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ABSTRACT

Performance in most complex cognitive and psychomotor tasks improves with

training, yet the extent of improvement varies among individuals. Is it possible to

forecast the benefit that a person might reap from training? What is the mechanism

underlying learning? Several behavioral measures have been used to predict individual

differences in task improvement, but their predictive power is limited. Our multi-voxel

pattern analysis (support vector regression) of the time-averaged blood oxygen level

dependent (BOLD) brain activity in the dorsal but not the ventral striatum, recorded

before training, predicts subsequent learning success with high accuracy. The fact that

the high prediction accuracy of the data did not depend on the task subjects were

performing during the recording might suggest that individual differences in

neuroanatomy or persistent physiology predict whether and to what extent people will

benefit from training in a complex task.

To find out the physiology behind the possibility of predicting learning from

time-averaged T2*-weighted images, a follow-up experiment was designed and

performed with additional magnetic resonance (MR) measurements, including

susceptibility-sensitive ones, such as susceptibility-weighted imaging (SWI), T2-,

T2*-quantitative as well as diffusion tensor imaging (DTI) and arterial spin labeling

(ASL). We then discovered that (patterns of) nonheme iron (not heme) is the

underlying factor driving learning prediction. This discovery of the relationship

between iron concentrations and learning ability in healthy young adults could not

only guide the development of potential neuromarkers for a person’s memory and

executive control functions, but also help design customized learning-interventions to

improve cognition or prevent its decline.
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CHAPTER 1

INTRODUCTION

1.1 Problem formulation

People vary in their ability to improve cognitive and psychomotor performance with

practice and training. Cognitive tests predict who will benefit from training [1, 2], but

they usually account for only a small proportion of the variance among individuals [3].

Here we use brain magnetic resonance imaging (MRI) data to predict individual

learning success with unprecedented accuracy. Specifically, from data collected in the

original study in 2008, we showed that patterns of time-averaged T2*-weighted

images in the dorsal striatum at the start of training for a complex video-game

account for more than half of the variance in the amount of subsequent learning

among individuals.

With a few exceptions (e.g., the volumetric study by Erickson et al. [4]), learning

studies based on functional MRI (fMRI) typically make use of contrasts in the

blood-oxygen-level dependent (BOLD) effect [5]. Measured with gradient-echo echo

planar imaging (EPI), functional BOLD activity is obtained by contrasting the EPI

images of an experimental condition of interest with those of a baseline condition.

This emphasizes the differences between the two conditions and eliminates the

common components in the BOLD signal. In this work, we focus on the common part,

which we obtain by averaging the EPI volumes over time. The result is a

time-averaged T2*-weighted image. Unlike T1- or T2-weighted images, which

reflects the tissues’ T1- or T2- contrasts, respectively, T2*-weighted images are

sensitive to local field variations, which might be caused by local magnetic

susceptibility difference between interested tissues and their surroundings [6, 7] – for
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example, T2*-weighted has been used to measure iron deposited in the heart because

(super-) paramagnetic iron substances creates local magnetic field inhomogeneity [8].

Using multi-voxel pattern analysis (MVPA) we identified patterns of time-averaged

T2*-weighted activity that predict subjects’ future improvements in playing a complex

video game with high accuracy. Surprisingly, predictions from white matter were

highly accurate, while voxels in the gray matter of the dorsal striatum did not contain

any information about future training success. Prediction accuracy was higher in the

anterior than the posterior half of the dorsal striatum.

More specially, all of these observations remained similar when we looked into data

collected inside the magnet from different blocks during which subjects were doing

different tasks. Nevertheless, the physical and physiological effects underlying this

learning prediction power of the time-averaged T2*-weighted signal are so far unclear.

Therefore we conducted a new study in which we designed the imaging sessions with

many more sequences detecting susceptibility information as well as quantitatively

measuring T2 and T2* values. We aimed to develop a comprehensive theory of the

time-averaged T2*-weighted signal and its relation to cognitive performance based on

a thorough analysis of the newly added scan sequences.

1.2 Overview of contributions

The ability to predict who will benefit from training by using neuroimaging data

collected early in training may have far-reaching implications for the assessment of

candidates for specific training programs, as well as for the study of populations that

show deficiencies in learning new skills. In addition, the link between training ability

and the time-averaged T2*-weighted signal in the dorsal striatum reaffirms the role of

this part of the basal ganglia in learning and executive functions such as task switching

and task coordination processes.

Furthermore, our non-invasive imaging studies on young healthy adults suggested

the roles of nonheme brain iron (unrelated to hemoglobin, mostly in the form of
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storage proteins, of which ferritin is the predominant form), and not heme iron (iron in

hemoglobin), in performance improvement. As far as we know, ours is the first

imaging study connecting brain iron pattern/distribution (in the striatum) and learning

of each healthy individual. Previous proofs on both human and non-human models

discuss only group differences in learning between iron-deficient and healthy

controlled populations. Particularly, in a water-maze learning study of Yehuda et al.

[9], rats that were fed an iron-free diet had significant learning deficits compared to the

control group. These discrepancies happened even prior to drops in rats’ hemoglobin

levels yet remained after the hemoglobin level was reestablished. In another study on

human young adults, non-anemic iron-deficient young adults with iron-supplement in

8 weeks showed better learning than the placebo group [10]. A good review (on both

animal and human models) on effects of iron deficiency on learning and how this

effect can possibly be explained at the neuronal cellular level can be found in [11].

Finally, our analysis used the patterns of time-averaged T2*-weighted images

which are simply the time averaged of the popularly collected

blood-oxygen-level-dependent BOLD signal, and thus the technique can be easily, and

even retrospectively, applied to other studies.

1.3 Outline of the dissertation

This dissertation reports two studies related to learning prediction and the underlying

mechanisms. The first study started in 2008 (it will be referred to as the 2008 study),

and we included data from 34 young participants in our final analyses. The second

study (called the 2010 study) was a follow-up study designed to discover answers for

questions that remained from the first one, and in particular the mechanisms that led to

the high levels of prediction of training effects; data sets from 39 young participants

were included in our analyses.

In Chapter 2, the motivation of both the 2008 and 2010 studies will be discussed.

We will examine scientists’ desires to discover the mechanisms of learning, about
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which, in spite of many research efforts, little is yet known.

In fact, there are many studies about learning based on humans, primates, and

non-human animals. So far they have been pointing to the role of the striatum in

learning. With that support from the literature, our study focuses only on that region.

In Chapter 2, a detailed description of the striatum region will be provided.

As stated, the subjects in this study are human young adults; therefore, we can only

perform a limited set of non-invasive measurements, including magnetic resonance

imaging. However, learning is so complex that an analysis tool that fails to include

individually specific information when extracting useful information would seem far

from adequate in a study of the learning mechanism. Therefore, instead of voxel-based

analysis, in our study we have applied a pattern analysis technique rooted in machine

learning: support vector regression. It will be explained in Chapter 2 as well.

Furthermore, the last part of Chapter 2 will review MRI signal generation and data

collection. These provide a foundation for understanding the connections between the

different MR measurements in our studies and thus our conclusion about the possible

source of the effect on learning.

In Chapter 3, we will present the results of learning-prediction from the 2008 study

data. This research shows that individual differences in the patterns of time-averaged

T2*-weighted MRI images of the dorsal striatum recorded in the initial stage of

training predict, with high accuracy, subsequent learning success in a complex video

game. These predictions explained more than half of the variance in the learning

success of the individuals, suggesting that individual differences in neuroanatomy or

persistent physiology predict whether and to what extent people will benefit from

training in a complex task.

Nevertheless, experimental data in the 2008 study could not show precisely which

intrinsic properties of the brain tissues or neuronal connections/organization within

the dorsal striatum underlie the high accuracy of prediction. To reveal underlying

mechanisms, we conducted a new MRI experiment in 2010 with a variety of imaging

contrasts to look separately at different aspects of the brain structure/components to

explicate the mechanisms that underlie prediction of learning. Chapter 4 will describe

4



this follow-up study.

Our hypothesis about nonheme iron as the underlying physiological basis of the

learning-prediction information of the time-averaged T2* signal (and hence the role of

nonheme iron in learning in healthy young adults) will also be presented in detail and

discussed in Chapter 4.

In Chapter 5, some future directions for applying this finding as well as suggestions

for overcoming some limitations in our studies will be discussed. Chapter 5 will end

with a conclusion summarizing all of the main points of our findings as well as their

practical implications.
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CHAPTER 2

MOTIVATION AND BACKGROUND

2.1 Motivation

As society develops, individuals and organizations that want to be successful are

always under pressure to become more knowledgeable and skillful. That leads to an

inevitable need/desire: how to learn and so train new skills effectively. As a matter of

fact, in the last few decades, a vast literature has been generated on learning

mechanisms and effects of training. Indeed, effects of training regime are often

assessed through participants’ learning outcomes. Nevertheless, there are substantial

individual differences in the effectiveness of different training programs for different

individuals. Understanding individual differences in learning and training will not

only help in designing effective training regimens or intervention but also will likely

have important implications for selection of individuals for different training

programs.

In our study about training and effects for the Office of Naval Research (ONR), we

use a video game training to study training strategies as well as their transfer benefits.

While video game skills have been shown to transfer to other tasks [12, 13], influence

of individual differences in learning complicates the interpretation of these effects

In short, it is important to be able to evaluate individual differences. And hence, we

would like to predict how much individual differences contribute to learning

outcomes. Particularly, we want to predict how much future improvement each trainee

would gain based on data collected before training begins.

Specifically, we applied multi-voxel pattern analysis on time-averaged

T2*-weighted images to predict performance improvements in our video game
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training studies. Indeed, the proportion of the variance among individuals obtained by

our predictor was much higher than those in other cognitive test prediction [3] or in

other imaging studies which looked at BOLD activations [14, 15] or even volume of

region of interest [4].

Furthermore, in comparison to behavioral cognitive tests, these images are more

direct measurements of neuroanatomy and neurofunction while in fact individual

differences in cognitive abilities stem from these brain physiology variations. In other

words, it allows more understanding about the neurophysiology of learning

mechanism. Truly, the high accuracy in learning prediction of information in

time-averaged T2*-weighted images as well as its potential of building a neuromarker

for learning led us to a follow-up study designed to explore the mechanisms behind

the learning prediction information in time-averaged T2*-weighted images.

2.2 Region of interest: the striatum

In our analysis we focused on the dorsal striatum, consisting of the caudate nucleus

and the putamen, and on the nucleus accumbens in the ventral striatum because of

these structures’ involvement in learning and execution of complex responses. Indeed,

the dorsal striatum has been shown to play an important role in procedural and habit

learning and in carrying out or initiating complex goal-directed tasks such as

task-switching or reaction-time tasks [16, 17, 4, 18, 19, 20, 21]. The ventral striatum,

typically related to reinforcement and motivation [19, 22, 23], is also recruited during

learning [24, 25, 26]. Both the dorsal and ventral striatum show increased release and

binding of dopamine, which has been associated with better performance in learning

including video game training [27, 28, 29, 30]. Particularly, an increase in the

functional activity in the striatum has been associated with the transfer of updating

skills in working memory (an important component of learning performance) tasks,

possibly regulated by dopaminergic modulation [31, 32].

Actually there is a co-localized relationship between dopamine and brain nonheme
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iron; i.e., they have similar distribution maps in the brain [33, 34]. They both are

found with high concentration at regions such as globus pallidus, putamen, caudate,

hippocampus, etc. Indeed, brain nonheme iron also plays a crucial role in learning via

its effects on dopamine functioning and metabolism dopamine [35, 36, 37, 38]. Other

relations of brain iron with learning are via its effects on, for example, hippocampus

integrity [39, 40, 41] and myelination regulation [42].

2.3 Pattern recognition - support vector regression

Pattern recognition entails the use of computer algorithms to automatically discover

regularities of input data x in order to generate some sort of outputs y (labels or

discrete values for classification, continuous variables for regression). For a machine

to know how to decide on output labels/values, i.e. to build the mapping model x 7→

y, it has to be trained. In the case of supervised learning, the training process involves

learning the answer from a training data set {x0, . . . , xN} with known corresponding

output values {y0, . . . , yN}. Target values of training data sets are unknown in the

case of unsupervised learning, or a mixture of known and unknown target for the case

of semi-supervised learning. After the training period (learning phase), the model of

mapping x 7→ y is obtained and for any new-coming instance xt (testing data); its

corresponding output yt can be generalized from the learned model. This step is

known as generalization.

In our studies, the pattern recognition problem is a supervised one. Particularly

from measured MR signals of participants’ brains (x), we would like to learn

regularities related to participants’ video-game learning (continuous variable y). We

chose to use support vector regression as it has been applied successfully in many

other practical applications [43, 44]. The following section provides background for

support vector regression.

Support vector regression (SVR) [45, 46] is a machine learning technique learning

the functional relationship between two types of data, x and y, with a maximum
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margin criterion. Specifically, the goal is to use training data

{(x1,y1), . . . , (xN ,yN)} ⊂ Rd ×R to find the coefficients w and offset b of a linear

function f(x) =< w,x > +b (w ∈ Rd and b ∈ R) so that flatness of the coefficients

w is maximized - equivalent to minimizing ||w||2, and so that no error is greater than

the limit : |yi − f(xi)| ≤ ε (for ε-SVR).

However, in order to solve the optimization problem this error condition is relaxed

by allowing some error ξi ("soft margin"), which is then penalized in the optimization.

In short, we would like to solve the following optimization problem:

Minimize 1
2
||w||2 + C

l∑
i=1

(ξi + ξ∗i )

Subject to 
yi− < w,xi > −b ≤ ε+ ξi

< w,xi > +b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

where C > 0 measures the trade-off between the flatness of w and the tolerance for

deviations greater than ε.

The equivalent dual formulation of this primal objective function using Lagrange

multipliers is easier to solve:

Maximize

−1

2

l∑
i,j=1

(αi − α∗i )(αj − α∗j ) < xi,xj > −ε
l∑

i=1

(αi − α∗i ) +
l∑

i=1

yi(αi − α∗i )

subject to
l∑

i=1

(αi − α∗i ) = 0 and αi, α∗i ∈ [0, C], where αi, α∗i ≥ 0 are Lagrange

multipliers. Solving the dual optimization problem, one obtains:

w =
l∑

i=1

(αi − α∗i )xi

and

b =

yi− < w,xi > −ε, for αi ∈ (0, C)

yi− < w,xi > +ε, for α∗i ∈ (0, C)

Note that αi and α∗i cannot be simultaneously non-zero.

