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ABSTRACT

This thesis proposes a method to assess the impact on power system dynamic

performance caused by uncertainty in the system supply side. Operational

uncertainty, e.g., demand variability, is not new to power systems. However,

with the increased penetration of renewable-based generation, operational

uncertainty will extend to a significant portion of the supply side, which may

have an impact on system dynamic performance, e.g., frequency or voltage

deviations beyond prescribed operational requirements. To address the prob-

lem, we propose the use of reachability analysis techniques, which provide

bounds on worst-case deviations of system variables that must remain within

certain operational constraints. We assume the input disturbance caused by

the renewable-based generation is small enough to justify linearization of

the power system around a nominal trajectory. If the reach set is within the

region defined by system operational requirements, then we conclude the dis-

turbance caused by the renewable resource does not have a significant impact

on system dynamic performance. The method is illustrated with several case

studies. In particular, we show the method successfully provides reachabil-

ity results for a sizable benchmark system that contains 140 buses and 48

synchronous machines, which accounts for a total of 294 dynamic states.
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CHAPTER 1

INTRODUCTION

The motivation for this work lies in the current trend toward more envi-

ronmentally friendly and responsible electricity production in the electrical

power sector. The push for energy independence requires increased penetra-

tion of renewable resources of electricity, such as wind and solar generation,

into the power grid. In this introductory chapter, we outline the necessity for

developing a tool to assess the impact of increased penetration of renewable

resources on power system dynamic performance, review related research to

put this thesis in context, and finish with the main contributions of this

thesis.

1.1 Background

The integration of renewable resources into the power grid presents notable

challenges to the operations and planning of today’s power systems [1] be-

cause these resources are

• highly variable, e.g., wind generation is much higher during the night-

time than daytime;

• highly intermittent, e.g., solar generation can vary greatly between

cloudy and sunny conditions;

• uncontrollable, e.g., cloud movements, which can cause partial shading

on solar panels, cannot be controlled so as to yield the desired power

output level; and

• uncertain — renewable power generation is difficult to forecast since it

often depends on weather conditions (e.g., wind and solar).
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The lack of accurate forecasts causes renewable power generation to be-

come uncertain contributions to existing power systems. In actuality, un-

certainty is not new to power systems. Examples include the system load,

availability of generators and other system facilities, maintenance of trans-

mission lines, etc. [2]. Since there must be a balance between generation and

load at all times, the generation must follow the load. Power system opera-

tors compensate for load uncertainty by allocating spinning reserves. In fact,

demand-side uncertainty is likely to increase, due to the addition of demand

response programs. Together, these represent major additional sources of

uncertainty with respect to managing power systems.

Faced with these uncertainties, power system operators — typically inde-

pendent system operators (ISOs) — must compensate with additional insur-

ance for their system through increased level of reserves to satisfy steady-

state power balance [3]. Deep levels of renewable resource penetration in the

system can also impact system dynamic performance, i.e., small-signal and

transient stability, due to reduced effective inertia of the system [4]. Small-

signal stability is concerned with the ability of the power system to maintain

synchronism under disturbances that are sufficiently small that linearization

of system equations is adequate for analysis. Transient stability is concerned

with the ability of the power system to maintain synchronism when subjected

to a severe disturbance [5]. The time frame of interest in these stability stud-

ies is on the order of 10 to 20 seconds following a disturbance [5].

1.2 Statement of Problem

As the presence of renewable-based generation in the power grid increases,

new tools are necessary to assess their impact on the security of supply and

load balancing in near real-time. This thesis focuses on a particular aspect

of the impact of renewable resource penetration on system dynamic perfor-

mance. We address how system variables may deviate from steady-state

operating points due to the uncertainties in the power system, in particu-

lar those introduced by penetration of renewable resources. We provide a

method to assess whether certain variables remain within acceptable ranges

while the system is subject to uncontrolled disturbances caused by uncer-

tainty in renewable-based generation.
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1.3 Related Work

The reachability problem in the context of power systems in the presence

of uncertainty has been explored in the past. In general, the existing works

tend to differ in the way in which uncertainty is captured in power system

computation. They can be loosely divided into two categories: uncertainty in

the context of static performance and in the context of dynamic performance.

1.3.1 Static Performance of Power Systems

Various approaches to address uncertainty in power systems have been ex-

plored before in the context of static power flow analysis. For example, [6] de-

scribed three ways of capturing uncertainty in power flow computation: prob-

abilistic methods, interval mathematics, and fuzzy arithmetic techniques. Of

particular interest is the interval method, which uses the notion of an interval

— a set of numbers on the real axis, characterized by its two extreme values.

A vector interval is a vector where every element is an interval variable. This

method was utilized to solve the power flow reachability problem in [7], and

results were compared with those obtained from stochastic and Monte Carlo

methods. The conclusions were somewhat pessimistic regarding the general

applicability of interval methods to large-scale systems.

The effect of model uncertainty on transmission security in a power market

was explored in [8]. Two types of uncertainty were considered: structural,

which were modelled by contingency scenarios, and perturbation of model

parameters, which were quantified by sensitivity analysis. The authors used

a linearized power flow model to study the benchmark example of the New

England/New York interconnection. Interval analysis, which was presented

in [6], was applied to the optimization of electric energy markets in [9]. Again,

a linearized power system model was utilized to explore the worst-case effects

of network parameter uncertainties modelled with the interval method on

various optimization problems solved at the ISO level in a deregulated power

market. Furthermore, Saric and Stankovic used ellipsoidal approximations

in power system optimization to obtain ranges in which generator injections

can vary without violating static operational constraints in security analysis

[10]. The model was applied to the optimal economic dispatch problem and

the calculation of locational marginal prices in a day-ahead market.
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1.3.2 Dynamic Performance of Power Systems

Several approaches to addressing uncertainty in dynamic performance assess-

ment in the context of power systems have been proposed in the past. For

example, the probabilistic collocation method (PCM) is used to develop rela-

tionships between uncertain parameters and outputs of interest in [11]. PCM

creates polynomial models relating the uncertain parameters of the system to

the outputs of interest. It was applied to a portion of a dynamic model which

describes a large portion of the western United States and demonstrated sig-

nificant time savings as compared to traditional Monte Carlo analysis. This

technique is computationally efficient when the number of uncertain param-

eters is relatively small.

Other approaches have been proposed to address uncertainty in dynamic

performance assessment. For example, [12] has shown that trajectory sensi-

tivities can be used to generate accurate first-order approximations of tra-

jectories that arise from perturbed parameter sets. Hiskens and Alseddiqui

proposed to linearize the system around a nominal trajectory, as compared to

small disturbance analysis, the analysis for which is performed on lineariza-

tions around an equilibrium point. For the worst-case analysis, [12] utilized

orthotopes to represent the uncertain parameter set. A similar technique

is presented in [13] for application to differential-algebraic-discrete models,

which are common to hybrid systems.

Regarding reachability in power systems, Jin et al. used backward reach-

able sets to compute the stability region of an equilibrium point [14]. The

methodology was applied to the classical single-machine infinite-bus system.

The authors concluded that the method suffers from the “curse of dimen-

sionality”; therefore, the methodology would be difficult to scale to larger

systems.

1.4 Contribution of Thesis

Consideration for uncertainty in dynamic performance assessment is compu-

tationally challenging. Statistical and worst-case characterizations are com-

plementary in the analysis of risk involved with power system operations.

We study the worst-case approach, as this provides power system operators

with a guarantee of system security as opposed to a probabilistic figure that
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ensures the system will be secure over the desired time frame.

In this thesis, we provide an analytically tractable method, which is also

amenable for computer implementation, to assess whether certain variables

of interest, such as the system frequency and bus voltages, remain within

acceptable ranges while the system is subject to uncontrolled disturbances

caused by the uncertainties in renewable resources (the result of forecast er-

ror). The results presented in [15] indicate that a negative load model suffices

to represent type-C wind power generators, which are based on doubly-fed

induction generators. Hence, we assume that power system dynamics are

described by the nonlinear differential-algebraic equation (DAE) formula-

tion [16], where the effect of the renewable power injection is modelled as an

uncontrolled disturbance to the system dynamics. In this setup, the problem

can be addressed by computing the reach set or attainability domain [17],

i.e., the set that bounds all possible system trajectories that arise from all

possible renewable resource power injection scenarios.

We model uncertain inputs, such as power injection from renewable re-

sources, as unknown quantities constrained between minimum and maximum

values, similar to vector intervals in [6]. We subsequently compute the reach

set of the power system using ellipsoidal approximations of the input set.

The advantages of using ellipsoids include their explicit form of approxima-

tion, smoothness of the boundaries of the approximating sets, possibility of

optimization, etc. [18]. Computing the exact reach set may be very difficult,

or even impossible, especially for nonlinear DAEs. Therefore, we assume the

disturbances introduced by renewable resources are sufficiently small as to

justify the use of a small-signal approximation. Similar to the procedure de-

scribed in [12] and [13], the DAE is linearized around some nominal trajectory

instead of an equilibrium point, where the nominal trajectory is determined

by the resource forecast. In our model, the forecast errors provide bounds on

the variability of renewable-based generation injected in the system. These

bounds are used in conjunction with the linearized model to compute the

reach set. If the reach set is within the region of the state-space defined

by system operational requirements, e.g., maximum system frequency devi-

ation, then we conclude the disturbance due to uncertainty in the renewable

resource does not have a significant impact on system dynamic performance.

We begin by developing the linearized model from the nonlinear differential-

algebraic equations that govern power systems in Chapter 2 as well as the
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unknown-but-bounded input uncertainty model for renewable resources. In

Chapter 3, we elaborate on the unknown-but-bounded input model and out-

line the method with which we obtain system reach sets. We connect reacha-

bility concepts back to the power system model in Chapter 4 and describe as-

sociated uncertainty models and subsequent reach set calculations. We apply

the concepts in previous chapters to a small three-bus power system exam-

ple in Chapter 5 and present analytical as well as simulation results. Next,

large-scale power system test cases are described and their corresponding

reachability results are presented in Chapter 6. Finally, concluding remarks

are made in Chapter 7.
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CHAPTER 2

MODEL

In this chapter, we derive a linearized model from the canonical nonlinear

differential-algebraic equation (DAE) power system model. This linearized

model will be later used in our studies. The general procedure is summarized

in Fig. 2.1.

Differential 

Algebraic 

Equation

(DAE)

Nonlinear

ODE

Linear ODE

Nominal 
trajectory

Lineari- 
zation

Figure 2.1: Brief description of system model.

2.1 System Description

Electric power systems can be described by a DAE model of the form

ẋ = g(x, y, u;λ), (2.1)

0 = h(x, y, w;λ), (2.2)
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where x ∈ R
n, y ∈ R

p, u ∈ R
m, w ∈ R

l, and λ ∈ R
q. Also, f : Rn+p+m+q 7→

Rn and h : Rn+p+l+q 7→ Rp.

Here, x would include machine dynamic states, such as synchronous ma-

chine angles, speeds, and fluxes; y ∈ Rp would include network variables, such

as load bus voltage magnitudes and angles; u ∈ Rm would include set points,

such as the voltage regulator reference and steam valve position; w ∈ R
l

would include uncontrolled disturbances, such as load demand changes or

renewable-based power generation uncertainty; and λ could represent a di-

verse range of parameters, including loads and line impedances.

Initial conditions for the model in (2.1)-(2.2) are given by

x(t0) = x0, (2.3)

y(t0) = y0, (2.4)

u(t0) = u0, (2.5)

w(t0) = w0, (2.6)

where y0 is a solution of h(x0, y0, w0;λ) = 0. Since h is, in general, nonlinear,

h = 0 may have several solutions for a given set of x0, u0, w0, and λ. In

the context of power systems, we can usually isolate the correct solution by

applying some common sense rules to the algebraic power flow results.

