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ABSTRACT 

This thesis applies robust optimization techniques to the design of Lithium-ion batteries 

with spatially varying porosities. The microstructure of a porous electrode was designed 

to minimize the Ohmic resistance. The spatial variation in the porosities was found to 

provide enhanced robustness of the Li-ion battery to uncertainties. This thesis also 

proposes a robust optimization formulation based on polynomial chaos expansion that is 

applied in the design of the Li-ion battery and a batch crystallization process. The 

proposed approach yields an analytic expression for the computation of the variance in 

the optimization objective that is cheap to evaluate computationally. The estimates of the 

variance incorporated into the multiobjective optimization were found to be accurate 

enough for the purposes of robust optimal design.   
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CHAPTER 1: INTRODUCTION 

Lithium-ion batteries with a wide range of sizes and power ratings are becoming 

increasingly ubiquitous in applications, from implantable cardiovascular defibrillators 

operating at 10 μA to current hybrid vehicles operating at 100A. At the largest scale, Li-

ion batteries are one of the main candidates for the grid storage of energy produced by 

wind power and other intermittent green power generators. For Li-ion batteries to be the 

best long-term solution for many of these applications requires substantial improvements 

in battery performance. Most of the efforts to improve battery performance have focused 

on developing new chemistries for the electrodes and electrolytes. Another method for 

performance enhancement is to employ optimal model-based design methods, which can 

be applied to batteries irrespective of their chemistries. While many recent papers have 

explored optimal model-based battery design, the effective of uncertainties in the model 

parameters have not been incorporated into the optimizations.  

This thesis was motivated by two observations. First, it is well-established in the 

literature that uncertainties in external factors such as cost data and internal model 

parameters such as associated with kinetics and transport can have a very large effect on 

product quality for batch, semibatch, and continuous manufacturing processes. Second, 

Li-ion battery operations are a very highly nonlinear dependence on its design 

parameters, so that the effects of uncertainties on performance cannot be estimated 

reliably except by employing careful model-based quantification. Quantitative estimates 

of the effects of uncertainties can be used to decide which model parameters need to be 

identified with higher accuracy, or to implement optimal designs that are robust to a 

given level of model uncertainty. 
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 Robust optimal control techniques have been applied to many batch and semi-

batch processes including many materials and electrochemical systems and the processes 

used to manufacture materials. This thesis is the first to apply robust design techniques to 

a lithium-ion battery. The effect of uncertainties on a performance objective, in this case 

Ohmic resistance, is quantified. This thesis also applies polynomial chaos expansions to 

approximate a lithium-ion battery model with simpler algebraic expressions. The 

motivation for this approximation is the reduction in the computational expense when 

applying robust optimization. This thesis is the first time that robust optimization 

techniques have been applied to determine spatially varying microstructure in the design 

of Li-ion batteries.  

 This thesis also proposes a new mathematical formulation for robust optimal 

design. The approach is based on employing a polynomial chaos expansion (PCE) not 

only in the uncertain model parameters but also in the design variables. Because the 

variance can be analytically computed once the coefficients of the PCE are known, this 

approach greatly reduces the computational cost of robust optimization.1

 The thesis is organized as follows. First, previous research in robustness analysis, 

robust design, optimal design, and polynomial chaos expansions is reviewed. 

Applications are mentioned from the crystallization of semiconductors and organic 

molecules to atmospheric aerosols to Lithium-ion batteries. Next robust optimization 

techniques with an emphasis on distributional robustness analysis are presented. This is 

followed by a chapter describing uncertainty analysis using polynomial chaos 

expansions. Then polynomial chaos expansions techniques are applied to the model 

equations for Li-ion batteries. Following this, the novel approach is applied to a well-

  

                                                 
1 Higher order moments may also be computed from the coefficients of the PCE. 
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studied crystallization problem and to the design of Li-ion batteries. Finally, the results of 

the thesis are summarized followed by ideas for future research. 
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CHAPTER 2: LITERATURE REVIEW 

The performance of processes or products can be substantially improved by 

implementing optimal design or control policies. In practice model uncertainties are 

significant and can eliminate the improved performance obtainable from optimization. 

This observation has motivated the development of robust optimal design and control 

methods that ensure improved performance in the presence of uncertainties. Applying 

robust optimization techniques can be prohibitively computationally expensive when 

using classical Monte Carlo methods to perform the uncertainty analysis. Distributional 

robustness analysis techniques have been developed that greatly reduce the computational 

cost of robustness analysis. Polynomial chaos expansions (PCEs) represent the model 

outputs as simple algebraic expressions in the uncertain parameters, which further 

reduces the computational cost of implementing robust optimization. PCEs and related 

techniques make robust optimization a much more computationally tractable problem. 

 Optimal control techniques have been applied in a broad range of applications. 

Gunawan et al. [1] employed optimal control to study rapid thermal annealing for the 

formation of ultrashallow junctions in microelectronic devices. Srinivisan et al. [2] and 

Christensen et al. [3] identify optimal strategies in system parameters such as electrode 

thickness and porosity for improved performance of Lithium-ion batteries. Ramadesigan 

et al. [4] applied optimization to design the spatial distribution of microstructure in a 

porous electrode for Li-ion batteries. Many papers have been published that compute 

optimal temperature profiles for batch cooling seeded crystallizers (e.g., see Hu et al. 

[5,6] and citations therein). Although the employment of optimization based on nominal 

models in various applications promise improved performance with respect to the defined 
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objective functions, this improved performance may not be achieved in the presence of 

uncertainty. 

 Robust optimization methods have been developed to guarantee improved 

performance in the presence of uncertainty. These techniques have been applied to many 

chemical processes but have yet to be applied in the design of Lithium-ion batteries. Ma 

and Braatz [7] proposed an approach for the robust identification and control of batch and 

semibatch processes with an application to industrial crystallization. Nagy and Braatz [8] 

applied robust optimal techniques to the nonlinear model predictive control of batch 

processes using batch crystallization as a case study. Nagy and Braatz [9,10] explored the 

incorporation of robust performance analysis into open-loop and closed-loop optimal 

control design including techniques that make robust optimization techniques more 

tractable. Darlington et al. [11,12] report a similar framework to approximate the effects 

of uncertainty within the mean-variance optimization model for nonlinear systems using 

a batch reactor with nonlinear kinetics as a case study.  

