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Abstract

This work is aimed at developing a control-system theoretic approach for addressing certain

performance issues that arise in micro-electro-mechanical systems (MEMS). In particular,

it focuses on applications such as nano-positioning, where control design becomes necessary

to meet high resolution, bandwidth, and reliability (robustness) demands especially when

there is significant model uncertainty and instrumentation noise. In this article, a systematic

control design from robust control approach is demonstrated on a micro probing device with

electrically separated sensing combs and driving combs. The system is identified through

experimental input-output data and the hardware is setup in such a way that the resulting

model is a linear time-invariant model with appropriate choice of variables even when the

the underlying constitutive laws are nonlinear. Controllers are developed based on PID and

H∞ control design methodologies. Control algorithms from PID control and robust control

have been implemented on dSpace digital processing platform. The implemented control

(H∞) design demonstrates a significant (≈ 400%) improvement in the bandwidth, where

the bandwidths from the closed-loop sensitivity and complementary-sensitivity functions

respectively are 68 Hz and 74 Hz. A significant improvement in reliability and repeatability

(robustness to uncertainties) as well as noise attenuation is also demonstrated through this

design.
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Chapter 1

Introduction

In Micro-Electro-Mechanical-System (MEMS) devices, capacitive structures which consist of

electrostatic combs are being widely used, especially in MEMS probing devices, since it was

first introduced by Tang [1]. As an actuator, electrostatic comb drive has several advantages

such as simplifying actuating process and being easy to manufacture, compared to others

such as piezoelectric material and shape memory alloy. Moreover, electrostatic comb drive

has a faster response and it is easy to implement a feedback control since the driving force

does not depend on actuator position but only on the applied voltage.

For applications in fast nano-positioning or nano-scanning, accurate displacement moni-

toring of comb drive is needed. This requires a high-resolution sensing scheme. The displace-

ment or corresponding capacitance (less than 1 pF) in electrostatic comb drives is usually

very small, which adds difficulty to the sensing module design. An optical sensor based on

laser diode was implemented by Borovic [2] which decoupled the sensing from actuation,

however it gives a limited operating range since the sensor has a linear measurement only

within limited range. A simultaneous actuation and displacement sensing scheme was suc-

cessfully realized by Dong [3] but it requires a low pass filter in its scheme and thus seriously

limited its bandwidth. Other sensing schemes such as microscope [4] and AFM have also

been used to detect the displacement of comb drives, but none of them could be possibly

used in a high bandwidth feedback control. In addition several on-chip capacitance mea-

surement schemes are reported in [5], [6], which achieve high resolution measurements and

show promise for functioning as sensors in the closed loop system of comb drives.

In this work, the comb drive is designed with control design in mind. In most devices in
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Figure 1.1: Comb drive with electrically separated actuation and sensing combs

existing literatures, the actuating and the sensing combs are electrically connected together.

This impose an impediment in circuit design since it requires high actuation voltage (typi-

cally around 50V) while the sensing signal usually is less than 5V. In the device demonstrated

in this article, the actuating and the sensing combs are separated electrically by having two

layers. The conductive layer of both combs on the top are disconnected with the insulator

(SiO2) layer in the bottom (see Figure 1.1). By doing this, the actuation and the sensing

combs are decoupled electrically though connected physically. In addition, a pair of differen-

tial sensing combs has also been fabricated, which enables a differential sensing scheme and

thus enhances Signal-to-Noise-Ratio (SNR) which results in obtaining more accurate model

of the system. In this work, a universal capacitive readout IC with a high bandwidth(up to

8kHz), differential input, and high resolution(4aF/
√
Hz) is implemented as a sensor.

Proportional-Integral-Derivative (PID) controller, since its first introduction in 1939, has

been widely used in both industry and academia. A number of advanced controllers have

also been developed and implemented, such as adaptive control [7] and iterative learning con-

2



trol(ILC) [8]. However, PID controllers are still dominant in industry and most of academia

outside of control community for its simplicity in both design and implementation. Recently,

H∞ control have been reportedly implemented successfully in many areas, such as parallel

kinematics nano-positioner [9]. Compared to other advanced control techniques, H∞ control

is as simple as PID to use while providing a systematic way of designing. For example, one

only needs to assign the desired sensitivity function S, complementary sensitivity function

T , and reference-to-controller-output transfer function KS. These transfer functions are

defined by

S =
1

1 +GK
,

T =
GK

1 +GK
,

KS =
K

1 +GK
, (1.1)

where G, K indicate the plant to be controlled and the controller respectively under the

unite feedback configuration (See Figure 1.2).

By convex optimization, a controller that achieves approximate desired performance is

readily obtained (see the standard configuration in Figure 1.3). In this work, H∞ controller

is implemented and produces better results compared to PID controller without increasing

complexity of controller design or implementation. The H∞ control algorithm is designed

in Matlab and implemented using dSpace processing board. The bandwidth of the closed-

loop system via sensitivity function S, namely ωS, around 67 Hz is achieved with a high

robustness to model uncertainty. The bandwidth via complementary sensitivity function T,

ωT , is around 74 Hz, which indicates good noise attenuation by the close loop system.

