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Abstract

Longitudinal data arise frequently in many studies where measurements are obtained from a subject re-

peatedly over time. Consequently, measurements within a subject are correlated. We address two rather

important but challenging issues in this thesis: mixed-effect modeling with unspecified random effects and

correlation structure selection for high-dimensional data.

In longitudinal studies, mixed-effects models are important for addressing subject-specific effects. How-

ever, most existing approaches assume normal distributions for the random effects, which could affect the

bias and efficiency of the fixed-effects estimators. Even in the cases where the estimation of the fixed ef-

fects is robust against a misspecified distribution of the random effects, the inference based on the random

effects could be invalid. We propose a new approach to estimate fixed and random effects using conditional

quadratic inference functions. The new approach does not require any specification of the likelihood func-

tions. It can also accommodate serial correlation between observations within the same cluster, in addition

to mixed-effects modeling. Other advantages include not requiring the estimation of the unknown variance

components associated with the random effects, or the nuisance parameters associated with the working

correlations. Real data examples and simulations are used to compare the new approach with the penal-

ized quasi-likelihood approach, and SAS the GLIMMIX and nonlinear mixed effects model (NLMIXED)

procedures.

Model selection of correlation structure for non-normal correlated data is very challenging when the

cluster size increases with the sample size, because of the high dimensional correlation parameters involved

and lack of the likelihood function for non-normal correlated data. However, identifying the correct corre-

lation structure can improve estimation efficiency and the power of tests for correlated data. We propose

to approximate the inverse of the empirical correlation matrix using a linear combination of candidate basis

matrices, and select the correlation structure by identifying non-zero coefficients of the basis matrices. This

is carried out by minimizing penalized estimating functions, which balances the complexity and informative-

ness of modeling for the correlation matrix. The new approach does not require estimating each entry of the

correlation matrix, nor the specification of the likelihood function, and can effectively handle non-normal
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correlated data. Asymptotic theory on model selection consistency and oracle properties are established in

the framework of diverging cluster size of correlated data, where the derivation of the asymptotic results

is challenging. Our numerical studies indicate that even when the cluster size is very large, the correlation

structure can be identified effectively for both normal responses and binary responses.
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Chapter 1

Introduction

1.1 Introduction to Longitudinal Data

Longitudinal data involving repeated measurements over time is widely used in many research areas, such as

psychology, sociology, biology, environmental and medical science. In such areas, longitudinal studies allow

one to explore the association between the responses and the relevant covariates over a certain period of time

and the dynamic changes of the treatment effects over time. Moreover, since longitudinal study allows each

subject to be used as its own control, the treatment effects can be detected more accurately and effectively

as the heterogeneity variations among subjects are reduced to a minimum.

We first provide three examples of longitudinal data. The first two examples are analyzed in Chapter 1

and the third example is analyzed in Chapter 2.

Example 1: Dental data to study the effects of non-surgical periodontal effects. This is a

randomized clinical study carried out in the University of Washington dental clinic. The purpose of the

study is to evaluate the effect of non-surgical periodontal treatments on tooth loss over time (Stoner, 2000).

There are 722 patients with chronic periodontal diseases, and each patient is intended to have a 7-year

follow up in the study. The tooth loss of the patients during 7-year period is recorded, along with many

explanatory variables including a history of non-surgical periodontal treatments, gender, age, and other

covariates corresponding to the health condition of the teeth. Here the response variable is the tooth loss

for each patient, which is a binary indicator. We are interested in incorporating subject-specific variation

for the model in order to better evaluate the non-surgical treatment effect on tooth loss over time.

Example 2: Epileptic seizure count data. This is a double-blind randomized clinical trial to compare

a new anti-epileptic drug with a placebo for reducing epileptic seizure occurrence (Thall and Vail, 1990, p.

664). The new drug and the placebo are randomly assigned to the 59 patients in the study, and each patient

is followed for four 2-week periods. The epileptic seizure counts, treatment, the patient’s age and the baseline

seizure counts (the number of seizure counts in the 8-week period before receiving the drug or the placebo),

are collected. The response variable of epileptic seizure counts is considered to follow a Poisson distribution.
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In addition to assessing the effect of the observed covariates, we are interested in addressing unobserved

subject-specific variation among the patients.

Example 3: Effect of air pollution on asthmatic status. This longitudinal study conducted in On-

tario, Canada consists of observations from 39 asthmatic patients during a period of 21 days (Fu, 2003). The

environmental researchers are interested in investigating the impact of air pollution on patients’ asthmatic

status. In the 3-week period, the daily mean temperature and a number of air quality measurements are

collected. The response is the patient’s daily asthmatic status, which is a binary variable. The sample size of

39 is relatively small compared to the cluster size of 21. The standard approaches for the generalized linear

model such as the maximum likelihood and the generalized estimating equation with unspecified correlation

structure do not have converged solutions, as the dimension of the nuisance parameters being estimated is

large. For this data example, it is important to identify the correct correlation structure to obtain a more

efficient estimator.

The challenges of analyzing these longitudinal data sets are that we need to take into account the

correlation between the repeated measurements. This is especially challenging if the outcomes are not normal,

as in these data examples. Ignoring the correlation or misspecifying the correlation structure may lead to

inefficient estimators for the regression parameters. Moreover, the variance estimation of the regression

parameter estimators are inconsistent (Liang and Zeger, 1986; Qu et al., 2000). However, the existing

literature on the model selection of correlation structure is limited, especially for the high-dimensional

setting where the number of repeated measurements diverges with the sample size. The available work

mainly focuses on the estimation of the covariance matrix rather than the selection of correlation structures.

In Chapter 3 of this thesis, we propose a new method to identity the correlation structure for longitudinal

data when the cluster size diverges.

The two major approaches for longitudinal data are marginal models, and random effects models deal

with the subject-specific variation. In the marginal approach, all the regression parameters are “fixed,” and

the within-subject correlation is modeled through the residual error. The marginal model is applicable if only

the inference the population average is of our interest. The mixed effects model, on the other hand, could

also account for the heterogeneity variation among the subjects. The random effects model is suitable when

the subject-specific effect is of interest as it can provide a richer interpretation from the individual level.

However, it imposes additional challenges as the random effects are not necessarily normally distributed, and

the likelihood function might be intractable for non-normal response when the serial correlation is considered

in the model.
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1.2 A Review of Methods on Marginal Approach and the

Mixed-Effects Approach

1.2.1 Review of Methods on Marginal Approach

Liang and Zeger (1986) proposed the following generalized estimation equation (GEE) approach for longi-

tudinal data. The GEE extends the quasi-likelihood approach for longitudinal data, and is defined as

N∑

i=1

µ̇′iV
−1
i (yi − µi) = 0, (1.1)

where yi is the response vector and µi is the mean vector of the response variable for the ith subject, Vi =

A1/2
i RA1/2

i , Ai is a diagonal marginal variance matrix and R is a working correlation matrix which involves

a limited number of correlation parameters. The regression parameters β can be estimated consistently even

if the correlation structure is unspecified. It also provides the following robust sandwich estimator for the

variance of the regression parameter estimator,

(
N∑

i=1

µ̇′iV
−1
i µ̇′i)

−1{
N∑

i=1

µ̇′iV
−1
i cov(yi)V−1

i µ̇′i}(
N∑

i=1

µ̇′iV
−1
i µ̇′i)

−1.

If the correlation structure is correctly specified, the GEE estimator of β is efficient. However, when the

correlation structure is misspecified, the GEE estimators could be inefficient (Liang and Zeger, 1986).

To improve the efficiency of the GEE estimator, Qu et al. (2000) proposed the quadratic inference function

(QIF) approach, where the inverse of the correlation matrix is approximated by a linear combination of basis

matrices through

R−1 =
m∑

j=1

aiMi. (1.2)

The linear representation of (1.2) can replace the inverse of working correlation matrix R in the quasi-

likelihood equation (1.1), and the GEE can be approximated as

N∑

i=1

µ̇′iA
−1/2
i




m∑

j=1

ajMj



A−1/2
i (yi − µi) = 0. (1.3)

Instead of estimating the nuisance parameters a = (a1, . . . , am) they define an extended score derived from
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(1.3),

GN (β) =
1
N

N∑

i=1

gi(β) =
1
N





∑N
i=1 µ̇′iA

−1/2
i M1A

−1/2
i (yi − µi)

...
∑N

i=1 µ̇′iA
−1/2
i MmA−1/2

i (yi − µi)




. (1.4)

It is obvious that (1.3) is a linear combination of the above extended score. When the number of basis

matrices m > 1, there are more equations than the dimension of parameters, therefore, the generalized

method of moments (Hansen, 1982) can be applied to estimate the regression parameter β by minimizing

the following quadratic inference function

QN (β) = NG′
NC−1

N GN .

The advantage of the QIF approach is that the correlation parameters are not required to be estimated

in order to obtain the estimator of β. The QIF estimator β̂ has typical
√

N -consistency and asymptotic

normality, with the asymptotic variance (D′ΣD)−1/N , where D = ∂gi(β)/∂β, and Σ = E{gi(β)gi(β)}.

The asymptotic variance of the QIF estimator is optimal among the estimators for solving the same class

of estimating functions. This implies that the QIF estimator is more efficient than the GEE estimators

under the same misspecfied working correlation structure. If the working correlation structure is correctly

specified, both the GEE and the QIF approaches are efficient. In practice, since the true correlation structure

is typically not known, the efficiency gain under the misspecification makes the QIF estimator more attractive

than the GEE estimator.

In addition, the QIF estimators have other advantages comparing with the GEE approach: (i) The

QIF provides a statistical inference function under the same model assumption as the GEE, and this can

be applied for model checking and testing. In the estimating equation approach, the validity of the first

moment condition is crucial. However, it is difficult to develop a goodness-of-fit test through the GEE

approach because the GEE does not have an objective function. (ii) The QIF is more robust against outliers

than the GEE approach. Qu and Song (2004) show that the QIF has a bounded influence function, while

the influence function of GEE is not bounded. (iii) The QIF is analog to minus twice the log-likelihood,

which implies that the model selection criteria similar to the AIC and BIC can be developed (Wang and Qu,

2009). (iv) This also leads to the development of the penalized QIF approach, where a penalty function,

such as SCAD, can be added to the QIF (Xue et al., 2010). The advantage of the penalization approach is

that the relevant covariates can be identified simultaneously.
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1.2.2 Review of Methods on Mixed-Effects Approach

Another major approach for handling longitudinal data is the mixed-effects model if the subject variation is

also one of the interests. The conditional mean of the response can be formulated as

E(yi|Xi,Zi,bi) = g(Xiβ + Zibi), (1.5)

where g is the inverse of the link function, and Zi are the covariates associated with the random effects

parameters bi.

Wedderburn (1974) proposed the quasi-likelihood approach when the likelihood function is not available,

as this approach only requires the first two moments. The quasi-likelihood function is defined as

L =
1√

(2π)q|D|

∫

Rq

exp

{
− 1

2φ

N∑

i=1

di(yi,µ
b
i )− 1

2
b′D−1b

}
db, (1.6)

where µb
i = E(yi|b), D is the variance component matrix for the random effects b, the weighted deviance

function is

di(y,u) = −2
∫ u

y

y − u
aiv(u)

du,

where ai is a known weight, φ is a dispersion parameter and v(u) is a variance function.

However, the quasi-likelihood approach requires high-dimensional integration, and (1.6) does not have a

closed form if the correlation of longitudinal data is taken into account. Breslow and Clayton (1993) apply

a Laplace approximation to the quasi-likelihood to develop the penalized quasi-likelihood (PQL) approach.

The PQL is defined as

PQL = − 1
2φ

N∑

i=1

T∑

j=1

dij(yij , µ
b
ij)−

1
2
b′D−1b, (1.7)

where − 1
2b
′D−1b can also be treated as a penalty function in (1.7) (McCulloch and Searle, 2001). the

drawbacks of the PQL approach are that the serial correlation is still ignored. Moreover, the PQL estimators

are inconsistent for non-normal response (Booth and Hobert, 1999).

Vonesh et al. (2002) extended the second order GEE approach (Prentice and Zhao, 1991) to the gen-

eralized mixed-effects model. They incorporate the estimating equations for the conditional mean and the

conditional variance in order to improve the efficiency of the fixed-effects and random-effects estimators.

The advantage of their approach is that it leads to consistent estimators without specifying the likelihood

function. However, the CGEE2 is not able to incorporate the serial correlation either. In addition, both the

normality assumption for the random effects and the estimation of the variance components are required.
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Jiang (1999) proposed the penalized generalized weighted least square (PGWLS) approach, which does

not require the normality assumption of the random effects. This is achieved by adding a constraint PAb = 0

to ensure that the fixed effects and the random effects are identifiable through a Lagrange multiplier. The

Lagrange function is constructed as,

lq = − 1
2φ

N∑

i=1

di(yi,µ
b
i )− 1

2
λ|PAb|2. (1.8)

However, the PGWLS does not incorporate the serial correlation either in their model, since the first part

in (1.8) does not have a closed form if there is serial correlation present.

In general, the current mixed-effects model approaches can not incorporate the serial correlation, or

require normality assumption on the random effects. However, these could be rather restrictive. First,

it is not convincing that the random effects must be normally distributed. The normality assumption is

required mainly for convenience. More importantly, misspecifying the random effects distribution could

lead to inconsistent estimators of the fixed effects for binary responses, as is indicated in our simulation

studies in Chapter 2. Furthermore, random effects cannot account for all the within-subject correlation, and

modeling serial correlation for the residuals is necessary to improve the efficiency of the estimators. It is

important to develop a new mixed-effects models approach which can incorporate serial correlation without

any distributional assumption for the random effects.

1.3 The New Proposed Approaches

Chapter 2 of this thesis focuses on the new approach for the mixed-effects model, which incorporates cor-

relation from both the random effects variation and the serial correlation. In this approach, we develop

conditional extended scores for fixed and random effects parameters, and construct the objective function to

incorporate the correlation structure. Because the objective function only involves the first two conditional

moments, the likelihood function does not need to be specified. Moreover, we do not involve any integration

in the estimation procedures, and this makes it computationally more feasible when the dimension of ran-

dom effects is high. In addition, we do not impose any distributional assumption on the random effects as

is the PQL and the CGEE2 approaches, and the new approach does not require us to estimate any variance

component or nuisance parameters for the correlation.

We derive the asymptotic theory of
√

N -consistency and asymptotic normality of the fixed-effects esti-

mators. The derivation of the asymptotic properties does not depend on the distributional assumption of

the random effects, nor the consistency of the random effects estimator. These assumptions are typically
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required in other existing approaches such as the CGEE2 and PQL. Instead, we only require that the expec-

tation of the conditional extended scores converges to 0 in probability. We show that in order to prove the

consistency of the random effects estimator, the correlation structure of the observations within a subject is

required to have a mixingale condition (Andrews, 1988).

Our numerical studies show that when the serial correlation is introduced into the true model, the new

approach greatly outperforms the most commonly used methods, such as the PQL, SAS GLIMMIXED and

SAS NLMIXED. The data examples 1 and 2 are also analyzed to illustrate the new approach.

In Chapter 3 of this thesis, we develop a new approach to identify the correlation structure of longitudinal

data when the cluster size diverges with the sample size. To the author’s best knowledge, no existing work has

addressed this problem for non-normal longitudinal data for diverging cluster size. Most current literature

focuses on the estimation of the covariance matrix or the inverse of the covariance matrix rather than the

selection of correlation structure. In our approach, we approximate the inverse of the correlation matrix

with a linear combination of group basis matrices. We use the Euclidean distance between two estimation

functions based on the empirical correlation matrix and a model-based approximation to assess the adequacy

of the approximated model. By adding a penalty function, the problem can be transformed into a penalized

least square problem.

The penalty function and the selection criteria are rather different compared to Zhou and Qu (2011).

