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Abstract

We study extremal and structural problems in regular graphs involving various parameters. In

Chapter 2, we obtain the best lower bound for the matching number over n-vertex connected regular

graphs in terms of edge-connectedness and determine when the matching number is minimized.

We also establish the best upper bound for the number of cut-edges over n-vertex connected odd

regular graphs and determine when the number of cut-edges is maximized. In addition, there is

a relationship between the matching number and the total domination number in regular graphs.

In Chapter 3, we explore the relationship between eigenvalue and matching number in regular

graphs. We give a condition on an appropriate eigenvalue that guarantees a lower bound for the

matching number of a l-edge-connected d-regular graph, when l ≤ d − 2. We also study what is

the weakest hypothesis on the second largest eigenvalue λ2 for a d-regular graph G to guarantee

that G is l-edge-connected. In Chapter 4, we study several extremal problems for regular graphs,

including the Chinese postman problem, the path cover number, the average edge-connectivity, and

the number of perfect matchings. In Chapter 5, we study an r-dynamic coloring problem and give

the relationship between the r-dynamic chromatic number and the chromatic number in regular

graphs. We also study r-dynichromatic number of the cartesian product of paths and cycles.
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Douglas B. West, and Alexander Yong. This work would not have been possible without their

guidance.

I enjoyed collaborating with Sebastian Cioabă and Hehui Wu and thank them for giving me a
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Chapter 1

Overview

In this thesis, we are interested in extremal problems for graphs, the relationship between eigenval-

ues and graph parameters, and structural graph parameters like connectivity. An extremal problem

in graph theory asks for the maximum or minimum value of some parameter in terms of another

parameter or over a family of graphs.

Part of why we study regular graphs is that they often arise when modeling real-life problems.

For example, assume that you want to get married through a matching company, and you paid a

fee to meet other people. Each person should meet the same number of people as others who paid

the same fee. This condition corresponds to making the graph recording the meetings “regular”.

As we study eigenvalues of a graph, we obtain information about other aspects, such as match-

ings or connectivity. In a communication network, we want to preserve network service by ensuring

that the graph (or digraph) of possible transmission remains connected even when some vertices

or edges fail. Connectivity measures how much we can delete. Bounds on graph eigenvalues can

guarantee good connectivity properties.

1.1 Matchings in Regular Graphs

Matching theory involves existence problems (conditions for a perfect matching), enumeration

problems (how many perfect matchings), and optimization problems (finding a maximum-sized

matching).

A matching is a set of edges that pairwise share no vertices. A perfect matching in a graph G

with n vertices is a matching consisting of n
2 edges. We denote by α′(G) the matching number of a

graph G, which is the maximum size of a matching in G. A cut-edge of a connected graph G is an
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edge whose deletion leaves a disconnected subgraph. A graph G is regular if all vertices in V (G)

have the same degree; it is d-regular if every vertex has degree d.

In 1892, Petersen [53] proved that if a 3-regular graph has no cut-edges, then it has a perfect

matching. A lot of questions were motivated by this result; we have studied several of them. A

3-regular graph having a cut-edge may have no perfect matching. We can ask whether there is a

relationship between the existence of cut-edges and the existence of a perfect matching. In fact,

Chartrand et.al. [17] gave a relationship between them in 1984. Let c(G) be the number of cut-edges

in a graph G.

Theorem 1.1.1. ([17]) If G is an n-vertex connected cubic graph, then α′(G) ≥ n
2 − c(G)

3 .

An upper bound on the number of cut-edges in connected n-vertex cubic graphs thus provides

a lower bound on the matching number in them. In Section 2.1, we prove the following theorem.

Theorem 1.1.2. If G is an n-vertex connected cubic graph, then c(G) ≤ n−7
3 .

From these two theorems, we have 7n+14
18 as a lower bound for the matching number of an n-

vertex cubic graph. Now, we can ask whether the bound is the best lower bound for the matching

number over n-vertex cubic graphs. More generally, we can consider this question for regular

graphs of higher degree. Edge-connectivity becomes relevant, since for d-regular graphs with an

even number of vertices, edge-connectivity d − 1 forces a perfect matching. In general, we may

ask how small the matching number of an l-edge-connected d-regular graph can be. The following

theorems answer these questions and will appear in Section 2.1 and Section 2.2.

Theorem 1.1.3. If G is a connected n-vertex (2r+1)-regular graph, then α′(G) ≥ n
2− r

2
(2r−1)n+2

(2r+1)(2r2+2r−1)
.

Theorem 1.1.4. If G is a (2t + 1)-edge-connected (2r + 1)-regular graph with n vertices, where

0 ≤ t ≤ r, then α′(G) ≥ n
2 − ( r−t

2(r+1)2+t
)n

2 .

Theorem 1.1.5. If G is a 2t-edge-connected 2r-regular graph with n vertices, where 1 ≤ t ≤ r and

r ≥ 2, then α′(G) ≥ n
2 − ( r−t

2r2+r+t
)n

2 .

The lower bound when t = 0 in Theorem 1.1.4 gives a lower bound for the matching number

over connected (2r + 1)-regular graphs, but it is not as strong as the sharp result in Theorem 1.1.3
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for that case. In fact, the proofs of the theorems are a little bit different. Characterizing when

equality holds in an extremal problem provides insight into the structure of the graphs. In Section

2.2, we also characterize when equality holds in the conclusions of these theorems. These theorems

also yield the minimum number of vertices of an l-edge-connected d-regular graph without a perfect

matching. That problem was originally solved by Chartrand et al [16] for l = d − 2, and Niessen

and Randerath [45] for general l.

We prove Theorem 1.1.3 using balloons. A balloon in a graph G is a maximal 2-edge-connected

subgraph incident to exactly one cut-edge of G. Let b(G) be the number of balloons. A vertex

subset T of G is a total dominating set when every vertex in V (G) has a neighbor in T . The total

domination number of G, denoted γt(G), is the minimum size of such a set.

Using balloons, we have an upper bound on γt(G).

Theorem 1.1.6. For a cubic graph G, γt(G) ≤ n
2 − b(G)

2 (except that γt(G) may be n/2 − 1 when

b(G) = 3 and the balloons cover all but one vertex).

With α′(G) ≥ n
2 − b(G)

3 for cubic graphs, this improves the known inequality γt(G) ≤ α′(G).

To characterize when equality holds in Theorem 1.1.4 and Theorem 1.1.5, we introduce the

notion of bullets in Section 2.2. Roughly speaking, the bullets Br,t and B′
r,t are the smallest

possible odd components left by deleting a smallest edge cut from a (2r + 1)-regular graph with

edge-connectivity 2t + 1 or from a 2r-regular graph with edge-connectivity 2t, respectively. Bullets

and balloons are helpful to get a relationship between matching number and eigenvalues and we

will show how to apply the notions to obtain the relationship in Chapter 3.

The Theorems proved in Chapter 2 are joint work with West and appear in [49], [50].

1.2 Edge-connectivity, Matching, and Eigenvalues in Regular

Graphs

Eigenvalues are usually introduced in the context of matrix theory, but in mathematics history,

they were derived from the study of quadratic forms and differential equations. A scalar λ is an

eigenvalue of a square matrix A if there exists a nonzero vector x such that Ax = λx. The adjacency
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matrix of a graph G, written A(G), is the n-by-n matrix in which entry ai,j is the number of edges

in G with endpoints {vi, vj}. The Laplacian matrix of a graph G is D(G) − A(G), where D(G) is

the diagonal matrix of degrees and A(G) is the adjacency matrix. The (ordinary) eigenvalues of a

graph G are the eigenvalues of its adjacency matrix A(G), and similarly, the Laplacian eigenvalues

of a graph G are the eigenvalues of its Laplacian matrix.

A lot of research in graph theory over the last 40 years was stimulated by a classical result of

Fiedler [25], stating that κ(G) ≥ µ2(G) for a non-complete graph G, where κ(G) is the connectivity

of G and µ2(G) is the second smallest eigenvalue of the Laplacian matrix. In 2005, Haemers [28]

found sufficient conditions on the Laplacian eigenvalues of a graph and on the third largest ordinary

eigenvalue of a regular graph to guarantee the existence of a perfect matching.

Theorem 1.2.1. (Haemers [28]) If G is a 2n-vertex connected d-regular graph with eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λ2n such that

λ3 ≤







d − 1 + 3
d+1 if d is even,

d − 1 + 3
d+2 if d is odd,

then G has a perfect matching.

It is natural to wonder why the relevant eigenvalue is the third largest eigenvalue and where

the bounds in Theorem 1.2.1 come from. If a regular graphs G has no perfect matching and S is a

subset with maximum deficiency in G, then the number of odd components in G − S is at least 3.

This 3 is the reason we look at the third largest eigenvalue of G. The odd components are related

to balloons and bullets, and the numbers in Theorem 1.2.1 arise from the average degree in such

graphs having d − 2 edges to S.

These bounds were improved by Cioabă and Gregory [14]. In 2009, Cioabă, Gregory, and

Haemers [15] found the best possible conditions on the eigenvalues of a d-regular graph to guarantee

the existence of a perfect matching. Recently, Cioabă and I generalized their result by giving a

condition on an appropriate eigenvalue that guarantees a lower bound for the matching number of

a l-edge-connected d-regular graph, when l ≤ d− 2. The result of Cioabă, Gregory and Haemers is
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the special case l = 1 or l = 2 of our new result.

Theorem 1.2.2. Denote by θ the greatest solution of the equation x3 − x2 − 6x + 2 = 0, and let

ρ(d) =







θ if d = 3

d−2+
√

d2+12
2 if d ≥ 4 is even

d−3+
√

(d+1)2+16

2 if d ≥ 5 is odd.

(1.1)

Let p ≥ 3 be an integer. If G is a t-edge-connected d-regular graph such that λp(G) < ρ(d), then

α′(G) >







n−p+⌊ tp

d
⌋

2 when d ≡ t (mod 2)

n−p+⌊ (t+1)p
d

⌋
2 when d ≡ t + 1 (mod 2).

In fact, ρ(3) is the largest eigenvalues of B1, where B1 is the smallest balloon in a cubic graph,

and for d ≥ 4, ρ(d) is the largest eigenvalue of Br,t or B′
r,t, where Br,t and B′

r,t are bullets in (2t+1)-

edge-connected (2r + 1)-regular graphs and a 2t-edge-connected 2r-regular graphs, respectively.

In Section 3.2, we also study the relationships between the eigenvalues of a d-regular t-edge-

connected graph G and the maximum number of pairwise disjoint connected subgraphs in G that

are each joined to the rest of the graph by exactly t edges.

Now, consider the graph Hr,t obtained from two copies of Br,t or B′
r,t by adding 2t + 1 edges or

2t edges between the two copies, respectively.

We can ask what is the weakest hypothesis on the second largest eigenvalue λ2 for a d-regular

graph G to guarantee that G is l-edge-connected. Cioaba [12] proved that if λ2 < d − 2(l−1)
d+1 , then

G is l-edge-connected. However, this result is not sharp; he proved stronger results when l is equal

to 2 or 3.

Theorem 1.2.3. (Cioaba [12]) Let d be an odd integer at least 3 and let π(d) be the largest root of

x3 − (d − 3)x2 − (3d − 2)x − 2 = 0. If G is a d-regular graph such that λ2 < π(d), then κ′(G) ≥ 2.

Theorem 1.2.4. (Cioaba [12]) If G is d-regular graph such that λ2(G) <
d−3+

√
(d+3)2−16

2 , then

κ′(G) ≥ 3.
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Interestingly, the sharpness examples are derived from combining two copies of graphs in Hr,t.

In section 3.2, we also conjecture some open questions for general l.

Conjecture 1.2.5. If G is a d-regular graph such that λ2(G) <
d−4+

√
(d+4)2−8l

2 when d is odd and

λ2(G) <
d−3+

√
(d+3)2−8l

2 when d is even, then κ(G)′ ≥ l + 1.

In Section 3.2, we prove a partial positive answer to the Conjecture 1.2.5.

Some of the results of Chapter 3 are joint work with Cioaba and appear in [19]. The latter

results will appear in [46].

1.3 Extremal Problems for Regular Graphs

Earlier we characterized the graphs achieving equality in our bounds on the matching number for

connected regular graphs. These graphs in the family H′
r are also useful for studying the Chinese

Postman Problem and the path covering number. The Chinese Postman Problem was introduced in

the early 1960s by the Chinese mathematician Guan Meigu. Roughly speaking, a postman wishes

to travel along every road in a city in order to deliver letters, with the least possible total distance.

More precisely, a postman tour in a connected graph G is a closed walk containing all the edges of

G. In a (2r+1)-regular graph, the problem is equivalent to finding a smallest spanning subgraph in

which all vertices have odd degree. Let p(G) be the minimum number of edges in a parity subgraph

of G, where a parity subgraph is a spanning subgraph H of G such that dG(v) ≡ dH(v) (mod 2)

for every vertex v in G.

First, we determine the parity number of graphs in H′
r.

Proposition 1.3.1. If G ∈ H′
r, then p(G) = (2r2+3r−1)n−2(r+1)

4r2+4r−2
−1, which reduces to 2n−5

3 for cubic

graphs.

We are trying to establish a sharp bound for the solution in regular graphs of odd degree. We

have done this for 3-regular graphs, where equality holds for only graphs in H′
1. We also conjecture

that if G is an n-vertex connected (2r+1)-regular graph, then p(G) is bounded above by the parity

number of graphs in H′
r.

The results in Section 4.1 are joint work with West and appear in [51].
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A path cover of a graph G is a vertex partition V1, . . . , Vk such that every vertex in V (G) belongs

to exactly one of Vi and G[Vi] has a spanning path for all i. The path cover number q(G) is the

minimum size of such a partition. In Section 4.2, we seek the best upper bound on q(G) when G

is r-regular.

In 1996, Reed proved that if G is an n-vertex 3-regular graph, then q(G) ≤ ⌈n
9 ⌉. Interestingly,

the 3-regular graphs in the family Hr for r = 1 also achieve equality here. We also determine the

parity number of graphs in the families Hr, Hr,t, and H′
r,t in Section 4.2.

Theorem 1.3.2. If G is an n-vertex graph in Hr, then q(G) = r
2r+1

(2r−1)n+2
2r2+2r−1

.

If G is an n-vertex graph in Hr,t, then q(G) = (r−t)n
2(r+1)2+t

.

If G is an n-vertex graph in H′
r,t, then q(G) = (r−t)n

2r2+r+t
.

Furthermore, we believe that the following conjecture is true.

Conjecture 1.3.3. If G is a graph in Fr, then q(G) ≤ ⌈ r
2r+1

(2r−1)n+2
2r2+2r−1

⌉.

If G is a graph in Fn,r,t, then q(G) ≤ ⌈ (r−t)n
2(r+1)2+t

⌉.

If G is a graph in F ′
n,r,t, then q(G) ≤ ⌈ (r−t)n

2r2+r+t
⌉.

In Section 4.2, we also give an upper bound for the path covering number over n-vertex 4-regular

graphs, which may not be sharp. It remains to determine whether this bound is sharp.

The results in Section 4.2 appear in [47].

The connectivity and edge-connectivity of a graph measure how many edges must be deleted

to disconnect the graph. However, since these values are based on a worst-case situation, it does

not reflect the global connectedness of the graph. To measure the global connectedness of a graph

G, we introduce the average connectivity of G.

The average connectivity of a graph G with n vertices, witten κ(G), is defined to be
∑

u,v∈V (G)
κ(u,v)

(n

2)
,

where κ(u, v) is the minimum number of vertices whose deletion makes v unreachable from u. By

Menger’s Theorem, this is equal to the minimum number of internally disjoint paths between u

and v. Note that κ(G) ≥ κ(G) = minu,v∈V (G) κ(u, v).

Similarly, we define the average edge connectivity.

The average edge-connectivity of a graph G with n vertices, witten κ′(G), is defined to be

∑

u,v∈V (G) κ′(u, v)
/(

n
2

)
, where κ′(u, v) is the minimum number of edges whose deletion makes v
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unreachable from u, which is same as the number of edge-disjoint pathes between u, v. Note that

κ′(G) ≥ κ′(G) = minu,v∈V (G) κ′(u, v).

In Section 4.3, we introduce some theorems of average connectivity which can be also applied to

average edge connectivity and prove a relation between average connectivity and matching number.

Theorem 1.3.4. For a connected graph G,

k(G) ≤ 2α′(G)

If G is a connected bipartite graph, then

k(G) ≤ 9

8
α′(G) − 3n − 4

8n2 − 8n
α′(G)

Even if you replace κ(G) with κ′(G)in Theorem 1.3.4, then the theorem is still true.

Also, we prove a lower bound for the minimum value of the average edge connectivity of a

connected regular graph with n vertices. It is sharp for infinitely many n and we characterize when

equality holds in the bound.

Theorem 1.3.5. If G is a connected cubic graph G with n vertices, which is not K4, then

κ′(G)

(
n

2

)

≥
(

n

2

)

+
7n + 58

4
.

We conjecture some open questions for odd regular graphs of higher degree.

As we have mentioned, every 3-regular graph without cut-edges has a perfect matching. Thus,

it is natural to ask how many perfect matchings a 2-edge-connected 3-regular graph must have.

In the 1970s, Lovász and Plummer conjectured that a 2-edge-connected 3-regular graph with n

vertices has at least exponentially many (in n) perfect matchings. Voorhoeve [59] and Chud-

novsky and Seymour [20] proved that the conjecture is true for bipartite graphs and planar graphs,

respectively. Recently, Esperet, Kardos, King, Král, and Norine [23] proved the conjecture. 2-edge-

connectedness forces a 3-regular graph to have a perfect matching. If we weaken the condition
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“2-edge-connectedness” to “has a perfect matching”, then how many perfect matchings must a

3-regular graph have? In Section 4.3, I answer this question, proving that for all even n with n > 4

the minimum number is only 4. There is an infinite sequence of 3-regular graphs having exactly 4

perfect matchings.

We conjecture some open questions for odd regular graphs of higher degree.

1.4 r-dynamic Coloring of Graphs

A teacher makes the following assignment: Each student must choose a country to study and explain

to his or her friends. Each student with at least r friends must hear from friends about r different

countries. A student with fewer friends must hear about different countries from all friends. In

both cases, no two friends can study the same country. The students can plan together who will

study which country. How many countries are needed? This motivates a coloring parameter. A

proper k coloring of a graph G is a map f from V (G) to S such that (i) S is a set of size k and

(ii) if x and y are adjacent, then f(x) and f(y) are not equal. An r-dynamic proper k-coloring

of a graph G is a proper k-coloring of G such that on the neighborhood of any vertex v, at least

min{r, d(v)} distinct colors are used. The r-dynamic chromatic number of a graph G, written χr(G),

is the minimum k such that G has an r-dynamic proper k-coloring. Thus, χr(G) is the number of

countries the students need. Montgomery introduced the notion of dynamic chromatic number in

his dissertation [40]; he conjectured that if G is a regular graph, then χ2(G) ≤ χ(G) + 2, which is

still open. The conjecture is true for bipartite graphs. In general, it is true that χ2(G) ≤ 2χ(G).

In Chapter 5, we prove that if G is a k-regular graph and k ≥ 7r ln(r), then χr(G) ≤ rχ(G),

where χ(G) is the chromatic number of G. In addition, we study the 2-dynamic chromatic number

of a graph and the r-dynamic chromatic number of the cartesian product of two graphs. We are

exploring other ways to improve upper bounds on χr(G). There have been a number of papers

about 2-dynamic chromatic number, and r-dynamic chromatic number has studied as conditional

chromatic number in a number of papers.
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1.5 Background material

For completeness, here we present some basic definitions about graphs. A graph is a pair consisting

of a vertex set V (G) and an edge set E(G), where each edge is an unordered pair of vertices called

its endpoints. When u and v are the endpoints of an edge, two vertices u and v in V (G) are adjacent

in G and are neighbors. The number of vertices adjacent to v is the degree of v, written d(v). A

graph G is regular if all vertices in V (G) have the same degree; it is d-regular if every vertex has

degree d.

A vertex v and an edge e are incident if v is an endpoint of e. Also two edges e and f in E(G)

are incident in G if e and f have a common endpoint. A graph is finite if its vertex set and edge set

are finite. A loop is an edge whose endpoints are equal. Multiple edges are edges having the same

pair of endpoints. A simple graph is a graph having no loops or multiple edges. The complement

G of a simple graph G is the simple graph with vertex set V (G) defined by uv ∈ E(G) if and only

if uv /∈ E(G). A clique in a graph is a set of pairwise adjacent vertices. An independent set in a

graph is a set of pairwise nonadjacent vertices. A graph G is bipartite if V (G) is the union of two

disjoint (possibly empty) independent sets called partite sets of G. A graph G is k-partite if V (G)

can be expressed as the union of k (possibly empty) independent sets. A complete graph is a simple

graph whose vertices are pairwise adjacent; the complete graph with n vertices is denoted Kn. A

complete bipartite graph is a simple bipartite graph such that two vertices are adjacent if and only

if they are in different partite sets. When the sets have sizes r and s, the complete biparite graph is

denoted Kr,s. If H is a graph with V (H) ⊆ V (G) and E(H) ⊆ E(G), then we call H a subgraph of

G. We then write H ⊆ G and say that “G contains H”. The union of graphs G1, . . . , Gk, written

G1 ∪ · · · ∪ Gk, is the graph with vertex set
⋃k

i=1 V (Gi) and edge set
⋃k

i=1 E(Gi).

A path with n vertices is a graph whose vertex set can be indexed as {v1, ..., vn} so that its

edge set is {vivi+1 : 1 ≤ i ≤ n − 1}. A cycle is a graph with an equal number of vertices and

edges whose vertices can be placed around a circle so that two vertices are adjacent if and only

if they appear consecutively along the circle. A walk is a list v0, e1, v1, . . . , ek, vk of vertices and

edges such that, for 1 ≤ i ≤ k, the edge ei has endpoints vi−1 and vi. A trail is a walk with no

repeated edge. A u,v-walk or u,v-trail has first vertex u and last vertex v; these are its endpoints.
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A u,v-path is a path whose vertices of degree 1 (its endpoints) are u and v; the others are internal

vertices. The length of a walk, trail, path, or cycle is its number of edges. A walk or trail is closed

if its endpoints are the same. A walk or trail or path is odd or even as its length is odd or even.

A graph G is connected if for all u, v ∈ V (G), there is a path containing u and v. Otherwise, G is

disconnected. The components of a graph G are its maximal connected subgraphs. A component

(or graph) is trivial if it has no edges; otherwise it is nontrivial. An isolated vertex is a vertex of

degree 0. A graph is Eulerian if it has a closed trail containing all edges. We call a closed trail a

circuit when we do not specify the first vertex but keep the list in cyclic order. An Eulerian circuit

or Eulerian trail in a graph is a circuit or trail containing all the edges. An even graph is a graph

with vertex degrees all even. A vertex is it odd[even] when its degree is odd[even]. A postman tour

in a connected graph G is a closed traversal of all the edges of G. When P is a set of disjoint-paths

and every vertex in V (G) belongs to exactly one path, we call P a path cover of G. The path cover

number of G, denoted p(G), is the minimum size of such a set.

A graph G is k-connected if it has more than k vertices and there is no set of k − 1 vertices

whose removal disconnects it. We denote by κ(G) the connectivity of a graph, which is the largest k

such that G is k-connected. Similarly, a graph G is k-edge-connected if there is no set of k−1 edges

whose removal disconnects it. We denote by κ′(G) the edge-connectivity of a graph, which is the

largest k such that G is k-edge-connected. The average connectivity of a graph G with n vertices,

witten κ(G), is defined to be
∑

u,v∈V (G) κ(u, v)
/(

n
2

)
, where κ(u, v) is the minimum number of

vertices whose deletion makes v unreachable from u. Note that κ(G) ≥ κ(G) = minu,v∈V (G) κ(u, v).

Similarly, The average edge-connectivity of a graph G with n vertices, witten κ′(G), is defined to

be
∑

u,v∈V (G) κ′(u, v)
/(

n
2

)
, where κ′(u, v) is the minimum number of edges whose deletion makes v

unreachable from u. Note that κ′(G) ≥ κ′(G) = minu,v∈V (G) κ′(u, v).

A matching is a set of edges that pairwise share no vertices. A perfect matching in a graph G

with n vertices is a matching consisting of n
2 edges. We denote by α′(G) the matching number of a

graph G, which is the maximum size of a matching in G. A cut-edge or cut-vertex of a connected

graph G is an edge or vertex whose deletion leaves a disconnected subgraph. We write G − e or

G − M for the subgraph of G obtained by deleting an edge e or set of edges M . We write G − v
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or G − S for the subgraph of G obtained by deleting a vertex v or set of vertices S. An induced

subgraph is a subgraph obtained by deleting a set of vertices. We write G[T ] for G − T , where

T = V (G) − T ; this is the subgraph of G induced by T .

