + 1 neighbors in A. Let

A′ = S ∩ A. Since S is independent, ∥A∥ ≥ (k + 1) |A′|. Taking k + 1 times the first lower

bound on ∥A∥ plus d times the second yields

(k + 1 + d) ∥A∥ ≥ (k + 1)k(|A| − 1) + (k + 1) + d(k + 1) |A′| .

Now we compute

βf (A) = (k + 1)k |A|+ (k + 1)
∑
v∈A′

f(v)− (k + d+ 1) ∥A∥ − k2

≤ (k + 1)k |A|+ (k + 1)d |A′| − (k + 1)k(|A| − 1)− (k + 1)− d(k + 1) |A′| − k2

= (k + 1)k − (k + 1)− k2 = − 1.

This contradicts the feasibility of f , and hence the desired decomposition of G exists.

The generality of the capacity function facilitates the inductive proof, and the desired

statement about (k, d)-decomposition is a special case, but in fact the special case with

capacity d for all v implies the general statement, making Theorem 4.1.6 and Theorem 1.3.3

equivalent. The equivalence uses the notion of “ghost” that will be helpful in Sections 4.3.

Definition 4.1.7. When considering (k, d)-decomposition, a ghost is a vertex of degree k+1

having only one neighbor (via all k + 1 incident edges). A neighbor of v that is a ghost is a

ghost neighbor of v.

Proposition 4.1.8. Theorem 1.3.3 implies Theorem 4.1.6.

Proof. Assume Theorem 1.3.3 and consider a feasible capacity function f on G. Form G′ by

giving d− f(v) ghost neighbors to each vertex v.
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We claim that G′ is (k, d)-sharp. Adding a ghost neighbor of a vertex in a set adds 1 to

the size of the set and k + 1 to the number of edges induced. Hence it changes the value of

β by (k+1)(k+ d)− (k+ d+1)(k+1), which equals −(k+1). It therefore suffices to prove

that β(A′) ≥ 0 for subsets A′ of V (G′) that contain all the ghost neighbors of their vertices.

Let A = A′ ∩ V (G). Counting the increase in capacity from f(v) to d and the cost of the

ghost neighbors, we have

β(A′) = βf (A) + (k + 1)
∑
v∈A

(d− f(v))−
∑
v∈A

(k + 1)(d− f(v)) = βf (A) ≥ 0,

where the last inequality holds because f is feasible. By Theorem 1.3.3, G′ has a (k, d)-

decomposition. Deleting the ghost vertices yields a (k, f)-decomposition of G.

In essence, we have shown that ghosts have the same effect as reduced capacity on the

existence of decompositions.

4.2 (k, d)∗-decomposition for d ≤ k + 1

The capacity function f in Section 4.1 does the job of controlling vertex degrees to facilitate

inductive construction of a (k, d)-decomposition. However, it cannot control the creation of

cycles when we return a deleted edge to a decomposition satisfying reduced capacity. To do

this, we impose another condition on the decomposition.

Definition 4.2.1. A strong (k, f)∗-decomposition is a (k, f)∗-decomposition in which each

component of the degree-bounded forest contains at most one vertex v such that f(v) < d.

The strong decomposition condition will control the introduction of cycles. We will apply

the induction hypothesis to G−uv with reduced capacity function f ′ only when at least one

endpoint of uv has capacity d. In G− uv, both endpoints have capacity less than d and will

be the only such vertex in their components in D, so they will be in different components.
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We can thus add uv to D; since one endpoint returns to capacity d, the strong condition

continues to hold. This inductive approach will allow us to assume that no edge joins a

vertex with capacity d to a vertex with positive capacity. For such graphs, the hypotheses

will yield a decomposition into k forests, as in the final step of Theorem 1.3.3.

We will also need to strengthen the sparseness condition; feasibility of f is not sufficient.

For example, if G consists of two vertices and an edge of multiplicity k + 2, and f(u) =

f(v) = d, then β(A) ≥ 0 for all A, but G does not decompose into k + 1 forests. We will

need another auxiliary function that excludes such examples. Also, in order to impose a

stronger sparseness condition, we introduce a modified version of βf .

Definition 4.2.2. Given a capacity function f on V (G) using capacities at most d, let S =

{v ∈ V (G) : f(v) = d}. For A ⊆ V (G), let f(A) =
∑

v∈A f(v) and f̂(A) = min{f(x) : x ∈

A}. Define αf and β∗
f on subsets of G as follows:

αf (A) = k |A| − k − ∥A∥+ |A ∩ S| ,

β∗
f (A) = (2k + 2− d)k |A|+ (k + 1)[f(A)− 2 ∥A∥]− (k − 1)(2k + 2− d).

Say that f is strongly feasible when β∗
f (A) > 0 and αf (A) ≥ 0 for all nonempty A ⊆ V (G),

with αf (A) > 0 whenever A ⊆ S.

With these definitions, we can state the main result of this section.

Theorem 4.2.3. If d ≤ k + 1 and f is a strongly feasible capacity function on a graph G,

then G has a strong (k, f)∗-decomposition.

Once again the sparseness condition is motivated by and weaker than the desired frac-

tional arboricity condition. The condition Arb(G) ≤ k + d
2k+2

is equivalent to

(2k + 2− d)k |A|+ (k + 1)[d |A| − 2 ∥A∥]− k(2k + 2)− d ≥ 0 for A ⊆ V (G).
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When f(v) = d for all v, this is the same as β∗
f (A) ≥ 0, except that we are subtracting

k(2k + 2) + d instead of (k − 1)(2k + 2− d).

Corollary 4.2.4. Arb(G) ≤ k + d
2k+2

guarantees (k, d)∗-decomposability. In particular, the

NDT Conjecture holds when d = k + 1.

Proof. Since the constant subtracted in the inequality for Arb(G) is larger, Arb(G) ≤ k +

d
2k+2

implies β∗
f (A) > 0 for all A when f(v) = d for all v. With this capacity function,

|A ∩ S| = |A| for all A ⊆ V (G), and the condition αf (A) ≥ 1 (since A ⊆ S) becomes

∥A∥ ≤ (k + 1)(|A| − 1), true for all A when Arb(G) < k + 1. Hence Theorem 4.2.3 applies.

When d = k + 1, we have d+ k + 1 = 2k + 2, and Arb(G) ≤ k + d
k+d+1

is sufficient.