More importantly, we allow the cluster size to diverge as sample size increases. Note that the generalization

is not trivial here because of the challenges in deriving the asymptotic properties and the computational

complexity involved. We prove that under typical regularity conditions, the estimator of the coefficients

corresponding to the basis matrices enjoys the oracle property (Fan and Li, 2001). In our approach, the

estimating equations based on the empirical correlation are not independent, and this makes the model

selection problem here quite different from a typical penalized least square approach.
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Chapter 2

Mixed-Effects Modelling

2.1 Introduction

Longitudinal data arise frequently in many studies where measurements are obtained from a subject repeat-

edly over time. Consequently, measurements within a subject are correlated. Major statistical models such

as marginal models and mixed-effects models have been developed for longitudinal data. Marginal models

are applicable when the inference of the population average is of interest. One widely used marginal model

is generalized estimating equations (GEE) (Liang and Zeger, 1986), which only requires the first two mo-

ments of the distribution. The advantage of the GEE is that it provides consistent estimators for regression

parameters regardless of whether the working correlation is correctly specified or not.

In contrast, mixed-effects models are able to incorporate random-effect variation and have a richer inter-

pretation when the subject-specific effect is one of the interests. However, in most of the current mixed-model

literature (Breslow and Clayton, 1993; Laird and Ware, 1982; Jiang, 1999), the cluster correlations are as-

sumed to be induced by the random effects only; that is, conditional on the random effects, the observations

within a cluster are assumed to be independent. Although the generalized linear mixed-model approach is

capable of incorporating serial correlation using numerical integration to maximize the likelihood or pseudo-

likelihood, it is infeasible in practice when the dimension of random effects is high and the random effects

are also correlated.

The major drawback to subject-specific approaches is that the random effects are assumed to follow an

explicit distribution, and typically a normal random-effect distribution is assumed. Neuhaus et al. (1992)

show that when the distributions of the random effects are misspecified, the estimators of the fixed effects

could be inconsistent for binary data. Even in cases where the estimation of the fixed effects appears robust

with a misspecified distribution assumption for random effects, the predicted distribution of the random

effects may be invalid (Zhang et al., 2008). This could be critical if the prediction of the random effects is

one of the main interests.

When the likelihood function has an explicit form and is tractable, the maximum likelihood approach
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is applicable. However, for non-Gaussian outcomes, the likelihood function of the generalized linear mixed

model (GLMM) (Breslow and Clayton, 1993; McCulloch, 1997; McCulloch and Neuhaus, 2001) often involves

high-dimensional integrations and may be intractable. Numerical integration such as the Gaussian-Hermite

quadrature (Liu and Pierce, 1994) and the Monte Carlo EM algorithm (McCulloch, 1997) could be com-

putationally intensive, and infeasible in practice when the number of random effects is large (Zhang et al.,

2008).

The penalized quasi-likelihood (PQL) (Breslow and Clayton, 1993) and conditional second-order gener-

alized estimating equations (CGEE2) (Vonesh et al., 2002) are alternative approaches when the likelihood

does not have a specific form. The PQL requires the estimation of the unknown variance components and

typically ignores serial correlation from repeated measurements. In addition, the PQL is known to produce

inconsistent estimators of the generalized linear mixed-model parameters (Booth and Hobert, 1999). The

CGEE2 extends the second-order GEE (Prentice and Zhao, 1991) to generalized linear mixed models. It ob-

tains estimators of fixed and random effects by solving estimating equations associated with the conditional

mean and covariance matrix.

However, the CGEE2 requires estimation of the nuisance parameters associated with the working corre-

lations and the variance components associated with the random effects. Jiang and Zhang (2001) propose

a two-step estimation procedure which only requires the base statistics associated with the random effects,

instead of the full distribution of the response. However, the covariance matrix of the base statistics must be

known in order to improve the efficiency of the estimators in the second step. Furthermore, the normality

distribution for the random effects is assumed for all of the above methods. This could be restrictive if the

normality assumptions fails.

Jiang (1999) proposed a conditional inference approach which relaxes the normality assumptions for the

random effects. However, conditional on random effects, the serial correlation of the responses is not taken

into consideration. Molenberghs and Verbeke (2005, Chapter 22) indicate that it is important to model serial

correlation for the random effects model. In general, for non-normal random effects models, incorporating

correlation information is still quite challenging as existing approaches do not provide a feasible solution to

handle serial correlation theoretically and computationally.

In this chapter, we develop a mixed-effect estimating equation approach which incorporates both random-

effect variation and serial correlations simultaneously from repeated measurements. We do this through

constructing conditional extended scores associated with the fixed and random effects by incorporating

correlation structures. The proposed approach can be applied to both Gaussian and categorical data. We

estimate the fixed and random effects using conditional extended scores which only involve the first and

9



second conditional moments. Therefore, the specification of the likelihood is not required. Furthermore, our

approach does not involve intractable integrations and computationally it is feasible to implement for the

GLMM. In addition, there are no distribution assumptions such as normality for random effects; instead, we

allow the dimension of the random-effect parameters to increase as the sample size increases. The proposed

approach enables one to incorporate multiple sources of variation from random effects and serial correlations.

Moreover, it does not require the estimation of unknown variance components as in the PQL and CGEE2,

and it does not require the estimation of the nuisance parameters associated with the working correlations

as in the CGEE2.

We also establish root-N consistency and asymptotic normality for the fixed-effect parameter estimators.

Existing approaches such as the CGEE2 and PQL require that the random-effect estimator be consistent

with the true random effect; however, in practice, this assumption is difficult to verify. Our asymptotic

results for fixed-effect estimators do not require such assumptions. We only require that the expectation

of the estimating function conditional on the estimated random effects converges to 0 in probability. This

assumption is more general than the consistency of the random-effect estimator. On the other hand, if the

consistency of the random-effect estimator holds, then the asymptotic variance of the fixed-effect estimator

has a closed form. To establish the consistency of the random-effect estimator, we only require mild conditions

of mixingale (Andrews, 1988) on correlated observations.

This chapter is organized as follows: Section 2.2 proposes the conditional mixed-effects model using

the quadratic inference function. Section 2.3 provides asymptotic properties for the proposed estimators.

Section 2.4 illustrates simulation results for binary responses. Section 2.5 demonstrates real data examples

by comparing the conditional mixed effects approach to the PQL, the generalized linear mixed model using

SAS GLIMMIX, and the maximum likelihood approach using SAS NLMIXED. Discussion and concluding

remarks are provided in Section 2.6. We provide the proofs of the asymptotic properties in Section 2.7.

2.2 Quadratic Inference Functions for Mixed-Effects Models

In this section, we will first give a brief description of the quadratic inference function for fixed-effects models.

Then we will demonstrate how to incorporate both random and fixed effects for longitudinal data where

there are multiple sources of variation.
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2.2.1 Quadratic Inference Functions for Fixed Models

Consider the marginal model

E(yi) = g(Xiβ), i = 1, . . . , N,

where yi = (yi1, . . . , yiT )′, g is a known function, and Xi is a known T×p matrix associated with a p-

dimensional vector of fixed effects β.

Liang and Zeger (1986) proposed the generalized estimating equation (GEE) which extends the quasi-

likelihood equation
N∑

i=1

µ̇′iV
−1
i (yi − µi) = 0

by assuming Vi = A1/2
i RA1/2

i , where Ai is a diagonal marginal variance matrix and R is a working

correlation matrix which involves correlation parameters. Note that R could also be an identity matrix if

the working correlation is independent. We define µi = E(yi), Vi = var(yi), and µ̇i is the first derivative

of µi with respect to β. The GEE estimators are consistent and asymptotically normal even if the working

correlation matrix is misspecified. However, the estimator of the regression parameters is not efficient under

the misspecification of the working correlation.

Qu et al. (2000) proposed the quadratic inference function to improve efficiency for longitudinal data.

Their approach only requires the first two moments of the distribution. In addition, it takes correlation

into account without estimating the nuisance parameters associated with the correlation structure. The

main idea of their approach is to assume that the inverse of the working correlation R−1 is approximated

by a class of linear combinations of known matrices M1, . . . ,Mm, that is R−1 ≈
∑m

j=1 ajMj , where M1 is

usually an identity matrix. Then the GEE can be approximated by

N∑

i=1

µ̇′iA
−1/2
i




m∑

j=1

ajMj



A−1/2
i (yi − µi) = 0.

Qu et al. (2000) defined the extended scores to be

GN (β) =
1
N

N∑

i=1

gi(β) =
1
N





∑N
i=1 µ̇′iA

−1/2
i M1A

−1/2
i (yi − µi)

...
∑N

i=1 µ̇′iA
−1/2
i MmA−1/2

i (yi − µi)




, (2.1)

where GN is a mp-dimensional vector. Note that the GEE is a linear combination of extended scores GN .

The extended scores in (3.3) contain more estimating equations than unknown parameters if m > 1,
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where the working correlation matrix R is not an identity matrix. Qu et al. (2000) adopted the idea of

the generalized method of moments (Hansen, 1982) and proposed the quadratic inference function (QIF) to

optimally combine the estimating equations in (3.3), and estimate the parameters β defined in (3.3). The

QIF is defined as

QN (β) = NG′
NC−1

N GN ,

where CN is a mp×mp matrix and can be estimated consistently by CN = 1
N

∑N
i=1 gi(β)gi(β)′. Here N

must be greater than mp to ensure the invertibility of the variance matrix CN .

If the longitudinal data is unbalanced, we apply the transformation matrix to each cluster as follows. We

create the largest cluster with a size T which contains time points for all possible measurements, and assume

that fully observed clusters contain T observations. We define the T × Ti transformation matrix Λi for the

ith cluster by removing the columns of the identity matrix corresponding to the missing observations. We

define y∗i = Λiyi, µ∗i (β̃) = Λiµi(β̃), µ̇∗i (β̃) = Λiµ̇i(β̃), and A∗
i = ΛiAi, where components in y∗i are the

same as in yi for non-missing responses but are 0 for the missing responses; and similarly define µ∗i and µ̇∗i .

The marginal variance for A∗
i is 0 for the missing observations. In the following methodology development,

we assume that the cluster size is equal for notational convenience.

Generalized linear mixed models (GLMM) extend the linear mixed model (Laird and Ware, 1982) for

non-normal longitudinal data via a specific link function. For a link function g, the conditional mean

E(y|b) = µb is a function of the linear predictor Xβ +Zb with g(µb) = Xβ +Zb, where Z is the covariate

associated with random effect b.

In the GLMM, if the conditional likelihood of y given b is unknown, we can apply the quasi-likelihood

(Wedderburn, 1974) which only requires the first two moments. The integrated quasi-likelihood is defined

by

L =
1√

(2π)q|D|

∫

Rq

exp

{
− 1

2φ

N∑

i=1

di(yi,µ
b
i )− 1

2
b′D−1b

}
db, (2.2)

where µb
i = E(yi|b), D is the variance component matrix for random effect b, the weighted deviance function

di(y,u) = −2
∫ u

y

y − u
av(u)

du

with ai as a known weight, φ is a dispersion parameter and v(u) is a variance function. However, the

quasi-likelihood (2.2) does not have a closed form and it is not tractable if y is not normal. (Breslow and

Clayton, 1993) proposed the penalized quasi-likelihood which applies a Laplace approximation to solve the

integrated quasi-likelihood for GLMM.
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The penalized quasi-likelihood can be written as

PQL = − 1
2φ

N∑

i=1

T∑

j=1

dij(yij , µ
b
ij)−

1
2
b′D−1b, (2.3)

where − 1
2b
′D−1b can also be treated as a penalty to the log-quasi-likelihood (McCulloch and Searle, 2001).

The corresponding two sets of quasi-score equations are derived by taking the derivatives of PQL with respect

to fixed effects β and random effects b as follows:

N∑

i=1

(
∂µb

i

∂β
)′(Wb

i )−1(yi − µb
i ) = 0 (2.4)

and
N∑

i=1

(
∂µb

i

∂b
)′(Wb

i )−1(yi − µb
i )−D−1b = 0, (2.5)

where Wb
i = var(yi|b), the covariance matrix D = D(θ), and θ is an unknown vector of the variance

components. Breslow and Clayton (1993) applied Green (1987) Fisher scoring algorithm iteratively to solve

equations (2.4) and (2.5).

The penalized quasi-likelihood requires the normality assumption for random effects and the estimation

of variance components. It also ignores serial correlation from repeated measurements. In the following,

we propose a conditional inference function for the GLMM which does not require variance components

estimation or a normality assumption for the random effects, and yet is still able to incorporate serial

correlation.

In the GLMM, the conditional quasi-log-likelihood of y with conditional mean µb
i is

lq = − 1
2φ

N∑

i=1

di(yi,µ
b
i ). (2.6)

Note that (2.6) is the first term of PQL in (2.3) regardless of the distribution of random effects. If we

impose constraint PAb = 0 associated with the random effects, then we can ensure that the fixed effect

β and random effect b are identifiable without requiring the distribution assumption of random effects.

Here PA is a known orthogonal matrix, and can be constructed as follows. For any vector space V and

matrix M, B(V) = {B : B is a matrix whose columns constitute bases for V} and N (M) is the null space

of M, e.g., N (M) = {v : Mv = 0}. Then the matrix of PA = A(A′A)−1A′ is a projection matrix where

A ∈ B(N{(I−PX)Z}). For example, for a linear mixed-effects model with a random intercept and covariate

xij , E(µb
ij) = α0 + α1xij + bi. It can be shown that PA = 1

N 1N1′N , where 1N is a N × 1 vector with entries
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1, therefore the constraint associated with the random effects is 1
N

∑
bi = 0 (Jiang, 1999).

The estimators of fixed effects and random effects can be obtained by maximizing (2.6) subject to

PAb = 0. In order to achieve this, the penalized generalized weighted least square (PGWLS)(Jiang, 1999)

can be utilized to build a Lagrange function

lq = − 1
2φ

N∑

i=1

di(yi,µ
b
i )− 1

2
λ|PAb|2, (2.7)

where λ is a Lagrange multiplier. The last term of (2.7) can be viewed as a penalizer and (2.7) can be

viewed as a penalized quasi-log-likelihood (Jiang, 1999).

The quasi-score equations corresponding to β and bi can be derived from (2.6) and (2.7) as

N∑

i=1

(
∂µb

i

∂β
)′(Wb

i )−1(yi − µb
i ) = 0 (2.8)

and 



h1 = (∂µ
b1
1

∂b1
)′(Wb

1 )−1(y1 − µb1
1 )− λ∂PAb

∂b1
PAb = 0

...

hN = (∂µ
bN
N

∂bN
)′(Wb

N )−1(yN − µbN
N )− λ∂PAb

∂bN
PAb = 0




. (2.9)

In the PQL approach, the correlation structure conditional on the random effects is assumed to have an

independent structure, therefore Wb
i is diagonal. In contrast to the PQL, we assume that conditional on

bi, the measurements within the ith cluster can be correlated. Thus Wb
i = var(yi|bi) is not necessarily a

diagonal matrix.

Suppose the working correlation R in Wb
i = A

1
2
i RA

1
2
i has a linear approximation of several basis

matrices, that is, R−1 ≈
∑m

j=1 ajMj , where Ai = diag{var(yi1|b), . . . , var(yiT |b)}. Based on (2.8), we

define the conditional extended scores associated with the fixed effects, namely fixed-effects extended scores,

as

Gf
N =

1
N

N∑

i=1

gf
i (β) =

1
N





∑N
i=1(

∂µb
i

∂β )′A−1/2
i M1A

−1/2
i

(
yi − µb

i

)

...
∑N

i=1(
∂µb

i
∂β )′A−1/2

i MmA−1/2
i

(
yi − µb

i

)




. (2.10)

In addition, the quasi-score equations hi in (2.9) can be represented as a linear combination of the

elements in

gr
i =





(∂µ
bi
i

∂bi
)′A−1/2

i M1A
−1/2
i (yi − µb

i )
...

