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Abstract

Speech production errors characteristic of dysarthria are chiefly responsi-

ble for the low accuracy of automatic speech recognition (ASR) when used

by people diagnosed with the condition. The results of the small number

of speech recognition studies, mostly conducted by assistive technology re-

searchers, are a testimony to this statement. In the engineering community,

substantial research has been conducted to find algorithms that adapt mod-

els of speech acoustics trained on one dataset for use with another. They are

mostly mathematically motivated.

A person with dysarthria produces speech in a rather reduced acoustic

working space, causing typical measures of speech acoustics to have values

in ranges very different from those characterizing unimpaired speech. It is

unlikely then that models trained on unimpaired speech will be able to adjust

to this mismatch when acted on by one of the above-mentioned adaptation

algorithms. The creation of acoustic models trained exclusively on patholog-

ical speech too is a task difficult to achieve: members of this population find

it tiring to pursue physical activities for sustained periods of time, including

speech production. While this makes speaker adaptation an approach worthy

of pursuit, almost no research has been conducted so far on acoustic model

adaptation methods for recognition of dysarthric speech.

This dissertation presents a study of acoustic model adaptation for recog-

nition of dysarthric speech. First, it investigates the efficacy of a popular

adaptation algorithm for dysarthric speech recognition. It then proposes an

additional step in the adaptation process, to separately model ‘normal’ and

pathology-induced variations in speech characteristics, and does so by try-

ing to account for a recently proposed view of the acoustics of motor speech

disorders in the clinical research community. Results show that explicitly

addressing the population mismatch helps to increase the recognition accu-

racy.
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Chapter 1

INTRODUCTION

After more than two decades of research, automatic speech recognition (ASR)

is a well-established and reliable human-computer interaction technology.

The accuracy of the newest generation of large vocabulary speech recognizers,

after adaptation to a user without speech pathology, is high enough to provide

a useful human-computer interface especially for people who find it difficult

to type with a keyboard.

For creating a speech recognizer for a particular speaker, there are two

approaches: one is to create a speaker-dependent (SD) system by utilizing

speech of that speaker alone to train the acoustic model; the other is to

create a speaker-adapted (SA) system by first training the acoustic model in

a speaker-independent (SI) fashion by using speech of several speakers, and

then customizing the model to the characteristics of the particular speaker

by using training examples of their speech to modify the model parameters.

The parameter values do not get overwritten; they are adjusted using a

regularized or constrained learning algorithm. Regularization or constraints

allow the SA model to use far more trainable parameters per minute of

training data without over-training the system.

Despite the advances in speech technology, their benefits have not been

available to people with gross motor impairments mainly because these im-

pairments include a component of dysarthria: a group of motor speech dis-

orders resulting from disturbed muscular control of the speech mechanism,

due to damage of the peripheral or central nervous system. Symptoms of

dysarthria vary from talker to talker, but typical symptoms include strained

phonation, imprecise placement of the articulators, incomplete consonant clo-

sure resulting in sonorant implementation of many stops and fricatives, and

reduced voice onset time distinctions between voiced and unvoiced stops.

Although the imprecise articulations of dysarthria are noticeable, and may

even impair intelligibility, the articulation errors are usually neither random

1



(unlike, for example, in the case of apraxia) nor unpredictable.

Dysarthria itself is often a symptom of a gross motor disorder, whose other

symptoms often make it hard to use a keyboard and mouse. Published case

studies have shown that some dysarthric users may find it easier to use an

ASR system [1, 2, 3], instead of a keyboard.

One of the issues with developing ASR systems for dysarthric talkers is that

speaking for long periods of time is very tiring. As a result it is difficult for

a person with dysarthria to provide sufficient speech samples to train an SD

ASR system. Speaker adaptation then seems a useful method to overcome

this obstacle in developing dysarthric speech recognizers.

Although a substantially large amount of research has been conducted on

methods for adaptation of ASR acoustic models, there has hardly been any

study that evaluated their performance on recognition of dysarthric speech.

However, even if one applied such adaptation methods, there exists a second

obstacle: SI and SA systems of the kind used by talkers with no pathology are

of less use to talkers with dysarthria, because the substitution errors charac-

teristic of dysarthria dramatically increase word error rates. The goal of the

study described in this dissertation is to test the hypothesis that explicitly

modeling the difference between unimpaired and dysarthric speech character-

istics as a step in the adaptation technique should yield better recognition

accuracy compared to using conventional adaptation methods as-they-are.

This dissertation is organized as follows: in Chapter 2, a non-exhaustive

overview of speech recognition technology is presented. It covers briefly the

typical approach to modeling speech acoustics and language, and then re-

views in somewhat greater detail acoustic modeling techniques, particularly

with respect to model adaptation.

Chapter 3 provides an overview of the large amount of clinical research on

motor speech disorders, especially acoustic analyses of dysarthric speech. For

quite some time now, a debate has been going on in the clinical research com-

munity about an adequate theory of the acoustics of motor speech disorders.

The long-held opinion of the majority of the community that “speech pathol-

ogy reflects neuropathology” has been challenged by recent efforts of some

researchers, particularly those of Gary Weismer’s group. The chapter ends by

addressing this debate and attempting a justification of this study’s approach

to investigating ASR system development for talkers with dysarthria.

Chapter 4 describes the speech corpus used for this study, and some pre-
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liminary experiments. These experiments were run to determine whether

speaker adaptation should be pursued at all for recognition of dysarthric

speech. These initial results indicate that SA systems do have the potential

to achieve higher recognition accuracies than SD systems.

In Chapter 5, we present the main contribution of this study. We moti-

vate the technique of background interpolation, based on the discussion in

Chapter 3, and attempt a mathematical validation by exercising it on an

artificial toy problem. The chapter ends with the mathematical derivation of

equations for updating model parameters, when background interpolation is

used in conjunction with MAP adaptation (a popular adaptation algorithm).

Chapter 6 presents the main experiments of this study. Results indicate

that background interpolation achieves statistically significant improvements

in recognition performance, across a range of intelligibility levels for speakers

with dysarthria. Chapter 7 presents a more qualitative analysis of these

results. It turns out that acoustic models adapted from an interpolated prior

model do learn significantly different spectral representations of the modeled

word-units.

Finally, Chapter 8 concludes with a review of the work’s key findings and

presents some possible directions for future work.
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Chapter 2

BACKGROUND: AUTOMATIC SPEECH
RECOGNITION

This chapter presents a concise review of research in the domain of automatic

speech recognition. The emphasis is mostly on adaptation techniques for

acoustic modeling.

2.1 Traditional ASR

Statistical ASR systems trace their beginnings to the work of Jelinek and

others at IBM [4]. Such systems generally assume that the speech signal is

a realization of some message encoded as a sequence of one or more sym-

bols. To effect the reverse operation of recognizing the underlying symbol

sequence given a spoken utterance, the continuous speech waveform is first

converted to a sequence of equally spaced discrete parameter vectors which

try to capture only the information relevant to speech and discard other

acoustic information such as room and microphone effects and non-speech

sounds. This sequence of parameter vectors is assumed to form an exact

representation of the speech waveform on the basis that for the duration cov-

ered by a single vector (typically 10 ms or so), the speech waveform can be

regarded as being spectrally stationary. Although this is not strictly true,

it is a reasonable approximation. Much research has been conducted to de-

termine the best (in terms of speech recognition accuracy) parameterization

of speech. Typical parametric representations in common use are smoothed

spectra or linear prediction coefficients plus various other representations de-

rived from these [5, 6, 7]. Throughout this study, speech is parameterized in

terms of Perceptual Linear Prediction (PLP) coefficients [7], a representation

used by most ASR systems today.

The objective of a speech recognizer is to effect a mapping between se-

quences of speech vectors and the wanted underlying symbol sequences. In
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other words, the ASR system needs to come up with a sequence of NW words

W = {wk}NW

k=1 that is more likely (in a probabilistic sense) than any other to

have generated the observed sequence of T PLP vectors O = {~ot}Tt=1. This

word sequence is therefore obtained as

W∗ = arg max
NW ,W

p (W|O)

which by application of Bayes’ rule yields

W∗ = arg max
NW ,W

p (O|W) · p (W) (2.1)

The p (W) component is called the Language Model, and the p (O|W) com-

ponent is called the Acoustic Model. The word sequence corresponding to the

sequence of acoustic observations can be either modeled as-is at the word level

itself or at a sub-word level as a sequence of sub-word units (e.g., phones, tri-

phones, syllables, etc.); in the latter case, one makes use of a pronunciation

dictionary to expand each word into its constituent sequence of sub-word

units.

The ASR goal of determining W∗ is made difficult by the fact that the

boundaries between words cannot be identified explicitly from the speech

waveform. This problem can be avoided by restricting the task to isolated

word recognition: the acoustic observation sequenceO corresponds to a single

word from a fixed vocabulary. Despite the fact that this simpler problem is

somewhat artificial, it nevertheless has a wide range of practical applications.

Secondly, since dysarthric subjects find it physically exhausting to talk for

long periods of time, the speech corpus that we make use of also consists of

recordings of isolated words (described in more detail in Chapter 4). From

here on, we thus focus on isolated word recognition: NW = 1 and

W∗ = w∗ = arg max
w

p (O|w) · p (w) (2.2)

The Language Model : Unless one has reason/evidence to believe that cer-

tain words are more likely than others to have been uttered by a talker, the

prior probability p (w) of a hypothesized word w is set to be the same for all

the words in the task-vocabulary. Then

w∗ = arg max
w

p (O|w) (2.3)
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The Acoustic Model : Given the dimensionality of O, direct estimation of

the joint conditional density p (O = ~o1, ~o2, . . . |w) is not practicable. However,

if a parametric model of word production such as a hidden Markov model

(HMM) is assumed, then estimation from data is possible since the problem

of estimating the class conditional observation densities {p (O|wk)}NV

k=1 (where

NV is the number of words in the task-vocabulary) is replaced by the much

simpler problem of estimating the Markov model parameters. Most speech

recognizers today are based on the HMM paradigm: each word wk (or each

sub-word unit, if one is modeling at the sub-word level) in the task-vocabulary

is modeled by an HMM Mk — a finite state machine which changes state once

every time unit — and each time t that a state j is entered, a speech vector

~ot is generated from the probability density bj(~ot), which is a mixture of

multivariate Gaussians for most standard systems. The transition from state

i to state j is also probabilistic and is governed by the discrete probability aij.

Figure 2.1 shows an example of this process where the five state model moves

through the state sequence X = 1, 2, 2, 3, 3, 4, 4, 4, 5 in order to generate the

sequence ~o1 to ~o7. The entry and exit states (1, 5) are non-emitting. This is

to facilitate the construction of composite models: most systems use HMMs

to perform modeling at the phone-level rather than word-level; as such, word-

level models are constructed by stringing together phone-level HMMs for the

constituent phones.

Let Sk = sk1 , sk2 , . . . , skT denote one of the many possible state sequences

in Mk corresponding to the observation sequence O. Then the probability of

Mk generating O is obtained by summing up over all possible state sequences

Sk, the joint probability of O,Sk conditioned on Mk:

p (O|Mk) =
∑
Sk

πsk1

T∏
t=1

bskt (~ot)asktskt+1
(2.4)

where πsk1 is the probability that the model starts off in state sk1 before

emitting the first observation vector. In practice, only O is known and the

underlying state sequence Sk is hidden.

The recognition problem (Eq. 2.3) is then solved by considering the given

set of models Mk corresponding to words wk and setting

w∗ ≡ arg max
k
p (O|Mk) (2.5)
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Figure 2.1: The Markov generation model

Making the acoustic model context dependent greatly improves the word

error rate (WER; a measure of recognition accuracy) of an ASR system. We

can make the acoustic model context dependent by including in the obser-

vation vector features that depend on neighboring frames: frequently the

feature vector is augmented with the first and second order temporal differ-

ences of the features. Another way to make acoustic models context depen-

dent is to use a triphone model. In this case, an HMM models a particular

phone in context of the two phones immediately preceding and succeeding

that particular phone. When training data sparsity becomes an issue (which

is very likely to happen given that the possible number of triphones is large),

the learned parameters of the triphone models can be shared across sets of

triphones by tying them together in a data-driven way [8].

The Viterbi algorithm can be used to solve Eq. 2.5 and the Baum-Welch

algorithm [9] can be used to find maximum likelihood (ML) estimates of

parameters of the HMMs given some training data and an initial guess for

the model parameters [10]. The Baum-Welch algorithm is a specific instance

of the Expectation-Maximization (EM) framework [11]. These algorithms

have been implemented in the HTK Toolkit [12] with speech recognition in
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mind.

2.2 Speaker Adaptation Methods for HMM-Based

ASR

This section reviews some popular speaker adaptation schemes that can be

applied to continuous density HMMs. These fall into three families based on

Maximum A Posteriori (MAP) adaptation, linear transforms of model pa-

rameters such as maximum likelihood linear regression (MLLR), and speaker

clustering/speaker space methods such as eigenvoices.

Speaker adaptation has been an area of speech recognition technology that

has attracted much attention over the last decade. While SI speech recog-

nition systems can show impressive performance, SD systems can provide

an average WER a factor of two to three lower than an SI system if both

systems use the same amount of training data. Hence the major rationale

for investigating SA systems is that they promise to produce a final system

that has desirable SD-like properties but requires only a small fraction of the

speaker-specific training data needed to build a full SD system. Of course,

as mentioned earlier, speaker adaptation seems useful for dysarthric speech

recognition since dysarthric subjects will find it very exhausting to record

large amounts of speech for training ASR systems.

SA systems operate in a number of modes. If the (word-level) transcrip-

tion of the speaker-specific adaptation data is known then the adaptation

is supervised, otherwise it is unsupervised : if the transcription is needed it

must be estimated. While such an estimate may just be the errorful recog-

nition output, some researchers have used confidence measures to ensure the

adaptation process uses the most reliable material. Also adaptation modes

are described as static (or block) in which all adaptation data is presented to

the system before the final system is produced, or alternatively dynamic (or

incremental) in which only part of the total adaptation data is available be-

fore use of the adapted system starts and the system continues to adapt over

time. In this study, we concentrate on supervised static adaptation methods.
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2.2.1 Maximum A Posteriori (MAP) adaptation

Let Λ denote the set of HMM parameters for an ASR system. If M is the

number of d-dimensional multivariate Gaussians modeling the state-specific

observation probability distribution, N the number of hidden states per

HMM, and NM the number of HMMs in the system, then

Λ =

{
{πni }i ,

{
anij
}
i,j

, {cnil, ~µnil,Σn
il}i,l

}NM

n=1

i, j ∈ {1, . . . , N}

l ∈ {1, . . . ,M}

(2.6)

where {c, ~µ,Σ} are respectively the mixture weight, mean vector and covari-

ance matrix of the state-component-specific Gaussian density.

In MAP parameter estimation, the parameters are set at the mode of the

posterior distribution p (O|Λ) · p0 (Λ) where p0 (Λ) is the prior distribution

of the HMM parameter set Λ. The use of the prior distribution in MAP

estimation means that less data is needed to get robust parameter estimates

and hence it is a useful and widely used technique in speaker adaptation.

