
c© 2011 Pavithra Prabhakar

APPROXIMATION BASED SAFETY AND STABILITY
VERIFICATION OF HYBRID SYSTEMS

BY

PAVITHRA PRABHAKAR

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Doctoral Committee:

Associate Professor Mahesh Viswanathan, Chair and Director of Research
Professor Gul Agha
Professor Geir Dullerud
Aarti Gupta, PhD
Assistant Professor Sayan Mitra

ABSTRACT

With the advent of computers to control various physical processes, there has

emerged a new class of systems which contain tight interactions between the

“discrete” digital world and the “continuous” physical world. These systems

which exhibit mixed discrete-continuous behaviors, called hybrid systems, are

present everywhere - in automotives, aeronautics, medical devices, robotics

- and are often deployed in safe-critical applications. Hence, reliability of

the performance of these systems is a very important issue, and this thesis

concerns automatic verification of their models to improve the confidence in

these systems.

Automatic verification of hybrid systems is an extremely challenging task,

owing to the many undecidability results in the literature. Automated verifi-

cation has been seen to be feasible for only simple classes of systems. These

observations have emphasized the need for simplifying the complexity of the

system before applying traditional verification techniques. This thesis ex-

plores the feasibility of such an approach for verifying complex systems.

In this thesis, we take the approach of verifying a complex system by

approximating it to a “simpler” system. We consider two important classes

of properties that are required of hybrid systems in practice, namely, safety

and stability. Intuitively, safety properties are used to express the fact that

something bad does not happen during the execution of the system; and

stability is used to capture the notion that small perturbations in the initial

conditions or inputs to the system, do not result in drastic changes in the

behaviors of the system.

For safety verification, we present two techniques for approximation, an er-

ror based technique which allows one to compute as precise an approximation

as desirable in terms of a quantified error between the original and the ap-

proximate system, and a property based technique which takes into account

the property being analysed in constructing and refining the approximate

ii

system. With regard to error based approximation, we provide a technique

for approximating a general hybrid system to a polynomial hybrid system

with bounded error. The above technique is in general semi-automatic; and

we present a fully automatic efficient method for analysing a subclass of

hybrid systems by constructing piecewise polynomial approximations. In

terms of property based approximation, we propose a novel “counterexample

guided abstraction refinement” (CEGAR) technique called hybrid CEGAR,

which constructs a hybrid abstraction of a system unlike the previous meth-

ods which were based on constructing finite state abstractions. Our method

has several advantages in terms of simplifying the various subroutines in an

iteration of the CEGAR loop. We have implemented the hybrid CEGAR

algorithm for a subclass of hybrid systems called rectangular hybrid systems

in a tool called Hare, and the experimental results show that the method

has the potential to scale.

Though automated verification of safety properties has been well studied,

verification of stability properties is still in its preliminary stages with respect

to automation. In this thesis, we present certain foundational results which

could potentially be used to develop automated methods for analysis of stabil-

ity properties. We present a framework for verifying “asymptotic” stability or

convergence of (distributed) hybrid systems which operate in discrete steps.

We then ask a fundamental question related to approximation based veri-

fication, namely, what kinds of simplifications preserve stability properties?

It turns out that stability properties are not invariant under bisimulation

which is a canonical transformation under which various discrete-time prop-

erties (including safety) are known to be invariant. We enrich bisimulation

with uniform continuity conditions which suffice to preserve various stability

properties. These reductions are widely prevelant in the traditional tech-

niques for stability analysis thereby emphasizing the potential use of these

techniques for stability verification by approximation.

iii

To papu

iv

ACKNOWLEDGMENTS

The contents and form of this thesis have been the product of interactions

with and influences of various people. I would like to take this opportunity

to thank all who have made the realization of this thesis possible.

First and foremost, I would like to thank Mahesh Viswanathan for his

wonderful guidance during the past five years. He has been responsible for

initiating many ideas presented in this thesis, and nurturing them into results.

I am grateful to him for having given me the independence to explore and

learn new topics, and do research at my own pace. I have learnt from him not

only the art of formulating and solving problems, but also presenting research

ideas and results. He has influenced in many profound ways my growth as

a researcher. His delightful enthusiasm towards research and teaching has

always amazed and inspired me, and I will always strive to be an advisor,

researcher and teacher like him.

I am thankful to Geir Dullerud for his long-term collaboration, especially

for his inputs on the controls side of the research in the thesis. I am also

grateful to him for his advice and encouragement at various times.

I would like to thank Sayan Mitra for his collaborations on various chapters

of the thesis, and his input on the practical aspects of the research. More

importantly, he has been a fine mentor in the last few years of my PhD.

I would like to thank my committee members Gul Agha and Aarti Gupta

for their comments and suggestions on the thesis. I am thankful to Gul Agha,

Lou Van den Dries, Michael Heath, Daniel Liberzon, Jose Meseguer, Sariel

Har Peled, Manoj Prabhakaran, Slowamir Solecki, Mahesh Viswanathan,

Douglas West and many other for having taught me the courses which built

the necessary foundations for carrying out the research in this thesis. I would

like to thank Madhusudan Parthasarathy for his advice on various matters.

I would like to thank Vladimeros Vladimerou for his collaborations in the

earlier years of my PhD, which resulted in the work presented in Chapter

v

3. I am thankful to Parasara Sridhar Duggirala for his collaboration on the

work on hybrid CEGAR and his patient implementation of the tool Hare.

I would like to thank Fangzhe Chang and Ramesh Viswanathan for allow-

ing me to spend a few summers at Bell-labs; it not only provided a much

needed diversion from the main line of research, but also an opportunity to

learn many interesting things I would have otherwise missed.

I would like to thank Deepak D’Souza for having introduced me to the

area of Verification and motivated me to do research in this area. He has

also been responsible for teaching me the fundamentals of Verification, Logic

and Timed Systems.

Urbana-Champaign would not have been the same without the friendly

and encouraging environment provided by friends and colleagues - Sruthi

Bandhakavi, Rohit Chadha, Sridhar Duggirala, Mike Katelman, Vijay Kor-

thikanti, Rajesh Karmani, Edgar Pek, Camilo Rocha, Ralf Sasse, Payal Shah,

Aparna Sundar and many others.

This thesis would not have been possible without the love and support of

my family. I am thankful to my mother for her perpetual support and en-

couragement towards my education and career; and my father for his patient

efforts towards my personal and emotional growth, and more importantly for

having encouraged the independent thinker in me. This thesis is dedicated

to my sister, Pavana, for being a kind and patient friend in this journey of

life.

vi

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER 1 INTRODUCTION . 1
1.1 An Overview of Safety Verification 3
1.2 An Overview of Stability Verification 8
1.3 Contributions . 10
1.4 Organization of the Dissertation 14

CHAPTER 2 PRELIMINARIES . 15
2.1 Basic Definitions . 15
2.2 Hybrid Systems . 18

CHAPTER 3 POLYNOMIAL APPROXIMATIONS 24
3.1 An Overview . 24
3.2 Preliminaries . 26
3.3 Logical Characterization of Simulation 28
3.4 Polynomial Approximations and Approximate Simulations . . 31
3.5 Verification of Tolerant Systems 38
3.6 Stone Weierstrass Theorem in Practice 39
3.7 An Application: Air Traffic Coordination Protocol 40
3.8 Conclusions . 47

CHAPTER 4 PIECEWISE POLYNOMIAL APPROXIMATIONS . . 48
4.1 An Overview . 49
4.2 Post Computation by Flow Approximation 53
4.3 Approximation of Linear Dynamical Systems 57
4.4 Experimental Evaluation . 65
4.5 Conclusions . 70

CHAPTER 5 HYBRID CEGAR . 71
5.1 An Overview . 72
5.2 Preliminaries . 75
5.3 Rectangular Hybrid Automata (RHA) 76

vii

5.4 CEGAR for Rectangular Hybrid Automata 79
5.5 Implementation and Experimental Results 96
5.6 Conclusions . 100

CHAPTER 6 A FRAMEWORK FOR PROVING CONVERGENCE
OF DISCRETE-TIME HYBRID SYSTEMS 101
6.1 An Overview . 103
6.2 Motivating Example . 105
6.3 Preliminaries . 106
6.4 Stability . 112
6.5 Convergence . 114
6.6 An Application . 119
6.7 Conclusions . 121

CHAPTER 7 PRE-ORDERS FOR REASONING ABOUT STA-
BILITY . 123
7.1 An Overview . 123
7.2 Preliminaries . 126
7.3 Stability of Hybrid Transition Systems 131
7.4 Uniformly Continuous Relations and Stability Preservation . . 132
7.5 Applications of Theorem 67 136
7.6 Conclusions . 142

CHAPTER 8 CONCLUSIONS AND FUTURE DIRECTIONS 143

REFERENCES . 145

viii

LIST OF TABLES

4.1 Random Martices: Comparison of the Number of Subin-
tervals in the Approximation 66

4.2 Random Matrices: Comparison of the Time Taken for Con-
structing the Approximation 66

4.3 Standard Examples: Comparison of the Number of Subin-
tervals for Total Time T = 1, 2, 3 68

4.4 Standard Examples: Comparison of the Time for Con-
structing the Approximation for Total Time T = 1, 2, 3 68

4.5 Comparison of the Number of Subintervals in the Linear
and Quadratic Approximations 69

4.6 Comparison of the Running Times in the Linear and Quadratic
Approximations . 69

5.1 The columns (from left) show the problem name, sizes of
the concrete and final abstract hybrid automaton and num-
ber of CEGAR iterations . 99

5.2 The columns (from left) show the problem name, sizes of
the concrete automaton, time required for validation by
Hare, time taken for verification of abstractions and re-
finement by Hare, total time taken by Hare and finally
the time required for direct verification with HyTech 99

ix

LIST OF FIGURES

1.1 Approximation based Verification 11

2.1 Car Controller and Hybrid Automaton Model 20

3.1 The smooth landing paths adopted from [80]. 41

4.1 Constant time step Algorithm 64
4.2 Varying time step Algorithm 64

5.1 An example of a rectangular hybrid automaton 76
5.2 Counterexample Guided Abstraction Refinement Approach . . 80
5.3 An illustrative example . 95

7.1 Lyapunov stable system . 133
7.2 Unstable system . 133

x

CHAPTER 1

INTRODUCTION

The widespread use of computer-controlled devices has sparked the emer-

gence of a new class of systems which have come to be named Cyber Physical

Systems (CPSs). A unique feature of these systems is the tight interaction

between control, communication and physical components. Cyber Physical

Systems appear widely in various domains such as aeronautics, automotive,

robotics, medical devices, manufacturing and many others. These system

vary widely in size - they could be as small as a pacemaker or as large as

a power grid. These systems exhibit a mixture of discrete and continuous

behaviors, with the discrete part coming from the control and communi-

cation, and the continuous part from the physical processes. Such systems

with mixed discrete-continuous behaviors have more traditionally been called

hybrid systems.

With automation becoming an integral part of various applications due

to reasons concerning reliability, safety and efficiency, we can expect a huge

growth in the number and size of hybrid systems in the coming years. Since

these systems are going to be deployed in safety critical situations, there is

a pressing need for developing techniques and tools to aid reliable develop-

ment of hybrid systems. This dissertation addresses the problem of verifying

the design of hybrid systems for conformance to the desired behavior, and

develops techniques and tools to address this problem.

We focus on the development of formal verification techniques for ensur-

ing that a given design of a hybrid system satisfies a desired property of

the behavior of the system. Formal Verification entails defining a formal

or mathematical model of the system under study, a formal specification of

the property with respect to which the model needs to be verified, and a

method for checking that the model satisfies the specification. Verification

techniques can be broadly classified as algorithmic - those based on exhaus-

tive state space exploration called “model-checking” - and deductive - those

1

which reduce the problem to that of deciding the validity of a logical formula

and use theorem proving to check the validity of these formulas. Both these

methods have their own advantages and disadvantages. Traditionally, model-

checking based techniques have been automatic, where as theorem proving

based methods have been semi-automatic, often requiring user help. How-

ever, theorem proving based methods are generally able to handle a more ex-

pressive class of systems than what can be handled by model-checking based

methods. We are interested in automatic verification of hybrid systems, and

hence we focus on algorithmic techniques.

Analysis of hybrid systems brings new challenges due to the presence of

both discrete and continuous components. Discrete systems have been the

standard models for representing software and hardware systems; and have

been extensively studied by computer scientists. In fact, the area of verifi-

cation has its origin in computer science, with many advances in the theory

and practice of verification of software and hardware in the last few decades.

Continuous systems, on the other hand, have been investigated in the field of

controls, with the focus on synthesis of efficient controllers optimizing vari-

ous performance objectives. Since hybrid systems combine discrete dynamics

with continuous dynamics, the study of these systems has its foundations in

two different areas which have evolved fairly independently. One of the chal-

lenges in the analysis of hybrid systems is to combine techniques developed

in computer science and control theory in a consistent manner. Also, the

correctness criteria for a hybrid system is more involved; it needs to satisfy

properties from both the discrete and the continuous worlds. We will study

the verification problem with respect to two important classes of properties,

namely, safety and stability.

Safety is a property of a system which requires that a bad event does

not happen along any execution of the system. For example, in an aircraft

coordination protocol, collision between two aircraft is a bad event and we

would want any two aircraft to always maintain a minimum distance, which

is a safety property expected of the protocol. Safety has traditionally been

studied in the discrete setting; and is an important class of properties since

various correctness criteria of systems can often be formulated as a safety

property.

The second class of properties we study are stability properties. Intuitively,

stability requires that when a system is started somewhere close to its desired

2

operating behavior, it will stay close to that desired operating behavior at

all times. For example, we would expect the controlled behavior of a robot

to depend gracefully on small variations to its starting orientation; more

precisely, given any starting orientation there should be some neighborhood

of this orientation for which all trajectories that start in this neighborhood

remain close, and furthermore, it should be possible to ensure that the trajec-

tories are as close as desired by making the neighborhood sufficiently small.

Stability is one of the fundamental properties which is expected in the design

of any control system, so much so that a system which is not stable is deemed

useless.

In the next two sections, we provide an overview of the state of the art in

the verification of safety and stability properties.

1.1 An Overview of Safety Verification

One of the important factors in the reliability of a system is to ensure that

its behaviors fall into a desired set of behaviors. Often this set of behaviors

corresponds to the absence of certain bad events during the execution of the

system. Such requirements are referred to as safety requirements, since they

ensure that the system operates with in a safety envelope described by the

good set of behaviors. Safety verification has been studied extensively in the

discrete setting in the context of software and hardware verification, and has

resulted in the development of efficient techniques and tools for automated

analysis. Many of these techniques have been borrowed into the hybrid world

for the safety analysis of hybrid systems; however the addition of continuous

dynamics brings new challenges into the safety analysis. Next, we will discuss

some of the work on safety analysis of hybrid systems and explain how the

work in this thesis relates to it.

1.1.1 Modelling Formalisms

A first step towards formal analysis is to obtain a formal or mathematical

model of the system under study. There has been extensive research on

formalisms or languages for describing hybrid systems. The standard for-

malism for modelling discrete systems, namely, finite state systems often do

3

not suffice to capture enough information about the continuous dynamics

of a hybrid system. Hence the formalism of hybrid automata [2] has been

proposed which combines finite state systems with differential equations that

have been the standard framework for modelling physical processes in con-

trol theory and other engineering disciplines. These essentially generalize the

timed automata model [4] which extend finite state automata with certain

continuous variables whose values evolve with time at a constant rate of 1.

Hybrid automata have been used to model and analyse certain distributed

processes with drifting clocks, real-time schedulers and protocols for the con-

trol of manufacturing plants, vehicles and robots (see for example [6, 77]).

Hybrid Input/Output Automata [71] extend the formalism of hybrid au-

tomata with clearly defined input and output variables for the purpose of

communication. Some of the other formalisms and languages for modelling

hybrid systems include Modelica [43], CHARON [5] and Masaccio [55] which

provide formalisms for hierarchical modelling of hybrid systems, Simulink/

Stateflow and HyVisual [19] which are graphical languages for specifying hy-

brid systems, SHIFT [35] which allows the modelling of dynamic networks of

hybrid systems, and hybrid process algebras [31] which provides an algebraic

approach to modelling and analysis of hybrid systems.

Depending on the system being modelled and the property being analysed,

a particular formalism might be more suitable or convenient. In this thesis,

we refrain ourselves from the modelling aspects. We choose hybrid automata

as our modelling formalism, since, it is expressive enough to model most

practical hybrid systems, and also has simple representation for the purpose

of formal analysis.

1.1.2 Analysis

There are two broad approaches to automated analysis of safety properties,

namely, simulation and verification. We will discuss the work related to these

analysis techniques in the context of hybrid systems.

Simulation Simulation refers to the process of executing the system model

starting from a single initial state and examining the observed behavior to

determine if it conforms to the desired behavior. The de facto standard in

industries, such as aeronautics and automotive, for modelling and simulation

4

of hybrid systems has been the MATLAB based tool set Simulink/ Stateflow.

However, one of the main concerns in using this tool set for formal analysis is a

lack of clearly defined formal semantics of the underlying simulation engines.

Recently, there have been several attempts at formalizing the semantics of

various fragments of the language [101]. Other formalisms which support

simulation of the system models include Modelica [43], CHARON [5] and

HyVisual [19].

In practice, simulation based analysis does not cover executions from every

possible initial state, much less they allow one to observe the behaviour of

the system only at certain time points. There has been some research on

symbolic simulation where in the system is simulated starting from symbolic

states which represent a possibly infinite set of states [61]. Developments in

symbolic simulation techniques might go a long way in providing more robust

simulation based methods.

Since simulation is in general is not exhaustive, it does not provide any

formal guarantee about the correctness of the system. In contrast, verifica-

tion based analysis, tries to formally prove that the system satisfies a certain

property, and hence is more robust. The focus of this thesis is in developing

verification techniques for proving safety of hybrid systems.

Algorithmic Verification The main focus towards verification of hybrid

systems has been in developing algorithmic or model-checking based tech-

niques (except for some recent efforts towards developing theorem proving

techniques [87]). Some of the earliest work towards algorithmic analysis of

hybrid systems includes the development of the theory of timed and hybrid

automata [4, 1, 54, 52]. However, it was shown that safety verification is

undecidable for a relatively simple subclass of hybrid systems [54]. This lead

to a line of research consisting of identifying subclasses of hybrid systems

with decidable properties, which we will discuss next.

The class of timed automata was introduced in [4] and the reachability

problem for this class was shown to be PSPACE-complete. These are a

class of models which extend finite state systems with a finite number of

“clocks” which are variables whose values evolve with time at a constant

rate of 1. Even this simple extension to the discrete models leads to an

exponential blow-up in the complexity of verification [20]. Various tools

have been developed for model-checking the class of timed automata, most

5

prominent of them being UPPAAL [13] and Kronos [104].

In [54], undecidability of the class of rectangular hybrid automata (RHA),

was shown. These systems consist of variables whose evolution is such that

their derivatives belong to a specified constant interval. The same work

also identified a subclass of RHA called the initialized rectangular hybrid

automata, which consists of RHA satisfying the constraint that during a

mode change all variables with different dynamics in the modes before and

after the change are reset, for which safety is decidable. HyTech [56] is a

model-checker which implements a semi-decision procedure for the analysis

of RHA.

Generalizing rectangular hybrid automata, one obtains the class of hybrid

automata, where in, the gradient of the flow function belongs to a polyhedron,

rather than a rectangular set. Decidability has been established for various

subclasses of these hybrid automata [9, 91, 10, 11]. However, these results

hold in very low dimensions, such as, two or three.

Recently, decidability of safety verification was shown for systems with

certain restricted kinds of linear dynamics [66] (ẋ = Ax, where A is a con-

stant matrix satisfying certain constraints), and for a class of systems which

are definable in an o-minimal structure with a decidable theory [65, 18].

These systems allow rich continuous dynamics including polynomial and cer-

tain classes of exponential flows, but they decouple the dynamics in different

modes by resetting the variables along a discrete transition. Various relax-

ations of the discrete dynamics have been shown to be decidable [103, 44].

It has been observed repeatedly that decidability is achieved for classes

of systems with simple continuous or discrete dynamics. However, the fact

remains that most real-life systems do not fall into these classes of decidable

systems. This has lead to a broad range of approximation techniques, which

essentially simplify a complex system into a simpler system on which analysis

can be directly performed. The main focus of this thesis is also on developing

approximation based techniques for analysis of systems. Below, we briefly

review various existing techniques for approximation and how the results in

this thesis compare with them.

Approximations of Hybrid Systems The class of approximation tech-

niques can be broadly classified into two groups. The first class of techniques

aim at simplifying the continuous dynamics, and the second class of tech-

6

niques perform state-space reduction.

Simplification of continuous dynamics. These techniques focus on con-

structing a simpler system by mainly simplifying the continuous dynamics.

Further, there are two sets of techniques for simplifying the continuous dy-

namics. The first set focuses on simplifying the continuous dynamics by

approximating the “flows” - solutions of the differential equations represent-

ing the complex continuous dynamics - by simpler flows which are amenable

to efficient analysis. These techniques are typically applied to the classes

of systems for which there exist closed form representations of their flow

functions, such as, the class of linear dynamical systems (LDS) (where the

continuous dynamics is specified by ẋ = Ax, A is a constant n × n ma-

trix). Various techniques have been developed for the approximation of the

solutions of linear dynamical systems. These techniques construct piecewise

linear functions or ellipsoidal functions as approximations of the exponential

flow of the LDS [32, 64, 73, 24, 45, 46, 51]. We present a novel algorithm

which constructs piecewise polynomial functions. Our experimental results

show improvements both in the time for constructing the approximation and

the representation of the approximation, many a times by an order of 2 when

compared with the previous algorithms.

The second set of techniques construct a simpler system directly from the

differential equation or inclusion. More precisely, the state space of a com-

plex dynamical system is partitioned into a finite number of parts and the

continuous dynamics in each of the parts is approximated by a simpler dif-

ferential equation or inclusion. This is popularly known as the hybridization

approach; and has been widely studied for analyzing systems with non-linear

dynamics for which generally closed-form solutions are not known [92, 7, 34].

In both sets of techniques, one can often quantify the error in the approx-

imation, and approximation method is parametrized by this error. Hence,

these methods can be called “error-based approximation methods”.

State-space reduction. This refers to techniques in which the state-space

of the approximate system is typically “smaller” than that of the original

system. This has been the popular approach in verification of discrete sys-

tems with large number of states for which applying traditional verification

techniques directly is not practically feasible. Here, an abstract transition

system (hybrid or otherwise) that simulates the original hybrid system is

first constructed, and the reachability computation is then carried out on

7

the abstract system. Typically, the abstract system is a finite state system,

and is constructed, for example, by using predicate abstraction [100, 3, 26].

In some cases, the abstract system is also a hybrid system [60, 36].

In this method, the quality of the approximate solution cannot be quantita-

tively measured, and so, often this is compensated by repeatedly refining the

abstract system as the analysis progresses. One of the techniques for refining

an abstract system is based on analysing a counter-example of the current

abstraction, and is popularly called the Counter-Example Guided Abstraction

Refinement (CEGAR). CEGAR was first introduced in the context of soft-

ware verification [28] for discrete systems; there have been several proposals

for extending CEGAR to the hybrid setting [23, 3, 26, 27, 39, 97]. However,

these techniques typically construct a finite state abstraction of the hybrid

system. We propose a method called “Hybrid CEGAR” in which the abstract

system is also a hybrid system. We argue that choosing an abstraction space

of hybrid systems simplifies various tasks in a particular iteration of the CE-

GAR algorithm, thereby, ensuring the progress of the algorithm. We have

implemented our algorithm for the class of RHA in a tool called Hare, and

our experimental results suggest that the hybrid CEGAR approach has the

potential to scale. These abstraction refinement techniques can be classified

as “property based techniques”, since they take into account the property

being analysed both in constructing the approximate system and refining it.

Some of the tools which perform approximation based verification include

d/dt [8], PHAVer [41], CHECKMATE [25], MATISSE [48] and SpaceEx [42].

1.2 An Overview of Stability Verification

Stability is a property of the system which ensures that small perturbations

to the initial state or input to a system does not lead to drastic changes to its

future behaviors. This is an important property that a system is expected to

possess to be practically useful, since in practice it is unreasonable to expect

that a system start with a particular configuration exactly. In the design of

control systems, stability is often a design goal. Stability has been a subject

of study in the field of control theory for more than a century. There are

many deep result on the analysis of stability of linear and non-linear systems.

We will give a brief overview of some of the classical techniques for stability

8

analysis of control systems.

One of the most extensively studied classes of continuous dynamical sys-

tems is that of linear dynamical systems. There exist various results char-

acterizing the stability of linear systems in terms of the eigen values of the

representing matrix. For example, in the case of linear time-invariant systems

with no inputs, the system is “asymptotically” stable iff all the eigen-values

of the corresponding matrix are negative.

For the case of non-linear systems, there are two main methods for sta-

bility analysis. First method is called the linearization approach, in which

a linear system which approximates the non-linear system around the equi-

librium is constructed, and analysed to infer the stability properties of the

non-linear system. The linear system that is construct is essentially the lin-

ear time-invariant system whose matrix is the Jacobian of the non-linear

function evaluated at the equilibrium point. The second method, known as

the Lyapunov’s method (second), establishes the stability of a system by ex-

hibiting a function of a certain form, called the Lyapunov function, on the

state space such that the value of the function decreases along any execution

of the system. These results can be found in any text book on state space

methods for analysis of control systems, see for example [63].

Since stability has been primarily studied in the domain of controls, many

of the results apply to the purely continuous setting and it is not always

straightforward to extend these techniques to the mixed discrete-continuous

setting. For example, let us consider the eigen value based analysis of linear

systems. Stability analysis of a linear hybrid system cannot depend merely

on the analysis of the eigenvalues of the matrices representing the continu-

ous dynamics of the system, since it is fairly straightforward to exhibit two

matrices (which are stable) and two systems which result from switching

between the matrices in different manners, such that one of the systems is

stable where as the other is unstable. However, there have been some efforts

in the past decade to extend the stability analysis techniques to the hybrid

setting [16, 69].

Though stability has been studied extensively, there is one aspect which

has not received much attention, namely, automation. Most of the techniques

for stability analysis are either manual or semi-automatic, and in general are

not easily amenable to automation. For example, let us consider Lyapunov’s

second method for proving stability. Automating this proof technique re-

9

quires automation of two steps: (1) finding the right Lyapunov function,

and (2) showing that the value of the Lyapunov function decreases along

any trajectory of the system. In general, even manually figuring out the

right Lyapunov function is an arduous task, and it is not clear how such

a task could be automated. However, the technique can be automated for

the class of linear systems, owing to the results which characterize the space

of Lyapunov functions one needs to search for, and more importantly allow

one to automatically derive such a function by solving certain Linear Matrix

Inequalities. However, this can be done only for the simple class of linear

systems. This brings us back to the idea of approximation; it seems that

the only reasonable approach to achieve automated verification of complex

systems is to approximate them to simpler system on which analysis can be

automatically carried out.

In this thesis, we focus on approximation based automated verification

of stability properties. Firstly, we provide a general framework for proving

“asymptotic” stability of discrete-time linear systems. Secondly, we address a

fundamental question aimed towards approximation based approach, namely,

what kinds of simplifications preserve stability properties. These questions

have not been studied thoroughly in the context of stability verification; and

we believe that the results in the thesis will serve as the basis for developing

automated techniques for stability analysis of hybrid systems.

1.3 Contributions

As pointed out in sections 1.1 and 1.2, from the point of view of automation,

verification of hybrid systems is in general a difficult problem. It was observed

that the problem of verification becomes undecidable for a relatively simple

subclass of hybrid systems [54]. In fact, for system with complex continuous

dynamics such as those specified by linear and non-linear differential equa-

tions or inclusions, even computing “one-step successors” which is the set of

all states reached by one step of execution of the system (purely continuous

executions without any discrete jumps) is a difficult problem. This is a basic

operation on various state-space exploration based methods for analysis of

systems. Hence, the only hope in being able to automatically verify these

complex systems is to somehow “approximate” them into “simpler” systems

10

1.2.1 Approximation based verification of complex hybrid
systems

Our main focus in this thesis is on developing techniques and tools for

analysing complex systems by first simplifying them and then applying tra-

ditional automatic techniques for analysis. Below we briefly summarize the

process of approximation based verification. The first step in approximation

based verification is to identify a target class of systems to approximate to,

which are simple enough to be efficiently automatically analysable. Then we

approximate the complex system into a simpler system in the target class,

and analyse the simplified system. We should be able to infer the correct-

ness of the original system from the analysis of this simpler approximate

system. Hence, the approximate system constructed should be such that

it preserves the property of interest. Finally, since we are interested in the

automatic analysis of complex systems, we want the whole process to be auto-

mated, in particular, we want the process of approximation to be automated.

The above objectives of approximation based verification are summarized

in Figure 1.2.1. Next, we will present our results on approximation based

verification of safety and stability properties.

1.2.2 Approximation techniques for safety verification

We focus on the approximation part of the analysis and present two approx-

imation techniques for safety analysis.

Error based approximation We explore the possibility of considering

polynomial hybrid systems as the target class. Polynomial hybrid systems

9

Figure 1.1: Approximation based Verification

which can be effectively analysed. This is the route we take in this thesis for

analysing complex hybrid systems. Below we briefly summarize the process

of approximation based verification.

1.3.1 Approximation based Verification of Complex Hybrid
Systems

The first step in approximation based verification is to identify a target class

of systems to approximate to, which are simple enough to be efficiently au-

tomatically analysable. Then we approximate the complex system into a

simpler system in the target class, and analyse the simplified system. We

should be able to infer the correctness of the original system from the anal-

ysis of this simpler approximate system. Hence, the approximate system

constructed should be such that it preserves the property of interest. Finally,

since we are interested in the automatic analysis of complex systems, we

want the whole process to be automated, in particular, we want the process

of approximation to be automated. The above objectives of approximation

based verification are summarized in Figure 1.1. Next, we will present our

results on approximation based verification of safety and stability properties.

11

1.3.2 Approximation Techniques for Safety Verification

We focus on the approximation part of the analysis and present two approx-

imation techniques for safety analysis.

Error based approximation We explore the possibility of considering

polynomial hybrid systems as the target class. Polynomial hybrid systems

are a reasonable class of systems to approximate to since various bounded

properties are decidable for the class.

First, we present a method that approximates a hybrid system with general

continuous dynamics by systems with polynomial flows. The method takes

the error in approximate system constructed as a parameter, and hence allows

us to not only quantify the error in the approximation, but also construct as

tight an approximation as desired. The approximation preserves the safety in

one direction - if the approximate system is safe, then one can conclude that

the original system is safe. We also show that for certain classes of systems

with “tolerant” behaviors, safety is preserved in both directions.

This is a generic technique which applies to a large class of systems. How-

ever, the process of approximation is not automatic in general; and more-

over, the degree of the polynomial grows with the precision of approxima-

tion, which in turn effects the cost of verification. We present a method

for automating the process of approximation for the class of linear dynami-

cal system, and in order to keep the degree of the polynomial from blowing

up, we consider piecewise polynomial systems as the target class. Our ex-

periments show that our piecewise polynomial approximation construction

is better both in terms of the size of the final approximation and the time

taken for constructing the approximation, when compared to various existing

methods.

Property based abstraction Error based approximations do not take

into account the property being analysed. Next, we focus on constructing

abstractions based on the property. However, these techniques do not con-

struct approximations with bounded error; and hence more and more precise

approximations are obtained by refining the abstraction. One such tech-

nique for refinement which has been successfully used in software verification

is based on the analysis of a “counterexample” - a witness to the violation

12

of the property - which is popularly known as “Counter Example Guided

Abstraction Refinement” (CEGAR). There have been several proposals for

applying CEGAR for hybrid systems. Most of these systems consider the

class of finite state systems as the abstraction space. Our hypothesis is that

the correct way to approximate a hybrid systems is to approximate it with

a system which is also a hybrid system.

We propose a new method called “Hybrid CEGAR” in which the abstrac-

tion space is also a class of hybrid systems. This technique has various

advantages in terms of simplifying the various tasks of the CEGAR loop,

thereby guaranteeing progress. We have built a prototype tool called Hare

implementing the above technique for the class of rectangular hybrid au-

tomata (RHA). Our experiments show the feasibility of such a technique for

the verification of hybrid systems.

1.3.3 Approximation based Stability Verification

We present a general framework for reasoning about asymptotic stability

of discrete-time hybrid systems, and explore pre-orders for reasoning about

stability.

A technique for proving asymptotic stability Asymptotic stability is

the property of a system which is addition to (Lyapunov) stability requires

that the execution of the system eventually converges to the equilibrium. A

discrete-time (distributed) hybrid system, where discrete transitions happen

at discrete times, can be considered as a finite set of operators acting on the

state space, and an execution of such a system can be considered as a sequence

of operators applied on the state space. The sequences of operators arising

from a discrete-time hybrid system form an ω-regular language. Tsitsiklis

[102] has developed a method for proving convergence of systems with a

finite set of operators, where in each execution every operator is assumed

to be applied infinitely often. We extend this framework to the class of ω-

regular languages. We present necessary and sufficient conditions for proving

“convergence” or asymptotic stability of system where the operators interact

in a regular fashion.

13

Pre-orders for reasoning about stability We explore a fundamental

question in approximation based verification, namely, what kinds of simpli-

fications preserve stability properties? It turns out that the classical notions

of simulation and bisimulation, which have played an important role in the

analysis of discrete systems with respect to various branching time properties,

do not suffice for the purpose of analysing stability properties. We strengthen

these notions by adding certain continuity constraints, namely, that of “uni-

form continuity”, and show that this new notion suffices to preserve stability

properties. We argue that this is a reasonable notion to consider by showing

that various proofs of stability can be cast as proofs by uniformly continuous

reductions to simpler systems with easy stability proofs.

1.4 Organization of the Dissertation

We start with some preliminaries in Chapter 2 including a formal definition of

the hybrid automaton model. Chapter 3 contains the results on polynomial

approximations of hybrid systems with general dynamics which first appeared

in [90]. In Chapter 4, we present the piecewise polynomial approximation

construction for linear dynamical systems which appeared in [89]. Chapter 5

consists of the hybrid CEGAR algorithm for rectangular hybrid automaton

and experiments with our tool Hare. The results on stability verification

are presented in Chapters 6 and 7. Chapter 6 presents the framework for

proving convergence of discrete-time hybrid systems which appeared in [88]

and Chapter 7 discusses pre-order for reasoning about stability. We present

our conclusions and future research directions in Chapter 8.

14

CHAPTER 2

PRELIMINARIES

2.1 Basic Definitions

2.1.1 Notations

We denote the set of natural numbers, real numbers and non-negative real

numbers by N, R and R≥0, respectively. Let R∞ denote the set R≥0 ∪ {∞},
where ∞ denotes the largest element of R∞, that is, x <∞ for all x ∈ R≥0.

Also, for all x ∈ R∞, x+∞ =∞.

Given x ∈ Rn, let (x)i denote the projection of x onto the i-th component,

that is, if x = (x1, · · · , xn), then (x)i = xi. Given X ⊆ Rn, (X)i = {(x)i |x ∈
X}. Given a function F : A→ Rn, let Fi : A→ R denote the function given

by Fi(a) = (F (a))i . Given a function F : R≥0 → B and [a, b] ⊆ R≥0, let

F [a, b] : [0, b − a] → B denote the function given by F [a, b](c) = F (a +

c). Given a function F : A → B, and A′ ⊆ A, F (A′) will denote the set

{F (a) | a ∈ A′}. Given a function F , let Dom(F) denote the domain of F .

A polynomial over a variable x of degree k, denoted p(x), is a term of the

form a0 + a1x
1 + · · · + akx

k, where ai ∈ N for all 1 ≤ i ≤ k and ak 6= 0.

Given a v ∈ R, let p(v) denote the value obtained by substituting v for x

in the expression p(x) and evaluating the resulting expression. A function

P : [a, b] → Rn, for some a, b ∈ R, is a polynomial function if there exist

polynomials, p1, · · · , pn over x, such that for all v ∈ [a, b], Pi(v) = pi(v).

The degree of the polynomial function P is the maximum degree of the

polynomials representing it, that is, degree of P is maximum of the degrees

of p1, · · · , pn (the degree is unique). Note that polynomial functions are

continuous functions. A piecewise polynomial function is a function whose

domain can be divided into finite number of intervals such that the function

restricted to each of these intervals is a polynomial function. A piecewise

15

polynomial function (PPF) is a continuous function P : [a, b] → Rn, where

a, b ∈ R, such that there exists a sequence t1, · · · , tk such that a < t1 < · · · <
tk < b and P [a, t1], P [t1, t2], · · · , P [tk, b] are all polynomial functions.

Given a binary relation R ⊆ A × B, R−1 denotes the set {(x, y) | (y, x) ∈
R}. Given an equivalence relation R on A the equivalence class of a ∈ A is

denoted by [a]R. We will use R to also denote the function from A to the

set of equivalence classes of R given by the mapping a 7→ [a]R. An interval

is a set of the form [a, b], [a,∞), (−∞, b] or (−∞,+∞), where a, b ∈ Z.

The first kind is called a bounded interval . Given n ∈ N, [n] denotes the set

{1, · · · , n}.

2.1.2 Metric Spaces

An (extended) metric space M is a pair (M,d) where M is a set and d :

M ×M → R∞ is a distance function such that for all m1, m2 and m3,

1. (Identity of indiscernibles) d(m1,m2) = 0 if and only if m1 = m2.

2. (Symmetry) d(m1,m2) = d(m2,m1).

3. (Triangle inequality) d(m1,m3) ≤ d(m1,m2) + d(m2,m3).

The following concepts are defined with respect to a fixed metric space

M = (M,d). We define an open ball of radius ε around a point x to be

the set of all points which are within a distance ε from x. Formally, an

open ball is a set of the form Bε(x) = {y ∈ M | d(x, y) < ε}. An open set

is a subset of M which is a union of open balls. Given a set X ⊆ M , a

neighborhood of X is an open set in M which contains X. Also, Y is a

neighborhood of X if and only if for every x ∈ X, there exists an ε > 0 such

that Bε(x) ⊆ Y . Given a subset X of M , an ε-neighborhood of X is the

set Bε(X) =
⋃
x∈X Bε(x). Given a set X, we define the shrink and expand

of the set as follows. For X ⊆ M , shrinkε(X) = {x ∈ M |Bε(x) ⊆ X},
and expandε(X) = {x ∈ M |Bε(x) ∩ X 6= ∅}, expandε(X) is essentially an

ε-neighborhood of X.

2.1.3 Transition Systems

A transition system T = (S, S0,Act,Lab, {→a}a∈Act, 〈〈·〉〉), where:

16

• S is a set of states,

• S0 ⊆ S is a set of initial states,

• Act is a set of action labels,

• Lab is a set of state labels,

• →a⊆ S × S is the transition relation, and

• 〈〈·〉〉 : S → Lab is a state labelling function.

Notation 1 We will often write q1
a−→T q2 to mean (q1, q2) ∈→a (the sub-

script T is dropped when the transition system is clear from the context). Also

we will drop some of the components in the definition of transition system

when they are not required for the presentation of a particular result.

Given sets of states S1, S2 ⊆ S and a symbol a ∈ Act, PreT (S2, a) is defined

as the set {s1 | ∃s2 ∈ S2 : s1
a−→T s2} and PostT (S1, a) as {s2 | ∃s1 ∈ S1 :

s1
a−→T s2}. Given a subset Act′ of Act, PreT (S2,Act′) =

⋃
a∈Act′ PreT (S2, a)

and PostT (S1,Act′) =
⋃
a∈Act′ PostT (S1, a).