This article is organized as follows: In Chapter 2, mathematical models for electrostatic

comb drives and universal capacitive readout IC are derived, the hardware setup for voltage

amplification and embed controller are described, the model of the device to be control

3



Figure 1.2: Unit feedback configuration: r is the reference signal, e is the tracking error, u
is the control effort, d is disturbance, y is output signal, n is measurement noise

Figure 1.3: Standard configuration of H∞ controls, w is the exogenous input into plant
including reference and disturbance, u is the manipulated input, z is the error signals to be
minimized and v is the measured output fed into controller
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is parametrically identified based on frequency-domain system identification method and

then this identified model is further simplified by a model reduction method. In Chapter 3,

system setup is re-visited. Both PID and H∞ control design processes are discussed and

compared. The controller implementation and experimental results are also included along

with the corresponding analysis. In Chapter 4, conclusions are drawn from results shown in

Chapter 2 and Chapter 3. Future directions are also discussed.
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Chapter 2

Model Identification

2.1 Device Description

The capacitive structure to be controlled is presented in Figure 2.1. It contains two linear

electrostatic comb drives. Each of them provides motions to the end effector, named XY

stage, which has an L shape as shown in Figure 2.1. The motions in the two directions, X

and Y, are decoupled from effect of each other, due to the hinges that link the comb drives to

the stage. Applied actuation voltage for comb drives can be up to 100 volts. Force generated

from electrostatic effects between interdigitated combs drives the stage back and forth. On

the other end, sensing combs, which are similarly fabricated as the actuating combs, detect

the motion of the stage and transduce this motion into a linear change in capacitance. The

capacitance change is further detected by capacitive sensor MS3110.

MS3110 Universal Capacitive Readout IC1 is a commercial-off-the-shelf capacitance-

to-voltage chip, with programmable bandwidth from 0.5 kHz to 8 kHz and resolution

4aF/
√
Hz. An important feature of this chip is that it provides differential mode which

allows users to directly collect the feedback signal that is proportional to the difference of

the two inputs. With this mode combined with the special fabrication which renders a pair of

differential sensing combs, the measurement sensitivity is significantly improved. However,

the measured capacitance of a single set of sensing comb is the sum of the capacitance of the

sensing comb itself, that of the parasitic capacitor and so on. However, this is not a big issue

as long as the sensor reading is linear with capacitance change which is further linear with

1Commercial Trademark of Irvine Sensors Corporation
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Figure 2.1: SEM pictures for micropositioning XY stage. (a) Overall structure; (b) Actua-
tion/Sensing comb drives; (c) Hinges (d) Actuation comb drive; (e) Differential comb drives
for sensing.

comb movement along each axis. The capacitive change rate, ∆C/∆X, is 0.0136pF/µm [10].

The sensor itself has a resolution of 6.58 nm over a bandwidth of 500 Hz.

2.2 System Setup

The feedback signal is fed back into dSpace(DS1104) controller2 with 16 bit A/D conversion

modules incorporated. The DS1104 also embeds with real-time interface that communicates

with computer and D/A conversion modules. In addition, a power amplifier takes the control

command from controller and supplies driving voltage to comb drive of the device. As

shown in Figure 2.2, a battery is used for powering MS3110 in order to minimize line noise

coming through the sensor itself. The two ports in the sensor, CS1 and CS2, are used

for the differential mode. CS2 is linked to incremental sensing comb and CS1 is linked

to decremental sensing comb. The sensor reading is thus proportional to the difference

2Commercial Trademark of dSPACE Inc.
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Figure 2.2: Circuit diagram for XY stage test

of capacitance attached to CS2 and CS1. An offset capacitor with fixed capacitance is

connected to CS1 in parallel with the decremental comb, in order to offset the difference

between each port into the range of sensor measurement (less than 10pF).

The dSpace offers Real-Time Interface and drivers that allow user to design control system

in Simulink3 and then compiles it into C code. The code is then downloaded into and run

by the dSpace embed controller. Furthermore, dSpace is linked with ControlDesk4 which

is a software based on the idea of visual instrument and provides a universal experiment

3Commercial Trademark of Mathworks Inc.
4Commercial Trademark of dSpace Inc.
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environment in which users can adjust parameters built into controllers on a real-time basis.

2.3 Mathematical Model

The force that drives combs and thus MEMS stage is given by

F = n
εt

g
V 2, (2.1)

where n is the number of fingers in the comb drive. ε is the permittivity of free space, t is

the thickness of interdigitated fingers, g is the gap between fingers and V is supply voltage.

The dynamics of the electrostatic drive is governed by a second order Mass-Spring-Damping

system [3] as follows

f = md̈+ bḋ+ kd, (2.2)

where f is the input force, m is the mass, b is the damping coefficient, k is the spring

constant, and d is the length that comb has travelled. By applying Laplace transform the

dynamic equation in (2.2) becomes

D

F
=

1

ms2 + bs+ k
, (2.3)

Alternatively, since the electrostatic driven MEMS stage is made to be an underdamped

system, the transfer function can be written as

D

F
=

Kω2
n

s2 + 2εωns+ ω2
n

, (2.4)

where K is the DC gain, ε is the damping ration, ωn is the natural frequency of the MEMS

stage. Further the linear translation of comb drive results in capacitance change of the

9



sensing comb, which follows

∆C = n
εt

g
d, (2.5)

where n is the number of fingers in the sensing comb, ε is the permittivity of free space, t

is the thickness of interdigitated fingers, g is the gap between fingers. The sensor output is

linear with the input capacitance [11]. The output voltage of sensor with respect to input

capacitance is given as

V = G · CS2− CS1

Cf

+ Voff , (2.6)

where V is the sensor output, CS1 and CS2 are the differential input capacitances, Cf is

the feedback capacitance inside sensor which is programmable, G is the programmable gain,

Voff is programmable offset voltage.

Therefore in this setup, the driving force generated by the driving comb is proportional

to V 2. The mechanical response of XY stage is essentially an underdamped second-order

system. The linear translation of the comb result in a linear change of capacitance, which is

further measured by capacitive sensor MS3110.

2.4 Model Identification

With the theoretical model developed in Section 2.3, we could see that dynamic system

with input V 2 and output as the displacement of electrostatic comb is ideally not only a

linear system but also an underdamped second order one. It is relatively easy to build up a

closed loop system around a plant which is an underdamped second order system. However,

other factors, such as fringe effects and parameter inaccuracy within the model, require

an experimental way to parametrically identify the model. Although nonlinearities might

exist inside the device, for example, the fringe effects and discretization of analog signals,

the linear system theory tells us that as long as the perturbation around the designated

operation point is small enough, even a nonlinear system could be treated as a linear one.
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There are several ways of system identification for linear systems, both in time domain and

frequency domain.