A vertex subset T of G is a total dominating set when every vertex in V (G) has a neighbor in

T . The total domination number of G, denoted γt(G), is the minimum size of such a set.

A scalar λ is an eigenvalue of a square matrix A if there exists a nonzero vector x such that

Ax = λx. The adjacency matrix of a graph G, written A(G), is the n-by-n matrix in which entry

ai,j is the number of edges in G with endpoints {vi, vj}. If ai,j = aj,i for all i and j, then A is

symmetric. The Laplacian matrix of a graph G is D(G)−A(G), where D(G) is the diagonal matrix

of degrees and A(G) is the adjacency matrix. The (ordinary) eigenvalues of a graph G are the

eigenvalues of its adjacency matrix A(G), and similarly, the Laplacian eigenvalues of a graph G are

the eigenvalues of its Laplacian matrix.

A k-coloring of a graph G is a labeling f : V (G) → S, where |S| = k. The labels are colors;

the vertices of one color form a color class. A k-coloring is proper if adjacent vertices have different

labels. A graph is k-colorable if it has a proper k-coloring. The chromatic number χ(G) is the least

k such that G is k-colorable. An r-dynamic proper k-coloring of a graph G is a proper k-coloring of

G such that every vertex in V (G) has neighbors in at least min{d(v), r} different color classes. The

r-dynamic chromatic number of a graph G, written χr(G), is the minimum number k for which G

has an r-dynamic proper k-coloring.
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Chapter 2

Matchings in Regular Graphs

A balloon in a graph G is a maximal 2-edge-connected subgraph incident to exactly one cut-edge

of G. Let b(G) be the number of balloons, let c(G) be the number of cut-edges, and let α′(G) be

the maximum size of a matching. Let Fn be the family of connected (2r + 1)-regular graphs with

n vertices. In this section, for G ∈ Fn, we prove c(G) ≤ r(n−2)−2
2r2+2r−1

− 1 and α′(G) ≥ n
2 − rb(G)

2r+1 .

Also b(G) ≤ (2r−1)n+2
4r2+4r−2

, which yields a simple proof of the lower bound on α′(G) by Henning and

Yeo (about n
2 − n

4r for large r). For each of these bounds and each r, we determine the infinite

family where equality holds. For the total domination number γt(G) of a cubic graph, we prove

γt(G) ≤ n
2 − b(G)

2 (except that γt(G) may be n/2 − 1 when b(G) = 3 and the balloons cover all

but one vertex). With α′(G) ≥ n
2 − b(G)

3 for cubic graphs, this improves the known inequality

γt(G) ≤ α′(G).

Henning and Yeo proved a lower bound for the minimum size of a maximum matching among

connected k-regular graphs with n vertices; it is sharp infinitely often, and in Section 2.1, we

characteriz when equality holds. In Section 2.2, we prove a lower bound for the minimum size of a

maximum matching in a l-edge-connected k-regular graph with n vertices, for l ≥ 2 and k ≥ 4; it

is sharp for infinitely many n. We also characterize when equality holds in the bound.

2.1 Balloons, Cut-edges, Matchings, and Total Domination

A graph is a cubic graph if every vertex has degree 3. In 1891, Petersen [53] proved that every

cubic graph without cut-edges has a perfect matching. It is natural to ask how small α′(G) can be

in a cubic graph G with n vertices, where α′(G) is the maximum size of a matching in G (called

the matching number of G). Chartrand et al. [17] proved that α′(G) ≥ n/2 − ⌈c(G)/3⌉ when G is
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a cubic n-vertex graph, where c(G) denotes the number of cut-edges in G.

By this result, an upper bound on c(G) yields a lower bound on α′(G). Let G be a connected

cubic graph with n vertices. In Section 3, we prove that c(G) ≤ (n − 7)/3 and that this is sharp.

The result of [17] then yields α′(G) ≥ (7n + 14)/18, but this is not the best bound on α′(G).

The smallest value of α′(G) is ⌈(4n − 1)/9⌉, proved first by Biedl et al. [8]. Henning and Yeo [32]

generalized the result, proving that α′(G) ≥ n
2 − r

2
(2r−1)n−1

(2r+1)(2r2+2r−1)
when G is a (2r + 1)-regular

n-vertex connected graph, which is sharp.

Although maximizing c(G) in a cubic graph does not minimize α′(G), another concept does

yield a simple proof of the sharp bound on α′(G). We define a balloon in a graph G to be a

maximal 2-edge-connected subgraph of G incident to exactly one cut-edge of G. The term arises

from viewing the cut-edge as a string tying the balloon to the rest of the graph; the vertex incident

to the cut-edge is the neck of the balloon. A balloon may contain cut-vertices and thus consist of

several blocks.

Maximal 2-edge-connected subgraphs are pairwise disjoint, since the union of two 2-edge-

connected subgraphs sharing a vertex is also 2-edge-connected. Among these subgraphs, the bal-

loons are those incident to precisely one cut-edge. Thus the number of balloons in G is well-defined;

let b(G) denote this number.

Let Fn,r be the family of connected (2r + 1)-regular graphs with n vertices. For G ∈ Fn,r, we

prove that c(G) ≤ r(n−2)−2
2r2+2r−1

−1 and α′(G) ≥ n
2 −

rb(G)
2r+1 . We obtain a lower bound on α′(G) by proving

that b(G) ≤ (2r−1)n+2
4r2+4r−2

, and we use balloons to prove the upper bound on c(G). We construct an

infinite family Hr showing that all these bounds are sharp; it contains the smaller families provided

in [8] and [32] (graphs in Hr exist when n ≡ 4(r + 1)2 mod (8r3 + 12r2 − 2)). The bounds for

b(G) and c(G) are sharp in a larger family H′
r (occurring when n ≡ (4r + 6) mod (4r2 + 4r − 2)).

We prove the upper bounds on b(G) and c(G) and show that equality holds if and only if G ∈ H′
r.

Subsequently, we also prove the lower bound on α′(G) and show that equality holds if and only if

G ∈ Hr.

The restriction to connected graphs is important; consider cubic graphs. For a connected cubic

graph, b(G) ≤ (n + 2)/6 and α′(G) ≥ (4n− 1)/9. However, if G consists of many disjoint copies of
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the unique 16-vertex cubic graph with no perfect matching, then b(G) = 3n/16 and α′(G) = 7n/16;

these values are more extreme than the bounds for graphs in Fn,r.

We use balloons to study total domination. A total dominating set in a graph G is a set S

of vertices in G such that every vertex in G has a neighbor in S. The total domination number,

written γt(G), is the minimum size of a total dominating set in G. Henning, Kang, Shan, and

Yeo [29] proved that γt(G) ≤ α′(G) for every regular graph G with degree at least 3. For degree at

least 4, stronger bounds hold. Thomassé and Yeo [58] proved that γt(G) ≤ 3n/7 for every n-vertex

regular graph with degree at least 4. This upper bound is a smaller fraction of n than the lower

bound on α′(G). Earlier, Henning and Yeo [32] observed that γt(G) < α′(G) when G is a regular

graph with degree at least 4.

We use balloons to strengthen the bound for cubic graphs. We prove that γt(G) ≤ n
2 − b(G)

2

when G is cubic, except that γt(G) = n/2 − 1 is possible when b(G) = 3 and the balloons cover

all but one vertex. Since α′(G) ≥ n
2 − b(G)

3 for cubic graphs, we have large separation when the

number of balloons is large, and γt(G) = α′(G) can happen in a cubic graph only when the number

of balloons is 0 or when G consists of three balloons plus one vertex.

We mention one related result. The extension of Petersen’s result by Bäbler [6] states that every

(2r + 1)-regular 2r-edge-connected graph has a perfect matching. As the edge-connectivity rises,

the lower bound on the matching number should also rise. We solve this problem in a subsequent

paper [50], determining the smallest matching number for d-regular k-edge-connected graphs with

n vertices, when d ≥ 4 and k ≥ 2. The proof differs somewhat from the techniques in this paper,

since k-edge-connected graphs have no balloons. A generalization of balloons is needed.

Biedl et al. [8] and Henning and Yeo [32] presented examples for sharpness in the lower bounds

on α′(G) for connected 3-regular and (2r + 1)-regular graphs, respectively. We present a more

general family that includes their examples.

Construction 2.1.1. Let Br be the graph obtained from the complete graph K2r+3 by deleting

a matching of size r + 1 and one more edge incident to the remaining vertex. This is the smallest

graph in which one vertex has degree 2r and the others have degree (2r + 1). Thus Br is the

smallest possible balloon in a (2r + 1)-regular graph. Note that deleting the vertex of degree 2r
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Figure 2.1: The smallest possible balloon in a cubic graph, B1

Figure 2.2: The graphs in T1 and T ′
1

(the neck) from Br leaves a subgraph having a perfect matching.

Let T ′
r be the family of trees such that every non-leaf vertex has degree 2r + 1. Let H′

r be the

family of (2r + 1)-regular graphs obtained from trees in T ′
r by identifying each leaf of such a tree

with the neck in a copy of Br. Let Tr be the subfamily of T ′
r obtained by requiring all leaves to

have the same color in a proper 2-coloring. Let Hr be the subfamily of H′
r arising from trees in Tr

by adding balloons at leaves.

Figure 2.1 describes B1, and Figures 2.2 and 2.3 show the distinction between Tr and T ′
r , and

Hr and H′
r when r = 1.

To compute the matching number for n-vertex graphs in Hr, we use standard concepts about

matchings. The deficiency of a vertex set S in a graph G, written defG(S) or simply def(S), is

o(G − S) − |S|, where o(H) is the number of components of H having an odd number of vertices.

Figure 2.3: The graphs in H1 and H′
1
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Every matching must leave at least def(S) vertices unmatched, so for any S the quantity 1
2(n −

def(S)) is an upper bound on α′(G). Furthermore, if there is a matching that matches S into

vertices of distinct odd components of G−S and leaves at most one unmatched vertex in each odd

component of G − S, then α′(G) = 1
2(n − def(S)).

Proposition 2.1.2. Let pr = 2r2 + 2r − 1. For any n-vertex graph G in Hr,

n ≡ 4(r + 1)2 mod ((4r + 2)pr), b(G) = (2r−1)n+2
2pr

,

α′(G) = 1
2

(

n − r(2r−1)n+2r
(2r+1)pr

)

, c(G) = r(n−2)−2
pr

− 1.

Furthermore, the formulas given for b(G) and c(G) also hold when G ∈ H′
r.

Proof. We first compute b(G) and c(G) on H′
r. The smallest tree in T ′

r has two vertices. The

resulting graph in H′
r has 4r + 6 vertices, two balloons, and one cut-edge, and the formulas hold.

For any larger tree T in T ′
r , the penultimate vertex of a longest path has 2r leaf neighbors, and

deleting them yields a smaller tree T ′ in T ′
r . Let G and G′ be the corresponding graphs in H′

r.

Compared to G′, in G there are 2r more cut-edges, 2r− 1 more balloons, and 2r(2r + 3)− (2r + 2)

more vertices. This last formula simplifies to 2pr, and hence the formulas for b(G) and c(G) in

terms of n are established by induction on n.

Now consider the more restrictive families Tr and Hr. The smallest graph in Tr is the star

K1,2r+1 with 2r + 1 leaves. We claim that every other tree in Tr arises from a smaller tree in Tr by

appending 2r edges at a leaf y and appending 2r additional edges at each new neighbor of y. This

produces (2r)2 leaves, which replace y in the set of leaves and are in the same partite set as y, so

the larger graph lies in Tr.

To prove that this generates all of Tr, consider a longest path P in a tree T ∈ Tr such that T is

not a star. Let y, z, w be the last three vertices on P , in order (w is the leaf). Since P is a longest

path, all 2r neighbors of z other than y are leaves. Since leaves all lie in the same partite set, no

neighbor of y is a leaf. Hence the 2r − 1 neighbors of y not on P must all have 2r leaf neighbors

(again since P is a longest path and non-leaves have degree 2r + 1). Now T arises in the specified

way from a smaller tree in Tr having y as a leaf.

To compute α′(G) for G ∈ Hr, let T be the corresponding tree in Tr. Let X and Y be its
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partite sets, with Y containing the leaves. Let S = X. Now o(G − S) = |Y |, since each vertex of

Y is an isolated vertex in G− S or is the neck of a copy of Br that is an odd component of G− S.

Thus def(S) = |Y | − |X|. Root T at a vertex of X, and then match each vertex of S to one of its

children, which is or lies in an odd component of G−S. When that odd component is a copy of Br,

pair its remaining vertices in a matching. This produces a matching with exactly def(S) uncovered

vertices.

It therefore suffices to compare def(S) and the formula for α′(G) inductively. When T = K1,2r+1,

we have def(S) = 2r. Adding the balloons yields (2r+3)(2r+1)+1 (this equals 4(r+1)2, giving the

basis for the claim about n). The subtractive term in the formula for α′(G) is r(2r−1)(4r2+8r+4)+2r
(2r+1)pr

,

which equals 2r.

For larger G ∈ Hr, let T be the corresponding tree in Tr, expanded from T ′ with corresponding

graph G′ ∈ Hr. In the expansion, |X| increases by 2r and |Y | increases by 4r2, so def(S) increases

by 4r2 − 2r. Comparing G with G′, one balloon is lost and 4r2 are created; the number of vertices

increases by 4r2(2r + 3) + 2r − (2r + 2). The increase in n simplifies to (4r + 2)pr (completing

the proof of the claim about n). The subtractive term in the formula for α′(G) thus increases by

r(2r − 1)2, which equals the change in def(S).

Corollary 2.1.3. For n-vertex cubic graphs, the matching number of graphs in H1 is 4n−1
9 .

Recall that Fn,r is the family of connected (2r + 1)-regular graphs with n vertices. We begin

by bounding the number of balloons for graphs in Fn,r.

Every balloon in a (2r+1)-regular graph has at least 2r+3 vertices; it has at least 2r+2 vertices

because it has a vertex of degree 2r + 1, and equality cannot hold because then the degree-sum

would be odd. Thus b(G) ≤ n
2r+3 . Surprisingly, this trivial upper bound can be improved only

slightly; the optimal bound is n+2ǫ
2r+3+ǫ , where ǫ = 1/(2r − 1). Of course, ǫ = 1 for cubic graphs. We

use a counting argument; the bound can also be proved inductively.

Lemma 2.1.4. If G ∈ Fn,r, then b(G) ≤ (2r−1)n+2
4r2+4r−2

, with equality if and only if G ∈ H′
r.

Proof. For G ∈ Fn,r, let G′ be the graph obtained from G by shrinking each balloon to a single

vertex; G′ is connected, and the balloons of G become vertices of degree 1 in G′. Let n′ =
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|V (G′)| and m′ = |E(G′)|. Since G′ is connected, m′ ≥ n′ − 1, and the degree-sum formula

yields (2r + 1)n′ − 2rb(G) = 2m′ ≥ 2n′ − 2. Thus 2rb(G) ≤ (2r − 1)n′ + 2. Since each balloon

has at least 2r + 3 vertices, n′ ≤ n − (2r + 2)b(G). Combining the inequalities yields 2rb(G) ≤

(2r − 1)n + 2 − (2r − 1)(2r + 2)b(G), which simplifies to the desired bound.

Equality requires equality in each contributing inequality. Hence G′ is a tree with non-leaf

vertices having degree 2r + 1. That is, G′ ∈ T ′
r , and G ∈ H′

r.

Corollary 2.1.5. Every connected n-vertex cubic graph has at most n+2
6 balloons, and this is sharp

for n ≡ 4 mod 6.

The bounds of Lemma 2.1.4 and Corollary 2.1.5 do not hold for disconnected graphs. An n-

vertex graph consisting of disjoint copies of the smallest graph in Hr has 2r+1
6r+10n balloons, which is

more than the bound above.

Lemma 2.1.6. The following hold for balloons and cut-edges in graphs in Fn,r.

(a) Each component formed by deleting a cut-edge contains a balloon.

(b) Balloons may have any odd number of vertices at least 2r + 3.

Proof. (a) Let e be a cut-edge. Among the paths containing e, let P be a path containing the

maximum number of cut-edges of G. The portion of P after the last cut-edge toward either end

lies in a 2-edge-connected subgraph, and by the choice of P it is a balloon.

(b) In a balloon, the neck has degree 2r, and other vertices have degree 2r + 1. Such graphs

exist with every odd number of vertices at least 2r + 3. For k ≥ r, the complete graph K2k+3

decomposes into k +1 spanning cycles. The union of r of these cycles plus a near-perfect matching

from one of the remaining cycles is a 2-edge-connected graph with the desired degrees.

Lemma 2.1.7. If G ∈ Fn,r, then c(G) ≤ r(n−2)−2
2r2+2r−1

− 1, with equality if and only if G ∈ H′
r.

Proof. We use induction on n. If n ≤ 4r + 6, then the bound at most 1, with equality only when

n = 4r + 6. Every graph having a cut-edge has at least two balloons and hence at least 4r + 6

vertices, by Lemma 2.1.6. The graph with 4r + 6 vertices consisting of two copies of Br joined by

an edge lies in H′
r. Hence all claims hold for the basis.
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For larger n, consider a cut-edge e in G. Let G1 and G2 be the components of G − e. Let

G′
1 and G′

2 be the graphs obtained from G by replacing G2 and G1, respectively, with Br. The

cut-edges of G consists of the cut-edges in G1 and G2, plus e itself. Since e is a cut-edge in both

G′
1 and G′

2, and the added Br contains no cut-edge, we have c(G) = c(G′
1) + c(G′

2) − 1. If neither

G1 nor G2 equals Br, then G′
1 and G′

2 have fewer vertices than G, and we can apply the induction

hypothesis to both. Letting ni = |V (G′
i)|, we have n = n1 + n2 − (4r + 6). With pr = 2r2 + 2r − 1

(as in Proposition 2.1.2), we obtain the desired bound on c(G):

c(G) = c(G′
1) + c(G′

2) − 1 ≤ r(n1 − 2) − 2

pr
+

r(n2 − 2) − 2

pr
− 3

=
r(n − 2) − 2

pr
+

r(4r + 4) − 2

pr
− 3 =

r(n − 2) − 2

pr
− 1.

In the remaining case, every cut-edge in G is incident to a copy of Br. Since each copy of Br

is incident to exactly one cut-edge, we obtain c(G) = b(G) (note that n > 4r + 6). Let Q be the

set of endpoints of cut-edges outside the balloons. If any two balloons have distinct nonadjacent

neighbors in Q, then let G′ be the graph obtained by deleting the two balloons and adding one

edge to make their neighbors adjacent. The graph G′ is connected and (2r + 1)-regular and has

n− (4r + 6) vertices. Crucially, G′ has exactly c(G)− 2 cut-edges, because the only cut-edges in G

are those incident to balloons. By the induction hypothesis,

c(G) ≤ 2 +
r(n − 4r − 8) − 2

pr
− 1 =

r(n − 2) − 2

pr
− 4r2 + 6r

pr
+ 1 <

r(n − 2) − 2

pr
− 1.

Hence we may assume that the vertices of Q are pairwise adjacent. Let q = |Q|, and let S

be the set of vertices outside both Q and the balloons. If S = ∅, then c(G) = q(2r + 2 − q) and

n = (2r + 3)c(G) + q. Since 1 ≤ q ≤ 2r + 1, we obtain n ≥ (2r + 3)(2r + 1) + 1 = 2pr + 4r + 6.

Since c(G) = b(G), Lemma 2.1.4 yields c(G) ≤ (2r−1)n+2
2pr

= rn
pr

− n−2
2pr

. It thus suffices to show that

n−2
2pr

≥ 2r+2
pr

+ 1. This requires n − 2 ≥ 4r + 4 + 2pr, which we have proved for this case.

Finally, suppose that S 6= ∅. Each vertex of S has 2r + 1 neighbors outside the balloons, so

n ≥ 2r + 2 + (2r + 3)c(G). If equality holds, then S ∪ Q induces a complete graph, G = Kr+2,

and c(G) = 0. Otherwise, n ≥ (2r + 3)[c(G) + 1]. Now c(G) ≤ n
2r+3 − 1, and we only need
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n
2r+3 ≤ r(n−2)−2

2r2+2r−1
. This simplifies to n ≥ 4r + 6, which holds when c(G) > 0.

For the characterization of equality, consider each case. When G has a cut-edge not incident to

a balloon that is a copy of Br, the induction hypothesis requires achieving equality for both G′
1 and

G′
2, which must therefore lie in H′

r. The construction of G from G′
1 and G′

2 indeed puts G in H′
r.

When c(G) = b(G) and two balloons have nonadjacent neighbors, we obtained strict inequality in

the bound. When c(G) = b(G) and S = ∅, equality requires b(G) to meet its bound, which already

requires G ∈ H′
r (indeed, it requires more, and equality is obtained only by putting copies of Br at

the leaves of the star K1,2r+1). When S 6= ∅, equality requires n = 4r + 6 and c(G) = 1, in which

case G is the graph in H′
r consisting of a cut-edge joining two copies of Br.

Corollary 2.1.8. Every n-vertex (2r + 1)-regular graph has at most r(n−2)−2
2r2+2r−1

− 1 cut-edges, which

reduces to n−7
3 for cubic graphs.

Proof. Since the contributions not linear in n are negative and we seek an upper bound, the bound

holds also for disconnected n-vertex (2r + 1)-regular graphs.

Here we use balloons to prove the result of Henning and Yeo [32] minimizing the matching

number for n-vertex (2r + 1)-regular connected graphs; in the next section we characterize the

graphs where equality holds.

We use the Berge–Tutte Formula for the matching number. Recall that the deficiency def(S)

of a vertex set S in G is defined by def(S) = o(G− S)− |S|. Tutte [57] proved that a graph G has

a 1-factor if and only if def(S) ≤ 0 for all S ∈ V (G). The equivalent Berge–Tutte Formula (see

Berge [6]) states that α′(G) = minS⊆V (G)
1
2(n − def(S)).

Lemma 2.1.9. Let G be an n-vertex (2r + 1)-regular graph, and let S be a subset of V (G). If

the number of edges from each odd component of G − S to S is only 1 or is at least 2r + 1, then

def(S) ≤ 2rb(G)
2r+1 .

Proof. Let c1 be the number of odd components of G−S having one edge to S. By Lemma 2.1.6(a),

each component of G − S having one edge to S contains a balloon. Thus c1 ≤ b(G). Counting the
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edges joining S to odd components of G − S yields

(2r + 1)|S| ≥ (2r + 1)o(G − S) − 2rc1 ≥ (2r + 1)o(G − S) − 2rb(G),

and hence def(S) = o(G − S) − |S| ≤ 2rb(G)
2r+1 .

Corollary 2.1.10. If G is a connected cubic graph, then α′(G) ≥ n
2 −

⌊
b(G)

3

⌋

.

Proof. In a 3-regular graph, all edge-cuts between sets of odd size have odd size, which is 1 or at

least 3. Hence Lemma 2.1.9 yields the claim (using the floor function in the second term is valid

because α′(G) and n/2 are integers).

If in a connected graph G some set of maximum deficiency satisfies the hypothesis of Lemma 2.1.9,

then α′(G) ≥ n
2 − r

2
(2r−1)n+2

(2r+1)(2r2+2r−1)
, by the Berge–Tutte Formula and Lemma 2.1.4. We prove this

bound for all connected odd-regular graphs and determine the extremal graphs.

Theorem 2.1.11. If G ∈ Fn,r, then α′(G) ≥ n
2 − r

2
(2r−1)n+2

(2r+1)(2r2+2r−1)
, with equality if and only if

G ∈ Hr.

Proof. By the Berge–Tutte Formula, it suffices to show that every set S ⊆ V (G) has deficiency at

most r (2r−1)n+2
(2r+1)(2r2+2r−1)

. By Lemma 2.1.9, we may assume that there is an odd component of G−S

such that the number of edges from G − S to S is between 3 and 2r − 1; call such a component of

G − S a bad subgraph.

For each edge e joining S to a bad subgraph, replace e with a cut-edge incident to a copy of Br

at its end outside S. Also delete all vertices in bad subgraphs. Let G′ denote the resulting graph;

note that G′ is (2r + 1)-regular. Unfortunately, G′ may be disconnected.

Let c be the number of bad subgraphs, and let x be the total number of vertices in them. Let

y be the total number of edges in G joining S to bad subgraphs; y is the number of balloons added

in forming G′.

Let p be the number vertices in some bad subgraph Q. If p ≤ 2r + 1, then regularity forces

each vertex of Q to have at least 2r + 2 − p neighbors in S. Hence the number of edges from S to
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V (Q) is at least p(2r + 2− p), which is at least 2r + 1, contradicting that Q is a bad subgraph. We

conclude that p ≥ 2r + 3, and hence x ≥ (2r + 3)c.

The number of vertices in G′ is n − x + (2r + 3)y. We also need the number of components

of G′. Each time we pull an edge off a bad subgraph Q and make it incident to a copy of Br, we

increase the number of components by 0 or 1. Doing this with the last edge to Q (and deleting

V (Q)) does not change the number of components. Since G is connected, we conclude that G′ has

at most 1 + y − c components.

