
 

 

 

 

 

EXPERIMENTAL STUDY OF THE DEVELOPMENT OF PLASTIC SOLITARY WAVES  

IN ONE-DIMENSIONAL GRANULAR MEDIA  

 

 

 

 

BY 

 

TOMMY ON 

 

 

 

 

 

 

THESIS 

 

Submitted in partial fulfillment of the requirements 

for the degree of Master of Science in Aerospace Engineering 

in the Graduate College of the 

University of Illinois at Urbana-Champaign, 2011 

 

 

 

Urbana, Illinois 

 

 

Advisor: 

 

Professor John Lambros 

 

 

 

 

 

 



ii 
 

Abstract 

 

 In this work, a modified split Hopkinson pressure bar (SHPB) is used to impact one-

dimensional granular chain of spheres. These homogeneous chains used here comprise of brass, 

aluminum, or stainless steel spherical beads, ranging from a single sphere to a chain of fourteen, 

and are of interest because of their unique wave propagation characteristics, as seen in earlier 

efforts. Loading magnitudes spanning from 9 kN to 40 kN – considerably higher than most 

previous works on these systems which have been conducted in the elastic regime – cause the 

granular chains to deform plastically. These conditions allow for solitary waves, which propagate 

in the one-dimensional array of elastic spheres, to be studied in the plastic regime. The 

propagating pulse assumes a distinctive shape after travelling through five beads, and can 

consequently be realized as a plastic solitary wave. The wave speed of this pulse was seen to 

depend on maximum force, as in the elastic as, although it was measured to be less than the 

elastic wave speed. In addition, the plastic velocity varied with the 1/9
th

 power instead of the 

1/6
th

 power for the elastic speed. For the case of brass, the plastic wave propagates at 50% to 

80% the speed of the elastic wave, depending on whether the incident or transmitted force is 

compared. It was found that there is also decreasing plasticity along the chain length except at 

the end beads in contact with the SHPB, which rebounds into the bar and are hit again. This 

research is the first to investigate in detail the development and evolution of a plastic solitary 

wave and will form the basis of future work in this area.  
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Chapter 1  

Introduction 

1.1 Background and Motivation 

Granular materials such as sand, gravel, sugar, and rice are everywhere in daily life. A 

granular medium can flow like a liquid, can be transported by the wind, and can be strong 

enough to support buildings. This variety of behavior has sparked interest in the research of these 

materials both from the fluid mechanics and the solid mechanics point of view. Granular media 

can transfer loads differently than continuum materials and support different types of 

propagating waves, such as a solitary wave. This phenomenon has been extensively studied in 

recent years. However, most of the studies conducted are in the elastic regime.  

The goal of this research is to determine the existence and nature of solitary waves in 

plastically deforming granular media. Here, by granular media we refer to an arrangement of 

macroscopic particles in mechanical contact. In the simplest form of an idealized granular 

medium, these particles can be considered spherical in shape. A one-dimensional array of these 

particles will be referred to as a “granular chain”. Solitary waves occur in granular chains under 

dynamic loading, and have been examined both numerically and experimentally in elastic chains 

(e.g., Sen et al., 2008). However, little work has been performed in the plastic regime of grain 

deformation. In the plastic regime two nonlinear responses act simultaneously: (i) the nonlinear 

contact between neighboring grains (responsible for the solitary wave generation in the elastic 

case), and (ii) the material nonlinearity introduced by plasticity. How these two interact is 

currently an open question. The interplay between these two nonlinear phenomena is studied in 
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this research to gain a better understanding of plastic solitary waves, and allow possible control 

and tunability of such waves for desirable results in microstructural material tailoring. 

1.1.1 Properties of Spherical Contact 

The contact between two elastic spheres is commonly modeled as the Hertz contact 

problem (Hertz, 1882). This considers two bodies contacting together, creating a resultant force 

between them over the small region of the surface of each body where the contact exists. A 

detailed formulation of the Hertz contact between spheres has been performed by Johnson 

(1985). This Hertzian formulation uses the following three assumptions: (1) the radii of curvature 

of the contacting bodies are large compared to the size of the contact region, allowing each 

surface to be treated as an elastic half-space, (2) the dimensions of each body are large compared 

with the radius of the contact region allowing the indentation stresses and strains to be 

independent from the evolving geometry, and (3) the contact is frictionless. These assumptions 

result in the contact between two elastic spheres behaving nonlinearly, and in fact without any 

linear component, while under compression. In addition the contact can, clearly, not sustain any 

tensile load. Due to these geometrical contact effects, the elastic force Fo exerted on two 

identical spheres in contact is related the distance of approach d of their centers by   

   
      

   

    , with      
       

  
,     (1.1) 

where a is the sphere radius, E is the Young’s modulus, and   is the Poisson’s ratio. When δ, the 

distance between the center of two spheres, becomes greater than 2a, no force is exerted, as 

shown schematically in Figure 1.1a ( is taken to be positive in compression). It is clear from 

Figure 1.1a that the nonlinearity of this (elastic) contact law at the origin is intrinsic, meaning 
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that there is no elastic content in it whatsoever. Figure 1.1b shows a visual representation of δ 

and d. 

 

Figure 1.1. (a) Nonlinear contact relation between two spheres. (b) Diagram of two spheres 

before and during compression. 

1.1.2 Differences Between Granular Media and Continuous Media 

In many cases granular media may appear to behave similarly to a bulk material as a 

whole, but recent detailed studies conducted show some significant differences. Such a 

difference is the stress “allocation” in granular media. Some researchers (e.g., Kanatani, 1979; 

Chang and Ma, 1991) argue that the stress tensor in granular media is not symmetric, and local 

couple stresses are critical to understanding the behavior of such media. However, Christoffersen 

et al., (1981) claim that the stress asymmetry is negligible and complicates the description of the 

mechanical behavior of granular media. Of course, as is well known, the general stress tensor in 
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a bulk medium is symmetric. Figure 1.2, taken from Bardet and Vardoulakis (2001), helps 

illustrate the differences between these two types of media configurations. The figure shows the 

transmission of force from the boundary, where loads are applied, to the interior of the material 

for a granular medium (left) and a continuum (right). The small triangles show contact locations 

among different grains, which are therefore able to transfer the external forces along some 

directions better than others, forming what are usually referred to as force chains (Cates et al., 

1998; Bouchaud et al., 2001). In the granular medium, the orientation and magnitude of the 

stresses depends on each grain coupling, and can be different from another couple.  

 

Figure 1.2. Visual differences between granular and continuum medium (taken from 

Bardet and Vardoulakis, 2001). 

When the granular particles are arranged in a one-dimensional array, or chain, they still 

exhibit a different behavior from a continuous medium. While this configuration allows the 

stress waves to propagate along a line through it, a chain of spheres will generate nonlinear stress 
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wave propagation due to the Hertzian contact discussed earlier. As a consequence of the 

interaction law shown in Figure 1.1a, which exhibits a sonic vacuum since it is not linearizable 

even for small magnitudes of force, only a solitary wave will be generated in the granular chain. 