(∂µbi
i

∂bi
)′A−1/2

i MmA−1/2
i (yi − µb

i )




(2.11)
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and the penalty term λ∂PAb
∂bi

PAb. For example, in a simple random intercept model PAb = (
∑N

i=1 bi/N, . . . ,
∑N

i=1 bi/N)′

and ∂PAb
∂bi

PAb =
∑N

i=1 bi/N .

In the PGWLS approach (Jiang, 1999), the only constraint imposed on the random effect is PAb = 0

for the purpose of identifiability. However, this constraint is not sufficient to ensure algorithm convergence

on estimating the fixed and random effects. The convergence problem becomes more serious when there

are more random effects involved in the model, and this is also confirmed by our numerical studies where

PGWLS fails to converge and is extremely sensitive to the initial values of the estimators. To solve the

convergence problem, we propose an alternative approach by including a penalty term λbi in addition to

the extended score gr
i for the random effects. This allows one to control the variance of fixed and random

effects estimators effectively and ensures that the algorithm converges.

In most cases, correlation for the random-effects model in (2.11) is not as critical as the correlation for

the fixed-effects modeling in (2.10). Therefore we just include the first term of (2.11). That is, gr
i can be

modified as gr∗
i = (∂µbi

i
∂bi

)′A−1/2
i M1A

−1/2
i (yi−µb

i ). We define the combined random-effects extended scores

for b = (b′1, . . . ,b′N )′ as

Gr
N = {(gr∗

1 )′, λb′1, . . . , (g
r∗
N )′, λb′N , λ(PAb)′}′. (2.12)

Note that we only need one λPAb for the combined extended scores since λ∂PAb
∂bi

PAb, i = 1 . . . , N , are

linear combinations of λPAb.

In addition to the penalty difference, the proposed approach also differs from the PGWLS by incorporat-

ing within-cluster serial correlation without involving estimation of the correlation parameters. Incorporating

correlation can improve estimation efficiency significantly for the fixed-effect parameters when there is strong

serial correlation present in longitudinal data.

The estimators of the fixed-effects and random-effects can be obtained by solving (2.10) and (2.12)

iteratively. However, both (2.10) and (2.12) are over-identified in the sense that there are more equations

than the dimension of the fixed-effect and random-effect parameters. We apply the quadratic inference

function to achieve the estimation of the fixed-effect and random-effect parameters iteratively. That is, for

given random-effects b, the fixed-effect estimators are obtained by minimizing

N(Gf
N )′(Cf

N )−1(Gf
N ), (2.13)

where Cf
N = 1

N

∑N
i=1(g

f
i )(gf

i )′. In addition, for given fixed-effects β, the random-effect estimators are

obtained by minimizing

(Gr
N )′(Gr

N ). (2.14)
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Note that in (2.14) the identity matrix is used as the weighting matrix for gr∗
i , since the random-effect

parameter is subject-specific and there are no replicates across different clusters.

2.2.2 Implementation

For a fixed λ, the iterative estimating procedure is summarized as follows.

1. Start with an initial vector β̂ obtained from the generalized linear model assuming independent corre-

lation structure and set the initial b = 0.

2. Replace β in (2.12) with β̂ and obtain the random-effects estimator b̂ by minimizing (2.14).

3. Replace b with b̂ in (2.10). Then update β̂ by minimizing (2.13).

Iterate step 2 and step 3 until the convergence criterion

|β̂ − β| + |b̂− b| < ε

is reached, where ε is a small positive number and is typically chosen as 10−6.

In the above algorithm, it is important to select a Lagrange multiplier λ. Once λ is obtained, both

fixed and random-effects parameters can be estimated through minimizing (2.13) and (2.14), and they are

functions of λ. Notice that λ also plays a role similar to the tuning parameter in the penalty term for model

selection. We can choose λ = log(N) which works quite effectively in our numerical studies. Alternatively,

we can use the consistent BIC-type model selection criterion to search λ, where the objective function

N(Gf
N )′(Cf

N )−1(Gf
N ) + (log N)(PAb)′Σ−1

b (PAb) (2.15)

reaches minimum. Here Σb is the covariance matrix of PAb. The first part of (2.15) is analog to minus

twice the log-likelihood and the second part is analog to the BIC-type of penalty term for the number of

regression parameters. This selection criterion can be interpreted so as to balance the minimum quadratic

inference function for the fixed-effects, and the variability of the constrained random-effects

Note that our approach differs from (Jiang, 1999) in that the objective function in (2.13) is different, and

is able to incorporate serial correlation of the repeated measurements. In addition, the penalty term for the

proposed conditional inference approach is very different from the PGWLS, since the PGWLS only penalizes

constraints of the random effects parameter to ensure identifiability, while our approach also penalizes the

random effects with large variances. Computationally, the new algorithm is much more stable and fast since

the variance of random effects can be regularized.
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2.3 Asymptotic Properties

In this section, we investigate the asymptotic properties of the mixed-effects QIF estimators. We define the

true random effects of the whole population as b0,∞ = (b01, . . . ,b0N , . . . ), where b0i are the true random

effects for subject i. Here b0,∞ are treated as fixed parameters rather than random variables. Moreover, for

a fixed sample size N , denote the true realization of the random effects as bN
0 = (b01, . . . ,b0N ), since only

N random effects among b0,∞ are involved. When the sample size N →∞, bN
0 is equivalent to b0,∞. In the

following, we would write b0 = bN
0 for notational convenience, and let b̂ = (b̂1, . . . , b̂N ) be the estimator of

the random effects bN
0 .

We denote β0 as the true parameter of the fixed effects, β̂1 as the estimator of the fixed-effects obtained

by minimizing the QIF conditional on the random effects estimator b̂, and β̂0 as the fixed-effect estimator

obtained by minimizing the QIF conditional on the true random-effects b0. The proofs of the following

Lemmas and Theorem 1 are provided in Section 2.7.

Lemma 1. Under the regularity conditions provided in A.2, there exists a minimizer β̂1 of Q(β|b̂) for some

fixed λ, such that β̂1 − β0 = Op(N−1/2).

Consistency of β̂1 follows immediately from Lemma 1. Here we do not assume the consistency of the

random effects estimator b̂ in order to ensure the consistency of the fixed-effect estimator β̂1. Instead we

only require Condition 6 in A.2, that is, E[E{g(β0|b̂)})] converges in probability to E{g(β0|b0)}, which is

equivalent to 0 by Condition 3 in A.2. This is a rather weaker condition than the consistency of b̂, since the

consistency of b̂ implies Condition 6; however, Condition 6 does not necessarily guarantee the consistency

of b̂.

Lemma 2 and Lemma 3 provide the consistency and asymptotic distribution of β̂0.

Lemma 2. The estimator of fixed-effect β̂0 is consistent, and has a rate of root-N convergence as N →∞,

that is, β̂0 − β0 = Op(N−1/2).

Lemma 3. Under the regularity conditions provided in A.2.,
√

N(β̂0 − β0)
d→ N(0,Ω0) as N →∞, where

Q̈−1
ββ(β̂0|b0) →p Ω0 and Q̈−1

ββ(β̂0|b0) is the inverse of the second derivative of the conditional quadratic

inference function with respect to β at β = β̂0 and b = b0.

Theorem 1. Under the regularity conditions provided in A.2., for a fixed λ, β̂1 has the following asymptotic

properties as N →∞.

I. (Consistency) β̂1 →p β0.
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II. (Asymptotic Normality)
√

N(β̂1−β0)
d→ N(0,Ω1), where Ω1 is provided in (A-7 ). If each component

of b̂ is consistent i.e. b̂i →p b0i for i = 1, . . . , N , then Q̈−1
ββ(β̂1|b̂)→p Ω1.

Note that Ω1 does not have a closed form if b̂ is not a consistent estimator of b0, although the variance

estimator of Ω1 can be obtained through bootstrap sampling.

Theorem 1 also indicates that if a consistent estimator of the random effects b̂ is obtained, the covariance

matrix Ω1 can be approximated by Q̈−1
ββ(β̂1|b̂), since it converges to Ω0 as the sample size of clusters N

and the cluster size n both go to infinity. In addition, the weighting matrix Cf
N defined in (2.13) is optimal

in the estimation of β0 due to the asymptotic efficiency property of the generalized method of moments

(Hansen, 1982). Therefore β̂0 is efficient as the covariance matrix of
√

N(β̂0 − β0) reaches the minimum in

the sense of Loewner ordering. Since β̂1 is asymptotically equivalent to β̂0, as the asymptotic variance of

β̂1 converges to the asymptotic variance of β̂0 if the random effect is consistently estimated, therefore the

estimator β̂1 also achieves the same asymptotic efficiency as β̂0.

In A.4., we provide regularity conditions and a proof to achieve a consistent estimator of random-effect b0

for correlated data when the cluster size n goes to infinity. This type of condition is satisfied for correlated

response such as autoregressive, stationary Gaussian, M-dependent and other sequences with a decaying

correlation structure satisfying the mixingale condition.

However, if the estimator of the random effects b̂ is not consistent with b0, we show in A.3 that the asymp-

totic efficiency of β̂1 will be affected since Σ∗ in (A-6) cannot be guaranteed to simplify as Σ = var(
√

NGN ),

and consequently the asymptotic variance Ω1 for the fixed-effect estimator might not necessarily reach the

minimum asymptotic variance Ω0.

2.4 Simulation

To evaluate the performance of the QIF method for GLMMs, we fit the model with the mixed-effects QIF

method in Section 2.2 with three types of working correlations: independent, exchangeable and AR-1. We

compare our approach to the PQL method using the R package lme4, the SAS GLIMMIX (Schabenberger,

2005) and SAS NLIMIXED. The GLIMMIX procedure fits the generalized linear mixed model based on

linear approximation for the nonlinear function, and the NLIMXED procedure approximates the likelihood

function using Laplace approximation. Note that the PQL, GLIMMIX and NLMIIXED all assume that the

random effects follow the normal assumption. We cannot compare the PGWLS numerically because of its

non- convergence problem.

We conduct simulation studies for binary responses here, since the random effects model for binary data
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is the most challenging when the random effects do not follow a normal distribution. We consider the random

effects model with both a random intercept and a random slope. The conditional correlated binary responses

are generated using the logistic regression model

logit(µb
i ) = β0 + b0i + xi(β1 + b1i), corr(yi|xi, b0i, b1i) = R, i = 1, . . . , N,

where β0 = −0.3, β1 = 0.3, the covariate xi’s are generated from uniform (0.5, 1.5), and the sample size N

is chosen to be either 50 or 100. The correlated data is generated with unequal cluster sizes, that is, the half

of samples have cluster sizes either 4 or 5. The true correlation structures are independent, exchangeable or

AR-1 with the correlation coefficient ρ = 0.4 or ρ = 0.7. Both the random intercept b0i and the random slope

b1i are generated from a bimodal distribution with the probability density function f(b/0.3 + 0.5) from a

rescaled Beta(0.5, 0.5) distribution. We use R package mtvBinaryEP to generate the multivariate correlated

binary data.

Table 2.1 - 2.4 provide the MSEs of the estimators and their standard errors for the fixed-effect β0 and

β1 based on 200 simulations under two different correlations ρ = 0.4 and ρ = 0.7, with two different sample

sizes. Results from the GLIMMIX procedure under exchangeable correlation structure are not presented

here since the GLIMMIX does not converge in most cases.

When the true correlation structure is independent, the performances of the mixed-effect QIF, the PQL

and the NLMIXED procedure are comparable, while there are serious convergence problems for the SAS

GLIMMIX under independent structure with more than 90% of non-convergence rate. When the true corre-

lation structure is either AR-1 or exchangeable, the MSEs of the mixed-effects QIF method are smaller than

those obtained from the PQL, GLIMMIX and NLMIXED approaches, even under the misspecified working

correlation structure. In general, the efficiency improvement becomes more significant as the correlation

ρ increases. For example, when the sample size N = 100 and the true correlation structure is AR-1 with

ρ = 0.7, the mixed-effect QIF estimator for the slope parameter β1 using the true correlation structure has

the lowest MSE of 0.0494, compared to the MSEs of 0.0979 and 0.0732 under the misspecified independent

and exchangeable working correlation structures. The MSEs of the estimators from the PQL, the GLIMMIX

under independent and AR-1 working structures, and the NLMIXED are 0.4354, 0.3509, 0.0755 and 0.3971,

respectively. Note that the non-convergence rate is 174 out of 200 for the GLIMMIX under AR-1 working

structure; therefore the MSE of 0.0755 is also questionable.

We also observe that the MSEs of the mixed-effect QIF estimators with correctly specified working

correlation structure are smaller than those obtained with misspecified working correlation structures. This

19



Table 2.1: MSE and the standard errors of MSE (provided in the lower right corner) for the estimator of
the intercept β0 = −0.3 for binary responses when ρ = 0.4 from 200 simulations.

N = 50 N = 100

Method True correlation True correlation

Independent Exchangeable AR-1 Independent Exchangeable AR-1

QIF (ind) 0.21800.0220 0.25680.0260 0.24960.0208 0.12110.0115 0.11730.0106 0.13890.0144

QIF (exch) 0.23450.0243 0.24920.0287 0.27420.0224 0.12360.0118 0.10580.0095 0.13610.0141

QIF (AR-1) 0.23590.0251 0.26570.0271 0.24430.0226 0.12440.0118 0.11180.0101 0.12690.0135

PQL 0.22420.0226 0.52110.0537 0.49330.0459 0.12580.0118 0.27620.0277 0.22150.0237

GLIMMIX (Ind) 0.15801
0.0145 0.38702

0.0423 0.40923
0.0357 0.14769

0.0167 0.204010
0.0187 0.161611

0.0182

GLIMMIX (AR-1) 0.19794
0.0188 0.39595

0.0429 0.26286
0.0202 0.118912

0.0167 0.202013
0.0193 0.122414

0.0133

NLMIXED 0.21937
0.0222 0.44520.0490 0.44588

0.0383 0.121215
0.0115 0.26310.0255 0.190416

0.0200

Table 2.2: MSE and the standard errors of MSE (provided in the lower right corner) for the estimator of
the slope β1 = 0.3 for binary responses when ρ = 0.4 from 200 simulations.

N = 50 N = 100

Method True correlation True correlation

Independent Exchangeable AR-1 Independent Exchangeable AR-1

QIF (ind) 0.18700.0184 0.21650.0192 0.22790.0195 0.10770.0106 0.09620.0082 0.11990.0110

QIF (exch) 0.19910.0201 0.20280.0210 0.24370.0203 0.10870.0107 0.08780.0077 0.11690.0102

QIF (AR-1) 0.20210.0210 0.21820.0204 0.21800.0195 0.11020.0108 0.09380.0078 0.10500.0089

PQL 0.19150.0191 0.41500.0383 0.44380.0394 0.11080.0109 0.23240.0193 0.18820.0167

GLIMMIX (Ind) 0.09151
0.0084 0.33282

0.0325 0.38723
0.0335 0.14539

0.0160 0.180510
0.0147 0.144411

0.0134

GLIMMIX (AR-1) 0.11954
0.0129 0.34565

0.0336 0.32816
0.0217 0.130712

0.0161 0.173713
0.0147 0.119414

0.0110

NLMIXED 0.18777
0.0186 0.38570.0368 0.42368

0.0374 0.107915
0.0107 0.24150.0209 0.172216

0.0159

Note: Number of non-convergence outcomes from GLIMMIX procedures are tabulated as follows: 1. 188;
2. 60; 3. 86; 4. 183; 5. 69; 6. 166; 7. 16; 8. 1; 9. 180; 10. 35; 11. 92; 12. 180; 13. 45; 14. 176;15. 7;
16. 2.

is especially true when the correlation parameter is as high as ρ = 0.7. On comparing the MSEs from

two different sample sizes, the ratios between the MSEs of the mixed-effect QIF estimators under the true

and misspecified correlation structures increase as the sample size increases, in general. This indicates that

correctly specifying the correlation structure is important for achieving high efficiency when the sample size

becomes larger. In addition, as the sample size increases, the efficiency of the mixed-effect QIF estimator

also improves as expected.

