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ABSTRACT 

Breath monitoring is a non-invasive, safe, and repeatable approach to determining 

the health status of humans and other mammals. Breath samples could be detected in two 

ways − directly sensing exhaled breath (EB) or chilling the EB to obtaining the exhaled 

breath condensate (EBC). Each has its advantages and disadvantages but they are both 

affected by different sampling conditions. Additionally, volatile organic compounds 

(VOCs) and nonvolatile organic compounds (non-VOCs) in the breath matrix are retained 

differently under varied sampling conditions. The dearth of information on how sampling 

conditions affect the intrinsic properties of biomarkers in breath and the lack of 

standardization information hinder the use of breath monitoring in clinical use. 

The study aims to develop predictive models to standardize the varied sampling 

conditions of breath temperatures, flow rates, condensing temperatures, and sensing 

durations in EB and EBC sensing. Ethanol (VOC) and H2O2 (non-VOC) were chosen as 

model biomarkers, which were potential biomarkers of liver function and respiratory 

diseases, respectively. A breath output simulator was developed to simulate the conditions 

of exhaled breath. Screen printed carbon electrodes (SPCEs) were used solely or 

immobilized with alcohol oxidase as biosensors for detecting the chosen biomarkers 

amperometrically. Akaike's information criterion, Bayesian information criterion, and 

cross validation were adopted in predictive model selections, and uncertainty analyses 

were surveyed to further clarify the margin of doubt for the measurement of each 

sampling factors.
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Final predictive models were developed for ethanol in EB and EBC, and H2O2 in 

EBC for specific sensing time (5 min) and full sensing duration (3-10 min). Results 

showed that the EBC model for ethanol in 5 min measurement performed a better 

regression result (R2 = 0.9471) than the EB model for ethanol (R2 = 0.8261) and the EBC 

model for H2O2 (R
2 = 0.8261). Furthermore, in 5 min predictive models, both ethanol and 

H2O2 concentrations in EBC samples were affected by condensing temperature, but only 

H2O2 detection was affected by breath temperature and breath rate. The results indicated 

that sampling conditions were more critical and were more constrained for non-VOC 

sensing than VOC sensing. Uncertainty analyses showed that the 5 min EBC predictive 

models had 18.53 – 26.55% percentage uncertainty and the 5 min EB predictive model 

had up to 44.21% percentage uncertainty. The major source of the uncertainties was due 

to the sensing system which included the SPCEs and used enzyme.  
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CHAPTER 1: INTRODUCTION 

Exhaled breath contains hundreds of metabolic products acting as biomarkers of 

animal well-being, physiological and enzyme reactions, and the onset of disease. 

Compared to clinical blood and urine tests, breath monitoring offers several advantages -- 

it is noninvasive, offers a low risk of infection, repeatable, and convenient for long-term 

clinical monitoring.  

Breath monitoring is carried out by sensing exhaled breath (EB) in the gas phase 

directly or passing the EB through a chilled condenser to obtain the exhaled breath 

condensate (EBC) sample in aqueous phase for further sensing. Gas phase sensing 

captures the volatile organic compounds (VOCs) in breath firsthand and minimizes the 

possibility of the self-vaporizing or intermixing with an external gas source or the 

environment. Nonvolatile organic compounds (non-VOCs) are limitedly present in 

aerosolized vapor with a very low level of concentration and place a big challenge on the 

limit of detection. On the other hand, EBC can retain nonvolatile organic compounds 

such as cytokines, isoprostanes, hydrogen peroxide (H2O2) and water soluble VOCs such 

as acetone, ammonia, and ethanol. However, for both phases, sampling conditions such as 

temperature, flow rate and relative humidity are of great interest because they affect the 

different intrinsic properties of each biomarker, such as its solubility, volatility, and 

stability. The dearth of information on how sampling conditions affect the intrinsic 

properties of biomarkers hinders the use of breath monitoring in clinical use. Therefore, 

there is a need to develop predictive models for quantifying biomarker concentrations in 

breath which would be useful in standardization of breath sampling, or collection, for EB 
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and EBC analysis. The development of a robust, portable, low-cost biosensor for EB and 

EBC analysis would also advance breath monitoring in clinical applications. 

The overall objective of this study was to develop an enzyme-based biosensor to 

detect hydrogen peroxide and ethanol in exhaled breath and its condensate while 

considering the effects of sampling conditions on the concentration of these biomarkers. 

The specific objectives of the project were to: 

1. Determine the behavior of VOC in simulated exhaled breath (EB) and exhaled 

breath condensate (EBC) and develop a predictive model under varied sampling 

conditions — using ethanol as the model biomarker. 

2. Determine the behavior of non-VOC in simulated exhaled breath (EB) and 

exhaled breath condensate (EBC) and develop a predictive model under varied 

sampling conditions — using hydrogen peroxide as the model biomarker. 

3. Determine the uncertainties of a breath output simulator and each sampling 

variables to evaluate the accuracy and to identify the major source of error of the 

predictive models. 

This work is creative and original in that standardization of breath collection remains 

elusive and there is a need to develop a low-cost and portable device for breath 

monitoring purposes. In addition, it is among the very first studies to determine the 

decomposition of hydrogen peroxide at low temperatures and high relative humidity. 

Successful completion of the research is expected to have a potentially transforming 

impact on the development of sampling and sensing technologies not only for breath 

analysis, but in other applications of trace gas analysis.   
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CHAPTER 2: LITERATURE REVIEW 

2.1 Exhaled Breath and Exhaled Breath Condensate 

Breath detection, first proposed by Linus Pauling in 1970, involved using gas 

chromatography to analyze more than 200 compounds in the breath matrix (Miekisch et 

al., 2004). Some of those metabolic compounds are promising to be indicators for disease 

diagnosis, symptom exacerbation, or drug effects. 

EB represents the first-hand information in breath and avoids further dilution by 

water vapor, but it has the difficulties in storage. Hence, immediate sensing is necessary 

for preventing possible decomposition or contamination reaction. In terms of EBC, 

researchers have argued that EBC provides better storage options and off-line detection 

than EB, because both non-VOCs and water-soluble VOCs are more stable in liquid 

phase. Therefore, more studies of breath analysis have been conducted by detecting the 

concentration level of biomarker in EBC than in EB. 

EBC is collected by passing EB through a device and cooled down using wet ice, 

dry ice or a cold liquid. EBC usually preserves non-VOCs and water-soluble VOCs at 

trace concentrations, nmol/l to pmol/l (ppbv to pptv) (Horváth et al., 2005). In clinical 

studies, 1-3 ml of EBC is collected from patients, which takes, on average, 10-30 minutes 

of sampling time (Grob, et al., 2008a). The long sampling time impedes practical 

application for clinical diagnosis. Generally, a preconcentration step is needed to reach 

the detection limit of the instrument by removing excess water vapor in the breath sample. 

Solid-phase extraction (SPE), solid-phase microextraction (SPME) or direct cryofocusing 

are widely used preconcentration techniques in EBC detection (Knutson and Viteri, 1996; 
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Grote and Pawliszyn, 1997).  

2.1.1 Biomarkers in Breath 

A biomarker is a substance that can be used as an indicator of disease or well-being. 

Risby (2001) and Miekisch et al. (2004) reported that endogenous biomarkers can be 

classified into four categories: 1) hydrocarbons, such as ethane, pentane and isoprene;  

2) oxygen-containing compounds, such as acetaldehyde, ethanol, and 2-propanol;  

3) sulfur-containing compounds, such as methyl, ethyl mercaptanes, and dimethylsulfide; 

and 4) nitrogen-containing compounds, such as ammonia and dimethyl/trimethylamine. 

Today more than 500 biomarkers are found in breath which can provide important 

clinical information for assessing well-being or diagnosing disease. Changes in the 

biomarker concentration and overall breath composition over time can be correlated to a 

range of health conditions and diseases (Table 1).  

Unrelated to alcohol consumption, ethanol levels in breath are associated with intake 

of carbohydrate (e.g., glucose) and overgrowth of bacteria or yeast in the digestive 

system. Ethanol and acetone are also presumed biomarkers to determine blood glucose 

level (Galassetti et al., 2005). Risby (2001) and Cope et al. (2000) determined that the 

regulation of gut bacteria and obesity in mice were correlated to breath ethanol.   

H2O2 is one of the reactive oxygen species used to evaluate the level of oxidative 

stress in respiratory systems of humans and other mammals (Grob et al., 2008; Kostikas, 

2003; Loukides et al., 2010; Deaton et al., 2004; Kirschvink et al., 2005). H2O2 levels 

have been correlated with lung-related inflammation, such as bronchial 

hyperresponsiveness, bronchoconstriction (Hulsmann et al, 1994), neutrophil priming 
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(Oudijk et al., 2006), and eosinophilic inflammation (Loukides et al., 2002). H2O2 levels 

in healthy adults range from 0.01 nM to 0.45 µM in EBC (Nowak et al., 2001) and 

increase significantly at the onset of pulmonary inflammation.  
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Table 1. Biomarkers in exhaled breath and its condensate are related to several health conditions and diseases 

Biomarker 
Typical “healthy” 

levels
 

(ppb
1
) 

Elevated levels 
 

(ppb) 
Clinical condition Source 

Acetaldehyde 244 ± 172  Liver function Turner et al. (2006b) 

Acetone 477 ± 1.583  Diabetes Turner et al. (2006d) 

363   Španel et al. (2007) 

Ammonia 833 ± 1.623  Kidney function Turner et al. (2006d) 

317   Španel et al. (2007) 

Ethanol 196 ± 2442  Liver function and elevated levels of gut  

 Bacteria 

Turner et al. (2006b) 

104   Španel et al. (2007) 

Hydrogen 
peroxide 

569 ± 29.74 

 

3970 ± 8683 Airway inflammation,  

COPD5 

Becher et al. (2005) 

3103 6603  Kostikas et al. (2003) 

 4803  Nowak et al. (1999) 

Isoprene 118 ± 682  Cholesterol biosynthesis Turner et al. (2006c) 

Methanol 450± 1.623  Abnormally high gut  flora associated with  

 renal failure 
Pancreatic insufficiency 
Carbohydrate malabsorption 

Turner et al. (2006a) 

Nitric oxide 10 to 33 6 to 98 Airway inflammation, asthma Grob et al. (2008b) 

 >19  Grob et al. (2008c) 
1ppb = parts per billion; 2Concentrations are reported as mean with a standard error; 3Concentrations are reported as geometric mean with a geometric standard 
deviation; 4Concentrations are reported as nmol/l; 5COPD = chronic obstructive pulmonary disease 
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For simulating H2O2 in EB, the intrinsic properties of H2O2 should be considered. 

Commercial H2O2 (3-30% w/w) is relatively stable below room temperature but it has the 

tendency to decompose exothermically into oxygen and water. In previous studies the 

decomposition rate of H2O2 was evaluated at temperatures between 100 and 280°C, 

disregarding any effects from relative humidity (Lin and Smith, 1991). In exhaled breath 

sampling and sensing, H2O2 decomposition needs to be minimized or monitored for 

accurate measurements of H2O2 levels from the airway. Temperature, pH, and other 

impurities can affect the decomposition of H2O2. An increase of 10°C in the 20 to 100°C 

temperature range increased decomposition rates by a factor of 2.2 (Stellman, 1998). The 

decomposition rate of H2O2 is usually determined under ambient relative humidity 

conditions (less than 75%). Since exhaled breath is saturated (greater than 95% relative 

humidity) and is at lower temperatures 307-315 K (34-42°C), the decomposition rate for 

H2O2 at these conditions needs to be determined. EBC pH is also an indicator of lung 

inflammation or airway disease when it is lower than 7.5. For example, breath pH of 5.23 

± 2.1 is correlated to asthma exacerbation and breath pH of 6.97 has been measured for 

patients with chronic obstructive pulmonary disease (Horváth et al., 2005; Grob et al., 

2008a). 
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2.1.2 Collection Techniques and Devices 

Exhaled breath is usually collected by a mouthpiece or a facemask (Figure 1). It is 

more common to use mouthpieces for humans to obtain a larger volume of exhaled breath 

and shorten collection time. Cattle are mainly nose breathers and facemasks provide an 

easier attachment to their head and ease discomfort (Reinhold and Knobloch, 2010).  

EBC is collected by user-designed or commercial devices with a cooling system to 

cool it down to at least 10oC and up to -70°C. Four major types of commercial devices – 

RTubeTM, ECoScreen®, TURBO-DECCS, ANACON – have been used in several studies 

(Figure 2). The fundamental mechanism of those devices is to provide a cooling sleeve 

wrapped around a collection tube to facilitate the condensation process. The mouthpieces 

and condensate collectors are mostly single-use, disposable tubes that do not require 

cleaning between sampling.  

   

(a)                       (b) 

Figure 1. Typical EBC sampling collection devices include (a) a mouthpiece, 

www.rtube.com/products-rtube.htm and (b) facemask designed for a conscious horse, 

www.homeofrestforhorses.co.uk/Horse-Trust-Funded-Research-Leads-to-New,-Non-Inva

sive-Ways-of-Assessing-Respiratory-Health-in-Horses/. 
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RTubeTM (Respiratory Research, Inc, Charlottesville, VA) uses an aluminum jacket 

as a cooling sleeve which is cooled at least one hour ahead in a freezer to provide a 

cooling temperature of -20 or -70°C. The sleeve is then wrapped around a condenser 

made of polypropylene (Prieto et al., 2007; Czebe et al., 2008; Davidsson and Schmekel, 

2010). It is portable and the collection tube is disposable, but collection time increases 

with the temperature of the cooling sleeve. RTubeTM is more commonly used in breath 

analysis research conducted in the U.S. (Hunt, 2007).  

ECoScreen® (Erich Jaeger GmbH, Wűrzburg, Germany) uses an aluminum tube 

with double lumen lamellar Teflon-coating and a condenser made of polypropylene. 

Refrigeration via an electric system is turned on at least 40 minutes before sampling 

(Czebe et al., 2008, Davidsson and Schmekel, 2010). Cleaning is necessary between 

sample collections. Most EBC research conducted in Europe chooses ECoScreen® as 

their collection device (Hunt, 2007).  A transportable unit for research on biomarkers 

obtained from disposable exhaled condensate collection systems (TURBO-DECCS, 

ItalChill, Pharma, Italy) uses a Peltier module to adjust the condensing temperature of a 

condenser down to -10°C (Goldoni et al., 2005).  

ANACON (Biostec, Valencia, Spain) applies a thermoelectric pump to cool a 

glass-surface condenser (Romero et al., 2006; Czebe et al., 2008). In condensing 

temperature regulation, ECoScreen® and ANACON presented a better stability than 

RTubeTM and Turbo Deccs (Goldoni et al., 2005; Czebe et al., 2008; Hoffmeyer et al., 

2009). Comparatively, RTubeTM and ECoScreen® are referred to in EBC publications 

more than TURBO-DECCS and ANACON in EBC publications (Hunt, 2007). 
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The effect of different materials used in collection devices on EBC quality and a 

comparison among the commercial collectors are well-documented. Soyer et al. (2006) 

found ECoScreen® was more sensitive and larger volumes of EBC could be collected for 

protein and lipid analysis. Condensers made of glass, silicon and EcoScreen® 

significantly affected the condensate volume and biomarker detection, and glass 

presented better efficiency than other two (Rosias et al., 2008). Moreover, the inner 

coating of the condenser also interferes with the biomarker concentrations. Rosias et al. 

(2006) found higher 8-isoprostane and albumin concentrations were collected when 

silicone or glass coating were used instead of EcoScreen®, aluminium, polypropylene and 

Teflon. Although the materials used in the condenser significantly affected the biomarker 

level in exhaled breath condensate, no particular device can deliver ideal results for a 

wide range of analytes (Liu et al., 2007). 
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(a)                                  (b)                      

     
(c)                                  (d)                      

         
          (e) 

Figure 2. EBC collection device. (a) user-designed condensing device (Mutlu et al., 2001); 

(b) R-Tube (Chapman et al., 2010); (c) ECoScreen® (Montusch, 2007); (d) TurboDECCS, 

source: ttp://www.ascencia.com.au/brochures/English%20Brochure%20Turbo%20Deccs- 

%20%20EBC.PDF); (e) ANACON (Romero et al., 2006). 
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2.2 Factors that Influence Breath Collection 

Direct EB collection produces less exogenous contamination but it is difficult to 

capture non-VOCs which are only present in small droplets. Non-VOCs are better 

retained in the EBC but large amounts of water vapor significant dilute non-VOCs. 

Several studies have been conducted to determine how a number of factors affect the 

concentrations of both VOC and non-VOC biomarkers. 

In general, factors that could influence breath biomarker concentrations can be 

classified into three categories – conditions of subject, sampling conditions, and post 

analytical processes. Conditions of subject include temperature and pH of airway lining 

fluid, breathing rate or breath flow rate, contamination by upper airways and mouth, and 

intra-subject diurnal activities (Montuschi, 2007; Chapman, 2010). Temperature and pH 

lead to changes in intrinsic properties of biomarkers, such as its volatility and solubility 

(Hunt, 2007). Bell and Flack (1995a,b) reported breath alcohol levels can vary with EB 

temperature. Reinhold et al. (2006) measured breath pH and carbon dioxide levels and 

found them to be affected by airflow rate during EBC collection. Schleiss et al. (2000) 

noted hydrogen peroxide concentrations were also flow-dependent, while others reported 

malondialdehyde and adenosine levels in breath were flow-independent (Huszar et al., 

2002; Corradi et al., 2003).  

Sampling conditions are related to condensing temperature, collection device 

materials, collection time, dilution, pH of EBC, contamination from ambient air, and 

cross reactions in EBC matrix (Hunt, 2007; Montuschi, 2007; Chapman, 2010). Horváth 

et al. (2005) found that lower condensing temperatures stabilized unstable mediators, 

such as leukotrienes and purines, and the solubility of ammonia was proportional to the 
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sampling temperature. Higher acetone concentrations were found in condensate when a 

lower condensing temperature (-50, -20, and 0 °C) was applied (Loyola et al., 2008). 

Conversely, H2O2 were present at lower concentrations in the condensate when collected 

at lower temperatures (-10, -5, 0, and +5 °C) (Goldoni et al., 2005). For varied sampling 

time (3-20 min), no significant difference was found between pH, concentrations of H2O2, 

8-isoprostane, adenosine, nitrite/nitrate, and malondialdehyde (Vaughan et al, 2003; 

Horváth et al., 2005). Hunt (2007) claimed the level of VOC was irrelevant with turbulent 

status of breath and dilution factors. Post analytical processes cover possible pretreatment 

procedure (e.g., preconcentration, separation), reference standard using in quantification 

device (e.g. mass spectrometry), and validation method (Montuschi, 2007).  

 

2.3 Analytical Methods 

Early breath research relied on gas chromatography (GC) and mass spectrometry 

(MS) for quantifying biomarker concentrations with great sensitivity at ppb to ppm level. 

Since 2000, several techniques and improvements over traditional GC and MS have been 

developed to improve the sensitivity and specificity of bench-scale analytical instruments, 

such as PTR (proton transfer reaction)-MS and optical absorption, or to improve 

real-time sensing with a portable device, such as and electronic nose or biosensor.  

 

2.3.1 Laboratory Techniques 

GC is one of the most commonly used methods to measure trace concentrations 

(parts per billion (ppb) to parts per trillion (ppt) levels) of VOC in breath (Mueller et al., 

1998). It can be coupled to other instruments, such as flame ionization detection 

(GC-FID), mass spectrometry (GC-MS), and ion mobility spectrometry (GC-IMS) to 
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improve sensitivity and selectivity. Preconcentration procedures (e.g., SPE, SPME, 

cryofocusing) are necessary by using suitable adsorbents or fibers before injecting sample 

into GC-related instruments (Francesco et al., 2005). 

The principle behind proton transfer reaction mass spectrometry (PTR-MS) and 

selected ion flow tube mass spectrometry (SIFT-MS) is the ionization of trace gas 

analytes by proton transfer with generating precursor ion in a flow-drift tube. The 

quantification results are obtained from the ratios of ion count rates using the known 

reaction rate constants which are analyzed by a quadrupole mass spectrometer. SIFT-MS 

has been used in longitudinal studies where key biomarkers (ethanol, methanol, acetone, 

acetaldehyde, and isoprene) were monitored to determine the base concentrations for 

“healthy” individuals (Dahnke et al., 2001; Turner et al., 2006a-d). The main difference 

between these two methods is that PTR-MS can only generate H3O
+
 as the precursor ion 

while SIFT-MS can generate multiple precursors, such as H3O
+, NO+, and O2

+, to present 

a better chemical resolution in identifying sample species and concentration level (Ross, 

2008).  