A solitary wave has certain characteristics different than regular stress waves in a continuum: (1) 

the solitary wave maintains its shape as it propagates through the chain, (2) the wave propagates 

with a width of approximately five particle diameters in the chain, and (3) the speed of the wave 

is a function of the maximum input force, material properties of the particle, and the size of the 

particle, as illustrated in Figure 1.3. The velocity of propagating waves in the one-dimensional 

system scales as Fmax
1/6

 (Iida 1938, 1939; Coste et al. 1995). However, this relation does not 

seem to be verified for higher dimensions due to geometrical effects explained by Goddard 

(1990). To better understand the wave propagation phenomena in plastic granular media, the 

experiments conducted here will all be on one-dimensional granular chains.  

 

Figure 1.3. Schematic of a solitary wave in a granular chain. 

1.2 Solitary Wave in an Elastic Chain 

While studying the nonlinear behavior of a chain of beads, Nesterenko (1984) gave an 

analytical solution to the problem for Hertz’s contact law. Nesterenko (1983) has shown that the 
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dynamic response of granular media can support linear, weakly nonlinear and strongly nonlinear 

regimes for wave propagation. When the input load is in the same amplitude range as the static 

compressive force Fo (see Figure 1.3 for definition of Fo), the weakly nonlinear regime is 

achieved. In this regime, the propagating stress wave is oscillatory, and does not show signs of a 

solitary wave. This is partially caused by the magnitude of the precompression, which causes the 

chain to be relatively denser, allowing oscillating waves to transfer between the beads. When the 

input load is much greater than the static force acting on the chain, the strongly nonlinear regime 

is reached. Unlike harmonic waves in linear elastic media, a chain of granular media can support 

propagation of nonlinear solitary waves in the strongly nonlinear regime. Experimental evidence 

of these solitary waves in the strongly nonlinear regime was conducted by Lazaridi and 

Nesterenko (1985). A solitary wave in this regime propagates with a speed Vs and with a force 

magnitude much higher than Fo. This velocity is dependent on the maximum force Fm and 

particle properties such as the Young’s modulus E, bulk density ρ, Poisson’s ratio ν, and bead 

diameter a. The exact solution for this solitary wave, which contains the shape of a cos
4
 function, 

has a finite length equal to five particle diameters for a Hertzian contact interaction. In the 

strongly nonlinear regime, the speed of the solitary wave Vs derived by Daraio et al. (2006), 

reduces to 

          (
  

  
 
       

)

   

  
   

.      (1.2) 

 Further studies on the dynamic behavior of granular media have been conducted by 

Shukla (1990; 1991; 1992) by using photoelasticity to study wave propagation in granular chains 

made of polymeric disks, assumed to behave elastically in these experiments. The wavelength of 
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the loading pulse used was several times greater than the particle size. This condition allows the 

loading around the contact regions to be assumed as quasi-static in nature. Thus, Hertz’s contact 

law can be used to obtain the stresses, strains, and loads at each contact point. It was found that 

at a given contact, the load from the propagating wave increased from zero to a peak value, and 

then gradually decreased to zero. The peak loads decreased by 20 percent as the wave traveled 

through five disk diameters, which is considerably higher than the two percent drop observed in 

a bar of uniform material over the same distance. Though the forces involved allowed the disks 

to remain elastic, the difference in force reduction shows move variability in the granular case 

than in a continuum medium. Additional experiments conducted by Coste et al. (1997) on 51 

stainless steel bead chains observed pulses that propagate over a great distance, with a constant 

velocity and shape, matching signs of a solitary wave. Their bead chains were loaded via a 

vibration exciter with a maximum force of 100 N, and the results were in fair agreement with the 

theoretical predictions of Nesterenko (1983). The relatively small magnitude of the input force 

used (100 N) allowed the 51 stainless steel beads to remain elastic during the entire experiment. 

1.3 Objectives 

The main purpose of this experimental investigation is to provide a better understanding 

on the propagation of solitary waves in granular media when material nonlinearity, in the form of 

plasticity, is involved. Because of the high stresses at the contact region, yielding is expected to 

occur even under fairly small loads, and will become dominant as load levels increase. In fact, it 

can be shown that the load necessary to produce yielding in the spherical contact of two identical 

spheres of an elastic-perfectly plastic material of elastic modulus E and yield strength σy is  
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 (   

  

  )
 
, with       

 

 
   and         

 

       
,  (1.3) 

where Py is the force for the yielding, a is the sphere radius and ν is the Poisson’s ratio (Johnson, 

1985). Most experiments conducted so far in the literature to investigate solitary waves have 

gone to great lengths to use impact loads small enough not to introduce significant plasticity. 

However, in any practical applications of these materials, loads will be considerably higher. For 

example for typical properties for aluminum sphere contact of the size of particles used here Py is 

only 1.6 N. Therefore there is knowledge gap in the understanding of how material and contact 

nonlinearities interact, whether solitary waves exist, and if they do, whether they possess the 

same characteristics as the elastic solitary waves. Therefore the specific objectives of this work 

are: 

 To study the formation of a solitary wave in the plastic regime on a one-dimensional 

granular chain, including whether a solitary wave exists in the plastic case, and if it does, 

how many contacting particles are necessary for it to develop; 

 To compare the propagating wave velocity as a function of the maximum input force in 

the elastic and plastic case; 

 To find a correlation between the plastic propagating wave and the magnitude of the 

irreversible plastic deformation that occurs within a chain of beads. 

1.4 Outline 

This thesis reports research conducted on the testing of various sets of granular chains to 

achieve the objectives listed above. Chapter 2 describes the experimental tools used to generate 

plastic loading in one-dimensional granular chains, extract data from the granular media, and 
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how the data is analyzed. Chapter 3 discusses the continuum dynamic stress-strain response of 

the same materials used in the granular chain experiments. This will yield the, possibly rate 

dependent, material nonlinearity inherent in the beads. The contact nonlinearity in the dynamic 

regime is studied elsewhere (Wang and Lambros, 2011). Chapter 4 details the behavior of the 

solitary wave in the plastic chain, the speed of wave propagation in the chain, and physical 

deformations as a result of the irreversible plasticity, and chapter 5 provides conclusions drawn 

from this experimental effort. 
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Chapter 2 

Experimental Techniques Based on the Split Hopkinson Pressure 

Bar 

2.1  The Split Hopkinson Pressure Bar (SHPB) 

The SHPB, also known as the Kolsky bar, is a characterization tool which experimentally 

measures the mechanical response of materials deformed at high strain rates (10
2
/s to 10

4
/s).  

Since materials may behave differently when loaded statically and dynamically (here 

dynamically refers to impact loading), it is desirable to investigate material properties under both 

conditions. A strong impact, such as a hammer hit, can deform a specimen up to failure, but the 

details of the loading are not easily known or controllable. To obtain the dynamic material 

response under well-controlled dynamic loading, Kolsky (1949) devised the SHPB. Instead of 

using a direct impact of a single bar, as initially used by Hopkinson (1914), two elastic bars were 

employed, one on each side of the specimen, and an explosive blast was used to load one of the 

bars. The elastic bar between the impact source and the specimen is called the incident bar, and 

that after the specimen is called the transmission or transmitted bar, as shown in Figure 2.1. 