It is convenient if the prior density is from the same family as the posterior

distribution (the conjugate prior) if it exists. For mixture Gaussian HMMs

such a conjugate prior of finite dimension does not exist and an alternative

approach is usually used: the key idea here is to interpret a finite mixture

density with M components as one associated with a statistical population

that is a mixture of M component populations [13, 14]. Doing so permits us

to use conjugate prior densities individually for HMM parameter subsets, as

described below.

Each of {πi}i , {aij}i,j , and {cil}i,l can be modeled with a Dirichlet prior

distribution, which is the conjugate prior for the multinomial distribution.

For instance, the Dirichlet prior for the mixture weights of state i, ~ci = {cil}l
can be written as

pc(~ci) ∝
M∏
l=1

cνil−1il (2.7)

where {νil}l are the prior’s hyperparameters. If xl is the number of observa-

tions generated by component l, then the posterior distribution of ~ci can be
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written using the multinomial density and the above prior as

p
(
~ci| {xl}l

)
∝ p
(
{xl}l |~ci

)
· pc(~ci) ∝

M∏
l=1

cxlil ·
M∏
l=1

cνil−1il (2.8)

which is a Dirichlet distribution with hyperparameters {ν̂il = νil + xl}l.
Similarly, the parameters of each Gaussian component l of state i {~µil,Σil}

can be modeled with a suitable prior distribution: a normal-Wishart joint

density (for the case of full covariance matrix), or a set of Gamma-normal

joint densities (for the case of a diagonal covariance matrix, since now each

dimension of the observation vector is being modeled independently). For

instance, in the case of D-dimensional diagonal covariance Gaussian with

Σil = diag(r−1ild ), the overall prior for the Gaussian’s parameters (for state i,

component l) is obtained as

pµ,r
(
~µil,Σil

)
∝

D∏
d=1

r
αil− 1

2
ild

· exp
{
−βildrild −

τilrild
2

(µild − µil0d )2
}

(2.9)

where {αil, τil, {βild}d, ~µil0} is the prior’s hyperparameter set. The observa-

tions {~yt}Tt=1 are governed by the Gaussian distribution N (~y; ~µil,Σil). The

posterior distribution can then be written as

p
(
~µil,Σil| {~yt}t

)
∝ p
(
{~yt}t |~µil,Σil

)
· pµ,r

(
~µil,Σil

)
(2.10)

It can be shown that this posterior distribution is also a product of D

Gamma-normal joint densities (i.e., of the form in Equation 2.9) with a

hyperparameter set
{
α̂il, τ̂il, {β̂ild}d, ~̂µil0

}
where

α̂il = αil +
T

2
(2.11)

τ̂il = τil + T (2.12)

~̂µil0 =
τil

τil + T
· ~µil0 +

∑T
t=1 ~yt

τil + T
(2.13)

β̂ild = βild +
τild
2

(µ̂il0d − µil0d )2 +
1

2

T∑
t=1

(ytd − µ̂il0d )2 (2.14)

Having obtained the posterior distributions as above, the final step in MAP
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estimation involves setting the parameters to the modes of these posteriors. It

must be noted that since the generation of observations is a hidden process in

HMMs, we really do not have hard ‘labels’ describing which observations were

generated by a particular component of a particular hidden state. This is

where the EM algorithm comes to our rescue. Gauvain and Lee [13, 14] have

shown that the use of prior distributions above with the standard auxiliary

function leads to a MAP version of it, and that this MAP version is identical

in form to the original auxiliary function. To borrow the notion of conjugate-

ness, conjugate priors thus lead to conjugate auxiliary functions.

For instance, the MAP estimate of the Gaussian mean vector for state i,

component l with prior mean ~µil0 is

~̂µil =
τ

τ +
∑T

t=1 P (i, l|~ot)
· ~µil0 +

∑T
t=1 P (i, l|~ot) · ~ot

τ +
∑T

t=1 P (i, l|~ot)
(2.15)

where τ is the regularization meta-parameter which governs the weightage

given to the prior mean with respect to the ML estimate of the mean from

the adaptation data; ~ot is the adaptation data observation vector at time

t; and P (i, l|~ot) is the probability that the observation ~ot was generated by

state i, component l. One can see that this estimate is as per the one in

Equation 2.13 except that soft ‘labels’ have been applied to the observations:

each observation was generated by each state and component with a partic-

ular probability. Similar formulae can be used to also update the transition

probabilities, covariance matrices and mixture weights in the system [13, 14].

The hyperparameters (of the prior distributions) that are generally used are

the SI model parameters (empirical Bayes approach). Typically, values of τ

between two and twenty are used.

One key advantage of the MAP approach is that as the amount of train-

ing data increases towards infinity the MAP estimate converges to the ML

estimate. Its main drawback is that it is a local approach to updating the

parameters; i.e., only parameters that are observed in the adaptation data

will be altered from the prior value. As a result, MAP adaptation can be

slow. Shinoda and Lee [15] tackled the adaptation speed issue by organizing

all the Gaussians in the system into a tree structure, and then recursively

computing a mean offset and a diagonal variance scaling term for each layer

of the tree, starting at the root node (which contained all the Gaussians) and

then descending the tree. At each level of the tree, the distribution from the
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node above was used as the MAP prior. They showed that structural MAP

increases the adaptation speed while converging to the MAP solution as the

amount of adaptation data is increased.

2.2.2 Linear transformation based methods for adaptation

Another approach to the problem of speaker adaptation is to estimate a

linear transformation of the model parameters (or sometimes, the observation

feature vectors), to construct a more appropriate model. The advantage is

that the same transformation can be used for a large number of (or even all)

Gaussians in an HMM system and this sharing of transformation parameters

provides a route towards rapid adaptation. This section reviews Maximum

Likelihood Linear Regression (MLLR) and some of its variants.

Maximum Likelihood Linear Regression

In standard MLLR [16], the Gaussian mean vectors are updated as per

~̂µ = A~µ+~b (2.16)

where A is a d× d matrix and ~b is a d× 1 vector, d being the dimensionality

of the observations. This equation is more often written as

~̂µ = W~ξ (2.17)

where W is a d×(d+1) matrix and ~ξ = [1 ~µT ]T is the extended mean vector.

In MLLR, the transformation matrix W is estimated such that the likeli-

hood of the adaptation data is maximized. It has been shown [16] that there

is a closed form solution to the W matrix estimation problem using the EM

algorithm. Furthermore, under certain circumstances (where the initial mod-

els can provide good Gaussian-frame alignments) only a single iteration of

EM is required to estimate the matrix. Usually the transformation matrix

is tied over a number of Gaussians. This transform sharing can allow all the

Gaussians in a system to be updated with only a relatively small amount of

adaptation data.

However, there is a tradeoff between robust adaptation via a global trans-

form and using precise transforms that apply to a smaller number of (e.g.,
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phone-specific) Gaussians. One solution that allows a good compromise to

be drawn is to use a Regression Class Tree [17]: the Gaussians that are close

in acoustic space are clustered together and undergo the same transformation

(these groups are known as base classes). If the clustered components are

then arranged into a tree structure (with all at the root node), then, depend-

ing on the amount of adaptation data available, the tree may be descended

to an appropriate depth and a set of transformations generated where each

transformation will be for a set of base classes.

While the most important speaker specific effect concerns the Gaussian

means, the Gaussian variances can also be updated [18, 19]. The variance

transforms H are estimated after the mean transforms have been estimated.

Originally the form

Σ̂ = LHLT (2.18)

was used where L is the Choleski factor of the original covariance matrix

Σ. For the case of a diagonal variance transform (with a simple bias for the

mean) this is the same as the variance transform suggested in [20].

A variance transform of the form

Σ̂ = HΣHT (2.19)

is proposed in [19] which has the advantage that it can be applied efficiently

by transforming the mean parameters and the observations even for full vari-

ance transformations. However the transformation elements need to be esti-

mated using an iterative procedure given the sufficient statistics.

Typically means-only MLLR gives a 15% reduction in WER on large vo-

cabulary clean speech tasks over the most accurate SI models available, us-

ing about a minute of adaptation data; and SD performance can often be

achieved with perhaps thirty minutes of speech and many adaptation trans-

forms [16].

Constrained MLLR

The MLLR formulation described above estimates independent transforms

for the means and the variances. The constrained transform case (introduced

in [21] for the diagonal transform case and extended in [19] to full transforms)
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is of the form

~̂µ = Ac~µ−~bc (2.20)

Σ̂ = Ac
TΣAc (2.21)

This can be convenient since this is equivalent to transforming the obser-

vation vectors such that

~̂ot = Ac
−1~ot + Ac

−1~bc (2.22)

noting that a factor of |Ac| is also needed when calculating the Gaussian

likelihood. The maximum likelihood solution for this form requires iterative

optimization given the sufficient statistics, but gives similar performance to

using standard unconstrained MLLR with the same form of transformation

matrix.

MLLR robustness

For adaptation methods relying on linear transformation(s), it is necessary

to have sufficient data points to robustly estimate the transform(s). Perfor-

mance even worse than that of SI systems can result if appropriate thresh-

olds/forms of transforms are not used (due to over-training on the adaptation

data).

Several solutions to this problem have been suggested and all increase the

applicability of MLLR for rapid adaptation. Chesta, Siohan and Lee [22] pro-

posed a MAP version of MLLR (MAPLR) where it was suggested that one

make use of a prior from the family of elliptically symmetric distributions for

the overall transformation matrix (which includes the bias vector in the ma-

trix itself). In related work, they had made use of a special case of this family,

the matrix variate normal density. The advantage of using this density is the

existence of ML estimates of the prior density’s hyperparameters; MAPLR

was found to improve performance when very small amounts of data were

available. As the number of adaptation utterances grew large, the MAPLR

performance approached MLLR performance. Siohan, Myrvoll and Lee [23]

proposed a MAPLR extension to the SMAP technique reviewed earlier: the
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idea was to hierarchically constrain the priors on the transformation matrices

using a tree structure, in which the prior on a leaf node (which has a cluster

of Gaussians associated with it, and to which the transformation is being

applied) is obtained by propagating the root-nodes prior down the branch

that ends in that leaf node. At the root node, the prior is a matrix variate

normal distribution. However, by using Bayes rule at each node below the

root node, one does not obtain a distribution from this family. Secondly, by

propagating the obtained distribution down would keep increasing the num-

ber of terms in the sum-expression of the Bayes-posterior. So, this posterior

at a particular node was approximated by a distribution from the matrix

variate normal family that was “closest” to the Bayes-obtained density in

the KL-divergence sense. Experiments with non-native speaker adaptation

showed that SMAPLR outperformed the MLLR and MAPLR methods.

Both MAPLR and SMAPLR used a MAP-style estimation approach for

MLLR parameters. Alternatively a variant of the EM algorithm that op-

timizes a discounted likelihood criterion and does not quickly overtrain was

suggested by Gunawardana and Byrne [24]. DLLR was also found to improve

robustness for small amounts of adaptation data when many transforms were

to be trained.

2.2.3 Eigenvoice adaptation

MAP and MLLR families of adaptation methods do not explicitly use in-

formation about the characteristics of an HMM set for particular speakers.

The simplest instance of such an approach is the use of gender dependent

models which are widely used in SI systems. Traditional speaker clustering

(e.g., [25]) goes a step further and estimates HMMs for a number of speaker

groups. However the problem with this type of approach is that by taking

hard decisions about speaker type, the training data is fragmented and it is

possible to make a poor choice of speaker group when in use.

Recently there has been interest in the eigenvoice technique [26] (EV)

which can be viewed as a generalization of the speaker clustering idea. The

EV technique forms a weighted sum of “eigenvoice” HMMs, and uses this

interpolated model to represent the current speaker. The parameters of the

eigenvoice models that are estimated can be viewed as representing the axes
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of a “speaker space” and then the model for a particular speaker is found

by estimating the appropriate point for the speaker in this speaker space.

The canonical speakers (eigenvoices) are found using principal component

analysis (PCA) of sets of “supervectors” constructed from all training set

speakers’ SD HMM systems. The eigenvoices with the largest eigenvalues

are chosen as a basis set. Specifically, if Λk represents the SD HMM set for

speaker k (see Eq. 2.6), then one first obtains D eigenvoice models {Λer}Dr=1

using PCA; next, the SA HMM set for a test speaker u is obtained as

Λu =
D∑
r=1

αr ·Λer (2.23)

During adaptation the maximum likelihood eigen-decomposition algorithm

as proposed in [26] is used to estimate the weights {αr}Dr=1.

Kuhn et al. [26] evaluated the EV technique for a small vocabulary task

using simple HMM models and produced impressive performance with small

amounts of data. Unfortunately for large HMM systems (with several thou-

sand Gaussians) the construction of separate HMM systems for all speakers

and subsequent PCA analysis is particularly difficult. There are two main

issues here: firstly, if mixture distributions are used then these must be

“aligned” between the various sets of models; secondly, the large number

of parameters to estimate in the full (context-dependent triphone based)

SD models can result in both estimation issues and storage problems. The

alignment issue can be solved by obtaining the SD supervectors from each

speaker’s SA model obtained by adapting an SI model trained on speech of

all speakers in the training set. The estimation issue which makes the PCA

difficult (eigen-decomposition of a huge supervector-covariance matrix is very

computationally expensive) can be resolved by performing probabilistic PCA

instead [27].

The EV approach can be effective for a small amount of adaptation data

but the gains available with added data are more limited and in such cases

a technique such as MAP may be preferable. Indeed, Sproat et al. [28]

have demonstrated that MAP used together with another speaker adaptation

algorithm can decrease the WER.
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Chapter 3

BACKGROUND: MOTOR SPEECH
DISORDERS

Several neurological diseases produce symptoms of disordered speech produc-

tion. These symptoms indicate deficits in the “control” of any or some or all

levels of the human speech production mechanism. These deficits are here

referred to as “motor speech disorders”. This chapter gives an overview of

the study of dysarthria, reviews literature on the related acoustic analyses,

and ends by attempting a justification of the approach this study took to

investigating ASR system development for speakers with dysarthria.

3.1 The Mayo Clinic System of Classifying Dysarthrias

Darley, Aronson, and Brown of Mayo Clinic can be reasonably credited with

the beginning of systematic investigations of motor speech disorders [29, 30].

Prior to the publication of their twin papers in 1969, there had been a few

infrequent studies of various neuromotor speech disorders (Zentay [31, 32];

Canter [33, 34, 35]; Lehiste [36]); however, no rationale had been presented

for the study of dysarthria (other than the clinical one). Darley et al.’s

study provided this rationale in the form of a hypothesis regarding the lo-

calizing value of perceptual impressions of dysarthric speech. They used

the term dysarthria as “a collective name for a group of speech disorders

resulting from disturbances in muscular control over the speech mechanism

due to damage of the central or peripheral nervous system. These disorders

were characterized by problems in oral communication due to the resulting

paralysis, weakness, or incoordination of the speech musculature.” Darley

and colleagues hypothesized the association of different types of neurologi-

cal pathology with unique kinds of speech production phenomena which in

turn would be revealed in the aforementioned perceptual impressions. Based

on their extensive clinical experience with dysarthric patients, they chose 38

17



dimensions of speech production performance to quantify those impressions;

with each dimension’s prominence represented on a seven-point scale. These

dimensions, listed in Table 3.1, were capable of providing a comprehensive

profile of the speech production deficit in neurogenic speech disorders.

