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Abstract

The one-sided communication model (or remote memory access) supported by

MPI-2 is more convenient to use than the regular two-sided send/receive commu-

nication model, because it allows the sender to specify all data transfer parame-

ters and avoids the receiver to be explicitly involved in data receiving. One-sided

communication model also has potential to provide higher performance. The

MPI-2 standard provides flexibility about when RMA operations can be issued

and completed, which makes the MPI implementation possible to be optimized

internally. The current MPICH2 implementation uses a lazy approach to issue

one-sided operations by queuing the operations and issuing them during the later

synchronization phase. This has certain benefits with respect to short operations

in terms of reduced network operations. For large data transfers, issuing opera-

tions in an eager fashion could be more beneficial as well as provide more scope

for overlapping communication and computation. In this thesis we describe the

design and implementation of an adaptive approach for all three synchronization

mechanisms defined in MPI: fence, post-start-complete-wait, and lock-unlock.

We evaluate our implementation with both micro benchmarks and the Graph500

benchmark to demonstrate the performance impact of our approach. The per-

formance results show that our hybrid approach performs as good as the lazy

approach for small data transfers and achieves performance similar to the eager

approach for large data transfers, and its overlapping percentage is good.
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Chapter 1

Introduction

1.1 Motivation

MPI has gained vast success in bringing message passing programming model

to a wide variety of platforms because of its great portability. However, MPI

has always been labeled as a communication model that mainly supports ”two-

sided” and ”global” communication. The MPI-2 standard, released by 1997,

added support for one-sided communication (or remote memory access) capabil-

ities. One-sided communication allows one process to specify all communication

parameters, both for the sending side and for the receiving side, which is more

convenient to use, because it avoids the needs for global distribution of transfer

parameters and explicitly polling to receive data. One-sided communication also

has the potential to deliver higher performance than regular two-sided communi-

cation, particularly on networks that support one-sided communication natively.

MPI provides three different synchronization mechanisms for one-sided com-

munication: lock-unlock, fence and post-start-complete-wait. These synchroniza-

tion mechanisms ensure the correct semantics of one-sided operations. The MPI-

2 standard gives much flexibility on when a one-sided operation can complete,

which makes MPI implementation possible to be optimized internally, according

to different number of operations or sizes of transferred data within one commu-

nication epoch (an epoch is the period between synchronization calls).

For small number of operations with short data, issuing them in the late

synchronization phase instead of the communication epoch between two synchro-
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nization can effectively reduce the communication cost, because it provides op-

portunities to combine the operation message with the synchronization message,

or to reduce the total number of collective communication. For large number of

operations with significant amount of data, issuing them as early as possible is

better, because their transmission latency is expensive, and issuing them early

provides opportunities to overlap communication with computation within the

epoch.

In many situations, it is not obvious beforehand whether issuing operations

early or late is better due to the nature of communication pattern. Therefore, it

is important to design an adaptive strategy that automatically select the suitable

strategy based on runtime situation. This adaptive design would remove user’s

need to understand different implementation choices in detail, and eliminates the

possibility of making mistake by the user since the MPI runtime system can adap-

tively monitor and choose the best approach. In this paper, we address this issue

by designing and implementing an adaptive approach for One-sided communica-

tion in MPI, including fence, start-complete-post-wait and lock-unlock. Our goal

is to perform well with either small or large transferred data by adaptively select

the suitable approach to issue operations during the runtime.

1.2 One-sided Communication in MPI

In MPI one-sided communication model, any allocated memory is private to

the MPI process by default, and can be exposed to other processes as a public

memory region. This public memory region is called a window. After window is

created, communication and synchronization could be performed between senders

and receivers. Unlike regular two-sided communication model, one-sided model

separates the communication of data transfer and synchronization of sender with

receiver.
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MPI-2 supports three types of data transfer: MPI Put (remote write), MPI Get

(remote read) and MPI Accumulate (remote update). MPI-3 standard further

extends the set of one-sided communication operations by adding request-based

operations and remote atomic operations. We shall denote by origin the pro-

cess that performs the call, and by target the process in which the memory is

accessed. The one-sided communication calls in MPI are nonblocking functions.