A transition system is finite branching if the set of successor states for any

state and action is a finite set. A transition system is finite branching iff

∀q ∈ S, a ∈ Act, the set {q′|q a−→ q′} is finite. A metric transition system is

a transition system whose state labels are equipped with a metric. A metric

transition system is a pair (T , d), where T = (S, S0,Act,Lab, {→a}a∈Act, 〈〈·〉〉)
is a transition system and (Lab, d) is a metric space.

2.1.4 Simulation

Given transition systems T1 = (S1, S01,Act,Lab, {→1
a}a∈Act, 〈〈·〉〉1) and T2 =

(S2, S02,Act,Lab, {→2
a}a∈Act, 〈〈·〉〉2), R ⊆ S1 × S2 is said to be a simulation

relation or just simulation between T1 and T2 if and only if for all (q1, q2) ∈ R:

1. 〈〈q1〉〉1 = 〈〈q2〉〉2, and

2. if q1
a−→1 q

′
1 then there is a q′2 s.t. q2

a−→2 q
′
2 and (q′1, q

′
2) ∈ R.

17

We will say that q1 is simulated by q2 or q2 simulates q1, denoted q1 � q2,

if there is some simulation R such that (q1, q2) ∈ R. Also, we say that, T1

is simulated by T2 or T2 simulates T1, denoted by T1 � T2, if there exists a

simulation relation R between T1 and T2 which satisfies:

1. for every q1 ∈ S01, there exists a q2 ∈ S02 such that (q1, q2) ∈ R.

Remark 2 When the transition systems do not specify the set of initial

states, then the set of initial states is taken to be the empty set; hence the

above condition is trivially true in that case.

2.2 Hybrid Systems

We give a formal definition of a hybrid automaton or a hybrid system, which

is a popular model for modelling systems with mixed discrete-continuous be-

haviors. The discrete behavior is specified by a finite state transition system

and the continuous behavior is modelled using a finite set of variables whose

values evolve continuously with time. In our definition, we will not have

variables explicitly, but will implicitly represent them by having a continu-

ous state space of the appropriate dimension.

2.2.1 Syntax of hybrid systems

A hybrid automaton or hybrid system is a tuple H = (Loc,ActH ,LabH ,Edges,

Cont, loc0,Cont0, inv, flow, guard, reset,flab) where:

• Loc is a finite set of locations,

• ActH is a finite set of action labels,

• LabH is a finite set of location labels,

• Edges ⊆ Loc× ActH × Loc is a set of edges,

• Cont = Rn is the set of continuous states; and n is called the dimension

of H,

• loc0 is the initial location,

18

• Cont0 ⊆ Cont is the initial set of continuous states,

• inv : Loc → 2Cont is the function which associates an invariant with

every location,

• flow : Loc× Cont→ (R≥0 → Cont) is the flow function,

• guard : Edges→ 2Cont associates a guard with every edge,

• reset : Edges → 2Cont×Cont is the function which associates a reset

relation with every edge, and

• flab : Loc→ LabH is the location labelling function.

Remark 3 The components Loc, ActH , LabH , Edges, loc0, and flab define

a finite state transition system and is often referred to as the underlying

“control graph” of the hybrid system. The dimension of the hybrid system

specifies the number of continuous entities or variables present in the system.

We choose to specify the continuous statespace as a subset of Rn instead

of explicitly using the variables for the sake of simplicity of presentation.

However, to make the specifications more readable, in the informal pictorial

representations of hybrid systems, we choose to represent the continuous part

using variables. The sets inv(l), guard(l), and reset(e) specify constraints

on the continuous variables by specifying the set of valid valuations of the

variables. At this point, we leave the exact representation of the different

components of the hybrid system open.

Example 4 Shown on the left in Figure 2.1 is the behavior of a controller

for an autonomous car. The function of the controller is to keep the car

close to the centre of the road which is shown in the diagram by the dark

gray region. The car initially moves at a constant velocity r with a heading

angle γ, and when it hits one of the edges of the dark gray region, the car

corrects its path back to the dark gray region by executing a right turn along

a circular path which is generated by the application of an angular velocity ω

to its heading angle.

The controller can be modelled as a hybrid automaton with two locations:

one corresponding to the mode of the car in which it moves along a straight

line and the other corresponding to the mode of the car in which it turns

right. These locations are named “Go Ahead” and “Turn Right” in hybrid

19

Hybrid Automaton: Example

0 1--1--2 2

Go Ahead Turn Right

Out of
the

Road!

−1 ≤ x ≤ 1 −2 ≤ x ≤ −1

x ≤ −2

Safe!

x′ = x

x′ = x

x′ = x

Sunday, June 12, 2011

Figure 2.1: Car Controller and Hybrid Automaton Model

is 0 in the “Go Ahead” mode and is ω in the “Turn Right” mode. The

invariant for the location “Go Ahead” is given by the constrain −1 ≤ x ≤ 1,

which represents the fact that the car remains in the center region of the road

as long as the control is in location “Go Ahead”. Similarly, the invariant for

the location “Turn Right” is −2 ≤ x ≤ −1. The expression x′ = x represents

the reset associated with the edge, where x is the value of the variable before

the transition and x′ is the value after the transition. In this example, the

values of the variables don’t change during a mode change, that is, the resets

are all the identity relations. Note the the diagram only models a part of

the controller for the car. A complete model will have additional locations to

model, for example, the behavior of the car when it hits the left edge of the

car.

2.2.2 Semantics of hybrid systems

Let us fix a hybrid systemH = (Loc,ActH ,LabH , Edges, Cont, loc0, Cont0, inv,

flow, guard, reset,Labf). The semantics of the hybrid system H is given in

terms of a transition system whose statespace, denoted by States(H), is given

by Loc × Cont. Given (l, x) ∈ States(H), the location l is referred to as the

18

Figure 2.1: Car Controller and Hybrid Automaton Model

automaton model shown in Figure 2.1, respectively. The specification consists

of two variables, namely, x and γ, where x represents the distance of the

car from the center of the road, and γ represents the heading angle. Hence

the continuous state space of the automaton is R2. It switches from the “Go

Ahead” mode to the “Turn Right” mode when the car hits the edge of the dark

gray region, which is reflected in the diagram by the guard x = −1 on the

edge from “Go Ahead” to “Turn Right”. The constraint x = −1 represents

the set {(x, γ) |x = −1, γ ∈ R}. The continuous dynamics is specified by

the differential equations inside the circles of the corresponding locations.

The solutions of these differential equations represent the flow functions in

the corresponding locations. For example, the flow function associated with

location “Go Ahead” is

flow(“GoAhead′′, (x0, γ0), t) = (x0 + r sin(γ0)t, γ0).

That is, starting in the state (x0, γ0), the value of the continuous state after

time t is (x0 + r sin(γ0)t, γ0). Similarly, the

flow(“TurnRight′′, (x0, γ0), t) = (x0 +
r

ω
cos(ωt), γ0 + ωt).

20

The invariant for the location “Go Ahead” is given by the constraint −1 ≤
x ≤ 1, which represents the fact that the car remains in the center region

of the road as long as the control is in location “Go Ahead”. Similarly,

the invariant for the location “Turn Right” is −2 ≤ x ≤ −1. The expression

x′ = x represents the reset associated with the edge, where x is the value of the

variable before the transition and x′ is the value after the transition. Resets

which are not shown in the diagram are assumed to be identity relations,

that is, γ′ = γ on all the edges. In this example, the values of the variables

don’t change during a mode change, that is, the resets are all the identity

relations. Note the the diagram only models a part of the controller for the

car. A complete model will have additional locations, for example, to model

the behavior of the car when it hits the left edge of the dark gray region. A

safety property that we would expect the controller to satisfy is that it does

not drive the car out of the road (shown by the light gray region in Figure

2.1), that is, it does not reach the “Out of the road!” mode in the model.

2.2.2 Semantics of hybrid systems

Next we formally define the meaning of a hybrid automaton specification by

presenting the transition system it represents. An execution of the model is

then a path in this transition system.

Let us fix a hybrid system H = (Loc,ActH ,LabH , Edges, Cont, loc0, Cont0,

inv, flow, guard, reset,flab). The semantics of the hybrid system H is given

in terms of a transition system whose statespace, denoted by States(H), is

given by Loc × Cont. Given (l, x) ∈ States(H), the location l is referred to

as the discrete part of the state and x as the continuous part. The system

can evolve in two ways, namely, by taking a discrete transition or by taking

a continuous transition. A continuous transition does not change the dis-

crete part; however, the continuous part changes according to the function

flow(l, x), remaining within the invariant set inv(l) all along the evolution.

A discrete transition could potentially change both the discrete and the con-

tinuous components of the state, and corresponds to executing an edge in

Edges. The discrete transition is possible from a location l, if there is an

edge e whose source is l, where for e = (l, a, l′), l is called the source of e,

denoted Source(e) and l′ is called the target of e, denoted Target(e). The

21

edge is enabled only if the continuous part of the state satisfies the guard of

the edge. After taking an edge, the resulting state would consist of the target

of the edge and the continuous state is such that the pair consisting of the

continuous states before and after the transition satisfies the reset relation

associated with the edge.

We present the formal semantics below. The semantics of H is given by

the transition system [[H]] = (S, S0,Act,Lab, {→a}a∈Act, 〈〈·〉〉) where:

• S = Loc× Cont,

• S0 = loc0 × Cont0,

• Act = ActH ∪ R≥0,

• Lab = LabH × Rn,

• (l, x)
a−→ (l′, x′) is either

– a discrete transition, where a ∈ ActH and there exists e = (l, a, l′) ∈
Edges such that x ∈ inv(l) ∩ guard(e) and (x, x′) ∈ reset(e), or

– a continuous transition, where a ∈ R≥0, l = l′ and there exist

x0, t1 and t2 such that flow(l, x0)(t1) = x, flow(l, x0)(t2) = x′,

a = t2 − t1, and for all t′ ∈ [0, t2], flow(l, x0)(t′) ∈ inv(l) and

• 〈〈(l, x)〉〉 = (flab(l), x).

Remark 5 The above semantics of the transition system has been tradition-

ally referred to as the timed semantics or the timed transition system of H.

The other popular semantics is the “time abstract semantics”, which refers

to the transition system which is similar to the above, except that the exact

time on the continuous transitions is abstracted away, and this is achieved by

replacing all transitions labelled by elements from R≥0 by a common symbol

τ representing time evolution. We denote the time abstract semantics of H
by [[H]]τ .

We can associate the following natural metric on the state labels of [[H]].

Define metric d on Lab = LabH×Rn as d((p1, x1), (p2, x2)) =∞ if the location

labels are not the same, that is, p1 6= p2, and is equal to ||x1 − x2||, the

Euclidean distance between x1 and x2 otherwise. Then ([[H]], d) is a metric

22

transition system, with metric space (Lab, d). Unless specified otherwise, we

will assume the above definition of d to be the default metric on the state

labels of [[H]].

23

CHAPTER 3

POLYNOMIAL APPROXIMATIONS

In this chapter, we present a technique for approximating a hybrid system

with arbitrary flow functions by systems with polynomial flows; the verifica-

tion of certain properties in systems with polynomial flows can be reduced

to the first order theory of reals, and is therefore decidable. The polynomial

approximations that we construct ε-simulate (as opposed to “simulate”) the

original system, and at the same time are tight. We show that for sys-

tems that we call tolerant, safety verification of a system can be reduced to

the safety verification of the polynomial approximation. Our main technical

tool in proving this result is a logical characterization of ε-simulations. We

demonstrate the construction of the polynomial approximation, as well as

the verification process, by applying it to an example protocol in air traffic

coordination.

3.1 An Overview

In this section, we summarize the results of this chapter. Given a hybrid

system H with arbitrary flows, we construct a hybrid system polyε(H) all

of whose flows are polynomials1, using the Stone-Weierstrass [95] theorem.

Systems with polynomial flows are desirable, because for such systems, reach-

ability in bounded executions can be reduced to the first order theory of reals,

and is therefore decidable. The system polyε(H) that we construct, is not

an abstraction of H in the traditional sense of exhibiting all the behaviors

of H. We show that polyε(H) ε-simulates (as introduced in [47]) H. In

other words, for every execution of H, there is an execution of polyε(H) that

remains within distance ε at all times. In addition, we show that our poly-

1Not only polynomials but any algebraically defined representations such as piece-wise
polynomials or splines, etc.

24

nomial approximation is tight. More precisely, we show that polyε(H) itself

is ε-simulated by an over-approximation of H. Thus, polyε(H) has approxi-

mations to every behavior of H but not much more. The fact that polyε(H)

is a tight approximation, allows us to conclude that verifying polyε(H) gives

us a precise answer about the safety of H, for certain special systems that

we call tolerant.

An ε-tolerant system, intuitively is one where even if the invariants, guards

and resets are perturbed slightly (by ε), the system remains safe. Tolerance is

a desirable property of a system, and accounts for external disturbances and

inaccuracies in modelling parameters. Usually good designs are tolerant.

Our main result characterizes how the safety of tolerant systems can be

determined by analyzing its polynomial approximation. We show that for a

2ε-tolerant system H, H is safe if and only if polyε(H) is safe. Thus, in the

case of tolerant systems, the flows can be reliably simplified without affecting

the verification result.

This begs the question, how do we know if the system we start with is

tolerant? We observe that even if the tolerance of a system H is unknown,

analyzing polyε(H) gives useful information. Our proof shows that if polyε(H)

is safe, then H is guaranteed to be safe, very much like the case of traditional

abstractions. On the other hand, if polyε(H) is unsafe then it is either the

case that H is unsafe or it is not 2ε-tolerant. Thus, if ε is small, it suggests

that H is badly designed and must be modified, independent of whether it

is actually safe.

Our result reducing the safety verification of tolerant systems to the veri-

fication of polynomial approximations, relies on a logical characterization of

ε-simulations. Our characterization is remarkably similar to the logical char-

acterization of (classical) simulation using Hennessy-Milner logics [72]. This

is surprising in the light of the fact that ε-simulation is not a preorder as it

is not transitive. Further, as in the case of simulations, our characterization

is exact for finite branching transition systems. This logical characterization

of ε-simulation maybe of independent interest.

Finally, we apply our technique to the verification of a protocol in air

traffic coordination, demonstrating all the steps in our approach, including

the construction of polynomial approximations and their verification.

We will discuss some of the techniques in literature on approximating com-

plex continuous dynamics by simpler flows. In [93], a technique for approx-

25

imating arbitrary differential inclusions whose right hand side is a Lipschitz

continuous function is given. The method produces rectangular hybrid sys-

tems approximating the continuous dynamics for a given precision. The

approximation of a non-linear dynamics by a piecewise linear dynamics has

been considered in [52]. Approximation of the continuous dynamics by poly-

nomials has also been considered in [67]. This method is based on Taylor

series approximation. Since, we do not insist on any particular method for

constructing the polynomial approximation, our method applies to a more

general class of systems than considered in [67]. Another difference between

the two approaches is that our approximation technique approximates a gen-

eral flow by a polynomial flow, which also preserves determinism of the flow

function. However, no such guarantee is given by the method in [67].

The above approaches produce systems which “abstract” or “overapprox-

imate” the original system. That is, the abstract system includes every

behavior of the original system, and possibly many more. In contrast, our

approximation method produces systems which have the property that for

every execution of the original systems, there is an execution “close” to it in

the approximate system. This notion of “close simulation” or ε-simulation

was first introduced in [47], and a characterization of this notion in terms of

simulation functions was given. In [49], the authors present a technique for

computing approximately bisimilar systems using Lyapunov function.

3.2 Preliminaries

3.2.1 First-Order Logic

Let τ be a vocabulary and A a τ -structure. Let A be the domain of A.

A k-ary relation S ⊆ Ak is definable in A if there is a first-order for-

mula ϕ(x1, x2, . . . xk) over τ with free variables x1, . . . xk, such that S =

{(a1, . . . , ak) | A |= ϕ[xi 7→ ai]
k
i=1}. A k-ary function f will be said to be

definable if its graph, i.e., the set of all (x1, . . . , xk, f(x1, . . . xk)), is defin-

able. A theory Th(A) of a structure A is the set of all sentences that hold in

A. Th(A) is said to be decidable if there is an effective procedure to decide

membership in the set Th(A).

In this chapter, we consider the theory of real-closed fields, namely, the

26

set of all sentences true over (R, 0, 1,+, ·, <), denoted Th(R), where R is the

set of real numbers and 0, 1, +, . and < have the standard interpretations

of the constant 0, constant 1, addition, multiplication and linear order over

the real numbers. When we refer to a first-order formula over the reals, we

mean a formula over (R, 0, 1,+, ·, <). We know from Tarski’s theorem that

Th(R) admits quantifier elimination and hence it is decidable.

Theorem 6 (Tarski’s theorem[99]) The theory of real-closed fields Th(R)

is decidable.

We say that a hybrid system H is definable in the structure (R, 0, 1,+, ·, <
), if the sets Cont0, inv(l) for all l ∈ Loc, guard(e) and reset(e) for all

e ∈ Edges, and the functions flow(l) for l ∈ Loc, are definable in the

structure (R, 0, 1,+, ·, <). Note that a polynomial function is definable in

(R, 0, 1,+, ·, <).

3.2.2 Stone- Weierstrass Theorem

A real function on a set E is a function f : E → R. A family A of real

functions defined on a set E is said to be an algebra if for all f, g ∈ A
and r ∈ R, f + g ∈ A, fg ∈ A, rf ∈ A, where (f + g)(x) = f(x) + g(x),

(fg)(x) = f(x).g(x) and (rf)(x) = r.f(x). A sequence of functions {fn}, n =

1, 2, 3, · · · , converges uniformly on E to a function f if for every ε > 0, there

is an integer N such that n ≥ N implies |fn(x) − f(x)| < ε for all x ∈ E.

Let B be the set of all functions which are limits of uniformly convergent

sequences of members of A. Then B is called the uniform closure of A. Let

A be a family of functions on a set E. Then A is said to separate points on

E if for every pair of distinct points x1, x2 ∈ E, there corresponds a function

f ∈ A such that f(x1) 6= f(x2). If for each x ∈ E, there corresponds a

function g ∈ A such that g(x) 6= 0, A is said to vanish at no point in E.

Theorem 7 (Stone-Weierstrass) Let A be an algebra of real continuous

functions on a compact set K. If A separates points on K and if A vanishes at

no point of K, then the uniform closure B of A consists of all real continuous

functions on K.

Since the set of polynomial functions form an algebra, every arbitrary func-

tion is the limit of a uniformly converging sequence of polynomial functions.

27

Corollary 8 Given any continuous function f : Rn → Rm, a compact subset

K of Rn and an ε > 0, there exists a polynomial function P : Rn → Rm such

that

||f(x)− P (x)|| < ε,∀x ∈ K.

We will use this theorem to approximate arbitrary functions by polynomial

functions.

Definition 9 Given a function f : Rn → Rm, a compact subset K of Rn,

we define polyε(f,K) to be some polynomial function obtained by the above

Corollary.

3.2.3 ε-Simulations

We now define the notion of approximate simulation, which is similar to the

notion of simulation except that we do not require the state labels to match

for related states but only require the distance between the state labels to be

small. Given metric transition systems T1 = (S1,Act,Lab, {→1
a}a∈Act, 〈〈·〉〉1)

and T2 = (S2,Act,Lab, {→2
a}a∈Act, 〈〈·〉〉2) with a distance function d on Lab,

R ⊆ S1 × S2 is said to be an ε-simulation between T1 and T2 if and only if

for all (q1, q2) ∈ R:

1. d(〈〈q1〉〉1, 〈〈q2〉〉2) < ε, and

2. if q1
a−→1 q

′
1 then there is a q′2 s.t. q2

a−→2 q
′
2 and (q′1, q

′
2) ∈ R.

We will say that q1 �ε q2 if there is some ε-simulationR such that (q1, q2) ∈ R.

3.3 Logical Characterization of Simulation

In this section we present the logical characterization of simulation in terms of

safe Hennessy-Milner Logic and extend it to obtain a logical characterization

of ε-simulation.

3.3.1 Safe Hennessy-Milner Logic

Given an alphabet Act and a set of labels Lab, we denote the Safe Hennessy-

Milner Logic formulas over (Act,Lab) as SHM(Act,Lab). The formulas in

28

SHM(Act,Lab) are defined inductively as:

φ ::= p | [a]φ | φ1 ∧ φ2 | φ1 ∨ φ2,

where p ⊆ Lab is an atomic proposition and a ∈ Act.

The semantics of Safe Hennessy Milner is defined as follows. Given a

transition system T , a state q of it, and a formula φ over SHM(Act,Lab),

where Act is the set of action labels and Lab, the set of state labels of T , we

define T at q satisfies φ, denoted T , q |= φ, inductively as:

T , q |= p iff 〈〈q〉〉 ∈ p,
T , q |= [a]φ iff ∀q′, q

a−→ q′ ⇒ T , q′ |= φ,

T , q |= φ1 ∧ φ2 iff T , q |= φ1 ∧ T , q |= φ2,

T , q |= φ1 ∨ φ2 iff T , q |= φ1 ∨ T , q |= φ2.

We say that a transition system T satisfies a formula φ, denoted T |= φ if

T , q |= φ for all initial states q of T . For a state q in the transition system

T , define [[q]]T = {φ ∈ SHM(Act,Lab) | T , q |= φ}. Let q1 be a state in T1

and q2 be a state in T2. We say that q1 is SHM simulated by q2 denoted

q1 vSHM q2, if [[q2]]T2 ⊆ [[q1]]T1 .

Remark 10 When Lab ⊆ Rk, we say that φ ∈ SHM(Act,Lab) is definable

in (R, 0, 1, <,+, ·), if every proposition of φ is definable in (R, 0, 1, <,+, ·).

Next, we present a logical characterization of simulation due to Milner.

Proposition 11 ([72]) Let T1 and T2 be two transition systems and let q1

be a state of T1 and q2 be a state of T2. Then:

1. q1 � q2 implies q1 vSHM q2

2. T2 is finite branching and q1 vSHM q2 implies q1 � q2.

The proof is standard and skipped.

3.3.2 Logical Characterization of ε-Simulation

In this section we give a logical characterization of ε-simulation along the

lines of that for simulation given by Milner. We require the notion of the

29

shrink of a formula. Intuitively, the shrink of a formula is satisfied by some

valuation if the original formula is satisfied by all the valuations in an ε ball

around it. Let (Lab, d) be a metric space. For a formula φ ∈ SHM(Act,Lab)

we define shrinkε(φ) inductively as follows:

• φ = p, where p ⊆ Lab: shrinkε(φ) = shrinkε(p). That is, shrink of the

formula φ is the same as the shrink of the set p.

• φ = [a]ψ : shrinkε(φ) = [a]shrinkε(ψ).

• φ = ψ1 ∧ ψ2 : shrinkε(φ) = shrinkε(ψ1) ∧ shrinkε(ψ2).

• φ = ψ1 ∨ ψ2 : shrinkε(φ) = shrinkε(ψ1) ∨ shrinkε(ψ2).

Observe that shrinkε(shrinkε(φ)) = shrink2ε(φ). For a set of formulas Γ,

shrinkε(Γ) = {φ | shrinkε(φ) ∈ Γ}.
We first generalize the notion of q1 is SHM simulated by q2 to q1 is ε-SHM

simulated by q2 using the shrink of formulas. We assume for the rest of the

section that T1 and T2 are metric transition systems with Lab, the set of state

labels, Act, the set of action labels and d the distance function.

Definition 12 For a state q1 in T1 and a state q2 in T2 we say q1 vεSHM q2

iff shrinkε([[q2]]T2) ⊆ [[q1]]T1.

We now logically characterize ε-simulation by relating it to ε-SHM simu-

lation.

Theorem 13 Let T1 and T2 be two metric transition systems. Let q1 and q2

be states in T1 and T2 respectively. Then

1. q1 �ε q2 ⇒ q1 vεSHM q2.

2. T2 is finite branching and q1 vεSHM q2 ⇒ q1 �ε q2.

Proof

Proof of part (i). Let q1 �ε q2. We will show by structural induction on

φ that if T2, q2 |= shrinkε(φ) then T1, q1 |= φ. Then we can conclude that

q1 vεSHM q2.

Base case: φ = p ⊆ Lab. T2, q2 |= shrinkε(φ) implies 〈〈q2〉〉 ∈ shrinkε(p).

Since q1 �ε q2 we know that d(〈〈q1〉〉, 〈〈q2〉〉) < ε and hence 〈〈q1〉〉 ∈ p. There-

fore, T1, q1 |= φ.

30

Induction step: In the case of φ = ψ1 ∨ ψ2 or φ = ψ1 ∧ ψ2 the proof is

straightforward. Hence we consider the case when φ = [a]ψ. shrinkε(φ) =

[a]shrinkε(ψ). Now suppose q1
a−→ q′1. Then ∃q′2 . q2

a−→ q′2 ∧ q′1 �ε q′2.

Further, since q2 |= [a]shrinkε(ψ), we have q′2 |= shrinkε(ψ). By induction

hypothesis T1, q
′
1 |= ψ ⇒ q1 |= [a]ψ.

Proof of part (ii). Suppose q1 vεSHM q2. We will show that vεSHM is an

ε-simulation.

(a) Let 〈〈q2〉〉 = l. Clearly q2 |= shrinkε(Bε(l)). Therefore q1 |= Bε(l) ⇒
d(〈〈q1〉〉, 〈〈q2〉〉) < ε.

(b) Suppose q1
a−→ q′1. There must be some q′2 such that q2

a−→ q′2 and

q′1 vεSHM q′2. If not, consider NotSim = {q′2|q2
a−→ q′2 and q′1 6vεSHM q′2}.

Now, for every q′2 ∈ NotSim, by definition of vεSHM, there is a formula φq′2 ,

such that q′2 |= shrinkε(φq′2) and q′1 6|= φq′2 . Take φ = [a]
∨

q′2∈NotSim

φq′2 . Now

shrinkε(φ) = [a]
∨

q′2∈NotSim

shrinkε(φq′2). Since NotSim contains all a-successors

of q2, T2, q2 |= shrinkε(φ). But since q′1 6|= φq′2 ∀q
′
2 ∈ NotSim, we have q1 6|= φ,

which contradicts the fact that q1 vεSHM q2.

Remark 14 In this work we consider SHM logic instead of ACTL or ACTL?

because we are interested in bounded-horizon verification. Theorem 13 can be

extended in a straightforward manner to those logics.

Remark 15 In general, the transition systems arising from hybrid systems

need not be finite branching due to non-determinism in either the discrete

or continuous transitions. However, for the purpose of verification, we only

need part (1) of Theorem 13.

3.4 Polynomial Approximations and Approximate

Simulations

In this section, we present a technique for constructing a polynomial hybrid

system from a general hybrid system, and show that the approximate system

approximately simulates the original system.

Let us fix a hybrid system H = (Loc,ActH ,LabH , Edges,Cont, loc0,Cont0,

inv,flow, guard, reset,flab) for the rest of this section.

31

Definability We assume that various components of a hybrid system H
are definable in the structure (R, 0, 1,+, ·, <). More precisely, the sets Cont0,

inv(l) for l ∈ Loc, guard(e) for e ∈ Edges, reset(e) for e ∈ E and the function

flow(l) : Cont×R≥0 → Cont are all definable in the structure (R, 0, 1,+, ·, <).

Time Independence We will assume that the flow function is time in-

dependent by which we mean that if x1 is the state reached starting from

x0 after time t1 has elapsed and x2 is the state reached starting from x1 in

time t2, then the state reached starting from x0 after time t1 + t2 is exactly

x2. Intuitively, the property implies that the behavior of the system from

state x1 is independent of how or when x1 was reached. Formally, the flow

function flow : Loc×Cont→ (R≥0 → Cont) is said to be time independent if

for every l ∈ Loc and x ∈ Cont, flow(l, x) satisfies the following conditions:

1. flow(l, x) is continuous and flow(l, x)(0) = x.

2. For every t1, t2 ≥ 0, flow(l, x)(t1 + t2) = flow(l,flow(l, x)(t1))(t2).

Time independent flows naturally arise as the solutions of differential equa-

tions whose right hand side is time invariant. The time independence of the

flow function is desirable, since the existence of finite bisimulation and de-

cidability is known for certain classes of polynomial systems exhibiting this

property [17, 103]. In this chapter, we will only be considering systems with

time independent flows.

3.4.1 ε-Polynomial Approximations

We give the definition of the polynomial approximation of a general hybrid

system and prove some properties of this approximate system. We make use

of the Stone-Weierstrass theorem to approximate complex continuous dy-

namics of the hybrid systems by polynomials. We assume that the invariants

associated with the locations are compact; and that the flows are such that

there is a bound on the time that can be spent in any location.

Assumptions 16

• Let H be such that inv(l) is compact for all l in Loc.

32

• There exists a time bound tb ∈ R≥0 such for any l ∈ Loc, x ∈ Cont,

and any time transition (l, x)
t−→ (l, x′) t ≤ tb.

We note that in many classes of systems such as timed automata, rectan-

gular hybrid automata, and so on, the monotonicity of flows in a location

ensures that there is a bound on the time spent in any location with compact

invariant.

As we said earlier, time independence of the polynomial approximation

is a desirable property since various classes of polynomial systems with this

property are amenable to analysis [17, 103]. A straightforward approxima-

tion of the flow function to a polynomial function of n dimensions does not

in general preserve this property. To preserve this property in our approxi-

mations, we consider a statespace with 2n + 1 dimensions, where the extra

n + 1 dimensions are used to remember the value of the continuous state

of the current continuous execution at time 0, and the time elapsed since

the beginning of the continuous evolution, respectively. We approximate the

flows of the hybrid system with polynomial functions which are ε-close at all

time using Stone-Weierstrass Theorem; this is possible since the invariants

are compact and we have a bound on the time spent in any location. Note

that the approximate flow can violate the invariant even when the corre-

sponding original flow did not; similarly, the approximate flow can end in a

state outside the guard of a set even when the original flow did not. However,

the approximate flows will not deviate more than ε from the flows of H, and

hence we expand the invariants, guards and resets by an ε to accommodate

these flows.

Definition 17 (ε-Polynomial Approximation) Given a hybrid systemH =

(Loc,ActH ,LabH , Edges,Cont, loc0, Cont0, inv,flow, guard, reset,flab) satisfy-

ing the Assumptions 16, we define the ε-polynomial approximation of H, de-

noted by polyε(H), as the hybrid system (Loc,ActH ,LabH , Edges,Cont′, loc0,

Cont′0, inv′,flow′, guard′, reset′,flab) where:

• Cont′ = R2n+1, where Cont = Rn,

• Cont′0 = {(x, 0, x) |x ∈ Cont0},

• inv′(l) = inv(l)× {t | t ∈ R≥0, t ≤ tb} × expandε(inv(l)),

• flow′(l, (x0, t0, x))(t) = (x0, t0 +t, polyε(flow(l), inv(l)×{tb})(x0, t0 +t)),

33

• guard′(e) = inv(l) × {t | t ∈ R≥0, t ≤ tb} × expandε(guard(e)), where

e = (l, a, l′),

• reset′(e) = {((x1, t1, y1), (x2, t2, y2)) | t2 = 0, x2 = y2,∃y′1, ||y1 − y′1|| <
ε ∧ (y′1, y2) ∈ reset(e) ∧ y2 ∈ inv(l′)}, for e = (l, a, l′),

Remark 18 We will assume that flow′(l, (x0, 0, x0))(0) = (x0, 0, x0) or equiv-

alently polyε(flow(l), inv(l) × {tb})(x0, 0) = x0. (This can be achieved by

considering the polynomial P − P0 in the construction of flow′, where P is

Polyε/2(flow(l), inv(l)×{tb}) and P0 is the polynomial obtained by substituting

t by 0 in P .)

The next proposition says that the polynomial approximation of H is time

independent, given that H is time independent.

Proposition 19 The ε-polynomial approximation polyε(H) has time inde-

pendent flows.

Proof It follows from the definition of flow′. More precisely,

flow′(l,flow′(l, (x0, t0, x))(t1))(t2)

= flow′(l, (x0, t0 + t1, polyε(flow(l), inv(l)× {tb})(x0, t0 + t1)))(t2)

= (x0, (t0 + t1) + t2, polyε(flow(l), inv(l)× {tb})(x0, (t0 + t1) + t2)))

= (x0, t0 + (t1 + t2), polyε(flow(l), inv(l)× {tb})(x0, t0 + (t1 + t2))))

= flow′(l, (x0, t0, x))(t1 + t2).

Next we show that H is ε-simulated by its ε-polynomial approximation.

In the following, we will abuse notation to use [[polyε(H)]] to mean the

time transition system semantics of polyε(H) with the following difference:

〈〈(l, (x, t, x′))〉〉 = (flab(l), x′).

Theorem 20 For all ε > 0, [[H]] �ε [[polyε(H)]].

Proof We define a relation R ⊆ (Loc× Rn)× (Loc× R2n+1) as follows:

((l, x), (l′, (x0, t1, x1))) ∈ R iff

l = l′,flow(l, x0)(t1) = x and (x0, t1, x1) = flow′(l, (x0, 0, x0))(t1).

We will show that R is a simulation relation from [[H]] to [[polyε(H)]]. Note

that in the above x1 = polyε(flow(l), inv(l)× {tb})(x0, 0 + t1)), which implies

34

||flow(l, x0)(t1) − x1|| < ε or equivalently d(〈〈(l, x)〉〉, 〈〈(l, (x0, t1, x1))〉〉) < ε

(here d is the metric on LabH × Rn defined in Section 2.2).

Let us first consider the case of a continuous transition. Let (l, x)
t−→ (l, x′)

be a continuous transition. We need to show that for every (x0, t1, x1) such

that (l, x)R(l, (x0, t1, x1)) there is a (x′0, t
′
1, x
′
1) such that (l, (x0, t1, x1))

t−→
(l, (x′0, t

′
1, x
′
1)) and (l, x′)R(l, (x′0, t

′
1, x
′
1)). Let (x′0, t

′
1, x
′
1) be given by flow′(l,

(x0, 0, x0))(t1 + t). We claim that (l, (x0, t1, x1))
t−→ (l, (x′0, t

′
1, x
′
1)) and

(l, x′)R(l, (x′0, t
′
1, x
′
1)) hold. From the definition x′0 = x0, t′1 = t1 + t and

x′1 = polyε(flow(l), inv(l)× {tb})(x0, t1 + t). Note that for all t1 ≤ t′ ≤ t1 + t,

d(〈〈flow(l, x0)(t′)〉〉, 〈〈flow′(l, (x0, t1, x1))(t′)〉〉) < ε. The above claim follows

from the above observation along with the fact that the invariants are ex-

panded by ε.

Suppose that there is a discrete transition from (l, x) to (l′, x′) along

edge e = (l, a, l′) and let (l, x)R(l, (x0, t1, x1)). Then there is an edge from

(l, (x0, t1, x1)) to (l′, (x′, 0, x′)). To see this, first observe that we can in-

fer that d(〈〈(l, x)〉〉, 〈〈(l, (x0, t1, x1))〉〉) < ε from the definition of R. Further,

since we expand the guards on the edges of H by ε in polyε(H), we have

that (l, (x0, t1, x1)) satisfies the guard of the edge e in polyε(H). Also, since

(x, x′) ∈ reset(e), ((x0, t1, x1), (x′, 0, x′)) ∈ reset′(e) because ||x − x1|| < ε.

Finally, since (l, x′)R(l, (x′, 0, x′)), we are done.

Next we use Theorem 13 to deduce that if the polynomial approximation

satisfies a modified property then we can conclude that the original system

satisfies the property.

Corollary 21 Given a SHM formula φ over (ActH ∪ R≥0,LabH × Rn), we

have [[polyε(H)]] |= shrinkε(φ) implies [[H]] |= φ.

Remark 22 Note that Theorem 20 also hold in the time-abstract semantics,

that is, [[H]]τ �ε [[polyε(H)]]τ . Hence, given a SHM formula φ over (ActH ∪
{τ},LabH × Rn), we have [[polyε(H)]]τ |= shrinkε(φ) implies [[H]]τ |= φ.

A SHM formula φ over the set of labels LabH × Rn is said to be definable

in (R, 0, 1,+, ·, <) if for each atomic formula p ⊆ LabH × Rn occurring in

φ, the set pu is definable in (R, 0, 1,+, ·, <) for each u ∈ LabH , where pu =

{x | (u, x) ∈ p}. The next proposition says that the model-checking problem

is decidable for a hybrid system and a SHM formula which are definable

in the structure (R, 0, 1,+, ·, <), since the problem can be reduced to the

35

satisfiability problem of a formula in the structure (R, 0, 1,+, ·, <), which is

decidable due to Tarski’s theorem. This depends crucially on the fact that φ

expresses a bounded property.

Proposition 23 Given a hybrid system H and a SHM formula φ which

are both definable in (R, 0, 1,+, ·, <), the problem of whether [[H]] |= φ is

decidable.

Observe that if all the elements ofH except flow are definable in (R, 0, 1,+,
·, <) and a flow′ defined in polyε(H) can be constructed, then polyε(H) is de-

finable in (R, 0, 1,+, ·, <). Similarly, shrinkε(φ) is definable in (R, 0, 1,+, ·, <)

provided φ is, and can be effectively constructed from φ. Hence, we obtain

as a corollary of Proposition 23 that we can decide if polyε(H) satisfies φ.

Lemma 1 Given H, φ and ε which are definable in (R, 0, 1,+, ·, <), the

problem of whether [[polyε(H)]] |= shrinkε(φ) is decidable.

Using Corollary 21, we can conclude that a system is safe by constructing

its polynomial approximation and checking whether it is safe (which can be

automated due to Lemma 1).

Remark 24 In fact, we can extend Theorem 13 to ACTL∗ formulas. But, φ

in this case can potentially express an unbounded property and hence we can

extend Proposition 23 directly for ACTL∗ formulas. However, if H has the

“strong reset” property where resets are of the form X1 ×X2, X1, X2 ⊆ Rn,

then the resulting polynomial approximation has a special form (it is an o-

minimal system) for which verification with respect to ACTL∗ is decidable

[18].

3.4.2 Tightness of the Polynomial Approximation

We show that our polynomial approximation is tight by showing that it is

approximately simulated by an ε “expansion” of the original system. This

implies that though the polynomial approximation has potentially more be-

haviors than the original system, it has does not have many more than a

small perturbation of the original system. The ε-expansion of a hybrid sys-

tem is obtained by expanding the invariants, guards and resets by ε, but

leaving the flows untouched.

36

Definition 25 Given a hybrid system H = (Loc,ActH ,LabH , Edges,Cont,

loc0, Cont0, inv,flow, guard, reset,flab), we define the ε-expansion of H, de-

noted by expandε(H), as the hybrid system (Loc,ActH ,LabH , Edges,Cont,

loc0, Cont0, inv′,flow, guard′, reset′,flab) where:

• inv′(l) = expandε(inv(l)), for all l ∈ Loc,

• guard′(e) = expandε(guard(e)), for all e ∈ Edges, and

• reset′(e) = {((x, y) | ∃x′, d(x, x′) < ε ∧ (x′, y) ∈ reset(e)}, for all e ∈
Edges.

It is easy to see that the ε-expansion of a system ε-simulates the system,

since [[expandε(H)]] is an “abstraction” in the traditional sense or has all the

“behaviors” of the [[H]].

Proposition 26 For all ε > 0, [[H]] �ε [[expandε(H)]].

However, we can also show that the polynomial approximation of H can

be approximately simulated by a “small” expansion of H. This is formalized

in the following theorem:

Theorem 27 For all ε > 0,

[[polyε(H)]] �ε [[expand2ε(H)]].