 

Figure 2.1. Schematic of a split Hopkinson pressure bar. 



11 
 

A modified SHPB is used here to gather the data presented in this thesis. Instead of 

explosive loading, a light single stage pressurized gas gun fires a projectile onto the incident bar. 

The projectile used is a shorter elastic rod made from the same material as the incident and 

transmission bars, and with the same diameter. The incident bar, transmission bar, striker bar, 

and momentum trap (discussed later) are manufactured from C350 maraging steel, which has a 

density ρ = 8100 kg/m
3
, Young’s modulus E = 200 GPa, and bar velocity c  √    = 4970 m/s. 

The incident, transmission, and striker bars have a diameter of 12.7 mm and lengths of 3.04 m, 

1.83 m, and 0.152 m, respectively. Strain gages are placed half way along the length of the 

incident and transmitted bars, and on opposite ends to compensate for strain readings caused by 

possible bending in the bars. Resistor strain gage EA-06-250BK-10C from Vishay 

Micromeasurements was used for all tests. All strain gages were connected through a signal 

conditioner which amplified the strain and sent it to an Agilent Technologies Digital 

Oscilloscope. 

2.1.1  Elastic Wave Theory  

 Basic elastic wave propagation theory helps explain the progression of waves in a 

standard SHPB experiment. When the striker bar is launched from the gas gun and impacts the 

incident bar, two compressive waves are created at the contact zone, travelling in opposing 

directions away from the impact. The compressive wave in the striker reaches the free end of the 

shorter striker first and reflects back as a tensile wave which unloads the striker bar/incident bar 

interface and removes the contact between them, thus causing the compressive wave travelling in 

the incident bar to also unload. This compressive pulse of finite size propagates along the 

incident bar until it reaches the specimen, where an impedance mismatch occurs and causes both 

a reflected and transmitted pulse. The interface between the specimen and transmission bar also 
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causes another impedance mismatch and another two additional waves. The final transmitted 

wave propagates through the transmission bar and reflects back from its free end. This evolution 

of waves is visualized in Figure 2.2 which displays an x-t plot of the waves in the SHPB. The red 

lines denote a compressive wave and the blue lines represent a tensile wave. The green lines 

denote the reflections within the specimen. The stresses within a specimen require approximately 

four reflections to reach homogenization (Ravichandran and Subhash, 1994). The areas shaded in 

grey are regions where stress is present and the white areas are regions of quiescence. 

 

Figure 2.2. X-t plot of waves travelling in a SHPB. 

When testing cylindrical samples (as is traditionally done) and stress homogenization in 

the sample is reached, the following equations are satisfied: 

              ,        (2.1) 
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            ,         (2.2) 

                             ,      (2.3) 

where     and      correspond to the input and output force into the sample,    is the cross-

sectional area of the bar, and   ,   , and    are the strain of the incident, reflected, and 

transmitted signal, respectively. Using one-dimensional wave propagation assumptions, the 

engineering stress and strain as a function of time in the sample can be calculated according to 

(Nemat-Nasser, 2000): 

       
        

  
,         (2.4) 

       ∫   ̇     
 

 
 ∫  

       

  

 

 
  ,     (2.5) 

where    is the engineering stress in the sample,    is the initial cross-sectional area of the 

sample, c is the speed of sound of the material,    is the initial length of the sample, and    is the 

engineering strain. By knowing the stresses as a function of time, the velocities of the specimen-

bar interfaces can be calculated from (Kolsky, 1949) 

  ̇   ̇   ̇    
  

  
 

  

  
 and   ̇   ̇   

  

  
   (2.6) 

where  ̇  is the velocity of the incident bar and specimen interface,  ̇  is the velocity of the 

transmitted bar and specimen interface, and the subscripts I, R, T are the corresponding velocity 

and stresses for the incident, reflected, and transmitted signals. The displacements of the two 
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specimen-bar interfaces can be calculated by integrating the velocities, which are a function of 

time, over the duration of the pulses. 

2.1.2 Controllable Loading Rates and Profiles  

The SHPB generally loads the specimen between the strain rates of 10
2
/s to 10

4
/s with a 

trapezoidal loading pulse, as shown in the incident signal termed “no shaper” in Figure 2.3. This 

type of input generates a large range of frequencies, and does not necessarily produce a constant 

rate of deformation in the specimen. The pressure in the gun can be varied, but that alone cannot 

span differences in two orders of magnitudes for the loading rate, and cannot change the shape of 

the pulse. Therefore, an additional need for pulse shaping techniques exists so that (a) a larger 

range of rates can be produced, and (b) specimen homogenization time (i.e., the time after which 

Fin=Fout) can be prolonged (Ravichandran and Subhash, 1994; Li and Lambros, 1999). A pulse 

shaper can consist of any material which is added to the beginning of the incident bar to alter the 

incident pulse profile. Christensen et al. (1972) were among the first researchers to use a pulse 

shaping technique to improve the accuracy of loading a specimen with a near constant rate 

compressive pulse. For extracting material properties, such as a dynamic stress-strain curve, a 

constant loading rate would increase the accuracy of the results. Several incident pulses that we 

have achieved in our experimental set-up with the addition of pulse shaping are shown in Figure 

2.3. This figure clearly shows the large difference in the oscillations within a pulse with and 

without shaping. Also seen in Figure 2.3 is the duration of the incident pulses, which all lie in a 

similar range. The duration of such a pulse is controlled by the duration of loading. In the case of 

this setup, the loading is from the impact of the bullet; hence the duration of the loading pulse 

depends on the length of the bullet as explained earlier. However, pulse shapers can also affect 

the input duration, as for example the case of a ductile Cu layer in Figure 2.3.  
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Figure 2.3. Incident signals with and without a pulse shaper (with contributions from 

Jamie Kimberly). 

 When the bullet or striker bar impacts the incident bar, the stress wave generated 

propagates back and forth within the SHPB system. Usually, only the pulses associated with the 

first loading wave are recorded, but the subsequent reflections are still able to induce multiple 

loading cycles onto the specimen. This can cause invalidated postmortem analyses of the 

specimen since the data recorded will be for the first loading, but the sample observed in any 

postmortem microscopy would have undergone multiple loadings. The concept of stopping 

additional stress waves from reaching the specimen, commonly known as momentum trapping, 
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first appeared in the early 1960s by Baker and Yew (1966). A later rendition of the momentum 

trap was developed by Nemat-Nasser et al. (1991) and is shown schematically in Figure 2.4. In 

addition to the conventional SHPB design, a transfer flange, an incident tube covering the bar, 

and a reaction mass are used. The incident tube is placed in contact with the transfer flange and 

reaction mass. When the striker impacts the transfer flange, it creates two compression pulses: 

one traveling in the incident bar towards the specimen and another traveling in the incident tube 

towards the reaction mass. The compression wave in the tube is reflected from the reaction mass 

and travels back to the transfer flange again as compression. This compressive wave is reflected 

from the traction free flange end as tension causing the incident bar to move in the reverse 

direction and avoiding additional compression of the specimen. We have implemented such a 

device in our SHPB and all experiments shown here have used the momentum trap, unless 

otherwise noted. A typical incident pulse generated with this arrangement contains a 

compression followed immediately by a tension which unloads the sample, as shown in Figure 

2.5 with compression being show as positive.  