2.4.1 Time Domain System Identification

Linear time invariant systems can be represented by state space. The dynamics of linear

systems could be described by

ẋ = Ax+Bu, y = Cx+Du, (2.7)

where x is the vector of states inside the system, u is the vector of input effort, y is the

observed system output. A, B, C, D are constant matrices.

In order to identify the dynamical system, it is necessary to estimate A, B, C, D ex-

perimentally. The only source of information is from the system output measured through

experiment. Let ∆t denote the sample time of digital system used for system identification.

By analyzing the corresponding system output y(0), y(∆t),...,y(N∆t) resulting from a given

sequence of input effort u(0), u(∆t),...,u(N∆t), quite a few method labelled as Time Domain

System Identification have been discovered, such as step response analysis and Pseudoran-

dom Binary Sequence(PRBS) [12]. The common philosophy behind the methods is already

stated above, which is analyzing system output corresponding to specially designed input

effort. For a simple example, consider identifying a first-order system which has state-space

equations given by

ẋ = −ax+ bu, y = cx, (2.8)

where a, b, c are positive scalars. By step response analysis shown in Figure 2.3, we could

obtain time constant τ and DC gain K for this first-order system which are sufficient for

description of the state space equations.

For more complicated systems, we need a parametric way to identify all the system

parameters. For complex systems that are being used today, the discretized version of

11



Figure 2.3: Step response-based system identification of 1st order system

governing equations of the form

x((n+ 1)∆T ) = Ax(n∆T ) +Bu(n∆T ), y(n∆T ) = Cx(n∆T ) +Du(n∆T ), (2.9)

are used instead of the continous-time model. One of these time domain method, namely,

Pseudorandom Binary Sequence(PRBS) method utilizes signals randomly shifting between

two levels as input signal shown in Figure 2.4, and corresponding system output in order to

estimate system parameters such as A, B, C, D. Refer to Chapter 5 in [12] for more details

about PRBS.

2.4.2 Frequency Domain System Identification

For time-invariant systems, besides state space equations, we could also use the transfer

function to represent the dynamic system. The Laplace Transform that transforms time

12



Figure 2.4: a) Pseudorandom Binary Sequence as input signal; b) Corresponding output.

domain function f(t) into complex plane domain function F (s) is given by

F (s) = L[f(t)] =

∫ +∞

0

e−stf(t) dt, (2.10)

where s is a complex number. By doing this, we obtain transfer function H(s) from dynamic

equation governing a linear system. H(s) is given by

H(s) =
Y (s)

U(s)
, (2.11)

where Y is system output and U is system input. For MIMO (Multi-Input-Multi-Output)

system, the transfer function is a matrix function of s rather that a scalar one for SISO

(Single-Input Single-Output) system.

Transfer function is very useful in control engineering, since it provides intuitive indica-

tions for system dynamics, such as stability and spectral characteristics. Indeed, one could

simply replace s in transfer function with imaginary number jω and obtain the spectrum

of the dynamical system. The magnitude and phase shift are obtained from the transfer

13



Figure 2.5: Sine Sweep Method for system identification: u(t)=sin(ωt),
y(t)=|H(jω)|sin(ωt+ 2π∠H(jω)).

function as shown by

Magnitude = |H(jω)|, Phase = ∠H(jω). (2.12)

Frequency Domain System identification is thus used to obtain system response (Magnitude

and Phase shift) at selected frequencies and then estimate the transfer function of linear

systems. There are several methods based on this philosophy, such as White Noise Method

and Sine Sweep Method. The White Noise Method is inspired by the fact that the spectrum

of the white noise contains equal energy within each frequency band. Thus the spectrum

of corresponding system output has the same shape as that of the system. On the other

hand the Sine Sweep Method is to generate sinusoidal signals and obtain system responses

at specific frequencies as shown in Figure 2.5

The latter method is adopted by Dynamic Signal Analyzer(DSA) as the main means for

system identification. In this work, system identification of the model relies on DSA from

14



Figure 2.6: Experiment Setup for System Identification

HP Inc. and thus identified model is obtained by Sine Sweep Method.

2.4.3 Experiment Based on Sine Sweep Method

As shown in Figure 2.6, Channel 1 of Dynamic Signal Analyzer (DSA) sends out sinusoidal

signals with frequencies ranging from, for example, 1 Hz to 1 kHz. This signal is serving

as V 2 where V is the supply voltage to comb drive. In order to account for this, we can

not simply feed signal from channel 1 directly to comb drive but instead have to modify

it in dSpace. Within dSpace, first take the square root of the signal from Channel 1, let’s

say v1, and then multiply
√
v1 by 1/200 in order to neutralize the scaling factors from D/A

conversion and power amplification. Note that there is also a scaling factor of 1/10 during

A/D conversion. Therefore in dSpace programing, input from A/D conversion is multiplied

by 10 in order to recover the signal v1 from channel 1.

The supply voltage sent out to the comb drive is essentially
√
v1. As shown in Equa-

tion (2.1), the system is a linear one with input as V 2, which is essentially v1, and output

as the sensor reading which is sent back to DSA through channel 2. DSA estimates the

system response (magnitude and phase shift) at each chosen frequency. For example, we

could simply program DSA to send out sinusoidal signals with frequencies sweeping from 1

15



Figure 2.7: Bode plot from sine sweep

Hz to 1 kHz with resolution of 200 points per sweep, equally distributed by either logarithm

scale or normal scale.

The data rate of dSpace can be up to 50 kHz. Therefore in the experiment, the sweeping

range is set to be 1 Hz to 25 kHz in order to prevent aliasing. The frequency resolution is

set to be 100 points per decade. The result is shown in Figure 2.7.

Based on the mathematical model previously derived, the system (XY stage+sensor)

ideally is an underdamped second order system with supposed-to-be low damping ratio.