Optical absorption spectroscopy has the virtue of real-time sensing and high 

sensitivity (ppb-level). Niox Mino® (Aerocrine AB, Solna, Sweden) is a handheld 

commercial product based on chemiluminescent reaction for sensing nitric oxide in 

exhaled breath (Alvin et al., 2006). Colorimetric assays can also be performed to measure 

8‐isoprostane, H2O2, and nitrate and nitrite concentration on collected EBC samples (Van 

Hoydonck et al., 2004; Cruz et al., 2009). 
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An electronic nose, a single chemical sensor for certain substance or an 

array-designed sensor for multiple substances, can be used to measure trace biomarkers 

in breath by monitoring changes in electrical signal, such as resistance, electron-volt, or 

vibration frequency (Fleischer et al., 2002; Dragonieri et al., 2009). The detection limits 

of electronic noses vary according to the type of polymer sensors used and the different 

VOC concentrations (Biller et al., 2011). Cyranose 320® (Smiths Detections, Pasadena, 

CA, US) is a commercially available electronic nose that has been demonstrated to be 

effective for lung cancer detection (Machado et al., 2005). In addition to the methods 

mentioned above, a summary of their advantages, disadvantages and sensitivities are 

listed in Table 2.  
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Table 2. A comparison of analytical methods used in breath analysis 
Analytical Method Advantages Disadvantages Sensitivity Reference 

GC      
 GC-FID 

 
Quantitative Sample destroyed ppb Phillips and Greenberg (1991) 

 High Sensitivity   Cheng and Lee (1999) 
 Low noise   Cao and Duan (2007) 
 Large linear response range    
 Reproducible    
 GC-MS  

 
Qualitative Off-line detection sub-picomolar Cheng and Lee (1999) 

 Identify isotope compound  ppb - ppm Daughtrey et al. (2001) 
    Giardina and Olesik (2003) 
    Cao and Duan (2007) 
 GC-IMS 

 
Quantitative  
High selectivity 

 0.4 and 0.5 µg/L 
(acetone and ethanol) 

Lord et al. (2002) 

Reproducible    
 Relatively portable and  

 Inexpensive 
 ppb Cao and Duan (2007) 

PTR-MS  

 

Quantitative  
High sensitivity  
No concentration and  
 separation procedures 

Proton affinity of the analyte 
needs to be higher than water to 
be detected  

ppt-ppb Hansel et al. (1995)  
Boschetti et al. (1999)  
Karl et al. (2001)  
Williams et al. (2001) 

       Real-time     Cao and Duan (2007) 
SIFT-MS 

 

Quantitative 
No preconcentration  
 and separation procedures 
Real-time 
Able to measure water 
saturated samples  
 

 ppb 
83 ppb (SD ± 45 ppb) 
(isoprene) 
  

Cheng and Lee (1999) 
Španel et al. (1999)  
Smith and Španel (2005) 
Cao and Duan (2007) 

Optical Absorption                           Real-time 
Portable 

Lower specificity than MS 100 ppt (Ethane)   Skeldon et al. (2005)  

  Cao and Duan (2007) 
 High-resolution  

 mid-IR1 TLAS2 
Real-time  1.5 ppb (NO) Roller et al. (2002a, b)  

Cao and Duan (2007) 
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Table 2. (Continued) 

 IR absorption 
spectroscopy  

Cheaper than LARA3  
 and IRMS4 

Few breath samples at a time  Gisbert and Pajares (2004) 
BreathTek UBiT system (2006)  

Analytical Method Advantages Disadvantages Sensitivity Reference 

 UV absorption 
spectroscopy 

High linearity  
High accuracy 

    Baum et al. (2003)  
  Cao and Duan (2007) 

 Cavity ringdown 
spectroscopy  

Portable Sensitive to high moisture 1.5 ppm (acetone) Wang et al. (2004)  
Cao and Duan (2007) 

 Chemiluminesence  High sensitivity 
Portable 

 ppb Cheng and Lee (1999)  
 

 FTIR3 Real-time Can't differentiate compounds 
with same functional group 

ppb Cheng and Lee (1999) 

Electrochemical  

 Sensor 

Portable  
Easy to operate 

Limited sensitivity 0.1 ppm Cheng and Lee (1999)  
Wilson and Baietto (2009) 

Small volume sample    
Biosensor High sensitivity   ppt-ppb Cheng and Lee (1999) 
  High specificity    
  Real-time    
 Electronic nose  

 
High sensitivity  
Portable 

 2-100ppb (NO) 
ppm 

Fleischer et al. (2002)  
Biller et al., (2011) 

 QCM/QMB 
(Quartz crystal  
 microbalance) 

High sensitivity  
High selectivity  
Reproducible 
Real-time for multi- 
 Components 

Poor signal-to noise ratio 
Sensitive to humidity 
Sensitive to temperature 

 Huang et al. (2005) 
Cao and Duan (2007) 
Wilson and Baietto (2009) 
Wilson and Baietto (2009)   

 Micro-Plasma No preconcentration and  
 separation 

 ppb (acetone) Cao and Duan (2007) 

  Less matrix effects    
  Low construction and  

 maintenance cost 
   

    No influence of the large  
 amount of water vapor  

      

1IR= Infrared spectroscopy; 2TLAS=Tunable-laser-absorption spectroscopy; 3LARA=Laser-assisted ratio analyzer;  
4IRMS= Isotope ratio mass spectrometer; 5FTIR= Fourier transform infrared spectroscopy. 
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2.3.2 Biosensor 

A biosensor is an analytical device that is composed of two parts – a bioreceptor (e.g. 

enzyme, antibody, tissue, or receptor) and a transducer (e.g. electrochemical, optical, 

piezo-electric, or thermal sensors). A bioreceptor reacts with a specific analyte while the 

transducer is used to measure the changes in properties or quantities in the form of 

current, frequency, heat, etc. (Figure 3).  

The bioreceptor is typically immobilized on the transducer to enhance the specificity 

and sensitivity of the device. Immobilization methods are mainly categorized in five 

types – adsorption, entrapment, covalent bonding, crosslinking, and microencapsulation 

(or membrane confinement) (Figure 4) (Eggins, 2002; Chaplin, 2004). Adsorption is the 

simplest method for implementation but is also very weak, relying solely on van der 

Waals bond through electrostatic force. Entrapment involves mixing the bioreceptor in a 

gel or polymer (e.g., polyacrylamide, starch, agarose, gelatin) to trap bioreceptors in the 

resulting film matrix. The matrix typically acts as a diffusion barrier and can slow down 

the sensing mechanism. Covalent bonding involves coupling functional groups, such as 

carbonyl, amino, or hydroxyl groups, between bioreceptors and the transducers. 

Immobilization by covalent bonding offers the most stable form, lasting from 4-14 

months (Eggins, 2002). Crosslinking reagents, such as glutaraldehyde, bis(succinimidyl 

esters), and diacid chlorides (Haugland, 2002) can be used to bind bioreceptors to a 

supporting material or directly to the transducer. Crosslinking is widely used in 

conjunction with other methods, such as entrapment and microencapsulation, in 

stabilizing enzymes and preventing leakage (Palmer, 2001). Microencapsulation forms a 

semi-permeable membrane to trap the bioreceptors inside a membrane and prevents its 
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leakage while allowing the substrate or analyte to pass through. Alginate, cellulose 

acetate, polycarbonate and collagen are commonly used biomaterials to form the 

membrane (Eggins, 2002; Taqieddin and Amiji, 2003). The loading of bioreceptor, 

immobilization method, pH, and interference due to cross reactions between molecules 

with similar conformation greatly affect a biosensor’s sensitivity, selectivity, accuracy, 

response time and working lifetime.  



 

20 
 

 

Figure 3. Biosensors are composed by bioreceptors and transducers which are bound with each other using immobilization 

techniques. The measured level of target analyte is presented by types of signal change due to different transducers.   

 
 Figure 4. Enzyme immobilizations were mostly categorized in five types. Adapted from 

www.lsbu.ac.uk/biology/enztech/immethod.html#tab3_3.  
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CHAPTER 3: MATERIALS AND METHODS 

3.1 Reagents 

Alcohol oxidase (AOX, E.C. 1.1.3.13, 30 U/mg protein) from Pichia pastoris was 

purchased from Sigma Aldrich (St. Louis, MO). Bovine serum albumin (BSA, 96% w/w), 

glutaraldehyde (25% w/w), potassium phosphate monobasic, methanol (99.8% w/w), 

ethanol (99.5% w/w), acetone (≥99.5% w/w), acetaldehyde (99% w/w), and hydrogen 

peroxide (30% w/w) were of analytical reagent grade and purchased from Sigma-Aldrich 

(St. Louis, MO). Potassium phosphate buffer solution (100 mM, pH 7.4) was prepared 

using deionized water and stored at 4oC until use. Immediately before testing, all the 

biomarker solutions were prepared in potassium phosphate buffer solution to hold a 

neutral pH condition.  

 

3.2 Breath Output Simulators  

A breath output simulator was designed and built to simulate the expiration of breath 

biomarkers, such as ethanol and hydrogen peroxide (Figure 5). A volume of compressed 

air was humidified by bubbling it through an aqueous solution containing one of these 

biomarkers. The humidified air exiting the bubbler was considered as the simulated 

exhaled breath. 
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Figure 5. The breath output simulator was used to simulate exhaled breath by humidifying compressed air using an aqueous solution 

of a biomarker. The concentrations of the biomarkers in the simulated exhaled breath sample were measured amperometrically at the 

gas phase and condensed (liquid) using enzyme-coated electrodes. 
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Figure 6. The overall diagram of sampling and sensing system was shown. 

Flow rate was manually controlled using a valve and measured using a shielded flow 

meter (GF-1260 and GF-1360, Gilmont, Barrington, IL). Typically, exhaled breath flows 

through the trachea of a healthy person under laminar conditions and the Reynolds 

number is estimated to be around 1600 to 2000 (Chang and Mortola, 1981; Ultman, 

1985). The Reynolds number of the simulated exhaled breath in this study was set at 957 

and 1833 to simulate laminar conditions for average, healthy individuals.  

The simulated breath was maintained at saturated conditions (> 95% relative 

humidity) through the bubbler, which was monitored using a humidity sensor (HIH-4000, 

Honeywell Sensing and Control, Valley, MN). The bubbler was submerged in a water 

10 cm condenser
Breath output simulator 

(BOS)

EB sensing 

chamber

potentiostat

EB sensing chamber

CoPC SPCE

2 cm
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bath (DigitalOne, Thermo Scientific, Newington, NH) and the temperature was adjustable 

to 295, 307, 310, and 315 K. The temperature of the humidified air was monitored using 

a datalogging thermometer (HH309A, MEGA Engineering, INC., Stamford, CT). These 

temperatures corresponded to room temperature, exhaled breath temperature from the 

mouth, blood and alveolar air temperature, and extremely high fever temperature that can 

cause brain damage (Begg et al., 1964; Jones, 1982 and 1995; Yamamoto and Ueda, 

1972). The simulated exhaled breath either passed through a chamber for vapor phase 

sensing or was delivered to a condenser to cool it down to 274 K or 256 K in an ice bath. 

The latter condition was achieved using a condenser bath containing 1:8 weight ratio of 

sodium chloride and ice mixture. Sodium chloride was purchased from Sigma-Aldrich (St. 

Louis, MO). The condensate was collected in 10 minutes to obtain 105-700 µl samples in 

the case of H2O2 (Figure 7). 

 

Figure 7. EBC volumes collected for 10 min increased with increasing simulated exhaled 

breath temperature at Tc = 274 K. 
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3.3 Biomarker Measurements 

3.3.1 Henry’s law 

The concentrations of the biomarkers in the simulated exhaled breath were 

calculated using Henry’s law. Henry’s law states that at a constant temperature, the 

amount of a given solute (or gas) dissolved in a given type and volume of liquid is 

directly proportional to the partial pressure of that gas in equilibrium with that liquid: 

,
P

c
kH =    (1) 

where kH is Henry’s law constant for a given solute (mol/L·atm); c is the concentration of 

the solute (mol/L); and P is the partial pressure of the solute in the gas above the solution 

(atm). kH is used for describing the solubility of the solute in water and it is related to the 

solute volatility, px

invHk ,  
by 

,
2

2

,
HoH

OH

a

px

invH
kMx

p
k

×
==

ρ
  (2) 

where xa is the molar mixing ratio in aqueous phase; ρH2O is the density of water; MH2O is 

the molar mass of water.  

Henry’s law constant kH varies with temperature (Equation 3). kH at 298.15K and 

∆solnH/R values for ethanol and hydrogen peroxide may be estimated using the average 

values collected from previous studies (Sander, 1999). The empirical values are shown in 

APPENDIX A. 
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where ∆solnH is the enthalpy of solution; R is the universal gas constant, 8.314 J/K⋅mol; T1 

is the temperature under standard condition (298.15K); and T2 is the sample temperature.  
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Based on the published k TH 1,  and ∆solnH/R values, aqueous ethanol and hydrogen 

peroxide were prepared and used as stock solutions in the bubbler (○○○○1  in Figure 6) to 

produce the expected concentrations of biomarkers. The conversion between aqueous and 

gas phases was calculated under standard conditions (298.15K, 1 atm) (Tables 3).  
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Table 3. The Henry’s law constant of ethanol and H2O2 under different temperatures 
Ethanol (ρ = 0.789 g/ml, FW = 46.07 g/mol, ∆solnH/R = 6500 K, kH,T=298.15K =184 M/atm) 

Breath 

Temperature,  

Tb 

(K) 

kH 

 

 

(M/atm) 

��,���
�	  

 

(atm) 

Aqueous 

Concentration  

% (w/w) 

in the bubbler 

Aqueous 

Concentration 

(mM)  

in the bubbler 

Vapor 

Concentration, 

CV 

(ppm) 

295 221.29 0.00025 

0.00517 0.885 4 

0.00646 1.106 5 

0.00969 1.660 7.5 

307 97.08 0.00057 

0.00227 0.388 4 

0.00283 0.485 5 

0.00425 0.728 7.5 

310 79.09 0.00070 

0.00185 0.316 4 

0.00231 0.395 5 

0.00346 0.593 7.5 

315 56.70 0.00098 

0.00132 0.388 4 

0.00166 0.485 5 

0.00248 0.728 7.5 
H2O2 (ρ=1.463 g/ml, FW=34.015 g/mol, ∆solnH/R=7062.5 K, kH,T=298.15K =77888.89 M/atm) 

Breath 

Temperature, 

Tb 

(K) 

kH 

 

(M/atm) 

px
invHk ,   

 

(atm) 

Aqueous 

Concentration  

% (w/w) 

in the bubbler 

Aqueous 

Concentration 

(mM)  

in the bubbler 

Vapor 

Concentration, 

CV 

(ppb) 

295 99101 0.00056 

0.058 24.8 250 

0.115 49.6 500 

0.230 99.1 1000 

307 38898 0.00143 

0.023 9.7 250 

0.045 19.4 500 

0.090 38.9 1000 

310 31139 0.00178 

0.018 7.8 250 

0.036 15.6 500 

0.072 31.1 1000 

315 21695 0.00256 

0.013 5.4 250 

0.025 10.8 500 

0.050 21.7 1000 
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3.3.2 Sensor Preparation 

Screen-printed carbon electrode (SPCE), DRP-410, purchased from Metrohm USA 

Inc. (Riverview, FL), was composed of three parts − a carbon-based working electrode 

containing cobalt phthalocyanine (CoPC) (12.56 mm2) as electrochemical mediator, a 

counter electrode made of carbon paste (1.45 mm2), and a reference electrode (2.2 mm2 

area) made of silver paste (Figure 7). The oxidation of H2O2 was measured through the 

oxidation of 2Co+ to Co2+. Hence, the bare SPCE was directly used as a H2O2 sensor. For 

the ethanol sensor, AOX was immobilized on the cell by dropcoating a 2 µl aliquot of 

mixture containing glutaraldehyde and the enzyme on the working electrode of a CoPC 

SPCE. The immobilization process stabilized AOX on SPCE and favored higher current 

responses than non-immobilized AOX assays (APPENDIX B). Glutaraldehyde 

concentration was 1.5 % (v/v) to present a better performance (APPENDIX C). The 

mixture was allowed to dry for 2 to 2.5 h at room temperature (Figure 8). AOX is an 

enzyme that catalyzes oxidation of alcohols and us unable to bind with ketones or 

aldehydes. During the AOX-catalyzed oxidation of ethanol, H2O2 was measured using the 

CoPC SPCE. Therefore, the concentration of ethanol could be detected indirectly. 
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Figure 8. Sensor preparation and sensing process were involved dropcoating enzyme solutions on the working electrodes of the screen 

printed carbon electrodes.   
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3.3.3 Amperometric Measurements 

A portable USB potentiostat (WaveNow, Pine Research Instrumentation, Raleigh, 

NC) was used to measure the redox reaction occurring on the sensor surface. In 

preliminary tests and previous studies, hydrogen peroxide showed a cathodic (reduced) 

peak around +400 mV vs. Ag/AgCl (Boujtita et al., 2000; Danao et al., 2007), resulting in 

a linear response to increasing concentrations of hydrogen peroxide in amperometric 

measurement (Figure 9 a,b). 

 
(a)                                   

 

(b) 

Figure 9. (a) Amperometric measurement of H2O2 solutions increased linearly with 

increasing levels of H2O2 from 0-0.12% (w/w) and (b) the corresponded calibration curve.  
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3.4 Data Analysis 

3.4.1 Signal Processing  

For vapor phase measurements, the electrode was exposed to ambient air for a 

period of 30 s prior to coating the electrode with 20 µl of potassium phosphate buffer. 

After 60 s, the electrode was inserted into the test chamber and the amperometric 

response for the simulated exhaled breath sample was recorded for the rest of 8 minute 

and 30 s (Figure 10). Similarly, for condensate (liquid) phase measurements, the electrode 

was exposed to ambient air for 30 s prior to coating the electrode with 50 µl of 

condensate sample in biomarker sensing.   

In most condensate samples, the current response gradually stabilized after 5 min, 

but the current did not fully stabilize after 5-10 min measurement in vapor samples. The 

sampling rate of current response was set at 3 s. In order to minimize the background 

noise, the current response at X s is averaged from the current response from (X - 3) s to 

(X + 3) s, or central averaging (Equation 4). 

( ) ( )( )
3

33 sXXssX

sX

III
I

+− ++
=   (4) 

For signal extraction of different sensing duration, current from t = 3, 4,…, 10 min, 

Itmin, was considered as a signal from the sample, and noise (or background value) was 

taken from current at 2 min (I2min) for vapor and at 15 s (I15s) for condensate. The data 

were processed in three ways – subtraction, ratio, and slope (or differentiation) (Figure 11) 

for filtering out noises from signals. 
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Figure 10. The current response, IV/C, for the breath biomarker was recorded for 10 min. IV at 2 min (120 s) and IC at 15 s were taken as 

baseline values (background signals) for vapor and condensate samples individually. The case here was from the results of ethanol 

samples. 
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Figure 11. Three ways of signal processing were evaluated for data collected from vapor 

and condensate samples. Ethanol vapor concentrations were calculated based on Henry’s 

law. The case here was from the results of ethanol samples at 5 min from Tb = 310 K. 

Dashed lines represent linear regression results.  
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3.4.2 Model Selections  

Current responses were determined to be a function of parameters (variables) of the 

sampling conditions. Initial models, which included the sampling/sensing parameters and 

the two-way interaction terms from the parameters, were tested through a model selection 

process using Akaike's information criterion (AIC), Bayesian information criterion (BIC, 

or Schwarz criterion, SBC), or cross validation (CV). 

AIC, which was first published by Hirotsugu Akaike in 1974, is used for comparing 

nested models and provides a criterion to choose the best compromised model between 

the goodness of fit and the numbers of parameters included in the model based on the 

theories of maximum likelihood, information and entropy (Akaike, 1974; Motulsky and 

Christopoulos, 2004). AIC is calculated as: 

kLAIC 2)ln(2 +−=    (4) 

where L is the maximized likelihood of the estimated model; k is the number of 

parameters in the model. If the model presented constant variance, then it also can be 

written as:  

k
n

RSS
nAIC 2)ln( +=    (5) 

where RSS denotes residual sum of squares and n is the number of data. Burnham & 

Anderson (2002) proposed to use AICc instead of AIC when k is larger and n is small.  

( )
1

12

−−
+

+=
kn

kk
AICAICc    (6) 

For the data in this project, the number of k and n were of adequate size for employing 

the AIC method. A set of models containing all possible combinations of 

sampling/sensing parameters and the two-way interaction terms were created and the AIC 

value for each combination was calculated. Models with low AIC values were pursued 
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further in developing the predictive model.  

The BIC was proposed by Gideon E. Schwarz in 1978 and is presented as:  

( ) ( )nkLBIC lnln2 +−=    (7) 

BIC is more stringent than AIC due to the heavier penalty term of k�ln(n) than 2k in AIC. 

There are some arguments about whether AIC or BIC can provide a better fitting in data 

explanation and the possibility of overfitting or underfitting. However, there is no clear 

answer and is case-dependent.   

Cross validation, which was also a means of prediction error estimation, was carried 

out by the k-fold cross validation here. The original dataset was partitioned into k fold 

nearly equally and k = 10 was commonly used in the field of data mining (Refaeilzadeh et 

al., 2009). (k - 1) fold was randomly chosen in a certain times of iterations to serve as a 

training (learning) set to develop a predictive model and the remaining one fold was used 

as a test set for validating the predictive model. In each iteration, the sum of mean 

squared error in the test set was calculated. By comparing the values, the model with a 

minimum sum of mean squared error was pursued further in developing the predictive 

models. 

Models selected by AIC, BIC, and CV were subjected to a multifactor analysis of 

variance (or factorial ANOVA) that contained factors of vapor concentration of model 

biomarker (CV, ppb or ppm, at ○2  in Figure 5), temperature of the simulated exhaled 

breath from the bubbler (Tb, K, at ○1  in Figure 5), breath (flow) rate (�� , liter per minute 

(LPM), at ○2  in Figure 5), temperature drop in vapor sensing (∆T = temperature at ○1  – 

temperature at ○3 , in Figure 5, K), condensing temperature (Tc, K, at ○4  in Figure 5) in 



 

36 
 

condensate sensing. In each case, three replications were taken in each test. Three 

methods of data processing (subtraction, ratio, slope) and four sensing duration (3, 5, 10, 

and 3-10 min) were evaluated. All the statistical analyses were computed in R 

environment (version 2.11) and the complete codes are listed in APPENDIX D. The final 

predictive models were chosen in consideration of a shorter sensing duration and a bigger 

R
2 (Figure 12).  
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Figure 12. A predictive model was chosen based on the results of model selections and 

ANOVA tests. (The example is from ethanol condensate sample in 5-min sensing time. 
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CHAPTER 4: RESULTS AND DISCUSSION 

Ethanol and H2O2 were chosen as model biomarkers in EB and EBC sampling and 

sensing. Vapor and condensate samples were collected at four simulated concentrations 

(CV) and breath temperatures (Tb) − 295, 307, 310, and 315 K. Samples collected at 310 K 

were also sampled from two flow rates(V& ), 3.438 and 6.876 LPM (Reynolds numbers are 

equal to 957 and 1833), and condensate samples were condensed at two condensing 

temperature (TC), 276 and 264 K. The effect of sensing duration was determined at 5 and 

10 min. 

4.1 VOC Detection in Breath ———— Ethanol as the Model Biomarker 

Ethanol vapor with concentration of 4, 5 and 7.5 ppm (○2  in Figure 5) were 

produced from the prepared stock ethanol solution in the bubbler (○1  in Figure 5). The 

concentrations of stock solutions were calculated based on Henry’s law (Table 3). As the 

concentration of ethanol in the stock solution increased, the current response increased. 