Proof Let H = (Loc,ActH ,LabH , Edges,Cont, loc0, Cont0, inv,flow, guard,

reset,flab) be a hybrid system. Let polyε(H) = (Loc,ActH ,LabH , Edges,Cont′,

loc0, Cont′0, inv′,flow′, guard′, reset′,flab) and expand2ε(H) = (Loc,ActH ,LabH ,

Edges,Cont, loc0, Cont0, inv′′,flow, guard′′, reset′′,flab) be the ε-polynomial

approximation and 2ε-expansion of H, respectively.

We consider a relation R′ which is the inverse of R defined in the proof of

Theorem 20, that is, R′ = R−1. Let (l, (x0, t1, x1))R′(l, x). Again from the

definition of R′, we have ||x− x1|| < ε, and d(〈〈(l, (x0, t1, x1))〉〉, 〈〈(l, x)〉〉) < ε.

Suppose that (l, (x0, t1, x1))
t2−→ (l, (x0, t1 + t2, x2)) is a continuous transi-

tion. Note that this implies that t1 + t2 ≤ tb. Then, for all 0 ≤ t ≤ t1 + t2,

flow′(l, (x0, 0, x0))(t) ∈ inv′(l) = inv(l)×{t | t ∈ R≥0, t ≤ tb}×expandε(inv(l)),

and flow′(l, (x0, 0, x0))(t1) = (x0, t1, x1) and flow′(l, (x0, 0, x0))(t1 + t2) =

(x0, t1 + t2, x2). In particular, this implies that for all 0 ≤ t ≤ t1 + t2,

37

flow(l, x)(t) ∈ expand2ε(inv(l)) (follows from the construction of flow′). Note

that x = flow(l, x0)(t1) and let x′2 = flow(l, x0)(t1+t2). Then (l, x)
t2−→ (l, x′2)

in expand2ε(H) and we can deduce from the definitions of R′ and x′2 that

(l, (x0, t1 + t2, x2))R′(l, x′2).

Suppose that there is a discrete transition from (l, (x0, t1, x1)) to (l′, (x2, 0,

x2)) along edge e = (l, a, l′) and let (l, (x0, t1, x1))R′(l, x). Then there ex-

ists an x′1 such that ||x1 − x′1|| < ε and (x′1, x2) ∈ reset(e). We claim that

(l, x)
a−→ (l′, x2) holds in expand2ε(H). Since (x0, t1, x1) ∈ guard′(e), we

have that x1 ∈ expandε(guard(e)) and since ||x1 − x′1|| < ε, we have that

x′1 ∈ expand2ε(guard(e)) or equivalently x′1 ∈ guard′′(e). Since ||x1 − x|| < ε

(from the definition of R′), we have that ||x − x′1|| < 2ε. Since (x′1, x2) ∈
reset(e), we have that (x, x2) ∈ reset′′(e). Therefore (l, x)

a−→ (l′, x2). Since

(l′, (x2, 0, x2))R′(l′, x2) is trivially true, we have the desired result.

The following corollary formalizes the tightness of the polynomial approx-

imation by putting together theorems 20 and 27.

Corollary 28 For all ε > 0, [[H]] �ε [[polyε(H)]] �ε [[expand2ε(H)]].

3.5 Verification of Tolerant Systems

As we saw in the previous section, if the polynomial approximation is approx-

imately safe, then we can conclude that the original system is also safe. This

is a property that is typically exhibited by traditional abstractions. However,

what we can also show due to the tightness of our approximations is that

if the polynomial approximation is not approximately safe, then it is either

the case that the original system is unsafe or the system is not “tolerant”

with respect to small perturbations. Next, we formalize the notion of toler-

ance and obtain the above statement by showing that for tolerant systems

verifying the approximation is equivalent to verifying the original system.

Definition 29 (ε-tolerance) A hybrid system H is said to be ε-tolerant for

some ε > 0 with respect to a property φ ∈ SHM if and only if [[H]] |= φ ⇒
[[expandε(H)]] |= shrinkε(φ).

Next we show that model-checking a system with respect to a problem

is equivalent to model checking its polynomial expansion, if the system is

tolerant.

38

Theorem 30 Let φ be a formula in SHM logic. Let H be a hybrid system

which is 2ε-tolerant with respect to φ. Then,

[[H]] |= φ⇔ [[polyε(H)]] |= shrinkε(φ).

Proof (⇒) Suppose [[H]] |= φ. Since H is 2ε-tolerant, we can infer from the

definition of 2ε-tolerance that [[expand2ε(H)]] |= shrink2ε(φ) which is equiv-

alent to [[expand2ε(H)]] |= shrinkε(shrinkε(φ)). Next, since [[polyε(H)]] �ε
[[expand2ε(H)]] (from Theorem 27), we obtain using the logical characteriza-

tion of �ε in Theorem 13 and the fact [[expand2ε(H)]] |= shrinkε(shrinkε(φ))

that [[polyε(H)]] |= shrinkε(φ).

(⇐) Suppose [[polyε(H)]] |= shrinkε(φ). Since [[H]] �ε [[polyε(H)]] (Proposition

20), we obtain from the logical characterization of ε-simulation in Theorem

13 that [[H]] |= φ.

Remark 31 In practice, we would not know whether a system H is 2ε-

tolerant with respect to φ. However, if ε is small and [[polyε(H)]] 6|= shrinkε(φ)

then either [[H]] 6|= φ or H is not 2ε-tolerant with respect to φ. Either way it

suggests that the design of H needs to be modified.

3.6 Stone Weierstrass Theorem in Practice

Stone Weierstrass Theorem is not constructive in that it does not given an al-

gorithm to compute an approximation of a function. In general, constructing

polynomial approximations cannot be automated, since the problem is unde-

cidable [85]. However there are various approximation techniques available

in the literature which are efficient for certain classes of functions.

One popular approximation technique is Taylor approximation. In this, a

smooth function is approximated by taking the first few terms of its Taylor

series expansion. This method requires computing the values of the deriva-

tives of the function at certain points. Instead, one can also use Bernstein

polynomials to approximate continuous functions, provided one can compute

the values of the function at certain points [96, 70].

These approximate the function by sampling it at various points, and do

not require the function to be smooth. We will discuss Bernstein polynomials

39

in more detail in the next chapter. Another method of approximation is the

Remez algorithm [94], which is an iterative minimax method. However such

iterative methods are often expensive in terms of the computation time.

Hence there is a trade-off between the computation time, accuracy and the

size of the approximation.

Further, when the function is not available in closed form, but is given as

the solution of a differential equation, there are methods known as collocation

method to obtain polynomial approximations. At an abstract level, a form of

the polynomial is selected and the differential equation is evaluated at vari-

ous points to determine the coefficients of this polynomial. A method which

is based on the above is the Picard operation [83]. Another efficient method,

which improves upon the Picard operation, is the Parker-Sochacki method

[81]. The Parker-Sochacki method can be carried out entirely symbolically

and hence one can use a software package like Maple which supports ma-

nipulations of algebraic expressions. The LdeApprox package in Mathematica

uses methods from [38] to find polynomial approximations to both symbolic

and numerical forms of linear differential equations with or without bound-

ary value constraints given a range for the input variable. The output of

the algorithm is a closed form polynomial expression on the input and the

symbols used as parameters.

3.7 An Application: Air Traffic Coordination Protocol

In this section we apply the approximation techniques introduced in this

chapter to verify an air traffic coordination protocol. In [80], an optimal

controller was synthesized for a similar collision avoidance protocol. The

example was also considered in [86] and [84]. However the analyses used linear

approximations without explicitly quantifying the error of approximation.

3.7.1 Problem Description

The system in Figure 3.1 describes a situation where two aircraft 1 and 2

which are flying in directions perpendicular to each other want to merge on

to the x-axis. Aircraft 1 is initially at distance d1 from the origin, i.e., at

coordinates (−d1, 0) and aircraft 2 is at coordinates (−d2−r,−r). Aircraft 1

40

Figure 3.1: The smooth landing paths adopted from [80].

is moving along the positive x axis with velocity v1 and aircraft 2 is moving

along the positive y axis with velocity v2. Aircraft 1 travels a total distance

of d1 +dr. At some point within distance d2 from its initial position aircraft 2

may choose to accelerate or decelerate at a constant rate a. Then its velocity

changes till it reaches the point X which is at distance d2 from the initial

point. Let its velocity at point X by v. After this, the aircraft follows a

circular trajectory with velocity v along the boundary of a circle with center

c0 = (0,−r) and radius r till it reaches the origin. Then it continues to travel

along the positive x-axis with velocity v.

We want to ensure that the two aircraft merge safely. We require that

at any point of time when aircraft 1 has not reached its destination, the

distance between the two aircraft is at least dsafe. We will solve the following

problem: given a value of acceleration a, does there exist a time t to start

the acceleration (or deceleration) so that the two aircraft merge safely?

As will be seen later, a formal model of this system will contain functions

which are not polynomials. Our first step would be to construct an approxi-

mate system which would be an ε-approximation of the original system. In

fact we calculate the value of ε for the approximated system. This quantifi-

cation of the error is an interesting feature of our analysis. The abstractions

41

of the problem considered earlier did not explicitly quantify the error. For

example, in [80] the authors consider a linear model of the above system,

but do not provide any upper bounds on the error. After constructing the

approximate system, we verify the safety property for this system. We know

from our results that if the approximated system is safe, then the original

system is safe.

3.7.2 Formal Model

The formal model of the system has four states, namely, init, accel, turn

and final, corresponding to the different phases of aircraft 2. We have three

variables z1, z2 and v. z1 has the distance of aircraft 1 from the origin. z2 has

the distance of aircraft 2 to the origin along its trajectory. v2 is the velocity

of aircraft 2. For example, the initial value of z1 is −d1 and that of z2 is

−d2 − πr
2

. So Loc = {init, accel, turn, final}. X0 = {−d1,−d2 − πr
2
}.

• inv(init) = z1 ≤ dr ∧ z2 ≤ −d2.

• inv(accel) = z1 ≤ dr ∧ z2 ≤ −d2.

• inv(turn) = z1 ≤ dr ∧ zr ≤ 0.

• inv(final) = z1 ≤ dr.

The set of edges Edges = {(init, accel), (accel, turn), (turn, final)}.

• guard(init, accel) is z2 ≤ −πr
2

.

• guard(accel, turn) is z2 = −πr
2

.

• guard(turn, final) is z2 = 0.

There are no resets in the system.

• flow(init, (z1, z2, v2))(t) = (z1 + v1t, z2 + v2t, v2).

• flow(accel, (z1, z2, v2))(t) = (z1+v1t, z2+v2t+
1
2
at2,v2+at).

• flow(turn, (z1, z2, v2))(t) = (z1 + v1t, z2 + v2t, v2).

• flow(final, (z1, z2, v2))(t) = (z1 + v1t, z2 + v2t, v2).

42

We want to analyse the system for safety. In particular we want to verify

that the distance between the two aircraft is always greater than dsafe. Hence

let us define dist(z1, z2), the distance between z1 and z2 as follows.

dist(z1, z2)=



√
(z1 + r)2 + (z2 + πr

2
− r)2

when z2 ≤ −πr
2√

(z1+r sinθ2)2+r2(1−cosθ2)2)

when − πr
2
< z2≤ 0√

(z1 − z2)2

when z2 > 0

dist(z1, z2) can be thought of as just another variable which evolves as de-

scribed above. The expression for dist(z1, z2) is clearly not polynomial. In

the next section we will approximate it by a polynomial.

We want to find the time ts when we should switch such that the distance

between the two aircraft is always at least dsafe. So we consider the time ts

as a parameter of the system. We expand the continuous statespace of the

system by a component τ which evolves with time as τ(t) = τ(0) + t. We

then allow the first discrete transition to happen only when τ = ts. This

then restricts guard(init, accel) to guard(init, accel)
redef
=
(
z2 < −πr

2
∧ τ = ts

)
.

The problem is then solved in the following way. We define an SHM formula

SAFETY(ts) which says that the two aircraft are at safe distance if we start

the acceleration at time ts. We will define the formula SAFETY(ts) on the

transition system which is similar to transition system of the above hybrid

system except that it has only two action labels, namely, tt and dt, and every

time transition, i.e, those labelled by a ∈ R≥0 is now labelled by tt and every

discrete transition is now labelled by dt. The formula is then defined as:

SAFETY(ts) := DIST ∧ [tt](DIST ∧ [dt]

(DIST ∧ [tt](DIST ∧ [dt]

(DIST ∧ [tt](DIST ∧ [dt]

(DIST ∧ [tt]DIST))))))

where DIST is an atomic proposition defining dist(z1, z2) > dsafe. We then

need to verify if ∃tsSAFETY(ts) is true.

As mentioned before, the above formula can be written as a first or-

der formula with DIST as an atomic formula. Let us call this formula

FO(SAFETY). Since DIST is not an algebraic formula, FO(SAFETY) is

43

not a formula over the structure of reals. FO(SAFETY) can be written as:

FO(SAFETY)(ts) :=
∧

0≤i≤3

(reachi(z1, z2)⇒ dist(z1, z2) > ds).

where reachi(z1, z2) is an expression which says that the value (z1, z2) is reach-

able by taking i discrete transitions. Since dist(z1, z2) is not a formula over

the reals, we cannot use the decidability of Th(R) to verify ∃tsSAFETY(ts).

Hence we approximate dist and obtain an ε-approximation of the system. We

then need to verify if shrinkε(SAFETY) is true in the approximated system.

Equivalently, we will need to check if FO(shrinkε(SAFETY)) holds, which

can be done since this formula is algebraic. If this formula is true, then

from Theorem 20 and Theorem 13, we have that the original system satisfies

SAFETY. In the next section, we discuss details about the construction of

the approximation.

3.7.3 Polynomial Approximations

In this section, we describe the approximation of the problem, quantification

of the errors and some results we obtained.

As explained before, the general technique to approximate the system

would involve approximating the flows, and expanding the guards, resets

and the invariants. In the construction we need to expand the constraints

to compensate for the error introduced due to approximation of the flows.

We observe that for the problem at hand the flows are already algebraic ex-

cept for that of the variable dist(z1, z2). However this does not occur in any

guards, resets or invariants. Hence it is easy to see that if we just approximate

dist(z1, z2) with a approximation error ε and do not change the guards, resets,

invariants and the other flows, then the approximated system ε simulates

the original system. Also in this case, FO(shrinkε(SAFETY)) will just be

FO(SAFETY) with DIST replaced by DISTε := Polyε(dist(z1, z2)) > dsafe+ε,

where Polyε(dist(z1, z2)) is a polynomial approximation of dist(z1, z2) with an

ε upper bound on error in the range of interest.

Now let us turn to the approximation of dist(z1, z2). The expression that

needs to be approximated is dist(z1, z2) = z2
1−2z1r sin z2

r
+r2−2r2 cos z2

r
in the

range −πr
2
< z2 ≤ 0. In particular, we will need to approximate the functions

44

coshalfpi(y) := cos(π
2
y) and sinhalfpi(y) := sin(π

2
y) in the range 0 ≤ y ≤ 1.

We approximate these functions using Taylor expansions. For a 5-th order

Taylor approximation around zero, we obtain an upper bound of 0.025 as

the approximation error in this range. We find the error by plotting the

error in Mathematica and visually identifying the maximum absolute error in

the range of interest. This kind of analysis suffices when the function under

consideration is smooth as in our case. We explain later a general grid based

method to do the same. Then the approximation error for the whole function

dist will be less than ε := |0.05z1r| + |0.05r2|. Given the values of z1 and r,

this gives us the value of ε. When z1 ≤ r, the approximation error will be

ε := r2

10
.

Now we turn to the issue of computation of approximation error. We

note that computing the error of approximation is crucial to our analysis.

This is because we are required to verify an approximate formula which

depends on the approximation error of the approximated system. Unfortu-

nately, it is rarely possible to exactly calculate the maximum approximation

error throughout the approximation region. On the other hand, one can find

upper bounds on the error which suffices for our analysis. There are analytic

and grid based methods for this. Most of the methods are based on finding

Lipschitz bounds for the function to be approximated. Here we explain a

grid based method to compute a Lipschitz bound.

In order to find a bound for the maximum error, we divide the domain of

the error function into a multidimensional grid of pitch δ. For each grid we

find the accuracy which is proportional to the pitch value δ and the maximum

gradient in each cell. Also we sample one point in every grid. The maximum

error is then bounded from above by the sum of accuracy and the maximum

sample value. We explain it through an example.

Let us consider the function sinhalfpi(y) = sin(π
2
y). In the range 0 ≤

y ≤ 1, we can easily see that π
2

is an upper bound for the derivative, i.e,

sup
0≤y≤1

∣∣∣∂sinhalfpi(y)
∂y

∣∣∣ ≤ π
2
. The polynomial approximations maximum gradient

within the range [0, π
2
] is 1.0. This can be verified by differentiating the ap-

proximating polynomials and finding the maximum of absolute value of the

resulting polynomial derivatives. For example, for the 5th degree Taylor ex-

pansion of sinhalfpi the maximum absolute gradient (derivative) or Lipschitz

constant within the range will be bounded by y given by quantifier elimina-

45

tion of the following: ∀x (0 ≤ x ≤ 1) ⇒ y2 <
(
∂
∂x

(πx
2
− π3x3

48
+ π5x5

3840
)
)2

. So

the maximum error can be determined with accuracy 0.01 by sampling it on

a grid of pitch equal to 0.01(π
2

+1.0). To find a bound for the error we simply

add the accuracy to the maximum error sample. After obtaining the error

of the trigonometric functions we recursively find the maximum error for the

whole approximation.

3.7.4 Verification Results

We now describe some results we obtained for the verification problem: Does

there exists a time ts to start the acceleration, such that the two aircraft

maintain a safe distance dsafe.

We used the following constants for verification. v1 = 100, d1 = d2 = dr =

r = 1000, v2i = 100, z1i = −d1 and z2i = −d2 − πr/2, where z1i, z2i and v2i

are the initial values of z1, z2 and v2 respectively. Resulting approximation

errors for 3rd and 5th degree polynomial approximations were ε3 = r2 and

ε5 = r2/10, respectively.

When we set the acceleration a = 10, and used the 3rd degree polynomial

approximation, we obtained that the system is unsafe. Next we increased

the degree of approximation to 5. In this case, the quantifier elimination in

Mathematica lasted quite a few minutes and returned false again. For this

value of a, we could not conclude if the system was safe. Then we tried

a = 40. Again we did not succeed with a degree 3 polynomial. However

when a degree 5 polynomial was used, the quantifier elimination returned

the constraint 0 ≤ ts ≤ 7.887784 within a few minutes. Hence in this case

we can conclude that the values of ts returned is a conservative bound on

the value of the time to start accelerating so that the aircraft maintain a safe

distance.

In this section, we have illustrated how we can use our theoretical results

of the earlier sections to verify a safety property. Our results in the earlier

sections are quite general and do not specify the method to use for the

approximation. In this section we saw that there are various methods for

approximations and error computations, and one method may be better than

the other depending on the system we are analysing. Once the approximation

is obtained, we need to verify the approximated formula. Software tools

46

for quantifier elimination might not be able to handle large formulas, and

hence in practice we might require some manual preprocessing and careful

formulation of the problem as in our case.

3.8 Conclusions

In this chapter, we presented a technique for approximating a hybrid sys-

tem with arbitrary flow function by a hybrid system with polynomial flow

function. We showed that the approximate system ε-simulates the original

system. This allowed us to conclude that we can prove the safety of a system

by proving the safety of the approximate system. This is a property similar

to that preserved by traditional abstractions. Interestingly, due to the tight-

ness of our approximations, we were also able to show that if the approximate

system is not safe, then it is either the case that the original system is not

safe or it is not tolerant with respect to the safety property. This is a use-

ful property, since if the approximate system is not safe, it suggest that the

design is either faulty or not robust, and hence needs to be changed.

We applied our approximation technique to analyse an air-traffic coordi-

nation protocol. Experience suggests that verification by approximation to

polynomial hybrid systems is feasible. This is a general technique which can

be applied to a large class of systems. However, it has two shortcomings.

Firstly, the construction of the polynomial approximation, in particular, the

polynomial approximation of the flows is not automatic in general. Secondly,

the degree of the polynomial grows quickly with the precision ε of the approx-

imation. In the next chapter, we investigate the above issues, and present a

technique for automating the construction of the polynomial approximation

for a subclass of hybrid systems.

47

CHAPTER 4

PIECEWISE POLYNOMIAL
APPROXIMATIONS

In this chapter, we present a method for automating the construction of

the polynomial approximations of hybrid systems with continuous dynamics

specified by Linear Dynamical Systems (LDS). Note that the main difficulty

in automating the process of construction of the polynomial approximations,

in the previous chapter, was in automating the construction of polynomial

approximations for the flow function; since the transformation of other com-

ponents was straight forward. Therefore, in this chapter, we focus on the

approximation of the continuous dynamics.

Apart from the lack of automation, one of the other drawbacks of the

approximation technique in the previous chapter was the increase in the

degree of the polynomial approximating the flow function with the increase

in the precision. To overcome this, we propose a method for constructing

approximations which constrain the degree of the polynomials, by moving

to a piecewise polynomial setting. More precisely, we consider the problem

of approximating the solution of a LDS in the interval [0, T] by a piecewise

polynomial approximation of a given degree to within a given error bound ε.

Fixing a degree d, our algorithm divides the interval [0, T] into sub-intervals of

not necessarily equal size, such that a polynomial of degree d approximating

the function in that interval approximates the actual flow to within an error

bound of ε. Our experimental evaluation of the algorithm when the degree d

is fixed to be either 1 or 2, shows that the approach is promising, as it scales

to large dimensional dynamical systems.

Piecewise linear approximations of the flow function of LDS (solutions of

the LDS) have been extensively studied in the context of “Post Computa-

tion”. Experimental comparisons of our algorithm with the existing algo-

rithms for piecewise linear approximations suggest that our algorithm has

huge advantages both in terms of the size of the representation of the ap-

proximation and the time for constructing the same, which in turn affect the

48

cost of verification. Next we present an overview of our algorithm in the

context of post computation.

4.1 An Overview

Integral to the automatic verification of safety properties is the computation

of the set of reachable states of a system. In the context of hybrid systems,

the key challenge in reachability computation is to compute, for a given

set of states X, all states that are reachable from X under the continuous

dynamics, within (some) time T . While states reachable within a bounded

time can be computed for some hybrid systems with simple dynamics [4, 1, 54,

65, 103], it must typically be approximated, since the problem of computing

the reachable set is undecidable for most dynamical systems.

There are three principal techniques for computing an approximation to

the reachable set of states. The first constructs an abstract transition system

that simulates (in a formal sense) the dynamical system, and carries out the

reachability computation on the abstract system [23, 3, 26, 27, 39, 60, 97]. In

this method, the quality of the approximate solution cannot be measured, and

so, often this is compensated by repeatedly refining the abstract transition

system. The second approach, called hybridization [92, 7, 34], partitions the

continuous state space, and approximates the continuous dynamics in each

partition. Here one can explicitly bound the error between the reachable

set of the hybrid system with simpler dynamics and the original dynamical

system.

The third method is to directly compute the states reachable within time

T . This has been carried out primarily for linear dynamical systems and a

convex polytope as initial set X. For such systems, the algorithm proceeds as

follows. First, the time interval [0, T] is partitioned into equal intervals of size

∆. Then, the points reached at time ∆ from the vertices of X are computed.

The set of states reachable within time ∆ is then approximated by the convex

hull of the vertices of the set X and the points reached at time ∆ from

the vertices of X. Given ∆, T , and the dynamics, the error (or Hausdorff

distance) between this convex hull and the actual set of states reachable

within time ∆ can be bounded. Based on this error bound, this convex hull is

first “bloated” to contain all the reachable states and then approximated by a

49

data structure of choice. Different data structures that have been considered

and found useful include griddy polytopes [32], ellipsoids [64], level sets [73],

polytopes [24], zonotopes [45, 46], and support functions [51]. After this, the

computation for the time interval [0,∆] is translated to obtain the reachable

states for the time interval [i∆, (i + 1)∆] — the states reached at time i∆

and (i+ 1)∆ are obtained by translating the vertices of X and those at time

∆, respectively, and then the “bloated” convex hull of all of these points

is approximated by the data structure of choice. This method has been

found to be scalable and successful, making the automated analysis of linear

dynamical systems possible.

In this chapter, we take a slightly different stance on the problem of di-

rectly approximating the reachable set. Instead of trying to bound the error

of a reachability computation, we view the problem as one where given an

error bound ε, one has to compute an over-approximation of the reachable set

whose Hausdorff distance from the actual set of reachable states is bounded

by ε. This subtle change in perspective, immediately suggests some natural

changes to the basic algorithm outlined in the previous paragraph. First, the

discretization of the time interval [0, T] need not be in terms of equal-sized

intervals. We could change interval sizes, as long as the error of approximat-

ing the reachable states within that interval can be bounded by ε. Second,

in the “basic algorithm”, the convex hull of the points of the initial set and

those at time ∆ is taken to be the approximation of the set of states reachable

within time ∆. Instead, we view the approximation process as first approxi-

mating the flow in the interval [0,∆] by a polynomial, and then taking the

“polynomial tube” defined by this dynamics to be the approximation of the

reachable states — when the polynomial is taken to be a linear function,

then it corresponds to taking the convex hull of the points, as done in the

basic algorithm. Combining these ideas, the algorithm we plan to study in

this chapter can be summarized as follows. Given an error bound ε and the

degree d of the polynomials to be considered, we first find a time (hopefully,

as large as possible) t such that dynamics in [0, t] when approximated by

degree d polynomials is within error bound ε of actual dynamics. The degree

d polynomial approximating the actual dynamics can be found by construct-

ing the appropriate Bernstein polynomial [70]. We approximate the set of

reachable states in the interval [0, t] by the degree d polynomial tube, and

then repeat the process for the time interval [t, T], each time dynamically fig-

50

uring out the appropriate discretization. Recently, a similar approach based

on dividing the interval non-uniformly has been proposed for bounded error

post computation of linear dynamical systems with inputs [42].

Our algorithm, when compared with the basic algorithm previously stud-

ied, has both perceptible advantages and disadvantages. On first glance, the

basic algorithm seems to be computationally simpler and potentially faster.

For a system with linear dynamics, computing the set of states reached at

time ∆ involves computing (or rather approximating) matrix exponentials.

This is a significant computational overhead. In the basic algorithm, this

cost is minimized, as it is performed once for the first [0,∆] interval, and for

subsequent intervals it is obtained by translation rather than direct compu-

tation. In our algorithm, this must be computed afresh for each sub-interval.

Moreover, in our algorithm, the intervals need to be determined dynamically,

which is an additional overhead to the computation in each sub-interval.

However, on the flip side, dynamically determining intervals is likely to give

us larger sub-intervals in some places and therefore result in fewer intervals

overall to consider. This could be a potentially significant advantage. This

is because the eventual approximation of the reach set for the interval [0, T]

is given as the union of basic sets (represented by the chosen data structure)

that are computed for each sub-interval; thus, the number of terms in the

union is as large as the number of sub-intervals. Subsequent steps in verifying

safety properties (or other properties of interest) involve taking intersections,

and checking emptiness and membership of states in these sets. The com-

plexity of these set-theoretic operations depends on how many terms there

are in the union — this is true no matter what the chosen data structure

is. Thus, the time (and memory) used in verification is directly influenced

by how many steps the time interval [0, T] is divided into. Note, that the

“quality” of the solution computed by the basic algorithm is not better than

the one computed by our algorithm, even if it uses smaller sub-intervals and

more of them, because the overall quality is determined by the quality of the

solution in the “worst” interval, which is then built into the bloating factor

used by both algorithms.

In order to evaluate these competing claims, we implemented both the ba-

sic algorithm and our algorithm in MATLAB. Observe that in both the basic

algorithm and our algorithm, states reached at certain times must be com-

puted, and then the convex hull or polynomial tube must be approximated

51

by the data structure of choice. In our experimental evaluation, we choose

to be agnostic about the relative merits of different data structures, and we

make no claims about which data structure should be chosen. Therefore,

we only compute the states reached at certain time steps, and not the data

structure representing the reachable states. Once a data structure is chosen,

the computational overhead in constructing the desired set will be the same

whether the basic algorithm or our method is used (provided linear flows are

used to approximate the actual flow in our method). Thus, our experimen-

tal setup is to evaluate under what conditions (types of matrices and time

bound T) does unequal intervals plus associated computation costs beat uni-

form intervals with computation minimized by translation. We also try to

understand, when it makes sense to use polynomials that are not linear to

approximate the flow. Our results apply no matter what your favorite data

structure is.

Our experimental results are surprising. We evaluated the two methods

on both “natural” examples that have been studied before, and randomly

generated matrices, and for different time intervals and error bounds. First

we observed that our algorithm is scalable as it computes the points for both

large matrices (we tried it on 100 × 100 matrices) and for many time steps

(requiring thousands of iterations). Second, surprisingly, our algorithm, ap-

proximating flow by linear functions, most of the time outperforms the basic

algorithm, sometimes by a few orders of magnitude. The gap in the per-

formance between the two algorithms only widens considerably as the time

bound T is increased. This can be explained by the fact that as the number

of iterations increases the significant reduction in the number of intervals

dominates the computation costs. Our algorithm not only uses significantly

fewer number of intervals for the same precision (as would be expected) but

the size of the minimum interval is also significantly larger than the size of

the uniform interval chosen by the basic algorithm. This suggests that our

algorithm reaps the benefits of dynamic computation of error bounds, over

static determination of them. Next, we compare the potential benefits of

using non-linear flows to approximate the actual flow. We consider poly-

nomials of degree 2, as they are appropriate when considering ellipsoids as

the data structure. Theoretically, the size of a dynamically determined sub-

interval could be a factor of 2 larger when using polynomials of degree 2 when

compared with linear functions. That, in turn, could translate to significant

52

(exponential) savings in terms of the number of intervals. However, these

theoretical possibilities were not observed in our experiments — the number

of intervals for degree 2 polynomials were at most a factor of 2 smaller. This

could be explained by our observation that most of the sub-intervals in the

linear approximation tend to be small, and they are roughly of the same size.

In such a scenario the theoretical benefits of using quadratic approximations

don’t translate to visible gains.

We would like to remark that the approximations that we compute depend

on the machine precision, since the approximations are constructed by sam-

pling the function at certain points, and are only as precise as that of the

function values computed for the sample points. There are other approaches

for reachability analysis [82, 76, 65, 103] which rely on the decidability of the

satisfiability problem for the first order theory of reals, which in contrast are

algebraic techniques with infinite precision computation. However, for reach-

ability analysis for the class of linear dynamical system, the above techniques

need to first compute a polynomial approximation of the dynamics.

The rest of the chapter is organized as follows. Next, in Section 4.2, we

outline our algorithm to compute post for general dynamical systems by

approximating flows using Bernstein polynomials. In Section 4.3, we describe

the specific algorithm for linear dynamical systems. We then give details of

our experimental results (Section 4.4) before presenting our conclusions.

4.2 Post Computation by Flow Approximation

In this section, we describe a general algorithm to approximate the flow of

a dynamical system by a piecewise polynomial function of any fixed degree

within any approximation error bound. The approximations are based on

Bernstein Polynomials. We will begin with some preliminaries.

4.2.1 Preliminaries

We will use∞-norms for measuring the distance between two vectors. Given

x, y ∈ Rn, let ||x − y|| denote the distance between x and y in the ∞-norm,

that is, ||x−y|| = max1≤i≤n|(x)i−(y)i |. Also, given two functions G : A→ Rn

and H : A → Rn, the distance between the functions, denoted ||G − H||, is

53

given by ||G −H|| = supx∈A ||G(x) −H(x)||. Given two sets A,B ⊆ Rn, the

Hausdorff distance between the two sets, denoted dH(A,B), is defined as

dH(A,B) = max(sup
x∈A

inf
y∈B
||x− y||, sup

x∈B
inf
y∈A
||x− y||)

4.2.2 Bernstein Polynomial Approximations

Stone-Weierstrass Approximation theorem implies that any continuous func-

tion over a compact space can be approximated arbitrarily closely by a poly-

nomial function. However, it does not provide an explicit method for con-

structing these polynomials. Bernstein polynomials are a class of polynomials

which can be used to approximate a continuous function. They provide a

constructive proof of Stone-Weierstrass theorem in that given a function F ,

and an ε > 0, one can construct a Bernstein polynomial such that the dis-

tance between the function F and the corresponding polynomial is with in

ε, provided one can compute the values of the function at certain points and

estimate the values of certain parameters of the function. The approximate

polynomial is constructed by evaluating the function F at certain finite num-

ber of points and using these values as coefficients of the polynomial. Let

F : [a, b] → R be a function. Then a Bernstein polynomial of degree n

approximating F , denoted by Bernn(F) is given by:

(Bernn(F))(x) =

n∑
k=0

F (a+ k(b− a)/n) ∗
(
n

k

)
∗

((x− a)/(b− a))k(1− (x− a)/(b− a))n−k,

for all a ≤ x ≤ b.

The next two lemmas essentially show that the approximation error intro-

duced by the polynomial approximation can be made arbitrarily small. In

particular, given an ε > 0, we can choose an n effectively such that the dis-

tance between the two functions is bounded by ε. Let us denote by Fdiff, the

absolute difference between the maximum and minimum values of F in its

domain, i.e, Fdiff = maxx1,x2∈[a,b] |F (x2)−F (x1)|. Then, we have the following

from [70]:

54

Lemma 2 Let F : [a, b]→ R be a continuous function and ε > 0. Let δ > 0

be such that for all x1, x2 ∈ [a, b], |x2 − x1| ≤ δ implies |F (x2)− F (x1)| ≤ ε.

Then |F (x)− Bernn(F)(x)| ≤ ε if n > Fdiff/(εδ
2).

Lemma 3 Let F : [a, b] → R be a continuous function satisfying the Lip-

schitz condition |F (x) − F (y)| < L|x − y| for x, y ∈ [a, b]. Then |F (x) −
Bernn(F)(x)| < L/(2

√
(n)).

Note that both the lemmas give an n such that the error or distance

between F and Bernn(F) is within ε. In particular, given an ε the first

lemma tells us to choose an n > Fdiff/(εδ
2), and the second lemma tells us

that a choice of n > (L/2ε)2 would ensure that the error is within ε.

4.2.3 General Algorithm

Our aim is to approximate a flow F over a time interval [0, T] by a polynomial

of very low degree, such as a linear or a quadratic polynomial. Lemmas 2

and 3 give us a polynomial of a certain degree approximating the function

over the interval [0, T] ensuring the desired error bound. However, the degree

of the polynomial can be large. Hence instead of approximating by a single

polynomial of high degree, we present an algorithm which splits the interval

[0, T] into smaller intervals, and approximates the flow separately in each

of the smaller intervals, thereby giving a piecewise continuous polynomial

approximation of a fixed degree.

Consider the following dynamical system.

ẋ = f(x), x ∈ Rn, x(0) ∈ X0,

whereX0 is a set of initial vectors. We will assume that f is a ‘nice’ function

(for example, Lipschitz continuous) such that it has a unique solution Φ :

Rn × R≥0 → Rn, satisfying d/dt(Φ(x0, t)) = f(Φ(x0, t)) for all x0 ∈ X0 and

t ∈ R≥0. Note that Φ is assumed to be continuous and differentiable.

Let us fix an initial vector x0 ∈ X0, and a time T ∈ R≥0. Let F : [0, T]→
Rn be the function F (t) = Φ(x0, t) for all 0 ≤ t ≤ T . We will approximate

each Fi by a piecewise polynomial function Pi of degree ≤ m within an error

bound of ε. Hence ||F − P || < ε. The general algorithm is outlined below.

55

Algorithm 1 Varying Time Step Algorithm

Input: m ∈ N, ε ∈ R≥0, F : [0, T]→ R
Output: Sequence of polynomials

t := 0
while t < T do

Choose 0 < ti < T s.t.
||Bernm(F [t, t+ ti])− F [t, t+ ti]|| ≤ ε
Output Bernm(F [t, t+ ti])
t := t+ ti

end while

Starting at time t = 0, find a time 0 < t1 ≤ T such that ||Bernn(Fi[0, t1])−
Fi[0, t1]|| < ε. There always exists such a t1, since continuity of F implies that

Fi[0, t1]diff can be made arbitrarily small by taking t1 to be sufficiently small,

and therefore one can satisfy the condition Fi[0, t1]diff/εδ
2 < m in Lemma 2.

This reduces the problem to finding a piecewise polynomial approximation

of the function Fi[t1, T], and we proceed in the same manner to compute

t2, t3, · · · . Since the function values of the Bernstein polynomial and the

function it is approximating match at the end-point, the piecewise polynomial

function P , in any interval [0,
∑k

i=1 ti] is continuous. To ensure that the

number of iterations is finite, we need to ensure that the we make progress.

This can be guaranteed by ensuring that in each step, the ti chosen is at

least ∆, for some ∆ > 0. Note that there always exists a ∆, which can be

chosen at any step which satisfies the condition in Lemma 2. To see this, let

γ = mεδ2, where m is the degree of the polynomials we are considering, ε

is the desired bound on approximation error, and δ is the parameter in the

definition of continuity for Fi corresponding to ε. Since Fi is continuous and

bounded, there exists a ∆ > 0 such that for all t, t′ ∈ [0, T], |t − t′| ≤ ∆

implies |Fi(t) − Fi(t′)| ≤ γ. Hence choosing ∆ at any step ensures that we

make progress. In order to materialize the above sketch of the algorithm, we

need to be able to compute Fdiff or some upper bound on it, which ensures

progress. In the next section, we present two methods to compute the tis for

the class of linear dynamical systems.

56

4.3 Approximation of Linear Dynamical Systems

In this section, we consider linear dynamical systems and present our algo-

rithm in detail. Consider the following system:

ẋ = Ax, x ∈ Rn, x(0) ∈ X0,

where X0 ⊆ Rn is a bounded convex polyhedron. The solution of the above

equation is given by:

Φ(x0, t) = eAtx0, x0 ∈ X0, t ∈ R≥0.

Let us define PostΦ(X, [0, T]) = {Φ(x, t) |x ∈ X, t ∈ [0, T]}.
We consider the problem of computing an over approximation of PostΦ(X0,

[0, T]) such that the error in the approximation is within an ε. More precisely,

we wish to find a set P̂ostΦ(X0, [0, T]) such that P̂ostΦ(X0, [0, T]) is an over

approximation, that is, PostΦ(X0, [0, T]) ⊆ P̂ostΦ(X0, [0, T]), and the Haus-

dorff distance between the two sets is bounded by ε, that is, dH(PostΦ(X0, [0, T]),

P̂ostΦ(X0, [0, T])) ≤ ε.

First we show that the flow function for a linear system preserves convexity

and hence it suffices to approximate only the flows starting from the vertices

of X0.

Proposition 32 Let x = α1x1 + · · ·+αkxk where xi ∈ Rn and
∑k

i=1 αk = 1.

Then Φ(x, t) = α1Φ(x1, t) + · · ·+ αkΦ(xk, t).

Let Vertices(X0) denote the set of vertices of X0. Let us fix a time T . Given

a v ∈ Vertices(X0), let Fv : [0, T] → Rn be the function Fv(t) = Φ(v, t) for

all t ∈ [0, T]. For each v ∈ Vertices(X0), let F̂v denote a function such that

||F̂v−Fv|| ≤ ε. Let R̂ = {α1F̂v1(t)+· · ·+αkF̂vk(t) |α1+· · ·+αk = 1, t ∈ [0, T]}.
The next lemma says that the Hausdorff distance between the exact post set

and R̂ is bounded by ε.

Lemma 4

dH(PostΦ(X0, [0, T]), R̂) ≤ ε.

Proof Given x ∈ PostΦ(X0, [0, T]) we will find an x′ ∈ R̂ such that ||x−x′|| ≤
ε and vice versa.

57

Let x ∈ PostΦ(X0, [0, T]).

Then x = eAtx0 for some x0 ∈ X0 and t ∈ T .