The alteration from G to G′ ensures that S satisfies the hypotheses of Lemma 2.1.9 for G′.

Lemma 2.1.9 does not require connected graphs, so defG′(S) ≤ 2rb(G′)
2r+1 . However, applying Lemma 2.1.4

to replace the number of balloons with upper bounds in terms of the number of vertices does require

connected graphs. Therefore, we apply Lemma 2.1.4 to each component of G′. We obtain an ad-

ditive constant 2 in the numerator for each component. Thus b(G′) ≤ (2r−1)(n−x+(2r+3)y)+2(1+y−c)
4r2+4r−2

.

With x ≥ (2r + 3)c, we have b(G′) ≤ (2r−1)n+2
4r2+4r−2

+ 4r2+4r−1
4r2+4r−2

(y − c).

Meanwhile, we must also relate defG′(S) to defG(S). We have replaced c odd components in

G − S with y odd components in G′ − S. Thus

defG(S) = defG′(S) − (y − c) ≤ 2rb(G′)
2r + 1

− (y − c)

≤ r

2r + 1

(2r − 1)n + 2

2r2 + 2r − 1
+

2r

2r + 1

4r2 + 4r − 1

4r2 + 4r − 2
(y − c) − (y − c)

Thus it suffices to show that 2r(4r2 +4r−1) ≤ (2r +1)(4r2 +4r−2). This inequality has the form

ab ≤ (a + 1)(b − 1) with a < b, and hence it holds.

Corollary 2.1.12. If G is a connected n-vertex cubic graph, then α′(G) ≥ 4n−1
9 , and this is sharp

infinitely often.

We thank Alexandr Kostochka for pointing out a flaw in our original proof of Theorem 2.1.11.

We proved in Proposition 2.1.2 that equality holds in the bound of Theorem 3.1.7 when G ∈ Hr.

Now we show that these are the only graphs achieving equality. Recall that Tr is the family of trees

from which graphs in Hr are formed by appending small balloons at leaves.
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Lemma 2.1.13. If T is an n-vertex tree in which every non-leaf vertex has degree 2r + 1, then

α′(T ) ≥ n−1
2r+1 , with equality only when T ∈ Tr.

Proof. Since T has n−1 edges and maximum degree 2r+1, the number of vertices needed to cover

E(T ) is at least n−1
2r+1 , and hence the König–Egerváry Theorem yields α′(T ) ≥ n−1

2r+1 .

If all leaves lie in the same partite set, then the other partite set is a vertex cover of size n−1
2r+1 .

Conversely, equality holding requires a vertex cover Q of size n−1
2r+1 . No two vertices of Q can cover

the same edge, so Q is an independent set. Also every vertex adjacent to a leaf must be in Q, since

a leaf covers only one edge.

To show that all leaves are in the same partite set, let x and y be leaves, and let P be the

x, y-path in T . The edges of P must be covered by vertices on P , so Q contains a vertex of each

edge of P . Since Q is independent, the vertices of P alternate between Q and not-Q, with the

neighbors of x and y being in Q. Hence the distance between x and y is even, and they are in the

same partite set.

For a graph G ∈ Fn,r that achieves the minimum value of the matching number, we show that

G ∈ Hr by showing that if we shrink each balloon to a single vertex, then the resulting graph is in

Tr.

Theorem 2.1.14. If G ∈ Fn,r and α′(G) = n
2 − r

2
(2r−1)n+2

(2r+1)(2r2+2r−1)
, then G ∈ Hr.

Proof. Equality in the bound requires equality in all the inequalities of Theorem 3.1.7. A set S

with maximum deficiency must satisfy def(S) = r
2r+1

(2r−1)n+2
2r2+2r−1

. Since the coefficient on y − c in

the final displayed inequality for Theorem 3.1.7 is negative, we must have y = c. This states that

the total number of edges joining S to bad subgraphs equals the number of bad subgraphs, which

implies that one edge goes to each bad subgraph, and therefore they are not bad. We conclude

that y = c = 0, and the number of edges joining S to each odd component of G − S is 1 or is at

least 2r + 1.

Now Lemma 2.1.9 applies and yields def(S) ≤ 2rb(G)
2r+1 . From Lemma 2.1.4, we now have

r

2r + 1

(2r − 1)n + 2

2r2 + 2r − 1
≤ 2rb(G)

2r + 1
≤ r

2r + 1

(2r − 1)n + 2

2r2 + 2r − 1
,
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so b(G) = (2r−1)n+2
4r2+4r−2

. From the proof of Lemma 2.1.4, equality in the bound requires each balloon

to have exactly 2r + 3 vertices.

Let G′ be the graph obtained from G by shrinking each balloon to a single vertex. Let n′ =

|V (G′)| and m′ = |E(G′)|. Since each balloon has 2r + 3 vertices, we have n = n′ + (2r + 2)b(G).

Substituting this expression for n into the formula b(G) = (2r−1)n+2
4r2+4r−2

and simplifying yields 2rb(G) =

(2r − 1)n′ + 2.

Contraction does not disconnect, so G′ is connected. To show that G′ is a tree, we count the

edges. By the degree sum formula,

2m′ = (2r + 1)n′ − 2rb(G) = (2r + 1)n′ − (2r − 1)n′ − 2 = 2n′ − 2.

Finally, we show G′ ∈ Tr. By Lemma 4.1.5, it suffices to show that G′ has a matching of

size n′−1
2r+1 . Note that α′(G′) ≥ α′(G) − (r + 1)b(G), and we are given α′(G) = n

2 − rb(G)
2r+1 . Since

n
2 − (r + 1)b(G) = n′

2 and 2rb(G) = (2r − 1)n′ + 2, we conclude that α′(G′) ≥ n′−1
2r+1 .

Balloons also help in proving bounds on the total domination number. The results are strongest

for cubic graphs. We use a lemma proved by Henning that provides a useful upper bound in nearly

regular graphs. Let ∆(G) and δ(G) denote the maximum and minimum vertex degrees in a graph

G.

Lemma 2.1.15. (Henning’s Lemma [28]) If G is a graph with n vertices and m edges, then γt(G) ≤

n − m
∆(G) .

Lemma 2.1.16. If B is a balloon with p vertices in a cubic graph G, then γt(B) ≤ p−1
2 . Further-

more, B has a dominating set of size (p− 1)/2 that contains the neck of B and a neighbor of every

vertex other than the neck.

Proof. Let v be the neck of B. Recall that v has degree 2 in B, and the other vertices of B have

degree 3 in B. By Henning’s Lemma, γt(B) ≤ p− (3p−1)/6 = p/2+1/6. Since p is odd and γt(B)

is an integer, γt(B) ≤ (p − 1)/2.

Let T be the set consisting of v and its two neighbors in B. The number of edges joining

T and V (B) − T is 2 or 4, depending on whether T induces a triangle. Note that B − T has
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p − 3 vertices and at least [3(p − 3) − 4]/2 edges. If ∆(B − T ) = 3, then Henning’s Lemma yields

γt(B − T ) ≤ (p− 3)− (3p− 9− 4)/6 = (p− 3)/2 + 2/3. Since p is odd and γt(B − T ) is an integer,

γt(B) ≤ (p− 3)/2 in this case, and adding v to a smallest total dominating set of B − T yields the

desired set.

In the remaining case, ∆(B − T ) < 3. Since deleting T removes at most four edges incident to

V (B) − T , this case requires p ≤ 7. If p = 7, then B − T = C4, and T is a total dominating set of

size (p − 1)/2 containing v. If p = 5, then B is the unique smallest balloon B1, and v with one of

its neighbors forms a total dominating set of size (p − 1)/2.

When |V (B)| = 7, it may happen that B has no total dominating set of size (p−1)/2 containing

its neck. If the neck induces a triangle with its neighbors, then the remaining four vertices induce

five edges, and no total dominating set of size 3 contains the neck. Call this special balloon B̂.

In addition to small dominating sets, we also need large matchings in balloons.

Lemma 2.1.17. Every balloon in a 3-regular graph has a matching that covers every vertex except

its neck.

Proof. Let v be the neck of a balloon B, with N(v) = {u, w}. Let B′ consist of two disjoint copies

of B plus a cut-edge joining their necks. Now B′ is a 3-regular graph with one cut-edge, since B

has no cut-edge.

Petersen proved that a 3-regular graphs with at most two cut-edges has a perfect matching.

Since B′ has odd order, the cut-edge lies in every perfect matching. Deleting it leaves the desired

matching in B.

Since α′(G) ≥ n
2 − b(G)

3 when G is 3-regular and connected (Corollary 2.1.10, proving γt(G) ≤
n
2 −

b(G)
2 would yield γt(G) ≤ α′(G), with equality only when b(G) = 0. However, the desired upper

bound may fail when G consists of three balloons plus one common neighbor.

The 2-edge-connected case (no balloons) has been well-studied. By Henning’s Lemma, γt(G) ≤

n/2. Equality may hold when G is 2-edge-connected; such graphs were characterized by Henning,

Soleimanfallah, Thomassé, and Yeo [30]. The graphs achieving equality consist of two infinite

families and one additional 16-vertex graph. In one family, the graph consists of two even cycles
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with vertex sets x1, . . . , x2k and y1, . . . , y2k, plus the edges x2i−1y2i and x2iy2i−1 for 1 ≤ i ≤ k.

Being 2-edge-connected, these graphs also have perfect matchings, so here γt(G) = α′(G).

Hence we may confine our attention to graphs having balloons. Our strategy is to assemble a

small total dominating set S using (|V (B)|−1)/2 vertices in each balloon B and |V (G′)|/2 vertices

in the graph G′ obtained by deleting the balloons. This gives the desired size. Vertices having

neighbors in balloons have degree less than 3 in G′. Such a vertex in S does not need a neighbor in

S ∩V (G′); Lemma 2.1.16 allows us to give it the neck of the balloon as a neighbor. This weakened

restriction on S as a dominating set in G′ motivates the following definition.

Definition 2.1.18. A dominating set S in a graph G is a semitotal dominating set (abbreviated

SD-set) if every vertex with maximum degree in G has a neighbor in S.

In an SD-set, vertices of non-maximum degree can dominate themselves. The problem of finding

an SD-set, like the problem of finding a total dominating set, can be modeled using hypergraphs. In

the generalization of graphs to hypergraphs, any vertex set can form an edge; graphs are 2-uniform

hypergraphs.

Definition 2.1.19. A k-uniform hypergraph is a hypergraph in which every edge has size k. The

transversal number τ(H) of a hypergraph H is the minimum size of a set of vertices that intersects

every edge.

For any graph, the total domination number equals the transversal number of the hypergraph

on the same vertex set in which the edges are the vertex neighborhoods. An SD-set corresponds

to a transversal when the edge of the hypergraph corresponding to a vertex v of non-maximum

degree is its closed neighborhood (the neighborhood plus v itself). The theorem of Chvátal and

McDiarmid on transversal number of k-uniform hypergraphs provides exactly what we need to find

a sufficiently small SD-set in the graph obtained by deleting the balloons. (In [30], the Chvátal–

McDiarmid result is used to explore the total domination numbers of regular graphs, noting in

particular that γt(G) ≤ n/2 follows immediately for cubic graphs.)

Theorem 2.1.20. (Chvátal and McDiarmid [18]) If H is a k-uniform hypergraph with n vertices

and m edges, then τ(H) ≤ ⌊k/2⌋m+n
⌊3k/2⌋ .
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We state the next two results for a graph G′ because we will apply them when G′ is the graph

obtained from a 3-regular graph G by deleting the vertices in the balloons.

Corollary 2.1.21. If G′ is an n-vertex graph in which every vertex has degree 2r + 1 or 2r, then

G′ has an SD-set of size at most (r+1)n
3r+1 .

Proof. Form the hypergraph H with V (H) = V (G′) by letting the edges be the open neighborhoods

of vertices with degree 2r + 1 and the closed neighborhoods of vertices with degree 2r. Thus H is

a (2r + 1)-uniform hypergraph with n vertices and n edges. By Theorem 2.1.20, τ(H) ≤ (r+1)n
3r+1 .

Every transversal of H is an SD-set in G′.

We thank Zoltán Füredi for pointing out the effectiveness of the Chvátal–McDiarmid Theorem

in proving Corollary 2.1.21.

Using the plan we described above, Corollary 2.1.21 implies that γt(G) ≤ n
2 −

b(G)
2 when ∆(G) =

3 and no two balloons have a common neighbor. The remaining case will need special attention;

here deleting the balloons leaves a vertex of degree 1.

Theorem 2.1.22. If G′ is a connected n-vertex graph with maximum degree at most 3, and n > 1,

then G′ has a dominating set S of size at most n/2 such that every vertex of degree 3 has a neighbor

in S.

Proof. When ∆(G′) < 3, an ordinary dominating set suffices. Always some dominating set has at

most n/2 vertices, since the complement of a minimal dominating set is also dominating. Hence

we may assume that ∆(G′) = 3. The case ∆(G′) < 3 includes the basis step for induction on n.

If δ(G′) ≥ 2, then Corollary 2.1.21 provides the desired SD-set. When G′ has a vertex u of

degree 1, let v be the neighbor of u. Let F = G′ − {u, v}. If F has no isolated vertex, then we can

apply the induction hypothesis to each component of F to obtain a set with the desired properties.

Let T be the union of these sets; note that |T | ≤ (n − 2)/2.

If v has degree 2, then F is connected, and T ∪ {v} is an SD-set in G′.

Suppose that v has degree 3. If v has no neighbor of degree 1 other than u, then F has no

isolated vertices. Now T ∪ {v} is an SD-set in G′ if T contains a neighbor of v, while otherwise

T ∪ {u} is an SD-set.
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In the remaining case, v has degree 3 and has another neighbor w of degree 1. In this case, let

F = G′−{u, w}, and let T be the set in F guaranteed by the induction hypothesis (F is connected,

since we only deleted vertices of degree 1). If v ∈ T , then T ∪{u} is an SD-set in G′. Otherwise, T

must contain the remaining neighbor of v to dominate v, and now T ∪ {v} is an SD-set in G′.

Theorem 2.1.23. If G is a connected cubic graph with n vertices, then γt(G) ≤ n
2 − b(G)

2 (except

that γt(G) ≤ n/2 − 1 when b(G) = 3 and the three balloons have a common neighbor), and this is

sharp for all even values of b(G).

Proof. Let G′ be the graph obtained by deleting all vertices in balloons. If G′ = K1, then G

consists of three balloons and their common neighbor. Lemma 2.1.16 yields a total dominating set

in two of the balloons and a dominating set in the third that combine with one vertex of G′ to yield

γt(G) ≤ n/2 − 1.

When G′ has more than one vertex, we can apply Theorem 2.1.22 to obtain an SD-set S in G′.

For each balloon B, let v be the neck. Use Lemma 2.1.16 to add a set SB of size |V (B) − 1|/2.

If the neighbor of v in V (G′) is in S, then choose SB to be a set that contains v and contains a

neighbor of every vertex in V (B) − {v}. If the neighbor of v in V (G′) is not in S, then simply

choose SB to be a total dominating set of B. After these contributions from all balloons, the size

is at most n
2 − b(G)

2 .

If equality holds in the bound, then G′ must have no SD-set of size less than |V (G′)|/2. Let G′

be formed from a cycle Ct by adding a pendant edge at each vertex. An SD-set in G′ must use one

vertex from each set consisting of a vertex of degree 1 and its neighbor.

We construct our example G by adding two 7-vertex balloons adjacent to each vertex of degree

1 in G′. Each such balloon is the special balloon B̂ discussed after Lemma 2.1.16. The number of

balloons is 2t. Recall that B̂ has no total dominating set of size 3 that contains its neck. Therefore,

if a total dominating set in G avoids some vertex u of degree 1 in G′, then the balloons adjacent

to u contribute at least four vertices each, and the 16-vertex “wedge” containing them, u, and the

neighbor of u in G′ contributes at least eight vertices. Using u still requires it to contribute seven

vertices, including three from each balloon. Thus we can save only 1 for each pair of balloons, and

γt(G) = n
2 − b(G)

2 .

29



Corollary 2.1.10 and Theorem 2.1.23 together improve the inequality γt(G) ≤ α′(G) for con-

nected cubic graphs.

Corollary 2.1.24. If G is a connected n-vertex cubic graph, then γt(G) ≤ α′(G) − b(G)/6, except

when b(G) = 3 and there is exactly one vertex outside the balloons, in which case still γt(G) ≤ α′(G).

Proof. From the bounds in Corollary 2.1.10 and Theorem 2.1.23, it suffices to consider the excep-

tional case. Here b(G) = 3, and γt(G) = n/2−1 is possible. By Lemma 2.1.17, there are matchings

in the balloon that cover all but the neck. One of the necks can be matched to their common

neighbor, leaving only the two other necks as uncovered vertices. Hence α′(G) = n/2− 1 (equality

holds, because deleting the vertex outside the balloons leaves three odd components).

The 3-regular case is the only case where the inequality between γt and α′ is delicate. When

more edges are added, α′ tends to increase and γt tends to increase, so the separation increases.

For (2r + 1)-regular graphs, applying the Chvátal–McDiarmid Theorem to the neighborhood hy-

pergraph immediately yields γt(G) ≤ (r+1)n
3r+1 . On the other hand, α′(G) ≥

⌊
2
n

(

1 − 2r−1
2r+1

r
2r2+2r−1

)⌋

(Theorem 3.1.7). For large r, this upper bound on γt(G) tends to n/3 and the lower bound on

α′(G) tends to n/2. Already when r = 2, we have γt(G) ≤ 3n/7 < 9n/22 < α′(G). Hence the

separation between γt and α′ is already in the coefficient of the linear term, regardless of the number

of balloons, and the balloons become important only for the 3-regular case.

Furthermore, the upper bound from the Chvátal–McDiarmid Theorem is not sharp for larger

degree. The best-possible upper bounds on γt(G) when G is k-regular and has n vertices are not

known. Yeo [60] conjectured that if G is a connected n-vertex graph with δ(G) ≥ 4 other than the

bipartite complement of the Heawood graph, then γt(G) ≤ 2
5n.

2.2 Matching and Edge-connectivity

A long time ago, Petersen [53] proved that if a cubic graph has no cut-edges, then it has a perfect

matching. It is natural to ask what happens when there are cut-edges. The matching number

of a graph G is the maximum size of a matching in G. Biedl et al. [8] determined the smallest

matching number among connected cubic graphs with n vertices. Henning and Yeo [32] extended
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this to connected k-regular n-vertex graphs for appropriate n. For k odd, in Section 2.1 and

[49] we gave a short proof of their bound, characterized the extremal graphs, and studied the

relationship between the matching number and the number of cut-edges. Chartrand et al. [16]

determined the minimum number of vertices in a k-regular (k − 2)-edge-connected graph with no

perfect matching. Niessen and Randerath [45] extended this to k-regular l-edge-connected graphs.

In another direction, Broere et al. [7] gave a formula for the minimum size of a matching among

k-regular (k − 2)-edge-connected graphs with a fixed number of vertices. Katerinis [34] considered

the analogue for vertex connectivity. Our lower bound for the minimum size of a matching in a

k-regular l-edge-connected graph with n vertices implies these various results when the parameters

are set to appropriate values. Although the bound is sharp infinitely often when l > 0, a stronger

bound appears in Section 2.1 and [32, 49] for l = 0. In Section 3, we characterize the graphs

achieving equality.

Since the degree sum of any graph is even, it follows that every edge cut in a regular graph

of even degree has even size, and every edge cut in a regular graph of odd degree that breaks the

vertex set into odd-sized sets has odd size. Therefore, it suffices to study (2t + 1)-edge-connected

(2r + 1)-regular graphs and 2t-edge-connected 2r-regular graphs. We will show in the next section

that the bound is sharp infinitely often and characterize when equality holds, except for t = 0 in

(2r + 1)-regular graphs. In that case, the bound of Theorem 3.1.1 can be improved. (See Section

2.1 and [32, 49]).

Since 2r2 + r = 2(r + 1
4)2 − 1

8 , the formula in Theorem 2.2.2 has a very similar flavor to that in

Theorem 2.2.1. In the special case t = r−1, the formulas in Theorem 2.2.1 and Theorem 2.2.2 reduce

to essentially the formula in Broere et al. [7]. Also when n is even and less than 2(k⌈k/2⌉+ k − 1),

those formulas imply that a (k − 2)-edge-connected k-regular graph with n vertices has a perfect

matching; this is the result of Chartrand et al. [16]. More generally, for l-edge-connected graphs,

the threshold on the number of vertices for graphs without perfect matchings in Niessen and

Randerath [45] also follows.

We use the Berge–Tutte Formula for the matching number. The deficiency def(S) of a vertex

set S in G is defined by def(S) = o(G−S)−|S|, where o(H) is the number of odd components in a
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graph H. Tutte [57] proved that a graph G has a 1-factor if and only if def(S) ≤ 0 for all S ∈ V (G).

The equivalent Berge–Tutte Formula (see Berge [6]) states that α′(G) = minS⊆V (G)
1
2(n− def(S)).

Theorem 2.2.1. If G is a (2t + 1)-edge-connected (2r + 1)-regular graph with n vertices, where

0 ≤ t ≤ r, then α′(G) ≥ n
2 − ( r−t

2(r+1)2+t
)n

2 .

Proof. Let S be a set with maximum deficiency. Thus, α′(G) = 1
2(n − def(S)), where def(S) =

o(G − S) − |S|. Let ci count the odd components of G − S having exactly i edges to S; note that

ci is nonzero only when i is odd. Let c = c(2t+1) + · · · + c(2r−1), and let c′ = o(G − S) − c. Each

odd component counted by c′ has at least 2r + 1 edges to S. Note that for 2t + 1 ≤ i ≤ 2r − 1,

each odd component of G − S having exactly i edges to S has at least 2r + 3 vertices. (If C has

q vertices, then [C,C] ≥ q(2r + 2 − q) ≥ 2r + 1.) Since the edges incident to S include the edges

joining S to odd components of G − S, we have (2r + 1)|S| ≥ (2r + 1)c′ + (2t + 1)c, and hence

|S| ≥ c′ + ( 2t+1
2r+1)c ≥ ( 2t+1

2r+1)c. Therefore, n ≥ |S|+ c(2r + 3) ≥ ( 2t+1
2r+1 + 2r + 3)c, which implies that

c ≤ ( 2r+1
4r2+8r+4+2t

)n. Now, we compute

def(S) = (c + c′) − |S| ≤ c − 2t + 1

2r + 1
c =

2(r − t)

2r + 1
c

≤ 2(r − t)

2r + 1

(
2r + 1

4r2 + 4r + 4 + 2t

)

n =
(r − t)n

2(r + 1)2 + t
.

As noted earlier, the same bound holds for 2t-edge-connected (2r + 1)-regular graphs.

Similarly, the bound in the next theorem also holds for (2t − 1)-edge-connected 2r-regular

graphs (since every edge cut has even size, every (2t− 1)-edge-connected 2r-regular graph 2t-edge-

connected).

Theorem 2.2.2. If G is a 2t-edge-connected 2r-regular graph with n vertices, where 1 ≤ t ≤ r and

r ≥ 2, then α′(G) ≥ n
2 − ( r−t

2r2+r+t
)n

2 .

Proof. The proof is similar to that of Theorem 2.2.1. Defining S and ci as in that proof, here we

have that i is even and at least 2t. Also, for 2t ≤ i ≤ 2r − 2, the odd component of G− S having i

edges to S has at least 2r +1 vertices. The same steps as before then lead to def(S) ≤ (r−t)n
2r2+r+t

.
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We begin by developing properties that graphs achieving equality in the bounds of Theorem 2.2.1

and Theorem 2.2.2 must satisfy. We will show that all graphs with these properties meet the bound,

thereby characterizing equality. Finally, we give an explicit construction of infinitely many graphs

achieving equality, for each fixed r and t with r > t > 0. The needed properties lead us to define

special families.

Definition 2.2.3. A nontrivial cut in a graph G is an edge cut with at least two vertices on each

side. A (2r + 1, 2t + 1)-bullet is a graph H satisfying the following conditions :

(1) |V (H)| = 2r + 3,

(2) δ(H) ≥ max{2r − 2t, r + 1},

(3) ∆(H) = 2r + 1,

(4) |E(H)| = r + t + 2 and

(5) every nontrivial cut has at least 2r + 1 edges.

Definition 2.2.4. Let B be a graph with ∆(B) = a such that
∑

v∈V (B)(a − dB(v)) = b. If u is a

vertex of degree b in a graph H, then splicing B into u means deleting u and replacing each edge

of the form uw in it with an edge from w to a vertex of B, in such a way that each vertex of B

now has degree a.

Definition 2.2.5. An (a, b)-biregular graph is a bipartite graph with partite sets A and B such

that vertices in A have degree a, and those in B have degree b. Let Tr,t be the family of (2t + 1)-

edge-connected (2r +1, 2t+1)-biregular graph, let Br,t be the family of (2r +1, 2t+1)-bullets, and

let Hr,t be the family of graphs obtained from a graph H in Tr,t by splicing a (2r + 1, 2t + 1)-bullet

into each vertex having degree 2t + 1 in H.