Based on the experiment results shown in Figure 2.7, the peak in magnitude appears at

the frequency of around 600 Hz and the magnitude(around 10dB) of the peak indicates a

small damping ratio. The phase continues to drop down as the frequency increases while the

mathematical model predicts that the phase eventually converges monotonically to −180◦.

Indeed this is understandable since there is always time delay in digital system such as

dSpace. Suppose the time delay is τ , as the frequency f of sinusoidal signals increases, the

corresponding phase delay by dSpace τ · f ·360◦ also increase creases linearly with frequency

16



Figure 2.8: Block diagram of MS3110

f (in logarithm scale, exponentially), which can be verified in the Figure 2.7. Another issue

is the zero appearing around 80 Hz as shown in Figure 2.7. This is not expected from XY

stage since ideally it should be a second order system without zeros.

However if we take a look at the internal structure of the capacitive sensor, the square

waves (marked as V2P25/VNEG in Figure 2.8) sent through external capacitors has a fre-

quency around 100 kHz and the sensor output is proportional to the change rate of charge

stored in external capacitor, for example, CS1. This part of dynamics is governed by

V ∝ q̇ = ċu = cu̇+ ċu, (2.13)

where c is the capacitance to be measured and u is the voltage of the square wave.

Therefore in the transfer function of sensor, a zero is brought in due to the additional

item ċu in Equation (2.13). Therefore, in the closed loop design, the operating region of the

closed loop system does not exceed 80 Hz since beyond that the sensor reading itself is not

accurate in terms of measuring capacitance due to limitation on the dynamics.

2.4.4 Model Fitting

The result from experiment only contains informations of the system responses at chosen

frequencies with the parametric model yet to be identified from experiment data. Partic-
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ularly, a transfer function is needed to fit into data of frequency responses obtained from

DSA.

From bode plot shown in Figure 2.7, we make an estimation of the model as follows:

first, a low pass filter from sensor consisting of one zero and two real poles is expected as

we could see in Figure 2.7; The XY stage contributes a pair of complex poles. Thus ideally,

the model should have 1 zero, 2 real poles, and a pair of complex poles. However, from the

bode plot obtained from experiment, the number of poles exceeds that of zeros only by 2

since the magnitude of transfer function at high frequency decaying at slope of -40 dB/dec.

In addition, the shape of the peak in magnitude and corresponding phase delay suggest that

there exists higher order dynamics at high frequencies, essentially beyond 80Hz.

For system of order higher than 2, usually it requires computer algorithms to estimate

the parametric model. Basically what we got from this experiment are complex frequency

responses at a finite set of chosen frequencies. What we need to do is to fit a transfer function,

or equivalently, a complex polynomial curve to experimental data. Based on algorithms

proposed in [13] and [14], a matlab function named invfreqs is used to identify continuous-

time filter parameters from frequency response data, which is essentially fitting a transfer

function into experimental frequency response data.

The common used inputs for invfreqs are frequency response data, orders of numerator

and denominator. The first one, that is frequency response data, has already obtained.

Based on the analysis of bode plot in the previous paragraph, the order of denominator in

the transfer function exceeds that of numerator by 2. As a result, a transfer function with

8th order numerator and 10th order denominator is fitted into frequency response data up to

5 kHz, since beyond 5 kHz noise and lack of sample points per period flaw the measurement.

The returned transfer function fits well with frequency response data as shown in Figure 2.9.

Model is also automatically stabilized by algorithms inside invfreqs.

The fitting transfer function is given by
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Figure 2.9: Transfer function fitting

A = 1.087e004s8 − 2.963e009s7 + 1.31e014s6 + 6.538e017s5 + 3.888e021s4

+2.157e025s3 + 3.625e028s2 + 1.664e032s+ 1.1e035,

B = s10 + 5.729e004s9 + 1.863e009s8 + 2.656e013s7 + 2.448e017s6 + 1.364e021s5

+6.914e024s4 + 2.339e028s3 + 6.788e031s2 + 1.309e035s+ 1.95e038, (2.14)

where A is the numerator and B is the denominator. All the poles are stable (see

Figure 2.10).

2.4.5 Model Reduction

The model identified is of 10th order, which adds complexity to designing corresponding

controller based upon H∞ method. For example, if the plant is of 10th order, the corre-

sponding H∞ controller usually is of 10th order or even higher. Thus it is necessary to
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Figure 2.10: Poles(X) and zeros(O) on complex plane

implement Model Reduction technique to reduce computational complexity, which is crucial

for high-speed controller implementation.

One of these techniques, named Balanced Realization, uses hankel singular values σi of

transfer function, say H(s), as a measure of importance for each corresponding state xi in

terms of contribution to input-output behavior [15]. By implementing balanced realization,

the importance of each state could be easily estimated and then it is possible to remove

certain states from the original model without significant change system behavior.

By calling matlab function balreal, a vector consisting of hankel singular values is obtained

and shown in Figure 2.11. As it shows, the last two singular values, which belong to 9th and

10th state respectively, are negligible compared to other singular values. This means that

we could simply remove the last two states in the original model and still maintain almost

the same system response.

By calling matlab function modred, the last two states are removed and the corresponding

system response is shown in Figure 2.12 along with those from the experiment and fitting
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Figure 2.11: Hankel Singular Values of H(s)

model. As we can see here, the reduced model matches well with both experimental system

response and fitting model, which is prediced based on results from balance realization.
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Figure 2.12: Bode plots of transfer functions from original experiment, fitting model, and
reduced model
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Chapter 3

Control Design and Implementation

Once system identification is done, what remains is control design and implementation. As

shown in Figure 3.1, square root, power amplifier, XY stage, and sensor blocks constitute

the model identified in Chapter 2. Physically, the controller, square root, reference signal

generator and subtraction blocks all reside by dSpace process board.