Throughout this chapter, we illustrate our developments with a running

example involving the canonical power system model — the single-machine

infinite-bus (SMIB) system — as depicted in Fig. 2.2. The parameter values

for this example are listed in Table 2.1, where all values are per-unit unless

otherwise indicated.

_

+

Figure 2.2: Single-machine infinite-bus system.

Example 1 (SMIB). Let δ be the angular position of the rotor in electrical

radians, and ω be the angular velocity of the rotor in electrical rad/s. Then,

8



Table 2.1: SMIB system model parameter values

E Xm Xl M D [s/rad] Pm ωs [rad/s]

1 0.2 0.066 1

15π
0.04 1 120π

the system can be described by the following DAE:

δ̇ = ω − ωs, (2.7)

ω̇ =
1

M
[Pm − Pe −D(ω − ωs)] , (2.8)

0 = Pe −
Ev∞

Xl +Xm

sin δ, (2.9)

where, following the notation in (2.1)-(2.2), λ = [E,Xm, Xl,M,D, ωs]
′ [16],

x = [δ ω]′, y = Pe, and u = Pm. In this case, since v∞ > 0 models the

external system to which the machine is connected, we assume that v∞ is

subject to uncertainty, and thus w = v∞. Here, (2.7) and (2.8) are the

differential equations of the DAE model, while (2.9) is the algebraic power

flow relation. ⊳

2.2 Nominal Trajectory

In this work, we assume the system (2.1)-(2.2) is operating with nominal

inputs u(t) = u∗(t) and the uncertain disturbance w(t) (e.g., load demand,

wind speed, and solar clearness index) is restricted to some margin around an

operating point w(t) = w∗(t), and w(t) is bounded in some set W(t) (possibly

time-varying) during the time horizon of interest t ∈ [t0, T ]. We envision our

tool to be used in power systems operations, so T − t0 is likely within the

range of an hour, where uncertainties in the system can be captured relatively

accurately. In this regard, W(t) can be interpreted as the forecast error of

w(t) for t ∈ [t0, T ]. We illustrate these ideas with our running example.

Example 2 (SMIB). As discussed in Example 1, u(t) = Pm(t) and w(t) =

v∞(t). To simplify the example, we assume the deterministic input to be a

constant value in the time horizon of interest t ∈ [t0, T ], i.e., P
∗
m(t) = P ∗

m.

We also assume the nominal realization of the uncertain input is constant so

that v∗∞(t) = vm. In this example, we assume v∞(t) is bounded within some

9



neighbourhood of vm, more specifically,

v∞(t) ∈ Wv∞(t) = {v∞(t) : |v∞(t)− vm| ≤ k(t)vm}, (2.10)

with k(t) > 0 and vm > 0. In this series of examples involving the SMIB,

we assume vm = 1 p.u. While k(t) may, in general, be time-varying, in this

example we take k = maxt∈[t0,T ] k(t), a constant error bound on v∞. This

concept is illustrated in Fig. 2.3.

Figure 2.3: Uncertainty in v∞(t) for SMIB examples.

⊳

2.3 Nonlinear Ordinary Differential Equation Model

Suppose the system in (2.1)-(2.6) operates with nominal input u(t) = u∗(t),

uncontrolled disturbance w(t) = w∗(t), and parameter λ(t) = λ∗(t). Let

(x∗, y∗) be the nominal trajectory of the system that results from these nom-

inal inputs and parameters with initial conditions x(t0) = x0 and y(t0) = y0.

The implicit function theorem can be used to establish a connection between

the differential-algebraic model and a locally equivalent differential equation

model [19].

We assume h : Rn+p+l+q 7→ Rp is continuously differentiable at each point

(x, y, w;λ) of an open set S ⊂ Rn+p+l+q. Also assume (x∗, y∗, w∗;λ∗) ∈ S for

which the Jacobian matrix hy = [∂h/∂y](x∗ ,y∗,w∗;λ∗) is nonsingular. By the

implicit function theorem [19], in a local neighbourhood of (x∗, y∗, w∗;λ∗),

there exists a unique function φ such that

y = φ(x, w;λ), (2.11)
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and

0 = h(x, y, w;λ), (2.12)

where (x, y, w;λ) is in this neighbourhood of (x∗, y∗, w∗;λ∗).

Thus, around the nominal system trajectory (x∗, y∗), system (2.1)-(2.6)

can be rewritten as

ẋ(t) = g(x, φ(x, w;λ), u∗;λ∗). (2.13)

In other words, it is possible to reduce the differential-algebraic model in

(2.1)-(2.6) to a differential equation (DE) description of the system model

that is valid locally around the nominal trajectory (x∗, y∗). This direct result

of the implicit function theorem has been stated before in the context of

trajectory sensitivity analysis of power systems [12], [13].

At points where hy is singular, the conditions of the implicit function

theorem are no longer satisfied, so there is no guarantee of the existence of

a well-defined φ(·) in (2.11) [13]. For the power system, the condition is

equivalent to the existence of a solution to the AC power flow for t ∈ [t0, T ].

Therefore, in the context of this work, the implicit function theorem is always

valid. Thus we can describe the dynamic behaviour of power systems by a

nonlinear DE of the form

ẋ = f(x, u∗, w;λ∗),

x(t0) = x∗(t0), (2.14)

w(t0) = w∗(t0).

Example 3 (SMIB). Following the notation in (2.11), it follows from (2.9)

that

Pe = φ ([δ, ω]′, v∞, [E,Xm, Xl,M,D, ωs]
′) =

Ev∞
Xl +Xm

sin δ. (2.15)

Substituting (2.15) into (2.8), we obtain the nonlinear DE description of the

dynamic behaviour of the SMIB system, given by

11



d
dt

[

δ

ω

]

=

[

0 1

0 − D
M

][

δ

ω

]

+

[

−1
D
M

]

ωs

+

[

0

− E
M(Xm+Xl)

sin δ

]

v∞ +

[

0
1
M

]

Tm.

⊳

2.4 Bounding the Disturbance Input

As mentioned in Section 2.2, the disturbance input, w(t), is bounded in

some set W(t) around a nominal w∗(t) during the time horizon of interest

t ∈ [t0, T ]. Thus, we rewrite the DE model in (2.14) as

ẋ = f(x, u∗, w;λ∗),

x(t0) = x∗(t0), (2.16)

w(t0) = w∗(t0), w(t) ∈ W(t),

where W(t) represents the deviation of the uncontrolled disturbance w(t)

from the nominal w∗(t). If system (2.16) is forward complete, then the so-

lution x(t) exists for t ∈ [0, T ] and it is contained in some set R, which is

called the reach set or attainability domain [20], i.e., the set that bounds all

possible system trajectories that arise from all possible w(t) ∈ W(t). For our

studies, this is the set that bounds all possible system trajectories that arise

from all possible renewable resource power injection scenarios.

Although the shape of W(t) is arbitrary, it can always be bounded by an

ellipsoid Ωw(t) defined as

Ωw(t)
△
=
{
w(t) : [w(t)− w∗(t)]′Q−1(t)[w(t)− w∗(t)] ≤ 1

}
, (2.17)

such that W(t) ⊆ Ωw(t). Further, the set W(t) is usually a symmetric

polytope. Equivalently, each entry wi(t) in w(t) is assumed to be confined

to some interval, described further in Section 3.3. The interval method has

been used in the past for uncertainty modelling in power flow studies [7]. A

symmetric polytope can be approximated to a high degree of precision by the

12



union of a family of ellipsoids. In this case, the reach set R can be computed

for each of the ellipsoids that bounds W(t). The union of the resulting

reach sets for each bounding ellipsoid yields a high-fidelity approximation of

the exact reach set R. To simplify subsequent derivations, we assume the

uncertain disturbance is indeed bounded by Ωw(t), as depicted in Fig. 2.4.

Thus, without loss of generality, the system dynamics are described as

ẋ = f(x, u∗, w;λ∗),

x(t0) = x∗(t0), (2.18)

w(t0) = w∗(t0), w(t) ∈ Ωw(t).

Figure 2.4: W is bounded by Ωw.

Example 4 (SMIB). We impose an ellipsoidal bound equivalent to Wv∞ on

the disturbance v∞ and rewrite (2.16) as

d
dt

[

δ

ω

]

=

[

0 1

0 − D
M

][

δ

ω

]

+

[

−1
D
M

]

ωs

+

[

0

− E
M(Xm+Xl)

sin δ

]

v∞ +

[

0
1
M

]

Tm,

v∞ ∈ Ωv∞ =
{

v∞ : (v∞ − vm) [(kvm)
2]
−1

(v∞ − vm) ≤ 1
}

. (2.19)

Since v∞ is one dimensional, Wv∞ ≡ Ωv∞ .

13



2.5 Linearized Model

If the variations in w(t) around w∗(t) are sufficiently small, we can approx-

imate the reach set R with that of the linearized system denoted as ∆R.

Let x(t) = x∗(t) + ∆x(t) and w(t) = w∗(t) + ∆w(t), where ∆w(t) ∈ ∆W(t)

and W(t) = w∗(t) ⊕ 1∆W(t). Define ∆W such that ∆w(t) ∈ ∆W, for all

t ∈ [t0, T ]. Then, ∆W represents the worst-case deviation of the uncon-

trolled disturbance w(t) from the nominal w∗(t). Similar to the argument

made for W(t), the shape of ∆W is arbitrary but can always be bounded by

an ellipsoid Ω∆w where

∆w(t) ∈ Ω∆w =
{
∆w(t) : ∆w′(t)Q−1∆w(t) ≤ 1

}
. (2.20)

Let (x∗, u∗, w∗;λ∗) be a nominal operating point of system (2.18), where

(x∗, w∗) ∈ Dx ×Dw and f : [t0, T ]×Dx ×Dw 7→ Rn is continuously differen-

tiable with respect to x and w. Then the linearized system, obtained from a

first-order Taylor series expansion, is

∆ẋ = A(t)∆x+B(t)∆w,

∆x(t0) = 0, ∆w(t0) = 0, (2.21)

∆w(t) ∈ Ω∆w = {∆w(t) : ∆w′(t)Q−1∆w(t) ≤ 1} ,

where the matrices,

A(t) =
∂f(x, u∗, w;λ∗)

∂x

∣
∣
∣
(x∗,w∗)

(2.22)

and

B(t) =
∂f(x, u∗, w;λ∗)

∂w

∣
∣
∣
(x∗,w∗)

, (2.23)

are the first-order multipliers in the Taylor expansion [19]. We can obtain

small variations in system trajectories ∆x(t) from (2.21).

Example 5 (SMIB). We assume the system operates at its stable equilib-

rium point, i.e., δ∗ = δ0 and ω∗ = ω0. For v∞ = vm, the (stable) equilibrium

1⊕ denotes the vector sum of the vector w∗(t) and the set ∆W(t).
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point of the system (2.16) is given by

ω0 = ωs,

δ0 = sin−1

(

Tm

Evm
Xm+Xl

)

∈
[

0,
π

2

]

. (2.24)

Following the notation in (2.21), we obtain the linearization of the sys-

tem (2.16) around the equilibrium point in (2.24) as

d
dt

[

∆δ

∆ω

]

=

[

0 1

− Evm
M(Xm+Xl)

cos δ0 − D
M

][

∆δ

∆ω

]

+

[

0

− Tm

Mvm

]

∆v∞,

∆v∞ ∈ Ω∆v∞ = {∆v∞ : ∆v∞[(kvm)
2]−1∆v∞ ≤ 1} . (2.25)

⊳
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CHAPTER 3

REACH SET CALCULATION

3.1 Linearized Model Reach Set Calculation

Let ∆R(t) represent the reach set of (2.21) evolved through time. Then the

reach set of (2.21), denoted by ∆R, containing (for t ∈ [t0, T ]) all possible

trajectories of the ∆x approximations, is given by

∆R =
T⋃

t=t0

∆R(t) = ∆R(T ), (3.1)

since ∆x is centered around 0. Also, ∆R(t) can be upper bounded with the

intersection of a family of ellipsoids:

∆R(t) ⊆
⋂

β(t)

Xβ(t), ∀ β(t) ∈ R such that β(t) > 0, (3.2)

with Xβ(t) = {x : x′Ψ−1
β (t)x ≤ 1}, where for each β(t) > 0, a positive definite

Ψβ(t) is obtained by solving

d
dt
Ψβ(t) = A(t)Ψβ(t) + Ψβ(t)A

′(t) + β(t)Ψβ(t) +
1

β(t)
B(t)Q(t)B′(t),(3.3)

Ψ(t0) = Ψ0. (3.4)

The reader is referred to Appendix A for a derivation of (3.3).