The concentrations of stock ethanol solutions at each simulated breath temperature and 

the current responses are demonstrated a linear trend and shown in Figure 13a. The x-axis 

can be converted into corresponding calculated vapor concentrations for comparison 

Lower current responses were found at higher Tb even when they were calculated to 

present the same vapor concentration (Figure 13b). 
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(a)                                      (b) 

Figure 13. The relationship between current response and (a) stock ethanol concentration 

and (b) calculated ethanol vapor concentration in simulated exhaled breath sample across 

the range of temperatures used in this study was linear. Results shown are for one test 

replication. 

4.1.1 Temperature 

Current measurements due to ethanol vapor and condensate typically increased 

linearly as CV increased (Figures 14). In general, the higher the Tb, the lower the current 

response derived for the same CV. The results were possibly due to further water 

condensation with increasing Tb. Moreover, higher current responses were found in the 

results from 10 min sensing duration compared to 5 min sensing duration for vapor 

samples, but the effect was not seen with condensate samples.  
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Figure 14. Current measurements due to the level of ethanol present in the vapor and 

condensate samples increased with increasing temperature. All points were averaged 

from three replicate samples. Dashed lines represent linear regression results. 

Current responses for condensate samples were higher than the current responses for 

vapor and stock solution after 5 min of sensing (Figure 15). When the sensing time was 

extended to 10 min, vapor samples had the highest current responses, followed by 

condensate and stock solution, respectively.  
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Figure 15. Current measurements due to the level of ethanol present in vapor, condensate, 

and stock solution samples were affected by sensing durations. Vapor and condensate 

samples were sampled three times. One replication was conducted for stock solution. 
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Error bars and dashed lines represent ± one S.E and linear regression results, respectively.  

Ethanol molecules in the vapor were present as aerosol particles that randomly 

deposited on the sensor surface. As sensing duration increased, the chances of aerosol 

deposition increased. With the condensate sample, the composition was fixed after 

collection by directly dropcoating the sensor with the condensate sample. Hence, a 

shorter sensing duration was needed in condensate sensing.   

The current responses for the stock solution were lower than those for vapor and 

condensate samples. Since the boiling point of ethanol is 78.4oC, which is lower than the 

boiling point of water and water-based solvents (100oC), ethanol readily evaporated in the 

bubbler than water and higher levels of ethanol were detected in both vapor and 

condensate samples.  

4.1.2 Flow Rate 

Whether the sensing durations or flow rate changed, current responses presented 

comparable values in condensate samples. Although higher current responses were 

measured at the higher flow rate for vapor samples (Figure 16), but the responses were 

not statistically different (p5min=0.355, p10min=0.518).  

4.1.3 Condensing Temperature 

In condensate sensing, lower current responses were measured for samples collected 

from lower condensing temperature at TC = 256 K (-17°C) (Figure 17). The melting point 

of ethanol is -114°C which is much lower than 0°C, the melting point of water. Therefore 

more water was condensed than ethanol and a diluted sample was collected. However, no 

statistically significant difference was found (p5min=0.522, p10min=0.540). 
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Figure 16. Current measurements due to the level of ethanol present in vapor and 

condensate samples were compared with changing flow rate in 5 min or 10 min sensing. 

All vapor and condensate samples were sampled three times. Error bars and dashed lines 

represent ± one S.E and linear regression results, respectively. 

 

Figure 17. Condensate sampled from TC = 256 K had a lower current response than it 

sampled from TC = 274 K. All samples were sampled three times. Error bars and dashed 

lines represent ± one S.E and linear regression results, respectively.
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4.2 Non-VOC Detection in Breath ———— H2O2 as the Model Biomarker 

H2O2 vapor with concentration of 250, 500, and 1000 ppb (○2  in Figure 5) were 

produced from the prepared stock H2O2 solution in the bubbler (○1  in Figure 5). Henry’s 

law was applied to calculate the concentrations of stock solutions (Table 3). The 

concentrations of stock H2O2 solutions and corresponding vapor concentrations at each 

simulated breath temperature and the current responses are shown in Figure 18. 

 
Figure 18. Amperometric tests were measured for stock solution in the bubbler and 

associated H2O2 vapor concentration that it produced. All samples were sampled three 

times and present with ± one S.E.  

Although the current measurements for H2O2 vapors in the sensing chamber were 

linear, they were too low and below the limit of detection of the potentiostat. The current 

responses need to be amplified to provide clearer trend from measured signals. All the 

results from H2O2 vapor sensing including determining its decomposition rate and 

sampling condition effect are listed in APPENDIX E.  
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4.2.1 Decomposition  

4.2.1.1 Decomposition of H2O2 in Stock Solution 

The effect of temperature on the decomposition constant of stock solution (○2  in 

Figure 5), the decomposition constant 1,Dk  in stock solution was conducted by 

monitoring the concentration of H2O2 every 10 min at 295, 307, 310, 315 K. H2O2 

decomposes into water and oxygen exothermically: 

2222 2 OOHOH +→    (8) 

Except for the samples taken at 295 K, the amperometric response due to H2O2 

concentration decreased over time (Figure 19) and supported the hypothesis that H2O2 

decomposed faster with increasing temperature.  

 
Figure 19. Current responses of H2O2 stock solution decreased over time at elevated Tb. 

Error bars represent ± one S.E  

The decomposition reaction is a first-order reaction because the reaction rate only 

depends on the concentration of H2O2 at the same temperature: 
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time t. After integration, H2O2 concentration can be described as  

tk

VtV
DeCC 1,

0,,
−=    (10) 

where CV,0 is the initial concentration of H2O2 (ppb). Rearranging Equation 10,  

tk
C

C
D

V

tV

1,
0,

,ln −=    (11) 

The decomposition rate constant ��,� can be obtained from the slope of the 
0,

,ln
V

tV

C

C
 vs. 

time curve (Figure 20).  

  

Figure 20. The decomposition rate kD,1 increased with increasing temperature. Each test 

contained two to four replications taken at 3.438 LPM. Dashed lines represent linear 

regression results. 

The general form of kD,1 can be determined using the Arrhenius equation which is 

used to evaluate the effect of temperature on reaction rates: 
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Ak −= lnln 1,    (12) 

where A is reaction frequency factor (s-1); E is activation energy (kcal/mol); R is gas 

constant, 8.314 kcal/mol/K; Tb is breath temperature (K). kD,1 was directly proportional to 
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the increasing temperature and A and E values were determined to be 4.63 x 108 s-1 and 

63,142 kcal/mol from the regression (Figure 21).  








−××=
RT

kD

631412
exp1063.4 8

1,    (13) 

 

 
(a)                                   (b) 

Figure 21. (a) kD,1 increased with increasing temperature and (b) the slope and intercept of 

the Arrhenius plot was used to derive the reaction frequency factor A and activation energy 

E of the decomposition of H2O2 in the bubbler. Each test contained 2-4 replications taken at 

3.438 LPM. Dashed lines represent linear regression results. 
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4.2.1.2 Decomposition of H2O2 in the Condensate 

The decomposition constant of the collected condensate, kD,2 was determined from 

the concentration of H2O2 over time (○4  in Figure 5). Due to the high water vapor 

content in simulated exhaled breath, H2O2 levels were diluted 125-275 times (Figure 22) 

the H2O2 levels in the stock solution in the bubbler (Figure 19). Since no significant 

difference (p > 0.05) was seen between 5 and 10 min measurements of H2O2 in collected 

condensate samples, the 5 min sensing duration were used to estimate kD,2 and develop 

predictive models. 

Opposite of the trend seen with H2O2 levels in stock solution, kD,2 decreased with 

increasing temperature as a result of more water evaporating at higher temperatures 

(Figure 23), thereby increasing the dilution of H2O2 in the condensate (Figure 24). The 

Arrhenius plot yielded the following general form of kD,2 of H2O2 in the condensate:  









××= −

b

D
RT

k
30950

exp1028.2 8
2,    (14) 

 
Figure 22. The decomposition of H2O2 in condensate samples were determined by 

monitoring the sensing duration in 5 min and 10 min at different bubbler temperatures 

and 3.438 LPM. Each test contained three replications. Error bars represent ± one S.E.  
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Figure 23. The decomposition rate constant kD,2 decreased with increasing temperature. 

Condensate samples from sampling time interval of 0-10 min were used to estimate kD,2. 

Each test contained three replications taken at 3.438 LPM. Dashed lines represent linear 

regression results. 

 
Figure 24. kD,2 decreased with increasing temperature and the slope and intercept of the 

Arrhenius plot was used to derive the reaction frequency factor A and activation energy E 

of the decomposition of H2O2 in the condenser. Each test contained 2-4 replications taken 

at 3.438 LPM. Dashed lines represent linear regression results. 
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4.2.2.1 Condensate 

H2O2 concentration in the EBC decreased linearly as Tb increased (Figures 25) as a 
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Since the boiling point of water is less than the boiling point of H2O2, when Tb increased, 

the amount of water vapor increased more than the amount of H2O2. Therefore, when the 

breath sample was condensed, the EBC collected at higher breath temperatures became 

more diluted.  

 

Figure 25. Linear trends were found between amperometric responses due to H2O2 levels 

in the condensate and H2O 2 levels in the vapor at 295, 307, 310 and 315 K. Each test 

contained three replications of condensate samples collected at 274K and 3.438 LPM.  

Error bars and dashed lines represent ± one S.E and linear regression results, respectively. 

4.2.3 Flow rate 

4.2.3.1 Condensate 

At a condensing temperature of 274 K, condensate samples collected at 6.876 LPM 

had higher levels of H2O2 compared to samples collected at 3.438 LPM (Figure 26). This 

was due to the higher vaporization rate with increasing flow rate. Higher flow rates also 

generated higher pressure which further increased the solubility of H2O2 into the 

condensate (Equation 1, ckP H ×= ).  
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Figure 26. Amperometric tests were performed to monitor the effect of flow rate change 

with �� = 3.438 and 6.876 LPM at Tb = 310K in H2O2 condensate samples. Increasing 

trend was present with increasing flow rate. Three replicate samples were measured. 

Error bars and dashed lines represent ± one S.E and linear regression results, respectively. 

4.2.4 Condensing Temperature 

When the condensing temperature was decreased to 256 K, H2O2 levels further 

decreased as a result of condensing more water vapor and enhancing the dilution of 

condensed H2O2 in the condensate (Figure 27).   

 
Figure 27. H2O2 collected in the EBC increased with increasing flow rate but decreased 

with decreasing condensing temperature. Each test contained three replications. Error 

bars and dashed lines represent ± one S.E and linear regression results, respectively. 
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4.3 Predictive Model Development 

Breath sampling and measurement could be viewed as a three-part process (Figure 

28):  

1. Breath output simulator (BOS). Biomarkers in the simulated breath were affected 

by the empirical constants used in Henry’s law and the decomposition reaction.  

2. Sampling conditions. The concentrations of the biomarker in collected samples 

were changed with the input concentration and also varied with the changing flow 

rates and the sampling temperatures. 

3. Sensing system, which, in this study, was an enzyme-based biosensor. Current 

responses resulted from a set of factors, such as the concentrations of the breath 

samples, the process of enzyme immobilization, and the uniformity of 

screen-printed electrodes from the manufacturer. The current response can be used 

to calculate the concentration of the sample by using an empirical calibration 

curve (Figure 9b).    

 
Figure 28. Concept diagram of predictive model development presents sampling and 

sensing system could be broken down into three subsystems.  
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CV,source could differ from the initial concentration of the biomarker in simulated breath 

vapor − CV,initial. CV,initial, could be expressed as a function of Henry’s law constant, 
bTHk , , 

and the partial pressure of the solute in the gas above the solution, P (Equation 1). 
bTHk ,  

is a function of 
KTHk 15.298, = , ∆solnH, and 1/Tb (Equation 3). Since 

KTHk 15.298, = and ∆solnH 

are empirical values from previous studies (Sandy, 1999), 
bTHk ,  could be simplified to 

be a function of 1/Tb only while P is directly proportional to flow rate V& . Consequently, 

CV,initial is expressed as 









V

T
fC

b

initialV
&,

1
~,    (15) 

At simulated breath temperatures of 295-315 K, decomposition rateof CV,initial for ethanol 

samples were negligible. However, decomposition was observed with the H2O2 samples 

and the decomposition constant kD,1 and reaction time t needed to be included in the 

function (Equations 10 and 13). Hence, the CV,source for ethanol and H2O2 were derived as: 

Ethanol: ( ) 







V

T
fCfC

b

initialVsourceV
&,

1
~~ ,,    (16) 

H2O2: ( )tkCfC DinitialVsourceV ,,~ 1,,,   (17) 

kD,1 was obtained from H2O2 decomposition reactions in a 40 min sensing duration with a 

10 min sampling rate. However, since H2O2 measurements were taken within 10 minutes 

of breath simulation, H2O2 decomposition was not observed and the effect of kD,1 was 

negligible. For a specific sensing time (t = 3 min, 4 min, …, 10 min), t was the same. The 

function of CV,source could therefore be rewritten as  

H2O2: ( )initialVsourceV CfC ,, ~   (18) 
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4.3.2 Sampling Conditions 

Sampling conditions, which are of great importance for solubility of biomarkers, 

were affected by the concentrations (CV,source) and the temperature (Tb) of samples from 

the source. Tb was found to have a negative correlation with sample concentration 

(CV/C,sample). A higher flow rate (V& ) resulted in higher pressure that increased the 

solubility of the sample. A direct proportion was assumed between V& and CV/C,sample. The 

temperature drop (∆T) between the simulated breath and the vapor sensing chamber in 

vapor sampling, and the condensing temperature (TC) also contributed to CV/C,sample by the 

varying condensing conditions. Large ∆T favored water vapor condensation and caused 

further dilution to CV/C,sample. Hence, ∆T was inversely proportional to CV/C,sample. If the 

chosen biomarker had a tendency to decompose, then the decomposition effect on 

CV/C,sample needed to be taken into account. Accordingly, the functions of CV/C,sample were 

derived as  

Ethanol:  (vapor)  








∆
V

TT
CfC

b

sourceVsampleV
&,

1
,

1
,~ ,,    (19)  

 (condensate) 







VT

T
CfC C

b

sourceVsampleC
&,,

1
,~ ,,    (20) 

H2O2:   (condensate)  







tkVT

T
CfC DC

b

sourceVsampleC ,,,,
1

,~ 2,,,
&    (21) 

Similarly with kD,1, the decomposition constant of H2O2 condensate, kD,2, was also 

negligible in a 10-min sample collection period. For a specific sensing time, t was the 

same. The function of CC/V,sample of H2O2 became:  

H2O2:  (condensate) 







VT

T
CfC C

b

sourceVsampleC
&,,

1
,~ ,,    (22) 
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4.3.3 Biosensor 

Finally, the output signals of the biosensor were directly proportional to 

concentrations of the analyte. When an enzyme was involved in the reaction, as was the 

case for ethanol sensing, it was necessary to control the effect of enzyme loading, enzyme 

kinetics, the thickness of enzyme layers (a key factor in the rate of mass transfer), and the 

conditions of enzyme immobilization processes that affect the retention of enzymatic 

activity. Factors due to manufacturer – the uniformity of the sensor coating (e.g. the 

percentage of each reagent element in the paste), the thickness of the layer, and the size of 

reaction area were possible sources of signal noise and instability of the SPCEs. In this 

project, errors due to enzyme immobilization and electrode were minimized by preparing 

all the biosensors in a similar manner. The SPCE from Metrohm USA Inc. (Riverview, 

FL) were assumed to hold a good uniformity. As a result, the current responses, IV/C,sample, 

were only affected by the concentrations of the collected samples CV/C,sample:  

( )sampleCVsampleCV CfI ,/,/ ~    (23) 

The final predictive models contained these three main factors (Figure 29). For 

ethanol vapor samples, the predictive model in a specific sensing duration of IV/C,sample 

was derived from Equations 16, 19, and 23:  










∆
= V

TT
CfII

b

initialVV,sampletV
&,

1
,

1
,~ ,at tmin min,    (24) 

In the same manner, the predictive model for ethanol condensate samples in a specific 

sensing duration, IC,sample was derived from Equations 16, 20, and 23: 









= VT

T
CfII C

b

initialVC,sampletC
&,,

1
,~ ,at tmin min,    (25) 
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Figure 29. Contributing factors considered in the biosensor subsystem. 

By considering Equations 17, 22, and 23, the predictive model for H2O2 condensate 

samples in a specific sensing duration, IC,sample had the same form as Equation 25. Full 

models that included reaction time t as one of the variables were also developed for 

ethanol and H2O2 separately (Figures 30 and 31).  

 

Concentration in sample phases (vapor/condensate, CV/C, sample)

   Analyte

Enzyme loading

Thickness of enzyme layer 

Immobilization process (duration, temperature, RH, etc.)

   Enzyme immobilzation

Thickness of coating layer (mediator)

Uniformity of coating layer

Area size of working, reference, and counter electrodes

   Manufacturer aspects (for SPCE)

Current response, IV/C,sample

IV/C,sample ~ f (CV/C, sample)

Eliminate constant variables

Was affected by 3 factors
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Figure 30. Models for ethanol prediction were derived from three subsystems. (1
kH,T=298.15K and ∆solnH were constant values from 

empirical results. 2Tb and ∆T were found to have reverse trends with sample concentration in experimental results. Hence, reciprocal 

forms were used. 3Other factors (Figure 13) were negligible when they held constant.)  
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Figure 31. Models for H2O2 prediction were derived from three subsystems. (1
kH,T=298.15K and ∆solnH were constant values from 

empirical results. 2For the first 10 min sampling, kD,1 were the same. 3Tb was found to have a reverse trend with sample concentration 

in experimental results. Hence, a reciprocal form was used. 4In10-min sample collecting, kD,2 were the same. 5Other factors (Figure 13) 

were negligible when they were held constant.)  
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Decomposition reaction in CV,initial
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Hydrogen Peroxide)
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(time-series, adding t)
IC,3-10min ~ f (t, CV,initial, 1/Tb, TC, )

V&

kD,1 ~  f (1/Tb)
Decomposition reaction in CV,initial
- Decomposition constant, kD,1
- Reaction time, t

V&
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4.3.4 Predictive Models 

Final predictive models established in Section 4.3.3 were selected through statistical 

processes (Figure 12). Both specific sensing time (5 min) and full time (3-10 min) models 

were developed. 

Modeling the current responses based on a 5 min sensing time for ethanol vapor 

samples required 1/Tb, CV, and the interaction term, CV/Tb.  For ethanol condensate 

samples, the model contained Tc and CV, and the interaction term was replaced by TcCV. 

For full time (3-10 min) models, additional parameters and interaction terms were 

included in the models to better explain the change of current response with different 

time period (Tables 4 through 6). Higher complexities in full time models resulted in 

lower R2 values (R2 = 0.6706 in ethanol EB, 0.8878 in ethanol EBC, and 0.6924 in H2O2 

EBC) compared to models based on specific sensing times (R2 = 0.8261 in ethanol EB, 

0.9471 in ethanol EBC, and 0.9348 in H2O2 EBC). In addition, EB models (Table 4) were 

less accurate than the EBC models (Table 5) respectively. It also demonstrated that vapor 

sensing was more unstable and more challenging than condensate sensing.  

Ethanol, a VOC, could be retained in a more stable form when condensed and 

resulted in predictive models higher R2 values compared to predictive models for H2O2 , a 

non-VOC. This was especially true for predictive models based on full time sensing (R2 = 

0.8878 for ethanol and R2 = 0.6924 for H2O2).  
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Table 4. Predictive EB models for ethanol 

Type 
Model 

selection 
Signal 

processing 
R

2
 Model 

V
ap

or
 (

E
B

) 

Ethanol 

condensate, 

specific 

sensing time 

AIC 
Subtraction, 

5 min 
0.8261 

T

C
C

T
I

b

V
V

b
V ββ

β
21

0
min5, ++=  

 β0 β1 β2 

 -20.70 -0.72 267.42 

SE 19.89 0.30 92.07 

Ethanol 

condensate, 

full time 

(time-series) 

AIC 
Subtraction, 

3-10 min 
0.6706 

CV
T

V

T

C

TT
Ct

T

t

CV
TT

tI

V

b

V

b

V

b

V

b

V

×+
∆

++
∆×

+×++

++
∆

+++=−

&
&

&

βββ
β

ββ

ββ
ββ

ββ

11109
8

76

54
32

10min103,

 

 β0 β1 β2 β3 β4 β5 

 14.03 -1.16 -4064 -41.28 -0.22 -0.98 

SE 3.64 0.35 1086 11.29 0.19 0.30 

 β6 β7 β8 β9 β10 β11

 

 348.8 0.036 11440 315.8 1.39 0.0403 

SE 107.8 0.003 3194 90.1 0.68 0.0011 
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Table 5. Predictive EBC models for ethanol 

Type 
Model 

selection 
Signal 

processing 
R

2
 Model 

C
on

de
ns

at
e 

(E
B

C
) 

Ethanol 

condensate, 

specific 

sensing time 

AIC/CV 

 

Slope 

5 min 0.9471 

VVCC CCTI ×++= βββ 210min5,  

 β0 β1 β2 

 2.1E-6 -0.00264 1.25E-5 

SE 7.8E-7 0.00093 3.44E-6 

Ethanol 

condensate, 

full time 

(time-series) 

AIC/CV 

 

 

Slope 

3-10 min 

 

 

0.8878 

 

CtTtCVT
T

tI VCVC

b
C ×+×+++++=− βββββ

β
β 65432

1
0min103,

&

 
 β0 β1 β2 β3 β4 β5 β6 

 0.0030 2.592 -1.35E-5 -0.0016 0.0016 -1.13E-5 -0.00014 

SE 0.0011 0.978 1.11E-5 0.0003 7E-5 3.92E-6 0.00001 
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Table 6. Predictive models for EBC H2O2  

Type 
Model 

selection 
Signal 

processing 
R

2
 Model 

H2O2 

condensate, 

specific 

sensing time 

AIC 

 

 

Subtraction 

5 min 

 

0.9348 

 

CT
T

C
CVT

T
I VC

b

V
VC

b
C ×+++++= βββββ

β
54321

0
min5,

&  

 β0 β1 β2 β3 β4 β5 

 -98.9 0.0011 0.0540 -0.0165 3.928 1.61E-5 

SE 228.8 0.0027 0.0213 0.0027 0.844 4.37E-6 

H2O2 

condensate, 

full time 

(time-series) 

AIC 

 

 

Subtraction 

3-10 min 

 

 

 

0.6924 

 

CV
T

C

T

T
CVT

T
tI V

b

V

b

C
VC

b
C ×++++++++=−

&& ββββββ
β

ββ 876543
2

10min103,
 

 β0 β1 β2 β3 β4 β5 β6 β7 β8 

 -59.5 -0.0082 18330 0.22 0.0082 -0.013 -67.68 4.01 1.24E-4 

SE 25.4 0.0029 7878 0.01 0.0162 0.002 29.17 0.61 2.54E-5 
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CHAPTER 5: UNCERTAINTY ANALYSIS 

5.1 Fundamental Principle 

In all kinds of measurement and prediction, errors inevitably result from various 

sources. After deriving the predictive models, they were further analyzed to clarify the 

margin of doubt for the measurement of each variable (condition) by running uncertainty 

analysis. Uncertainty analysis was estimated using two categories − Type A and Type B 

uncertainties. Type A uncertainty (u) was evaluated from repeated measurements which 

scatter around the mean of all readings and represent unpredictable random effects, such 

as imperfect repeatability of instrument or measurement and slight changes in 

experimental conditions. This type of error could be reduced by increasing the number of 

replications and the standard uncertainty, which represents the margin from the range of ± 

one standard deviation, 

n
u

σ
=   (26) 

where n was the number of measurements.   