They initiate the operation, but when the function call return, the completion

of operation is not guaranteed. To specify when a one-sided operation can be

initiated and when it is guaranteed to be completed, MPI defines different syn-

chronization mechanisms, and they are categorized into active target and passive

target.

In active target communication, both the origin and the target are explicitly

involved in the synchronization, but data transfer arguments are only provided

by the origin process. MPI provides two mechanisms for active target communi-

cation:

(1) Fence: Figure 1.1 illustrates the method of fence synchronization. Fence

function call is a collective operation over the communicator associated with win-

dow. After the first fence call returns, a process can issue one-sided operations,

and the next fence call would guarantee the completion of all operations issued

between two fence calls. This mechanism is useful for loosely synchronous algo-

rithms where the graph of communicating processes changes frequently, or where

each process communicates with many other processes [1]. If only a small number

of processes but not all processes in the communicator are actually communicat-

ing with each other, the collective fence call over the entire communicator will

lead to unnecessary synchronization overhead.

(2) Start-Complete-Post-Wait: Figure 1.2 illustrates the method of start-

complete-post-wait. It restricts the synchronization and avoids the drawback of

fence call, because the synchronization only involves pairs of communicating pro-
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Figure 1.1: Fence

Figure 1.2: SPCW Figure 1.3: Lock-Unlock

cesses. As shown in Figure 1.2, the origin process start an access epoch by calling

MPI Start associated with a group argument which specifies the group of target

processes that this epoch can access, and terminated it by calling MPI Complete;

the target process start an exposure epoch by calling MPI Post associated with

a group argument which specifies the group of origin processes that can access

this epoch, and terminated it by calling MPI Wait. This mechanism may be

more efficient when each process communicate with only few neighbors, and the

communication graph is fixed or changed infrequently [1].

In passive target communication, the target process does not explicitly par-

ticipate in communication and synchronization. Only the origin process calls the

synchronization function and specifies data transfer arguments. Lock-Unlock
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is the mechanism provided by MPI to achieve passive target communication. As

is illustrated in Figure 1.3, the origin process first calls MPI Win lock function

on target process to obtain shared or exclusive lock of window, after that, it can

issue one-sided operations on the target process, and the MPI Win unlock call

at last would guarantee the completion of all operations on both the origin and

the target processes. Lock synchronization is useful for applications that emu-

late a shared memory model via MPI calls where processes can access or update

different parts of the shared memory region at random times [1].

1.3 MPI-3 Standard

The MPI forum is currently working on the MPI-3 standard, which improve the

semantics and extends new features of MPI one-sided operations to make MPI

RMA a portable runtime system that can provide high-performance one-sided

communications with rich features. Our work here will apply to the proposed

MPI-3 RMA model, including the new interfaces being proposed.
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Chapter 2

Related Work

There are several studies regarding the implementation of one-sided communi-

cation in MPI-2. Some MPI-2 implementations which support one-sided com-

munication are MPICH2 [2], OpenMPI [3] and NEC [4]. Besides MPI, other

programming models that also provide one-sided communication include CRAY

SHMEM [5], ARMCI [6], GASNET [7] and BSP [8].

Some BSP papers, particularly [9, 10], discuss the benefits of aggregating and

scheduling communication operations for better performance as well as contention

avoidance. Other papers, like [11, 12], described the design choices and issues in

implementing one-sided communication in MPI. The authors in [13] have studied

optimizations for reducing the synchronization overhead involved in implement-

ing one-sided communication. Designs for MPI RMA in InfiniBand clusters is

described in [14] [15]. In [16] [17], the author describes a design for efficient pas-

sive synchronization using hardware support from InfiniBand atomic operations.

[18] discusses some performance guidelines for one-sided communication in MPI.
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Chapter 3

Adaptive Approach Design

3.1 Active Target Synchronization

3.1.1 Fence

A valid implementation of fence synchronization should obey the correct seman-

tics as follows: An one-sided operation from the origin process cannot access the

target process’s window until that target process has called fence; the next fence

on a process cannot return until all origin processes that need to access that

process’s window have completed doing so.