Figure 3.1 shows the closed loop configuration. The next step is the design of a controller

that achieves good closed loop bandwidth, stability, resolution, and robustness. Over the

past half century, a lot of control theories have been developed to address these issues inside

control systems. For example, Proportional-Integral-Derivative, also known as PID, control

is widely used in industry since its introduction in 1939. Other more advanced control

theories, such as adaptive control, achieve very high control performance since controllers

are being adaptively modified based on feedback information [7]. Other control theories, for

example, iterative learning control(ILC), design controllers in such a way that it runs the

Figure 3.1: Block Diagram of closed loop System
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whole process for multiple times and the controller learns from the past performance [8].

ILC is extremely useful for massive production process since it can afford some failure in

production at the very initial stage. For example, it is not an issue to have 100 initial

products fail while the remaining 9900 are precisely manufactured. Usually, advanced control

methods renders better performance than PID but are much more complicated to learn and

implement. Therefore, PID is still dominant in industry and other more advanced control

theories are yet to gain more attention from control applications. Recently, H∞ control

have been reportedly implemented successfully in many areas, such as parallel kinematics

nano-positioner [9]. Compared to other advanced control techniques, H∞ control is as simple

as PID to use while providing a systematic way of designing. For example, one only need

to assign the desired sensitivity transfer function S, complement transfer function T , and

reference-to-controller output transfer function KS. By using standard algorithms that

solve convex optimization, a controller that achieves approximately the desired performance

is readily obtained. In this chapter, both PID and H∞ control have been designed and

implemented for controlling MEMS probing device. By doing this, H∞ control is compared

with traditional PID control and then the advantages of H∞ control are demonstrated.

3.1 PID Control

3.1.1 Introduction

The PID controller is given by

u(t) = KP e(t) +KI

∫ t

0

e(τ) dτ +KD
de

dt
, (3.1)

where u(t) is the control effort at time t, e(t) is the error(reference signal minus feedback

signal). KP , KI , and KD are gains for proportional, integral, and derivative actions.

Equivalently, PID controller could be expressed in terms of transfer function as follows,

24



U(s)

E(s)
= KP +KI

1

s
+KDs. (3.2)

The proportional action is simply proportional to error e(t) by a factor of KP , which

is the most intuitive idea in feedback control: the larger the error is, the more effort the

controller puts in order to pull feedback signal back to the set point. The integral action,

on the other hand, is proportional to the integral of error over time t by a factor of KI .

Essentially integral action is designed to eliminate static error e(∞) since as long as error

is not zero the integral action will be increasing or decreasing control effort accordingly in

order to drive feedback signal to the set point. Usually, Proportional-Integral(PI) controller

is enough for controlling first order plant with a commonly used version given by

u(t) = K[e(t) +
1

Ti

∫ t

0

e(τ) dτ ], (3.3)

where Ti is the integral time. As long as Ti is finite, error will eventually decays to zero.

The derivative action aims to increase stability margin of feedback systems. Combined with

proportional action, the Proportional-Derivative(PD) controller is essentially extrapolating

the error by first order approximation. The control effort of PD controllers is determined by

u(t) = K[e(t) + Td
de(t)

dt
], (3.4)

where Td is the derivative time. By Taylor Expansion, the first order approximation is

achieved by

e(t+ Td) ≈ e(t) + Td
de(t)

dt
. (3.5)

A commonly used version of PID controller is expressed by

u(t) = K[e(t) +
1

Ti

∫ t

0

e(τ) dτ + Td
de

dt
]. (3.6)
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For more details about PID control, refer to [16].

3.1.2 PID Controller Design

There is a vast literature on PID controller design. One of the most notable tuning scheme

is the Ziegler-Nichols method. It is simple and intuitive for even people with minimal

knowledge of control theory to use. Ziegler-Nichols method is a heuristic way to determine

parameters for PID controllers. For example, one of Z-N methods is based on frequency

response. First, apply proportional only control in the feedback loop. Increase proportional

gain KP to the ultimate value Ku with which the output oscillate with period Tu. Determine

corresponding KP , KI , KD based on the Table 3.1

Table 3.1: Controller parameters for the Ziegler-Nichols frequency response method

Controller K/Ku Ti/Tu Td/Tu
P 0.5
PI 0.4 0.8

PID 0.6 0.5 0.125

However Z-N method only gives a good start in the controller design. Empirical tuning

is needed to obtain a reasonable closed loop performance. There are several rules of thumb

to follow when tuning PID controller according to [16].

• Increasing proportional gain KP speeds up system response but decreases stability

• Error decays more rapidly if integration time Ti is decreased

• Decreasing integration time Ti decreases stability

• Increasing derivative time Td improves stability

There are also other advanced methods in PID control designing, such as optimization

method, robust loop shaping, etc. according to [16]. We will save this effort for the more
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powerful and convenient controller designing method, H∞ method. In this section about

PID control design, empirical tuning method is adopted to design a PID controller since it

is simple to use and the system to control is complicated.

3.1.3 PID Controller Implementation

As demonstrated in Figure 2.9, there is a zero in the transfer function around 80 Hz, which

makes PID controller design a little bit difficult from open loop shaping point of view since

we want the open loop transfer function L to cross 0 dB around this frequency region based

on the fundamental limitation from sensor discussed in Chapter 2. Instead, a pole around

80 Hz is included in the modified PID controller as follows

C(s) =
1

s/500 + 1
· (KP +KI

1

s
+KDs), (3.7)

where the values of KP , KI , KD are decided by empirical rules as shown in the previous

section. First, increase the proportional gain KP until it almost reaches the ultimate gain

Ku. Then increase KI to eliminate static error until the feedback system almost becomes

unstable. Increase KD to stabilize the system which however proves to be not necessary in

this case. Therefore, the PID controller with an impressive performance is presented as

C(s) =
1

s/500 + 1
· (100 + 300000

1

s
). (3.8)

The resulting feedback system that operates at 10 kHz is thus identified by DSA. Corre-

sponding sensitivity function S and complement sensitivity function T are demonstrated in

Figure 3.2 and Figure 3.3 respectively along with their simulation counterparts. As we can

see in these two figures, the simulation and experiment matches well up to 500 Hz. Beyond

that, the time delay take control of phase delay as predicted.

