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Abstract 
 
The effect of genomic material on the effective surface charge a viral capsid was investigated in 
this study.   The RNA of bacteriophage MS2 was removed and the empty capsid characterized 
and compared to intact MS2.  Transmission electron microscopy was used to ensure that the 
MS2 capsid was intact and RNA removed. Electrophoretic mobility, aggregation kinetics and 
kinetics of deposition on silica surface were studied for these two nanoparticles. The isoelectric 
point of MS2 and RNA-free MS2 were found to be 3.4 and 3.2 respectively, found by varying 
pH at a constant ionic strength.  The electrophoretic softness, found by varying ionic strength 
and constant pH, found that MS2 was 2.1 nm and that RNA-free MS2 was 1.6 nm, a slightly 
harder particle. Electrophoretic mobility results of these two particles are similar in solution 
containing Na+ or Ca2+ or Mg2+ up to ionic strength of 600 mM. Similar aggregation kinetics of 
MS2 and RNA-free MS2 measured by time-resolved dynamic light scattering at increasing ionic 
strengths of Na+, Ca2+ and Mg2+ cations were observed.  No significant aggregation was 
observed for both types of particles in solutions containing up to 600 mM NaCl. Insignificant 
aggregation at high ionic strength suggests an important role of steric repulsion. Using a Quartz 
Crystal Microbalance, RNA-free MS2 attachment efficiency was found to be higher than MS2. 
This can be explained by more steric repulsion by the untreated MS2 particles. Similarity in 
electrophoretic mobility and aggregation of these two particles suggest that for non-magnetic 
nanoparticles, surface properties are dominant.   
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CHAPTER 1 

INTRODUCTION 

  
 As the field of nanotechnology grows and combines more technical disciplines, so does 

the need to better understand the properties and consequences of that technology interacting with 

biological systems (Nel et al. 2009).  This requires an understanding of the fundamental 

relationships that govern the colloidal and interfacial behavior of nanoparticles.  Currently, the 

initial model used to help predict the colloidal and interfacial behavior of rigid nanoparticles (e.g. 

metal oxides) is Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (Elimelech et al. 1995).  

While DLVO theory maybe able to accurately model rigid nanoparticle behavior (Chen et al. 

2006), it cannot accurately predict the complex interactions of “soft” particles (e.g. viruses, 

bacteria, natural organic matter) (Mylon et al. 2009, Langlet et al. 2008, Ohshima 1995).  Even 

recent advances to DLVO theory to account for some of these complex interactions fail to 

adequately model the behavior of “soft” particles, which can be partly attributed to the 

heterogeneous polymer layers that make up the surface portion of the “soft” particle.  These 

layers invoke a synergistic combination of steric and electrosteric interactions, as well as offer 

multiple points for which complexation can occur with charged particles in the environment.  

DLVO theory is only an approximate model made to take into account electrostatic and van der 

Waals forces as simple, separate interactions and is not made to take into account these complex 

systems. 

 Viruses are naturally occurring bionanoparticles that are pathogenic for a wide array of 

organisms and are responsible for the vast majority of waterborne diseases (Yoder at al. 2008, 

Abbaszadegan et al. 2003).  While morphology may differ between each virus, each virus 

usually has a protein shell, or capsid, encapsulating a genome.  This consistent structure provides 
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a well defined, multilayered nanoparticle, and allows for freedom to design their surface 

properties through genetic engineering or chemical conjugation (Fischlechner et al. 2007).  This 

can allow for empty viral capsids or virus like particles (VLPs), which have a range of uses in 

material science, engineering, and medicine (Udit et al. 2009, Laufer et al. 2009, Brown et al. 

2009, Garcea et al. 2004, Lee et al. 2009).  This growing use of bionanoparticles requires a better 

understanding of the colloidal and interfacial behavior of soft matter, however much of the early 

research focuses on the bulk effects (Thompson et al. 1999, Loveland et al. 1995, Lipson et al. 

1984, Lance et al. 1984, Labelle et al. 1979, Floyd et al. 1977, 1978, 1979, Dowd et al. 1998) 

with little focus on the nature of the interactions on the nano or molecular scale.  DLVO theory is 

still used as the first approximation of the interfacial interactions in deposition between viruses 

and mineral surfaces, which incorrectly assumes that the virus is a hard particle and provides an 

inaccurate model (Pham et al. 2009, Yuan et al. 2009).  DLVO cannot be applied to viruses as 

the electrohydrodynamic interactions are complicated by the unrelated anisotropies of the 

hydrodynamic permeability and charge density, and due to the complex electrostatic interactions, 

cannot allow for an accurate prediction of the double layer interactions (Langlet et al. 2008).  As 

such, no accurate model for the soft particle interactions at interfaces exists and the attempts 

made to model require support from experimental data. 

 Recent studies have looked at the electrostatic interactions of viral adsorption to solid 

interfaces, virus-virus aggregation, and the electrokinetics of viruses in a charged field.  Studying 

the deposition of bacteriophage MS2 onto bare silica and natural organic matter, Yuan et al. 

(2008) showed that increasing ionic strength resulted in increased deposition rates due to charge 

screening, and Pham et al. (2009) showed similar behavior, but that different divalent cations 

form different types of complexations with the MS2, with Ca2+ being more favorable than Mg2+.  
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Recent research on Rotavirus where both deposition of virus onto a bare silica surface and 

natural organic matter as well as the virus/virus aggregation were measured, Gutierrez et al. 

(2010) found similar results to that of MS2, with increasing ionic strength resulting in increasing 

deposition, and with an increasing ionic strength creating more significant aggregation until a 

critical coagulation (CCC) point is reached.  Also, the author found that, similar to the MS2 

research, that the divalent cation Ca2+ caused more favorable deposition and aggregation than 

Mg2+.  The effects of divalent cations on the aggregation and deposition behavior of MS2 and 

Rotavirus are probably due to the complexation to charged moieties on the virus surface that 

might alter its conformation.  Herath et al. (1999) found that as the pH of a solution approached 

the isoelectric point (IEP) of a specific virus, the microfiltration membranes rejected a greater 

percentage of the virus particles in solution.  This was attributed to a higher degree of virus/virus 

aggregation resulting from the decreased electrostatic interactions at the IEP.  Langlet et al. 