We also provide the means of the variance component estimators for the random effects and their standard

errors in Table 2.5 - 2.6 for N = 100 and ρ = 0.7. Overall, the mixed-effect QIF approach provides more

accurate variance component estimators compared to other approaches. Note that the PQL, GLIMMIX and
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Table 2.3: MSE and the standard errors of MSE (provided in the lower right corner) for the estimator of
the intercept β0 = −0.3 for binary responses when ρ = 0.7 from 200 simulations.

N = 50 N = 100

Method True correlation True correlation

Independent Exchangeable AR-1 Independent Exchangeable AR-1

QIF (ind) 0.24360.0260 0.32530.0347 0.23580.0227 0.14640.0142 0.13730.0148 0.12980.0143

QIF (exch) 0.25410.0250 0.23910.0226 0.21890.0209 0.14940.0144 0.07620.0082 0.10800.0101

QIF (AR-1) 0.25790.0267 0.26640.0265 0.17060.0180 0.14990.0145 0.08420.0091 0.08020.0078

PQL 0.25910.0282 4.45780.6305 1.37580.2319 0.15170.0146 1.85560.2864 0.66280.0906

GLIMMIX (Ind) 0.04831
0.0062 2.74670.3529 0.78702

0.0945 0.16047
0.0138 1.01590.1059 0.39128

0.0366

GLIMMIX (AR-1) 0.19113
0.0302 2.97164

0.3709 0.35005
0.0431 0.17139

0.0179 1.061610
0.1151 0.122611

0.0108

NLMIXED 0.24946
0.0267 3.01780.4163 0.97790.1023 0.150512

0.0148 1.14740.1091 0.51260.0480

Table 2.4: MSE and the standard errors of MSE (provided in the lower right corner) for the estimator of
the slope β1 = 0.3 for binary responses when ρ = 0.7 from 200 simulations.

N = 50 N = 100

Method True correlation True correlation

Independent Exchangeable AR-1 Independent Exchangeable AR-1

QIF (ind) 0.22500.0236 0.22060.0227 0.16760.0145 0.14140.0141 0.10720.0110 0.09790.0098

QIF (exch) 0.23120.0221 0.14770.0150 0.14760.0122 0.14250.0142 0.05340.0056 0.07320.0069

QIF (AR-1) 0.23720.0239 0.16600.0160 0.11310.0105 0.14470.0143 0.05780.0067 0.04940.0044

PQL 0.23370.0248 2.54900.2675 0.82980.0995 0.14510.0145 1.19490.1148 0.43540.0459

GLIMMIX (Ind) 0.02791
0.0024 3.09330.4540 0.66352

0.0762 0.14457
0.0124 1.24680.1235 0.35098

0.0352

GLIMMIX (AR-1) 0.17703
0.0278 3.36274

0.4691 0.21645
0.0225 0.16569

0.0189 1.286010
0.1331 0.075511

0.0071

NLMIXED 0.22936
0.0241 2.10110.1954 0.68440.0668 0.144812

0.0148 0.96000.0857 0.39710.0398

Note: Number of non-convergence outcomes from GLIMMIX procedures are tabulated as follows: 1. 189;
2. 16; 3. 185; 4. 9; 5. 170; 6. 15; 7. 173; 8. 7; 9. 174; 10. 1; 11. 174; 12. 7.

NLMIXED approaches provide much larger variance component estimators than the true variance and the

mixed-effect QIF estimators. The discrepancy becomes much larger if the true structure is not independent.

For example, when the true structure is exchangeable, the variance estimators of the random slopes from

the PQL, the GLIMMIX procedure with independent structure and the NLMIXED procedures are 12.45,

4.85 and 8.51 respectively, while the true variance of the random slopes is 0.015 and the mixed-effect QIF

variance estimator is 0.013.

To visualize the estimated distribution for the random effects, Figure 1 provides a probability histogram

of a total of 20,000 random slope estimators from 200 simulated data sets when the true correlation structure

is AR-1 with ρ = 0.7, and the sample size N = 100. The random-effect estimators are obtained based on the

mixed-effect QIF approach with correct specified correlation structure. The solid line in the graph provides
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the random-effects density function generated from the true Beta distribution. Figure 2.1 indicates that

the estimated random effects resemble the rescaled Beta(0.5, 0.5) distribution reasonably well for the non-

boundary region. In addition, we also provide the probability histogram of the random effects estimators in

the PQL approach in Figure 2. The histogram shows that the PQL estimators of the random effects follow

a normal-curve pattern. This is likely bacause the PQL imposes a normality assumption on the random

effects distribution.

2.5 Real-data Example

2.5.1 Periodontal Example for Binary Data

In this section, we apply the mixed-effect QIF method to an observational periodontal disease study to

determine if nonsurgical periodontal treatment is effective for the prevention of tooth loss (Stoner, 2000).

The data are from 722 subjects with chronic periodontal diseases with 7-year follow up. To take into

account the lag time between periodontal treatment and tooth loss, a history of non-surgical periodontal

treatments is defined as an indicator for three years prior to a particular time-point of interest (Nonsurg).

The association between the binary response of whether there is any tooth extraction, and the history of

non-surgical periodontal treatment, is modeled. Other covariate factors include patients’ characteristics

such as gender (Gender), age (Age), number of teeth (Teeth), number of diseased sites (Sites), mean pocket

depth of diseased sites (Pddis) and mean pocket depth of all sites (Pdall) at the initial visit. In addition, the

number of non-periodontal dental treatments (Dent), the number of non-periodontal preventive procedures

(Prev) and the number of surgical treatments (Surg) over the 3-year baseline period were considered in the

model as well. We fit a random intercept model to incorporate the heterogeneity variation among patients.

Specifically, we have the following logistic model:

logit(µb
ij) = β0 + bi + β1Genderij + β2Ageij + β3Teethij + β4Sitesij

+β5Pddisij + β6Pdallij + β7Surgij + β8Dentij + β9Previj + β10Nonsurgij .

Among the 722 patients, 558 (77%) of them had at least 5 years of follow-up information. Since patients

have different numbers of years of follow-up information, the data has an unbalanced cluster design. We

fit the mixed-effect QIF methods with three different types of working correlation structures, and the PQL

method using the logistic model above, for the 558 patients with balanced data only. The estimators,

standard errors and z-values are summarized in Table 3.7.
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Table 3.7 indicates that the mixed-effect QIF with independent and exchangeable working correlation

structures and the NLMIXED procedure produce very similar results, except for Surg and Pddis. How-

ever, there are significant differences between the estimators from the mixed-effect QIF with AR-1 working

correlation and the PQL and NLMIXED estimators. For example, the PQL estimator and the NLMIXED

estimator for Pdall effect are 0.6425 and 0.4832, respectively, and neither of these are significant. On the

other hand, the mixed-effect QIF estimator for Pdall with AR-1 working correlation structure is 0.7792,

which is significant. The GLIMMIX procedure does not converge under the exchangeable working corre-

lation structure. The GLIMMIX assuming independent or AR-1 structure produces results similar to the

mixed-effect QIF approaches with AR-1 working correlation, except for the effects of Age and Teeth. In

general, the standard errors of the mixed-effect QIF estimators are smaller than the standard errors from

the other approaches, except for Surg, Dent, and Prev effects.

2.5.2 Epileptic Seizure Data Example for Poisson Data

We also apply (Thall and Vail, 1990, p. 664) epileptic seizure data to illustrate the conditional mixed-effect

approach for Poisson response. The epileptic seizure data consists of 59 epilepsy patients, 31 of whom

received a new anti-epileptic drug and 28 of whom received a placebo. For each patient, baseline data are

recorded including the patient’s age and the number of epileptic seizures during an 8-week interval prior

to receiving treatment. The responses are the number of epileptic seizures occurring in the 2-week period

before each of four clinic visits. Clearly, measurements within each patient are correlated.

Let yij be the seizure count for patient i at the jth visit (i = 1, . . . , 59, j = 1, . . . , 4). To incorporate

random effects among patients for the count data, the log link function is specified as

log(µb
ij/Oi) = β0 − log(Oi) + bi + β1xi1 + β2Ti + β3xi2 + β4Visitij/10,

where µb
ij = E(yij |bi), and Oi =

√
mis.e.(y) is used to adjust for the cluster size mi and the variance of

the count data, which should have no effect on fixed-effects estimation for covariates. Here the cluster size

mi = 4 is the same for all subjects. The covariates in the model include xi1 = log(basei/4) which is the

logarithm of 1/4 of the number of baseline seizures, xi2 = log(agei) which is the logarithm of the ith patient’s

age, Ti is a treatment indicator variable defined to be 1 for the new drug and 0 for the placebo, and visitij

is a time-dependent covariate for four visits where visitij = −3,−1, 1, 3 for j = 1, 2, 3 and 4. In addition, for

the count data, the conditional variance is the same as the conditional mean, that is var(yij |bi) = µb
ij .

We compare the mixed-effect QIF approach with three different working correlation structures as well
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as the PQL method, the GLIMMIX approach and the NLMIXED procedure. The results are summarized

in Table 3.8. Table 3.8 shows that the treatment effect obtained from the mixed-effect QIF approach is not

significant, but is significant in the PQL and NLMIXED approaches. On the other hand, the mixed-effect

QIF provides a highly significant age effect, while the other approaches produce non-significant results.

The GLIMMIX with exchangeable working correlation does not converge here, so it is not presented. The

GLIMMIX estimators under other working structures are similar to those obtained from the PQL and the

NLMIXED procedure except for treatment. For this data example, the mixed-effect QIF under AR-1 and

exchangeable structures provides smaller standard errors of fixed effects compared to the other approaches.

2.6 Discussion

Mixed-effects models are extremely useful for longitudinal data when subject-specific variation is one of our

main interests. However, most of the random-effects approaches, including Gaussian-Hermite quadrature, are

based on exact likelihood functions which could be difficult to approximate numerically for large dimensions

of random effects. The penalized quasi-likelihood and the conditional second-order generalized estimating

equations all rely on the normality assumption for random effects, which can be restrictive in practice.

We propose a new approach for generalized linear mixed models, which allows one to estimate the fixed

and random effects simultaneously. The main difference between our method and existing generalized linear

mixed-effects models is that we do not have parametric model assumptions for the random effects. Our

method is based on conditional extended scores which only involve the first two moment conditions, and

the random-effect parameters are estimated through minimizing the penalized quadratic inference function.

Therefore, the specification of the likelihood function is not required for estimation. The main advantage

of the proposed method is that it is able to incorporate both serial correlation from repeated measurements

and heterogeneous variation from individuals. In addition, the distribution assumption for random effects is

not required.

Moreover, the proposed method does not involve unknown variance components estimation as in the

PQL, nor the estimation of the nuisance parameters associated with the working correlations as in the

CGEE2. We provide consistency and asymptotic normality for the fixed-effects estimator. The derivation of

the asymptotic property does not rely on the specific distribution of the random effects, as in other existing

random-effects methods.

In addition, when serial correlation is introduced into the data, the mixed-effect QIF performs better than

the PQL, SAS GLIMMIX and NLMIXED in general. This improvement proves to be particularly significant
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for binary response data in our simulation. We also note that the GLIMMIX procedure tends to have a

convergence problem for binary data. Finally, in our simulation, even if the dimension of the random-effects

parameters increases as the sample size increases, the computation is fairly fast and efficient.

2.7 Proofs of Theorems and Lemmas

2.7.1 Notation

We denote the estimate of the random effects as b̂, and let Q(β|b0) be the quadratic inference function

defined in (4) conditional on the true random effects b0,

Q̇β(β̂0|b0) =
∂

∂β
Q(β|b0) β=β̂0

,

and Q̇β(β̂0|b̂), Q̇β(β̂1|b0), and Q̇β(β̂1|b̂) can be defined similarly. In addition, let

Q̈ββ(β̂0|b0) =
∂2

∂β∂β
Q(β|b0) β=β̂0

,

Q̈βb(β̂0|b0) =
∂2

∂β∂b
Q(β|b0) β=β̂0, b=b0

,

and Q̈ββ(β̂1|b0) and Q̈βb(β̂1|b0) are defined similarly. Let GN (β|b) = 1
N

∑N
i=1 gi(β|bi). We can define

ĠN,β(β̂1|b0) =
∂

∂β
GN,β(β|b0) β=β̂1

,

ĠN,b(β̂1|b0) =
∂

∂b
GN,b(β̂1|b0) b=b0 ,

and ĠN,b(β̂1|b0) =
∂

∂b
GN,b(β̂1|b0) b=b0 .

The other second derivatives associated with the different parameters are defined in the same fashion. Let

β̂0 = argminQ(β|b); β̂1 = argminQ(β|b̂).

Both β̂0 and β̂1 are in S, that is,

Q̇β(β̂0|b0) = 0, Q̇β(β̂1|b̂) = 0.
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Also let AN (β|b) be the weighting matrix such that

C−1
N (β|b) = AN (β|b)′AN (β|b)

and Q(β|b) = |AN (β|b)GN (β|b)|2.

2.7.2 Regularity Conditions and Assumptions

Here we prove consistency and asymptotic normality for the fixed-effect estimator under the following as-

sumptions.

1. Define ni as the cluster size for subject i, let n = min(ni), then ni = Op(n) uniformly for i = 1, . . . , N .

2. The parameter space S is compact.

3. Conditional on the true random effects b0, the parameter β is identifiable; that is, there is a unique

β0 ∈ S which satisfies E{g(β0|b0)} = 0.

4. The derivative of the score function with respect to the random effects ġi,b(β̂|b0) is uniformly bounded

in probability, i.e. ġi,b(β̂|b0) = Op(1).

5. We require that E[g(β|b)] be continuous and differentiable in both β and b.

6. The expectation of gi(β0|b̂), the estimating functions conditional on the estimated random effects,

converges to 0 in probability, i.e.

E[E{gi(β0|b̂)}] p→ 0 as N →∞.

7. The weighting matrix CN (β|b) converges almost surely to a constant matrix C0(β|b), while AN (β|b)

converges almost surely to a constant matrix A0(β|b) where C−1
0 (β|b) = A0(β|b)A0(β|b)′.

2.7.3 Proofs of Lemmas and Theorem 1

Proof of Lemma 1. Define BN (r,β0) = {β|‖β − β0‖ < r/
√

N} for a fixed constant r. Then by Taylor

expansion, we have

sup
β∈BN (r,β0)

|
√

N{Q̇β(β|b̂)− Q̇β(β0|b̂)}| = sup
β∈BN (r,β0)

|
√

NQ̈ββ(β0|b̂)(β − β0)| + op(1).
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Since Q̇β(β|b̂) = Q̇β(β|b̂)− Q̇β(β0|b̂) + Q̇β(β0|b̂), we have

sup
β∈BN (r,β0)

|
√

NQ̇β(β|b̂)−
√

NQ̈ββ(β0|b̂)(β − β0)−
√

NQ̇β(β0|b̂)| = op(1). (2.16)

Further, when β is on the boundary of BN (r,β0), i.e. β ∈ {β|‖β − β0‖ = r/
√

N},

N(β − β0)
′Q̈ββ(β0|b̂)(β − β0) = O(r2) > 0

since Q̈ββ(β0|b̂) is positive-definite and uniformly bounded.

In addition, by the weak law of large numbers and Condition 3,
√

NQ̇β(β0|b0) = Op(1), since

√
NQ̇β(β0|b̂) =

√
NĠN,β(β0|b̂)C−1

N (b̂)GN,β(β0|b̂) + op(1).

It can be concluded by Conditions 4 and 6 that

√
N{Q̇β(β0|b̂)− Q̇β(β0|b0)} = Op(1).