The current fence synchronization in MPICH-2 is implemented in a lazy fash-

ion, as is shown in Figure 3.1. In the first fence, each process does nothing.

For the following one-sided operations, each process does not issue them out but

locally queues them up. In the second fence, each process first goes through its

operation queue to determine, for each other process i, whether any of operations

have i as the target, and stores this information in an array. Then all processes

perform a reduce-scatter sum operation over this array. After that each process

knows how many processes having operations targeted at itself and stores this

number in a local counter. Now each process can issue all queued operations,

and the counter at each process is decremented when all one-sided operations

from one process have been arrived at that process. To achieve this, the origin

process sets a field in the packet header of the last operation and the target will

decrement the counter when it receives this operation.
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Figure 3.1: LAZY fence Figure 3.2: EAGER fence

Another choice of implementing fence is an eager approach, which means all

one-sided operations are issued as early as possible. As shown in Figure 3.2, in

the first fence, all processes perform a collective barrier to synchronize over the

communicator. After that, each process issues one-sided operations as soon as

possible. At the second fence, after all one-sided operations have been completed,

all processes again perform a collective barrier to guarantee that no process leaves

the second fence before all other processes have finished accessing the window.

Compared with the lazy design, this eager approach is more expensive due to the

collective communication, since it involves two barriers whereas the lazy approach

only requires one reduce-scatter. However, the eager approach issues one-sided

operations earlier than the lazy approach and it has no cost on processing the

local operation queue.

Our hybrid strategy combines benefits from both eager and lazy approaches

while introducing little overhead. If numbers of local operations on each process

are small(no one reaches the queuing threshold), the hybrid approach will work

in the same way with the lazy method. However, as long as the local number of

operations reaches the queuing threshold, the process will automatically switch

from lazy to eager mode between fences and issue one-sided operations immedi-

ately. The design of hybrid approach is shown in Figure 3.3. At the first fence,
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Figure 3.3: HYBRID fence

each process does nothing, like in the lazy approach. After the first fence returns,

for each process, if its number of local operations does not reach the threshold,

it just queues them up and goes into the reduce-scatter at the second fence(like

process 0). If the number of local operations reaches the threshold(like process

1 and process 2), that process will go into the reduce-scatter before the second

fence(during communication epoch) and synchronize with those processes who

are in the reduce-scatter in the second fence. After synchronization, they issue

all previous queued operations and the following operations immediately. In Fig-

ure 3.3, process 0, 1 and 2 are synchronized by reduce-scatter at the same time

t1, but in different function calls. Process 0 is in fence, whereas process 1 and 2

are in one of one-sided operations. If one process has already performed reduce-

scatter in the communication epoch, like process 1 and 2, it does not need to

perform it again at the second fence, in another word, every process just perform

one reduce-scatter. If all processes perform reduce-scatter at the second fence,

they do not need to do a barrier at end and the second fence function, therefore

only one synchronization is needed, just like in the lazy approach. If there is
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at least one process that performs reduce-scatter in the communication epoch,

then all processes must synchronize again at the end of the second fence(t2 in

Figure 3.3). In this situation, two synchronizations are needed(one reduce-scatter

and one barrier), like in the eager approach. We use a field in the reduce-scatter

message to indicate if there are processes that perform reduce-scatter before the

second fence. For example, in Figure 3.3, when process 0 sees this field, it will

know it needs to do a barrier at end, even though itself does not issuing operation

eagerly.

3.1.2 Post-Start-Complete-Wait (PSCW)

The correct semantic of PSCW synchronization should be as follows: a one-

sided operation cannot access a process’s window until that process has called

MPI Win post, and one process cannot return from MPI Win wait until all pro-

cesses that need to access that process’s window have completed doing so and

called MPI Win complete.

Like fence, the current implementation of PSCW in MPICH-2 uses a lazy

approach. As is indicated in Figure 3.4, for any process in the origin group, in

MPI Win start, it does nothing. Puts, gets and accumulates are queued locally.

In MPI Win complete, the process is blocked until it receives post messages from

all processes in the target group, after that it issues all operations in the queue.