Figure 2.4 describes a bullet B2,1, a (5, 3)-biregular graph, and how to splice B2,1 into a (5, 3)-

biregular graph.

Lemma 2.2.6. Every graph in Hr,t is (2t + 1)-edge-connected and (2r + 1)-regular graph.

Proof. Let H be a graph in Tr,t with partite sets R and T such that vertices in R have degree 2r+1

and those in T have 2t + 1. If G ∈ Hr,t is derived from H by splicing bullets into vertices of T ,

33



Figure 2.4: B2,1, a (5, 3)-biregular graph, and splicing

then by the construction, every vertex in G has degree 2r + 1. For the other property, it suffices to

show that splicing a bullet B into one vertex u of degree 2t + 1 in a (2t + 1)-edge-connected graph

K yields a (2t+1)-edge-connected graph K ′. Let F be a set of edges in K ′ with |F | ≤ 2t. Since K

is (2t + 1)-edge-connected, G−F is connected, where edges joining V (K ′ − u) to V (B) correspond

to edges joining V (K − u) to u. Hence K ′ − F has a path from each vertex of V (K ′) − V (B) to

V (B). Hence it suffices to show that each vertex of B can reach every other vertex of B in K ′−F .

If V (B) does not induce a connected subgraph in K ′ −F , then F contains an edge cut of B. Since

B is a bullet, every nontrivial edge cut has size at least 2r + 1. Hence F contains all edges of B

incident to some vertex x. Let S = V (B)− x. In K ′ −F , the subgraph induced by S is connected,

since otherwise F contains a nontrivial edge cut of B. Hence it suffices to show that K ′ − F has a

path from x to S through vertices outside B. Since dK′(x) = 2r + 1 > 2t and F contains all edges

of B incident to x, some edge from x to V (K ′)− V (B) remains in K ′ −F ; let y be a neighbor of x

via such an edge. Also, since dB(x) ≥ r + 1 > t + 1, there are fewer edges from x to V (K ′)− V (B)

than to S. Hence |[S, S]| ≥ 2t+1, and an edge e remains in K ′−F from S to V (K ′)−V (B); let w

be the endpoint outside S. Since F has at least one edge in B, K − F is 2-edge-connected. Hence

it has a cycle C through uy and uw. Now C − u completes a path with xy and e from x to S in

K ′ − F .

Theorem 2.2.7. For t, r ∈ N with t < r, a (2t+1)-edge-connected (2r+1)-regular graph G achieves

equality in the bound of Theorem 2.2.1 if and only if it is in Hr,t.

Proof. First, suppose that G is a graph in Fr,t derived from a (2t+1)-edge-connected (2r+1, 2t+1)-

biregular graph H in Hr,t by splicing in bullets. By Lemma 2.2.6, G is (2t+1)-edge-connected and
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(2r + 1)-regular. Let R and T be the sets of vertices with degree 2r + 1 and degree 2t + 1 in H,

respectively. Note that |T | = 2r+1
2t+1 |R| and |V (G)| = |R| + (2r + 3)|T |. Hence |R| = (2t+1)n

4r2+8r+r+2t
.

Also, there are |T | odd components in G − R, which implies that def(G) ≤ def(R) = |T | − |R| =

(2r+1
2t+1 −1)|R| = 2(r−t)

2t+1
2t+1

(2r+1)(2r+3)+2t+1 = (r−t)n
2(r+1)2+t

. Theorem 2.2.1 yields def(G) ≤ (r−t)n
2(r+1)2+t

; hence

equality holds.

Conversely, we want to show that every graph G achieving equality in Theorem 2.2.1 is in Hr,t.

By definition, G is (2t + 1)-edge-connected and (2r + 1)-regular. Let S be a maximal vertex subset

with maximum deficiency in G. By this maximality, G − S has no even components. Achieving

equality in the computation of Theorem 2.2.1 requires the following conditions :

(i) for i ≥ 2t + 3, no odd component in G − S has i edges to S,

(ii) every odd component of G − S has exactly 2r + 3 vertices, and

(iii) S is an independent set.

Thus, if H is the graph obtained from G by shrinking each odd component in G−S to a single

vertex, then the resulting graph is in Hr,t, and G is obtained by splicing each odd component of

G − S into a vertex of H with degree 2t + 1. (Note that if H is not (2t + 1)-edge-connected, then

G would not be.)

Now, we consider an odd component C of G−S. It remains only to show that C is a (2r+1, 2t+

1)-bullet. Suppose that A is a proper nonempty vertex subset of C, and let l = |[A, A]|, where

A = V (C)−A. We may assume that |A| ≤ |A|. Letting a = |A|, we then have a ≤ r + 1. We show

that l ≥ 2r+1, except possibly when a = 1. We have (2r+1)a =
∑

v∈A dG(v) ≤ a(a−1)+ l+2t+1,

which implies that

a(2r + 2 − a) ≤ l + 2t + 1 (1).

When 2 ≤ a ≤ r + 1, always a(2r + 2− a) ≥ 4r. Thus, l ≥ 4r − 2t− 1 ≥ 4r − 2(r − 1)− 1 = 2r + 1.

If a = 1, then (1) yields l ≥ 2r−2t. Let b = |[A, S]| and c = |[A, S]|. Note that b+c = 2t+1 and

l+b = 2r+1, which yields l−c = 2r−2t. Since G is (2t+1)-edge-connected, l+c ≥ 2t+1. Adding

l − c = 2r − 2t yields 2l ≥ 2r + 1, which implies that l ≥ r + 1. Thus, δ(C) ≥ max{2r − 2t, r + 2}.

Since G is (2r + 1)-regular and vertices of C together lose only 2t + 1 incident edges, it follows

that ∆(C) = 2r + 1. Since C has [(2r+1)(2r+3)−(2t+1)]
2 edges, we have |E(C)| = r + t + 2. Finally,
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we have shown that nontrivial cuts in C have size at least 2r + 1. Hence C ∈ Br,t.

Similarly, we can characterize when the matching number for even-regular graphs is minimized.

When the parameters are even, we use a slightly different definition of bullet.

Definition 2.2.8. A (2r, 2t)-bullet is a graph H satisfying the following conditions :

(1) |V (H)| = 2r + 1,

(2) δ(H) ≥ max{2r − 2t, r},

(3) ∆(H) = 2r,

(4) |E(H)| = t and

(5) every nontrivial cut has at least 2r edges.

Let T ′
r,t be the family of 2t-edge-connected (2r, 2t)-biregular bipartite graphs, let B′

r,t be the

family of (2r, 2t)-bullets, and let H′
r,t be the family of graphs obtained from a graph H in T ′

r,t by

splicing a (2r, 2t)-bullet in B′
r,t into each vertex having degree 2t in H ′.

Arguments similar to the proofs of Lemma 2.2.6 and Theorem 2.2.7 yield the following results.

Lemma 2.2.9. Every graph in H′
r,t is 2t-edge-connected and 2r-regular graph.

Theorem 2.2.10. For t, r ∈ N with t < r, a 2t-edge-connected 2r-regular graph G achieves equality

in the bound of Theorem 3.1.1 if and only if it is in H′
r,t.

Finally, we show that there are infinitely many graphs in the families Hr,t and H′
r,t. It suffices

to have at least one (2r + 1, 2t + 1)-bullet and (2r, 2t)-bullet and infinitely many graphs in Tr,t and

T ′
r,t. Let Br = P3 + rK2. For 0 ≤ t ≤ r, let Br,t and B′

r,t be graphs obtained from Br and K2r+1

respectively, by deleting a matching of size t whose elements are not incident to degree 2r and

2r − 1, respectively. We show first that Br,t ∈ Br,t and B′
r,t ∈ B′

r,t.

To determine the edge-connectivity of Br,t and B′
r,t, we use the following standard exercies.

Lemma 2.2.11. If an n-vertex graph G is connected, and n
2 ≤ δ(G) ≤ n, then κ′(G) = δ(G).

Proof. If [S, S] with |S| ≤ n
2 is an edge-cut in G, then |[S, S]| ≥ |S|(δ(G) + 1 − |S|) ≥ δ(G).

Corollary 2.2.12. If 0 ≤ t ≤ r, then κ′(Br,t) = 2r and κ′(B′
r,t) = 2r − 1.
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Figure 2.5: Two copies of K5,3 and G2 constructed from two copies of K5,3

Thus, Br,t ∈ Br,t and B′
r,t ∈ B′

r,t.

When H is a (a, b)-biregular graph with edge-connectivity b, where a = 2r + 1 and b = 2t + 1,

splicing Br,t into each vertex having degree 2t + 1 in H preserves (2t + 1)-edge-connectedness by

Lemma 2.2.6. Similarly, for a = 2r and b = 2t, splicing B′
r,t into each vertex having degree 2t in H

preserves 2t-edge-connectedness by Lemma 2.2.9.

By the above statements, to show that there are infinitely many graphs in the families Fr,t and

F ′
r,t, it suffices to show that there are infinitely many (a, b)-biregular graphs with edge-connectivity

b.

Example 2.2.13. Construction of Gk First, put k copies of Ka,b around a circle and modify them

to construct Gk as follows:

For 1 ≤ i ≤ k, and a ≥ b, let Hi be a copy of Ka,b with partite sets Xi and Yi of sizes b and

a, respectively. Choose Si ⊆ Xi and Ti ⊆ Yi, both of size b. Delete a matching of size b joining Si

and Ti. Restore the original vertex degrees by adding a matching of size b joining Ti and Si+1 for

each i, with subscript taken modulo k. The resulting graph is Gk.

Figure 2.5 describes how to construct G2 from two copies of K5,3.

Elementary lemmas lead us to κ′(Gk) = b.

Lemma 2.2.14. [54] If G is bipartite with diameter at most 3, then κ′(G) = δ(G).

Since for a ≥ b, the complete bipartite graph Ka,b has diameter 2, by the above lemma,

κ′(Ka,b) = b.
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Corollary 2.2.15. For a ≥ b, if a graph H is a graph obtained from Ka,b by deleting a matching

of size b, then κ′(H) = b − 1.

Proof. Since the graph H has diameter 3, by the above lemma, κ′(H) = b − 1.

Theorem 2.2.16. The edge-connectivity of Gk is equal to b.

Proof. Since there is a vertex with degree b, κ′(Gk) ≤ b. To prove κ′(Gk) = b, consider F ⊆ E(Gk)

with |F | < b. Let G′ = Gk − F ; we show that G′ is connected. By Corollary 2.2.15, each H ′
i in the

construction of Example 2.2.13 is (b − 1)-edge-connected. Therefore, the subgraph of G′ induced

by Si ∪ Ti is connected unless F ⊆ E(H ′
i). Also, since |F | < b, there exists an edge in G′ joining Ti

and Si+1. Either what remains of each H ′
i is connected and the subgraphs are each linked to the

next, or one Hi is cut but all edges outside remain. In this special case, every vertex except V (Hi)

is connected each other. Now, we need to check on the vertex V (Hi). If we delete edges less than b

in Hi, then some vertices in Si are not incident to Ti, and the other vertices in Si are still incident

to Hi. The vertices in Si, which are not incident to Ti have paths to the other vertices through

Si−1, and the vertices in Si, which are incident to Ti have paths to the other vertices through Ti

and Si+1. Finally, G′ is connected.

Corollary 2.2.17. There are infinitely many graphs in Hr,t and H′
r,t.

Proof. Use Theorem 2.2.16 with a = 2r + 1 and b = 2t + 1.
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Chapter 3

Edge-connectivity, Matching, and

Eigenvalues in Regular Graphs

A lot of research in graph theory over the last 40 years was stimulated by a classical result of

Fiedler [25], stating that κ(G) ≥ µ2(G) for a non-complete graph G, where κ(G) is the connectivity

of G and µ2(G) is the second smallest eigenvalue of the Laplacian matrix.

In Section 3.1, we study the relationship between eigenvalues and the existence of certain

subgraphs in regular graphs. We give a condition on an appropriate eigenvalue that guarantees

a lower bound for the matching number of a t-edge-connected d-regular graph, when t ≤ d − 2.

This work extends some classical results of von Baebler and Berge and more recent work of Cioabă,

Gregory, and Haemers. We also study the relationships between the eigenvalues of a d-regular

t-edge-connected graph G and the maximum number of pairwise disjoint connected subgraphs in

G that are each joined to the rest of the graph by exactly t edges.

In Section 3.2, we study the problem of finding the weakest hypothesis on the second largest

eigenvalue λ2 for a d-regular graph G to guarantee that G is l-edge-connected.

3.1 Edge-connectivity, Matching, and Eigenvalues

The eigenvalues of a d-regular graph G are closely related to many important properties of G

(see [10, 27, 36]). In particular, the second largest eigenvalue of G is closely related to the edge-

distribution of G. When S and T are subsets of vertices of G, denote by [S, T ] the set of edges with

one endpoint in S and one endpoint in T and let e(S, T ) = |[S, T ]|. If G is a d-regular n-vertex

graph with second largest eigenvalue λ2 and S a nonempty proper subset of V (G), then

e(S, V (G) \ S) ≥ (d − λ2)|S|(n − |S|)
n

.
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A set M of edges of a graph G is a matching if each vertex of G is contained in at most one

edge of M . The matching number α′(G) is the maximum size of a matching in G. A graph is

t-edge-connected if the removal of any t − 1 edges does not disconnect it. The eigenvalues of G

are the eigenvalues of its adjacency matrix. The adjacency matrix of G has its rows and columns

indexed by the vertices of G, and the (i, j)-th entry of A is 1 if i and j are adjacent and 0 otherwise.

If G has n vertices, then let λ1(G), . . . , λn(G) be its eigenvalues indexed in nonincreasing order.

It is well known that if G is a connected d-regular graph, then λ1 = d > λ2 and λn ≥ −d, with

equality if and only if G is bipartite.

In this section, we show that many other eigenvalues of a regular graph G are related to the

existence of various substructures in G. A well-known result in graph theory due to von Baebler [4]

(for d odd) and Berge [5] states that any d-regular (d− 1)-edge-connected graph contains a perfect

matching. This extends the work of Petersen [53], who showed that a 3-regular graph without

cut-edges contains a perfect matching. Recently, Cioabă, Gregory, and Haemers [15] found the

best possible conditions on the eigenvalues of a d-regular graph that guarantee the existence of a

perfect matching. Their work improved previous results of various authors (see [9, 12, 14, 36]).

In this section, we determine connections between the eigenvalues of a t-edge-connected d-regular

graph and its matching number when t ≤ d− 2. Our work can be seen both as an extension of the

work of von Baebler and Berge (for lower values of the edge-connectivity) and as an extension of

the results of Cioabă, Gregory, and Haemers (for higher values of the edge-connectivity).

Our main result in this direction is the following theorem.

Theorem 3.1.1. Denote by θ the greatest solution of the equation x3 − x2 − 6x + 2 = 0, and let

ρ(d) =







θ if d = 3

d−2+
√

d2+12
2 if d ≥ 4 is even

d−3+
√

(d+1)2+16

2 if d ≥ 5 is odd.

(3.1)
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Let p ≥ 3 be an integer. If G is a t-edge-connected d-regular graph such that λp(G) < ρ(d), then

α′(G) >







n−p+⌊ tp

d
⌋

2 when d ≡ t (mod 2)

n−p+⌊ (t+1)p
d

⌋
2 when d ≡ t + 1 (mod 2).

We present examples that show that our result is best possible when t = d − 2; for each d and

for infinitely many values of p, we construct d-regular graph H with edge-connectivity d− 2 having

λp(H) = ρ(d) and α′(H) =
n−p+⌊ tp

d
⌋

2 .

Henning and Yeo [32] determined the minimum value of the matching number of a connected

d-regular graph of order n. In Chapter 2 ([49] [50]), we extended their results and obtained a

relationship between the matching number of a connected d-regular graph G and the number of

balloons in G. A balloon is a maximal 2-edge-connected subgraph that is joined to the rest of G

by exactly one cut-edge. Let b(G) denote the number of balloons of G. Obviously b(G) = 0 when

d is even as G contains no cut-edges in this case. If b denotes the maximum possible number of

balloons in a d-regular graph with n vertices, we proved α′(G) ≥ n
2 − (d−1)b

2d when d is odd, and

they showed that this inequality implies the result of Henning and Yeo from [32].

The number of balloons is also related to other combinatorial invariants such as the total

domination number of G (see Section 2.2 and [49]) and the number of cut-edges in G. If c(G) denotes

the number of cut-edges of G, then b(G) ≤ c(G) when c(G) ≥ 2. Motivated by the connections

between balloons and these combinatorial invariants, we study the relationship between the number

of balloons in G and its eigenvalues. Our result is the following theorem.

Theorem 3.1.2. When d is an odd integer with d ≥ 3, let θ(d) denote the largest solution of the

equation

x3 − (d − 2)x2 − 2dx + d − 1 = 0.

If k is an integer with k ≥ 3 and G is a connected d-regular graph such that λk(G) < θ(d), then

b(G) ≤ k − 1.

We also show for each d that this result is best possible for infinitely many values of k by

presenting examples of d-regular graph H having λk(H) = θ(d) and b(G) = k.
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Note that for k = 2, the following result was proved in [12].

Theorem 3.1.3 ([12]). Let d be an odd integer with d ≥ 3 and denote by γ(d) the largest root of

the equation

x3 − (d − 3)x2 − (3d − 2)x − 2 = 0.

If G is a d-regular graph with λ2(G) < γ(d), then b(G) = 0 (equivalently, G is 2-edge-connected).

Many authors have studied the number of cut-edges or, more generally, the number of smallest

edge-cuts of a graph (see [20, 31, 38, 44]). In this paper, we determine a relationship between

eigenvalues and a parameter closely related to the number of smallest edge-cuts. If G is a t-

edge-connected graph, then let bt(G) denote the maximum number of pairwise disjoint connected

subgraphs H1, . . . , Hl of G with the property that e(V (Hi), V (Hi)) = t for 1 ≤ i ≤ l. If ct(G)

denotes the number of edge-cuts of size t of G, then bt(G) ≤ ct(G) when ct(G) ≥ 2. Our main

result in this direction is the following theorem.

Theorem 3.1.4. Let d and t be two integers of the same parity with d > t ≥ 1. If p ≥ 3 is an

integer and G is a t-edge-connected d-regular graph with

λp(G) <







d−2+
√

(d+2)2−4t

2 if d and t are even

d−3+
√

(d+3)2−4t

2 if d and t are odd

(3.2)

then bt(G) ≤ p − 1.

We also show for each d that this result is best possible for infinitely many values of p by

presenting examples of d-regular t-edge-connected graphs H having λp(H) equal to the right-hand

side of (3.2) and bt(G) = p.

We remark that for t = 2 and p = 2, the following result was proved in [12].

Theorem 3.1.5 ([12]). If G is a d-regular graph with λ2(G) <
d−3+

√
(d+3)2−16

2 , then b2(G) = 0

(or equivalently, G is 3-edge-connected).

The main tool in our arguments is eigenvalue interlacing (see [10, 27, 33]). Let λj(M) be the

j-th largest eigenvalue of a matrix M .
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Lemma 3.1.6. (Interlacing Theorem) If A is a real symmetric n×n matrix and B is a principal

submatrix of A with order m × m, then for 1 ≤ i ≤ m,

λi(A) ≥ λi(B) ≥ λn−m+i(A).

This theorem implies that if H is an induced subgraph of a graph G, then the eigenvalues of

H interlace the eigenvalues of G. Consider a partition V (G) = V1 ∪ · · · ∪ Vs of the vertex set of G

into s non-empty subsets. For 1 ≤ i, j ≤ s, let bi,j denote the average number of neighbours in Vj

of the vertices in Vi. The quotient matrix of this partition is the s× s matrix whose (i, j)-th entry

equals bi,j . The eigenvalues of the quotient matrix interlace the eigenvalues of G. This partition is

equitable if for each 1 ≤ i, j ≤ s, any vertex v ∈ Vi has exactly bi,j neighbours in Vj . In this case,

the eigenvalues of the quotient matrix are eigenvalues of G and the spectral radius of the quotient

matrix equals the spectral radius of G (see [10, 27] for more details).

The deficiency def(S) of a vertex set S in G is defined by def(S) = o(G−S)−|S|, where o(H) is

the number of components of H having an odd number of vertices. Tutte [57] proved that a graph

G has a perfect matching if and only if def(S) ≤ 0 for all S ∈ V (G). The equivalent Berge-Tutte

Formula (see Berge [6] and also [39]) states that

α′(G) =
1

2
(n − max

S⊆V
def(S)). (3.3)

Lemma 3.1.7. Let G be a t-edge-connected d-regular graph with n vertices and let r be an integer

with r ≥ 2. If α′(G) ≤ n−r
2 , then

ρ(d) ≤







λ⌈ rd
d−t

⌉ if d ≡ t (mod 2),

λ⌈ rd
d−(t+1)

⌉ if d ≡ t + 1 (mod 2).

(3.4)

Proof. Let S be a subset of G with maximum deficiency. Let O1, . . . ,Oq be the odd components

of G − S. Because α′(G) is at most n−r
2 , we have q ≥ |S| + r. Let ni = |V (Oi)|, ei = |E(Oi)| and

ti = e(S,Oi) for 1 ≤ i ≤ q. By the degree-sum formula, d and ti have the same parity. Because G
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is t-edge-connected, we have ti ≥ t when d ≡ t (mod 2) and ti ≥ t + 1 when d ≡ t + 1 (mod 2).

We will prove the lemma for d ≡ t (mod 2). The proof of the other case is similar and will be

omitted.

By counting the edges between S and V (G) \ S, we have d|S| ≥ e(S, V (G) \ S) ≥ ∑q
i=1 ti ≥

qt ≥ (|S|+ r)t. Thus, (d− t)|S| ≥ rt, which implies that |S| ≥ rt
d−t . Because q ≥ |S|+ r, we obtain

q ≥ rt
d−t + r = rd

d−t . Thus, q ≥ ⌈ rd
d−t⌉.

We claim that there are at least ⌈ rd
d−t⌉ indices i such that ti < d. Otherwise, there are at most

⌈ rd
d−t⌉ − 1 values of i such that ti < d, which means that there are at least q −

(

⌈ rd
d−t⌉ − 1

)

values

of i such that ti ≥ d. Because G is t-edge-connected, we have ti ≥ t for each 1 ≤ i ≤ q. These facts

imply

d|S| ≥
q

∑

i=1

ti ≥ d

[

q −
(⌈

rd

d − t

⌉

− 1

)]

+ t

(⌈
rd

d − t

⌉

− 1

)

= dq − (d − t)

(⌈
rd

d − t

⌉

− 1

)

> dq − (d − t)
rd

d − t
= d(q − r)

≥ d|S|,

which is a contradiction. Here we used the inequality x > ⌈x⌉ − 1 for any real number x.

Let p = ⌈ rd
d−t⌉. Without loss of generality, assume that ti < d for 1 ≤ i ≤ p. By Theorem 2

in [15] (see also Lemma 3.1.14), we obtain λ1(Oi) ≥ ρ(d) for 1 ≤ i ≤ p. This fact and Interlacing

Theorem 3.1.6 imply

λp(G) ≥ λp(O1 ∪ · · · ∪ Op) ≥ min
1≤i≤p

λ1(Oi) ≥ ρ(d),

which finishes the proof.

We are now ready to present the proof of Theorem 3.1.1.

Proof. For x ∈ {t, t + 1}, we have p = ⌈ rd
d−x⌉ if and only if r = ⌊ (d−x)p

d ⌋. This and the previous

lemma imply the desired result.
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Corollary 3.1.8 (Cioabă, Gregory and Haemers [15]). Let p be an integer with p ≥ 3. If G is a

connected d-regular graph of order n such that λp(G) < ρ(d), then α′(G) > n−p+1
2 .

Proof. Take t = 1 in Theorem 3.1.1.

Corollary 3.1.9. Let d and t be two integers with d ≥ 3 and t ≤ d− 2. If G is a t-edge-connected

d-regular graph of order n such that

ρ(d) >







λ⌈ 2d
d−t

⌉ if d ≡ t mod (2)

λ⌈ 2d
d−(t+1)

⌉ if d ≡ t + 1 mod (2)

then α′(G) = ⌊n
2 ⌋.

Proof. Take r = 2 in Lemma 3.1.7.

When t ∈ {d−2, d−3}, the previous result states that a t-edge-connected d-regular graph with

λd(G) < ρ(d) must have α′(G) = ⌊n
2 ⌋. In particular, because every connected 4-regular graph is

2-edge-connected, we deduce that if the fourth largest eigenvalue of a 4-regular graph is less than

ρ(4), then the matching number of the graph is ⌊n
2 ⌋. The result of Cioabă, Gregory, and Haemers

from [15] states for all d that λ3(G) < ρ(d) implies α′(G) = ⌊n
2 ⌋; our result improves this when

d = 4. In Figure 3.1, we present an example of a 2-edge-connected 4-regular graph H1 having

λ4(H1) < ρ(4) = 1 +
√

7 = λ3(H1); our result applies here, but the earlier result does not.