The closed loop bandwidth defined by S is around 26 Hz while that defined by T is

around 32 Hz. Step response and tracking performance are also demonstrated in Figure 3.4
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Figure 3.2: Bode plot of sensitivity function S

Figure 3.3: Bode plot of complementary sensitivity function T
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Figure 3.4: Step response of the closed loop system based on PID controller

and Figure 3.5. From results shown here, PID control builds up a feedback system with

an impressive closed loop performance. However, there are some disadvantages about PID

control. First, usually it requires tedious tuning effort to work out a good controller. Second,

the performance is limited by the order of PID controllers. In the case demonstrated here, the

PID controller is only consisting of a first order low pass filter and a standard PID controller.

With more advanced controller, the closed loop performance is expected to be better. With

computerized method introduced in control design such as H∞ control, more complicated

controllers are available for control application to greatly improve control performance while

having work load reduced.
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Figure 3.5: Tracking performance of the closed loop system based on PID controller: tracking
a 7 Hz sinusoidal command

3.2 H∞ Control

3.2.1 Introduction

The general setup of feedback system is shown in Figure 1.2. In controller design, the way to

estimate its performance usually bases on several transfer functions, such as the sensitivity

function S, the complementary sensitivity function T , and controller output transfer function

KS. They are defined as follows

S =
1

1 +KG
, T =

KG

1 +KG
,KS =

K

1 +KG
, (3.9)

where G is transfer function of the plant to be controlled and K denotes that of the corre-

sponding controller.

The effect of reference r, disturbance d, and noise n effect system output y and tracking

error e is given by
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y = Gu+Gdd = GK(r − y − n) +Gdd,

y =
GK

1 +GK
r − GK

1 +GK
n+

Gd

1 +GK
d,

y = Tr − Tn+GdSd, and

e = r − y = Sr + Tn−GdSd. (3.10)

Essentially, S is the transfer function from r to e and thus is the primary measure of

the tracking performance. The larger the bandwidth ωs of S is, the better the tracking

performance is. Moreover, S also indicates robustness, which is verified by

dT/T

dG/G
= S. (3.11)

It indicates that smaller S is, the more robust the feedback system is respect to model

uncertainty within G.

Also since

max
ω
|S(jω)| = 1

minω |1 +G(jω)K(jω)|
, (3.12)

the smaller the maximal magnitude of S is, the more stabilized the feedback system is

since that means GK is further away from the critical point -1 on the complex plane.

The complementary sensitivity function T provides measures for scanning performance

and noise sensitivity as T is the transfer function from r to system output y, and also that

from noise n to y. Therefore, general objective of control design is to increase the bandwidth

ωs as much as possible while limiting ωt from exploding up as this introduces more noise.

Since we also do not want to put too much control effort to the certain control performance,

there we impose a limit on the size of the control effort. As the transfer function KS indicates

how reference r determines u, there must be consideration on designing KS too. Usually,
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Figure 3.6: S/KS/T mixed-sensitivity minimization in standard form(tracking)

in the design process, there will be an upper bound for KS.

The general setup of H∞ control design as shown in Figure 1.3 of Chapter 1 could be

converted into an optimization problem. One could refers to [17] and [18] for more details

about H∞ control theory.

The weight functions W1, W2, and W3 (see Figure 3.6) are chosen in a way such that the

following norm

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣


W1S

W2KS

W3T


∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
∞

, (3.13)
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is minimized, where || ◦ ||∞ is a norm defined as the maximum of the absolute values of all

the functions in the vector over the whole domain which, in this case, all frequencies. This

means each of |W1S|∞, |W2KS|∞, and |W3T |∞ are bounded by this minimum, named as

γ, the minimum over all K. In other words, |S|, |KS|, and |T | are bounded by |γ/W1|,

|γ/W2|, and |γ/W3| over all frequencies. Therefore, the controller design problem comes

down to choosing proper weight functions W1,W2, and W3 and achieving an acceptable γ

by available methods that solve the optimization problem over all possible controllers K.

These will secure a controller K that renders a desired closed loop system performance in

bandwidth, noise reduction , robustness, and stability.

There are commercial softwares dealing with such H∞ optimization problem available,

such as Matlab. Indeed, Matlab provides several functions addressing H∞ control design,

such as loopsyn, ncfsyn, and mixsyn. Among them, mixsyn provides synthesis of mixed-

sensitivities as shown in Figure 3.6 and provides an intuitive way for controller design.

Users only need to assign desired weight functions to mixsyn which guarantees a desired

closed loop performance, and receive a corresponding controller K, and the value γ based on

which users estimate how far away the actually sensitivity functions are from desired ones.

This process is almost as simple as PID controller design while is very likely to render a

better controller.

3.2.2 H∞ Controller Design

Before starting H∞ controller design, there are a couple of fundamental limitations on closed

loop systems which should be kept in mind.

First of all, S plus T is 1 since S = (1 + GK)−1 and T = GK(1 + GK)−1. This means

there must be a trade-off between S and T since a small S leads to a large T and vice versa.

In addition, in a closed loop system with phase margin (PM) less than 90◦, the two

bandwidths satisfy that ωS < ωT .
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Figure 3.7: Sensitivity reduction at low frequencies unavoidably leads to sensitivity increase
at higher frequencies

It has also been proved that the integral of bode sensitivity

∫ ∞
0

ln|S(jω)| dω, (3.14)

must be zero for any stable plant. Therefore it is not possible to make |S(jω)| arbitrarily

small at low frequencies since this leads to a large peak and thus raises issues in stability.