Let Vertices(X0) = {v1, · · · , vk}.

Since X0 is a bounded convex polyhedron,

x0 = α1v1 + · · ·+ αkvk,

for some α1 + · · ·+ αk = 1.

Then x = eAtx0 = eAt(α1v1 + · · ·+ αkvk)

= (α1e
Atv1 + · · ·+ αke

Atvk).

Let x′ = α1F̂v1(t) + · · ·+ αkF̂vk(t).

Then |x− x′| =

|(α1e
Atv1 + · · ·+ αke

Atvk)− (α1F̂v1(t) + · · ·+ αkF̂vk(t))|

≤ α1|eAtv1 − F̂v1(t)|+ · · ·+ αk|eAtvk − hatFvk(t)|

≤ α1ε+ · · ·+ αkε = ε.

Similarly given an x ∈ R̂, we can find a x′ ∈ PostΦ(X0, [0, T]) such that

|x− x′| ≤ ε.

The above proposition tells us that it suffices to approximate the flows

starting at the vertices of the polyhedron. More precisely, if we approximate

the flows at the vertices within an error bound of ε in an interval [0, T],

then at any time t ∈ [0, T], the Hausdorff distance between the actual and

approximate sets is with ε.

In the literature, various methods have been proposed to compute P̂ostΦ.

58

These methods can be seen as consisting of the following two steps.

• Depending on the ε, a time step ∆ is chosen. Let V0 = Vertices(X0) and

Vi = PostΦ(V0, [i∆, i∆]) for i > 0 be the set of points reached from the

vertices of X0 after i time steps of size ∆. First V1 = PostΦ(V0, [∆,∆])

is computed. Then the convex hull C0 of V0 and V1 is bloated by ε,

and the resulting set is enclosed by a data structure of a certain form

to obtain an overapproximation C ′0 of PostΦ(X0, [0,∆]).

• Similarly, to obtain an overapproximation of PostΦ(X0, [i∆, (i+ 1)∆]),

the convex hull Ci of Vi and Vi+1 is bloated by ε, and enclosed in a

data structure. However, instead of computing Vi directly from V0, it

is computed iteratively from Vi−1, that is, Vi is computed from Vi−1 by

a linear transformation using the matrix e∆.

We think of the above algorithm as first computing an approximation of

the flow function, which is the piecewise linear function obtained by joining

the corresponding points in Vis, and then enclosing the reach set given by the

approximated flow function by a set of a certain form. The above algorithms

compute a piecewise linear approximation of the flow function by dividing the

interval [0, T] into equal intervals of size ∆. Our main contribution is a novel

algorithm for computing an approximation of the flow function, which does

not divide the interval uniformly, but dynamically computes the next time

step. The obvious advantage is the reduction in the number of times steps,

since a time step chosen by the dynamic algorithm is always larger than the

constant time step ∆ chosen by the uniform time step algorithm. This in

turn implies that the size of the final representation of the post set would be

smaller, and the size plays a crucial role in further analysis. However, there

is a overhead involved with the dynamic algorithm, which is in computing

the set of vertices Vis at various time points, since these Vis can no more

be computed iteratively by multiplication using a fixed matrix. Since the

timesteps ∆ keep changing, there does not exist a fixed matrix eA∆ which

can be used to obtain Vi from Vi−1 for every i. So the new algorithm involves

computing a new matrix exponential e∆i at each step. However, as we will

see in the next section, our experimental evaluations show that the overhead

introduced due to computation of a new matrix exponential at each time

step becomes negligible due to the huge decrease in the number of steps. In

59

other words, the cost of doing the large number of matrix multiplications in

the constant time step algorithm is greater than the cost of computing new

matrix exponentials followed by matrix multiplications for a small number

of timesteps in the dynamic algorithm.

To compute the approximation of the flow function for a linear dynamical

system, we instantiate Algorithm 1 to obtain an effective algorithm for linear

dynamical systems. As mentioned in the discussion of Algorithm 1, we need

to present a method to compute the tis in each step such that progress is

ensured. Next we present two methods for computing tis.

4.3.1 Computing ti: First Method

In this section we use Lemma 3 to compute the bound ti. Let us fix an

x0 ∈ Rn and an n × n matrix A. Let F : [0, T] → Rn be the function

F (t) = eAtx0. First we show that F satisfies the Lipschitz condition, and the

Lipschitz constant can be bounded by a function of T .

Lemma 5 Let F : [0, T]→ Rn be as defined above. Then for each 1 ≤ i ≤ n,

Fi is Lipschitz continuous with the Lipschitz constant L = ||A||e||A||T ||x0||.

Proof First let us recall the following identity. Given n×n matrices X and

Y ,

||eX+Y − eX || ≤ ||Y ||e||X||e||Y ||.

W.l.o.g assume t2 > t1.

||eAt2x0 − eAt1x0||
||t2 − t1||

=
||eAt1+A(t2−t1)x0 − eAt1x0||

|t2 − t1|

≤ ||A(t2 − t1)||e||At1||e||A(t2−t1)||||x0||
|t2 − t1|

=
||A|||t2 − t1|e||A|||t1|e||A|||t2−t1|||x0||

|t2 − t1|

= ||A||e||A||e(|t1|+|t2−t1|)||x0||

= ||A||e||A||T ||x0||

60

L ≥ max
t1,t2

||eAt2x0 − eAt1x0||
||t2 − t1||

≥ ||A||e||A||T ||x0||

The next lemma gives us a lower bound on the time step ti that can be

chosen at each step such that the approximate polynomial is within distance

ε from the original function.

Lemma 6 Let F : [0, T]→ Rn be as defined above. For t1 = loge(2
√
mε/||A||

||x0||)/||A||, ||F [0, t1]−Bm(F [0, t1])|| ≤ ε.

Proof The Lipschitz constant L for the function F [0, t1] is given by L =

||A||e||A||t1||x0|| from Lemma 5.

||F [0, t1]−Bm(F [0, t1])|| < L/(2
√
m) from Lemma 3.

L/(2
√
m) ≤ ε implies ||A||e||A||t1||x0|| ≤ 2

√
mε.

Hence for t1 ≤ loge(2
√
mε/||A||||x0||)/||A||,

||F [0, t1]−Bn(F [0, t1])|| ≤ ε.

Using the ti in the definition of Lemma 6 is desirable since it gives a closed

form expression for computing the ti. However, the problem with the above

expression is that the expression being computed might not result in a posi-

tive number in which case we are in trouble. Next we present another method

for computing lower bound for ti, which always gives a positive answer.

4.3.2 Computing ti: Second Method

In this section, we use Lemma 2 to compute a bound on the tis.

Lemma 7 Let F : [0, T] → Rn be as defined above. Let t1 be such that

e3||A||t1t1 < mε3/||A||3||x0||3. Then we have that ||Bm(F [0, t1])− F [0, t1]|| ≤ ε.

61

Proof From Lemma 2, we have that ||Bn(F [0, t1]) − F [0, t1]|| ≤ ε if n >

Fdiff/εδ
2.

We will find bounds on the values of Fdiff and δ as a function of t1.

Fdiff = max
x,y∈[0,t1]

||F (x)− F (y)||

= max
x,y∈[0,t1]

||eAxx0 − eAyx0|| ≤ ||A||e||A||t1||x0||t1

(See proof of Lemma 6.)

Next we need to find a lower bound on δ such that

∀x, y ∈ [0, t1], |x− y| ≤ δ =⇒ ||F (x)− F (y)|| ≤ ε.

Or equivalently

max
x,y∈[0,t1],|x−y|≤δ

||F (x)− F (y)|| ≤ ε.

However,

max
x,y∈[0,t1],|x−y|≤δ

||F (x)− F (y)|| ≤ ||A||e||A||t1||x0||δ

(again from the proof of Lemma 6).

Hence it suffices to choose a δ which ensures

||A||e||A||t1||x0||δ ≤ ε.

Hence we can choose

δ = ε/(||A||e||A||t1 ||x0||).

We want to choose a t1 so as to satisfy m > Fdiff/εδ
2. It suffices to satisfy

m >
||A||e||A||t1||x0||t1)

(ε(ε/(||A||e||A||t1||x0||))2)
.

Or,

mε3 > ||A||3e3||A||t1||x0||3t1.

For t1 such that

e3||A||t1t1 < nε3/||A||3||x0||3,

we have ||F (x)−Bm(F (x))|| ≤ ε for all 0 ≤ x ≤ t1.

62

There always exists a positive real number t1 ≤ t satisfying the inequality

eat1t1 < b where a = 3||A|| and b = mε3/||A||3||x0||3, since the function eaxx→
0 as x → 0. Computing a t1 such that eat1t1 = b might not be possible,

instead one can obtain an upper bound on this value. For example, we

know that t1 ≤ t. Hence we can consider t1 = b/eat. We use the following

alternative bound. If at1 < 1, then we can upper bound eat1 by 1/(1− at1).

This gives us a bound t1 < b/(1 + ab). Hence t1 < min{b/(1 + ab), 1/2a1} is

a positive bound for t1.

The algorithm for computing a piecewise polynomial approximation of a

linear dynamical system is given in Algorithm 2.

Algorithm 2 Post Computation Algorithm for Linear Dynamical Systems

Input: m ∈ N, ε ∈ R≥0, V0 ⊆Fin Rn, A ∈ Rn×n, T > 0
Output: Sequence of a set of n polynomials

Let F x : [0, T]→ Rn be F x(t) = eAtx
for all v ∈ V0 do
t := 0
x := v
while t < T do

Choose τ1 > 0 s.t
e3||A||τ1τ1 < mε3/||A||3||x||3
Let τ2 = loge(2

√
mε/||A||||x||)/||A||

Let ti = max τ1, τ2

Output Bernm(F v
j [t, t+ ti]), for each 1 ≤ j ≤ n

t := t+ ti
x := eAtv

end while
end for

4.3.3 Termination of the Algorithm

In each step, we take as the next time step the maximum of the values

obtained by methods in Lemma 6 and Lemma 7. This time step is always

going to be positive, since Method 2 always gives a positive answer. Next

we show that the time step we choose in any iteration has a positive lower

bound. Hence, the algorithm always terminates.

63

Assume that in each step of method 2, we choose ti = min{b/(1+ab), 1/2a1}.

b/(1 + ab) =
(mε3/(||A||3||xi||3))

(1 + (amε3/(||A||3||xi||3)))

=
(mε3/(||A||3))

(||xi||3 + (amε3/(||A||3)))

≥ (mε3/(||A||3))

(eaT ||x0||3 + (amε3/(||A||3)))

Therefore, the time steps ti are lower bounded by a positive number.

Figure 4.1 and Figure 4.2 illustrate the difference between the constant

step and varying step algorithms. For each algorithm, the points (t, y) are

plotted, where t ranges over the times
∑i

j=0 ti, where t1, t2, · · · is the sequence

of time steps chosen by the algorithm, and y is given by eAtx. Observe that in

the case of timestep varying algorithm, initially larger steps are chosen, and

when the time approaches close to T , the timesteps taken by the constant

time step algorithm and the varying time step algorithm become identical.

Notice that the sampling rate of the varying time step algorithm depends

on the value of the derivative of the function at various points, where as the

constant time step algorithm makes no such distinction.

Figure 4.1: Constant time step
Algorithm

Figure 4.2: Varying time step
Algorithm

4.3.4 Comparison with Other Polynomial Approximations

In this chapter, we considered Bernstein polynomials to approximate an ar-

bitrary function by a polynomial function. Another popular technique to

64

obtain polynomial approximations is to use Taylor’s series expansion of the

function and truncate the infinite sum after some points to obtain a poly-

nomial. There are a few caveats in using Taylor’s approximation in general.

First it assumes that the function is smooth, and the derivatives can be com-

puted. Secondly, it does not give a closed form expression for m, the number

of terms in the Taylor’s expansion that should be considered to obtain an ε

bound on the approximation error.

4.4 Experimental Evaluation

In this section, we explain our experimental set up for evaluating the per-

formance of our algorithm and comparison with other methods. We imple-

mented our algorithm in MATLAB 7.4.0, and the experiments were con-

ducted on Mac OS X Version 10.4.11, with a 2.16 GHz Intel Core 2 Duo

processor and 1GB SDRAM. We performed our experiments on linear and

quadratic approximations. We will report and explain our results for both

the approximations in the following sections.

4.4.1 Linear Approximation

Our experimental evaluation of the two algorithms chooses to be agnostic of

the relative benefits of different data structures, and attempts to highlight

the relative advantages of each algorithm, independent of the chosen data

structure. No matter what the chosen data structure, the algorithms require

computing the states reached at certain time steps. Once these points are

computed, the data structure approximating a convex hull of the points needs

to be computed. Thus, in our experimental evaluation we only compared the

computational costs of finding the states reached at the required times using

the two algorithms. In the basic algorithm, the interval size is fixed to be ∆,

and then the states reached at time ∆ are computed by multiplying initial set

of states with matrix exponential eA∆, but for subsequent times i∆ they are

computed by translation that involves only multiplication with eA∆ which

is evaluated only once. In contrast, in our algorithm, the states reached at

each of the designated time steps is computed from scratch using matrix

exponentials, and the size of the next interval is found dynamically. Recall

65

Matrix ε T n m tmax tmin ∆
2DR 4.93E-03 1 3.34E+02 8.53E+02 5.54E-03 1.78E-03 1.17E-03
2DR 6.78E-02 2 1.80E+01 1.60E+03 1.96E-01 7.81E-02 1.25E-03
2DR 3.60E-01 5 1.20E+01 4.27E+03 4.83E-01 4.83E-01 1.17E-03
2DR 1.85E+00 10 9.20E+01 8.47E+03 4.60E-01 9.42E-03 1.18E-03
5DR 4.92E-01 1 1.00E+01 5.65E+02 1.23E-01 1.07E-01 1.77E-03
5DR 3.14E+00 2 1.50E+01 1.14E+03 1.44E-01 1.44E-01 1.76E-03
5DR 2.11E+02 5 3.30E+01 2.99E+03 1.57E-01 1.57E-01 1.67E-03
5DR 3.04E+05 10 6.20E+01 6.15E+03 1.65E-01 1.65E-01 1.63E-03
100DR 2.01E-02 1 3.70E+02 9.16E+02 2.76E-03 2.61E-03 1.09E-03
100DR 2.56E-02 2 3.17E+02 1.84E+03 6.57E-03 5.93E-03 1.09E-03
100DR 6.13E-02 5 8.20E+01 4.59E+03 7.69E-02 4.97E-02 1.09E-03
100DR 2.65E-01 10 1.30E+01 9.17E+03 8.65E-01 8.22E-01 1.09E-03

Table 4.1: Random Martices: Comparison of the Number of Subintervals in
the Approximation

Matrix ε T RTV RTC

2DR 4.93E-03 1 1.80E-01 2.79E-02
2DR 6.78E-02 2 1.77E-02 1.15E-01
2DR 3.60E-01 5 1.68E-02 4.99E-01
2DR 1.85E+00 10 5.64E-02 1.51E+00
5DR 4.92E-01 1 1.49E-02 4.69E-02
5DR 3.14E+00 2 1.96E-02 1.15E-01
5DR 2.11E+02 5 2.95E-02 4.97E-01
5DR 3.04E+05 10 4.81E-02 1.62E+00
100DR 2.01E-02 1 4.81E+00 5.33E-01
100DR 2.56E-02 2 4.42E+00 2.93E+00
100DR 6.13E-02 5 1.24E+00 2.14E+01
100DR 2.65E-01 10 4.05E-01 9.23E+01

Table 4.2: Random Matrices: Comparison of the Time Taken for
Constructing the Approximation

from Section 4.3, that when the initial set is a convex polyhedron, reach

set computation involves computing this approximated flow for each vertex.

Thus, in our experimental evaluation, we start from a single point, as this will

faithfully reflect the costs of starting from a polyhedron. Finally, the error

bound chosen for the varying time step algorithm was the one guaranteed by

the fixed time step algorithm.

To determine feasibility of the algorithms, we first ran them on some ran-

domly generated matrices. The entries of the matrices were random values

in the interval [−1, 1]. The results of our experiments are shown in Table

4.1 and Table 4.2. The rows labelled 2DR report results for 2× 2 matrices,

66

those labelled 5DR for 5× 5 matrices, and finally those labelled 100DR for

100×100 matrices. The columns reported in the table are as follows: ε gives

the error bound; T gives the time bound chosen for the experiment; m and

n are the number of sub-intervals used by the constant timestep algorithm

and varying timestep algorithms, respectively; tmax and tmin are the largest

and smallest time intervals considered by the varying timestep algorithm;

∆ is the size of the interval used by the constant timestep algorithm; and

RTC and RTV are the running times of the constant timestep and varying

timestep algorithms, respectively. For these matrices, we chose a time step

for the constant timestep algorithm to be of the order of 10−3, and used

the resulting error bound as ε. The results show that the varying timestep

algorithm is scalable and has a running time comparable to the constant

timestep algorithm; in many cases the varying timestep algorithm is faster

by 2 orders of magnitude. The number of sub-intervals used by the varying

timestep algorithm (n) is always less than that used by the constant timestep

method (m) by either a magnitude or two orders of magnitude. The other

surprising observation is that the smallest time interval used by the varying

timestep method is in all cases larger than the interval used by the constant

timestep algorithm.

We also experimented on benchmark examples considered in [45]. Nav is

the navigation benchmark first suggested in [40], while Z2 and Z5 are the 2

dimensional and 5 dimensional examples from [45]. The matrices describing

their dynamics is as follows.

Nav =


0 0 1 0

0 0 0 1

0 0 −1.2 0.1

0 0 0.1 −1.2

 , Z2 =

[
−0.1 −0.4

0.4 −0.1

]

Z5 =


−0.1 −0.4 0 0 0

0.4 −0.1 0 0 0

0 0 −0.3 0.1 0

0 0 −0.1 −0.3 0

0 0 0 0 −0.2


We tried to study the effect of increasing the time bound T on the running

time of these algorithms and so we considered T = 1, 2, 3. Table 4.3 and Table

67

Matrix ε T n m tmax tmin Constant
Z2 1E-01 1 1.30E+02 7.47E+02 1.13E-02 5.96E-03 1.34E-03
Z2 1E-01 2 1.86E+02 6.69E+03 2.69E-02 5.96E-03 2.99E-04
Z2 1E-01 3 2.42E+02 4.49E+04 2.69E-02 5.96E-03 6.68E-05
Z5 1E-01 1 1.04E+02 5.61E+02 1.34E-02 7.91E-03 1.78E-03
Z5 1E-01 2 1.52E+02 5.02E+03 3.82E-02 7.91E-03 3.98E-04
Z5 1E-01 3 1.87E+02 3.38E+04 3.82E-02 7.91E-03 8.89E-05
Nav 1E+00 1 7.00E+00 5.00E+00 1.92E-01 1.92E-01 1.92E-01
Nav 1E+00 2 1.20E+01 9.30E+01 1.92E-01 1.92E-01 2.14E-02
Nav 1E+00 3 1.70E+01 6.37E+03 1.92E-01 1.92E-01 4.71E-04

Table 4.3: Standard Examples: Comparison of the Number of Subintervals
for Total Time T = 1, 2, 3

Matrix ε T RTV RTC

Z2 1E-01 1 7.43E-02 2.55E-02
Z2 1E-01 2 1.04E-01 9.95E-01
Z2 1E-01 3 1.33E-01 2.78E+01
Z5 1E-01 1 6.22E-02 4.00E-02
Z5 1E-01 2 8.75E-02 1.04E+00
Z5 1E-01 3 1.07E-01 4.33E+01
Nav 1E+00 1 1.47E-02 2.30E-02
Nav 1E+00 2 1.65E-02 2.30E-02
Nav 1E+00 3 1.95E-02 1.45E+00

Table 4.4: Standard Examples: Comparison of the Time for Constructing
the Approximation for Total Time T = 1, 2, 3

4.4 show our results for these benchmark examples and varying time. It shows

that as T increases, the varying timestep algorithm’s relative performance

improves both in terms of the number of sub-intervals considered and the

running time, with the gap increasing to as much two orders of magnitude.

4.4.2 Quadratic Approximation

We also implemented the varying time step algorithm for approximation by

piecewise quadratic approximation. Theoretically, a single timestep of the

quadratic approximation could be twice as much as that of the linear approx-

imation. Interestingly, this could lead to a huge reduction in the number of

total time steps. Consider an exponentially growing function, for which the

time steps chosen by the linear approximation decrease by a constant factor

in consecutive time steps. For example, consider the following sequence of

68

Matrix tmin tmax n tQmin tQmax nQ

Z2 5.96E-03 1.13E-02 1.30E+02 7.21E-03 2.20E-02 6.70E+01
Z2 5.96E-03 2.69E-02 1.86E+02 1.26E-05 5.10E-02 9.60E+01
Z2 1.00E-03 2.69E-02 2.42E+02 1.18E-02 5.10E-02 1.24E+02
Z5 2.48E-03 1.34E-02 1.04E+02 1.56E-02 2.55E-02 5.30E+01
Z5 1.60E-03 3.82E-02 1.52E+02 1.56E-02 6.45E-02 7.80E+01
Z5 7.91E-03 3.82E-02 1.87E+02 1.56E-02 7.02E-02 9.70E+01
Nav 1.92E-01 1.92E-01 7.00E+00 1.92E-01 1.92E-01 7.00E+00
Nav 1.92E-01 1.92E-01 1.20E+01 1.92E-01 1.92E-01 1.20E+01
Nav 1.92E-01 1.92E-01 1.70E+01 1.92E-01 1.92E-01 1.70E+01

Table 4.5: Comparison of the Number of Subintervals in the Linear and
Quadratic Approximations

Matrix RTV RTQ

Z2 9.88E-02 4.74E-02
Z2 1.28E-01 5.98E-02
Z2 1.60E-01 7.49E-02
Z5 1.21E-01 4.10E-02
Z5 1.12E-01 5.17E-02
Z5 1.31E-01 6.25E-02
Nav 3.54E-02 1.10E-02
Nav 3.84E-02 1.44E-02
Nav 4.09E-02 1.57E-02

Table 4.6: Comparison of the Running Times in the Linear and Quadratic
Approximations

timesteps 1, 1/2, 1/22, · · · , 1/2k. A doubling of the time step in the quadratic

approximation could lead to the skipping of k timesteps in the above exam-

ple. However, we did not observe this phenomenon in our experiments which

are tabulated in Table 4.5 and Table 4.6. The columns tmin, tmax, RTV , and

n report the smallest time interval, largest time interval, running time, and

number of intervals when using a linear approximations; the columns with

superscript or subscript Q refer to the same quantities for the quadratic ap-

proximation. The improvement for the quadratic approximation was not as

dramatic as we hoped it might, and in the best case was better by a factor

of 2.

69

4.5 Conclusions

In this chapter, we presented an algorithm for approximating the flow of a

Linear Dynamical System by a piecewise polynomial function. This gives

us a fully automatic method for safety verification of linear hybrid systems

in combination with the approximation technique described in the previous

chapter. Moreover, the dynamic nature of our algorithm in constructing

the approximation gives us a scalable technique which constructs smaller

approximations than those constructed by previously existing algorithms and

is faster as seen in our experiments on standard and random examples. In the

future, we intend to extend this algorithm to more general classes of hybrid

systems.

70

CHAPTER 5

HYBRID CEGAR

Chapter 3 and Chapter 4 focused on developing techniques for constructing

approximations of systems parametrized by a bound on the error between the

original and the approximate system. These techniques provide a method for

proving safety of systems by iteratively constructing more and more precise

abstractions by reducing the error of approximation. However, they ignore

the property being analysed in constructing these abstractions. Construct-

ing and refining abstractions based on the property seems a natural approach

to pursue, and one of the popular methods for property based abstraction

refinement is a method called counterexample guided abstraction refinement

(CEGAR) in which an abstraction is refined by examining a “counterex-

ample” which is a witness to the violation of the property by the abstract

system.

In this chapter, we present a framework for carrying out CEGAR for sys-

tems modelled as rectangular hybrid automata (RHA). We choose as the

class of abstract systems, the subclass of RHA called the initialized rect-

angular hybrid automata (IRHA), for which safety verification is decidable.

The main difference, between our approach and previous proposals for CE-

GAR for hybrid automata, is that we consider the abstractions to be hybrid

automata as well. We show that the CEGAR scheme is complete, when ap-

plied to initialized rectangular automata, and is semi-complete for the class

of RHA. We have implemented the CEGAR based algorithm in a tool called

Hare, that makes calls to HyTech to analyze the abstract models and val-

idate the counterexamples. Our experiments demonstrate the usefulness of

the approach.

71

5.1 An Overview

As discussed earlier, direct model checking of realistic hybrid systems is

in general undecidable and often foiled by the state-space explosion prob-

lem. Hence, one has to rely on some sort of abstraction. Finding the

right abstraction is in itself a difficult problem. To this end, the counterex-

ample guided abstraction refinement (CEGAR) [28] technique which com-

bines automatic abstraction with model checking has gained preeminence

in a number of contexts [12, 57, 29, 53] including in timed and hybrid sys-

tems [3, 26, 27, 98, 39, 97, 36, 60]. CEGAR begins with a coarse initial

abstract model that is progressively refined based on model checking the ab-

straction and analyzing the counterexamples generated by the model checker,

until either a valid counterexample is found or an abstraction satisfying the

safety property is obtained.

The space over which CEGAR performs the abstractions and refinements

is key in determining both the efficiency (of model checking) and the com-

pleteness of the procedure. For example, in [3, 26, 27, 98, 97] abstraction-

refinement is carried out in the space of finite-state discrete transition sys-

tems. In other words, the (infinite) configuration space of the hybrid automa-

ton is partitioned into finitely many equivalence classes, and the abstraction

has as states these equivalence classes; the abstraction has no continuous

dynamics. The partitioning of the configurations maybe based on predi-

cates [3, 98, 97] as in predicate abstraction [50]. Computing the transitions

for this abstract finite state machine involves computing the unbounded time

reachable states from the equivalence classes of the concrete system, which

is difficult in practice for hybrid systems with complex continuous dynamics.

The second proposal [36, 60] is a CEGAR framework for hybrid automata

where the abstractions are constructed by ignoring certain variables. Coun-

terexamples are used to identify new variables to be added to the abstraction.

This approach has been carried out for timed automata [36] and linear hybrid

automata [60].

In this chapter, we generalize the approach in [36, 60] to present a hybrid

abstraction-based CEGAR framework for rectangular hybrid systems. We

abstract such automata using initialized rectangular hybrid automata [54],

and not finite transition systems. The choice of initialized rectangular hy-

brid automata as the abstract space is motivated by the desire to have a rich

72

space of abstractions, with a decidable model checking problem, and effec-

tive tools to analyze them. We generalize the results in [36, 60] in several

directions. First, in our abstract hybrid automata, we allow control states

and transitions to be collapsed; thus, the control structure of the abstraction

is not the same as that of the original automaton. In addition, the con-

tinuous variables in the abstract hybrid automaton may be a subset of the

original variables or scaled versions of the original variables. Variable scaling

changes the constants that appear in the abstract hybrid automaton which

in turn can positively influence the efficiency of model checking the abstract

automaton. Our refinement algorithm is more involved than for abstractions

where only certain variables are dropped; it may involve splitting control

states/transitions, and/or adding variables that may have new dynamics.

Our main result in this chapter is a hybrid abstraction-based CEGAR

framework for the class of rectangular hybrid automata (RHA) [54]. These

are systems in which the evolution of the continuous variables is constrained

such that the derivative of the flows belong to a “rectangular constraint”.

Further, the invariants, guards and resets are also specified using rectangular

regions. This is an interesting albeit simple class of systems since various

classes of systems with complex continuous dynamics can be approximated

to this class with arbitrary precision [93]. Unfortunately, safety verifica-

tion is undecidable even for the class of RHA; and hence, we choose as our

abstraction space, a subclass of RHA called initialized rectangular hybrid au-

tomata for which safety verification is decidable [54]. We present algorithms

for counterexample analysis and refinement in this setting. If the concrete

automaton is initialized, we prove that the procedure is complete, that is,

it will terminate and either prove that the concrete automaton satisfies the

given safety property or demonstrate a bug by constructing a valid coun-

terexample. More generally, for the class of rectangular hybrid automata, we

show that the method is semi-complete, that is, if the system is safe, it may

or may not terminate, however, if the system is buggy, it is guaranteed to

terminate.

We have implemented our CEGAR based algorithm for rectangular hy-

brid automata in a tool that we call Hybrid Abstraction Refinement Engine

(Hare). Hare makes calls to HyTech [56] to analyze abstract models and

generate counterexamples; we considered PHAVer [41], but at the time of

writing it does not produce counterexamples. We analyzed the tool on sev-

73

eral benchmark examples which illustrate that its total running time is com-

parable with that of HyTech, and on some examples Hare is a couple of

orders of magnitude faster. Moreover, in some cases Hare can prove safety

with dramatically small abstractions. Fair running-time comparison of Hare

with other MATLAB-based tools, such as d/dt [33] and checkmate [26], is

not possible because of the differences in the runtime environments. Ex-

perimental comparison of finite-state and hybrid abstractions was also not

possible because to the best of our knowledge, the tools implementing finite-

state abstractions are not publicly available. We believe that in terms of

efficiency, the approaches of finite state abstractions and hybrid abstractions

are incomparable, and we present examples where CEGAR using hybrid ab-

stractions are demonstrably more efficient than CEGAR using finite-state

counterparts.

Related Work We briefly distinguish our contribution from existing re-

sults in the literature. In [3, 27], the authors consider finite-state abstrac-

tions. When compared to using finite-state abstractions, using hybrid ab-

stractions in a CEGAR framework requires carrying out computationally

simpler tasks when constructing abstractions, refining them and validating

counterexamples. Constructing finite-state abstractions requires comput-

ing time successors, which is computationally expensive. In contrast, con-

structing hybrid abstractions only involves making local checks about flow

equations. Moreover when validating counterexamples in a hybrid CEGAR

scheme, one is only required to compute time-bounded successors. Comput-

ing time-bounded successors is often computationally easier than computing

time-unbounded successors (required in constructing discrete abstractions);

for example, for automata with linear differential dynamics, time-bounded

posts can be efficiently approximated, while no such algorithms exist for

time-unbounded posts.

When compared to hybrid CEGAR schemes described in [36, 60], our

abstractions (may) change both the control graph and variable dynamics,

and are not restricted to only forgetting continuous variables. In contrast,

the scheme in [60] considers a more general class of hybrid automata, though

the abstractions in that scheme are not progressively refined.

Finally, in [37] hybrid systems with flows described by linear differential

equations are approximated by rectangular HA. Even though, their scheme

74

progressively refines abstractions, the refinements are not guided by counter-

examples.

5.2 Preliminaries

A rectangular constraint B ⊆ Rn is a Cartesian product of intervals whose

finite end-points are in I, that is, B =
∏n

i=1 (B)i and each (B)i is an inter-

val whose end-points belong to I ∪ {−∞,+∞}. The set of all rectangular

constraints in Rn is denoted by RectConst(n). A multirectangular constraint

is a finite set of rectangular constraints of the same dimension. The set of all

multirectangular constraints of dimension n is denoted by MRectConst(n).

Given a multirectangular constraint R = {R1, · · · , Rm}, where each Ri ∈
RectConst(n), [[R]] is the set

⋃
iRi. Given R, S ∈ MRectConst(n), we say

that R � S if for every R′ ∈ R, there exists a S ′ ∈ S such that R′ ⊆ S ′.

Given S ⊆ Rn, the rectangular hull of S, denoted RectHull(S), is the smallest

rectangular constraint in RectConst(n) containing S. Sets which are rectan-

gular, but are obtained from intervals whose endpoints are not necessarily

integers but reals are called rectangular regions . A multirectangular region

R ⊆ Rn is a finite set of rectangular regions. We denote by RectReg(n) the

set of all rectangular regions which are subsets of Rn, and by MRectReg(n)

the set of all multirectangular regions which are subsets of Rn. Given multi-

rectangular regions R and S, [[R]] and R � S are defined similar to the case

of multirectangular constraints.

In this chapter, we will consider transition systems in which states are

not labelled. Hence, the transition system in this chapter will contain only

4 component as in (S, S0,Act, {→}a∈Act), that is, we drop the components

which specify the set of state labels and the state labelling function. The

notion of simulation between transition systems Ti = (Si, S
0
i ,Act, {→i}a∈Act),

for i = 1, 2 is the same as before except that the condition on state labels is

ignored. Further, we call a function α : S1 → S2 a simulation function if the

relation {(s, α(s)) | s ∈ S1} is a simulation relation between T1 and T2, and

we denote this fact by T1 �α T2.

75

Figure 5.1: An example of a rectangular hybrid automaton

5.3 Rectangular Hybrid Automata (RHA)

In this chapter, we will consider a subclass of hybrid automata called rectan-

gular hybrid automata in which all the guards, resets, invariants, and flows

are described by rectangular constraints. We will consider unlabelled hybrid

systems, that is, the edges and the locations do not have labels. Hence, we

represent edges as a set of elements and specify the source and target of each

element. Further, the flows of the automaton are non-deterministic, that is,

the continuous state is allowed to evolve in more than one way starting from

a particular state. The flow function is represented by specifying for each

variable an interval in which the derivative of the flow corresponding to the

variable is required to lie in. Figure 5.1 shows an example of a rectangular

hybrid automaton with four discrete states and a variable x. The formal

definition of a rectangular hybrid automaton is given below.

Formally, a rectangular hybrid automaton (RHA) H is a tuple (Loc, Edges,

Source, Target, n, init, Cont0, inv, activity, reset) where

• Loc is a finite set of (discrete) control states or locations.

• Edges is a finite set of edges.

• Source, Target: Edges → Loc are functions which associate a source

and a target location to every edge, respectively.

76

• n ∈ N is the dimension denoted by Dim(H), and Cont = Rn is the set

of continuous states.

• init ∈ Loc is the initial location and Cont0 ∈ RectConst(n) is the initial

set of continuous states.

• inv: Loc→ RectConst(n) associates with every location an invariant.

• activity: Loc→ RectConst(n) associates with every location an activity

set.

• reset: Edges×[n]→ (RectConst(1)∪RectConst(2)) associates with each

edge and an index either a rectangular set of dimension 1, in which case

it is called an identity reset, or a rectangular set of dimension 2 in which

case it is called a strong reset.

The above is the standard definition of a RHA (e.g., [54]) except that here

we have combined the guards and the reset maps into the reset function.

This is explained with the aid of the example shown in Figure 5.1.

Example 33 The set of locations Loc = {q1, q2, q3, q4} and the set of edges

in Edges = {e1, e2, e3, e4}. The source of edge e1 is q1 and the target is q2.

The activities in a location is given by an expression of the form ẋ ∈ I and

the invariant is given by an expression of the form x ∈ J , where I and J are

intervals. The reset associated with the edge e1 is an identity reset given by

reset(e1, 1) = [2, 4], and belongs to RectConst(1). Hence, if the execution is

in location q1 with value of x being 2, the edge e1 is enabled since 2 belongs

to the 1-dimensional reset interval [2, 4] associated with the edge e1. The

value of x after the transition remains equal to 2. On the other hand, a reset

specified as a product of two intervals corresponds to a strong reset, as in

the case of the edge e3, for which reset(e3, 1) = [2, 4]× [4, 6] ∈ RectConst(2).

Such an edge can be taken only if the value of the variable before taking the

edge belongs to the first interval and the value of the variable after taking the

edge is non-deterministically reset to some value in the second interval. For

example, starting with value 2 for x in location q1, the edge e3 is enabled and

after the edge is taken the value of x is reset to some value in [4, 6].

Notation 34 We will use H1, H2, HA, HC and so on to represent rectan-

gular hybrid automata, and we will use subscripts to denote the components,

77

for example, the set of locations of H1 is denoted by Loc1 and the invariant

function of HA is denoted by invA.

The reset of an edge defines a binary relation on Rn containing pairs of

continuous state changes allowed by the reset. Let us define the binary

relation ResetRel(e) to be the set of all points (x, y) ∈ Rn×Rn such that for

all i ∈ [n], if reset(e, i) ∈ RectConst(1), then (x)i ∈ reset(e, i) and (y)i = (x)i ,

and if reset(e, i) ∈ RectConst(2), then ((x)i , (y)i) ∈ reset(e, i).

The semantics of a RHA H is defined in terms of the transition system

[[H]] = (Q,Q0,Σ, {→a}a∈Σ) over Σ = R≥0 ∪ Edges, where Q = Loc × Cont,

Q0 = init× Cont0, and the transition relation {→a}a∈Σ is given by:

• Continuous transitions - For t ∈ R≥0, (q1, x1)
t−→ (q2, x2) iff q1 = q2 =

q and there exists a continuously differentiable function f : [0, t]→ Rn,

such that x1 = f(0), x2 = f(t) and for all t′ ∈ [0, t], f(t′) ∈ inv(q) and

f ′(t) ∈ activity(q), where f ′ = df/dt is the derivative of f with respect

to time.

• Discrete transitions - For e ∈ Edges, (q1, x1)
e−→ (q2, x2) iff q1 =

Source(e), q2 = Target(e), and (x1, x2) ∈ ResetRel(e).

We will denote the set of states of [[H]], namely Q, by StatesH. Given a set

S ⊆ StatesH and q ∈ Loc, S|q will denote the restriction of S to q, namely, the

set {(q, x) | (q, x) ∈ S}, Cont(S) will denote the continuous part of the states

of S, that is, Cont(S) = {x | ∃q, (q, x) ∈ S}. When there is no ambiguity we

will use H and [[H]] interchangeably. For example, we use PreH and PostH

to denote Pre[[H]] and Post[[H]], respectively.

An execution fragment σ of H is a finite path in [[H]] with alternating

discrete and continuous transitions. An execution of H is an execution frag-

ment starting with a state (q, x) in Q0. We are interested in the control state

reachability problem for hybrid systems, which is to determine, given a HA

H and a location q, if there exists an execution reaching some state with

location q. As a general rule we drop H from the notation whenever it is

clear from the context.

For notational convenience, we will also need a slightly different class of

automata called multireset rectangular hybrid automata (MRHA). A multi-

reset RHA is similar to a RHA except that the reset function is now a function

of the form reset : Edges×[n]→ MRectConst(1)∪MRectConst(2), that is, the

78

resets are multirectangular sets instead of rectangular sets. The reset relation

ResetRel associated with an edge e of a MRHA is defined in a similar manner

to that for a RHA. Given an edge e of a MRHA, ResetRel(e) is given by the

set of all points (x, y) ∈ Rn × Rn such that for every i ∈ [n], if reset(e, i) ∈
MRectConst(1), then (x)i ∈ R for some R ∈ reset(e, i) and (y)i = (x)i , and

if reset(e, i) ∈ MRectConst(2), then ((x)i , (y)i) ∈ R, for some R ∈ reset(e, i).

For example, in a one dimensional MRHA if reset(e, 1) = {[1, 2], [3, 4]}, then

ResetRel(e) = {(x, x) |x ∈ [1, 2]}∪{(x, x) |x ∈ [3, 4]}. If reset(e, 1) = {[1, 2]×
[3, 4], [3, 4]× [4, 5]}, then ResetRel(e, 1) = ([1, 2]× [3, 4])∪([3, 4]× [4, 5]). Note

that every RHA can be converted to a MRHA by replacing every rectangular

set in its reset function by a multirectangular set with one element. From

now on, by an RHA, we mean an MRHA in which the reset function consists

of only multirectangular sets which are singletons. Similarly, every MRHA

can be converted to an RHA by replacing every edge by some finite number

of edges depending on the number of elements in the multirectangular sets

in the reset associated with that edge.