 

 

Figure 2.4. Schematic of compression momentum trap. 
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Figure 2.5. Incident signal generated with momentum trap. 

The tensile portion of the incident pulse can be generated immediately after the 

compressive part ends by making the incident tube the same length as the striker bar, if both are 

comprised of the same material. The momentum trap can act as a loading duration limiter in 

addition to trapping successive input stress waves. This also limits the duration of the extended 

pulse caused by the use of pulse shapers. Two incident signals are shown in Figure 2.6, one with 

a momentum trap and one without. As seen, the differences in these signals are not noticeable, 

since the momentum trap should not affect the first part of the incident signal. However, the 

momentum trap does ensure that only a single loading pulse reaches the specimen which allows 

accurate post mortem measurements. As stated above, the majority of the experiments shown in 

this thesis are conducted with a momentum trap, unless otherwise noted. 
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Figure 2.6. Incident signals with and without a momentum trap. 

2.2  Adaptation for Testing Granular Chains 

As discussed in the introduction, here we are interested in studying the formation of 

solitary waves in granular chains subjected to high loads and high loading rates. A modification 

of the SHPB will be used for this purpose. The specimens studied in this thesis are linear arrays 

of spherical beads consisting of three metallic materials: brass alloy 260, aluminum alloy 2017, 

and stainless steel alloy 302. All beads are 9.5 mm in diameter, and a test specimen consists of 

either single beads or one-dimensional homogeneous chains of beads of lengths two to fourteen. 

Since the SHPB was mainly designed as a material characterization tool for cylindrical 

specimens, the same analysis as discussed above cannot be performed on spherical beads which 

would not necessarily be expected to reach a homogenized state. Without equilibrium in the 

forces on either side of a specimen, stress data cannot be accurately derived. Also, in some cases 

the resulting transmitted signal is quite low, so the transmission bar of C350 maraging steel was 
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replaced with an aluminum 6061 bar of equal length in those cases. Since the recorded data are 

strain measurements, the aluminum bar will produce higher strain and create a larger signal. This 

is important when the transmitted signal for an experiment is on the same order as the noise in 

the signal. Figure 2.7 shows a comparison of two tests conducted on ten-bead brass chains. Both 

tests had similar incident pulses, but the signal of the transmitted bar in the C350 maraging steel 

bar is comparable to the noise. This problem is alleviated by using the more compliant aluminum 

bar. The aluminum bar remains elastic throughout the experiments.  

 

Figure 2.7. Transmitted signal for 10 bead tests with different transmission bar material. 

Since the contact area between the bar and bead is small, the high stress concentration 

there can eventually indent the bar’s flat surface. In this case, a pair of platens should be used to 

protect the bar. The main criterion in selecting the platen material is to ensure acoustic 

impedance matching between the bar and platens in order to minimize wave disturbances caused 

by introducing the platens. Tungsten carbide is a material commonly used for platens because of 

its easy impedance matching with C350 maraging steel. For experiments involving brass and 



20 
 

aluminum spheres, an anvil is not needed because the lower yield strength of the materials does 

not cause bar indentation. However, anvils are needed when performing tests with stainless steel 

beads to prevent damage and indentation of the incident bar. Tungsten carbide is placed between 

the C350 maraging steel and stainless steel specimen, and an aluminum anvil of same bar 

diameter is used for the transmitted bar to effective act as a replaceable part of the bar. A 

configuration with both a tungsten carbide and aluminum anvil is shown in Figure 2.8.  

 

Figure 2.8. Specimen configuration with tungsten carbide and aluminum anvils. 

Performing tests on one-dimensional chains of beads requires a support system to 

maintain one-dimensionality during the test. This requirement is fulfilled by creating a holder, 

adapted from Spadoni and Daraio (2011), which consists of a hollow metal tube with threaded 

end caps which can be placed onto the bar. The holders are sized such that at each end a 

hemisphere extends from the tube and comes into contact with the bar, allowing a point contact 

between the flat bar surface and the adjacent bead. The edges of the tube are threaded by an end 

cap of larger inner diameter to ensure the caps will not interfere with the sphere specimens. A 

schematic of the holder setup is shown in Figure 2.9, and a picture of the holder with one end cap 
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mounted and one missing is shown in Figure 2.10. The beads are able to slide through the holder 

without resistance, and post-test observations from the beads inside the holder showed no 

plasticity caused by lateral expansion into the holder. Chains of beads ranging from two spheres 

to fourteen spheres were tested with the holder, with different length holder tubes for each 

corresponding chain length being made. The maximum length of 14 beads that can be tested with 

this setup is limited by the length of the transmitted bar. When the transmitted pulse reaches the 

free end of the transmitted bar and reflects back, the signal will be recorded on the strain gage. If 

this reflected signal from the free end of the transmitted bar overlaps with the signal of the 

original pulse, then the data will no longer be valid. The length of the transmitted signal is 

proportional to the length of the chain, which is described in chapter 4, and the maximum length 

of beads that can be tested in our SHPB without the signals overlapping is fourteen. 

 

Figure 2.9. Schematic of holder for granular chains. 

 

Figure 2.10. Image of the one dimensional sphere holder with one end cap in place. 
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A typical incident, reflected, and transmitted signal from a 13-bead stainless steel 

experiment using both a momentum trap and an aluminum transmission bar is shown in Figure 

2.11.  

 

Figure 2.11. Raw incident and transmitted signals acquired from a 13 bead experiment for 

stainless steel. 

Using such data from an array of beads, calculation of the input and output force on the 

chains can be made through equations (2.1) and (2.2). The engineering stresses and strains are 

not calculated in the bead experiments because they have no physical relevance. An example of 

force-in and force-out for a single brass bead is shown in Figure 2.12. The oscillations in the 

force-in are caused by the oscillations on both the incident and reflected signals.  In addition the 

displacement calculations derived from equation (2.6), can also be made. Figure 2.13 shows the 

measured front and back displacements from experiments on chain lengths of 1, 5, and 10 beads 

of brass. The difference between these curves is the net chain compression, δ, illustrated in 

Figure 1.1b, and is shown in Figure 2.14. Discussion on how to calculate the wave speed, finding 
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correlations from chain length, and analyzing the evolution of the transmitted signal for the 

granular chains are analyzed further in chapter 4. 

 

Figure 2.12. Force-in and force-out for a single brass bead.  

 

Figure 2.13. Displacement of a brass bead(s) on incident and transmitted interfaces.  
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Figure 2.14. Net chain compression of a brass bead(s) experiment.  
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Chapter 3 

Material Characterization 

Before evaluating the dynamic response of the granular chains, a process which is meant 

to probe the details of dynamic load transfer through plastically deforming contact points, it is of 

interest to know the elasto-plastic constitutive response of the materials themselves that 

constitute the spheres. Such information will allow us to separate the inherent plasticity 

nonlinearities from the contact nonlinearities which are also present in the granular system. In 

addition, precise knowledge of the, possibly rate-dependent, material response would be 

significant in any future numerical simulations that will be performed. Therefore, it is of interest 

to perform an initial set of experiments using the SHPB in its traditional role to determine the 

stress-strain response of the metallic materials used here over a range of loading rates. 