Hence it follows from the above that

√
NQ̇β(β0|b̂) =

√
N{Q̇β(β0|b̂)− Q̇β(β0|b0)} +

√
NQ̇β(β0|b0) = Op(1),

which leads to N(β − β0)′Q̇β(β0|b̂) = Op(r). Therefore for any ε > 0, there exists an M , such that when

r > M ,

P{N(β − β0)
′Q̈ββ(β0|b̂)(β − β0) + N(β − β0)

′Q̇β(β0|b̂) > 0} > 1− ε (2.17)

for all β on the boundary of BN (r,β0). Therefore (2.17) certainly holds for all β *∈ BN (r,β0).

It follows from (2.17) and (3.10) that

(β − β0)
′Q̇β(β|b̂) > 0 (2.18)

for β *∈ BN (r,β0) and some sufficiently large but finite r. Since the left-hand side of (2.18) is continuous

for β, by theorem (6.3.4) of Ortega and Rheinboldt (1973, p. 163), there must be a solution in BN (r,β0)
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satisfying

Q̇β(β|b̂) = 0.

Proof of Lemma 2. Since β̂0 = argminQ(β|b0),

|Q(β̂0|b0)|2 < |Q(β0|b0)|2.

That is,

|AN (β̂0|b0)
1
N

N∑

i=1

gi(β̂0|b0)|2 < |AN (β0|b0)
1
N

N∑

i=1

gi(β0|b0)|2.

By the law of large numbers, we know that the right side of the above converges to 0 as E[g(β0|b0)] = 0.

Further, by Assumption 8, the uniform law of large numbers and the continuity mapping theorem, we can

prove that

|AN (β̂0|b0)
1
N

N∑

i=1

gi(β̂0)−A0(β̂0|b0)E[g(β̂0|b0)]|→a.s. 0.

It follows that

|A0(β̂0|b0)E[g(β̂0|b0)]|2 →a.s. 0.

Hence β̂0 converges to β0 almost surely.

Proof of Lemma 3. Since Q̇β(β̂0|b0) = ĠN,β(β̂0|b0)′C−1
N (β̂0|b0)GN (β̂0|b0), by Taylor’s Expansion,

0 = Q̇β(β̂0|b0) = Q̇β(β0|b0) + Q̈ββ(β̃|b0)(β̂0 − β0)

= ĠN,β(β0|b0)′C−1
N (β0|b0)GN (β0|b0) + Q̈ββ(β̃|b0)(β̂0 − β0),

where β̃ is between β̂0 and β0. Then we have

β̂0 − β0 = −Q̈−1
ββ(β̃|b0)ĠN,β(β0|b0)′C−1

N (β0|b0)GN (β0|b0).

Since β̂0 →a.s. β0, it follows immediately that

β̃ →a.s. β0, and ĠN,β(β̃|b0)→a.s. d0.
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By the Central Limit Theorem and Assumption 3,
√

NGN (β0|b0)
d→ N(0,Σ) and CN (β0|b0) →p Σ =

NΣN . Therefore
√

N(β̂0 − β0) converges to a normal distribution of mean 0 with asymptotic covariance

matrix

cov(
√

N(β̂0 − β0))

= Q̈−1
ββ(β0|b0)Ġ′

N,β(β0|b0)C−1
N (β0|b0)ΣC−1

N (β0|b0)ĠN,β(β0|b0)Q̈−1
ββ(β0|b0)

→ (d′0Σ
−1d0)−1d′0Σ

−1ΣΣ−1d0(d′0Σ
−1d0)−1 = (d0Σd0)−1 = Ω0. (2.19)

This is because Q̈ββ(β0|b0) = ĠN,β(β0|b0)′C−1
N (β0|b0)ĠN,β(β0|b0)+op(1). Hence it follows immediately

that Q̈−1
ββ(β̂0|b0)→a.s. Ω0.

Proof of Theorem 1. Consistency of β̂1 follows immediately from Lemma 1. By Lemma 3,
√

N(β̂0 − β0)

also converges to the normal distribution. Furthermore,

√
N(β̂1 − β0) =

√
N(β̂1 − β̂0) +

√
N(β̂0 − β0)

=
√

NQ̈−1

ββ(β̃|b0)Q̇β(β̂1|b0)−
√

NQ̈−1

ββ(β0|b0)Q̇β(β0|b0) + op(1) (2.20)

=
√

NQ̈−1

ββ(β0|b0)ĠN,β(β0|b0)C−1
N (b0)1/N

N∑

i=1

[gi(β̂1|b0)− gi(β0|b0)] + op(1).

Define Σ∗ as

Σ∗ = lim
N→∞

E[N{GN (β̂1|b0)−GN (β0|b0)}{GN (β̂1|b0)−GN (β0|b0)}′]. (2.21)

Hence, the asymptotic variance of
√

N(β̂1 − β0) can be written as

Ω1 = (d′0Σ
−1d0)−1d′0Σ

−1Σ∗Σ−1d0(d′0Σ
−1d0)−1. (2.22)

When the estimate of the random effects is consistent, i.e. b̂→pb0 as n→∞, it can be shown that

√
NĠN,b(β̂1|b̃)(b̂− b0) = Op(1)op(1) = op(1).
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Therefore,

√
NQ̈βb(β̂1|b̃)(b̂− b0) =

√
N{ĠN,β(β̂1|b̃)}′C−1

N (b̃)ĠN,b(β̂1|b̃)(b̂− b0) + op(1)

=
√

N{ĠN,β(β0|b0)}′C−1
N (b0)ĠN,b(β̂1|b̃)(b̂− b) + op(1)

= op(1).

Then by Taylor expansion, we have

√
N{Q̇β(β̂1|b̂)− Q̇β(β̂1|b0)} =

√
NQ̈βb(β̂1|b̃)(b̂− b0) = op(1).

It follows immediately from Q̇β(β̂1|b̂) = 0 that

√
NQ̇β(β̂1|b0) =

√
NĠN,β(β̂1|b0)′C−1

N (b0)GN (β̂1|b0) + op(1) = op(1). (2.23)

Then by (2.20) and (2.23), we can conclude that

√
N(β̂1 − β0) =

√
N(β̂0 − β0) + op(1).

Hence it follows from (2.19) that

Ω1 = Q̈−1

ββ(β0|b0) + op(1),

which can be approximated by Q̈−1

ββ(β̂1|b̂) since Q̈−1

ββ(β̂1|b̂) p→ Q̈−1

ββ(β0|b0).

2.7.4 Conditions and Proof of Consistency of Random-effect Estimator

We estimate b0,i by solving

g∗i (β̂1|b̂i) = µ̇i,b(β̂1|b̂i)(yi − µi(β̂1|b̂i)) = 0.

Therefore, by Taylor expansion we have

b̂i − b0i = {ġ∗i,bi
(β̂1|b̃i)}−1

ni∑

j=1

µ̇ij,b(β̂1|b0)(yij − µij(β̂1|b0)).
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Since β̂1
p→ β0, then

b̂i − b0i → {ġ∗i,bi
(β0|b̃i)}−1

ni∑

j=1

µ̇ij,b(β0|b0)(yij − µij(β0|b0)).

Since {ġ∗i,bi
(β0|b̃i)}−1 is bounded in probability, therefore if the law of large numbers holds for the sequence

µ̇i1,b(β0|b0){yi1 − µi1(β0|b0)}, . . . , µ̇ini,b(β0|b0){yini − µini(β0|b0)}, we can conclude that

b̂i − b0i = Op(n
−1/2
i ).

That is, b̂ is a consistent estimator of b0. This is because E{µ̇ij,b(β0|b0)(yij − µij(β0|b0))} = 0.

Let Zij = µ̇ij,b(β0|b0){yij − µij(β0|b0)}. From Andrews (1988), if the sequence of random variables

satisfies the L1 mixingale conditions:

(a) ‖E(Zij |Zi,j−m‖1 ≤ cjψm, and

(b) ‖Zi − E(Zij |Zi,j+m)‖1 ≤ cjψm+1,

where {cj : i ≥ 1} and {ψm : m ≥ 0} are some non-negative constants and ψm → 0 as m → ∞, and if

limn→∞
1
n

∑n
j=1 cj <∞ or {cj} can be given by {||Zij ||1}, we have the law of large numbers for the dependent

sequence Z̄i = 1/ni
∑ni

j=1 Zij→p0. Such conditions can be satisfied for sequences such as autoregressive,

stationary Gaussian, or M-dependent and other sequences with decaying α mixing numbers.
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Table 2.5: Mean and the standard errors of mean (provided in the lower right corner) of the variance
component estimator for random intercepts out of 200 simulations for binary response, when N = 100 and
ρ = 0.7. The true variance of the random intercept is 0.015.

N = 100

Method True correlation

Independent Exchangeable AR-1

QIF (ind) 0.00510.0000 0.01530.0000 0.01330.0000

QIF (exch) 0.00510.0000 0.01540.0000 0.01330.0000

QIF (AR-1) 0.00510.0000 0.01540.0000 0.01340.0000

PQL 0.46020.0706 52.60745.8626 12.44551.0486

GLIMMIX (Ind) 0.08121
0.0043 11.26950.2750 4.85322

0.0979

GLIMMIX (AR-1) 0.16223
0.0084 11.43774

0.3306 0.56405
0.0313

NLMIXED 0.05156
0.0067 25.43580.6391 8.50880.2236

Table 2.6: Mean and the standard errors of mean (provided in the lower right corner) of the variance
component estimator for random intercepts out of 200 simulations for binary response, when N = 100 and
ρ = 0.7. The true variance of the random intercept is 0.015.

N = 100

Method True correlation

Independent Exchangeable AR-1

QIF (ind) 0.00730.0000 0.02620.0000 0.02120.0000

QIF (exch) 0.00730.0000 0.02630.0000 0.02130.0000

QIF (AR-1) 0.00730.0000 0.02630.0000 0.02130.0000

PQL 0.35730.0592 23.64982.0657 3.05420.3737

GLIMMIX (Ind) 0.07631
0.0049 8.97040.3339 2.60712

0.1082

GLIMMIX (AR-1) 0.09323
0.0063 9.12584

0.3857 0.21595
0.0136

NLMIXED 0.03356
0.0060 3.28560.1699 1.40550.1175

Note: Number of non-convergence outcomes from GLIMMIX procedures are tabulated as follows: 1. 173;
2. 7; 3. 174; 4. 1; 5. 174; 6. 7.
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Figure 2.1: Histogram of the estimates of the random slopes from the binary data sets with N = 100 and
ρ = 0.7. The true correlation structure of the data set is AR(1), and the estimates are obtained by the
mixed-QIF method with AR(1) working correlation. The solid line in the graph provides the random-effects
density function generated from the true Beta distribution.

Figure 2.2: Histogram of the estimates of the random slopes from the binary data sets with N = 100 and
ρ = 0.7. The true correlation structure of the data set is AR(1), and the estimates are obtained by the PQL
approach.
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Table 2.7: Comparison of mixed QIF and the other approaches for non-surgical periodontal treatment data.

Covariates QIFind QIFCS QIFAR-1 PQL GLIMMIXind GLIMMIXAR-1 NLMIXED
Intercept -7.1549 -7.4769 -8.1300 -8.0824 -9.3476 -9.5602 -6.8281
s.e. 1.3630 1.3476 1.3637 1.6265 1.7433 1.7804 1.5600
z-value -5.2492 -5.5482 -5.9615 -4.9691 -5.3620 -5.3697 -4.3770
Gender 0.2257 0.2138 0.2409 0.2383 0.2317 0.2387 0.2526
s.e. 0.1522 0.1530 0.1589 0.1720 0.1766 0.1802 0.1588
z-value 1.4828 1.3974 1.5155 1.3865 1.3120 1.3246 1.5907
Age 0.0168 0.0175 0.0152 0.0202 0.0279 0.0291 0.0173
s.e. 0.0105 0.0104 0.0108 0.0123 0.0128 0.0131 0.0114
z-value 1.5948 1.6781 1.4072 1.6427 2.1772 2.2305 1.5109
Teeth -0.0334 -0.0325 -0.0177 -0.0353 -0.0388 -0.0406 -0.0440
s.e. 0.0246 0.0241 0.0242 0.0271 0.2767 0.0282 0.0254
z-value -1.3591 -1.3518 -0.7295 -1.3010 -1.4051 -1.4385 -1.7323
Sites 0.0024 0.0025 -0.0042 -0.0005 -0.0042 -0.0048 0.0032
s.e. 0.0097 0.0099 0.0090 0.0102 0.0105 0.0107 0.0098
z-value 0.2468 0.2555 -0.4684 -0.0524 -0.4029 -0.4440 0.3301
Pddis 0.2689 0.3469 0.1948 0.2719 0.2944 0.2899 0.2587
s.e. 0.1864 0.1790 0.1904 0.2293 0.2370 0.2418 0.2124
z-value 1.4428 1.9377 1.0232 1.1866 1.2422 1.1989 1.2180
Pdall 0.4644 0.3960 0.7792 0.6425 0.8465 0.8885 0.4832
s.e. 0.3880 0.3946 0.3626 0.4200 0.4329 0.4423 0.4020
z-value 1.1968 1.0035 2.1489 1.5292 1.9554 2.0088 1.2020
Surg -0.1377 0.0039 -0.1636 -0.0932 -0.1020 0.1304 -0.1087
s.e. 0.2741 0.2336 0.2863 0.2901 0.2019 0.2034 0.2790
z-value -0.5024 0.0168 -0.5716 -0.3213 -0.5052 0.6411 -0.3896
Dent 0.1074 0.1132 0.1158 0.1205 0.1353 0.1365 0.1172
s.e. 0.0083 0.0082 0.0086 0.0080 0.0061 0.0061 0.0084
z-value 12.9164 13.8498 13.4963 15.0844 22.3636 22.4433 13.9126
Prev 0.0404 0.0271 0.0169 0.0353 0.0381 0.0395 0.0363
s.e. 0.1349 0.1353 0.1398 0.1500 0.0988 0.0990 0.1378
z-value 0.2992 0.2004 0.1207 0.2420 0.3856 0.3988 0.2636
Nonsurg -0.2360 -0.2037 -0.2149 -0.2207 -0.1995 -0.2041 -0.2266
s.e. 0.1500 0.1504 0.1577 0.1767 0.1839 0.1876 0.1632
z-value -1.5732 -1.3548 -1.3624 -1.2500 -1.0848 -1.0880 -1.3885

Note: QIFind, QIFCS and QIFAR-1 are the mixed-effect QIF methods with independent, exchangeable and
AR-1 working correlation structures.
Pddis: mean pocket depth of disease sites; Pdall: mean pocket depth of all sites; Surg: number of surgical
treatments; Dent: number of non-periodontal dental treatments; Prev: number of non-periodontal preventive
procedures; Nonsurg: indicator for nonsurgical periodontal treatments during the three years prior to the
time-point of interest.
Neither GLIMMIX with AR-1 working correlation nor GLIMMIX with exchangeable working correlation
can converge for this data-set.
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Chapter 3

Correlation Structure Selection for
High Dimensional Correlated Data

3.1 Introduction

In longitudinal data analysis, it is important to identify the correct correlation structure since it can improve

the estimation efficiency for regression parameter if the true information of the correlation structure can be

utilized (Liang and Zeger, 1986; Qu et al., 2000). In addition, incorporating the correct correlation structure

can also reduce the bias of parameter estimation in nonparametric modeling (Wang, 2003), and increases

statistical power for hypothesis testing.

However, model selection for correlation structure remains a challenging problem due to the involvement

of higher order of moment estimations. The problem is especially challenging when the cluster size m is

large, and the associated dimension of the correlation parameters increases at a rate of m2. This makes it

practically infeasiblel to use the empirical estimation of the correlation matrix directly, even if it might be

close to the true correlation structure.