Type B uncertainty, which is correlated to systematic errors, was determined from 

manufacturer’s specifications, calibration reports, previous data and known uncertainties 

of reference data (GUM, 1995). Based on the nature of test data, Type B uncertainty 

could be assumed in several probability distributions – normal, rectangular, triangular, 

U-shaped, lognormal, quadratic and others (NIST, 2000; ISO/IEC, 2008; Castrup, 2010), 

with the first three types of distribution are more commonly seen (Figure 16). Normal 

probability distributions are widely applied for errors resulting from random events; 

rectangular (uniform) probability distribution, for errors occurring with equal possibility 
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between the range of upper and lower bounds, such as the resolution of an instrument; 

and triangular probability distribution, for errors that are more likely to happen near the 

center portion, such as simulation in business decision making. In this simulated breath 

project, only normal and rectangular probability distributions were applied. 

 

(a)                    (b)                      (c) 

Figure 32. Most probability distributions are (a) normal, (b) rectangular, and (c) 

triangular shapes. The function p(x) is the probability density function where µ is the 

mean value and a is the half width between the upper and lower bounding limits.  

With an estimated value xi of a true input value Xi, the standard uncertainty of xi from 

different probability distributions result from the integration of p(x): 

Normal: ( )
2

a
xu i =    (27) 

Rectangular: ( )
123

wa
xu i ==    (28) 

Triangular: ( )
246

wa
xu i ==    (29) 

where w is the full-width between the upper and lower bounding limits, or 2a. 

By considering both Type A and B uncertainties, the summation in quadrature (root 

sum of the squares) is called the combined standard uncertainty, uc (Kirkup and Frenkel, 

2006). In general, a measurand Y is a function of N variables (X1, X2, …, XN) that could 

indicate different input/sampling conditions, and the associated estimates are denoted by  

( )Nxxxfy ,...,, 21=     (30) 
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where y and x1, x2, …, xN are the output and input estimates respectively. 

When x1, x2, …, xN are independent of each other, the uncertainty of y are presented as: 

)()()()( 2
2

2
2

2

2
1

2
2

1

2
N

N

c xu
x

y
xu

x

y
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x

y
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


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
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∂
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

∂
∂

+
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∂
∂

= L     (31) 

or 
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∂
∂
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
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



∂
∂

= L     (32) 

After deriving the standard uncertainty, rescaling the uncertainty according to the 

level of confidence is necessary to express the margin of the output estimate y. The 

rescaling factor is called the coverage factor, kcoverage. By multiplying it by the combined 

standard uncertainty uc, the expanded uncertainty U is obtained (Bell, 1999). 

cerage ukU ×= cov     (32) 

Some commonly used kcoverage are 1, 2, and 3 which correspond to confidence levels of 

68%, 95%, and 99.7%, respectively. The measured (estimated) value could be expressed 

as y±U under an associated confidence level. Moreover, the percentage uncertainty could 

be calculated as: 

mean value (measured)mean value (measured)

 y,uncertaint expanded
yuncertaint Percentage ccoverage ukU ×

==   (33) 

Through all the uncertainty estimation in this study, kcoverage = 2 was applied. 
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5.2 Uncertainty in BOS and Sampling System 

The uncertainties in the settings of experimental parameters (e.g. Tb, TC, CV.) which were 

varied to simulate different sampling conditions were derived based on using different 

devices or empirical principles/coefficients. For Tb and TC, the measurands were affected 

by the water/ice bath and thermometer as their Type B uncertainties. The repeated 

readings taken every minute in a 10-minute time span were considered as the Type A 

uncertainty. Referring to Bell’s (1999) spreadsheet model, the uncertainty of the 

condition at Tb = 310 K (37°C) and V& =1.779 LPM was 1.2°C (details are listed in Table 

7). In comparing the standard uncertainty of each component, the standard uncertainty for 

calibration of the thermometer was 0.54 K, which was relatively larger than the 

uncertainty for calibrating the water bath (0.25 K) and for the resolutions of both 

thermometer (0.03 K) and water bath (0.03 K). This resulted in the calibration of the 

thermometer accounting for 81% of the total uncertainty of Tb measurement. Using a 

similar approach, uncertainty analysis of other temperature measurements (Tb, TC, ∆T), 

and V& under different conditions could be accomplished (APPENDIX F).  
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Table 7. Uncertainty analysis for Tb at 310K with V& = 1.779 LPM 

Tb = 310K, V& = 1.779 LPM 

Source of uncertainty Value 
Probability 

distribution 
Divisor 

Standard 

uncertainty (K) 

Water bath 

calibration (±) 0.5 Normal, 2σ 2 0.25 

Resolution 0.1 Uniform 12  0.03 

Thermometer 

calibration (±) 1.07 Normal, 2σ 2 0.54 

Resolution 0.1 Uniform 12  0.03 

Correction 0.06       

SE from 11 repeated readings 0.08 Normal, 1σ 1 0.08 

Combined standard uncertainty, uc     0.60 

Coverage factor, kcoverage
1 2 

Expanded uncertainty, U 1.20 

Mean from 11 repeated readings 310.31       

The measurement result and the uncertainty 310.372 ± 1.20 
1Coverage factor, kcoverage is equal to 2 which correspond to confidence levels of 95%. 
2The measurement result = mean from 11 repeated readings + correction from the thermometer 
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The uncertainty of CV was calculated using Henry’s law, a combination of the 

empirical values of KTHk 15.298, 1=  and ∆solnH/R in Equation 3, and also the possible errors 

made during the preparation of the stock solution. CV was considered in units of ppm 

which was converted through unit conversion and Henry’s law constant 
bTTHk =2, to have 

the unit of molarity:  

atm10atm 110ppm 1 66 −− =×=     (34) 

[ ]
atm

M
atm10

2,
6

bTTHkM =
− ×=     (35) 

where [M] is the molar concentration of ethanol.  Hence CV was derived as 

( ) [ ] [ ]


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H
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    (36) 

and its uncertainty would be 
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    (37) 

where a, b, c, Q represent [M], 
KTHk 15.298, 1 = , ∆solnH/R, and (1/Tb - 1/298.15), respectively. 

The standard uncertainties of b, c, Tb were estimated in the following manner: 

• u(b) and u(c), which were 11.01 and 70.71, respectively, were calculated from 

empirical results presented in previous studies (Sander, 1999). .  

• u(Tb) could be estimated using the spreadsheet model shown in Table 7 for 

different Tb.  
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The standard uncertainty of a was based on a desired molar concentration [M], which was 

converted to volume concentration Vratio to facilitate solution preparation, 

[ ]
ml

l

10

1

g

ml1

mol

g
..

l

mol
3

×××=
+

=
ρ

WFM
VV

V
V

BA

A
ratio     (38) 

where VA is the volume of solute (ethanol solution) concentration; VB is the volume of 

solvent (buffer solution); F.W. and ρ are the formula weight and density of ethanol, 

respectively. Rearranging Equation 38,  

[ ]
..

103

WF

P
M

ρ×
=     (39) 

the uncertainty of it was obtained as: 
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    (40) 

u(Vratio) was estimated through a preparation process that was correlated to how the 

experimenter takes solution using different pipettes and each individual accuracy of the 

pipettes. For example, if 135 µl solvent is taken, using the pipette ranging from 20 – 200 

µl will introduce calibration uncertainty of ± 1.6 µl and using the pipette ranging from 

100 – 1000 µl will bring higher calibration uncertainty of ± 8 µl. The different 

combination of pipettes used resulted in varying uncertainties in solution preparation. The 

uncertainty of u(Vratio) was:     
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The estimation of the total standard uncertainty for producing 4 ppm ethanol vapor 
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at 310 K is shown in Table 8. The uncertainty analyses for the rest of conditions are listed 

in Appendix F.2 and F.3. In all the cases (four Tb and three CV), the percentage 

uncertainties of the volume concentration were within ±2% range of the measurement 

results. With this information, the uncertainties of CV at three levels of ethanol vapor 

concentration, four simulated exhaled temperatures, and two flow rates were calculated 

using Equation 36. Results showed the percentage uncertainty was ±16.62% from the 

calculated ethanol concentration (Table 9). In the same manner, the percentage uncertainty 

was ±15.45% in H2O2 samples (Table 10). The largest source of uncertainty in ethanol 

and H2O2 samples were from the u2(b) associated term, or ( ) ( )bue
cQ 22

 in Equation 37. It 

indicated that the variation of 
KTHk 15.298, 1 =  

was the major source of uncertainty.  
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Table 8. Uncertainty analysis of the concentration of ethanol solution for producing 4ppm 

ethanol vapor at 310 K 

Ethanol solution preparation for producing 4 ppm ethanol vapor at 310K 

Source of uncertainty 
Value 
± (µl) 

Probability 
distribution 

Divisor 
Standard 

uncertainty 
(µl) 

A (solute, use 0.1% (v/v) ethanol solution)  1478 

  1 ml 8 Rectangular 3  4.62 

uncertainty from 0.1% ethanol1 7.06 

combined uncertainty of 1ml       8.43 

  450 µl 8 Rectangular 3  4.62 

uncertainty from 0.1% ethanol 3.18 

combined uncertainty of 450 µl       5.60 

  28 µl 0.5 Rectangular 3  0.29 

uncertainty from 0.1% ethanol 0.20 

combined uncertainty of 28µl       0.35 

Combined standard uncertainty uc(A)       10.13 

B (solvent, use buffer) 78522 

  78 ml 600 Rectangular 3  346.41 

  500 µl 8 Rectangular 3  4.62 

  22 µl 0.5 Rectangular 3  0.29 

Combined standard uncertainty uc(B)       346.44 

Standard uncertainty of ethanol solution u(P) 0.000148 

Coverage factor, kcoverage 2 
  

The measurement result and the uncertainty  

    (in 0.1% ethanol based) 
0.0185 ± 0.0003 

Percentage uncertainty
2
    1.60% 

1Standard uncertainty for 0.1% ethanol was 0.000706% (calculated by same principle). 
2In this case, the percentage uncertainty = 

0.0003

0.0185
=1.60%.  
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Table 9. Uncertainty of CV in ethanol samples under different experimental conditions 

Tb  

(K) 

CV 

(ppm) 

V  

(LPM) 

u(CV) 

(ppm) 

Percentage 

uncertainty 

 (%) 

Tb  

(K) 

CV 

(ppm) 

V  

(LPM) 

u(CV) 

(ppm) 

Percentage 

uncertainty 

 (%) 

295 

4 

1.779 

0.2889 14.45% 

315 

4 

1.779 

0.4904 24.52% 

5 0.3606 14.42% 5 0.6128 24.51% 

7.5 0.5401 14.40% 7.5 0.9191 24.51% 

307 

4 

1.779 

0.2924 14.62% 

310 

4 

3.407 

0.2990 14.95% 

5 0.3652 14.61% 5 0.3734 14.94% 

7.5 0.5509 14.69% 7.5 0.5598 14.93% 

310 

4 

1.779 

0.2923 14.62% 

Average 0.45715 16.62% 5 0.3650 14.60% 

7.5 0.5473 14.59% 

 

Table 10. Uncertainty of CV in H2O2 samples under different experimental conditions 

Tb  

(K) 

CV 

(ppb) 

V  

(LPM) 

u(CV) 

(ppb) 

Percentage 

uncertainty 

 (%) 

Tb  

(K) 

CV 

(ppb) 

V  

(LPM) 

u(CV) 

(ppb) 

Percentage 

uncertainty 

 (%) 

295 

250 

1.779 

15.33 12.27% 

315 

250 

1.779 

36.03 28.82% 

500 31.45 12.58% 500 56.38 22.55% 

1000 61.70 12.34% 1000 78.54 15.71% 

307 

250 

1.779 

17.62 14.09% 

310 

250 

3.407 

18.06 14.45% 

500 34.71 13.89% 500 36.30 14.52% 

1000 68.88 13.78% 1000 72.18 14.44% 

310 

250 

1.779 

17.59 14.07% 

Average 43.3571 15.45% 500 35.33 14.13% 

1000 70.27 14.05% 
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5.3 Uncertainties Analysis in Predictive Ethanol Models 

Based on the predictive models in Table 4 and 5 for vapor and condensate samples, 

the related uncertainty analyses and the uncertainty equations were derived (Table 11 

through 14). In the analysis, two percentage uncertainties were calculated – one was 

based solely on Type B uncertainty, which was calculated based on the listed uncertainty 

equation. The associated uncertainties were resulted from the model selection processes. 

The other uncertainty was the combined Type (A+B) uncertainties that included one more 

standard uncertainty which was contributed from the sensing system and could be 

calculated from the repeated readings of current response (IV/C). The major source of 

uncertainties of predictive models could be recognized by comparing Type (A+B) and 

Type B uncertainties.  

For both vapor and condensate specific time sensing, Type (A+B) percentage 

uncertainties, which were 44.21% for vapor and 18.20% for condensate, were greater 

than Type B percentage uncertainties that presented 18.53% for vapor and 0.05% for 

condensate. The observed increases in percentage uncertainties suggested the sensing 

system had a higher contribution of uncertainty on the final sensor output (IV/C) than the 

BOS system and sampling conditions did. Factors that contributed to the uncertainties in 

the sensing system were the AOX enzyme layer and SPCE of the biosensor and the 

potentiostat.  

For the predictive model for EB ethanol with 5 min sensing time, uncertainty 

increased as Tb, ∆T and V& increased or when CV decreased. For the time series predictive 

model, the total uncertainty was about 6.89 x 108% (Table 11), with the coefficient of the 

term of ∆T contributing > 99% of the total uncertainty. Hence, the EB time series 
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predictive model from current results was not accurate enough to provide credible 

information. For the EBC models, smaller percentage uncertainties, 0.05-18.20%, were 

achieved. Additionally the uncertainty of Tc increased as Tc decreased, owing to a greater 

degree of condensation by the water vapor than the ethanol at cooler condensing 

temperatures. 
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Table 11. Uncertainty analyses for ethanol EB predictive models 

Type 
Model 

selection 
Signal 

processing Uncertainty Analysis
 

Ethanol 

vapor, 

specific 

sensing 

time 

AIC 
Subtraction, 

5 min 

( ) ( ) ( )Cu
T

Tu
T

C
Iu V

c

b

b

c

b

V
V

2
2

2
1

2
2

2
20

min5,
2

21

4342144 344 21








++







 +−
=

β
β

ββ  

Percentage uncertainty (%) Major sources of u(IV,5min) Trend 

Type B 18.53 CV 
Variable Tb ↑ V& ↑ ∆T ↑

 
CV ↑

 
u(IV,5min) ↑1

 
---

 
↑

 
↓ 

Type (A+B) 44.21 
1) SE from repeated readings 

2) CV  

Variable Tb ↑ V& ↑ ∆T ↑
 

CV ↑
 

u(IV,5min) ---2 ↑
 

--- ↓ 

Ethanol 

vapor, 

full time 

(time- 

series) 

AIC 
Subtraction, 

3-10 min 

( ) ( ) ( ) ( )

( ) ( )CuV
T

tVuC
T

Tu
T

C
T

Tu
T

C
T

t

tuC
T

Iu

V

c

b

c

V

c

V

b

c

b

V

c

V

b

V

2
2

11
9

75
2

2

11
10

4

2

2

2

9
8

3
2

2

2

9
8

62
2

2

7
6

1min103,
2

54

32

1

)(

4444 34444 21

&&

444 3444 21

4444 34444 2144444 344444 21
444 3444 21
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
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∆
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












∆

+
∆

+
−+


















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∆
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−+







++=−

β
β

βββ
β

β

β
β

ββ
β

ββ
β

β
β

 

Percentage uncertainty (%) Major sources of u(IV,3-10min) Trend 

Type B 6.89E8 
1) ∆T 

2) flow rate 

Variable Tb ↑ V& ↑ ∆T ↑
 

CV ↑
 

u(IV,3-10min) ↓ ↑
 

↓ ↓ 

Type (A+B) 6.89E8 
Variable Tb ↑ V& ↑ ∆T ↑

 
CV ↑

 
u(IV,3-10min) ↓ ↑

 
↓ ↓ 

1↑: increasing trend. 2 ---: no obvious trend found
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Table 12. Related coefficients and standard uncertainties of 5-min ethanol EB predictive models  

Ethanol vapor, 5-min, predictive model 

Tb  

(K) 

CV 

(ppm) 

V&   

(LPM) 

 

c1 

 

u(Tb) 

(K) 

 

c2 

 

u(CV) 

(ppm) 

 

S.E. of 

IV,5min  

Mean of 

IV,5min 

(µA) 

Type B Type (A+B) 

u(IV,5min) 

(µA) 

Percentage 

uncertainty1 

 (%) 

u(IV,5min) 

(µA) 

Percentage 

uncertainty 

 (%) 

295.29 

4 

1.779 

1.56E-04 

0.58 3.40E-02 

0.2878 0.0948 0.6286 0.0535 17.03% 0.1089 34.63% 

5 2.42E-04 0.3593 0.0944 0.8669 0.0668 15.42% 0.1157 26.69% 

7.5 5.40E-04 0.5391 0.1977 1.4438 0.1003 13.89% 0.2216 30.70% 

307.24 

4 

1.779 

1.33E-04 

0.59 2.22E-02 

0.2918 0.1023 0.4526 0.0440 19.46% 0.1114 49.24% 

5 2.07E-04 0.3646 0.0270 0.5575 0.0550 19.74% 0.0613 21.99% 

7.5 4.61E-04 0.5491 0.0705 0.9087 0.0828 18.23% 0.1088 23.94% 

310.19 

4 

1.779 

1.28E-04 

0.60 1.98E-02 

0.2915 0.1298 0.3967 0.0416 20.98% 0.1363 68.70% 

5 1.99E-04 0.3642 0.1405 0.6709 0.0520 15.50% 0.1498 44.67% 

7.5 4.44E-04 0.5465 0.1599 1.0425 0.0780 14.96% 0.1779 34.14% 

314.89 

4 

1.779 

1.21E-04 

0.61 1.64E-02 

0.4897 0.0512 0.5617 0.0630 22.44% 0.0812 28.92% 

5 1.88E-04 0.6122 0.0870 0.7657 0.0788 20.57% 0.1173 30.65% 

7.5 4.18E-04 0.9185 0.1229 1.0161 0.1182 23.26% 0.1705 33.57% 

310.53 

4 

3.407 

1.28E-04 

0.60 1.96E-02 

0.2982 0.1213 0.4378 0.0423 19.31% 0.1285 58.69% 

5 1.98E-04 0.3726 0.1978 0.6908 0.0528 15.29% 0.2047 59.28% 

7.5 4.42E-04 0.5591 0.4185 0.7255 0.0792 21.83% 0.4259 117.41% 

1
Percentage uncertainty = 

   ofmean 

 )(

min5,

min5,cov

V

Verage

I

Iuk ×
, kcoverage = 2 was applied here with the confidence level at 95%. 
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Table 13. Uncertainty analyses for ethanol EBC predictive models 

Type 
Model 

selection 
Signal 

processing Uncertainty Analysis
 

Ethanol 

condensate, 

specific 

sensing time 

AIC/CV 
Slope, 

5 min 

( ) ( ) ( ) ( ) ( )CuTTuCIu V

c

CC

c

VC
22

21
22

20min5,
2

21

443442144 344 21
ββββ +++−=  

Percentage uncertainty (%) Major sources of u(IC,5min) Trend 

Type B 0.05 CV 
Variable Tb ↑ V& ↑

 
TC ↑ CV ↑

 
u(IC,5min) ↑ --- --- ↑ 

Type (A+B) 18.20 
1) SE from repeated readings 

2) CV 

Variable Tb ↑ V& ↑ TC ↑ CV ↑
 

u(IC,5min) --- ↓ ↑ ↑ 

Ethanol 

condensate, 

full time 

(time- 

series) 

AIC/CV 
Slope, 

3-10 min 

: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )CutVu

TutTu
T

tuCTIu

V

cc

C

c

b

c

b
c

VCC

22
64

22
3

22
52

2
2

2
122

650min103,
2

54

3

2

1

43421
&

321

43421
43421

444 3444 21

βββ

ββ
β

βββ

+++

++






 −
+++=−

 

Percentage uncertainty (%) Major sources of u(IC,3-10min) Trend 

Type B 0.06 CV 
Variable Tb ↑ V& ↑

 
TC ↑ CV ↑

 
u(IC,3-10min) ↑ --- ↓ ↑ 

Type (A+B) 18.20 
1) SE from repeated readings 

2) CV 

Variable Tb ↑ V& ↑
 

TC ↑ CV ↑
 

u(IC,3-10min) --- ↓ ↑ --- 
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Table 14. Related coefficients and standard uncertainties of 5-min ethanol EBC predictive models 