From a practical point of view, simulations would be more easily im-

plemented if β(t) were constant, β(t) = β0. For a stable time-invariant

system where A(t) = A and B(t) = B, if the differential equation that

governs the time evolution of Ψβ(t), (3.3), is stable (more on this in Sec-

tion 3.2), then we can obtain an upper bound to the steady-state reach set

16



∆Rss = limt→∞∆R(t) by solving

0 = AΨβ0,ss +Ψβ0,ssA
′ + β0Ψβ0,ss +

1

β0
BQB′ (3.5)

for Ψβ,ss. Then

∆Rss ⊆
⋂

β0

Xβ0,ss, ∀ β0 ∈ R such that β0 > 0,

with Xβ0,ss = {x : x′Ψ−1
β0,ss

x ≤ 1}.

Example 6 (SMIB). Reachability analysis was performed on the system

in (2.25) with the parameter values in Table 2.1. A few ellipsoids of the ellip-

soidal family generated via (3.3) centered around the equilibrium point (2.24)

are plotted in Fig. 3.1(a) in dashed lines. The intersection of all ellipsoids

in the family, depicted with the solid trace in the same figure, represents an

upper bound to the reach set of the linearized system (2.25), and also an

approximation to the reach set of the nonlinear system.

The same reach set is depicted in Fig. 3.1(b), along with a system trajec-

tory obtained from (2.16). The trajectory results from a scenario where v∞

jumps between its upper and lower bounds (1.1 and 0.9, respectively) when

the norm of the state vector begins to decrease. In terms of excursions of the

state variables from the equilibrium point, this represents the worst possible

input.

⊳

3.2 Choice of Free Parameter, β(t)

The matrix differential equation (3.3) defines the matrix Ψ(t), which in turn

defines a bounding ellipsoid Xβ(t) that contains all possible x(t) for t ∈ [t0, T ].

The differential equation contains a free parameter β(t) that produces a

bounding ellipsoid for any nonnegative value [17]. Clearly, it would ideal to

choose a β(t) that is optimal in some sense. Several criteria for optimality

have been suggested in the past (see [21], [22], and references therein). For
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(a) Tight ellipsoidal bounds of the linearized model reach set and reach set ob-
tained as the intersection of the tight ellipsoidal family.
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(b) Large-signal worst-case trajectory and linearized model reachability set.

Figure 3.1: Single-machine infinite-bus system reachability analysis results
for 10% input uncertainty.
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example, we can minimize the volume of the ellipsoid by choosing

β(t) =

√

Tr [Ψ−1(t)B(t)Q(t)B′(t)]

n
,

and we can minimize the projection of the ellipsoid onto the direction of

vector v by choosing

β(t) =

√

v′B(t)Q(t)B′(t)v

v′Ψ(t)v
. (3.6)

If we were interested in the behaviour of only several states in a large-scale

system, we may choose β(t) that minimizes the projection of the ellipsoid

onto a direction that is composed of only those states via (3.6). In order to

use this method of selecting β(t), however, the system must be controllable

[21], which is the ability of an external input to move the internal state of a

system from any initial state to any other final state in a finite time interval.

For linear time-invariant (LTI) systems of the form,

ẋ = Ax+Bu,

the controllability matrix is C = [B AB A2B · · · AnB], where n is the

dimension of x, the state vector. The LTI system is controllable if and only

if rank(C) = n.

The small-signal models obtained for dynamic power systems as described

in (2.21) are not, in general, controllable. Thus, though we may be only

interested in the frequency performance of certain synchronous machines, we

cannot rely on (3.6) to give optimal ellipsoids based on projections.

3.2.1 Choice of β(t) for Uncontrollable Systems

More insight into the effect of β(t) may be obtained by rewriting (3.3) into

the form

d
dt
Ψβ(t) = Ã(t)Ψβ(t) + Ψβ(t)Ã

′(t) +B(t)Q̃(t)B′(t), (3.7)

Ã(t) = A(t) +
[
β(t)
2

]

I, (3.8)

Q̃(t) =
[

1
β(t)

]

Q(t). (3.9)
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This shows that large β(t) tends to make the system that governs Ψβ(t) more

unstable, while small β(t) tends to amplify the effect of input bound Q(t).

In the subsequent development, we consider the stable time-invariant sys-

tem ẋ = Ax+Bu, where a steady-state reach set can be obtained. Also, we

consider β(t) = β0 to be a constant. Then (3.7) becomes

dΨβ0

dt
= ÃΨβ0

+Ψβ0
Ã′ + β0Ψβ0

+BQ̃B′, (3.10)

Ã = A+
[
β0

2

]
I, (3.11)

Q̃ =
[

1
β0

]

Q. (3.12)

For obvious reasons, we prefer tighter approximations to the reach set. In

that sense, we may choose β0 to be large, so as to reduce the effect of the

input uncertainty. On the other hand, we would also like to obtain ellipsoids

that do not explode with increasing time. Therefore, β0 can be chosen to

minimize the effect of the input bound while maintaining the stability of

(3.7) so that a steady-state Ψss is reached as t → ∞. This is the basis of the

process by which we choose β0.

We make use of the Kronecker product in subsequent developments.

Definition 1 (Kronecker product [23]). The Kronecker product of A =

[aij ] ∈ Mm,n(F) and B = [bij ] ∈ Mp,q(F), where F is an arbitrary field, is

denoted by A⊗ B and is defined to be the block matrix

A⊗ B =









a11B a12B . . . a1nB

a21B a22B . . . a2nB
...

...
. . .

...

am1B am2B . . . amnB









∈ Mmp,nq(F).

⊳

In order to apply the Kronecker product on (3.10), we make use of the

following definition:

Definition 2 (Vec(·)). With each matrix A = [aij ] ∈ Mm,n(F), we associate

the vector Vec(A) ∈ Fmn defined by

VecA ≡ [a11, . . . , am1, a12, . . . , am2, . . . , a1n, . . . , amn]
′ (3.13)

⊳
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We can then rewrite (3.10) as follows using Kronecker products:

d

dt
Vec (Ψβ0

) =
(

I ⊗ Ã+ Ã⊗ I
)

Vec (Ψβ0
) + Vec

(

BQ̃B′
)

. (3.14)

The stability of (3.14) depends on the eigenvalues of Ā = I ⊗ Ã + Ã ⊗ I.

As mentioned earlier, we would like to choose β0 as large as possible, so as

to minimize the effect of the input bound Q, without violating the stability

of the system. To determine the eigenvalues of Ā, we use the result in the

following theorem.

Theorem 1. [23] Let A ∈ Mn and B ∈ Mm be given. If λ ∈ σ1 (A) and

x ∈ Cn is a corresponding eigenvector of A, and if µ ∈ σ(B) and y ∈ Cm is a

corresponding eigenvector of B, then λ+µ is an eigenvalue of the Kronecker

sum (Im ⊗A) + (B ⊗ In) and (y ⊗ x) ∈ Cnm is a corresponding eigenvector.

Note that Im ⊗ A commutes with B ⊗ In, i.e., (Im ⊗ A)(B ⊗ In) = (B ⊗

In)(Im ⊗ A). So, if σ(A) = {λ1, . . . , λn} and σ(B) = {µ1, . . . , µm}, then

σ((Im ⊗ A) + (B ⊗ In)) = {λi + µj : i = 1, . . . , n, j = 1, . . . , m}.

Let σ(Ã) = {λ̃1, . . . , λ̃n}, and applying the above theorem, we obtain

σ(Ā) = σ(I ⊗ Ã+ Ã⊗ I)

= {λ̃i + λ̃j : i = 1, . . . , n, j = 1, . . . , n}.

From here, it suffices to find the eigenvalue of Ā that has the largest real

part and ensure that it is negative. In other words,

max
i,j

{

Re
(

λ̃i + λ̃j

)}

= max
i,j

{

Re
(

λ̃i

)

+ Re
(

λ̃j

)}

< 0. (3.15)

Finally, we relate the eigenvalues of Ã to those of A through the relation-

ship Ã = A+
[
β0

2

]
I. It can be easily seen that A and β0

2
I are commutative.

Therefore, there exists a unitary matrix U ∈ Mn such that U∗AU = △A

is upper triangular, where the eigenvalues of A lie along the diagonal, and

1σ(A) denotes the eigenvalues of A.
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U∗
(
β0

2
I
)
U = β0

2
I. Also, UU∗ = I. Thus

Ã = A+
β0

2
I

= U△AU
∗ + U

(
β0

2
I

)

U∗

= U

(

△A +
β0

2
I

)

U∗,

and

σ(Ã) =
{

λ̃1, . . . , λ̃n

}

=

{

λ1 +
β0

2
, . . . , λn +

β0

2

}

,

where σ(A) = {λ1, . . . , λn}. Substituting back into (3.15), we obtain

max
i,j

{

Re

(

λi +
β0

2

)

+ Re

(

λj +
β0

2

)}

=max
i,j

{Re [λi] + Re [λj] + β0}

=max
i

{Re [λi]}+max
j

{Re [λj]}+ β0 < 0,

where β0 ∈ R. Let

λmax = max
i

Re [λi] = max
j

Re [λj ] ,

then the condition to ensure stable Ā is

λmax + λmax + β0 < 0,

or simply,

β0 < −2λmax, (3.16)

where λmax is the eigenvalue of A with the largest real part. This method of

selecting β is depicted in Fig. 3.2.

Alternatively, we can arrive at the same result by solving (3.7) directly
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Figure 3.2: The eigenvalues of A, denoted by λ, are all in the open left half
complex plane. The maximum value that β0 can take and still maintain the
stability of Ψβ0

(t), denoted by βmax, is shown.

with initial condition Ψβ(t0) [17]. Define

d

dt
θ1(t, t0) = Ã(t)θ1(t, t0),

d

dt
θ2(t, t0) = θ2(t, t0)Ã

′(t),

θ1(t, t) = I,

θ2(t, t) = I.

Then

Ψβ(t) = θ1(t, t0)

{

Ψβ(t0) +

∫ t

t0

θ−1
1 (τ, t0)B(τ)Q̃(τ)B′(τ)θ−1

2 (τ, t0)dτ

}

θ2(t, t0),

where θ1(t, t0) = exp
[

Ã(t)(t− t0)
]

and θ2(t, t0) = exp
[

Ã′(t)(t− t0)
]

. Thus,

stability is achieved if the real parts of the eigenvalues of Ã(t) lie in the left

half plane, which is the same result as (3.16).

The value suggested in (3.16) provides a guideline for the choice of β. We

have found it useful to choose β around this stability margin so as to reduce

the effect of the input bound Q (which leads to tighter bounding ellipsoid

approximations) but also ensure Ψβ(t) does not grow quickly during the time
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period in which we are interested. For example, we may be interested in only

the reach set of the system for t < T .

3.2.2 Choice of β(t) for Well-defined Results

Since Ψβ(t) is a matrix that defines the shape and size of an ellipsoid, we

require Ψβ(t) to be a positive definite symmetric matrix. In other words, all

eigenvalues of Ψβ(t) must be positive. Though past literature has suggested

that all nonnegative values of β(t) produce bounding ellipsoids [17], we have

seen experimentally that Ψβ(t) for some nonnegative values of β(t) do not

produce valid ellipsoid shape matrices in large power system test cases. This

may be due to the ill-conditioning of the A matrix and subsequent numerical

errors that may ensue.