9



As in any machine learning technique, generalization of the model parameters

derived from the training data to an independent validation data set is not guaranteed.

Although the true error in SVR cannot be always calculated, its upper bound has been

shown to be the sum of the training error and the complexity of the sets of models. For

the set of hyper planes f(x) =< w,x > +b, minimizing model complexity is

equivalent to minimizing ||w||2. Hence, SVR allows for the derivation of the function

f(x), which achieves the lowest bound of the true error.

Leave-one-out procedure

To avoid biases in the training process, the available data have to be partitioned into

non-overlapping training and validation sets. This associated process of splitting the

data for training and evaluating learning is known as cross validation. Here we split

the data allowing only one observation to be in the validation set. This special case of

cross validation is called leave-one-out. Although this method is computationally

expensive, it allows for all data to be used for training and validation in turn, while

maintaining integrity of the separation of training and validation sets, thus avoiding

biases in the modeling. Note that in our application, original MR signals have to be

pre-processed before entering prediction stage and it is important to process MR data

of all participants (including testing and training ones) with the same procedure.

2.4 Magnetic resonance signal generation and detection

Well-known for its high degree of safety and ability to provide a variety of imaging

contrasts including different quantitative measurements, MRI has been very popular in

the past few decades, for use in a variety of domains including clinical diagnosis,

psychology and neuroscience. Indeed, our studies have used it as the imaging

technique for exploring the neurophysiology of learning in young adults. In [47], we

used gradient-echo EPI and MPRAGE to measure the BOLD fMRI signals and

high-resolution T1-weighted structural data, respectively, and discovered the high
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prediction power of time-averaging T ∗2 -weighted signals in predicting the learning of

young adults in the Space Fortress video game-training study. In order to discover the

mechanism(s) underlying the prediction of time-averaging T ∗2 -weighted, a follow-up

study collected multiple MR modality signals including diffusion tensor imaging

(DTI), arterial spin labeling (ASL), susceptibility weighted imaging (SWI),

T2-quantitative, T ∗2 -quantitative, T2-weighted, and of course T ∗2 -weighted

(BOLD-EPI) and T1-weighted measurements. The purpose of this section is to

provide the basic principles of MRI signal generation.

2.4.1 The strong external magnetic field ~B0

A nucleus with non-zero spin I (nuclear spin quantum) such as 1H creates a

microscopic magnetic field which is represented by the nuclear magnetic moment

vector ~µ [48]. The spin quantum and the magnitude of the magnetic moment ~µ are

related by the following equation:

µ = γh̄
√
I(I + 1)

On macroscopic scales, however, without an external magnetic field, due to the

random direction of ~µ at thermal equilibrium, there is no net magnetic field. Only in

the presence of a strong external static magnetic field ~B0 (without loss of generality,

assume ~B0 is in the z-direction), ~µ has:

• Longitudinal component µz: ~µ has a quantized value along the direction of ~B0

µz(t) = µz(0) = γmIh̄

where γ is the gyromagnetic ratio constant; mI is the magnetic quantum number

and can take only (2I + 1) discrete values, i.e. mI = −I,−I + 1, . . . , I .
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With respect to ~B0, ~µ points up or down at the angle θ:

θ = ±µz
µ

= ± mI√
I(I + 1)

• Transverse component µxy = µx~x+ µy~y: ~µ has a random phase in the

transverse plane and precesses about the ~B0 direction at an angular frequency

called the Larmor frequency:

ω0 = γB0 (2.1)

Particularly,

µxy(t) = µxy(0)e−iγB0t

where |µxy| =
√
µ2 − µ2

z = γh̄
√
I(I + 1)−m2

I .

As a result of random phases of the microscopic transverse components of each

magnetic moment vector, at equilibrium in the presence of ~B0 the net macroscopic

magnetization

~M = Mx~x+My~y +Mz~z =
Ns∑
n=1

µx,n~x+
Ns∑
n=1

µy,n~y +
Ns∑
n=1

µz,n~z

has the same direction as B0 and ~M =
Ns∑
n=1

µz,n~z (i.e. transverse component is

canceled out).

Particularly: ∣∣∣ ~M ∣∣∣ = M0
z =

γ2h̄2B0NsI(I + 1)

3KTs
~z

where K is the Boltzmann constant, Ts is the absolute temperature of the spin system

and Ns is the total number of spins in both states.

12



2.4.2 Radio-frequency oscillating magnetic field ~B1

Despite the non-zero value of the bulk magnetic field, this bulk magnetization cannot

be collected as it is not a time-varying signal. To this end, a Larmor frequency

oscillating magnetic field ~B1(t) is applied to make randomly precessing spins phase

coherence. Macroscopically, ~B1 perturbs spins so that ~M is tipped away from the

equilibrium z-direction, and the transverse component ~Mxy = Mx~x+My~y is non-zero

and oscillates around the z-direction at the Larmor frequency. When ~B1 is turned off,

~M still precesses around the ~B0 direction until it gets back to its equilibrium state, i.e.

recovers the longitudinal magnetization at equilibrium M0
z (longitudinal relaxation),

and the transverse magnetization Mxy vanishes (transverse relaxation). This process is

referred to as free precession.

Time-varying values of ~M(t) can be calculated by the Bloch equation:

d ~M

dt
= γ ~M × ~B − Mx~x+My~y

T2

− (Mz −M0
z )~z

T1

where ~B = ~B0 + ~B1; M0
z is the bulk magnetic value of ~M when there is only ~B0; T1

and T2 are time constants characterizing the relaxation process of the spin systems.

For tissues, T2 is always smaller than T1, but they are approximately equal in pure

water.

It can be shown that at time t during the duration [0, τp] of applying ~B1, in

on-resonance conditions (all isochromats resonating at the same Larmor frequency

ω0 = γB0), the bulk magnetic ~M are tipped away from the z-direction at the small

angle:

α =

∫ t

0

γBe
1(t̂)dt̂

When ~B1 is turned off, in the Larmor-rotating frame (x′, y′, z′), transverse and

longitudinal relaxation can be described by the following exponential functions:

Mx′y′(t) = Mx′y′(0+)e−t/T2 (2.2)

Mz′(t) = M0
z (1− e−t/T1) +Mz′(0+)e−t/T1 (2.3)
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where Mx′,y′(0+) and Mz′(0+) are the transverse and longitudinal magnetizations

right before B1(t) is turned off.

These radio-frequency precessing time-varying magnetizations (mainly the

transverse ones, i.e. the longitudinal one is ignored due to its much slower

time-varying characteristic) induce an electromagnetic force (or voltage) in receiver

coils and hence can be detected. Let ρ(ω) be the spin spectral density function at the

precessional frequency ω (in the Larmor rotating frame), the detected free (precession)

induction decay signal FID can be written as:

S(t) =

∫ ∞
−∞

p(ω)e−t/T2e−iωtdω (2.4)

For example, for the application of an α pulse (i.e. ~B1 tips ~M an angle α away from

the ~B0 direction), signal S(t) detected from a spin system resonating only at the single

frequency ω0 (i.e. ρ(ω) = M0
z δ(ω − ω0)) bears characteristic T2-decay as follows:

S(t) = M0
z sin(α)e−t/T2e−iω0t

However, in the case of field inhomogeneity (the sample and/or the magnetic field are

not homogeneous), the signal decay is characterized by a new time constant T ∗2 with
1
T ∗2

= 1
T2

+ γ∆B0. For Lorentzian distribution of the spectral density function

ρ(ω) = M0
z

(γ∆B0)2

(γ∆B0)2+(ω−ω0)2
, the FID signal S(t) is as follows:

S(t) = πM0
z γ∆B0sinαe

−t/T ∗2 e−iω0t

2.4.3 Gradient magnetic field ~BG

When imaged objects are in the strong and uniform ~B0 and excited by radio-frequency

(RF) oscillating magnetic field ~B1 only, spins from all parts of the objects are

activated; i.e., the detected signal is the sum of all of the signals from all parts of the

subjects. To activate the signals from the different parts of the imaged objects requires

spatial localization comprising of two separate steps: selectively exciting an imaged
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region and the spatial information encoding as follows:

• Slice selection: Recall that the RF pulse ~B1 can only be frequency-selective. For

a given excitation RF pulse, if the resonance frequencies of spins are made to be

position-dependent, spins at different locations will be excited differently. To

this end, the resonance frequency of spins can be spatially varied by

corresponding spatial variations of the magnitude of ~B0. Particularly, for the

purpose of slice selection, a magnetic field (of the same direction as ~B0 = B0~z)

called a slice selection gradient field, having an amplitude that changes linearly

along the slice selection direction ~BG(x, y, z) = (Gxx+Gyy +Gzz)~z is added

into the homogeneous magnetic field ~B0. Spatial variation of the magnetic field

therefore will be∇B = Gx~x+Gy~y +Gz~z ≡ ~Gss ( ~Gss: slice selection

gradient). With the presence of the gradient ~Gss, the desired slice profile can be

obtained by carefully designing the excitation frequency and the shape of the RF

pulse ~B1.

• Spatial information encoding: after the excitation of the (slice-selective or

non-selective) RF pulse (i.e. in the remaining homogeneous B0 field and a

gradient magnetic field, for example, BG = Gxx+Gyy +Gzz = ~Gfe · ~r), the

Larmor frequency at position ~r = (x, y, z) is ω(x, y, z) = γB0 + γ ~Gfe · ~r and

the activated signal collected during the free-precession period is in a complex

exponential form similar to equation 2.4:

S(t) =

∫ ∞
−∞

ρ(~r)e−i(γB0+γ ~Gfe·~r)td~r

(omitting the transverse relaxation effect e−t/T2).

It is clear from the above equation that if a gradient ~Gfe is turned on after the

RF pulse excitation, signal at location x will dephase at a position-dependent

frequency ω(x) = γB0 + γ ~Gfe · ~r. This procedure is known as frequency

encoding.

Besides frequency encoding, there is also phase encoding: right after the RF
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pulse, if Gpe is turned on for a short time [0, Tpe], the local signal at different

locations will have a different initial phase φ(~r) = −γ ~Gpe · ~rTpe. Omit the high

Larmor frequency (as it is deplexed by collected coils) γB0, define ~k = γ
2π
~Gt

and map our signal from the time domain to the so-called k-space domain, we

have:

S(~k) =

∫
object

ρ(~r)e−i2π
~k·~rd~r (2.5)

2.4.4 RF pulse echo and gradient echo signals

From the above equation 2.5, it is clear that the collected signal in k-space is the

sampled data of the Fourier transform of the imaging object of interest. However, for

better reconstruction, a symmetric coverage of the sampled signals in k-space is

desired. Therefore, two-sided signals, called echos, are collected instead of one-sided

FIDs.

There are two different ways to obtain echo signals: using multiple RF pulses or

magnetic field-gradient reversal.

• RF pulse echo: At time t = 0, the excitation α1-degree RF pulse is turned off,

magnetization vectors with different isochromats precess about the B0 direction

at different frequencies. As different isochromats have different precession

frequencies, dephasing occurs. Particularly, after a time τ , an isochromat

precessing at ωslow will lag behind one precessing at ωfast (ωfast > ωslow) by an

angle (ωfast − ωslow)τ . As a result, the magnetization decays at the speed e−t/T ∗2

(T ∗2 < T2). However, if we apply another α2-degree RF pulse to flip them over

on the transverse plane, given that the rotation direction is unchanged, the ωfast

isochromat will become "behind" the other, and their phase lag will

progressively decrease (the collected signal regrows). Another time τ after that,

the ωfast isochromat will be completely in phase with the ωslow one and as a

result of their new phase coherence at t = 2τ (called echo time TE), the
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collected signal will reach its peak (they are still susceptible to the transverse

decay effect e−t/T2 though). After the complete phase coherence at t = 2τ , the

dephase progressively increases until the signal vanishes. The collected signal is

two-sided and symmetric at echo time with the amplitude peak:

AE = M0
z sinα1sin

2α2

2
e
−TE
T2 (2.6)

• Gradient echo: After the excitation of the α1-degree RF pulse t = 0, if a

negative gradient is applied along the x-direction, for example, dephasing along

that direction worsens, and as a result, the signal decays at a faster rate e−t/T ∗∗2

(T ∗∗2 < T ∗2 ) and reaches zero at time t > 3T ∗∗2 . At time t = τ , if another positive

gradient with the same amplitude/direction is applied, dephasing induced by the

negative gradient will gradually disappear and be zero at t = 2τ .

Correspondingly, the signal strength increases and reaches its peak at t = 2τ .

The gradient echo signal strength is characterized by e−t/T ∗2 (hence, it is weaker

than an RF echo signal), and is usually used in fast imaging with small tip-angle

excitation.

AE =
M0

z (1− e−TR/T1)
1− cosαe−TR/T1

sinαe
−TE
T∗2 (2.7)

2.4.5 Imaging contrasts

From equations 2.6 and 2.7, it is clear that intensity of the collected signal is indeed a

function of spin density, relaxation times T1, T2, T
∗
2 , etc. Furthermore, a given pulse

sequence but with a different calibration of parameters (i.e. different choices for the

repetition time TR (duration between the first RF excitation of two consecutive

cycles), echo-time TE , flip-angle values α, etc.) can give a different contrast or

weighted-image.

To understand more about imaging contrast, consider the simple case of a basic

saturation-recovery spin-echo pulse sequence, and for TR >> TE (as in practice), the

17



signal intensity can be proved to be:

AE = M0
z

(
1− e−TR/T1

)
e−TE/T2

If the sequence is run with a short TE value and an appropriate TR, the term e−TE/T2

can be approximated by 1 and the signal intensity at different sample locations will

mainly depend on their corresponding T1-values. As longitudinal relaxation time T1

varies a lot for different soft tissue types, variation in the relative T1-values results in

contrast and therefore discrimination between structures (T1-contrast indeed is very

suitable for anatomical brain information acquisition). A collected signal in such a

case is said to have T1-contrast or be T1-weighted.

If we choose an appropriate TE but a very long TR, the term e−TR/T1 will vanish,

leaving the output dependent mostly on e−TE/T2 and we have a T2-weighted one.