(2008) measured the decreases in the mean apparent diffusion coefficient of virus suspensions 

with decreasing pH using dynamic light scattering (DLS) and confirmed that virus/virus 

aggregation resulted from decreases in electrostatic repulsive intereactions as the IEP of the virus 

was approached.  Mylon et al. (2009) found that the bacteriophage MS2 exhibited extreme 

stability against aggregation in the presence of high concentrations of monovalent cations, which 

would suggest strong steric and electrosteric stabilization of MS2. 

Through strictly controlled experiments that examines the colloidal and interfacial 

behavior of a model set of virus and VLPs, we can improve our understanding of the interactions 

that occur at soft particle interfaces.  Bacteriophage MS2 is a simple single-stranded RNA 

(ssRNA) virus and a great waterborne nanoparticle in which to study the colloidal and interfacial 

behavior.  The wild-type MS2 capsid is comprised of 180 copies of a single coat protein, which 
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is assembled in an icosahedral arrangement that is 27 nm in diameter.  More importantly, the 

capsid has 32 pores that are 1.8 nm in diameter that allow for access to the interior of the capsid, 

allowing for some exposure of the interior ssRNA, and this exposure allows the RNA to be 

easily removed by alkaline hydrolysis to create an empty capsid (Hooker et al. 2003).  With 

wild-type MS2 and the empty capsid of MS2, or RNA-free MS2, we could directly compare the 

colloidal and interfacial behavior of the viral capsid with its RNA core intact directly to its empty 

capsid counterpart and get a better fundamental understanding in what role the core plays in the 

interfacial interactions. 

  The objective of this research is to investigate the effects of the single stranded RNA on 

the surface characteristics of the MS2 bacteriophage.  Experiments will include electrophoretic 

mobility to study particle charge, and time resolved dynamic light scattering to study particle-

particle aggregation, both using a zetasizer and controlling the ionic strength with NaCl, MgCl2, 

and CaCl2.  Looking at the particles with a transmission electron microscope to measure particle 

diameter and ensure the hollow capsid is intact.  The virus-solid interface will be studied by 

measuring deposition kinetics of particles onto a silica surface in the presence of monovalent 

(Na+) and divalent (Ca2+) cations using a quartz crystal microbalance coupled with a radial 

stagnation point flow system.  The information measured from the various experiments will be 

compared to calculated DLVO energy barriers to observe the model’s effectiveness in predicting 

the particle interaction.  This knowledge will help form a more fundamental understanding of the 

viral capsid and the influence the genome has on the colloidal and interfacial behavior of the 

virus.  
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 Solution Chemistries and Reagents 

Millipore water (Millipore, Barnstead, USA) of an 18 M-cm resistivity at an unadjusted 

pH of 5.9 was used for preparing all the solutions for MS2 and RNA-free MS2 deposition and 

aggregation experiments and electrophoretic mobility measurements.  NaOH, HCl, NaCl, CaCl2, 

MgCl2, poly-L-lysine (PLL) hydrobromide and HEPES of analytical grade were utilized.HEPES 

buffer was prepared using 100 mM NaCl and 10 mM N-(2-hydroxyethyl) piperazine-N′-2-

ethanesulfonic acid at a final pH of 5.9.  PLL hydrobromide solution was prepared with HEPES 

buffer at a final concentration of 0.1 g/L.  Before use, electrolyte solutions and HEPES buffer 

were filtered through a 0.22 m sterile cellulose acetate membrane.  The pH of solutions were 

adjusted with 0.1 M NaOH and 0.1 M HCl. 

2.2 MS2 and Hollow MS2 Preparation and Plaque Forming Units (PFU) 

Bacteriophage MS2 (ATCC) were grown in Escherichia coli (ATCC) as the host 

following the propagation procedure described elsewhere (Gutierrez et al. 2009).  Briefly, 

Escherichia coli(E. Coli) were grown in 300 ml tryptic soy broth solution under incubation 

conditions (37oC) until reaching an optical density of 1.0 at 600 nm wavelength, and 

subsequently inoculated with MS2.  Concentration and purification process of MS2 was 

conducted following the next modified procedures (Gutierrez et al. 2009, Kitis et al. 2003).  

After lysis, broken cells of E. coli were separated from MS2 by sequential steps of centrifugation 

(5000 RPM) and filtrationthrough a 0.22mm and 0.05 mm low protein binding polycarbonate 

membrane (Whatman Nucleopore, USA).  The MS2 suspension was concentrated using a 100 

KDa membrane (Koch Membranes, USA) in a Millipore ultra-filtration unit (Whatman 
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Nucleopore, USA) to a final volume of 30 ml.  Poly(ethylene glycol)-6000 and NaCl were added 

to the MS2 suspension to a final concentration of 10% (w/v) and 0.5 M respectively and 

subsequently precipitated by centrifugation at 10,000 rcf for 1 hour.  While the supernatant was 

discarded, the pellet was resuspended in a previously 0.22 m filtered 1 mM NaCl solution at an 

unadjusted pH of 5.9.  The purified MS2 stock was stored at 4oC at a concentration of ~1012 PFU 

ml-1.MS2 enumeration was conducted following plaque forming unit (PFU) infectivity 

assaydescribed previously (Gutierrez et al. 2009, Adams 1959).  Aseptic conditions were 

maintained by using a laminar flow hood at every step of the propagation and purification 

process. 

The procedure for RNA removal from MS2 were conducted by adding the next steps 

(Hooker et al. 2003).  After MS2 precipitation by centrifugation at 10,000 rcf for 1 hour,the 

supernatant was discarded but the pellet was resuspended in a 100 mM Na2HPO4 and 100 mM 

NaCl solution at pH 11.8 and exposed to this alkaline condition for a period of 4 hours at room 

temperature.  The degraded genome by means of phosphate hydrolysis were separated from the 

RNA-free MS2 suspension using a 100-kDa membrane (Koch Membranes, USA) in a Millipore 

ultrafiltration unit (Whatman Nucleopore, USA) continuously fed with a previously 0.22 m 

filtered 1 mM NaCl solution at an unadjusted pH of 5.9. 