3.1  Specimen Preparation 

For the granular chains spheres made of brass alloy 260, aluminum alloy 2017, and 

stainless steel alloy 302 were obtained from McMaster-Carr (www.mcmaster.com). The 

diameters for all beads are 9.5 mm and the material composition, as supplied by the 

manufacturer, is given in Table 3.1. Figure 3.1 shows a photograph of one bead from each type 

of material. Since plastic material response strongly depends on processing conditions which 

affect microstructural features such as grain size, texture, etc., it is important to test the exact 

material of the beads themselves. Therefore the 9.5 mm diameter beads were machined into 

cylindrical specimens suitable for traditional SHPB testing. The cylinders were cut via electrical 

discharged machining from the spheres, with each sphere producing one cylinder of dimensions 
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6.6 x 3.3 mm (diameter x length). This diameter-length ratio best reduces radial inertia effects in 

the SHPB (Davis and Hunter, 1963). This size also allows the samples to be tested in both the 

SHPB and in a traditional servo-hydraulic machine (for static loading) under compression to 

obtain material properties under different loading rates.  

 

Figure 3.1. Image of 9.5 mm brass, aluminum, and stainless steel bead.  

Table 3.1. Manufacturer specification and measured chemical composition in wt %. 

 Grade Cu Zn Pb Fe Cr Ni C Mn Si S Al 

Brass 260 200 70 29.93 0.04 0.03 0 0 0 0 0 0 0 

Aluminum 2017 T4  4.1 0 0 0.5 0.1 0 0 0.8 0.6 0 93.9 

Stainless Steel 302 100 2 0 0 66.8 18 10 0.06 2.0 1 0.14 0 

 

3.2  Dynamic Homogeneous Material Response  

 Dynamic testing in the SHPB produced the stress-strain response of the materials 

subjected to loading rates in the range 1500/s to 3500/s, determined using equation (2.5), and 
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static tests in the MTS machine loaded the sample at a rate of 0.005/s. Results from a large span 

of loading rates will show whether the testing materials are rate sensitive or rate insensitive. 

When loaded in the SHPB, the sample experiences a stress wave on its incident face before the 

transmitted face, but the cylindrical sample is able to reach a force homogenization after four to 

five reflections of the stress wave in the specimen. Stress-strain results using equations (2.4) and 

(2.5) for SHPB tested samples are compared with data from statically tested samples to 

determine rate sensitivity. Additional force and strain results can be acquired with equations 

(2.1) and (2.2), which can lead to the variety of results shown in Figure 3.2 and 3.3.  

 

Figure 3.2. Six plot analysis on a brass cylinder. 

These figures show six different plots for a brass (Figure 3.2) and aluminum (Figure 3.3) 

test. The first figure, starting from the leftmost figure on the top row, shows the strain 

measurements recorded by the strain gages for the incident, reflected, and transmitted pulses for 

an experiment. Each portion of the signal has been plotted with the same starting time, 
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corresponding to the time of arrival of the incident wave at the specimen. The middle figure of 

the top row shows the results of using equations (2.1) and (2.2) to calculate the force input and 

output of the specimen. The fact that the two forces agree after a certain time confirms that force 

homogenization indeed occurs during the experiment. The third figure of the top row shows the 

result of using equation (2.4) to obtain the specimen stress history from the transmitted signal. 

The middle figure in the bottom row shows the calculation of strain rate during the experiment 

using equation (2.5). Note that often, depending on the details of pulse shaping, this is not 

necessarily constant. Integrating the strain rate according to equation (2.5) produces the strain 

history of the sample, as shown in the left figure in the bottom row. By eliminating time from the 

stress and strain histories we can construct the material stress-strain curve, as seen in the right 

figure of the bottom row. Here, the strain rate is also plotted again. 

 

Figure 3.3. Six plot analysis on an aluminum cylinder. 
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The stress-strain data for aluminum and brass over a range of loading rates are shown in 

Figures 3.4 and 3.5 respectively. The static and dynamic results for stainless steel were 

inadequate because the load limit of our instruments was not able to yield the steel samples. For 

the chosen alloys, both aluminum and brass response appears to be rate insensitive. Furthermore, 

a power law relation was calculated from the measured stress-strain data as described below. 

 

Figure 3.4. Engineering stress-strain curves for aluminum 2017 various loading rates. 

(Static result contributed by Erheng Wang) 
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Figure 3.5. Engineering stress-strain curve for brass 260 with various loading rates. (Static 

result contributed by Erheng Wang) 

The Hollomon (1945) analysis was used to find the power law relationship for the test 

materials. This analysis assumes the stress-strain curve is described by the power relationship: 

       
            (3.6) 

where    and    are the true stress and true strain of the material and n is the strain hardening 

exponent. Ductile metals at room temperature usually exhibit values of n from 0.02 to 0.5. This 

fit was applied to both the aluminum and brass samples and resulted in the power law relations in 

Figure 3.6 and 3.7, where n = 0.14 and 0.06, respectively. The strain hardening exponent is also 

correlated with the rate sensitivity of the material, with a larger value corresponding to a more 

rate sensitive material. Resulting values for both aluminum and brass agrees that both materials 

are rate insensitive, which is taken into consideration when adapted to testing for granular media.  
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Figure 3.6. Power law representation of the plastic stress-strain relation for aluminum 2017 

with an average strain hardening exponent of 0.14. 

 

Figure 3.7. Power law representation of the plastic stress-strain relation for brass 260 with 

an average strain hardening exponent of 0.06. 
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Chapter 4 

Dynamic Loading of Homogeneous Granular Chains  

4.1  Formation of Solitary Waves in Brass 

In this section we will concentrate first on results from the experiments on arrays of brass 

beads, as brass is the easiest material to work with. However, similar results were seen for other 

metals such as aluminum and steel. These are presented in section 4.2. 

It has been known that the dynamic response of elastic granular media in the strongly 

nonlinear regime can support solitary waves. These solitary waves are lumps of energy which 

Nesterenko (2001) found to be spanning the wavelength of approximately five particles in a 

spherical particle chain. In this work we are interested in investigating whether such strongly 

nonlinear solitary waves can exist in granular chains subjected to high loads and loading rate.  

4.1.1  Solitary Wave Development with Increasing Chain Length  

Specimen bead chains comprised of brass were tested at various lengths spanning from a 

single bead up to twelve beads. The resulting transmitted stress wave propagating through the 

beads was recorded by the transmitted bar strain gage. Single brass beads were initially tested. 