For a short TE and long TR pulse sequence, we will have a proton density weighted

image. In practice, as different soft tissues have much the same water-proton

concentration, water-proton density-weighted images usually give good contrast

between, for example, skull/bone and brain, and are used less often.

Although it is quite similar to spin-echo imaging, gradient-echo imaging which

utilizes gradient refocusing can provide more types of imaging contrast, including

T1−, T1/T2−, T2− and especially T ∗2 -contrast. In particular, T1-weighting in gradient

echo imaging is controlled by the calibration of both of TR and the flip angle α. For

getting T ∗2 from gradient echo imaging, TE needs to be adjusted.
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CHAPTER 3

LEARNING PREDICTIVE INFORMATION IN
TIME AVERAGED T ∗2 SIGNAL AT BASAL
GANGLIA

This chapter describes our previous finding (Vo et al., 2011) that time-averaged T2*

MR signals can be used to effectively predict learning, based on information in the

dorsal striatum, in the Space Fortress video game. These data motivated the conduct

of another study (discussed in Chapter 4) to explicate the mechanisms underlying this

successful prediction.

3.1 Experiment design of video game learning study in
2008

3.1.1 Participants

Forty-two participants were recruited from the local communities of Urbana and

Champaign, Illinois. All participants were young, right-handed adults between the

ages of 18 and 28 with little experience with video games (less than 3 hours per

week). Of the 42 participants, 39 completed the experiment, and of those 5 were

excluded from the analysis because of incomplete data. The final sample consisted of

34 young adult participants (mean age = 22, SD = 3, 8 males) with normal or

corrected-to-normal visual acuity, normal color vision, and normal hearing. At the

time of data collection none of the participants were on any medications that might

affect cognitive abilities. To be accepted into the study, participants were required to

pass an aiming task to ensure that they were able to use the joystick and had little

experience in playing video games.

Note that all studies described in this dissertation were approved by the University
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of Illinois Institutional Review Board (IRB), and all participants provided written

informed consent according to the principles of the Declaration of Helsinki.

3.1.2 Study tool: Space Fortress video game

Those participants were trained to play Space Fortress (figure 3.1), a complex video

game developed as a tool to study training strategies, skill acquisition and learning

[49, 50].

Figure 3.1: Schematic interface of the Space Fortress video game. The objective of the
game is to destroy the space fortress (yellow, center of the display) by shooting
missiles at it from a spaceship (yellow, upper-left corner), while moving the spaceship
inside the hexagon with thruster commands to evade mines (red diamond) and to
collect resources ($-sign).

Playing Space Fortress requires complex procedural learning of second-order

motion control in a frictionless environment while simultaneously completing a

number of other challenging tasks, including target detection and discrimination,

memory updating, and resource management. Total game score is composed of four

sub-scores, respectively measuring: 1. control: maneuvering the spaceship in a

predefined allowable area (big hexagon in figure 3.1) with thrusters, which amounts to

second-order motion control in a frictionless environment without braking system; 2.

velocity: keeping the velocity of the spaceship within a predefined range; 3. speed:

quickly and accurately handling mines, which can either be friendly or hostile; and 4.

points: successfully destroying the fortress with ten missile hits with at least 250ms
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separation, while preventing one’s own ship from being destroyed by missiles from

the space fortress or by a mine. In parallel with controlling the spaceship, maintaining

velocity, and handling mines and missiles, players always needed to monitor a stream

of symbols for a dollar sign ($), whose second appearance indicates a bonus in the

form of extra missiles or game points. In addition, players needed to retain three

letters in their working memory that identified mines as friendly or hostile. The sum

of these four sub-scores served as a measure of a subject’s performance.

3.1.3 Training procedure

Once participants passed the aiming test, and they watched an instructional video on

how to play Space Fortress. After a minimal amount of practice to ensure they

understood the operation and objectives of the game, participants played four

4-minute blocks of Space Fortress as part of a two-hour MRI session in a 3-Tesla

Siemens Allegra MRI scanner (the first MRI session). The total game score during

this first session inside the scanner was used as a measure of participants’ abilities

prior to extensive training.

Subsequently, over the course of the next three to eight weeks (38 days on average)

participants completed ten two-hour training sessions playing Space Fortress outside

the scanner (figure 3.2). Each of training session consisted of 36 three-minute games.

After participants finished the training period, they underwent another MRI session

identical to the first (the second MRI session). Total game score during this second

session inside the scanner reflects participants’ abilities after extensive training. Note

that imaging data from the second MRI session are not used; i.e., only MR data from

the first session are used to predict learning outcome.

3.1.4 Learning measurement

The score improvement from the first to the second MRI session, i.e., the difference

between the game scores in MRI sessions 2 and 1, served as a measure of individual
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Figure 3.2: Timeline of the experiment for a typical participant. After initial
instructions, participants played Space Fortress in the MRI scanner while their brain
activity was recorded. Next, participants underwent a total of 20 hours of training,
followed by a second MRI session. We used the difference in total game score
between the two MRI sessions (i.e. the score improvement) as a measure of learning
success.

learning success. Note that we only consider game performance during the two MRI

scans, since the main focus is on predicting learning success from imaging data. For

details of the progression of training outside the scanner see reference [51].

Also, it is not straightforward to compute relative (e.g., percent) improvement, since

game scores can be negative, and adding a constant offset to the score is bound to be

arbitrary. We have attempted to compute relative score improvements by computing

percentile ranks (R) for the game scores at time 1, and then using the mean and

variance of time 1 scores to compute the percentile ranks at time 2. Relative score

improvement was computed as Rtime 2−Rtime 1

Rtime 1
. However, due to the transformation to

percentiles, the relationship between this relative score improvement and the absolute

score improvement is non-linear. Relative score improvements computed in this

manner are not predicted as well by T ∗2 activity in the dorsal striatum as absolute score

improvements.

3.1.5 Imaging session design

MR images were acquired by a 3T Siemens Allegra. At each session, for each subject,

the following data were collected:
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• T1-weighted high-resolution structural volume (voxel size

1.33× 1.33× 1.30mm, 160× 192× 144 voxels). Using MPRAGE sequence.

• Thirteen blocks of T2∗-weighted EPI images: echo time TE = 25ms; repetition

time; flip angle α = 800. Each volume included 28 slices at 64× 64 voxels each

(voxel size: 3.4375× 3.4375× 4mm).

The 13 blocks consisted of seven 46-second blocks of passively watching (PW)

a sample video game played by an expert, interleaved with six active blocks.

The six active blocks included two blocks of an odd-ball task (OB), which

required counting the number of high-pitch tones among low-pitch distracting

ones, two blocks of playing the Space Fortress game (SF block), and two blocks

of playing Space Fortress while also performing the odd-ball tasks (SO block).

Each active block was four minutes long. The 13 blocks were arranged in the

following order: PW-OB-PW-SF-PW-SO-PW-SO-PW-SF-PW-OB-PW.

3.2 Learning predictive information from pattern of
time-averaged T ∗2 at basal ganglia

3.2.1 Pre-processing of imaging data

Slice-timing correction

Each volume in the T ∗2 -w EPI series takes a TR=2s to collect, so for data within the

same volumes to appear as having been collected simultaneously, slice-timing

corrections at each voxel location are needed. A simple way to implement this is by

shifting the phases of the data in the frequency domains (which is not k-space data but

the Fourier transformation of the time series).
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Motion correction

In MR data acquisition, especially when collecting a series of BOLD images, subjects

usually make involuntary head movements despite the use of motion-restricting pads.

In our analysis, although a small percentage of the signal-intensity changes at each

voxel location over the time course of the stimuli are not examined as in a typical

BOLD imaging study, a voxel-wise alignment of the EPI data collected during each

block is still necessary. Particularly, motion-induced rigid displacement is undone by

affine transformation (assume no other head-motion-induced effects such as in [52]).

Indeed, for fast and robust motion correction, we use the mcflirt tool [53]. See figure

3.3.
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Figure 3.3: MRI preprocessing workflow. EPI volume series (1st MR session) of
different subjects are registered to the common space (MNI space) by linear and
non-linear registration. After normalization, temporal averages of the EPI volumes are
used for the subsequent analysis.

Linear and non-linear image registration

To extract data of many subjects at the same ROIs, it is necessary to transfer all data of

each individual into a common space such as MNI (Montreal Neurological Institute)

space. Specifically, high-resolution structural T1 volume acquired for each participant

during MRI session 1 was nonlinearly registered into MNI space using FNIRT tool of

FSL package with output of affine registration (using FLIRT) as initial guess [54, 55].

T2∗-weighted volumes of the 1st MR session were also non-linearly registered to MNI
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space through a concatenation of their linear transformation to same-subject T1

volume and the non-linear wrapping of that structural volume into MNI space. After

being transformed into MNI space, data were re-sampled back to the resolution of the

original EPI scans (3.4375× 3.4375× 4mm). Also note that for our analysis target, no

explicit spatial smoothing was applied and anatomical structures in the striatum were

identified based on brain atlases included with the FSL analysis software [56].

This registration was followed by a normalization step to account for variations of

scanner settings between runs. Particularly, activity in each EPI volume was divided

by the mean activity in the brain of this volume to compensate for drift in scanner

adjustments and differences between MRI runs and between subjects. This normalized

activity was averaged over the four blocks (16 minutes) of active game play (two SF

blocks and two SO blocks, 480 volumes in total) and thus some noise as well as signal

variations due to functional activity might be suppressed. Note that, as a control, the

analysis was repeated with data from the two OB blocks as well as from the seven PW

blocks.

Generally speaking, besides the structural T1-weighted data, for each subject we

had one brain volume with the T ∗2 -weighted signal aggregated over the entire period of

game play inside the MRI scanner as well as the score improvement for these games.

And we then performed two different types of region-of-interest (ROI) based analysis

with this average T ∗2 signal to predict subjects’ score improvement: spatial mean

activity analysis and multi-voxel pattern analysis (MVPA). Unlike the spatial mean

analysis, MVPA utilizes the distributed pattern of voxel activity within an ROI.

3.2.2 Predictive information of time-averaged T ∗2 patterns at the basal
ganglia

Univariate analysis of time-averaged T ∗2

For the spatial mean activity analysis, we averaged the intensity of all voxels inside an

anatomically defined region. As a first test, we divided subjects into groups of good
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and poor learners based on a median split of their score improvements. We found

significantly higher mean activity for good than poor learners in the dorsal striatum

(p = 0.011), but not in the ventral striatum (p = 0.75, two-sample t tests with

n1 = n2 = 17). To determine the relationship between subjects’ numerical score

improvements and mean activity within an ROI we computed their Pearson

correlation. In the dorsal striatum, the correlation was significant

(r = 0.47, p = 0.0053; see figure 3.4), but again not in the ventral striatum

(r = −0.09).
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Figure 3.4: Predicting score improvement from MRI activity in the dorsal striatum.
Correlation of measured score improvement with the spatial mean of the
time-averaged T ∗2 -weighted signal in the dorsal striatum. Mean activity of 34 subjects
is significantly correlated with score improvement. The dashed lines show the
least-squares best linear fits. ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001.

Pattern analysis of time-averaged T ∗2 with support vector regression

Although analysis of spatial mean activity can predict score improvements to some

extent, it provides merely summary statistics of the activity in an ROI, ignoring subtle

differences in activity patterns. Indeed, after subtracting out each individual’s average
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activity, good and poor learners differed in the multi-voxel patterns of time-averaged

T ∗2 activity in the dorsal striatum (figure 3.5). The color patches in figure 3.5 suggest a

subdivision of the dorsal striatum roughly along the anterior-posterior line. In other

words, good and poor learners not only differ in their level of mean activity in the

dorsal striatum, but also in the local activity patterns within the dorsal striatum. These

differences allow us to predict learning success for individual participants from the

patterns of the temporally compounded EPI images recorded at the beginning of

training with much higher accuracy than from the spatial mean of activity alone. To

Figure 3.5: Pattern of differences between good and poor learners. Differences in
activation patterns in the dorsal striatum between good and poor learners overlaid on
top of six anatomical slices with z-coordinates respectively, -14, -6, 2, 10, 18, and 26.
For this visualization the group of 34 subjects was split into 17 good and 17 poor
learners based on the median of score improvements in Space Fortress over the course
of 20 hours of training. Each subject’s mean activity was subtracted from her or his
activity in the dorsal striatum. The activity patterns were then averaged separately for
good and poor learners. The figure shows the difference between the average patterns
of good and poor learners.

exploit these differences in a multivariate analysis, we first excluded data from one

subject and used activity patterns of the voxels from the remaining subjects, together

with their score improvements, to train a support vector regression (SVR) algorithm

[45, 46]. The algorithm then generated a prediction for the performance improvement

of the excluded subject from her or his pattern of time-averaged T ∗2 -weighted activity.

The procedure was repeated so that each subject was excluded once in a

leave-one-subject-out (LOSO) cross validation procedure, thereby generating
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predictions for each subject based on the performance and activity patterns of the

other subjects. Details about the SVR algorithm and the LOSO procedure can be

found in section 2.3.

The algorithmically predicted score improvements were then correlated with the

actual performance improvements in Space Fortress to determine the prediction

accuracy. Figure 3.6 shows that the predictions based on pre-training activity patterns

in the dorsal striatum were highly correlated with the actual improvements that

resulted from 20 hours of training (Pearson correlation coefficient r = 0.74,

p = 6.1 · 10−7). Activity patterns before training accounted for more than half of the

variance (R2 = 0.55) among individuals in how much they benefited from training.

This represents a substantial improvement in prediction accuracy compared with the

spatial mean analysis over the same regions of interest, which explained less than a

quarter of the variance (22%; r = 0.47; figure 3.6).
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Figure 3.6: Predicting score improvement from MRI activity in the dorsal striatum.
Correlation of measured score improvements with score improvement predicted from
multi-voxel patterns of the T ∗2 -weighted signal in the dorsal striatum. It shows an even
higher correlation than in figure 3.4. The dashed lines show the least-squares best
linear fits. ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001.
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Within the dorsal striatum, predictions based on the pattern of activity in the

caudate nucleus (r = 0.77, p = 1.3 · 10−7) were more accurate than those based on

activity in the putamen (r = 0.47, p = 0.0046; figure 3.7), with a marginally

significant difference (p = 0.051). Furthermore, the left dorsal striatum (r = 0.80,

p = 1.0 · 10−8) showed significantly higher (p = 0.0037) predictive power than the

right dorsal striatum (r = 0.36 significantly, p = 0.039). Since all subjects were

right-handed and controlled the movements of the spaceship with their right hand, this

may be related to motor learning in the contralateral (left) hemisphere. In contrast to

good predictions from the dorsal striatum, predictions based on activity patterns in the

ventral striatum (nucleus accumbens) were not significantly correlated with measured

score improvements (r = 0.08).