Ethanol condensate, 5-min, predictive model 

Tb  

(K) 

CV 

(ppm) 

V&   

(LPM) 

TC  

(K) 

c1 u(TC) 

(K) 

c2 u(CV) 

(ppm) 

S.E. of 

IC,5min  

Mean of 

IC,5min 

(µA) 

Type B Type (A+B) 

u(IC,5min) 

(µA) 

Percentage 

uncertainty 

 (%) 

u(IC,5min) 

(µA) 

Percentage 

uncertainty 

 (%) 

295.29 

4 

1.779 274.25 

2.30E-09 

0.53 6.25E-07 

0.2878 0.2421 1.4410 0.0002 0.03% 0.2421 33.61% 

5 3.66E-09 0.3593 0.0825 1.7697 0.0003 0.03% 0.0825 9.32% 

7.5 8.42E-09 0.5391 0.0865 1.7821 0.0004 0.05% 0.0865 9.70% 

307.24 

4 

1.779 274.25 

2.30E-09 

0.53 6.25E-07 

0.2918 0.1386 1.1632 0.0002 0.04% 0.1386 23.84% 

5 3.66E-09 0.3646 0.2378 1.3999 0.0003 0.04% 0.2378 33.97% 

7.5 8.42E-09 0.5491 0.1996 1.6477 0.0004 0.05% 0.1996 24.23% 

310.19 

4 

1.779 274.25 

2.30E-09 

0.53 6.25E-07 

0.2915 0.1501 1.1719 0.0002 0.04% 0.1501 25.63% 

5 3.66E-09 0.3642 0.1405 1.4751 0.0003 0.04% 0.1405 19.05% 

7.5 8.42E-09 0.5465 0.1103 1.6777 0.0004 0.05% 0.1103 13.15% 

314.89 

4 

1.779 274.25 

2.30E-09 

0.53 6.25E-07 

0.4897 0.0301 1.0010 0.0004 0.08% 0.0301 6.01% 

5 3.66E-09 0.6122 0.1305 1.3936 0.0005 0.07% 0.1305 18.73% 

7.5 8.42E-09 0.9185 0.2429 1.6312 0.0007 0.09% 0.2429 29.78% 

310.53 

4 

3.407 274.25 

2.30E-09 

0.53 6.25E-07 

0.2982 0.0415 0.9099 0.0002 0.05% 0.0415 9.12% 

5 3.66E-09 0.3726 0.0755 1.3261 0.0003 0.04% 0.0755 11.39% 

7.5 8.42E-09 0.5591 0.1298 1.9473 0.0004 0.05% 0.1298 13.33% 

310.53 

4 

1.779 256.04 

2.30E-09 

0.50 3.17E-07 

0.2915 0.0912 0.6266 0.0002 0.05% 0.0912 29.11% 

5 3.66E-09 0.3642 0.0084 1.0056 0.0002 0.04% 0.0084 1.67% 

7.5 8.42E-09 0.5465 0.1126 1.4121 0.0003 0.04% 0.1126 15.95% 
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5.4 Uncertainties Analysis in Predictive H2O2 Models 

In contrast to the percentage uncertainties (0.05-18.2%) shown in 5-min ethanol 

condensate models (Table 13), H2O2 model had relatively higher percentage uncertainties 

(12.67-26.55%) (Table 15). One of the major sources of uncertainties in both ethanol and 

H2O2 models was from CV, but the percentage uncertainty of CV for H2O2 samples was 

15.45% (Table 10), which was in the same order for ethanol samples, 16.62% (Table 9). 

Hence, the greater uncertainties were possibly due to the relatively smaller IC,5min/IC,3-10min 

(0.1-0.8 µA, in Table 16) for H2O2 samples than for ethanol samples (0.6-2 µA, in Table 

14). The mean of IC,5min/IC,3-10min was the divisor in the calculation of the percentage 

uncertainty, so that the smaller IC,5min/IC,3-10min made the percentage uncertainty larger 

when the numerator had the same order of magnitude. Furthermore the smaller IC,5min/ 

IC,3-10min were due to applying a lower concentration level (250-1000 ppb) for H2O2 

samples. The nonvolatile nature of H2O2 coupled with its accelerated decomposition with 

increasing temperature contributed to ppb-levels of H2O2 samples and presented low 

IC,5min and IC,3-10min values. Therefore, non-VOCs sensing posed more constraints and 

resulted in larger uncertainties in the EB predictive models. 
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Table 15. Uncertainty analyses for H2O2 EBC predictive models 

Type 
Model 

selection 
Signal 

processing Uncertainty Analysis
 

H2O2 

condensate, 

specific 

sensing time 

AIC 
Subtraction, 

5 min 

( ) ( ) ( ) ( ) ( ) ( ) ( )CuT
T

VuTuCTu
T

C
Iu V

c

C
b

c

C

c

Vb

c

b

V
C

2
2

5
4

3
22

2
22

51
2

2

2
40

min5,
2

4
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1

444 3444 21
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



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


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










 +
−= β

β
ββββ

ββ  

Percentage uncertainty (%) Major sources of u(IC,5min) Trend 

Type B 12.67 CV 
Variable Tb ↑ V& ↑ TC ↑ CV ↑

 
u(IC,5min) ↑ ↓ ↓ ↑ 

Type (A+B) 26.55 
1) SE from repeated readings 

2) CV 

Variable Tb ↑ V& ↑ TC ↑ CV ↑
 

u(IC,5min) ↓ ↑ ↓ --- 

H2O2 

condensate, 

full time 

(time- 

series) 

AIC 
Subtraction, 

3-10 min 

( ) ( )
{

( ) ( ) ( )

( ) ( ) ( ) ( )CuVVuC

Tu
T

Tu
T

CT
tuIu

V

cc

V

C

c

b

b

c

b

VC

c

C

22

85
22

84

2
2

6
3

2
2

2
76222
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2

54

32

1
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Percentage uncertainty (%) Major sources of u(IC,3-10min) Trend 

Type B 301.68 CV 
Variable Tb ↑ V& ↑

 
TC ↑ CV ↑

 
u(IC,3-10min) ↑ ↑ ↓ --- 

Type (A+B) 303.24 
1) SE from repeated readings 

2) CV  

Variable Tb ↑ V& ↑
 

TC ↑ CV ↑
 

u(IC,3-10min) ↑ ↓ ↓ ---
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Table 16. Related coefficients and standard uncertainties of 5-min H2O2 EBC predictive models 

H2O2 condensate, 5-min, predictive model 

Tb  

(K) 

CV 

(ppb) 

V&   

(LPM) 

TC  

(K) 
c1 u(Tb) c2 u(TC) c3 u(V& ) c4 u(CV) 

S.E. of 

IC,5min  

Mean of 

IC,5min 

(µA) 

u(IC,5min) 

(µA) 

Percentage 

uncertainty 

 (%) 

u(IC,5min) 

(µA) 

Percentage 

uncertainty 

 (%) 

307.24 

250 

1.779 274.25 

8.75E-05 

0.59 

2.63E-05 

0.53 2.91E-03 0.0196 4.36E-07 

17.62 0.0542 0.2057 0.0132 12.84% 0.0558 54.26% 

500 3.90E-04 8.37E-05 34.71 0.0621 0.5994 0.0262 8.74% 0.0674 22.48% 

1000 1.65E-03 2.96E-04 68.88 0.0880 0.7567 0.0522 13.80% 0.1023 27.04% 

310.19 

250 

1.779 274.25 

8.42E-05 

0.60 

2.63E-05 

0.53 2.91E-03 0.0196 2.90E-07 

17.59 0.0179 0.2419 0.0113 9.33% 0.0212 17.52% 

500 3.76E-04 8.37E-05 35.33 0.0341 0.4105 0.0229 11.13% 0.0411 20.02% 

1000 1.58E-03 2.96E-04 70.27 0.0189 0.5816 0.0457 15.71% 0.0495 17.01% 

314.89 

250 

1.779 274.25 

7.93E-05 

0.61 

2.63E-05 

0.53 2.91E-03 0.0196 1.22E-07 

36.03 0.0093 0.1813 0.0140 15.48% 0.0169 18.60% 

500 3.54E-04 8.37E-05 56.38 0.0006 0.2934 0.0233 15.91% 0.0233 15.92% 

1000 1.49E-03 2.96E-04 78.54 0.0344 0.4746 0.0373 15.73% 0.0508 21.39% 

310.53 

250 

3.407 274.25 

8.39E-05 

0.60 

2.63E-05 

0.53 2.91E-03 0.0500 2.75E-07 

18.06 0.0293 0.3261 0.0116 7.12% 0.0316 19.35% 

500 3.74E-04 8.37E-05 36.30 0.1478 0.6273 0.0230 7.33% 0.1496 47.69% 

1000 1.58E-03 2.96E-04 72.18 0.0901 0.7423 0.0457 12.33% 0.1011 27.23% 

310.53 

250 

1.779 256.04 

8.39E-05 

0.60 

2.63E-05 

0.50 2.91E-03 0.0196 5.36E-08 

18.06 0.0226 0.1346 0.0074 11.06% 0.0238 35.29% 

500 3.74E-04 8.37E-05 36.30 0.0267 0.1948 0.0151 15.48% 0.0307 31.48% 

1000 1.58E-03 2.96E-04 72.18 0.0240 0.3373 0.0304 18.00% 0.0387 22.94% 
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CHAPTER 6: CONCLUSION AND RECOMMENDATIONS 

FOR FUTURE STUDIES 

6.1 Conclusion 

Exhaled breath analysis provides a promising method to trace, monitor, or diagnose 

some of the symptoms, diseases and conditions through a noninvasive way. However, the 

varied sampling conditions cause difficulties in comparing the results. Standardized 

formulas could be developed after testing the impact of each sampling factor and 

predictive models could be established. Four concentrations (CV) of chosen biomarkers in 

simulated exhaled breath were testing under four simulated breath temperatures (Tb = 295, 

307, 310, and 315 K), two flow rates (V& = 3.438 and 6.876 LPM, Reynolds numbers = 

957 and 1833), two condensing temperature (TC = 276 and 264K), and sensing duration 

from 3 to 10 min in this study.  

The different properties of VOCs and non-VOCs in breath pose a question that how 

the differences will affect the breath sensing and detection. In this study ethanol and H2O2 

were employed as the VOC and non-VOC model biomarkers. Biomarkers can be 

successfully detected by using the mediated SPCE and cooperating with immobilized 

enzyme in amperometric measurements. Predictive models were developed for specific 

sensing time (5 min) and full time (3-10 min). The major conclusions of this study are 

outlined below. 

1. The behavior of VOC (ethanol, 4 - 7.5 ppm) in simulated EB and EBC and the 

predictive models 

In both EB and EBC, the concentration of collected ethanol samples were more 
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concentrated than the concentration from the source because the boiling point of 

ethanol was lower than that of water in the breather and was easier to vaporize. 

Higher Tb and lower TC had lower current responses, which indicated less 

concentration of ethanol was detected, due to the water vaporization and 

condensation. Increasing flow rate and sensing duration did not significantly affect 

the ethanol concentration in condensate, but increased the ethanol concentration in 

vapor sensing. Higher regression results were shown in EBC predictive models (R2 = 

0.9471 in 5 min and R2 = 0.8878 in full time) than EB predictive models (R2 = 0.8261 

in 5 min and R2 = 0.6706 in full time). This showed EBC sensing was more stable 

than EB sensing.  

2. The behavior of non-VOC (H2O2, 250 -1000 ppb) in simulated EB and EBC and 

the predictive models 

Decompositions of H2O2 were observed in both stock solution and condensate at Tb = 

307 - 315K. At higher Tb, decomposition rate increased in stock solution and 

decreased in condensate. It could be attributed to the sigmoidal curve relationship 

between H2O2 concentration and decomposition rate. Hence, the condensate 

contained relatively low H2O2 concentration and had slower reaction rates.  

The concentrations of H2O2 condensate were measured at lower concentrations than 

the concentration from the source because of the high boiling point of H2O2 

compared to that of water in the breath. In terms of the effect of sampling conditions, 

the same trends found for ethanol held true. Results showed that less H2O2 was 

sensed with increasing Tb or decreasing TC. As for the effect of flow rate in 

condensate sensing, significant increases were observed at the elevated flow rate. 
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Slightly decreasing H2O2 concentrations were found in a longer sensing duration but 

were not found to be significant. Predictive models were developed with R2 = 0.9348 

and 0.6924 for 5 min and full time sensing, respectively.  

3. The uncertainty analyses of predictive models and the whole sampling and 

sensing system  

In order to further investigate the causes of error of predictive models, uncertainty 

analysis was employed. In BOS, the empirical Henry’s law constant 
KTHk 15.298, 1 =  

resulted in the major source of the percentage uncertainty (associated with 95% 

possibility) of CV in ethanol (±16.62%) and H2O2 (±15.45%) samples. Lower CV and 

TC increased the uncertainties of Tb, ∆T,V& , and TC. Nevertheless, comparing to the 

uncertainties due to BOS and the settings of sampling condition, the sensing system 

contributed greater uncertainties, which can be observed in varied values of current 

responses of samples from the same source concentrations, on the predictive models. 

In final results, the percentage uncertainties of each model were obtained as 

18.53-44.21% for 5 min ethanol vapor; 0.05-18.20% for 5 min ethanol condensate; 

0.06-18.20% for full time (3-10 min) ethanol condensate; and 12.67-26.55% for 5 

min H2O2 condensate. The percentage uncertainties of ethanol vapor and H2O2 EBC 

models in full time were both over 300%. Hence, these two models were not able to 

give credible prediction presently. In uncertainty analyses, varied readings from 

repeated data and simulated vapor concentration (CV) were the biggest sources to 

furnish the uncertainties of predictive models. 

The developed predictive models provided a reference formula to standardize the 

varied sampling factors. The behaviors of ethanol and H2O2 under varied sampling 
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conditions were explored in this study and could contribute to a further understanding in 

VOC and non-VOC collection and sensing in breath analysis and also in trace gas 

analysis. 

6.2 Recommendations for Future Research 

In the course of this study, several improvements could be made to advance future 

research and were listed below:  

1. Vapor sensing  

Two parts were noted to result in higher uncertainties or ineffective readings in vapor 

sensing – one was the temperature difference of vapor temperature from BOS to 

sensing chamber (∆T), the other was how to amplify the current signal from highly 

diluted samples. In the first part, ∆T increased with increasing Tb or V& (see 

APPENDIX G for temperature drop profile). This was caused by the reduced 

temperature of the sensing chamber because it lacked insulation or thermostat design. 

Three compensation methods were employed to amend this problem, such as 

wrapping the sensing chamber by heating tape or water heat recycling tube, or placing 

part of the sensing chamber body in a water bath. However, there were still no 

effective solutions found. The size of the chamber was too small and the heating tape 

could not be tightly fitted to the surface of chamber so that it could not function well. 

The thickness of water tube created another barrier for transmitting the heat. The water 

bath only provided limited compensation to the chamber but also posed a potential 

risk to induce water to come into the chamber or even the connector of potentiostat. In 

addition to the temperature issue in the sensing chamber, a further design, such as a 

mixing device, will help mix biomarkers and water vapor thoroughly. 
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In the preliminary results of H2O2 vapor sensing, linear responses were found in part 

of the data, but the current levels were below the detection limit of the potentiostat 

(WaveNow, Pine Research Instrumentation, Raleigh, NC). To obtaining more 

credible data, amplifying current responses or applying a more precision instrument 

(WaveNano, Pine Research Instrumentation, Raleigh, NC, which has a practical 

range from 1 pA to 1 mA) would help analyze trace analyte. 

2. Condensate collection  

In this study, an ice bath was used to provide a cooling environment at TC = 274 and 

256 K (1 and -17 °C) with uncertainties of 1.06 and 1 K respectively. Some 

researchers claimed that a lower condensing temperature (down to -70 °C) can 

stabilize biomarkers better through the immediately freezing process. Peltier 

modules can provide a choice of stable and miniaturizing cooling device. In future 

studies, the effect of condensing temperature could be further studied by widening 

the range of temperature and the uncertainties could be minimized by reaching a 

more stable temperature control system.  

3. Sensor choice and preparation 

In section 5.1, the sensing system, which included biosensor and potentiostat, was 

identified to be one of the major sources of uncertainties. The potentiostat was 

calibrated before experiments. Ethanol was measured with AOX-immobilized 

SPCEs while H2O2 was measured with bare SPCEs. The varied current readings 

from sample with the same concentration might have originated from the enzyme 

layer and the SPCE. Human error (pipetting error) led to uneven thickness or 

unequal amount of the enzyme layer because the small volume (0.2 – 2 µl) of each 
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component in composing the AOX-immobilized assay. Additionally, the repeatability 

of SPCE should be considered. From Figures 15 and 24, larger error bars were found 

with H2O2 sensing. This implies the repeatability of the SPCE could be a stronger 

factor than enzyme layer and thus, led to larger variation. The enzyme layer was 

observed to stabilize the performance of biosensor in some way. 

With regards to SPCEs, limited options for commercially are available 

CoPC-mediated SPCEs in the US. The shelf life and different batches affected their 

performance. A customized option was available through Gwent Electronic Materials 

(GEM, Pontypool, Gwent, UK) but a bulk order was needed and proved more costly. 

In preliminary experiments where CoPC-mediated SPCEs from GEM were used, 

higher current readings were obtained with lower enzyme loadings and smaller 

working electrode surface area (Chen and Danao, 2010; APPENDIX H). Because the 

testing number between Gwent and DropSens obtained SPCEs were limited, full 

testing under the same preparation procedure and the assay composition will help 

further understand how to choose SPCEs with better performance. 

4. Other biomarkers 

While ethanol and H2O2 were chosen as the model biomarker in this study, results 

provided information on the behaviors of VOC and non-VOC during exhaled breath 

sampling and sensing. Based on the results presented in this dissertation, biomarkers 

with similar properties are expected to behave in a similar manner, following the 

general trends, and could be quantified using the analytical methods, predictive 

model development, and uncertainty analyses outlined in this study. The BOS, 

sampling or sensing systems may need to be re-designed for other biomarkers, taking 

into consideration their unique properties. For example, ammonia sensing was 
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briefly tested and results showed the conversion between ammonia and ammonium 

ion and the pH preference posed difficulties to simulate ammonia in exhaled breath 

(APPENDIX I.1).  

A portable sensing array for multi-biomarker detection is a long-term goal in breath 

analysis. The possible crosstalk (or interaction) between measured biomarkers and 

its derivatives need to be considered in designing a robust sensing system. Limited 

experiments to demonstrate how crosstalk between metabolites of alcohol 

metabolism were conducted and results showed a more comprehensive experiment 

need to be designed and conducted to determine the contribution of each product or 

byproduct (APPENDIX I.2).  
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APPENDICES 

APPENDIX A: EMPIRICAL COEFFICIENTS OF HENRY’S LAW 

kH at 298.15 K and ∆solnH/R values for ethanol and hydrogen peroxide were estimated 

using the average values collected from previous studies (Sander, 1999). 

Table A.1. kH at 298.15 K and ∆solnH/R values of ethanol from previous studies 

kH,T=298.15K  

(M/atm) 

∆solnH/R 

(K) 

Reference 

190 
 

Butler et al., 1935 

220 
 

Burnett, 1963 

160 
 

Timmermans, 1960 

200 
 

Gaffney and Senum, 1984 

190 6600 Snider and Dawson, 1985 

230 
 

Rohrschneider, 1973 

120 
 

Yaws and Yang, 1992 

150 6400 Schaffer and Daubert, 1969 

200   Meylan and Howard, 1991 

184 6500 (average) 

 

Table A.2. kH at 298.15 K and ∆solnH/R values of H2O2 from previous studies 

kH,T=298.15K  

(M/atm) 

∆solnH/R 

(K) 

Reference 

71000 7000 Martin and Damschen, 1981 

71000 7300 Hoffmann and Jacob, 1984 

14000 
 

Yoshizumi et al., 1984 

97000 6600 Chameides, 1984 

69000 7900 Hwang and Dasgupta, 1985 

86000 6500 Zhou and Lee, 1992 

110000 7500 Staffelbach and Kok, 1993 

100000 6300 Lind and Kok, 1994 

83000 7400 O’Sullivan et al., 1996 

77889 7062.5 (Average) 
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APPENDIX B: EVALUATION OF NON-IMMOBILIZED AND 

IMMOBILIZED SPCE 

Both assays contained: 1.2 µl AOX (400 units/ml), 0.6 µl BSA (40 mg/ml), and  

0.2 µl glutaraldehyde (1.5% (v/v)). 

 

Immobilized assay: the mixture was dropcoated on the working electrode of CoPC SPCE 

and drying for 2-2.5 hrs. Non-immobilized assay: the mixture was dropcoated on the 

working electrode of CoPC SPCE and ready for testing without drying time. 

 

Ethanol solutions at concentrations of 0, 0.005, 0.006, 0.010, 0.013% (w/w) were used to 

produce equivalent vapor concentrations at 0, 4, 5, 7.5, 10 ppm at 310 K to test the 

current responses. 

 

 

Figure B.1. Immobilized assay had higher current responses than non-immobilized assay 

in ethanol detection.  
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APPENDIX C: EVALUATION OF THE CONCENTRATION OF 

GLUTARALDEHYDE IN AOX-CONTAINED MIXTURE 

SOLUTIONS 

Immobilized AOX assay contained: 1.2 µl AOX (400 units/ml), 0.6 µl BSA (40 mg/ml),  

and 0.2 µl glutaraldehyde (1.0, 1.5, 2.0% (v/v)). 

The mixture was dropcoated on a working electrode of CoPC SPCE for 2-2.5 hrs.  

Current responses were measured for 0, 0.0025, 0.005% (w/w) ethanol solutions. 