We will consider a special class of rectangular hybrid automata called ini-

tialized rectangular hybrid automata which have the property that iden-

tity resets are allowed on an edge for an index i only when the activity

function associated with the corresponding variable doesn’t change. We

say that a MRHA H is initialized (MIRHA) if for every e ∈ Edges and

i ∈ [n], (activity(Source(e)))i 6= (activity(Target(e)))i implies reset(e, i) ∈
MRectConst(2). Also, an initialized rectangular hybrid automaton is a MIRHA

which is also an RHA. The reachability problem is decidable for the class

of initialized rectangular hybrid automata [54]. Since every MIRHA can be

translated to an initialized RHA (which is equivalent with respect to reach-

ability verification) by using the same translation as from MRHA to RHA,

the reachability problem is also decidable for the class of MIRHA.

5.4 CEGAR for Rectangular Hybrid Automata

In this section, we present a counterexample guided abstraction refinement

method for the class of rectangular hybrid automata, and show that the

method is complete for the class of initialized rectangular hybrid automata

and semi-complete for the class of RHA. We will first describe the general

79

CEGAR

Counter Example Guided Abstraction Refinement

Abstract Model-Check

ValidateRefine

Yes

Concrete System
satisfies the property!!

No

Concrete

System

Abstract

System

Property

Abstract

Counterexample

Yes

Concrete counterexample!

No

Abstraction

Relation

Analysis

Sunday, June 12, 2011

Figure 5.2: Counterexample Guided Abstraction Refinement Approach

CEGAR framework.

5.4.1 CEGAR Framework

A counterexample guided abstraction refinement algorithm consists of the

four steps which are shown in Figure 5.3. CEGAR loop begins with the con-

struction of an initial abstraction of the original system (also called concrete

system). The abstract system is then model-checked to check if there are

any executions leading to the unsafe control state. Such an execution if one

exists is called an abstract counterexample. If the abstract system has no

counterexamples, then it can be deduced from the properties of abstraction

that even the concrete system does not have any counterexamples. However,

if an abstract counterexample is returned in the model-checking phase, then

it is validated to check if there are any concrete counterexamples correspond-

ing to it. If a concrete counterexamples is found, then the concrete system

is unsafe, and the concrete counterexamples is returned to the user. If no

concrete counterexamples are found, then the analysis is used to construct

a new abstract system which is a refinement of the current abstract system.

The CEGAR algorithm continues with model-checking of the new abstract

system. In general, the CEGAR algorithm might not terminate.

We will present a CEGAR algorithm for the class of RHA which is com-

80

plete for the class of initialized RHA and semi-complete for the class of RHA.

The termination of each iteration of the CEGAR loop requires that the four

steps mentioned above terminate. Since the safety verification is undecidable

for the class of RHA, model-checking step may not terminate if the abstract

system is some RHA. However, as mentioned earlier, safety verification is

decidable for the class of MIRHA, and hence we choose it to be our abstrac-

tion space. We call our algorithm a “hybrid CEGAR” (HCEGAR) method

since the class of abstraction is a class of hybrid automata rather than the

class of finite state systems which is typically the case. Our HCEGAR algo-

rithm is sketched in Algorithm 3. We will next explain the different operation

involved in the algorithm.

Algorithm 3 Hybrid CEGAR

Input: HC - concrete RHA, qC- bad location
Output: “YES”, if qC is not reachable in HC and “NO” otherwise.

α := initial hybrid abstraction function
while true do

//Constructing the abstract system
HA := Construct IRHA(HC , α)
qA = α(qC)
//Model Checking
σ′ := ModelCheck(HA, qA)
if σ′ is empty then

//Model checking successful
Return “YES”

else
//σ′ is an abstract counterexample
Reach := Validate(HC , α, σ)
if Reach is a not empty then

//A concrete counterexample exists; hence qC is reachable in HC

Return “NO”
else

//Refining the hybrid abstraction function α
β := Refine(α, Reach)
α := β

end if
end if

end while

81

5.4.2 Hybrid Abstractions

The first step in the CEGAR algorithm is to construct an abstraction of

the concrete system. We define an abstraction function which specifies the

elements required in the construction of the abstract hybrid system. One

of the goals of abstraction is to reduce the state space by “eliminating” ir-

relevant information. The abstract systems in our CEGAR algorithm are

constructed by merging locations and/or edges of the original system. We

also allow variables to be hidden/dropped and a scaling operation on the

variables. The scaling operation on a variable allows the constants appear-

ing in the constraints to be changed such that the maximum constant to

which a variable is compared to is reduced by the scaling factor, which in

turn affects the complexity of analysis of the system, since it reduces the

number of regions in the region graph of the system [4, 54]. In short, the

scaling has the effect of increasing the “granularity” of the system. Fur-

ther, since we choose as the abstract space the class of MIRHA, we need a

method to convert a non-initialized automaton to an initialized one. More

precisely, let us call an edge e and a variable index i of a MRHA non-

initialized if it has an identity reset, that is, reset(e, i) ∈ MRectConst(1),

and activity(Source(e)) 6= activity(Target(e)). Let us denote by NonInitH the

set of all non-initialized pairs (e, i) of a MRHA H. A natural way to make

(e, i) initialized is to associate the strong reset reset(e, i) × reset(e, i) with

the pair (e, i). In general, such a transformation might be too coarse and we

may need to refine it. Hence, our abstraction function has a function which

specifies for every non-initialized pair (e, i), where e is not merged, a splitting

of the constraint reset(e, i) into a multi-rectangular constraint. Each of the

rectangular constraints is then transformed into a strong reset as described

above.

A hybrid abstraction function α on H is a tuple (αL, αE, αX , αP) where

• αL is an equivalence relation on Loc;

• αE is an equivalence relation on Edges satisfying the constraint that

for all e1, e2 ∈ Edges, e1αEe2 implies Source(e1) αLSource(e2) and

Target(e1) αLTarget(e2);

• αX : [n]→ N ∪ {⊥} is the scaling function; and

82

• αP : NonInitH ∩ Singleton → MRectConst(1), where Singleton is the

set of pairs (e, i) such that the equivalence classes of Source(e), e and

Target(e) are singleton sets, is such that αP (e, i) � reset(e, i) and sat-

isfies [[αP (e, i)]] = [[reset(e, i)]].

Next we describe a specific method Construct IRHA for constructing a

MIRHA, given an MRHA and a hybrid abstraction function. Before that,

let us define some preliminaries.

Let Id be a predicate on a pair (e, i), where e is an edge and i is a vari-

able index, such that Id(e, i) holds iff reset(e, i) ∈ MRectConst(1), that is,

ResetRel(e, i) is subset of the identity relation. Given M ∈ MRectConst(n),

define IdToStrong(M) to be the set in MRectConst(2n) corresponding to

{M ′×M ′ |M ′ ∈M}. It will be used to convert an identity reset to a strong

reset.

The function αX : [n] → N ∪ {⊥} represents a transformation of the

continuous state space. Given a tuple x ∈ Rn, the function α̃X(x) gives an

element y in Rk, where k is the size of the set {i |αX(i) 6= ⊥}. For j ∈ [k],

(y)j = (x)i/αX(i), where i is the least number in N such that the size of

the set {i′ ≤ i |αX(i′) 6= ⊥} is j. We will abuse notation and use α̃X(z),

where z = (z1, · · · , z2n) to represent the element w = (w1, · · · , w2k) where

(w1, · · · , wk) = α̃X((z1, · · · , zn)) and (wk+1, · · · , w2k) = α̃X((zn+1, · · · , z2n)).

Given a set of rectangular constraints {R1, · · · , Rt} of dimension n (or 2n)

and a variable abstraction function αX : [n] → N ∪ {⊥}, we define a merge

operation Merge({R1, · · · , Rt}, αX) to be the rectangular constraint obtained

by taking the union of the sets, applying αX on it and taking the rectangular

hull of the resulting set, that is, RectHull(α̃X(∪iRi)). So the merge operation

gives the tightest rectangular constraint which contains the set obtained by

applying the variable transformation on the union of the input rectangular

constraints.

Let H be a MRHA, and α = (αL, αE, αX , αP) be a hybrid abstraction

function. We will define the MIRHA constructed from H and α, denoted

H′ = Construct IRHA(H, α). The underlying graph of H′ is obtained by

taking the quotient graph of the underlying graph of H with respect to αL

and αE, that is, the locations of H′ are the equivalence classes of αL and the

edges of H′ are the equivalence classes of αE. The invariant (activity) for an

abstract location [q]αL is obtained by merging the invariants (activities) for

83

the concrete locations in the equivalence class of q using the Merge operation.

The reset associated with an edge [e]αE is constructed in the following way.

• If e ∈ NonInit ∩ Singleton, then reset′([e]αE , i) = IdToStrong(αP (e, i));

and if e ∈ Singleton/NonInit, then reset′([e]αE , i) = reset(e, i)).

• Otherwise, let [e]αE = {e1, · · · , et}. For 1 ≤ j ≤ n, reset′([e]αE , j) =

{Merge(B1, · · · , Bt}, αX)}, whereBi = [[IdToStrong(reset(ei, j))]] if Id(ei,

j), and [[reset(ei, j)]] otherwise.

Example 35 Returning to the example in Figure 5.1, the MIRHA (in fact

an initialized RHA) on the right, call HA, is obtained from the MRHA on

the right, call HC by using the function Construct IRHA. More precisely,

HA = Construct IRHA(HC , α), where αL merges the locations q3 and q4 and

leaves the rest as is, αE merges the edges e2 and e3 and leaves the remaining

as is, and αX maps the index 1 corresponding to the variable x to 2. One

can check that HA is the abstraction of HC using the α defined above. For

example, invariant of the location P3,4 would be obtained by first taking the

union of [2, 4] and [4, 6] which is [2, 6], then applying the scaling function

thus obtaining the set [1, 3] and then taking the rectangular hull of the set.

The activity of the location P1 is obtained by applying the scaling function

to the activity of q1, thus obtaining the set [1/2, 1] and taking its rectangular

hull, to obtain [0, 1]. Merging edges e2 and e3 results in a reset obtained in

the following way. First the reset of e2 is replaced by the set [2, 4] × [2, 4],

and is then combined with the set [2, 4]× [4, 6] corresponding to the edge e3,

resulting in the set [2, 4]× [2, 6]. Then the scaling function is applied on this

set giving us the set [1, 2]× [1, 3], and finally taking the rectangular hull gives

us the desired set [1, 2]× [1, 3].

Notation 36 Given a hybrid abstraction function, its elements are denoted

using appropriate subscripts; for example, the components of a hybrid ab-

straction function α are denoted by αL, αE, αX and αP , respectively.

Next we will define an ordering on the hybrid abstraction functions. Let

α and β be two hybrid abstraction functions of H. Then we say that α � β

iff

• αL ⊆ βL;

84

• αE ⊆ βE;

• for every i ∈ [n], βX(i) 6= ⊥ implies αX(i) 6= ⊥ and αX(i) is a factor of

βX(i); and

• Dom(βP) ⊆ Dom(αP) and for every e ∈ Dom(βP), αP (e) � βP (e).

The next lemma states that we can obtain a refinement of an abstract

system by choosing a smaller hybrid abstraction function.

Proposition 37 Let α and β be hybrid abstraction functions of a MRHA H.

If α � β, then [[H]] � [[Construct IRHA(H, α)]] � [[Construct IRHA(H, β)]].

Notation 38 From now on, we will also use αL (αE) to mean the function

mapping a location (edge) to its equivalence class, that is, αL(l) = [l]αL and

αE(e) = [e]αE for a location l and an edge e. Also, we will use αX for the

function which maps an element x ∈ Rn to α̃X(x). For a set S ⊆ StatesH,

we will abuse notation and use α(S) to denote {(αL(q), αX(x)) | (q, x) ∈ S},
and similarly use α−1(S ′) to denote {(q, x) | (αL(q), αX(x)) ∈ S ′}. When

S is a singleton {(q, x)}, we write α(q, x) and α−1(q, x) instead of writing

α({(q, x)}) and α−1({(q, x)}), respectively. We will extend the domain of αE

to Edges ∪ R≥0; which is the same function when restricted to Edges and

αE(t) = t for t ∈ R≥0. (This is to have a uniform αE for all labels of [[H]]).

In general, given a tuple containing elements from Loc∪Edges∪Rn, applying

α or α−1 to the tuple means applying the appropriate functions, αL, αE or

αX , or their inverses, to the components.

Let us fix a concrete MRHAHC for the rest of the chapter. In this chapter,

we focus on verifying control state reachability properties. Given a location

qC , different from initC , in the concrete automaton HC , we want to verify if

some state with location qC is reachable.

5.4.3 Initial Abstraction and Model-Checking

The HCEGAR loop will start with an initial abstraction HA which is ob-

tained by a hybrid abstraction function α in which qC and initC are in dif-

ferent equivalence classes of αL. HA = Construct IRHA(HC , α) is the initial

abstraction. Let qA = αL(qC). Note that qA is different from initA. The

85

model-checker then checks if qA is reachable from initA in HA which is shown

in Algorithm 3 using the function ModelCheck(HA, qA). If qA is not reach-

able in HA, then the HCEGAR algorithm terminates with a result that the

concrete automaton is safe. This follows from the fact that [[HC]] � [[HA]].

On the other hand, if the model-checker determines that qA is reachable in

HA, then it also returns an execution σ′ of HA reaching the abstract bad

location qA, which is called an abstract counterexample. The HCEGAR algo-

rithm continues to the validation phase where the abstract counterexample

σ′ is validated.

5.4.4 Validation

We will now discuss how to validate an abstract counterexample returned by

the model-checker.

Let σ′ = (q′0, x
′
0)

a′0−→ (q′1, x
′
1)

a′1−→ (q′2, x
′
2)

a′2−→ · · ·
a′l−2−→ (q′l−1, x

′
l−1)

a′l−1−→
(q′l, x

′
l) be an abstract execution fragment. Let us denote by Concreteα(σ′),

the set of concrete execution fragments corresponding σ′. Concreteα(σ′)

consists of execution fragments σ of HC given by (q0, x0)
a0−→ (q2, x2)

a1−→
(q2, x2)

a2−→ · · · al−2−→ (ql−1, xl−1)
al−1−→ (ql, xl) such that α(qi, xi) = (q′i, x

′
i) for

all i; and αE(ai) = a′i.

Let us fix an abstract counterexample σ′ = (q′0, x
′
0)

a′0−→ (q′1, x
′
1)

a′1−→

(q′2, x
′
2)

a′2−→ · · ·
a′l−2−→ (q′l−1, x

′
l−1)

a′l−1−→ (q′l, x
′
l) of HA, , i.e, it is an execution

fragment of HA with q′0 = initA and q′l = qA. Let ExecH,q represent the execu-

tions ofH ending in q. Validation is the process of checking if Concreteα(σ′)∩
ExecH,qC is non-empty. In order to determine if Concreteα(σ′) ∩ ExecH,qC is

non-empty, we perform the classical backward reachability computation. We

compute the set of all initial states which have a concrete counterexample

starting from them corresponding to σ′. This is computed iteratively by com-

puting for every k, the set reachk which is the set of all states (q, x) starting

from which there is an execution fragment ending in qC which belongs to

Concreteα(σ′k), where σ′k is the suffix of σ′ starting from (q′k, x
′
k). Note that

reach0 ∩ ({init} × Cont0) is then the required set.

The following proposition summarizes how the reach sets can be used to

validate the abstract counterexample.

86

Proposition 39 Concreteα(σ′) = ∅ iff reachk = ∅ for some 0 ≤ k ≤ l or

reach0 ∩ ({init} × Cont0) = ∅.

The validation step requires the computation of the reach sets. The next

proposition states that the reach sets can be computed and they have a

special form. We will call a subset of states, a multirectangular region, if the

continuous part corresponding to each location is a multirectangular region,

that is, S ⊆ StatesHC is in MRectReg(n) if Cont(S|q) ∈ MRectReg(n) for

every location q.

Proposition 40 For each k, reachk can be represented as an element of

MRectReg(n) and reachk can be computed.

Proof (Sketch.) Proof is by induction on reachk. Note that when a′k is

an edge, then computing reachk from reachk+1 involves the operations of

union and intersection on multirectangular regions. Since multirectangular

regions are closed with respect union and intersection, reachk in this case

can be represented as an element of MRectReg(n). When a′k is a time t, we

first need to compute the set of states from which after time t elapse we

can reach a specified multirectangular region. Let us consider a rectangular

region for the sake of simplicity. So with each variable we can associate an

interval (projection of the set to the dimension of the variable) such that the

rectangular region is exactly the set of point obtained by choosing a point

in the corresponding interval for each variable. The Pre computation can be

computed for each of the variables independently, since the activity at which

each variable evolves is independent of the others. Hence, the Pre set is just

the rectangular region defined by taking Pre with respect to each variable

(which can be computed by considering the end-points of the intervals in

the initial set and those of the activity associated with the variable), and

performing appropriate intersections with the invariants.

If Concreteα(σ′) is not empty, then we can conclude that the system HC

is unsafe. Otherwise, we proceed to the refinement step.

5.4.5 Refinement

If the abstract counterexample σ′ is found to be spurious in the validation

step, that is, Concreteα(σ′) = ∅, then we use the results of the analysis during

87

the validation to refine the abstract system.

Definition 41 Given a transition systems TC and TA such that TC � TA, a

transition system TR is said to be a refinement of TA with respect to TC, if

TC � TR � TA.

We need to construct a refinement of [[HA]] with respect to [[HC]]. We want

to find an MIRHAHR which is a refinement ofHA. As seen from Proposition

37, if we can find a β such that β � α, then [[HC]] � [[HR]] � [[HA]], where

HR = Construct IRHA(HC , β). Also, we need to ensure that HR makes

progress by “eliminating” the spurious counterexample σ′.

Given a MRHA H, a potential execution fragment of H is a sequence

ρ = (q0, x0)a0(q1, x1)a1 · · · al−2(ql−1, xl−1)al−1(ql, xl), where (qi, xi) ∈ StatesH

for 0 ≤ i ≤ l, ai ∈ Edges ∪ R≥0 for 1 ≤ i ≤ l and ais alternate between

the sets Edges and R≥0. Given two MRHAs H1 and H2, a hybrid abstrac-

tion function β, such that H2 = Construct IRHA(H1, β), and an execu-

tion σ2 = (q2
0, x

2
0)

a2
0−→ (q2

1, x
2
1)

a2
1−→ · · ·

a2
l−2−→ (q2

l−1, x
2
l−1)

a2
l−1−→ (q2

1, x
2
l) of H2,

a potential execution fragment of σ2 in H1 is a potential execution frag-

ment of H1, ρ1 = (q0, x0)a0(q1, x1)a1 · · · al−2(ql−1, xl−1)al−1(ql, xl) such that

β(qi, xi) = (q2
i , x

2
i) for 0 ≤ i ≤ l and βE(ai) = a2

i for 0 ≤ i < l. Let us

denote by Potentialβ(σ2) the set of a all potential execution fragments of σ2

in H1. We define a predicate validH on potential execution fragments which

evaluates to true only if the potential execution fragment corresponds to an

actual execution fragment. validH1(ρ1) is true iff (q0, x0)
a0−→ (q1, x1)

a1−→
(q2, x2) · · · (ql−1, xl−1)

al−1−→ (ql, xl) is an execution fragment in H1. We will

use β(ρ1) to denote the sequence obtained by applying β to each element of

the sequence ρ1.

We want to ensure that the refinement that we construct makes progress

by eliminating some counterexample. Let HC , HA, α and σ′ be as defined

before. We will find a hybrid abstraction function β such that β � α and

HR = Construct IRHA(HC , β) satisfies:

C1 There exists a ρ ∈ Potentialα(σ′) such that ρ 6∈ Potentialβ(σ′′) for any

counterexample σ′′ of HR.

In validating σ′, we found that either reachk is empty for some k or reach0∩
({init}×Cont0) is empty. Let us consider the case where reachk is empty for

88

some k. The refinement for the other case is similar. Let k̂ be the largest inte-

ger such that reachk̂ is empty. Let Sk = α−1(q′k, x
′
k). Observe that reachk = ∅

iff PostHC (Sk, αE
−1(a′k)) ∩ reachk+1 = ∅. Let R be the set of all the poten-

tial counterexamples ρ = (q0, x0)a0(q1, x1)a1(q2, x2) · · · (ql−1, xl−1)al−1(ql, xl)

in Potentialα(σ′) such that (qk̂, xk̂) ∈ Sk̂ and (qk̂+1, xk̂+1) ∈ reachk̂+1. We will

ensure that none of the potential counterexamples in R occur in HR. Note

that the set R of such potential counterexamples is not empty since none of

the sets Sk or reachk̂+1 is empty. We will eliminate the sequences in R by

ensuring that none of the sequences in β(R) are valid in HR, that is, for all

ρ ∈ β(R), validHR(ρ) is not true. This is ensured by the following condition:

C2 PostHR(β(Sk̂), β(α−1(ak̂))) ∩ β(reachk̂+1) = ∅.

The procedure Refine in Algorithm 3 will essentially find a β � α satisfying

Condition C2.

Proposition 42 There exists a β � α which satisfies Condition C2, when-

ever Algorithm 3 reaches the Refine statement.

Proof (Sketch.) Consider β to be the hybrid abstraction function, where the

equivalence classes of βL and βE are singleton sets, and αX is the function

which maps every variable index i to 1. Note that if there are non-initialized

edges, then HR = Construct IRHA(HC , β) is the same as HC and Condition

C2 given by

PostHR(β(Sk̂), β(α−1(ak̂))) ∩ β(reachk̂+1) = ∅

is equivalent to

PostHC (Sk̂, α
−1(ak̂)) ∩ reachk̂+1 = ∅

which is trivially true by the choice of k̂. This reduction will not work

when there are non-initialized edges in HC since any definition of αP will

replace the identity resets on the non-initialized edges with strong resets;

and hence the resulting system will not be identical to HC . For every edge

e ∈ α−1(ak̂) which is not non-initialized, Condition C2 holds because the

corresponding constraint is similar to that in HC which we know holds. For

those edges e ∈ α−1(ak̂) which are non-initialized, we know that the sets

89

PostHC (Sk̂, e) and reachk̂+1 do not intersect, and moreover are both multi-

rectangular (Proposition 40). Hence, we can choose βP (e) such that PostHR
does not intersect reachk̂+1.

5.4.6 Termination of Hybrid CEGAR

In this section, we show that the HCEGAR algorithm is complete for the class

of MIRHA, that is, the algorithm terminates on all inputs which are MIRHA.

We also show that the algorithm is semi-complete for the class of MRHA

under certain fairness conditions on the generation of counterexamples by

the model-checker, where semi-completeness refers to the fact that if the

system is buggy, then the HCEGAR terminates in a finite number of steps,

however, if the system is safe, then HCEGAR algorithm may or may not

terminate.

Completeness of Hybrid CEGAR for MIRHA

Theorem 43 Algorithm 3 is complete for the class of initialized rectangu-

lar hybrid automata, that is, it terminates on all inputs where the concrete

automaton is an initialized rectangular hybrid automaton.

Proof (Sketch.) First, observe that for an MIRHA the set NonInit is an

empty set. Hence the domain of αP , namely, NonInit ∩ Singleton is always

∅. Let αi be the hybrid abstraction function at the beginning of the i-th

iteration of Algorithm 3. Then αi+1 � αi and αi+1 6= αi (since the fact that

the transition (q′
k̂
, x′

k̂
)

a′
k̂−→ (q′

k̂+1
, x′

k̂+1
) exists inHA implies that Condition C2

does not hold for αi). Therefore, for every i, either αLi+1 ⊂ αLi, αEi ⊂ αEi

or αXi+1(j) < αXi(j) for some j ∈ [n] (where for every k ∈ N, k < ⊥).

Since the number of locations and the number of edges in HC is finite, the

subset relation on the equivalence classes is a well-ordering. Also, since the

< on N∪{⊥} is a well-ordering and the dimension of HC is finite αX can be

refined only finitely many times. Therefore the number of iterations is finite.

90

Semi-Completeness of Hybrid CEGAR for MRHA

Let us call a CEGAR algorithm semi-complete, if it terminates on all inputs

where the concrete system is buggy, however may or may not terminate if the

system is safe. We note that our HCEGAR algorithm is not semi-complete

in general as shown by the following example.

Example 44 Consider a 1-dimensional MRHA with two locations p and q,

where p is the initial location and q the bad location. Let us call the only

variable x. The invariants of p and q are (0, 1] and [0, 0], and the activities

are [0, 0] and [−1,−1], respectively. There is only one edge e in the system

which goes from p to q. And the reset associated with it is the identity reset

[0, 1], that is, the reset relation is given by {(x, x) |x ∈ [0, 1]}. The abstract

system is the same as the concrete system except that the reset is replaced by

[0, 1]×[0, 1]. Consider the abstract counter-example (p, x = 1)
e−→ (q, x = 0).

One possible refinement step is to split [0, 1] into [0, 1/2] ∪ [1/2, 1]. Next,

suppose that the counter-example (p, x = 1/2)
e−→ (q, x = 0), followed by the

refinement step which splits [0, 1/2] into [0, /1/4], [1/4, 1/2]. The refinement

process could continue infinitely, where in the i-th step the abstract counter-

example (p, x = 1/2i)
e−→ (q, x = 0) is output by the model-checker followed

by a refinement step which refines the reset [0, 1/2i] into [01/2i−1], [2i−1, 21].

Remark 45 In the above example, all the counter-examples chosen were of

the shortest length (length 1). This also shows that even the assumption

that the model-checker returns the smallest counterexample does not suffice

to ensure semi-completeness of Algorithm 3.

However, if we assume that the model-checker outputs counter-examples

according to some ordering, then we can show that Algorithm 3 is semi-

complete.

A potential execution fragment σ = (q0, x0)a0(q1, x1) · · · (qk, xk) of H is

rational if xi ∈ Qn for 0 ≤ i ≤ k and ai ∈ Edges ∪ Q for 0 ≤ i < k.

Let δ be a function which maps an execution fragment ρ = (q0, x0)
a0−→

(q1, x1) · · · (qk, xk) to the potential execution fragment ρ = (q0, x0)a0(q1, x1)

· · · (qk, xk). Similarly, an execution fragment ρ is called rational if δ(ρ) is

rational.

Then next proposition says that it suffices to search for a rational coun-

terexample of a MRHA.

91

Proposition 46 Given a MRHA H with initial state init and a bad state q,

H has a counter-example (an execution fragment from init to q) iff it has a

rational counter-example (rational execution fragment from init to q).

Proof (Sketch.) Let ρ be a counterexample of H. Let P be the path (se-

quence of locations and edges) in H corresponding to ρ. The question of

whether there exists a counterexample corresponding to P can be translated

into a linear constraint with rational constants in which the variables corre-

spond to the time spent in each location and the values of the continuous

states before and after each time transitions, and the linear constraint holds

for a valuation to the variables iff the values correspond to a valid execu-

tion. For a linear constraint with rational constants, if a solution exists, then

there always exists a rational solution. And the constraint corresponding

to P is satisfiable since ρ is an execution corresponding to P . Therefore,

there exists a rational execution corresponding to P which is also a rational

counterexample of H.

We will assume that the model-checker outputs counter-examples accord-

ing to an ordering on the counter-examples.

Assumptions 47 (Fairness of counterexample generation) Let F be the set

of all rational potential execution fragments of a system H. Then, there exists

an ordering �F on F (depending only on F) such that

• �F is a partial ordering on F , and

• for any σ ∈ F , there exist only finitely many σ′ such that σ′ �F σ or

σ and σ′ are incomparable.

We will assume that the model-checker outputs the counter-example σ of H
such that δ(σ) is a smallest element of {δ(σ) |σ is a counterexample of H}.

For example, one such ordering on F is a well-ordering on potential execu-

tion fragments corresponding to their size of representation. Next, we show

that HCEGAR is semi-complete for the class of RHA.

Theorem 48 Under Assumption 47, Algorithm 3 is semi-complete for the

class of rectangular hybrid automata, that is, it terminates on all inputs where

the concrete automaton has a counterexample.

92

Proof (Sketch.) We need to show that Algorithm 3 will terminate if HC

has a counter-example. Suppose not, that is, let ρ be a counterexample in

HC , but the HCEGAR loop does not terminate. Then there is an infinite

sequence of hybrid abstraction functions α1 � α2 � α3 � · · · , where αi is

the hybrid abstraction function used in the construction the i-th abstraction.

Let Hj = Construct IRHA(HC , αj) for j ≥ 1. First, observe that the first 3

components of the αis cannot change infinitely often (See Proof of Theorem

43.) Hence there exists an i such that the first 3 components are identical

in all the αjs for j ≥ i. It follows from the definition of potential execution

fragments that the set of rational potential execution fragments F of Hj is

the same for j ≥ i. Let �F be the ordering the model-checker uses to output

counter-examples. Let ρ′ = αi(ρ). Since the first 3 components of αi remains

the same for all αj, j ≥ i, αj(ρ) is also ρ′ for all j ≥ i. Therefore, σ′ = δ(ρ′)

belongs to F (in all the iterations) and validHj(σ
′) holds for all j ≥ i. We will

show next that in each refinement the smallest valid element becomes invalid.

More precisely, let Gj = {validHj(σ) |σ ∈ F}. Then Gj+1 ⊆ Gj/gj where

gj is a smallest element of Gj. Since there are only finitely many elements

which are smaller than or incomparable with σ′, there exists a j such that

Gj does not contain σ′, a contradiction.

It remains to show that Gj+1 ⊆ Gj/gj. The model-checker outputs the

counter-example ρ′′ corresponding to gj, that is, δ(ρ′′) = gj. Let (q′
k̂
, x′

k̂
)

a′
k̂−→

(q′
k̂+1

, x′
k̂+1

) be transition in ρ′′ that is refined. The refinement satisfies Con-

dition C2:

PostHj+1
(αj+1(α−1

j (q′
k̂
, x′

k̂
)), αj+1(α−1

j (a′
k̂
))) ∩ αj+1(reachk̂+1) = ∅.

This is equivalent to

PostHj+1
((q′

k̂
, x′

k̂
), a′

k̂
) ∩ {(q′

k̂+1
, x′

k̂+1
)} = ∅,

since αj and αj+1 match in the first three component. This also implies

that gj is not valid in Hj+1, since there cannot be an execution fragment

corresponding to (q′
k̂
, x′

k̂
)

a′
k̂−→ (q′

k̂+1
, x′

k̂+1
).

93

5.4.7 A Specific Refinement Algorithm

Given the concrete system HC and a hybrid abstraction function α, the

method below computes a hybrid abstraction function β � α which satisfies

Condition C1.

Let k̂ be the index in the abstract counterexample as defined in the Section

5.4.5. First let us consider the case where a′
k̂

is an edge. The refinement takes

place in two steps:

1. In the first step, we construct γ as defined below. Let R be the set of

locations l such that reachk̂+1|l 6= ∅. Let E be the edges e in α−1(a′
k̂
)

such that TargetC(e) ∈ R. And let S be the set of locations in α−1(q′
k̂
)

such that it is the source of some edge in E. Let γL be the maximal

relation such that γL ⊆ αL and each of the locations in R∪S appear in

an equivalence class which is singleton set. Let γE be the maximal rela-

tion such that γE ⊆ αE, satisfies the constraints of a hybrid abstraction

function, and each of the edges in E is in an equivalence class which is a

singleton set. Let γX be the function which maps each i to 1. For each

non-initialized pair (e, i), define γP (e, i) to be splitting of reset(e, i)

such that it refines αP and the sets (Cont(reachk̂+1 |TargetC (e)))i and

(Cont(PostHC
(Sk̂ , e)|TargetC (e)))i are separated.

2. In the second step we select the variables and set the appropriate scal-

ings for the variables. Let β be same as γ except for βX which is defined

as follows. Iterate over all possible subsets of [n] starting with those

with fewer elements to find a subset X for which Condition C2 holds.

Then for every index i, define vi to be ⊥ if i 6∈ X, and to be the g.c.d of

all the constants appearing in the rectangular constraints of the resets

of the edges in E and index i, if i ∈ X. Then set βX(i) is the g.c.d of

αX(i) and vi, where g.c.d of ⊥ and any element x is x.

Next, let us consider the case where a′
k̂

is a time t. The first part is

similar except that for each non-initialized edge (e, i) set γP (e, i) = αP (e, i) if

αP (e, i) is defined, otherwise set γP (e, i) to be reset(e, i). The only difference

in the second part is instead of considering resets of edges in e, we consider

invariants and activities of locations in R.

Theorem 49 Given a concrete MRHA HC and a hybrid abstraction function

94

Fig. 1. An example of a rectangular hybrid automaton

Next we give the formal definition of a rectangular hybrid automaton. A
rectangular hybrid automaton (RHA) H is a tuple (Loc, Edge, Source, Target, n,
init, Θ, Inv, Activity, Reset) where

– Loc is a finite set of (discrete) control states or locations.
– Edge is a finite set of edges.
– Source, Target: Edge → Loc are functions which associate a source and a

target location to every edge.
– n ∈ N is the dimension denoted Dim(H), and Cont = Rn is the set of

continuous states.
– init ∈ Loc is the initial location and Θ ∈ RectReg(n) is the initial set of

continuous states.
– Inv: Loc → RectReg(n) associates with every location an invariant.
– Activity: Loc → RectReg(n) associates with every location an activity set.
– Reset: Edge× [n] → (RectReg(1)∪RectReg(2)) associates with each edge and

an index either a rectangular set of dimension 1, in which case it is called an
identity reset, or a rectangular set of dimension 2 in which case it is called
a strong reset.

q0

q1

ẋ = 1

ẋ = 1

ẋ = 1

ẋ = 2

ẋ = 1

ẋ = 3

q3

q2

qf

x = 1, y ≤ 1

x = 1, y ≤ 2

x = 1, y ≤ 3

x := 0, y := 2

x := 0, y := 1

x := 0, y := 3

Fig. 2. An example of a rectangular hybrid automaton

Notation We will use H1, H2, HA, HC and so on to represent rectangular hybrid
automata, and we will use subscripts to denote the components, for example,

Figure 5.3: An illustrative example

α, the above method computes a β such that β � α and β satisfies Condition

C2.

5.4.8 Comparison with Discrete Abstraction based CEGAR

Consider the RHA in Figure 5.3. The expression x := i on an edge is a

short hand for the reset expression x ∈ (−∞,∞)× [i, i], an expression x = i

on an edge is a shorthand for the reset expression x ∈ [i, i] × (−∞,∞),

and similarly an expression y ≤ i is a shorthand for the reset expression

y ∈ (−∞, 1] × (∞,∞). The invariants for all the locations is given by

x ∈ (−∞,∞), y ∈ (−∞,∞). It is easy to see that the location qf is not

reachable from q0. For example, when location q2 is entered, the value of x is

0 and y is 1. For the transition out of q2 to be enabled x should be 1 and y

should be ≤ 2. However if x is 1, then 1 time unit has been spent in location

qf . Then the value of y would by 1 + 1 ∗ 2 = 3. Hence, the transition out of

q2 would not have been enabled.

Assuming that the CEGAR algorithm is started with an abstraction given

by the control flow graph of the automaton, predicate abstraction based

refinement proceeds by model-checking the underlying control flow graph.

Let us say, the path q0 → q1 → qf is returned as a counterexample. A

backward analysis of this path concludes that the post of q0 along the edge

95

from q0 to q1 given by the set x = 0, y = 1 has an empty intersection with

the set defined by the predicate y ≤ x, x ≤ 1. To separate the two sets, a

predicate y ≤ x could be added to the abstraction. Similarly, a analysis of

the counterexample corresponding to the path q0 → q2 → qf would result

in the addition of the predicate 2y ≤ x, and so on. If there are n states

q1, · · · , qn, such that the activity of the state qi is given by ẋ = 1, ẏ = i,

and the reset of the edge from qi to qf is x = 1, y = i, then to prove that

the system is safe, n different predicates i ∗ y ≤ x, 1 ≤ i ≤ n could get

added. This could lead to n2 abstract states in the final abstraction and take

n iterations of CEGAR to terminate.

On the other hand, our algorithm terminates with a final abstraction which

is identical to the concrete automaton. To compare the number of abstract

states in the final abstraction in the two approaches, let us determine the

number of symbolic states explored by a symbolic reachability analysis tool

such as HyTech. A forward reachability algorithm on the final abstraction

(same as the concrete automaton) computes one symbolic state for each loca-

tion, since a breadth-first search exploration would have at most two levels.

Hence the number of symbolic states is n in this case. Alternately, observe

that the automaton is an initialized RHA. One way to decide reachability of

IRHA is to convert it to a timed automaton, and analyze the region graph of

the timed automaton. The transformation of the above automaton to a timed

automaton would result in the automaton in which all the paths q0 → qi → qf

are identical to the path q0 → q1 → qf . Only a constant number of regions

corresponding to each location are reachable since the maximum constant

appearing in the timed automaton is 1. The number of reachable regions of

this graph is O(n). In either case, the final abstract automaton returned by

our algorithm has lesser number of states, for a large enough n. Further, our

algorithm converges quickly, since the only operation performed for refining

the abstraction are addition of variables and scaling of the variables.

5.5 Implementation and Experimental Results

The tool, which we call Hybrid Abstraction Refinement Engine (Hare), im-

plements the CEGAR algorithm in C++. Hare input consists of a hybrid

automaton and an initial abstraction function to create an initial abstract

96

hybrid automaton. The default initial abstract automaton has no variables

and has three locations—an initial location, an unsafe location, and a third

location corresponding to all the other locations of the concrete automaton.

This abstract automaton is automatically translated to the input language

for HyTech [56] and then model-checked. If HyTech does not produce a

counterexample, then Hare returns the current abstraction and the concrete

hybrid automaton is inferred to be safe. Otherwise, the counterexample is

parsed and validated. Consider an abstraction α with abstract counterex-

ample σ′ = s′1
a′1−→ s′2

a′2−→ . . .
a′n−1−−−→ s′n, where each s′i is a set of states in the

abstract hybrid automaton. As described in the previous section, validation

proceeds backwards and involves checking that each s′i
a′i−→ s′i+1 corresponds to

a reachable transition of the concrete automaton. A hybrid automaton which

allows only the sequence of transitions in σ′ is constructed and HyTech’s Pre

function is called on this automaton, starting from α−1(s′n), to check whether

Reachk = ∅ for some k. If such a k exists (i.e. the counter example is spuri-

ous), then the abstraction is refined as discussed in Section 5.4.5. In order to

determine the set of variables vs that are required to be added such that the

projection of Post(Sk, ak) over vs is disjoint from the projection of Reachk+1

over vs, a new hybrid automaton which allows the executions in s′k
a′k−→ s′k+1 is

created. Thus, our implementation of the validation and the refinement steps

involves construction of new hybrid automata and calls HyTech’s Pre and

Post functions on these automata. These Pre and Post are required because

HyTech inherently doesn’t support functions that can help in validating the

counterexample. These calls to HyTech, at least in part, contribute to the

relatively large time that Hare spends in the validation step for all the case

studies.

5.5.1 Experimental Results

Our experimental evaluation of Hare (see Table 5.1 and Table 5.2) is based

on four classes of examples:

1. BILL n models a ball in an n-dimensional bounded reflective rectangle.

The unsafe set is a particular point in the bounded rectangle.

2. NAV n models the motion of a point robot in an n×n grid where each

region in the grid is associated with a rectangular vector field. When

97

the robot is in a region, its motion is described by the flow equations

of that region. The unsafe set is a particular set of regions. Nav n A

and Nav n B represent the two different configurations of the vector

fields, the initial and the unsafe regions. Nav n C corresponds to the

model of two robots on the same the n × n grid with different initial

conditions; the unsafe set being the set of states where the two robots

simultaneously reach the same unsafe region.