The score of the Space Fortress game was composed of four sub-scores: Control of

the spaceship’s position; maintaining ship Velocity within a predefined range; Speed

with which subjects discriminated between and responded to different types of mines;

and Points for successfully destroying the fortress. We repeated the SVR analysis

separately for each of the sub-scores. As shown in figure 3.8, the speed sub-score

shows the same pattern of results as the total score, including the high correlation of

predicted and measured score improvement in the left but not the right dorsal striatum,

the higher correlation in the caudate nucleus than the putamen, and the low correlation

in the ventral striatum (nucleus accumbens). This suggests that learning success with

respect to discrimination and working memory (needed to identify a mine as friendly

or hostile and to react to it quickly) is best predicted by time-averaged T ∗2 activity in

the dorsal striatum. Improvement in motor control, which is reflected in the control

and velocity sub-scores, is not predicted to the same extent by the dorsal striatum,

although both of these sub-scores are predicted at some level by T ∗2 activity in the left

nucleus accumbens. Improvements in the points sub-score are not predicted by

activity in the striatum, except for a small but significant correlation of predicted and

measured score improvement in the left caudate nucleus.

Previously, striatal brain volume was reported to predict score improvement to some

extent [4], and volume of an area and its time-averaged T ∗2 signal may be related.
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Figure 3.7: Accuracy of predicting individual score improvement from MVPA of the
time-averaged T ∗2 -weighted signal. In the dorsal striatum, correlation of predicted and
measured score improvement for 34 subjects was highly significant. Within the dorsal
striatum, correlation for pattern analysis was just as high in the caudate nucleus, but
lower in the putamen. Predictions were even less accurate in the ventral striatum
(nucleus accumbens). In the dorsal striatum, predictions were significantly more
accurate based on activity patterns in the left than in the right hemisphere. The
caudate nucleus showed similar lateralization, whereas the putamen did not show
strong lateralization. †p = 0.051, ∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001.

Another potential predictor for score improvement could be the initial score from the

games played during the first MRI session. On the one hand, participants with high

initial scores may already have reached ceiling performance, showing little further

improvement. On the other hand, higher initial score could indicate higher cognitive

abilities, enabling participants to benefit more from extensive training. To account for

these factors, we used the volume of regions as reported in [4] and the initial score as

two additional explanatory variables (covariates) of measured score improvements, in

addition to the score improvements predicted by the SVR analysis. We used a

second-order partial correlation analysis for each of the three explanatory variables to

assess the unique predictive power of each of them irrespective of the other two. Table
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Figure 3.8: Accuracy of predicting improvements in sub-scores from the
time-averaged T ∗2 -weighted signal. (A) Improvement in the control sub-score is
predicted to a limited extent by the time-averaged T ∗2 activity in the left ventral
striatum (nucleus accumbens). (B) The velocity sub-score shows small but significant
correlations in the left caudate nucleus and the left nucleus accumbens. (C)
Improvement in the speed sub-score is predicted highly significantly by time-averaged
T ∗2 -weighted activity in the dorsal striatum, in particular the caudate nucleus, but not
by the ventral striatum. Correlation of predicted and measured score improvements is
higher in the left than the right hemisphere. This pattern of results matches that of the
total score shown in figure 3.7. (D) The points sub-score shows no significant
prediction except for a small but significant correlation of predicted and measures
score improvement in the left caudate nucleus.
∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001.

3.1 shows the correlation of the SVR prediction with measured score improvement to

be highly significant, even after removing the effects of striatal volume and initial

score. Note that for this analysis, only those 32 of our 34 subjects were used for whom

the volumetric data were available from [4]. Also, one might wonder about the use of

improvement in game score during the first MRI session (e.g., from game 1 to game 4)
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as another predictor. However, we found no significant correlation between

improvement within the first MRI session and the improvement from the first to the

second MRI session (r = −0.17).

Table 3.1: Zero and second order partial correlations. Zero (Pearson correlation) and
second-order partial correlations are calculated for a linear regression model with
measured score improvements as the predicted variable and three explanatory
variables: score improvement predicted by the SVR algorithm from time-averaged
T ∗2 -weighted activity in the dorsal striatum, volume of the dorsal striatum, and initial
score.

Explanatory Variables Zero-order Pearson cor-
relation
(no covariates)

Second-order partial
correlation
(two covariates)

SVR 0.73 (p = 1.8̇10−6) 0.72 (p = 3.7̇10−6)
Volumetric data -0.12 (p = 0.5) 0.06 (p = 0.7)
Initial score -0.23 (p = 0.2) -0.09 (p = 0.6)

Recall that the brain receives, processes and outputs information through

electrochemical conduction with information transferred/received between neurons by

neurotransmitters and receptors. These neural activities come at the cost of energy

utilization. This means that in the activated brain regions, more oxygen and glucose

are consumed. Although there is no simple relationship between brain energy

metabolism and blood flow to the regions, there is nevertheless an increase in the

blood flow to the activated regions as well as in the relative proportion of oxygen in

the blood (in the form of oxygenated hemoglobin, since free oxygen is not actually

soluble in the blood). Hemoglobin contains iron which by itself is a paramagnetic

element; however, it indeed becomes diamagnetic whenever oxygen binds to it. Since

de-oxygenated hemoglobin increases the local magnetic flux or magnetic

susceptibility of blood vessels relative to the surrounding brain tissue, the resultant

local field gradients lead to the loss of phase coherence of the spins of tissue-water

around the blood vessels, and hence decrease T ∗2 locally. Therefore, if we use a

T ∗2 -weighted gradient-echo sequence, the relative blood oxygenation accompanying

neuronal activation in the brain [57], i.e. blood oxygen-dependent (BOLD) contrasts,

32



can be captured. In our experiment, we originally recorded these BOLD-contrasts and

the T ∗2 -weighted EPI images that are used for functional MRIs. But it is important to

emphasize that the time-averaged EPI volumes that we used for our MVPA analysis

are unlikely to be functional, because here we are considering the part of the EPI

images that is common across the time course rather than modeling the differences in

BOLD activity from different stimulus conditions. Therefore, our signal is more likely

to capture individual differences in some aspects of neuroanatomy or persistent

physiology, such as differences in blood supply to the dorsal striatum or the iron

concentration in this region. This view is further supported by the observation that it is

not necessary to use the EPI T2*-weighted images recorded during active game play.

We obtained almost identical accuracies in predicting score improvement in Space

Fortress when we used EPI T2*-weighted images from blocks with an acoustic

oddball task (r = 0.75, p = 2.9 · 10−7) or from blocks of passively watching Space

Fortress games (r = 0.74, p = 5.6 · 10−7).

In general, contrasts in MR images are rooted in (and obtained from) many different

intrinsic properties of the imaged tissues, such as transverse relaxation time T2 (or T ∗2

in the case of field inhomogeneity) or the longitudinal relaxation time, T1 (refer to

section 2.4 for signal generation and contrast calibration in MRI). To test if we can

predict score improvement just as well based on T1-weighted as T ∗2 -weighted images,

in MNI space, we normalized and subsampled the MPRAGE images that were

acquired during the first scanning sessions to the same resolution as the EPI images

(3.4375mm ×3.4375mm ×4mm) and performed the MVPA analysis as described

above. Correlation of predicted score improvements with measured score

improvement was significantly lower for T1-weighted than T ∗2 -weighted images

(p = 0.031), although at 0.38 it was still significantly above zero (p = 0.027; figure

3.9). The higher prediction accuracy in T ∗2 compared to T1 images might hint at the

importance of magnetic susceptibility of the tissue, which affects T ∗2 but not T1. One

possible source of susceptibility variations could be iron in the tissues, for instance in

supplied blood or brain storage iron [58].

Both white and gray matter contains blood vessels. In the white matter, capillaries
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are embedded in the myelin sheaths of axons that project over relatively long

distances. In the gray matter, vessels supply mostly the somas and dendrites of

neurons. Determining which tissue contributes more to the patterns that let us predict

individual learning success could elucidate the anatomical and/or physiological

phenomena underlying our effects. We used FSL’s FAST automatic segmentation tool

[59] to separate white from gray matter in the T1 image of each individual. We then

performed the LOSO cross validation analysis separately on the white matter and on

the gray matter voxels figure 3.9. Correlation of predicted with observed score

improvement was significantly higher (p = 0.0026) in the white matter

(r = 0.65, p = 2.8 · 10−5) than in the gray matter (r = 0.02). This suggests that the

long-range, myelinated connections in the white matter are critical for our ability to

predict score improvement in Space Fortress.

In figure 3.5 we had noted an apparent anterior/posterior organization of the dorsal

striatum based on the difference in activity patterns between good and poor learners.

To investigate this organization further, we split the left dorsal striatum in each

participant with a coronal plane such that approximately equal numbers of voxels

were anterior as posterior of the division. We then repeated the LOSO cross validation

analysis separately for the anterior and the posterior half. Prediction accuracy was

significantly higher (p = 0.0024) from the anterior (r = 0.82, p = 2.4 · 10−9) than the

posterior (r = 0.38, p = 0.028) half of the left dorsal striatum (figure 3.9), accounting

for 68% of the variance among individuals. This result substantiates the qualitative

observation in figure 3.5 with a quantitative difference between anterior and posterior

parts of the dorsal striatum.

3.2.3 Practical implications

In this study we have found that patterns of time-averaged T ∗2 -weighted signal in the

dorsal striatum recorded before the start of extensive training are highly predictive of

individuals’ future learning success in a complex video game (Space Fortress).

Activity patterns in the dorsal striatum were by far more predictive than average
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Figure 3.9: Comparison of prediction accuracy for various signal sources.
Predictions based on patterns of T1-weighted images (MPRAGE) in the dorsal
striatum were significantly less accurate than those based on time-averaged
T ∗2 -weighted images (EPI). Voxels located in white matter allowed for much better
predictions than those in gray matter within the dorsal striatum. Finally, decoding was
significantly better from the anterior than the posterior half of the left dorsal striatum.
Error bars indicate the 95% confidence interval for the Pearson correlation
coefficients. ∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001.

activity levels (figures 3.4 and 3.6). Furthermore, activity patterns showed higher

prediction accuracy in the left than in the right hemisphere (figure 3.7), and within the

left hemisphere, the anterior half of the dorsal striatum was more predictive than its

posterior half (figure 3.9).

The participation of the dorsal striatum in learning to play Space Fortress is

consistent with its involvement in procedural and habit learning in the execution of

learned behaviors (caudate nucleus) and motor learning (putamen) in non-human

primates [16, 18, 19] and humans [4, 60, 61, 62]. Activity in the dorsal striatum has

also been associated with tasks requiring cognitive flexibility [63] such as

task-switching [20, 64] and transfer of training to untrained tasks [31, 32]. Being

associated with reward and motivation, the nucleus accumbens in the ventral striatum

has also been reported to participate in early stages of learning [24, 25, 26]. However,
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we found patterns of time-averaged T ∗2 -weighted signal in the nucleus accumbens not

to be predictive of individual learning success.

Better performance in a video game has previously been related to an increase in

dopamine release in both the dorsal and ventral striatum [27]. However, a study about

the depletion of dopamine in rats [21, 64] suggested that the dopamine level in the

caudate nucleus but not the nucleus accumbens was related to the initiation of

complex goal-directed responses or performance, as measured by reaction time. In

accordance with these reports we find that the time-averaged T ∗2 -weighted signal in a

region associated with learning new skills and procedures (caudate nucleus) is more

predictive of learning success than the time-averaged T ∗2 -weighted signal in

sub-cortical regions associated with motor learning (putamen) or motivation and

reinforcement (nucleus accumbens). As further evidence for this weighting of skills

we find that improvement in the speed sub-score, which is related to speeded

discrimination and working memory, is predicted much better by the time-averaged

T ∗2 -weighted signal in the dorsal striatum than improvement in the control and

velocity sub-scores, which are related to motor control.

In a previous study Erickson et al. in [4] has demonstrated a link between the size

of structures in the dorsal striatum and performance improvements by individual

subjects. Here we show that patterns of pre-learning time-averaged T ∗2 -weighted

signal can explain as much as 68% of the variance among individuals (in the anterior

half of the left dorsal striatum), while volumetric analysis based on automated

segmentation of these anatomical regions could explain at most 23% of the variance.

However, since the volumetric measurements in [4] and the time-averaged

T ∗2 -weighted patterns used in this work both measure aspects of the same region, the

dorsal striatum, they may be related. Accordingly, a partial correlation analysis of

score improvement predicted by time-averaged T ∗2 -weighted activity versus measured

score improvement showed almost no additional gain by introducing two additional

explanatory variables, the volume of the dorsal striatum and initial game scores (table

3.1).

The ability to predict who will benefit the most from training has ramifications
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beyond the realm of video games. Indeed, training on Space Fortress has been

associated with enhanced flight control proficiency in novice pilots [65]. In many

contexts, training can be prohibitively costly and time consuming, with high attrition

rates (e.g., military pilots, air traffic controllers). Pre-training MRI scans could

potentially mitigate such costs by predicting who will improve at a higher rate as a

result of training or to identify groups of learners who might benefit from either

extended programs of training or different types of training strategies. The superior

prediction power of MVPA compared to behavioral tests may justify the additional

cost of MRI scans. Of course, it might also be possible, in future studies, to uncover

behavioral correlates of the MRI differences, which in turn could be used to predict

learning of new skills. Furthermore, our technique of applying MVPA to the temporal

mean of the time-averaged T ∗2 -weighted EPI signal to predict individual differences in

learning can be applied in other domains, possibly allowing for the understanding and

prediction of learning as a function of development, aging, and neurodegenerative

disorders. The fact that we use the gradient-echo EPI brain images, which are

routinely used to measure functional activity, could make this new analysis technique

especially attractive, because no new scans would need to be added to established

experimental protocols. In fact, if successful in other learning contexts, the technique

could be used to analyze existing data retrospectively.