Polynomial chaos expansions have been used to perform uncertainty analysis and 

in robust optimization. Nagy and Braatz [13] report the use of power series and 

polynomial chaos expansions in distributional uncertainty analysis with application to a 

batch crystallization. Isukapalli et al. [14] applied PCEs to analyze uncertainty 

propagation in biological and environmental systems. Pan et al. [15] employed PCEs in 

the uncertainty analysis of direct radiative forcing by anthropogenic sulfate aerosols. 

Isukapalli et al. [14] employed PCE as a regression with improved sampling whereas Pan 

et al. [15] used a PCE variant known as probabilistic collocation. Nagy and Braatz [13] 

used the probabilistic collocation method in incorporating PCEs into robust optimal 
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design. In this work on Lithium-ion batteries, the PCE method in Isukapalli et al. [14] is 

applied. 

In general, incorporating distributional uncertainty analysis and polynomial chaos 

expansions within robust optimization reduces the computationally expense significantly. 

While different uncertainty analysis methods have different tradeoffs in terms of 

accuracy and computational cost, there are significant computational savings irrespective 

of the method when compared to applying the classical Monte Carlo method.  
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CHAPTER 3: ROBUST OPTIMIZATION TECHNIQUES 

 3.1. Distributional robustness analysis via power series expansions 

This section summarizes distributional robustness analysis using power series 

expansions. Define the perturbations in the model parameters and performance objective 

as  

  ˆ ,δθ θ θ= −  (3.1) 

 ˆ ,δψ ψ ψ= −  (3.2) 

where θθ ∈ nR  is the vector of perturbed model parameters, ˆ θθ∈ nR is the vector of nominal 

model parameters, ψ  is a state or performance metric for the perturbed model parameter 

vector, and ψ̂ is the state or performance metric for the nominal model parameter vector. 

One method for worst-case robustness analysis is to write δψ  as a power series in 

δθ and employ analytical expressions or structured singular value methods to compute 

worst-case values for δψ  and .δθ  Alternatively, if ψ  is sufficiently differentiable with 

respect to the model parameter vector then ψ  can be written as a Taylor’s series 

expansion about θ̂  which can be used to obtain δψ  in terms of .δθ  In both cases, 

accurate analyses for batch and semibatch processes have been obtained with only a few 

terms in the expansion (typically one or two) because for robustness analysis purposes 

the power series expansion only needs to be accurate for trajectories about the nominal 

trajectory. To illustrate the method, consider that the first-order approximation for the 

perturbation in performance is   

 ,Lδψ δθ=  (3.3) 

 
ˆ

1,..., ,i
i

L i nθ
θ θ

ψ
θ

=

∂
= ∀ =
∂

 (3.4)  
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where L is the vector of sensitivities. The sensitivities may be computed analytically or 

numerically depending on the model equations. For example, a second-order central 

difference approximation for the sensitivities may be computed from  

 ( ) ( ) 1,..., .
2

i i i i
i

i

L i nθ
ψ θ θ ψ θ θ

θ
+ ∆ − − ∆

≈ ∀ =
∆

 (3.5) 

The description for uncertainty in real model parameters produced by most model 

identification methods is the multivariate normal distribution, which can be equivalently 

written in terms of its hyperellipsoidal level sets  

 { }T 1 2ˆ ˆ: ( ) ( ) ( ) ,
θθ θθ θ θ θ θ χ α−= − − ≤ nE V  (3.6) 

where θV is a θ θ×n n  positive-definite covariance matrix, α is the confidence level, and 

2 ( )nθ
χ α  is the chi-squared distribution function with nθ  degrees of freedom. As there are 

few model identification algorithms that produce worst-case uncertainty descriptions, 

some researchers have defined a “worst-case” model uncertainty description by fixing α 

so that the confidence is extremely high that the model parameter vector θθ ∈ nR lies 

within the hyperellipsoid (3.6). 

 A probability density function (PDF) for the model parameters is needed to 

compute the PDF of the performance index. The multivariate normal distribution that 

describes the PDF of the model parameters is  

 T 1
. . /2 1/2

1 1 ˆ ˆ( ) exp ( ) ( ) .
(2 ) det( ) 2θ θ

θ

θ θ θ θ θ
π

− = − − − 
 

p d nf V
V

 (3.7) 
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When a first-order series expansion is used to relate δψ  and δθ as in (3.3), then the 

estimated PDF of ψ is   

 
2

. . 1/2

ˆ1 ( )( ) exp ,
(2 ) 2ψ ψ

ψ ψψ
π

 −
= −  

 
p df

V V
 (3.8) 

where the variance of ψ  is 

 TV L Lψ θ= V  (3.9) 

if a first-order approximation is desired, or   

 [ ]2T 1 tr ,
2

V L Lψ θ θ ′= +V V L  (3.10) 

 
2

ˆ

, 1,..., ,ij
i j

L i j nθ
θ θ

ψ
θ θ

=

∂′ = ∀ =
∂ ∂

 (3.11)  

if a second-order approximation is desired, as in Darlington et al. [11,12], where L is 

given in (3.5), and ′L  is the derivative of the sensitivities with respect to the model 

parameters. Equation (3.10) assumes that variance of the normally distributed random 

variable is constant. 

 The above analysis holds for normally distributed random variables. In the case 

where model parameters are not normally distributed, a distribution transformation may 

be used to map them to standard random variables that are normally distributed. The 

above analysis can then be applied to the corresponding standard random variables, and 

inverse transformation can be used to obtain the original distribution of the model 

parameters. 

 When higher order series expansions than in (3.10) are used to relate δψ  and δθ , 

analytical expressions for the distribution cannot be obtained. In this case of a nonlinear 

relationship between ψ  and θ , numerical methods must be used to compute the 
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probability distribution of the performance index. The PDF could be obtained by 

performing Monte Carlo simulation by sampling the parameter space given by the 

uncertainty description, but this would require a large number of samples to accurately 

describe regions of low probability, which is computationally expensive. 