Hence, we place an additional constraint on β(t) that it must lead to

positive definite symmetric Ψβ(t).

3.3 Dynamic Performance Requirements

Dynamic performance requirements generally consist of constraints in the

form of interval ranges on variables of interest such as voltage at certain buses

and machine frequency deviations. For example, in the Western Electricity

Coordinating Council (WECC) system, the acceptable frequency range re-

quirement is between 59.4 Hz and 60.6 Hz [24]. These requirements constrain

the excursion of state vector x around x0 to some region of the state space

Φ defined by the symmetric polytope

Φ = {x : |π′
i(x− x0)| ≤ 1 ∀i = 1, 2, . . . , p}.

The computation of the reach set allows us to determine whether the system

violates performance requirements that impose maximum deviations of cer-

tain system variables. In fact, verifying that the system meets all dynamic

performance requirements for any w(t) ∈ W is equivalent to checking that

∆R ⊆ Φ.

Example 7 (SMIB). We note that the reach set of the linearized system

for 10% input fluctuation is contained within the region defined by the two
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horizontal dashed traces in Fig. 3.1(b), which corresponds to the acceptable

frequency range of the WECC system. In contrast, neither the linearized

system reach set nor the nonlinear system trajectory are contained within

the acceptable frequency range for 20% input fluctuation, as shown in Fig-

ure 3.3. In fact, the linearized system reach set is contained within the con-

straints only for input uncertainties of less than 10%. Therefore, the input

uncertainty must be less than 10% to conform to the frequency constraint

requirement.
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Figure 3.3: Single-machine infinite-bus large-signal worst-case trajectory
and linearized model reach set for 20% input uncertainty.

⊳

3.4 Note on Small-Signal Approximation

Since the system in (2.21) is a small-signal approximation, even if ∆R is

the exact reach set of this system, ∆R is still just an approximation of the

reach set R for the system (2.14). Thus, in most practical cases, sufficiently

accurate results are obtained with the computation of a few ellipsoids of the

family in (3.2).

Example 8 (SMIB). By inspection of Fig. 3.1(b), the trajectory result-

ing from the nonlinear system is fully contained within the reach set of the

linearized system. Thus, for an input uncertainty of 10%, the reach set of

the linearized system is sufficient to estimate that of the nonlinear system
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in (2.16). In contrast, the linearized system reach set does not contain the

nonlinear system trajectory for worst-case input if the input uncertainty is

20% as depicted in Fig. 3.3. In fact, the trajectory for the worst-case input

is contained in the linearized system reach set for input fluctuations of less

than 15%.

⊳
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CHAPTER 4

APPLICATION OF REACHABILITY
ANALYSIS TO POWER SYSTEMS

In this chapter, we apply the general reachability notions described in Chap-

ters 2 and 3 to the analysis of power system dynamics.

4.1 Renewable-Based Power Injection

In the most general case, we assume the power injected into the system from

renewable-based generation can be modelled as the output of a dynamic or

a static system, as depicted in Fig. 4.1. In other words, the process that

governs the evolution of a particular resource can be described by differential

equations or algebraic equations or a combination thereof. We will elaborate

with examples later.

In any given system bus, a power injection can represent a model of a

single renewable resource (e.g., a wind farm), or it could represent an aggre-

gated model of several resources (e.g., several wind farms) within the same

geographical area.

Renewable
Resource
Model

inputs, wi(t) Pi(t)

Figure 4.1: Model of general process that governs renewable resource i.

This power injection depends on weather conditions; for example, wind

power injection depends on wind speed and photovoltaic power injection

depends on irradiation and temperature. Assume the system has r renewable

resources or aggregation thereof. For a time horizon t0 ≤ t ≤ T , let wi(t)

be the uncertain input for the ith resource at time t. Interpretations for

wi(t) include time-evolved wind speed data, solar irradiation, and even power

injection into the grid itself. In our model, wi(t) ∈ Rli, where li is the number

27



of uncertain inputs to the process that governs resource i. Thus, to link with

ideas presented in Chapter 2,
∑r

i=1 li = l and w(t) ∈ Rl.

The ithrenewable resource can then be modelled by

ξ̇i = Fiξi +Giwi +Hi,

Pi = Siξi + Ti, (4.1)

where Pi(t) represents the power injected by resource i at time t ∈ [t0, T ]. We

illustrate this concept with two examples motivated from the work in [15].

Example 9 (First-Order Wind Turbine or Aggregate Wind Farm Model).

The wind speed at wind resource i is represented by wi, and wi ∈ R. A

first-order model for wind farm power output was developed as

ξ̇i = βi,1ξi + βi,2wi + βi,3,

Pi = ξi,

where ξi ∈ R. The above is a particular realization of the system described

by (4.1). ⊳

Example 10 (Third-Order Wind Turbine or Aggregate Wind Farm Model).

Similarly, a third-order model for wind farm output was derived in [15] as

follows:

ξ̇i = βi,1ξi + βi,2wi + βi,3,

Pi = βi,4ξi + βi,5,

where ξi ∈ R3. Again, this is a realization of (4.1). ⊳

4.1.1 Simplification: Fast Dynamics in Renewable Resources

We may make the additional assumption that the dynamics of the renewable

resources are much faster than those of conventional generators. As demon-

strated in [15], this assumption is valid since the controls in the output power

electronics are much faster than machine dynamics. In fact, this is exactly

the behaviour of solar generation. In this case, we utilize the standard sin-
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gular perturbation model and revise (4.1) as follows:

ǫξ̇i = F̃iξi + G̃iwi + H̃i, (4.2)

Pi = Siξi + Ti, (4.3)

where F̃i = ǫFi, G̃i = ǫGi, and H̃i = ǫHi, and ǫ << 1. The revised differential

equation degenerates into an algebraic equation as we consider very small ǫ.

Then we can rewrite (4.2) as 0 = F̃iξi + G̃iwi + H̃i. Solving for ξi, we obtain

ξi = −F̃−1
i (G̃iwi + H̃i). Accordingly, (4.3) becomes Pi = −SiF̃

−1
i (G̃iwi +

H̃i) + Ti.

4.2 Unknown-but-Bounded Model

Let wi,m(t) > 0 be the forecast values of the inputs for the ith renewable

resource at time t ∈ [t0, T ]. We assume the actual wi(t) lies in some confi-

dence band around the predicted nominal w∗
i (t) value. Then each entry of

the uncertain input wi(t), denoted by wj
i (t), can be described by

wi,j(t) ∈ Wi,j(t) =
{
|wi,j(t)− w∗

i,j(t)| ≤ ki,j(t)w
∗
i,j(t), j ∈ [1, li]

}
, (4.4)

with i = 1, 2, . . . , r, and where ki,j(t) ≥ 0 depends on the forecast error of

wi,j(t) at time t ∈ [t0, T ].

4.2.1 Simplification: Fast Dynamics in Renewable Resources

Let Pi(t) be the power injected in node i generated from renewable resources

at time t ∈ [t0, T ]. Let P ∗
i (t) > 0 be the forecast values of renewable power

injection into node i at time t ∈ [t0, T ]. Then, with the assumptions outlined

in 4.1.1, Pi(t) can be described by

Pi(t) ∈ Pi(t) = {|Pi(t)− P ∗
i (t)| ≤ ki(t)P

∗
i (t)},

with i = 1, 2, . . . , r, and where ki(t) ≥ 0 depends on the forecast error of the

renewable at time t ∈ [t0, T ]. This model is illustrated pictorially in Fig. 4.2.

While many realizations are possible for t ∈ [t0, T ], all are bounded within

the forecast error delineated by the dotted traces.
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Error bounds Realization #1 Realization #2 Realization #N

Figure 4.2: Renewable-based power injection model for power injection at
node i.

4.3 Linearized Power System Model

Let ∆wi(t) = wi(t) − w∗
i (t) be the variation of the inputs to the renewable

resource process around the forecast value w∗
i (t). Then, similar to (4.4),

∆wi,j(t) ∈ ∆Wi,j(t) =
{
|∆wi,j(t)| ≤ ki,j(t)w

∗
i,j(t), j ∈ [1, li]

}
.

Let ∆w(t) = [∆w1(t),∆w2(t), . . . ,∆wr(t)] be the vector of uncertain power

injections from renewable resources. Then, ∆w(t) ∈ ∆W(t), where

∆W(t) = ∆W1(t)×∆W2(t)× · · · ×∆W(t), (4.5)

is the set of inputs to renewable-based processes.

Then the linearized power system model can be described by augmenting

the small-signal power system synchronous machine states ∆x with renewable

resources states ∆ξi as follows:

∆ẋ = A∆x+B∆u,

∆ξ̇1 = F1∆ξ1 +G1∆w1,

...

∆ξ̇i = Fi∆ξi +Gi∆wi,

...

∆ξ̇r = Fr∆ξr +Gr∆wr,
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Let ∆ξ = [∆ξ1 · · ·∆ξi · · ·∆ξr]
′,

F =












F1 0 · · · · · · 0

0
. . .

. . .
...

...
. . . Fi

. . .
...

...
. . .

. . . 0

0 · · · · · · 0 Fr












,

and

G =












G1 0 · · · · · · 0

0
. . .

. . .
...

...
. . . Gi

. . .
...

...
. . .

. . . 0

0 · · · · · · 0 Gr












.

We can rewrite the augmented model in matrix form as

[

∆ẋ

∆ξ̇

]

=

[

A 0

0 F

][

∆x

∆ξ

]

+

[

B 0

0 G

][

∆u

∆w

]

,

∆x(t0) = x0, ∆ξ(t0) = ξ0,

∆w(t) ∈ ∆W(t). (4.6)

4.3.1 Simplification: Fast Dynamics in Renewable Resources

Here, we make the same simplifying assumptions as in Section 4.1.1. Let

∆Pi(t) = Pi(t) − P ∗
i (t) be the variation of renewable-based power injection

around the forecast value Pi,m(t). Then

∆Pi(t) ∈ ∆Pi(t) = {|∆Pi(t)| ≤ ki(t)P
∗
i (t)}. (4.7)

Let ∆P (t) = [∆P1(t),∆P2(t), . . . ,∆Pr(t)] be the vector of uncertain power

injections from renewable resources. Then, ∆P (t) ∈ ∆P(t), where

∆P(t) = ∆P1(t)×∆P2(t)× · · · ×∆Pr(t) (4.8)

is the set of renewable-based power injections. This is illustrated in Fig. 4.3

for the case of power injection at nodes i and j. Then, assuming the power
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injection model of (4.7) and (4.8), the linearized power system model can be

described by

d∆x
dt

= A∆x+B∆P,

∆x(t0) = 0, ∆P (t) ∈ ∆P(t). (4.9)

Figure 4.3: Renewable-based power injection model for power injection at
nodes i and j.

4.4 Comparison Between Two Renewable-Based Power

Injection Models

In this chapter, we discussed two methods with which we model renewable

power injections. The first models a renewable resource as a dynamic system,

where the input to that system is unknown-but-bounded. On the other

hand, the second models a renewable resource as a static system, where the

power injected into the power system is unknown-but-bounded. In Chapter

6, we make use of both models on large-scale power systems and discuss the

ramifications of these models with respect to specific test cases. Here, we

provide some intuition on the difference between the two models and draw

some connections to physical systems.

In the simplified model, where we bound the renewable power injection

directly, the intuition is quite straightforward. This power injection is viewed

as a negative load; all dynamics of the renewable generation system are

neglected. We assume the power injection varies freely between the lower

and upper bounds. For example, the power injected can make quite sudden
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step changes or can be quite slowly ramping, as long as it is within the

assumed bounds. We consider only the dynamics of the power system.