The condition on αf is necessary for a strong (k, f)∗-decomposition. Nonnegativity of

αf (A) states that A has at most |A ∩ S| edges plus the number that k forests can absorb.

Each vertex of A in S permits one more edge in a degree-bounded forest D, by allowing an

edge joining two components. If A ⊆ S, then we reach the allowable spanning tree in G[A]

before the last vertex, so the the requirement must increase to α(A) ≥ 1 when A ⊆ S.

We prove a useful bound on β∗
f in terms of αf .

Lemma 4.2.5. For a capacity function f on a graph G and a set A ⊆ V (G) with |A| ≥ 2,

β∗
f (A) ≤ (k + 1)[2αf (A) + f̂(A)− |A ∩ S|+ 1].

In particular, if αf (A) ≤ 0 and β∗
f (A) > 0 with A ̸⊆ S, then f(x) ≥ |A ∩ S| for all x ∈ A.

Proof. Substituting ∥A∥ = k |A| − k − αf (A) + |A ∩ S| into the formula for β∗
f (A) yields

β∗
f (A) = −dk |A|+ (k + 1)[2αf (A) + f(A)− 2 |A ∩ S|] + (2k + 2) + d(k − 1).
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Summing capacities over x ∈ A yields f(A) ≤ (d − 1) |A| + |A ∩ S| + f̂(A) − (d − 1) (the

inequality is strict when A ⊆ S). Substituting this into the formula above yields

β∗
f (A) ≤ −dk |A|+ (k + 1)(d− 1) |A|+ (k + 1)[2αf (A) + f̂(A)− |A ∩ S|] + 3k + 3− 2d

= (k + 1)[2αf (A) + f̂(A)− |A ∩ S|] + (d− k − 1) |A|+ 3k + 3− 2d

≤ (k + 1)[2αf (A) + f̂(A)− |A ∩ S|] + k + 1,

where the last inequality uses |A| ≥ 2.

We need an analogue of Lemma 4.1.4, with GB as defined there.

Lemma 4.2.6. For d ≤ k+1, let f be a strongly feasible capacity function on G, and let B

be a proper subset of V (G) with |B| ≥ 2. Define f ∗ and f̄ on GB by f ∗(z) = f̂(B)− |B ∩ S|

and f̄(z) = 0, letting both functions agree with f on V (G) − B. If αf (B) = 0, then f ∗ is

strongly feasible. If β∗
f (B) ≤ k + 1, then f̄ is strongly feasible.

Proof. First consider the case αf (B) = 0. As observed in Lemma 4.2.5, f̂(B) ≥ |B ∩ S|

when αf (B) = 0. Hence f ∗(z) ≥ 0, so f ∗ is a capacity function. Since f is strongly feasible

and αf (B) = 0, we have β∗
f (B) > 0 and B ̸⊆ S. Since f̂(B) = d only if B ⊆ S, we must

have f ∗(z) < d, so the set S is the same for f ∗ and f .

If z /∈ A ⊆ V (GB), then β∗
f∗(A) = β∗

f (A) and αf∗(A) = αf (A). When z ∈ A, we compute

αf∗(A) and β∗
f∗(A) from αf (A

′) and β∗
f (A

′), where A′ = (A− {z}) ∪B. As in Lemma 4.1.4,

|A′| = |A| − 1 + |B| and ∥A′∥ = ∥A∥+ ∥B∥, where ∥A∥ counts edges in GB. Hence

αf (A
′) = αf∗(A) + αf (B);

β∗
f (A

′) = β∗
f∗(A) + β∗

f (B)− (k + 1)f ∗(z)− (2k + 2− d).

Since αf (B) = 0, we obtain αf∗(A) = αf (A
′) ≥ 0, as desired since f ∗(z) < d. By

69



Lemma 4.2.5, αf (B) = 0 implies β∗
f (B) ≤ (k+1)[f̂(B)−|B ∩ S|+1] = (k+1)f ∗(z)+(k+1).

Now β∗
f∗(A) ≥ β∗

f (A
′) + k + 1− d ≥ β∗

f (A
′) > 0.

For f̄ , again it suffices to check A with z ∈ A ⊆ V (GB) and let A′ = (A−{z})∪B. Now

β∗
f (A

′) = β∗
f̄ (A) + β∗

f (B)− (2k + 2− d) ≤ β∗
f̄ (A),

where we have used β∗
f (B) ≤ k + 1, f̄(z) = 0, and k + 1− d ≥ 0. We also need αf̄ (A) ≥ 0.

With β∗
f̄
(A) ≥ β∗

f (A
′) > 0 and f̄(z) = 0, this follows from Lemma 4.2.5.

Lemma 4.2.7. Let f be a capacity function on G, and let B be a proper subset of V (G) with

|B| ≥ 2. If G[B] is strongly (k, f|B)
∗-decomposable and GB is strongly (k, f ∗)∗-decomposable,

with f ∗ defined from f as in Lemma 4.2.6, then G is strongly (k, f)∗-decomposable.

Proof. Let (F,D) be a strong (k, f|B)
∗-decomposition of G[B], and let (F ′, D′) be a strong

(k, f ∗)∗-decomposition of GB, where F and F ′ are unions of k forests. Each edge of G is in

G[B] or GB, becoming incident to z in GB if it joins B to V (G)− B in G. Viewing F ′ and

D′ as subgraphs of G, we show that (F ∪F ′, D ∪D′) is a strong (k, f)∗-decomposition of G.

As in Lemma 4.1.5, the union of any forest Fi in F with the corresponding forest F ′
i in

F ′ is still a forest, since otherwise contracting the portion in Fi of a resulting cycle would

yield a cycle through z in F ′
i when viewed as a forest in G′. This argument applies also to

D ∪D′.

Recall that S = {v ∈ V (G) : f(v) = d}. If f̂(B) = d, then B ⊆ S; we conclude that

f ∗(z) < d. Since (F ′, D′) is a strong (k, f ∗)∗-decomposition, f ∗(z) < d implies that vertices

other than z in its component in D′ lie in S. Therefore, each component of D ∪D′ in G has

at most one vertex outside S.