2.3 Transmission Electron Microscopy (TEM) 

Electron micrographs of MS2 and RNA-free MS2 samples were investigated using TEM 

by conventional negative staining with uranyl acetate.  MS2 or RNA-free MS2 samples were 

directlyadsorbed onto 300 mesh holey-carbon-coated copper grid.  Grids were suspended on a 

drop of viral solution for 15 minutes and afterwards the dexcess of liquid withdrawn with filter 

paper.  The grid was let dry for 20 minutes at ambient temperature and subsequently the stain 
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was applied.  Micrographs were recorded on a cryo TEM (JEM-2100, JEOL, Tokyo, Japan) 

operating at 200 kV at high magnification. 

2.4 UV Spec Measurements 

 Concentration of the MS2 and RNA-free MS2 in solution were analyzed through the use 

of optical density using a Shimadzu UV-2450 ultraviolet-visible spectrophotometer operated in 

dual beam mode.  The spectrophotometer quartz cells were of a useable range of 170 to 2700 nm 

and 10 mm path length (1Q10, Starna, USA) were used.  MS2 and RNA-free MS2 stocks were 

sampled in dilutions of 10 to 100-fold in 1 mM NaCl solution. The absorbance of viral 

suspension were measured at a wavelength of 260 nm referenced against 1 mM NaCl solution.  

The average UV absorbance of each measurement was calculated with no less than 3 sample 

measurements. 

 Since RNA-free MS2 was rendered non-infectious after the RNA extraction process, its 

concentration cannot be measured by infectivity assays.  Absorbance was utilized for protein 

concentration comparison between MS2 and RNA-free MS2. The calculation of the MS2 and 

RNA-free MS2 particle concentrations in solution took in consideration previous studies such as 

the optical density of 1.0 at wavelength 265 nm of purified MS2 is a protein density of 130 μg of 

protein/mL (Legendre et al. 2005), and the molecular weight of MS2 is 3.6x106 g/mol 

(Kuzmanovic et al. 2003), determined by classical light scattering.  In addition to the previous 

studies results, the infectivity assays were conducted for the 10 and 100-fold diluted MS2 

samples and the results were correlated to the MS2 absorbance. 

2.5 Electrophoretic Mobility (EPM) Measurements 

EPM of MS2 and RNA-free MS2 in solution was measured over a wide range of 

monovalent and divalent salt concentrations (0.1 mM to 600 mM for Na+, and 0.1 mM to 200 
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mM for Ca2+ and Mg2+) at unadjusted pH of 5.9 using a ZS90 Zetasizer instrument (Malvern, 

UK).  For statistical purposes, at least 3 measurements were conducted for every electrolyte 

concentration conditionusing clear disposable cells (DTS1060C, Makvern, UK) of 1 ml capacity.  

MS2 and RNA-free MS2 were added to these solutions to a final optical density of 2.145 and 

2.150 respectively at 260 nm wavelength, which ensured an optimal signal for electrophoresis 

measurements.Isoelectric points (IEP) of MS2 and RNA-free MS2 in 1 mL NaCl were 

determined by measuring EPM over a wide range of pH from 2.7 to 9.6.  For every pH 

condition,a minimum of 3 measurements were conducted.pH was adjusted using high grade 

hydrochloric acid (0.1 M HCl) and sodium hydroxide (0.1 M NaOH).     

2.6 Time-Resolved Dynamic Light Scattering (DLS) Aggregation Kinetics Experiments 

Hydrodynamic diameter of MS2 and RNA-free MS2 were measured before every 

aggregation experiment for establishing initial baselines (Dho) using a ZS90 Zetasizer instrument 

(Malvern, UK).This equipment used a 4 mWHeNe laser operating at a wavelength of 633 nm 

while the scattered light intensity was measured by a photodiode located at 90o from the incident 

laser beam.MS2 and RNA-free MS2 were added to low volume disposable sizing cuvettes of 500 

L capacity (ZEN0112, Malvern) to a final optical density of 0.215 and 0.215 respectively for 

Ca2+ and Na+, 0.215 and 0.219 respectively for Mg2+ all at 260 nm wavelength.  At least 3 

measurements per sample were conducted before the addition of salt in solution. 

2.7 Quartz Crystal Microbalance with Dissipation (QCM-D) Deposition Experiments 

We used a QCM-D300 system (Q-Sense AB, Gothenburg, Sweden) to measure 

deposition kinetics of hydrated MS2 and RNA-free MS2 particles onto a hydrated bare silica 

surface.  The QCM-D allows real time monitoring of the changes in vibrational frequency as wet 

mass deposits on the quartz crystal sensor.  As wet mass deposits onto the sensor, the frequency 
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of vibration decreases.  The wet mass deposition onto the sensor is proportional to changes in 

resonance and overtone frequencies, the rate of mass deposition in represented by the rate of 

frequency shift.  We monitored the shifts in normalized third overtone frequency (∆f(3)/3) to 

determine the intial deposition rates at different divalent salt concentrations. A detailed 

explanation of the QCM-D technique can found in our previous studies (Nguyen et al. 2007, 

Yuan et al. 2008). 

 Quartz sensors were supplied by Q-Sense QSX 303 silica (batches 10164, 090128-2).  

Before each experiment, we presoak the crystal sensors in 2% Hellmanex II (Hellma GmbH & 

Co. KG, Müllheim, Germany) cleaning solution for a period of time ranging from 30 to 60 min 

and disposed of the sensor after five uses to ensure the quality of the silica surface.  The sensor 

was then rinsed with DI water, dried with ultrahigh-purity N2, and oxidized in an ozone/UV 

chamber (Bioforce Nanosciences, Inc., Ames, IA) for 30 min.  The quality of the cleaning step 

was then verified by measuring the QCM-D frequency and dissipation values in air and DI water. 