The existing work mainly focuses on the estimation of the covariance matrix rather than the selection

of correlation structure. Huang et al. (2006, 2007) proposed estimation and covariance selection based

on Cholesky decomposition. Fan et al. (2008) developed the factor modeling approach, and El Karoui

(2008) introduced the spectrum random matrix approach to estimate the high dimension sparse covariance

matrix. However, these methods are mainly applicable for continuous outcomes. Other recent developments

for large covariance matrices estimation include the nested LASSO approach (Levina et al., 2008), the

banding and tapering approach (Bickel and Levina, 2008b), the thresholding approaches (Bickel and Levina,

2008a; Rothman et al., 2009), and the multivariate linear regression (Yuan, 2010) and the penalized normal

likelihood function approach (Rothman et al., 2008) for estimating the inverse of the covariance matrix.

In addition, Fisher and Sun (2010) proposed an improved Stein-type shrinkage estimator for the high-

dimensional multivariate normal covariance matrix. These approaches are still not capable of handling

discrete responses. However, discrete outcomes occur frequently in longitudinal data studies. In addition,

selection of the true correlation structure itself is scientifically important in longitudinal studies.
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In this paper, we approximate the inverse of the empirical correlation matrix using a linear combination

of candidate basis matrices. The possible candidate basis matrices could contain most the common correla-

tion structures or linear combinations of different correlation structures, which are based on prior knowledge

of possible correlation structures. We select the correlation structure by identifying groups of basis matrices

with non-zero coefficients, where each group of basis matrices represents a specified correlation structure.

This is carried out by minimizing an objective function which involves two parts. The first part is the

Euclidean norm between two estimation equations, one based on the empirical information of the correlation

matrix, the other based on the model approximation by a linear combination of candidate correlation struc-

tures. The second part is a penalty function which penalizes a model involving too many basis matrices for

the correlating modeling. The correlation structure is selected by group-wise (Yuan and Lin, 2006) SCAD

penalty function (Fan and Li, 2001). That is, the specific correlation structure is identified, if and only if,

the whole group of basis matrices is selected.

Through identifying non-zero coefficients of the basis matrices with certain structures, one can avoid the

estimation of each individual entry of the correlation matrix. Note that the dimension of the correlation

parameters could be very high if the cluster size is large, without assuming certain structures of the correlation

matrix. One of advantages is that the dimension of the parameters involved in the estimation is greatly

reduced. Another main advantage of our approach is that it does not require the specification of the likelihood

function. Therefore it can be applied to non-normal correlated responses, such as binary and count data.

To the authors’ best knowledge, there is very limited literature discussing model selection for correlation

structure in non-continuous outcome data. In contrast to Zhou and Qu (2011) model selection for correlation

structure where the cluster size is fixed, here we allow the cluster size to diverge as the sample size increases.

Note that the asymptotic theory and numerical implementation for model selection of correlation structure

for diverging cluster size is very different and much more challenging compared to the fixed cluster size case.

We show that the proposed selection procedure tends to identify the true correlation structure with

probability tending to 1 when the sample size is sufficiently large. Therefore, a positive-definite correlation

matrix can be ensured asymptotically. In addition, our approach enjoys the oracle property, such that the

estimated non-zero coefficients of the basis matrices have an asymptotic normal distribution. The derivation

of the asymptotic results is challenging when the cluster size diverges. Our simulation results also confirm

that even when the cluster size is quite large, the proposed method works effectively to identify the correct

correlation structures for both continuous and discrete outcomes.

The chapter is organized as follows. Section 3.2 describes the general framework of basis matrices

representations for various correlation structures. Section 3.3 proposes model selection by minimizing the
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penalized estimating equations. Section 3.4 develops asymptotic properties of model selection consistency,

and the oracle property when the number of group basis matrices diverges as the sample size increases.

Section 3.5 focus on implementation of the proposed selection procedure. Section 3.6 provides simulation

results for both continuous and binary cases. Section 3.7 provides a data example on air pollution for

illustration. We provide the final conclusion and discussion in Section 3.8. The technical proofs of the

lemmas and theorems on the asymptotic properties of the proposed estimators are provided in the last

section.

3.2 General Framework

In the longitudinal data framework, the marginal mean model is

E(yi) = µ(Xiβ), i = 1, . . . , n, (3.1)

where yi = (yi1, . . . , yim)′ is the response variable which is repeatedly measured over time t = 1, . . . ,m; Xi

is a known m× dim(β) covariate matrix associated with a parameter vector β; and µ(·) is the inverse of the

link function between the response variable and predictor variables.

To estimate the regression parameter β in (3.1), Wedderburn (1974) proposed the quasi-likelihood func-

tion for correlated data

n∑

i=1

µ̇i
T V −1

i (yi − µi) = 0, (3.2)

where Vi is the covariance matrix of yi and µi = µ(Xiβ). In practice, Vi is often unknown, but can be

substituted by the empirical covariance. However, the empirical estimator of Vi could be unstable, especially

when the sample size is relatively small compared to the cluster size. Liang and Zeger (1986) introduced the

generalized estimation equation approach which extends (3.2) by assuming Vi = A1/2
i RA1/2

i , where Ai is a

diagonal matrix with the marginal variance of yi as the diagonal component, and R is a working correlation

matrix.

To improve the efficiency of the GEE estimator under the misspecified working correlation structure, Qu

et al. (2000) introduced the quadratic inference function approach. The key idea is that the inverse of the

working correlation matrix R−1 can be approximated by a linear combination of basis matrices. That is,

R−1 ≈
∑t

j=1 ajMj , where M1 is usually an identity matrix and k is the number of basis matrices. Then,
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the GEE can be approximated by

n∑

i=1

µ̇T
i A−1/2

i




k∑

j=1

ajMj



 A−1/2
i (yi − µi) = 0.

Qu et al. (2000) defined the extended scores to be

ḡn(β) =
1
n

n∑

i=1

gi(β) =
1
n





∑n
i=1 µ̇T

i A−1/2
i M1A

−1/2
i (yi − µi)

...
∑n

i=1 µ̇T
i A−1/2

i MkA
−1/2
i (yi − µi)




,

where ḡn is a k dim(β)-dimensional vector. Note that the GEE is a linear combination of extended scores

ḡn. The quadratic inference function is defined as

nḡT
n C−1

n ḡn,

where Cn is a k dim(β)×k dim(β) matrix and can be estimated consistently by Ĉn = 1
n

∑n
i=1 gi(β)gi(β)T .

Besides for the regression parameter estimation, the quadratic inference function can be utilized in the

model selection for correlation structure. However, here the parameters associated with correlation structures

will no longer be treated as nuisance parameters anymore. For a fixed cluster size, Zhou and Qu (2011)

proposed that the basis matrices can be divided into different groups, that is, R−1 can be represented as

follows:

R−1 ≈
Jm∑

j=1

Bj∑

b=1

αjbMjb (3.3)

where Mjb is the bth basis matrix in the jth group, and αjb is the coefficient of Mjb. Here Bj is the number

of basis matrices in the jth group, and Jm is the number of groups of basis matrices, which depends on the

cluster size m. We denote pm =
∑Jm

j=1 Bj as the total number of basis matrices included. In the following

section, we simplify Gj = (M j1, . . .M jBj ) and αj = (αj1, . . . ,αjBj ), and αjGj =
∑Bj

b=1 αjbMjb.

3.3 Selection of Correlation Structure

In this section, we will illustrate how to perform model selection for correlation structure. The key idea

is to estimate the coefficient αj by minimizing the discrepancy between the estimation function from the

empirical correlation matrix estimator, and the estimating function based on the approximation of R−1 by
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the candidate basis matrices. The discrepancy between the two estimating functions for the ith cluster is

Si = µ̇T
i (β̂)A−1/2

i {R̃−1 −
Jm∑

j=1

αjGj}A−1/2
i (yi − µi(β̂)),

where β̂ is the estimator of the regression parameter β through the generalized estimating equations assuming

independent structure, and R̃ is the empirical correlation matrix computed from the residual y − µ(β̂). In

order to ensure that the empirical correlation R̃ is invertible, we require the sample size n to be larger than

m + dim(β). If an approximation to R−1 by groups of candidate matrices is sufficient, we would expect the

Euclidean norm of S = (S1, . . . , Sn)T be sufficiently small.

In general, it is not desirable to include more basis matrices to achieve a better approximation for

R−1 since a more complex correlation structure does not necessarily lead more efficient estimator for the

regression parameters. This is especially of the case if the cluster size diverges as the sample size increase

since estimating correlation matrix with diverging dimension could bring more variability for the regression

parameter estimation.

We formulate a penalized Euclidean norm of S as an objective function, where a correlation matrix model

involving too many basis matrices is penalized. More specifically, the coefficients of the basis matrices αj

are estimated by minimizing the following objective function

n∑

i=1

ST
i Si + n dim(β)

Jm∑

j=2

pλ(||αj ||), (3.4)

where pλ(·) is the SCAD penalty function, λ is the tuning parameter and ||αj || is the L2-norm of the

coefficients for the j-th group of basis matrices Gj . By imposing the L2-norm of the coefficients αj ’s, the

basis matrices within the same group are selected simultaneously. This penalty is rather different from

Zhou and Qu (2011) where L1-norm of the coefficients αj ’s is imposed. The new penalty performs better

numerically. Note that the first group of basis matrices is not penalized, since it typically contains the block

identity matrices which should always be included for the independent structure, the null model.

To minimize the objective function (3.4), we define

Ui = µ̇T
i (β̂)A−1/2

i R̃−1A−1/2
i {yi − µi(β̂)}, i = 1, . . . , n,

Vi,jb = µ̇T
i (β̂)A−1/2

i MjbA
−1/2
i {yi − µi(β̂)}, j = 1, . . . , Jm, b = 1, . . . Bj .

Let Vij be a dim(β)×Bj matrix Vij = (Vi,j1, . . . , Vi,jBj ) and Vi be a dim(β)×pm matrix Vi = (Vi1, . . . , ViJm)
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, then the objective function in (3.4) can be represented as

Q(α) =
n∑

i=1

||Ui −
Jm∑

j=1

Vijαj ||2 + n dim(β)
Jm∑

j=2

pλ(||αj ||). (3.5)

The advantage of the above reformulation is that the model selection for the correlation structure is trans-

formed to a penalized linear regression problem, where estimator of the coefficients of αj ’s are obtained by

minimizing (3.5). We apply one-step local approximation to the SCAD penalty (Zou and Li, 2008), and

(3.5) becomes

n∑

i=1

||Ui −
Jm∑

j=1

Vijαj ||2 + n dim(β)
Jm∑

j=2

p′λ(||α̂(0)
j ||)||αj ||, (3.6)

where α̂(0)
j is the initial estimate of αj , and can be obtained by the unpenalized least square estimator.

Therefore minimizing (3.6) is equivalent to minimizing the adaptive group LASSO (Yuan and Lin, 2006)

objective function, with component-specific tuning parameter

p′λ(||α̂(0)
j ||) = λ{I(||α̂(0)

j || ≤ λ) +
(aλ− ||α̂(0)

j ||)+
(a− 1)λ

I(||α̂(0)
j || ≥ λ)},

where a > 2 is another unknown parameter besides λ, and is usually chosen as 3.7 in practice (Fan and Li,

2001). Therefore, the objective function (3.6) can be solved by applying the coordinate-wise descent (CWD)

algorithm, as in Yuan and Lin (2006).

3.4 Asymptotic Properties

In this section, we will provide the asymptotic properties of the estimators for the coefficients associated

with the basis matrices, which include the model selection consistency and the oracle property. We first list

the regularity conditions required to establish the asymptotic properties. In the following, we define αj and

αj
0 as the jth component of α and α0.

Regularity Conditions:

1. Let an = max1≤j≤pm{p′λn
(|αj

0|), α
j
0 *= 0}, and bn = max1≤j≤pm{p′′λn

(|αj
0|), αj

0 *= 0}. The following

conditions are associated with the penalty functions:

a. an = O(n−1/2);

b. bn → 0 as n→∞;
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c. lim infn→∞ lim infθ→0+ p′λn
(θ)/λn > 0;

d. There are constants c1 and c2, such that when θ1, θ2 > c1λn, |p′′λn
(θ1)− p′′λn

(θ2))| ≤ c2|θ1 − θ2|.

2. The empirical estimator of the correlation matrix R̃ is
√

n-consistent for each component R(i, j), that

is,

√
n|R̃(i, j)−R(i, j)| = Op(1), 1 ≤ i ≤ m, 1 ≤ j ≤ m.

3. The eigenvalues of the matrices V T
i Vi, i = 1, . . . , n are bounded away from zero and infinity with

probability tending to 1, that is, for any ε > 0, there exist constants l1 and l2 such that

P (0 < l1 < λmin{V T
i Vi} ≤ λmax{V T

i Vi} < l2 <∞) > 1− ε.

4. The L1 norm of the basis matrices is bounded, i.e., there is a constant K such that

||Mjb||1 < K, 1 ≤ j ≤ Jm, b = 1, . . . Bj ,

where the L1 norm of a m×m matrix M is defined as

||M ||1 =
m∑

i=1

m∑

j=1

|M(i, j)|.

Note Condition 4 ensures that basis matrix involved for model selection is sparse through decomposition

since the number of basis matrices is allowed to increase as the cluster size increases.

Based on regularity Condition 2, if the correlation matrix R can be consistently estimated by the empirical

correlation matrix R̃, then the coefficients αj associated with the group basis matrices can be estimated

consistently under the assumption if the groups of basis matrices Gj ’s can capture the information of R−1

sufficiently well. Moreover, we show in Lemma 1 provided in Section 3.9 that once R̃ is a consistent estimator

for R, R̃−1 is also a consistent estimator for R−1. By solving (3.5), we can approximate the inverse of the

empirical correlation R̃−1 by
∑

α̂jGj sufficiently well. We establish the following theorem for the consistency

of α̂j .
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Theorem 1. Suppose the regularity conditions 1-4 are satisfied, if p2
m/n → 0 as n → ∞, then there is a

local minimizer α̂ for minimizing Q(α) in (3.5), such that ||α̂ − α0|| = Op{
√

pm(n−1/2 + an)}, where an

is given in Condition 1 and α0 = (α01, . . . ,α0Jm) is the true coefficient vector associated with all the basis

matrices.

It follows from Theorem 1 that as long as an = Op(n−1/2), there is a
√

n/pm-consistent estimator of α.

For the SCAD penalty, an = 0 when n is large, therefore the SCAD estimator is consistent. The technical

proof provided in the Section 3.9 is quite different from Fan and Peng (2004) since Ui here is no longer

independent as all the Ui’s contain common information of R̃−1, while Fan and Peng assume that the score

functions derived from the known likelihood function are independent for different subjects in the covariate

model selection setting. However, the rate of convergence in Theorem 1 is still the same as in Fan and Peng

(2004).

In the model selection framework, the parameter vector can be partitioned into two parts α = (αT
1 ,αT

2 )T ,

where α1 contains the non-zero coefficients of the basis matrices which capture the true structure of R−1,

while α2 contains the zero coefficients which are irrelevant for modeling R−1. We define the true parameter

vector α0 = (αT
01,α

T
02)T . Let α̂1 and α̂2 be the estimators of α01 and α02 respectively, we then establish

the following oracle properties of α̂.

Theorem 2. Given all the regularity conditions are satisfied, if λn → 0,
√

n/pmλn → ∞ and p2
m/n → 0,

then with probability tending to 1, for any given constant C, and any α1 satisfying ||α1−α01|| = Op(
√

pm/n),

Q(α̂1, 0) = min
||α2||≤C(pm/n)1/2

Q(α1,α2).

Theorem 2 indicates that the minimizer of Q(α) must occur when α̂2 = 0, which implies that part (i) in

Theorem 3 holds.

Let ∇Pλn(α0) be the first derivative vector of the penalty function and ∇2Pλn(α0) be a diagonal matrix

with the second derivatives of the penalty function as the diagonal components, that is,

∇Pλn(α0) = {p′λn
(α1

1), . . . , p
′
λn

(αpm
0 )}T , ∇2Pλn(α0) = diag{p′′λn

(α1
0), . . . , p

′′
λn

(αpm
0 )},

and Km = CmΣmCT
m, where Cm = {vec(C11)T , . . . , vec(CJmBJm

)}T , Cjb is a constant matrix associated with

the basis matrix Mjb, and Σm is the asymptotic variance of
√

nvec{R−2(R̃−R)}.