Figure 3.1: 2-edge-connected 4-regular graph with λ4 = 2 < ρ(4) = 1 +
√

7 = λ3

In Figure 3.2, we present a 2-edge-connected 5-regular graph satisfying λ5(H2) = 2 < ρ(5) =

1 +
√

13 = λ3(H2). The existence of the perfect matching in these graphs will follow by taking
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edge-connectivity into account and using Corollary 3.1.9, but it cannot be deduced using the results

from [15]. Similar examples can be constructed for larger values of d.

Figure 3.2: 2-edge-connected 5-regular graph with λ5 = 2 < ρ(5) = 1 +
√

13 = λ3

Corollary 3.1.10. If G is a d-regular (d − 2)-edge-connected graph such that λp(G) < ρ(d), then

α′(G) >
n + ⌊−2p

d ⌋
2

.

Proof. Take t = d − 2 in Theorem 3.1.1.

We will show for each d that this result is best possible for infinitely many values of p by

presenting examples of d-regular (d− 2)-edge-connected graphs H with λp(H) = ρ(d) and α′(G) =

n+⌊− 2p

d
⌋

2 .

We prove Theorem 3.1.2, which relates the number of balloons of a regular graph to its eigen-

values.

When d ≥ 1 is an odd integer, let Bd denote the unique graph on d + 2 vertices having one

vertex of degree d − 1 and d + 1 vertices of degree d. Equivalently, Bd is the complement of the

disconnected graph on d + 2 vertices with d−1
2 components equal to K2 and one component equal

to P3, the path on three vertices.

Lemma 3.1.11. If θ(d) denotes the largest solution of the equation

x3 − (d − 1)x2 − 2dx + d − 1 = 0,
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then the spectral radius of Bd is θ(d).

Proof. Partition the vertex set of Bd in three parts: the vertex of degree d − 1, its neighbours and

the remaining two vertices. This partition is equitable, and its quotient matrix is









0 d − 1 0

1 d − 3 2

0 d − 1 1









.

The characteristic polynomial of this quotient matrix equals P (x) = x3 − (d − 1)x2 − 2dx + d − 1.

Because the partition is equitable, we conclude that the spectral radius of Bd equals the largest

root of this polynomial (see [27]). This finishes the proof.

A result from [14] and a simple manipulation yield the following bounds

d − 1

d + 2
+

1

(d + 2)2
< θ(d) < d − 1

d + 2
+

1

d(d + 2)
. (3.5)

Lemma 3.1.12. If H is a connected graph of order m with m− 1 vertices of odd degree d and one

vertex of degree d − 1, then λ1(H) ≥ θ(d) with equality if and only if H = Bd.

Proof. If m = d + 2, then H = Bd. We will show that λ1(H) > θ(d) for any connected graph H

if m > d + 2. Because the sum of the degrees of H is dm − 1 and d is odd, we conclude that m is

odd.

The average degree of H is (m−1)d+1(d−1)
m = d − 1

m . If m ≥ d + 4, then (3.5) implies that

λ1(H) > d − 1

m
≥ d − 1

d + 4
> d − d − 1

d2 + 2d
> θ(d)

for d ≥ 5. Thus, the lemma is proved for d ≥ 5 and m ≥ d + 4. If d ≥ 5 and m < d + 4, then

m = d + 2 because n is odd. This finishes the case d ≥ 5.

When d = 3, we have λ1(B3) = 2.855... < 2.86. If m ≥ 9, then λ1(H) > 3− 1
9 > 2.89 > λ1(B3).

Because m is odd, the only remaining case is m = 7. In this case, each graph H has one vertex u

of degree 2, and six vertices of degree 3. We have two cases depending on whether the neighbours
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of u are adjacent.

If the neighbours of u are adjacent, then H is the graph pictured in Figure 3.3 and its spectral

radius is greater than 2.91, which exceeds λ1(B3).

Figure 3.3: The neighbours of the vertex of degree 2 are adjacent

If the neighbours of u are not adjacent, then H is one of the three graphs pictured in Figure

3.4. The spectral radii of these graphs are greater than 2.9, which exceeds λ1(B3).

Figure 3.4: The neighbours of the vertex of degree 2 are not adjacent

Note that every balloon of a d-regular graph satisfies the conditions of the previous lemma.

Proof of Theorem 3.1.2. We prove the contrapositive: For k ≥ 3 if G contains k balloons, then

λk(G) ≥ θ(d).

Let H1, . . . , Hk be k balloons of G. These balloons are pairwise disjoint, and H1 ∪ · · · ∪ Hk is

an induced subgraph of G. Note that H1 ∪ H2 might not be an induced subgraph of G when G

contains exactly two balloons. The previous lemma and Interlacing Theorem 3.1.6 imply that

λk(G) ≥ λk(H1 ∪ · · · ∪ Hk) ≥ min
1≤i≤k

(λ1(Hi)) ≥ θ(d).
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Fixing d, for some values of k, we construct examples of d-regular graphs H containing exactly

k balloons and having λk(H) = θ(d). The vertex of Bd having degree d−1 is called the neck of Bd.

Let m ≥ d − 1 be an even integer and let k = 2m. Consider a connected (d − 2)-regular graph

X on m vertices. For each vertex x of X, create two new vertices x1 and x2 adjacent to x. Identify

each of x1 and x2 with the neck of a copy of Bd. The resulting graph G1 is connected, d-regular,

has m + 2m(d + 2) vertices, and contains k balloons.

Removing the m vertices of X yields a disconnected graph with 2m components, each isomorphic

to Bd. Interlacing Theorem 3.1.6 implies

λk−m(G1) ≥ λk−m(2mBd) = θ(d) ≥ λk(G1) ≥ λk(2mBd) = θ(d),

which means λk(G1) = θ(d).

For d = 3, we can construct a 3-regular graph Gk with λk(H) = θ(3) and b(H) = k for any

k ≥ 3. Consider a tree of order n whose degrees are 1 or 3. If k is the number of leaves, then

2(n− 1) = k + 3(n− k); thus n = 2k − 2. Identify each leaf with the neck of a copy of B3. If Gk is

the resulting graph, then Gk is 3-regular and b(H) = k. Remove the vertices adjacent to a neck of

a balloon. There are t ≤ n − k = k − 2 such vertices. By Interlacing Theorem 3.1.6, we obtain

θ(3) = λ2(kB3) ≥ λk−t(kB3) ≥ λk(Gk) ≥ λk(kB3) = θ(3),

and thus λk(Gk) = θ(3).

Each of these examples can be transformed into an infinite family of examples by replacing one

balloon Bd or B3 by a larger balloon.

In this section, we give a proof of Theorem 3.1.4. We use the following notation. Let Cm denote

the cycle on m vertices. If m is even, we denote by Mm the 1-regular graph on m vertices, i.e. a

perfect matching on m vertices. Also, G will denote the complement of a graph G. If H1 and H2

are vertex disjoint graphs, their join H1∨H2 is the graph obtained from H1 and H2 by joining each

vertex of H1 with each vertex of H2.
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Let d and t be two integers of the same parity with d > t ≥ 1. Define the graph Bd,t as follows:

Bd,t =







Kd+1−t ∨ Mt if d and t are even

Md+2−t ∨ Ct if d and t are odd

(3.6)

Lemma 3.1.13. The spectral radius of Bd,t equals

λ1(Bd,t) =







d−2+
√

(d+2)2−4t

2 < d − t
d+2 if d and t are even

d−3+
√

(d+3)2−4t

2 < d − t
d+3 if d and t are odd

(3.7)

Proof. We prove this lemma only in the case when d and t are even. The proof of the other case is

similar and is omitted.

Let V1 and V2 be the subsets of vertices of degree d and degree d − 1 in Bd,t, respectively.

From the definition of Bd,t, it is easy to see that |V1| = d + 1 − t and |V2| = t. The partition

V (Bd,t) = V1 ∪ V2 is equitable, and its quotient matrix is






d − t t

d − t + 1 t − 2




 .

The characteristic polynomial of the quotient matrix is x2− (d−2)x−2d+ t. Because the partition

is equitable, we deduce that the spectral radius of Bd,t equals the largest root of this polynomial,

which is
d−2+

√
(d+2)2−4t

2 . The inequality
d−2+

√
(d+2)2−4t

2 < d− t
d+2 follows easily using the inequality

√
x2 + a < x + a

2x for x > 0. This finishes the proof.

Note that λ1(Bd,d−2) equals ρ(d) from Theorem 3.1.1. The following result extends Theorem 2

from [15].

Lemma 3.1.14. Let d and t be two integers of the same parity with d > t ≥ 1. If H is a graph

of order m such that ∆(H) = d and 2e(H) = dm − t, then λ1(H) ≥ λ1(Bd,t). Equality occurs if

H = Bd,t when d and t are even and if H = Md+2−t ∨ Ct1 ∪ · · · ∪ Ctl where t1 + · · · + tl = t, when

d and t are odd.
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Proof. The average degree of H is dm−t
m = d − t

m . This implies λ1(H) ≥ d − t
m .

Let V (H) = V1 ∪ V2 be a partition of the vertex set of H. Let ni = |Vi|, and denote by ei the

number of edges of the subgraph induced by Vi for 1 ≤ i ≤ 2. Let e12 = e(V1, V2). The quotient

matrix of this partition is

Ã =






2e1
n1

e12
n1

e12
n2

2e2
n2




 . (3.8)

Eigenvalue interlacing (see [10, 27] or the last part of Section 1) implies

λ1(H) ≥ λ1(Ã) =
e1

n1
+

e2

n2
+

√
(

e1

n1
− e2

n2

)2

+
e2
12

n1n2
, (3.9)

with equality if the partition V (H) = V1 ∪ V2 is equitable.

If d > t ≥ 1 are both even and m ≥ d + 2, then by Lemma 3.1.13, we obtain λ1(H) ≥ d − t
m ≥

d − t
d+2 > λ1(Bd,t). Thus, the only remaining case is m = d + 1.

If m = d + 1, then H is a graph obtained by deleting t
2 distinct edges from Kd+1. The graph

H has at most t vertices of degree less than d − 1, and thus it contains at least d + 1 − t vertices

of degree d. Let V1 be a set of d + 1 − t vertices of degree d, and let V2 = V (H) \ V1. Using (3.9),

we obtain λ1(H) ≥ λ1(Bd,t), with equality if H = Bd,t.

If d > t ≥ 1 are both odd and m ≥ d + 3, then by Lemma 3.1.13, we obtain λ1(H) ≥ d − t
m ≥

d − t
d+3 > λ1(Bd,t).

If m = d+2, then H is a graph of maximum degree d obtained by deleting d+2+t
2 distinct edges

from Kd+2. The graph H has at most t vertices of degree d−1, and thus it contains at least d+2−t

vertices of degree d. Let V1 be a set of d + 2 − t vertices of degree d and let V2 = V (H) \ V1. Let

2r denote the maximum number of vertices of V1 which induce a 1-regular graph in H.

Case 1. r = (d + 2 − t)/2.

In this case, e1 = (d+2−t)d
2 , e12 = (d + 2 − t)t and e2 = t(t−3)

2 . We use inequality (3.9) to obtain

λ1(H) ≥ λ1(Bd,t). Equality occurs if the partition V (H) = V1 ∪ V2 is equitable. This happens

when H = Md+2−t ∨ Ct1 ∪ · · · ∪ Ctl where t1 + · · · + tl = t.

Case 2. r = 0
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In this case, e1 =
(
d+2−t

2

)
, and each vertex of V1 is adjacent to all but one vertex of V2. Thus,

e12 = n1(n2 − 1) = (d + 2 − t)(t − 1). This and 2e = d(d + 2) − t imply that e2 = e − e1 − e12 =

d(d+2)−t
2 − (d+2−t)(d+1−t)

2 − (d + 2 − t)(t − 1) = d+t2−4t+2
2 .

In this case, the characteristic polynomial of Ã is the following

PÃ(x) = x2 − dt + d + 2 − 3t

t
x +

d2 + 2d + t2 − 3dt − t

t
.

We obtain

PÃ(x) = (x2 + (3 − d)x + t − 3d) +
d(d + 2) − t − (d + 2)x

t
.

Thus,

PÃ(λ1(Bd,t)) =
d + 2

t

(

d − t

d + 2
− λ1(Bd,t)

)

=
d + 2

t

(

d − t

d + 2
− d − 3 +

√

(d + 3)2 − 4t

2

)

< 0,

where the last inequality follows by straightforward calculations as t < d+2. We conclude that the

largest root of Ã is larger than λ1(Bd,t). By eigenvalue interlacing, this means λ1(H) > λ1(Bd,t).

Case 3. 1 ≤ r ≤ (d − t)/2

Consider the partition of V (H) into three parts: the 2r vertices inducing a M2r in H, the other

d + 2 − t − 2r vertices of degree d in V1, and the remaining t vertices. The quotient matrix of this

partition is

A3 =









2r − 2 d + 2 − t − 2r t

2r d + 1 − t − 2r t − 1

2r (d+2−t−2r)(t−1)
t t − 1 − 2r+3t−d−2

t









Dividing the characteristic polynomial PA3(x) of A3 by x2 + (3 − d)x + t − 3d, we obtain

PA3(x) = (x2 + (3 − d)x + t − 3d)

(

x +
2t + 2r − d − 2

t

)

+
(d + 2 − t − 2r)(x − d)

t
(3.10)
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Plugging in x = λ1(Bd,t), we get PA3(λ1(Bd,t)) =
(d+2−t−2r)(λ1(Bd,t)−d)

t . This expression is negative

because r ≤ d−t
2 and λ1(Bd,t) < d. Thus, the largest root of PA3(x) is greater than λ1(Bd,t).

Eigenvalue interlacing (see [10, 27]) implies λ1(H) > λ1(Bd,t) and finishes the proof.

We can now prove Theorem 3.1.4.

Proof of Theorem 3.1.4. We can assume that G has edge-connectivity t. If bt(G) ≥ p, there exist

at least p disjoint connected subgraphs X1, . . . , Xp of G that satisfy the conditions of Lemma

3.1.14. Because p ≥ 3, X1 ∪ · · · ∪ Xp is an induced subgraph of G. Lemma 3.1.14 and Interlacing

Theorem 3.1.6 imply

λp(G) ≥ λp(X1 ∪ · · · ∪ Xp) ≥ min
1≤i≤p

λ1(Xi) ≥ λ1(Bd,t).

We present now a construction for fixed d showing that Theorem 3.1.4 is best possible for

infinitely many values of p.

Let t be an integer of the same parity as d with d > t ≥ 1. Also, let p ≥ 3 be a positive integer

such that pt
d is also an integer. Let Y be a t-edge-connected bipartite graph with colour classes P

and Q such that |P | = p and |Q| = pt
d < k. Assume also that each vertex in the colour class P has

degree t and each vertex in Q has degree d. See [50] for a proof of the existence of such graphs.

For each vertex x ∈ P , consider its neighbours x1, . . . , xt ∈ Q. Remove x and add t new vertices

y1, . . . , yt such that yi is adjacent to xi for each 1 ≤ i ≤ t. Identify y1, . . . , yt with the t vertices of

degree d− 1 from a copy of Bd,t. The resulting graph H is d-regular, t-edge-connected (see [50] for

a short proof of this fact) and has q + p(d − 2 + ǫ) vertices, where ǫ = 3 if d is even and ǫ = 4 if d

is odd.

Removing Q from H creates a disconnected graph H−Q having p components Bd,t. Interlacing

Theorem 3.1.6 implies

λ1(Bd,t) = λp− pt

d

(H − Q) ≥ λp(H) ≥ λp(H − Q) = λ1(Bd,t). (3.11)
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Thus, λp(H) = λ1(Bd,t) and also, bt(H) = p .

In this section, we show that Theorem 3.1.1 is best possible when t = d − 2 by presenting

examples of d-regular graphs H of edge-connectivity d−2 with λp(H) = ρ(d) and α′(H) =
n+⌊− 2p

d
⌋

2

for infinitely many values of p.

Let d and s be two integers with d ≥ 3 and s ≥ 1. Let p = (d−2)s and q = ds. Our construction

consists of the graphs H presented at the end of the previous section in the special case t = d − 2.

Removing the vertices of Q creates p disjoint copies Bd,d−2. Because Bd,d−2 has an odd number

of vertices, it follows that o(H − Q) = p. Using (3.3), the matching number of H will be at

least n−p+q
2 = n−ds+(d−2)s

2 = n−2s
2 . It is actually easy to see that α′(H) = n−2s

2 =
n+⌊− 2p

d
⌋

2 . By

Interlacing Theorem 3.1.6, we obtain λp(H) = λ1(Bd,d−2) = ρ(d) as claimed.

In Figure 3.5, we illustrate this construction when d = 4 and Y = K4,2.
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Figure 3.5: 4-regular graph with edge-connectivity 2 and λ4 = ρ(4)

Plesnik [54] (see also Exercise 30, Section 7 in Lovász [39]) proved that a graph obtained by

removing d − 1 edges from a d-regular (d − 1)-edge-connected contains a perfect matching. This

implies that a d-regular (d−1)-edge-connected graph is matching covered, i.e. each edge is contained

in a perfect matching. It would be interesting to determine sharp relations between this property

and the eigenvalues of a graph.

3.2 Eigenvalues and Matching

A lot of research in graph theory over the last 40 years was stimulated by a classical result of

Fiedler [25], stating that κ(G) ≥ µ2(G) for a non-complete graph G, where κ(G) is the connectivity

of G and µ2(G) is the second smallest eigenvalue of the Laplacian matrix.
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Figure 3.6: Y5,3 is a 5-regular graph with λ2(Y5,3) = ρ(5, 3) = 1+
√

57
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Let G be a simple graph with n vertices, and let A be the adjacency matrix of G. Let λ1, · · · , λn

be the eigenvalues of A.

In this section, we study the problem of finding the weakest hypothesis on the second largest

eigenvalue λ2 for a d-regular graph G to guarantee that G is l-edge-connected.

In 2010, Cioaba [12] proved that if λ2 < d − 2(l−1)
d+1 , then G is l-edge-connected. However, this

result is not sharp; he proved stronger results when l is equal to 2 or 3.

Theorem 3.2.1. (Cioaba [12]) Let d be an odd integer at least 3 and let π(d) be the largest root of

x3 − (d − 3)x2 − (3d − 2)x − 2 = 0. If G is a d-regular graph such that λ2 < π(d), then κ′(G) ≥ 2.

Theorem 3.2.2. (Cioaba [12]) If G is d-regular graph such that λ2(G) <
d−3+

√
(d+3)2−16

2 , then

κ′(G) ≥ 3.

Interestingly, the sharpness examples are derived by combining two graphs from Chapter 2.

First, we study the sharpest examples.

Before studying the examples, we recall basic definitions.

A disconnecting set in a multigraph G is a set F ⊆ E(G) such that G − F is disconnected. A

multigraph is k-edge-connected if every disconnecting set has at least k edges. The edge-connectivity

κ′(G) is max{k : G is k-edge-connected} For vertex sets S and T , we write [S, T ] for the set of

edges from S to T . An edge cut is a set of the form [S, S], where ∅ 6= S ⊂ V (G)

Now, we construct the sharpenss examples. First, for even positive integer t, let Mt be the set

of t
2 disjoint edges. Note that there are t vertices in Mt. For odd positive integer d and l with

l ≤ d − 2, we define the graph Hd,l = Md+2−l ∨ Cl. Note that Hd,l has exactly d + 2 − l vertices
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with degree d and exactly l vertices with degree d − 1. We construct Yd,l by taking two disjoint

copies of Hd,l and adding two disjoint edges between the vertices of degree d− 1 in different copies

of Hd,l. Figure 3.6 descirbes Y5,3.

Figure 3.7: Y6,4 is a 6-regular graph with λ2(Y6,4) = ρ(6, 4) = 3+
√
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Similarly, for even positive integers d and l with l ≤ d − 2, we can define Yd,l. Consider the

graph Hd,l = Kd+1−t ∨ Ml. Note that for even positive integer d and l, Hd,l has exactly d + 1 − l

vertices with degree d and exactly l vertices with degree d − 1. We construct Yd,l by taking two

disjoint copies of Hd,l and adding two disjoint edges between the vertices of degree d−1 in different

copies of Hd,l. Figure 3.7 descirbes Y6,4.

Lemma 3.2.3. The graph Hd,l is a connected d-regular with κ′(Hd,l) = l.

Proof. By construction, Hd,l is d-regular, connected, and κ′(Hd,l) ≤ l. To show that κ′(Hd,l) = l,

consider F ⊆ E(Hd,l) with size |F | < l. Note that l < d − 1 since l ≤ d − 2. Since Hd,l is (d − 1)-

edge-connected by Lemma 2.2.12 and l < d − 1, we can have a path from any vertex in a copy of

Hd,l to any vertex in the copy. Since |F | < l, there is a way from any vertex in one copy of Hd,l to

any vertex in another copy of Hd,l. Thus, Yd,l is l-edge-connected, which implies that κ(Yd,l) = l.

Now, we can determine the second largest eigenvalue of Yd,l.

First, for odd positive integer d, consider an equitable partition into four parts of sizes d+2− l,

l, l, d + 2 − l with the following quotient matrix :
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Ỹd,l =





















d − l l 0 0

d + 2 − l l − 3 1 0

0 1 l − 3 d + 2 − l

0 0 l d − l















(3.12)

The characteristic polynomial of the matrix (3.12) is equal to

P ˜Yd,l
= (x − d)(x + 2)(x2 − (d − 4)x + 2l − 4d).

Thus, the eigenvalues of Ỹd,l are d, −2 and
d−4±

√
(d+4)2−8l

2 . To simplify our notation, let ρ(d, l) =

d−4+
√

(d+4)2−8l

2 . Note that ρ(d, l) is the largest root of T (x) = (x2 − (d − 4)x + 2l − 4d).

Similarly, for even positive integer d, consider an equitable partition into four parts of sizes

d + 1 − l, l, l, d + 1 − l with the following quotient matrix :

Ỹd,l =





















d − l l 0 0

d + 1 − l l − 2 1 0

0 1 l − 2 d + 1 − l

0 0 t d − l















(3.13)

The characteristic polynomial of the matrix (3.13) is equal to

P ˜Yd,l
= (x − d)(x + 1)(x2 − (d − 3)x + 2l − 3d).

Thus, the eigenvalues of Ỹd,l are d, −1 and
d−3±

√
(d+3)2−8l

2 . For even positive integer d, let ρ(d, l) =

d−3+
√

(d+3)2−8l

2 . Note that ρ(d, l) is the largest root of T (x) = (x2 − (d − 3)x + 2l − 3d).

Lemma 3.2.4. The second largest eigenvalue of Yd,l is equal to ρ(d, l).

Proof. First, we consider when d is odd. Since the previous partition of V (Yd,l into the four parts

are equitable, we have that the four eigenvalues of Ỹd,l are also eigenvalues of Yd,l. Clearly, the
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second largest eigenvalue of Ỹd,l is ρ(d, l).

Let W ⊂ R2d+4 be the subspace of vertors which are constant on each part of the four equitable

partition. The lifted eigenvectors corresponding to the four roots of P ˜Yd,l
form a basis for W . The

remaining eigenvectors in a basis of eigenvectors for Yd,l can be chosen to be perpendicular to the

vectors in W . Thus, they may be chosen to be perpendicular to the characteristic vectors of the

parts in the four-part equitable partition since these characteristic vectors form a basis for W . This

implies that these eigenvectors will correspond to the non-trivial eigenvalues of the grahp obtained

as a disjoint union of 2Md+2−l and 2Cl. Thus, we determine Yd,l = ρ(d, l).

Similarly, we can determine Ỹd,l = Yd,l = ρ(d, l) when d is even.

Conjecture 3.2.5. If G is a d-regular graph such that for l ≥ 2,

λ2(G) < ρ(d, l),

then κ′(G) ≥ l + 1.

Notice that

d − 4 +
√

(d + 4)2 − 8(l + 1)

2
<

d − 3 +
√

(d + 3)2 − 8l

2
<

d − 4 +
√

(d + 4)2 − 8(l − 1)

2
(3.14)

Proposition 3.2.6. Assume that G is a d-regular graph with κ′(G) ≤ l for l ≥ 2. If there exists a

subset S ⊆ V (G) with |[S, S]| = κ′(G) and both |S| and |S| are at least d + 4 when d is odd and at

least d + 3 when d is even, respectively, then

λ2(G) ≥ ρ(d, l).