Table 3.1: Perceptual dimensions used in the Mayo Clinic studies of dysarthria

by Darley et al. [29]

Articulation dimensions Respiration dimensions
imprecise consonants forced inspiration-expiration
irregular articulatory breakdown audible inspiration
phonemes prolonged grunt at end of expiration
phonemes repeated
vowels distorted
Prosodic dimensions Voice-Quality dimensions
rate strained-strangled voice
variable rate harsh voice
increase of rate overall hoarse voice (wet)
increase of rate in segments breathy voice (continuous)
reduced stress breathy voice (transient)
excess and equal stress voice stoppages
phrases short hypernasality
intervals prolonged hyponasality
short rushes of speech nasal emission
inappropriate silences
Pitch dimensions Loudness dimensions
pitch level loudness level (overall)
pitch breaks alternating loudness
monopitch monoloudness
voice tremor excess loudness variation

loudness decay
“Overall” dimensions
intelligibility
bizarreness

These perceptual dimensions were then combined in various ways to pro-

duce unique clusters and Darley et al.’s hypothesis was confirmed not on

the basis of the individual dimensions, but on this unique clustering of the

multiple dimensions. Table 3.2 lists these clusters along with their respective

perceptual dysarthria types. They also studied several disorders in which

the neurological deficit was more diffuse than in the five dysarthrias listed in
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Table 3.2: Clusters of perceptual dimensions reported by Darley et al. [30] for

the five dysarthria types

Flaccid: phonatory incompetence; resonatory incompetence;
phonatory-prosodic insufficiency

Spastic: prosodic excess; prosodic insufficiency; articulatory-
resonatory incompetence; phonatory stenosis

Ataxic: articulatory inaccuracy; prosodic excess; phonatory-
prosodic insufficiency

Hypokinetic: prosodic insufficiency
Hyperkinetic: phonatory stenosis; prosodic insufficiency; resonatory

incompetence; articulatory-resonatory incompetence;
prosodic excess; articulatory inaccuracy

the table – for example, amyotrophic lateral sclerosis (ALS) is a disease in

which both lower and upper motoneuron lesions are common; in keeping with

their system, Darley et al. identified the dysarthria in ALS as spastic-flaccid.

Likewise, multiple sclerosis (MS) was said to cause a dysarthria labeled as

spastic-ataxic because it frequently involved cerebellar and upper motoneu-

ron lesions. These labeling decisions were consistent with their belief that

“... speech pathology reflects neuropathology” ([37]; page 229).

The classification system developed by Darley et al. (hereafter referred to

as the Mayo Clinic system) was appealing because it significantly reduced

the dimensionality of perceptual analysis. Secondly, it provided a reasonable

guide for the clinicians attempting to modify the speech production deficit in

dysarthria: they could identify the most prominent cluster in the speech pro-

duction deficit profile, and devote therapeutic efforts there to make maximal

gains in correcting/reducing the deficit.

3.2 Dysarthria and Acoustic Analyses

Although there is much to be said about the value of perceptual analysis (ease

of interpretation, for instance), the relation between perceptual impressions

of impaired speech and the underlying speech pathology is quite complex and

poorly understood. Moreover, one’s perceptual abilities are influenced by lin-

guistic exposure such that the acoustic distinctions that are not phonemic in
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the ambient language (e.g., voiced versus pre-voiced sounds in English) are

difficult to perceive [38]. Acoustic analysis of speech is quite advantageous

for the following reasons: firstly, the acoustic output of the vocal tract can

be thought of as a bridge between speech production and perception, and

therefore the acoustic speech signal can shed light on both the mechanism

associated with disordered speech and the effect of those problems on speech

intelligibility. Secondly, the acoustic output of the vocal tract contains the

product of the entire speech system’s effort, rather than an isolated compo-

nent of the apparatus. To the extent that a speech disorder is defined by its

anomalous communication product, acoustic analysis may then prove to be

valuable. Thirdly, acoustic analysis is noninvasive. Finally, acoustic analysis

has the potential to provide insights for the purpose of acoustic modeling in

ASR.

The literature on acoustic analysis for motor speech disorders is vast, so

a condensed and selective overview of the same is given below. Studies per-

taining to acoustics of vowel and consonant articulation are reviewed. Those

concerned with aspects which are not easily defined (e.g., prosody and co-

ordination) are not covered here. Also, studies that deal with obtaining

insights into motor speech disorders (and their acoustics) using other modal-

ities (e.g., kinematics of articulators, imaging of brain regions, etc.) are not

covered here: multi-modal ASR is not a practical option for day-to-day use.

Similarly, studies that investigate acoustic performance under manipulations

(e.g., those of speaking rate and/or loudness) are not emphasized here, as

ASR users typically prefer to use the technology in habitual speaking condi-

tions.

3.2.1 Vowel articulation

Although the common view of speech intelligibility is that consonants contain

most of the information-bearing elements in speech, there is accumulating ev-

idence that vowel characteristics contribute heavily to speech intelligibility

deficits [39, 40, 41, 42, 43]. In the Mayo studies too, the perceptual dimen-

sion distorted vowels was a prominent component of the clusters associated

with several different dysarthrias (e.g., spastic, ataxic, hyperkinetic, spastic-

flaccid). A common finding across studies of acoustic characteristics is that
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speakers with motor speech disorders often produce individual movements

or changes in overall vocal tract shape with reduced displacements and ve-

locities (see Weismer [44]; Table 7.3). This often results in their having a

compressed phonetic working space for speech production. Vowel formant

frequencies and characteristics of formant transitions may therefore serve

respectively as static and dynamic indices of this space.

Formant specification can be used to make inferences about the vocal tract

configuration. There is a rich tradition of using vowel formant frequencies as

an index of the vocal tract shape [45, 46]. They form a useful low-dimensional

description of vowels, and their relationships to vowel articulation are fairly

well understood: (1) advancement of the tongue from a posterior to anterior

location within the vocal tract results in an increase of the second formant

(F2) frequency and a decrease of the first formant (F1) frequency; (2) lower-

ing of the tongue from high to low positions within the vocal tract increases

F1; and (3) elongation of the vocal tract by lip protrusion and/or lowering

of the larynx tends to result in a decrease of all formant frequencies. In

other words, the F2−F1 difference can be interpreted as tongue advance-

ment/retraction and the F1 value as a measure of tongue height.

The most frequently reported abnormalities of vowel production in speak-

ers with dysarthria include:

• large deviations in formant frequencies : Watanabe et al. [47] measured

F1 and F2 for the five Japanese vowels in 5 men with ALS and 5 normal

subjects; they found F1 values for /i/, /u/ to be significantly higher

than normal, and F2 values for /i/, /e/ to be significantly lower than

normal.

• centralization of formant frequencies : Ziegler and von Cramon [48]

measured F1 and F2 for three German vowels, produced by 8 male

subjects with closed head trauma and found that the vowel articulation

was characterized by a centralized formant pattern – convergence of fre-

quencies to formant targets for /@/. More recently, Sapir et al. [49] have

proposed formant centralization ratio (FCR) as an alternative metric

to vowel space area (VSA; see next item below) for reliably distinguish-

ing between dysarthric and unimpaired speech (“probably because of

reduced sensitivity to inter-speaker variability and enhanced sensitivity

to vowel centralization”).
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• change in vowel space area: Turner et al. [41] measured formant fre-

quencies for the four ‘corner’ vowels (/i/,/æ/,/A/,/u/) of English in 9

subjects with ALS and 9 age- and gender-matched controls. The area

of the vowel quadrilateral in the F1-F2 plane was calculated at three

different speaking rates (habitual, fast, slow) and the dysarthric speak-

ers were found to exhibit smaller corner vowel space areas (CVSA)

and less systematic changes in CVSAs as a function of speaking rate.

It was hypothesized that lax vowels may be relatively unaffected by

dysarthria, owing to the reduced vocal tract shapes required for these

phonetic events. Tjaden et al. [50] studied the lax vowel space areas

(LVSA) – vowel space area for the lax vowels (/I/,/E/,/U/) – at three

different speaking rates (habitual, fast, slow) for speakers with ALS,

speakers with Parkinson’s disease (PD), and healthy controls. LVSAs

for speakers with ALS but not speakers with PD differed from those

for the appropriate control group. Thus, only the results for the PD

group support the hypothesis that LVSAs for speakers with dysarthria

should be similar to those for neurologically normal speakers. Com-

pared with the habitual condition, rate reduction was associated with

an expanded LVSA for all of the healthy speakers but for only about

half of the speakers with dysarthria. Other studies [51, 52] indicate that

for some speakers with dysarthria, a slower-than-normal rate and in-

creased vocal loudness are associated with an expanded CVSA relative

to habitual speech, with rate reduction more strongly affecting CVSA.

The relationship between vowel space area and perceptual impressions

of intelligibility for speakers with dysarthria has also been explored, but

the strength of the relationship varies among studies [41, 52, 53, 54] and

one study found no relationship between vowel space and perceptual

impressions of intelligibility [55].

• shallower formant slopes and greater inter-speaker formant transition

variability : In terms of dynamic articulatory behavior, formant transi-

tions (as indexed by formant slopes, and particularly that of F2), have

been the focus of most studies. Weismer et al. [56] showed that the F2

slope, calculated for the rapidly changing segment of F2, was quite uni-

form across neurologically normal speakers. Weismer et al. [57] found

in a study of 25 men with ALS and 15 controls that the former (a) pro-
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duced formant transitions having shallower slopes than transitions of

normal speakers, (b) tended to produce exaggerations of formant tra-

jectories at the onset of vocalic nuclei, and (c) had greater inter-speaker

variability of formant transition characteristics than normal speakers.

Kent et al. [40] found a moderately high correlation (a Spearman rank-

order correlation coefficient of 0.86) between speech intelligibility on

a single-word identification test and the average second-formant (F2)

slope of selected test words, for a group of 25 men and 10 women with

ALS. Some other studies have also demonstrated a strong relationship

between speech intelligibility and average F2 slope [58, 59, 60, 61]. More

recently, Kim et al. [42] have found that distributional characteristics

of acoustic variables, such as F2 slope, could be used to develop a quan-

titative metric of severity of speech motor control deficits in dysarthria,

when the materials are appropriately selected.

The acoustic-articulatory formant relationships, although useful, come with

an associated challenge: formant frequencies vary with the length of the vo-

cal tract, and therefore with the speaker’s age and gender. The formant

frequency patterns for a particular vowel as produced by a man, woman, and

child are not identical; and this dependence/variation hinders the compari-

son of formant data from speakers representing different age-gender combi-

nations. Secondly, the interaction between speech acoustics and perception

is complex. As there are multiple cues to vowel distinction (e.g., vowel dura-

tion, formant frequency variation, fundamental (F0) frequency differences),

a particular acoustic dimension will usually not be able to account for all the

variance in listeners’ judgments.

3.2.2 Consonant articulation

The impression of imprecise consonants is common to nearly all perceptual

types of dysarthria identified by Darley et al. and presumably is influenced

by a range of anomalies of consonant production (e.g., omissions, substitu-

tions, distortions). Consonants are quite diverse in their perceptual, acoustic,

and physiologic properties. A useful distinction can be made between sono-

rant and non-sonorant consonants: the former (liquids, glides, nasals) can be

described by patterns of formants and antiformants in either steady-state or
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transitional segments. Hence, the data are similar to those for vowels. The

latter (stops, affricates, fricatives) involve some kind of frication event: a

burst or transient noise (stops), a brief noise interval (affricates), or a longer

noise interval (for fricatives). No single acoustic measure, or even a small set

of measures, is adequate for the purpose of describing all consonants. How-

ever, there is a possibility that select attributes are correlated with neurologic

impairment and severity of speech disorder. Most published information on

consonant production in dysarthria has focused on non-sonorants, and the

acoustic variables that have been usually studied are the Voice Onset Time

(VOT) and spectral moments. These are discussed in more detail next.

Voice Onset Time

Voice Onset Time (VOT) has been the subject of numerous investigations

of both normal and pathological speech, largely on the assumption that this

acoustic interval between the burst and the onset of periodic energy corre-

sponds to the physiological interval between the release of the consonantal

constriction and the onset of vocal-fold vibration. Hence, VOT is a possible

index of intersystem coordination or timing. It is typically measured from

the burst to the first full glottal pulse of the following vowel. VOTs are

usually in excess of 35 ms for voiceless stops, and less than 20 ms for voiced

stops. Affricates have greater VOTs than those observed in stops of the same

voicing status.

VOT abnormalities, especially those in a region in which the voicing char-

acteristics of the sound are ambiguous (e.g., between 20 ms and 40 ms for

stops), may be a component of imprecise consonants.

VOT has been studied both for identifying subtypes of dysarthria and for

investigating the relationship between VOT values and speech intelligibil-

ity. Kent, Netsell, and Abs [62] reported that lengthening of segments is a

fundamental property of ataxic dysarthria, and severe dysarthric speech was

marked by increased durations of all segments, including VOT. Caruso and

Burton [63] compared VOT values in patients diagnosed with ALS, with eight

age-matched controls. They found no significant differences among the mean

VOTs of the six stop consonants, but the variability of VOT was greater in

the ALS group for all consonants except /p/. Morris [64] measured VOT for

voiceless stops (/p/,/t/,/k/) in twenty speakers with dysarthria: five spas-

24



tic, five flaccid, five ataxic, and five hypokinetic. He found that mean VOT

values increased as the position of occlusion moves posteriorly, with much

overlap of values among the three consonants. He also found that the VOTs

produced by the spastic dysarthrics for /t/ were significantly shorter than

those produced by the flaccid and ataxic dysarthrics. This result is simi-

lar to that of Hardcastle, Morgan Barry and Clark [65], who reported that

spastic patients produce shorter VOTs than normally speaking control sub-

jects. Weismer [66] and Kent and Rosenbek [67], on the other hand, observed

unusually long VOT durations in spastic dysarthria. Morris additionally re-

ported that patients with flaccid and ataxic dysarthria exhibited significantly

greater VOT variability than those with spastic and hypokinetic dysarthria.

In the case of the flaccid dysarthria group, the inter-speaker VOT variability

was large whereas intra-speaker VOT variations were similar to those pro-

duced by spastic and hypokinetic dysarthrics. In contrast, the speakers with

ataxic dysarthria exhibited not only inter-speaker but also intra-speaker VOT

variability. Ackermann and Hertrich [68] have found similar results showing

that there is great VOT variability among ataxic patients.

Spectral Moments

A natural step in the study of non-sonorant articulation is characterization

of the noise. One would then expect the spectra of stop bursts and fricative

noises to be a valuable source of information. However, there is little liter-

ature concerning spectral analysis of consonant production in motor speech

disorders. The lack of such studies can be explained by considering the mea-

surement issues in quantifying consonant noise spectra: these spectra are

typically multi-peaked, with energy spread widely throughout the frequency

range, and there is no generally accepted means of summarizing noise spectra

as a small number of quantitative indices.

Some investigators have used a categorical system to measure spectral

shape, wherein spectral templates related to place of articulation are used

to categorize consonant spectra [69, 70]. Shinn and Blumstein [71] demon-

strated the use of the Stevens and Blumstein [69] template system in under-

standing stop consonant production in aphasia, but little other work has been

done in this area. The application of the template system to persons with

motor speech disorders is very time-consuming, requiring a human observer
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to generate and classify the spectra on an individual basis.