Theorem 3. Suppose all the regularity conditions are satisfied, if λn → 0,
√

n/pmλn →∞ and p2
m/n→ 0

as n→∞, then with probability tending to 1, we establish the following oracle properties:

42



(i) (Sparsity) α̂2 = 0.

(ii) (Asymptotic normality)

√
nAmK−1/2

m,11 {In,11 +
1
n
∇2Pλn(α01)}(α̂01 −α01) +

1√
n

AmK−1/2
m,11∇Pλn(α01)

d→ N(0, G),

where Am is any given matrix with a dimension of q × pm which satisfies AT
mAm → G, In,11 is the identity

matrix and Km,11 is a submatrix of Km associated with α1.

The technical proofs of Lemma 1-2, and Theorems 1-3 are provided in the Section 3.9. The above

asymptotic properties guarantee that the estimators of the coefficients achieve oracle properties: the non-

zero coefficients are identified correctly with probability tending to 1, and the corresponding estimators are

consistent and asymptotically normal as if the true correlation structure is known. The SCAD penalty also

ensures that the estimators of the coefficients are not shrunk at all if the true coefficients are sufficiently far

away from 0.

3.5 Implementation

3.5.1 Examples of Basis Matrices

Since selecting candidate basis matrices plays a critical role for the correlation structure model selection, in

this section, we provide several examples for potential candidate basis matrices. These examples are also

provided in Zhou and Qu (2011).

Example 1: If the correlation matrix R has an AR(1) structure with the correlation parameter ρ for

any two adjacent longitudinal measurements, then the inverse of the correlation matrix can be represented

as

R−1 = α11Im + α21M2,1 + α22M2,2.

Here Im is the identity matrix in group G1; M2,1 and M2,2 are two basis matrices in group G2, where

M2,1 has 1 on the subdiagonal, and 0 elsewhere, and M2,2 has 1 on the (1, 1) and (m, m) components, and

0 elsewhere. The corresponding coefficients for the candidate matrices are α11 = (1 + ρ2)/(1 − ρ2) and

α2 = (α21, α22) = (−ρ/(1− ρ2),−ρ2/(1− ρ2)), respectively.

Example 2: If R is exchangeable with the correlation parameter ρ, we have

R−1 = α11Im + α31M3,1.
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The second basis matrix M3,1 has 0 on its main diagonal, and 1 elsewhere. The corresponding coefficients of

the basis matrices are α11 = −{(m−2)ρ+1}/{(m−1)ρ2−(m−2)ρ−1} and α31 = ρ/{(m−1)ρ2−(m−2)ρ−1},

respectively.

Example 3: The correlation matrix R has a block diagonal matrix structure. This could be quite

common for correlated spatial data. Suppose there are total d blocks in a block diagonal matrix, where

each block has block size mj (j = 1, . . . , d), and the total cluster size m =
∑d

j=1 mj . If each block can be

represented as either independent, exchangeable, or AR(1) structure, then G1 has the identity matrix Im,

and d− 1 matrices such that Imj (j = 1, . . . , d− 1) contains the identity matrix for the jth block, and 0 on

the other blocks. In addition, the remaining groups of basis matrices can be selected as follows. For any jth

block with AR(1) structure, the group basis matrices contain two basis matrices M2,1 and M2,2 as provided

in Example 1 with mj ×mj dimension for the jth block, and 0 matrices for the other blocks. For any block

with exchangeable structure, the group basis matrices contain a basis matrix M3,1 as in Example 2 for the

corresponding block and 0 matrices for the other blocks. The coefficients of these groups of basis matrices

can be calculated similarly as in Examples 1 and 2.

In practice, the correlation structure can be as simple as one of the examples above, but can also be a

combination of several simple correlation structures. In addition, other choices of basis matrices could be

created using 0 or 1 components based on prior information. In this paper, we assume that all possible basis

matrices candidates are included before proceeding the model selection. Therefore the correct correlation

structure can be selected through identifying non-zero coefficients.

3.5.2 Tuning Parameter Selection

In this section, we discuss the selection of the tuning parameter λ for the group SCAD penalty. Traditional

tuning parameter selection criteria include generalized cross-validation (GCV), AIC and BIC. However, none

of these criteria work well for selecting tuning parameter. The simulation results (not provided here) show

that both GCV and AIC tend to overfit the model and select null basis matrices more frequently, especially

in the simulation for binary case. On the other hand, the BIC criterion tends to underfit the model. This

is possibly due to the fact that none of the Ui’s in the objective functions are independent assumed in other

model selection approaches, and the dimension of the cluster size and the number of basis matrices diverge.

We introduce a rather different criterion for tuning parameter selection and propose a generalized infor-

mation criterion (GIC) to select λ by minimizing

BICT (λ) = nr log
ηmax(R̂−1R̃2R̂−1)
ηmin(R̂−1R̃2R̂−1)

+ log(n)k(λ), (3.7)
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where R̃ is the empirical correlation matrix and R̂−1 is the estimated inverse of the correlation matrix based

on R̂−1 = α̂1G1 + · · · + α̂JmGJm , and the estimated coefficients α̂1, . . . , α̂Jm are obtained by minimizing

(3.5) given a tuning parameter λ, and k(λ) is the number of non-zero components among α̂1, . . . , α̂Jm . The

largest and the smallest eigenvalues of R̂−1R̃2R̂−1 are denoted by ηmax(·) and ηmin(·) respectively. The

tuning parameter λ is obtained such that the GIC (3.7) is minimized, where the first term of (3.7) measures

the discrepancy between the empirical correlation and the selected correlation structure from the candidate

basis matrices. If most of the correlation information in the empirical R̂ is selected through correlation

structure R̃, then R̂−1R̃ is close to the identity matrix, and the log of the ratio of the largest and the

smallest eigenvalues of R̂−1R̃2R̂−1 is close to 0.

The main difference between our tuning parameter selection and the usual BIC criteria is that there is

an additional tuning parameter r > 0 in the first part of (3.7). This is analog to the generalized information

criterion (Nishii, 1984; Zhang et al., 2010) in the linear model. The GIC criterion allows the tuning of r to

provide additional control of its influence on the choice of λ. Note that the larger the r is, the more the

first part of (3.7) dominates; and a smaller tuning parameter λ leads more groups of basis matrices being

selected.

In order to determine the tuning parameter r, we perform a grid search of r for our simulation settings

for both continuous and binary responses. From our empirical observation, the values of r associated with

the best model selection performance are usually close to m/n, the ratio of cluster size and sample size. In

addition, the choice of r = m/n along with the criterion in (3.7) consistently outperforms the traditional

GCV, AIC and BIC selection criteria. Note that the choice of r in Zhou and Qu (2011) is fixed, but here

we provide various choices of r to assess the performance of model selection for correlation structures in the

following simulation section.

3.6 Simulations

Table 3.1: Percentages of correctly identified signals and non-signals using the GIC criterion with correlation
ρ = 0.5 for normal responses, sample size n = 200

% of fits
Cluster Size r Signals Ave. of Non-signals Correct Under Over
m = 25 0.125 100 100 100 100 1 0 0
m = 50 0.250 98 96 100 99.9 0.94 0.05 0.01
m = 75 0.375 89 92 94 99.5 0.76 0.20 0.04
m = 100 0.500 51 56 73 99.8 0.37 0.6 0.03

In this section, we evaluate the performance of our method in selecting the correlation structure through
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Table 3.2: Percentages of correctly identified signals and non-signals using the GIC criterion with correlation
ρ = 0.7 for normal responses, sample size n = 200

% of fits
Cluster Size r Signals Ave. of Non-signals Correct Under Over
m = 25 0.125 100 100 100 100 1 0 0
m = 50 0.250 99 100 100 99.9 0.98 0.01 0.01
m = 75 0.375 96 97 97 99.9 0.92 0.04 0.04
m = 100 0.500 97 96 98 98 0.72 0.06 0.22

Table 3.3: Percentages of correctly identified signals and non-signals using the GIC criterion with correlation
ρ = 0.6 for binary response, sample size n = 200

% of fits
Cluster Size r Signals Ave. of Non-signals Correct Under Over
m = 25 0.125 100 100 100 99.4 0.96 0 0.04
m = 50 0.250 96 96 96 99.5 0.87 0.09 0.04
m = 75 0.375 89 94 94 97.9 0.61 0.19 0.2
m = 100 0.500 77 78 79 97.6 0.3 0.44 0.26

simulation studies for normal responses and binary responses.

The correlation matrix R is assumed to have a block diagonal structure, where each 5 × 5-dimensional

block has a correlation structure either as AR(1), exchangeable or independent. We evaluate the model

selection performance when the number of blocks d diverges as the sample size increases. The candidate

basis matrices to represent the combination of these correlation structures are divided into several groups.

As illustrated in Example 3 of Section 5.1, Group G1 contains the identity matrix I5d and d − 1 matrices

with block identity matrices I5 on the first, second, ..., (d − 1)th blocks respectively, and 0 matrix on the

other blocks. Group G2 contains two matrices with M2,1 and M2,2 in Example 1 of Section 5.1 for the

first block and 0 matrix for the other blocks, corresponding to the AR(1) structure for block 1. Group G3

contains one matrix with M3,1 for the first block and 0 matrix for the other blocks, corresponding to the

exchangeable structure for block 1. The other groups of basis matrices are defined similarly as above, except

with different block locations. In summary, the above group basis matrices represent the independence,

AR(1) and exchangeable structures for each block. There are total 4d basis matrices, and 2d + 1 groups of

basis matrices.

In our simulations, we let d = 5, 10, 15 and 20 represent the number of blocks. The corresponding cluster

sizes are m = 25, 50, 75 and 100. The sample size n is 200 for continuous outcomes, and 200 and 300 for

binary responses. The tuning parameter is chosen based on GIC criterion in (3.7) with r = m/n.

For the normal response, we generate the data from the following longitudinal model,

Yi = β0 + X1iβ1 + X2iβ2 + X3iβ3 + εi,
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Table 3.4: Percentages of correctly identified signals and non-signals using the GIC criterion with correlation
ρ = 0.6 for binary response, sample size n = 300

% of fits
Cluster Size r Signals Ave. of Non-signals Correct Under Over
m = 25 0.833 100 100 100 99.9 0.99 0 0.01
m = 50 0.167 99 100 100 99.9 0.98 0.01 0.01
m = 75 0.250 94 98 97 99.2 0.82 0.08 0.10
m = 100 0.333 89 94 91 98.4 0.66 0.19 0.15

where Yi is the response vector, Xki, k = 1, 2, 3 are the covariates generated from the standard normal

distribution, and εi is the error term following the multivariate normal distribution N(0, R). Here the first

two blocks of correlation matrix R have AR(1) correlation structures, and the third block is specified as

exchangeable structure. The remaining d− 3 blocks are independent. The covariates β = (β0, β1, β2, β3)T =

(2, 1, 1, 1)T .

Table 3.1 and Table 3.2 summarize the simulation results from 100 simulations for continuous outcomes,

with correlation coefficient ρ = 0.5 and ρ = 0.7 respectively; and provide the percentages of correct selection

for each set of correlated blocks, and the overall percentage of not selecting for blocks which are indepen-

dent. In addition, the percentages of correct-fitting, under-fitting and over-fitting are provided to assess the

performance of the entire model selection method.

When the number of blocks d = 5 and the cluster size is 25, the correlation structures are identified 100%

correctly in both cases. As the number of blocks increases, Our simulations show that the percentage of

correctly identifying each correlated block decreases gradually. Consequently, the percentage of correct-fitting

decreases, and the percentages of over-fitting and under-fitting increase. For example, with ρ = 0.7, the

percentages of correct-fitting for the entire model are 98%, 92% and 72% when d = 10, 15 and 20 respectively.

Note that when the correlation is strong such as ρ = 0.7, the percentages of correctly identifying the first

three blocks with AR(1) and exchangeable correlation structures are reasonably high (above 95%), and the

overall percentage of correctly identifying independent blocks (with no signal) is 98% even when d = 20 and

cluster size m = 100. However, with a weaker correlation such as ρ = 0.5, the percentage of correct-fitting

for the entire model drops to 76% when d = 15 and m = 75. In general, blocks with the exchangeable

correlation structure can be identified more correctly than those with the AR(1) structure.

For the binary response, the responses are generated from the logistic regression model

logit{E(Yi)} = β0 + X1iβ1 + X2iβ2 + X3iβ3,

where Yi is the response vector, and Xki(k = 1, 2, 3) are the covariates, generated from a normal distribution
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N(0, 0.01). The correlated binary responses are generated using the R-package “mvtBinaryEP” with the first

two blocks as exchangeable, and the third block as AR(1) correlation structures. The correlation parameter

is set as 0.6. The remaining blocks have independent structure. The covariates β = (β0, β1, β2, β3)T =

(0.2, 1,−1,−1)T .

Table 3.3 and Table 3.4 summarize the simulation results for the model selection with sample size n = 200

and n = 300 respectively. Similar to normal outcomes, when d = 5 and m = 25, the proposed model selection

method can identify all the correlated block structures 100% correctly, and the percentage of correct-fitting

for the entire model is 96% for n = 200 and 99% for n = 300. When the number of blocks and the cluster

size increase, the percentages of correct-fitting for the entire model decrease. Specifically, when d = 15 and

m = 75, the percentages of correct-fitting are 61% and 82% for n = 200 and n = 300, respectively. Our

simulations also indicate that when the sample size n = 300, the proposed model selection strategy is able

to correctly identify more than 89% for each specified correlated block structure, and over 98% for all the

independent blocks even when d = 20 and m = 100.

3.7 Data Example on Air Pollution

We apply our method to a longitudinal study investigating the impact of air pollution on asthmatic patients.

The study is based on observations from 39 asthmatic patients during a period of 21 consecutive days in

Windsor, Ontario, Canada in 1992 (Fu, 2003). The response is the patient’s daily asthmatic status, which is

coded 1 if there is the presence of difficulties in breathing and 0 otherwise, which is measured by the forced

expiratory volume (FEV) of each patient daily. The covariates are collected through air pollution indicators

measured by several pollutants, and daily mean temperature (Meantemp) measured on each of 21 days. The

pollutants measured in the study include nitrogen oxide (NO), nitrogen dioxide (NO2), mixture of NO and

NO2 (NOX), total reduced sulphur (TRS), ozone level (OZ), carbon monoxide (CO), and coefficient of haze

(COH). The following logistic model is fit for the binary outcomes:

logit(µi) = β1Meantemp + β2NO + β3NO2 + β4NOX + β5TRS + β6OZ + β7CO + β8COH. (3.8)

All the covariates are centered and standardized before fitting the model, therefore the intercept is not

included in the model.

To identify the correct correlation structure for this data, we first obtain an initial estimator of regression

parameters by the GEE with independent working structure, and then calculate the empirical correlation

matrix from the residuals using the initial estimators. We estimate the coefficients of the basis matrices by
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Table 3.5: Comparison of the GEE estimators, standard errors and Z-values using different working corre-
lation structures for air pollution data.