For each target process, the origin process set a field in the header of correspond-

ing last message to decrement that target process’s counter. If the origin process

has no operation targeting at a process in the target group, then it needs to

send an extra 0-byte message to that target process. MPI Win complete returns

after all operations are completed locally. For any process in the target group,

in MPI Win post, it sends post messages to every process in the origin group.

In MPI Win wait, it is blocked until its counter reaches 0, which means it has

received the last messages from all processes in the origin group.
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Figure 3.4: LAZY pscw Figure 3.5: EAGER pscw

Figure 3.6: HYBRID pscw

The eager choice of PSCW synchronization is similar with the one in fence.

As shown in Figure 3.5, MPI Win start (or the first operation) blocks until the

origin process receives all post messages. Puts, gets and accumulates are issued

as soon as possible without queuing. MPI Win complete waits until all operations

have locally completed, and MPI Win wait blocks until it receives last messages

from all processes in the origin group. Since operations are issued eagerly, the

origin process have to send an additional last message to all processes in the target

group, which involves more synchronization messages than the lazy approach.
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Our design for hybrid maintains only one synchronization if local operation

number is small, just like in lazy approach, and needs two synchronizations if lo-

cal operation number reaches the threshold and functions are switched from lazy

to eager. Figure 3.6 shows our design for hybrid approach. In MPI Win start, the

process does nothing. For the following operations, the process initially queues

them up. When the number of queued operations reaches the threshold, the

process is blocked until it receives post messages from those queued operation’s

targets, after that it issues all queued operations. For every new following op-

eration, the process first checks if itself has already received the post message

from that operation’s target. If not, it is blocked, else it just issues that opera-

tion. In MPI Win complete, if the process hasn’t received the post message from

some target processes, which means it has no operations destined at those target

processes, it is blocked. After that it sends an additional last messages to those

target processes and then returns. We avoid sending last messages to all target

processes by keeping a last rma op pointer for each target process, and only this

operation is issued at MPI Win complete.

3.2 Passive Target Synchronization

An implementation of passive target synchronization should follow the correct

semantics below: A one-sided operation from the origin process cannot access

the target process’s window until the origin process has called MPI Win lock and

acquired the lock of that window, and MPI Win unlock cannot return until all

one-sided operations are completed at both origin and target.

Like fence and pscw, the current passive target synchronization in MPICH-2

is also implemented in a lazy fashion. In MPI Win lock, the origin process just

queues up the lock request locally and does nothing else. Following one-sided

operations are also queued locally. In MPI Win unlock, the origin process first
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issues the lock request. After lock is granted, it issues all queued operations

to the target. The last one-sided operation, indicated by a field in the packet

header, causes the target process to release the lock on the window. This strat-

egy eliminates the overhead of the first synchronization and reduces the overhead

of the second synchronization by combining the last operation message with the

synchronization message. The implementation also includes an optimization for

single short operation: if there is only one short operation between lock and un-

lock calls and datatype is predefined at the target, the origin process sends the

operation data together with the lock-request packet. The drawback of this lazy

approach is that since communication is deferred to the unlock phase, it is im-

possible to achieve any overlapping of computation and communication between

lock and unlock calls, and additional overhead is added due to processing the

operation queue when there are large number of operations.

Another choice is to implement passive target synchronization in an eager

fashion, which is very similar to the one in pscw synchronization. In MPI Win lock,

the origin process issues the lock request immediately. For each following one-

sided operation, the origin process pokes the progress engine to check if currently

the lock is granted. If the lock is not yet granted, it continues queuing up the

operation and returns immediately; otherwise it issues all queued operations in-

stead of waiting until the unlock phase. In MPI Win unlock, the origin process

needs to send an additional last message to the target process. This approach also

allows the first synchronization call to return without blocking, but an additional

synchronization message must be sent to the target process after all operations

are performed. However, it allows the overlapping of computation with commu-

nication between lock and unlock calls.