Finally, the time-averaged T ∗2 signal allowed for significantly more accurate

predictions than the T1 signal. This fact, along with the higher prediction rates for

white than gray matter and being independent of the tasks at each block, suggests that

individual differences among subjects may be due to differences in anatomical or

persistent physiological features rather than differences in functional activation. The

next chapter will discuss the follow-up study which includes more explicit

measurements of tissue susceptibility such as susceptibility weighted imaging SWI as

well as arterial spin labeling and diffusion tensor imaging in determining the exact

nature of the signals that allow for such an accurate prediction of individuals’ learning

success.
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CHAPTER 4

PHYSIOLOGICAL BASIS OF LEARNING
PREDICTION IN TIME-AVERAGED T2*:
NONHEME IRON

In spite of the astonishing accuracy (r = 0.74) of our predictions of the success of

cognitive training in young adults as described in the previous chapter, the physical

and physiological effects underlying this prediction are so far unclear. To explore this

effect, we have conducted a new experiment, study 2010, in which we supplement the

time series of T2*-weighted measurements (i.e. BOLD series) with T2-weighted,

quantitative T2 (T2 map) and quantitative T2* (T2* map) measurements as well as

susceptibility-weighted imaging (SWI), arterial spin labeling (ASL) and diffusion

tensor imaging (DTI). Prediction accuracies of these different MR measurements

indeed support a hypothesis that nonheme iron is a source for predicting learning in

time-averaged T2*-weighted signal. This chapter describes this study in detail.

4.1 Follow-up experiment

4.1.1 Participants and training paradigms

Concerning non-imaging aspects, the design of this study was similar to that of the

previous one. Particularly, all 48 recruited participants were young, right-handed

adults between the ages of 18 and 30 with little video game experience (less than 5

hours per week) and no usage of cognitive-influencing medications. Among them, 45

completed the experiment, and of those, 6 were excluded from the analysis because of

incomplete data acquisition. The final sample consisted of 39 young adult participants

(mean age = 22, SD = 3.21, 12 males) with normal or corrected-to-normal visual

acuity, normal color vision, and normal hearing. These participants were given two
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scans in an MR session prior to the training period and an identical one after training;

but again, only the scans from the first MR session are used to predict learning and

study the mechanism(s) underlying the learning-predictive information discovered in

the earlier study.

Nevertheless, the current study had its training regime modified based on

experience with the previous study. The 2008 study had 10 two-hour training sessions,

and participants were randomly assigned to practice with one of the two different

training strategies (either fixed or variable priority). The learning curves of the

trainees plateaued after about 10 hours of learning/practicing, and the variable priority

training strategy was more effective than the fixed priority. Therefore, the current

study included only 10 one-hour variable-priority training sessions. Each training

session started with 1 warm-up trial and ended with 2 test-game ones (for performance

measurement), during which participants were asked to maximize performance and

focus on obtaining the highest total score by emphasizing each game component

equally. Between the warm-up and test trials, there were five practice blocks, each

consisting of three trials. During these training trials participants were asked to focus

on improving and monitoring different aspects of the game (control, velocity, speed,

points or total score).

4.1.2 Imaging design to discover learning-based information from
time-averaged T2*-weighted signal

As the main motivation of this study was to examine the mechanisms underlying the

prediction of learning and particularly the root of the learning-prediction information

in the time-averaged T ∗2 -weighted, the MR imaging sessions were designed to include

many different imaging contrasts as well as quantitative measurements. Each MR

session was run on a 3T Magnetom Trio (Siemens), and the following data sets were

acquired:

• Arterial spin labeling (ASL): acquired by ASL-pTITL sequence [66]. The

sequence were set with TR = 5000ms and TE = 44ms, included 30 averages
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(actually it includes only 29 averages as it is recommended that the first pair of

control/tagged images should be discarded) and collected 10 slices at 64× 64

voxels. Each voxel was 3.4× 3.4× 4mm (with a 20% of distance factor). In

addition, overlays of T2-weighted images (TR = 14ms and TE = 89ms) were

acquired with the same slice profile and having an in-slice resolution of

256× 240 voxels/slice (voxel size is 1.7× 1.7× 4mm and distance factor is

20%).

• Gradient-echo EPI BOLD (T2*-weighted) acquisition: there were 9 blocks of

BOLD acquisition (gradient-echo EPI sequence) with TR = 3000ms,

TE = 25ms and parallel imaging reduction factor of 2. Each block lasted 4

minutes, so a total of 80 volumes were collected during each block. Each

volume had 50 slices and a 120 x 110 voxel matrix. The voxel size was

2.1333× 2.1333× 2.4000mm.

The 9 blocks consisted of two blocks of passively watching (PW: watching a

sample video recording of the Space Fortress game played by an expert), two

blocks of pure resting (PR: looking at a black screen background with a green

object fixed at the center), three full of Space Fortress game playing (SF), one

block of right-wrist left-finger motor localizer (rlML), and one of left-wrist

right-finger motor localizer (lrML). In rlML, when the screen displayed “wrist”

(W), the subjects moved the joystick with their right wrist; when it said “finger”

(F), the subjects pressed the button with a left finger; and when it displayed

“stop” (S), the subjects did not move their hand or wrist. The three conditions

were arranged in the following order: SWSFSFSWSWSFSFSW. Similarly, for

lrML, the subjects moved the joystick with their left wrist when they saw

“wrist,” pressed with their right finger when they saw “finger,” and did not move

their wrist or finger for “stop.” Those tasks for lrML were arranged in the

following order: SWSFSFSWSWSFSFSW. In general, the nine blocks were

arranged in the following order: PW-PR-SF-SF-SF-PR-PW-rlML-lrML.

• High resolution T1-weighted: has TR = 1900ms and TE = 2.26ms. Acquire
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192× 232× 256 voxels per volume. Each voxel is 1× 1× 1mm.

• High resolution T2-weighted: 192× 240× 320 voxels at .8× .8× .8mm.

TR = 2500ms and TE = 268ms.

In fact, instead of the two-dimensional sequences described in the section 2.4,

for T1- and T2-weighted image acquisition, our study employed

three-dimensional pulse magnetization-prepared 180-degree RF pulse and rapid

gradient-echo (MPRAGE) [67] and T2-weighted turbo-spin-echo (TSE) with

high sampling efficiency (SPACE) [68] sequences, respectively. In a comparable

acquisition time, these methods provide better contrast and truly

three-dimensional reconstructed images.

• T2*-quantitative map (acquired with gradient-echo multi-contrast sequences

gre-mc): 50 slices at 128× 116 voxels and each voxel is 2.0× 2.0× 2.5mm.

TR = 2450ms. Totally twelve volumes are acquired at 12 different TE-values:

3.5, 5.97, 8.44, 10.91, 13.38, 15.85, 20, 25, 30, 35, 40, 46ms.

• T2-quantitative map (acquired with spin-echo multi-contrast sequences se-mc):

include 36 slices, at 128× 118 resolutions and each voxel is 2× 2× 3.6000mm.

TR value is 2850ms. Six volumes were acquired at different TE-values

(TE = 25, 50, 75, 100, 125, 150ms).

Note that in MR, weighted image and map (or quantitative) images are

completely different. Particularly, for example, while in T2-weighted images,

voxel intensity is mainly determined by T2-value and also slightly depends on

other factors such as T1, proton density, etc.; in T2-map (after model fitting to

find the map), voxel intensity supposedly reflects the true value of relaxation

time T2.

• SWI: has TR = 28ms, TE = 20ms; include 72 slices at 448× 350 voxels. Each

voxel is .7× .6× 1.7mm. Besides SWI images, magnitude and phase images

were saved.
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• 30-direction DTI (with 2 averages): each volume has 128× 116× 50 voxels and

each voxel is 2.0× 2.0× 2.4mm.

4.2 Principles and connections of the included imaging
measurements

This section discusses the reasons for including the imaging sequences listed in the

experiment design as well as their principles related to the pre-processing procedures

applied before they enter the support vector predictor. These are important for

explaining our hypothesis about the underlying physiological basis of the prediction

power of time-averaged T ∗2 -weighted signals.

4.2.1 T1- and T2-weighted images, T2 and T ∗2 -map

Originally T1-weighted images were acquired to provide structural information of the

participants’ brains and as a control to verify the learning-predictive source of the

time-averaged T ∗2 . Given the direct relationship between T2 and T ∗2 , 1
T ∗2

= 1
T2

+ 1

T
′
2

(where T ′2 or its equivalent relaxation rate R′2 is rooted from field inhomogeneity such

as imperfect shimmed B0 field or the local susceptibility of imaged objects), one

pertinent test would be to see if T2-weighted, rather than T1-weighted, images would

have the same predictive power. Note that there were not any T2-weighted acquisition

originally included in the Space Fortress 2008 study, so such a test could not be done

before. In this follow-up study, which again includes T1-weighted imaging, the

T2-weighted sequence was added.

During the preprocessing stage, T1-weighted images were non-linearly registered to

MNI, normalized and sub-sampled to 3.4375× 3.4375× 4mm - all was similar to

what was done in the previous study. T2-weighted ones were non-linearly registered to

MNI (by applying the non-linear wrapping of T1-to-MNI registration and an affine

transformation from T2-to-T1 of the same subject), as well as normalized and

sub-sampled to the same resolution.
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Although T1- and T2-weighted images can provide high-contrast structure

information, quantitative measurement of these relaxations times even contains more

information [69]. Therefore, we did include T2-map (its equivalent is relaxation rate

R2 = 1
T2

) and T ∗2 -map (its equivalent is R∗2 = 1
T ∗2

) in study 2010. As mentioned in the

experiment description, spin echo multi-contrast with 6 TEs and gradient echo

multi-contrast with 12-TE sequences were used to measure the T2- and T ∗2 -maps,

respectively. Note that it is crucial to acquire many more than two echos in an in-vivo

experiment, as otherwise the unavoidable noise would make any quantitative map far

from the true values [70]. From these scans, with a mono-exponential assumption

[71, 72], we estimated the values of R2 and R∗2, and hence R′2 (or

R
′
2 = 1

T
′
2

= R2 +R∗2) as well. Although signal intensity decays exponentially, with a

mono-exponential assumption, T2 and T ∗2 can be derived by solving least-square linear

equations. Furthermore, in our experiment the first image in the series of 6 spin-echo

images was a stimulated echo and hence was removed. It means that only 5 data

points were used for the T2 estimation.

Nevertheless, note that due to noise as well as partial volume effects, estimating T2

and T ∗2 quantitative maps with mono-exponential fits are prone to large error [70].

Indeed, besides the need of having many echoes acquired as well as taking into

account the existence of many T2 and T ∗2 components, it was also necessary to repeat

the measurements for signal averaging (to reduce noise). These tasks will be carried

out in future work.

While T1-weighted or map and T2-weighted or map images are determined by the

intrinsic longitudes T1 and T2 values, respectively, of the tissues (see section 2.4), it is

important to note that these intrinsic relaxation times are not only governed by the

amount of tissue water and the field strength B0, but are also determined by the

microscopic and macroscopic water distribution as well as its interaction with other

macromolecules. In general, T1 depends strongly on the magnetic field strength while

T2 does so only to some extent but is affected more strongly by water

contents/distributions and their interactions with paramagnetic macromolecules such

as iron-storage protein like ferritin.
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Particularly, it is widely accepted that as water molecules diffuse through any

microscopic field inhomogeneity (which can be caused by paramagnetic

iron-containing molecules such as ferritin proteins or deoxygenated hemoglobin), the

spins of the water protons experience dephasing during the time TE , which cannot be

reversed by spin echos. This loss of signal is technically equivalent to shortening T2

(increasing R2). This does not affect the T1 value, as field inhomogeneity fluctuates

slowly in comparison to 1/f0 (but rapidly in comparison to TE) [73, 74, 58]. T1,

however, has its value shortened as a result of smaller magnetic ions coming into

direct contact with water [75]. In fact, postmortem biochemical studies on patients

with Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease showed that

these patients had excessive amounts of brain iron in the basal ganglia, hippocampus

and/or globus pallidus and they are in agreement with MR studies reporting significant

shortening of the T2-values in these regions of those patients [76, 77, 78, 79].

Besides, T2 also depends on the water content; i.e., the more water, the more the

relaxation rate of R2 decreases (T2 increases) [80, 73, 74, 58]. In short, up to now, the

models that regulate T1 and T2 relaxation rate in MR measurement are not clearly

explained in theory, and so we cannot yet calculate T1, T2-values theoretically, nor can

their quantitative measurement be used to quantify paramagnetic substances such as

iron-carrying proteins.

4.2.2 Susceptibility-weighted imaging

As susceptibility or field variation leads to the relaxation time T ∗2 instead of T2, it is

desirable to measure the susceptibility as well as crucial to understand its

physiological sources. Therefore, we included a susceptibility-weighted imaging SWI

sequence [6, 81, 7] in this new experiment.
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Principles

In MR imaging, collected raw k-space data consist of both magnitude and phase

information; however, since most MR applications only aim to get the magnitude

image information, while discarding the phase information. Indeed, besides including

phase-encoding spatial information (see section 2.4), phase images also contain

undesired background phase data resulting from global geometry distortions, and

useful local phase variations rooted in paramagnetic iron compounds such as

deoxygenated hemoglobin or ferritin protein in the brain. Susceptibility-weighted

imaging (SWI) has emerged as an imaging technique utilizing phase information

related to local magnetic susceptibility variation in tissues. At each voxel, the spectral

information from the tissues that had distinct magnetic susceptibility differences

relative to their surroundings, such as iron-containing tissues or deoxygenated-blood

ones, was extracted from the SWI phase map (assuming no chemical shifts).

Specifically, magnetic susceptibility is defined as a proportionality constant relating

to the induced magnetism of a material in response to an applied magnetic field.

Denoting M as the induced magnetization when an object is placed inside a uniform

magnetic field, we have M = χB/µ0/(1 + χ) = χB/µ0 (assume χ << 1), where µ0

is the permeability in a vacuum, and χ = µr − 1 is the magnetic susceptibility (µr is

the relative permeability). In return, this induced magnetization causes distortion to

the uniform external field. Therefore, for adjacent objects with difference magnetic

susceptibility, local field variations ∆B occur around and within them.