 The flow rate for experiments was 0.1 mL/min using a syringe pump (KD Scientific 

INC., Holliston, MA) operating in withdrawal mode.  This flow rate maintains laminar flow and 

corresponds to a Re number of 1.0 and a Peclet number of 1.7 х 10-8.  The flow chamber of the 

QCM-D is a radial stagnation point flow.  Before each experiment, the quartz crystal in the 

chamber was equilibrated with DI water at 0.1 mL/min until a stable baseline was maintained at 

approximated 1-2 Hz change in frequency/h for at least 20 minutes.  Once the frequency signal 

was stabilized, 2 mL of our choice electrolyte solution (CaCl2, NaCl) at the concentration of 

interest was injected into the sensor chamber for equilibration.  Following this step, 2 mL of 

MS2 or RNA-free MS2 to a final optical density at 0.263 and 0.252 respectively at a wavelength 

260 nm was suspended in the chosen electrolyte solution and concentration and injected into the 
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chamber to observe the deposition rate onto bare silica surface.  For all experiments, the initial 

shift of frequency as a function of time, or slope of the curve at the third overtone, f(3), was 

calculated as the particle adsorption rate.   

 For experiments with MS2 or RNA-free MS2 attached to Poly-L-Lysine (PLL), 

additional steps to the procedure were as follows.  After the quartz crystal in the chamber was 

equilibrated with DI water and achieved a stable baseline for 20 minutes, we equilibrated the 

crystal with 2 mL of HEPES buffer made from 10 mM N-(2-hydroxyethyl) piperazine-N’-2-

ethanesulfonic acid and 100 mM NaCl (pH 6.0).  The silica surface was then coated with a 

deposition of a layer of PLL polycations by using a solution of 200 uL PLL in 1.8 mL HEPES 

buffer.  The silica crystal is then rinsed with 2 mL of HEPES buffer.  The procedure then 

continues with the addition of the desired salt condition (CaCl2, NaCl). 

 To confirm that the frequency shift represents the deposition rate, we conducted a control 

experiment for RNA-free MS2 deposition onto the bare silica surface in a solution of 1 mM 

Ca2+.  For these experiments we doubled the RNA-free MS2 concentration in the 2 mL and 

found that the initial slopes also doubled, apparent deposition of 2.99 to 5.99. 

2.8 DLVO Energy Profiles 

 The total interaction energy between MS2 and silica plate surface was calculated using 

the DLVO theory, summing the repulsive electrostatic and retarded van der Waals interactions.  

The following expression was used to calculate the electrostatic double-layer interaction energy 

(Hogg et al. 1966): 

 

ாܸ஽௅ሺܬሻ ൌ ሺߝߙߨ଴ߝ௥ሻ ቊ2߰ଵ߰ଶ ln ቈ
1 ൅ ݁ି௞௛

1 െ ݁ି௞௛቉ ൅ ሺ߰ଵ
ଶ ൅ ߰ଶ

ଶሻ lnሺ1 െ ݁ିଶ௞௛ሻቋ 
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where ߝ଴ is the dielectric permittivity of free space, ߝ௥ is the relative dielectric permittivity of 

water, ߙ is the MS2 radius, ݇ is the inverse Debye length, ݄ is the separation distance between 

the MS2 virus and the silica surface, and ߰ଵ and ߰ଶ are the surface potentials of the MS2 virus 

and silica surface, respectively. 

 The retarded van der Waals interaction energy was calculated using the following 

expression (Gregory 1981): 

௏ܸ஽ௐሺܬሻ ൌ െ
ܽܣ

6݄ሺ1 ൅ ሻߣ/14݄
 

where ݄ is the separation distance, ܽ is the particle radius, ߣ is the dielectric wavelength for 

water.  A Hamaker constant ሺܣሻ of 4x10-21 J was used (Penrod et al. 1996). 

2.9 Error Analysis 

As MS2 and RNA-free MS2 deposition onto silica was normalized by its deposition onto 

PLL, uncertainties needed to be combined to determine the overall uncertainty of the normalized 

attachment efficiency.  To normalize particle deposition to silica to the deposition onto PLL, the 

following expression is used: 

ܴ ൌ
ଵݔ

ଶݔ
 

where R is the result of a specific cation concentration, x1 is the deposition rate of particles to 

silica, and x2 is the deposition rate of particles to PLL coated silica. 

In order to combine uncertainties in a calculation, the following equation was used 

(Taylor 1997): 

ோݓ ൌ ቈ൬
߲ܴ
ଵݔ߲

ଵ൰ݓ
ଶ

൅ ൬
߲ܴ
ଶݔ߲

ଶ൰ݓ
ଶ

൅ ڮ ൅ ൬
߲ܴ
௡ݔ߲

௡൰ݓ
ଶ

቉

ଵ
ଶ

ൌ ൝෍ ൤൬
߲ܴ
௜ݔ߲

൰ ௜൨ݓ
ଶ௡

ଵ

ൡ

ଵ
ଶ
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ோݓ ൌ ൥൬
1
ଶݔ

ଵ൰ݓ
ଶ

൅ ቆ
െݔଵ

ଶݔ
ଶ ଶቇݓ

ଶ

൩

ଵ
ଶ

 

where wR is the uncertainty associated with a result (R), x1 and x2 are independent variables with 

uncertainties w1 and w2, which in this case x1, w1 are the variable and uncertainty of particles 

attaching to silica, and x2, w2 are the variable and uncertainty of particles attaching to PLL.  The 

ቀ డோ

డ௫೔
ቁ is the sensitivity, or the partial derivative of R with respect to xi. 
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CHAPTER 3 

RESULTS AND DISCUSSION 

3.1 TEM 

 To visually ensure that the ssRNA was removed from the MS2 bacteriophage and the 

capsid remained intact, we measured both the hydrodynamic diameter of the RNA-free MS2 and 

examined the particles using the Transmission Electron Microscope (TEM).  Dynamic Light 

Scattering (DLS) was used to determine hydrodynamic diameter of the RNA-free MS2, which 

was found to be in a range of 32-36 nm.  This was comparable to the stock of untreated MS2 

which was found to be in a range of approximately 32-36 nm.  This also is comparable to past 

data collected where the MS2 diameter is found to be in the 31-36 nm range (Pham et al. 2009, 

Gutierrez et al. 2009). 

