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ABSTRACT

Together with advancements in communication and computer processing

technologies, the widespread integration of distributed energy resources (DERs)

in the form of renewable energy sources, e.g., wind and solar, will make avail-

able new and valuable ancillary services to power systems such as voltage

support and frequency regulation. Given the relative size of the resources,

however, the provision of these services will require the coordination of sev-

eral DERs such that their collective capabilities have sufficient impact on a

system level. This thesis proposes a method for controlling distributed gener-

ation resources (DGRs) without the need for a centralized decision maker. In

particular, we discuss a class of iterative algorithms which are capable of coor-

dinating a set of DGRs in order to collectively achieve a predetermined goal.

We begin by formulating an unconstrained algorithm which we later extend

to account for individual DGR capacity constraints. A convergence analysis

of the algorithms is presented, followed by the discussion of a modification

that enhances the resiliency of the algorithms when the communication links

are imperfect. Next, the development of a hardware testbed comprised of

low-complexity devices equipped with wireless transceivers that implements

the algorithms is described. We conclude by illustrating the efficacy of the

algorithms by utilizing the hardware testbed to control the synchronous gen-

erators to regulate the electrical frequency in a small-footprint power system.
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CHAPTER 1

INTRODUCTION

Motivated by initiatives such as the US Department of Energy Smart Grid

[1], and given advancements in communications and computer processing,

electrical energy systems are undergoing radical transformations. In partic-

ular, the pursuit of increased efficiency and reliability has led to changes in

the ways which power systems are monitored and controlled. Beyond im-

provements in communication and control, the introduction of distributed

energy resources (DERs) in the form of new loads such as plug-in hybrid

electric vehicles (PHEVs) and renewable-based electricity generation such as

photovoltaic (PV) solar systems has enabled researchers to propose several

methods in which DERs can provide ancillary services to power systems [2],

[3], [4].

One example is the utilization of inverter-interfaced DERs (e.g., PV sys-

tems or motor drives with active rectifier inputs) to provide reactive power

support. Although the primary function of these power electronics-based

systems is to provide active power, many of them are capable of producing

reactive power if appropriately controlled [5]. Another example is utilizing

distributed energy storage (e.g. PHEVs or uninterruptible power supplies

(UPS)) to control active power for up and down regulation. Such resources

could provide energy peak-shaving during hours of high demand and load

leveling when demand is low [6].

In order for DERs to provide these ancillary services to electric grids, how-

ever, appropriate control and coordination mechanisms need to be developed.

One potential control architecture relies on a centralized strategy in which

each DER is coordinated through direct communication with a central deci-

sion maker. An alternative approach is to remove the central decision maker

and coordinate the DERs in a distributed fashion. Using the latter control

architecture to solve the resource coordination problem as it applies to the

control of distributed generation resources (DGRs) in small-footprint power
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systems will be the primary focus of this thesis. Specifically, we develop and

implement several algorithms that solve the problem. Although the original

motivation for this work was to develop algorithms to coordinate DERs for

use in power systems, the algorithms and implementations provided could be

used to coordinate any multicomponent system of resources.

Given several discrete components that are each capable of providing some

resource, the objective of the resource coordination problem is to utilize a

communication network to allow these components to exchange information

with neighboring devices in order to collectively provide some amount of re-

source that is known by a leader. It is assumed that the leading component

can only communicate with a limited number of other devices in the system

and may not necessarily be aware of the total number of components avail-

able. The leader initiates a request for resource by dividing the total resource

demand equally among all neighboring components; however, a leading com-

ponent is not required, as a variation of the initialization procedure could be

used in which any node could initiate the request for resource. To address

component limitations, upper and lower bounds on the amount of resource

each component can provide are considered when solving the resource coor-

dination problem in order to find a feasible solution.

In the experimental setup described in this thesis, each component is a

small synchronous generator which will be referred to as a distributed gener-

ation resource (DGR). Each DGR is outfitted with a wireless transceiver to

create a communication network that can be thought of as a stationary, yet

unplanned, ad-hoc network. An iterative process is used to exchange infor-

mation among components such that they collectively meet the generation

demand. At the end of the iterative process, the generation output of each

DGR is computed based upon the result of the algorithm and the capacity

constraints of the respective DGR.

The intention of this thesis is to develop and demonstrate distributed al-

gorithms that are suitable for coordinating DGRs without the need for a

centralized controller. Specifically, the purpose of this work is to document

the development and application of a hardware testbed that implements the

algorithms proposed in [7], [8], [9]. The remainder of the discourse presented

herein elaborates and extends the author’s previously published work in [5],

[10] and is organized as follows.

Chapter 2 begins by providing a model to describe the communication
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between DGRs and introduces the notion of distributed generation control.

We next formulate a distributed algorithm that serves to iteratively disperse

generation demand among a set of DGRs with no limits on the amount

of resource they can provide. The unconstrained algorithm is extended to

account for upper and lower capacity constraints, and it is shown how the

result of this algorithm can be used by each DGR to independently determine

when the collective capacity of the system has been reached. The constrained

algorithm is then adapted to create the robust algorithm which converges

despite imperfect communication links.

Chapter 3 discusses the development of a hardware testbed created to

implement the algorithms presented in Chapter 2. The testbed is based

upon Arduino Mega microcontroller boards equipped with XBee modules

executing software that realizes each of the proposed distributed algorithms.

Results are presented which demonstrate the convergence of each algorithm

running on the hardware testbed. To conclude, we illustrate a case in which

the constrained algorithm is adapted to evenly split demand among all DGRs

and demonstrate the ability for each node to independently determine feasi-

bility.

Utilizing the hardware testbed, Chapter 4 discusses a set of experiments in

which the robust algorithm with constraints is used to control the generators

in a small-footprint power system. A model of the generator is developed

which leads to a two-stage control architecture that is used to regulate the

frequency in the power system subject to load changes. Results for several

experiments are shown, including one in which a spinning reserve is added

to the system to demonstrate the ability of the DGRs to independently de-

termine when the collective capacity has been reached.

Chapter 5 provides some concluding remarks and discusses future work.
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CHAPTER 2

ALGORITHM FORMULATION

In this chapter we formulate three algorithms that are suitable for controlling

a set of distributed resources without relying on a centralized controller. We

begin by developing a model to represent the communication network linking

resources that will be used to facilitate analysis and development of the algo-

rithms. Next, we formulate and analyze the convergence of an unconstrained

algorithm. We then extend the unconstrained algorithm to account for indi-

vidual capacity constraints. Finally, the constrained algorithm is adapted to

be more resilient to imperfect communication links.

2.1 Communication Model

Let G be a directed graph describing the communication network in system

of distributed generation resources (DGRs) capable of exchanging packetized

information via wireless links. Define V := V (G) to be the set of vertices

with each vertex corresponding to a DGR and E := E(G) to be the set of

directed edges with each edge corresponding to a communication link between

a pair of DGRs. The exchange of information between two DGRs i and j

need not be bidirectional; thus, the ordered pair (i, j) ∈ E if and only if

DGR i can receive information from DGR j. For each DGR i ∈ V, we

define the set of DGRs from which i can receive information to be the in-

neighborhood of i, i.e., N−
i := {j ∈ V : (i, j) ∈ E}. Similarly, we define the

out-neighborhood of i to be the set of DGRs that can receive information

from i, i.e., N+
i := {j ∈ V : (j, i) ∈ E}, and we denote the cardinality of the

out-neighborhood by D+
i := |N+

i |. We allow all vertices to have self loops,

i.e., (i, i) ∈ E , ∀i ∈ V; thus, each DGR is included in both its own in- and

out-neighborhood. For the algorithms formulated in the following sections,

it is assumed that the graph G is strongly connected; that is, for each ordered
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pair of vertices i, j there is a path from i to j [11].