Table C.1. Current measurements from three glutaraldehyde concentrations and three 

ethanol concentrations (unit: µA)  

Glutaraldehyde Concentration 

 % (w/w) 

Concentration of ethanol % (v/v) 

0 0.0025 0.005 

1.0 0.0234 0.1798 0.3124 

1.5 0.0782 0.1992 0.4434 

2.0 0.0782 0.2340 0.3895 

 
Figure C.1. Higher current responses were measured with AOX immobilized in 1.5% 

glutaraldehyde than with AOX immobilized in 1.0% glutaraldehyde. There was no 

significant difference among the assay with 1.5% and 2.0% glutaraldehyde. Dash lines 

represent regression results. 
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APPENDIX D: R CODES FOR MODELS FOR MODEL SELECTION 

AND PREDICTIVE MODEL DEVELOPMENT 

D.1 Model Selection for Specific Sensing Time (3, 5, 10 min) 

library(boot) # For command "glm"  

 

# functions for best model selection 

search.for.best.model<-function(data){ 

 

# A mapping matrix 

ntotal=10 

mapping=matrix(NA, 2^ntotal -1, ntotal) 

for(x in 1:( 2^ntotal -1)){ flag=x; 

for(step in 1: ntotal) {  

if(x!=0) { 

mapping[flag, ntotal+1-step]=as.logical(x%%2);   

x=x%/%2} 

        else{ 

mapping[flag, ntotal+1-step]=FALSE}}} 

 

mapping=cbind(rep(TRUE,2^ntotal-1),mapping) 

 

wholedata=cbind(data,data[,2]*data[,3],data[,2]*data[,4],data[,2]*data[,5], 

              data[,3]*data[,4],data[,3]*data[,5],data[,4]*data[,5]) 

name.whole=names(data) 

name.whole=c(name.whole,paste(name.whole[2],"*",name.whole[3],sep=""), 

                      paste(name.whole[2],"*",name.whole[4],sep=""), 

                      paste(name.whole[2],"*",name.whole[5],sep=""), 

                      paste(name.whole[3],"*",name.whole[4],sep=""), 

                      paste(name.whole[3],"*",name.whole[5],sep=""), 

                      paste(name.whole[4],"*",name.whole[5],sep="")) 

colnames(wholedata)=name.whole 

 

# Remove those with interaction but no single term 

list=NULL; 

for(step in 1:(2^10-1)) { 
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if(mapping[step,6]==TRUE & sum(mapping[step,c(2,3)])!=2) list<-c(list,step) 

if(mapping[step,7]==TRUE & sum(mapping[step,c(2,4)])!=2) list<-c(list,step) 

if(mapping[step,8]==TRUE & sum(mapping[step,c(2,5)])!=2) list<-c(list,step) 

if(mapping[step,9]==TRUE & sum(mapping[step,c(3,4)])!=2) list<-c(list,step) 

if(mapping[step,10]==TRUE & sum(mapping[step,c(3,5)])!=2) list<-c(list,step) 

if(mapping[step,11]==TRUE & sum(mapping[step,c(4,5)])!=2) list<-c(list,step)} 

 

list=unique(list) 

mapping=mapping[-list,] 

 

AIC<-rep(NA,dim(mapping)[1]) 

BIC<-rep(NA,dim(mapping)[1]) 

CV<-rep(NA,dim(mapping)[1]) 

AICmin= ntotal^ ntotal 

BICmin= ntotal^ ntotal 

CVmin= ntotal^ ntotal 

 

for(step in 1:dim(mapping)[1]){ 

Z=wholedata[,mapping[step,]] 

fit=lm(I~.,data=Z) 

gfit=glm(I~.,data=Z) 

CVfitresult=cv.glm(Z,gfit,K=10) 

if(sum(is.na(fit$coefficients))==0){ 

AIC[step]<- extractAIC(fit)[2] 

BIC[step]<- extractAIC(fit,k=log(dim(Z)[1]))[2] 

CV[step]<-CVfitresult$delta[1] 

if(AIC[step]<AICmin) { 

AICmin=AIC[step]; AICfit=fit; AICstep=step} 

if(BIC[step]<BICmin) { 

BICmin=BIC[step]; BICfit=fit; BICstep=step} 

if(CV[step]<CVmin)  { 

CVmin=CV[step]; CVfit=fit; CVstep=step}}} 

 

list(AIClist=AIC,BIClist=BIC, CVlist=CV, 

   AICmin=AICmin, BICmin=BICmin, CVmin=CVmin, 

   AICfit=AICfit, BICfit=BICfit, CVfit=CVfit, 
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   AICstep=AICstep, BICstep=BICstep, CVstep=CVstep) 

} 

 

# Feed data and run model selection function 

# FilePath example: C:/Documents and Settings/chen143/My Documents/My 

Dropbox/20110915 EtOH testing/Data/raw/corrected data (dT and 

V)/vapor_3_sub_reciprocal.csv 

 

data=read.csv("FilePath",header=T) 

data=data[,c(1,2:5)] 

result=search.for.best.model(data) 

result 

 

D.2 Model Selection for Full Time (Time Series, 3-10 min) 

library(boot)  

 

search.for.best.model<-function(data){ 

ntotal=15 

mapping=matrix(NA,2^ntotal -1, ntotal) 

for(x in 1:(2^ ntotal -1)){  

flag=x; 

for(step in 1: ntotal) { 

 if(x!=0) { 

mapping[flag, ntotal+1 -step]=as.logical(x%%2);   

x=x%/%2}                     

    else {mapping[flag, ntotal+1 -step]=FALSE}}} 

mapping=cbind(rep(TRUE,2^ntotal-1),mapping) 

 

wholedata=cbind(data,data[,2]*data[,3],data[,2]*data[,4],data[,2]*data[,5], 

data[,2]*data[,6],data[,3]*data[,4],data[,3]*data[,5],data[,3]*data[,6], 

data[,4]*data[,5],data[,4]*data[,6],data[,5]*data[,6]) 

name.whole=names(data) 

name.whole=c(name.whole,paste(name.whole[2],"*",name.whole[3],sep=""),                        

       paste(name.whole[2],"*",name.whole[4],sep=""),                        

             paste(name.whole[2],"*",name.whole[5],sep=""), 
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       paste(name.whole[2],"*",name.whole[6],sep=""),                        

       paste(name.whole[3],"*",name.whole[4],sep=""),                        

       paste(name.whole[3],"*",name.whole[5],sep=""), 

       paste(name.whole[3],"*",name.whole[6],sep=""),                        

       paste(name.whole[4],"*",name.whole[5],sep=""), 

       paste(name.whole[4],"*",name.whole[6],sep=""), 

       paste(name.whole[5],"*",name.whole[6],sep=""))  

colnames(wholedata)=name.whole  

 

list=NULL; 

for(step in 1:(2^ntotal -1)) { 

if(mapping[step,7]==TRUE & sum(mapping[step,c(2,3)])!=2) list<-c(list,step) 

if(mapping[step,8]==TRUE & sum(mapping[step,c(2,4)])!=2) list<-c(list,step) 

if(mapping[step,9]==TRUE & sum(mapping[step,c(2,5)])!=2) list<-c(list,step) 

if(mapping[step,10]==TRUE & sum(mapping[step,c(2,6)])!=2) list<-c(list,step) 

if(mapping[step,11]==TRUE & sum(mapping[step,c(3,4)])!=2) list<-c(list,step) 

if(mapping[step,12]==TRUE & sum(mapping[step,c(3,5)])!=2) list<-c(list,step) 

if(mapping[step,13]==TRUE & sum(mapping[step,c(3,6)])!=2) list<-c(list,step) 

if(mapping[step,14]==TRUE & sum(mapping[step,c(4,5)])!=2) list<-c(list,step) 

if(mapping[step,15]==TRUE & sum(mapping[step,c(4,6)])!=2) list<-c(list,step) 

if(mapping[step,16]==TRUE & sum(mapping[step,c(5,6)])!=2) list<-c(list,step)}  

 

list=unique(list) 

mapping=mapping[-list,] 

 

AIC<-rep(NA,dim(mapping)[1]) 

BIC<-rep(NA,dim(mapping)[1]) 

CV<-rep(NA,dim(mapping)[1]) 

AICmin= ntotal^ ntotal 

BICmin= ntotal^ ntotal 

CVmin= ntotal^ ntotal 

 

for(step in 1:dim(mapping)[1]){ 

Z=wholedata[,mapping[step,]] 

fit=lm(I~.,data=Z) 

gfit=glm(I~.,data=Z) 
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CVfitresult=cv.glm(Z,gfit,K=15) 

if(sum(is.na(fit$coefficients))==0){ 

AIC[step]<- extractAIC(fit)[2] 

BIC[step]<- extractAIC(fit,k=log(dim(Z)[1]))[2] 

CV[step]<-CVfitresult$delta[1] 

if(AIC[step]<AICmin) { 

AICmin=AIC[step]; AICfit=fit; AICstep=step} 

if(BIC[step]<BICmin) { 

BICmin=BIC[step]; BICfit=fit; BICstep=step} 

if(CV[step]<CVmin)  { 

CVmin=CV[step]; CVfit=fit; CVstep=step}}} 

 

list(AIClist=AIC,BIClist=BIC, CVlist=CV, 

   AICmin=AICmin, BICmin=BICmin, CVmin=CVmin, 

   AICfit=AICfit, BICfit=BICfit, CVfit=CVfit, 

   AICstep=AICstep, BICstep=BICstep, CVstep=CVstep) 

} 

 

data=read.csv("FilePath",header=T) 

data=data[,c(1,2:6)] 

result=search.for.best.model(data) 

result 

 

D.3 Test the significance of each variables in the model 

Example: model selection result of AIC model from 5 min ethanol vapor sample  

data1=read.csv("FilePath",header=T) 

 

#Original result from AIC model selection: I ~ Tb1 + Cv + Tb1*Cv  

#Tb1=1/Tb 

fit1=lm(I ~ Tb1 + Cv + Tb1*Cv,data=data1) 

 

#Test the significance of the intercept 

fit2=lm(I ~ Tb1 + Cv + Tb1*Cv-1,data=data1) 

anova(fit1,fit2) 

#Test the significance of the interaction term “Tb1*Cv” 
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fit3=lm(I ~ Tb1 + Cv -1,data=data1) 

anova(fit2,fit3) 

 

#Test the significance of the term “Cv” 

fit4=lm(I ~ Tb1 + Tb1*Cv-1,data=data1) 

anova(fit2,fit4) 

 

#Test the significance of the term “Tb1” 

fit5=lm(I ~ Cv + Tb1*Cv-1,data=data1) 

anova(fit2,fit4) 
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APPENDIX E: VAPOR SENSING OF H2O2 SAMPLES 

E.1 Decomposition of H2O2 in the Vapor  

The decomposition of H2O2 in vapor samples at 295 K decreased significantly when 

sampled after 5 and 10 min (p = 0.001). In the 10 min sampling time, the amperometric 

responses were higher because the longer sampling time increased the chances of H2O2 

molecules depositing on electrode surface (Figure E.1). In spite of part of the data 

showing a decreasing trend with time, the current responses were lower than 100 nA at 

elevated temperatures. It was close to or even lower than the detection limit (80 nA) of 

the potentiostat. Therefore, the current responses need to be further amplified to provide 

more credible measurements in order to better differentiate the signal from the noise.  

  

Figure E.1. The decomposition of H2O2 in vapor samples was determined by monitoring 

the current responses in 5 min and 10 min intervals for a period of 35-40 min at different 

bubbler temperatures and 3.438 LPM. The data represent one replication. 
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E.2 Current Response of H2O2 in the Vapor Samples at Changing Breath 

Temperature 

Current responses measured from vapor sample were too low to determine any 

appreciable trend in 5 min or 10 min sensing duration at elevated Tb (Figure E.2). The 

amperometric responses will need to be further amplified, either by increasing the 

electrode surface or the enzyme loading for vapor sample detection. 

 
Figure E.2. Amperometric tests were performed to monitor the effect of simulated EB 

temperature (Tb= 295. 307, 310, 315 K, �� =3.438 LPM) in 5 min and 10 min H2O2 vapor 

sample measurement. The data represent one replication. 
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E.3 Current Response of H2O2 in the Vapor Samples at Changing Breath Rate 

Increasing flow rate favored the reaction and raised the current levels, but no trend 

was found between current and increased H2O 2 vapor concentration (Figure E.3). Current 

measurements were still too low for further inference. 

 

    

Figure E.3. Amperometric tests were performed to monitor the effect of flow rate change 

with �� = 3.438 and 6.876 LPM at Tb = 310 K in H2O2 vapor samples. Three replicate 

samples were measured for samples taken from �� = 3.438 and one was from �� = 6.876 

LPM. Error bars represent ± one S.E. 
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APPENDIX F: DETAILED INFORMATION OF UNCERTAINTY 

ANALYSES 

F.1 Systematic Uncertainties (Uncertainties of BOS) 

Percentage uncertainties in this section were calculated as: 

273.15-resultt measuremen The

)(y uncertaint Expanded
yuncertaint Percentage

U
=        (F.1) 

The percentage uncertainties were shown in the scale of degree Celsius. 

F.1.1 Simulated Breath Temperature 

Table F.1. Uncertainty analysis for Tb = 295 K and V& = 1.779 LPM 

Tb = 295 K (22°C), V& = 1.779 LPM 

Source of uncertainty Value 

(K) 

Probability 

distribution 

Divisor Standard 

uncertainty (K) 

Water bath        calibration (±) 0.5 Normal, 2σ 2 0.25 

resolution 0.1 Rectangular 12  0.03 

Thermometer     calibration (±) 1.04 Normal, 2σ 2 0.52 

resolution 0.1 Rectangular 12  0.03 

correction 0.03       

SE from 11 repeated readings 0.015 Normal, 1σ 1 0.015 

Combined standard uncertainty, uc     0.58 

Coverage factor, kcoverage 2 
 

Expanded uncertainty, U 
 

1.16 

Mean from 11 repeated readings 295.41 
  

The measurement result and the uncertainty 295.44 ± 1.16 

Percentage uncertainty   5.21% 
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Table F.2. Uncertainty analysis for Tb = 307 K and V& = 1.779 LPM 

Tb = 307 K (34°C), V& = 1.779 LPM 

Source of uncertainty Value 

(K) 

Probability 

distribution 

Divisor Standard 

uncertainty (K) 

Water bath         calibration (±) 0.5 Normal, 2σ 2 0.25 

resolution 0.1 Rectangular 12  0.03 

Thermometer      calibration (±) 1.07 Normal, 2σ 2 0.53 

resolution 0.1 Rectangular 12  0.03 

correction 0.03       

SE from 11 repeated readings 0.037 Normal, 1σ 1 0.037 

Combined standard uncertainty, uc     0.59 

Coverage factor, kcoverage 2 
 

Expanded uncertainty, U 
 

1.18 

Mean from 11 repeated readings 307.36       

The measurement result and the uncertainty 307.39 ± 1.18 

Percentage uncertainty   3.46% 

 

Table F.3. Uncertainty analysis for Tb = 310 K and V& = 1.779 LPM 

Tb = 310 K (37°C), V& = 1.779 LPM 

Source of uncertainty Value 

(K) 

Probability 

distribution 

Divisor Standard 

uncertainty (K) 

Water bath         calibration (±) 0.5 Normal, 2σ 2 0.25 

resolution 0.1 Rectangular 12  0.03 

Thermometer      calibration (±) 1.07 Normal, 2σ 2 0.54 

resolution 0.1 Rectangular 12  0.03 

correction 0.03       

SE from 11 repeated readings 0.08 Normal, 1σ 1 0.08 

Combined standard uncertainty, uc     0.60 

Coverage factor, kcoverage 2 
 

Expanded uncertainty, U 
 

1.20 

Mean from 11 repeated readings 310.31       

The measurement result and the uncertainty 310.34 ± 1.20 

Percentage uncertainty   3.22% 
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Table F.4. Uncertainty analysis for Tb = 315K and V& = 1.779 LPM 

Tb = 315K (42°C), V& = 1.779 LPM 

Source of uncertainty Value 

(K) 

Probability 

distribution 

Divisor Standard 

uncertainty (K) 

Water bath         calibration (±) 0.5 Normal, 2σ 2 0.25 

resolution 0.1 Rectangular 12  0.03 

Thermometer      calibration (±) 1.08 Normal, 2σ 2 0.54 

resolution 0.1 Rectangular 12  0.03 

correction 0.03       

SE from 11 repeated readings 0.128 Normal, 1σ 1 0.128 

Combined standard uncertainty, uc     0.61 

Coverage factor, kcoverage 2 
 

Expanded uncertainty, U 
 

1.22 

Mean from 11 repeated readings 315.01       

The measurement result and the uncertainty 315.04 ± 1.22 

Percentage uncertainty   2.92% 

 

Table F.5. Uncertainty analysis for Tb = 310 K and V& = 3.407 LPM 

Tb = 310 K (37°C), V& = 3.407 LPM 

Source of uncertainty Value 

(K) 

Probability 

distribution 

Divisor Standard 

uncertainty (K) 

Water bath         calibration (±) 0.5 Normal, 2σ 2 0.25 

                        resolution 0.1 Rectangular 12  0.03 

Thermometer      calibration (±) 1.08 Normal, 2σ 2 0.54 

resolution 0.1 Rectangular 12  0.03 

correction 0.03       

SE from 11 repeated readings 0.072 Normal, 1σ 1 0.072 

Combined standard uncertainty, uc     0.60 

Coverage factor, kcoverage 2 
 

Expanded uncertainty, U 
 

1.20 

Mean from 11 repeated readings 310.65       

The measurement result and the uncertainty 310.68 ± 1.20 

Percentage uncertainty   3.19% 
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F.1.2 Flow rate 

Table F.6. Uncertainty analysis for V& = 1.779 LPM 

Flow rate (V& ) = 1.779 LPM 

Source of 

uncertainty 

Value 

(LPM) 

Probability 

distribution 

Divisor 
Standard 

uncertainty 

(LPM) 

Error from rotameter 

calibration (±) 0.036 Normal, 2σ 2 0.018 

resolution 0.029 Rectangular 12  0.008 

Combined standard uncertainty, uc      0.0196 

Coverage factor, kcoverage 2 

Expanded uncertainty, U     0.04 

The measurement result  

  and the uncertainty 

1.779 ± 0.039 

Percentage uncertainty   2.20% 

 

Table F.7. Uncertainty analysis for V& = 3.407 LPM 

Flow rate (V& ) = 3.407 LPM 

Source of uncertainty Value 

(LPM) 

Probability 

distribution 

Divisor 
Standard 

uncertainty 

(LPM) 

Error from rotameter 

calibration (±) 0.068 Normal, 2σ 2 0.034 

resolution 0.138 Rectangular 12  0.040 

Combined standard uncertainty, uc      0.0524 

Coverage factor, kcoverage 2 

Expanded uncertainty, U     0.10 

The measurement result  

   and the uncertainty 

3.407 ± 0.105 

Percentage uncertainty   3.08% 
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F.1.3 Temperature Drop (for vapor samples) 

Table F.8. Uncertainty analysis for ∆T from 295 K (22°C), V& = 1.779 LPM 

∆T from 295 K (22°C), V& = 1.779 LPM 

Source of uncertainty Value 

(K) 

Probability 

distribution 

Divisor Standard 

uncertainty (K) 

Error from Tb 

correction 0.03 

mean from 11 repeated readings 295.41 

corrected mean 295.44 

combined uncertainty: u(Tb)     0.58 

Error from TSC 

calibration (±) 0.5 Normal, 2σ 2 0.25 

resolution 0.1 Rectangular 12  0.03 

SE from 11 repeated readings 0.03 Normal, 1σ 1 0.03 

correction 0.03 

mean from 11 repeated readings 295.48 

corrected mean 295.52 

combined uncertainty: u(TSC)     0.25 

Combined standard uncertainty, uc     0.63 

Coverage factor, kcoverage 2 

Expanded uncertainty, U 1.27 

Mean from 11 repeated readings -0.08       

The measurement result and the uncertainty -0.08 ± 1.27 

Percentage uncertainty   -1622.80%1 
1Uncertainties of this magnitude was due to the relatively small value (-0.08), which was the divisor when 

calculating the percentage uncertainty, from the measurement results. 
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Table F.9. Uncertainty analysis for ∆T from 307 K (34°C), V& = 1.779 LPM 

∆T from 307 K (34°C), V& = 1.779 LPM 

Source of uncertainty Value 

(K) 

Probability 

distribution 

Divisor Standard 

uncertainty (K) 

Error from Tb 

correction 0.03 

mean from 11 repeated readings 307.36 

corrected mean 307.39 

combined uncertainty: u(Tb)     0.59 

Error from TSC 

calibration (±) 0.5 Normal, 2σ 2 0.25 

resolution 0.1 Rectangular 12  0.03 

SE from 11 repeated readings 0.18 Normal, 1σ 1 0.18 

correction 0.03 

mean from 11 repeated readings 303.00 

corrected mean 303.04 

combined uncertainty: u(TSC)     0.31 

Combined standard uncertainty, uc     0.67 

Coverage factor, kcoverage 2 

Expanded uncertainty, U 1.33 

Mean from 11 repeated readings 4.35       

The measurement result and the uncertainty 4.35 ± 1.33 

Percentage uncertainty   30.62% 
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Table F.10. Uncertainty analysis for ∆T from 310 K (37°C), V& = 1.779 LPM 

∆T from 310 K (37°C), V& = 1.779 LPM 

Source of uncertainty Value 

(K) 

Probability 

distribution 

Divisor Standard 

uncertainty (K) 

Error from Tb 

correction 0.03 

mean from 11 repeated readings 310.31 

corrected mean 310.34 

combined uncertainty: u(Tb)     0.6 

Error from TSC 

calibration (±) 0.5 Normal, 2σ 2 0.25 

resolution 0.1 Rectangular 12  0.03 

SE from 11 repeated readings 0.23 Normal, 1σ 1 0.23 

correction 0.03 

mean from 11 repeated readings 305.25 

corrected mean 305.29 

combined uncertainty: u(TSC)     0.34 

Combined standard uncertainty, uc     0.69 

Coverage factor, kcoverage 2 

Expanded uncertainty, U 1.38 

Mean from 11 repeated readings 5.0525       

The measurement result and the uncertainty 5.05 ± 1.38 

Percentage uncertainty   27.26% 
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Table F.11. Uncertainty analysis for ∆T from 315 K (42°C), V& = 1.779 LPM 

∆T from 315 K (42°C), V& = 1.779 LPM 

Source of uncertainty Value 

(K) 

Probability 

distribution 

Divisor Standard 

uncertainty (K) 