Since D ⊆ G[B] and each component of D has at most one vertex outside S, each vertex

v of B has at most |B ∩ S| neighbors in D. By the definition of f ∗(z), vertex v gains at

most f̂(B)− |B ∩ S| neighbors in D′; together it has at most f(v) neighbors in D ∪D′.
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Proof of Theorem 4.2.3: If d ≤ k+ 1 and f is a strongly feasible capacity function on a

graph G, then G has a strong (k, f)∗-decomposition.

Proof. We use induction on the number of vertices plus the number of edges; the statement

is trivial when there are at most k edges. For the induction step, suppose that G is larger.

Recall that S = {v ∈ V (G) : f(v) = d}. Let R = {v ∈ V (G) : f(v) = 0}, and let T =

V (G)−S−R. We prove the structural claim that if G has no strong (k, f)∗-decomposition,

then S is independent and no edge joins S and T .

Suppose that G has an edge uv such that u ∈ S and v ∈ S ∪ T . We choose such an edge

with v ∈ T if one exists; otherwise, v ∈ S. Let G′ = G − uv, and let f ′ be the capacity

function on G′ that agrees with f except for f ′(u) = f(u) − 1 and f ′(v) = f(v) − 1. Note

that u /∈ {x : f ′(x) = d}. If f ′ is strongly feasible, then since G − uv is smaller than G, it

has a strong (k, f ′)∗-decomposition (F,D). Since f ′(u) < d and f(u) = d, adding the edge

uv to D yields a strong (k, f)∗-decomposition of G.

To prove the structural claim, it thus suffices to show that f ′ is strongly feasible. We

consider αf ′(A) and β∗
f ′(A). If |A| = 1, then αf ′(A) = |A ∩ S| (positive if A ⊆ S). Also,

β∗
f ′(A) = (2k + 2− d) + (k + 1)f(A) ≥ 2k + 2− d > 0, since d ≤ k + 1.

Next consider A = V (G). Since u, v ∈ A, we have β∗
f ′(A) = β∗

f (A) > 0. Also, αf ′(A) <

αf (A) requires u, v ∈ S. Not all vertices satisfy f ′(x) = d, since f ′(u) < d. Therefore, having

αf (A) ≥ 1 and αf ′(A) ≥ 0 suffices, so we may assume that αf (A) = 0. With A = V (G) and

u, v ∈ S, the choice of uv in defining f ′ implies that no edges join S and T . Since αf (A) = 0

implies A ̸⊆ S, we have R ∪ T ̸= ∅. If R ̸= ∅, then f̂(A) = 0, contradicting Lemma 4.2.5.

Hence R = ∅. Since no edges join S and T , now G is disconnected, and we can combine

strong decompositions of the components obtained from the induction hypothesis.

Finally, suppose 2 ≤ |A| < |V (G)|. If αf (A) = 0, then the capacity function f ∗ on GA

that agrees with f except for f ∗(z) = f̂(A) − |A ∩ S| is strongly feasible, by Lemma 4.2.6.

Also, the restriction of f to A is strongly feasible on G[A]. Since GA and G[A] are smaller
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than G, by the induction hypothesis G[A] is strongly (k, f|A)
∗-decomposable and GA is

strongly (k, f ∗)∗-decomposable. By Lemma 4.2.7, G is strongly (k, f)∗-decomposable.

Hence we may assume that αf (A) > 0. For αf ′(A) < αf (A), we must have u or v in

A ∩ S, and the decline can only be by 1. Hence αf ′(A) ≥ 0, which is good enough since

f ′(u), f ′(v) < d. If β∗
f ′(A) > 0, then A causes no problem.

Otherwise, β∗
f (A) ≤ k + 1, since reduction of β∗ requires |A ∩ {u, v}| = 1, and the

reduction is then by k + 1. Now Lemma 4.2.6 implies that f̄ is strongly feasible on GA,

where f̄(z) = 0 and otherwise f̄ agrees with f . By the induction hypothesis, GA has a

strong (k, f̄)∗-decomposition (F,D), and G[A] has a strong (k, f|A)
∗-decomposition (F ′, D′).

As in Lemma 4.2.7, (F ∪F ′, D∪D′) is a strong (k, f)∗-decomposition of G; since z is isolated

in D, the components of D′ do not extend.

Hence we may assume that S is independent and that no edge joins S and T . As in

Theorem 4.1.6, we claim that G decomposes into k forests, completing the desired decom-

position. Otherwise, we find a set A such that β∗
f (A) ≤ 0, contradicting strong feasibility.

Note that β∗
f (A) = (2k + 2 − d)g(A) + h(A), where g(A) = k(|A| − 1) − ∥A∥ + 1 and

h(A) = (k + 1)f(A)− d ∥A∥. It suffices to find A such that g(A) ≤ 0 and h(A) ≤ 0.

If Υ(G) > k, then V (G) has a minimal subset A such that ∥A∥ ≥ k(|A| − 1) + 1; that is,

g(A) ≤ 0. Minimality implies that every vertex of A has at least k + 1 neighbors in A.

If A∩T = ∅, then ∥A∥ ≥ (k+1) |A ∩ S| = (k+1)f(A)/d, which simplifies to h(A) ≤ 0.

If A ⊆ T , then |A ∩ S| = 0, so αf (A) = g(A)− 1 < 0, contradicting strong feasibility of f .

Hence we may assume that A ∩ T is a nonempty proper subset of A. The minimality of

A implies that ∥A− T∥ ≤ k(|A− T | − 1), and hence more than k |A ∩ T | edges of G[A] are

incident to T . From the independence of S and the absence of edges joining S and T , we

now have ∥A∥ > (k + 1) |A ∩ S|+ k |A ∩ T |. Since f(v) = d for v ∈ S and f(v) ≤ d− 1 for
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v ∈ T , this yields ∥A∥ ≥ (k + 1)f(A∩S)
d

+ k f(A∩T )
d−1

. Multiplying by d, we obtain

d ∥A∥ ≥ (k + 1)f(A ∩ S) + kf(A ∩ T )
d

d− 1
≥ (k + 1)f(A),

using d/(d − 1) ≥ (k + 1)/k and f(R) = 0. Thus h(A) ≤ 0, which as we noted suffices to

complete the proof.

4.3 Approach to (k, d)∗-decomposition

For our remaining stronger conclusions in which the “leftover” subgraph D must also be a

forest, the highly local approach of Section 4.1 that reserves one edge for D by reducing the

degree capacity of its endpoints is not adequate. When d > k+1, it becomes harder to avoid

creating a cycle when replacing a reserved edge.