2.2 Problem Definition

Consider a set of n DGRs as described by the aforementioned communication

model, i.e., |V| = n, and assume that there exists one leader that knows the

amount of electric power generation, ρe, to be added to or removed from

the system in order to operate according to some predetermined criterion,

e.g., at an electrical frequency of 60 Hz. Let xi be the output of DGR i

and define ρ :=
∑n

i=1
xi to be the total generation provided by the set of

DGRs. Furthermore, define ρd := ρ + ρe to be the total system output

required to meet the operating criterion and l := D+

leader to be the out-degree

of the leading DGR, with l ≥ 2 since G is strongly connected. Given a

nonzero mismatch, i.e., ρe 6= 0, we define distributed generation control

(DGC) to be the process by which available DGRs are coordinated in order

to collectively meet generation demand without a centralized controller. In

particular, DGC is a method which allows DGRs to drive the generation

mismatch to zero, i.e., ρe → 0, in order for the collective generation provided

to equal the generation demand. Throughout the remainder of this chapter,

we develop three algorithms that can used to implement DGC for small-

footprint power systems.

2.3 Unconstrained Algorithm

The case when there are no limitations on the capacity of each DGR is con-

sidered first. Despite being unrealistic, the formulation of an unconstrained

algorithm will provide the basis for developing an algorithm that can account

for upper and lower bounds on individual DGR capacity.

Without constraints, a trivial method for driving the generation mismatch

to zero is to have the DGRs in the out-neighborhood of the leader adjust

their generation by ρe
l
while the remaining n− l DGRs maintain a constant

output. For the case when the capacity of each DGR is limited, however,

this method would be infeasible if the desired operating point lies outside the

collective bounds of the l DGRs in the out-neighborhood of the leader. In
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order to provide a more adaptable solution, a distributed iterative algorithm

is formulated which, after m iterations, divides the total demand among all

n DGRs.

2.3.1 Algorithm Description

Each DGR participating in the distributed algorithm maintains an internal

state variable that is updated at each iteration. Let k = 0, 1, . . . , index the

iterations, and let πi[k] be the value of the internal state variable of DGR i

at round k, where πi[0] = xi + ρe if i is the leader, and πi[0] = xi otherwise.

For convenience, we define θ[k] :=
∑n

i=1
πi[k], ∀k.

One method that can be used to distribute the generation demand through-

out the system is to have each DGR update its state at each iteration to be

a linear combination of its current state and the states of the DGRs in its

in-neighborhood. That is, DGR i updates the value of its state variable to

be

πi[k + 1] = piiπi[k] +
∑

j∈N−

i
i 6=j

pijπj [k], (2.1)

where pii is the self-weight of DGR i and pij is outgoing-weight of DGR j,

∀i ∈ V, and ∀j ∈ N−
i , j 6= i. After performing m iterations DGR i adjusts

its output to be xi = πi[m] and, for the algorithm to be effective, the total

generation should meet the demand, that is, ρ = ρd.

After some analysis, we will see that a carefully chosen set of weights will

take advantage of the distributed nature of the system while ensuring that the

algorithm meets the aforementioned objective. To find appropriate weights,

we first write (2.1) in matrix form as

π[k + 1] = Pπ[k],

π[0] = π0,
(2.2)

where π0 =
[

π1[0], π2[0], . . . , πi[0], . . . , πn[0]
]T

, with πi[0] = xi + ρe if i is the
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leader and πi[0] = xi otherwise, and the matrix P is of the form

P =















p11 p12 · · · p1i · · · p1n

p21 p22 · · · p2i · · · p2n
...

...
. . .

...
...

pi1 pi2 · · · pii · · · pin
...

...
...

. . .
...

pn1 pn2 · · · pni · · · pnn















, (2.3)

where pij = 0 if and only if (i, j) /∈ E .

In a distributed system where individual components have only local knowl-

edge of the network, component i is limited to choosing its self-weight,

pii, ∀i ∈ V, and outgoing-weights, pji, ∀j ∈ N+
i , which correspond to the

columns of P . Furthermore, since the initial states of algorithm (2.1) are

chosen such that θ[0] = ρ + ρe = ρd, and since the objective is for the de-

mand to be distributed among all n DGRs after m iterations, i.e., θ[m] = ρd,

it is sufficient for each DGR to choose weights such that the sum of internal

states remains constant throughout the iterative process. If the weights are

chosen in such a way that the matrix P is column stochastic, i.e., each entry

is nonnegative and the columns sum to one, we will see that the sum of the

entries of the vector π[k] will remain constant for all k.

A simple choice that maintains column stochasticity of P is for each DGR

to set its self- and outgoing-weights to be the reciprocal of its out-degree,

i.e., pii = pji =
1

D+

i

, ∀i ∈ V and ∀j ∈ N+
i . Thus DGR i will update its state

according to

πi[k + 1] =
∑

j∈N−

i

1

D+
j

πj [k], (2.4)

and adjust its output to be xi = πi[m] after performing m iterations. Given

this choice of weights, it should be noted that the algorithm in (2.4) does not

necessarily split the total generation demand evenly.
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2.3.2 Convergence Analysis

By rewriting the algorithm in (2.4) in matrix form according to (2.2), we

use the characteristics of the matrix P to prove that θ[k] remains constant

at every iteration k. Furthermore, we prove that the algorithm ensures the

overall generation demand is met, i.e., θ[m] = ρd, and that the solution

obtained is unique.

In addition to being column stochastic by design, P is also primitive since

the underlying connectivity graph is assumed to be strongly connected and

at least one of its diagonal entries is nonzero [12]. Given a column stochastic

primitive matrix, the Perron-Frobenius theorem for nonnegative matrices

(see, e.g., [12]) states that the matrix will have a unique eigenvalue with

largest modulus at λ1 = 1.

Let v and w be the right and left eigenvectors of P associated with λ1

normalized such that vTw = 1. Given that P is column stochastic, all the

entries of the vector w must be equal. Without loss of generality, let w be the

vector of all ones, i.e., w =
[

1, 1, . . . , 1
]T

, and given that vTw = 1, the entries

of v must sum to one. Define πss =
[

πss
1 , πss

2 , . . . , πss
i , . . . , πss

n

]T

, where πss
i is

the steady-state solution of (2.4). Then by the Perron-Frobenius theorem,

we have that limk→∞ P k = vwT and the vector of steady-state solutions is

given by

πss = vwTπ0 =

(
n∑

i=1

πi[0]

)

v. (2.5)

Since the entries of v are nonnegative and add up to one and
∑n

i=1
πi[0] = ρd,

it follows that the entries of the steady-state solution are nonnegative and

sum to ρd. Although this proof implies that an infinite number of iterations

are required to reach the steady-state solution, experimental results have

shown that a finite number of iterations are adequate for convergence to a

sufficiently accurate solution, thus the proposed distributed algorithm can

be used as a practical method for implementing DGC [7].
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2.4 Constrained Algorithm

Any physically realizable network comprised of DGRs will necessarily have

limits on generation capacity. Upper bounds on generation are the most

familiar—the maximum electrical power output of a generator is limited by

the available input energy as well as the device ratings—but it may also be

necessary to enforce lower bounds due to operational limitations. Thus, to

develop an algorithm that is useful in practical systems, the unconstrained

algorithm in (2.4) is extended to account for both constraints.

2.4.1 Algorithm Description

Let xmin
i and xmax

i for i = 1, 2, . . . , n, be the minimum and maximum output

of DGR i and define the corresponding capacity vectors as

xmin =
[

xmin
1 , xmin

2 , . . . , xmin
n

]T

, (2.6)

xmax =
[

xmax
1 , xmax

2 , . . . , xmax
n

]T

, (2.7)

respectively. Define the collective lower and upper capacity limits of the

DGRs to be χmin =
∑n

i=1
xmin
i , and χmax =

∑n

i=1
xmax
i . As in the un-

constrained case, the total amount of generation provided by the system is

ρ =
∑n

i=1
xi and the overall generation demand is denoted by ρd = ρ+ ρe. It

is assumed that the collective capacity of the DGRs is sufficient to drive the

generation mismatch to zero, i.e., χmin ≤ ρ+ ρe ≤ χmax.