3.2. Robust optimal model-based design 

An optimal design problem with one spatial dimension z is typically formulated as  

 
( )
min ( ( ), ) ,

u z
x zψ θ

∈U
 (3.12) 

 s.t. 0 0( ) ( ( ), ( ), ), ( ) ,x z f x z u z x z xθ= =  (3.13) 

 ( ( ), ( ), ) 0,h x z u z θ ≤  (3.14) 

where ( ) xnx z ∈R  is the vector of states, ( )u z ∈U is set of all allowed spatial distributions, 

θ∈P is the vector of model parameters in the uncertainty set, f is the vector function 

: x xn nf × × →U PR R  that defines the ordinary differential equations of the system (the 

original system of partial differential equations is assumed to be converted into a set of 

ordinary differential equations using the method of lines), : xn ch × × →R RU P  is the 

vector of functions describing the spatially-varying algebraic constraints for the system, 

and c is the number of these constraints.  

 In nominal optimal design, the optimization problem (3.12) is solved by fixing 

ˆθ θ= , which yields ˆ( )u z . A robust optimal design is achieved by incorporating the 

allowed variation in the model parameters into the optimization. One formulation is to 

use a multiobjective optimization, which avoids the drawbacks of the minmax 

optimizations often described in the literature. One objective is the value of 
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ˆˆ( ( ), ) ,ψ θx z which is computed for the nominal parameter vector, and the other objective 

is the variance of ( ( ), ) ,ψ θx z which incorporates parameter uncertainty: 

 1
ˆˆ( ( ), ) ,J x zψ θ=  (3.15) 

 2 Var( ( ( ), )).ψ θ=J x z  (3.16) 

The variance can be computed using power series expansions or from the coefficients of 

a polynomial chaos expansion, which reduces the computational cost of obtaining the 

variance of the objective from Monte Carlo simulations or related methods. An n-order 

series expansion can be used to estimate the variance depending on the accuracy desired.  

 The optimization of a weighted sum of J1 and J2 is referred to as the mean-

variance approach in the literature. That is, the multiobjective problem of minimizing the 

vector [ ]1 2J J J=  is converted to a scalar problem by using the weighted sum of the 

objectives:  

 
1 2( )

min { },

s.t. (3.13) and (3.14),
u z

J wJ
∈

+
U  (3.17) 

where w is the weighting coefficient. The user-specified weighting coefficient w specifies 

the tradeoff between nominal and robust performance. Usually w is selected to 

correspond to the knee on a pareto-optimality plot of J1 vs. J2. 
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CHAPTER 4: POLYNOMIAL CHAOS EXPANSION 

4.1. Uncertainty analysis using polynomial chaos expansions 

The application of the classical Monte Carlo method in uncertainty analysis is 

computationally expensive, as a large number of parameter sets are required to construct 

the probability distribution functions of the performance index or model states/outputs. 

The computational expense stems from running (or solving) the model equations a large 

number of times. Each run might already be computationally expensive depending on the 

number, stiffness, and nonlinearity of the model equations (e.g., ordinary differential 

equations (ODEs), differential-algebraic equations (DAEs), partial differential equations 

(PDEs)). A computationally expensive simulation run coupled with a large number of 

parameter sets increases the expense for describing the distribution of the outputs.  In the 

case where a robust optimal design is desired, an optimization routine is required. This 

also has a significant computation cost.  The above considerations make uncertainty 

analysis and robust optimal design intractable with the classical Monte Carlo method 

except for rather simple models. 

 In polynomial chaos expansions (PCEs), the model outputs or performance index 

are expressed as simple algebraic expressions in terms of model parameters. This results 

in substantial reduction in computational expense, as evaluations of algebraic expressions 

are cheap. Uncertainty analysis and robust optimal design using PCEs involves 

evaluation of these algebraic expressions as opposed to actual model runs. This makes 

uncertainty analysis and robust optimal design more tractable. Also, the properties of 

distribution of the outputs or performance index may be obtained analytically for simple 

algebraic expressions as opposed to Monte Carlo simulations. When the parameter 
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uncertainties are described in terms of standard random normal variables (with mean of 0 

and standard deviation of 1), a PCE can describe the model output or performance index 

ψ  as an expansion of multidimensional Hermite polynomial functions of the uncertain 

parameters θ . For other types of random variables, either different polynomial bases 

(e.g., Legendre for the uniform distribution, Laguerre for the gamma distribution, etc.) or 

an appropriate transformation to standard random normal variables can be used. In this 

work, appropriate transformations to standard random normal variables have been used. 

Table 4.1 shows a few of such transformations. Using the Hermite bases in the PCE, the 

output can be expressed in terms of standard random normal variables { }iθ  using an 

expansion of order k:   

 
1 1 2

1 1 1 2 1 2 1 2 3 1 2 3

1 1 2 1 2 3

( ) ( ) ( ) ( ) ( )
0 0 1 2 3

1 1 1 1 1 1

( ) ( , ) ( , , ) ,
θ θ θ

ψ θ θ θ θ θ θ
= = = = = =

= Γ + Γ + Γ + Γ + ⋅⋅ ⋅∑ ∑∑ ∑∑∑
n n ni i i

k k k k k
i i i i i i i i i i i i

i i i i i i
a a a a  (4.1) 

where nθ  is the number of parameters, the ( )
0

ka ,
1

( )k
ia ,

1 2

( )k
i ia , 1 2 3

( )k
i i ia ,… are deterministic real 

coefficients to be estimated, and the multidimensional Hermite polynomials of degree 

1 2, ,....,
θ

= nm i i i  are  

 
T

T

1

/2
/2

1

e( ,..., ) ( 1) e .
θ θ

θ θθ θ
θ θ

−∂
Γ = −

∂ ⋅⋅ ⋅∂

m
m

m i m
m

 (4.2) 