Recall that if we assume complete homogeneity of the B0 field, AE , the signal

intensity response from the α-degree gradient-echo sequence will be as in equation

2.7. However, if there are local field deviations, the collected signals will be

A = AEe
−iγ∆BTE . In other words, local field differences lead to variations in the

phases of collected MR signals ϕ = −γ∆BTE . Phase variation is contributed by

several different field variations:

ϕ = −γ (∆Blocal geometry + ∆Bcs + ∆Bglobal geometry + ∆Bmain field)TE
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where ∆Blocal geometry is the microscopic field variation caused by, for example,

changes in the amounts of local iron content (spins in tissues loaded with

paramagnetic iron elements align along the ~B0 direction and thus make the local field

larger than its background); Bcs represents field changes due to chemical shift; and

∆Bglobal geometry and ∆Bmain field are macroscopic ones that result from object

geometry (such as the air/tissue interface at the frontal region of the brain) and the

inhomogeneity of B0, respectively. The two macroscopic field variations have low

spatial frequency in general. Indeed they lead to artifacts and are subjected to

elimination by a high-pass filter for our purpose [82].

Particularly, neglecting the field changes due to chemical shift, denote I0(x) as the

original complex signal including the phase variations due to field inhomogeneity and

global geometry ϕf (x) as well as the microscopic ones ϕυ(x):

I0(x) = |I0(x)|eiϕf (x)+iϕυ(x) = F−1 [S(k)]

where S(k) is the collected k-space data from the scanner. Next, a low-pass filter

H(k) is applied to get image Ih(x)

Ih(x) = |Ih(x)|eiϕf (x) = F−1 [S(k)H(k)]

Finally, a high-pass filtered image, If (x), can be obtained through:

If (x) =
|I0(x)|eiϕf (x)+iϕυ(x)

|Ih(x)|eiϕf (x)
= |If (x)|eiϕυ(x)

In practice, a Hanning low-pass k-space filter of the size 64× 64 or smaller can

remove most of the undesired macroscopic field without losing much of the phase

contrasts of the structures of interest.

In short, with the assumption of no chemical shift and the application of a high-pass

filter, the microscopic phase information ϕυ(x) can be determined, and so can the

microscopic field variation ∆Blocal geometry = ϕυ
−γTE

– which is considered as

proportional to iron-concentration [83].
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Heme and nonheme iron

The phase obtained above stems from two different sources: heme and nonheme iron.

• Heme iron: This kind of iron is found in blood hemoglobin and some enzymes

like peroxidases. The iron in hemoglobin is crucial for transporting oxygen

from the lungs to the tissues. Deoxygenated hemoglobin molecules are

paramagnetic (the difference in susceptibility between deoxygenated

hemoglobin and the surrounding tissue is about 1.5ppm [74]), but when oxygen

molecules bind to it, the net spin becomes zero and it is technically diamagnetic.

In fact, the root of BOLD contrast is the change of hemoglobin from oxygenated

and diamagnetic to deoxygenated and paramagnetic.

• Nonheme iron: Nonhemoglobin iron is present mostly in iron-storage proteins

(ferritin and hemosiderin) and iron-transporting transferrin. Although the total

amount of iron in an average 70kg body is only about 3700mg, of which about

2500mg is heme iron and 1000mg is in iron-storage proteins, thanks to its

uneven distribution, its susceptibility is about 1− 10ppm more positive than the

surrounding iron-free tissues. Indeed it is concentrated only in certain tissues:

most iron-storage proteins in the brain are found in the globus pallidus,

substantia nigra, putamen, caudate and hippocampus. The concentrations in the

basal ganglia are the highest, a few times higher (2− 4) than those in the

cortical regions. Moreover, only iron in iron-storage proteins is the nonheme

iron which can produce detectable MR contrasts, due to the fact that there are

thousands of iron atoms within each of their molecules (as compared to two iron

atoms bound in transferrin), and in the brain their concentration is more than 10

times that of transferrin [74, 58].

Brain nonheme iron concentrations increase quickly during the first 20 years,

slow down after that and become steady in the midlife of healthy adults [84]. Its

important role in learning has been shown in many studies on both

(iron-deficient) animal and human [41, 9, 10, 85, 11]. Possible mediating

mechanisms of nonheme iron on learning include its effects on functioning and
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metabolism of dopamine [35, 36, 37, 86, 87], hippocampus integrity [39, 40, 41]

and myelination regulation [42].

Note that in MR, other forms of nonheme iron including ionic iron,

low-molecular-weight complexes, and other metaloproteins such as

melanotransferrin and lactoferrin, as well as other ferromagnetic molecules such

as those containing copper or manganese, are ignored because their amounts are

often too small to alter MR contrasts. And also note that in the phase

information described above, the iron content includes both heme and nonheme

iron [58].

Furthermore, as mentioned in the previous section, an induced magnetic field

surrounding iron-storage proteins like ferritin and hemosiderin leads to the

dephasing of water spins as the water diffuses in the affected area; and as the

applied field strength increases, magnetization of paramagnetic particles

increases, R2 experiences a larger increase (equivalent to hypointensity or dark

areas in T2 images) [75, 88]. However, as there are other factors affecting R2

such as water content, it is not reliable to try to measure iron concentrations

with R2 measurements. In fact, not all areas that have large R2 have high iron

concentrations (such as the low-T2 yet iron-free ocular lens).

4.2.3 Diffusion tensor imaging DTI

While in our previous study, we found that time-averaged T ∗2 -weighted signal at white

matter area has more predictive information than at gray matter, water diffuses in

white matter with mostly fibrous components in a more anisotropic fashion than in

gray matter. Indeed, this anisotropy information can be well characterized with

diffusion tensor imaging measurements; i.e., microscopic structures can be captured

via water diffusion information. So in the quest to find the physiological source of

predictive information, DTI data collection is of interest.
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Principles

Water molecules in tissue move randomly and, depending on the surrounding

structures, they can bounce off, go through, or interact with tissue components. This is

known as water diffusion, with the appropriate gradient pulse application, MR can

capture this diffusion information. In particular, an MR diffusion-weighted image can

be obtained by applying two opposite gradient pulses (or two identical ones with a

1800 pulse in the middle) after excitation and before the acquisition pulses. With the

first gradient application, depending on their positions along the gradient direction, the

spins will dephase differently. This dephasing effect will be completely reversed due

to the application of the opposite polarity but will have an identical shape if the

molecules have been still. However, if in the duration between the two gradient

applications, the molecules have diffused along the gradient direction, the spins cannot

rephase completely, resulting in an attenuation of the collected signal in the

corresponding areas of molecular diffusion.

A = e−bD

where D is the diffusion coefficient along the gradient direction and b (called the

b-factor) depends on the shape, amplitude and timing of the gradient pulses.

In fact, due to their thermal energy, water molecules in tissue move randomly in

three dimensions. Hence, displacement of the molecules during diffusion fully reflects

the underlying structures and geometric organization of the tissue at the microscopic

level. For example, due to the orientation of neuronal fibers, water molecules in white

matter diffuse anisotropically, i.e. easily along neuronal directions and more

restrictedly in perpendicular ones. So, to characterize molecular mobility and its

correlations in all three dimensions, the diffusion tensor D [89] is defined as follows:

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


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where Dii reflects molecular displacement along the dimension i and Dij = Dji

shows the correlation of the molecular motilities along directions i and j (with

i, j = x, y, z). Also, the b-factor is now a b matrix and the attenuation of the collected

signal becomes the following:

A = e(−
∑
i=x,y,z

∑
j=x,y,z bijDij) = e−Dxx−Dyy−Dzz−2Dxy−2Dxz−2Dzy

In principle, for each voxel, at least six measurements are required to derive the

diffusion tensor. In practice, it is better to choose the same b-value for all gradient

directions, and the gradient directions should ensure uniformity of the sampling.

Furthermore, to improve SNR, the set of measurements is usually repeated for

averaging. Also, to calculate the attenuation ratio A, it is necessary to acquire an

image with no diffusion (b = 0).

D can be calculated for each voxel from the set of diffusion-weighted images. To

find the three main directions of diffusivity, eigenvectors x′, y′, z′ and their

corresponding eigenvalues (λ1, λ2, λ3) of D are calculated. Furthermore, to represent

the 3-D area encompassing the diffusion distance of the molecules in a voxel during

diffusion time Td, a diffusion ellipsoid for each voxel is proposed:

x′2/(2λ1Td) + y′2/(2λ2Td) + z′2/(2λ3Td) = 1. The three main axes of the ellipsoid

are the three main diffusion directions, and its eccentricity describes the anisotropy

level of the diffusion. The term λ1 is sometimes referred to as the axial or parallel

diffusivity (λ||) in the sense that it represents the diffusivity along the principal axis.

The diffusivities in the two minor directions are usually represented by the radial

diffusivity (λ2 + λ3)/2. In addition, the overall diffusivity within a voxel is usually

described by an invariant (reference-frame-independent) measurement called the

Trace: Tr(D) = Dxx +Dyy +Dzz = λ1 + λ2 + λ3. The mean diffusivity is equal to

Tr(D)/3. The mean diffusivity decreases with gliosis and increases with extracellular

fluid accumulation [90].

For the relative degree of the diffusion anisotropy in a voxel, the following invariant

indices are also used [91]:
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• Relative anisotropy RA: ratio of anisotropic part of D to its isotropic one.

Ranging from 0 (isotropic or spherical) to
√

2.

RA =

√(
λ1 − λ̄

)2
+
(
λ2 − λ̄

)2
+
(
λ3 − λ̄

)2

√
3λ̄

=

√
(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2

√
λ̄

where λ̄ =
λ1 + λ2 + λ3

3

• Fractional anisotropy FA: portion of anisotropy in total “magnitude” of D.

Ranging from 0 (isotropic) to 1. Indeed, it is related to the degree of coherence

of the fiber tract. In particular, where fiber bundles merge, fractional anisotropy

decreases [92].

FA =

√
3
(
λ1 − λ̄

)2
+
(
λ2 − λ̄

)2
+
(
λ3 − λ̄

)2√
2 (λ2

1 + λ2
2 + λ2

3)

=

√
(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2√

2 (λ2
1 + λ2

2 + λ2
3)

• Volume ratio VR: ratio of volume of ellipsoid over sphere of radius λ̄. Ranging

from 1 (isotropic) to 0.

V R =
λ1λ2λ3

λ̄3

4.2.4 Perfusion-weighted imaging - arterial spin labeling

In our original study, while the subjects were doing different cognitive tasks inside the

magnet, including playing the game, we used a gradient-echo EPI sequence to acquire

a time series of BOLD images, in which contrasts come from the paramagnetic and

diamagnetic properties of de-oxygenated and oxygenated hemoglobin, respectively.

Therefore, it is possible that predictive information within its time-averaged signal

might rise with the amount of blood perfusing into the regions. To verify this
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possibility, in this new study, we included explicit measurements of blood perfusion

with the pseudo-continuous transfer-insensitive labeling technique (pTILT) ASL

sequence [66].

Principles

Instead of measuring blood perfusion with the use of an exogenous tracer (i.e. the

injection of a contrast agent into the blood stream), the non-invasive perfusion

measurement with arterial spin labeling of MR utilizes an RF pulse to “label” or “tag”

water protons. Water spins in the blood stream are inverted (inversion pulse) or nulled

(saturation pulse) (hence the terms “tagged”) when traveling in the arterial tree and

before flowing into the brain, i.e. around the neck area. One to two seconds after

tagging, the tagged blood reaches the targeted imaging area. The amount of signal it

contributes to the total signal is certainly different from when there is no tagging. A

few seconds after acquiring the tagged image, a non-tagged image, the control image,

can be collected from the exact same region (by this time, the tracer-effect of labeled

water-protons has decayed completely due to longitudinal relaxation T1). Hence, if it

is assumed that the signal change is only due to perfusion effects (of tagged and

non-tagged blood), perfusion information can be obtained.

Basically, there are two types of ASL: continuous ASL (CASL) (continuously

labeling blood water protons) and pulsed one (PASL) (using a short RF pulse to invert

a slab of arterial blood). In general, PASL has a lower signal-to-noise ratio than CASL

[93]. Over the years the two techniques have been improved with many modified

versions. In our study, we used the pseudo-continuous transfer insensitive labeling

technique (pTILT) sequence [66] which retains the magnetization transfer-insensitive

properties like PASL but realizes pseudo-continuous tagging with non-adiabatic

pulses similar to CASL. However, like other blood water labeling techniques, the

contrast-to-noise ratio (CNR) of this method is very low (in general, the CNR of ASL

is lower than BOLD by a factor of 2 to 4). In our study, we took 29 averages to

enhance the CNR of the ASL signal. Furthermore, as a result of T1-decay of the
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tagged spins, all data acquisition has to be completed in a short time window, so there

are usually only a certain number of slices that can be acquired. In our study, we

acquired a total of 10 slices, always adjusting the field of view so that it covered the

basal ganglia of each subject. Note that, as the in-plane resolution of ASL is also not

very high, besides the pTILT acquisition, T2-weighted images of overlying structures

were also acquired.

Ideally, perfusion can be derived from the subtraction signal with the following

equation:

CBF =
∆M

M0,CSF

6000

2λbloodαT1,blood

e

(
ω+Tslc(n−1)

T1,blood

)
e

(
TE

T2,blood

)

where ∆M : flow-weighted image (the result of subtracting the control image from the

tagged one); M0,CSF: measured intensity of cerebrospinal fluid (CSF) in a voxel in the

ventricles; λblood: water content of blood (0.76). α: labeling efficiency; ω:

post-labeling delay; T1,blood: longitudinal relaxation rate of blood (1680ms at 3 T).

T2,blood: transversal relaxation rate of blood (275 ms at 3 T); Tslc: EPI readout duration

of a single slice; and n: index of acquired slice [66].

The subtraction image should not be negative at any place: it is zero in regions with

no perfusion and positive elsewhere. In fact, inaccurate values are often seen in ASL

measurements, due to factors such as macrovascular signal inclusion, arrival-time

delay, finite bolus width, BOLD contamination, etc.