For the case in which we model the renewable resource as a dynamic sys-

tem, as in (4.1), by bounding the system input, we are effectively bounding

the rate at which the states change. For example, consider the first-order

wind turbine model in Example 9, wi ∈ Wi and ξi(0) = Pi(0) ∈ Pi(0); then

ξ̇i = Ṗi is bounded. This can be seen by following a similar argument as

in Appendix A if we assume Wi and Pi(0) are indeed ellipsoids. Thus, this

model assumes a bound not only on the renewable system input but also on

the ramp rate of its states.

4.5 Reach Set Computation

By definition, ∆W(t) is an l-dimensional symmetrical polytope centered

around zero. Thus, the ellipsoidal techniques presented in Section 3.1 cannot

be directly used to compute the reach set of (4.6). As discussed before, we

can circumvent this problem by bounding the polytope ∆W(t) by an ellip-

soid that is the minimum volume ellipsoid containing the set of all possible

realizations of the inputs ∆w(t). Then ellipsoidal techniques can be used to

compute an upper-bound on the reach set of (4.6). If a more accurate reach

set is required, ∆W(t) can be represented as the intersection of a family of

ellipsoids, each of which is tight to ∆W(t) in a specific direction.

An analogous technique can be applied to ∆P(t) to compute an upper-

bound on the reach set of (4.9).

4.6 Reach Set Visualization

In general, the reach set calculated above is a multi-dimensional ellipsoid and

is therefore difficult to visualize. Fortunately, we are usually only concerned

with a few variables, such as the electrical speed or angle of a synchronous

machine. Thus, we can project the multi-dimensional ellipsoidal reach set

onto the space that is composed of the two variables in which we are inter-

ested. The reader can refer to Appendix B for more details. This is the

technique we utilize to visualize reach sets later in Chapter 6.
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CHAPTER 5

THREE-BUS SYSTEM WITH
CONVENTIONAL AND

RENEWABLE-BASED POWER
GENERATION

The development described in Chapters 2–4 are applied to a a simple three-

bus system as depicted in Fig. 5.1. In this system, a synchronous machine

is connected to bus 1. As in the SMIB example, a classical model is used

to describe the machine dynamics, but this model is augmented with an

additional equation to describe the governor model so that the mechanical

torque Tm becomes a third state variable and the valve position Pc becomes

an external reference. Renewable-based power is injected at bus 2 and the

load at bus 3 is served by both conventional and renewable generation.

1 3 2

Figure 5.1: Three-bus system with renewable-based power injection.

The synchronous machine model connected to bus 1 is given by ẋ =

g(x, y, u;λ) in the notation of (2.1) or

d

dt






δ

ω

Tm




 =






0 1 0

0 − D
M

1
M

0 − 1
TSV RDωs

− 1
TSV











δ

ω

Tm




+






0

− EV1

MXm
sin(δ − θ1)

0






+






−1
D
M
1

ωsTSV RD




ωs +






0

0
1

TSV




Pc. (5.1)
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The renewable-based power generation injection model at bus 2 is given by

Pw(t) ∈ Pw = {Pw : |Pw − Pm| ≤ kwPm},

Qw(t) = Qw, (5.2)

where we assume the forecasted power injection P ∗(t) = Pm into bus 2,

forecast error kw, and deterministic input Qw are constants. We now turn our

attention to the algebraic power balance equation 0 = h(x, y, w;λ) in (2.2).

The power balance equations for bus 2 are given by

h1 = Pw = Y23V2V3 sin(θ2 − θ3), (5.3)

h2 = Qw = Y23V
2
2 − Y23V2V3 cos(θ2 − θ3). (5.4)

The power balance equations for bus 1 are given by

h3 =Y13V1V3 sin(θ1 − θ3)

− YmEV1 sin(δ − θ1) = 0, (5.5)

h4 =(Y13 + Ym)V
2
1 − Y13V1V3 cos(θ1 − θ3)

+ YmV
2
1 − YmEV1 cos(δ − θ1) = 0. (5.6)

The power balance equations for bus 3 are given by

h5 =Y13V1V3 sin(θ3 − θ1)

+ Y23V2V3 sin(θ3 − θ2) + P3 = 0, (5.7)

h6 =(Y13 + Y23)V
2
3 − Y13V1V3 cos(θ3 − θ1)

− Y23V2V3 cos(θ3 − θ2) +Q3 = 0. (5.8)

5.1 Small-Signal Model

Define θ′1 := θ1 − δ, θ′2 := θ2 − δ, θ′3 := θ3 − δ, θ′13 := θ′1 − θ′3, θ
′
23 := θ′2 − θ′3.

Then, the small-signal model that results from linearizing (5.1) – (5.8) is

given by

d

dt

[

∆ω

∆Tm

]

= Am

[

∆ω

∆Tm

]

+Bm

[

∆V1

∆θ′1

]

, (5.9)
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where

Am =

[

− D
M

1
M

− 1
TSV RDωs

− 1
TSV

]

,

Bm =

[
E

MXm
sin θ′1o

EV1o

MXm
cos θ′1o

0 0

]

, (5.10)

and














∆Pw

∆Qw

0

0

0

0














=

[

0 C12

C21 C22

]














∆V1

∆θ′1

∆V2

∆V3

∆θ′13

∆θ′23














, (5.11)

where

C12 =
[
∂ha

∂x2

]

, C21 =
[
∂hb

∂x1

]

, C22 =
[
∂hb

∂x2

]

, (5.12)

and ha = [ h1 h2 ]′, hb = [ h3 h4 h5 h6 ]′, x1 = [ V1 θ′1 ]′,

x2 = [ V2 V3 θ′13 θ′23 ]′, and where ∆Pw is given by

∆Pw ∈ ∆Pw = {∆Pw : |∆Pw| ≤ kwPm},

∆Qw = 0. (5.13)

Then, following the notation of (2.21), the small-signal model can be rewrit-

ten as

d

dt

[

∆ω

∆Tm

]

= A

[

∆ω

∆Tm

]

+B

[

∆Pw

∆Qw

]

, (5.14)

where A = Am, and B = −Bm(C12C
−1
22 C21)

−1.
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Table 5.1: Three-Bus System Model Parameter Values

P3 Q3 Pm Qw X13 X23 Xm M D [s/rad] Tm ωs [rad/s] kw TSV RD

1 0.5 0.4 0 0.1 0.15 0.2 1

15π
0.04 1 120π 0.3 0.2 0.05

5.2 Reachability Numerical Analysis

Reachability analysis of system (5.14) was conducted using the parameter

values in Table 5.1. A steady-state power flow study was conducted to obtain

all the equilibrium voltage magnitudes and angles needed in the linearized

model, which yielded the following results: E1o = 1.13 p.u., V1o = 1 p.u.,

V2o = 0.94 p.u., V3o = 0.94 p.u., θ′1o = −6.12◦, θ′13o = 3.65◦, θ′23o = 3.89◦. A

few ellipsoids of the ellipsoidal family generated via (3.3) centered around the

equilibrium point of the linearized system are plotted in Fig. 5.2. The true

reach set for the linearized system (5.14) is the intersection of the family of

ellipsoids. Here, the reach set is the result of 30% variation in Pw around the

nominal value. By visual inspection, we note that the reach set is entirely

contained within the region defined by the solid vertical traces, which, as

before, represent the acceptable frequency range of the WECC system.
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Figure 5.2: Three-bus system reachability analysis results
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CHAPTER 6

CASE STUDIES

In this chapter, we apply the methodology described in Chapters 2–4 to sev-

eral benchmark cases: the Western Electric Coordinating Council (WECC)

system, the New England system, and the Northeast Power Coordinating

Council (NPCC) system. To that end, we modified the MATLAB-based

Power Systems Toolbox (PST) small-signal stability analysis capability to

our needs. PST is capable of performing linearization around a steady-state

operating point to produce a linear system of the form of ∆ẋ = A∆x+B∆u.

Additionally, we developed custom-made MATLAB-based code that imple-

ments ellipsoidal-based reach set calculations. We mimic the integration of

renewable resources by displacing certain synchronous generators in the sys-

tem with alternative generation. Then the modified system is subject to

uncertain wind speed or real power input and over-approximations to the

linearized system reach set are obtained. The reader is referred to Appendix

C for more implementation details.

6.1 WECC 3-Machine Test Case

We apply reachability analysis to a simplified WECC system model, which

consists of three generators and nine buses. To mimic the effect of power

injection from renewable resources, we replace the generator at bus 3 with

a negative load as depicted in Fig. 6.1(a). Each synchronous machine is

modelled with the two-axis machine (4 states each) with exciters (3 states

each), more details of which can be found in [16]. Hence, the state variables

for each machine are

∆xi =
[
∆δi ∆ωi ∆E ′

qi
∆E ′

di
∆VRi

∆Efdi ∆Rfi

]′
, (6.1)
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where i = 1, 2, 3, and the last three states are related to the exciter. Hence

there are 21 dynamic states in the system prior to modification.

Referring to Fig. 6.1(a), Qw represents the reactive power injection at bus 3

and is a constant deterministic input. We also assume the nominal realization

of the uncertain input Pw(t), the real power injection at bus 3, is constant in

the time horizon of interest so that P ∗
w(t) = Pm > 0. Then Pw(t) is bounded

within some neighbourhood of Pm, more specifically,

Pw(t) ∈ P(t) = {Pw : |Pw − Pm| ≤ k},

where we assume k > 0 is a constant. Let ∆Pw(t) = Pw(t)− Pm. Then

∆Pw(t) ∈ ∆P(t) = {∆Pw : |∆Pw| ≤ k}.

Since Pw(t) is one-dimensional, ∆P(t) is, in fact, an ellipsoid.

PST’s small-signal analysis tool is used to linearize the system in Fig. 6.1(a)

around its operating point, as dictated by the AC power flow, to obtain a

system of the form ∆ẋ = A∆x+B∆Pw, where ∆x(0) = 0. Also, we choose

k = 0.1 so that |∆Pw(t)| ≤ 0.1 for t ∈ [0, T ].

2 7 8 9 3

5 6

4

1

(a) Simplified WECC system with
renewable-based power injection.
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(b) Reach set of ∆ω-∆δ for the generator at bus
2 with ±0.1 p.u. input ∆Pw uncertainty.

Figure 6.1: Simplified WECC linearized model with uncertainty in Pw.

Several ellipsoids are generated using (3.3) for various values of β > 0.

The results are depicted in Fig. 6.1(b) with the dashed trace for T = 200

s. In the same figure, the true reach set for the linearized system is upper

bounded by the intersection of the solid traces. We deduce that the angular

position of generator 2 does not deviate more than approximately 0.5 rad

from its nominal value, while the angular speed of the same generator does

not deviate more than approximately 0.02 rad/s from its nominal value.
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Table 6.1: Machines Replaced with Renewable Resources in New England
System Test Cases

Uncertainty Model 20% renewable 30% renewable
Case A Case B Case A Case B

Negative Machines Machines Machines Machines
load 2, 4 6, 8 9, 10 3, 6, 7

1st-order wind Machines Machines Machines Machines
farm model 2, 4 6, 8 9, 10 3, 6, 7

6.2 New England 10-Machine Test Case

The New England test case contains 39 buses and 10 synchronous machines.

Each machine is modelled with the two-axis machine (4 states each); all but

the tenth machine are modelled with exciters (3 states each). Hence, the

state variables for each machine (except the tenth) are as in (6.1). The state

variables for the 10th machine are

∆xi =
[
∆δi ∆ωi ∆E ′

qi
∆E ′

di

]′
, (6.2)

where i = 10. Thus, prior to modifications, this system has 67 dynamic

states.

According to the system data found in PST, this test system has a generat-

ing capacity of 61.9293 p.u. We perform our reachability studies by replacing

certain synchronous generators with alternative resources to achieve 20% and

30% renewable penetration. This ensures the system reaches the same power

flow solution as before the replacement. The test cases are described in Table

6.1, where each entry denotes the synchronous machines that are replaced

by renewable resources.