The polynomial chaos terms are random variables since they are functions of the random 

variables, and terms of different order are orthogonal to each other (with respect to an 

inner product defined in Gaussian measures as the expected value of the product of two  

random variables, i.e., [ ] 0i jΓ Γ =E  for i jΓ ≠ Γ ). In addition, polynomial chaos terms of the 

same order but with a different argument list are also orthogonal ( [ ({ } ) ({ } )]m i m jθ θΓ ΓE  

0, i j= ≠ ). In PCEs, any form of polynomials could be used but the properties of 
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orthogonal polynomials make the uncertainty analysis more efficient. As an example, the 

expected value of both sides of equation (4.1) results in the expected value of ψ  being 

simply ( ) ( )
0 0[ ]k kaψ = ΓE . The calculation of other statistical measures is also significantly 

simplified by using the properties of orthogonality. Another example is in computing the 

variance of ψ  which is given as })}({{( 2

1

22
ii

i
i Ea θσ Γ=∑

=

 [16]. The orthogonal 

polynomials are derived from the probability distribution of the parameters using the 

orthonormality condition: 

 d.f. ( ) ( ) ( ) 1 , 0 .where if ifi j ij ij ijf i j i j
θ

θ θ θ δ δ δΓ Γ = = = = ≠∫  (4.3) 

Since 0 ( ) 1θΓ = , the first-order Hermite polynomial can be calculated from  

 d.f. 1 1 1( ) ( )(1) 0f
θ

θ θΓ =∫  (4.4) 

and the procedure can be repeated to obtain all terms in the PCE. Table 4.2 shows a few 

Hermite polynomials up to order 4. The number of coefficients in the PCE depends on 

the number of uncertain parameters and the order of expansion and can be calculated 

from ( )!/ ! !aN n k n kθ θ= +  (e.g., there are 6 coefficients for two parameters and a second-

order PCE and 15 coefficients for a fourth-order PCE, where as for four uncertain 

parameters there are 15 coefficients for a second-order PCE and 70 for a fourth-order 

PCE); however, it is not necessary to use higher order than three or four for most 

engineering applications. Table 4.3 shows relationships between the number of 

coefficients in the PCE and the number of uncertain parameters up to a fourth-order PCE. 

The polynomial chaos expansion is convergent in the mean-square sense, therefore the 

coefficients in the PCE are calculated using least-squares minimization considering 
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sample input/output pairs from the model, so that the best fit is achieved between the 

PCE and the nonlinear model (or experimental data). 

 There are two main methods for sampling input/output pairs, and hence 

computing the coefficients of the PCE: (i) the probabilistic collocation method (PCM), 

and (ii) the regression method with improved sampling (RMIS). Both methods are 

weighted-residual schemes, which differ in the way sampling points are chosen. PCM 

uses the principle of collocation, which imposes that ψ  is exact at a set of chosen 

collocation points, thus making the residual between the output of PCE and the output of 

the complex nonlinear model (or experiment) at those points equal to zero. RMIS is 

primarily an extension of PCM. In PCM, the number of collocation points is set to equal 

the number of unknown coefficients, which are found by solving a set of linear equations 

generated from the outputs from the original model (or experiment). In RMIS, more 

collocation points than in PCM are chosen, and hence there are more equations than 

unknown coefficients, which are found by solving an overdetermined system of linear 

equations. The additional number of points selected increases the accuracy in determining 

the coefficients. Another difference between both methods is how the collocation points 

are selected. In most cases the number of available collocation points exceeds the number 

of coefficients to be determined. In both cases the collocation points are chosen from the 

roots of the orthogonal polynomial of a degree one higher than the order of the PCE. In 

PCM, the collocation points are chosen randomly since we usually have more collocation 

points than coefficients. In RMIS, the collocation points are chosen systematically such 

that the collocation points selected correspond to regions of higher probability (for 

example, if standard random normal variables are used, collocation points closer to 0 are 
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selected in preference to those further, and a second criteria might be symmetry of the 

points selected). The collocation points selected affects the accuracy of the 

approximation, which makes the RMIS superior to PCM. In this work the regression 

method with improved sampling is used to calculate the coefficients. Further accuracy in 

estimating coefficients may be achieved by using information about the sensitivities at 

the collocation points. 

 When a dynamic simulation algorithm is used, numerical errors will occur in the 

sampled input/output pairs, and when experimental data are used, the measurements 

usually have noise and are affected by unmeasured disturbances. For both cases, it may 

be less attractive to use a collocation method in the construction of the PCE. The effect of 

numerical errors, measurement noise, and unmeasured disturbances can be reduced using 

extra input/output pairs and/or employing regularization methods with least squares. 

 PCE utilizes a simpler representation of the simulation model, and this 

representation can be used to compute the pdf of the outputs (via Monte Carlo method or 

via the contour mapping approach). Also, the PCE can be used to analytically compute 

statistical measures, such as the mean, variance, or higher order moments of the outputs 

because of the principle orthogonality. This allows for construction of pdf of the outputs 

from the moments of the distribution without applying the Monte Carlo method or the 

contour mapping approach.  

 

 

 



 

17 
 

4.2. Example 

Consider a model with three independent random variables inputs 1 2 3, , andX X X , and 

three outputs 1 2 3, , andY Y Y , where the distribution of the input random variables are given 

by 

 
1 1 1

2 2 2

3 3 3

Uniform( , )
Normal( , )
Lognormal( , ).