4.3 Results

4.3.1 Effect of averaging time series of T2*-weighted images

Recall that besides carrying T2 decay information which is influenced by paramagnetic

substance such as iron storage protein in the brain (see section 4.2.1), T ∗2 -weighted

signals bear an additional signal loss due to field variation (characterized by the

relaxation-time constant R′2). Ignoring chemical shift, as well as macroscopic field

inhomogeneity (as in the case of good shimming), T2*-weighted signals are affected
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by the susceptibility of heme and nonheme iron substance. In BOLD applications,

time variation in T2*-weighted signals is associated with changes in the amount of

oxygenated hemoglobin in the activated region [5], while in some other application

such as [94, 8], T ∗2 has also been investigated as a tool to evaluate iron content.

Furthermore, gradient-echo T ∗2 -weighted images experience some complications in

signal loss. Particularly, it might bear a non-exponential decay and depend on both the

imaging gradient and voxel sizes (in comparison to the sizes of the structures causing

field inhomogeneity within it) [95]. Due to its sensitivity to any magnetic variation,

including one that is uncorrelated to the local susceptibility of the iron substance,

T ∗2 -images also suffer signal losses not related to tissue iron concentration.

In signal processing, to increase signal strength relative to noise, researchers

commonly use time-averaging. Particularly, let us denote by S a signal strength that is

constant in replicate measurements and by σ the standard deviation of the noise N (N

varies randomly in repeated measurements). Under the assumptions of no correlation

between signal and noise, and constant variance, after n measurements, the sum of the

signal is nS, and the variance of the sum of the noise will be nσ2. Thus, the signal to

noise ratio (SNR) is:

SNR =
nS√
nσ2

=
√
n
S

σ

So averaging the signal improves SNR by the square root of the number of repeated

measurements.

As mentioned above, in our study the voxel intensity in each image of the

T2*-weighted time series was governed by time-invariant components such as T2,

nonheme iron concentration, and time fluctuating factors such as heme iron (in blood)

and noise. By averaging hundreds of them in the time domain, we improved the

strength of the steady parts over the time-varying components (either in a

stimulus-unrelated fashion like random noise, or stimulus-induced responses of

blood/hemoglobin) by a factor of
√
n. In the case of the previous study, averaging was

done over all 7 blocks (120 volumes in each block). In the current one, it was 9 blocks
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(80 volumes in each block). Improvement factors of
√

120× 7 = 28.98 and
√

80× 9 = 26.83, respectively, were gained. So the predictive information that we

have seen from T2*-weighted is likely from the time-invariant physiology components

such as nonheme iron concentration and T2-value, and not from the heme iron

concentration in blood.

This hypothesis is indeed supported by the fact that despite the types of stimulus

during which we collected time series of T2*-weighted images in both studies, similar

prediction accuracies were obtained.

Furthermore, in study 2010, when we use perfusion information (which should

directly relate to the amount of heme-iron in the blood) obtained by a pTILT-ASL

sequence, support vector regression cannot pick up the information related to the

participant’s learning.

At this point, it should be noted that there is a close connection between the two

time-invariant components: nonheme-iron concentration and T2, especially in the

basal ganglia where most brain storage-iron is found. That is, T2 of water protons is

actually shortened by nearby paramagnetic-iron substances (see section 4.2.1 for more

details) while effects of other paramagnetic substances in the brain on T2 are often

neglected due to their tiny concentrations. In fact, people do take advantage of

iron-induced T2-shortening to assess iron content in the brain

[96, 58, 97, 98, 74, 75, 88].

We would like to test our hypothesis with the data sets collected in study 2010.

4.3.2 Comparing prediction power of time-averaged T2*-weighted in
the 2010 study to the 2008

As an important validation for the existence of learning-prediction information in the

time-averaged T2*-weighted signal, we compared the analyses of the time-averaged

T2*-weighted signals from 2008 to the corresponding data sets in the 2010 study.

From figure 4.1, we can see that there is, again, no learning-prediction information

in the time-averaged T2*-weighted signal at ventral striatum (i.e. nucleus accumbens)
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Figure 4.1: Comparison of prediction accuracy of time-averaged T2* signal in the
previous and current study.

(r was .1258 and not significant in 2010, whereas r was .0836 and not significant in

2008) while the pattern of the time-averaged signal at the dorsal striatum repeats its

predictive performance at a significant level (r in 2010 study was .498, p < .01,

whereas r in 2008 was .74, p < .001). In other words, the relationship between the

predictive information in the time-averaged T2* signals at the dorsal and ventral

striatum remains unchanged, and once more the role in learning of the dorsal

striatum, not the dorsal striatum, is confirmed.

While the prediction accuracy of the time-averaged T2*-weighted from putamen

was r = .47 (p < .01) for the 2008 study and r = .71 (p < .001) for 2010 (they both

are significant), prediction accuracy from caudate nucleus was r = .77 (p < .001) in

study 2008 and r = .38 (p < .05, still significant) in the new study. At first this seems

against our hypothesis that the learning predictive information is from the

time-invariant brain nonheme iron; i.e., if the hypothesis holds, there should not be

significant difference in prediction performance of time-averaged T2* signal in the

two studies. However, as we checked the settings of our T2*-weighted acquisition, we

discovered that parallel imaging was turned off in study 2008, but was on in study

56



2010. Parallel imaging, in principle, reduces susceptibility contrast/effects (including

the ones caused by paramagnetic substances, for example, ferritin) [99]. So the drops

in prediction accuracy of time-averaged T2* signal from caudate in study 2010 are

indeed consistent with our hypothesis.

4.3.3 Mean diffusivity and learning-prediction

Recall that DTI data collection is comprised of many DWI acquisitions (see section

4.2.3) and actually they are widely used as markers in aging studies which have

confirmed the relation between iron accumulation in deep gray matter and age

[100, 101, 102]. These applications of DTI and DWI based on signal loss

(hypointensity in the collected images) due to the iron content of the associated

regions, i.e. DTI measurements, are affected by nonheme iron deposits. Indeed, a

recent study by [103] has shown the agreement, and hence connection, between DTI

data and nonheme iron concentrations in the brain in the deep gray matter (where the

iron concentration is largest and sufficient to result in the dephasing of enough water

spins to be detectable by MR). In that study, iron content was measured by fast

spin-echo at two different field strengths, 1.5T and 3.0T, based on the field-dependent

relaxation rate FDRI method [104, 101, 102]. More particularly the putamen and

caudate nucleus structures, in which iron is deposited and accumulates with age, of the

older group have higher anisotropy and diffusivity than those of the younger group.

Although the mechanism has not yet been understood, the study also finds that in the

white matter area, the older group has lower anisotropy (while the diffusivity is still

higher) than the younger cohort; i.e., the increase of anisotropy with iron concentration

in the deep gray matter regions might relate to microstructural alterations of tissues.

In short, both mean diffusivity and time-averaged T2*-weighted signal are related

to brain nonheme iron in the deep gray matter. And indeed, as shown in figure 4.2,

across the regions of interest, their learning predictions seem related. Hence, the role

of the common factor, nonheme iron, in learning seemed to be confirmed by these

interrelations.
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Figure 4.2: Predictive information in mean diffusivity.

Additionally, a comparison again shows mean diffusivity in the dorsal striatum

predicting learning success with a significantly higher accuracy than the same

measurement in the ventral striatum, r = .69, p = 3.4× 10−6 vs. r = .28, p = .09

(not significant).

4.3.4 Learning prediction accuracies of T2- and T1-weighted images

Figure 4.3 also shows the significant accuracy of prediction from T1-weighted and

T2-weighted at dorsal striatum, and not ventral; it also compares prediction accuracy

obtained with input of predictors from T1-weighted and T2-weighted images.

Particularly, for caudate, the prediction accuracy of the T2-weighted data is almost

significantly higher (p = .0632) than that of the T1-weighted. This is in-line with the

fact that the shortening effect of iron on the relaxation times is more prominent on

T2-values and less so on T1 [80, 73] (details in section 4.2.1); i.e., in a sense,

iron-concentration are reflected better by T2-values than T1-values. In short, it

reaffirms the role of the underlying nonheme iron in the possibility of predicting

learning of time-averaged T2-weighted images.
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Figure 4.3: Prediction accuracy of information in T1-weighted and T2-weighted
images. †p = .06319.

4.3.5 Prediction from SWI vs. time-averaged T2*-weighted imaging

As figure 4.4 shows, in general, the microscopic phase responses extracted from SWI

acquisition do not significantly predict learning improvement and their accuracy is

lower than that of time-averaged T2*-weighted images. However, over the twelve

regions on which we do our analysis, they perform very similarly to the time-averaged

T2*-weighted signals. The correlation between the two curves in figure 4.4 is .65

(p=.0211).

From the explanation of SWI’s microscopic phase extracting procedure as well as

the explanation of SWI’s sensitivity in section 4.2.2, it is clear that SWI contains both

heme and nonheme iron content. Therefore, these prediction accuracies of SWI

indeed further confirm the unrelated-nature of heme iron (supported by the fact that

SWI’s prediction accuracy is lower than time-averaged T2*-weighted), and they

confirm the role of nonheme iron concentration in time-averaged T2*-weighted

signals in learning prediction (supported by the similarity in prediction accuracies of

SWI and time-averaged T2*-weighted).
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Figure 4.4: Prediction accuracy of time-averaged T2*-weighted and
susceptibility-weighted imaging.

4.3.6 Prediction from R2 and R2’ at ventral and dorsal striatum

We further verify our hypothesis with the behavior of predictive information in R2

(R2 = 1
T2

) and R2 (R2 = 1
R2

). In figure 4.5, like the time-averaged T2*-weighted

signal, R2’-map has a significant prediction accuracy (r = .4.339, p = .0058) in the

dorsal striatum, and no predictive accuracy in the ventral striatum, while there is no

significant predictive information from R2 in either the dorsal or ventral striatum.

Nevertheless, information in the R2-maps does demonstrate that the dorsal striatum

has more predictive information than the ventral striatum.

At this point, it is important to note that R2’ is considered to reveal the iron

concentration better than R2. It is because, although R2 increases in areas that have

high iron concentrations such as the deep gray matter, they do decrease as water

content increases (gray matter has more water than white matter [105]). R2’ on the

other hand is only related to signal loss due to field variation, so it has more

information relevant to iron content. This was discussed in more detail in sections

4.2.1 and 4.2.2.
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The prediction accuracy from R2’ (and R2) is not high in general is in-line with our

hypothesis that only nonheme iron serves in learning prediction as R2’ is influenced

by both heme and nonheme iron.
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Figure 4.5: Prediction accuracy of R2-maps and R2’ maps (in comparison to
time-averaged T2*-weighted image) of ventral vs. dorsal striata.

4.3.7 Iron and learning

Although we conducted our studies and established our hypothesis completely based

on the analysis results, our hypothesis is consistent with a vast literature in

neuroscience about the crucial role of nonheme iron in learning. Particularly,

non-imaging (and usually highly invasive) studies have also confirmed the roles of

brain (nonheme) iron in learning based on animal models [41, 9] or on iron-deficient

human populations [10, 85]. Nevertheless, the mechanism of the role of brain iron in

learning is not yet fully understood. The three main possible explanations for the

effect of iron on learning are via effects of iron on metabolism and the function of

dopamine [35, 36, 37, 38], hippocampus structure and function [39, 40, 41], and

degree of myelination [42].

Our regions of interests, the caudate nucleus, putamen and nucleus accumbens, have
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particularly high concentrations of dopamine [27, 21, 64] and iron; note that there is a

colocalization (distributed in the same area) in the brain between iron and dopamine

[33, 34]. While dopamine plays an important role in learning [27, 28, 29, 30],

dopamine function and metabolism are altered by iron [35, 36, 37, 38, 9]. Particularly,

Yehuda et al. [9] showed that iron-deficient rats had learning deficits related to

decreased functional activity of the dopaminergic neurotransmissions (even prior to

hemoglobin reduction). Reduction in dopamine reuptake was also shown in

iron-deficient anemic rats [37]. Furthermore, iron overload does have toxic effects on

dopaminergic neurons and concentrations [106, 107]. See [11] for a thorough review

regarding the role of iron in learning and memory.
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CHAPTER 5

FUTURE DIRECTIONS AND CONCLUSIONS

5.1 Future directions

Understanding the effect of brain iron concentration and distribution on learning and

memory of young healthy adults is important as it can provide crucial information for

the design of assessments as well as interventions to improve these abilities.

For healthy older adults, on one hand, it has also been shown that more iron

accumulates in the deep gray matter [100, 101, 102] as they age and cognitive abilities

generally decline with aging [108]. In addition, postmortem biochemical analyses of

victims of neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and

Huntington’s disease showed excessive iron levels at the basal ganglia region

[109, 110, 111, 112, 113, 76]. Especially, there is evidence that iron deposits in the

brain affect the cognitive ability of the aging population [114].

On the other hand, recent longitudinal exercise intervention studies of healthy older

adults have shown that aerobic exercise, not stretching and toning, had positive effects

on cognitive abilities [115, 116, 117, 118, 119]. Although many other factors such as

diet play a role in the relationship between age and cognition, it would be interesting

to see whether the changes of the (iron) patterns of the time-averaged T2* signals

(which were already collected in those longitudinal studies) are different for the

groups doing aerobic exercise vs. stretching and toning, and whether the positive

effect of aerobic exercise is related to the amount or distribution of iron. Such findings

would contribute to understanding the mechanisms underlying the benefits of aerobic

exercise for cognitive abilities, in particular in relation to its effects on neuronal

plasticity [115, 116, 117] and functional connectivity [119].
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So far we have investigated a pre-defined region of interest (ROI) – the striatum – in

a hypothesis-driven analysis, while many other brain regions such as the frontal and

parietal lobes also play very important roles in learning new skills. Hence, it would be

desirable to expand the analysis to an exploratory whole-brain analysis. Nevertheless,

other regions outside these deep gray matter areas normally contain much less stored

iron, and hence our learning prediction method based on stored iron patterns captured

in time-averaged T2*-signal might not be successfully applicable. Yet even in that

case, whole-brain analysis might help to confirm our hypothesis that iron is the

underlying predictor of time-averaged T2*-signal and support the development and

test of feature selection mechanisms of pattern analysis for brain MR data.