Forrest et al. [72] developed a quantitative, observer-free approach to mea-

surement of consonant noise spectra: the spectrum is treated as a statistical

distribution that can be described in terms of its mean, variance, skewness,

and kurtosis – the first four moments. The mean quantifies the central ten-

dency of the energy in the spectrum and appears to be sensitive to certain

kinds of fricative misarticulation. The most likely deviation in dysarthric

samples is a reduction of the first moment [73]. McRae et al. [53] used the

spectral mean to show a reduction in articulatory working space, in people

with PD compared with age-matched control subjects. There also appears

to be some relationship between “articulatory precision” (as obtained from

perceptual ratings) and the spectral mean: Tjaden and Turner [74] compared

fricative spectra in the speech of speakers with ALS and neurologically nor-

mal controls. They showed that a significant amount of variance in listeners’

perceptual judgments was determined by the difference in spectral means of

/s/ and /S/ (however, McRae et al. [53] and Tjaden and Wilding [52] did not

find this relationship to be strong). The second moment (variance) expresses

the distribution of spectral energy around the mean, and has been found

to be useful for differentiating place of articulation for fricatives produced

by neurologically healthy adults [75] and children [76]. The third moment

(skewness) is a measure of the degree to which the spectral energy is tilted

towards low or high frequencies; and the fourth moment (kurtosis) expresses

the degree to which the spectrum has sharp peaks or is relatively flat.

3.3 Drawbacks of the Mayo Clinic System and the Call

for a New Approach

In spite of the obvious heuristic value of the Mayo studies, the framework of

the system is also constraining. One limitation is the assumed independence

of the 38 perceptual dimensions. It is now known that these dimensions

are neither pyschophysically uniform nor independent [77]. Rather, they are

different in kind, are often interdependent, and are sometimes hierarchical.

Secondly, the notion that “speech pathology reflects neuropathology” has

been responsible for the continued use of diagnostic tests in the speech clinic

that emphasize classic signs of neuropathology in the orofacial system, rather
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than systematic evaluation of the speech production deficit. Contrary to the

Mayo perspective, the classic symptoms of certain neurological diseases do

not necessarily appear to account for deviant speech production characteris-

tics: for instance, Neilson and O’Dwyer [78, 79] showed that electromyograms

obtained from orofacial structures in adult speakers with athetoid cerebral

palsy and dysarthria were as stable across repetitions as those obtained from

neurologically normal speakers. Thirdly, the Mayo Clinic system has culti-

vated a scientific concern with oromotor, nonverbal performance of persons

with motor speech disorders. However, there is little evidence that such a

concern has produced insights to the speech production disorder in dysarthria

of speech. Weismer [80] has reviewed the 40-year history of empirical work in

this area, and concluded that there is no compelling case for conducting the

non-speech evaluations, if one is interested in understanding the speech pro-

duction deficit. Fourthly, one can question the effectiveness, reliability and

validity of the Mayo Clinic system, especially when used by different groups of

raters. Zyski and Weisinger [81] attempted to replicate the ‘localizing’ finding

of Darley et al. by blinding graduate students and trained speech-language

clinicians to patients’ neurological diagnosis, and asking them to identify

dysarthria type based on perceptual analysis of speech samples. They found

the reliability and classification accuracy to be quite low for the system to

be suitable for clinical purposes. Zeplin and Kent [82] found that reliability

varied across speech tasks and perceptual features. Bunton et al. [83] found

that when average parameter ratings were in the mid-range rather than the

extremes, lower reliability was obtained. More recently, Fonville et al. [84] re-

ported on classification accuracy for neurologists and neurology trainees, and

Van der Graaf et al. [85] reported on classification accuracy for neurologists,

residents in neurology, and speech therapists: both studies found the accu-

racy to be quite low for classification by perceptual judgment alone. Finally,

it is very likely that the typically large inter-speaker variability observed in

almost any study of a particular perceptual type of dysarthria is due, at least

partly, to variations in severity of speech disorder. In the original Mayo Clinic

studies, there was considerable overlap in perceptual characteristics, across

the types of dysarthria. The Mayo Clinic system does not address the pos-

sibility that variation in speech severity within a particular dysarthria type

could explain as much variability in physiological, perceptual, and/or acous-

tic data as variation across dysarthria types. In fact, Kim et al. [86] found
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that classification accuracy (using spectral and temporal acoustic measures)

by dysarthria type was typically worse than by disease type or severity level,

and concluded that when severity is indexed by speech intelligibility scores,

the measure is equally or more explanatory of variation in acoustic measures

of speech as is the perceptual dysarthria type.

Given the above, and their observation that the existing literature on

speech production characteristics in speakers with dysarthria suggests no-

table similarities across speakers with different disease and dysarthria types

(e.g., slower-than-normal speaking rates, compressed vowel space, reduced

formant transitions and articulatory velocities, reduced phonetic contrasts,

etc.), Weismer and Kim [87] have argued for abandoning the Mayo Clinic’s

classification-based approach in favor of a taxonomy-based approach to the

study of motor speech disorders. They propose that it is reasonable to ex-

pect the various neurological diseases to produce a core of similar speech

symptoms, along with some set of symptomatic differences that distinguish

the various types of motor speech disorders: “To use a statistical metaphor,

these differences may be considered as the residuals of the model fit to the

core symptoms.”

3.4 Dysarthria and Automatic Speech Recognition

In this section, some previous studies on the performance of ASR systems for

speakers with dysarthria are reviewed; and acoustic variability is discussed

from the perspective of ASR system design: previous studies, and the need

for addressing variability in acoustic modeling.

3.4.1 Previous studies

Only a small number of studies so far have investigated a variety of acoustic

modeling techniques in terms of their usability for recognition of dysarthric

speech. Ferrier et al. [88] examined the relationship between speech intelligi-

bility level and ASR accuracy (for the DragonDictate system) by analyzing

repeated recordings of the Pledge of Allegiance from 10 speakers with spastic

dysarthria due to cerebral palsy. Results indicated that speech intelligibility

ratings were generally positively correlated with ASR accuracy for the same
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reading passage over multiple trials. Perceptual review of the recordings

indicated that speakers with more consistent articulatory productions had

higher ASR accuracies. Chen et al. [89] studied the speech of a subject with

intelligibility (as rated by human listeners) of only 15%, and found that after

ten iterations of each word in a ten-word vocabulary, automatic word recog-

nition accuracy was raised to 90%. Deller, Hsu and Ferrier tested dynamic

time warping [90] and HMMs [91]. Polur and Miller studied the develop-

ment of HMM-based small vocabulary (eight repetitions each of ten digits

and fifteen ‘command’ words in English) SD systems for three male subjects

subjectively classified by a trained clinician as moderately dysarthric [92, 93].

They found that an ergodic HMM with a slight left-to-right character (called

a transition-interpolated HMM from hereon) provides lower WER than a

standard left-to-right HMM, apparently because the transition-interpolated

HMM is able to capture outlier events (e.g., syllable repetitions, phone in-

sertions, pause insertions) as a backward or nonlinear progress through the

intended word. The benefit of using ergodic modeling over left-to-right mod-

eling in distorted speech applications with disruption events, pause events,

and limited training data has also been noted earlier by Deller, Hsu and

Ferrier [91]. Jayaraman and Abdelhamad tested an automatic neural net-

work (ANN) [94], while Hasegawa-Johnson et al. tested support vector ma-

chines [95]. Polur and Miller demonstrated improved performance using a

hybrid ANN/HMM [96].

Fewer studies exist on model adaptation for dysarthric speech: Raghaven-

dra et al. [97] compared recognition accuracy of an SA system and an SD

system. They found that the SA system adapted well to the speech of speak-

ers with mild or moderate dysarthria, but the recognition scores were lower

than those for an unimpaired speaker. The subject with severe dysarthria

was able to achieve better performance with the SD system than with the SA

system. These findings were also supported by Rudzicz [98] who compared

the performance of SD and “SA” systems on the Nemours database [99]

by varying independently the amount of data for training and the number

of Gaussian components used for modeling the output probability distribu-

tions. The “SA” technique implemented is not speaker adaptation in the

conventional sense: it uses the parameter values for the SI system as the

starting point to train HMMs for a particular dysarthric speaker. In a train-

ing algorithm without regularization or constraint terms, it is possible for a
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system of this type to over-train, resulting in loss of accuracy on test data

from the same speaker, and Rudzicz’s results suggest that such over-training

may have occurred in some cases. He further concluded that there was not

enough data in the database to represent intra-speaker variation.

While these studies had reasonably good ASR accuracies, it should be

noted that they all utilized corpora with very small vocabularies, often to

control assistive technology such as environmental control systems. Re-

cently, Sharma and Hasegawa-Johnson [100] investigated the development

of medium vocabulary HMM recognizers for dysarthric speech of various

degrees of severity with the following aims: (1) to test the performance

of MAP-adapted systems relative to SD systems, for various degrees of

dysarthria severity, (2) to test the performance of an SD system employ-

ing transition-interpolated HMMs relative to an SD system using strictly

left-to-right HMMs, (3) to test the performance of a MAP-adapted system

with transition-interpolated HMMs relative to an SD system having strictly

left-to-right HMMs and, (4) to see if the results in the above three cases

are essentially a function of the speaker’s dysarthria severity. They found

that performing transition-interpolation generally worsens recognition per-

formance when compared to left-to-right HMMs. Performing both MAP

adaptation and transition-interpolation results in higher recognition accuracy

compared to the SD system with left-to-right HMMs, but adaptation-only

systems have still better performance. This implies that state-transitions

not accounted for in left-to-right HMMs do not capture (or capture rather

poorly) the outlier events that differentiate dysarthric speech from unim-

paired speech at the sub-phone level. The most interesting outcome of their

study was that for subjects with very severe dysarthria, MAP adaptation was

able to achieve substantial improvement in recognition accuracy, compared

to the SD systems. This finding is significant in that it is contrary to the

conclusions of previously published studies. These results therefore suggest

that the severity of dysarthria as quantified by the subject’s intelligibility

rating is not a sufficient indicator of the relative performance of SD and SA

systems.
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3.4.2 Acoustic variability due to dysarthria characteristics:
Impact on ASR

Generally speaking, acoustic variability has a substantial impact on ASR

accuracy. Parker et al. [101] found the consistency of phonetic representa-

tion over time to be crucial for accurate recognition. Excessive instance-to-

instance intra-speaker variability hinders the stabilizing of parameter values

for the acoustic model, in the ASR training stage. The ASR accuracy goes

down when the utterance being decoded is quite ‘far’ from the representation

learned by the ASR system (as reflected by the learned model-parameters’

values) for it.

One of the first studies on acoustic variability was performed by Kent et

al. [62]. They examined the acoustic characteristics of speakers with ataxic

dysarthria. Speakers with dysarthria were found to exhibit increased intra-

speaker variability (though not consistently) in lax vowel segment durations,

compared to controls – especially the ones who had more severe dysarthria.

Kent et al. [102] found in their study of 14 speakers with ataxic dysarthria,

significant intra-speaker variability for the measures of F0, energy maxima

and minima across repeated syllables, and for syllable duration. Ziegler et

al. [103] studied syllable timing in speech of speakers with dysarthria due

to traumatic brain injury (TBI) or cerebro-vascular accidents (CVA). They

found that more severely impaired individuals demonstrated greater intra-

speaker variability on syllable duration, than controls and speakers with mild

dysarthria.

Blaney and Wilson [104] tried to explain the source of intra-speaker vari-

ability for dysarthric (3 individuals with ataxic dysarthria) and normal (6

age- and gender-matched controls) speakers, and to identify its relationship

with ASR accuracy (for the DragonDictate, version 3.00 ASR system). Vari-

ability of acoustic measures (VOT, vowel duration, fricative duration, word

stem duration, vowel formant frequencies) was determined using the mean,

standard deviation and coefficient of variability (CoV = standard devia-

tion/mean) values. Significant intra-speaker variability was noted for speak-

ers with dysarthria, with regards to VOT for voiced plosives, vowel dura-

tion, and fricative duration. Speech from speakers with moderate dysarthria

exhibited greater variability across all acoustic measures, compared to the

speaker with mild dysarthria and the controls. In addition, minimal-pair
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categories were not preserved (merging of acoustic space, and violation of

minimal-pair contrasts) and timing discrepancies were observed for word

stem durations. Finally, some correlations were found between ASR accu-

racy and variability in VOT, vowel duration and fricative duration; but the

authors noted that the small number of tokens may have contributed to the

limited number of correlations.

More recently, Fager [105] investigated the durations of single words and

sound types with acoustic analysis as well as the variability of word durations

of ten participants with dysarthria due to TBI and ten control participants.

The study also examined the relationships between word intelligibility and

word duration, and between word intelligibility and variability for the partic-

ipants with TBI. Results showed statistically significant differences on word

and sound type durations between the dysarthric and control participants.

Specifically, a pattern of doubling or near-doubling of durations was con-

sistent across word and sound type durations. Extraneous features were

identified from the acoustic signals of the dysarthric speakers and included

pre-vocalizations, insertions, omissions, substitutions, and voicing of voice-

less consonants; however, there was a lack of consistency in the occurrence

of these features. When controlling for these features, the word and sound

type durations remained significantly greater for the dysarthric compared

to the control participants. Differences existed in standard deviations but

not the CoV between dysarthric and control speakers. There was no corre-

lation between word intelligibility and word duration or word intelligibility

and variability. Fager concluded that “investigations with larger number of

individuals with a wide range of dysarthria severity levels is warranted be-

fore a clear need to attempt to account for variability in (A)SR algorithms

is identified.”

3.5 Conclusion

From the literature reviewed so far, at least one thing is clear: speech pro-

duction in speakers with dysarthria exhibits certain phenomena that do not

fit current theories of unimpaired speech production. Large-scale studies

of acoustic characteristics of motor speech disorders, and especially of how

they are similar or different (see Section 3.3), within and across dysarthria
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or disease types, have not been undertaken; and a comprehensive theory of

acoustics of motor speech disorders (or perhaps, one that explains character-

istics of both unimpaired and pathological speech) has not been developed

yet. In a perfect world, such a theory would provide crucial knowledge for

ASR system design, for speakers with dysarthria. Regardless of the availabil-

ity of such a theory, and given the findings of the studies discussed above,

there are aspects of ASR system design that beg discussion. Some of these

are briefly discussed below:

Firstly, the ASR system for speakers with dysarthria needs to handle

the reduction in acoustic working space. We have seen that this reduction

amounts to overlapping of classes in the frequency domain (as indicated by

the reduction in vowel space area). So, the feature-space of the acoustic

representation would probably need to be a transformation of the frequency

domain where this overlap is absent and separability (at least from the per-

spective of the acoustic model’s classification ability) of observations/features

is restored. We have also seen that duration measures are markedly differ-

ent in speech of speakers with dysarthria as compared to that of controls.