 In Figure 1, where a TEM image of untreated MS2 (Figure 1A) is compared to the RNA-

free MS2 (Figure 1B), we see that the untreated MS2 has a white interior due to the inability of 

the tungsten acetate stain to penetrate the capsid due to the ssRNA occupying the capsid.  

However, in the image of the RNA-free MS2 we see a dark interior due to the stain penetrating 

the inside of the empty capsid.   

The average diameter of each particle was found to be different, the untreated MS2 had a 

diameter of ~27 nm where as the RNA-free MS2 had a slightly smaller diameter of ~24 nm.  

Potential reasoning for smaller RNA-free MS2 is that the capsid physically thinner with a 

smaller electrophoretic softness (see below), or steric interactions due to lack of ssRNA genome 

on interior to press on the compressed capsid when the capsid is no longer suspended in solution. 
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3.2 Electrokinetic Measurements 

 Electrophoretic mobility (EPM) of MS2 and RNA-free MS2 as a function of divalent 

cation concentrations are shown in Figure 2.  The experimental data for both MS2 and RNA-free 

MS2 consistently show that the electrophoretic mobility of the particle becomes less negative 

with increasing divalent cation concentrations, as seen before in Pham et al. (2009).  This 

indicates the association of metal ions with the MS2, with an increased screening of the electric 

field with an increased concentration of dissolved cations before reaching a limit in screening, as 

seen in Mylon et al. (2009).  However, both the untreated MS2 and untreated MS2 have 

approximately same electrophoretic mobilities for each corresponding divalent cation 

concentration.  For example, in a Ca2+ concentration of 50 mM, the electrophoretic mobility for 

MS2 is -0.2378 μm s-1 /V cm-1 and electrophoretic mobility for RNA-free MS2 is -0.2765 μm s-1 

/V cm-1.  In Mg2+ concentration of 50 mM the electrophoretic mobility of MS2 is -0.30255 μm s-

1 /V cm-1 and the mobility for RNA-free MS2 is -0.2655 μm s-1 /V cm-1.  Because the 

electrophoretic mobility of RNA-free MS2 is approximately the same as the MS2, it would 

suggest that the capsid controls electrophoretic mobility of the MS2 particles suspend in salt 

solution.  There is no general trend where the MS2 or RNA-free MS2 is more negative or 

positive than the other. 

 Another interesting point of note is that while the MS2 and RNA-free MS2 are both in 

divalent cation solutions, the extent of which the particles approach zero in Ca2+ is greater than 

Mg2+, suggesting that there are two distinct complexations occurring between the divalent 

cations and the capsid.  This could be explained by the size of Ca2+ cation compared to the Mg2+ 

cation, as Ca2+ has a larger ionic radius than Mg2+ ൫ܴ஼௔మశ ൌ 1.61 Հ, ܴெ௚మశ ൌ 0.92 Հ൯, it can be 

expected to have a stronger interaction with the MS2 capsid (Ahn et al. 2008, Newman et al. 
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1994, Wu et al. 1996).  Mg2+ being the smaller cation, it has a stronger hydration sphere around 

it and therefore can only make weaker complexes, where as the larger Ca2+ has a looser 

hydration sphere and can more easily exchange the water to create stronger complexes. 

 The electrophoretic mobility of MS2 and RNA-free MS2 as a function of monovalent 

cation (Na+) concentrations is shown in Figure 3.  The experimental data for both MS2 and 

RNA-free MS2 once again shows that the electrophoretic mobility of a particle becomes less 

negative with an increasing concentration.  However, in the case of monovalent cations, the 

increase is lower than Ca2+ and Mg2+, even at the same ionic strength. This may be explained by 

monovalent cations such as Na+ just provides charge screening, where as the divalent cations 

forms complexations with the MS2 capsid. 

 Measuring the electrophoretic mobility of MS2 and RNA-free MS2 as a function of 

monovalent cation concentrations were used to determine the particle’s electrophoretic softness 

using Ohshima’s model (Ohshima 1995) for soft particles.  The electrophoretic softness, 1/λ, the 

width of the soft layer around a particle, was found to be 2.1 nm for MS2 and 1.6 nm for RNA-

free MS2.  This suggests that the “soft” region of the RNA-free MS2 capsid is smaller than the 

MS2 and may behave as a harder particle. 

The isoelectric point (IEP) of MS2 and RNA-free MS2 sample stored in 1 mM NaCl was 

found by measuring electrophoretic mobility at a range of pH from 2.7 to 9.6.  The IEP is 

determined as the pH condition at which electrophoretic mobility changes from positive to 

negative.  As shown in Figure 4, the IEP for MS2 stock is approximately 3.4 in 1 mM NaCl 

solution, and the IEP for RNA-free MS2 stock is approximately 3.2 in 1 mM NaCl solution. 

IEP for MS2 has been reported as 3.5 by Penrod et al. (1996), 2.9 by Overby et al. (1966), and 

3.8 by Schaldach et al. (2006), and  3.4 by Langlet et al (2008) in a NaNO3 buffer.  We find that 
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our MS2 stock is in agreement with previous studies and that the result for RNA-free MS2 to be 

approximately similar to the untreated MS2. 

3.3 Aggregation Kinetics Measurements 

Time Resolved Dynamic Light Scattering was used to measure the kinetics of virus/virus 

aggregation in both monovalent (Na+) and divalent (Ca2+, Mg2+) cation conditions.  In the 

monovalent condition, it was found that there was no significant aggregation of MS2 or RNA-

free MS2 even at 600 mM Na+, as seen in Figure 5 by the average hydrodynamic diameter not 

increasing more than 30% beyond the original diameter ~36 nm, suggesting that Na+ does not 

have a significant impact on the energy barrier that keep the MS2 capsids from aggregating in 

natural conditions. 