Instead of maintaining a single state variable, DGRs participating in the

constrained distributed algorithm maintain two variables, each with different

initial conditions that are linear combinations of the capacity constraints. Let

µi[k] and σi[k] be the state variables maintained by DGR i at iteration k,

where µi[0] = ρe + xi − xmin
i if i is the leader and µi[0] = −xmin

i otherwise,

and σi[0] = xmax
i − xmin

i , ∀i ∈ V. The algorithm given in (2.4) is used to
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update the state variables of DGR i as

µi[k + 1] =
∑

j∈N−

i

1

D+
j

µj[k], (2.8)

σi[k + 1] =
∑

j∈N−

i

1

D+
j

σj [k]. (2.9)

After m iterations, DGR i computes its output to be

xi = xmin
i +

µi[m]

σi[m]
(xmax

i − xmin
i ), (2.10)

and we have that ρ = ρd and xmin
i ≤ xi ≤ xmax

i , ∀i ∈ V.

2.4.2 Convergence Analysis

To prove that the constrained algorithm coordinates the DGRs to meet the

overall demand without violating individual constraints, we first rewrite (2.8)

and (2.9) in matrix form as

µ[k + 1] = Pµ0,

σ[k + 1] = Pσ0,
(2.11)

with P as defined in the formulation of the unconstrained algorithm and

where the initial vectors µ0 and σ0 are given as

µ0 =
[

µ1[0], µ2[0], . . . , µi[0], . . . , µn[0]
]T

,

σ0 =
[

σ1[0], σ2[0], . . . , σi[0], . . . , σn[0]
]T

,

(2.12)

with µi[0] and σi[0] as defined above.

From the proof of the unconstrained algorithm, it follows that the steady-

10



state solutions of the iterations in (2.11) are given by

µss = vwTµ0 =

(
n∑

i=1

(πi[0]− xmin
i )

)

v

=

(

ρd −
n∑

i=1

xmin
i

)

v,

σss = vwTσ0 =

(
n∑

i=1

(xmax
i − xmin

i )

)

v,

(2.13)

where πi[0] = ρe + xi if i is the leader and πi[0] = xi otherwise. Combining

(2.10) and (2.13), the output of DGR i is given as

xi = lim
k→∞

(

xmin
i +

µi[k]

σi[k]
(xmax

i − xmin
i )

)

= xmin
i +

µss
i

σss
i

(xmax
i − xmin

i ),

(2.14)

where the ratio of the steady-state solutions is defined to be

αi :=
µss
i

σss
i

=
ρd −

∑n

i=1
xmin
i

∑n

i=1
(xmax

i − xmin
i )

. (2.15)

After the algorithm has converged, αi ∈ [0, 1], ∀i ∈ V, if and only if the

overall generation demand can be met by the system, i.e., χmin ≤ ρd ≤ χmax.

Thus, if the value of αi /∈ [0, 1], DGR i can determine that the collective

capacity of the system is insufficient to meet demand.

Similar to the proof of the unconstrained algorithm, this proof implies that

an infinite number of iterations are required to converge to the steady-state

solution. Examples in the next chapter, however, illustrate that convergence

to a sufficiently accurate solution can be reached for a small network of DGRs

in as few as 10 iterations.

2.5 Robust Algorithm with Constraints

Throughout the derivation of the previous two algorithms, it was implicitly

assumed that the communication links used to exchange information between

DGRs were completely reliable. In an uncontrolled environment, however,
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conditions such as temperature and humidity as well as obstructions between

DGRs can negatively affect link availability. To provide an algorithm that can

be useful in systems subject to such non-idealities, the constrained algorithm

is extended to be resilient to packet loss.

2.5.1 Communication Model Modifications

Before the algorithm described by (2.8) and (2.9) can be made more robust,

the graph modeling the exchange of information between DGRs needs to be

modified to account for the possibility that communication links may not

be available at every iteration. In this case, the graph is a function of the

iteration index k, and is denoted G[k], where V = V (G[k]) is independent of k,

and E [k] = E(G[k]) is the set of edges where (i, j) ∈ E [k] if DGR i can receive

information from DGR j at iteration k. It is assumed that E [k] ⊆ E , ∀k ≥ 0,

where E is the set of available edges given completely reliable communication

links. Furthermore, it is assumed that each DGR determines the size of its

out-neighborhood during an initialization procedure that is perfectly reliable.

If the packets used to exchange information for the distributed algorithm

are broadcasted and no acknowledgments are sent, each DGR assumes that

all transmitted information is successfully delivered to the intended receiv-

ing DGR(s). However, if DGR i attempts to send its weighted values to

DGR j at iteration k and (j, i) /∈ E [k], this assumption is invalid and the

information intended for DGR j is lost. In order to mitigate the effects of

packet loss without increasing the number of packets exchanged at each it-

eration, we modify the distributed algorithm with constraints to allow the

DGRs to collectively meet the overall demand regardless of communication

link reliability.

2.5.2 Algorithm Description

One method that can be used to recover information lost due to dropped

packets is for each DGR to broadcast the sum of its weighted values up to

and including the current iteration k as proposed in [9]. In the case where no

packets are lost, the weighted values received from the in-neighbors of a DGR

can be inferred at each iteration k, and the proposed method is effectively

12



the same as the constrained algorithm presented above. If packets are lost,

however, the algorithm seamlessly recovers any lost information.

At each iteration k, DGR i broadcasts two values that are linear combina-

tions of its internal state maintained throughout the iterative process. Let

yi[k] and zi[k] be the values of the internal state maintained by DGR i at iter-

ation k and let µi[k] and σi[k] be the values broadcasted to all out-neighbors

of DGR i at iteration k. The value of µi[k] is simply the sum of yi[k]/D
+
i

since the iterative process began and is given as

µi[k] = µi[k − 1] +
1

D+
i

yi[k] =
k∑

r=0

1

D+
i

yi[r]. (2.16)

Similarly, the value of σi[k] is the sum of zi[k]/D
+
i up to and including the

current iteration k and is given as

σi[k] = σi[k − 1] +
1

D+
i

zi[k] =
k∑

r=0

1

D+
i

zi[r]. (2.17)

At each iteration, DGR i will update the value of its state variables as

yi[k + 1] =
1

D+
i

yi[k] +
∑

j∈N−

i
i 6=j

(νij [k]− νij [k − 1]),

zi[k + 1] =
1

D+
i

zi[k] +
∑

j∈N−

i
i 6=j

(τij [k]− τij [k − 1]),
(2.18)

where the values of νij [k] and τij [k] depend on the successful receipt of a

packet from DGR j during iteration k and are given as

νij [k] =







µj[k], if (i, j) ∈ E [k],

νij[k − 1], if (i, j) /∈ E [k],

τij [k] =







σj [k], if (i, j) ∈ E [k],

τij [k − 1], if (i, j) /∈ E [k].

(2.19)

The initial values of the state variables are yi[0] = ρe + xi − xmin
i if i is the

leader and yi[0] = −xmin
i otherwise, and zi[0] = xmax

i − xmin
i > 0; whereas

the initial conditions for the broadcasted values are set to µi[0] = yi[0]/D
+
i

13



and σi[0] = zi[0]/D
+
i . After m iterations, DGR i computes its output as

xi = xmin
i +

yi[m]

zi[m]
(xmax

i − xmin
i ), (2.20)

and we have that ρ = ρd and xmin
i ≤ xi ≤ xmax

i , ∀i ∈ V (for a proof see

[9]). Similar to the basic algorithm with constraints, we define the ratio of

the values of the internal states after m iterations as found by DGR i to be

αi :=
yi[m]

zi[m]
. (2.21)

Thus, DGRs participating in the robust algorithm with constraints can in-

dependently determine if the collective capacity of the system is sufficient to

meet the overall generation demand if αi ≥ 0 and αi ≤ 1

In order to compute the values in (2.19), each DGR needs to keep the

most recent set of values received from the DGRs in its in-neighborhood and

thus needs to know the source of all packets received. To accommodate this,

each DGR creates a list of addresses corresponding to the DGRs in its in-

neighborhood during initialization that will remain unchanged throughout

the iterative process. Furthermore, when DGR i broadcasts its values µi[k]

and σi[k], it also includes its address in the packet.
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CHAPTER 3

HARDWARE IMPLEMENTATION

This chapter describes a hardware testbed created to implement the algo-

rithms formulated in the previous chapter. The testbed is centered around

nodes with embedded processors capable of wirelessly exchanging informa-

tion with other nearby nodes. The nodes are designed to be independent

of the DGRs, enabling the testbed to be portable to various applications.