If the feature-extraction module in the ASR system involved compacting a

sequence of successive intermediate observation ‘frames’ into a final feature-

space, then one other question worth investigating would be whether such

a compaction scheme needs to, or should, account for these durational de-

viations. Yet another project to undertake can be the search for a feature

extraction or feature transformation scheme, that absorbs the ill effects of

excessive intra-speaker variability on stabilization of model-parameters’ val-

ues that some of the above mentioned studies have discussed. Of course,

reduction in the acoustic space and the resultant class-overlapping in feature-

space is (most likely) not entirely attributable to disordered speech produc-

tion: there have been studies that support and oppose the potential role

speech perception plays here. For example, Tjaden and Sussman [106] stud-

ied anticipatory coarticulation and its inter-speaker variation in CVC words

produced by controls and speakers with dysarthria, and found that “lis-

teners appear to be tuned to similar types of information in the acoustic

speech stream irrespective of the source or speaker, and any perceptual ef-

fects of inter-speaker variation in coarticulation are subtle.” Weismer and

Martin [107] on the other hand argue that “there is much in the speech

perception literature to suggest that the listener has more trouble with a
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disordered speech signal than would be predicted solely from the mismatch

between ‘normal’ and degraded acoustic-phonetic events.” Work by Liss and

her colleagues [108, 109, 110, 111] also considers speech perception issues to

be a critical component of an adequate theory of motor speech disorders.

Secondly, similar research questions can be asked for the acoustic model-

ing framework itself: issues of consistency of phonetic representation, class

separability, and durational discrepancies may need to be addressed by the

mathematical model that one uses (if not the HMM formalism), if the acous-

tic feature extraction does not address the same.

Thirdly, the ASR system designer would also need to address the pos-

sible presence of Fager’s extraneous features discussed above. One possi-

ble approach to account for such insertions, omissions, substitutions, and

dysarthria-related “dysfluencies” (e.g., intra-word pauses) could be to model

them in the ASR lexicon or in some sort of pathological “language” model.

Each of these questions is quite hard to answer, but is also a potentially

promising avenue of ASR research. Although, there is no a priori reason to

abandon/explore one or some of these questions, attempting to answer them

in a single effort would be undoubtedly very challenging. The study in this

dissertation has chosen to investigate ASR system development research by

addressing intra-speaker variability in the acoustic model, on account of the

following:

• The deviant phenomena that plague speech acoustics in speakers with

dysarthria are mutually exclusive in subsets of this population. As

such, it would be difficult to develop an ASR system development al-

gorithm/recipe for dysarthria in general. A more speaker-specific ap-

proach is required, at least until the clinical research community obtains

(and achieves consensus on) an adequate theory of acoustics of motor

speech disorders. Addressing intra-speaker acoustic variability in the

meantime, then, is worth attempting.

• Weismer and Kim [87] have recently proposed a starting point for the

development of that adequate theory in the form of the hypothesis

that “some normal bounds of variability can be determined for se-

lected movement and/or acoustic measures from word and/or sentence

productions, and that when the measure is made for a speaker with

dysarthria, its distance from this normal range of variability will have
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some meaning. That distance is hypothesized to index something about

the speaker’s speech motor control capabilities.” It is assumed that this

hypothesis is worthy of pursuit by the clinical research community.

• Since we have already chosen to focus on developing SA systems for

this population (because of the general inability of the subject to pro-

vide sufficient data to train acoustic models from scratch, as described

in Chapter 1), there is the constraint of using the feature representa-

tion from the initial SI system. Hence, between feature-representation

design and acoustic modeling, we choose the latter.

Chapter 5 presents the proposed approach for modeling Weismer and Kim’s

“distance from normal range of variability.”
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Chapter 4

THE UA-SPEECH CORPUS AND
PRELIMINARY EXPERIMENTS

This chapter describes the speech corpus used for the experiments performed

in this study, and presents results from some preliminary experiments. The

latter were conducted to determine whether speaker adaptation is a direction

worth pursuing for people diagnosed with dysarthria.

4.1 The UA-Speech Corpus of Dysarthric Speech

The studies reported in Chapters 2 and 3 either used (a) commercial off-

the-shelf ASR software (which have models trained from several hours of

unimpaired speech); (b) speech from four or fewer speakers; or (c) either

the Whitaker database [112] or the Nemours database [99]. The Whitaker

database contains 30 repetitions of 46 isolated words (10 digits, 26 alphabet

letters, and 10 ‘control’ words) and 35 words from the Grandfather pas-

sage produced by each of six individuals with cerebral palsy. The Nemours

database contains 10 sentences read by each of 20 different speakers, repre-

senting a wide range of speech pathology diagnoses; only a fraction of the

speakers show symptoms of spastic dysarthria.

To our knowledge, the first publicly available database suitable for train-

ing medium-vocabulary automatic dysarthric speech recognition for speak-

ers with high, moderate, low, or very low intelligibility is the UA-Speech

database, reported by Kim et al. in [113]. The UA-Speech corpus con-

tains recordings of 16 subjects informally diagnosed with dysarthria. Each

speaker recorded three blocks of words: each block contained the same 155

core words, plus 100 “uncommon words” that differed across blocks. The

core words included the 10 digits (“zero” through “nine”) – D, the 26 letters

of the international radio alphabet (“alpha, bravo, charlie,. . .”) – L, 19 com-

puter commands (“command, enter, paragraph,. . .”) – C, and the 100 most
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common words in the Brown corpus of written English (“is, it,. . .”) [114] –

CW. The uncommon words – UW – were selected from children’s novels dig-

itized by Project Gutenberg (e.g., Wizard of Oz, Peter Pan) to maximize

phoneme-sequence diversity. Digits and common words were primarily com-

posed of monosyllables, computer commands and radio alphabet letters of

bisyllables, and uncommon words of polysyllabic words (more than half of

the uncommon words were trisyllabic or longer). Each subject recorded a

total of 765 words, including 455 distinct words. Most of the subjects in the

corpus have spastic dysarthria (12 of the 16). This was done to generate

consistency in specific dysarthric characteristics. Intelligibility assessment is

described in [113].

Table 4.1 lists the speakers in the corpus along with their respective human

listener intelligibility ratings (in percent) and intelligibility categories. All

experiments in this study have made use of the UA-Speech corpus.

Table 4.1: Intelligibility characteristics of the speakers in the UA-Speech corpus

Speaker Average Intelligibility
Intelligibility (%) Category

M01 17 Very Low
M04 2 Very Low
M05 58 Mid
M06 39 Low
M07 28 Low
M08 95 High
M09 86 High
M10 93 High
M11 62 Mid
M12 7 Very Low
M14 90 High
M16 43 Low
F02 29 Low
F03 6 Very Low
F04 62 Mid
F05 95 High

More recently, Rudzicz et al. [115] have acquired the TORGO database of

dysarthric speech which includes aligned acoustic and articulatory data from

seven individuals diagnosed with cerebral palsy or ALS, as well as from age-
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and gender-matched control subjects. At the time of writing, this database

is available by contacting the authors.

The following section describes some preliminary experiments in acoustic

model adaptation for speech of speakers with dysarthria.

4.2 State-Transition Interpolation and MAP

Adaptation

This study is reported in [100]. We investigated the development of medium

vocabulary HMM recognizers for dysarthric speech of various degrees of

severity with the following aims: (1) to test the performance of MAP-adapted

systems relative to SD systems, for various degrees of dysarthria severity, (2)

to test the performance of an SD system employing transition-interpolated

HMMs relative to an SD system using strictly left-to-right HMMs, (3) to

test the performance of a MAP-adapted system with transition-interpolated

HMMs relative to an SD system having strictly left-to-right HMMs and, (4)

to see if the results in the above three cases are essentially a function of the

speaker’s dysarthria severity.

Transition Interpolation: Figure 4.1 illustrates the topologies of strictly

left-to-right (LR) and transition-interpolated (TI) HMMs with 3 emitting

states. If A = {aij} is the N × N transition probability matrix for an N-state

HMM, then we have for an LR HMM: for each state i, 0 < aii , ai,i+1 < 1;

aii + ai,i+1 = 1 and aij = 0 for j 6= i, i + 1. In other words, each emitting

state has only two possible state-transitions: given the current state, the

HMM either remains in the same state or moves into the succeeding state;

it will not jump over states or go to a preceding state.

The TI model is an LR model which has non-zero transition probabilities

for jumps and transitions to preceding states from a particular state (for

emitting states). These probabilities are, however, small compared to self-

transition and next-state-transition probabilities. A TI HMM is initialized as

follows: for each emitting state i, aij = ε for j 6= i, i+ 1 where 0 < ε << 1;

aii , ai,i+1 >> ε and
∑N

j=1 aij = 1. After this initialization, the transition

probability matrix is re-estimated for SD systems using the standard Baum-

Welch algorithm, and for MAP-adapted systems using the MAP variant of

the Baum-Welch algorithm.
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Figure 4.1: Difference between strictly left-to-right and transition- interpolated

HMM topologies

These experiments utilized speech of 7 subjects from the UA-Speech database:

M09, M05, M06, F02, M07, F03, and M04. For building the MAP prior SI

system, the unadapted HMMs were trained on speech from the TIMIT cor-

pus.

Table 4.2 lists the characteristics of the various system configurations that

were studied: SD stands for speaker-dependent, MAP for MAP-adapted;

LR implies use of strictly left-to-right HMMs, TI for transition-interpolated

HMMs; ‘m’,‘v’,‘w’,‘t’ respectively denote means, variances, mixture-component

weights and transition probabilities.

Table 4.2: Summary of ASR system configurations

System (Type) HMM Parameters adapted

C00 (SD) LR —
C01 (SD) TI —

C11 (MAP) LR m
C12 (MAP) LR m,v
C13 (MAP) LR m,v,w
C14 (MAP) LR m,v,w,t
C15 (MAP) TI m,v,w,t
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These systems were developed for each of the seven speakers and employed

word-internal, context-dependent triphone HMMs, with three hidden states

and observations modeled as mixture-of-Gaussians. Configuration C00 is

the ‘standard’ SD system using LR HMMs, and is the baseline configuration

for this study. For configurations C11 through C15, the SI systems trained

on TIMIT employed left-to-right HMMs. For systems C15, the transition

interpolation was performed after obtaining the SI TIMIT-trained left-to-

right HMMs and before adaptation to the UA-Speech speaker’s data: the

original non-zero entries in the transition probability matrices were scaled

down so that the sum of each row was unity after changing the zero-entries

to ε. For each speaker, all of blocks 1 and 3 were used as training data

(systems C00, C01) or adaptation data (systems C11-C15) and all of block

2 was used for testing. The SI system was trained on all of TIMIT’s training

data and was tested on speech of 32 randomly chosen speakers from its test

data. The features extracted from the speech waveform were comprised of 12

PLP coefficients [7] for 25 ms Hamming-windowed segments obtained every

10 ms, plus the energy of the windowed segment. ‘Velocity’ and ‘Acceleration’

components were also calculated for this 13-dimensional feature, which finally

results in a 39-dimensional acoustic feature vector.

The measure used for assessing the performance of the developed recogniz-

ers is the fraction of task-vocabulary words correctly recognized (in percent),

defined in Equation 4.1. For isolated word recognition, it is also the word

recognition accuracy (WRA).

WRA =
# words correctly recognized

vocabulary size(# words)
× 100 (4.1)

For each configuration, the number of Gaussian components in the state-

specific observation probability densities was increased (in an iterative man-

ner) in powers of 2, from 1 to 32 components (for C00 and C01) or 64 compo-

nents (for C11-C15). In order to avoid over-tuning, the number of Gaussian

components was constrained to be the same across all speakers. For the SD

systems (C00 and C01), results are for HMMs with 2 Gaussian components

per probability density. For the MAP-adapted systems (C11-C15), results

are for HMMs with 32 Gaussian components per probability density: while

training the SI TIMIT system, it was found that the phone recognition accu-

racy increased monotonically when going from 1 to 32 Gaussian components
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but decreased when going from 32 to 64 components.

Tables 4.3 and 4.4 list the WRA scores for the various system configura-

tions developed. The speakers are listed in decreasing order of intelligibility

rating.

Table 4.3: WRA scores for each speaker’s configurations C00-C12

System Configuration
Speaker C00 C01 C11 C12

M09 52.04 47.3 57.1 62.1
M05 35.52 33.7 31 39.4
M06 34.01 36.1 38.6 38.5
F02 35.06 32.8 20.8 26.9
M07 43.87 40.7 32 35.9
F03 12.61 11.3 17.4 22.2
M04 2.82 1.7 3.7 4.2

Table 4.4: WRA scores for each speaker’s configurations C00, C13-C15

System Configuration
Speaker C00 C13 C14 C15

M09 52.04 66.4 65.8 64.2
M05 35.52 45.2 44 38.1
M06 34.01 40.7 40.1 39.2
F02 35.06 30.4 29.7 26.6
M07 43.87 43 41.8 35.9
F03 12.61 27.7 26.2 25.7
M04 2.82 4.2 3.8 3.1

We see that SD systems with left-to-right HMMs (C00) have higher recog-

nition accuracy than the SD systems with transition-interpolated HMMs

(C01), for all speakers except M06. System C11 for a particular speaker, with

adaptation of Gaussian means alone, performs either better or worse than

both systems C00 and C01 for that speaker. System C12 with adaptation of

Gaussian means and variances, has better recognition accuracy than both SD

systems, for all speakers except F02 and M07 (worse than both SD systems).

System C13 with adaptation of all parameters except transition-probabilities

has the highest recognition accuracy for all subjects except F02 and M07

(highest among MAP-adapted systems only). System C14, which adapts
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all parameters including transition probabilities, always performs worse than

the corresponding system C13, for all speakers. However, like system C13, it

has better recognition accuracy than both SD systems for all speakers except

F02 and M07. Finally, performing transition-interpolation and adaptation of

all parameters (system C15) worsens the performance to below that of the

corresponding system C14; additionally, C15 has better recognition accuracy

than both SD systems whenever the corresponding C13 (and C14) system

also performs better than them.
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Figure 4.2: WRA scores for various system configurations (the black circles

indicate speakers’ human listener intelligibility ratings)

These results are plotted in Figure 4.2 along with the human listeners’

intelligibility ratings of these speakers (the black circles). For speakers M09

and M05, system C13 with the best overall WRA score is still far from doing

as well as human listeners. For the remaining subjects, it has however been

able to do as well as or better than human listeners even when it performed

worse than the corresponding SD systems (C00,C01): in fact, for speaker

M06, it does better than human listeners when the SD systems do not.

Figure 4.3 plots, for all speakers, the WRA of system x (x ∈ {C01− C15}),
expressed relative to the WRA of system C00.

For speakers who have an intelligibility rating above 35% or below 25%,

the MAP-adapted systems generally do better than their SD counterparts.

System C01, with transition interpolation, performs worse than system C00

for all speakers except M06. The surprising result though is that for speakers
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Figure 4.3: Percentage change in WRA scores for various system configurations

relative to configuration C00’s WRA score

with highly severe dysarthria (F03 and M04), MAP-adapted systems have

substantially better recognition accuracies than their SD counterparts, when

previous studies have indicated that for such subjects, SD systems perform

better than speaker-adapted systems.

Conclusions : It was found that performing transition-interpolation gener-

ally worsens recognition performance when compared to left-to-right HMMs.