In this eager strategy, there is no optimization for single short operations as

is done in the lazy approach, because the lock-request packet must be issued in

MPI Win lock, which cannot be sent together with the operation package.
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We use a simple model to estimate the latency of one-sided operations in

passive synchronization with both lazy and eager strategies. We assume that the

time taken to send a message between two nodes can be modeled as α+nβ, where

α is the startup time per message, and β is the transfer time per byte. n is the

number of bytes for transmitted data in one message, and it is short enough to

be eligible for the optimization. In case of get operations, there is a get-request

packet sent to the target followed by data transfer from the target process. We

assume that number of issued operations is m, and data size of get-request, lock-

request, lock-reply, additional last message (eager) and acknowledgment packet

is c bytes, which is quite small. All these internal messages would take on the

order of a microsecond or more, even on a fast interconnect network.

We first analyze the latency for single short operation. For the lazy approach:

Tput = Tlock req+data + Tack = 2α + (2c+ n)β

Tget = Tlock req+get req + Tdata = 2α+ (2c+ n)β (3.1a)

For the eager approach:

Tput = Tlock req + Tlock reply + Tdata + Tlast msg + Tack

= 5α + (4c+ n)β

Tget = Tlock req + Tlock reply + Tget req + Tlast msg + Tdata

= 5α + (4c+ n)β (3.1b)

We see that when there is only one short operation, the single operation

optimization in lazy approach can result in significant reduction in total number of

messages and therefore causes less startup overhead. Hence the time complexity

is much better than the eager approach. In fact this suggests there might be a

case for merging as many operations as possible into one message, though this

might involve additional space for the aggregated message and the cost of copy.

This is not currently implemented in the lazy approach in MPICH2.
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Next we analyze the latency when there are more than one operations between

lock and unlock calls. For the lazy approach with many operations:

Tput = Tlock req + Tlock reply +mTdata + Tack + Tqueue

= (3 +m)α + (3c+mn)β + (m+ 2)tqueue

Tget = Tlock req + Tlock reply +mTget req +mTdata + Tqueue

= (2 + 2m)α + (2c+mc+mn)β + (m+ 2)tqueue (3.1c)

For the eager approach with many operations:

Tput = Tlock req + Tlock reply +mTdata + Tlast msg + Tack

= (4 +m)α + (4c+mn)β

Tget = Tlock req + Tlock reply +mTget req + Tlast msg +mTdata

= (3 + 2m)α+ (3c+mc +mn)β (3.1d)

For the eager approach, the time complexity is almost the same as the one

in lazy approach for many operations, except for the latency of additional last

message. On the other hand, for the lazy approach, there is additional overhead

due to queue processing, which can become significant depending on number of

operations.

Our strategy for the passive target synchronization is a hybrid approach which

is similar to pscw and combines the benefits of both lazy and eager strategies.

In MPI Win lock, we do nothing but just queue up the lock request locally. In

the very first one-sided operation, we also queue up the operation. If there are

more than one operations to be issued, we issue the lock request in the second

operation and poke the progress engine in every operation to check if currently

lock is granted. If lock is not granted, we continue queuing up operations, and

we use a last rma op pointer to always keep the last RMA operation. The run-

time can automatically switch between lazy and eager mode by using a criteria
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of threshold value for number of operations in the queue. If current number of

queued operations reaches this value and the lock has been granted, the origin

process issues all operations to the target, except for the last RMA operation

(pointed by last rma op); otherwise it continues queuing. For the experiments

in this paper, the threshold value is set to 1 in lock-unlock case, therefore once

the lock is granted, the operations are issued immediately. This threshold value

can be tuned for a particular system. In MPI Win unlock, if lock has already been

granted in previous operations, we just issue the last RMA operation; otherwise

we wait for lock to be granted and then issue all queued operations and the last

operation. When the target process receives this last operation, it releases the

lock on its window. Our approach preserves the optimization for single short op-

eration, because if there is only one short operation and also avoids sending the

additional last synchronization message because the last operation is always kept

in the last rma op pointer and will be sent in the unlock phase. Furthermore,

since we issue most operations in an eager fashion(except for the single short op-

eration and the last operation), overlapping of computation and communication

can be achieved.