We use the inductive approach of obtaining reducible configurations (structures that are

forbidden from minimal counterexamples) and then the discharging method, showing that the

average degree in any graph avoiding the reducible configurations is too high. This method

can also be used to prove Theorem 1.3.3, but such a proof would be lengthier than that in the

previous section. On the other hand, it may settle the case k = d for (k, d)-decomposition.

For this discussion, we modify β by removing the term independent of A, and we drop

the notation for the capacity function because each vertex will have capacity d.

Definition 4.3.1. Letmk,d = 2k+ 2d
k+d+1

. For a set A of vertices in a graph G, the sparseness

βG(A) is defined by βG(A) = (k + 1)(k + d) |A| − (k + d+ 1) ∥A∥.

The term “sparseness” here is natural, because if βG(A) is sufficiently large for all A,

then G is sufficiently sparse to satisfy the relevant bound on Mad(G) or Arb(G). Sparseness

also distinguishes between the conditions on Mad(G) and Arb(G). As mentioned previously,

Arb(G) ≤ mk,d/2 may fail when Mad(G) < mk,d holds. The former requires a set A such
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that βG(A) < (k + 1)(k + d), while the latter requires only that βG(A) ≥ 1 for all A.

Example 4.3.2. Let H be the (multi)graph consisting of q+1 vertices in which one vertex

has degree (k+1)q and the others have degree k+1 and form an independent set. We have

Arb(H) = k + 1, but Mad(H) = 2q(k + 1)/(q + 1). If d < q < k + d, then Mad(H) < mk,d,

but H has no (k, d)∗-decomposition.

This graph H can be excluded by requiring (k, d)-sparseness (note that d < q < k + d

requires k ≥ 2, which is where (k, d)-sparse and Mad(G) < mk,d differ). For H, we have

(k+1)(k+d) |V (H)|−(k+d+1) ∥V (H)∥ = (k+1)(k+d−q), which violates (k, d)-sparseness

if and only if q > d. Furthermore, q > d if and only if H has no (k, d)-decomposition.

Even βG(A) ≥ k2 ((k, d)-sparseness) allows Υ(G) ≤ k + 1 to fail, but only on a small

subgraph. Violating Υ(G) ≤ k+1 requires an r-vertex subgraph with at least (k+1)(r−1)+1

edges. If such a graph is also (k, d)-sparse, then

(k + 1)(k + d)r − (k + d+ 1)[(k + 1)(r − 1) + 1] ≥ k2,

which simplifies to r ≤ k
k+1

(d+ 1).

In the cases where we can guarantee a (k, d)∗-decomposition, we obtain a stronger state-

ment than the case (k, d) of the NDT Conjecture by weakening the hypothesis to require

only (k, d)-sparseness, while excluding multigraphs with at most (d + 1)k/(k + 1) vertices

that satisfy this bound but fail to decompose into k + 1 forests.

Definition 4.3.3. Fix k, d ∈ N. A graph G is feasible if βG(A) ≥ k2 for all nonempty

A ⊆ V (G). A set A ⊆ V (G) is overfull if ∥A∥ > (k + 1)(|A| − 1).

Now that we are fixing (k, d), “feasible” is a convenient abbreviation for “(k, d)-sparse”.

Theorem 1.3.3 showed that feasible graphs are (k, d)-decomposable (when d > k), and by

Example 4.1.1 this condition on βG is sharp. Graphs with overfull sets are not (k, d)∗-

decomposable. We have noted that the bound Arb(G) ≤ mk,d/2 both implies feasibility
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and prohibits overfull sets. Furthermore, feasibility prohibits overfull sets with more than

(d+ 1)k/(k + 1) vertices. Hence the conjecture below is equivalent to the NDT Conjecture.

Conjecture 4.3.4. Fix k, d ∈ N. If G is feasible and has no overfull set with at most

(d+ 1)k/(k + 1) vertices, then G is (k, d)∗-decomposable.

We will prove Conjecture 4.3.4 when k = 1 and d ≤ 6. The advantage we gain when

k = 1 is that k2 = 1, so the feasibility condition reduces to βG(A) > 0 for all A. We can

then bring a variety of techniques to bear, including properties of submodular functions.

The basic framework of the proof holds for general k, so we maintain the general language

throughout this section before specializing to k = 1. We do this to suggest the generalization

to larger k and because the proofs of these lemmas are as short for general k as for k = 1.

We typically use (F,D) to denote a (k, d)∗-decomposition ofG, where F is a disjoint union

of k forests and D is a forest with maximum degree at most d. Note that the hypotheses of

Conjecture 4.3.4 remain satisfied under discarding edges or vertices.

Definition 4.3.5. A j-vertex is a vertex of degree j. Among the non-(F ,Fd)-decomposable

graphs satisfying the hypotheses of Conjecture 4.3.4, a minimal counterexample is one that

has the fewest ghosts among those with the fewest non-ghosts.

Ghosts help control (k, d)∗-decompositions, because such a decomposition must put one

edge at a ghost into D. Without loss of generality, the other k edges at the ghost may be

placed arbitrarily into the forests in F .

Lemma 4.3.6. A minimal counterexample G is (k+1)-edge-connected (and hence has min-

imum degree at least k + 1).

Proof. If G has an edge cut Q with size at most k, then (k, d)∗-decompositions of the com-

ponents of G−Q combine to form an (k, d)∗-decomposition of G by allowing each forest to

acquire at most one edge of the cut.
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Corollary 4.3.7. In a minimal counterexample G, a vertex with degree at most 2k+1 cannot

be a neighbor of a ghost.

Proof. If such a vertex v is also a ghost, then G has two vertices and is (k, d)∗-decomposable.

Otherwise, the edges incident to v and not incident to the neighboring ghost form an edge

cut of size at most k, contradicting Lemma 4.3.6.

Definition 4.3.8. A j-neighbor of a vertex is a neighbor that is a j-vertex. A ghost neighbor

of a vertex is a neighbor that is a ghost. Adding a ghost neighbor at a vertex v means adding

to the graph a vertex of degree k+1 whose only neighbor is v. For a vertex set A in a graph

G, contracting A to a vertex v∗ means deleting all edges within A and replacing A with a

single vertex v∗ incident to all edges that joined A to V (G) − A. Let GA denote the graph

obtained from G by contracting A to v∗ and adding d ghost neighbors at v∗.