Effects Independent GIC GCV
Meantemp -0.2494 -0.1009 0.0660
s.e. 0.2563 0.0908 0.0892
z-value -0.9733 -1.1112 0.7403
NO 0.2860 0.0553 -0.1362
s.e. 0.3419 0.1170 0.1178
z-value 0.8365 0.4724 -1.1555
NO2 -0.0105 -0.0335 0.0133
s.e. 0.0728 0.0235 0.0179
z-value -0.1447 -1.4218 0.7425
NOX -0.2717 -0.0728 0.0700
s.e. 0.1904 0.0676 0.0679
z-value -1.4268 -1.0778 1.0298
TRS -0.1784 -0.0037 -0.0063
s.e. 0.0947 0.0413 0.0340
z-value -1.8836 -0.0892 -0.1856
OZ 0.1266 0.1190 0.1082
s.e. 0.1023 0.0341 0.0290
z-value 1.2384 3.4897 3.7244
CO -0.0122 0.0200 -0.0504
s.e. 0.1504 0.0547 0.0487
z-value -0.0810 0.3661 -1.0347
COH 0.1191 -0.0223 -0.1092
s.e. 0.0853 0.0289 0.0251
z-value 1.3967 -0.7740 -4.3530

minimizing the penalized objective function in (3.6), and select the tuning parameter based on the proposed

GIC criterion (3.7) and the traditional GCV, AIC and BIC criteria. The candidate matrices include the

identity matrix, M21 and M22 in Example 1 to represent the AR(1) structure, M31 in Example 2 for the

exchangeable correlation structure, and some additional basis matrices to represent a mixture structure of

AR(1) and exchangeable structures. In addition, we also include the candidate matrices to represent the

sub-block structures illustrated in Example 3, where each week is considered as a sub-block and there are a

total of three sub-blocks for 21 days.

Based on the GIC tuning parameter selection criterion (3.7) which chooses r = 21/39, the exchangeable

working correlation structure is selected. The AIC, BIC and GCV tuning parameter selection criteria produce

the same correlation structure, which selects all the basis matrices except the one with the exchangeable

structure for the third block. We compare the estimators of the regression parameters for the logistic

model (3.8), and their standard errors obtained by the GEE with the exchangeable structure selected by

the GIC criterion, the complex structure selected by the AIC, BIC and GCV criteria, and the independent
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working structure. In Table 3.5, the standard errors for all the regression parameter estimator obtained

by the independent working correlation are the largest, and the standard errors obtained by the complex

structure are the smallest in general, although the standard errors are comparable between the exchangeable

correlation structure and the more complex structure. Note that since the sample size is relatively small

compared to the cluster size, tuning parameter selection based on the AIC, BIC and GCV tends to select

more basis matrices, and therefore leads to smaller standard errors.

Note that the GEE method with “unstructured” correlation structure requiring the estimation of each

entry of the correlation matrix does not converge for this data set, as it cannot handle the cluster size of

21. This implies that using the empirical correlation structure may not be feasible when the cluster size is

relatively large compared to the sample size. This example indicates that using the correlation structure

selected by the proposed method (either based on GIC or GCV for tuning parameter selection) is better

than either using independent working correlation or using the “unstructured” correlation for the purpose

of the regression parameters estimation.

3.8 Discussion

In this paper, we propose a new approach to identify the correlation structure for longitudinal data when

the cluster size increases as the sample size increases. The new approach does not require estimating each

entry of the correlation matrix as in existing approaches. Instead, we approximate the empirical correlation

structure with a linear combination of groups of candidate basis matrices, and estimate the coefficients via

minimizing an objective function measuring the difference between the empirical estimating functions and

the model approximated estimating functions. In addition, we penalize a approximated model if it contains

too many basis matrices.

The advantages of the proposed approach include not requiring the specification of the likelihood function,

and therefore it is applicable for non-normal correlated data. We also show that the proposed correlation

structure selection possesses the consistency property for selecting the true model, and also holds an oracle

property asymptotically. In our setting, we allow the cluster size and the number of group basis matrices to

diverge as the sample size increases. The theoretical derivation for correlation structure model selection is

nontrivial for diverging cluster size.

Our simulation studies show that even when the cluster size is quite large, the correlation structure

can be identified effectively for both normal responses and binary responses through the new selection

procedure. In our data example, we show that we are able to select a rather simple correlation structure
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for the binary correlated data when the cluster size is large, while the GEE method with an unspecified

correlation structure fails to produce converged estimators of the regression parameters. This indicates that

it is important to select correlation structure which is sufficiently close to the true structure, rather than to

apply naive independent structure or the empirical correlation structure.

3.9 Proof of Lemmas and Theorems

3.9.1 Lemma 1

Define ẽi as the standardized residual from β̂ such that

R̃ =
1
n

n∑

i=1

ẽiẽ
T
i .

Let Σm be the covariance matrix of vec{R−2(ẽiẽT
i −R)}, then we have the following lemma.

Lemma 1. Under conditions 1 and 4, and if m2/
√

n→ 0

√
nFmvec(R̃−1 −R−1) d→ N(0, H),

where Fm is a q ×m2 matrix such that FmΣmFT
m → H, and H is a q × q nonnegative symmetric matrix.

Proof. By the Mean Value Theorem, we have

√
nFmvec(R̃−1 −R−1) = −Fmvec{D

√
n(R̃−R)},

where

D =
∫ 1

0
(R + tH)−2dt,

and H = R̃−R = Op(n−1/2). It follows from the above that

vec(|D −R−2|) ≤
∫ 1

0
vec(|(R + tH)−2 −R−2|)dt

≤
∫ 1

0
vec(2t|HR−1| + t2H2)dt

≤ vec(2|HR−1| + H2)

= Op(mn−1/2) + Op(mn−1) = Op(mn−1/2),
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where |M | is the the matrix with the absolute values of the components of M .

Therefore, by simple matrix calculation and the condition FmΣmFT
m → H,

√
nFmvec(R̃−1 −R−1) = −Fmvec{D

√
n(R̃−R)}

= −Fmvec{R−2√n(R̃−R)} + Op(mn−1/2).

Then it follows from the condition m = op(n1/2) that

√
nFmvec(R̃−1 −R−1) = −Fmvec{R−2√n(R̃−R)} + op(1).

Next we can use the Lindberg-Feller Central Limit Theorem to prove the asymptotic normality. Let

Yni = Fmvec{R−2 1√
n

(ẽiẽ
T
i −R)}.

Then for any ε > 0,

n∑

i=1

E||Yni||21(||Yni|| > ε) = nE||Y 2
n1||1(||Yn1|| > ε)

≤ n(E||Yn1||4)1/2{P (||Yn1|| > ε)}1/2.

Then by condition FmΣmFm → H and ẽiẽT
i −R = Op(1), we have

P (||Yn1|| > ε) ≤ E||Fmvec{R−2(ẽiẽT
i −R)}||2

nε

≤ ||FmΣmFm||2

nε
= O(n−1),

and

E||Yn1||4 =
1
n2

E||Fmvec{R−2(ẽiẽ
T
i −R)}||4

≤ 1
n2

λmax(FmFT
m)λmax(R−4)E||(ẽiẽ

T
i −R)2||2

= O(m4/n2).

Therefore

n∑

i=1

E||Yni||21(||Yni|| > ε) = O(n
m2

n

1√
n

) = o(1).
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The Lindberg condition is satisfied, so the Lindberg-Feller Central Limit Theorem can be applied. Suppose

Σm is the asymptotic variance of
√

nvec{R−2(R̃ −R)}, we require the condition FmΣmAT
m → H, where H

is a finite dimension constant matrix, so that the aysmptotic variance of
∑n

i=1 Yni is H.

3.9.2 Lemma 2

Lemma 2. Each element of the vector 1√
n

∑n
i=1(Ui − Viα0)T Vi is asymptotic normal, i.e.

1√
n

n∑

i=1

(Ui − Viα0)T Vi,jb
d→ N(0, vec(Cjb)Σmvec(Cjb)),

where Cjb is a constant matrix of size m×m only associated with the basis matrix Mjb.

Proof. For each fixed j, we have

(Ui − Viα0)T Vi,jb = Tr{Vi,jb
T (Ui − Viα0)}

= Tr[µ̇T
i (β̂)Ai(β̂)−1/2MjbAi(β̂)−1/2{yi − µi(β̂)}{yi − µi(β̂)}T

Ai(β̂)−1/2(R̃−1 −R−1)Ai(β̂)−1/2µ̇i(β̂)]

= Tr[(R̃−1 −R−1)Ai(β̂)−1/2µ̇i(β̂)µ̇T
i (β̂)Ai(β̂)−1/2Mjb

Ai(β̂)−1/2{yi − µi(β̂)}{yi − µi(β̂)}T Ai(β̂)−1/2].

It follows from the above that

(Ui − Viα0)T Vi,jb = Tr{(R̃−1 −R−1)Tij(β̂)}

= [vec{Tij(β̂)}]T
√

nvec(R̃−1 −R−1),

where

Ti,jb(β̂) = Ai(β̂)−1/2µ̇i(β̂)µ̇T
i (β̂)Ai(β̂)−1/2MjbAi(β̂)−1/2

{yi − ui(β̂)}{yi − µi(β̂)}T Ai(β̂)−1/2. (3.9)

It can be seen that Ti,jb(β̂) are i.i.d. and are only associated with Mjb. By condition 4, it can be concluded
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that Ti,jb(β̂) = Op(1). From (3.9), we have

1√
n

n∑

i=1

(Ui − Viα0)T Vi,jb = Tr{n1/2(R̃−1 −R−1)
1
n

n∑

i=1

Tij(β̂)}

=

[
vec{

N∑

i=1

Tij(β̂)}
]T
√

nvec(R̃−1 −R−1).

By the weak law of large numbers, for any β, 1
n

∑n
i=1 Ti,jb(β) converges to some function Cjb(β). Because

the GEE estimator is consistent β̂ is consistent with β0, it follows from the continuous mapping theorem

that

1
n

n∑

i=1

Ti,jb(β̂)→ Cjb,

where Cjb is a constant matrix only associated with the basis matrix Mjb. By Condition 1, Condition 4 and

n1/2(R̃−1(β̂)−R−1) = Op(1), it can be concluded that 1√
n

∑n
i=1(Ui − Viα0)T Vi,jb = Op(1). It follows from

Lemma 1 that

1√
n

n∑

i=1

(Ui − Viα0)T Vi,jb
d→ N(0, vec(Cjb)Σmvec(Cjb)T ),

where Σm is defined in Lemma 1.

3.9.3 Proof of Theorem 1

Define

L(α) =
∑

i

||Ui − Viα||2,

and sm as the number of groups of basis matrices with non-zero coefficients.

Proof. Let δn = √pm(n−1/2 + an), then

Q(α0)−Q(α0 + δnu) = L(α0)− L(α0 + δnu)

−n dim(β)
sm∑

j=1

{pλn(||α0j + δnu||)− pλn(||α0j ||)}

= I + II.
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By Taylor’s expansion, I can be extended as

I = 2δn[
n∑

i=1

(Ui − Viα0)T Vi]u− δ2
nuT [

n∑

i=1

V T
i Vi]u

= I1 + I2.

By Lemma 1 and the Cauchy-Schwarz inequality,

|I1| ≤ 2|δn|Op(
√

npm)||u|| = Op(δ2
nn)||u||.

By condition 3, with probability tending to 1

I2 = −δ2
nuT [

n∑

i=1

V T
i Vi]u ≤ −nl1δ

2
n||u||2.

Then we can apply Taylor expansion to II to have

II =
sm∑

j=1

Bj∑

b=1

[nδnp′λn
(|α0jb|)sgn(α0jb)uj − nδ2

np′′λn
(α0jb)u2

j{1 + o(1)}]

= II1 + II2.

The upper bound of terms II1 and II2 can be derived,

|II1| ≤
sm∑

j=1

Bj∑

b=1

|nδnp′λn
(|α0jb|)sgn(α0jb)uj | ≤

√
smnδnan||u|| ≤ nδ2

n||u||,

II2 ≤
sm∑

j=1

Bj∑

b=1

nδ2
np′′λn

(α0jb)u2
j{1 + o(1)} ≤ 2 max

1≤j≤pm

p′′λn
(|αj

0|)nδ2
n||u||2.

By the regularity condition 1.b on the penalty function, II2 → 0. Therefore, allowing ||u|| to be large

enough, I1, II1 and II2 are dominated by I2 which is negative. It follows that

p{ inf
||u||=c

Q(α0 + δnu) > Q(α0)} ≥ 1− ε. (3.10)

The consistency follows from (3.10).

3.9.4 Proof of Theorem 2
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Proof. Consider an α such that ||α2|| < C
√

pm/n,

∂Q(α)
∂αjb

= −
n∑

i=1

2(Ui − Viα0)T Vi,jb +
n∑

i=1

2(α−α0)T V T
i Vi,jb + n dim(β)p′λn

(|αjb|)sgn(αjb)

= I + II + III.

By Lemma 1, I = Op(
√

n). And further I = Op(
√

npm) because npm ≥ n. For II, By condition 3, we have

||V T
i Vi,jb|| = Op(1), (3.11)

and by (3.11) and the convergence rate obtained in Theorem 1,

II < nOp(
√

pm/n) = Op(
√

npm).

Therefore, for j = sm + 1, . . . , Jm and b = 1, . . . , Bj

∂Q(α)
∂αjb

= Op(
√

npm) + n dim(β)p′λn
(|αjb|)sgn(αjb)

= nλn{p′λn
(|αjb|)sgn(αjb)/λn + Op(

√
pm/n)/λn}.

From the condition
√

pm/n/λn → 0, and lim infn→∞ lim infθ→0+ p′λn
(θ)/λn > 0, the sign of αjb determines

the sign of ∂Q(α)/∂αjb, i. e.

∂Q(α)
∂αjb

< 0, for − c
√

pm/n ≤ αjb < 0,

and
∂Q(α)
∂αjb

> 0, for c
√

pm/n ≥ αjb > 0

for j = sm + 1, . . . , Jm and b = 1, . . . , Bj . Hence, Theorem 2 follows from the above.

3.9.5 Proof of Theorem 3

The first derivative of the objective function with respect to α01 is zero at α̂01, i.e. ∇Q(α̂01) = 0. Let V 1
i

be the submatrix of Vi that corresponds with the non-zero coefficients α01. By applying Taylor’s expansion
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of ∇Q(α̂01) on point α01, We haev

1
n

{
n∑

i=1

(V 1
i )T V 1

i −∇2Pλn(α∗01)

}
(α̂01 −α01) +

1
n
∇Pλn(α01) (3.12)

= − 2
n

{
n∑

i=1

(Ui − V 1
i α01)T V 1

i

}
,

where α∗01 is between α01 and α̂01. First by regularity condition 1.d on the penalty function and the

consistency result obtained in part I,

Λi

[
1
n
{∇2Pλn(α∗01)−∇2Pλn(α0)}

]
= Op(

√
pm/n),

where Λi(M) is the ith eigen value of the symmetric matrix M . Therefore, it can be concluded that

1
n
{∇2Pλn(α∗01)−∇2Pλn(α0)}(α̂01 −α01) = Op(pm/n) = op(1/

√
n). (3.13)

And then by (3.12) and (3.13), we have

1
n

{
n∑

i=1

(V 1
i )T V 1

i +∇2Pλn(α01)

}
(α̂01 −α01) +

1
n
∇Pλn(α01) (3.14)

= − 2
n

{
n∑

i=1

(Ui − V 1
i α01)T V 1

i

}
+ op(1/

√
n).

Define

In,11 =
1
n

n∑

i=1

(V 1
i )T V 1

i ,

Ln,11 = − 2
n

n∑

i=1

(Ui − V 1
i α01)T V 1

i .

Let

Km = CmΣmCT
m,

where Cm = {vec(C1)T , . . . , vec(Cm)}T and Σm and Cj , j = 1, . . . ,m are defined in Lemma 2. Let Km,11,

57



Cm,11 and Σm,11 be the parts of Km, Cm and Σm associated with α01. By (3.14), we have

√
nAmK−1/2

m,11 {In,11 +
1
n
∇2Pλn(α01)}(α̂01 −α01) +

1√
n

AmK−1/2
m,11∇Pλn(α01)

=
√

nAmK−1/2
m,11 Ln,11 + op(1).

By the condition AmAT
m → G, AmK−1/2

m,11 Cm,11Σm,11CT
m,11K

−1/2
m,11 AT

m = AmAT
m → G. Therefore, it follows

from Lemma 2 that
√

nAmK−1/2
m,11 Ln,11 is asymptotic normal with the variance

cov(
√

nAmK−1/2
m,11 Ln,11) = AmAT

m → G.
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