3. SATS n models a distributed air traffic control protocol with n aircraft

presented in [75]. The model of each aircraft captures several (8 or

10) physical regions in the airspace where the aircraft can be located,

such as the left holding region at 3K feet, the left approach region,

the right missed-approach region, the runway, etc. The continuous

evolution of the aircraft are described by rectangular dynamics within

each region. An aircraft transitions from one to another region based

on the rules defined by the traffic control protocol, which involves the

state of this aircraft and also the other aircraft. Thus, the automata

for the different aircraft communicate through shared variables. The

safety property requires that the distance between any two aircraft is

never less than a safety constant c. We have worked on two variants

of SATS: SATS n S models just one side of the airspace and the full

SATS n C has two sides.

4. ZENO is a variant of the well-known 2D bouncing ball system where

the system has zeno executions.

It is clear from the above table that Hare produces relatively small ab-

stractions: in some cases with two orders of magnitude reduction in the

number of locations, and often reducing the continuous state space by one

or two dimensions. In the extreme case of Nav n A, an abstraction with 6

discrete states is found in 4 iterations, independent of the size of the grid.

This is not too surprising in hindsight because the final abstraction clearly

illustrates why only a constant number of control locations can reach the

unsafe region in this example, and it successfully lumps all the unreach-

able locations together. Yet, the total verification time is better for HyTech

for Nav n A and Nav n B than Hare primarily because, as discussed ear-

lier, Hare makes numerous calls to HyTech for validation, refinement and

98

Problem Conc. size Abst. size Iterations
(locs, vars) (locs, vars)

BILL 2 A (6,2) (4, 1) 1
BILL 3 A (8,3) (4, 1) 1
NAV 10 A (100,2) (6, 2) 4
NAV 15 A (225,2) (6, 2) 4
NAV 20 A (400,2) (6, 2) 4
NAV 10 B (100,2) (5, 1) 4
NAV 15 B (225,2) (5, 1) 4
NAV 20 B (400,2) (5, 1) 4
NAV 8 C (642,4) (72, 4) 5
NAV 10 C (1002,4) (72, 4) 5
NAV 14 C (1962,4) (72, 4) 5
SATS 3 S (83,3) (53, 3) 3
SATS 4 S (84,4) (54, 4) 3
SATS 3 C (104,4) (54, 4) 3
SATS 4 C (105,5) (55, 5) 3
ZENO BOX (7,2) (5,1) 1

Table 5.1: The columns (from left) show the problem name, sizes of the
concrete and final abstract hybrid automaton and number of CEGAR
iterations

Problem Conc. size Validation Abstraction Hare HyTech
(locs, vars) (sec) Refinement (sec) (sec) (sec)

BILL 2 A (6,2) 0.01 0.01 0.06 0.03
BILL 3 A (8,3) 0.04 0.06 0.10 0.04
NAV 10 A (100,2) 0.64 0.16 0.8 0.16
NAV 15 A (225,2) 1.07 0.18 1.25 0.27
NAV 20 A (400,2) 1.62 0.17 1.79 0.41
NAV 10 B (100,2) 0.67 0.16 0.83 0.24
NAV 15 B (225,2) 1.84 0.29 2.13 0.52
NAV 20 B (400,2) 3.86 0.40 4.26 0.88
NAV 8 C (642,4) 1.45 1.39 2.84 23.54
NAV 10 C (1002,4) 2.41 1.51 3.92 58.28
NAV 14 C (1962,4) 5.38 1.74 7.12 346.83
SATS 3 S (83,3) 0.96 1.37 2.33 0.73
SATS 4 S (84,4) 24.10 14.01 38.11 11.91
SATS 3 C (104,4) 5.39 2.97 8.36 1.48
SATS 4 C (105,5) 85.10 70.22 155.32 27.15
ZENO BOX (7,2) 0.04 0.04 0.08 —

Table 5.2: The columns (from left) show the problem name, sizes of the
concrete automaton, time required for validation by Hare, time taken for
verification of abstractions and refinement by Hare, total time taken by
Hare and finally the time required for direct verification with HyTech

99

verification of abstract automaton. This is apparent as the time taken for

abstraction refinement is relatively comparable to that of the time taken for

direct verification by HyTech. The advantage of Hare is apparent in the

case of Nav C *, where the system consists of several automata evolving in

parallel on the n × n grid. Since the motion of each of the robots can be

abstracted into a simpler automaton with less number of discrete locations,

the state space of the composition of these abstract automaton is reduced

dramatically (exponentially in the number of robots) and this is apparent in

the differences in the running time.

The advantage of variable-hiding abstraction is apparent in ZENO (HyTech

does not terminate in this case), as a subset of variables are sufficient to infer

the safety of the system. We believe that in a complex hybrid automaton,

with several components, adding the sufficient number of variables and ab-

stracting the state space of hybrid automaton will yield better abstractions.

All of this suggests, a direction of research, one we plan on pursuing, where

the model-checker is more closely integrated with an abstraction refinement

tool such as Hare.

5.6 Conclusions

In this chapter, we presented a property based abstraction refinement algo-

rithm for analysing safety of rectangular hybrid automata which was fully

automated. The novelty of our algorithm is that we consider as the abstrac-

tion space a class of hybrid automata unlike the previous approaches which

typically considered finite state systems. This approach makes the different

tasks in each iteration of the algorithm simpler. We have implemented the

algorithm in a tool called Hare , and our experimental results suggest that

this approach has the potential to scale. In particular, in many cases the

tool produced safety proofs which were smaller than the size of the concrete

system by a few orders. In the future, we intend to extend this approach to

systems with more general continuous dynamics.

100

CHAPTER 6

A FRAMEWORK FOR PROVING
CONVERGENCE OF DISCRETE-TIME

HYBRID SYSTEMS

Stability is a property of a system which ensures that small perturbations in

the initial state or input to the system result in only small changes to the

future behavior or output of the system. In general, stability of a design is

considered crucial for the system to be practically useful. In the design of

control systems, stability is considered a fundamental property which any

good design is expected to possess. In fact, often one of the objectives of

feedback control is to design a control law which stabilizes an unstable system

in addition to other performance optimization criteria.

Continuous dynamical systems have been studied extensively in the do-

main of control theory, and there exist various tools and techniques for sta-

bility analysis of these system. However, most modern day implementations

of these control laws involve sensing, computation and actuation, which of-

ten include interactions between a digital computer and the physical system.

This prompts the study of stability of systems with mixed discrete continuous

behaviors.

In this part of the thesis, we focus on developing techniques for automated

analysis of stability properties of hybrid systems. One of the main challenges

in designing automated analysis techniques for stability is that existing tech-

niques for stability analysis of purely continuous systems in control theory

are not easily amenable to automation. For example, a classical technique for

proving stability of continuous dynamical systems is the Lyapunov’s (second)

method. This requires one to identify a function called “Lyapunov function”

which is a mapping from the state space to the positive reals such that the

value of the function decreases along any execution of the system. Existence

of such a function proves that the system is stable. Even in manual proofs,

identifying the right Lyapunov functions often requires some cleverness, and

in general, automating Lyapunov’s method for stability analysis is possible

for only certain classes of systems such as linear dynamical systems.

101

Our primary focus in this part of the thesis is to develop foundations for

automated analysis, more precisely, approximation based analysis of stabil-

ity properties. We believe that approximations are essential for designing

efficient and scalable techniques for stability analysis. First we present a

framework for proving “convergence” or asymptotic stability of hybrid sys-

tems which operate in discrete-steps. We provide necessary and sufficient

conditions for establishing convergence of these systems. This characteriza-

tion can potentially be used to develop automated verification methods for

analysing convergence of simple systems. Next, we investigate a fundamental

question in approximation based analysis, namely, what kinds of simplifica-

tions preserve stability properties? We observe that stability properties are

not invariant under bisimulation, which is a canonical notion of equivalence

with respect to various discrete-time properties. We equip bisimulation with

some continuity requirements, more precisely, that of “uniform continuity”

and show that stability properties are invariant under this notion. These

results could potentially form the basis of automated techniques for approx-

imation based stability analysis of complex systems.

In this chapter, we focus on the analysis of stability for discrete-time hybrid

systems, namely, systems in which a transition is taken only at discrete times.

We present a framework for analysing convergence or asymptotic stability

of these systems. Intuitively, convergence is a property of a system which

requires that executions starting close to an equilibrium point (a system

state which does not change with time elapse) eventually converge to the

equilibrium point.

A discrete-time hybrid system can be viewed as consisting of a finite set

of operators over its statespace, corresponding to the discrete time-steps and

the discrete transitions. Hence, such a system can be represented as a finite

state automaton with transitions labelled by the operators. A sequence of

operators given by a path of the automaton, corresponds to an execution of

the system obtained by applying the operators in the sequence in order. In

this chapter, we take this view of a hybrid system as a set of sequences of

operators.

A closely related work is due to Tsitsiklis [102], who provides a framework

for proving convergence of a sequence of operators under the assumption that

each operator appears infinitely often in the sequence. The results of this

chapter essentially extend Tsitsiklis’ results by relaxing the above fairness

102

assumption on the sequences.

6.1 An Overview

Convergence or asymptotic stability is a key requirement of many concur-

rent and distributed systems that interact with physical processes. Roughly,

a system A converges to a target state x∗ if the state of A along infinite

executions get closer and closer to x∗, with respect to some topology on

the state space X, as time goes to infinity. While termination has been

the defacto liveness property of interest for software systems, the more gen-

eral convergence property becomes relevant for systems with both software

and physical components. Examples of such systems include algorithms for

mobile robots for forming a spatial pattern, synchronization of coupled os-

cillators, distributed control algorithms over switching networks [79](see for

e.g. [58], [14], [15] and [78]). Convergence may indeed be viewed as a liveness

property quantified over a (possibly infinite) sequence of shrinking predicates

containing the target state.

Necessary and sufficient conditions for proving convergence of distributed

systems which broadly fall under the category of continuous consensus have

been studied extensively by control theorists for over three decades [79].

Specifically, two types of models of distributed computation have been con-

sidered. In the synchronous model, the state of the entire system x ∈ X

evolves according to some difference equation: xk+1 = f(xk) or differential

equation ẋ = f(x), where f : X → X. Convergence conditions in this case

are derived based on the eigenvalues of f . We refer the reader to [79] for a

survey of the results of this type. In the asynchronous model, the evolution

of the system is specified by a collection of transition functions {Tk}, where

each Tk : X → X, and an execution of the system is obtained by applying an

infinite sequence σ of T ′ks to the starting state. In [102], Tsitsiklis has iden-

tified a general set of necessary and sufficient conditions for the convergence

of executions that satisfy a particular fairness assumption.

Tsitsiklis’ condition, informally, is as follows. He requires one to identify

a collection of shrinking neighborhoods, indexed by a totally ordered index

set, that converges to x∗ and satisfies the following properties. First the

neighborhoods are required to be invariant, i.e., for any neighborhood U ,

103

Tk(x) ∈ U for every x ∈ U and every Tk. Second, for every neighborhood U ,

there must be a transition TU that takes U to a strictly smaller neighborhood.

Tsitsiklis shows that when such a neighborhood “system” exists, the system

can be proved to converge to x∗ in every execution where each transition

Tk is applied infinitely often. Moreover, he shows that the convergence of a

system also implies the existence of such a neighborhood system.

In this chapter, we generalize Tsitsiklis’ observations as follows. We iden-

tify necessary and sufficient conditions for convergence under executions de-

scribed by an arbitrary ω-regular language, instead of focusing on a partic-

ular set of executions that satisfy a specific fairness condition. While this

is a philosophically natural extension of Tsitsiklis’ investigations, it allows

us to model a variety of asynchronous behavior, such as ordered execution

of certain events, communication patterns between distributed agents over a

dynamically evolving or unreliable communication network, and distributed

network with nodes failing and recovering, that are not captured by Tsitsiklis’

original formulation.

Our necessary and sufficient condition for convergence is remarkably sim-

ilar to Tsitsiklis’ condition. Let us assume that A is a Müller automaton

that describes the set of valid executions. Once again, we require a col-

lection of shrinking neighborhoods, indexed by a totally ordered index set,

that converges to x∗. We also require these neighborhoods to be “invariant”.

However, since every finite sequence of operations need not be the prefix

of a valid execution, our definition of invariance accounts for the state of

the automaton A. Next, like Tsitsiklis, we have a condition that ensures

“progress towards” x∗ is eventually made. This is captured by our insight

that edges crossing “cuts” in accepting cycles of A are traversed infinitely

often, and so for every neighborhood set U , there must be some cut that en-

sures progress. The proof showing that these conditions are sufficient, is very

similar to Tsitsiklis’ proof. To demonstrate the necessity of these condition

for convergence is more challenging primarily because every finite sequence

of operations need not be the prefix of a valid execution.

We conclude the chapter by demonstrating the application of the new set

of conditions to prove the convergence of a simple continuous consensus algo-

rithm. We consider a variety of scenarios ranging from a dynamically evolving

communication network, to a situation where nodes in the distributed system

can fail and recover.

104

Related Work. Tsitsiklis’ result for the asynchronous model have been ex-

tended in several ways. For example, in [79] sufficient conditions have been

given for proving convergence of distributed algorithms in which the commu-

nication graph of the participating agents is dynamic, but never permanently

partitioned. More recently, in [74, 21] sufficient conditions for convergence

have been derived for partially synchronous systems where messages may be

lost or delayed by some constant but unknown time. All of these constrained

executions can be modelled as ω-regular languages, and therefore the results

of this chapter can be seen as a generalization of these observations.

6.2 Motivating Example

We model the behavior of a distributed system where agents starting at

arbitrary positions on a line communicate based on an underlying dynamic

graph to move closer to each other. In addition they can fail and join the

system a finite number of times. However when they join they start at

the same position in which they originally started. We show that the agents

finally converge to a common point. We describe the protocol formally below.

Let N ∈ N denote the maximum number of agents that can ever be

present in the system. Each agent has a unique identifier from the set

[N] = {1, 2, · · · , N}. We denote the state variable which stores the posi-

tion of agent i, i ∈ [N], by xi, and it takes values in R ∪ {⊥}. For any

i ∈ [N], agent i is said to be failed if xi = ⊥; otherwise i is alive. We denote

the collective states of all agents by vectors x, y etc.

Let G = (V,E) be an undirected graph with V = [N] and E ⊆ V × V .

Each vertex in the graph corresponds to an agent in the system. G is the

underlying graph that remains fixed throughout our discussion. At a given

point in the execution of the system, the actual communication graph G′ is

the subgraph of G restricted to the alive nodes.

Let us concentrate on a particular initial state (G, c) where c = (c1, · · · , cN).

Let the current configuration of the system be (H, x), where H = (VH , EH).

There are three kinds of operators which can modify the configuration,

namely, join, fail and move, and correspond to a node joining the system, a

node failing and two nodes communicating to move to their average value.

We say that a configuration has reached a fixpoint if all the unfailed nodes

105

have the same value, that is, (H, x) is a fixpoint if for every i, j ∈ [N], i 6= j,

xi 6= ⊥ and xj 6= ⊥ implies xi = xj. When (H, x) is a fixpoint, for all i, j ∈
[N], fail j((H, x)) = (H, x), joinj((H, x)) = (H, x) and move i,j((H, x)) =

(H, x). When (H, x) is not a fixpoint,

• fail j((H, x)) = (H ′, x′) where x′j = ⊥ and x′i = xi for i 6= j and

H ′ = (V ′H , E
′
H) where V ′H = VH − {j} and E ′H = E ∩ (V ′H × V ′H).

• joinj((H, x)) = (H ′, x′) where x′j = cj and x′i = xi for i 6= j and

H ′ = (V ′H , E
′
H) where V ′H = VH ∪ {j} and E ′H = E ∩ (V ′H × V ′H).

• move i,j((H, x)) = (H, x′) where x′ = x if either xi = ⊥ or xj = ⊥,

otherwise x′i = x′j = (xi + xj)/2 and x′k = xk for k 6∈ {i, j}.

We note that move i,j is defined only if (i, j) ∈ E, that is, communication

between (i, j) is allowed. We want to show that an infinite sequence of

operations converges to a point if it contains a finite number of fail j and

joinj operations and the set of edges (i, j) of E such that move i,j occurs

infinitely often forms a connected graph. We will see later that this set of

sequences is an ω-regular language. We will develop sufficiency conditions for

proving such properties, and apply it to this example. Several generalizations

of this type of consensus protocol has been presented in the literature (see

for e.g. [22]).

6.3 Preliminaries

6.3.1 Directed and Undirected Graphs

A labelled directed graph (LDG) G is a triple (V,E,Σ), where V is a finite

set of vertices, E ⊆ V × Σ × V is a set of edges and Σ is a finite set of

labels. Let G = (V,E,Σ) be a LDG . Given V ′ ⊆ V , the restriction of G

to V ′ is given by the LDG G[V ′] = (V ′, E ′,Σ) where E ′ ⊆ E is the set

{(u, a, v) ∈ E |u, v ∈ V ′}. Given E ′ ⊆ E, G − E ′ = (V,E − E ′,Σ). A path

in G is a sequence of edges e1 · · · en such that ei = (qi, a, qi+1) for all i. We

say that qn+1 is reachable from q1. We say that G is strongly connected if for

every u, v ∈ V , v is reachable from u. A set V ′ ⊆ V is strongly connected

106

in G if G[V] is strongly connected and is maximally strongly connected if in

addition for all V ′′ such that V ′ ⊂ V ′′, G[V ′′] is not strongly connected.

An undirected graph G is a pair (V,E) where E ⊆ V × V is a symmetric

relation. Whenever we refer to a set of edges of an undirected graph it is

assumed to be symmetric. A path in G and reachability of a vertex is defined

as before. We say that a graph G is connected if every vertex is reachable

from every other vertex. A cut in a connected graph G is a non-empty set

of edges E such that G − E is not connected. A subgraph of G = (V,E) is

a graph G′ = (V ′, E ′) such that V ′ ⊆ V and E ′ ⊆ E ∩ (V ′ × V ′).

6.3.2 Stability and Convergence

Let X be a set and Tk : X → X for 1 ≤ k ≤ K be a finite collection of

functions (“operators”). Let Xfp ⊆ X be a set of common fixpoints, that is,

Tk(x) = x for all 1 ≤ k ≤ K and x ∈ Xfp . We will denote an infinite sequence

of operators by σ. Let σ = a1a2a3 · · · , then σ(i) denotes the i-th element of σ

namely ai, and Pref (σ, i) denotes the finite sequence consisting of the first i

elements, namely, a1 · · · ai. Given an x ∈ X , we denote the element obtained

by applying the first n operators of σ to x in order by σ(x, n). Formally

σ(x, 0) = x, σ(x, n) = σ(n)(σ(x, n− 1)), for n ≥ 1.

Next we want to define the notion of convergence. We say that starting

from x a sequence σ converges to some point in Xfp if it moves closer and

closer to Xfp along σ. To make this notion precise we need to define a

neighborhood system around Xfp .

Definition 50 An X -neighborhood system U around Xfp is a collection of

subsets of X such that:

Property 1 Xfp ⊆ U , ∀U ∈ U .

Property 2 For any y ∈ X such that y 6∈ Xfp, there exists some U ∈ U such

that y 6∈ U .

Property 3 U is closed under finite intersections.

Property 4 U is closed under unions.

107

We say that U has a countable base if there exists a sequence {Un}∞n=1

of elements of U such that for every U ∈ U there exists some n such that

Un ⊆ U .

We say that a sequence {xn}∞n=1 of elements of X converges to Xfp with

respect to U if for every U ∈ U there exists a positive integer N such that

xn ∈ U , ∀n ≥ N .

We want to converge not with respect to a single sequence but a set of

sequences. Let us fix a set of operators Σ = {T1, · · · , Tk}. An infinite

sequence of operators from Σ will also be called an infinite word. We will

denote the set of all infinite words over Σ by Σω. We will call a subset L of

Σω a language over Σ.

Definition 51 Stability and convergence. Given a neighborhood system U
and L ⊆ Σω, we say that L is stable with respect to U if ∀U ∈ U , ∃V ∈ U
such that ∀x ∈ X , ∀σ ∈ L, if there exists n0 ∈ N such that σ(x, n0) ∈ V then

∀n ≥ n0, σ(x, n) ∈ U .

We say that L converges to Xfp with respect to U if {σ(x, n)}∞n=1 converges

to Xfp for all x ∈ X and σ ∈ L.

Remark 1 Our definition of convergence is analogous to asymptotic stability

used is control theory. However our definition of stability is slightly stronger

than the classical notion of Lyapunov stability in that instead of requiring that

for every U there exists a V such that any trajectory starting in V remains

within U , we require that if a trajectory starting anywhere enters V , then

we remain within U . This stronger condition is equivalent to the weaker

condition, when the L we consider is a suffix closed language.

Example 1 Let us now try to formalize the convergence of the Example in

Section 6.2. Let the agents have identifiers from [N] and G = (V,E) be

the underlying undirected graph which changes when nodes fail and join.

The state space X is the set of all pairs (H, x) where H is a subgraph

of G restricted to the nodes i which have not failed. X = {(H, x) |H =

(VH , EH), VH = {i |xi 6= ⊥}, EH = E ∩ (VH × VH)}. We take Xfp to be the

set of all fixpoints, which are configurations in which all the unfailed nodes

have the same value. Xfp = {(H, x) ∈ X | ∀i, j, (xi 6= ⊥, xj 6= ⊥)⇒ xi = xj}.
Next we need to define a neighborhood system which satisfies the properties

1, 2, 3 and 4. Before defining the neighborhood, we need to set some notation.

108

Let β(n) = (1 − 1/(2n3) when n > 0 and β(0) = 0. Let alive(x) is the size

of the set {i |xi 6= ⊥}. We define a function f : (R∪ {⊥})N → R≥0 given by

f(x) =
∑

j:xj 6=⊥(xj −M)2, where M = 1
alive(x)

∑
j:xj 6=⊥ xj when alive(x) 6= 0,

otherwise f(x) = 0. Let I be the set of all integers. We can now define the

neighborhood as:

U = {Ui}i∈I,where Ui = {(H, x) ∈ X | f(x) ≤ β(alive(x))i}.

U is a neighborhood system. To see the Property 1 is satisfied, observe that

for all (H, x) ∈ Xfp, f(x) = 0 and β(alive(x))i ≥ 0. Hence Xfp ⊆ Ui for all

i. Given any (H, x) 6∈ Xfp, f(x) > 0. And β(n)i → 0 as i → ∞ for n ≥ 0.

Therefore (H, x) 6∈ Ui for some i. In particular we have Xfp ⊂ · · · ⊂ U3 ⊂
U2 ⊂ U1 ⊂ U0 ⊂ U−1 ⊂ U−2 ⊂ U−3 ⊂ · · · ⊂ X , and

⋂
i∈I Ui = Xfp. Clearly

Properties 3 and 4 are satisfied.

We want to show that starting from any (H, x) ∈ X , we converge to Xfp

on any sequence of operations of join, fail and move with finite number of

join and fail operations and such that the moves form a connected component

of the alive nodes. Let join = {joinj | j ∈ [N]}, fail = {fail j | j ∈ [N]} and

move = {move i,j | (i, j) ∈ E}. Formally Σ = join∪fail∪move. We can define

a function Nodes−Alive : Σ∗ → 2[N] which takes a finite sequence of operators

and returns the set of nodes alive after applying the operators in the sequence.

We will use . for concatenation of two finite sequences or for concatenation of

an infinite sequence to the end of a finite sequence. Nodes−Alive(ε) = [N].

Nodes−Alive(σ.T) = Nodes−Alive(σ) if T ∈ move, = Nodes−Alive(σ)−{i}
if T = fail i and = Nodes−Alive(σ) ∪ {i} if T = join i. Lconverge = {σ ∈
Σω | ∃σ1 ∈ Σ∗, σ2 ∈ moveω, σ = σ1σ2, Gσ1,σ2 is connected}, where Gσ1,σ2 =

(Nodes−Alive(σ1), {(i, j) |move i,j ∈ inf(σ2) or movej,i ∈ inf(σ2)}).

Remark 2 This system is not stable even in the classical sense because start-

ing in any configuration, executing joinj, j = 1, · · · , N , will result in the

initial configuration. So given a U which is sufficiently small, for every V ,

there exists an x ∈ V and σ such that σ takes x out of U . However we will

prove the convergence using our sufficiency results.

109

6.3.3 Muller Automata and ω-Regular Languages

A Muller automatonA over an alphabet Σ is a tuple (Q , qinit , δ, {F1, · · · , Fk})
where:

• Q is a finite set of states.

• qinit is the initial state.

• δ ⊆ Q × Σ×Q is the transition relation (or the set of edges).

• Fi ⊆ Q for 1 ≤ i ≤ k are accepting sets.

An automaton A defines a language over Σ. Given an infinite sequence

sequence τ = τ1τ2 · · · , we define inf(τ) = {τi | {j | τj = τi} is an infinite set }.
A run of A on σ ∈ Σω is an infinite sequence of states ρ = q1q2 · · · such that

q1 = qinit and (qi, σ(i), qi+1) ∈ δ for i ≥ 1. A run ρ of A on σ is accepting

if inf(ρ) = Fi for some i. An infinite word σ ∈ Σω is accepted by A if there

exists a run of A on σ which is accepting. The language accepted by A,

denoted Lang(A) is the set of all infinite words accepted by A. A language

L ⊆ Σω is ω-regular if there exists a Muller automaton whose language is

L. We associate a labelled directed graph with A denote Graph(A) and is

defined as Graph(A) = (Q , δ,Σ). Henceforth when we refer to a path of an

automaton or a state being reachable, we refer to the underlying graph.

We call a Muller automaton A = (Q , qinit , δ, {F1, · · · , Fk}) simple if:

• Every state in Q is reachable from qinit , and every edge e ∈ δ is useful,

that is, there exists σ ∈ Lang(A) and an accepting run ρ of A on σ

such that e = (ρ(i), σ(i), ρ(i+ 1)) for some i.

• Graph(A)[Fi] is maximally strongly connected in Graph(A) for all i.

• All edges going out of Fi go into Fi for all i, that is, (q, a, q′) ∈ δ and

q ∈ Fi implies q′ ∈ Fi.

The next proposition states that the class of languages accepted by simple

Muller automata is exactly the class of ω-regular languages.

Proposition 52 For every Muller automaton A, there exists a simple Muller

automaton B such that Lang(A) = Lang(B). Further B can be constructed

in time polynomial in the size of A.

110

Proposition 53 Given a simple Muller automaton A and a set of edges

E ⊆ δ such that (Graph(A)−E)[Fi] is not strongly connected for every i, an

accepting run ρ of A on any σ ∈ Σω has infinitely many indices i such that

(ρ(i), σ(i), ρ(i+ 1)) ∈ E.

Example 1 The language Lconverge of the Example in section 6.2 is ω-regular.

It is accepted by the following automaton Aconverge = (Q , qinit , δ,F). Q con-

sists of two types of states: the first set Q1 = 2[N] stores the set of alive

nodes, the second set Q2 = {(S,ES, e) |S ⊆ [N], (S,ES) is a connected sub-

graph of G, e ∈ ES}. qinit = [N]. F = {FS,ES | (S,ES, e) ∈ Q2}, where

FS,ES = {(S,ES, e) ∈ Q}. All nodes in FS,ES ensure that eventually the set

of alive nodes will be S and those which will communicate infinitely often will

be those in ES. δ consists of three sets of transition:

• δ1 = {(S, T, S∪{j}) |S ∈ Q1, T ∈ join}∪{(S, T, S−{j}) |S ∈ Q1, T ∈
fail} ∪ {(S, T, S) |S ∈ Q1, T ∈ move}.

• δ2 = {((S,ES, e), T, (S,ES, e′)) | e = (i, j), T = move i,j, e
′ ∈ ES − {e}}.

• δ3 = {(S, T, (S,ES, e)) |T ∈ move}.

6.3.4 A,X -Neighborhood System

For the rest of the chapter, let us fix some notation. Let X be a set and Σ =

{T1, · · · , Tk} a set of operators on X . Let Xfp be a non-empty set of common

fixpoints of X with respect to the operators in Σ, and U a neighborhood

system around Xfp . Let A be a Muller automaton on Σ. Let Y = Q ×X .

We will define some concepts related to Y . Given Y ⊆ Y and q ∈ Q ,

Proj q(Y) = {x | (q, x) ∈ Y } and Proj (Y) = ∪q∈QProj q(Y). Given an edge

e = (q, Ti, q
′) ∈ δ, funce((q, x)) = (q′, Ti(x)). Given Y ⊆ Y , funce(Y) =

{q′} × Ti(Proj q(Y)). A set Y ⊆ Y is said to be A-invariant if for all e ∈ δ,
funce(Y) ⊆ Y . We say that a state y ∈ Y is reachable if there exists an

x ∈ X , a σ ∈ Lang(A) and a run ρ of A on σ such that y = (ρ(i), σ(x, i−1))

for some i. We say that y is reached from x using w = Pref (σ, i − 1). We

will denote the set of all reachable states of Y by Reachable(Y).

Let Yfp = Reachable(Q × Xfp). Note that Yfp is an A-invariant set. A

A,X -neighborhood system around Xfp is a Q × X -neighborhood system W

111

around Yfp . When X is clear from the context we will drop the X and call

it an A-neighborhood system. W is said to be finer than U , if for every

U ∈ U , there exists a W ∈ W such that Proj (W) ⊆ U . U is said to be finer

than an W , if for every W ∈ W , there exists a U ∈ U such that W contains

Reachable(Q × U). U and W are said to be equivalent, if U is finer than

W and W is finer than U . An A,X -neighborhood system W is said to be

A-invariant if every W ∈ W is A-invariant.

Proposition 54 Let W be an A-neighborhood system equivalent to U such

that every W ∈ W is a subset of Reachable(Q ×X). Then U has a countable

base if and only if W has a countable base.

Proof Let {Un}∞n=1 be a countable base for U . Let W ∈ W . Then there

exists U ∈ U such that Reachable(Q×U) ⊆ W since U is finer thanW . There

exists Un ⊆ U by the definition of countable base. Also there exists Wn such

that Wn ⊆ Q × Un since W is finer than U . Since Wn ⊆ Reachable(Q × X)

by assumption, we have Wn ⊆ Reachable(Q × Un). Therefore Wn ⊆ W .

{Wn}∞n=1 is a countable base for W .

Similarly let {Wn}∞n=1 be a countable base for W . Let U ∈ U . Then

there exists W ∈ W such that Proj (W) ⊆ U , or there exists Wn such that

Proj (Wn) ⊆ U . Also there exists Un ∈ U such that Reachable(Q×Un) ⊆ Wn.

Hence Proj (Reachable(Q × Un)) ⊆ U , or Un ⊆ U . {Un}∞n=1 is a countable

base for U .

6.4 Stability

From now on we will assume that A is a simple Muller automaton.

The following result generalizes the result of Tsitsiklis [102].

Theorem 55 The following are equivalent.

1. Lang(A) is stable with respect to an X -neighborhood system U around

Xfp.

2. There exists an A,X -invariant neighborhood system W around the set

Reachable(Q × Xfp) which is equivalent to U .

112

Proof The proof is along the lines of that given in [102]. Let Lang(A) = L.

(1 ⇒ 2): We assume that L is stable with respect to U and we need to

construct an A-invariant neighborhood system W of subsets of Y which is

equivalent to U .

We do this as follows. Given U ∈ U , we define WU as the union of all A-

invariant subsets of U ′ = Reachable(Q×U). Note that Yfp = Reachable(Q×
Xfp) is an A-invariant subset of U ′, which shows that WU is nonempty for all

U ∈ U . Also WU is the largest A-invariant subset of U ′. Let W ′ = {WU :

U ∈ U} and letW be the closure ofW ′ under finite intersections and unions.

W is a neighborhood system. The first property is satisfied since Q ×
Xfp ⊆ WU for all U implies Q × Xfp ⊆ W for all W ∈ W . The sets in W
are closed under finite intersections and arbitrary union by definition. Let

y = (q, x) ∈ Y−Yfp . If y is not reachable then it does not belong to any WU .

Otherwise x 6∈ Xfp , and therefore x 6∈ U for some U ∈ U . Therefore y 6∈ WU .

Therefore for every y ∈ Y − Yfp , there exists W ∈ W such that y 6∈ W .

W is A-invariant, since WU are A-invariant and finite intersections and

arbitrary unions of A-invariant sets are A-invariant.

W is equivalent to U . For every U ∈ U , there exists WU ∈ W such that

WU ⊆ Q × U , hence W is finer than U . To show that U is finer than W ,

it is enough to show that U is finer than W ′, because the sets in U are also

closed under finite intersections and arbitrary unions. Let W ∈ W ′, then

WU = W for some U ∈ U . Using the fact that L is stable ∃V ∈ U such that

∀x ∈ X , ∀σ ∈ L, if there exists n0 ∈ N such that σ(x, n0) ∈ V then ∀n ≥ n0,

σ(x, n) ∈ U . Define V ′ = {y | y is reached from x ∈ X using Pref (σ, j) for

some σ ∈ L and σ(x, i) ∈ V for some i ≤ j}. In particular, V ′ contains

Reachable(Q × V). Note that V ′ is an A-invariant subset of U ′ (here we use

that fact that every edge is useful). Hence V ′ ⊆ WU . Therefore there exists

V ∈ U such that Reachable(Q × V) ⊆ W .

(2⇒ 1): Given any U ∈ U , there exists some W ∈ W such that Proj (W) ⊆
U , becauseW is finer than U . Moreover, since U is finer thanW , there exists

some V ∈ U such that V ′ = Reachable(Q × V) is contained in W . Consider

an x, n0 ∈ N and σ ∈ L such that σ(x, n0) ∈ V . Let ρ be an accepting run

of A on σ. Then (ρ(n0 + 1), σ(x, n0)) ∈ V ′ ⊆ W . Since W is A-invariant

(ρ(n+ 1), σ(x, n)) ∈ V ′ for all n ≥ n0. Therefore σ(x, n) ∈ Proj (W) ⊆ U for

all n ≥ n0. Hence L is stable with respect to U .

113

Remark 3 We note that the W constructed in the first part of the proof is

such that every W ∈ W is a subset of Reachable(Q ×X).

6.5 Convergence

In this section we present necessary and sufficient conditions for convergence

of a ω-regular language L. Let X , Xfp , Σ, U , Y and Yfp be as above. Let L

be an ω-regular language over Σ such that L = Lang(A), where A is a simple

Muller automaton.

First, we present a sufficient condition for convergence.

Condition 1 There exists a totally ordered index set I and a collection {Xα :

α ∈ I} of distinct subsets of Y containing Yfp with the following properties:

Property 1 α < β implies Xα ⊆ Xβ.

Property 2 For every U ∈ U , there exists some α ∈ I such that Proj (Xα) ⊆
U .

Property 3
⋃
α∈I Proj qinit

(Xα) = X .

Property 4 Xα is A-invariant for all α ∈ I.

Property 5 For every α ∈ I such that Xα 6= Yfp, there exists E ⊆ δ such

that for every i (Graph(A)− E)[Fi] is not strongly connected, and for every

e ∈ E, funce(Xα) ⊆
⋃
β<αXβ.

Property 6 Every non-empty subset of I which is bounded below has a

smallest element.

Following theorem states that the above condition is sufficient for conver-

gence.

Theorem 56 If Condition 1 holds, then L converges to Xfp with respect to

U .

Proof Let I, {Xα : α ∈ I} have the properties in Condition 1. Suppose

that we are given some U ∈ U , x0 ∈ X and σ ∈ L. We must show that

σ(x0, n) eventually enters and remains in U .

Let us fix an accepting run ρ = q1q2q3 · · · of A on σ. Let

J = {α ∈ I : ∃n such that (ρ(n), σ(x0, n− 1)) ∈ Xα}.

114

Lemma 8 J = I.

Proof Since from Property 3, we have X =
⋃
α∈I Proj qinit

(Xα), there exists

some α ∈ I such that (qinit , x0) ∈ Xα. Hence J is nonempty. We consider two

cases: we first assume that J is not bounded below. Then, for every α ∈ I,

there exists a β ∈ J such that β < α. Hence for every α ∈ I, there exists

some β < α and some integer n such that (ρ(n), σ(x0, n − 1)) ∈ Xβ ⊆ Xα

(Property 1). So, every α ∈ I belongs to J , and I = J .

Let us now assume that J is bounded below. Since it is nonempty, it has a

smallest element from Property 6, denoted by β. If Xβ = Yfp , then β is also

the smallest element of I, and I = J follows. So, let us assume that Xβ 6= Yfp .

Then from Property 5 there exists E ⊆ δ such that (Graph(A)−E)[Fi] is not

strongly connected, and for every e ∈ E, funce(Xβ) ⊆
⋃
γ<βXγ. From the

definition of J , there exists some n0 such that (ρ(n0), σ(x0, n0−1)) ∈ Xβ and

by invariance of Xβ (Property 4), (ρ(n), σ(x0, n − 1)) ∈ Xβ for all n ≥ n0.

Since σ ∈ L and ρ is an accepting run, we have an m > n0 such that

(ρ(m), σ(m), ρ(m+ 1)) ∈ E by Proposition 53. Since (ρ(m), σ(x0,m− 1)) ∈
Xβ, we have (ρ(m + 1), σ(x0,m)) ∈

⋃
γ<βXγ, or (ρ(m + 1), σ(x0,m)) ∈ Xγ

for some γ < β. Hence γ ∈ J , which contradicts the assumption that β was

the smallest element of J . This completes the proof of the lemma.

Given U ∈ U , there exists some α ∈ I such that Proj (Xα) ⊆ U (Property

2). Since J = I, there exists some n0 such that (ρ(n0), σ(x0, n0 − 1)) ∈ Xα.

Since funce(Xα) ⊆ Xα for all e, it follows that (ρ(n), σ(x0, n − 1)) ∈ Xα for

all n ≥ n0. Or σ(x0, n−1) ∈ Proj (Xα) for all n ≥ n0. Hence σ(x0, n−1) ∈ U
for all n ≥ n0, which completes the proof.

Next we show that Condition 1 is a necessary condition when the system

satisfies some additional properties.

Theorem 57 If L is stable and converges to Xfp with respect to U and if U
has a countable base, then Condition 1 holds.

Proof Since L is stable with respect to U , we have from Theorem 55 that

there exists an A-invariant neighborhood systemW which is equivalent to U .

Since U has a countable base, from Proposition 54 and Remark 3, we have

thatW has a countable base as well {Wn}∞n=1. Without loss of generality we

115

may assume that Wn+1 ⊆ Wn for all n. (Otherwise we could define a new

countable base W ′
n =

⋂n
k=0Wk.) Let W0 be Reachable(Q ×X).

Our proof consists of two main steps: for each n ≥ 0 we construct a nested

collection of subsets of Y which lie between Wn and Wn+1. Then we merge

these collections to get a single nested collection.

Lemma 9 Let W ′,W ′′ ∈ W such that W ′ ⊂ W ′′. Let Inv be the set of

all A-invariant subsets of W ′′ containing W ′. Then there exists a function

f : Inv → Inv and g : Inv → 2δ such that:

• For any W ∈ Inv, we have W ⊆ f (W) and if Proj qinit
(W) 6= Proj qinit

(W ′′)

then f (W) ⊂ W .

• funce(f (W)) ⊆ W for all e ∈ g(W).

• (Graph(A)− g(W))[Fi] is not strongly connected for all i.

For the sake of continuity we prove continue with the proof of the theorem

and prove the lemma later.

Let In be a well-ordered set with cardinality larger than that of Y and

let α0,n be its smallest element. We apply Lemma 9 with W ′′ = Wn and

W ′ = Wn+1 to obtain a function fn satisfying the properties of the lemma

above. We define a function hn : In → Inv using the following transfinite

recursion: hn(α0,n) = Wn+1, and for all α > α0,n, hn(α) = fn(
⋃
β<α hn(β)).