Lemma 4.3.9. If G is feasible and βG(A) ≤ k(k + 1), then GA is feasible.

Proof. For X ⊆ V (GA), we show that βGA
(X) ≥ k2. Let S be the set of d ghost neighbors

added at v∗. If v∗ /∈ X, then the inequality is hardest when S ∩ X = ∅, since each

vertex of S adds (k + 1)(k + d) to the sparseness of X − S. With S ∩ X = ∅, we have

βG′(X) = βG(X) ≥ k2.

If v∗ ∈ X, then the inequality is hardest when S ⊆ X, since each addition of a ghost to a

set containing its neighbor reduces the sparseness by k + 1. Before adding S, contracting A

to v∗ loses |A|−1 vertices and ∥A∥ edges. Let X ′ = A∪ (X−S− v∗); note that X ′ ⊆ V (G).

We compute

βGA
(X) = βG(X

′)− (k + 1)(k + d)(|A| − 1) + (k + d+ 1) ∥A∥ − d(k + 1)

= βG(X
′) + k(k + 1)− βG(A) ≥ βG(X

′) ≥ k2.
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Lemma 4.3.10. For A ⊆ V (G), if G[A] and GA are (k, d)∗-decomposable, then G is (k, d)∗-

decomposable.

Proof. Let (F,D) be a (k, d)∗-decomposition of GA. Since v∗ has d ghost neighbors in GA,

its neighbors in D are only those ghosts; no edges of D join v∗ to vertices of G. Let (F ′, D′)

be a (k, d)∗-decomposition of G[A].

Combining (F ′, D′) and (F,D) (after deleting the ghost neighbors of v∗) forms a (k, d)∗-

decomposition of G. All edges joining v∗ to V (G) − A lie in F and are incident to various

vertices of A. Since v∗ lies on no cycle in F , adding the edges of F ′ does not complete a

cycle. That is, each forest in a kF -decomposition of F can be combined with any one of the

forests in a kF -decomposition of F ′.

Definition 4.3.11. Let dG(v) denote the degree of a vertex v in a graph G. A set A ⊆ G

is nontrivial if A contains at least two non-ghosts but not all non-ghosts in G.

We avoid confusion between the overall parameter d and the degree function by always

using the relevant graph as a subscript when discussing individual vertex degrees.

Lemma 4.3.12. Let A be a vertex set in a minimal counterexample G. If A is nontrivial,

then βG(A) > k(k + 1). If A is trivial with exactly one non-ghost vertex v, and βG(A) ≤

k(k + 1), then dG(v) ≥ (k + 1)(d+ 1).

Proof. Suppose that βG(A) ≤ k(k + 1). By Lemma 4.3.9, GA is feasible. If A is nontrivial,

then GA has fewer non-ghosts than G. The minimality of G then implies that both GA and

G[A] are (k, d)∗-decomposable. By Lemma 4.3.10, also G would be (k, d)∗-decomposable.

Hence we may assume that A is trivial with non-ghost vertex v, so A consists of v and

some number h of ghost neighbors of v. Now βG(A) = (k+1)(k+d−h), so βG(A) ≤ k(k+1)

requires h ≥ d. If h > d, then already dG(v) ≥ (k + 1)(d + 1). If h = d and A = V (G),

then G is explicitly (k, d)∗-decomposable. In the remaining case, G has vertices outside A,
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and the only vertex of A with outside neighbors is v. Since G is (k + 1)-edge-connected (by

Lemma 4.3.6), we again have dG(v) ≥ (k + 1)(d+ 1).

Lemma 4.3.13. If v is a vertex in a minimal counterexample G, and dG(v) < (k+1)(k+d),

then v has no non-ghost (k + 1)-neighbor.

Proof. Let u be a non-ghost (k + 1)-neighbor of v, and let W be the set of other neighbors

of u. Since dG(u) = k + 1, no vertex in W ∪ {v} is a ghost. Form G′ from G by deleting

the edges incident to u and then adding k + 1 edges joining u to v; this makes u a ghost

neighbor of v in G′. Note that G′ and G have the same numbers of edges and vertices, but

G′ has fewer non-ghost vertices than G, since u and its neighbors are non-ghosts in G and

at least u becomes a ghost in G′.

If G′ is feasible, then the choice of G implies that G′ has an (k, d)∗-decomposition (F,D).

Now modify (F,D): delete the copies of uv in F (keeping the copy in D), and add the k

other edges at u in G to the k forests in F . This yields a (k, d)∗-decomposition of G.

It thus suffices to show that G′ is feasible. We need only consider A such that u, v ∈ A

and W ̸⊆ A; otherwise, βG′(A) ≥ βG(A) ≥ k2, since G is feasible. With u ∈ A, we have

βG′(A) = βG(A − u) − (k + 1), since adding a ghost neighbor costs k + 1. We worry only

if βG(A − u) ≤ k(k + 1). Since W ̸⊆ A, the set A does not contain all non-ghosts in G.

If v is the only non-ghost in A − u, then dG(v) ≥ (k + 1)(k + d), by Lemma 4.3.12. Since

our hypothesis is dG(v) < (k + 1)(k + d), we conclude that A − u is nontrivial, and now

Lemma 4.3.12 yields βG(A− u) > k(k + 1).

Lemma 4.3.14. If a minimal counterexample G has a vertex v with q ghost neighbors, where

q ≥ 1, then dG(v) > kq + k + d.

Proof. Form G′ from G by deleting the ghost neighbors of v. Since G′ is an induced subgraph

of G, it is feasible. Forming G′ does not increase the number of non-ghost vertices, but it

decreases the numbers of vertices and edges, so G′ has an (k, d)∗-decomposition (F ′, D′).
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By Lemma 4.3.6, dG′(v) ≥ k + 1. We may assume that dD′(v) ≤ dG′(v)− k, since edges

of D′ at v can be moved arbitrarily to F ′ until F ′ has at least k edges at v. Now restore each

ghost vertex by adding one incident edge to each forest in F ′ and the remaining incident

edge to D′, yielding (F,D).

Since F ∈ kF and D ∈ F , it suffices to check dD(v). We have dD(v) = dD′(v) + q ≤

dG′(v)− k + q = dG(v)− kq − k. Thus dD(v) ≤ d unless dG(v) > kq + k + d.