In the reach set plots that appear in Figs. 6.2-6.8, we present several ellip-

soids obtained from choosing different values of β, as described in Chapter 3

at t = T = 60 s. Each ellipsoid bounds the exact reach set of the linearized

system. The intersection of the ellipsoids provides a tighter bound on that set

and gives an approximation to the reach set of the nonlinear power system.

To visualize the reach set, we choose two variables of interest and project the

ellipsoidal reach sets onto the subspace that contains those two variables, as

described in Chapter 4.

We consider two uncertainty models as described in Chapter 4. In the

first model, the unknown-but-bounded uncertainty is associated with the
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power injected into the grid from renewable resources. Again, we assume the

nominal power injected is a constant for the time period of interest. Then,

∆P ∈ ∆P, where ∆P = [∆P1 ∆P2 · · · ∆Pr], and r is the number of

renewable resources in the system. While the shape of ∆P(t) is arbitrary,

we define ellipsoid ∆ΩP such that ∆P(t) ⊆ ∆ΩP for all t ∈ [t0, T ], where

∆ΩP = {∆P : ∆P ′Q−1
P ∆P ≤ 1}.

For the second model, we assume the alternative resources are identical

first-order wind farms, as in Example 9, with β1 = −0.1761, β2 = 0.0134,

and β3 = −0.0979. Then, for the ith wind farm,

∆Ṗi = −0.1761∆Pi + 0.0134∆wi, (6.3)

where ∆wi is the variation of the wind speed at wind farm site i around

some nominal value, assumed to be constant. Then, ∆w ∈ ∆W, where

∆w = [∆w1 ∆w2 · · · ∆wr] and r is the number of renewable resources

in the system. Similarly to the unknown-but-bounded power model, we define

an ellipsoid ∆Ωw such that ∆W(t) ⊆ ∆Ωw for all t ∈ [t0, T ], where

∆Ωw = {∆w : ∆w′Q−1
w ∆w ≤ 1}.

6.2.1 20% Renewable Penetration

In this section, we investigate the reachability of the linearized New England

system with 20% renewable penetration. We mimic the desired level of pen-

etration by replacing machines 2 and 4 in case A and machines 6 and 8 in

case B with renewable resources.

A: Machines 2 and 4

We consider the case where machines 2 and 4 are replaced with renewable

resources. These two synchronous machines account for 19.5% of the total

generation in the New England test case. Reachability results are shown in

Figs. 6.2 and 6.3.

In Fig. 6.2(a), we assume the renewable power injections are known within
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±0.2 p.u. of their nominal values, i.e., the values at which the system was

linearized. On the other hand, we assume the first-order wind farm model in

Fig. 6.2(b), where the wind speeds at the two sites are known within ±0.2m/s

of their nominal value. As expected, the reach set for the case of unknown-

but-bounded wind speeds is much smaller. As mentioned previously, the

unknown-but-bounded wind speeds, in effect, bound the ramp rates of the

power injection. Therefore, the conditions that led to the result depicted in

Fig. 6.2(a) represent more stringent constraints on the input.
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(a) Unknown-but-bounded ∆P2 and ∆P4.
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(b) Unknown-but-bounded ∆w2 and ∆w4.

Figure 6.2: Reachability results for machine 5 in the New England test case
with replacement of machines 2 and 4, 20% renewable penetration, and
±0.2 input uncertainty.

Similar results are obtained when we consider the angle and frequency

of machine 3, whose reach sets are depicted in Fig. 6.3. We see that with

the additional approximate wind farm dynamics, the deviation ∆ω3 from

its nominal value is about an order of magnitude smaller than that obtained

from bounding the magnitudes of power injections only. In fact, the frequency

deviations, depicted in Figs. 6.2(a) and 6.3(a), would exceed the maximum

allowable frequency deviation for theWECC system. Thus, in the subsequent

New England test cases, we opt to present the results obtained from the more

detailed model containing wind farm dynamics.

We can visualize the resulting reach set by projecting the multi-dimensional

ellipsoid onto the speeds of two synchronous machines, as depicted in Fig. 6.4.

We deduce that while the frequencies of each machine can vary individually

between −0.1 rad/s and 0.1 rad/s around the nominal value, their variations

are correlated. For example, it is not possible to have one machine deviate

its nominal value by 0.1 rad/s, while the other deviates by −0.1 rad/s. This

technique would be advantageous to establish the existence and degree of

correlation between certain variables.
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Figure 6.3: Reachability results for machine 3 in the New England test case
with replacement of machines 2 and 4, 20% renewable penetration, and
±0.2 input uncertainty.
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Figure 6.4: Reachability results for machine frequency in the New England
test case with replacement of machines 2 and 4, 20% renewable penetration,
and ±0.1 m/s wind speed uncertainty.

B: Machines 6 and 8

The combined generation of machines 6 and 8 accounts for 19.4% of the

system’s total generation. Here, we illustrate the effect of the degree of

input variability on the reach set as depicted in Fig. 6.5. We conduct the

simulation with the first-order wind farm model with varying input wind

speed uncertainty at the two locations. For example, for the case depicted

in Fig. 6.5(b),

∆w ∈ ∆Ω∆w =






∆w : ∆w′

[

0.09 0

0 0.09

]−1

∆w ≤ 1






,
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where ∆w ∈ R
2, so that the input wind speeds at both wind farm sites are

known within ±0.3 m/s of the nominal forecasted values.
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(a) ±0.1 m/s input uncertainty.
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(d) ±2 m/s input uncertainty.

Figure 6.5: Reachability results for machine 5 in the New England test case
with replacement of machines 6 and 8, 20% renewable penetration,
first-order wind farm models for the renewable resources, and
unknown-but-bounded model for wind speeds.

Again, each ellipsoid shown is the projection of a bounding ellipsoid to the

exact reach set, and their intersection represents a tighter bound. We see

the approximate reach set composed of the speed and angle of synchronous

machine 5 grows with increased input uncertainty, as expected. The dashed

lines in Figs. 6.5(c) and 6.5(d) denote the frequency constraints in the WECC

system. As illustrated, the frequency constraint is not violated even for wind

speed input uncertainty of ±2 m/s.

The ellipsoids bounding the reach set are projected onto the subspace

that is composed of ω7 and ω2 as shown in Fig. 6.6. Similar conclusions

can be drawn for the correlation between ω7 and ω2 as for ω5 and ω3 in the

previous test case. The dashed lines in Fig. 6.6 indicate the WECC frequency

constraint requirement. With ±2 m/s input variability, machines 2 and 7 are

much closer to violating that constraint simultaneously than machines 3 and

5 in the previous test case with ±0.1 m/s input uncertainty.
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Figure 6.6: Reachability results for machine frequency in the New England
test case with replacement of machines 6 and 8, 20% renewable penetration,
and ±2 m/s wind speed uncertainty.

6.2.2 30% Renewable Penetration

In this section, we investigate the reachability of the linearized New England

system with 30% renewable penetration. We mimic the desired level of pen-

etration by replacing machines 9 and 10 in case A and machines 3, 6 and

8 in case B with renewable resources. We present results of only the case

where the dynamics of the wind farm have been included with the first-order

approximation and the unknown-but-bounded inputs are the wind speeds at

respective sites.

A: Machines 9 and 10

The combined generation of machines 9 and 10 accounts for 29.5% of the

system’s total generation. Reachability results are shown in Fig. 6.7 for

machine 5. As expected, the deviations of state variables ∆ω5 and ∆δ5 grow

with increasing input uncertainty.

B: Machines 3, 6, 7

The combined generation of machines 6 and 8 accounts for 30.0% of the

system’s total generation. Reachability results are shown in Fig. 6.8 for

machine 5.
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(a) ±0.1 m/s input uncertainty.
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(b) ±0.3 m/s input uncertainty.
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(c) ±1 m/s input uncertainty.
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(d) ±2 m/s input uncertainty.

Figure 6.7: Reachability results for machine 5 in the New England test case
with replacement of machines 9 and 10, 30% renewable penetration,
first-order wind farm models for the renewable resources, and
unknown-but-bounded model for wind speeds.
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(a) ±0.1 m/s input uncertainty.
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(b) ±0.3 m/s input uncertainty.
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(c) ±1 m/s input uncertainty.

−0.04 −0.02 0 0.02 0.04
−5

0

5

∆δ5 [rad]

∆
ω

5
[r

a
d
/
s]

(d) ±2 m/s input uncertainty.

Figure 6.8: Reachability results for machine 5 in the New England test case
with replacement of machines 3, 6, and 7, 30% renewable penetration,
first-order wind farm models for the renewable resources, and
unknown-but-bounded model for wind speeds.
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Cases A and B, for which reachability results are depicted in Figs. 6.7 and 6.8,

respectively, both represent a renewable penetration of about 30%. Thus, we

expect the state variable deviations to be about the same between the two

cases, which we observe by visual inspection of Figs. 6.7 and 6.8. However,

in a later example, we find that the resulting variations in system variables

are vastly different when we compare two machine configurations that give

rise to the same level of renewable penetration.

6.3 NPCC 48-Machine Test Case

The NPCC test case contains 140 buses and 48 synchronous machines. In

PST, the models for these machines are as follows:

• Machines 1-14, 16-22 and 28-30 — two-axis machine model [16] with

exciter and thermal turbine governor (4 + 3 + 3 = 10 states each)

• Machines 31-32, 36 — two-axis machine model (4 states each)

• Machines 15, 23-27, 33-35, 37-48 — classical machine model (2 states

each)

Thus, prior to modifications, this system has 294 dynamic states.

A map with the geographical locations of each generator for the NPCC

system can be found in [25]. The New England test system is a subset of the

NPCC system [26]. For our reachability studies, we have retained the full

machine models with associated exciter and governor models.

According to the system data provided in PST, this benchmark system

has a real power generating capacity of 283.806 p.u. As in the New England

test case, we perform reachability studies with the replacement of certain

synchronous generators with renewable resources to achieve 10% and 20%

renewable penetration.

For the reachability results presented in Figs. 6.9-6.13, several ellipsoids

are obtained from various constant values of β at t = T = 60 s, each of

which bounds the exact reach set. In the NPCC test system, we model the

alternative resources as identical first-order wind farms as in (6.3).
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(b) ±0.6 m/s input uncertainty.
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(c) ±1 m/s input uncertainty.
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Figure 6.9: Reachability results for machine 12 in the NPCC test case with
replacement of machines 3, 5, 6, 8, and 22, 10% renewable penetration,
first-order wind farm models for the renewable resources, and
unknown-but-bounded model for wind speeds.
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(a) Replacement of machines 3, 5, 6, 8, and
22.
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(b) Replacement of machines 31 and 44.

Figure 6.10: Reachability results for machine 12 in the NPCC test case
with 10% renewable penetration, first-order wind farm models for the
renewable resources, and wind speed uncertainty of ±2 m/s.

6.3.1 10% Renewable Penetration

In this section, we demonstrate the reachability results from the linearized

NPCC system with 10% renewable penetration. We mimic the desired level

of renewable generation by replacing

1. Machines 3, 5, 6, 8, and 22, which represent 9.97% of the system’s total

generation, and
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2. Machines 31 and 44, which represent 10.22% of the system’s total gen-

eration.

We show the reachability results for machine angle ∆δ and speed ∆ω of

synchronous machine 12 in Figs. 6.11 and 6.10.

Fig. 6.11, again, illustrates the effect of increasing input uncertainty on the

size of the reach set. The set that bounds all trajectories of the linearized

system grows as the uncertainty in the wind speed forecast grows. The

reachability results from two machine configurations are shown in Fig. 6.10

for wind speed uncertainty of ±2 m/s. By inspection, we observe that even

though the two cases represent approximately the same amount of renewable

penetration, the variations in system variables resulting from resource un-

certainty are much higher in the case where we replace machines 3, 5, 6, 8,

and 22 with alternative resources. From this example, we conclude that the

claim we made in Section 6.2.2 is inaccurate. Variations in system variables

need not be approximately equal with a given level of renewable penetration;

they may depend on machine parameters as well as network configuration

(e.g., connections between synchronous machines, placement of the renewable

resources, etc.).