Notice that Wn+1 ⊆ hn(β) ⊆ hn(α) ⊆ Wn, for any α, β such that α > β,

and that if Proj qinit
(hn(β)) 6= Proj qinit

(Wn), then hn(β) ⊂ hn(α). Since

In has cardinality larger than that of Y , there exists some α ∈ In such

that Proj qinit
(hn(α)) = Proj qinit

(Wn). Let ᾱn be the smallest such α and let

Īn = {α ∈ In |α < ᾱn}.
We now define I = {>} ∪ {(n, α) |α ∈ Īn, n = 0, 1, · · · } with the following

total order: (n, α) < (m,β) if either n > m or n = m and α < β, and

(n, α) < > for all n and α. Finally, let X(n,α) = hn(α) and X> = W0.

We claim that the collection {Xα |α ∈ I} satisfies all the properties of

Condition 1. Property 1 is satisfied because hn(β) ⊂ hn(α) for every β < α,

where β, α ∈ Īn. Property 2 follows from the fact that our Xαs include the

countable base {Wn}∞n=1 we started with and W is equivalent to U . Since

Proj qinit
(W0) = X , Property 3 is true. Property 4 holds since all the new

sets we introduce (basically in Lemma 9) are A-invariant. Again Property

116

5 follows from Lemma 9, where the function g gives the set of edges E for

every invariant set. Finally, since every non-empty subset of a well-ordered

set has a least element, and countable concatenations of well-ordered sets is

well ordered, we satisfy 6.

6.5.1 Proof of Lemma 9

Given Y ⊆ Y and e = (q, T, q′), define Reache(Y) = {(q′, x′) | ∃(q, x) ∈
Y, x′ = T (x)}. Given a path P in Graph(A), ReachP (S) is defined inductively

as follows. If P = e ∈ δ, then ReachP (Y) = Reache(Y). Otherwise if

P = P ′e, and ReachP (Y) = Reache(ReachP ′(Y)). Given an edge e ∈ δ,

PathsEnd(e) = {P |P = P ′e}, is the set of all paths ending in e.

Given a set of edges E ⊆ δ and W ∈ W , define fE(W) = {(q, x) | ∀e ∈
E,P ∈ PathsEnd(e),ReachP ({(q, x)}) ⊆ W}. fE(W) has the following prop-

erties.

• W ⊆ fE(W): Since W is invariant, for all P ReachP (W) ⊆ W .

• fE(W) is A-invariant: Let x ∈ fE(W), and Y = fE({x}). If there

exists y ∈ Y such that y 6∈ fE(W), then there exists e ∈ E and

P ∈ PathsEnd(e) such that ReachP ({y}) 6⊆ W . Then x 6∈ fE(W),

since there exists e ∈ E and a path e′P ∈ PathsEnd(e) such that

ReachP ({x}) 6⊆ W .

• funce(fE(W)) ⊆ W for all e ∈ E: The argument is similar to the

previous.

Let E = {E ⊆ (δ ∩ ∪i(Fi × Σ × Fi)) | (Graph(A) − E)[Fi] is not strongly

connected for every i}. Given W ∈ Inv , we claim that if Proj qinit
(W) 6=

Proj qinit
(W ′′), then W ⊂ fE(W) for some E ∈ E . Suppose not. Then there

exists (qinit , x0) ∈ W ′′−W and fE(W) = W for all E ∈ E . Therefore (qinit , x0)

does not belong to any fE(W).

We will construct a σ ∈ Lang(A) and an accepting run ρ of A on σ such

that (ρ(i), σ(x0, i − 1)) 6∈ fE(W) for all E ∈ E and i ≥ 1. This contra-

dicts the convergence of L as follows. There exists U ∈ U such that Z =

Reach(Q ×U) ⊆ W ′, since U is finer than W . Since Z ⊆ W ′ ⊆ W = fE(W),

(ρ(i), σ(x0, i−1)) 6∈ Z for all i. Therefore σ(x0, i) 6∈ U for all i, contradicting

117

the convergence of L with respect to U . Hence W ⊂ fE(W) for some E ∈ E .

We set f (W) = fE(W) for some E for which W ⊂ fE(W).

It remains to construct a σ ∈ L and ρ which satisfy the above condition.

Given a path P starting in q and a singleton set {(q, x)}, ReachP ({(q, x)})
is a singleton. Hence we will write this as just ReachP ((q, x)).

Let E ∈ E be non-empty. Let s0 = (qinit , x0). Since s0 6∈ fE(W) there

exists some P ending in an edge in E such that ReachP (s0) 6∈ fE(W) = W .

Let us call this P as P1 and ReachP ((qinit , x0)) as s1. Let the last of edge of P

belong to Fi∗×Σ×Fi∗ . Since the automaton is simple any path starting from

Fi∗ will remain within Fi∗ . We will assume |Fi∗| ≥ 2, (a similar procedure

can be used when |Fi∗ | = 1.

The following procedure generates a sequence of Pjs:

1. Let P1 and s1 be as defined above. Initialize j to 1.

2. Let Q ′ = ∅.

3. While Q ′ 6= Q do:

• Add the last state of Pj to Q ′.

• Consider E = δ ∩Q ′ × Σ× (Q −Q ′).

• Increment j.

• Set Pj to be a path ending inE such that ReachPj(sj−1) 6∈ fE(W) =

W .

• Set sj = ReachPj(sj−1).

Note that we maintain the invariant that sj−1 6∈ fE(W) for some E and

hence sj−1 6∈ W . Therefore there always exists a path Pj ending in E such

that ReachPj(sj−1) 6∈ fE(W) = W . Let P ′ = P1P2 · · · be the sequence of

edges e1e2 · · · with ei = (qi, ai, qi+1). Define σ = a1a2 · · · and ρ = q1q2 · · · . ρ
is a run of A on σ. It is accepting because each Pj contains every state from

Fi∗ at least once, and only contains states from Fi∗ , because the automaton

is simple. We have infinitely many i such that (ρ(i), σ(x0, i−1)) 6∈ fE(W) for

any E or equivalently (ρ(i), σ(x0, i−1)) 6∈ W (They correspond to sjs). Since

W is invariant, if (ρ(i), σ(x0, i − 1)) ∈ W for some i, then (ρ(j), σ(x0, j −
1)) ∈ W for all j ≥ i, which contradicts the previous statement. Therefore

(ρ(i), σ(x0, i− 1)) 6∈ W for all i.

118

6.6 An Application

In this section, we illustrate the application of our results to prove conver-

gence of the Example in Section 6.2.

We have already defined X ,Xfp ,U and Lconverge . We will prove convergence

using the simple Muller Automaton Aconverge . We will then point out how

one can prove convergence given any simple Muller automaton for Lconverge .

6.6.1 Properties of the Neighborhood System U

Let us define move i,j(x) = x′ as follows: If xi 6= ⊥, xj 6= ⊥, then x′i = x′j =

(xi + xj)/2 and x′k = xk for k 6∈ {i, j}, otherwise x′ = x.

We recall the following two results from [74].

Proposition 58 f(move i,j(x)) ≤ f(x).

Let Sorted(x) from [N] → [N] be a one-one and onto function which

satisfies for i < j, xSorted(x)(i) < xSorted(x)(j), or xSorted(x)(i) ≤ xSorted(x)(j) and

Sorted(x)(i) < Sorted(x)(j). Sorted(x)(i) will give the identifier of the agent

with the i-th smallest value and when agents have same values, the value

of the agent with the smaller identifier is considered smaller. Here ⊥ is

considered to have a value of ∞.

Proposition 59 Given any x, there exists k ∈ [N] such that xSorted(x)(k+1)−
xSorted(x)(k) >

1
alive(x)

√
f(x)

alive(x)
. Given any i, j such that 1 ≤ i ≤ k and k+1 ≤

j ≤ alive(x), f(move i′,j′(x)) ≤ β(alive(x))f(x), where i′ = Sorted(x)(i) and

j′ = Sorted(x)(j).

The above property says that if we start at some (H, x) in Ui, then there

is partition of the nodes in H, such that for all edges (i, j) which go between

the partitions, move i,j(H, x) will be in Ui+1. But we need more, we need one

such partition which will work for all elements of Ui.

Define Cut(x, k) = (A,B) where A = {Sorted(x)(i) | i ≤ k} and B =

{Sorted(x)(j) | alive(x) ≥ j ≥ k + 1}. Define Gap(x) = {Cut(x, k) | 1 ≤ k <

alive(x), xSorted(x)(k+1) − xSorted(x)(k) >
1

alive(x)

√
f(x)

alive(x)
}.

Proposition 60 For all i, j ∈ [N] and x such that for all (A,B) ∈ Gap(x),

either i, j ≤ A or i, j ≥ B, we have Gap(x) ⊆ Gap(move i,j(x)).

119

Let {Gap(x) | (H, x) ∈ Ui − Ui+1} = {C1, · · · , Cin} such that if Ci ⊂ Cj

then i < j. Between Ui and Ui+1 we define a finite number of sets as follows.

Ui,0 = Ui, Ui,j+1 = Ui,j − {(H, x) ∈ X |Gap(x) = Cj+1} for 0 ≤ j ≤ in − 1.

We define the index set to be J = {(i, j) | 0 ≤ j ≤ in − 2} with the ordering

(i, j) < (i′, j′) if i > i′ or i = i′ and j > j′. The required sets are {Uα |α ∈ J}.
This set has the following property.

Proposition 61 For all α ∈ J , there exists C ⊆ [N] × [N] such that for

all (i, j) ∈ C and (H, x) ∈ Uα, C is a cut in H and move i,j(H, x) ∈ Uβ

for some β < α. Also, for all α ∈ J , i, j ∈ [N], (H, x) ∈ Uα, we have

move i,j((H, x)) ∈ Uα.

Proof Given α, Uα = Um,n for some m,n. Let Gap(x) = Z which is the

same for any (H, x) ∈ Uα − Uα+1 where α + 1 = m,n + 1 if (m,n + 1) ∈
J , otherwise α + 1 = m + 1, n. The required cut C = {(i, j) | ∃(A,B) ∈
Z, i ∈ A, j ∈ B}. Then from Proposition 59, we have for all (i, j) ∈ C,

move i,j((H, x)) ∈ Um+1,n for all (H, x) ∈ Uα − Uα+1.

Given (H, x) ∈ Uα, if (i, j) ∈ C, move i,j(H, x) ∈ Uα from above. If

(i, j) 6∈ C, then from Proposition 58 we have move i,j(H, x) ∈ Um′,n′ where

m′ ≥ m and from 60, we have n′ ≥ n. Therefore move i,j((H, x)) ∈ U ′α for

some α′ ≤ α, hence also in Uα.

6.6.2 Convergence Proof

We are now ready to define the invariant sets required to prove convergence.

Recall Aconverge = (Q , qinit , δ,F) with Q = Q1∪Q2 and δ = δ1∪ δ2∪ δ3 and

F = {funcS,ES | (S,ES, e) ∈ Q2}. Let Y = Q×X , Yfp = Reachable(Q×Xfp).

The index set I = J ∪ {>}, with > > j for all j ∈ J . For α ∈ J , Yα =

(Q2 × Xα) ∪ Yfp , and Y> = Y . The index set I with the sets {Yα |α ∈ I}
satisfy all the properties of Condition 1. It is easy to see that Properties

1, 2, 3 and 6 are satisfied. Y> is clearly invariant. For α ∈ J and any

edge e not in δ2, funce(Yα) = ∅ ⊆ Yα. For α ∈ J and e = (q, a, q′) ∈ δ2,

a = move i,j for some i, j and funce(Yα) ⊆ ({q′} ×move i,j(Xα)) ∪ (Q × Xfp).

Since move i,j(Xα) ⊆ Xα from Proposition 61, we have that Yα is invariant.

Now we show that Property 5 also holds. For Y>, we can choose E to be

δ2. (Graph(A) − E)[Fi] is not strongly connected for every i. We need to

120

show that for all (q, (H, x)) ∈ Y>, for all e ∈ E, funce((q, (H, x))) ∈ Yα for

some α ∈ J . We need to consider only (q, (H, x)) ∈ Y>−
⋃
α∈J Yα. But then

q ∈ Q1 and hence funce((q, (H, x))) = ∅. For any other Yα, we can choose

E = {(q,move i,j, q
′) | (i, j) or (j, i) ∈ C}, where C is the cut associated with

Xα given by Proposition 61. It is easy to see that (Graph(A) − E)[Fi] is

not strongly connected since the labels of the edges in each Fi correspond

to a connected subgraph on the unfailed nodes, and C is cut in the induced

subgraph of G with unfailed nodes.

Since the system is not stable as mentioned before we cannot use Theorem

56 to guarantee existence of level sets to prove convergence of the system

for any arbitrary automaton accepting Lconverge . However we can always find

such sets because of the following structure of any simple Muller automaton

A = (Q , qinit , δ,Σ, {F1, · · · , Fk}) such that Lang(A) = Lconverge .

• There is no edge labelled by join or fail in any of the Fi, that is, there

is no a ∈ join ∪ fail and q, q′ ∈ Fi for some i, such that (q, a, q′) ∈ δ.
Because then we would have an accepting run with infinite join or fail

operations.

• Let C be a cut of G = (V,E), i.e, G − C is not connected. Then

removing the edges in A labelled by elements in C renders every Fi not

strongly connected, i.e., for every i (Graph(A)−E ′)[Fi] is not strongly

connected, where E ′ = {(q, a, q′) | a = move i,j, (i, j) ∈ C, q, q′ ∈
⋃
j Fj}.

6.7 Conclusions

In this chapter, we presented a framework for proving convergence or asymp-

totic stability of a discrete-time hybrid system by viewing it as a set of se-

quence of opertors forming an ω-regular language. We essentially generalized

Tsitsiklis’s [102] result, which provided necessary and sufficient conditions for

proving convergence of a sequence of operators in which each operator oc-

curs infinitely often, to obtain necessary and sufficient conditions for systems

where the infinite sequence of operators is a member of an arbitrary omega

regular language. This enables us to apply our theory to distributed sys-

tems with changing communication topology, node failures and joins. We

illustrated an application of the new set of conditions in verifying the con-

121

vergence of a simple (continuous) consensus protocol. Some of the interesting

future directions are to investigate automated methods for generation of the

invariants required in the proof of convergence; and extending the framework

to the continuous time semantics of hybrid systems.

122

CHAPTER 7

PRE-ORDERS FOR REASONING ABOUT
STABILITY

Pre-orders between processes, like simulation, have played a central role in

the verification and analysis of systems. Logical characterization of such pre-

orders have allowed one to verify the correctness of a system by analyzing

an abstraction of the system. In this chapter, we investigate whether this

approach can be feasibly applied to reason about stability properties of a

system.

Stability is an important property of hybrid and dynamical systems, which

requires that small perturbations from the initial state of a stable trajectory,

result in system behaviors that are close to the stable behavior. We first show

that stability is not invariant under the classical notion of bisimulation. We

then present the notion of uniformly continuous simulations — namely, sim-

ulation with some additional continuity conditions — that can be used to

reason about stability. Finally, we show that uniformly continuous simu-

lations are widely prevalent, by recasting many classical results on proving

stability of dynamical and hybrid systems as establishing the existence of a

simple, obviously stable system that simulates the desired system through

uniformly continuous simulations.

7.1 An Overview

Stability is a fundamental property expected from any well-designed contin-

uous or hybrid system. Stability is not just a design goal, but is often the

principal requirement, so much so that unstable systems are deemed “unus-

able”. Intuitively, stability requires that when a system is started somewhere

close to its desired operating behavior, it will stay close to that desired op-

erating behavior at all times. For example, you would expect the controlled

behavior of a robot to depend gracefully on small variations to its starting

123

orientation; more precisely, given any starting orientation there should be

some (open) neighborhood of this orientation for which all trajectories that

start in this neighborhood remain close, and furthermore, it should be pos-

sible to ensure that the trajectories are as close as desired by making the

neighborhood sufficiently small.

In the discrete world, bisimulation [72] is the canonical congruence that is

used to understand when two systems are intended to be equivalent. It is

taken to be the finest behavioral congruence that one would like to impose,

and correctness specifications are often invariant under bisimulation, i.e., if

two systems are bisimilar then either both satisfy the property or neither one

does. Given the efficiency of computing bisimulation quotients, bisimulation

is often the basis of minimizing transition systems [68]. Variants of bisimu-

lation, such as simulation are often used to abstract a system, and construct

a simpler system that ignores some of the details of the system that maybe

irrelevant to the satisfaction of the specification. Simulation and abstraction

form the basis of verifying infinite state systems [28, 3].

However, stability is not bisimulation invariant. To see this, consider a

standard dynamical system1 D1 with two state variables x, y taking values in

R, with the set of initial states being {(0, y) | y ∈ R≥0}. The dynamics of D1

is given by a function f((x, y), t) which describes the state at time t provided

the state at time 0 was (x, y); let us take f((0, y), t) = (t, y). Observe that

such a system is stable with respect to the trajectory τ = [t 7→ (t, 0)]t∈R≥0
,

as executions that start close to (0, 0) remain close to τ at all times. Let us

consider another dynamical system D2 that has the same state space, and

same initial states, but whose dynamics is given by the function g((0, y), t) =

(t, y(1+ t)). Observe that this system is not stable with respect to trajectory

τ . On the other hand, the relation R = {((x1, y1), (x2, y2)) |x2 = x1 and y2 =

y1(1 + x1)} is a bisimulation between the systems D1 and D2.

Given these observations, the goal of this chapter is to identify the appro-

priate congruences and pre-orders to reason about stability. The stability

requirement that small perturbations in initial state don’t lead to large devi-

ations from expected behavior, suggest that we need to enhance the classical

notions of bisimulation (and simulation) with some continuity requirements

on the witnessing bisimulation (or simulation) relation. However, identify-

1A standard dynamical system, in this chapter, refers to a hybrid system without any
discrete transitions.

124

ing the right continuity assumptions turns out to be subtle. Consider once

again the dynamical systems D1 and D2, and the bisimulation relation R,

described in the previous paragraph. Both the relation R and its inverse R−1

are upper semi-continuous [59], and yet that does not ensure the preserva-

tion of stability. We observe that what is instead required is uniform upper

semi-continuity of R and R−1; we call such a congruence uniformly contin-

uous bisimulation. We also introduce the notion of uniformly continuous

simulation, which is a simulation relation R such that R and R−1 are uni-

formly upper semi-continuous. We show that stability is invariant under the

new notion of bisimulation. Moreover we show that uniformly continuous

simulations yield the right notion of abstraction for stability — if D1 is uni-

formly simulated by D2 and D2 is stable then D1 is also stable — yielding a

mechanism for reasoning about stability.

Having established that uniformly continuous simulations and bisimula-

tions are appropriate for reasoning about stability, we ask whether they arise

naturally in practice. To substantiate the usefulness claim of the new re-

lations, we investigate a number of classical results in control theory and

hybrid systems, and show that the new pre-orders are widely prevalent and

form the basis of stability proofs. The Hartman-Grobman theorem is an

important result that says that the behavior of any dynamical system near

a hyperbolic equilibrium point is qualitatively the same as the behavior of a

linear system near the same equilibrium point. We observe that, in fact, the

Hartman-Grobman theorem establishes that there is a uniformly continuous

bisimulation between the dynamical system and its linearization.

Next we look at various results for establishing stability of dynamical and

hybrid systems. The most general and useful result for establishing stability

of dynamical systems is due to Aleksandr Lyapunov [63], which requires find-

ing a (Lyapunov) function from the state space of the dynamical system to

R that is positive definite, and decreases along every behavior of the dynam-

ical system. We observe that a Lyapunov function constructs a dynamical

system for which stability is simple to prove. Moreover, the properties of a

Lyapunov function ensure that it is a uniformly continuous simulation from

the original dynamical system to the one induced by the Lyapunov function.

Thus, the proof of Lyapunov’s theorem can be seen as constructing a sim-

pler system which uniformly continuously simulates the original system and

proving the stability of this simpler system. We also consider a technique for

125

establishing the stability of a hybrid system using multiple Lyapunov func-

tions. Once again we demonstrate that the result can be recast as saying that

the existence of multiple Lyapunov functions of certain kind imply that the

dynamical system can be abstracted (via uniformly continuous simulations)

into a system that for which stability can be proved easily, and therefore

conclude the stability of the original hybrid system.

Related Work We briefly discuss some of the pre-orders that have been

used in the analysis of hybrid systems. Bisimulation relations have been

widely used in safety verification of hybrid systems, and are the main tech-

nical tools in proving decidability of several subclasses of hybrid systems in-

cluding timed and o-minimal systems [4, 65, 18]. The notion of approximate

simulations and bisimulations have been introduced and used for state space

reduction of continuous and hybrid systems [47, 48, 49] for safety verification.

With respect to stability verification, the notion of of bi-continuous bisim-

ulations [30] have been shown to preserve certain stability properties. The

stability of the system is considered with respect to a single or a set of equi-

librium point. Also, they do not seem to address “asymptotic” stability

properties. In comparison, we consider stability of trajectories, which is a

more general notion than stability of equilibrium points; and we show that

bi-continuous bisimulations do not suffice to preserve stability of trajecto-

ries, and introduce the notion of uniformly continuous bisimulations under

which stability of trajectories is invariant. Further, our notion preserves both

Lyapunov and asymptotic stability properties.

7.2 Preliminaries

Notation Let N denote the set of all natural numbers {0, 1, 2, · · · }, and let

[n] denote the first n natural numbers, that is, [n] = {0, 1, 2, · · · , n − 1}. A

sequence σ is a function whose domain is either [n] for some n ∈ N or the set

of natural numbers N. Let SeqDom denote the domain of sequences, that is,

the set {[n] |n ∈ N}∪{N}. Given a sequence σ, length of σ, denoted |σ|, is n

if Dom(σ) = [n] or∞ otherwise. Given a sequence σ : N→ R,
∑∞

i=1 σ(i) = r

for some r ∈ R if for every ε > 0 in R, there exists a n ∈ N such that for all

j > n,
∑j

i=1 σ(i) ∈ [r − ε, r + ε]. Also,
∑∞

i=1 σ(i) = ∞, if for every k, there

126

exists an n > 0 such that for all j > n,
∑j

i=1 σ(i) ≥ k. We denote the suffix

of σ starting from the i-th element by σi→.

Set Valued Functions We consider set valued functions and define con-

tinuity of these functions. Let us fix a metric space (M,d) for the rest of

this section. We choose not to treat set valued functions as single valued

functions whose co-domain is a power set, since as argued in [59], it leads

to strong notions of continuity, which is not satisfied by many functions. A

set valued function F : A B is a function which maps every element of

A to a set of elements in B. Given a set A′ ⊆ A, F (A′) will denote the set⋃
a∈A′ F (a). Given a binary relation R ⊆ A × B, we use R also to denote

the set valued function R : A B given by R(x) = {y | (x, y) ∈ R}. Let

F : A B be a set valued function, where A and B are extended metric

spaces. We define upper semi-continuity of F which is a generalization of

the “∀ε,∃δ - definition” of continuity for single valued functions [59]. The

function F : A B is said to be upper semi-continuous at x ∈ Dom(F) if

and only if for every neighborhood U of F (x),

∃δ > 0 such thatF (Bδ(x)) ⊆ U .

F is upper semi-continuous if F is upper semi-continuous at every x ∈
Dom(F). Further, the function F : A B is said to be uniformly upper

semi-continuous if and only if

∀ε,∃δ, such that ∀x ∈ Dom(A), F (Bδ(x)) ⊆ Bε(F (x)).

Next we state some properties of upper semi-continuous and uniformly

upper semi-continuous functions. Given a function F : A B, F−1 : B A

is the function which maps b ∈ B to the set {a ∈ A | b ∈ F (a)}.

• If F is upper semi-continuous, then so is F−1.

• If F : A B is upper semi-continuous and A is compact, then F is

also uniformly upper semi-continuous.

Trajectories and Transitions Let Int denote the set of all intervals of

the form [0, T], where T ∈ R≥0 or [0,∞). Given a set S, a trajectory over

S is a function τ : D → S, where D ∈ Int is an interval. Let Traj(S)

127

denote the set of all trajectories over S. A transition over a set S is a pair

α = (s1, s2) ∈ S × S. Let Trans(S) denote the set of all transitions over S.

Let Size : Traj(S)∪Trans(S)→ R≥0 be a function which assigns a size to the

trajectories and transitions. For τ ∈ Traj(S), Size(τ) = T if Dom(τ) = [0, T]

and Size(τ) = ∞ if Dom(τ) = [0,∞). For α ∈ Trans(S), Size(α) = 0. Let

First and Last denote the first and last elements, respectively, of trajectories

and transitions. For τ ∈ Traj(S), First(τ) = τ(0), and if Size(τ) < ∞,

then Last(τ) denote the last value τ(Size(τ)). For α = (s1, s2) ∈ Trans(S),

First(α) = s1 and Last(α) = s2.

7.2.1 Hybrid Transition Systems

Defining stability of hybrid systems requires more information about a con-

tinuous transition than the values of the state before and after the transition.

Hence we introduce the notion of a hybrid transition system, which replaces

a continuous transition of a hybrid system by a trajectory of the system.

A hybrid transition system (HTS) H is a tuple (S,Σ,∆), where S is a set

of states, Σ ⊆ Trans(S) is a set of transitions and ∆ ⊆ Traj(S) is a set of

trajectories.

We will not formally define the hybrid transition system corresponding to

a hybrid automaton H, but S is essentially States(H), Σ corresponds to the

discrete transitions in [[H]] and ∆ corresponds to the flow functions used in

defining the continuous transitions of [[H]].

Notation 62 We will denote the elements of a HTS using appropriate an-

notations, for example, the elements of Hi are (Si,Σi,∆i), the elements of

H′ are (S ′,Σ′,∆′) and so on.

An execution of H is a finite or infinite sequence of trajectories and tran-

sitions which have matching end-points. Formally, an execution is a se-

quence σ : D → Traj(S) ∪ Trans(S), where D ∈ SeqDom, such that for

each 0 ≤ i < |σ| − 1, Last(i) = First(i + 1). Let Exec(H) denote the set

of all executions of H. Given a set of executions T ⊆ Exec(H), we de-

note by First(T) the set of initial points of trajectories starting from T ,

that is, First(T) = {First(σ(0)) |σ ∈ Exec(T)}. We will denote the set of

states occurring in an execution σ as States(σ). For α ∈ Σ, States(α) =

128

{First(α),Last(α)}, for τ ∈ ∆, States(τ) = {τ(t) | t ∈ Dom(τ)}, and for an

execution σ, States(σ) =
⋃
i∈Dom(σ) States(σ(i)).

Compatibility and Unboundedness We say that two executions are

compatible if at every index either both have a transition or both have a

trajectory with the same domain. More precisely, an execution σ of H1

and an execution ρ of H2 are compatible, if Dom(σ) = Dom(ρ), and for all

i ∈ Dom(σ), σ(i) ∈ Σ1 iff ρ(i) ∈ Σ2 and if σ(i) ∈ ∆1, then Dom(σ(i)) =

Dom(ρ(i)). We will denote the fact that σ and ρ are compatible by the

predicate Comp(σ, ρ). An execution σ of H is said to be unbounded, denoted

by the predicate Unbounded(σ), if
∑|σ|

i=1 Size(σ(i)) =∞.

Metric Hybrid Transition Systems A metric hybrid transition system

is a hybrid transition system whose set of states is equipped with a metric. A

metric hybrid transition system (MHS) is a pair (H, d) where H = (S,Σ,∆)

is a hybrid transition system, and (S, d) is a metric space. Since, the state

space has a metric associated with it, we can talk about the distance be-

tween states, trajectories, transitions and executions. We will extend the

distance function d over S to trajectories, transitions and executions to be

the maximum pointwise distance between two elements. Given two trajec-

tories τ1 and τ2 in Traj(S) with the same domain, the distance between τ1

and τ2, denoted d(τ1, τ2), is given by supt∈Dom(τ1) d(τ1(t), τ2(t)). Similarly,

distance between two transitions α1 = (p1, q1) and α2 = (p2, q2) is given

by max{d(p1, p2), d(q1, q2)}. We can then define the distance between two

compatible executions to be the maximum of the distance between the cor-

responding elements of the sequences. Distance between two compatible

executions σ and ρ, denoted d(σ, ρ), is supi∈Dom(σ) d(σ(i), ρ(i)). We define

the distance between two incompatible executions to be infinity, that is,

¬Comp(σ, ρ) implies d(σ, ρ) =∞.

Convergence Two executions are said to converge, if the distance between

the two decreases as we consider smaller and smaller suffixes. Let σ and ρ

be two compatible and unbounded executions. If Dom(σ) = N, then σ and

ρ are said to converge if for every real ε > 0, there exists an n ∈ N such that

d(σn→, ρn→) < ε. If Dom(σ) = [n], then σ and ρ are said to converge if for

every real ε > 0, there exists t ∈ R≥0 such that d(σ(n−1)(t′), ρ(n−1)(t′)) < ε

129

for all t′ ≥ t.

7.2.2 Simulations and Bisimulations

We define simulation and bisimulation for hybrid transition systems along

the lines of [62].

Let H1 = (S1,Σ1,∆1) and H2 = (S2,Σ2,∆2) be two hybrid transition

systems. Let R ⊆ S1 × S2 be a binary relation on the states of H1 and H2.

We can extend this relation to the trajectories, transitions and executions

in a natural way as follows. Given two trajectories τ1 ∈ ∆1 and τ2 ∈ ∆2,

R(τ1, τ2) holds if and only if Dom(τ1) = Dom(τ2) = D, and for all t ∈ D,

R(τ1(t), τ2(t)). Similarly, R(α1, α2) holds, where α1 ∈ Σ1 and α2 ∈ Σ2,

iff First(α1) = First(α2) and Last(α1) = Last(α2). Given two executions

σ1 ∈ Exec(H1) and σ2 ∈ Exec(H2), R(σ1, σ2) holds iff Comp(σ1, σ2) and for

every i ∈ Dom(σ1), R(σ1(i), σ2(i)).

Given two hybrid transition systemsH1 = (S1,Σ1,∆1) andH2 = (S2,Σ2,∆2),

a binary relation R ⊆ S1 × S2 is said to be a simulation relation from H1

to H2, denoted H1 �R H2, if for every s1 ∈ S1, there exists an s2 ∈ S2 such

that (s1, s2) ∈ R, and for every (s1, s2) ∈ R, the following conditions hold:

• for every state s′1 such that Σ1(s1, s
′
1), there exists a state s′2 such that

Σ2(s2, s
′
2) and (s′1, s

′
2) ∈ R; and

• for every trajectory τ1 ∈ ∆1 such that First(τ1) = s1, there exists a

trajectory τ2 ∈ ∆2 such that First(τ2) = s2, Dom(τ1) = Dom(τ2) and

for all t ∈ Dom(τ1) = Dom(τ2), (τ1(t), τ2(t)) ∈ R.

If there exists an R such that H1 �R H2, then we say that H2 simulates

H1, denoted by H1 � H2. Intuitively, if H2 simulates H1, then H2 has more

behaviors thanH1. H2 is also referred to as an abstraction ofH1. Simulations

preserve various discrete time properties, such as, safety properties, in that,

if H1 � H2 and H2 satisfies the property, then we can conclude that H1

satisfies the property as well.

A binary relationR ⊆ S1×S2 is a bisimulation relation betweenH1 andH2,

denotedH1 ∼R H2, ifH1 �R H2 andH2 �R−1 H1. So a bisimulation relation

preserves properties in both directions, in that, H1 satisfies a bisimulation

invariant property iff H2 satisfies it.

130

7.3 Stability of Hybrid Transition Systems

In this section, we introduce various properties related to the stability of

systems (a good introductory book is [63]). Intuitively, stability is a property

which captures the notion that small changes in the initial state of the system

result in only small changes in the behaviors of the system starting from those

states.

We first define the notion of Lyapunov stability. Given a HTS H and a

set of executions T ⊆ Exec(H), we say that H is Lyapunov stable (LS) with

respect to T , if for every ε > 0 in R≥0, there exists a δ > 0 in R≥0 such that

the following condition holds:

∀σ ∈ Exec(H), d(First(σ(0)),First(T)) < δ ⇒ ∃ρ ∈ T , d(σ, ρ) < ε

The above statement says that for every execution σ of the systemH which

starts within a distance δ of some execution ρ′ in T , there exists an execution

ρ in T which is compatible with σ and is within a distance ε at all points of

the execution.

Next we define a stronger notion of stability called asymptotic stability

which in addition to Lyapunov stability requires that the executions starting

close also converge as time goes to infinity. A HTS H is said to be asymp-

totically stable (AS) with respect to a set of execution T ⊆ Exec(H), if it is

Lyapunov stable and there exists a δ > 0 in R≥0 such that

∀σ ∈ Exec(H), d(First(σ(0)),First(T)) < δ ⇒ ∃ρ ∈ T ,Conv(σ, ρ)

So a system H is asymptotically stable with respect to a set of its exe-

cutions T if H is Lyapunov stable with respect to T and every execution

starting within a distance of δ from the starting point of some execution in

T converges to some execution in T .

Remark 63 The reader might be familiar with the more standard definition

of stability, which is defined with respect to an equilibrium point. An equilib-

rium point is a point in the state space whose value does not change with the

evolution of time. A system is then said to be Lyapunov stable with respect

to an equilibrium point if for every ε > 0 there exists a δ ball around the equi-

131

librium point such that every trajectory starting in this δ ball remains with in

an ε ball around the equilibrium point. Similarly, in the case of asymptotic

stability, the trajectories starting in a δ ball around the equilibrium point are

required to converge to the equilibrium point, in addition to being stable in

the sense of Lyapunov. Here, we consider the more general notion of stability

with respect to a trajectory or more generally to a set of executions. In this

framework, an equilibrium point is an execution whose value always remains

the same.

Remark 64 Note that since we consider stability with respect to a set of

trajectories, we can specify stability with respect to trajectories starting from

different locations.

7.4 Uniformly Continuous Relations and Stability

Preservation

The main focus of this chapter is to examine the right notions of pre-orders

required to reason about stability properties. In the discrete setting, most

interesting properties are known to be invariant under the classical notion of

bisimulation. However, we show that stability is not invariant under bisimu-

lation, that is, there are systems which are bisimilar, but one is stable where

as the other is not. Then we introduce additional continuity requirements

on the bisimulation relation which force invariance under stability.

7.4.1 Bisimulation is not enough

We will show that stability is not bisimulation invariant. We explain the

example from the introduction in more detail. Consider a hybrid transition

system H1 = (S1,Σ1,∆1), where

• the state space S1 is the set R2
≥0, which is the positive quadrant of the

two dimensional plane;

• the set of transitions Σ1 is the empty set; and

• ∆1 is the set {fm |m ∈ R≥0}, where for a particular m ∈ R≥0, fm :

[0,∞)→ R2
≥0 is the trajectory such that f(t) = (t,m).

132

6 Uniformly continuous relations and Stability
Preservation

The main focus of this paper is to examine the right notions of pre-orders re-
quired to reason about stability properties. In the discrete setting, most inter-
esting properties are known to be invariant under the classical notion of bisimu-
lation. However, we show that stability is not invariant under bisimulation, that
is, there are systems which are bisimilar, but one is stable where as the other is
not. Then we introduce additional continuity requirements on the bisimulation
relation which force invariance under stability.

6.1 Bisimulation is not enough

We will show that stability is not bisimulation invariant. We explain the example
from the introduction in more detail. Consider a hybrid transition system H1 =
(S1, Σ1, ∆1), where

– the state space S1 is the set R2
≥0, which is the positive quadrant of the two

dimensional plane;
– the set of transitions Σ1 is the empty set; and
– ∆1 is the set {fm |m ∈ R≥0}, where for a particular m ∈ R≥0, fm : [0,∞) →

R2
≥0 is the trajectory such that f(t) = (t, m).

y

x(0, 0)

Fig. 1. A HTS which is Lyapunov stable

y

x(0, 0)

Fig. 2. An unstable HTS

As shown in Figure 1, H1 consists of trajectories which start on the positive
y-axis and evolve parallel to the positive x-axis. It is easy to see that H1 is
Lyapunov stable with respect to the unique trajectory τ1 which starts at the
origin and moves along the x-axis.

Now let us consider another system H2 = (S2, Σ2, ∆2), shown in Figure 2,
which is similar to H1, that is, S2 = S1 and Σ2 = Σ1, except that ∆2 = {fm :
[0,∞) → R≥0 | fm(t) = (t, m(1 + t)), m ∈ R≥0}. The trajectories of H2 start on
the positive y-axis and evolve along a straight line whose slope is given by the y

Figure 7.1: Lyapunov stable system

6 Uniformly continuous relations and Stability
Preservation

The main focus of this paper is to examine the right notions of pre-orders re-
quired to reason about stability properties. In the discrete setting, most inter-
esting properties are known to be invariant under the classical notion of bisimu-
lation. However, we show that stability is not invariant under bisimulation, that
is, there are systems which are bisimilar, but one is stable where as the other is
not. Then we introduce additional continuity requirements on the bisimulation
relation which force invariance under stability.

6.1 Bisimulation is not enough

We will show that stability is not bisimulation invariant. We explain the example
from the introduction in more detail. Consider a hybrid transition system H1 =
(S1, Σ1, ∆1), where

– the state space S1 is the set R2
≥0, which is the positive quadrant of the two

dimensional plane;
– the set of transitions Σ1 is the empty set; and
– ∆1 is the set {fm |m ∈ R≥0}, where for a particular m ∈ R≥0, fm : [0,∞) →

R2
≥0 is the trajectory such that f(t) = (t, m).

y

x(0, 0)

Fig. 1. A HTS which is Lyapunov stable

y

x(0, 0)

Fig. 2. An unstable HTS

As shown in Figure 1, H1 consists of trajectories which start on the positive
y-axis and evolve parallel to the positive x-axis. It is easy to see that H1 is
Lyapunov stable with respect to the unique trajectory τ1 which starts at the
origin and moves along the x-axis.

Now let us consider another system H2 = (S2, Σ2, ∆2), shown in Figure 2,
which is similar to H1, that is, S2 = S1 and Σ2 = Σ1, except that ∆2 = {fm :
[0,∞) → R≥0 | fm(t) = (t, m(1 + t)), m ∈ R≥0}. The trajectories of H2 start on
the positive y-axis and evolve along a straight line whose slope is given by the y

Figure 7.2: Unstable system

As shown in Figure 7.1, H1 consists of trajectories which start on the

positive y-axis and evolve parallel to the positive x-axis. It is easy to see

that H1 is Lyapunov stable with respect to the unique trajectory τ1 which

starts at the origin and moves along the x-axis.

Now let us consider another system H2 = (S2,Σ2,∆2), shown in Figure

7.2, which is similar to H1, that is, S2 = S1 and Σ2 = Σ1, except that

∆2 = {fm : [0,∞)→ R≥0 | fm(t) = (t,m(1 + t)),m ∈ R≥0}. The trajectories

of H2 start on the positive y-axis and evolve along a straight line whose slope

is given by the y intercept. So they form a diverging set of straight lines.

Consider the trajectory τ2 which starts at the origin and evolves along the

x-axis. Note that H2 is not Lyapunov stable with respect to {τ2}.
However we can show that there exists a bisimulation relation between H1

and H2, given by, R = {((x1, y1), (x2, y2)) |x1 = x2 and y2 = y1(1 + x1)}.
This shows that Lyapunov stability is not invariant under bisimulation. In

fact, observe that the relation R gives rise to the function which maps (x, y)

to (x, y(1 + x)) which is a bi-continuous bijection. Hence, even with the

additional constraint of continuity in both directions on the bisimulation re-

lations, Lyapunov stability is not preserved. Hence we introduce the notions

of uniformly continuous simulations and bisimulations, which impose suffi-

cient constraints on simulation and bisimulation to force Lyapunov stability

preservation.