Throughout the remainder of the chapter, the hardware chosen is described

while the software used to implement the algorithms is explained. In the

final section, experimental results for the three algorithms are presented.

3.1 Communication Hardware Platform

In this section, we describe the hardware chosen to create the testbed and

provide a brief overview of the software used to exchange information between

devices and to implement the algorithms.

3.1.1 Node Hardware

The hardware testbed is based around Arduino, an open-source electronics

prototyping platform. Arduino was chosen for its flexibility and ease of use

as well as for the numerous software libraries and extension circuit boards,

called shields, that are available [13].

Each node in the testbed contains an Arduino Mega 2560 [14] micro-

controller (µC) board which is based on the AVR ATmega2560 [15]. The

Arduino board, shown in Fig. 3.1a, provides access to the digital I/O and

analog input ports on the µC and contains a USB connection for flashing

and powering the device. The ATmega2560 µC has 256 kB of flash memory

and a clock speed of 16 MHz as well as four universal asynchronous re-

15



(a) Arduino Mega 2560 (b) SparkFun XBee Shield (c) MaxStream
XBee Module

Figure 3.1: Hardware

ceiver/transmitter (UART) ports that enable it to communicate with several

devices independently.

In order to enable the nodes to exchange information wirelessly, each Ar-

duino Mega is connected to a MaxStream XB24-DMCIT-250 revB XBee

module [16] via a SparkFun Electronics XBee shield [17]. The XBee shield,

shown in Fig. 3.1b, serves as an interface between the Arduino board and the

XBee module while providing the requisite 3.3 V power supply via a voltage

regulator. Furthermore, each shield is modified to allow the Arduino board

to communicate with a computer via USB and the XBee independently. The

XBee, shown in Fig. 3.1c, is an embedded RF module operating at 2.4 GHz

that utilizes a built-in chip antenna and requires only a single connection to

the µC via one of the UART ports.

3.1.2 Software Setup

To facilitate the exchange of values for the distributed algorithms, each XBee

module is put into API mode (AP=2 with escapes), and the three-layered

communication protocol stack shown in Fig. 3.2 is implemented. The lowest

layer of the stack is based on the ZigBee (IEEE 802.15.4) protocol [18], and

is contained entirely on the XBee modules. The middle layer consists of a

modified version of the xbee-arduino API [19]. The modifications allow wired

communication between the nodes and a computer to continue uninterrupted

while the nodes exchange information wirelessly. Additionally, the API was

altered to enable incoming and outgoing messages to be time-stamped im-

mediately upon receipt and just before being sent to increase the accuracy

of the time synchronization mechanism discussed in the next section. The
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Figure 3.2: Communication protocol stack

header of the top layer contains information about the distributed algorithm

being used while the payload holds the values exchanged during the iterative

process.

All of the software created for implementing the distributed algorithms on

the nodes is written in C++. Furthermore, an object-oriented approach is

taken where possible to encourage code reuse and to simplify the initialization

of the algorithms. The Arduino software environment is used to program the

µCs and for monitoring the serial port to gather data.

3.2 Distributed Algorithm Implementation

In order to take advantage of the wireless medium used for communication

among nodes, all of the packets used to exchange values are broadcasted;

that is, packets are not addressed to a particular node. Furthermore, to

minimize network traffic, no acknowledgements are sent upon successful re-

ceipt of packets. To create a partially connected network despite the close

proximity of the nodes during testing, each µC is programmed to only ac-

cept messages received from nodes in its in-neighborhood. In a more realistic

setup, however, the testbed could be adapted to allow the availability of links

between nodes to be based upon signal strength.

Throughout the formulation of the algorithms in the previous chapter, we

assumed that all participating DGRs update the value of their state variables

in unison; i.e., DGR i updates its state at iteration k at the same time

DGR j updates its state, ∀i, j ∈ V. Without a common time reference and

with no acknowledgements, however, it is possible for the DGRs to update

their states at different times which could cause the DGRs to converge to

the wrong solution or possibly diverge. Thus, to ensure convergence to the

correct solution, all nodes are synchronized to a common reference before
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initializing the distributed algorithm.

The synchronization mechanism used in the hardware testbed is based on

the hierarchy referencing time synchronization (HRTS) protocol proposed in

[20]. This protocol requires very little overhead and is capable of synchro-

nizing the clocks of several nodes to the clock of a reference node using only

three packets. As mentioned previously, given the close proximity of the

nodes during testing, the graph representing the communication structure in

the network is completely connected; thus, in order to simplify the process, no

communication restrictions are placed on the nodes during synchronization.

To initiate the time synchronization process, the reference node (e.g. the

leader node) broadcasts a sync_begin packet at time t1, specifying a target

node from its out-neighborhood chosen randomly. The target node then

responds using a unicast packet that contains the time the sync_begin packet

was received, t2, and the time the response packet was sent, t3. All other

nodes interested in synchronizing to the reference node record the local time

at which the sync_begin packet was received, t′2, but do not respond. At

time t4, the reference node receives the response packet from the target node

and thus owns all of the timestamps required to determine the offset between

its local clock and the local clock of the target node. Assuming negligible

propagation delay, the reference node computes the offset as

d =
(t2 − t1)− (t4 − t3)

2
(3.1)

and broadcasts it in a final packet also containing t2. At this point, the target

node can complete the synchronization process by adjusting its clock to be

T = t + d, where t is the local clock reading before synchronization. The

timestamp t2 included in the final packet from the reference node is used by

all other nodes to estimate the offset between their local clocks and the local

clock of the target node as d′ = t2 − t′2. Using this estimate, the remaining

nodes can now adjust their clocks to be T = t + d + d′, where t is the local

clock of the respective node before synchronization. In the testbed, rather

than adjust the clocks of synchronized nodes, a function extending the low-

level clock timer0_millis is used which adds the offset found using HRTS

to the local time, providing a clock that is common throughout the network.

As mentioned above, the computation of the clock offset between nodes

in the HRTS protocol assumes there is negligible communication delay. Thus
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Procedure 1: General distributed algorithm

Input: iteration period, number of iterations, initial command,
(optional) constraints

Output: new resource command

begin
generate random transmit time;
foreach iteration do

begin timer;
while timer < iteration period do

look for incoming packet;
if packet available then

if sender ∈ in-neighborhood then
store incoming value(s);

if transmit time = time elapsed then
broadcast current value(s);

compute next value;

compute final command;

packets exchanged during the synchronization process should be time stamped

at the lowest possible protocol to reduce error resulting from data propagat-

ing up the protocol stack. In the testbed, however, the bottom layer of the

stack cannot be modified, so all time stamps are generated at the middle

protocol layer. Given this configuration, the delay present in the system

results in a worst case clock error on the order of 10 ms. To mitigate the

effects of this error on the distributed algorithms, the nodes are restricted

from transmitting data for a period of time which exceeds the clock error

during the beginning and end of each iteration.