Performing both MAP adaptation and transition-interpolation results in

higher recognition accuracy compared to the SD system with left-to-right

HMMs but adaptation-only systems have still better performance. This

implies that state-transitions not accounted for in left-to-right HMMs do

not capture (or capture rather poorly) the outlier events that differentiate

dysarthric speech from unimpaired speech at the sub-phone level.

The most interesting outcome of our experiments is that for subjects that

have very severe dysarthria, MAP adaptation was able to achieve substan-

tial improvement in recognition accuracy, compared to the SD systems. This

finding is significant in that it is contrary to the conclusions of previously pub-

lished studies. These results therefore suggest that the severity of dysarthria

as quantified by the subject’s intelligibility rating is not a sufficient indica-

tor of the relative performance of speaker-dependent and speaker-adapted

systems.
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Chapter 5

MODELING MISMATCH WITH
BACKGROUND INTERPOLATION

In Chapter 2, some well-established techniques for adapting acoustic models

were reviewed. They have been shown to perform well in data-rich situations

but where the target populations were not drastically mismatched with that

of the training data. This should not come as a surprise, because these tech-

niques do not explicitly model the mismatch that exists between the speech

characteristics of the target speaker population and those of the population

used to train the to-be-adapted acoustic model. Of course, a model adap-

tation technique also requires substantial speech data to have good WER

performance.

There is a limit to the amount of speech data that can be acquired from a

speaker with dysarthria in order to train an ASR system for them – speaking

for long periods of time is very tiring for members of this population. Also,

in Chapter 3, it was seen that the acoustic characteristics are indeed very

different for unimpaired speech and speech of speakers with dysarthria. The

chapter ended with the suggestion that from the perspective of acoustic vari-

ability, one needs to explore a speaker-specific approach, for modeling the

distance from the range of variability observed in unimpaired speech.

Considering the parameters of an ASR acoustic model (AM), every AM

is a point in the space of AM parameters. Hence, if one wanted to obtain

an AM at some ‘distance’ from another AM, one would also need to ac-

count for a ‘direction’ in which to go searching for that new AM. This study

proposes to obtain a speaker-specific ‘background’ model and use that to

determine the search direction in the AM parameter space. After reaching

a suitable/desired point (AM) in this direction, adaptation is performed. In

this sense, the task of modeling population mismatch can be viewed as one

of designing a suitable prior AM for adaptation.

First, we define some notation that will be used in the remainder of this

chapter. Let Λ denote the AM parameter set for the system in vector
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notation (same as Λ in Equation 2.6). In this study, the AM is a set of

HMMs whose observation distributions are mixtures of multivariate Gaus-

sian densities with diagonal covariance matrices. So, for a system with

NM N -state HMMs with M Gaussians per state, Λ has as its dimensions

the initial state occupancy probabilities {πni }i, the transition probabilities{
anij
}
i,j

, mixture weights, mean vector components, and variance vector com-

ponents ({cnil, ~µnil,Σn
il}i,l respectively) — i, j ∈ {1, . . . , N}; l ∈ {1, . . . ,M};

n ∈ {1, . . . , NM}. Speaker adaptation is performed in two stages: first,

a model that accounts for the mismatch between speaker populations (see

Sections 5.1.1 and 5.1.2) is obtained; in the second stage, this model is used

as the prior or initial model (see Section 5.1.3) for the actual adaptation.

5.1 Background Interpolation: Formulation

5.1.1 Speaker background models

The Universal Background Model (UBM) is an effective and widely used

framework [116] in the field of speaker verification when speaker-models are

to be trained using limited per-speaker data. The UBM approach calls for

pooling together data for all speakers to train a background model as a first

step. This model is then adapted in a second stage, to each speaker using

that speaker’s data alone. Since speech from a large number of speakers is

used to train the UBM, it can be a model with a high parameter count and

still be mostly free from the risk of overfitting.

To develop a speaker-specific model of population mismatch, a speaker-

dependent background (SDB) model, ΛSDB, is first created by training an

HMM system using all speech of a particular speaker from the target pop-

ulation. This system is trained regardless of the actual words spoken in

each utterance. The SDB does not learn any patterns that can discrimi-

nate between phones/words. It is a model of the general characteristics of

the speaker from the target population. The intention behind using such a

model is to capture aspects of time-frequency variation that depend on the

speaker (rather than on what was spoken by him/her). As with the UBM,

the SDB can have a high parameter count since all speech from the speaker

is being used.
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5.1.2 Combining speaker-independent and
speaker-background models

Let ΛSI denote the SI system trained on speech from a population that is

very different from the target population in terms of speech characteristics.

In our case, this would be the population of unimpaired speakers.

The explicit modeling of mismatch in AMs is now motivated. Figure 5.1

plots a fictitious posterior probability of the model parameters given the

observations. Most algorithms for acoustic model adaptation start out with

ΛSI as the ‘prior’ for the parameter-set and try to reach a local maximum of

the posterior probability, obtained at Λ∗SI .
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Figure 5.1: Searching for a better local maximum of the posterior probability of

model

One can do something similar for the SDB from the target-population

speaker, i.e. the speaker with dysarthria (ΛSDB), and reach a local maximum

at Λ∗SDB. However, since the SDB does not learn any phone-discriminating

patterns, the posterior at Λ∗SDB is very likely to be much lower than that at

Λ∗SI .

In general, because of the population mismatch, ΛSI and ΛSDB will be

quite far away from each other in the AM parameter-space. However, this

large separation does not preclude the existence of an intermediate model

ΛIM which can reach a local maximum Λ∗IM such that the posterior at Λ∗IM
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is higher than that at Λ∗SDB as well as Λ∗SI . The ‘in-between’ model is

formulated as a linear interpolation between ΛSDB and ΛSI :

ΛIM = ∆ ·ΛSI + (I−∆) ·ΛSDB (5.1)

where ∆ = diag (δi)i is a P × P diagonal matrix such that 0 ≤ δi ≤ 1 ∀ i
(P being the dimensionality of the AM parameter-space); and I is the P -

dimensional identity matrix. The locus of ΛIM is the P -dimensional hyper-

cube, two of whose vertices are ΛSI and ΛSDB.

5.1.3 Intermediate model as prior for adaptation

In the second stage, adaptation is performed with ΛIM as the prior or to-

be-adapted model. One benefit of this two-stage approach is that once the

mismatch has been accounted for, one should be able to employ any particular

(classical) adaptation technique, be it MAP or MLLR or SMAP or EV.

5.2 Background Interpolation: An A Priori Empirical

Study

To check the validity of the interpolation approach described above, a simula-

tion was conducted for estimating the parameters of a mixture-of-Gaussians

distribution [117]. Figure 5.2 displays the true distribution, two 2-component

distributions that are obtained as local optima on the likelihood surface in

the parameter space, and the globally optimal 2-component distribution. All

learned distributions were estimated using the EM algorithm.

Figure 5.3 shows the likelihood contour plot for the same simulation, as

a function of the means of the estimated mixture distribution. Points L0
1

and L0
2 are the initial mean values for EM estimation, and converge to local

optima L∗1 and L∗2 respectively. The global optimum is indicated by G∗.

It can be seen that all points on the line-segment connecting L0
1 and L0

2

are interpolations between L0
1 and L0

2. If the interpolated point is very close

to L0
1, EM will converge to L∗1; if it is very close to L0

2, EM converges to L∗2.

However, if a suitable interpolation factor is chosen (an example of which

is shown in the figure), EM can reach a better optimum (which in this case
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Figure 5.2: Gaussian mixture distributions from the simulation study

happened to be the global optimum) than both L∗1 and L∗2.

5.3 Background Interpolated MAP Adaptation

(BI-MAP)

This section presents a MAP adaptation scheme utilizing the interpolated

speaker background model.

As mentioned earlier, the AM comprises HMMs whose observation distri-

butions are mixtures of multivariate Gaussian densities with diagonal covari-

ance matrices. So, for an N -state HMM with M p-dimensional Gaussians

per state, the parameters are {πi}i, {aij}i,j,
{
cil, ~µil,Σil = diag

(
σ2
ild

)}
i,l

—

i, j ∈ {1, . . . , N}; l ∈ {1, . . . ,M}; d ∈ {1, . . . , p}.
Conventional/classical MAP adaptation utilizes Dirichlet distribution pri-

ors for {πi}i, {aij}i,j, {cil}i,l and a Gamma-Normal distribution prior for

each
{
µild , rild = σ−2ild

}
pair. Ignoring constant terms, the overall prior for an

HMM is (λ denoting the parameter set for a single HMM):
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logG(λ) =
N∑
i=1

(ηi − 1) · log(πi) +
N∑
i=1

N∑
j=1

(ηij − 1) · log(aij)

+
N∑
i=1

M∑
l=1

(νil − 1) · log(cil)

+
N∑
i=1

M∑
l=1

p∑
d=1

[
(αil −

1

2
) · log(rild)− βildrild

]
−

N∑
i=1

M∑
l=1

p∑
d=1

τilrild
2

(µild − ρild0 )2

(5.2)

where ηi, ηij, νil, αil, τil, βild and ρild0 are the prior’s hyperparameters.

CombiningG(λ) with the maximum-likelihood (ML) auxiliary function [10],

the MAP auxiliary function for iteration u+1 of EM is obtained (as a function

of λ(u)):
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Q
(u+1)
MAP =

N∑
i=1

(
ηi − 1 +

K∑
k=1

γuki (1)
)
· log(πi)

+
N∑
i=1

N∑
j=1

(
ηij − 1 +

K∑
k=1

Tk−1∑
t=1

ξukij (t)
)
· log(aij)

+
N∑
i=1

M∑
l=1

(
νil − 1 +

K∑
k=1

Tk∑
t=1

γukil (t)
)
· log(cil)

+
N∑
i=1

M∑
l=1

p∑
d=1

[(
αil −

1

2
+

1

2

K∑
k=1

Tk∑
t=1

γukil (t)
)
· log(rild)− βildrild

]
−

N∑
i=1

M∑
l=1

p∑
d=1

[τilrild
2

(µild − ρild0 )2 +
rild
2

K∑
k=1

Tk∑
t=1

γukil (t) · (oktd − µild)2
]

(5.3)

where ~ot
k is the observation vector at time t from the kth observation se-

quence Ok = {~o1k . . . ~otk . . . ~oTk
k}; and γuki (t), ξukij (t), γukil (t) are respectively

the posterior state occupancy, state transition, and mixture-component occu-

pancy probabilities determined from iteration u (i.e., using λ(u)). Maximizing

Q
(u+1)
MAP gives us

π
(u+1)
i =

(ηi − 1) +
∑K

k=1 γ
uk
i (1)∑N

j=1 (ηi − 1) +
∑N

j=1

∑K
k=1 γ

uk
j (1)

a
(u+1)
ij =

(ηij − 1) +
∑K

k=1

∑Tk−1
t=1 ξukij (t)∑N

j=1 (ηij − 1) +
∑K

k=1

∑Tk−1
t=1 γuki (t)

c
(u+1)
il =

(νil − 1) +
∑K

k=1

∑Tk
t=1 γ

uk
il (t)∑M

l=1 (νil − 1) +
∑K

k=1

∑Tk
t=1 γ

uk
i (t)

µ
(u+1)
ild

=
τilρild0 +

∑K
k=1

∑Tk
t=1 γ

uk
il (t)oktd

τil +
∑K

k=1

∑Tk
t=1 γ

uk
il (t)

σ2
ild

(u+1)
=

2βild + τil(µ
(u+1)
ild

− ρild0 )2

(2αil − 1) +
∑K

k=1

∑Tk
t=1 γ

uk
il (t)

+

∑K
k=1

∑Tk
t=1 γ

uk
il (t) · (oktd − µ

(u+1)
ild

)2

(2αil − 1) +
∑K

k=1

∑Tk
t=1 γ

uk
il (t)

(5.4)

The prior’s hyperparameters are chosen such that (1) if there is no adapta-
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tion data, the HMM parameter set should correspond to the initial parameter

set; and (2) if there is an ‘infinite’ amount of adaptation data, the HMM pa-

rameter set should correspond/converge to its ML estimate [10]. Letting

λ0 ≡
{
{πi0}i , {aij0}i,j ,

{
cil0 , ~µil0 ,Σil0 = diag

(
σ2
ild0

)}
i,l

}
:

(ηi − 1) = πi0

(
M∑
l=1

τil

)
; (ηij − 1) = aij0

(
M∑
l=1

τil

)

(νil − 1) = cil0

(
M∑
l=1

τil

)

βild =
τilσ

2
ild0

2
, ~ρil0 = ~µil0 , αil =

τil + 1

2

(5.5)

Further, during implementation, τil are chosen to be a pre-specified con-

stant τ . The MAP update expressions then become:

π
(u+1)
i =

πi0Mτ +
∑K

k=1 γ
uk
i (1)

Mτ +
∑N

j=1

∑K
k=1 γ

uk
j (1)

a
(u+1)
ij =

aij0Mτ +
∑K

k=1

∑Tk−1
t=1 ξukij (t)

Mτ +
∑K

k=1

∑Tk−1
t=1 γuki (t)

c
(u+1)
il =

cil0Mτ +
∑K

k=1

∑Tk
t=1 γ

uk
il (t)

Mτ +
∑K

k=1

∑Tk
t=1 γ

uk
i (t)

µ
(u+1)
ild

=
τµild0 +

∑K
k=1

∑Tk
t=1 γ

uk
il (t)oktd

τ +
∑K

k=1

∑Tk
t=1 γ

uk
il (t)

σ2
ild

(u+1)
=

τσ2
ild0

+ τ(µ
(u+1)
ild

− µild0 )2

(2αil − 1) +
∑K

k=1

∑Tk
t=1 γ

uk
il (t)

+

∑K
k=1

∑Tk
t=1 γ

uk
il (t) · (oktd − µ

(u+1)
ild

)2

τ +
∑K

k=1

∑Tk
t=1 γ

uk
il (t)

(5.6)

The τ hyperparameter is a regularizer: it specifies the weight of the prior

information relative to that of ‘evidence’ (the observations).

BI-MAP utilizes the same prior as conventional MAP, i.e. Equation 5.2 is

still valid. The difference is that the starting/initial parameter set λ0 is now

an interpolation between the SI parameter set λI0, and the SDB parameter

set λD0 :
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πi0 = δi · πI
i0

+ (1− δi) · πD
i0

aij0 = δij · aIij0 + (1− δij) · aDij0
cil0 = δwil · cIil0 + (1− δwil ) · cDil0
~µil0 = δmil · ~µI

il0
+ (1− δmil ) · ~µD

il0

σ2
ild0

= δsil · σ2I

ild0
+ (1− δsil) · σ2D

ild0

(5.7)

where the δs are the interpolation factors (for the respective HMM parame-

ter) in the range [0, 1]. To give the same weight to the SDB prior relative to

the SI prior for all parameters for all HMMs in the model, one can fix all the

δs to be the same δ. This is the same as setting δi = δ ∀ i in Equation 5.1.