For all three types of synchronization above, we added a new configure option

(--enable-hybridrma) into MPICH2, which can be used to set the runtime

system at hybrid mode.
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Chapter 4

Performance Results

We implemented the adaptive approach for MPI one-sided communication based

on MPICH2-1.4.1p1 release. For each synchronization strategy (fence, lock-

unlock, post-start-complete-wait), we additionally implemented the eager method

(with --enable-hybridrma option) described in section 3.1 and section 3.2, and

compared performance of our hybrid approach with both the eager approach

and the origin lazy approach in MPICH2. Three implementations are labeled as

LAZY, EAGER and HYBRID in the following content.

We run tests on two different systems: (i) An SMP machine with 4 Intel Core

i5 CPU (2.67 GHz) and 8GB memory on which the communication latency is very

low, therefore we use it to simulate the architecture with very fast interconnect

network; (ii) “breadboard” cluster at ANL on which each node has two Intel Xeon

quad-core processors (2.66 GHz) and 16GB memory, and nodes are connected

with Ethernet. We use “breadboard” to examine the performance on a slow

interconnect network.

While all experiments in this section make use of a simple communication

layer, the idea applies even to one-sided transports, particularly those that could

implement the one-sided semantics by directly exploiting the hardware features.

4.1 Micro-Benchmarks

In this section we present the performance results running with micro-benchmarks.

We wrote three types of benchmarks: (i) single-op test, in which only one RMA
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operation is issued between pair of synchronization calls; (ii) many-ops test, in

which more than one RMA operations are issued between pair of synchronization

calls; (iii) overlapping test, in which different amount of computation is inserted

between synchronization calls, which measures how much computation can be

absorbed by overlapping with one-sided communication.

4.1.1 Single-op Results

In this test, we measured the latency of the entire one-sided communication when

there is only one one-sided operation between synchronization calls, with trans-

ferred data size varying from 1 byte to 64 bytes. We tested Lock-Unlock and

SCPW synchronizations and separately tested put, get and accumulate opera-

tions. Since results of accumulate operation are very similar with put, due to the

space limitation, we do not show its results here.

For lock-unlock, Figure 4.1 shows the results for put and get operations on

SMP machine. It is shown that LAZY outperforms EAGER for both put and

get. This is expected, because optimization for single short operation is not

applicable for EAGER (lock request must send early so that it can never send with

operation), but it can be used in LAZY, therefore the number communication

messages is reduced. In EAGER case, expect for the separate transmission of

lock request and operation message, an additional last message also needs to be

sent to indicate the completion. HYBRID performs similar with LAZY, because

it preserves the optimization for single short operation and avoid the additional

last message as LAZY does.

Figure 4.2 shows the results for put and get operation on the “breadboard”

cluster. Performance for both put and get is similar as it is on SMP machine,

but the performance gap between LAZY(HYBRID) and EAGER on is more sig-

nificant, due to the effect of slow interconnect network on “breadboard”.

For post-start-complete-wait, both LAZY and HYBRID perform slightly bet-
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Figure 4.1: Single-op latency on SMP for (a)PUT and (b)GET
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Figure 4.2: Single-op latency on breadboard for (a)PUT and (b)GET
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ter than EAGER when tranferred data is small, because both of them eliminates

the last additional message. However, the performance gap between LAZY/ HY-

BRID and EAGER is smaller than it is in lock-unlock, this is because there is

no optimization for single operation in post-start-complete-wait, therefore the

benefit of LAZY issuing is not that obvious. Since the additional last message

contains 0-byte data (only have package header), when the data volume in the

operation is large enough, this additional small message can be ignored.

For fence synchronization, the advantage of LAZY(HYBRID) over EAGER is

much more obvious than lock-unlock and pscw, either on SMP or on breadboard,

this is because EAGER approach has two barriers which is expensive, whereas

both LAZY and HYBRID only have one reduce-scatter.

4.1.2 Many-ops Results

In this test, we measure one-sided communication latency when there are more

than one RMA operations between synchronization calls. The origin process

performs different number of RMA operations (1 to 16000) at the target with

8-byte data transferred for each operation.