If v has q ghost neighbors, then dG(v) ≥ (k+1)q. Hence the lower bound in Lemma 4.3.14

strengthens the trivial lower bound when q ≤ k + d.

Lemma 4.3.15. If G is a minimal counterexample, then two vertices in G are joined by

k + 1 edges only when one of them is a ghost.

Proof. Since G has no overfull set, edge-multiplicity is at most k + 1. If two ghosts are

adjacent, then G has two vertices and is (k, d)∗-decomposable.

Suppose that non-ghosts u and v are joined by k + 1 edges. Obtain G′ from G by

contracting these edges into a single vertex v∗ and adding a ghost neighbor w to v∗.

We claim that G′ is feasible and has no overfull set. If A ⊆ V (G′)−{v∗}, then βG′(A) ≥

βG(A − {w}) ≥ k2. If v∗ ∈ A ⊆ V (G′), then βG′(A) ≥ βG′(A ∪ {w}) = βG(A
′) ≥ k2, where

A′ = (A− {v∗, w}) ∪ {u, v}. Hence G′ is feasible.

Since G has no overfull set, an overfull set in G′ must contain v∗, and a smallest such set

A does not contain w. Let A′ = (A − {v∗}) ∪ {u, v}. Now A′ has one more vertex than A

and induces k + 1 more edges in G than A induces in G′. Hence A′ is overfull if and only if

A is overfull. We conclude that G′ has no overfull set.

Since G′ has the same numbers of vertices and edges as G, but G′ has fewer non-ghosts

than G, minimality of G now implies that G′ has a (k, d)∗-decomposition (F,D). At w there

is one edge in each forest in F and one edge in D. Replacing these with the edges joining u

and v (one in each forest) yields a (k, d)∗-decomposition of G, since the new degree of u or
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v in D is at most dD(v
∗), and an edge joining u and v completes a cycle in its forest only if

contracting that edge yields a cycle in the corresponding forest in (F,D).

4.4 Discharging argument and submodularity

The lemmas of Section 4.3 provide a framework for a discharging argument. We would

like to show that if G has the structural properties of a minimal counterexample, then

Mad(G) ≥ mk,d; this would prove the conjecture. We have not yet proved sufficient structural

properties to complete the argument. By outlining a discharging argument, we will suggest

what else is needed. Section 4.5 will complete the proof for k = 1 and d ≤ 6.

Let G be a minimal counterexample. Since G is feasible, Mad(G) < mk,d = 2k + 2d
k+d+1

.

Give each vertex an initial charge equal to its degree in G (by Lemma 4.3.6, each vertex has

degree at least k + 1). We aim to redistribute charge to obtain a final charge µ(v) for each

vertex v such that µ(v) ≥ mk,d. This motivates our first discharging rule.

Rule 1: A vertex of degree k + 1 takes charge mk,d/(k + 1) − 1 along each incident edge

from the other endpoint of that edge. This amount equals k+d−1
k+d+1

.

In particular, a ghost takes total charge mk,d − (k + 1) from its neighbor. By force,

Rule 1 increases the charge of each (k + 1)-vertex to mk,d, since Lemma 4.3.13 implies that

(k + 1)-vertices are not adjacent unless G has just two vertices.

If all neighbors of v have degree k + 1, then µ(v) = dG(v)
2

k+d+1
, since each edge takes

k+d−1
k+d+1

. In this case, µ(v) ≥ mk,d if and only if dG(v) ≥ (k + 1)(k + d).

The problem is how to handle vertices with degree between k + 1 and (k + 1)(k + d).

Vertices with degree at most 2k need additional charge (as do vertices with degree 2k + 1

when d > k + 1), though they do not need as much as (k + 1)-vertices need. Vertices with

degree less than (k + 1)(k + d) cannot afford to give away too much. The principle we need
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to quantify is that lower-degree vertices must have higher-degree neighbors.

A vertex v with degree less than (k+1)(k+d) cannot be adjacent only to (k+1)-vertices.

By Lemma 4.3.13, v has no non-ghost (k+1)-neighbor. If v has only ghost neighbors, then G

consists of one vertex plus ghost neighbors, but such a graph has the desired decomposition

or is infeasible (see Example 4.3.2). Hence v has some neighbors with higher degrees and will

not need to give away as much. More information is needed about the degrees of neighboring

vertices to complete a proof.

When (k, d) = (1, 1), only 2-vertices need charge. By Lemma 4.3.13, their neighbors have

high enough degree that Rule 1 suffices to complete the discharging argument. Since a forest

with maximum degree 1 is a matching, this proves the result of [31] that the Strong NDT

Conjecture holds when (k, d) = (1, 1).

When k = 1 and d > 1, only 2-vertices and 3-vertices need charge. This leads to a

sufficient condition for completing the discharging argument.

Theorem 4.4.1. For d > k = 1, let G be a minimal counterexample in the sense of Sec-

tion 4.3. If each 3-vertex in G has a neighbor with degree at least d + 2, then Mad(G) ≥

m1,d = 2 + d
d+2

.

Proof. In addition to the special case for k = 1 of Rule 1 stated above, in which each 2-vertex

receives d
d+2

along each edge, we add a rule to satisfy 3-vertices.

Rule 2: If dG(v) = 3, and v has neighbor u with dG(u) ≥ d+2, then v receives d−2
d+2

from u.

We show that the final charge of each vertex is at least m1,d. Rules 1 and 2 ensure that

µ(v) ≥ m1,d when dG(v) ∈ {2, 3} (since 3 + d−2
d+2

= 2 + 2d
d+2

). Since d−2
d+2

< d
d+2

, the general

argument for vertices with degree at least 2d+ 2 also remains valid.

If 4 ≤ dG(v) ≤ 2d + 1, then v has no non-ghost 2-neighbor, by Lemma 4.3.13. If v

has q ghost 2-neighbors with q ≥ 1, then dG(v) ≥ q + d + 2, by Lemma 4.3.14. Hence

µ(v) = dG(v) > m1,d if 4 ≤ dG(v) ≤ d+ 1, since Rule 2 takes no charge from v.
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If d + 2 ≤ dG(v) ≤ 2d + 1, then v may give charge to q ghost neighbors (to each along

two edges) and to dG(v)− 2q neighbors of degree 3. Using Lemma 4.3.14,

µ(v) ≥ dG(v)−
d

d+ 2
2q − [dG(v)− 2q]

d− 2

d+ 2
=

4(dG(v)− q)

d+ 2
≥ 4(d+ 2)

d+ 2
= 4 > m1,d.