BI-MAP therefore has two types of regularizers: τ which determines the

prior vs. evidence weighting; and δ which determines the SI vs. SDB weight-

ing. The BI-MAP mean update, for instance, is:

~µ
(u+1)
il =

τI

τ +
∑K

k=1

∑Tk
t=1 γ

uk
il (t)

· ~µI
il0

+
τD

τ +
∑K

k=1

∑Tk
t=1 γ

uk
il (t)

· ~µD
il0

+

∑K
k=1

∑Tk
t=1 γ

uk
il (t)~okt

τ +
∑K

k=1

∑Tk
t=1 γ

uk
il (t)

(5.8)

where τI = δτ and τD = τ − τI = (1 − δ)τ . BI-MAP updates for other

parameters can be similarly obtained by using Equation 5.7 in Equation 5.6.
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Chapter 6

EXPERIMENTS

In this chapter, we report on adaptation experiments in which the prior

acoustic model is obtained as an interpolation of two models, to improve

speech recognition for speakers with dysarthria. Given the way background

interpolation was motivated, these are the first adaptation experiments of

this kind.

The main idea of these experiments is to obtain an acoustic model that

better captures the acoustic patterns in dysarthric speech. A search for such

more optimal acoustic models is performed starting at a point in the vicinity

of the usual SI model, in the parameter space. The starting point for this

search is chosen while accounting for speaker-specific speech characteristics,

and should in principle allow us to obtain a better local maximum of the

likelihood function.

Section 6.1 discusses some issues related to the implementation of BI-MAP

adaptation. Section 6.2 describes the experimental setup and the strategy

for evaluating recognition performance. Sections 6.3 and 6.4 present the

adaptation experiments performed and the results obtained.

6.1 Implementing BI-MAP Adaptation

All experiments in this study built acoustic models utilizing a 3-state HMM

for each context-dependent triphone. Data-driven state tying (using deci-

sion trees) was performed to accommodate data sparsity, as discussed earlier

in Chapter 2. All steps in the experiments (with the exception of model

interpolation) were performed using the HTK toolkit [12].
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6.1.1 AM-space dimensionality and Gaussian alignment

When re-estimating HMM parameters, HTK usually applies pre-specified

floors to variance and mixture weight parameters of Gaussian distributions:

variance estimates below a certain minimum variance are clamped to that

floor, and Gaussian components whose mixture weight falls below a certain

minimum weight are discarded from the corresponding mixture. Therefore,

the resulting acoustic model may not have the same number of unique Gaus-

sians as the one it was re-estimated from. This is a cause of concern if the

AMs to be interpolated, ΛSI and ΛSDB, do not have the same dimensional-

ity in the AM parameter space, after they have undergone their respective

re-estimation stages.

Secondly, even if one is fortunate enough to have the two AMs be of the

same dimensionality, there exists the issue of Gaussian alignment: before the

two AMs can be interpolated, it is required to know which Gaussian compo-

nent in one of the unique HMM states of ΛSI corresponds to which Gaussian

component in the corresponding HMM state of ΛSDB. The number of all

possible alignments is (M !)Ns , where M is the number of Gaussian compo-

nents per mixture (i.e., per HMM state) and Ns is the number of unique

HMM states in the AM. Considering all these alignments is not practical.

Moreover, doing so would require a metric to compare the ‘fitness’ of the

candidate alignments: for mixture of Gaussians, the Kullback-Leibler diver-

gence is not analytically tractable. However, one can use the K-L metric for

aligning the Gaussian components within each pair of corresponding mix-

tures (HMM states): doing so reduces the complexity of determining the

alignment but only to O(M2 ·Ns).

An approximate solution to the two issues discussed above was used: the

two AMs were generated from the same prototype HMM. When learning an

AM, the state-specific distributions are usually up-mixed (to more Gaussian

components) after performing the data-driven state tying. Here, a single

HMM with the final number of Gaussians was first obtained (using the mis-

matched population’s training speech). By setting the mixture weight floor

to machine-epsilon, it was ensured that no Gaussian components would be

discarded in the successive re-estimation stages. To obtain ΛSI , it was then

cloned to each unique HMM state (the unique HMM states were determined

using a state-tying tree learned in a separate estimation of mismatched AM,
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performed in the usual manner) and this cloned AM was re-estimated com-

pletely. To obtain ΛSDB, this seed/prototype HMM was re-estimated com-

pletely using all speech from the training set of the speaker with dysarthria.

This re-estimated HMM definition was cloned to each unique HMM state

(also specified by the tree mentioned above).

6.1.2 Interpolation parameters – independent or dependent?

In principle, one can have as many interpolation factors (the δs) as there are

AM parameters. Doing so would permit investigation of all possible ΛIMs.

However, controlling/specifying such a large number of interpolation factors

individually is not practical. The first BI-MAP adaptation experiments in-

vestigated the “same δ for all AM parameters” scenario. Fixing δ to be the

same for all parameters solves the issue outlined above, but only explores

a limited portion of the AM-parameter space (the line-segment joining ΛSI

and ΛSDB).

In order to investigate more ΛIMs, an in-between approach was taken for

the second set of BI-MAP experiments: Gaussian means and variances were

always interpolated; the mixture weights were either interpolated or came

from ΛSI (δ = 1); and the transition probabilities were either interpolated,

or came from ΛSI (δ = 1) or ΛSDB (δ = 0). The interpolation δ was fixed

to be the same for the parameters that were interpolated. Although this

parameter-type dependent interpolation does not cover all possible ΛIMs,

BI-MAP was still able to outperform the conventional MAP technique for

the UA-Speech corpus.

6.2 Evaluation

Architecture, speech features, and corpus for mismatched-population: These

were identical to those for the preliminary experiments described in Chap-

ter 4.

Baseline: The performance of BI-MAP adaptation was compared to that

of the standard MAP adaptation (referred to as SI-MAP from hereon). SI-

MAP adaptation was performed again for two reasons: (1) the preliminary

experiments described in Chapter 4 were performed only for a subset of
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the UA-Speech speakers; and (2) while implementing BI-MAP, a bug was

discovered in HTK’s code for MAP re-estimation of Gaussian variances.

Recognition performance evaluation: Word recognition accuracy, as defined

in Equation 4.1, was used for these experiments as well.

Significance Testing : Statistical significance of the difference in ASR recog-

nition accuracies between two ASR systems was compared at two levels.

The Gillick-Cox matched-pairs test [118] was first used for each speaker with

dysarthria to determine if the difference in the recognition accuracies using

BI-MAP versus SI-MAP was statistically significant. Then, the Wilcoxon

signed-rank test [119] is performed for the pairs of WRAs (for the speakers

for which the Gillick-Cox test had rejected the null hypothesis) to deter-

mine if BI-MAP is overall significantly different from SI-MAP with respect

to WRA. This second statistical test is needed in the event that SI-MAP has

higher WRA than BI-MAP for one or more speakers, such that the difference

in WRAs is significant (from the Gillick-Cox test).

6.3 Parameter-Type Independent Background

Interpolation

This section describes the first set of BI-MAP experiments, where the inter-

polation factor δ was set to be the same for all parameters. Three configura-

tions were studied: conventional MAP with TIMIT-trained ΛSI as the prior

model (i.e., SI-MAP); ΛSDB of a particular UA-Speech speaker as the prior

model for MAP adaptation (called SDB-MAP from hereon); and a linear

interpolation ΛIM of these two prior models (as per Equation 5.1) as the

overall prior model for MAP (i.e., BI-MAP). The value of δ for BI-MAP was

varied from 0 to 1 in steps of size 0.1; δ = 0 corresponds to SDB-MAP and

δ = 1 corresponds to SI-MAP. All parameters were adapted in the second

stage with the MAP hyperparameter τ set to 5.0 for all configurations. These

systems were developed for each of the sixteen UA-Speech speakers. Since

ΛSDB does not learn any phone-discriminating information from the training

data, one would expect it to have the poorest performance among the three

configurations.
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Table 6.1: Speaker intelligibility and WRAs for parameter-type independent

BI-MAP experiments

Speaker Average SDB-MAP SI-MAP BI-MAP
Intell. (%) WRA (%) WRA (%) WRA (%)

M04 2 0.6 2.98 3.2
F03 6 7.1 21.4 19.8
M12 7 4.6 14.77 16.4
M01 17 4.4 12.65 14.1
M07 28 17.7 38.99 42.5
F02 29 17.5 29.02 31.1
M06 39 13.5 36.75 39.3
M16 43 5.2 26.47 32.1
M05 58 15.4 38.09 36.8
M11 62 10.2 29.8 28.9
F04 62 10.6 32.88 34.8
M09 86 25.5 63.92 70
M14 90 29.1 60.73 64.1
M10 93 52.3 73.11 74.2
M08 95 21.2 69.58 66.9
F05 95 57.9 78.71 80.7

6.3.1 Results

Columns 3, 4 and 5 in Table 6.1 list the WRAs for each UA-Speech speaker,

for the three system configurations, in increasing order of the speakers’ av-

erage intelligibility. For BI-MAP, the score is listed for δ that gave the best

WRA. Speakers with higher BI-MAP WRA than SI-MAP WRA have their

BI-MAP WRAs listed in boldface. Speakers for whom the Gillick-Cox test

rejected the null hypothesis have their BI-MAP WRAs highlighted in green

color. We chose α = 0.1 rather than α = 0.05 because of the small amount

of test set data.

As expected, SDB-MAP is drastically outperformed by both the baseline

(SI-MAP) as well as BI-MAP. Further, for most of the speakers, BI-MAP

was able to find a δ that gave a higher WRA than the corresponding SI-

MAP system (all except F03, M05, M11, M08). It is possible that because

we only searched at discrete values of δ, there may be some values of it in

the unexplored intervals where one might get BI-MAP to have a better score

than SI-MAP.
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Of the 12 speakers for which BI-MAP had a higher WRA than SI-MAP,

there are 10 speakers for which the difference in WRAs is significant (all

except M04 and M01). For the remaining speakers, there was no significant

difference. At α = 0.05, 7 of these 10 speakers still had a significantly higher

BI-MAP WRA than SI-MAP WRA.

Considering the speakers for which the difference in these WRAs was sig-

nificant, the Wilcoxon signed-rank test rejected the null hypothesis “SI-MAP

and BI-MAP are different only by chance” with 95% confidence.
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Figure 6.1: Validation experiments’ recognition accuracies for various
intelligibility categories

Figure 6.1 plots the WRA as a function of δ for the four intelligibility

categories, obtained at steps of size 0.1 between 0 and 1. For all speakers

except M04, we see gradual improvement as one moves away from ΛSDB

(δ = 0) and towards ΛSI (δ = 1). For most of these speakers (twelve of

sixteen), we see WRA (δ) peaking at an intermediate value of δ. Further,

small values of δ generally perform more poorly than SI-MAP in terms of

WRA. For speakers with higher BI-MAP WRA (compared to SI-MAP), the

optimal δ occurs between 0.5 and 1. It can be seen that even though we are
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searching at discrete points (and that too only along the line-segment whose

end-points are the SI and SDB prior AMs), the hypothesis that there can

exist better local maxima for intermediate prior models stands validated.

6.4 Parameter-Type Dependent Background

Interpolation

This section describes the second set of BI-MAP experiments, where the

interpolation δs were set as described in Section 6.1.2. For these experiments,

six BI-MAP configurations were studied. The system naming convention

involves two digits preceded by the letter ‘C’. The first digit indicates the

source of prior mixture weights and the one following it indicates the source

of prior transition probabilities (prior Gaussian means and variances were

interpolated for all six systems). A ‘0’ indicates that the associated parameter

was interpolated, i.e. it came from ΛIM ; a ‘1’ indicates that it came from ΛSI ;

and a ‘2’ indicates that it came from ΛSDB. These are listed in Table 6.2.

Systems C00, C01 and C02 will be collectively referred to as the C0 subgroup

(and systems C10, C11 and C12 as the C1 subgroup), when necessary. The

value of δ for BI-MAP was varied from 0 to 1 in steps of size 0.05; all

parameters were adapted in the second stage with the MAP hyperparameter

τ set to 5.0 for all configurations.

Table 6.2: BI-MAP system configurations studied. Gaussian means and

variances were always interpolated.

BI-MAP Prior Prior
configuration Mixt. Weights Trans. Probs.

C00 SI+SDB
C01 SI+SDB SI
C02 SDB
C10 SI+SDB
C11 SI SI
C12 SDB
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6.4.1 Results

Columns 3 and 4 in Table 6.3 list the WRAs for each UA-Speech speaker,

for SI-MAP and BI-MAP adaptation, in increasing order of the speakers’

average intelligibility. For BI-MAP, the score is listed for δ and the system

configuration that gave the best WRA. Speakers with higher BI-MAP WRA

than SI-MAP WRA have their BI-MAP WRAs listed in boldface. Columns

5 and 6 indicate whether the Gillick-Cox test rejected the null hypothesis (at

95% and 90% confidence levels respectively): colored cells indicate that the

difference in WRAs was significant, and white cells indicate otherwise.

Table 6.3: Speaker intelligibility and WRAs for parameter-type dependent

BI-MAP experiments

Speaker Average SI-MAP BI-MAP α = 0.05 α = 0.10
Intell. (%) WRA (%) WRA (%)

M04 2 2.98 4.16
F03 6 21.4 22.35
M12 7 14.77 16.41
M01 17 12.65 15.39
M07 28 38.99 42.8
F02 29 29.02 33.39
M06 39 36.75 40.67
M16 43 26.47 32.88
M05 58 38.09 38.88
M11 62 29.8 30.91
F04 62 32.88 35.74
M09 86 63.92 71.65
M14 90 60.73 64.2
M10 93 73.11 75.01
M08 95 69.58 67.79
F05 95 78.71 82.07

For all speakers except M08, BI-MAP had a higher WRA than the corre-

sponding SI-MAP system.

Of the 15 speakers for which BI-MAP had a higher WRA than SI-MAP,

there are 12 speakers for which the difference in WRAs is significant at α =

0.10. For the remaining speakers, there was no significant difference. At

α = 0.05, 10 of these 12 speakers still had a significantly higher BI-MAP

WRA than SI-MAP WRA. Secondly, by exploring more starting points (than

60



just the ones lying on the line-segment connecting SI and SDB prior AMs),

BI-MAP has obtained higher WRA scores for more speakers, compared to the

parameter-type independent scenario. Again, although not all possible values

of δ have been tested yet, these numbers show that background-interpolated

prior models can help to improve recognition accuracy.

Considering the speakers for which the difference in these WRAs was sig-

nificant, the Wilcoxon signed-rank test rejected the null hypothesis “SI-MAP

and BI-MAP are different only by chance” with 99% confidence, for both α

levels of the Gillick-Cox test.

Figure 6.2 plots the WRA of the six BI-MAP configurations, as a function

of δ for speakers in the Very Low and Low intelligibility categories (and

Figure 6.3 for those in the Mid and High categories), obtained at steps of

size 0.05 between 0 and 1. For all speakers except M04, we see gradual

improvement as one moves away from ΛSDB (δ = 0) and towards ΛSI (δ = 1).

For M04, the WRA curves fluctuate more and the improvement with increase

in δ is less pronounced.

Secondly, for speakers with higher BI-MAP WRA than SI-MAP (all except

M08), WRA (δ) peaks at an intermediate value of δ, with the optimal δ oc-

curring between 0.4 and 1. Smaller values of δ generally perform more poorly

than SI-MAP in terms of WRA. This is not counter-intuitive or unexpected:

for small values of δ, ΛIM is not very different from ΛSDB, and we have seen

earlier that due to lack of phone-discriminating information SDB-MAP had

rather poor recognition accuracies.