Figure 4.3 shows the results for put operations on SMP and “breadboard”

machine, running with lock-unlock synchronization. We see that both on SMP

system and breadboard, EAGER and HYBRID perform better than LAZY. This

is due to the fact that on one hand, queuing overhead is eliminated in EA-

GER/HYBRID approaches since operations are issued as early as possible after

lock is granted; on the other hand, lock-request packet is also issued earlier in-

stead of deferred to the unlock phase, therefore the time taken for waiting for

the lock-granted packet can be overlapped with the following RMA operations,

whereas in LAZY case, queuing overhead is introduced and lock request is issued

late in the unlock phase. Performance results of fence and post-start-complete-

wait show similar trends with lock-unlcok in many-ops testing.
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Figure 4.3: Many-ops latency on (a) SMP and (b) breadboard

4.1.3 Overlapping Results

In this test, we measure the overlapping capabilities of LAZY, EAGER and HY-

BRID for three synchronization mechanisms. In this micro-benchmark, the origin

process does a certain number of one-sided operations on the target window. At

first, we do not insert any computations between synchronization calls and just

measure the entire communication time for lock-ops-unlock, fence-ops-fence and

start-ops-complete sequences. After that, we insert certain amount of compu-

tation after each one-sided operation. The amount of computation inserted is a

percentage of the net communication time measured before. We vary the amount

of computation and measure the overall execution time. As long as the overall

time does not change, it implies that computation is overlapped with the one-

sided communication, or the computation time is hidden by the communication

latency. We change the message size of one-sided operations and compute the

overlapping percentage corresponding to each message size. We did not run this

test on SMP. Since the message transferring is done by memory copy on SMP

machine, the communication latency is very short and it is hard to achieve any

overlapping results.

Figure 4.4 shows the overlapping results of put and get operations on the Linux
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Figure 4.4: Overlapping Results(lock-unlock) for (a) PUT and (b) GET

cluster for lock-unlock synchronization. For put operations, we can see that there

is virtually no overlapping achieved for LAZY. This is because all operations are

issued in the unlock phase, the communication time cannot be overlapped with

the computation inserted before the unlock call. EAGER and HYBRID are able

to issue operations as early as possible once the lock is granted, thus as long as

there are sufficient operations or computation to ensure that the lock is granted

before unlock, operations can be issued early and their communication time can

be overlapped with the computation.

We observed up to 75% overlapping percentage for HYBRID when message

size is larger than 64KB. For small message size, we do not expect good overlap-

ping results as the startup overhead per message dominates the latency and this

part cannot be overlapped. Results of accumulate operations are similar with

put operations, so we do not show them here.

For get operations, we could not achieve any overlapping initially irrespective

of the message size. After further analysis we found that though we issued op-

erations as early as possible, when the data is returned, the actual receiving of

that data occurs only when progress engine is poked. Since we do not poke the

progress engine in between, a lot of time is spent at unlock in receiving data, and
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Figure 4.5: Overlapping Results(pscw) for (a) PUT and (b) GET

this time cannot be overlapped by computation. Therefore, we added a progress

poking call after each get operation is issued to receive the data early. After

that, we could gain overlapping results for EAGER and HYBRID, up to 35%

percentage when message size is 128KB. Figure 4.4(b) shows the results for the

get operations on the Linux cluster. One thing needed to be noted here is that

the overlapping percentage is also limited by the capability of the underlying

transport. We can expect higher overlap benefits if there is better support for

asynchronous progress. Higher overlapping percentage can also be expected when

there is better hardware support in the form of RDMA get.

Post-start-complete-wait achieves similiar overlapping results as lock-unlock

does, as shown in Figure 4.5. Fence achieves at most 50% overlapping percentage,

as shown in Figure 4.6, which is smaller than the other two, this is because in

fence communication, some processes have to spend time waiting at collective

synchronization, which can not be overlapped with computation.

4.2 Graph500 Benchmark

We used Graph500 benchmark to test the performance impact of fence implemen-

tation on “breadboard” cluster. The benchmark version is 2.1.4, it randomly con-
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Figure 4.6: Overlapping Results(fence) for (a) PUT and (b) GET

structs a graph and performs parallel Breadth First Search (BFS) on that graph.