X p q
X p q
X p q

=
=
=

 (4.5) 

The input random variables can be represented by three standard normal random 

variables 1 2 3, , andθ θ θ  using Table 4.1 as 

 

1 1 1 1 1

2 2 2 2

3 3 3 3

1 1( ) erf( / 2)
2 2

exp( ),

X p q p

X p q
X p q

θ

θ
θ

 = + − + 
 

= +
= +

 (4.6) 

where 1 2 3, , andθ θ θ  are distributed with mean 0 and standard deviation 1. A second-order 

polynomial chaos expansion for 1 2 3, , andY Y Y  in terms of 1 2 3, , andθ θ θ  is given by  

 

2 2 2
1 0 1 1 2 2 3 3 4 1 5 2 6 3 7 1 2 8 2 3 9 1 3

2 2 2
2 0 1 1 2 2 3 3 4 1 5 2 6 3 7 1 2 8 2 3 9 1 3

2 2 2
3 0 1 1 2 2 3 3 4 1 5 2 6 3 7 1 2

( 1) ( 1) ( 1)

( 1) ( 1) ( 1)

( 1) ( 1) ( 1)

θ θ θ θ θ θ θθ θ θ θθ

θ θ θ θ θ θ θθ θ θ θθ

θ θ θ θ θ θ θθ

= + + + + − + − + − + + +

= + + + + − + − + − + + +

= + + + + − + − + − + +

Y a a a a a a a a a a
Y b b b b b b b b b b
Y c c c c c c c c 8 2 3 9 1 3θ θ θθ+c c

 (4.7) 

The number of coefficients in each expansion can be calculated a priori by using the 

equations in Table 4.3. In order to estimate the 10 coefficients (for each output) of the 

expansions above, at least 10 sets of sample points must be chosen. The number of sets N 

chosen is as recommended in the efficient collocation method (ECM) or RMIS, which 

equals about twice the number of coefficients, i.e., 20 in this case. The sets have the form 

given by 

 1,1 2,1 3,1 1,2 2,2 3,2 1, 2, 3,( , , ), ( , , ), , ( , , ).N N Nθ θ θ θ θ θ θ θ θ⋅ ⋅ ⋅  (4.8) 
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The sample points are generated from the roots of the Hermite polynomial of order + 1, 

where order is the order of the expansion. In this example, the roots of the Hermite 

polynomial of order 3 are used. The selection of the sample points is as discussed in 

Isukapalli et al. [14]. 

 These sample points corresponding to the original model input samples  

 1,1 2,1 3,1 1,2 2,2 3,2 1, 2, 3,( , , ), ( , , ), , ( , , ) ,N N Nx x x x x x x x x⋅ ⋅ ⋅  (4.9) 

are 

 

1 1 1 1,
1, 1,

2, 2, 2 2 2,

3, 3, 3 3 3,

1 1( ) erf( / 2)
2 2

, 1, ,
exp( )

θ
θ
θ θ
θ θ

  + − +           → = + ∀ = ⋅⋅⋅          +     
 
 

i
i i

i i i

i i i

p q p
x
x p q i N
x p q

 (4.10) 

After obtaining the original model input sample points, the model simulation or 

experiment is performed at the points given by 1,1 2,1 3,1 1, 2, 3,( , , ), , ( , , )N N Nx x x x x x⋅ ⋅ ⋅ . Then the 

outputs at these sample points 1,1 1, 2,1 2, 3,1 3,, , , , , ,and , , ,N N Ny y y y y y⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ are used to compute 

the coefficients 0 9 0 9 0 9, , , , , ,and , , ,a a b b c c⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  by solving the following linear equations 

using the singular value decomposition: 

 

0 0 0
1,1 2,1 3,1

1 1 1
1,2 2,2 3,2T

8 8 8
1, 2, 3,

9 9 9

,

N N N

a b c
y y y

a b c
y y y

Z
a b c

y y y
a b c

 
  
  
   =
  
       

  
  

 (4.11) 

where 
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1,1 1,2 1,3 1,

2,1 2,2 2,3 2,

3,1 3,2 3,3 3,
2 2 2 2

1,1 1,2 1,3 1,
2 2 2 2
2,1 2,2 2,3 2,
2 2 2 2
3,1 3,2 3,3 3,

1,1 2,1 1,2 2,2 1,3 2,3 1, 2,

2,1 3,1 2,2 3,2 2,3 3

1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

N

N

N

N

N

N

N N

Z

θ θ θ θ
θ θ θ θ
θ θ θ θ
θ θ θ θ
θ θ θ θ
θ θ θ θ
θ θ θ θ θ θ θ θ
θ θ θ θ θ θ

− − − −
=

− − − −
− − − −

















,3 2, 3,

1,1 3,1 1,2 3,2 1,3 3,3 1, 3,

.

N N

N N

θ θ
θ θ θ θ θ θ θ θ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  





 (4.12) 

In the above equations, the only unknowns are 0 9 0 9 0 9, , , , , , and , , ,a a b b c c⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  since Z can 

be calculated from the sample points selected. Once the coefficients are estimated, the 

distributions of 1 2 3, , andY Y Y  are fully described by the polynomial chaos expansions as 

shown in (4.7). The value of X can be computed from 

 1( )TX ZZ ZY−=  (4.13) 

 In obtaining the statistical properties of the outputs from the polynomial chaos 

expansions, there are three possible routes. First, some of the statistical properties may be 

obtained analytically, for example, the mean as discussed above. Second, a large number 

of random samples 1, 2, 3,( , , )i i iθ θ θ  could be numerically generated, and then the 

corresponding values of model inputs and outputs are calculated. Alternatively, a large 

number of model input samples 1, 2, 3,( , , )i i ix x x  could be numerically generated, and then the 

corresponding standard random variables (from equations in Table 4.1) and model 

outputs are calculated. The statistical properties can then be computed from the values of 

inputs and outputs. 
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Table 4.1. Transformations between standard normal random variable and common 
univariate distributions. 
  

Distribution type Transformation from 
standard random normal 
variable to distribution 

typem 

Transformation from 
distribution type to standard 

random normal variablen 

Uniform (a, b) 1 1( ) erf( / 2)
2 2

a b a θ + − + 
 

 1 2 ( )2erf X b a
b a

− − + 
 − 

 

Normal( , )µ σ  µ σθ+  X µ
σ
−  

Lognormal( , )µ σ  exp( )µ σθ+  log X µ
σ
−  

Gamma (a, b) 3
1 11

9 9
ab

a a
θ
 

+ −  
 

 
1
3 19 1

9
Xa
ab a

 
  + −   
 

 

Exponential( )λ  1 1 1log erf( / 2)
2 2

θ
λ

 − + 
 

 ( )12erf 2exp( ) 1Xλ− − −  

Weibull(a) 1
ay  

aX  

Extreme Value log( )y−  exp( )X−  
 
mθ  is normal (0,1) and y is exponential (1) distributed 
 nX is sampled from distribution type 

Table 4.2. Hermite polynomials of order up to 4. 
  