61



 0

 1

 2

 3

 4

 5

 0  0.2  0.4  0.6  0.8  1

W
R

A 
(%

)

M04 (2%)

C00
C01
C02
C10
C11
C12

 5

 10

 15

 20

 25

 0  0.2  0.4  0.6  0.8  1

W
R

A 
(%

)

F03 (6%)

C00
C01
C02
C10
C11
C12

 0

 5

 10

 15

 20

 0  0.2  0.4  0.6  0.8  1

W
R

A 
(%

)

M12 (7%)

C00
C01
C02
C10
C11
C12

 0

 5

 10

 15

 20

 0  0.2  0.4  0.6  0.8  1

W
R

A 
(%

)

M01 (17%)

C00
C01
C02
C10
C11
C12

 15

 20

 25

 30

 35

 40

 45

 0  0.2  0.4  0.6  0.8  1

W
R

A 
(%

)

M07 (28%)

C00
C01
C02
C10
C11
C12

 15

 20

 25

 30

 35

 0  0.2  0.4  0.6  0.8  1

W
R

A 
(%

)

F02 (29%)

C00
C01
C02
C10
C11
C12

 10

 15

 20

 25

 30

 35

 40

 45

 0  0.2  0.4  0.6  0.8  1

W
R

A 
(%

)

M06 (39%)

C00
C01
C02
C10
C11
C12

 5

 10

 15

 20

 25

 30

 35

 0  0.2  0.4  0.6  0.8  1

W
R

A 
(%

)

M16 (43%)

C00
C01
C02
C10
C11
C12

Figure 6.2: Recognition accuracies for Very Low (0–25%) and Low (25–50%)
categories
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Figure 6.3: Recognition accuracies for Mid (50–75%) and High (75–100%)
categories
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Chapter 7

DISCUSSION

This chapter discusses the results of the study’s experiments in more detail.

7.1 Evaluating What the Acoustic Model Learned

From the previous chapter, it is clear that BI-MAP was able to obtain higher

recognition accuracy compared to the conventional SI-MAP technique. An

important question that automatically arises is why this happened, especially

from the point-of-view of acoustic modeling. It would therefore be interesting

to see if the acoustic models (HMMs for the sub-word units) learn signifi-

cantly different spectral representations from different to-be-adapted prior

models.

After tying and data-driven clustering of HMM states has been performed,

the overall acoustic model will typically contain a smaller number of unique

states or senones, than before (in addition to the transition probability ma-

trices). The senone definitions describe the state-specific probability dis-

tributions that govern the observations’ generation. The acoustic models

generated in this study’s experiments ended up having roughly 3000 senones

(3041, to be precise). In HTK, these senone definitions are identified by a

“∼s” symbol and a unique name, which will be referred to as the senone’s

label from hereon. Then, to answer the above mentioned question, we want

to efficiently select those senones whose spectra are significantly different in

SI-MAP and BI-MAP adapted acoustic models, for the case where BI-MAP

had better WRA.

The following procedure was used for selecting significantly different HMM-

state spectra:

1. In the reference transcription and the two hypothesis transcriptions

(one each for SI-MAP and BI-MAP adaptation), the sequence-of-triphone
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labels was mapped to sequence-of-senones labels for each test-set ut-

terance. For BI-MAP the hypothesis transcription came from the con-

figuration (C00, etc.) with the best WRA.

2. String alignment was performed for senone-label sequences, for (a) ref-

erence and SI-MAP hypothesis; and (b) reference and BI-MAP hypoth-

esis. This step was performed using the sclite toolkit [120].

3. Gillick-Cox matched pairs test was performed for each senone label, to

determine if it had been identified in significantly different locations in

the test-set transcriptions (when comparing reference transcription to

the SI-MAP and BI-MAP hypothesis transcriptions). This was done

for senone labels that showed up at least 20 times in the transcriptions

and for a 95% confidence interval. At this stage, 228 senones were found

to be present in significantly different positions in the transcriptions.

4. For each of these 228 senones, the 32 Gaussian mean vectors were

weighted with their respective mixture weights and added to obtain a

weighted PLP mean vector for that senone. This PLP mean vector was

inverted to obtain the spectral representation for that senone. This was

done for 4 versions of the senone – one each from ΛSI , ΛIM and the

final adapted versions of these two (i.e., the final SI-MAP and BI-MAP

acoustic models).

5. From these 228 spectral representations, the ones for which SI-MAP

and BI-MAP spectra were visually more-or-less same were discarded.

This resulted in a final set of 129 senones.

Enumerating the differences for all 129 senone spectra here would be dif-

ficult, so this discussion is restricted to a few interesting ones. First, some

notation: in the figures that will be discussed shortly, each plot will compare

spectra for a particular senone, for a particular speaker. This information is

indicated in the plot’s title as follows: for the twentieth version of the senone

representing the middle emitting state of the phoneme ‘t’ for speaker F02,

the plot’s title would be “F02 :: t s320”. The first digit after ‘s’ indicates

the HMM-state (in HTK, dummy ‘entry’ and ‘exit’ states are attached to

each HMM; hence the middle three states are the actual emitting states),
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Figure 7.1: Senone spectra before and after adaptation, for standard MAP and
BI-MAP

and the remaining digits indicate the particular version (of that state) that

resulted from data-driven clustering.

Figure 7.1 shows the spectra for two senones of speaker F02: the first

version of the last emitting state for the affricate ‘ch’, and the twentieth

version of the middle emitting state for the unvoiced stop ‘t’. The plots

in the figure’s top half compare the spectra from ΛSI and ΛIM , the to-be-

adapted prior acoustic models; and the bottom half’s plots do so for the

final adapted acoustic models. The BI-MAP configuration was C10 with

δ = 0.35. For ‘ch s41’, we see that the SI-MAP spectrum is indicative of the

speaker already moving into the first emitting state of the vowel following

this affricate. The BI-MAP spectrum indicates more of a pause between the

‘ch’ release and the onset of voicing. The de-emphasis of the spectral peaks

in the 0-1500 Hz range is accounted for by the low energy of the turbulence

source at low frequencies. For ‘t s320’, the SI-MAP spectrum picks up the

incomplete closure; the BI-MAP spectrum exhibits spectral peak emphasis

(0-100 Hz) and de-emphasis (in the neighborhood of the first formant). The
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peak emphasis could be attributed to incomplete or no closure of vocal folds

(for peak near the first harmonic), or to aperiodicity in voicing (for peak

below the first harmonic; there could be bi-periodicity with a larger second

period, causing an energy peak at about half the pitch frequency). Peak de-

emphasis about the first formant is likely to have been caused by increased

variability, or by increased damping (which in turn, is possible because of

increased nasality or breathiness). Background interpolation with F02’s SDB

model has helped here because the SI-MAP prior model was trained using

speech from TIMIT corpus, which is not only population-mismatched with

UA-Speech but also style mismatched: TIMIT’s speech is read sentences,

and UA-Speech consists of isolated word utterances.
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Figure 7.2: Senone spectra before and after adaptation, for standard MAP and
BI-MAP

Figure 7.2 shows the spectra of a senone each from speakers M07 and

M14: second version of the middle emitting state for the affricate ‘ch’ for

M07, and the twenty-second version of the middle emitting state for the

liquid ‘r’ for M14. The BI-MAP configuration was C11 with δ = 0.4 for M07

and C02 with δ = 0.85 for M14. In M07’s case, the BI-MAP spectrum looks
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much more like that of silence and the SI-MAP version is more indicative of

frication. Similarly for M14, there seem to have been enough observation-

tokens that the BI-MAP model is representing as having come from the

middle emitting state of the liquid, but which are more silence-like. On the

other hand (depending on the triphone context), it could be the case that

the tongue-tip is not going where it should, and not going reliably where it

goes. What is interesting here is that the spectra prior to adaptation are

almost identical (which is expected for the high value of δ), but they learned

very different frequency-energy distributions during adaptation. This can be

definitely attributed to the prior transition probabilities coming from M14’s

SDB model (configuration C02). So, background interpolation has helped

again to better counter the mismatch.

7.2 Structurality of Model Parameters

The experiments described in the previous chapters also speak to the struc-

turality of HMM parameters, particularly the mixture weights and transition

probabilities. More specifically, the results indicate that the mixture weights

are more structural parameters than transition probabilities, and that this is

the case across all intelligibility categories. This is illustrated by the following

observations regarding recognition accuracy:

1. From the results of the preliminary experiments (described in Chap-

ter 4), it is clear that modifying and/or adapting the transition prob-

abilities lowered the recognition accuracy, compared to the configura-

tion where they were not changed. This happened with both speaker-

dependent (C00 vs. C01) as well as speaker-adapted (C13 vs. C14 vs

C15) systems. Among the speaker-adapted systems, the best accura-

cies were obtained by the configuration in which the mixture weights

were adapted, but not the transition probabilities (apart from adapting

the means and variances).

2. Looking at the WRA curves for BI-MAP adapted systems again (Fig-

ures 6.2 and 6.3), we see that the C1 subgroup of configurations had

higher recognition accuracies compared to the C0 subgroup of config-

urations, for lower values of δ. In that range, the interpolated prior
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model is not too far from the SDB prior model in the AM-parameter

space and having the mixture weights come from the TIMIT prior

model helps because they must incorporate some amount of phone-

discriminating information.

3. The WRA curves for the various BI-MAP systems also exhibit tight

coupling for most of the speakers: the curves for C0 subgroup are

tightly coupled, and so are the ones within the C1 subgroup. Recog-

nition accuracies within either subgroup do not appear to be impacted

much by the source of prior transition probabilities (C 0 vs. C 1 vs.

C 2). This can be expected for higher values of δ (but only for C 0 vs.

C 1, because in these configurations the prior transition probabilities

are not very different from each other when δ is high; coupling of C 2

WRA curve is still unexplained). However, this effect is observed for

lower δ values as well.
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Chapter 8

CONCLUSION

This chapter reviews the key findings and summarizes the experiments per-

formed.

This study explored population-mismatch modeling for adaptation of acous-

tic models, particularly for recognition of dysarthric speech. From a periph-

eral view, population mismatch is an important problem because it is one of

the major causes of poor ASR performance. Therefore, having an acoustic

modeling technique that accounts for such mismatch is an important goal.

This goal becomes even more important when speaker-dependent systems

are hard to obtain due to scarcity of speech resources.

The experiments underlying this study investigated population mismatch

modeling in a particular context – with a particular adaptation algorithm

(MAP adaptation), and on the task of isolated word recognition. Recognition

of dysarthric speech is a difficult task. It is made more difficult by the lack of

sufficient speech data to model at a fine level of granularity the inconsistencies

in acoustic features of this population. We have also seen in Chapter 3 that

there exists much debate in the clinical research community on an adequate

theory of motor speech disorders. Therefore, the technique developed in

this study to obtain the prior acoustic model is designed with only a subtle

connection to the hypothesis of Weismer et al. [87] about such a theory; yet,

at this subtle level of connection, it stands in support of their hypothesis.

The central objective of this research was to find a procedure for obtaining

a better starting point (i.e., a better prior acoustic model) for the adaptation

algorithm than is used conventionally, with respect to recognition accuracy.

For a parameter count almost identical to the baseline approach (BI-MAP has

used only one additional hyperparameter: the interpolation factor δ), the ex-

periments show that background interpolation has been able to achieve either

at-par or better recognition performance (in terms of statistical significance),

at least for the speech corpus used.
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The fact that searching for alternative starting points (for optimization al-

gorithms working on objective functions punctuated with local optima) can

lead to a better local optimum is not new. Undoubtedly, the procedure pre-

sented in this work for doing so is not the be-all and end-all of research in

adaptation for dysarthric speech. However, it has been hitherto unexplored

and does appear promising: it provides a principled way of searching for

prior acoustic models that account for population-mismatch. The positive

results of parameter-type dependent BI-MAP adaptation suggest that mak-

ing the interpolation factors specific to model parameters is helpful. Finding

principled ways of doing so is an obvious direction for future work.

8.1 Directions for Future Work

The experiments described in this dissertation point towards WRA improve-

ments through an interpolation-based technique for obtaining the to-be-

adapted acoustic model. This section covers briefly some of the possible

extensions for the proposed approach.

One of the possible directions to explore is that of localized SDB models.

In this work, a single SDB model was obtained for a particular speaker. The

SDB did not learn any patterns that can discriminate between phones/words.

It was a model of the general characteristics of the speaker from the target

population. The intention behind using such a model is to capture aspects

of time-frequency variation that depend on the speaker (rather than on what

was spoken by him/her). Given sufficient training tokens for each sub-word

unit (for a particular speaker), one can obtain an SDB for each broad class

of sub-word units. For example, if the sub-word units are phones, then one

could in principle obtain a vowel SDB, a fricative SDB, a plosive SDB, etc.;

doing so would be useful if the speaker’s production of a particular broad

class of sub-word units is characterized by some speech production deficit.

Testing background interpolation with other standard adaptation tech-

niques (such as the MLLR algorithm) is an obvious next step. However,

something more interesting would be to find a principled way of setting the

interpolation factors (the δs) for each parameter of the acoustic model. This

can be achieved for instance by jointly optimizing the δs and the HMM pa-

rameters, with respect to the adaptation data. For example, we have seen
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in Section 2.2.1 that MAP adaptation entails setting the HMM parameter

set Λ to the mode of the posterior distribution p (O|Λ) · p0 (Λ) where p0 (Λ)

is the prior distribution of Λ. If we denote the set of all interpolation fac-

tors by {δ}, then one can set Λ to the mode of the posterior distribution

p (O|Λ, {δ}) · p0 (Λ, {δ}) where p0 (Λ, {δ}) is the prior distribution of Λ. In

other words, the interpolation factors are also chosen treating the adaptation

data as ‘evidence’.

The setup described in the last paragraph can be generalized and stated

more formally for data-scarce learning as follows. Our objective is to lever-

age models trained on data from mismatched domain(s) to obtain a model

for data from the target domain. We attempt to do so by starting with a

prior estimate of the model’s parameter set Λ0 and use the small amount

of training/adaptation data from the task-at-hand O, to obtain an updated

parameter-set Λ∗. The prior estimate Λ0 itself is obtained as some function

of models Λ0i learned from data Oi in domains Di (along with target-domain

data O, if necessary):

Λ0 = f ({Λ0i}i ,O)

The leveraging function f is chosen from a function class F using model

selection criterion C:

f̂ = arg maxf∈F C
(
O,
{
~λ0i

}
i
, f
)

The updated parameter-set Λ∗ is then given by:

Λ∗ = f̂ ({Λ0i}i ,O)

The choice of criterion C can be very important, from the perspective of

performance. We have seen in the previous chapter that adapting transition

probabilities did not cause any significant change to recognition accuracy,

regardless of their source (SI vs. SDB vs. IM). It can be explained by the

fact that the traditional auxiliary likelihood function employed in HMM re-

estimation is “mostly influenced by the emission distributions and almost not

at all by the transition probabilities ... hence temporal aspects are poorly

taken into account” [121]. The machine learning community has been in-

terested in large-margin and kernel based approaches for quite some time
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now, and some researchers have successfully used such criteria for learning

HMM parameters [122, 123, 124]. Adaptation of domain-mismatched HMMs

should be able to benefit from these approaches too.
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