This piece of fundamental limitation on control design is well demonstrated in Figure 3.7

There are also other design constraints but the three mentioned above are the very im-

portant to follow during design process. Control designs are balanced between bandwidth of

S and T , robustness and stability. In control design, there is no single answer but a multiple

of them. Thus it is important to cope with preset objectives for closed loop performance. In

this case, a PID controller has already been setup. Thus in this work, the design objective

of H∞ control is mainly based on the previous standard and shows significant improvement

from PID control.
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Figure 3.8: Bode plot of weight functions ω1 and ω3

The key part of H∞ control is determining weight functions W1 and W3. W2 is left to be

empty in this case since we can always reduce the range of input to cut down control effort if

necessary and the disturbance is a very small signal. From the previous discussion, assume

γ=1, 1/W1 and 1/W3 are the desired upper bound for S and T respectively. Therefore W1

and W3 are assigned into forms as follows

W1 =
s/M + ωS

s+ ωSA
,

W3 =
s+ ωT/M

As+ ωT

. (3.15)

W1 is equal to 1/A at very low frequencies and drops down to 1/M at very high frequency.

The crossover frequency for W1 is around ωS. Similarly, W3 is equal to 1/M at very low

frequencies and rises up to 1/A at very high frequency. The crossover frequency for W3 is

around ωT . Once controller mixed-synthesis is finished successfully by convex optimization

with γ ≈ 1, corresponding sensitivity function S and complement sensitivity function T are

bounded by 1/W1 and 1/W3 respectively as shown in Figure 3.8. Note that if γ is not 1,

then these upper bounds should be multiplied by the constant γ.

In this design, choose parameters for desired weight function as follows. Since the zero
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from the sensor is around 80 Hz, there is no point of pushing ωS higher up. Moreover, ωT as

an indicator of noise sensitivity goes up as ωS increases. Therefore choose ωS to be around

60 Hz and correspondingly ωT to be around 70 Hz which leads to good noise attenuation.

A small M that is a little bit over 1 means good stability while an infinitely small A leads

to good robustness and good noise reduction too.

• A=1/1000

• M=2

• ωS=60 Hz

• ωT=70 Hz

Then run matlab command mixsyn. A 10th order controller is returned. γ = 1.085937433134438

means that design objectives are almost accomplished. Simulated closed loop performance

is compared with that with PID control in Figure 3.9. Based on this simulation, we expects

a better bandwidth as both ωT and ωT . From the simulation, ωS of H∞ is around 60 Hz

compared to that of PID around 26 Hz. ωT of H∞ is around 66 Hz compared to that of

PID around 32 Hz. Therefore the H∞ controller has a better closed loop bandwidth ωS

while sacrificing noise attenuation. Closed loop stability is maintained although bandwidth

is improved by the new design. |KS|∞ are still the same for both controllers and thus

reference-to-control imposes no further limitation on control implementation. By the new

H∞ control design, a control rendering a better closed loop performance is obtained without

increasing work load compared to PID control design.

3.2.3 H∞ Controller Implementation

The controller is implemented in dSpace process board. Before implementation, the 10th

order controller needs to be simplified since dSpace can’t run a continuous-time controller of

such a high order at a date rate around 10 kHz. Two parts of work have to be done before
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Figure 3.9: Comparison between H∞ and PID control
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Figure 3.10: Hankel singular values of H∞ controller

implementing H∞ controller. The first part is model reduction similar to that in Chapter 2.

The second one is to discretize the continuous model of reduced controller and implement it

into dSpace.

The hankel singular values obtained through balanced realization is presented in Fig-

ure 3.10. The first state is dominant over the rest, however we should keep as many states as

the hardware can afford. Among states from 2nd to 10th, 9th and 10th are relatively small

and thus are removed also due to hardware limitation. The simplified controller produces

almost the same closed loop performance as shown in Figure 3.11.

Now we have a 8th order controller obtained by H∞ and then model reduction. The

next step is to get a discrete time model of this controller in order to improve efficiency for

practical implementation. For linear time invariant system, we have its transfer function

which describes the dynamics of the system. However, controller is implemented in digital

system which only takes in a sequence of discrete input signal and output correspondingly

a sequence of discrete output signals. Similar to Laplace transform, z-transform is a way to
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Figure 3.11: Sensitivity function S by simulation: original H∞ controller V.S model-reduced
controller

describe discrete time signal by complex variable given by

X(z) ≡
+∞∑

n=−∞

x(n)z−n, (3.16)

where x(n) is a discrete-time signal and z is a complex variable. Thus X(z) is the repre-

sentation of x(n) in the complex plane. A digital filter with input x and output y is in the

following form

y(n) = −
N∑
k=1

aky(n− k) +
M∑
k=0

bkx(n− k). (3.17)

Correspondingly, by z-transform, the input-output relation in complex domain is derived

by

Y (z) = −
N∑
k=1

akY (z)z−k +
M∑
k=0

bkX(z)z−k,

thus,H(z) =
Y (z)

X(z)
=

∑M
k=0 bkz

−k

1 +
∑N

k=1 akz
−k
. (3.18)
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Therefore, having H(z), a digital filter is reconstructed by inverse z-transform. One can

refer to Chapter 3 in [19] for further reading about z-transform.

Given a continuous-time filter, Bilinear transformaiton is implemented to transform it

into a discrete-time representation. It is a first-order approximation of natural logarithm

function that maps from z-plane to s-plane, or vice versa. Replace s in the continuous-time

model with the approximation shown in shown in

s =
1

T
ln(z)

=
2

T
[
z − 1

z + 1
+

1

3
(
z − 1

z + 1
)3 +

1

5
(
z − 1

z + 1
)5 +

1

7
(
z − 1

z + 1
)7 + · · ·]

≈ 2

T

1− z−1

1 + z−1
, (3.19)

and then obtain a discrete-time model by first order approximation. For further reading

about Bilinear transformation, one can refer to [20]

The process is further simplified by the matlab command c2d which directly converts

a continuous model into a discrete one using the method ”tustin”. The return discretized

controller is given by

K(z) =
66.13z8 − 289z7 + 471.7z6 − 243.7z5 − 256.3z4 + 482.7z3 − 320.4z2 + 102z − 12.95

z8 − 4.371z7 + 7.014z6 − 4.03z5 − 0.883z4 + 0.8039z3 + 1.835z2 − 1.885z + 0.5157
.