Remark 65 We can show in a similar fashion that bi-continuous bisimula-

tions do not preserve asymptotic stability. For example, consider a system

H3 which is similar to H2 except that fm is defined as fm(t) = (t,me−t).

Note that H1 is not asymptotically stable, where as H3 is. And there is a

133

bi-continuous bisimulation relation given by R = {((x1, y1), (x2, y2)) |x1 = x2

and y2 = y1e
−x1}.

7.4.2 Uniformly Continuous Simulations and Bisimulations

Recall that a binary relation R ⊆ A×B defines in a natural way a set-valued

function, namely, F : A B given by, for all a ∈ A, F (a) = {b | (a, b) ∈ R}.
In the sequel, we use R also to denote the set-valued function associated with

it.

Definition 66 A uniformly continuous simulation from a HTS H1 to a HTS

H2 is a binary relation R ⊆ S1 × S2 such that R is a simulation from H1 to

H2, and R and R−1 are uniformly upper semi-continuous functions.

Given HTS s H1 and H2, and sets of executions T1 ⊆ Exec(H1) and T2 ⊆
Exec(H2), a binary relation R ⊆ S1 × S2 is said to be semi-complete with

respect to T1 and T2 if R(First(T1)) = First(T2), and for every τ2 ∈ T2, there

is a trajectory in τ1 ∈ T1 such that R(τ1, τ2), and for every x ∈ States(T2),

R(x) is a singleton. And R is complete with respect to T1 and T2 if R and

R−1 are semi-complete with respect to T1 and T2.

The next theorem states that uniformly continuous simulations preserve

Lyapunov and asymptotic stability.

Theorem 67 Let H1 and H2 be two hybrid transition systems and T1 ⊆
Exec(H1) and T2 ⊆ Exec(H2) be two sets of execution. Let R ⊆ S1×S2 be a

uniformly continuous simulation from H1 to H2, and let R be semi-complete

with respect to T1 and T2. Then the following holds:

1. H2 is Lyapunov stable with respect to T2 implies H1 is Lyapunov stable

with respect to T1; and

2. H2 is asymptotically stable with respect to T2 implies H1 is asymptoti-

cally stable with respect to T1.

Proof Given a uniformly upper semi-continuous function F , let us denote

by δF,ε, the element in R≥0/{0} such that for all x ∈ Dom(F), F (BδF,ε(x)) ⊆
Bε(F (x)). Similarly, let δH,T ,ε be the δ in the definition of Lyapunov stability

134

of H with respect to T corresponding to ε. Let us fix F to be the set valued

function corresponding to the binary relation R.

Proof of part (1): Let H2 be Lyapunov stable with respect to T2. We will

show that H1 is Lyapunov stable with respect to T1. Fix an ε > 0. Let

ε′ = δF−1,ε, δ
′ = δH2,T2,ε′ and δ = δF,δ′ . For the above ε, we will show that the

above definition of δ satisfies the condition of Lyapunov stability of H1 with

respect to T1. Let σ1 ∈ Exec(H1) be such d(First(σ1(0)),First(T1)) < δ.

That is, there exists ρ1 ∈ T1 such that d(First(σ1(0)),First(ρ1(0))) < δ. Let

ρ2 ∈ T2 be such that R(ρ1, ρ2). It follows from the uniform upper semi-

continuity of F that F (Bδ(First(σ1(0)))) ⊆ Bδ′(F (First(σ1(0)))). Therefore

F (First(ρ1(0))) ⊆ Bδ′(F (First(σ1(0)))), which implies that First(ρ2(0)) ∈
Bδ′(F (First(σ1(0)))). Therefore, there exists s ∈ F (First(σ1(0))) such that

d(s,First(ρ2(0))) < δ′. Let σ2 be an execution in H2 such that First(σ2) = s

and R(σ1, σ2). Such an execution exists since R(First(σ1), s) and R is a sim-

ulation. So σ2 is an execution of H2 such that d(First(σ2(0)),First(T2)) < δ′.

Then from the Lyapunov stability of H2 we know that there exists an exe-

cution γ2 ∈ T2 such that d(σ2, γ2) < ε′. Let γ1 be the unique execution such

that R(γ1, γ2) and γ1 ∈ T1. We need to show that d(σ1, γ1) < ε. We need to

show that for any i ∈ Dom(σ1), d(σ1(i), γ1(i)) < ε. Let us consider the case

where σ1(i) ∈ ∆1, the case where it belongs to Σ1 is similar and skipped.

Given any t ∈ Dom(σ1(i)), we need to show that d(σ1(i)(t), γ1(i)(t)) < ε.

Note that d(σ2(i)(t), γ2(i)(t)) < ε′. From the uniform upper semi-continuity

of F−1, it follows that F−1(Bε′(γ2(i)(t))) ⊆ Bε(F
−1(γ2(i)(t))). This implies

that F−1(σ2(i)(t)) ⊆ Bε(F
−1(γ2(i)(t))) which further implies that σ1(i)(t) ∈

Bε(F
−1(γ2(i)(t))). Since F−1(γ2(i)(t)) = {γ1(i)(t)} (due to R being com-

plete), we have that d(σ1(i)(t), γ1(i)(t)) < ε.

Proof of part (2): It is similar to the proof of part (1) except for the

following differences. Given a δ′ corresponding to the asymptotic stability

of H2 with respect to T2, we choose δ = δF,δ′ as before. The proof is then

similar to the previous part until we obtain γ1 and γ2. Then we need to

show that σ1 and γ1 converge using the fact that σ2 and γ2 converge. Given

an ε, we choose ε′ = δF−1,ε. Since σ2 and γ2 converge, there is a point in

their executions after which the distance between them is within ε′. It can

be argued similar to the previous case, that the distance between σ1 and γ1

starting from the same points is within ε. Since for every ε there exists a

suffix of σ1 and γ1 such that the distance between the suffixes is within ε, we

135

know that σ1 and γ1 converge.

The above theorem implies that the stability of a system H1 can be con-

cluded by analysing a potentially simpler system H2 which uniformly con-

tinuously simulates H1.

As a corollary of Theorem 67, we obtain that Lyapunov stability and

asymptotic stability are invariant under uniformly continuous bisimulations.

Definition 68 A uniformly continuous bisimulation between two HTSs H1

and H2 is a binary relation R ⊆ S1×S2 such that R is a uniformly continuous

simulation from H1 to H2 and R−1 is a uniformly continuous simulation from

H2 to H1.

Note that R is a uniformly continuous bisimulation iff R is a bisimula-

tion between H1 and H2 and both R and R−1 are uniformly upper semi-

continuous functions. The next corollary of Theorem 67 establishes the in-

variance of Lyapunov and asymptotic stability under uniformly continuous

bisimulations.

Corollary 69 Let H1 and H2 be two hybrid transition systems and T1 ⊆
Exec(H1) and T2 ⊆ Exec(H2) be two sets of execution. Let R ⊆ S1×S2 be a

uniformly continuous bisimulation between H1 and H2, and let R be complete

with respect to T1 and T2. Then the following holds:

1. H1 is Lyapunov stable with respect to T1 if and only if H2 is Lyapunov

stable with respect to T2; and

2. H1 is asymptotically stable with respect to T1 if and only if H2 is asymp-

totically stable with respect to T2.

7.5 Applications of Theorem 67

In this section, we show that various methods used in proving Lyapunov

and asymptotic stability of systems can be formulated as constructing a

simpler system which uniformly continuously simulates the original system

and showing that the simpler system is Lyapunov or asymptotically stable,

respectively.

136

7.5.1 Lyapunov Functions

In this section, we show that Lyapunov’s direct method for proving stability

of systems can be formulated as constructing a simpler system using Lya-

punov functions which uniformly continuously simulates the original system

and then establishing the stability of the simplified systems.

Consider the following time-invariant system,

ẋ = f(x), x ∈ Rn, (7.1)

where f : Rn → R and let 0̄ be an equilibrium point, that is, f(0̄) = 0̄.

Consider a C1 (i.e., continuously differentiable) function V : Rn → R. It is

called positive definite if V (0) = 0 and V (x) > 0 for all x 6= 0. Let

V̇ (x) =
∂V

∂x
f(x),

and note that V̇ is the time derivative of V (x(t)), where x(t) is a solution of

the Equation 7.1.

Theorem 70 (Lyapunov [63]) Suppose that there exists a neighborhood Ω

of 0̄ and a positive definite C1 function V : Rn → R satisfying the algebraic

condition:

V̇ (x) ≤ 0, ∀x ∈ Ω. (7.2)

Then System 7.1 is Lyapunov stable.

Furthermore, if V̇ satisfies

V̇ (x) < 0, ∀x ∈ Ω/{0}, (7.3)

then System 7.1 is asymptotically stable.

A C1 positive definite function satisfying inequality 7.2 is called a weak

Lyapunov function and one satisfying 7.3 is called a Lyapunov function.

In the above theorem we can assume that the set Ω is a compact set

containing an open neighborhood of 0. We now argue that the Lyapunov

function over Ω and its inverse are uniformly upper semi-continuous continu-

ous functions, and the conditions in 7.2 and 7.3 prove that a simpler system

over R≥0 is Lyapunov stable and asymptotically stable, respectively.

137

Consider a hybrid transition system H1 = (S1,Σ1,∆1), where S1 = Ω,

Σ1 = ∅, ∆1 is the set of C1 trajectories τ : D → Ω such that dτ(t)/dt =

f(τ(t)) and τ(t) ∈ Ω for all t ∈ D, that is, the set of solutions of 7.1

which remain with in Ω. Next consider another hybrid transition system

H2 = (S2,Σ2,∆2), where S2 = V (Ω), Σ2 = ∅ and ∆2 is the set of trajectories

τ : D → S2 such that there exist τ ′ : D → Ω in ∆1 and τ(t) = V (τ ′(t)) for

all t ∈ D.

Note that V : S1 → S2 can be considered as a set valued function where

for every point s ∈ S1, V (s) is a singleton set. First we show that this set

valued function V : S1 S2 is a uniformly upper semi-continuous function

and so is V −1. First note that V is upper semi-continuous on the whole of

Rn, and it follows from the property of upper semi-continuity that V −1 is

upper semi-continous. V is a uniformly upper semi-continuous function since

Ω is a compact set. Further S2 = V (Ω) is a compact set. Hence V −1 is also

a uniformly upper semi-continous function.

Let τ ∗ be the unique trajectory in H1 and H2 which starts at 0 and re-

mains at 0 forever. Next we show that the Condition 7.2 implies that H2

is Lyapunov stable with respect to τ ∗ and Condition 7.3 implies that H2 is

asymptotically stable with respect to τ ∗. Condition 7.2 implies that for any

τ ∈ ∆2, t1 < t2 implies τ(t1) ≥ τ(t2). Therefore, given any ε by choosing

a δ ≤ ε which is such that a δ ball around 0̄ is contained in Ω, we obtain

that any trajectory in ∆2 starting within a δ ball remain within an ε ball (in

fact within a δ ball). Next let us consider Condition 7.3. For a trajectory

τ : [0,∞)→ S2 starting from a state x we need to show that the trajectory

converges to 0. Since V is positive and decreasing along the corresponding

solution, it has a limit c ≥ 0 as t → ∞. If c = 0, then we are done. Oth-

erwise, the solution cannot enter the set {x : V (x) < c}. In this case the

solution evolves in a compact set that does not contain the origin. Let the

compact set be C. Let d = maxx∈SV̇ (x); this number is well defined due

to compactness of S and negative due to 7.3. We have V̇ ≤ d, and hence

V (t) ≤ V (0) + dt. But then V will eventually become smaller than c, which

is a contradiction.

So Lyapunov’s theorem can be casted as reducing the original system to

a simpler system by uniformly upper semi-continuous functions and proving

the stability of the simpler system. The above steps give an alternate proof

of Lyapunov stability using Theorem 67.

138

7.5.2 Multiple Lyapunov Functions

Let us consider a set of N dynamical systems, namely, ẋ = fi(x), 0 ≤ i < N .

A switching signal is a piecewise constant function ω : [0,∞)→ [N] such that

ω has bounded number of discontinuities, called switching times, on every

bounded time interval. We assume for concreteness that ω is continuous

from right everywhere: ω(t) = limr→t+σ(r) for each r ≥ 0. We assume

for simplicity of presentation that there are infinitely many switching times.

The set of N dynamical systems with a switching signal is called a switched

system.

Let us fix the following switched system:

ẋ = fi(x), i ∈ [N], x ∈ Rn, ω : [0,∞)→ [N]. (7.4)

The solution of this system is the set of functions σ : [0,∞) → Rn such

that σ restricted to the interval between two switching times is a solution to

the corresponding differential equation. More precisely, let 0 = t0 < t1 < · · ·
be the switching times of ω. For two consecutive switching times ti and ti+1

with ω(ti) = j, the function gi : [0, ti+1 − ti]→ Rn given by gi(t) = σ(ti + t)

is a solution to the differential equation ẋ = fj(x).

Theorem 71 (Multiple Lyapunov Method [16]) Suppose there exists a

neighborhood Ω of origin and N positive definite C1 functions Vi : Rn → R,

i ∈ [N], such that

V̇i(x) =
∂Vi
∂x

fi(x) ≤ 0,∀x ∈ Ω

and for every pair of switching times t and t′ such that t > t′, ω(t) = ω(t′)

and for all switching times t > t′′ > t′, ω(t) 6= ω(t′′),

Vi(σ(t)) ≤ Vi(σ(t′)),

for every solution σ of the switched system. Then the switched system is

Lyapunov stable.

The above theorem can again be formulated as establishing a function from

a HTS H1 to a simpler HTS H2 which is uniformly upper semi-continuous

and proving that H2 is Lyapunov stable using the properties of Vis. We will

sketch this formulation below.

139

Again we can assume that Ω is a compact set containing a neighborhood

of origin. Here H1 = (S1,Σ1,∆1), where S1 = N × Ω, Σ1 = {((i, x), (i +

1, x)) | i ∈ N, x ∈ Ω}, and ∆1 consists of trajectories τ : [0, ti+1−ti]→ {i}×Ω

for some i ∈ N such that τ ′ : [0, ti+1 − ti] → Rn, given by, τ(t) = (i, τ ′(t)),

is the solution of the differential equation ẋ = fj(x), where j = ω(ti). And

the simpler system H2 = (S2,Σ2,∆2), where S2 =
⋃
i∈N{i} × Vω(ti)(Ω), Σ2 =

{((i, Vω(ti)(x)), (i + 1, Vω(ti)(x))) | ((i, x), (i + 1, x)) ∈ Σ1} and ∆2 is the set

of trajectories τ : [0, t] → {i} × Vω(ti)(Ω) such that there exists τ ′ : [0, t] →
{i}×Ω in ∆1 and τ(t) = (i, Vω(ti)(x)) where τ ′(t) = (i, x). Then the function

h : S1 → S2 given by h((i, x)) = (i, Vω(ti)(x)) can be shown to be a uniformly

continuous simulation. Further H2 is a simpler system whose stability can

be easily established from the properties of Vis.

7.5.3 Hartman-Grobman Theorem

We consider a theorem due to Hartman-Grobman which constructs linear ap-

proximations of non-linear dynamics and establishes a homeomorphism be-

tween the two dynamics. We show that the homeomorphic mapping from the

non-linear dynamics to the linear dynamics is a uniformly continuous bisim-

ulation. And hence one can use these reductions from non-linear to linear

dynamics to potentially establish stability properties of non-linear dynamics

by proving stability of the simpler linear dynamics, and using Theorem 67

to deduce the stability of the non-linear dynamics.

We need certain definitions to present the theorem formally. A function

f : A → B, where A,B ⊆ Rn is a homeomorphism if f is a bijection and

both f and f−1 are continuous. A function F : Rn → Rm is given by m-real

valued component functions, y1(x), · · · , ym(x), where x = (x1, · · · , xn). The

partial derivatives of all these functions (if they exist) can be organized in a

m× n matrix called the Jacobian of F , denoted by DF (x).

DF (x) =


∂y1
∂x1

. . . ∂y1
∂xn

...
. . .

...
∂ym
∂x1

. . . ∂ym
∂xn


Given an n-vector a = (a1, · · · , an) ∈ Rn, DF (a) is the matrix obtained by

substituting xi in the terms of the matrix DF (x1, · · · , xn) by ai. A square

140

matrix A is hyperbolic if none of its eigen values are purely imaginary values

(including 0).

Let Ω ⊆ Rn be an open set and F : Ω→ Rn be continuously differentiable.

Suppose that x0 ∈ Ω is a hyperbolic equilibrium point of the autonomous

equation

ẋ = F (x), (7.5)

that is, A = DF (x0) is a hyperbolic matrix. Let ϕ be the (local) flow

generated by Equation 7.5, that is, ϕ : Rn × R≥0 → Rn is a differentiable

function such that dϕ(x, t)/dt = F (ϕ(x, t)) for all t ∈ R≥0.

Theorem 72 (Local Hartman-Grobman Theorem for Flows)

Let Ω, F, x0, A and ϕ be as defined above. Then there are neighborhoods U

and V of x0 and a homeomorphism h : U → V such that

ϕ(h(x), t) = h(x0 + etA(x− x0)) (7.6)

whenever x ∈ U and x0 + etA(x− x0) ∈ U .

We can replace the neighborhoods U and V in the above theorem by

compact sets U and V = h(U), respectively, such that U contains some

neighborhood of x0. We show that the homeomorphism h from U to h(U) is

essentially a uniformly continuous bisimulation between the hybrid transition

system defined by the vector field F and its linearization A at x0.

More precisely, H1 = (S1,Σ1,∆1) be a hybrid transition system, where

S1 = U , Σ1 = ∅, ∆1 is the set of C1 trajectories τ : D → U such that

there exists x ∈ U such that τ(t) = ϕ(x, t) and τ(t) ∈ U for all t ∈ D.

Next consider another hybrid transition system H2 = (S2,Σ2,∆2), where

S2 = h(U), Σ2 = ∅ and ∆2 is the set of trajectories τ : D → S2 such

that there exists x ∈ S2 such that τ(t) = x0 + etA(x − x0) and τ(t) ∈ S2

for all t ∈ D (which are essentially the solutions of the linearization ẋ =

A(x − x0) + x0 of the system ẋ = F (x)). Since h is a continuous function

with a compact domain, it is uniformly continuous, and similarly, h−1 is

continuous function with a compact domain h(U), and is therefore uniformly

continuous. It is easy to see from Condition 7.6 that h is a bisimulation from

H1 to H2. Again, we see that the reduction defined in Hartman-Grobman

theorem from the non-linear dynamics to linear dynamics is a uniformly

continuous bisimulation.

141

7.6 Conclusions

In this chapter, we investigated pre-orders for reasoning about stability prop-

erties of dynamical and hybrid systems. We showed that stability is not

invariant under the classical notion of bisimulation. We introduced the no-

tions of uniformly continuous simulations and bisimulations, which add an

additional uniform continuity constraint on the simulation and bisimulation

relations. We showed that the two standard notions of stability, namely,

Lyapunov and asymptotic stability are invariant under uniformly continuous

bisimulations. Further, we presented evidence of the fact that these pre-order

can potentially be used to reason about stability by casting several proofs of

stability analysis as constructing simpler systems which uniformly continu-

ously simulate the original system, establishing the stability of these simpler

systems, and thereby deducing the stability of the original system. In the

future, we intend to investigate stability properties for systems with input

and output.

142

CHAPTER 8

CONCLUSIONS AND FUTURE
DIRECTIONS

In this thesis, we explored the idea of approximation based verification of hy-

brid systems. We focused on safety and stability properties, and developed

various techniques and tools for approximation and analysis. We presented

two approximation techniques for analysing safety properties. The first tech-

nique was an error based approximation technique for analysing bounded

properties which applied to a general class of systems. Though, in general,

the method is only semi-automatic - approximation is manual, but verifi-

cation of the approximate system is automated; we presented a subclass of

systems for which the whole process can be automated. For the case of lin-

ear dynamics, our method scales to even systems of 100 dimensions, and

has practical benefits both in terms of space and time over various existing

methods. The second technique concentrated on property based abstraction

refinement of systems. Our contribution is the idea of hybrid CEGAR, where

we focus on abstracting a complex hybrid system to a system which is an-

other hybrid system as opposed to a finite state system considered in various

approaches in the literature. This method has various advantages over the

traditional discrete abstraction based CEGAR in terms of simplifying the

various steps of the CEGAR loop, thereby guaranteeing progress in the ab-

straction refinement process. We have built a tool called HARE based on this

technique for the class of rectangular hybrid systems; and our experimental

results suggest that our method has the potential to scale. Future work in

this direction will be on extending these automatic methods to larger classes

of systems such as those with linear and non-linear dynamics.

In terms of stability analysis, we presented a framework for analysing

asymptotic stability of discrete-time hybrid systems. We extended the frame-

work of Tsitsiklis to handle ω-regular interactions between a finite set of op-

erators, which suffices to model hybrid systems in discrete semantics. We

also explored pre-orders for analysing stability properties, and introduced

143

the notion of uniformly continuous bisimulations under which various stabil-

ity properties are invariant. As seen in Figure 1.1 of Chapter 1, identifying

the right pre-orders is an important step towards developing approximations

which preserve stability properties. These techniques provide a foundation

for automated analysis of stability properties for hybrid systems. In the fu-

ture, we intend to develop automated methods for analysis based on these

observations and results.

144

REFERENCES

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic
analysis of hybrid systems. Theoretical Computer Science, 138(1):3–
34, 1995.

[2] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. hsin Ho. Hybrid au-
tomata: An algorithmic approach to the specification and verification
of hybrid systems. In Hybrid Systems, pages 209–229, 1992.

[3] R. Alur, T. Dang, and F. Ivancic. Counter-Example Guided Predicate
Abstraction of Hybrid Systems. In Proceedings of the International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 208–223, 2003.

[4] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

[5] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular specifica-
tion of hybrid systems in charon. In Proceedings of the International
Conference on Hybrid Systems: Computation and Control, pages 6–19,
2000.

[6] R. Alur, T. A. Henzinger, and P. hsin Ho. Automatic symbolic veri-
fication of embedded systems. IEEE Transactions on Software Engi-
neering, 22:181–201, 1996.

[7] E. Asarin, T. Dang, and A. Girard. Hybridization methods for the
analysis of nonlinear systems. Acta Informatica, 43(7):451–476, 2007.

[8] E. Asarin, T. Dang, and O. Maler. The d/dt tool for verification
of hybrid systems. In Proceedings of the International Conference on
Computer Aided Verification, pages 365–370, 2002.

[9] E. Asarin, O. Maler, and A. Pnueli. Reachability analysis of dynamical
systems having piecewise-constant derivatives. Theoretical Computer
Science, 138(1):35–65, 1995.

145

[10] E. Asarin, G. Schneider, and S. Yovine. On the decidability of the
reachability problem for planar differential inclusions. In Proceedings
of the International Conference on Hybrid Systems: Computation and
Control, pages 89–104, 2001.

[11] E. Asarin, G. Schneider, and S. Yovine. Algorithmic analysis of polygo-
nal hybrid systems, part I: Reachability. Theoretical Computer Science,
379(1-2):231–265, 2007.

[12] T. Ball and S. Rajamani. Bebop: A symbolic model checker for Boolean
programs. In Proceedings of the SPIN Workshop on Model Checking
Software, pages 113–130, 2000.

[13] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi.
Uppaal - a tool suite for automatic verification of real-time systems. In
Hybrid Systems, pages 232–243, 1995.

[14] V. Blondel, J. Hendrickx, A. Olshevsky, and J. Tsitsiklis. Convergence
in multiagent coordination consensus and flocking. In Proceedings of the
Joint IEEE Conference on Decision and Control and European Control
Conference, pages 2996–3000, 2005.

[15] V. Borkar and P. Varaiya. Asymptotic Agreement in Distributed Es-
timation. IEEE Transactions on Automatic Control, 27(3):650–655,
June 1982.

[16] M. S. Branicky. Stability of hybrid systems: state of the art. In Con-
ference on Decision and Control, pages 120–125, 1997.

[17] T. Brihaye. Verification and control of o-minimal hybrid systems
and weighted timed automata. PhD thesis, Academie Universitaire
Wallonie-Bruxelles, 2006.

[18] T. Brihaye and C. Michaux. On the expressiveness and decidability
of o-minimal hybrid systems. Journal of Complexity, 21(4):447–478,
2005.

[19] A. Cataldo, C. Hylands, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer, and
H. Zheng. Hyvisual: A Hybrid System Visual Modeler. 2003.

[20] R. Chadha, A. Legay, P. Prabhakar, and M. Viswanathan. Complex-
ity bounds for the verification of real-time software. In Proceedings
of the International Conference on Verification, Model Checking, and
Abstract Interpretation, pages 95–111, 2010.

[21] K. Chandy, B. Go, S. Mitra, C. Pilotto, and J. White. Verification
of distributed systems with local-global predicates. Formal Aspects of
Computing, pages 1–31, 2010.

146

[22] K. M. Chandy, S. Mitra, and C. Pilotto. Convergence verification:
From shared memory to partially synchronous systems. In Proceedings
of Formal Modeling and Analysis of Timed Systems, volume 5215 of
LNCS, pages 217–231, 2008.

[23] A. Chutinan and B. Krogh. Infinite state transition system verification
using approximate quotient transition systems. IEEE Transactions on
Automatic Control, 46:1401–1410, 2001.

[24] A. Chutinan and B. Krogh. Computational techniques for hybrid sys-
tem verification. IEEE Transactions on Automatic Control, 48(1):64–
75, 2003.

[25] A. Chutinan and B. H. Krogh. Verification of polyhedral-invariant hy-
brid automata using polygonal flow pipe approximations. In Proceed-
ings of the International Conference on Hybrid Systems: Computation
and Control, pages 76–90, 1999.

[26] E. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouaknine, O. Stursberg,
and M. Theobald. Abstraction and Counterexample-Guided Refine-
ment in Model Checking of Hybrid Systems. International Journal on
Foundations of Computer Science, 14(4):583–604, 2003.

[27] E. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouaknine, O. Sturs-
berg, and M. Theobald. Verification of Hybrid Systems Based on
Counterexmple-Guided Abstraction Refinement. In Proceedings of the
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 192–207, 2003.

[28] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
Guided Abstraction Refinement. In Proceedings of the International
Conference on Computer Aided Verification, pages 154–169, 2000.

[29] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu, Robby,
and H. Zheng. Bandera: Extracting finite-state models from Java
source code. In Proceedings of the International Conference on Software
Engineering, pages 439–448, 2000.

[30] P. J. L. Cuijpers. On bicontinuous bisimulation and the preservation
of stability. In Proceedings of the International Conference on Hybrid
Systems: Computation and Control, pages 676–679, 2007.

[31] P. J. L. Cuijpers and M. A. Reniers. Hybrid process algebra. Journal
of Logic and Algebraic Programming, 62(2):191–245, 2005.

[32] T. Dang and O. Maler. Reachability analysis via face lifting. In Proceed-
ings of the International Conference on Hybrid Systems: Computation
and Control, pages 96–109, 1998.

147

[33] T. Dang and O. Maler. The d/dt tool for verification of hybrid sys-
tems. In Proceedings of the International Conference on Computer
Aided Verification, pages 365–370, 2002.

[34] T. Dang, O. Maler, and R. Testylier. Accurate hybridization of nonlin-
ear systems. In Proceedings of the International Conference on Hybrid
Systems: Computation and Control, pages 11–20, 2010.

[35] A. Deshpande, A. Göllü, and P. Varaiya. Shift: A formalism and a
programming language for dynamic networks of hybrid automata. In
Hybrid Systems, pages 113–133, 1996.

[36] H. Dierks, S. Kupferschmid, and K. Larsen. Automatic Abstraction
Refinement for Timed Automata. In Proceedings of Formal Modeling
and Analysis of Timed Systems, pages 114–129, 2007.

[37] L. Doyen, T. A. Henzinger, and J. franois Raskin. Automatic rect-
angular refinement of affine hybrid systems. In Proceedings of Formal
Modeling and Analysis of Timed Systems, pages 144–161. Springer,
2005.

[38] V. K. Dzyadyk. Approximation methods for solutions of differential
and integral equations. VSP, Utrecht, The Netherlands, 1995.

[39] A. Fehnker, E. Clarke, S. Jha, and B. Krogh. Refining Abstractions
of Hybrid Systems using Counterexample Fragments. In Proceedings
of the International Conference on Hybrid Systems: Computation and
Control, pages 242–257, 2005.

[40] A. Fehnker and F. Ivancic. Benchmarks for hybrid systems verifica-
tion. In Proceedings of the International Conference on Hybrid Sys-
tems: Computation and Control, pages 326–341, 2004.

[41] G. Frehse. Phaver: Algorithmic verification of hybrid systems past
hytech. In Hybrid Systems, pages 258–273, 2005.

[42] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebel-
tel, R. Ripado, A. Girard, T. Dang, and O. Maler. Spaceex: Scalable
verification of hybrid systems. In Proceedings of the International Con-
ference on Computer Aided Verification, 2011 (to appear).

[43] P. Fritzson. Principles of Object-Oriented Modeling and Simulation
with Modelica 2.1. Wiley-IEEE Computer Society Pr, 2003.

[44] R. Gentilini. Reachability problems on extended o-minimal hybrid au-
tomata. In Proceedings of Formal Modeling and Analysis of Timed
Systems, pages 162–176, 2005.

148

[45] A. Girard. Reachability of uncertain linear systems using zonotopes. In
Proceedings of the International Conference on Hybrid Systems: Com-
putation and Control, pages 291–305, 2005.

[46] A. Girard and C. Guernic. Zonotope/Hyperplane intersecion for hybrid
systems reachability analysis. In Proceedings of the International Con-
ference on Hybrid Systems: Computation and Control, pages 215–228,
2008.

[47] A. Girard, A. A. Julius, and G. J. Pappas. Approximate simula-
tion relations for hybrid systems. Discrete Event Dynamic Systems,
18(2):163–179, 2008.

[48] A. Girard and G. J. Pappas. Approximate bisimulation relations for
constrained linear systems. Automatica, 43(8):1307–1317, 2007.

[49] A. Girard, G. Pola, and P. Tabuada. Approximately bisimilar symbolic
models for incrementally stable switched systems. In Proceedings of
the International Conference on Hybrid Systems: Computation and
Control, pages 201–214, 2008.

[50] S. Graf and H. Saidi. Construction of abstact state graphs with PVS. In
Proceedings of the International Conference on Computer Aided Veri-
fication, pages 72–83, 1997.

[51] C. Guernic and A. Girard. Reachability analysis of hybrid systems
using support functions. In Proceedings of the International Conference
on Computer Aided Verification, pages 540–554, 2009.

[52] T. Henzinger, P. Ho, and H. W. Toi. Algorithmic analysis of nonlinear
hybrid systems. IEEE Transactions on Automatic Control, 43:540–554,
1998.

[53] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstrac-
tion. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 58–70, 2002.

[54] T. Henzinger, P. Kopke, A. Puri, and P. Varaiya. What’s decidable
about hybrid automata? In Proceedings of the ACM Symposium on
Theory of Computation, pages 373–382, 1995.

[55] T. A. Henzinger. Masaccio: A formal model for embedded components.
In IFIP International Conference on Theoretical Computer Science,
pages 549–563, 2000.

[56] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker
for hybrid systems. In Proceedings of the International Conference on
Computer Aided Verification, volume 1254 of LNCS, pages 460–483,
1997.

149

[57] G. Holzmann and M. Smith. Automating software feature verification.
Bell Labs Technical Journal, 5(2):72–87, 2000.

[58] A. Jadbabaie, J. Lin, and A. Morse. Coordination of groups of mobile
autonomous agents using nearest neighbor rules. IEEE Transactions
on Automatic Control, 48(6):988–1001, 2003.

[59] H. F. Jean-Pierre Aubin. Set-valued Analysis. Boston : Birkhuser,
1990.

[60] S. Jha, B. Krogh, J. Weimer, and E. Clarke. Reachability for linear
hybrid automata using iterative relaxation abstraction. In Proceedings
of the International Conference on Hybrid Systems: Computation and
Control, pages 287–300, 2007.

[61] A. Kanade, R. Alur, F. Ivancic, S. Ramesh, S. Sankaranarayanan,
and K. C. Shashidhar. Generating and analyzing symbolic traces of
simulink/stateflow models. In Proceedings of the International Confer-
ence on Computer Aided Verification, pages 430–445, 2009.

[62] D. K. Kaynar, N. A. Lynch, R. Segala, and F. W. Vaandrager. Timed
I/O Automata: A Mathematical Framework for Modeling and Analyz-
ing Real-Time Systems. In Proceedings of the IEEE Real-Time Systems
Symposium, pages 166–177, 2003.

[63] H. K. Khalil. Nonlinear Systems. Prentice-Hall, Upper Saddle River,
NJ, 1996.

[64] A. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability
analysis. In Proceedings of the International Conference on Hybrid
Systems: Computation and Control, pages 202–214, 2000.

[65] G. Lafferriere, G. Pappas, and S. Sastry. O-minimal Hybrid Systems.
Mathematics of Control, Signals, and Systems, 13(1):1–21, 2000.

[66] G. Lafferriere, G. J. Pappas, and S. Yovine. A new class of decid-
able hybrid systems. In Proceedings of the International Conference on
Hybrid Systems: Computation and Control, pages 137–151, 1999.

[67] R. Lanotte and S. Tini. Taylor approximation for hybrid systems.
Information and Computation, 205(11):1575–1607, 2007.

[68] D. Lee and M. Yannakakis. Online Minimization of Transition Systems
(Extended Abstract). In Proceedings of the ACM Symposium on Theory
of Computation, pages 264–274, 1992.

[69] D. Liberzon. Switching in Systems and Control. Boston : Birkhuser,
2003.

150

[70] G. Lorentz. Bernstein Polynomials. University of Toronto Press, 1953.

[71] N. Lynch, R. Segala, and F. Vaandrager. Hybrid I/O automata. In-
formation and Computation, 185:105–157, August 2003.

[72] R. Milner. Communication and Concurrency. Prentice-Hall, Inc, 1989.

[73] I. Mitchell and C. Tomlin. Level set methods for computation in hybrid
systems. In Proceedings of the International Conference on Hybrid
Systems: Computation and Control, pages 310–323, 2000.

[74] S. Mitra and K. M. Chandy. A formalized theory for verifying stability
and convergence of automata in PVS. In Theorem Proving in Higher
Order Logics, pages 230–245, 2008.

[75] C. A. Muoz, G. Dowek, and V. Carreo. Modeling and verification of
an air traffic concept of operations. In Proceedings of International
Symposium on Software Testing and Analysis, pages 175–182, 2004.

[76] V. Mysore, C. Piazza, and B. Mishra. Algorithmic Algebraic Model
Checking II: Decidability of Semi-algebraic Model Checking and Its
Applications to Systems Biology. In Proceeding of the International
Symposium on Automated Technology for Verification and Analysis,
pages 217–233, 2005.

[77] S. Nadjm-tehrani and J. erik Stromberg. Formal verification of dynamic
properties in an aerospace application. In Formal Methods in System
Design, 1999.

[78] R. Olfati-Saber. Flocking for multi-agent dynamic systems: algorithms
and theory. IEEE Transactions on Automatic Control, 51(3):401–420,
March 2006.

[79] R. Olfati-saber, J. A. Fax, and R. M. Murray. Consensus and cooper-
ation in networked multi-agent systems. In Proceedings of the IEEE,
page 2007, 2007.

[80] Y. Pang, M. P. Spathopoulos, and H. Xia. Reachability and optimal
control for linear hybrid automata: A quantifier elimination approach.
IJC, 80(5):731–748, May 2007.

[81] G. E. Parker and J. S. Sochacki. Implementing the picard iteration.
Neural, Parallel, and Scientific Computations, (4):97–112, 1996.

[82] C. Piazza, M. Antoniotti, V. Mysore, A. Policriti, F. Winkler, and
B. Mishra. Algorithmic Algebraic Model Checking I: Challenges from
Systems Biology. In Proceedings of the International Conference on
Computer Aided Verification, pages 5–19, 2005.

151

[83] C. E. Picard. Traite D’Analyse, volume 3. Guthier-Villars, Paris,
France, 1922-28.

[84] A. Platzer and E. Clarke. Computing differential invariants of hybrid
systems as fixedpoints. Technical Report CMU-CS-08-103, Pittsburg,
PA, February 2008.

[85] A. Platzer and E. M. Clarke. The image computation problem in hybrid
systems model checking. In Proceedings of the International Conference
on Hybrid Systems: Computation and Control, pages 473–486, 2007.

[86] A. Platzer and E. M. Clarke. Computing differential invariants of hy-
brid systems as fixedpoints. In Proceedings of the International Con-
ference on Computer Aided Verification, pages 176–189, 2008.

[87] A. Platzer and J.-D. Quesel. Keymaera: A hybrid theorem prover for
hybrid systems (system description). In International Joint Conference
on Automated Reasoning, pages 171–178, 2008.

[88] P. Prabhakar, S. Mitra, and M. Viswanathan. On convergence of con-
current systems under regular interactions. In International Conference
on Concurrency Theory, pages 527–541, 2009.

[89] P. Prabhakar and M. Viswanathan. A dynamic algorithm for approxi-
mate flow computations. In Proceedings of the International Conference
on Hybrid Systems: Computation and Control, pages 133–143, 2010.

[90] P. Prabhakar, V. Vladimerou, M. Viswanathan, and G. Dullerud. Veri-
fying tolerant systems using polynomial approximations. In Proceedings
of the IEEE Real-Time Systems Symposium, pages 181–190, 2009.

[91] P. Prabhakar, V. Vladimerou, M. Viswanathan, and G. E. Dullerud.
A decidable class of planar linear hybrid systems. In Proceedings of
the International Conference on Hybrid Systems: Computation and
Control, pages 401–414, 2008.

[92] A. Puri, V. Borkar, and P. Varaiya. ε-approximation of differential
inclusions. In Proceedings of the International Conference on Hybrid
Systems: Computation and Control, pages 362–376, 1995.

[93] A. Puri, V. Borkar, and P. Varaiya. ε-Approximation of differential
inclusions. In Proceedings of the International Conference on Hybrid
Systems: Computation and Control, pages 362–376, 1996.

[94] E. Y. Remez. On the determination of polynomial approximations of a
given degree, volume 10. 1934.

[95] W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, 1976.

152

[96] B. S. Dmonstration du thorme de weierstrass fonde sur le calcul des
probabilities. Communications of the Mathematical Society, 13:1–2,
1912.

[97] M. Segelken. Abstraction and Counterexample-guided Construction of
Omega-Automata for Model Checking of Step-discrete linear Hybrid
Models. In Proceedings of the International Conference on Computer
Aided Verification, pages 433–448, 2007.

[98] M. Sorea. Lazy approximation for dense real-time systems. In Pro-
ceedings of Formal Modeling and Analysis of Timed Systems, pages
363–378, 2004.

[99] A. Tarski. A Decision Method for Elementary Algebra and Geometry.
University of California Press, 2nd edition, 1951.

[100] A. Tiwari. Abstractions for hybrid systems. Formal Methods in System
Design, 32(1):57–83, 2008.

[101] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic. Translating discrete-
time simulink to lustre. ACM Transactions on Embedded Computing
Systems, 4:779–818, November 2005.

[102] J. N. Tsitsiklis. On the stability of asynchronous iterative processes.
Mathematical Systems Theory, 20(2-3):137–153, 1987.

[103] V. Vladimerou, P. Prabhakar, M. Viswanathan, and G. Dullerud.
STORMED hybrid systems. In Proceedings of the International Col-
loquium on Automata, Languages and Programming, pages 136–147,
2008.

[104] S. Yovine. Kronos: A verification tool for real-time systems. (kronos
user’s manual release 2.2). Software Tools for Technology Transfer,
1:123–133, 1997.

153