These results can be compared, as shown in Figure 4.1, to those from a cylindrical specimen 

used for obtaining the stress-strain curves, to view how the stress wave differs with the specimen 

homogenization. This figure compares the transmitted signal of a single bead and a cylindrical 

sample, both from the same material and loaded at approximately the same rate. Since both tests 

were loaded with almost identical inputs, as shown in Figure 4.2, their comparison can be a valid 
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approach to finding major differences between the two signals. The brass cylinder was cut from a 

brass bead, as stated in chapter 3, limiting the size of the cylinder. The actual volume of the 

cylinder is 60 percent of the sphere, but the differences in the transmitted stress wave are caused 

by another factor. The limited contact area between the flat bar surface and the spherical 

specimen changes the stress wave that propagates through the sphere. Since a cylinder has a 

large, flat area in contact with the bar, an almost planar stress wave is transmitted into the 

cylindrical specimen. In contrast, the limited contact area of the sphere with the bar, although 

increasing throughout the experiment, generates a transfer of load from the linear element (bar) 

into the nonlinear element (sphere) similar to that corresponding to a point load indentation. This 

effect has also been seen in cylinders in contact as shown by the photoelastic measurements of 

Sadd et al. (1992).  

 

Figure 4.1. Transmitted signal of a brass bead and a brass cylinder.  
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Figure 4.2. Loading pulses from the brass bead and brass cylinder samples from 

Figure 4.1. 

Comparing data from four single bead experiments in Figure 4.3, we see that the shape of 

the transmitted stress wave is quite repeatable. These four tests, shown by four separate colors, 

were loaded with an input pulse of similar shape and magnitude. Note that each single bead 

signal contains two peaks, which occur at a similar time among the four tests. The duration of 

each signal is also the same. Based on the experiments of two contacting hemispheres that show 

only one such peak (Wang and Lambros, 2011), it is deduced that the two peaks correspond to 

successive yielding of the front and back contact points on the single sphere. The unloading 

occurs because the limited loading pulse duration.  
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Figure 4.3. Four transmitted signals from single beads with similar loading pulses. 

As the number of beads in the chain increases, the stress wave which propagates through 

it begins to evolve beyond the two-yield form shown in Figure 4.3. The duration of the 

transmitted pulse increases as the chain length increases, as is seen in Figure 4.5 which shows the 

transmitted signal for bead chain lengths of one to five beads – five beads being the necessary 

number for the formation of a solitary wave in the elastic case. Even though the input load 

(Figure 4.4) is of the same 80 s duration in all cases, although not necessarily the same 

amplitude, the resulting transmitted pulse (Figure 4.5) is variable, partially attributable to the 

limited contact area between spheres. Note that the transmitted pulse duration for chains with 

two or three beads, is shorter than that of a single bead, and of the loading pulse duration. This 

result was seen consistently for repeated tests of two and three beads, and the reason for it is not 

clear. However, this “transition” occurs at the same time as the amplitude of the first and second 

peaks reversing in magnitude, as seen in Figure 4.5. The two peaks, which are thought to 

correspond to the yielding of individual contact points, also begin to converge into a single peak. 



36 
 

This becomes apparent in the four, and especially the five, bead case. As the number of beads 

increases, the transmitted pulse also begins to attain a trailing pulse of lower amplitude.   

 

Figure 4.4. Incident signals for brass bead chains of length one through five. 

 

Figure 4.5. Transmitted signals for brass bead chains of length one through five. 
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This trailing wave is more apparent in Figure 4.7, which shows the transmitted pulse for 

longer chains of beads, from five (same curve as that in Figure 4.5) to twelve brass beads in 

length. The duration of the transmitted stress wave increases as the granular chain length 

increases. This phenomenon does not appear for a cylinder of increasing length where the 

duration of the transmitted signal is not affected by the length of the specimen, but rather is 

controlled only by the incident loading duration. The increasing duration of the transmitted 

signal in the granular case is produced by a combination of the nonlinear contact between beads 

and the effect of plasticity, and may be useful in stress wave management and mitigation 

applications. Figure 4.6 shows the corresponding input for these transmitted signals. By 

comparing the amplitude of these incident pulses, it can be seen that the magnitude of the 

transmitted force decays with chain length. This can be attributed to the additional plasticity 

involved with the additional beads, which will lower the signal that reaches the transmitted bar.  

 

Figure 4.6. Incident signals for brass bead chains of length five through twelve. 
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Figure 4.7. Transmitted signals for brass bead chains of length five through twelve. 

The time when the transmitted signal first appears is not the same for different chain 

lengths; the previous two figures placed an offset to the initial point to better view the evolution 

of the stress wave with length. The actual transmitted signals shown in Figure 4.8 have different 

starting points for different lengths. Clearly, a longer chain will result in a longer time delay, 

corresponding to an increased travel distance of the transmitted wave. However, for the linear 

elastic case it is known that another property of solitary waves is that they travel at an amplitude-

dependent speed rather than a fixed wave speed. Specifically, as was mentioned in the 

introduction, in the elastic case the solitary waves travel at speeds according to equation (1.2), 

i.e., the wave speed is proportional to the 1/6 power of the maximum force. To investigate the 

possible force dependence of the wave speed, the results shown in Figure 4.8 are for experiments 

with similar impact forces, within the range of controllability of the SHPB device. Specifically, 

the test results shown in this figure were subjected to an incident loading pulse between 18 kN 



39 
 

and 25 kN. The clear time delay, which increases with bead length, is examined further when 

calculating the wave speed propagating through the chain as discussed in the next section. 

 

Figure 4.8. Unaltered signal for brass beads of various chain lengths. 

4.1.2  Wave Speed Calculations 

In traditional one-dimensional dynamic plasticity theory (e.g., Lubliner, 1990), a 

propagating elasto-plastic wave has an elastic precursor and a plastic wave component travelling 

at a slower speed than the elastic precursor. The elastic precursor travels at co=√ 
 ⁄  while the 

plastic wave travels at speeds cp= √  
 ⁄  where Et is the tangent modulus schematically shown in 

Figure 4.9, which varies depending on the current yield stress. In the case of the granular 

medium of interest here the force displacement relation is schematically illustrated by the 

(elastic) Hertzian contact law in Figure 1.1. In this figure it is clear that since the initial slope is 

zero, there should be no elastic precursor analogous to co. This is referred to as a sonic vacuum. 
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Note that this contact law, or in our case its plastic equivalent, is valid only if inertial effects in 

the beads are neglected, i.e., the beads are under homogenous conditions. Therefore, generally no 

elastic precursor is expected here, at least if a solitary wave is to form. Even in the event that the 

dynamic homogenization conditions do not hold, it is likely that the elastic precursor, travelling 

at speed cd of the material, will be very small.  

 

Figure 4.9. Stress-strain curve displaying the tangent modulus at yield. 

Using the strain data in the SHBP, the plastic wave speed can be calculated using the 

equation 

   
    

                  
 .        (4.1) 
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This simplified velocity V is the shortest linear distance along the entire chain of beads divided 

by the elapsed time of the propagating stress wave in the chain. N denotes the number of beads in 

the chain, a is the diameter of the bead, and ttotal is the time duration starting when the incident 

strain gage receives a signal and ending when the transmitted strain gage receives a signal. The 

travel time of the stress wave within the chain can be calculated by knowing the positions of the 

strain gages and the elastic wave transit time from between these locations and the incident and 

transmitted bar ends in contact with the chain. Since the material of the bar and the gage 

positions are known, both the wave velocity of the bar and the distance from the strain gage to 

the specimen can be calculated. This results in the travelling time of the wave within the incident 

bar and transmitted bar, which are denoted as tinc and ttrans, respectively. Thus, the denominator in 

equation (4.1) represents the travelling time of the stress wave that propagated through the chain. 