One implementation of BFS in Graph500 is done by using MPI accumulate op-

erations and fence synchronization.

We tested the Graph500 benchmark with two different size of the input graph:

(i) 213 vertices and 217 edges and (ii) 27 vertices and 211 edges. The first one has

larger amount of one-sided operations between fences whereas the second one has

smaller number of operations. We increased the number of processes up to 128

and plot the corresponding TEPS (traversed edges per second) in Fig 4.7.

In Figure 4.7(a), we can see that, when process number is smaller than 16,

LAZY performs better than EAGER in most cases(except for 2-process case).

This is because number of local outgoing operations on each process is not large

enough, for EAGER case, the overhead of two barriers still dominates the commu-

nication latency. When number of processes is increased to 32 or larger, number

of outgoing operations on each process increases too, which makes the benefit of

issuing operations early outperforms the cost of barriers, therefore EAGER per-

forms better than LAZY. Since LAZY defers issuing operations to synchronzation

phase, it has to spend longer time waiting for the completion of these operations.

In Figure 4.7(b), we can see that, when problem size is not large, LAZY
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Figure 4.7: Graph500 results with (a) large graph and (b) small graph

always performs better than EAGER. This is because there is no enough one-

sided operations between fences and the advantage of issuing them early is not

as much as the synchronization overhead and the overhead of waiting for arrival

of additional last message, so EAGER performs worse than LAZY.

To further study the difference of EAGER and LAZY in fence, we break down

the timing for the second fence and measure the time taken by each part inside

the fence function. Figure 4.8 shows the breakdown for eager and lazy fence for

128 processes with large problem size.

There is no barrier operation in LAZY approach and no reduce-scatter op-

eration in EAGER approach. EAGER has the cost of sending the additional

last message, which does not exist in LAZY. However, EAGER completely elim-

inates the time of issuing operations as all operations have been issued before

fence, whereas in LAZY all the outgoing operations are queued and issued in this

fence. Both approaches spend most of their time waiting for operation comple-

tion. LAZY spends more time than EAGER because it issues operations late. For

EAGER, there is also overhead of barrier taken place in the first fence, whereas

for LAZY mode, the time of the first fence is nearly zero.
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Chapter 5

Conclusion and Future Work

This thesis describes the design and implementation of an adaptive strategy for

one-sided communication in MPI. The current MPICH2 implementation uses a

lazy approach to issue operations, which queues the operations and issues them

at the second synchronization phase. This has certain benefits with respect to

short operations in terms of reduced network operations. For large data transfers,

issuing the operations as early as possible is more beneficial than deferring them

to later synchronization phase, and it can provide more scope for overlapping

communication and computation. Our design and implementation of adaptive

approach combine the benefits of both lazy and eager approaches with small

overhead. The performance results show that the hybrid approach performs as

good as the lazy approach for small data transfers and still be able to achieve

performance similar to eager for large data transfers. We also demonstrate the

benefits of fence implementation for the Graph 500 benchmark.

In our implementation, the hybrid approach for lock-unlock queues up the op-

erations until the lock is granted, and then issues all the operations immediately.

Once the lock is granted there is no further operations being queued. We achieve

this by internally setting the queue threshold parameter to 1. In cases where there

are lots of operations and contention in the network, the hybrid approach could

be tweaked to queue up operations to a certain number of operations or a certain

data volume. Currently, in our testing of fence and post-start-complete-wait, we

set the threshold based on the performance result of lazy and eager approach. The

queue threshold should be chosen appropriately for a given system, and should
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avoid user to learn about the communication pattern for a specific application.

We are trying to propose a systematic way for user to select the suitable queuing

threshold based on system parameters. Furthermore, by keeping track of the

history of the operations and communication pattern, the threshold can also be

dynamically adjusted in the runtime. We plan to explore these possibilities in

the future. We are also working on testing our approach on more commonly used

one-sided benchmarks, especially for passive target communication, to examine

the effectiveness of our design and implementation.
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