The final charge at each vertex is at least m1,d, so no minimal counterexample is feasible.

This reduces Conjecture 4.3.4 for the case k = 1 to proving that in a minimal counterex-

ample G, each 3-vertex has a neighbor with degree at least d + 2. Our proofs of this fact

depend on d. In each case, we will use submodularity properties of the function βG.

Definition 4.4.2. A function β on the subsets of a set is submodular if β(X∩Y )+β(X∪Y ) ≤

β(X) + β(Y ) for all subsets X and Y . When G′ is an induced subgraph of G, define the

potential function ρG′ by ρG′(X) = min{βG(W ) : X ⊆ W ⊆ V (G′)}.

Lemma 4.4.3. For any graph G and any induced subgraph G′ of G, the sparseness function

βG on the subsets of V (G) is submodular.

Proof. To compare βG(X ∩ Y ) + βG(X ∪ Y ) with βG(X) + βG(Y ), note first that |X ∪ Y |+

|X ∩ Y | = |X| + |Y |. Hence it suffices to show that ∥X ∪ Y ∥ + ∥X ∩ Y ∥ ≥ ∥X∥ + ∥Y ∥.

All edges contribute equally to both sides except edges joining X − Y and Y − X, which

contribute 1 to the left side but 0 to the right.

4.5 Neighbors of 3-vertices when k = 1

Throughout this section, k = 1. For k = 1, feasibility reduces to the statement that βG(A) =

(2d + 2) |A| − (d + 2) ∥A∥ ≥ 1 for A ⊆ V (G). When G is a minimal counterexample,

Lemma 4.3.12 implies that βG(A) ≥ 3 when A is nontrivial (contains at least two non-ghosts

but not all non-ghosts). Furthermore, if d is even, then always βG(A) is even, so in that
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case we may assume βG(A) ≥ 4 when A is nontrivial. By Theorem 4.4.1, to prove the NDT

Conjecture when k = 1 it suffices to prove that every 3-vertex in a minimal counterexample

has a neighbor with degree at least d+ 2.

Lemma 4.5.1. Fix d with 2 ≤ d ≤ 6, and let G be a minimal counterexample. If v is a

3-vertex in G and has no neighbor with degree at least d+2, then v has two neighbors u and

u′ such that ρG′({u, u′}) ≥ d+ 3, where G′ = G− v.

Proof. Together, Corollary 4.3.7 and Lemma 4.3.15 imply that every 3-vertex has three

distinct neighbors. Let U be the neighborhood of v, with U = {u1, u2, u3}. Let Zi = U−{ui}.

Suppose that ρG′(Ui) ≤ d+ 2 for all i.

For each i, let Xi be a subset of V (G′) such that ρG′(Zi) = βG(Xi). For any permutation

i, j, k of {1, 2, 3},

2d+ 4 ≥ βG(Xi) + βG(Xj) ≥ βG(Xi ∪Xj) + βG(Xi ∩Xj).

For X ′ ⊆ V (G′), let X = X ′ ∪ {v}. If U ⊆ X ′ ⊆ V (G′), then βG(X
′) = βG(X) + d + 4.

If X ′ ̸= V (G′), then X ̸= V (G), and X is nontrivial if it has at least two non-ghosts, which

by Lemma 4.3.12 would yield βG(X
′) ≥ d + 7 + ϵ, where ϵ = 1 if d is even and ϵ = 0 if d is

odd. However, if X ′ = V (G′), then we only have βG(X
′) ≥ d+ 5 + ϵ.

Since each edge vui has multiplicity 1, no vertex in U is a ghost, and neither is v. Since

uk ∈ Xi ∩ Xj and dG(uk) < d + 2, Lemma 4.3.12 implies βG(Xi ∩ Xj) ≥ 3 + ϵ. Since

U ⊆ Xi ∪Xj, we also conclude βG(Xi) + βG(Xj) ≥ d+ 8+ 2ϵ for all d, and the lower bound

increases by 2 if Xi ∪Xj ̸= V (G′).

Thus ρG′(Xi) + ρG′(Xj) ≥ d+ 8+ 2ϵ. If d ≤ 4, then d+ 8+ 2ϵ > 2d+ 4, and the desired

conclusion follows. Hence we may assume d ∈ {5, 6}; furthermore, Xi ∪Xj = V (G′) for all

i, j, since otherwise the lower bound on βG(Xi) + βG(Xj) again exceeds 2d+ 4.
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In more detail, the computation of Lemma 4.4.3 is

βG(Xi) + βG(Xj) = βG(Xi ∪Xj) + βG(Xi ∩Xj) + (k + d+ 1)m,

where m is the number of edges joining Xi − Xj and Xj − Xi. If m ≥ 1, then we obtain

βG(Xi) + βG(Xj) ≥ 2d + 10 > 2d + 4, which yields the desired conclusion. Hence m = 0 in

each case. That is, each Xi ∩Xj is a separating set in G′. (If G′ is disconnected, then some

edge incident to v is a cut-edge, which contradicts Lemma 4.3.6.) Furthermore,

βG(Xi ∩Xj) = βG(Xi) + βG(Xj)− βG(Xi ∪Xj) ≤ 2d+ 4− (d+ 5 + ϵ) = d− 1− ϵ.

Now let Z = X1∩X2∩X3. Since Xi∪Xj = V (G′), any vertex of V (G′)−Z misses exactly

one of the three sets, so {Z,X1, X2, X3} is a partition of V (G′). Since βG(Xi) ≤ d + 2 and

βG(V (G′)) ≥ d + 5, each X i is nonempty, so Z ̸= V (G′). If Z contains only one non-ghost,

then feasibility requires it to have at most d ghost neighbors, and βG(Z) ≥ 2. Otherwise,

since v /∈ Z, we conclude that Z is nontrivial, and hence βG(Z) ≥ 3.

Now, since X i ⊆ Xj ∩Xk, submodularity yields

2d+ 1− ϵ ≥ βG(Xi) + βG(Xj ∩Xk) ≥ βG(V (G′)) + βG(Z) ≥ d+ 7.