Error from Tb 

correction 0.03 

mean from 11 repeated readings 315.01 

corrected mean 315.04 

combined uncertainty: u(Tb)     0.61 

Error from TSC 

calibration (±) 0.5 Normal, 2σ 2 0.25 

resolution 0.1 Rectangular 12  0.03 

SE from 11 repeated readings 0.24 Normal, 1σ 1 0.24 

correction 0.03 

mean from 11 repeated readings 308.07 

corrected mean 308.10 

combined uncertainty: u(TSC)     0.35 

Combined standard uncertainty, uc     0.70 

Coverage factor, kcoverage 2 

Expanded uncertainty, U 1.41 

Mean from 11 repeated readings 6.94       

The measurement result and the uncertainty 6.94 ± 1.41 

Percentage uncertainty   20.28% 
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Table F.12. Uncertainty analysis for ∆T from 310 K (37°C), V& = 3.407 LPM 

∆T from 310 K (37°C), V& = 3.407 LPM 

Source of uncertainty Value 

(K) 

Probability 

distribution 

Divisor Standard 

uncertainty (K) 

Error from Tb 

correction 0.03 

mean from 11 repeated readings 310.65 

corrected mean 310.68 

combined uncertainty: u(Tb)     0.6 

Error from TSC 

calibration (±) 0.5 Normal, 2σ 2 0.25 

resolution 0.1 Rectangular 12  0.03 

SE from 11 repeated readings 0.17 Normal, 1σ 1 0.17 

correction 0.03 

mean from 11 repeated readings 306.06 

corrected mean 306.09 

combined uncertainty: u(TSC)     0.30 

Combined standard uncertainty, uc     0.67 

Coverage factor, kcoverage 2 

Expanded uncertainty, U 1.34 

Mean from 11 repeated readings 4.59       

The measurement result and the uncertainty 4.59 ± 1.34 

Percentage uncertainty   29.29% 
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F.1.4 Condensing Temperature (for condensate samples) 

Table F.13. Uncertainty analysis for TC = 274 K (1°C) 

TC = 274 K (1°C) 

Source of uncertainty Value 

(K) 

Probability 

distribution 

Divisor Standard 

uncertainty (K) 

Ice bath         

calibration (±) 0.5 Normal, 2σ 2 0.25 

Thermometer         

calibration (±) 1.00 Normal, 2σ 2 0.50 

resolution 0.1 Rectangular 12  0.03 

correction 0.03       

SE from 11 repeated readings 0.16 Normal, 1σ 1 0.16 

Combined standard uncertainty, uc     0.53 

Coverage factor, kcoverage 
 

2 

Expanded uncertainty, U 
 

1.06 

Mean from 11 repeated readings 274.37       

The measurement result and the uncertainty 274.40 ± 1.06 

Percentage uncertainty   84.53% 
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Table F.14. Uncertainty analysis for TC = 256 K (-17°C) 

TC = 256 K (-17°C) 

Source of uncertainty Value 

(K) 

Probability 

distribution 

Divisor Standard 

uncertainty (K) 

Ice bath         

calibration (±) 0.5 Normal, 2σ 2 0.25 

Thermometer         

calibration (±) 0.97 Normal, 2σ 2 0.48 

resolution 0.1 Rectangular 12  0.03 

correction 0.03       

SE from 11 repeated readings 0.13 Normal, 1σ 1 0.13 

Combined standard uncertainty, uc     0.50 

Coverage factor, kcoverage 
 

2 

Expanded uncertainty, U 
 

1.00 

Mean from 11 repeated readings 256.09       

The measurement result and the uncertainty 256.11 ± 1.00 

Percentage uncertainty   -5.88% 
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F.2 Uncertainties of Ethanol in Simulated Exhaled Breath  

In this section, rectangular probability distribution was considered as 3  because the 

value of ± range was already included in shown numbers. 

Table F.15. Uncertainty analysis of producing 4 ppm ethanol vapor at 295 K 

Ethanol solution preparation for producing 4 ppm ethanol vapor at 295 K 

Source of uncertainty Value 

± (µl) 

Probability 

distribution 

Divisor Standard 

uncertainty (µl) 

A (solute, use 0.1% (v/v) ethanol solution)  4135 

4000 µl    calibration from pipette 40 Rectangular 3  23.09 

uncertainty from 0.1% ethanol 28.22 

combined uncertainty       36.47 

135 µl    calibration from pipette 1.6 Rectangular 3  0.92 

uncertainty from 0.1% 

ethanol 0.95 

combined uncertainty       1.33 

Combined standard uncertainty uc(A) 36.49 

B (solvent, use buffer)  75865 

75 ml   calibration from     

        graduate cylinder 

600 Rectangular 3  346.41 

865 µl    calibration from pipette 8 Rectangular 3  4.62 

Combined standard uncertainty uc(B) 346.44 

Standard uncertainty of ethanol solution u(P) 0.00049 

Coverage factor, kcoverage 
 

2 
  

The measurement result and the uncertainty  

       (in 0.1% ethanol based) 
0.0517 ± 0.0010 

Percentage uncertainty     1.88% 
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Table F.16. Uncertainty analysis of producing 5 ppm ethanol vapor at 295 K 

Ethanol solution preparation for producing 5 ppm ethanol vapor at 295 K 

Source of uncertainty Value 

± (µl) 

Probability 

distribution 

Divisor Standard 

uncertainty (µl) 

A (solute, use 0.1% (v/v) ethanol solution)  5168 

5000 µl    calibration from pipette 40 Rectangular 3  23.09 

uncertainty from 0.1% ethanol 35.28 

combined uncertainty       42.17 

168 µl    calibration from pipette 1.6 Rectangular 3  0.92 

uncertainty from 0.1% ethanol 1.19 

combined uncertainty       1.50 

Combined standard uncertainty uc(A) 42.19 

B (solvent, use buffer)  74832 

74 ml   calibration from     

        graduate cylinder 

600 Rectangular 3  346.41 

800  µl    calibration from pipette 8 Rectangular 3  4.62 

32 µl    calibration from pipette 0.5 Rectangular 3  0.29 

Combined standard uncertainty uc(B) 346.44 

Standard uncertainty of ethanol solution u(P) 0.00057 

Coverage factor, kcoverage 
 

2 
  

The measurement result and the uncertainty  

       (in 0.1% ethanol based) 
0.0646 ± 0.0011 

Percentage uncertainty     1.76% 
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Table F.17. Uncertainty analysis of producing 7.5 ppm ethanol vapor at 295 K 

Ethanol solution preparation for producing 7.5 ppm ethanol vapor at 295 K 

Source of uncertainty Value 

± (µl) 

Probability 

distribution 

Divisor Standard 

uncertainty (µl) 

A (solute, use 0.1% (v/v) ethanol solution)  7753 

5000 µl    calibration from pipette 40 Rectangular 3  23.09 

uncertainty from 0.1% ethanol 35.28 

combined uncertainty       42.17 

2000 µl    calibration from pipette 40 Rectangular 3  23.09 

uncertainty from 0.1% ethanol 14.11 

combined uncertainty       27.06 

710 µl    calibration from pipette 8 Rectangular 3  4.62 

uncertainty from 0.1% ethanol 5.01 

combined uncertainty       6.81 

43 µl    calibration from pipette 0.5 Rectangular 3  0.29 

uncertainty from 0.1% ethanol 0.30 

combined uncertainty       0.42 

Combined standard uncertainty uc(A) 50.57 

B (solvent, use buffer)  72247 

72  ml   calibration from     

        graduate cylinder 

600 Rectangular 3  346.41 

200 µl    calibration from pipette 8 Rectangular 3  4.62 

47 µl    calibration from pipette 0.5 Rectangular 3  0.29 

Combined standard uncertainty uc(B) 346.44 

Standard uncertainty of ethanol solution u(P) 0.00071 

Coverage factor, kcoverage 
 

2 

The measurement result and the uncertainty  

       (in 0.1% ethanol based) 
0.0969 ± 0.0014 

Percentage uncertainty     1.46% 
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Table F.18. Uncertainty analysis of producing 4 ppm ethanol vapor at 307 K 

Ethanol solution preparation for producing 4 ppm ethanol vapor at 307 K 

Source of uncertainty Value 

± (µl) 

Probability 

distribution 

Divisor Standard 

uncertainty (µl) 

A (solute, use 0.1% (v/v) ethanol solution)  1814

1000 µl     calibration from pipette 8 Rectangular 3  4.62

uncertainty from 0.1% ethanol 7.06

combined uncertainty      8.43

700 µl     calibration from pipette 8 Rectangular 3  4.62

uncertainty from 0.1% ethanol 4.94

combined uncertainty      6.76

114 µl     calibration from pipette 1.6 Rectangular 3  0.92

uncertainty from 0.1% ethanol 0.80

combined uncertainty      1.22

Combined standard uncertainty uc(A) 10.88

B (solvent, use buffer)  78186

78 ml    calibration from     

          graduate cylinder 

600 Rectangular 3  346.41

100  µl    calibration from pipette 1.6 Rectangular 3  0.92

86  µl    calibration from pipette 1.6 Rectangular 3  0.92

Combined standard uncertainty uc(B) 346.41

Standard uncertainty of ethanol solution u(P) 0.00017

Coverage factor, kcoverage 2 

The measurement result and the uncertainty 

       (in 0.1% ethanol based) 
0.0227 ± 0.0003

Percentage uncertainty     1.46%
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Table F.19. Uncertainty analysis of producing 5 ppm ethanol vapor at 307 K 

Ethanol solution preparation for producing 5 ppm ethanol vapor at 307 K 

Source of uncertainty Value 

± (µl) 

Probability 

distribution 

Divisor Standard 

uncertainty (µl) 

A (solute, use 0.1% (v/v) ethanol solution)  2267

1000 µl       calibration from pipette 8 Rectangular 3  4.62

uncertainty from 0.1% ethanol 7.06

combined uncertainty      8.43

1000 µl       calibration from pipette 8 Rectangular 3  4.62

uncertainty from 0.1% ethanol 7.06

combined uncertainty      8.43

200 µl       calibration from pipette 1.6 Rectangular 3  0.92

uncertainty from 0.1% ethanol 1.41

combined uncertainty      1.69

67 µl       calibration from pipette 1.6 Rectangular 3  0.92

uncertainty from 0.1% ethanol 0.47

combined uncertainty      1.04

Combined standard uncertainty uc(A) 12.09

B (solvent, use buffer)  77733

77 ml       calibration from     

             graduate cylinder 

600 Rectangular 3  346.41

700  µl       calibration from pipette 8 Rectangular 3  4.62

33  µl       calibration from pipette 0.5 Rectangular 3  0.29

Combined standard uncertainty uc(B) 346.44

Standard uncertainty of ethanol solution u(P) 0.00019

Coverage factor, kcoverage 2 

The measurement result and the uncertainty  

       (in 0.1% ethanol based) 
0.0283 ± 0.0004

Percentage uncertainty     1.35%
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Table F.20. Uncertainty analysis of producing 7.5 ppm ethanol vapor at 307 K 

 Ethanol solution preparation for producing 7.5 ppm ethanol vapor at 307 K 

Source of uncertainty Value 

± (µl) 

Probability 

distribution 

Divisor Standard 

uncertainty (µl) 

A (solute, use 0.1% (v/v) ethanol solution)  3401 

3000 µl    calibration from pipette 40 Rectangular 3  23.09 

uncertainty from 0.1% ethanol 21.17 

combined uncertainty       31.33 

360 µl    calibration from pipette 8 Rectangular 3  4.62 

uncertainty from 0.1% ethanol 2.54 

combined uncertainty       5.27 

41 µl    calibration from pipette 0.5 Rectangular 3  0.29 

uncertainty from 0.1% ethanol 0.29 

combined uncertainty       0.41 

Combined standard uncertainty uc(A) 31.77 

B (solvent, use buffer)  76599 

77 ml   calibration from     

        graduate cylinder 

600 Rectangular 3  346.41 

700 µl    calibration from pipette 8 Rectangular 3  4.62 

33 µl    calibration from pipette 0.5 Rectangular 3  0.29 

Combined standard uncertainty uc(B) 346.44 

Standard uncertainty of ethanol solution u(P) 0.00042 

Coverage factor, kcoverage 2 

The measurement result and the uncertainty  

       (in 0.1% ethanol based) 
0.0425 ± 0.0008 

Percentage uncertainty     1.99% 
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Table F.21. Uncertainty analysis of producing 4 ppm ethanol vapor at 310 K 

Ethanol solution preparation for producing 4 ppm ethanol vapor at 310 K 

Source of uncertainty Value 

± (µl) 

Probability 

distribution 

Divisor Standard 

uncertainty (µl) 

A (solute, use 0.1% (v/v) ethanol solution)  1478 

1000 µl   calibration from pipette 8 Rectangular 3  4.62 

uncertainty from 0.1% ethanol 7.06 

combined uncertainty       8.43 

450 µl   calibration from pipette 8 Rectangular 3  4.62 

uncertainty from 0.1% ethanol 3.18 

combined uncertainty       5.60 

28 µl   calibration from pipette 0.5 Rectangular 3  0.29 

uncertainty from 0.1% ethanol 0.20 

combined uncertainty       0.35 

Combined standard uncertainty uc(A) 10.13 

B (solvent, use buffer)  78522 

78 ml   calibration from     

        graduate cylinder 

600 Rectangular 3  346.41 

500 µl   calibration from pipette 8 Rectangular 3  4.62 

22 µl   calibration from pipette 0.5 Rectangular 3  0.29 

Combined standard uncertainty uc(B) 346.44 

Standard uncertainty of ethanol solution u(P) 0.00015 

Coverage factor, kcoverage 2 

The measurement result and the uncertainty  

       (in 0.1% ethanol based) 
0.0185 ± 0.0003 

Percentage uncertainty     1.60% 

 

 

  



 

131 
 

Table F.22. Uncertainty analysis of producing 5 ppm ethanol vapor at 310 K 

Ethanol solution preparation for producing 5 ppm ethanol vapor at 310 K 

Source of uncertainty Value 

± (µl) 

Probability 

distribution 

Divisor Standard 

uncertainty (µl) 

A (solute, use 0.1% (v/v) ethanol solution)  1874 

1000 µl    calibration from pipette 8 Rectangular 3  4.62 

uncertainty from 0.1% ethanol 7.06 

combined uncertainty       8.43 

800 µl    calibration from pipette 8 Rectangular 3  4.62 

uncertainty from 0.1% ethanol 5.64 

combined uncertainty       7.29 

74 µl    calibration from pipette 1.6 Rectangular 3  0.92 

uncertainty from 0.1% ethanol 0.52 

combined uncertainty       1.06 

Combined standard uncertainty uc(A) 11.20 

B (solvent, use buffer)  78126 

78 ml   calibration from     

        graduate cylinder 

600 Rectangular 3  346.41 

126 µl    calibration from pipette 8 Rectangular 3  4.62 

Combined standard uncertainty uc(B) 346.44 

Standard uncertainty of ethanol solution u(P) 0.00017 

Coverage factor, kcoverage 2 

The measurement result and the uncertainty  

       (in 0.1% ethanol based) 
0.0234 ± 0.0003 

Percentage uncertainty     1.45% 
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Table F.23. Uncertainty analysis of producing 7.5 ppm ethanol vapor at 310 K 

Ethanol solution preparation for producing 7.5 ppm ethanol vapor at 310 K 

Source of uncertainty Value 

± (µl) 

Probability 

distribution 

Divisor Standard 

uncertainty (µl) 

A (solute, use 0.1% (v/v) ethanol solution)  2771 

1000 µl    calibration from pipette 8 Rectangular 3  4.62 

uncertainty from 0.1% ethanol 7.06 

combined uncertainty       8.43 

1000 µl    calibration from pipette 8 Rectangular 3  4.62 

uncertainty from 0.1% ethanol 7.06 

combined uncertainty       8.43 

600 µl    calibration from pipette 8 Rectangular 3  4.62 

uncertainty from 0.1% ethanol 4.23 

combined uncertainty       6.27 

171 µl    calibration from pipette 1.6 Rectangular 3  0.92 

uncertainty from 0.1% ethanol 1.21 

combined uncertainty       1.52 

Combined standard uncertainty uc(A) 13.56 

B (solvent, use buffer)  77229 

77 ml   calibration from     

        graduate cylinder 

600 Rectangular 3  346.41 

200 µl    calibration from pipette 1.6 Rectangular 3  0.92 

29 µl    calibration from pipette 0.5 Rectangular 3  0.29 

Combined standard uncertainty uc(B) 346.41 

Standard uncertainty of ethanol solution u(P) 0.00022 

Coverage factor, kcoverage 2 

The measurement result and the uncertainty  

       (in 0.1% ethanol based) 
0.0346 ± 0.0004 

Percentage uncertainty     1.28% 
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Table F.24. Uncertainty analysis of producing 4 ppm ethanol vapor at 315 K 

Ethanol solution preparation for producing 4 ppm ethanol vapor at 315 K 

Source of uncertainty Value 

± (µl) 

Probability 

distribution 

Divisor Standard 

uncertainty (µl) 

A (solute, use 0.1% (v/v) ethanol solution)  1059 

1000 µl    calibration from pipette 8 Rectangular 3  4.62 

uncertainty from 0.1% ethanol 7.06 

combined uncertainty       8.43 

59 µl    calibration from pipette 1.6 Rectangular 3  0.92 

uncertainty from 0.1% ethanol 0.42 

combined uncertainty       1.01 

Combined standard uncertainty uc(A) 8.49 

B (solvent, use buffer)  78941 

78 ml   calibration from     

        graduate cylinder 

600 Rectangular 3  346.41 

900 µl    calibration from pipette 8 Rectangular 3  4.62 

41 µl    calibration from pipette 0.5 Rectangular 3  0.29 

Combined standard uncertainty uc(B) 346.44 

Standard uncertainty of ethanol solution u(P) 0.00012 

Coverage factor, kcoverage 2 

The measurement result and the uncertainty  

       (in 0.1% ethanol based) 
0.0132 ± 0.0002 

Percentage uncertainty     1.80% 

 

  



 

134 
 

Table F.25. Uncertainty analysis of producing 5 ppm ethanol vapor at 315 K 

Ethanol solution preparation for producing 5 ppm ethanol vapor at 315 K 

Source of uncertainty Value 

± (µl) 

Probability 

distribution 

Divisor Standard 

uncertainty (µl) 

A (solute, use 0.1% (v/v) ethanol solution)  1324

1000  µl          calibration from pipette 8 Rectangular 3  4.62

uncertainty from 0.1% ethanol 7.06

combined uncertainty      8.43

300  µl          calibration from pipette 8 Rectangular 3  4.62

uncertainty from 0.1% ethanol 2.12

combined uncertainty      5.08

24  µl          calibration from pipette 0.5 Rectangular 3  0.29

uncertainty from 0.1% ethanol 0.17

combined uncertainty      0.33

Combined standard uncertainty uc(A) 9.85

B (solvent, use buffer)  78676

78 ml         calibration from     

               graduate cylinder 

600 Rectangular 3  346.41

600  µl          calibration from pipette 8 Rectangular 3  4.62

76  µl          calibration from pipette 1.6 Rectangular 3  0.92

Combined standard uncertainty uc(B) 346.44

Standard uncertainty of ethanol solution u(P) 0.00014

Coverage factor, kcoverage 2 

The measurement result and the uncertainty  

       (in 0.1% ethanol based) 
0.0166 ± 0.0003

Percentage uncertainty     1.70%
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Table F.26. Uncertainty analysis of producing 7.5 ppm ethanol vapor at 315 K  

Ethanol solution preparation for producing 7.5 ppm ethanol vapor at 315 K 

Source of uncertainty Value 

± (µl) 

Probability 

distribution 

Divisor Standard 

uncertainty (µl) 

A (solute, use 0.1% (v/v) ethanol solution)  1986

1000  µl        calibration from pipette 8 Rectangular 3  4.62

uncertainty from 0.1% ethanol 7.06

combined uncertainty      8.43

900  µl        calibration from pipette 8 Rectangular 3  4.62

uncertainty from 0.1% ethanol 6.35

combined uncertainty      7.85

86  µl        calibration from pipette 0.5 Rectangular 3  0.29

uncertainty from 0.1% ethanol 0.61

combined uncertainty      0.67

Combined standard uncertainty uc(A) 11.54

B (solvent, use buffer)  78014

78 ml       calibration from     

              graduate cylinder 

600 Rectangular 3  346.41

14  µl        calibration from pipette 0.5 Rectangular 3  0.29

Combined standard uncertainty uc(B) 346.41

Standard uncertainty of ethanol solution u(P) 0.00018

Coverage factor, kcoverage 2 

The measurement result and the uncertainty  

       (in 0.1% ethanol based) 
0.0248 ± 0.0004

Percentage uncertainty     1.43%

   



 

136 
 

F.3 Uncertainties of H2O2 in Simulated Exhaled Breath 

“Value” showed in Table F.27.− Table F.38 present uncertainty of calibration from pipette. 