 Observing that there is no significant aggregation of MS2 or RNA-free MS2 in Na+ 

solution, even in an ionic strength as high as 600 mM, it is found that this behavior does not 

agree with the DLVO calculations for virus-virus interaction in Na+, provided in Table 1.  The 

DLVO calculations in Table 1 predict that there would be significant aggregation at 

approximately 150-300 mM Na+ where there is no energy barrier.  As there is no significant 

aggregation at higher Na+ concentrations, steric repulsion may be the dominant force in 

preventing MS2 and RNA-free MS2 from aggregating, which is not accounted for in DLVO. 

Figure 6 presents the attachment efficiency as a function of divalent cation 

concentrations.  In both cases of Ca2+ and Mg2+, there is a trend of increasing attachment 

efficiency until ~10 mM concentration, at which point the attachment efficiency remains 

relatively stable with increasing concentration.  This would indicate that the particles have 

reached the critical coagulation concentration (CCC), at which point the aggregation is rapid and 

becomes diffusion limited.  The effect of divalent cations showing a substantial effect on the 
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destabilization of MS2 in suspension was seen before in Mylon et al. (2009) where it was 

proposed that the possible mechanisms for virus aggregation in the presence of divalent cations 

involves both charge neutralization and cation bridging due to complexation of the divalent 

cation to the negatively charged functional groups on the MS2 surface or complexation of 

divalent cations induce changes in the MS2 capsid, affecting the structural characteristics.    

It can be seen in both figures that both the untreated MS2 and RNA-free MS2 both have 

similar attachment efficiencies for a given salt condition, be it monovalent or divalent.  For 

example, at 10 mM Ca2+, the attachment efficiency of MS2 is 0.47505 and for RNA-free MS2 it 

is 0.65048.  With the given sensitivity of equipment, this suggests that the ssRNA inside the 

capsid has no notable influence on the aggregation of capsids, and that the metal ions primarily 

complex with the capsid and destabilize the energy barrier to allow for virus/virus aggregation to 

occur.  

Comparing the virus-virus DLVO calculations for Ca2+ in Table 2 and Mg2+ in Table 3 to 

the trend observed in Figure 6, we see that the DLVO makes a fair approximation of the 

behavior.  At the point where no energy barrier is calculated, 10 mM is the approximate location 

of the CCC.  This is in agreement as there is no longer any energy barrier to repel the virus 

particles from each other, rapid aggregation may occur.  It can also be observed for the case of 5 

mM Ca2+ the DLVO has a relatively low energy barrier and the attachment efficiency is about 

the same as the plateau.  However, DLVO is not an optimal model for predicting the behavior of 

the capsids as it does not take into account the complexation of cations to the capsid surface, or 

the steric forces of the capsid. 
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3.4 QCM-D Measurements 

 Untreated MS2 and RNA-free MS2 deposition onto PLL-coated silica surface as a 

function of cation concentration are shown in Figure 7A for Na+ and Figure 8A for Ca2+.  We 

define that MS2/PLL deposition is favorable as the MS2 capsid is negatively charged and the 

PLL is positively charged, creating an attractive layer for which the particles can deposit upon.  

The apparent deposition rate for both MS2 and RNA-free MS2 are shown to be relatively stable 

for the range of Na+ concentrations (10-300 mM), while the apparent deposition rate for MS2 

and RNA-free MS2 showed a decrease in deposition rates with an increase of Ca2+ concentration 

(0.3 mM to 200 mM).  The behavior of stability while depositing MS2 to PLL has been 

demonstrated before Pham (2009), and Elimelech (1991, 1994) states that deposition rates of 

negatively charged colloidal particles onto a positively charged collector should be stable or 

slightly decreased with increasing electrolyte concentrations when no energy barrier exists 

between the particles and the collector.  This second behavior is demonstrated by MS2 and 

RNA-free MS2 in high Ca2+ concentrations.   

The cause of the higher deposition at lower cation concentrations than that of higher 

cation concentrations is that the electrical double layer produced by the MS2 capsid is thicker in 

a low ionic strength, or low cation concentration, and decreases with an increasing ionic strength.  

The electrical double layer is the influential layer in deposition onto an attractive surface such as 

PLL, and as the ionic strength increases, the electrical double layer thickness decreases, thus 

decreasing the radius of influence and decreasing the rate at which MS2 capsids deposit onto the 

surface (Elimelech 1991). 

 The apparent deposition rates of MS2 and RNA-free MS2 to silica as a function of cation 

concentration can be seen in Figure 7B for Na+ and Figure 8B for Ca2+.  It can be seen that with 
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increasing cation concentration, that the apparent deposition of untreated MS2 and RNA-free 

MS2 increases.  This can be attributed to the effect of cations destabilizing the MS2 capsid in 

suspension as mentioned before for aggregation, caused by charge screening of the capsid, or 

complexation of the capsid with the Ca2+ (Mylon et al. 2009). 

The attachment efficiency (α) of MS2 and RNA-free MS2 to silica as a function of cation 

concentration can be seen in Figure 7C for Na+ and Figure 8C for Ca2+.  To normalize 

MS2/Silica results to obtain attachment efficiency, we define that MS2/PLL deposition is 

favorable as both MS2 and silica are negatively charged, while PLL is positively charged.  As 

seen in the apparent deposition of MS2 and RNA-free MS2, the attachment efficiency of both 

particles increases as the cation concentration increases.  In Figure 7C, the highest attachment 

efficiency obtained is 0.1332 for MS2 at 300 mM Na+ and 0.3147 for RNA-free MS2 at 300 mM 

Na+.  Neither particles in Na+ solution reaches an attachment efficiency of 1.0, indicating the 

possibility of steric hinderances preventing attachment even at increasing ionic strengths.  In 

Figure 8C, the highest attachment efficiency obtained is 0.3132 for MS2 at 200 mM Ca2+ and 

1.2232 for RNA-free MS2 at 200 mM Ca2+.  In this case, MS2 never reaches an attachment 

efficiency of 1.0, and RNA-free MS2 does reach 1.0 and surpass at the higher Ca2+ 

concentration, again indicating that there may be steric forces at work. 