After synchronizing the clocks of all of the nodes in the network, the dis-

tributed algorithm begins. The number of iterations, m, and the period of

each iteration is known by all of the nodes a priori to ensure that synchronism

is maintained throughout the iterative process. The function in Procedure

1 outlines the basic routine executed at each node participating in the dis-

tributed algorithm. The required arguments of this function are the initial

value, the iteration period and the number of iterations to be performed

while resource constraints can be passed as optional arguments. Although

the ZigBee protocol seeks to minimize packet collisions at the lowest layer
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Figure 3.3: Graph of 4-node network

of the protocol stack, the nodes attempt to avoid collisions by broadcasting

their values at randomly chosen times within the iteration period.

3.3 Experimental Results

In this section, experimental results generated from the unconstrained, con-

strained and robust algorithms as implemented on the hardware testbed are

presented. Throughout this section, the inputs and outputs of the algorithms

are unit-less and the nodes are not controlling a DGR. Despite this, we use

the terms node and DGR interchangeably.

3.3.1 Unconstrained Algorithm

The hardware testbed is used to implement the unconstrained algorithm on

the 4-node network depicted by the graph in Fig. 3.3. For this experiment,

the leader node is indexed by 1 and the generation mismatch is ρe = 1

2
.

Initially, x2 = 1

2
and x1, x3, x4 = 0, thus, π1[0] = ρe + x1 = 1

2
, π2[0] =

1

2
,

π3[0], π4[0] = 0 and the nodes update their values according to algorithm
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Figure 3.4: Unconstrained results

(2.4) as

π1[k + 1] =
1

3
(π1[k] + π2[k] + π3[k]),

π2[k + 1] =
1

3
(π1[k] + π2[k]) +

1

2
π4[k],

π3[k + 1] =
1

3
(π1[k] + π3[k]),

π4[k + 1] =
1

3
(π2[k] + π3[k]) +

1

2
π4[k].

(3.2)

Equation (3.2) can be written in matrix form according to (2.2), where π[0] =
[
1

2
, 1

2
, 0, 0

]T

and

P =









1/3 1/3 1/3 0

1/3 1/3 0 1/2

1/3 0 1/3 0

0 1/3 1/3 1/2









. (3.3)

The evolution of the values of π[k] computed at each node is plotted in

Fig. 3.4. From the plot, it can be seen that the nodes converge to their

steady-state values in approximately 8 iterations. For this experiment, the

nodes are programmed to perform 14 iterations; thus the vector of final

21



values corresponding to the amount of generation each DGR should provide

is given as x = π[14] =
[

0.230, 0.345, 0.119, 0.306
]T

. Due to the directed edge

between nodes 3 and 4, this is an example where the DGRs do not equally

split the total generation demand among themselves.

3.3.2 Constrained Algorithm Results

Similar to the unconstrained example, the 4-node network represented by

the graph in Fig. 3.3 is constructed using the hardware testbed to evaluate

the convergence of the constrained algorithm. To illustrate the effects of

link availability on convergence, we present a case in which the constrained

algorithm converges to the correct solution and a case in which it does not.

Correct Convergence

In order to allow sufficient time for nodes to exchange information and com-

pute their next value, a period of 500 ms is apportioned for each iteration.

Furthermore, nodes are restricted from transmitting during the first and last

50 ms of each iteration to account for any synchronization errors. As in the

unconstrained example, the leader node is indexed by 1 and the generation

mismatch is chosen to be ρe =
1

2
, while x2 =

1

2
, and x1, x3, x4 = 0. The lower

and upper constraints are given by the vectors xmin =
[

0.1, 0.05, 0.12, 0
]T

and xmax =
[

0.35, 0.3, 0.26, 0.24
]T

, respectively. To ensure a feasible solu-

tion, the individual limits are chosen such that the total generation demanded

from the DGRs lies within the bounds of the collective constraints, that is,

χmin = 0.27 < ρd < χmax = 1.15.

Given the initial outputs of each DGR and the individual constraints,

the initial values for (2.8) and (2.9) are µ1[0] = 0.4, µ2[0] = 0.45, µ3[0] =

−0.12, µ4[0] = 0 and σ1[0] = σ2[0] = 0.25, σ3[0] = 0.14, σ4[0] = 0.24 and the
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Figure 3.5: Evolution of the distributed algorithm for a network of 4 nodes
with constraints

constrained algorithm written in matrix form is given as

µ[k + 1] = Pµ[k]

µ[0] =
[

0.4, 0.45,−0.12, 0
]T

σ[k + 1] = Pσ[k]

σ[0] =
[

0.25, 0.25, 0.14, 0.24
]T

,

(3.4)

where P is the matrix given in (3.3).

The evolution of the constrained distributed algorithm is shown in Fig

3.5. Although each node i is not required to compute xi until the iterative

process is complete, it is useful to illustrate the evolution of the system.

Thus the values of µi[k], σi[k] and xi[k] for i = 1, 2, 3, 4 are shown in the

figure. The plots show that the nodes reach their steady-state values in

approximately 8 iterations, which given an iteration period of 500ms, requires

around 4 seconds. As in the unconstrained case, the nodes are programmed

to perform 14 iterations; thus, the nodes compute the amount of generation

each DGR should provide according to (2.10) with m = 14 and we have that

x =
[

0.307, 0.257, 0.237, 0.199
]T

. If we sum the generation provided by all

the DGRs in the system, we see that the collective output meets the overall

demand, i.e.,
∑4

i=1
xi = 1 = ρd, while none of the individual constraints are

exceeded.

23



5 10 15

0

0.2

0.4

π[k] vs k

5 10 15

0.1

0.2

0.3

µ[k] vs k

5 10 15
0

0.2

0.4

x[k] vs k

node 1 node 2 node 3 node 4

Figure 3.6: Incorrect evolution of the distributed algorithm for a network of
4 nodes with constraints

Incorrect Convergence

The iteration period was chosen conservatively in the previous example to

reduce the probability of packet collisions resulting from nodes broadcasting

their values concurrently. Moreover, nodes were restricted from transmitting

information during the first and last 50 ms of each iteration to ensure that the

algorithm would converge correctly despite synchronization error. To illus-

trate the sensitivity to these parameters, the 4-node network is tested again

using a significantly smaller iteration period of 50 ms with no restrictions on

broadcast time.

Using the same initial conditions as in the previous example, the evolution

of the values maintained by the nodes is plotted in Fig. 3.6. From these plots

it is evident that the loss of packets induced by reducing the iteration period

effectively removes the ability of the algorithm to preserve the sum of the

values maintained by the nodes, causing µ[k] and σ[k] to quickly converge

to zero. Although the values exchanged by the nodes approach zero, the

figure illustrates that the value of x[k], computed as a function of the ratio

of µ[k] and σ[k], tends toward a nonzero steady-state solution. Running the

algorithm for 99 iterations (only the first 15 are shown in the figure) results

in a steady-state solution of x =
[

0.254, 0.204, 0.206, 0.147
]T

. The total

generation provided by the DGRs is given as
∑4

i=1
xi = 0.811 6= ρd = 1. Thus

there is a mismatch between the collective amount of generation supplied and

the total generation demand, and the algorithm is ineffective.
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Figure 3.7: Graph of 6-node network

3.3.3 Robust Algorithm with Constraints Results

The 6-node network represented by the graph in Fig. 3.7 is created using the

hardware testbed to evaluate the robust algorithm with constraints. In order

to induce dropped packets, the iteration period is reduced to 40 ms and no

restrictions are placed on broadcast time.

For this experiment, node 1 is selected to be the leader. The generation

mismatch is chosen to be ρe =
1

2
and initially, x1 =

1

2
and x2, x3, x4, x5, x6 = 0.

The minimum and maximum amount of generation each DGR can provide

are given, respectively, by

xmin =
[

0.02, 0.1, 0.05, 0.08, 0.12, 0
]T

,

xmax =
[

0.146, 0.208, 0.193, 0.167, 0.229, 0.159
]T

.

The collective lower and upper bounds are chosen to ensure the system is

capable of meeting the overall generation demand, i.e., χmin = 0.37 < ρd <

χmax = 1.102.