This wave speed is plotted against the chain length in Figure 4.10. Another attempt to find the 

travelling time of the wave was to measure the time between the peak of the loading pulse and 

the peak of the transmitted pulse. The purpose for using the peaks is to gauge the time of travel 

for the maximum amplitude of the wave. However, signals with multiple peaks, as shown in 

Figures 4.3 and 4.5 caused problems on the selection of the correct peak; therefore, the time of 

arrival of the wave is used instead.  

The plastic wave speed calculated in a single bead has significant variation compared to 

longer chains, which might be caused by the unrepeatability in the yielding time. Also a 

measurement error of just one microsecond would cause a total speed error of 50 m/s in a single 

bead. This error is not enough to compensate for the large differences in the wave speed for a 

single bead. However, the same one microsecond measurement error would equate to a total 

speed error of only 4 m/s for a chain of ten beads. For a certain load range, it can be seen in 
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Figure 4.10 that the wave velocity begins to level off, which might be caused by the formation of 

the solitary wave. This leveling zone appears to start around five beads in length, similar to the 

length of the elastic solitary wave. 

 

 

Figure 4.10. Plastic wave speed through one-dimensional brass beads of various chain 

lengths. 

 However, the solitary wave speed also depends on loading amplitude. It is expected that a 

larger force will result in a faster wave, as is the case for the elastic solitary waves. To better 

isolate the effects of loading magnitude, different loading inputs for a set chain length are 

displayed in Figure 4.11 and Figure 4.12 for six and ten bead chains respectively.  Aside from 

the magnitude of the incident pulse causing a direct correlation with the magnitude of the 

transmitted pulse, the rise time for the transmitted pulse is faster for a larger input load than its 

lesser counterpart. Comparing the 21 kN and 13 kN signals in the chain of six beads, both 

display similar incident loading rates, but the transmitted loading rate differs: a higher load 

magnitude causes a higher loading rate. The onset for the maximum signal in the transmitted 
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pulse is also affected by the loading signal. The stronger input caused the peak of the transmitted 

signal to occur earlier, which correlates with the faster wave speed.  

Figure 4.11. Loading and transmitted data for brass chains of six beads. 

Figure 4.12. Loading and transmitted data for brass chains of ten beads. 

Nesterenko (1984) described solitary waves forming under a chain of identical elastic 

beads with the velocity also scaling with Fmax
1/6

 when no initial precompression occurs. This 

relation is compared to the experimental brass chains, which consists of identical beads that 
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deform plastically under zero precompression. The measured wave speed for chains of more than 

five beads only are plotted against both the maximum incident force and the maximum 

transmitted force in Figure 4.13 and Figure 4.14, respectively. A power law fitted to the 

experimental data is compared to that of 1/6 power which is calculated by equation (1.2). In both 

comparisons, with the incident and transmitted forces, the experimental velocity scales less than 

Fmax
1/6

, approaching Fmax
1/9

 instead. This is likely an effect of plasticity which can have 

additional damping effects on the solitary wave generation. However, it is clear that the speed 

does depend on either input or output force, denoting that a nonlinear solitary wave is 

propagating after chain lengths of five beads. 

 

Figure 4.13. Wave speed vs. maximum incident force for various brass bead chains. 
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Figure 4.14. Wave speed vs. maximum transmitted force for various brass bead chains. 

 

4.1.3  Plastic Dissipation Along the Chain 

Since these granular chains are impacted under high loads, the brass beads undergo 

permanent plastic deformation. This deformation can be measured and studied to determine 

additional characteristics of energy dissipation along the granular chain, as opposed to only the 

global measures of transmitted force and wave speed discussed in the previous sections. The 

amount of plasticity a bead undergoes can be quantified by the area of the circularly deformed 

face on each side of the bead resulting from the plastic contact with its neighbors. Since this 

measurement is a postmortem examination, precautions are needed to ensure the measured 

deformation corresponds with the experiment. One possible error of such plasticity 

measurements is multiple impacts from reflections in the incident bar, which will cause 

successive reflections to compress the bead chain more than once. To eliminate such reflections, 

the momentum trap is used in every test, which ensures single pulse loading every time. 
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However, even with the presence of a momentum trap, multiple hits can be seen on a face of a 

bead, as exemplified by Figure 4.15 which shows a microscope image of multiple yield indents. 

The ring pattern is caused by the machining surface of the bar. The primary impact caused the 

larger of the deformations, while residual waves within the chain caused the smaller dent. These 

multiple impact zones are only present on the boundary beads which are in contact with either 

the incident or transmission bar, and are likely results of rebounds of the end beads onto the 

SHPB bars. Beads within the chain do not show noticeable signs of multiple impacts. This shows 

the energy of the reflections within the chain is able to compress a bead into a bar with which it 

was no longer in contact. 

 

Figure 4.15. Microscope image of a brass bead with multiple impact sites.  

 To compare the magnitude of plasticity that occurs within a chain of beads, the yielded 

areas are measured. This measurement is done by taking images of the deformed bead under a 

microscope, and measuring the yielded area by comparing the image with a scale. The average 

measured diameter at several locations is used to determine the area, as shown in Figure 4.16. In 

cases where multiple impacts are present, the largest deformation is taken as the yield caused by 

the primary stress wave. These yielded areas for several tests are plotted in Figure 4.17 as a 
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function of location along the chain. The location along the chain represents the position of the 

yielded face. The first data point corresponds to the yielded face of bead #1 in contact with the 

incident bar, while the second data point corresponds to the opposite face on bead #1. The third 

data point corresponds to the face on bead #2 which contacts bead #1, and so on. In theory the 

residual contact areas of adjacent beads on their common contact surface should be equal. 

However, it is difficult to decide which two faces of different beads are adjacent because their 

yielded area measurements are not necessarily the same. Therefore although each bead was 

numbered with its location along the chain we cannot definitively identify which side of the bead 

was facing the loading side of the granular chain. Therefore in the plots of Figure 4.17 the beads 

have been placed such that adjacent contact areas are as close as possible. Clearly, the plasticity 

in the middle of the chain is less than the plasticity closer to the edges for short chains, especially 

noticeable for the four bead tests displayed in red and blue in Figure 4.17. (Recall that the first 

and last measurement point in each curve corresponds to the beads in contact with the bar and 

contain evidence of multiple impacts.) Perhaps surprisingly, since a monotonic decrease of force, 

and therefore plastic dissipation, along the chain may be expected, the plasticity along the chain 

for short lengths is varying. Thus, the propagating stress wave appears to also vary as the solitary 

wave develops. However, for longer chains the early part of the data is monotonically 

decreasing, denoting a well-established solitary wave of decreasing amplitude.  
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Figure 4.16. Microscope image of deformed area with diameter lines. 