We conclude that d ≥ 6 + ϵ, which completes the proof for d ≤ 6.

Lemma 4.5.2. If 3 ≤ d ≤ 6 and G is a minimal counterexample, then every 3-vertex has a

neighbor with degree at least d+ 2.

Proof. Let u1, u2, u3 be the neighbors of a 3-vertex v, and let U = {u1, u2, u3}. Suppose that

dG(u) ≤ d + 1 for u ∈ U . Since each edge vui has multiplicity 1, no vertex in U is a ghost

vertex, and any edge induced by U has multiplicity 1 (Lemma 4.3.15).
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Let G′ = G−v. By Lemma 4.5.1, we may assume by symmetry that ρG′({u1, u2}) ≥ d+3.

Form H from G′ by adding an extra edge joining u1 and u2. For A ⊆ V (H) = V (G′), we

have βH(A) = βG(A) unless u1, u2 ∈ A, but in the remaining case ρG′({u1, u2}) ≥ d + 3

yields βH(A) ≥ 1.

Hence H is feasible, and it has fewer non-ghosts than G. In order to have an (F ,Fd)-

decomposition of H, we need only exclude overfull sets of size at most (d+1)/2, which is at

most 3. There are no triple-edges in H, since G has no double-edges within U . An overfull

triple must include u1 and u2, since G has no overfull triple. The third vertex w must be

adjacent to u1 or u2 by two edges in G. Since those vertices are also adjacent to v, we have

contradicted dG(u1) = dG(u2) = 3.

Let (F,D) be an (F ,Fd)-decomposition of H. Obtain a decomposition of G by (1)

replacing the added edge u1u2 with vu1 and vu2 in whichever of F and D contains it, and

(2) placing vu3 in the other subgraph. The degree in D of u1 and u2 is the same as a

subgraph of H or G, and cycles through v would correspond to cycles in the decomposition

of H. The only worry is dD(u3), since we have increased this by 1 if the added edge in H

belonged to F . If dD(u3) has increased to d+ 1, then we have the desired conclusion unless

dG(u3) = d+ 1, but now we can move any one edge incident to u3 from D to F to complete

a (F ,Fd)-decomposition of G.

4.6 The Strong NDT Conjecture for (k, d) = (1, 2)

In this section we prove our strongest conclusion for our most restrictive hypothesis. Many

of the steps are quite similar to our previous arguments, so we put them all together in a

single proof.

Theorem 4.6.1. The Strong NDT Conjecture holds when (k, d) = (1, 2). That is, if G is

feasible, then G has an (F ,F2)-decomposition (F,D) in which every component of D has at
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most two edges (a strong decomposition).

Proof. Since m1,2 = 3, feasibility is equivalent to Mad(G) < 3. Let G be a counterexample

with the fewest non-ghosts. By the argument of Lemma 4.3.6, G is 2-edge-connected.

If G has adjacent 2-vertices u and v, then at least one is not a ghost. Letting G′ =

G−{u, v}, the minimality of G yields a strong decomposition (F,D) of G′. Adding the edge

uv to D and the other edges incident to u and v to F yields a strong decomposition of G.

If G has a vertex with three ghost neighbors, then G is infeasible, so every vertex has

at most two ghost neighbors. If G has only one non-ghost, then G explicitly has a strong

decomposition. Hence we may assume that G has at least two non-ghosts.

Since d is even, always βG is even, so feasibility can be stated as βG(A) ≥ 2 for A ⊆ V (G)

(here βG(A) = 6 |A| − 4 ∥A∥). A set A is tight if βG(A) = 2. A set consisting of a vertex

with two ghost neighbors is a trivial tight set.

By Lemma 4.3.9, if A is a tight set, then GA is feasible. The same argument as in

Lemma 4.3.10 shows that if G is a minimal counterexample, A ⊆ V (G), and GA has a

strong decomposition, then G has a strong decomposition. Hence we may assume, as in the

earlier proofs, that βG(A) ≥ 4 for every nontrivial set A.

Suppose that G has a non-ghost 2-vertex v. Each neighbor of v has degree at least 3. If

a neighbor u of v has at most one ghost neighbor, then form G′ from G− v by giving u one

additional ghost neighbor w. Now G and G′ have the same numbers of vertices and edges,

but G′ has fewer non-ghost vertices.

We claim also that G′ is feasible. If u /∈ A ⊆ V (G′), then βG′(A) is minimized when

w /∈ A, and then βG′(A) = βG(A) ≥ 2. If u ∈ A ⊆ V (G′), then βG′(A) is minimized when

w ∈ A, and then βG′(A) ≥ βG(A− {w} ∪ {v})− 2 ≥ 2, since A− {w} ∪ {v} is nontrivial.

We conclude that G′ has a strong decomposition (F,D), by the minimality of G. Each

of F and D must have one edge incident to w. We obtain a strong decomposition of G by

deleting w, adding vu to D, and adding the other edge at v to F .
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We may therefore assume that every neighbor of a non-ghost 2-vertex has at least two

ghost neighbors. Since G is 2-edge-connected, a q-vertex cannot have (q− 1)/2 ghost neigh-

bors. In particular, a vertex with at least two ghost neighbors must have degree at least 6,

so every neighbor of a non-ghost 2-vertex has degree at least 6.

Once again we have derived many properties of a minimal counterexample. We complete

the proof by using discharging to show that if G has these properties, then Mad(G) ≥ 3.

This contradicts feasibility, which is equivalent to Mad(G) < 3; hence there is no minimal

counterexample.

The initial charge of each vertex is its degree; we manipulate charge so that the final

charge µ(v) of each vertex v is at least 3. The only discharging rule is that a 2-vertex takes

charge 1/2 along each incident edge from the other endpoint of that edge. Hence the final

charge of a 2-vertex is 3.

Since each neighbor of a non-ghost 2-vertex has degree at least 6, vertices of degree 3, 4,

or 5 give charge only to ghosts. If dG(v) = 3, then v has no ghost neighbors, and µ(v) = 3.

If dG(v) ∈ {4, 5}, then v has at most one ghost neighbor, and µ(v) ≥ dG(v) − 1 ≥ 3. If

dG(v) ≥ 6, then v gives at most 1/2 along each edge, so µ(v) ≥ dG(v)− dG(v)/2 ≥ 3.
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