In both cases, it can be seen that both untreated MS2 and RNA-free MS2 behave in a 

very similarly with approximately the same increase in attachment efficiency with the increase of 

cation concentration.  However, it should be noted that the RNA-free MS2 deposits at a slightly 

higher efficiency that MS2 each time.  As calculated in Figure 3 using the Ohshima model, the 

electrophoretic softness of RNA-free MS2 is less than that of the MS2, indicating that the RNA-

free MS2 particle should behave as a slightly harder particle. This evidence is supported by the 
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increased attachment efficiency of RNA-free MS2 over MS2, as there steric repulsion should be 

less for the RNA-free MS2 than the MS2 

Table 4 presents the DLVO calculated energy barriers between MS2 or RNA-free MS2 

and the silica surface for deposition.  The DLVO predicts that for both Na+ and Ca2+ 

concentrations at 100 mM, there should be no energy barrier, however it can be seen in Figure 

7C and 8C, that the attachment efficiency of MS2 and RNA-free MS2 is not α=1.0 and in the 

case of Na+ in Figure 8C, the attachment efficiency never reaches α=1.0.  The reasoning for the 

MS2 and RNA-free MS2 not reaching a higher attachment efficiency than what may predicted 

from DLVO is that DLVO only takes into account the van der Waals forces and electrostatic 

forces, and not the steric forces involved, which may be the largest influence on the attachment 

efficiency of both particles. 

  
  



21 
 

CHAPTER 4 

CONCLUSION 

The interfacial behavior of the bacteriophage MS2 capsid was investigated in order to 

determine the influence of the ssRNA core on surface behavior.  MS2 being a well studied model 

waterborne virus and nanoparticle, it is a valuable tool to help understand how the electrostatics 

of the core can affect the overall surface characteristics of a particle.  Removing the genome 

from the MS2 and forming an empty capsid, a virus like particle, provides us the opportunity to 

physically observe and measure the interactions of the MS2 capsid simultaneously with MS2 for 

direct comparison. 

After determining that the empty MS2 capsid was intact, we observed that the RNA-free 

MS2 showed no significant difference compared to untreated MS2 while measuring the 

electrophoretic mobility and virus/virus aggregation of the particles in suspensions containing 

varying concentrations of Na+, Ca2+, and Mg2+.  Using the Ohshima model to determine the 

electrophoretic softness of the soft particles, it was found that RNA-free MS2 is a slightly harder 

particle than untreated MS2.  The deposition kinetics of RNA-free MS2 and untreated MS2 to a 

silica surface showed similar trends in Na+ and Ca2+, it was found that the RNA-free MS2 

attachment efficiency was greater than untreated MS2 to be significant.  This is attributed to the 

RNA-free MS2 being the harder particle and therefore a better deposition efficiency, so the 

difference between the two particles in deposition is due to steric effects more so than 

electrostatic. 

In the case of aggregation and deposition, it is found that the DLVO calculations were not 

an accurate predictor of the outcome of what ionic strength significant aggregation would occur, 

or when the attachment efficiency of deposition would reach its critical coagulation 
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concentration.  This is due to the fact that the DLVO theory only approximates the electrostatic 

and van der Waals forces as simple separate forces, and the calculations are not meant for “soft” 

particle where there exists steric and electrosteric interactions, or the effects of complexation of 

cations with the interphase of the capsid. 

In conclusion, our work suggests that the protein capsid of MS2 virus is a more dominant 

force than the single strand RNA inside with respect to the electrostatic forces.  However, the 

QCM used in our work is much more sensitive than the DLS used.  Future work could 

potentially be to measure the electrostatics of these two particles with a more accurate 

instrument. 
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FIGURES AND TABLES 
 
Figure 1 
 

 
Figure 1: Cryo-TEM image of untreated MS2 bacteriophage (a) and cryo-TEM image of RNA-
free MS2 bacteriophage (b).  Tungsten acetate was used as a stain for both particles.  The treated 
RNA-free MS2 particles contain dark interiors due to the penetration of stain inside the empty 
capsid, where as the wild type MS2 appears white due to the stain being unable to penetrate the 
capsid because of the presence of RNA. 
  