(3.20)

Then implement this discretized controller in dSpace. Obtain the sensitivity function S and

transfer function T through experiment as shown Figure 3.12 and Figure 3.13 respectively.

The experimental results matches well with simulation up to 500 Hz beyond which the time

delay of dSpace takes the dominance. The actual ωS is 68Hz and ωT is 74Hz. Step responses

and Tracking performance are also demonstrated in Figure 3.14 and Figure 3.15 respectively.

The resolution of positioning achieved by the closed loop system is also shown in Figure 3.16.

Both estimations are based on 10000 samples taken from each output respectively. The

resolution is down to 0.0531µm. This is a better result in terms of noise reduction compared
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Figure 3.12: Sensitivity function S: experimental v.s simulation

to that given by open loop system as also shown in Fig 3.16. This is also one of the benefits

for having feedback system rather that open loop ones, as discussed in [16].

The H∞ controller renders a better closed loop performance compared with PID. From

the design process discussed in this chapter, it is also shown that H∞ control does not add

tedious work load for control engineers while providing a better controller.
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Figure 3.13: Transfer function T: experimental v.s simulation

Figure 3.14: Step response of the closed loop system based on H∞controller
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Figure 3.15: Tracking performance of the closed loop system based on H∞ controller: track-
ing a 20 Hz sinusoidal command

Figure 3.16: Histogram of measured comb drive positions around a steady state position: a)
Open Loop; b) closed loop.
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Chapter 4

Conclusion and Future Directions

A MEMS probing device, which is driven by an electrostatic comb drive is presented in this

article. This MEMS device is a linear time invariant (LTI) system and has a mechanical

dynamics that is similar to a typical underdamped second order system. Nonlinearity is

introduced since the driving force F is proportional to V 2 where V is supply voltage for

the comb drive. However this issue is solved by treating V 2 as the controller output. In

order to capture the movement of the comb which changes linearly with corresponding comb

capacitance, a universal capacitance readout IC is implemented and is able to produce output

voltage that changes linearly with input capacitance. Thus by doing this, the displacement of

comb drive around the operating point is estimated. However, the linear measurement of the

sensor does have a limit. The sensor introduces a zero around 80 Hz in its transfer function

and thus the measurement is linear up to around 80 Hz. This means the sensor reading

is not reliable beyond that frequency. As a result, the target bandwidth ωS is assigned to

be less than 80 Hz, which also leaves room for improving other closed loop performances

such as noise reduction. The model for XY stage, combined with the capacitance sensor, is

identified and further simplified by model reduction method.

The main objective of implementing feedback control is to reduce effects from distur-

bance, attenuate noise, and improve model robustness. PID controllers are widely used by

industry for their simplicity to implement. As shown in this article, empirical PID control

does an impressive job even in controlling MEMS probing device which is difficult to control

since it is sensitive to noise, disturbance, and often embed large model uncertainty. How-

ever, as noted in the Chapter 2, the implemented PID controller is an advanced one with
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an additional pole included and often it is tedious to tune those parameter, KP ,KI ,KD. In

contrast, H∞ control is based on convex optimization. What is needed is to design desired

weight functions which defines the designed transfer function S, KS, and T . The result-

ing controller K is given by convex optimization with weight functions as constraints. H∞

control is a highly automated design process with input of the process comprehensively de-

scribing desired closed loop performance. It is more advanced than PID control and remain

flexible and easy to implement. The main goal of building up a feedback loop around MEMS

device is tracking the reference position of XY stage along each axis. Since X and Y axe

are decoupled, studying the position control along a single axis is enough. Therefore in

this work, the feedback system is a single-input-single-output (SISO) one. The design on

weighting functions for S, KS, and T are given in Chapter 3. The main idea behind it is to

balance closed loop bandwidth and noise attenuation, stability and robustness since there

are fundamental constraints for any feedback system. There is also a 80 Hz frequency limit

imposed by the purchased capacitive sensor. The resulting controller is of 10th order and

is however, beyond the reach of the dSpace control board. It is then necessary to imple-

ment model reduction method based on Balanced realization. The order of H∞ controller is

therefore reduced to 8th and the simplified controller is further discretized by Tustin method

for the purpose of improving implementation efficiency. The closed loop performances are

demonstrated in both frequency and time domain. From experimental results, the Hinfty

controller renders a feedback system which has a better closed loop bandwidth and a better

robustness than the PID controller implemented in this work. Moreover, H∞ control does

not require tedious empirical tuning and provides a more comprehensive way of controller

designing. This is important in many areas of controls, such as aerospace, nano-positioning

since corresponding devices to control can not afford a Trial and Error approach. In conclu-

sion, H∞ control is an ideal way of controller design for nano-positioning application since

it provides a comprehensive and computerized designing process for fashioning robust con-

trollers. MEMS devices can be heavily effected by noise, disturbance and model uncertainty.
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Therefore, the properties of H∞ mentioned here are essential for these issues.

As the previous analysis tells, the bandwidth of the closed loop system is limited by the

capacitive sensor used in experiment. In order to achieve the feedback control of scanning

mode operating around the resonant frequency 600 Hz, a sensor with better bandwidth

has to be brought in. Since the displacement control of comb drive along a single axis is

achieved, the further work also includes designing H∞ controller for a Multi-Input-Multi-

Output (MIMO) system which has position references for each of X and Y axis as inputs

and displacements along both axe as outputs. Since the displacements along the two axis are

decoupled theoretically and the only changes in control design process are replacing scalar

weight functions with matrix ones, it is expected that H∞ control method can also achieve a

feedback system for the 2-axis motion control of XY stage with high bandwidth, robustness,

stability, and noise reduction.
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