Using the initial generation output and the constraints of each DGR, the

initial values of the internal states are given by the vectors

y[0] =
[

0.98,−0.1,−0.05,−0.08,−0.12, 0
]T

,

z[0] =
[

0.126, 0.108, 0.143, 0.087, 0.109, 0.159
]T

.
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Figure 3.8: Evolution of robust constrained algorithm

Furthermore, the matrix of weights used by the nodes is given by

P =














1/2 1/3 0 0 0 0

1/2 1/3 1/3 0 0 0

0 1/3 1/3 1/3 0 0

0 0 1/3 1/3 1/3 0

0 0 0 1/3 1/3 1/2

0 0 0 0 1/3 1/2














.

The evolution of the internal states and the output of each DGR computed

at each node running the robust algorithm is shown in Fig. 3.8. The plots of

the internal states y[k] and z[k] show erratic behavior that does not appear

to reach steady-state. Despite this, x[k] converges to a steady-state solution

that meets the overall generation demand. After running 99 iterations, the

generation output of each DGR is computed and given by the vector

x =
[

0.128, 0.193, 0.173, 0.155, 0.214, 0.137
]T

.

If we sum the total amount of generation provided by the DGRs, we see that

ρ = ρd, while none of the individual resource constraints are violated.
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3.3.4 Determining Feasibility

As mentioned in Section 2.4.2, each node can independently determine if

the collective capacity of the available DGRs is sufficient to meet the overall

demand for generation. Specifically, after performing the specified number

of iterations and computing αi according to (2.15), each node can determine

if the demand for generation is outside the collective bounds of the DGRs if

αi > 1 or αi < 0. By taking advantage of this property, it is possible, for

instance, to designate a subset of DGRs as reserves which can participate in

the distributed algorithm with artificially restricted limits until determining

that the capacity of the remaining DGRs has been exceeded. To illustrate

the ability of the individual nodes to determine feasibility, we show results

for a case in which the resource demand is within the collective limit of the

DGRs and one in which it is not. In both cases, the robust algorithm with

constraints is used to implement the 4-node network depicted by the graph

in Fig. 3.3 and the total demand for generation is chosen to be ρd = 1.

We first demonstrate the case in which the generation demand is within

the collective bounds of the DGRs. For this experiment, the leader node

is indexed by 1, the generation mismatch is chosen to be ρe = 1

2
, and, ini-

tially, x2 = 1

2
, and x1, x3, x4 = 0. Let the minimum and maximum capac-

ities of the nodes be given respectively by xmin =
[

0.15, 0, 0.15, 0.1
]T

and

xmax =
[

0.3, 0.15, 0.4, 0.25
]T

, such that χmin = 0.4 ≤ ρd ≤ χmax = 1.1.

Given the generation mismatch and the capacity of the DGRs, the vectors

of initial states are given as y[0] =
[

0.35, 0.5,−0.15,−0.1
]T

, and z[0] =
[

0.15, 0.15, 0.25, 0.15
]T

.

The evolution of αi[k] for j = 1, 2, 3, 4 over 25 iterations is shown in

Fig. 3.9. From the figure, we see that after approximately 15 iterations,

all nodes have converged to a solution in which α = 0.857. Thus, the

nodes determine the solution is feasible and compute the amount of gen-

eration each DGR should provide according to (2.20), and we have that

x =
[

0.279, 0.129, 0.364, 0.228
]T

.

We now demonstrate a case in which the collective capacity of the DGRs is

insufficient to meet the total demand for generation. Let the generation mis-

match and the initial output of each generator be the same as in the previous

case but adjust the minimum and maximum capacity of the nodes to be given
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Figure 3.9: Evolution of α[k] for a 4-node system with feasible solution

respectively by xmin =
[

0.1, 0, 0.1, 0.1
]T

and xmax =
[

0.25, 0.15, 0.3, 0.25
]T

,

such that χmin = 0.3 and χmax = 0.95 < ρd. Thus, the vectors of initial states

are given as y[0] =
[

0.4, 0.5,−0.1,−0.1
]T

and z[0] =
[

0.15, 0.15, 0.2, 0.1
]T

.

The evolution of αi[k] for the four nodes over 25 iterations is shown in Fig.

3.10. From this figure, we see that after approximately 15 iterations, all nodes

have converged to a solution in which α = 1.167. Thus, the nodes determine

that the solution is infeasible and they cannot adjust their generation output

beyond their maximum capacities.

3.3.5 Even Splitting Algorithm

In the previous examples demonstrating algorithms that account for con-

straints, the output of each DGR was computed such that the generation

demand was distributed fairly among all DGRs in the system. Specifically,

as illustrated by (2.15), after the algorithm has converged, each DGR i de-

termines its generation output based upon its constraints and αi. Since αi

is the ratio of the total demand to the collective capacity of the system, the

output of each DGR is chosen to be proportional to the overall loading in

the system relative to its constraints. In the absence of constraints, however,

the algorithm can be adapted such that the total demand for generation is
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Figure 3.10: Evolution of α[k] for a 4-node system with infeasible solution

evenly divided among all DGRs in the system, i.e., xi = ρd/n, ∀i.

To demonstrate a case when the nodes split the overall demand evenly,

the 7-node network depicted by the graph in Fig. 3.11 is created using the

hardware testbed and the robust algorithm with constraints with xmin
i = 0

and xmax
i = 1, i = 1, . . . , 7. Similar to the previous examples, the leader is

indexed by 1 and the generation mismatch is chosen to be ρe =
1

2
. Initially,

x =
[

0.2, 0.1, 0.05, 0.15, 0.25, 0.35, 0.5
]T

; thus, the total generation demand

is ρd = 2.1 and the vectors of initial states are given as

y[0] =
[

0.7, 0.1, 0.05, 0.15, 0.25, 0.35, 0.5
]T

,

z[0] =
[

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
]T

.

Given the edges in the graph representing the communication network, the
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Figure 3.11: Graph of 7-node network

matrix of weights is

P =
















1/4 1/3 0 0 1/2 1/3 0

1/4 1/3 0 0 0 0 0

0 1/3 1/2 0 0 0 0

1/4 0 1/2 1/3 0 0 0

0 0 0 1/3 1/2 1/3 1/2

1/4 0 0 0 0 1/3 0

0 0 0 1/3 0 0 1/2
















.

The evolution of x[k] for the seven nodes over 35 iterations is shown in

Fig. 3.12. From the figure, it can be seen that the nodes converge to a

solution after approximately 30 iterations. As expected, all DGRs split the

total demand evenly and thus xi = 0.3 = ρd/7, i = 1, . . . , 7.
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CHAPTER 4

APPLICATION TO DISTRIBUTED

GENERATION CONTROL OF

SMALL-FOOTPRINT POWER SYSTEMS

In this chapter, we utilize the distributed algorithms and the hardware testbed

presented in Chapters 2 and 3, respectively, to control the generators in a

small-footprint power system in order to regulate the electrical frequency. A

brief overview of the model used to describe the synchronous generators in

the system is given and the interconnection between the generators and loads

is described. Results are provided for several cases to illustrate the efficacy

of the algorithms and the testbed for distributed generation control.

4.1 Synchronous Generator Model

When implemented on the hardware testbed, the algorithms developed in

Chapter 2 can enable a set of DGRs to be coordinated to meet generation

demand without relying on a centralized controller. To be useful in a small-

footprint power system, however, the algorithms must be part of an overall

control strategy designed to account for the characteristics of the individual

DGRs as well as the overall system. The DGRs in the experimental setup dis-

cussed in the next section are small synchronous generators; thus, we provide

a state-space model that is used to develop a suitable control architecture.