A B 
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Figure 2 
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Figure 2: Electrophoretic mobility of MS2 and RNA-free MS2 in Ca2+ (a) and Mg2+ (b) shown as 
a function of divalent cation concentration.  Both MS2 and RNA-free MS2 start with negative 
electrophoretic mobility and approach zero with increasing ionic strength.  However, when 
suspended in Ca2+, the MS2 and RNA-free MS2 have a closer approach to zero than the MS2 
and RNA-free MS2 suspended in Mg2+. 
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Figure 3 
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Figure 3: Electrophoretic mobility of MS2 and RNA-free MS2 as a function of ionic strength, 
using NaCl, at constant pH.  This was used to calculate the electrophoretic softness of the MS2 
and RNA-free MS2, which were found to be 2.1 nm and 1.6 nm respectively using the Ohshima 
model (Ohshima 1995).  This indicates that the RNA-free MS2 particles were found to be 
slightly harder particles than the untreated MS2.    
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Figure 4 
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Figure 4: Electrophoretic mobility of wild-type MS2 and hollow MS2 at a constant 1 mM NaCl 
solution while varying the pH with HCl and NaOH.  The isoelectric point was found not to vary 
significantly between the two types of MS2, as the wild-type MS2 and hollow MS2 was found to 
be 3.4 and 3.2 respectively.   
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Figure 5 
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Figure 5: Time resolved dynamic light scattering of MS2 and RNA-free MS2 experiencing 
aggregation at 600 mM NaCl.  Although the aggregation kinetic rates are similar in magnitude, 
the Kapp of RNA-free MS2 was slightly higher, Kapp of 0.0003 compared to untreated MS2 
Kapp 0.0001, suggesting that MS2 behaves as a softer particle.
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Figure 6 
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Figure 6: Aggregation bacteriophage particles of MS2 and hollow MS2 were similar in the 
presence of Ca2+ (a) and Mg2+ (b), measured by time resolved dynamic light scattering.  The 
critical coagulation concentration (CCC) occurs approximately 10 mM for both types of particles 
in the presence of Ca2+ and Mg2+, after which rapid aggregation occurs.
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 Figure 7 
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Figure 7: Experimentally measured apparent deposition rates for MS2 and RNA-free MS2 onto 
PLL in the presence of Na+ (a), apparent deposition rates for MS2 and RNA-free MS2 onto silica 
(b), and normalized attachment efficiency for MS2 and RNA-free MS2 (c), all using the Quartz-
Crystal Microbalance with Dissipation.  It can be seen that in the case of favorable deposition of 
MS2 capsid to PLL, the apparent rate of deposition stays approximately the same with increasing 
Na+ concentration.  However, in the case of unfavorable deposition of MS2 capsid to silica, the 
apparent rate of deposition increases with increasing Na+.  For the normalized attachment 
efficiency, the efficiency increases as the Na+ concentration increases, with the RNA-free MS2 
showing a higher affinity than MS2.  This could be attributed to the smaller electrophoretic 
softness of RNA-free MS2 making it behave as a harder particle. 
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Figure 8: 
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Figure 8: Experimentally measured apparent deposition rates for MS2 and RNA-free MS2 onto 
PLL in the presence of Ca2+ (a), apparent deposition rates for MS2 and RNA-free MS2 onto 
silica (b), and normalized attachment efficiency for MS2 and RNA-free MS2 (c), all using the 
Quartz-Crystal Microbalance with Dissipation.  It can be seen that in the case of favorable 
deposition of MS2 capsid to PLL, the apparent rate of deposition decreases with increasing Ca2+ 
concentration.  However, in the case of unfavorable deposition of MS2 capsid to silica, the 
apparent rate of deposition increases with increasing Ca2+.  For the normalized attachment 
efficiency, the efficiency increases as the Ca2+ concentration increases, with the RNA-free MS2 
showing a higher affinity than MS2.  This could be attributed to the smaller electrophoretic 
softness of RNA-free MS2 making it behave as a harder particle. 
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Table 1: Energy barrier values for MS2 and RNA-free MS2 aggregating in a homogenous 
solution in the presence of Na+, calculated by DLVO. The haymaker constant (A) of 4x10-21 J 

was used (Penrod et al. 1996).  Diameters used for each particle were 36.4 nm for MS2, 36.6 nm 
for RNA-free MS2.  Whenever “no barrier” is present, it indicates that no energy barrier was 

present in the DLVO calculation.  As it can be seen in the Na+ calculations, there were no energy 
barrier values at the 150-300 mM range. 

 
Na+ Energy barrier (kT) 

Conc. 
(mM)

MS2 RNA-
free MS2

10 6.55 11.78 
20 4.10 6.16 
30 3.10 4.57 
50 1.67 1.21 
70 0.77 0.45 

100 -0.14 -1.16 
150 -0.22 No Barrier 

300 No Barrier No Barrier 

600 No Barrier No Barrier 

 
Table 2: Energy barrier values for MS2 and RNA-free MS2 aggregating in a homogenous 

solution in the presence of Ca2+, calculated by DLVO. The haymaker constant (A) of 4x10-21 J 
was used (Penrod et al. 1996).  Diameters used for each particle were 36.4 nm for MS2, 36.6 nm 

for RNA-free MS2.  Whenever “no barrier” is present, it indicates that no energy barrier was 
present in the DLVO calculation.  As it can be seen in the Ca2+ calculations, there was no energy 

barrier present at 10 mM. 
 

Ca2+ Energy barrier (kT) Attachment Efficiency (α) 
Conc. 
(mM) MS2 RNA-free 

MS2
MS2 RNA-free 

MS2 
1 1.72 1.29 9.92E-05 0.00206 
2 1.26 0.0121 
3 0.71 0.2178 
5 0.44 0.36 0.7527 0.31748 
10 No Barrier No Barrier 0.82103 0.98287 
20 No Barrier No Barrier 1.72828 1.51098 
50 No Barrier No Barrier 1.27522 

100 No Barrier No Barrier 0.74844 1.01864 
150 No Barrier No Barrier 0.78438 
200 No Barrier No Barrier 0.94955 0.6955 
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Table 3: Energy barrier values for MS2 and RNA-free MS2 aggregating in a homogenous 
solution in the presence of Mg2+, calculated by DLVO. The haymaker constant (A) of 4x10-21 J 
was used (Penrod et al.1996).  Diameters used for each particle were 36.4 nm for MS2, 36.6 nm 

for RNA-free MS2.  Whenever “no barrier” is present, it indicates that no energy barrier was 
present in the DLVO calculation.  As it can be seen in the Mg2+ calculations, there was no energy 

barrier present at 10 mM. 
 

Mg2+ Energy barrier (kT) Attachment Efficiency (α) 
Conc. 
(mM) MS2 RNA-free 

MS2
MS2 RNA-free 

MS2 
3 0.05106 0.05185 
5 0.11672 0.14074 
8 0.40122 0.2963 

10 No Barrier No Barrier 0.93374 0.97037 
20 No Barrier No Barrier 0.9921 1 
30 No Barrier No Barrier 1.12584 0.97037 
40 No Barrier No Barrier 0.94833 1.05926 

 
 
Table 4: Values of energy barriers for MS2 and RNA-free MS2 deposited onto the Silica surface 
in the presence of Na+ and Ca2+.  The haymaker constant (A) of 4x10-21 J was used (Penrod et al. 

1996).  Diameters used for each particle were 36.4 nm for MS2, 36.6 nm for RNA-free MS2.  
Whenever “no barrier” is present in the table, it indicates that no energy barrier was present in 

the DLVO calculation. 
 

Na+ Energy barrier (kT) Ca2+ Energy barrier (kT) 
Conc. 
(mM) MS2 RNA-free 

MS2
Conc. 
(mM)

MS2 RNA-free 
MS2 

10 13.597 17.909 0.3 11.285 8.14 
60 0.372 0.237 1 6.149 5.098 

100 No Barrier No Barrier 10 -0.014 0.192 
300 No Barrier No Barrier 100 No Barrier No Barrier 

200 No Barrier No Barrier 
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