Order Hermite polynomial 
0 1 
1 / 1! 2θ π  
2 2 1 / ( 2! 2 )θ π−  
3 3 3 / ( 3! 2 )θ θ π−  
4 4 26 3 / ( 4! 2 )θ θ π− +  
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Table 4.3. Number of coefficients in a PCE as a function of number of uncertain parameters 
nθ and the order of the expansion. 
  

Order of PCE Number of coefficients 
1 1 nθ+  
2 ( 1)

2
1 2 n nn θ θ

θ
−

++  

3 ( 1) ( 1)( 2)
2 6

31 3 n n n n nn θ θ θ θ θ
θ

− − −
+ ++  

4 ( 1) ( 1)( 2) ( 1)( 2)( 3)
2 6 12

4 41 4 n n n n n n n n nn θ θ θ θ θ θ θ θ θ
θ

− − − − − −
+ + ++  
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CHAPTER 5: ROBUST OPTIMIZATION AND LI-ION BATTERIES 

5.1. Robust optimal design of Li-ion batteries  

Robust optimization techniques are applied in the design of Li-ion batteries with different 

degrees of spatially-varying porosity. The mathematical model [4] is  

 

[ ]

( )

T
1 1 2

0 1 2

1

1

, , ,

( , , ) ,

( )

p

p

app p

x i

Fai l
RT

i l
f x u

i i l

ϕ ϕ

ϕ ϕ

θ
σ

κ

=

 − − 
 
 = − 
 − 
  

  (5.1) 

where i1 is the solid-phase current, φ1 is the solid-phase potential, φ2 is the electrolyte-

phase potential, a is the active surface area given by 

 ( )3 1 ( )
,

p

z
a

R
ε−

=  (5.2) 

T is the temperature, R is the gas constant, F is the Faraday constant, lp is the length of the 

positive porous electrode, i0 is the applied current density, Rp is the particle radius of 

active materials, iapp is the exchange current density 

 1

0

( )app
z

di z
dz
ϕσ

=

= −  (5.3) 

 ε(z) is the porosity, which varies as a function of distance, z, σ(z) and κ(z) are the 

electronic and ionic conductivities respectively, which vary as function of distance as 

 ( )0( ) 1 ( ) ,z zσ σ ε= −   (5.4) 

 0( ) ( ) ,bruggz zκ κ ε=  (5.5) 
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 because of their porosity dependence, where brugg is the Bruggman coefficient which 

accounts for the tortuous path in the porous electrode. The model parameter vector 

consists of the voltage, and the material properties of the solid and electrolyte-phase 

 T
0 0 0 ,θ σ κ =  pV i R  (5.6) 

with nominal values: 

 [ ]T
1̂ 1 100 20 0.01 5 6 ,θ = −e  (5.7) 

and the uncertainty descriptions characterized by the covariance matrix 

 1
,1

0.0101 0.0238 0.0042 3.11 08 3.04 10
0.0238 102.40 0.1456 2.05 05 4.94 08

0.0042 0.1456 4.2466 2.28 06 2.95 08
3.11 08 2.05 05 2.28 06 9.42 09 8.35 13
3.04 10 4.94 08 2.95 08 8.35 13 2.55 13

θ
−

− − −
 − − − −

=  − − −
− − − − − − −
− − − − −

e e
e e

V e e
e e e e e
e e e e e

.






 
 
 

 (5.8) 

The optimization variable is the porosity distribution, which has dimensions depending 

on the degree of spatial variation: 

 ( ) ( ).u z zε=  (5.9) 

Although there are discontinuities in the porosity distribution, the model is defined such 

that the current and potentials are continuously differentiable.  

 The optimization objective considered is the minimization of the ohmic resistance 

across the electrode: 

 .
app

V
i

ψ =  (5.10) 

In the robust case, the optimization objective includes the minimization of the ohmic 

resistance and its variance. The effect of uncertainties in the model parameters on the 

ohmic resistance at a base uniform porosity (ε = 0.4) and nominally optimized uniform 
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porosity (ε = 0.21388) are compared in Fig. 5.1, which were computed using the Monte 

Carlo method, which is implementable for this simple example.  

The sensitivities computed for the first-order approximation of the variance are 

 [ ]1 0.0111 9.75 05 4.87 04 0 2.61 12 ,L e e e= − − − −  (5.11) 

 The optimization problem (5.1)-(5.3) was solved with the constraints: 

 max

min
( , , ) 0 ,j

j
h x u

ε ε
θ

ε ε
− 

= ≤ − + 
 (5.12) 

where εmin and εmax are the minimum and maximum porosity practically attainable. The 

optimization problem was solved using the sequential simulation-optimization approach. 

 

Sequential Simulation-Optimization Approach 

Step 1: ψ was optimized over the model parameters and the optimal ψ and the 

corresponding Var(ψ) were computed. 

Step 2: on a plot of ψ vs. Var(ψ) for the optimized model parameters in Step 1, a point 

was placed on the plot (this point corresponds to w = 0). Collectively, Steps 1 and 

2 compute the nominal optimal porosity profile. 

Step 3: w was set based on ψ/Var(ψ) from Step 2. 

Step 4:  ψ +wVar(ψ) was optimized over the model parameters and the corresponding ψ 

and Var(ψ) were reported. 

Step 5: on a plot of ψ vs. Var(ψ) for the optimized model parameters in Step 4, another 

point was placed on the plot (this point corresponds to a nonzero w). 

Step 6:  w was set to a value between 0 and the value in Step 3 to fill in points on the 

pareto-optimality curve between the points produced by Steps 2 and 5, or w was 



 

25 
 

set to a larger value to extend the pareto-optimality curve beyond the points in 

Steps 2 and 5 

Step 7: Step 4 was repeated for the new w. 

Step 8: step 5 was repeated for the next w. 