Proof. Let κ′(G) = t. By hypothesis, there exsit vertex subsets V1 and V2 in V (G) such that

|[V1, V2]| = t and V1 ∪ V2 = V (G). Let G[V1] = G1 and G[V2] = G2. Suppose that |V (G1)| = n1

and |V (G2)| = n2. We may assume that n1 ≤ n2. If d is odd, then it follows that n1 ≥ d + 2 and

ni is odd for each i = 1, 2.
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Consider the partition of V (G) into V1 and V2. The quotient matrix of the partition is






d − t
n1

t
n1

t
n2

d − t
n2






and its eigenvalues are d and d− t
n1

− t
n2

. Eigenvalue interlacing, n2 ≥ n1 ≥ d + 4, and l ≥ t imply

that λ2(G) ≥ d − t
n1

− t
n2

≥ d − 2t
d+4 > 2l

d+4 > ρ(d, l).

Similarly, we can prove for even positive integer d and in this case, it is ture for n1 ≥ d + 3.

This gives a partial positive answer to the Conjecture 3.2.6.

If we can prove the remaining cases n1 = d + 2 for odd d and n1 ≤ d + 2 for even d, then the

conjecture is true, but the cases give a lot of analytic cases. If l is small, then we might handle the

cases, but otherwise, we need to develop new techniques.
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Chapter 4

Extremal Problems for Regular

Graphs

In this chapter, we deal with three extremal problems in regular graphs.

In the first section, we study the Chinese Postman Problem in a connected (2r + 1)-regular

graph with n vertices, and the problem is equivalent to finding a smallest spanning subgraph in

which all vertices have odd degree. We establish an upper bound for the solution in cubic graphs

and characterize when equality holds.

In the second section, we prove that if G is a connected 4-regular graph with n vertices, then

the vertices of G can be covered using at most ⌈n
7 ⌉ disjoint paths. In addition, we propose several

open questions.

In the last section, we study relationships between average connectivity and other graph pa-

rameters. We prove an upper bound on average connectivity in terms of matching number. We

also establish a lower bound on the the average edge-connectivity of a connected cubic graph with

n vertices, and we characterize when equality holds in this bound.

4.1 Chinese Postman Problem

The Chinese Postman Problem in a graph is the problem of finding a shortest closed walk traversing

all the edges. In a (2r + 1)-regular graph, the problem is equivalent to finding a smallest spanning

subgraph in which all vertices have odd degree. In this section, we establish an upper bound for

the solution in cubic graphs and characterize when equality holds.

The Chinese Postman Problem was introduced in the early 1960s by the Chinese mathematician

Guan Meigu. Roughly speaking, a postman wishes to travel along every road in a city in order to

deliver letters, with the least possible total distance. More precisely, a postman tour in a connected
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graph G is a closed walk containing all the edges of G. The problem is to find a shortest postman

tour in G. An optimal postman tour in a connected graph G is a shortest closed walk traversing all

edges in G. Since all edges of G must be included, we are interested only in the additional length

needed. Let p(G) = l− |E(G)|, where l is the minimum length of a postman tour; we call p(G) the

parity number of G.

Since a postman tour is an Eulerian supergraph obtained by repeating some edges, p(G) equals

the minimum number of edges in a parity subgraph of G, where a parity subgraph is a spanning

subgraph H of G such that dG(v) ≡ dH(v) (mod 2) for every vertex v in G. In this section, we

obtain the best upper bound on the parity number of a connected cubic graph with n vertices. We

will show that a family that we introduced in Section 2 of Chapter 2 is the family of graphs having

the largest parity numbers among cubic graphs, for appropriate congruence classes n.

In Section 2 of Chapter 2, we defined Fn,r to be the family of all connected (2r + 1)-regular

graphs with n vertices. We also defined a special graph Br and a family H ′
r, which we now recall.

Example 4.1.1. Let Br be the graph obtained from the complete graph K2r+3 by deleting a

matching of size r + 1 and deleting one more edge incident to the remaining vertex. This is the

smallest graph in which one vertex has degree 2r and the others have degree (2r + 1). Thus Br is

the smallest possible balloon in a (2r + 1)-regular graph. Note that deleting the vertex of degree

2r (the neck) from Br leaves a subgraph having a perfect matching.

Let T ′
r be the family of trees such that every non-leaf vertex has degree 2r + 1. Let H′

r be the

family of (2r + 1)-regular graphs obtained from trees in T ′
r by identifying each leaf of such a tree

with the neck in a copy of Br.

We proved that H ′
r is the family of connected (2r + 1)-regular graphs that have the most cut-

edges among the graphs with a fixed number of vertices when the number of vertices is in an

appropriate congruence class. For r = 1, we show that these graphs are also the graphs in Fn,r

with largest parity number for given n. We conjecture that this also holds for larger r.

Conjecture 4.1.2. If G ∈ Fn,r, then p(G) ≤ (2r2+3r−1)n−2(r+1)
4r2+4r−2

− 1

The family H ′
r shows that Conjecture 4.1.2 cannot be improved when n is in appropriate con-

gruence classes.
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In Section 2.1, we proved the following proposition about graphs in H′
r.

Proposition 4.1.3. Let qr = 2r2 + 2r − 1. For any n-vertex graph G in H′
r,

b(G) = (2r−1)n+2
2qr

, and c(G) = r(n−2)−2
qr

− 1. ,

where b(G) and c(G) are the number of balloons in G and the number of cut-edges in G, respectively,

and n satisfies appropriate congruence classes.

Lemma 4.1.4. If G is regular of odd degree, then every cut-edge is in every parity subgraph.

Proof. Let e be a cut-edge in G. By the Degree-Sum Formula, each component of G − e has an

odd number of vertices. Since a parity subgraph has odd degree at each vertex, the Degree-Sum

Formula then implies that the parity subgraph must contain e.

Since every edge of a tree is a cut-edge, we obtain the following corollary.

Corollary 4.1.5. If G is a graph in H′
r, and T is the tree obtained by shrinking each Br in G to

one vertex, then every parity subgraph of G contains T .

Next, we determine the parity number of graphs in H′
r.

Proposition 4.1.6. If G is in H′
r, then

p(G) =
(2r2 + 3r − 1)n − 2(r + 1)

4r2 + 4r − 2
− 1,

which reduces to 2n−5
3 for cubic graphs.

Proof. Let T be the tree obtained by shrinking all the balloons in G. By Corollary 4.1.5, a parity

subgraph must use all the edges in T . A parity subgraph of G must contain all cut-edges, which

cover the necks of some balloons. A parity subgraph of G must add at least r + 1 more edges

in each balloon (since Br has 2r + 3 vertices, and all have odd degree in G). Hence, p(G) ≥

c(G) + (r + 1)b(G) = r(n−2)−2
qr

− 1 + (r + 1) (2r−1)n+2
2qr

= (2r2+3r−1)n−2(r+1)
4r2+4r−2

− 1 by Proposition 4.1.3.

By taking all edges of T plus a near perfect matching in each copy of Br, equality is achieved.
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Definition 4.1.7. An r-graph1 is an r-regular multigraph G on an even number of vertices such

that for every odd-sized subset X of V (G), the number of edges with exactly one endpoint in X is

at least r.

Remark 4.1.8. Note that if G is a 2-edge-connected cubic multigraph, then G is a 3-graph, since

the Degree-Sum Formula forces |[S, S]| = 3 for every odd-sized subset S of V (G). More generally,

if G is an (r− 1)-edge-connected r-regular multigraph with even order, then G is an r-graph for the

same reason. Also, every r-edge-colorable r-regular graph is an r-graph.

We need a fundamental result about r-graphs due to Edmonds.

Theorem 4.1.9. (Edmonds [22]) If G is an r-graph, then there is an integer p and a family M

of perfect matchings such that each edge of G is contained in precisely p members of M. (The

members of M need not be distinct.)

Lemma 4.1.10. If G is a 2r-edge-connected (2r + 1)-regular multigraph, in which each edge e

has weight w(e), then there exists a perfect matching with weight at most 1
2r+1W , where W =

∑

e∈E(G) w(e). For cubic graphs, the bound reduces to 1
3W .

Proof. Let M be a family of perfect matchings as guaranteed by Lemma 4.1.9. By counting two

ways, |M|n2 = (2r+1)n
2 p, which implies that |M| = p(2r + 1). Let M = {M1, · · · , Mp(2r+1)}, and

let w(Mi) be the total weight of all edges in Mi. Since
∑

w(Mi) = p
∑

e∈E(G) w(e) = pW , the

pigeonhole principle implies that a matching Mj with the smallest weight in the family has weight

at most 1
2r+1W .

For the proof of the main result, we need the concept of “threads”. A thread in a graph G is a

maximal path in G such that the internal vertices have degree 2 in G.

Theorem 4.1.11. If G ∈ Fn,1 and n ≥ 10, then p(G) ≤ 2n−5
3 . Equality holds infinitely often for

graph G ∈ H′
1.

1We note that there are at least three different meanings for r-graph in the literature. In [56], for example,
r-graph is defined as used here. With this definition, Seymour’s r-graph conjecture says that if G is an r-graph, then
χ′(G) ≤ r + 1. In Berge’s book [6], “r-graph” is used to mean directed multigraph with multiplicity at most r. In
[26], “r-graph” denotes an r-uniform hypergraph.
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Proof. Consider G ∈ Fn,1. If G has no balloons or if n = 10, then G has a perfect matching

and p(G) = n/2 ≤ 2n−5
3 . Otherwise, G has a balloon and n > 10. For n > 10, we proceed by

induction. Let e be a cut-edge. Let G1 and G2 be the components of G − e. Let G′
1 and G′

2

be the graphs obtained from G by replacing G2 and G1, respectively, with B1. By Lemma 4.1.4,

every parity subgraph of G′
i contains e and uses at least two edges in B1. Such a subgraph can be

formed using any parity subgraph of Gi, which has even degree at the endpoint of e in Gi. Hence,

p(G′
i) = p(Gi) + 3 and p(G) = p(G′

1) + p(G′
2) − 5. If neither G1 nor G2 is B1, then G′

1 and G′
2

are smaller than G. Letting ni = |V (G′
i)|, we have n = n1 + n2 − 10. By applying the induction

hypothesis to both G′
1 and G′

2,

p(G) = p(G′
1) + p(G′

2) − 5 ≤ 2n1 − 5

3
+

2n2 − 5

3
− 5 =

2n − 5

3
. (4.1)

In the remaining case, every cut-edge is incident to a copy of B1. Let each edge have weight

1. Form G′ by deleting all the vertices of all the balloons. If G′ is a cycle, then G has a perfect

matching and

p(G) =
n

2
<

2n − 5

3
. (4.2)

Otherwise, in G′, replace each thread through vertices of degree 2 with a single edge whose

weight is the length of the thread. Since the vertices of degree 2 have been suppressed and G′ is

2-edge-connected, the resulting weighted graph G′′ is a 3-graph by Remark 4.1.8. Thus by applying

Lemma 4.1.10, G′′ has a perfect matching with at most 1/3 of its total weight. The total weight

is m−8b
3 , where m is the number of edges in G and b is the number of balloons in G. Using

Proposition 2.1.2, we have

p(G) ≤ p(G′) + 3b ≤ m − 8b

3
+ 3b =

3n − 16b

6
+ 3b =

n

2
+

b

3
≤ n

2
+

1

3
(
n + 2

6
) ≤ 2n − 5

3
. (4.3)

We have proved that p(G) ≤ 2n−5
3 for a connected cubic graph G.

By Proposition 4.1.6, equality holds for graphs in H1.
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Note that a 10-vertex connected cubic graph G has p(G) = 5 = 2∗10−5
3 even though G is not in

H′
1. However, we show that if G has n vertices for n ≥ 16 and p(G) = 2n−5

3 , then G must be in H′
1.

Theorem 4.1.12. If G is a graph in Fn,1, then p(G) = 2n−5
3 if and only if n = 10 or G ∈ H′

1.

Proof. Since we proved that the condition is sufficient, it suffices to show that if G ∈ Fn,1 and

p(G) = 2n−5
3 , then n = 10 or G ∈ H′

1. If n < 10, then G has a perfect matching, which implies

that p(G) = 2
n > 2n−5

3 . Now, assume that n > 10. We use induction on n as in the proof of

Theorem 4.1.11. To achieve equality in the inequality (4.1), for i = 1, 2, G′
i must have p(Gi) = 2ni−5

3 .

Since neither compound obtained by deleting the cut-edge is B1, we have |V (Gi)| > 10. Thus, the

induction hypothesis applies, and G′
i is in H′

1, which implies that G must also be in H′
1. In the

case, where all cut-edges are incident to balloons, we have three subcases. If deleting the balloons

leaves a cycle, then p(G) = n
2 < 2n−5

3 . If it leaves a single vertex, then n = 16, b = 3 and G ∈ H′
1.

If it leaves a graph with minimum degree 2, then p(G) ≤ 5n+1
9 ≤]frac2n − 53 (by inequality (4.3),

with equality only when n = 16.

4.2 Path Cover Number

If P is a set of disjoint paths and every vertex in V (G) belongs to exactly one path in P, then we

call P a path cover of G. The path cover number of G, which we denote by q(G) is the minimum

size of such a set. We use q(G) here because we already used p(G) for the parity number of G; in

the literature, p(G) is the path covering number of G.

In 1996, Reed [55] proved that if G is a connected n-vertex cubic graph, then q(G) ≤ ⌈n
9 ⌉.

Interestingly, equality holds for the graphs in the family H1 defined in 4.2.1 when r = 1.

Example 4.2.1. Let Tr be the subfamily of T ′
r obtained by requiring all leaves to have the same

color in a proper 2-coloring. Let Hr be the subfamily of H′
r arising from trees in Tr by adding

balloons at leaves.

In 2009, Magnant and Martin [41] proved that if G is a connected 4-regular graph with n

vertices, then q(G) ≤ n
5 . They used the following lemma.
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Lemma 4.2.2. [41] If G is an r-regular graph, then there is an optimal path cover such that every

path in the cover has at least 2 vertices.

We improve their bound to ⌈n
7 ⌉.

Lemma 4.2.3. In a smallest path cover, two consecutive vertices on a path in the cover have

together at most two edges incident to endpoints of other paths.

Proof. If there is a smallest path cover P such that some consecutive vertices u and v on some path

P in P have together at least three edges incident to endpoints of other paths, then there exist

distinct endpoints u′ and v′ of some paths Pu′ and Pv′ such that u and v are adjacent to u′ and v′,

respectively. Now, we have the following two cases.

Case 1: Pu′ = Pv′.

Assume that a and b are endpoints of P , which are closer to u and v, respectively. Now, we delete

the two paths P and Pu′ from P and add the path P [a, u]uu′Pu′v′vP [v, b] to P. The new path

cover is smaller than P, which is a contradiction.

Case 2: Pu′ and Pv′ are different.

If we delete the three paths P , Pu′ and Pv′ from P and add the two paths P [a, u]uu′Pu′ and

P [b, v]vv′Pv′ to P, then the new path cover is smaller than P, which is a contradiction.

Theorem 4.2.4. If G is an n-vertex connected 4-regular graph, then q(G) ≤ ⌈n
7 ⌉.

Proof. By Lemma 4.2.2, there is an optimal path cover P using nontrivial paths. Among the paths

in P with i vertices, let Ci be the family of those whose two endpoints are adjacent in G (completing

a cycle), and let Pi be the family of those whose two endpoints are nonadjacent in G. Let ci = |Ci|

and pi = |Pi|. Thus,
P

i(ci+pi)
P

(ci+pi)
is the average number of vertices among the paths in P. If the

average order of paths in P is at least 7, then P ≤ n
7 . To prove that the average order is at least

7, we prove
∑

i≤6 ici +
∑

ipi
∑

i≤6 ci +
∑

pi
≥ 7.

Let A be the set of edges e in G such that

a) e is not an edge in any path in
⋃Pi nor an edge joining the endpoints of a path in

⋃ Ci, and

b) e is incident to an endpoint of a path in
⋃Pi or to a vertex of a path in

⋃ Ci.
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Orient the edges of A away from end-vertices of paths in
⋃Pi and away from vertices in

⋃ Ci.

We claim that the number of edges in A going into a path in Pi minus the number of edges of A

going out of the same path is at most






i − 8, if i is even,

i − 7, if i is odd.

Consider a path P in Pi. The endpoints of P have three departing edges in A and each two

consecutive vertices in P have at most two edges coming into the path by Lemma 4.2.3. Thus, if

i is even, then we have at most 2 i−2
2 − 6 = i − 8 net entering edges. If i is odd, then we have at

most 2 i−3
2 + 2 − 6 = i − 7 net entering edges.

Since each edge of A must end at some vertex, the sum of the differences in the above claim

minus the edges coming from cycles is zero. Because G is a connected even graph, the number of

edges in A starting in every element in C6 or C5 is at least 2. From a path in C4 at least one edge

must leave each vertex. From a path in C3, at least two must leave each vertex. Thus, we have

∑

pi (i − 7) − 2c6 − 2c5 − 4c4 − 6c3 ≥ 0.

Thus,
∑

(ipi) +
∑

i≤6(ici) ≥ 7
∑

(pi) + 8c6 + 7c5 + 8c4 + 9c3 ≥ 7(
∑

(pi) +
∑

i≤6(ci)).

The graphs in H1 show that the upper bound ⌈n
9 ⌉ on the path cover number of graphs in Fn,1

cannot be improved. We believe that also the graphs in the family Hr have the largest path cover

number for graphs in Fn,r. Similarly, we also conjecture that the graphs in Hr,t and H′
r,t give

us the largest path cover number in Fn,r,t and F ′
n,r,t, where Fn,r,t and F ′

n,r,t are the families of

(2t + 1)-edge-connected (2r + 1)-regular graphs and 2t-edge-connected 2r-regular graphs with n

vertices, respectively.

Recall that def(G) = maxS⊆V (G) o(G−S)−|S|, where o(G−S) is the number of odd components

in G−S. Next, we determine the path cover number of the graphs in each family mentioned above.

Theorem 4.2.5. For a graph G, q(G) ≥ def(G).
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Proof. Let S be a set of maximum deficiency in G, and let G′ = G−S. Note that q(G′) ≥ o(G−S).

Also, q(G) ≥ q(G′)−|S| because each vertex of S lies on only one path and thus permits combining

paths in components of G − S only once. Therefore, q(G) ≥ o(G − S) − |S| = def(G).

Corollary 4.2.6. If G is a graph in Hr, then q(G) = r
2r+1

(2r−1)n+2
2r2+2r−1

.

Proof. First recall that def(G) = r
2r+1

(2r−1)n+2
2r2+2r−1

by 2.1.2. By 4.2.5, we only need to show that

there exists a path cover P such that |P| = def(G).

For a graph G ∈ Hr, let T be the corresponding tree in Tr. Let X and Y be its partite sets,

with Y containing the leaves. Let S = X. Now o(G − S) = |Y |, since each vertex of Y is an

isolated vertex in G − S or is the neck of a copy of Br that is an odd component of G − S. Thus

def(S) = |Y | − |X|. Because Br has a spanning path starting at the neck, q(G) ≤ q(T ). Since T is

an induced subgraph of G, equality holds. We compute q(T ) inductively. When T = K1,2r+1, we

have def(S) = 2r. We can easily find a path cover for T with size 2r. For larger G ∈ Hr, let T ′

with corresponding graph G′ ∈ Hr be the tree from which T is expanded. In the expansion, |X|

increases by 2r and |Y | increases by 4r2, so def(S) increases by 4r2 − 2r. Comparing T with T ′,

one leaf is lost and 4r2 are created; the number of vertices increases by 4r2 + 2r. Now, we can add

to the path cover for T ′ a path cover with size 4r2 − 2r for the added vertices. This completes the

desired path cover for T .

Conjecture 4.2.7. If G is a graph in Fn,r, then q(G) ≤ r
2r+1

(2r−1)n+2
2r2+2r−1

.

Similarly, we conjecture for (2t + 1)-edge-connected (2r + 1)-regular graphs with n vertices and

for 2t-edge-connected 2r-regular graphs with n vertives.

Conjecture 4.2.8. If G is a graph in Fn,r,t, then q(G) ≤ r−t
2(r+1)2+t

n
2 .

Conjecture 4.2.9. If G is a graph in F ′
n,r,t, then q(G) ≤ r−t

2r2+r+t
n
2 .

If Conjecture 4.2.9 is true, then since the total domination of a k-regular graph G is at least 1
k ,

the following conjecture, one of Graffiti.pc conjectures, is true for k = 4 .

Conjecture 4.2.10. If G is an k-regular graph, then 2q(G) is at most the total domination number

of G.
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4.3 Average Connectivity and Average Edge-Connectivity

Connectivity and edge-connectivity of a graph measure the difficulty of breaking the graph apart,

but they are very much affected by local aspects like vertex degree. Average connectivity (and

analogously, average edge-connectivity) has been introduced to give a more refined measure of

the global “amount” of connectivity. In this section, we prove a relationship between the average

connectivity and the matching number in all graphs. We also give the best lower bound for the

average edge-connectivity over n-vertex connected cubic graphs, and we characterize the graphs

where equality holds. In addition, we show that this family has the fewest perfect matchings among

cubic graphs that have perfect matchings.

A graph G is k-connected if it has more than k vertices and every subgraph obtained by deleting

fewer than k vertices is connected. The connectivity of G, written κ(G), is the maximum k such

that G is k-connected. The connectivity of a graph measures how many vertices must be deleted

to disconnect the graph. However, since this value is based on a worst-case situation, it does not

reflect how well connected the graph is in a global sense. For example, a graph G obtained by

adding one edge joining two large complete graphs has the same connectivity as a tree. However,

it is much easier to disturb the tree, which is relevant if they both model communication systems.

In 2002, Beineke, Oellermann and Pippert [11] introduced a parameter to measure this dif-

ference. The average connectivity of a graph G with n vertices, witten κ(G), is defined to be

∑

u,v∈V (G)
κ(u,v)

(n

2)
, where κ(u, v) is the minimum number of vertices whose deletion makes v un-

reachable from u. By Menger’s Theorem, κ(u, v) is equal to the minimum number of internally

disjoint paths joining u and v. Note that κ(G) ≥ κ(G) = minu,v∈V (G) κ(u, v).

Regarding average connectivity, several properties are known. The following is one of them.

Theorem 4.3.1. (Dankelmann, Oellermann, 2003) [21] If G has average degree d and n vertices,

d

(
d

n − 1

)

≤ κ(G) ≤ d

We prove a bound on the average connectivity in terms of matching number. We first introduce

the definitions of M -alternating path and M -augmenting path.
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Definition 4.3.2. Given a matching M , an M -alternating path is a path that alternates between

edges in M and edges not in M . An M -alternating path whose endpoints are missed by M is an

M -augmenting path.

Theorem 4.3.3. For a connected graph G,

κ(G) ≤ 2α′(G), (4.4)

and this is sharp only for complete graphs with an odd number of vertices. In addition, if G is an

n-vertex connected bipartite graph, then

κ(G) ≤
(

9

8
− 3n − 4

8n(n − 8)

)

α′(G), (4.5)

and this is sharp only for the complete bipartite graph Kq,3q−2, where q is a positive integer.

Proof. First, we show that inequality (4.4) holds for any connected graph G. Let M be a maximum

matching in G, and let m = |M |. Let S = V (G) − V (M), s = |S|, and n = |V (G)|. Note that

n = 2m + s.

If s ≤ 1, then m ≥ n−1
2 , and the bound holds since k(G) ≤ n − 1 ≤ 2m. Thus, we may assume

that s ≥ 2.

For vv′ ∈ M , put v and v′ into T , T ′, or R as follows:

If neither v nor v′ has a neighbor in S, then put both in T . If v′ has a neighbor in S and v does

not, then put v ∈ T and v′ ∈ T ′. If both have neighbors in S, put them both in R. In this last

case, note that if v and v′ have distinct neighbors in S, then M is not maximal. Hence each has

exactly one neighbor in S, which forms a triangle with them.

We consider three cases to obtain lower bounds on κ(u, v) depending on the possible locations

of distinct vertices u and v.

Case 1: u ∈ S. First, note that S is independent. Furthermore, if P and P ′ are distinct internally

disjoint u, v-paths, then both of them must visit V (M) − T immediately after u. Since P and P ′

have no vertex in common, we have κ(u, v) ≤ 2m − t, where t = |T |.

Case 2: u, v ∈ T ′. Clearly, κ(u, v) ≤ n − 1 = 2m + s − 1
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Case 3: u ∈ R ∪ T . Recall that every vertex in R has exactly one neighbor in S. For the vertex

after u on a u, v-path, at most one vertex of S is available. Thus, if u ∈ R∪ T and v ∈ V (G), then

there are at most 2m candidates to begin such a path.

Thus, we have

κ(G) ≤
(2m − t)

((
s
2

)
+ s(n − s)

)
+ (2m + s − 1)

(
t′

2

)
+ 2m

((
n
2

)
−

(
s
2

)
−

(
t′

2

)
− s(n − s)

)

(
n
2

)

≤ (2m − t)
(
s
2

)
+ (2m + s − 1)

(
t′

2

)
+ (2m − t)ts + 2m(

(
n
2

)
−

(
s
2

)
−

(
t′

2

)
− ts)

(
n
2

)

= 2m +
(s − 1)

(
t′

2

)
− t

(
s
2

)
− t2s

(
n
2

) = 2m − t
s2 + 3ts + t − 1

n(n − 1)
≤ 2m. (4.6)

The last inequality of (4.6) holds because when t ≥ 1, s2 + 3ts + t − 1 ≥ 0 and when t = 0, we

have t s2+3ts+t−1
n(n−1) = 0.