Each synchronous generator can be modeled as a rotating mass connected

at the shaft to a prime mover as shown in Fig. 4.1. As the figure illustrates,

the generator imposes a torque of electrical origin, Te, which opposes the

mechanical torque, Tm, supplied by the prime mover. Thus the mechanical

torque acts to increase the rotational speed while the electrical torque acts to

slow it down. Given this relationship and assuming no losses, the rotational

speed of the shaft, ω, will be constant only when the magnitude of Tm and

Te are equal. If the electrical load is increased so that Te is larger than Tm,

the entire rotating system will begin to slow down. Similarly, if the electrical
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Figure 4.2: Equivalent circuit for synchronous machine model

load is decreased, the speed of the rotating system will increase [21].

Using the above-described relationship between the mechanical torque sup-

plied by the prime mover and the electrical torque imposed by the generator,

we use a two-state model—the so-called classical model (see, e.g., [22])—to

describe the dynamics of the synchronous generators. For each synchronous

machine, i, let δi denote the angle of the rotor (with respect to the syn-

chronous reference rotating at ωs [rad/s]) in electrical radians, ωi denote the

angular velocity of the rotor in electrical radians per second and Pm
i [pu] de-

note the power supplied by the prime mover. Furthermore, as shown in Fig.

4.2, let Vi [pu] and θi [rad] denote the magnitude and angle of the machine

terminal voltage, respectively, Xi [pu] denote the internal machine reactance,

and Ei [pu] denote the magnitude of the internal machine voltage. Then the

machine dynamics are modeled as

dδi
dt

= ωi − ωs (4.1)

dωi

dt
=

1

Mi

Pm
i −

Di

Mi

(ωi − ωs)−
EiVi

XiMi

sin(δi − θi) (4.2)

where Di [rad/s] is the damping coefficient of the spinning mass, Mi [s
2/rad]

is the scaled inertia constant of the machine, and ωs is the synchronous speed

of the machine in electrical radians per second.

Upon inspecting (4.2), we see that each of the three terms can be attributed
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to distinct sources,

dωi

dt
=

1

Mi

Pm
i

︸ ︷︷ ︸

Pm

−
Di

Mi

(ωi − ωs)
︸ ︷︷ ︸

Pfw

−
EiVi

XiMi

sin(δi − θi)
︸ ︷︷ ︸

Pe

. (4.3)

In particular, the first term, Pm, is the power supplied by the prime mover

while the second term, Pfw, is the power lost in the rotating mass due to

friction and windage. The final term, Pe, is the electrical power extracted

from the terminals of the generator.

We now use (4.3) to describe the steady-state behavior of the generator

following a transient such as an increase or decrease of the electrical load. In

steady-state, the derivative of (4.3) will be zero; thus, the speed is given as

ωi =
1

Di

(

Pm
i −

EiVi

Xi

sin(δi − θi)

)

+ ωs. (4.4)

Immediately following a load change (or without the addition of a governor),

the power supplied by the prime mover, Pm, remains constant. Thus we see

that, given a change in load, in order for energy to be conserved, the speed

of the rotating mass must change. Specifically, an increase in load will act to

slow the system down while a decrease in load will act to increase the speed.

The amount by which the speed changes is governed by the inverse of the

damping coefficient, Di. As illustrated in Fig. 4.3, the relationship between

the power output and the speed can be represented by a line with negative

slope, causing the synchronous machine to exhibit a natural drooping effect.

If two (or more) synchronous generators are connected to a power system,

there will be a unique speed at which the load will be distributed between
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them. This behavior is illustrated in Fig. 4.4 which shows two synchronous

generators connected to a common load. Suppose the generators are sup-

plying power to an initial load PL = P1 + P2 at a speed of ω when the load

increases to P′
L = PL + ∆PL. For energy to be conserved, the machines

will slow down in order to increase their power output until a new common

speed, ω′, is reached. The amount of load each generator will pick up is

proportional to the slope of its droop characteristic. Thus if D1 6= D2, then

P ′
1−P1 6= P ′

2−P2. Although the generators may not evenly divide the addi-

tional power, the increase in load is divided between the two generators such

that ∆PL = P ′
1 − P1 + P ′

2 − P2.

The inherent droop characteristic of the synchronous machines provides a

natural way for determining the amount of generation needed to be added

to or removed from the system in order to operate at a specified electrical

frequency. Thus the leading DGR need only measure the frequency error in

the system and multiply it by a gain to determine the generation mismatch

as

ρe = k(ωref − ω), (4.5)

where k has units [pu-s/rad]. In combination with the distributed algorithms,

the computation of the generation mismatch by the leading DGR yields a

two-stage closed loop controller as shown in Fig. 4.5. As the figure illustrates,

the frequency error is used to determine the generation mismatch which is

then dispersed among all DGRs by the distributed algorithms.
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4.2 Small-Footprint Power System Setup

To demonstrate the ability of the distributed algorithms to control a set of

DGRs, the six-bus, 240 V, 3-phase power system shown in Fig. 4.6 was

constructed. The system is comprised of 3 Hampden Engineering (Table

A.1) synchronous machines, G1,G2,G3, and 3 wye-connected resistive loads,

labeled as P1,P2 and P3. Each synchronous machine is connected at the shaft

to a permanent magnet synchronous servomotor (Table A.2) which serves as

the prime mover. In order to regulate the frequency as the load in the system

varies, the prime movers are operated in constant torque mode, with the

torque command supplied by the nodes from the hardware testbed. Thus,

the gain in equation (4.5) has units Nm/RPM and the generation mismatch

has units Nm. Furthermore, the synchronous machines have 3 pole-pairs,

therefore to maintain an electrical frequency of 60 Hz, the mechanical speed

of the generators is regulated to 1200 RPM.

Table 4.1: Value of added inductances in power system

Parameter Inductance [mH]
L1,A 2.041
L1,B 1.905
L1,C 1.961
L2,A 4.175
L2,B 4.162
L2,C 4.059

In the results presented throughout the remainder of this section, the gen-

erator at bus 1, G1, is chosen to be the leader node. Furthermore, the

per-phase resistance of each load is adjusted by adding 500 Ω resistors in
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Figure 4.7: Graph of 3-node network

parallel. Each load can have up to 10 resistors in parallel per phase, yielding

resistances in the range 500, 250, . . . , 50Ω. Extra impedance is added via

series inductors between bus 4 and bus 6 as well as between bus 1 and bus 3

as shown in Fig. 4.6. The per-phase inductances are given in Table 4.1.

4.3 Experimental Results

In this section, we present results from several experiments in which the hard-

ware testbed is used to control the generators in the small-footprint power

system described in the previous section. Cases demonstrating the genera-

tors fairly splitting the generation demand given a load increase and decrease

are shown as well as a case in which the generation demand is split evenly
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Figure 4.8: Prime mover torque and average speed during load increase
with fair splitting

among the three generators. In the first three results, the communication

between the nodes is represented by the graph shown in Fig. 4.7. In the final

set of results, a fourth generator is added to the system to act as a spinning

reserve. The extra generator participates in the distributed algorithms but

does not adjust its output until the maximum capacities of the three original

generators has been met. The robust algorithm with constraints is used in

all cases.

We first discuss the results from increasing the load in the system using

the fair splitting algorithm. In this case, the maximum constraints of the

generators are chosen to be xmax
1 = 4.0Nm, xmax

2 = 2.5Nm, and xmax
3 =

3.5Nm while the minimum constraints are xmin
i = 0Nm, i = 1, 2, 3. Thus

the collective system capacities are χmax = 10Nm and χmin = 0Nm. The

controller gain used by the leader is k = 0.003Nm/RPM.

The plot in Fig. 4.8 shows the torque supplied by the prime movers and

the average mechanical speed of the generators for several load increases.

Initially, the load in the system is R2 = 250Ω, R3 = 166.67Ω, and R6 =

166.67Ω. After 500 seconds, the load is increased to R2 = 166.67Ω, R3 =

125Ω, and R6 = 166.67Ω. As the figure shows, all the generators increase
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Figure 4.9: Prime mover torque and average speed during load decrease
with fair splitting

their output in a way that is proportional to their limits. Furthermore,

although the speed does not return exactly to 1200 RPM, the distributed

algorithms serve to increase the output of each DGR given an increase in the

system load and subsequent decrease in speed.