Step 9: Steps 6-8 were repeated until the pareto-optimality curve was mapped out with a 

reasonably uniform spacing points on the curve 

The robust optimal porosity profile was specified by the knee of the pareto-optimality 

curve obtained from Steps 1-9. This knee corresponds to the point where no large 

improvements in ψ or Var(ψ) are obtainable by changing the value for w. 

5.2. Results and discussion 

The nominal and robust optimal porosity profiles are shown in Figs. 5.2 and 5.3. The 

robust optimal profile is obtained from the pareto-optimality curves in Fig. 5.4. From 

Figs. 5.2 and 5.3, it can be observed that the nominal and robust porosity profiles differ 

considerably at the beginning of the electrode and converge towards the end of the 

electrode, which is consistent with the results from performing Monte Carlo simulations 

on the model. The simulation results show that the effect of uncertainty in the parameters 

diminishes as we move down the electrode. This is expected as the boundary conditions 

in the model require that some conditions be satisfied at the end of the electrode. The 

probability distribution functions for the current, solid-phase potential, and electrolyte-

phase potential are shown in Fig. 5.5. It can be observed from Fig. 5.5 that the 

uncertainties in the current and electrolyte-phase potential reduce while that in the solid-

phase potential remains the same as we move down the electrode. The pareto-optimality 

curves show that there are advantages of exploring profiles with increasing degrees of 
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porosity. The ohmic resistance and its variance reduce as the degree of porosity increases. 

Although a linear profile might appear intuitive, the results from both the nominal and 

robust optimization show that the optimal porosity profiles do not follow a simple non-

decreasing or non-increasing description. Even if the descriptions are simple, the 

fabrication of batteries with high degrees of porosity variation is debatable. 

 It should also be noted from Fig. 5.1 that the variance in the ohmic resistance for 

the base porosity is smaller than for the nominally optimal porosity. This may explain the 

reason why there are no significant improvements when Pareto-optimality is explored. 

Since the model for the Li-ion battery considered only one electrode, a full Li-ion battery 

model may be necessary to observe significant improvements when robust optimization 

techniques are applied. 
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Fig. 5.1. Probability distribution function for the ohmic resistance for electrodes with 

spatially-uniform porosities of ε = 0.4 (base) and obtained by optimization (ε = 0.21388). 
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Fig. 5.3. Nominal optimal porosity profiles and robust optimal profile with five different 
values allowed for equal portions of the electrode. 
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Fig. 5.2. Nominal optimal porosity profile and the robust optimal profile with porosity 
allowed to have a different value on each half of the electrode. 
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Fig. 5.4. Pareto-optimality curve for varying degrees of porosities, with the knee corresponding to the 
robust optimal porosity profile. 
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Fig. 5.5. Variation of the PDF of the current, solid-phase potential, and electrolyte-
phase with distance x across the electrode. 
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CHAPTER 6: PCE-BASED APPROACH TO ROBUST OPTIMIZATION 

As discussed in Chapter 3, the robust optimization problem is usually posed as a 

multiobjective optimization (3.17). It is necessary to compute the variance of the 

objective function with respect to parametric uncertainties in performing robust 

optimization. The variance may be computed by methods discussed in Chapter 3 or 

analytically from the coefficients of a polynomial chaos expansion when the objective 

function is expressed as a function of Hermite polynomials of the uncertain parameters. 

The main idea in this approach is to consider the design or control variables as uncertain 

parameters (within a reasonable range), and express the objective function as function of 

the Hermite polynomials in the uncertain parameters and the design variables. This new 

functional form allows for quick computation of the variance of the objective function 

and also a polynomial expression for the multiobjective optimization problem, which 

simplifies the determination of the robust optimal values for the design variables. 

Mathematically, this idea may be expressed as  

 ( , , ) ( , ( , )).newy f x u g x uθ θ θ= =  (6.1) 

The methods for PCE discussed in Chapter 4 can then be applied to g. Two cases are used 

to illustrate this new approach: a well-studied crystallization problem and the Li-ion 

battery problem.  

6.1  Application to simulated batch crystallization problem 

The crystallization problem uses the mathematical formulation in the study by Nagy and 

Braatz [13]. The optimal control problem is posed as 

 optimize
( )

J
T k

 (6.2) 

subject to the ODE with 
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 (6.3) 

and constraints  

min max

min max

,max

( ) ( ) ( )
( )( ) ( )

final final

T k T k T k
dT kR k R k

dt
C C

≤ ≤

≤ ≤

≤

 (6.4) 

where the objective function J is a function of the states, 

T
0 1 2 3 4 ,0 ,1 ,2 ,3seed seed seed seedx µ µ µ µ µ µ µ µ µ=    , and is a representative 

property of the final crystal size distribution. For example, we may consider the 

nucleation-mass-to-seed mass ratio (Jn.s.r.), coefficient of variation (Jc.v.) and weight-mean 

size of the crystals (Jw.m.s.): 

 . . . 3 ,3 ,3( )/µ µ µ= −n s r seed seedJ  (6.5) 

 2 1/2
. .. 2 0 1( /( ) 1)µ µ µ= −c vJ  (6.6) 

 . . . 4 3/µ µ=w m sJ  (6.7) 

The equality constraints (6.3) are the model equations, with initial conditions given by 

Chung et al., where µi is the ith moment (i = 0,…,4) of the total crystal phase, µseed,j is the 

jth moment (j = 0,...,3) corresponding to the crystals grown from seed, C is the solute 
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concentration, T is the temperature, r0 is the size of crystal nuclei, kv is the volumetric 

shape factor, and ρc is the density of the crystal. The rate of crystal growth is given by 

 ,g
gG k S=  (6.8) 

 3,b
bB k S µ=  (6.9) 

where S = (Csat – C)/Csat is the relative supersaturation, and Csat = Csat(T) is the saturated 

concentration. The model parameter vector consists of growth and nucleation kinetic 

parameters 

 Tθ  =  g bg k b k  (6.10) 

with nominal values 

 [ ]T 1.31 exp(8.79) 1.84 exp(17.38)θ =


 (6.11) 

with the uncertainty description in the form (3.6) characterized by the covariance matrix 

 1

102873 21960 7509 1445
21960 4714 1809 354

.
7509 1809 24225 5198

1445 354 5198 1116

Vθ
−

− − 
 − − =
 − −
 − − 

 (6.12) 

Tmin, Tmax, Rmin, and Rmax in (6.4) are the minimum and maximum temperatures and 

temperature ramp rates, respectively. The first two inequalities ensure that the crystallizer 

operates within a certain profile. The last constraint ensures the solute concentration at 

the end of the batch is less than some maximum value set by economic constraint.   