Among the regions that we have not examined, there is the hippocampus, of which

iron content is high and changes with age [120]. Especially, studies on iron-deficiency,

more notably during early development, have also demonstrated the effect of nonheme

iron on hippocampus integrity [39, 40, 41]. As the hippocampus has a direct role in

learning [121], patterns of brain nonheme iron captured in time-averaged T2* in the

hippocampus might be particularly important to investigate.

Furthermore, for the T2/T2*/T2’-maps, quantitative measurements based on the

mono-exponential assumption are prone to estimation error, because

mono-exponential is a very rough model for signal decay at each voxel. This is

especially true for T2*/T2’ due to their sensitivity to field inhomogeneity, for

example, caused by imperfect shimming. As a consequence it is usually preferable to

have many echoes with many different TEs with a range corresponding to the range of

T2/T2*/T2’ values in the white/gray matter in the brain [70]. In any case, doing the

measurement a few times and then averaging before fitting to the exponential models

should yield more accurate results as a result of noise suppression.

Our hypothesis would be best tested by a sequence that can measure nonheme iron

concentration in the brain more precisely and even directly. One non-invasive

possibility is using the field-dependent-R2-increase (FDRI) which is shown to be

more precise in measuring nonheme iron only [104, 122, 123]. But note that FDRI

method requires two MR scanners at different field strengths.
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5.2 Conclusions

From both 2008 and 2010 studies, we have consistently shown that the predictive

information in time-averaged T2*-weighted images comes from the dorsal but not the

ventral striatum. Furthermore, the prediction results from different MR measurements

ranging from DTI over T2-weighted, T1-weighted maps to SWI, T2-map, T2*-map,

and ASL have verified our hypothesis that successful learning prediction in

time-averaged T2*-signal stems from paramagnetic nonheme-iron patterns. These

patterns may be of ferritin as the molecule carries thousands of iron atoms that can

affect the local field and hence MR signals at the macroscopic level. In normal BOLD

acquisition, these signals are very weak and surpassed by other signals; they are

strengthened sufficiently through taking the time average. The differences between

individuals can be identified by the multi-voxel pattern analysis and using SVR

predictor.

There are some differences in the prediction results between study 2010 and 2008.

For example, time-averaged T2*-weighted signal in the caudate in study 2010 has

lower prediction rate than in study 2008. This might be related to the fact that we used

parallel imaging with GRAPPA mode (acceleration factor for phase encoding

direction is 2) in study 2010 while in 2008 parallel acquisition was turned off.

Furthermore, recall that the iron-related information that helps predict learning

might only reflect learners’ abilities to improve, while how much one can learn in fact

also depends on other factors such as learning approach or training strategies. In our

two studies, participants were trained with different paradigms as well as in different

durations of game play. In the 2008 study some subjects were instructed to follow

fixed priority training, and some practiced with variable priority regime; all practiced

for 20 hours. In 2010, participants were trained for only 10 hours, and all were given

instructions of variable priority training. These differences could contribute to the

overall performance of participants and might affect the prediction outcomes.

Last, that we used the gradient-echo EPI brain images, standard modality, to

measure functional activity could make our new analysis technique especially
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attractive, because no new scans would need to be added to established experimental

protocols. In fact, the technique could be used to analyze existing data retrospectively.
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Behavioural correlates,” in Ciba Foundation Symposium 51 âĂŘ Iron
Metabolism. John Wiley & Sons, Ltd., 1977, pp. 201–225.

74



[88] J. F. Schenck, “Imaging of brain iron by magnetic resonance: T2 relaxation at
different field strengths,” Journal of the Neurological Sciences, vol. 134,
Supplement, no. 0, pp. 10–18, Dec. 1995.

[89] P. J. Basser, J. Mattiello, and D. LeBihan, “MR diffusion tensor spectroscopy
and imaging,” Biophysical Journal, vol. 66, no. 1, pp. 259–267, Jan. 1994.

[90] P. Basser and C. Pierpaoli, “Microstructural and physiological features of
tissues elucidated by quantitative-diffusion-tensor MRI,” Journal of Magnetic
Resonance - Series B, vol. 111, no. 3, pp. 209–219, 1996.

[91] D. L. Bihan, J. Mangin, C. Poupon, C. A. Clark, S. Pappata, N. Molko, and
H. Chabriat, “Diffusion tensor imaging: Concepts and applications,” Journal of
Magnetic Resonance Imaging, vol. 13, no. 4, pp. 534–546, 2001.

[92] C. Pierpaoli and P. J. Basser, “Toward a quantitative assessment of diffusion
anisotropy,” Magnetic Resonance in Medicine, vol. 36, no. 6, pp. 893–906, Dec.
1996.

[93] E. C. Wong, R. B. Buxton, and L. R. Frank, “A theoretical and experimental
comparison of continuous and pulsed arterial spin labeling techniques for
quantitative perfusion imaging,” Magnetic Resonance in Medicine, vol. 40,
no. 3, pp. 348–355, Sep. 1998.

[94] E. P. Gilissen, R. E. Jacobs, and J. M. Allman, “Magnetic resonance microscopy
of iron in the basal forebrain cholinergic structures of the aged mouse lemur,”
Journal of the Neurological Sciences, vol. 168, no. 1, pp. 21–27, Sep. 1999.

[95] J. R. Reichenbach, R. Venkatesan, D. A. Yablonskiy, M. R. Thompson, S. Lai,
and E. M. Haacke, “Theory and application of static field inhomogeneity effects
in gradient-echo imaging,” Journal of Magnetic Resonance Imaging, vol. 7,
no. 2, pp. 266–279, Mar. 1997.

[96] Y. Gossuin, R. N. Muller, and P. Gillis, “Relaxation induced by ferritin: a better
understanding for an improved MRI iron quantification,” NMR in Biomedicine,
vol. 17, no. 7, pp. 427–432, Nov. 2004.

[97] C. Schenker, D. Meier, W. Wichmann, P. Boesiger, and A. Valavanis, “Age
distribution and iron dependency of the t2 relaxation time in the globus pallidus
and putamen,” Neuroradiology, vol. 35, no. 2, pp. 119–124, 1993.

[98] R. J. Ordidge, J. M. Gorell, J. C. Deniau, R. A. Knight, and J. A. Helpern,
“Assessment of relative brain iron concentrations usingT2-weighted
andT2*-weighted MRI at 3 tesla,” Magnetic Resonance in Medicine, vol. 32,
no. 3, pp. 335–341, Sep. 1994.

75



[99] M. A. Griswold, P. M. Jakob, Q. Chen, J. W. Goldfarb, W. J. Manning, R. R.
Edelman, and D. K. Sodickson, “Resolution enhancement in single-shot
imaging using simultaneous acquisition of spatial harmonics (SMASH),”
Magnetic Resonance in Medicine, vol. 41, no. 6, pp. 1236–1245, June 1999.

[100] J. Pujol, C. Junque, P. Vendrell, J. Grau, J. Marti-Vilalta, C. Olive, and J. Gili,
“Biological significance of iron-related magnetic resonance imaging changes in
the brain,” Archives of Neurology, vol. 49, no. 7, pp. 711–717, 1992.

[101] G. Bartzokis, J. Mintz, D. Sultzer, P. Marx, J. Herzberg, C. Phelan, and
S. Marder, “In vivo MR evaluation of age-related increases in brain iron,”
American Journal of Neuroradiology, vol. 15, no. 6, pp. 1129–1138, 1994.

[102] G. Bartzokis, T. Tishler, P. Lu, P. Villablanca, L. Altshuler, M. Carter,
D. Huang, N. Edwards, and J. Mintz, “Brain ferritin iron may influence age-
and gender-related risks of neurodegeneration,” Neurobiology of Aging, vol. 28,
no. 3, pp. 414–423, 2007.

[103] A. Pfefferbaum, E. Adalsteinsson, T. Rohlfing, and E. V. Sullivan, “Diffusion
tensor imaging of deep gray matter brain structures: Effects of age and iron
concentration,” Neurobiology of Aging, vol. 31, no. 3, pp. 482–493, Mar. 2010.

[104] G. Bartzokis, M. Aravagiri, W. H. Oldendorf, J. Mintz, and S. R. Marder, “Field
dependent transverse relaxation rate increase may be a specific measure of
tissue iron stores,” Magnetic Resonance in Medicine, vol. 29, no. 4, pp.
459–464, Apr. 1993.

[105] R. M. Torack, H. Alcala, M. Gado, and R. Burton, “Correlative assay of
computerized cranial tomography CCT, water content and specific gravity in
normal and pathological postmortem brain,” Journal of Neuropathology and
Experimental Neurology, vol. 35, no. 4, pp. 385–392, July 1976.

[106] P. P. Michel, S. Vyas, and Y. Agid, “Toxic effects of iron for cultured
mesencephalic dopaminergic neurons derived from rat embryonic brains,”
Journal of Neurochemistry, vol. 59, no. 1, pp. 118–127, July 1992.

[107] J. Lan and D. H. Jiang, “Excessive iron accumulation in the brain: A possible
potential risk of neurodegeneration in Parkinson’s disease,” Journal of Neural
Transmission, vol. 104, pp. 649–660, June 1997.

[108] T. A. Salthouse, “Selective review of cognitive aging,” Journal of the
International Neuropsychological Society, vol. 16, no. 05, pp. 754–760, 2010.

[109] J. E. Nielsen, L. N. Jensen, and K. Krabbe, “Hereditary haemochromatosis: a
case of iron accumulation in the basal ganglia associated with a Parkinsonian
syndrome.” Journal of Neurology, Neurosurgery & Psychiatry, vol. 59, no. 3,
pp. 318 –321, 1995.

76



[110] P. Riederer, E. Sofic, W. D. Rausch, B. Schmidt, G. P. Reynolds, K. Jellinger,
and M. B. Youdim, “Transition metals, ferritin, glutathione, and ascorbic acid
in Parkinsonian brains,” Journal of Neurochemistry, vol. 52, no. 2, pp. 515–520,
Feb. 1989.

[111] D. Loeffler, J. Connor, P. Juneau, B. Snyder, L. Kanaley, A. DeMaggio,
H. Nguyen, C. Brickman, and P. LeWitt, “Transferrin and iron in normal,
Alzheimer’s disease, and Parkinson’s disease brain regions,” Journal of
Neurochemistry, vol. 65, no. 2, pp. 710–716, 1995.

[112] G. Bartzokis and T. Tishler, “MRI evaluation of basal ganglia ferritin iron and
neurotoxicity in Alzheimer’s and Huntingon’s disease.” Cellular and Molecular
Biology, vol. 46, no. 4, pp. 821–833, 2000.

[113] J. Chen, P. Hardy, W. Kucharczyk, M. Clauberg, J. Joshi, A. Vourlas, M. Dhar,
and R. Henkelman, “MR of human postmortem brain tissue: Correlative study
between t2 and assays of iron and ferritin in Parkinson and Huntington disease,”
American Journal of Neuroradiology, vol. 14, no. 2, pp. 275–281, 1993.

[114] L. Penke, M. C. Valdés Hernandéz, S. M. Maniega, A. J. Gow, C. Murray, J. M.
Starr, M. E. Bastin, I. J. Deary, and J. M. Wardlaw, “Brain iron deposits are
associated with general cognitive ability and cognitive aging,” Neurobiology of
Aging, vol. 33, no. 3, pp. 510–517.e2, Mar. 2012.

[115] S. J. Colcombe, K. Erickson, P. Scalf, J. Kim, R. Prakash, E. McAuley,
S. Elavsky, D. Marquez, L. Hu, and A. Kramer, “Aerobic exercise training
increases brain volume in aging humans,” Journal of Gerontology: Medical
Sciences, vol. 61, pp. 1166–1170, 2006.

[116] S. J. Colcombe, A. Kramer, K. Erickson, P. Scalf, E. McAuley, N. Cohen,
A. Webb, G. Jerome, D. Marquez, and S. Elavsky, “Cardiovascular fitness,
cortical plasticity, and aging,” Proceedings of the National Academy of Sciences
USA, vol. 101, no. 9, pp. 3316–3321, 2004.

[117] K. I. Erickson, R. S. Prakash, M. W. Voss, L. Chaddock, L. Hu, K. Morris,
S. White, T. Wojcicki, E. McAuley, and A. F. Kramer, “Aerobic fitness is
associated with hippocampal volume in elderly humans,” Hippocampus,
vol. 19, no. 10, pp. 1030–1039, 2009.

[118] A. F. Kramer, S. Hahn, N. Cohen, M. Banich, E. McAuley, C. Harrison,
J. Chason, E. Vakil, L. Bardell, R. Boileau, and A. Colcombe, “Aging, fitness,
and neurocognitive function,” Nature, vol. 400, pp. 418–419, 1999.

[119] M. W. Voss, R. Prakash, K. Erickson, C. Basak, J. Kim, S. Heo, A. Szabo,
S. White, T. Wojcicki, E. Mailey, N. Gothe, E. McAuley, and A. Kramer,
“Plasticity of brain networks in a randomized intervention trial of exercise
training in older adults,” Frontiers in Aging Neuroscience, vol. 2, 2010.

77



[120] J. Savory, J. K. Rao, Y. Huang, P. R. Letada, and M. M. Herman, “Age-related
hippocampal changes in Bcl-2:Bax ratio, oxidative stress, redox-active iron and
apoptosis associated with aluminum-induced neurodegeneration: increased
susceptibility with aging,” Neurotoxicology, vol. 20, no. 5, pp. 805–817, Oct.
1999.

[121] L. E. Jarrard, “On the role of the hippocampus in learning and memory in the
rat,” Behavioral & Neural Biology, vol. 60, no. 1, pp. 9–26, 1993.

[122] G. Bartzokis, D. Sultzer, J. Cummings, L. E. Holt, D. B. Hance, V. W.
Henderson, and J. Mintz, “In vivo evaluation of brain iron in Alzheimer disease
using magnetic resonance imaging,” Archives of General Psychiatry, vol. 57,
no. 1, pp. 47–53, Jan. 2000.

[123] A. Pfefferbaum, E. Adalsteinsson, T. Rohlfing, and E. V. Sullivan, “MRI
estimates of brain iron concentration in normal aging: Comparison of
field-dependent (FDRI) and phase (SWI) methods,” NeuroImage, vol. 47, no. 2,
pp. 493–500, Aug. 2009.

78