To have equality in the last inequality of (4.6), we need to have t = 0 or t = 1.

When t = 1, equality requires s = 0, which implies that M is a perfect matching. Thus 2m = n
2 .

In this case, κ(G) ≤ n − 1 < n = 2m, which implies that we cannnot have equality in (4.6).

If t = 0 and s ≥ 2, then we have a bigger matching than M , since every vertex in R has exactly

one neighbor in S and G is connected. Thus, when t = 1, equality requires s = 1, which implies

2m = n− 1. If κ(G) = n− 1, then G = Kn. Thus, equality holds only when G is a complete graph

with an odd number of vertices.

To prove that inequality (4.5) holds, we consider an n-vertex connected bipartite graph G with

partite sets A and B. Let M be a maximum matching in G. Let m = |M |, let A1 = A − V (M),

and let B1 = B − V (M). Let B2 be all vertices in B that are reachable by an M -alternating path

from a vertex in A1, and let A2 be all vertices in A that are reachable by an M -alternating path

from a vertex in B1. Note that A1 ∩ A2 = ∅ and B1 ∩ B2 = ∅ and there are no edges of M joining

A2 and B2; otherwise we have a bigger matching than M by making a M -augmenting path, which

is a contradiction. Let A3 = A − (A1 ∪ A2) and B3 = B − (B1 ∪ B2). Let |Ai| = ai and |Bi| = bi

for i = 1, 2, 3.

We consider five cases to obtain lower bounds on κ(u, v) depending on the possible locations of
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distinct vertices u and v.

Case 1: u, v ∈ A2

Since every u, v-path must pass through a vertex in B, we have k(u, v) ≤ b = m + b1.

Case 2: u, v ∈ B2

Since every u, v-path must pass through a vertex in A, we have k(u, v) ≤ a = m + a1.

Case 3: u ∈ A and v ∈ (A − A2).

Since every u, v-path must pass through at least one vertex in B ∩ V (M), we have k(u, v) ≤ m.

Case 4: u ∈ B and v ∈ (B − B2).

Since every u, v-path must pass through at least one vertex in A ∩ V (M), we have k(u, v) ≤ m.

Case 5: u ∈ A − A2 and v ∈ B − B2

Every u, v-path must pass through at least two vertices in M except the path of length one uv,

which implies that k(u, v) ≤ m.

Thus, we have

k(G) ≤ m
(
n
2

)
+ a1

(
b2
2

)
+ b1

(
a2

2

)

(
n
2

) = m +
a1

(
b2
2

)
+ b1

(
a2

2

)

(
n
2

) ≤ m +
(a1 + b1)

(
b2+a2

2

)

(
n
2

) . (4.7)

Since no edge of M joins A2 to B2, all vertices of A2 match into B3 under M . Thus, we have a2 ≤ b3.

Similarly, we have b2 ≤ a3. Thus, we have (a1 + b1) + 2(a2 + b2) ≤ n and (a2 + b2) ≤ m. Since

n−2 ≥ (a1+b1)+2(a2+b2−1) ≥ 2
√

2(a1 + b1)(a2 + b2 − 1), we have (a1+b1)(a2+b2−1) ≤ (n−2)2

8 .

Thus, we have

k(G) ≤ m +
(a1 + b1)

(
b2+a2

2

)

(
n
2

) ≤ m +
(a1 + b1)(a2 + b2 − 1)

n(n − 1)
(a2 + b2)

≤ m +
(n − 2)2

8n(n − 1)
m =

9

8
m − 3n − 4

8n2 − 8n
m.

To have equality in the last inequality of (4.7), a1 = 0, b2 = 0 or b1 = 0, a2 = 0. Equality

holds for Kq,3q−2, since α′(Kq,3q−2) = q and κ(Kq,3q−2) =
(4q−2

2 )q+(q

2)(2q−3)

(4q−2
2 )

= q + q(q−1)2

(2q−1)(4q−3) =

9
8q − 3(4q−2)−4

8(4q−2)(4q−3)q.
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Figure 4.1: A graph G1 with κ(G1) = 1 + O( q
s) and κ′(G1) = q − 1

Next, we introduce the concept for edges analogous to average connectivity. A graph G is

k-edge-connected if every subgraph obtained by deleting fewer than k edges is connected; the edge-

connectivity of G, written κ′(G), is the maximum k such that G is k-edge-connected. The average

edge-connectivity of a graph G with n vertices, witten κ′(G), is defined to be
∑

u,v∈V (G) κ′(u, v)
/(

n
2

)
,

where κ′(u, v) is the minimum number of edges whose deletion makes v unreachable from u,

which is same as the number of edge-disjoint pathes between u, v. Note that κ′(G) ≥ κ′(G) =

minu,v∈V (G) κ′(u, v).

This new parameter shares certain properties with the average connectivity. Even if we replace

κ(G) in Theorem 4.3.1 and Theorem 4.3.3 by κ′(G), then the inequalities hold.

Theorem 4.3.4. If G has average degree d, and |V (G)| = n,

d2

n − 1
≤ k′(G) ≤ d

The proof is the same as the proof of Dankelmann and Oellermann.

Theorem 4.3.5. If G has matching number α′,

k′(G) ≤ 2α′(G)

If G is bipartite,

k′(G) ≤ 9

8
α′(G) − 3n − 4

8n2 − 8n
α′(G)

The proof is the same as in Theorem 4.3.3 if we look at the second vertex in sets of edge-disjoint

paths.
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However, consider the graph G1 in figure 1, which is the graph obtained from Ps+1 by replacing

an edge with a copy of Kq. Two successive copies of Kq share one vertex. The total number of

vertices is 1+s(q−1). Since κ(G1) = 1+O( q
s) and κ′(G1) = a−1, we have a big difference between

the average connecitivity and the average edge-connectivity of this graph.

In order to analyze average edge-connectivity of a regualr graph, we define several notions. If a

graph G has a cut-edge, then we get components after we delete all cut-edges of G. We define an

i-balloon to be such a component incident to i cut-edges. Note that 1-balloon is a balloon and for

any i ≥ 1, an i-edge-ballon is a maximal 2-edge-connected subgraph of G except when it is a single

vertex, and the resulting graph obtained by schrinking each i-balloon to a single vertex is a tree.

For a cubic graph, its smallest 1-balloon is the smallest possible balloon in a cubic graph, which is

B1. The smallest 2-ballon is K4 − e. We denote the smallest i-edge-balloon in a cubic graph by Bi.

Now we compute the average edge-connectivity of several cubic graphs with n vertices less than

10. Before doing it, we first give a lemma.

Lemma 4.3.6. If G has a vertex subset S in V (G) such that |[S, S]| < δ(G), then |S| ≥ δ(G) + 1.

Furthermore, if G is a (2r + 1)-regular graph and S is a vertex subset in V (G) such that |[S, S]| <

2r + 1, then |[S, S]| ≡ |S| mod 2

By the Degree-Sum Formula, we consider only even number of vertices. If n = 4, then it is

K4. Since edge-connecitivy of K4 is 3, we have κ′(K4) = 3
(
4
2

)
, which is greater than

(
4
2

)
+ 7×4+58

4 .

If n = 6, then κ′(G) = 3 since if its edge-connectivity is less than 3, then it has to have at least

8 vertices. Thus, the average edge-connectivity of a cubic graph with 6 vertices, 3
(
6
2

)
, is greater

than
(
6
2

)
+ 7×6+58

4 . If n = 8, then its edge-connectivity is at least 2 since if its edge-connecitivyt is

equal to 1, then it has to have at least 10 vertices. It its edge-connectivity is equal to 2, then it is

the graph obtained by adding two edges between two B′
1s. Its edge-connectivity is 2

(
8
2

)
+ 2, and

note that 3
(
8
2

)
≥ 2

(
8
2

)
+ 2. Thus, The average edge-connectivity of a cubic graph with 8 vertices is

greater than
(
8
2

)
+ 7×8+58

4 . Now, we prove that every cubic graph other than K4 satisfies the bound

in the following theorem.
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Theorem 4.3.7. If G is a connected cubic graph G with n vertices, which is not K4, then

κ′(G)

(
n

2

)

≥
(

n

2

)

+
7n + 58

4
.

Proof. Consider a minimal counterexample G with n vertices.

Claim 1: The edge-connectivity of G is 1. If not, then κ′(G)
(
n
2

)
≥ 2

(
n
2

)
≥

(
n
2

)
+ 7n+58

4 for n ≥ 10.

In the above, we showed that a cubic graph with vertices less than 10 satisfies the bound when it

is not K4.

claim 2: Every 1-balloon of G is B1. If D1 is an 1-balloon of G with D1 6= B1 and |V (D1)| = 5+a,

then Degree-Sum formula guarantees that a is an even positive integer, which imples that a ≥ 2.

Let G′ be the graph obtained from G by replacing D with B1. Note that G′ is cubic. In addition,

since G′ also has a cut-edge, 10 ≤ n − a = |V (G′)| ≤ |V (G)|. Since G is larger graph than G′,

which is not K4, by the hopothesis of G, we have K ′(G′)
(
n−a

2

)
≥

(
n−a

2

)
+ 7

4(n − a) + 29
2 . By the

construction of G′ and the fact that B is 2-edge-connected,

K ′(G)

(
n

2

)

= K ′(G′)

(
n − a

2

)

− K ′(B1)

(
5

2

)

− 5(n − a − 5) + K ′(B)

(
5 + a

2

)

+ (5 + a)(n − a − 5)

≥
(

n − a

2

)

+
7

4
(n − a) +

29

2
− 26 − 5(n − a − 5) + 2

(
5 + a

2

)

+ (5 + a)(n − a − 5)

=

(
n

2

)

+
a2 + a − 2an

2
+

7

4
n − 7a

4
+

29

2
− 26 + (5 + a)(5 + a − 1) + a(n − a − 5)

=

(
n

2

)

+
7

4
n +

2a2 + 11a + 34

4
>

(
n

2

)

+
7

4
n +

29

2

for a ≥ 2, which is a contradiction to the assumption that G is a counterexample.

Claim 3: Every 2-balloon of G is B′
1. If D2 is an 2-balloon of G with D2 6= B′

1 and |D2| = 4 + a,

then then Degree-Sum formula guarantees that a is an even positive integer, which imples that

a ≥ 2. Let G′ be the graph obtained from G by replacing D2 with B′
1 in order that G′ is a

cubic graph. Thus, G′ has n − a vertices for a ≥ 2, and by the hypothesis that G is a minimal

counterexample, K ′(G′)
(
n−a

2

)
≥

(
n−a

2

)
+ 7

4(n−a)+ 29
2 . By the construction of G′, and the fact that
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B′ is 2-edge-connected, we have

K ′(G)

(
n

2

)

= K ′(G′)

(
n − a

2

)

− K ′(B′
1)

(
4

2

)

− 4(n − a − 4) + K ′(B)

(
4 + a

2

)

+ (4 + a)(n − a − 4)

≥
(

n − a

2

)

+
7

4
(n − a) +

29

2
− 13 − 4(n − a − 4) + 2

(
4 + a

2

)

+ (4 + a)(n − a − 4)

=

(
n

2

)

+
a2 + a − 2an

2
+

7

4
n − 7a

4
+

29

2
− 13 + a(n − a − 4) + (4 + a)(4 + a − 1)

=

(
n

2

)

+
7

4
n +

29

2
+

2a2 + 7a + 48

4
>

(
n

2

)

+
7

4
n +

29

2

for a ≥ 2, which is a contradiction to the assumption that G is a counterexample.

Claim 4: G has no k-balloons for k ≥ 3. Assume that G has a k-balloon for k ≥ 3. Since G

contains B1 as an induced subgraph by Claim 1, choose a k-balloon Dk for k ≥ 3 which is closest to

B. Dk is incident to B′
1s or B1 by the choice of Dk. If k ≥ 4, then |V (Dk)| ≥ k since each vertex in

V (Dk) is incident to at most one cut-edge. Thus, we can assume that |V (Dk)| = k + a with a ≥ 0.

Suppose that there are m B4s between B and D. Let G′ be the graph obtained from G by deleting

all B4s between Dk and B1, deleting B1, and replacing Dk with Ck−1 and attching each cut-edge

except one between D and B to each vertex in Ck−1. Note that G′ has n − a − 4m − 6 vertices.

Thus, we have K ′(G′)
(
n−a−4m−6

2

)
≥

(
n−a−4m−6

2

)
+ 7

4(n− a− 4m− 6) + 29
2 . The construction of G′

guarantees that

K ′(G)

(
n

2

)

= K ′(G′)

(
n − a − 4m − 6

2

)

− K ′(Ck−1)

(
k − 1

2

)

−(k − 1)(n − a − 4m − k − 5) +

(
4m + 5 + a + k

2

)

+ (K ′(D) − 1)

(
k + a

2

)

+m(K ′(B4) − 1)

(
4

2

)

+ (K ′(B5) − 1)

(
5

2

)

+ (4m + 5 + a + k)(n − 4m − a − k − 5)

≥
(

n − a − 4m − 6

2

)

+
7

4
(n − a − 4m − 6) +

29

2
− 2

(
k − 1

2

)

− (k − 1)(n − a − 4m − k − 4)

+

(
4m + 5 + a + k

2

)

+

(
k + a

2

)

+ 7m + 16 + (4m + 5 + a + k)(n − 4m − a − k − 5)
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=

(
n

2

)

+
7

4
n+

1

2
a2− 9

4
a+19+k+ka =

(
n

2

)

+
7

4
n+

29

2
+

1

2
((a− 9

4
)2+

63

16
)+k+ka ≥

(
n

2

)

+
7

4
n+

29

2

, which is a contradiction to the hypothesis that G is a counterexample.

Thus, we can assume that k is equal to exactly 3. Let |V (D3)| = a. Note that a ≥ 1. Assume

that there are m B4s between B and D. Let G′ be the graph obtained from G by deleting all B4s

between D3 and B, deleting B, replacing D with B4, and attaching each of two remaining cutedges

to vertices of B4 with degree 2. Note that G′ has n− a− 4m− 1 vertices. Since G′ is smaller than

G, we have K ′(G′)
(
n−a−4m−a

2

)
≥

(
n−a−4m−1

2

)
+ 7

4(n− a− 4m− 1) + 29
2 . By the construction of G′,

we have

K ′(G)

(
n

2

)

= K ′(G′)

(
n − a − 4m − 1

2

)

− K ′(B4)

(
4

2

)

− (4)(n − a − 4m − 5)

+

(
a + 4m + 5

2

)

+(k′(D)−1)

(
a

2

)

+m(k′(B4)−1)

(
4

2

)

+(k′(B5)−1)

(
5

2

)

+(a+4m+5)(n−a−4m−5)

≥
(

n − a − 4m − 1

2

)

+
7

4
(n − a − 4m − 1) +

29

2
− 13 − 4(n − a − 4m − 5) +

(
a + 4m + 5

2

)

+

(
a

2

)

+7m + 16 + (a + 4m + 5)(n − a − 4m − 5) =

(
n

2

)

+
7

4
n +

1

2
a2 − 9

4
a +

87

4
+ 4k

=

(
n

2

)

+
7

4
n +

1

2
(a − 9

4
)2 +

615

32
+ 4k >

(
n

2

)

+
7

4
n +

29

2

,which is a contradiction to the assumption that G is a counterexample. Therefore, G contains no

k-balloons for k ≥ 3. By the above claims, the minimal counter example should be a graph consists

of only B4 and B5. After contracting each edge-block of G, we should get tree with maximum

degree 2, which is a path. Thus G should be two B5 on the endvertices and B4s are attached each

other. But in that case, k′(G) =
(
n
2

)
+ 7

4n + 29
2 , which satisfy the proposition.

Thus, it contradicts the assumption that G is a counterexample. And the inequality is sharp only

for n ≡ 2 mod 4 by the above example.

Figure 4.2 describes an infinite family of graphs for which equality holds in Theorem 1.3.4.

We make the following conjecture for (2r + 1)-regular graphs.
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Figure 4.2: A graph for which equality in Theorem 1.3.4 holds

Conjecture 4.3.8. If G is a connected (2r + 1)-regular graph G with n vertices, then

K ′(G)

(
n

2

)

≥ min{2
(

n

2

)

,

(
n

2

)

+
(r − 2)(r2 + 2r − 1)

2(r + 1)
n +

r3 + 4r2 + r − 8

r + 1
}.

If the above conjecture holds, then we know that it is sharp for infinitely many n. Let A = Br

and B = K2r+2 − e. Consider a path P with length at least 1. Replace both end-vertices of P by

A and the other vertices of P by B. We define a (2r + 1)-chain to be the resulting graph.

The graphs when equality in Theorem 4.3.7 holds are also helpful to find a lower bound for the

number of perfect matchings in cubic graphs.

We denote the number of perfect matchings in G by pm(G).

Theorem 4.3.9. (Edmonds, Lov’asz and Pulleyblank [24]; Naddef [42]) If G is an n-vertex con-

nected cubic graph without cut-edges, then pm(G) ≥ n
4 + 2.

We will use Plésnik’s Theorem, which states that if G′ is the graph obtained from a (k − 1)-

edge-connected k-regular multigraph G by deleting at most k− 1 edges in G, then G′ has a perfect

matching.

Lemma 4.3.10. If B is a balloon with the nect v in a cubic graph, then there are at least two near

perfect matchings not using v.

Proof. Let x and y be the two vertices adjacent to v in B. Let B′ be the resulting graph obtained

from B by adding an edge between x and y after deleting the vertex v. Note that B′ is a cubic

multigraph without cut-edges. By Plésnik’s Theorem, there are at least two perfect matchings not

using the added edge, which implies that there are at least two near perfect matchings in B.

Theorem 4.3.11. Every n-vertex connected cubic graph with a perfect matching except for K4 has

at least four perfect matchings. In addition, equality holds for all 3-chains.
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Proof. Assume that G is a connectec cubic graph with n vertices other than K4. Note that n ≥ 6.

If G has no cut-edges, then by Theorem 4.3.9, G has at least four perfect matchings.

Now, assume that G has a cut-edge. Hence we have at least two balloons, by 2.1.6. By

Lemma 4.3.10, each balloon has at least two near-perfect matchings not using its neck, where the

neck of a balloon is the vertex with degree 2. Since there are are at least two balloons, we have at

least four perfect matchings.

Consider 3-chain G. There are exactly two near perfect matchings in each copy of B1 in G and

since every perfect matching in G has to use all cut-edges in G, we have only one choice in each

copy of K4 − e. Thus, we have exactly four perfect matchings in G.
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Chapter 5

r-dynamic Coloring of Graphs

An r-dynamic proper k-coloring of a graph G is a proper k-coloring of G such that every vertex

in V (G) has neighbors in at least min{d(v), r} different color classes. The r-dynamic chromatic

number of a graph G, written χr(G), is the least k such that G has an r-dynamic proper k-coloring.

Our main result in this chapter is that if G is a k-regular graph and k ≥ 7r ln r, then χr(G) ≤ rχ(G),

where χ(G) is the chromatic number of G. In addition, we study the 2-dynamic chromatic number

of a graph and the r-dynamic chromatic number of the cartesian product of two graphs.

5.1 Introduction

A teacher makes the following assignment: Each student must choose a country to study and

explain to his or her friends. Each student with at least r friends must hear from friends about

r different countries. A student with fewer friends must hear about different countries from all

friends. In both cases, no two friends can study the same country. The students can plan together

who will study which country. How many countries are needed? This problem models r-dynamic

coloring of graphs.

An r-dynamic proper k-coloring of a graph G is a proper coloring c from V (G) to a set S of k

colors such that |c(N(v))| ≥ min{r, d(v)} for each vertex v in V (G), where c(S) = {c(v) : v ∈ S} for

a vertex subset S. The r-dynamic chromatic number of a graph G, written χr(G), is the minimum

k such that G has an r-dynamic proper k-coloring. Thus, χr(G) is the number of countries the

students need. (Put a history about conditional coloring.)

The 1-dynamic chromatic number of a graph G is equal to its chromatic number. The 2-dynamic

chromatic number of a graph has been studied under the name dynamic chromatic number in the
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papers [40], [1], [2], and [37]. Montgomery introduced the notion of dynamic chromatic number

in his dissertation [40]. He conjectured that if G is a regular graph, then χ2(G) ≤ χ(G) + 2,

which is still open. In [1], Akbari, Ghanbari, and Jahanbekam proved that the conjecture is true

for bipartite regular graphs. They also studied the dynamic chromatic number of the cartesian

product of two graphs in [2] and the list dynamic chromatic number of general graphs in [3]. In

2003, Lai, Montgomery, and Poon [37] proved that χ2(G) ≤ ∆(G) + 1 except for C5.

Here are some simple examples to illustrate the definiton of r-dynamic coloring when r = 2.

The 2-dynamic chromatic number of Pn is just equal to its chromatic number when n ≤ 2. If n ≥ 3,

then 1, 2, 3, 1, 2, 3, . . . , is a 2-dynamic 3-coloring of Pn. Since three consecutive vertices of Pn must

be colored differently, χ2(Pn) = 3 for n ≥ 3. Similarly, χ2(Cn) is equal to 3 if n is a multiple of 3,

equal to 5 if n = 5, and equal to 4 otherwise.

Note that χr(G) ≤ χr+1(G), since an (r+1)-dynamic coloring of G is an r-dynamic coloring of G,

by definition. Since each vertex of a path or a cycle has degree at most 2, we have χr(Pn) = χ2(Pn)

and χr(Cn) = χ2(Cn) for r ≥ 2. However, if ∆(G) > 2, then χ2(G) and χ3(G) may be different.

For example, if P is the Petersen graph, then χ2(P ) = 4 and χ3(P ) = 10.

The Kneser graph K(n, k) is the graph with the vertex set
([n]

k

)
in which u is adjacent to v if

and only if u∩v = ∅. The Petersen graph P is the Kneser graph K(5, 2). Although we know χr(P )

for every r, we do not know χr(K(n, k)) in general. When r = 2, we know that χ2(K(n, k)) ≤

χ(K(n, k)) + 2 = n − 2k + 4, which gives support to the conjecture that χ2(G) ≤ χ(G) + 2 when

G is regular. Also, it is easy to show that χ2(K(n, k)) = n − 2k + 2 = χ(K(n, k)) for n ≥ 3k. For

2k ≤ n < 3k, we believe that χ2(K(n, k)) = n− 2k + 3 = χ(K(n, k)) + 1. However, we do not even

guess for χr(K(n, k)) when r ≥ 3.

The following observations are immediate from the definition.

Observation 5.1.1. χr(G) ≥ min{∆(G), r} + 1

Observation 5.1.2. If ∆(G) ≤ r, then χr(G) = χ∆(G)(G).

Observation 5.1.1 holds with equality for trees.

Theorem 5.1.3. For a tree T , χr(T ) = min{∆(T ), r} + 1
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Proof. If we take one vertex as a root and iteratively color children of each vertex greedily with

colors different from the parent, then the specified number of colors suffices.

5.2 χ(G) and χr(G)

There are many upper bounds and lower bounds for the chromatic number of a graph in terms

of graph parameters. For example, χ(G) ≤ ∆(G) + 1. The same bound holds for the 2-dynamic

chromatic number of G, except for C5 [37]. Some graphs achieve equality, like Petersen graph or

Cn when n is a multiple of 3. However, we still cannot characterize when equality holds.

Since χ2(G) ≥ χ(G), proving that an upper bound on χ(G) is also an upper bound on χ2(G)

is a stronger result. Another upper bound on the chromatic number is χ(G) ≤ 1 + l(G), where

l(G) is the length of a longest path in G. Also, χ2(G) ≤ l(G) + 1 [40]. However, the fact that

χ(G) ≤ 1 + l(D) for any orientation D of G is not true for χ2(G). Here are counterexamples. Let

A = {1, 2, · · · , n} and B =
(

n
[r]

)
. For a ∈ A and an r-subset b ∈ B, if a ∈ b, then include the edge

ab. Let H be the resulting graph. Note that for a ∈ A, d(a) =
(
n−1
r−1

)
and for b ∈ B, d(b) = r.

Since H is bipartite, χ(H) = 2. Furthermore, χr(H) = n since no r-dynamic coloring gives the

same color to two vertices in A, but when vertices of A have distinct colors, it is easy to complete

an r-dynamic. This example shows that the gap between χ(G) and χr(G) may be unbounded. It

also shows that χr(G) cannot be bounded by 1 + l(D) when D is an orientation of G, since if we

orient each edge from A to B, then the length of a longest path in the resulting orientation is just

2 and χr(G) is arbitrary large.