The above optimization was solved by Nagy and Braatz [13] to compare 

uncertainty analysis schemes for an optimal control problem. The objective function was 

the nucleation to seed mass ratio (Jn.s.r.). This thesis uses a variant of the optimal 
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temperature profile obtained by Nagy and Braatz (see Fig. 6.1). In demonstrating our 

approach, the transformed vector of parameters is 

 T
0 40 80 120 160 ,θ  =  new g bg k b k T T T T T  (6.13) 

with nominal values 

 [ ]Tˆ 1.31 exp(8.79) 1.84 exp(17.38) 32 31.65 31.49 30.95 28 .θ =new (6.14) 

The uncertainty description for the kinetic parameters remains the same, while that for 

the temperatures are described by equal standard deviations of 0.01°C, 0.1°C, and 1°C for 

different studies. 

 In determining the PCE, at least a second-order expansion is required to compute 

the variance from the coefficients. For a second-order expansion with 9 parameters, 55 

coefficients need to be determined, with 54 of them contributing to the estimate of the 

variance. The coefficients were determined using the probabilistic collocation method 

with the constraint that the first coefficient equals the mean of the distribution. It should 

be noted that the parameters are first transformed appropriately to standard random 

variables before the coefficients are determined. Table 6.1 shows that the accuracy in the 

estimates of the variance is ~10%, which is accurate enough for use in robust design or 

control. In terms of computational cost, the computation of the variance from the PCE 

coefficients was essentially instantaneous, while the computation of the variance by 

applying the Monte Carlo method to the PCE took about 16 s. 
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6.2. Application to the design of spatially-varying Li-ion batteries 

The model equations used in this section are the same as those used in Chapter 5. A 

spatially-varying electrode with two possible values for the porosity in an electrode is 

studied. The new parameter vector is given by 

 T
0 0 0 1 2 ,θ σ κ ε ε =  new pV i R  (6.15) 

with nominal parameters 

 [ ]Tˆ 1 100 20 0.01 5 6 0.55 0.50 ,new eθ = −  (6.16) 

where ε1 and ε2 are the porosities in regions 1 and 2, respectively. The uncertainties in the 

first five parameters were described by normal distributions with standard deviations that 

are 10% of their nominal values, while the porosities were described by a uniform 

distribution with an upper bound of 0.60.  

 The PCE in the new parameter set was obtained for the objective function (the 

ohmic resistance, as defined in Chapter 5). An expansion of order 2 requires the 

determination of 36 coefficients, and an expansion of order 3 requires the determination 

of 120 coefficients. The probabilistic collocation method was used to determine the 

coefficients without any restrictions. The parameters were first transformed to standard 

normal variables so that the coefficients are related directly to the mean and the variance 

of the resulting distribution. Table 6.2 shows the results for various schemes for 

computing the variance. Within three significant figures, the variance analytically 

computed from the PCE coefficient is the same as obtained by Monte Carlo. 
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Fig. 6.1. Variant of optimal temperature profile for J = Jn.s.r.. 
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Table 6.2. Estimate of the variance from different schemes including from coefficients in 

the design of Li-ion batteries. 

Scheme  Variance (×106) 

Monte Carlo on full model 2.436 

1st order series expansion 2.320 

Monte Carlo on PCE 2.434 

PCE coefficients 2.420 

 

 

Table 6.1. Estimate of the variance from coefficients of the PCE for various standard 

deviations for the zeroth moment of the crystals in a batch crystallization process. 

Standard Dev. of T (°C) Estimate of Variance Error 

0.01 40279 13% 

0.1 41988 9% 

1.0 40106 13% 
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

7.1. Conclusions 

Product performance can be improved by new process and materials chemistries as well 

as by the model-based optimal design. All models have associated uncertainties, and 

ignoring those uncertainties can largely reduce the increased performance obtained by 

model-based optimization. This thesis considers robust optimization techniques for 

producing designs that are optimal not just for nominal conditions but also in the 

presence of uncertainties.  

This thesis considers the design of Li-ion batteries, motivated both by their 

existing market penetration and in their potential in new applications such as for the 

storage of energy generated by wind power. The robust optimization of Li-ion batteries 

with spatially-varying electrodes was investigated, in which it was found that an optimal 

spatial variation in porosity leads to enhanced robustness in the design. Increases in both 

nominal product performance and in robustness to variations that occur during 

manufacturing both motivate an experimental effort to manufacture such porous 

electrodes.  

This thesis also proposed a new formulation for robust optimization based on 

polynomial chaos expansions, which incorporated analytically computed variances. This 

work considered two case studies: a well-studied batch crystallization process and a Li-

ion battery. It was found that the analytical variance estimates were accurate enough for 

use in a multiobjective optimization for robust optimal design. The computational cost in 

the proposed approach is minimal because once the coefficients of the PCE are known, 
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the variance is computable almost for free. The robust optimization is also more tractable 

when the design variables are represented in the simple polynomial form. 

7.2. Future Work 

While acceptable for a case on robust optimization, the practical value of performing 

robust optimization for a Li-ion battery model with only one electrode being modeled in 

detail are minimal. A Li-ion battery model with a detailed description of all components 

would be more suitable for the robust optimal design of Li-ion batteries. The full 

advantages and machinery of robust optimization techniques would be more apparent for 

such a detailed model, as such as model would be more computationally expensive. 

The new formulation for robust optimization proposed in this thesis should be 

applied to additional systems or processes, to demonstrate its broader utility. The 

mathematical formulation could be incorporated into existing robust optimization 

software packages such as in DAKOTA [17] or MATLAB.  
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