6.3.2 20% Renewable Penetration

We illustrate the reachability results obtained from the linearized NPCC

system with 20% renewable penetration. The desired level of renewable gen-

eration is mimicked by replacing

1. Machines 33, 44, 45, and 46, which represent 20.6% of the system’s

total generation,

2. Machines 39, 44, 45, and 46, which represent 19.8% of the system’s

total generation, and

3. Machines 26, 31, 33, 37, 38, 42, 43, and 45, which represent 19.0% of

the system’s total generation.

Reachability results for 20% renewable penetration are shown in Figs. 6.11-

6.13.
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(c) ±1 m/s input uncertainty.
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(d) ±2 m/s input uncertainty.

Figure 6.11: Reachability results for machine 12 in the NPCC test case
with replacement of machines 33, 44, 45, and 46, 20% renewable
penetration, first-order wind farm models for the renewable resources, and
unknown-but-bounded model for wind speeds.
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(a) Replacement of machines 33, 44, 45,
and 46.
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(b) Replacement of machines 39, 44, 45,
and 46.

Figure 6.12: Reachability results for machine 12 in the NPCC test case
with 20% renewable penetration, first-order wind farm models for the
renewable resources, and wind speeds uncertainty of ±2 m/s.

In Fig. 6.11, we plot the projection of ellipsoids onto ∆δ and ∆ω for ma-

chine 12. Again, we observe the trend of increasing system variable variations

with greater wind speed uncertainty. The displaced synchronous machines

are entirely different in the approximate reach sets depicted in Fig. 6.10: ma-

chines 3, 5, 6, 8, and 22 in Fig. 6.10(b) and machines 31 and 44 in Fig. 6.10(a).

In Fig. 6.12, we show reachability results from displacing a similar set of syn-

chronous machines in the system, while maintaining about the same level
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of renewable penetration. We notice that the resulting variations in system

variables are approximately the same in these two cases, quite different from

Fig. 6.10, even though the same system is used for the two cases. This fur-

ther enforces our earlier hypothesis that variations in system variables may

depend on synchronous machine parameters and the network configuration,

which dictate the placement of renewable resources.

We plot the projection of bounding ellipsoids onto the subspace composed

of ω41 and ω8 in Fig. 6.13, resulting from the displacement of machines 26,

31, 33, 37, 38, 42, 43, and 45. We observe that the correlation between these

system variables is not as great as in the New England test case.
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Figure 6.13: Reachability results for machine frequency in the NPCC test
case with replacement of machines 26, 31, 33, 37, 38, 42, 43, and 45, 20%
renewable penetration, and ±2 m/s wind speed uncertainty.

6.4 Summary

In this chapter, we apply the concepts presented in this thesis on three bench-

mark test systems: the WECC 9-bus 3-machine system, the New England

39-bus 10 machine system, and the NPCC 140-bus 48-machine system. We

present two ways to visualize the reachability results:

1. Project bounding ellipsoids onto the small-signal machine angle ∆δ

and speed ∆ω of one synchronous generator to assess individual per-

formance,

2. Project bounding ellipsoids onto the small-signal machine speeds ∆ω

from two different synchronous generators to assess the coupled perfor-

mance of two machines.

51



CHAPTER 7

CONCLUSIONS

This thesis proposes a method for assessing the impact of uncertain distur-

bances on power system dynamic performance. In particular, we focus on the

impact of uncertainty in renewable-based power fluctuations. This method

determines whether certain system variables deviate from prescribed values

imposed by operational requirements due to uncertain input power fluctu-

ations. We provide an analytically tractable method based on reachability

analysis techniques for dynamical systems that allows us to approximate the

system reach set by the reach set of the linearized system model around

some nominal operating trajectory. An added advantage of our technique

is its flexibility to accommodate any state-space model for the renewable

resource.

The reachability concepts are demonstrated with the SMIB example where

the uncontrolled input is the infinite-bus voltage. We find that our method is,

indeed, sufficient to approximate the system reach set for input uncertainties

of less than 15%. Then the method is applied to power systems for a three-

bus configuration where a governor model is used for the classical generator.

The governor model adds damping to the system and therefore we observe

that the reach set remains within the WECC frequency requirements even

for input renewable-based power fluctuations of ±3 p.u.

We also apply the method to three benchmark test cases: the WECC

9-bus configuration with renewable-based generation at one bus, the New

England 39-bus 10-machine system, and the NPCC 140-bus 48-machine sys-

tem. The integration of renewable resources is mimicked by displacing cer-

tain synchronous generators in the system with alternative generation while

maintaining the same power flow solution. The renewable resource is mod-

elled as an unknown-but-bounded disturbance to the power system in two

ways, an uncertain power injection and an uncertain weather forecast that

affects the power output of a resource via a dynamic or static system. We
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subject the modified system to uncertain wind speed or real power input and

obtain over-approximations to the linearized system reach set. In line with

the capabilities of this tool, we present several ways to visualize reachability

results to obtain useful information about dynamic performance of the power

system. The main conclusions from the case studies can be summarized as

follows:

• The variations in system variables, such as ∆δ and ∆ω, grow with in-

creasing uncertainty in ∆Pi, the power injection from the ith renewable

resource, or ∆wi, the input variable for the ith renewable resource.

• The unknown-but-bounded power input model is quite conservative,

and we found that the New England system violated frequency per-

formance requirements even for ±0.2 p.u. uncertainty in renewable

power injection. On the other hand, the input can vary greatly in the

unknown-but-bounded wind speed model without violating any dy-

namic performance constraints. As mentioned previously, this result

is expected since the unknown-but-bounded wind speed model essen-

tially bounds the rate of change as well as the magnitude of the power

injection, which is a more stringent constraint.

• Deviations of system variables away from their nominal values may be

affected by, but are not limited to,

1. levels of renewable penetration,

2. machine characteristics, and

3. network configurations.

• Variations in system variables are much less significant in the NPCC

test system than in the New England system for the same level of

renewable penetration and input uncertainty.

• The correlation between machine speeds ∆ω is more distinct in the

New England case than the NPCC system.

Our tool is applicable to the integration of renewable energy systems with

existing infrastructure in order to meet our electricity demands without the

economic and environmental burdens of fossil fuel consumption. We envision

this tool to be used in operations, as it provides operators with a metric
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of how close the system may be from violating performance requirements

over a particular time window in which the power generated from renew-

able resources can be predicted relatively accurately. Further, we can apply

our method to determine the best way to place renewable resources so as

to meet dynamic performance limits. We created several scenarios in which

renewable resources displaced conventional generation for the New England

and NPCC test cases and subsequently obtained reachability results for each

configuration. This information can be used to compare various configura-

tions of renewable resource locations from which an optimal topology can be

chosen to meet dynamic performance constraints.

The work presented in this thesis is highly applicable to power systems

with small footprints, for example, in the Hawaiian islands. These systems

have fewer large conventional synchronous generators and consequently less

inertia. Our method to obtain approximations of the reach set enables a

way to quantify renewable penetration limits in such systems so as to meet

dynamic performance constraints.

Future Work

The results from this thesis can be augmented or extended in the following

ways:

• Further work includes a formal analysis of the limits of the small-signal

approximation to estimate the system reach set, i.e., how large can the

fluctuations in the uncontrolled disturbance be so that the approxima-

tion of the true reach set by the reach set of the linearized model is

valid. The SMIB results suggest that the approximation is sufficient

for input deviations of less than 15%.

• The validity of our reachability results could be verified with exhaustive

time-based probabilistic simulations, for example, with Monte Carlo

methods, on the nonlinear system. The worst-case trajectory, obtained

from time-based simulation, for the nonlinear SMIB system suggests

that the reach set of the nonlinear system is contained in that of the

linearized system for input fluctuations of less than 15%. It would also

be beneficial to compare our ellipsoidal reachability results from the
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linearized system to the outcome obtained from probabilistic methods

performed on the same linearized system.

• The viability of our method could be strengthened from an analysis

of the computational burden. An extension would be to quantify the

scalability of this method, i.e., how much more computation would be

required as the size of the system increases.

• This thesis pertains to the dynamic behaviour of the power system

when subject to disturbances originating from renewable power injec-

tion. A complementary problem would be to explore reachability of

power systems subject to uncertain disturbances in the context of static

studies. More specifically, we could provide ellipsoidal upper bounds

on bus voltages and angles based on the unknown-but-bounded power

model for renewable resources.

55



APPENDIX A

CONTINUOUS-TIME
UNKNOWN-BUT-BOUNDED PROCESS

In this appendix, we derive (3.3), reproduced as follows:

d
dt
Ψβ(t) = A(t)Ψβ(t) + Ψβ(t)A

′(t) + β(t)Ψβ(t) +
1

β(t)
B(t)Q(t)B′(t),

Ψ(t0) = Ψ0.

The derivation presented here borrows heavily from ideas presented in [17].

Before we begin, we present several concepts that are crucial to the derivation.

A.1 Definitions

Definition 3 (Support Function). The support function, sX (η), of a closed

convex set X , is defined as

sX (η) = max
x∈X

{x′η}, η′η = 1. (A.1)

Then the set X can be expressed as

X = {x : x′η ≤ s(η) ∀η, η′η = 1}. (A.2)

⊳

Definition 4 (Minkoski Sum). The Minkoski sum of two closed convex sets

X and Y , Z, is defined as

Z = {z : z = x+ y, for any x ∈ X and any y ∈ Y}.

Let sX (η), sY(η), and sZ(η) denote the support functions of X , Y , and Z,
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respectively. Then

sZ(η) = max
x∈X ,y∈Y

(x+ y)′η,

= max
x∈X

x′η +max
y∈Y

y′η,

so that

sZ(η) = sX (η) + sY(η). (A.3)

⊳

Definition 5 (Ellipsoid). The ellipsoid is a closed convex set defined as

follows:

E = {x : [x−m]′Γ−1[x−m] ≤ 1},

where Γ is a positive definite matrix. The centre of the ellipsoid is denoted

by m, and the size and shape of the ellipsoid are described by Γ.

The support function for E is

sE(η) = η′m+
√

η′Γη. (A.4)

⊳

A.2 Derivation of Ellipsoidal Equation

We begin the derivation of the ellipsoidal equation (3.3) with a model of a

continuous-time unknown-but-bounded process x(t) as

ẋ(t) = A(t)x(t) +B(t)w(t), (A.5)

x(0) ∈ X (0) = {x : x′Ψ−1(0)x ≤ 1} , (A.6)

w(t) ∈ W(t) = {w : w′Q−1(t)w ≤ 1} . (A.7)

We can rewrite the continuous-time dynamics in discrete-time with t = k∆

and ∆ → 0 as follows:

x(k∆+∆)− x(k∆)

∆
= A(k∆)x(k∆) +B(k∆)w(k∆),

x(k∆+∆) = [I +∆A(k∆)]x(k∆) +∆B(k∆)w(k∆).
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Let Φ(k∆) = I + ∆A(k∆) and G(k∆) = ∆B(k∆). Then the discrete-time

dynamics can be written as

x(k∆+∆) = Φ(k∆)x(k∆) +G(k∆)w(k∆), (A.8)

x(0) ∈ X (0) = {x : x′Ψ−1(0)x ≤ 1} , (A.9)

w(k∆) ∈ W(k∆) = {w : w′Q−1(k∆)w ≤ 1} . (A.10)

Let X (k∆) denote the set containing all possible x(k∆). X (k∆) is called the

set of reachable states, or the reach set.