In 2010, Akbari et al. [1] proved that χ2(G) ≤ 2χ(G) for a regular graph G. More generally,

we prove χr(G) ≤ rχ(G) for large enough r. In fact, it is not true for r = 3, since for the Petersen

graph P , we have χ3(P ) = 10 and χ(P ) = 3.

For k-regular graphs, we can use a random r-coloring of the vertices to show that χr(G) ≤ rχ(G)

when k is sufficiently large in terms of r. We need the probability that some r neighbors of each

vertex have distinct colors. The Stirling number S(k, r) of the second kind is the number of

partitions of [k] into r (nonempty) unlabeled blocks.
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Lemma 5.2.1. Let H be a k-uniform hypergraph, and fix r with r ≤ k. Color the vertices of H

from a set of r colors, with each vertex receiving each color with probability 1
r independently. For

each e ∈ E(H), the probability that e receives fewer than r colors is r!S(k,r)
rk .

Proof. The colorings of e using all r colors correspond to partitions of k elements into r nonempty

labeled blocks. By the definition of the Stirling number, there are r!S(k, r) such colorings. They

are equally likely.

Lemma 5.2.2. (Symmetric Local Lemma) Let A1, ..., An be events such that each is mutually

independent of some set of all but d − 1 of the other events, and suppose that P (Ai) ≤ p for all i.

If epd < 1, where e = 2.71828 · · · , then P (∩Ai) > 0.

Lemma 5.2.3. If H is a k-uniform hypergraph and ep(k(∆(H)−1)+1) < 1, where p = 1− r!S(k,r)
rk ,

then there is an r-coloring of V (H) such that every edge in E(H) has r colors on it.

Proof. Color the vertices of H independently and uniformly at random from a set of r colors. For

any e ∈ E(H), let Ae be the event that e has at most r − 1 colors. The event Ae is determined by

choices on the vertices of e, so Ae is mutually independent of all events for edges that do not intersect

e. These include all but at most k(∆(H)−1)+1 events. By Lemma 5.2.1, P (Ae) = 1− r!S(k,r)
rk . By

Lemma 5.2.2, since ep(k(∆(H)− 1)+1) < 1 by hypothesis, there exists an outcome of the coloring

in which each edge of H has r colors.

Theorem 5.2.4. If G is a k-regular graph and ep(k(k − 1) + 1) < 1, where p = 1 − r!S(k,r)
rk , then

χr(G) ≤ rχ(G).

Proof. Define a hypergraph H such that V (H) = V (G) and E(H) = {N(v) : v ∈ V (G)}. Thus,

H is a k-uniform hypergraph with ∆(H) = k. By Lemma 5.2.3, since ep(k(k − 1) + 1) < 1 by

hypothesis, there is an r-coloring of V (H) such that every edge in E(H) has r colors on it. Let c1

be such an r-coloring of H, and let c2 be a proper χ(G)-coloring of G. If we let c(v) = (c1(v), c2(v))

for v ∈ V (G), then c is an r-dynamic rχ(G)-coloring of G, which implies that χr(G) ≤ rχ(G).

Now, we may wonder how large k needs to be in terms of r so that the inequality ep(k(k−1)+1) <

1 in Theorem 5.2.4 holds.
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Lemma 5.2.5. If p is the probability that a given edge of a k-uniform hypergraph H receives fewer

than r colors in a random r-coloring of V (H), then p ≤ (r−1)k

rk−1 .

Proof. By Lemma 5.2.1, p = 1 − r!S(k,r)
rk . A standard elementary computation by Includsion-

Exclusion yields S(k, r) = 1
r!

∑r
i=0(−1)i

(
r
i

)
(r − i)k. Thus, p ≤ r(r−1)k

rk ≤ (r−1)k

rk−1 .

Corollary 5.2.6. If G is a k-regular graph with k ≥ 7r ln r and r ≥ 2, then χr(G) ≤ rχ(G).

Proof. When r = 2, we have e (r−1)k

rk−1 (k(k − 1) + 1) = e 1
2k−1 (k2 − k + 1) < 1

2k−3 k2 < 1 for k ≥

7 ∗ 2 ln 2 > 9.7 since 2k−3 > k2 for k > 9.7. When r = 3, we have e 2k

3k−1 (k2 − k + 1) < e 2k

3k−1 k2 < 1

for k ≥ 7 ∗ 3 ln 3 > 23 since (3
2)k−1 > 2ek2 for k ≥ 23. Let f(r, k) = ln(e (r−1)k

rk−1 k2). Since

e (r−1)k

rk−1 (k(k − 1) + 1) < ef(r,k), we only need to show f(r, k) < 0 for r ≥ 4. By the familiar

inequality 1 − x < e−x, we have ln(1 − 1
r ) < −1

r . By letting g(r) = f(r, 7r ln(r)), we have

g(r) = 1 + 2 ln 7 + 3 ln r + 2 ln(ln r) + 7r ln r ln(1 − 1

r
)

< 1 + 2 ln 7 + 3 ln r + 2 ln(ln r) + 7r ln r(−1

r
)

= 1 + 2 ln 7 + 2 ln(ln r) − 4 ln r.

By setting h(r) to be the last expression, we have g(r) < h(r). Since h(4) < 0 and h′(r) = 2
rlnr − 4

r =

2
r

1
ln r − 2 < 0, we have h(r) < 0 for r ≥ 4. Since g(r) < h(r), g(r) < 0 for r ≥ 4. Thus, g(r) < 0 for

r ≥ 4. Now, with k = 7r ln r, we have that f(r, k) is negative for r ≥ 4. If we differentiate f(r, k)

in terms of k, then

d

dk
f(r, k) =

2

k
+ ln(r − 1) − ln(r) <

1

4r ln r
+ ln(1 − 1

r
)

<
1

4r ln r
+ (−1

r
) =

1 − 4 ln(r)

4r ln r
< 0

for k ≥ 7r ln r and r ≥ 4. Thus, f(r, k) decreases as k increases for k ≥ 6r ln r. Since we showed

that f(r, 7r ln r) < 0, also f(r, k) < 0 for k ≥ 7r ln r, so e (r−1)k

rk (k(k − 1) + 1) < ef(r,k) < 1 for

r ≥ 2.

84



When r is small, we can find better bounds for k than 7r ln r for the application of Corol-

lary 5.2.6. For example, k = 8, 18, 30, 43, 56 are enough for r = 2, 3, 4, 5, 6, respectively. Further-

more, the Theorem 5.2.4 guarantees that if r is large enough, and G is k-regular, then χr(G) ≤

r(k + 1), since χ(G) ≤ k + 1.

Now, we propose the following conjecture:

Conjecture 5.2.7. For fixed r, it is ture for every graph G with sufficiently large maximum degree

that χr(G) ≤ (r − 1)(∆(G) + 1) except for finitely many graphs.

By [37], we know that it is true except for C5 when r = 2. In general, we do not even know

whether χr(G) ≤ r(∆(G) + 1) except for finitely many graphs. Note that since the 3-dynamic

chromatic number of the Petersen graph is 10, it is not true that χr(G) ≤ rχ(G) for every regular

graph and every r.

5.3 2-Dynamic Coloring

The case r = 2 of r-dynamic coloring was previously studied under the name ”dynamic coloring”.

In this section, we study some properties of a 2-dynamic coloring of graphs. In the dissertation of

Montgomery [40], there is the following conjecture for regular graphs.

Conjecture 5.3.1. If G is a k-regular graph, then χ2(G) ≤ χ(G) + 2.

Note that since χ2(C5) = 5 = χ(C5) + 2 and χ2(Cn) ≤ 4 for n 6= 5, the conjecture is true for

k = 2, and since χ2(G) ≤ ∆(G)+1 except for C5, and χ(G) ≤ 2 if G has an edge, the conjecture is

true for k = 3. We prove that the inequality in the conjecture holds for every graph with diameter

at most 2.

Theorem 5.3.2. If the diameter of a graph G is at most 2, then χ2(G) − χ(G) ≤ 2.

Proof. Consider a minimal counterexample G. Let c be a proper χ(G)-coloring of G, and let S be

the set of vertices in G with degree at least 2 not having neighbors with distinct colors under c.

Since G is a counterexample, the set S is nonempty. Among the vertices of S, let v be one whose

degree in G is smallest. We may assume that v has color 1 and all neighbors of v have color 2.
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Since the diameter of G is at most 2, every vertex u not in N [v] has a neighbor in N(v), which

implies that u has a neighbor with color 2. Thus, every vertex w in S has color 2 or a neighbor

with color 2. Let S1 = {w ∈ S : c(N(w)) = 2}, and let S2 = {w ∈ S : c(w) = 2}. Since c is a

proper coloring, no vertex outside N(v) has color 2, so S1 ∩ N(v) = and S2 ⊆ N(v). Now, since

every vertex in S1 has a neighbor in N(v) and v has minimum degree among the vertices in S, the

vertices in S1 must have the same neighborhood as v.

Now, if we change the color of one of the neighbors of v, say a, to χ(G)+ 1, then each vertex of

S1 has neighbors with distinct colors. Now if S2 is empty, then this yields a 2-dynamic (χ(G) + 1)-

coloring of G. Let S′
2 = {x ∈ S2 : x is not adjacent to a}. If S′

2 is not empty, then choose a vertex

y with minimum degree in G among the vertices of S′
2. With a similar argument, we conclude

that any other vertex in S′
2 has the same neighborhood as y. By changing the color of one of the

neighbours of y from 1 to χ(G) + 2, we obtain a 2-dynamic (χ(G) + 2)-coloring of G, which is a

contradiction.

The graph H in Section 5.2 shows that if the diameter of a graph is bigger than 2, then the gap

between χ(G) and χ2(G) may be big.

5.4 Cartesian Product

In this section, we study the cartesian product of two graphs. In particular, the r-dynamic chro-

matic number of the cartesian product of two paths and of two cycles will be investigated. Before

computing the numbers, we first prove an upper bound for the r-dynamic chromatic number of the

cartesian product of two graphs.

Theorem 5.4.1. Let G1 and G2 be graphs. If δ(G1) ≥ r, then χr(G1¤G2) ≤ max{χr(G1), χ(G2)}.

Proof. Let c1 be an r-dynamic coloring of G1 with colors {1, . . . , χr(G1)}, and let c2 be a proper

χ(G2)-coloring of G2. Let M = max{χr(G1), χ(G2)}. To define a color c on G1¤G2, for (v1, v2) ∈

V (G1¤G2), let c((v1, v2)) = c1(v1) + c2(v2) mod M . If (v1, v2) is adjacent to (v′1, v
′
2), then

c1(v1) 6= c1(v
′
1) or c2(v2) 6= c2(v

′
2), which implies c(v1, v2) 6= c(v′1, v

′
2). Thus, c is a proper coloring.
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Furthermore, c is an r-dynamic coloring, since |c(N((v1, v2)))| ≥ |c1(v1)| ≥ min{r, d(v1)} = r.

Thus, χr(G1¤G2) ≤ max{χr(G1), χ(G2)}.

Other simple graphs we can consider are cartesian products of pathes and cycles. Akbari, Chan-

bari, and Jahanbekam [2] determined the 2-dynamic chromatic number of G¤H when ∆(H) ≤ 2.

Theorem 5.4.2. [2] If m and n are at least 2, then χ2(Pm¤Pn) = 4. Furthermore,

χ2(Cn¤Pm) =







3 3 | n

4 3 ∤ n, and m 6= 1

χ2(Cn) m = 1

, and χ2(Cm¤Cn) =







3 3 | mn

4 3 ∤ mn

.

Now, we investigate higher dynamic chromatic numbers of such products. When m or n is equal

to 1, we already know χr(Pn¤Pm) from Observation 5.1.2.

Theorem 5.4.3. If m and n are at least 2, then

for r ≥ 4, χr(Pm¤Pn) =







4 min{m, n} = 2

5 otherwise.

and,

χ3(Pm¤Pn) =







4 min{m, n} = 2

4 m and n are both even

5 otherwise, except possibly when one is odd and the other is an odd multiple of 2,

Proof. First, we determine χr(Pm¤Pn) for r ≥ 4 when min{m, n} > 2. If min{m, n} > 2, then

∆(Pm¤Pn) = 4. By Observation 5.1.2, χr(Pm¤Pn) = χ4(Pm¤Pn), and by Observation 5.1.1,

χ4(Pm¤Pn) ≥ 5. Let {(i, j) : 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1} be the vertex set of Pm¤Pn. If we

define a coloring c on V (Pm¤Pn) by c(i, j) = i + 2j mod 5, then c is a 4-dynamic 5-coloring of

Pn¤Pm, because it is a proper coloring and the neighbors of any vertex have distinct colors. Thus,

χ4(Pn¤Pm) = 5.
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c =

0 2 4 1 3

1 3 0 2 4

2 4 1 3 0 · · ·

3 0 2 4 1

4 1 3 0 2

...
. . .

Let g be the function with g(4k) = 0, g(4k + 1) = 2, g(4k + 2) = 1, and g(4k + 3) = 3 for all

k ∈ Z. Now, we define a coloring h on Pm¤Pn by h(i, j) = g(i) + j mod 4 for i = 0, 1 mod 4

and by h(i, j) = g(i) − j mod 4 for i = 2, 3 mod 4.

When min{m, n} = 2 and when m and n are both even, the function h is a 3-dynamic proper

4-coloring of Pm¤Pn.

h =
0 1 2 3 0

2 3 0 1 2
· · · when m = 2

h =

0 1 2 3 0 1

2 3 0 1 2 3

1 0 3 2 1 0

3 2 1 0 3 2

when m = 4 and n = 6

Now, consider the lower bound for this case. We already know that χ3(Pm¤Pn) = χ2(Pm¤Pn) =

4 when m = n = 2. If max{m, n} ≥ 3, then ∆(Pm¤Pn) ≥ 3. By Observation 5.1.1, χ3(Pm¤Pn) ≥

4. Thus χ3(Pm¤Pn) = 4 when min{m, n} = 2 and when m and n are both even.

Furthermore, when min{m, n} = 2, ∆(Pm¤Pn) = 3. By observation 5.1.2, χ4(Pm¤Pn) =

χ3(Pm¤Pn) = 4.

Now, the remaining case is when m or n is not divisible by 2; we need to show that four colors

are not enough. Assume to the contrary that there exists a 3-dynamic proper 4-coloring q of Pm¤Pn

when m or n is not divisible by 2. We may assume that n is not divisible by 2. Without loss of

generality, we may assume that q(0, 0) = 0, q(0, 1) = 1 and q(1, 0) = 2. Since q is a 3-dynamic

proper 4-coloring, the neighbors of any vertex v of degree 3 must have distinct colors different from

88



the color of v. Thus, q(1, 1) = 3. For the same reason, q(0, 2) = 2. Similarly, q(2, 0) = 1. In this

fashion, the coloring on the first two rows and the first two columns is determined. For j ≥ 2 and

i ∈ {0, 1}, we have q(i, j) = q(1 − i, j − 2).

q =

0 1 2 3 0 · · ·

2 3 0 1 2 · · ·

1 0

3 2

0 1

...
...

Note that colors along the top row cycle through 0,1,2,3, and on the second row, they cycle

through 2,3,0,1. Thus, if n = 4k + 1, then in the first and last column, the ordered pair of colors

in the first two rows is (0, 2). Also colors down the first column cycle through 0,2,1,3, and in the

last column they cycle through 0,2,3,1. The argument we used on the first two rows applies also

to the last two rows, so in the first and last columns, the last two rows have the same ordered pair

of colors. Since 1 and 3 are flipped in the cyle of colors on the first column and last column, this

completes the proof unless m ≡ 2 mod 4 (see figure below).

0 1 2 3 0 1 2 3 0

2 3 0 1 2 3 0 1 2

1 0 • • • • • 0 3

3 2 • • • • • 2 1

0 1 2 3 0 1 2 3 0

2 3 0 1 2 3 0 1 2

When n = 4k + 3, the ordered pairs in the first two rows of the first and last columns are (0, 2)

and (2, 0). In this case, working down the first and last columns, the same rows have 1 in each,

and the same colums have 3 in each. Now the last two rows cannot have the behavior as proved

for the first two rows unless m ≡ 2 mod 4. The problem case is again the same.
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Now, we compute r-dynamic chromatic number of Cm¤Cn for r ≥ 3. Since χr(Cm¤Cn) =

χr(Cn¤Cm), it suffices to check when m ≤ n mod 4.

Theorem 5.4.4.

χ3(Cm¤Cn)







= 4 if m ≡ 0 mod4 and n ≡ t mod 4 for t ∈ {0, 1, 2},

≤ 5 if m ≡ 0 mod4 and n ≡ 3 mod 4, or m ≡ 1 and n ≡ 3 mod 4,

≤ 6 otherwise.

Proof. Since Cm¤Cn is 4-regular, χ3(Cm¤Cn) ≥ 4 by Observation 5.1.2.

Case 1. m and n are both even, but not both congruent to 2 mod 4.

Let {(i, j) : 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1} be the vertex set of Cm¤Cn. The function h defined

in Theorem 5.4.3 is also a 3-dynamic proper 4-coloring of Cm¤Cn for the congruent classes in this

case.

A =

0 1 2 3

2 3 0 1

1 0 3 2

3 2 1 0

Case 2. m ≡ 0 mod 4 and n ≡ 1 mod 4.

We define h′ on Cm¤Cn by h′(i, j) = h(i, j) except when j = n−1, and by h′(i, n−1) = h(i, 1).

0 1 2 3 1

2 3 0 1 3

1 0 3 2 0

3 2 1 0 2

The function h′ is a 3-dynamic proper 4-coloring of Cm¤Cn when m ≡ 0 and n ≡ 1 mod 4.

Thus χ3(Cm¤Cn) = 4 when m ≡ 0 and n ≡ 1 mod 4.
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Case 3. m ≡ 0 mod 4 and n ≡ 3 mod 4.

We define h′′ on Cm¤Cn by h′(i, j) = h(i, j) except when (i, j) = (1, 0) and (i, j) = (m−1, n−1),

and by h′(1, 0) = h′(m − 1, n − 1) = 5.

0 1 2 3 0 1 2

4 3 0 1 2 3 0

1 0 3 2 1 0 3

3 2 1 0 3 2 4

The function h′′ is a 3-dynamic proper 5-coloring of Cm¤Cn when m ≡ 0 and n ≡ 3 mod 4,

which implies that χ3(Cm¤Cn) ≤ 5.

Case 4. m, n ≡ 1 mod 4.

0 1 2 3

5 3 0 1

1 0 3 2

3 2 1 0

A · · ·

0 1 2 4

2 3 0 1

1 0 3 2

3 2 1 5

5

3

0

4

...
...

...
...

0 1 2 3

4 3 0 1

1 0 3 2

3 2 1 0

A · · ·

0 1 2 4

2 3 0 1

1 0 3 2

3 2 1 5

5

3

0

4

4 5 0 1 2 3 0 1 2 3 0 1 3

When m, n ≡ 1 mod 4, the above coloring of (Cm¤Cn) is a 3-dynamic proper 6-coloring.

Case 5. m ≡ 1 mod 4 and n ≡ 2 mod 4.
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0 1 2 3

5 3 0 1

1 0 3 2

3 2 1 0

A · · ·

0 1 2 5

2 3 0 1

1 0 3 2

3 2 1 0

0 5

2 6

1 0

3 2

...
...

...
...

5 6 0 1 2 3 0 1 2 3 0 1 1

When m ≡ 1, n ≡ 2 mod 4, the above coloring of (Cm¤Cn) is a 3-dynamic proper 6-coloring.

Case 6. m ≡ 1 mod 4, and n ≡ 3 mod 4.

0 1 2 3

5 3 0 1

1 0 3 2

3 2 1 0

A · · ·

0 5 2

2 3 0

1 0 3

3 2 5

...
...

...

5 3 0 1 2 3 0 1 2 3 0

When m ≡ 1, n ≡ 3 mod 4, the above coloring of (Cm¤Cn) is a 3-dynamic proper 5-coloring.

Case 7. m ≡ 2 mod 4, and n ≡ 2 mod 4.

6 1 2 3

5 3 0 1

1 0 3 2

3 2 1 0

A · · ·

0 1

2 3

1 0

3 2

...
...

...

6 1 2 3

2 3 0 1

0 1 2 3

2 3 0 1

0 1

5 3

When m ≡ 2 mod 4 and n ≡ 2 mod 4, the above coloring of (Cm¤Cn) is a 3-dynamic proper

6-coloring.
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Case 8. m ≡ 2 mod 4, and n ≡ 3 mod 4.

6 1 2 3

5 3 0 1

1 0 3 2

3 2 1 0

A · · ·

0 1 2

2 3 0

1 0 3

3 2 5

...
...

...

0 1 2 3

5 3 0 1

0 1 2 3

2 3 0 1

0 1 2

5 3 0

When m ≡ 2, n ≡ 3 mod 4, the above coloring of (Cm¤Cn) is a 3-dynamic proper 6-coloring.

Case 9. m, n ≡ 3 mod 4.

0 1 2 3

5 3 0 1

1 0 3 2

3 2 1 0

A · · ·

0 1 2

2 3 0

1 0 3

3 2 5

...
...

...

0 1 2 3

5 3 0 1

1 0 5 6

0 1 2 3

2 3 0 1

5 6 5 6

0 1 2

2 3 0

5 0 3

When m ≡ 3 mod 4 and n ≡ 3 mod 4, the above coloring of (Cm¤Cn) is a 3-dynamic proper

6-coloring.

Note that χ4(Cm¤Cn) ≥ 5, since Cm¤Cn is 4-regular.

Theorem 5.4.5. χ4(Cm¤Cn) = 5 when both of m and n are divisible by 5.

Proof. The function c defined in Theorem 5.4.3 is also a 4-dynamic proper 5-coloring of Cm¤Cn

when both of m and n are divisible by 5.
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c =

0 2 4 1 3

1 3 0 2 4

2 4 1 3 0 · · ·

3 0 2 4 1

4 1 3 0 2

...
. . .

Theorem 5.4.6. 5 ≤ χ4(Cm¤Cn) ≤ 9 for all m, n.

Proof. Case 1. m, n ≡ 0 mod 3.

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

(3, 1) (3, 2) (3, 3)

...

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

(3, 1) (3, 2) (3, 3)

...
. . .

...

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

(3, 1) (3, 2) (3, 3)

...

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

(3, 1) (3, 2) (3, 3)

When m, n ≡ 0 mod 3, the above function is a 4-dynamic proper 9-coloring.

Case 2. m ≡ 0 mod 3, and n ≡ 1 mod 3.

A =

1 2 3

3 4 5

5 6 1
︸ ︷︷ ︸

A1

4 5 6

6 1 2

2 3 4
︸ ︷︷ ︸

A2

B =

7

8

9
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n ≡ 1 mod 2:

m
3







A1 A2 ... A1 A2

...
... ...

...
...

A1 A2 ... A1 A2

A1 B

...
...

A1 B

︸ ︷︷ ︸
n−1

2

n ≡ 0 mod 2:

m
3







A A ... A

...
... ...

...

A A ... A

B

...

B

︸ ︷︷ ︸
n
2

When m ≡ 0 and n ≡ 1 mod 3, the above function is a 4-dynamic proper 9-coloring of

Cm¤Cn.

Case 3. m ≡ 0 mod 3 and n ≡ 2 mod 3.

D =

7 4

8 6

9 2

If we replace B in the Case 11 by D, then the above function is a 4-dynamic proper 9-coloring of

Cm¤Cn when m ≡ 0 and n ≡ 2 mod 3.

Case 5. m ≡ 1 mod 3, and n ≡ 1 mod 3.

E = 4 8 9 7 8 9 · · · 2

By attaching E to the last row in Case 11, we have a 4-dynamic proper 9-coloring of Cm¤Cn

when m, n ≡ 1 mod 3.

Case 6. m ≡ 1 mod 3 and n ≡ 2 mod 3.
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F = 7 8 9 7 8 9 · · · 5 3

By attaching F to the last row in Case 12, we have a 4-dynamic proper 9-coloring of Cm¤Cn

when m ≡ 1 and n ≡ 2 mod 3.

Case 6. m, n ≡ 2 mod 3.

G = 8 5 6 1 2 3 4 5 6 1 2 3 · · · 1 9

By attaching G to the last row in Case 12, we have a 4-dynamic proper 9-coloring of Cm¤Cn

when m ≡ 2 and n ≡ 2 mod 3.

Corollary 5.4.7. χ4(C3¤C3) = 9.

Proof. In this graph, every two vertices are adjacent to have a common neighbor. Since the graph

is 4-regular, in a 4-dynamic coloring, any two vertices must have distinct colors.

With the Theorem 5.4.5 and Corollary 5.4.7, we note that the bound in Theorem 5.4.6 cannot

be improved. In any case of m and n, we may determine χr(Cm¤Cn) with more detailed cases

than the proofs in the above Theorems.
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[13] S.M. Cioabă, Perfect matchings, eigenvalues and expansion. C. R. Math. Acad. Sci. Soc. R.
Can., 27 (2005), no.4, 101-104.
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