 

Figure 4.17. Yielded areas of brass bead chains of lengths four through twelve. 
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4.2  Effects of Material 

Aluminum 2017 and stainless steel 302 were also tested in addition to brass 260. The 

results from testing homogeneous chains of these materials are presented in the following 

sections. Generally the results follow the same trends as those above. One important difference, 

however, is that although the brass and aluminum materials are rate insensitive, the steel 302 is 

rate sensitive (Wang and Lambros, 2011). It is of interest to investigate what effects such 

material rate sensitivity will have when coupled with the convex nonlinearity of the contact law 

and the concave nonlinearity of the plasticity response. 

4.2.1  Aluminum (Alloy 2017) 

 Although fewer aluminum tests were conducted than brass, trends apparent from the 

aluminum results can be compared to those from brass. Figure 4.18 shows the transmitted signals 

for different lengths of one dimensional aluminum granular chains, indicating a similar trend to 

the brass chains. Of course once again additional beads in the chain length increase the delay of 

the transmitted signal and the amount of extra transit time required can be linked with the chain 

wave speed. These transmitted aluminum signals have a force which is present over a longer 

duration with multiple peaks, whereas the brass transmitted pulse contained a short, single peak, 

as seen by comparing Figures 4.8 and 4.18. The aluminum data also shows less of a trailing 

signal after the peak, indicating that in this case the material produces less dissipation.  
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Figure 4.18. Unaltered signal for aluminum beads of various chain lengths.   

The calculated plastic solitary wave speed for the aluminum chains as a function of 

length are shown in Figure 4.19 and are greater than that of brass. However, the dilatational 

wave speed of aluminum is also greater than the dilatational wave speed of brass.  The ratio of 

dilatational wave speed of aluminum compared to brass is roughly 1.4, whereas the ratio of the 

plastic solitary wave speed of aluminum compared to brass is approximately 1.6. Similar to the 

brass plastic wave speed which appears to reach a plateau around six beads, the aluminum wave 

speed appears to level off around the same length. However, additional tests for the same lengths 

are needed to determine which data points are consistent and accurate. 
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Figure 4.19. Plastic wave speed through one-dimensional aluminum beads of various chain 

lengths.  

The variation of wave speed with both the maximum incident force and the maximum 

transmitted force is also investigated for the aluminum experiments consisting of five or more 

beads, and is shown in Figure 4.20 and Figure 4.21 respectively. In this case, however, the power 

fit for these aluminum wave speeds is closer to the 1/6
th

 scaling from one-dimensional elastic 

granular chain theory, but the number of data points is limited. More experiments are required on 

the aluminum material, and at higher loads to conclusively answer the wave speed force 

dependence question.  
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Figure 4.20. Wave speed vs. maximum incident force for various aluminum bead chains.  

 

Figure 4.21. Wave speed vs. maximum transmitted force for various aluminum bead 

chains.  

4.2.2  Stainless Steel (Alloy 302) 

 Stainless steel is the last material tested with such one-dimensional homogenous granular 

chains. Limited testing was conducted on this material because an even larger impact force than 
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aluminum is needed to produce yielding in this case. Data from the dynamic material response of 

stainless steel was inconclusive, and the static loading did not reach a large enough load to yield 

the cylindrical sample, and therefore, was not presented in chapter 3. Regardless, two 

experimental data sets were acquired and are displayed in Figure 4.22 for chains of thirteen and 

fourteen steel beads. The longer chain again exhibits a longer time delay for the transmitted wave 

to propagate. Contrary to both brass and aluminum, however, is the shape of the wave after the 

primary pulse. Brass displayed a gradual decrease after the peak is reached, while aluminum 

portrayed in increase peak duration, followed by a rapid unloading of the stress wave. Stainless 

steel appears to contain both those qualities. The stress wave decreases after the primary peak, 

similar to brass, but reduces to a second steady stress level instead of dropping to zero. This 

secondary force level is maintained for a duration which is comparable to the duration of the 

primary loading and unloading.  

 

Figure 4.22. Unaltered signal for stainless steel beads of various chain lengths.  

 Studying the transmitted signals created by brass, aluminum, and stainless steel showed 

more detail on the evolution of the solitary wave. Comparing the differences and similarities of 
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the transmitted force as the specimen length increases allows a discrete view on how the solitary 

wave evolves. The behavior of this transmitted wave is affected by the amplitude of the loading 

pulse in addition to the material and length the wave propagates through. Such variables can 

affect the profile of the transmitted stress wave, the wave speed of the chain, and the amount of 

plasticity the chain undergoes.  
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Chapter 5 

Conclusions 

The SHPB was used as a dynamic loading tool to load granular chains beyond the elastic 

regime in order to study the propagation of solitary waves when plasticity is present. Granular 

chains of up to fourteen beads were loaded in this fashion. These chains were comprised of brass 

260, aluminum 2017, or stainless steel 302. Both brass and aluminum were found to be rate 

insensitive.  

By analyzing the transmitted wave for different chain lengths, and comparing these 

signals as the chain length increases, a transition in wave behavior was identified. Similar to the 

elastic case, the critical length for this transition resides between four and five beads, in which 

the transmitted signal started to behave in a predictable manner. After this critical length, for 

similar input amplitude and duration, the transmitted wave decayed in amplitude as the chain 

length increased. Also, the duration of the transmitted wave increased along with the chain 

length. Each of these propagated signals show signs of a primary pulse, similar to a cos
4
 function 

in shape, followed by a trail of decaying waves of lower amplitude. Prior to reaching this critical 

length, the transmitted signal varied in signal duration, and showed multiple peaks of a 

magnitude comparable to the primary pulse.  

The speed of the propagating wave within the chain was calculated to be less than its 

elastic counterpart for the same load. This speed was compared to the elastic relation of Velastic ∝ 

Fmax
1/6

, and the plastic velocity was found to be Vplastic ∝ Fmax
1/9

. The slower plastic velocity is 
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caused by the nonlinear contact between beads, in addition to dissipative effects from plasticity 

itself. 

The plasticity measurements did not show a monotonic decrease in force for every chain. 

The shorter chains displayed a varying amount of plasticity while the longer chains had a more 

consistent decrease. This may be caused by the solitary wave still being formed and is unstable 

or nonexistent in the shorter chains, while it has become more established in the longer chain. 

Additional work is needed to explore this issue further.
 

Regarding future work, additional experiments on different lengths of aluminum and 

stainless steel chains are needed to further affirm the evolution of the solitary wave in those 

materials, for which less data was acquired than for brass. Having more data will allow better 

comparisons and differences in the plastic solitary wave for different materials. This can help 

identify if and how much of an impact material properties have on this propagating wave. 

Experimentation on longer aluminum chains is needed to extract a better velocity relation with 

the maximum force. Having data from tests using a lower force can also benefit the set of brass 

data, to compare if the 1/9
th

 power relation remains consistent. Additional measurements on the 

physical deformation of different materials can also be used to compare differences between 

materials. Though less amount of yielding is expected from the stronger material, it can be 

beneficial to identify whether the varying plasticity occurs independently from material 

properties, and be a stabilizing effect on the solitary wave. 
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