A.2.1 Set k = 0

To simplify notation, we consider, for now, the case of k = 0. Then (A.8)

becomes

x(∆) = Φ(0)x(0) +G(0)w(0),

x(0) ∈ X (0) = {x : x′Ψ−1(0)x ≤ 1} ,

w(0) ∈ W(0) = {w : w′Q−1(0)w ≤ 1} .

It follows that

X̂ (∆) = {x : x = Φ(0)x1 +G(0)w, x1 ∈ X (0), w ∈ W(0)} .

The support function of X (0), an ellipsoid centered around 0, is

sX (0)(η) = max
x∈X (0)

x′η =
√

η′Ψ(0)η.

Likewise, the support function of W(0), also an ellipsoid centered around 0,

is

sW(0)(η) = max
w∈W(0)

w′η =
√

η′Q(0)η.

Let x1 = Φ(0)x(0) where x(0) ∈ X (0) and w1 = G(0)w(0) where w(0) ∈

W(0). Let X1 = {x1 : x1 = Φ(0)x(0), x(0) ∈ X (0)} and W1 = {w1 : w1 =
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G(0)w(0), w(0) ∈ W(0)}. Then the support function of X1 is

sX1
(η) = max

x∈X (0)
[Φ(0)x]′η = max

x∈X (0)
x′[Φ′(0)η],

=
√

[Φ′(0)η]′Ψ(0)[Φ′(0)η],

=
√

η′[Φ(0)Ψ(0)Φ′(0)]η.

Similarly, the support function of W1 is

sW1
(η) =

√

η′[G(0)Q(0)G′(0)]η.

Clearly X̂ (∆) is the Minkoski sum of X1 and W1. Thus, using (A.3), the

support function of X (∆) is

s
X̂ (∆) = sX1

+ sW1

=
√

η′[Φ(0)Ψ(0)Φ′(0)]η +
√

η′[G(0)Q(0)G′(0)]η. (A.11)

In general, (A.11) is not the support function of an ellipsoid. However, we

can make use of the special case of Holder’s inequality 1 to find the support

function of a bounding ellipsoid X (∆) as follows:

s
X̂ (∆) ≤







η′
[

1

1− γ
Φ(0)Ψ(0)Φ′(0) +

1

γ
G(0)Q(0)G′(0)

]

︸ ︷︷ ︸

Ψ(∆)

η







1/2

, 0 < γ < 1.

Thus, X̂ (∆) ⊂ X (∆) = {x : x′Ψ−1(∆)x ≤ 1}.

We can apply the development in Section A.2.1 to each time step, i.e., for

every value of k to obtain the general relation

Ψ(k∆+∆) =
1

1− γ
Φ(k∆)Ψ(k∆)Φ′(k∆)

+
1

γ
G(k∆)Q(k∆)G′(k∆), 0 < γ < 1. (A.12)

with X̂ (k∆+∆) ⊆ X (k∆+∆) = {x : x′Ψ−1(k∆+∆)x ≤ 1}.

1(b1 + b2)
2 ≤ (1− γ)−1b2

1
+ γ−1b2

2
, 0 < γ < 1.
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Let γ = ∆β. Then (A.12) becomes

Ψ(k∆+∆) =
1

1−∆β
Φ(k∆)Ψ(k∆)Φ′(k∆)

+
1

∆β
G(k∆)Q(k∆)G′(k∆), 0 < β < ∞. (A.13)

Since ∆β << 1, we approximate 1
1−∆β

as 1 + ∆β. Thus, (A.13) becomes

Ψ(k∆+∆) ≈ (1 + ∆β)Φ(k∆)Ψ(k∆)Φ′(k∆) +
1

∆β
G(k∆)Q(k∆)G′(k∆)

= (1 + ∆β)[I +∆A(k∆)]Ψ(k∆)[I +∆A(k∆)]′

+
1

∆β
[∆B(k∆)]Q(k∆)[∆B′(k∆)]. (A.14)

Since ∆ is small, we can neglect the higher ordered terms in ∆ from (A.14)

and continue as follows:

Ψ(k∆+∆) ≈ Ψ(k∆) +∆A(k∆)Ψ(k∆) +∆Ψ(k∆)A′(k∆)

+∆βΨ(k∆) +
∆

β
B(k∆)Q(k∆)B′(k∆).

Rearranging, we obtain

Ψ(k∆+∆)−Ψ(k∆)

∆
≈ A(k∆)Ψ(k∆) + Ψ(k∆)A′(k∆)

+ βΨ(k∆) +
1

β
B(k∆)Q(k∆)B′(k∆). (A.15)

Recognizing that (A.15) is the discrete-time approximation of a continuous-

time differential equation, we obtain (3.3)

d
dt
Ψ(t) = A(t)Ψ(t) + Ψ(t)A′(t) + βΨ(t) + 1

β
B(t)Q(t)B′(t),

Ψ(0) = Ψ0.
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APPENDIX B

PROJECTIONS OF SETS

Consider some K-dimensional closed, convex set X where

X = {x : g(x) ≤ 0}, (B.1)

where x = [x′
1 x′

2]
′, x1 and x2 are K1 and K2-dimensional vectors, respec-

tively. Let X1 denote the projection of X onto the K1-dimensional subspace

of x1. Then

X1 = {x1 : g(x1, x2) ≤ 0, for any x2}. (B.2)

The projection can be obtained as the result of the following special linear

transformation:

x1 = Hx, (B.3)

where H = [I 0] and x1 is a K1-dimensional vector.
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APPENDIX C

MATLAB IMPLEMENTATION DETAILS

The reachability problem described in this thesis is solved in MATLAB in

conjunction with Power System Toolbox (PST), the functionalities of which

are outlined in [27].

C.1 System Matrices from PST

The function svm mgen.m is run on the test system to obtain three relevant

matrices: a mat, b pm, and mac state. These matrices create the following

small-signal model:

∆ẋ = [a mat]∆x+ [b pm]∆Pm,

where ∆x denotes the small-signal dynamic states and ∆Pm denotes the

vector of small-signal mechanical power input into each synchronous machine.

The matrix mac state contains three columns and as many rows as system

states. Each row corresponds to a state. The first column contains the se-

quential numbering for the states; the second denotes the name of the states,

for example, 1 corresponds to the machine angle δ and 2 corresponds to the

machine frequency ω; and finally the third column describes the machine

with which that state is associated.

We utilize data for test cases that are packaged with PST. To mimic the

penetration of renewable resources, we replace several synchronous machines

with renewable power generation by modifying the test case data in two ways.

First, we reduce the order of the synchronous machine model to the classical

model with only two dynamic states, the machine angle (δ) and speed (ω).

Second, we modify the data for these machines to have unrealistically fast

dynamics, appropriate for applying the singular perturbation model later. In

particular, we reduce the machine inertia, denoted by H , and increase the
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machine damping, to create unrealistically large eigenvalues, corresponding

to very fast dynamics.

C.2 Conversion from Per-Unit Speed

PST generates its matrices based on per-unit speeds (ω) as in [28]. The

relationship used to convert from per-unit speed is ∆ωr = ωs∆ω̄r, where

∆ω̄r denotes the per-unit variable, ωs is the synchronous frequency 2π60,

and ∆ωr denotes the non per-unit variable. Consequently,

d∆ωr

dt
= ωs

d∆ω̄r

dt
.

To convert back from per-unit frequencies, we multiply the ∆ω rows by

ωs in both a mat and b pm matrices and divide the columns that multiply

∆ω by ωs in a mat. We check the correctness of this step by ensuring the

eigenvalues do not change after the operations have been performed.

C.3 Removal of Zero-Eigenvalue Associated with

Reference Angle

In any rotational system, the reference for angles is arbitrary. Thus, a zero-

eigenvalue is always present in the system. Due to the numerical nature

in which PST performs linearization, however, the a mat matrices almost

always contain a very small positive eigenvalue. This makes the matrix un-

stable, which is not the correct inference since these power systems are stable

in reality.

To remove the zero-eigenvalue, we select δ1, the angle on machine 1, as the

reference, and subsequently apply the following coordinate transformation

[16]:

δ′i = δi − δ1, i = 2, . . . , m,

δ′i = 0,

δ̇′i = ωi − ω1, i = 2, . . . , m,

δ̇′1 = 0,
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where m denotes the number of machines present in the system. This implies

the differential equation corresponding to ∆δ1 can be deleted. Also, the

column corresponding to ∆δ1 is deleted. The differential equations ∆δ̇i =

∆ωi, i = 2, . . . , m, are replaced by ∆δ̇i = ∆ωi −∆ω1. In the a mat matrix,

we place −1 in the intersections of the rows corresponding to ∆δ̇i and the

column corresponding to ∆ω1. We check the result of this step by ensuring

the slightly positive eigenvalue no longer exists.

C.4 Application of Singular Perturbation Model

The singular perturbation model [19] is

ẋ = f(t, x, z, ǫ),

ǫż = g(t, x, z, ǫ),

where ǫ is small.

In our test system, we prepare unrealistically fast dynamics for synchronous

machines that have been replaced by renewable generation. For these ‘fast’

machines, we obtain differential equations of the form,

∆δ̇p = ∆ωp −∆ω1,

2Hp

ωs

∆ω̇p = . . . ,

where 2Hp/ωs is small and p denotes machines to be singularly perturbed.

The problem that arises is that both ∆δp and ∆ωp are fast dynamics, but

the small constant ǫ does not appear in front of both differential equations.

To solve this, we substitute

∆ω′
p =

√
2Hp

ωs
∆ωp and ∆ω′

1 =

√
2Hp

ωs
∆ω1.

Consequently,

∆ω̇′
p =

√

2Hp

ωs

∆ω̇p and ∆ω̇′
1 =

√

2Hp

ωs

∆ω̇1.

This implies we can divide the columns corresponding to ∆ωp and ∆ω1 by
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√

2Hp/ωs, and multiply the differential equations corresponding to ∆ωp by
√

2Hp/ωs. To correctly apply the singular perturbation model with the same

small time constant ǫ, we must ensure Hp is chosen to be the same value for

all the synchronous machines that we replace as renewable generation.

The resulting equations for these ‘fast’ machines are

√

2Hp

ωs

∆δ̇p = ∆ω′
p −∆ω′

1,

√
2Hp

ωs
∆ω̇′

p = . . . .

Singular perturbation is then easily applied as follows:




∆ẋn

√
2Hp

ωs
∆ẋp



 =

[

A11 A12

A21 A22

][

∆xn

∆xp

]

+

[

B1

B2

]

∆u.

By approximating
√

2Hp

ωs
as 0, i.e., ∆xp can change instantaneously, we obtain

[

∆ẋn

0

]

=

[

A11 A12

A21 A22

][

∆xn

∆xp

]

+

[

B1

B2

]

∆u,

from which we obtain ∆xp = −A−1
22 [A21∆xn +B2∆u], and

∆ẋn = A11∆xn + A12∆xp +B1∆u,

∆ẋn = A11∆xn − A12A
−1
22 [A21∆xn +B2∆u] +B1∆u,

∆ẋn =
[
A11 −A12A

−1
22 A21

]

︸ ︷︷ ︸

Ã

∆xn +
[
B1 −A12A

−1
22 B2

]

︸ ︷︷ ︸

B̃

∆u.

C.5 Augmentation of Renewable Resource Dynamics

As described in Chapter 4, we augment the power systems dynamics with

those of the renewable resource as follows:

[

∆ẋn

∆ξ̇

]

=

[

Ã 0

0 F

]

︸ ︷︷ ︸

Ā

[

∆x

∆ξ

]

+

[

B̃ 0

0 G

]

︸ ︷︷ ︸

B̄

[

∆u

∆w

]

,
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where ∆ξ denotes the augmented states and ∆w represents the inputs to the

renewable resource processes.

C.6 Solution of Reachability Problem

Finally, we solve the reachability problem with uncertainty in ∆w ∈ ∆X∆w

using (3.3) with Ā and B̄.
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