Using the same constraints as in the previous case, the plot in Fig. 4.9

shows the torque supplied by the prime movers and the average mechanical

speed of the generators for several load decreases. The initial load in the

system is R2 = 125Ω, R3 = 166.67Ω, and R6 = 83.33Ω. After approx-

imately 350 seconds, the system load has been decreased to R2 = 125Ω,

R3 = 166.67Ω, and R6 = 500Ω. As the figure illustrates, the output of each

generator is decreased as the system load is shed and the speed increases.

Although the speed does not reach 1200 RPM, the plot shows that the algo-

rithm allows the DGRs to decrease their output relative to their individual

constraints.

We now discuss a case in which the constraints on the DGRs are removed

and the load is split evenly among the three generators. The plot in Fig. 4.10

illustrates the prime mover torque and the average speed of the generators.

As expected, the output of each generator is exactly the same throughout the

39



0 50 100 150 200 250 300 350
2.7

2.75

2.8

2.85

2.9

2.95

3

3.05

Time [s]

T
or
q
u
e
[N

m
]

1080

1100

1120

1140

1160

1180

1200

S
p
ee
d
[R
P
M
]

G1 G2 G3
ω

Figure 4.10: Prime mover torque and average speed during load increase
with even splitting

experiment. At approximately 300 seconds, the load in the system increases

such that the system speed drops to roughly 1050 RPM. After about 20

seconds, the generators all increase their output from 2.8 Nm to 3.01 Nm

and the system speed increases to over 1180 RPM.

4.3.1 Spinning Reserve with Fair Splitting

In order to demonstrate the capability of each DGR to independently deter-

mine when the overall generation demand exceeds the collective constraints

in the system, a fourth generator is added at bus 2 as shown in Fig. 4.11.

The communication between DGRs is represented by the graph shown in

Fig. 3.3.

Since all of the generators must operate in synchronism, the fourth gener-

ator is controlled in such a way that it only provides the necessary amount of

torque required to be connected to the system. To facilitate this, the spinning

reserve participates in the distributed algorithm with the other DGRs but

sets its maximum capacity to the minimum amount of torque required for

40



Bus 1

G1

L2

Bus 2

P2

G4

Bus 3

P3

Bus 4

G2

L1
Bus 5

G3

Bus 6

P6

Figure 4.11: One line diagram of small-footprint power system with
spinning reserve

synchronization. The DGRs have maximum constraints of xmax
1 = 3.5Nm,

xmax
2 = 2.5Nm, xmax

3 = 3.0Nm, and, initially, xmax
4 = 1.42Nm, and mini-

mum constraints xmin
i = 0Nm, i = 1, 2, 3, 4.Given the individual constraints,

the collective capacity of the system is bounded by χmax = 10.42Nm and

χmin = 0Nm.

The plot in Fig. 4.12 shows the torque supplied by the prime movers

connected to each DGR and the average speed over the course of several

load changes. At approximately 70 seconds, the non-reserve generators have

reached their maximum capacities and thus cannot increase their output in

order to regulate the frequency. After this point, however, the spinning re-

serve determines that the total capacity in the system has been exceeded

and adjusts its maximum output to its true value of xmax
4 = 2.5Nm. This

adjustment is realized at approximately 180 seconds at which point the other

generators are able to reduce their output and the speed increases to approx-

imately 1200 RPM.
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CHAPTER 5

CONCLUDING REMARKS AND FUTURE

WORK

5.1 Concluding Remarks

In this thesis, several algorithms suitable for controlling distributed genera-

tion resources without the need for a centralized controller were proposed. We

began by formulating an unconstrained algorithm that iteratively disperses

the total generation demand among the DGRs and analyzed its convergence.

We then extended this algorithm to account for individual DGR constraints

and discussed how the result could be used by each DGR to ascertain the

global state of the system. Finally we adapted the constrained algorithm to

be more resilient to imperfect communication links. Each of the proposed

algorithms was implemented using a hardware testbed comprised of low com-

plexity devices capable of performing simple computations and exchanging

information wirelessly with other nearby devices. Results were presented il-

lustrating the capabilities of the hardware testbed as well as the evolution of

the values computed at each iteration for the algorithms

Using the hardware testbed connected to synchronous generators in a

small-footprint power system, we illustrated the efficacy of the algorithms

as part of a two-stage control architecture for regulating the electrical fre-

quency. Several results were discussed showing the change in system speed

following an increase or decrease of the load and the subsequent adjustment

of generation output of each of the DGRs. We concluded by showing a case

in which one generator was treated as a spinning reserve by limiting its out-

put until the remaining generators reached their capacity limits. This result

demonstrates the ability for each DGR to independently determine when

the overall demand for generation exceeds the collective constraints in the

system.

All of the results presented herein were for systems comprised of relatively
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few DGRs. Despite this, the algorithms are scalable, with only convergence

speed being affected by the total number of nodes participating (and the

connectivity of the communication network linking them). Furthermore, the

small-footprint power system is just one of many applications that would be

well-suited for a distributed control architecture similar to the ones proposed

in this thesis. In fact, the algorithms discussed could be adapted for any

class of applications in which one wishes to coordinate a set of distributed

agents such that they collectively achieve a desired goal. Additionally, the

algorithms could be used for applications in which resiliency and self-healing

are important since the distributed nature obviates the need for a centralized

controller with full knowledge of the network. One example application that

would benefit from dynamic adaptation is to utilize the power electronics-

based power supplies present in personal computers and/or uninterruptible

power supplies to provide some control of the real and reactive power demand

of a building.

5.2 Future Work

As mentioned above, the application to small-footprint power systems is

just one example in which the proposed algorithms could be utilized. As

part of our future work, we plan to use the hardware testbed for controlling

other devices such as grid-tied inverters connected to photovoltaic arrays or

uninterruptible power supplies. Furthermore, we would like to expand the

application to controlling other resources such as reactive power for voltage

support in power systems. We also envision other energy sources such as

the aforementioned inverters and other power electronics-based devices sup-

plementing the synchronous machines in our small-footprint power system

setup.

Another aspect we would like to address is the costs associated with each

DGR. While we demonstrated cases in which individual DGR constraints

were accounted for, we neglected the incremental costs associated with in-

creasing or decreasing the output of the DGRs. Given a quadratic cost

function and upper and lower bounds on the output of each DGR, we would

like to find a solution that minimizes the total cost while meeting the total

demand for generation without violating DGR limits. That is, we would like

44



to use a distributed algorithm to find xi for i = 1, . . . , n, such that

minimize

n∑

i=1

(xi − αi)
2

2βi

subject to

n∑

i=1

xi = ρd

0 < xmin
i ≤ xi ≤ xmax

i , ∀i,

(5.1)

where αi ≤ 0 and βi > 0 are real numbers. To achieve this, we plan to expand

our work in [23] by implementing the proposed optimal solution utilizing the

hardware testbed and using it to optimally dispatch the DGRs in our small-

footprint power system setup.
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APPENDIX A

SYNCHRONOUS MACHINE AND

SERVOMOTOR NAMEPLATE

SPECIFICATIONS

Table A.1: Hampden Engineering Corporation Synchronous Machine

Parameter Value
Armature Voltage 133/230 RMS Volts
Armature Current 15.5/9 RMS Amps

Horsepower 2 Hp
Speed 1200 RPM

Frequency 60 Hz
Model Syn-2

Table A.2: Kollmorgen Goldline Brushless Permanent Magnet Servomotor

Parameter Value
Stall Current (Continuous) 10.3 RMS Amps

Stall Current (Peak) 33.0 RMS Amps
Torque (Continuous) 6.44 Nm

Torque (Peak) 19.5 Nm
Rated L/L Voltage 230 RMS Volts
Torque (Continuous) 6.44 Nm
Maximum Speed 4900 RPM

Frequency 164 Hz
Model B-206-C-21
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