Table F.27. Uncertainty analysis of producing 250 ppb H2O2 vapor at 295 K 

H2O2 solution preparation for producing 250 ppb H2O2 vapor at 295 K 

Source of 

uncertainty 

Value 

± (µl) 

Probability 

distribution 

Divisor Standard 

uncertainty (µl) 

A (solute, use 30% (w/w) H2O2 solution)  135 

135 µl 1.6 Rectangular 1.732 0.92 

Combined standard uncertainty uc(A) 0.92 

B (solvent, use buffer)  79865 

79 ml 600 Rectangular 1.732 346.41 

865 µl 8 Rectangular 1.732 4.62 

Combined standard uncertainty uc(B) 346.44 

Standard uncertainty of ethanol solution u(P) 1.36E-05 

Coverage factor, kcoverage 2 

The measurement result  

  and the uncertainty  

  (µl of 30% (w/w) H2O2 solution) 

0.0017 ± 2.73E-05 

The measurement result and  

  the uncertainty  

  (concentration, %) 

0.00051 ± 8.19E-06 

Percentage uncertainty     1.62% 
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Table F.28. Uncertainty analysis of producing 500 ppb H2O2 vapor at 295 K 

H2O2 solution preparation for producing 500 ppb H2O2 vapor at 295 K 

Source of 

uncertainty 

Value 

± (µl) 

Probability 

distribution 

Divisor Standard 

uncertainty (µl) 

A (solute, use 30% (w/w) H2O2 solution)  271 

200 µl 8 Rectangular 1.732 4.62 

71 µl 1.6 Rectangular 1.732 0.92 

Combined standard uncertainty uc(A) 4.71 

B (solvent, use buffer)  79729 

79 ml 600 Rectangular 1.732 346.41 

700 µl 8 Rectangular 1.732 4.62 

29 µl 0.5 Rectangular 1.732 0.29 

Combined standard uncertainty uc(B) 346.44 

Standard uncertainty of ethanol solution u(P) 6.05E-05 

Coverage factor, kcoverage 2 

The measurement result  

  and the uncertainty  

  (µl of 30% (w/w) H2O2 solution) 

0.0034 ± 1.21E-04 

The measurement result and  

  the uncertainty  

  (concentration, %) 

0.00102 ± 3.63E-05 

Percentage uncertainty     3.57% 
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Table F.29. Uncertainty analysis of producing 1000 ppb H2O2 vapor at 295 K 

H2O2 solution preparation for producing 1000 ppb H2O2 vapor at 295 K 

Source of 

uncertainty 

Value 

± (µl) 

Probability 

distribution 

Divisor Standard 

uncertainty (µl) 

A (solute, use 30% (w/w) H2O2 solution)  542 

500 µl 8 Rectangular 1.732 4.62 

42 µl 0.5 Rectangular 1.732 0.29 

Combined standard uncertainty uc(A) 4.63 

B (solvent, use buffer)  79458 

79 ml 600 Rectangular 1.732 346.41 

410 µl 8 Rectangular 1.732 4.62 

48 µl 0.5 Rectangular 1.732 0.29 

Combined standard uncertainty uc(B) 346.44 

Standard uncertainty of ethanol solution u(P) 6.45E-05 

Coverage factor, kcoverage 2 

The measurement result  

  and the uncertainty  

  (µl of 30% (w/w) H2O2 solution) 

0.0068 ± 1.29E-04 

The measurement result and  

  the uncertainty  

  (concentration, %) 

0.00203 ± 3.87E-05 

Percentage uncertainty     1.90% 

 

  



 

139 
 

Table F.30. Uncertainty analysis of producing 250 ppb H2O2 vapor at 307 K 

H2O2 solution preparation for producing 250 ppb H2O2 vapor at 307 K 

Source of 

uncertainty 

Value 

± (µl) 

Probability 

distribution 

Divisor Standard 

uncertainty (µl) 

A (solute, use 30% (w/w) H2O2 solution)  60 

60 µl 1.6 Rectangular 1.732 0.92 

µl   Rectangular 1.732 0.00 

Combined standard uncertainty uc(A) 0.92 

B (solvent, use buffer)  79940 

79 ml 600 Rectangular 1.732 346.41 

940 µl 8 Rectangular 1.732 4.62 

µl   Rectangular 1.732 0.00 

Combined standard uncertainty uc(B) 346.44 

Standard uncertainty of ethanol solution u(P) 1.20E-05 

Coverage factor, kcoverage 2 

The measurement result  

  and the uncertainty  

  (µl of 30% (w/w) H2O2 solution) 

0.0008 ± 2.40E-05 

The measurement result and  

  the uncertainty  

  (concentration, %) 

0.00023 ± 7.19E-06 

Percentage uncertainty     3.20% 
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Table F.31. Uncertainty analysis of producing 500 ppb H2O2 vapor at 307 K 

H2O2 solution preparation for producing 500 ppb H2O2 vapor at 307 K 

Source of 

uncertainty 

Value 

± (µl) 

Probability 

distribution 

Divisor Standard 

uncertainty (µl) 

A (solute, use 30% (w/w) H2O2 solution)  120 

120 µl 1.6 Rectangular 1.732 0.92 

µl   Rectangular 1.732 0.00 

Combined standard uncertainty uc(A) 0.92 

B (solvent, use buffer)  79880 

79 ml 600 Rectangular 1.732 346.41 

880 µl 8 Rectangular 1.732 4.62 

µl   Rectangular 1.732 0.00 

Combined standard uncertainty uc(B) 346.44 

Standard uncertainty of ethanol solution u(P) 1.32E-05 

Coverage factor, kcoverage 2 

The measurement result  

  and the uncertainty  

  (µl of 30% (w/w) H2O2 solution) 

0.0015 ± 2.65E-05 

The measurement result and  

  the uncertainty  

  (concentration, %) 

0.00045 ± 7.94E-06 

Percentage uncertainty     1.76% 
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Table F.32. Uncertainty analysis of producing 1000 ppb H2O2 vapor at 307 K 

H2O2 solution preparation for producing 1000 ppb H2O2 vapor at 307 K 

Source of 

uncertainty 

Value 

± (µl) 

Probability 

distribution 

Divisor Standard 

uncertainty (µl) 

A (solute, use 30% (w/w) H2O2 solution)  239 

200 µl 1.6 Rectangular 1.732 0.92 

39 µl 0.5 Rectangular 1.732 0.29 

Combined standard uncertainty uc(A) 0.97 

B (solvent, use buffer)  79761 

79 ml 600 Rectangular 1.732 346.41 

720 µl 8 Rectangular 1.732 4.62 

41 µl 0.5 Rectangular 1.732 0.29 

Combined standard uncertainty uc(B) 346.44 

Standard uncertainty of ethanol solution u(P) 1.77E-05 

Coverage factor, kcoverage 2 

The measurement result  

  and the uncertainty  

  (µl of 30% (w/w) H2O2 solution) 

0.0030 ± 3.54E-05 

The measurement result and  

  the uncertainty  

  (concentration, %) 

0.00090 ± 1.06E-05 

Percentage uncertainty     1.18% 
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Table F.33. Uncertainty analysis of producing 250 ppb H2O2 vapor at 310 K 

H2O2 solution preparation for producing 250 ppb H2O2 vapor at 310 K 

Source of 

uncertainty 

Value 

± (µl) 

Probability 

distribution 

Divisor Standard 

uncertainty (µl) 

A (solute, use 30% (w/w) H2O2 solution)  48 

48 µl 0.5 Rectangular 1.732 0.29 

µl   Rectangular 1.732 0.00 

Combined standard uncertainty uc(A) 0.29 

B (solvent, use buffer)  79952 

79 ml 600 Rectangular 1.732 346.41 

910 µl 8 Rectangular 1.732 4.62 

42 µl 0.5 Rectangular 1.732 0.29 

Combined standard uncertainty uc(B) 346.44 

Standard uncertainty of ethanol solution u(P) 4.44E-06 

Coverage factor, kcoverage 2 

The measurement result  

  and the uncertainty  

  (µl of 30% (w/w) H2O2 solution) 

0.0006 ± 8.89E-06 

The measurement result and  

  the uncertainty  

  (concentration, %) 

0.00018 ± 2.67E-06 

Percentage uncertainty     1.48% 
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Table F.34. Uncertainty analysis of producing 500 ppb H2O2 vapor at 310 K 

H2O2 solution preparation for producing 500 ppb H2O2 vapor at 310 K 

Source of 

uncertainty 

Value 

± (µl) 

Probability 

distribution 

Divisor Standard 

uncertainty (µl) 

A (solute, use 30% (w/w) H2O2 solution)  96 

96 µl 1.6 Rectangular 1.732 0.92 

µl   Rectangular 1.732 0.00 

Combined standard uncertainty uc(A) 0.92 

B (solvent, use buffer)  79904 

79 ml 600 Rectangular 1.732 346.41 

860 µl 8 Rectangular 1.732 4.62 

44 µl 0.5 Rectangular 1.732 0.29 

Combined standard uncertainty uc(B) 346.44 

Standard uncertainty of ethanol solution u(P) 1.26E-05 

Coverage factor, kcoverage 2 

The measurement result  

  and the uncertainty  

  (µl of 30% (w/w) H2O2 solution) 

0.0012 ± 2.53E-05 

The measurement result and  

  the uncertainty  

  (concentration, %) 

0.00036 ± 7.59E-06 

Percentage uncertainty     2.11% 
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Table F.35. Uncertainty analysis of producing 1000 ppb H2O2 vapor at 310 K 

H2O2 solution preparation for producing 1000 ppb H2O2 vapor at 310 K 

Source of 

uncertainty 

Value 

± (µl) 

Probability 

distribution 

Divisor Standard 

uncertainty (µl) 

A (solute, use 30% (w/w) H2O2 solution)  192 

192 µl 1.6 Rectangular 1.732 0.92 

µl   Rectangular 1.732 0.00 

Combined standard uncertainty uc(A) 0.92 

B (solvent, use buffer)  79808 

79 ml 600 Rectangular 1.732 346.41 

760 µl 8 Rectangular 1.732 4.62 

48 µl 0.5 Rectangular 1.732 0.29 

Combined standard uncertainty uc(B) 346.44 

Standard uncertainty of ethanol solution u(P) 1.55E-05 

Coverage factor, kcoverage 2 

The measurement result  

  and the uncertainty  

  (µl of 30% (w/w) H2O2 solution) 

0.0024 ± 3.10E-05 

The measurement result and  

  the uncertainty  

  (concentration, %) 

0.00072 ± 9.31E-06 

Percentage uncertainty     1.29% 
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Table F.36. Uncertainty analysis of producing 250 ppb H2O2 vapor at 315 K 

H2O2 solution preparation for producing 250 ppb H2O2 vapor at 315 K 

Source of 

uncertainty 

Value 

± (µl) 

Probability 

distribution 

Divisor Standard 

uncertainty (µl) 

A (solute, use 30% (w/w) H2O2 solution)  60 

34 µl 8 Rectangular 1.732 4.62 

µl   Rectangular 1.732 0.00 

Combined standard uncertainty uc(A) 4.62 

B (solvent, use buffer)  79940 

79 ml 600 Rectangular 1.732 346.41 

920 µl 8 Rectangular 1.732 4.62 

46 µl 0.5 Rectangular 1.732 0.29 

Combined standard uncertainty uc(B) 346.44 

Standard uncertainty of ethanol solution u(P) 5.78E-05 

Coverage factor, kcoverage 2 

The measurement result  

  and the uncertainty  

  (µl of 30% (w/w) H2O2 solution) 

0.0008 ± 1.16E-04 

The measurement result and  

  the uncertainty  

  (concentration, %) 

0.00023 ± 3.47E-05 

Percentage uncertainty     15.41% 
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Table F.37. Uncertainty analysis of producing 500 ppb H2O2 vapor at 315 K 

H2O2 solution preparation for producing 500 ppb H2O2 vapor at 315 K 

Source of 

uncertainty 

Value 

± (µl) 

Probability 

distribution 

Divisor Standard 

uncertainty (µl) 

A (solute, use 30% (w/w) H2O2 solution)  68 

68 µl 8 Rectangular 1.732 4.62 

µl   Rectangular 1.732 0.00 

Combined standard uncertainty uc(A) 4.62 

B (solvent, use buffer)  79932 

79 ml 600 Rectangular 1.732 346.41 

900 µl 8 Rectangular 1.732 4.62 

32 µl 0.5 Rectangular 1.732 0.29 

Combined standard uncertainty uc(B) 346.44 

Standard uncertainty of ethanol solution u(P) 5.78E-05 

Coverage factor, kcoverage 2 

The measurement result  

  and the uncertainty  

  (µl of 30% (w/w) H2O2 solution) 

0.0009 ± 1.16E-04 

The measurement result and  

  the uncertainty  

  (concentration, %) 

0.00026 ± 3.47E-05 

Percentage uncertainty     13.60% 
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Table F.38. Uncertainty analysis of producing 1000 ppb H2O2 vapor at 315 K 

H2O2 solution preparation for producing 1000 ppb H2O2 vapor at 315 K 

Source of 

uncertainty 

Value 

± (µl) 

Probability 

distribution 

Divisor Standard 

uncertainty (µl) 

A (solute, use 30% (w/w) H2O2 solution)  136 

136 µl 8 Rectangular 1.732 4.62 

µl   Rectangular 1.732 0.00 

Combined standard uncertainty uc(A) 4.62 

B (solvent, use buffer)  79864 

79 ml 600 Rectangular 1.732 346.41 

820 µl 8 Rectangular 1.732 4.62 

44 µl 0.5 Rectangular 1.732 0.29 

Combined standard uncertainty uc(B) 346.44 

Standard uncertainty of ethanol solution u(P) 5.81E-05 

Coverage factor, kcoverage 2 

The measurement result  

  and the uncertainty  

  (µl of 30% (w/w) H2O2 solution) 

0.0017 ± 1.16E-04 

The measurement result and  

  the uncertainty  

  (concentration, %) 

0.00051 ± 3.49E-05 

Percentage uncertainty     6.84% 
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APPENDIX G: TEMPERATURE DROP PROFILE OVER TIME IN 

VAPOR SENSING  

Temperatures in vapor sensing chamber were measured and decreased with 

increasing sensing time. Therefore the temperature difference (∆T) between vapor 

temperature from BOS and the temperature of the vapor sensing chamber, which can be 

calculated by Equation G.1, also increased: 

chamber sensingin  etemperatur−=∆ bTT           (G.1) 

 

 

Figure G.1. Temperatures in vapor sensing chamber decreased over time. 
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APPENDIX H: SCREEN-PRINTED CARBON ELECTRODE 

COMPARISON 

Immobilized AOX assay on each Gwent SPCE contained 1.2 µl AOX (200 units/ml), 

0.6 µl BSA (40 mg/ml), and 0.2 µl Glutaraldehyde 1.0% (v/v). Immobilized AOX assay 

on each DropSens SPCE contained 1.2 µl AOX (400 units/ml), 0.6 µl BSA (80 mg/ml), 

and 0.2 µl glutaraldehyde 1.0% (v/v). The mixture was dropcoated on a working 

electrode of CoPC SPCE for 2-2.5 hrs. Current responses for 0, 0.0015, 0.0025, 0.005% 

(w/w) ethanol solution were recorded. 

 

Figure H.1. Current responses from AOX-based biosensors using Gwent SPCEs and 

DropSens SPCEs were comparable. 
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APPENDIX I: MONITORING OTHER BIOMARKERS IN BREATH 

I.1 Ammonia 

Ammonia is a big concern in environmental control and the regulated threshold 

values of it in work places are 25 ppmv (time-weighted average, TWA), 35ppmv 

(short-term exposure limit, STEL). The typical ammonia concentration in a livestock 

facility is 10-25 ppmv (Kavolelis, 2003). Ammonia is not only an odorous compound, but 

it also causes secondary inorganic aerosols including ammonium nitrate and ammonium 

sulfate. In breath analysis, ammonia, a metabolite of protein and amino acids degradation 

is associated with liver or renal dysfunction (Smith et al., 2008).  

Simulated exhaled breath containing ammonia was produced using the breath output 

simulator. An ammonia biosensor was designed by using Meldola’s Blue (MB) mediated 

SPCE and immobilized the enzyme mixture of 1 µl L-glutamate dehydrogenase (GLDH, 

1 unit/µl), 8 µL β-nicotinamide adenine dinucleotide (NADH, 2.3 mM), and 8 µL 

α-ketoglutaric acid (KGA, 34 mM) (Figure I.1). Each ammonia sensor was dropcoated 

with 40 µl ammonia sample after 3 hr drying time. Ammonia ion standard solution with 

0.1M was used for preparing stock solution at 58.8–588 µM (to produce equivalent vapor 

concentration from 20-240 ppm). A cathodic (reduced) peak around +600 mV vs. 

Ag/AgCl, resulted in a linear response to increasing concentrations of ammonia in 

ampeometric measurement (Figure I.2).  
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Figure I.1. The measurement of ammonia was based on redox reaction catalyzed by 

GLDH enzyme. 

 

Figure I.2. Amperometric tests showed a decreasing linear trend with increasing ammonia 

concentration in buffer. Each test contained three replications. Error bars and dashed lines 

represent ± one S.E and the linear regression results, respectively.  

Current responses measure from vapor and condensate sampled from different Tb 

were conducted. Higher sampling Tb had a smaller current response in vapor samples, but 
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trends, but barely presented the linear trends in data from Tb at 304.5 K and 311.5 K 

(Figure I.3b). Although part of the data showed linear trend and IC increased at CV = 0 

ppm with increasing temperature, no correlation was found between current and the 

changing Tb or CV.  

 

    (a) 

 

     (b) 

Figure I.3. Amperometric tests were performed in (a) vapor and (b) condensate samples 

to conduct sampling temperature (Tb) efffect. No clear trend was found. One replication 

sample has been measured.
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In a validation test of ammonia sensor, dry ammonia at 20-240 ppm was passed 

through water and the water was later tested with the ammonia biosensor. A linear trend 

(R2=0.9049) was found and had 15.91% average error from predictive curve (Figure I.4). 

Therefore the ammonia sensor was found effective with this sampling procedure.  

 
Figure I.4. Ammonia sensor was validated by liquid samples taken from dry ammonia 

dissolving in water and had 15.91% average error from predictive curve. Error bars and 

dashed lines represent ± one S.E and linear regression results, respectively. 

Another possible cause for inability to see the relation between current response and 

CV is that the simulated exhaled breath does not contain the ammonia concentration 

predicted by Henry’s law. Henry’s law can be applied when the gas sample fulfills the 

following three conditions: 1) ideal gas; 2) only dissolves in liquid solvent, not react with 

it; 3) no dissociation or association with the liquid solvent. In the third required condition, 

Henry’s law may be invalid with ammonia dissolving in water, but it was valid when 

ammonia dissolving in benzene, because ammonia had a high solubility in water but 

barely dissolving in benzene.  
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Moreover, Roper (2000) and Sawyer (2008) mentioned that pH was a critical factor 

in the conversion between ammonium ion and ammonia.  

OHNHOHNH 234 +↔+ −+  (I.1)   

When pH is less than 6.0, the ammonium ion is very stable and ammonia molecules are 

hardly released; at pH 9.0 to 9.5, the conversion between ammonium ion and ammonia 

molecule is close to 1:1. The pH effect was also conducted and confirmed in 

measurement of condensate samples (Figure I.5). For simulating mammalian condition, 

pH 7.4 was set in our experiments. Under this setting, ammonium ion was also limited 

converted to be ammonia from our breath output simulator. 

 

Figure I.5. Higher pH favored ammonium ion to be converted to ammonia and a 

decreasing current response were present when increasing pH in stock solution. 

Therefore for effectively simulating ammonia in exhaled breath, mixing method for 

preparing certain amount of ammonia concentration in vapor (RH > 95%) needs to be 

further studied and the sampling effect could be discussed on this basis. 
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I.2 Crosstalk between Metabolites in Alcohol Metabolism — Interferences from 

Acetone, Acetaldehyde and Methanol in Ethanol Sensing 

Acetone, acetaldehyde, methanol and ethanol are present in EB. These biomarkers 

can be catalyzed, and electrochemically sensed, using alcohol dehydrogenase, but only 

ethanol and methanol are catalyzed by alcohol oxidase (Table I.1). For enhanced 

specificity and simplicity, alcohol oxidase was chosen as the catalyzing enzyme in sensor 

fabrication in this study. For further understanding of the practical effect in simulated EB 

sensing, such as how much noise will be made from the presence of acetone and 

acetaldehyde, how much current increase will be induced by the presence of methanol, 

the crosstalk experiment will provide related information to improve sensor design and 

help signal interpretation.  

Table I.1. Available enzymes and mechanisms in acetaldehyde, acetone, ethanol and 

methanol sensing 

Biomarker Enzyme Mechanism 

Acetaldehyde alcohol dehydrogenase 
acetaldehyde + NADH + H+ ↔ ethanol + NAD+ 

acetaldehyde + NADPH + H+ ↔ ethanol + NADP+ 

Acetone alcohol dehydrogenase 

acetone + NADH ↔ isopropanol + NAD+ 

acetone + NADH + H+ ↔ propan-2-ol + NAD+ 

acetone + NADPH ↔ 2-propanol + NADP+ 

acetone + NADPH + H+ ↔ propan-2-ol + NADP+ 

Ethanol 
alcohol dehydrogenase 

ethanol + NAD+ ↔ acetaldehyde + NADH + H+ 

ethanol + NADP+ ↔ acetaldehyde + NADPH + H+ 

alcohol oxidase ethanol + O2 ↔ acetaldehyde + H2O2 

Methanol 
alcohol dehydrogenase 

methanol + NAD+ ↔ formaldehyde + NADH + H+ 

methanol + NADP+ ↔ formaldehyde + NADPH + H+ 

alcohol oxidase methanol + O2 ↔ formaldehyde + H2O2 
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A preliminary experiment was conducted to test liquid phase mixture (which is 

called stock solution in previous sections). The concentrations of each constituent in 

mixture were prepared using Henry’s law (Table I.2).  

Table I.2. Properties of acetaldehyde, acetone, ethanol, and methanol 

Biomarker 

kH at 310K  

 

(M/atm)  

F.W. 

  

(g/mol) 

Density  

 

(g/ml) 

Aqueous 

Concentration  

(%) 

Vapor 

Concentration 

(ppm) 

Acetaldehyde 7.05 44.05 0.788 
0.00016 4 
0.00020 5 
0.00030 7.5 

Acetone 14.58 58.08 0.793 
0.00043 4 
0.00053 5 
0.00080 7.5 

Ethanol 79.09 46.07 0.789 
0.00185 4 
0.00231 5 
0.00346 7.5 

Methanol 101.03 32.04 0.792 
0.00164 4 
0.00204 5 
0.00307 7.5 

A mixture of methanol/ethanol had the highest current response than mixtures of 

acetone/ethanol, acetaldehyde/ethanol, or ethanol only sample (Figure I.6). Moreover, 

only the result from methanol/ethanol mixture had a significant difference (p=0.093) 

from the ethanol only sample.  
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Figure I.6. Amperometric measurements of mixtures of acetaldehyde, acetone, ethanol, 

and methanol were taken in stock solution. One replication sample has been measured.  

Dashed lines represent linear regression results 

Further studies need to be done to determine how each biomarker would present in 

vapor and condensate samples and the effect of different sampling conditions, such as 

sampling temperature and flow rate, on sensing a mixture of biomarkers.  
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