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ABSTRACT

The simultaneous explosion of portable microelectronics devices and the rapid

shrinking of microprocessor size have provided a tremendous motivation to

scientists and engineers to continue the down-scaling of these devices. For

several decades, innovations have allowed components such as transistors to be

physically reduced in size, allowing the famous Moore’s law to hold true. As

these transistors approach the atomic scale, however, further reduction becomes

less probable and practical. As new technologies overcome these limitations,

they face new, unexpected problems, including the ability to accurately simulate

and predict the behavior of these devices, and to manage the heat they generate.

This work uses a 3D Monte Carlo (MC) simulator to investigate the

electro-thermal behavior of quasi-one-dimensional electron gas (1DEG) multigate

MOSFETs. In order to study these highly confined architectures, the inclusion

of quantum correction becomes essential. To better capture the influence of

carrier confinement, the electrostatically quantum-corrected full-band MC model

has the added feature of being able to incorporate subband scattering. The

scattering rate selection introduces quantum correction into carrier movement.

In addition to the quantum effects, scaling introduces thermal management

issues due to the surge in power dissipation. Solving these problems will

continue to bring improvements in battery life, performance, and size constraints

of future devices. We have coupled our electron transport Monte Carlo

simulation to Aksamija’s phonon transport so that we may accurately and

efficiently study carrier transport, heat generation, and other effects at the

transistor level. This coupling utilizes anharmonic phonon decay and
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temperature dependent scattering rates. One immediate advantage of our

coupled electro-thermal Monte Carlo simulator is its ability to provide an

accurate description of the spatial variation of self-heating and its effect on

non-equilibrium carrier dynamics, a key determinant in device performance. The

dependence of short-channel effects and Joule heating on the lateral scaling of

the cross-section is specifically explored in this work. Finally, this dissertation

studies the basic tradeoff between various n-channel multigate architectures with

square cross-sectional lengths ranging from 30 nm to 5 nm are presented.
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CHAPTER 1

INTRODUCTION

Scientific progress can be mapped by the watershed discoveries that open up

entirely new frontiers of possibility. In biology, the structure of DNA unlocked

many secrets of life; in physics, relativity and quantum mechanics transformed

the contemporary understanding of the Universe; and in electronics, the single

most important invention of the last century may have been the transistor. Fifty

years later, John Bardeen’s invention continues to transform the human

experience at an accelerating rate. Intel founder Gordon Moore’s 1965

prediction that the number of transistors in a given area of integrated circuit

chips would double every two years has yet to be disproven. The continuation of

this process however is facing physical barriers such as atomic size limitations,

limits on the ability to manipulate materials, and thermodynamic effects. This

dissertation proposes a simulation model of some of these electro-thermal effects

relating to electron transport in silicon devices.

Though extensive research is being done to transcend the many challenges to

scaling chip design, viable solutions are few. In MOSFET design, aggressive

scaling causes increased power dissipation, thermal failures, and performance

limiting short-channel effects (SCEs). With regards to interconnects, scaling

down increases the time required for signal propagation; therefore, chip

performance may actually decrease. Innovations in lithography have not

delivered either. Among the four major innovations promising to provide

next-generation lithography (NGL), three are behind schedule, and the

capabilities for the fourth do not currently exist.

These challenges notwithstanding, however, advances are being made. Goals
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set by the International Technology Roadmap for Semiconductors (ITRS), which

works toward advancing high-performance, cost-effective semiconductor

technology, have spurred research groups and initiatives to look beyond

conventional methods for advanced semiconductor based device design. Within

transistor design, scientists have begun to explore novel materials,

quasi-one-dimensional (1D) nanowire transistor architectures, and innovative

methods where strain is used to enhance current in bulk MOSFETs [1, 2, 3, 4].

Silicon-on-insulator (SOI) multigate nanowires have also been strongly pursued.

SOI technology allows for suppression of SCEs inherent in bulk MOSFETs while

introducing the least amount of change to the planar bulk MOSFET fabrication

process.

Even these encouraging technologies, however, are limited by practical factors

such as cost and manufacturing capabilities. When a silicon wafer can cost

upwards of several thousands of dollars, experiments become expensive and

cost-prohibitive very quickly. Manufacturers have often solved such problems

using simulation methods. The fundamental challenge for improved simulation

models, however, is an accurate representation illustrating the properties of

carrier transport in an acceptable time frame. This dissertation will focus

primarily on the electrical and thermal properties of one of these technologies:

highly confined quasi-1D multigate MOSFETs, with an aim to provide a

full-band Monte Carlo (MC) simulation model to study these properties.

Limiting the carrier movement in a quasi-single dimension causes quantum

mechanical effects to arise in the 2D plane perpendicular to the carrier transport

direction. The arising 2D properties of the carrier confinement have revealed

unexpected physical properties. Attempts to accurately capture and understand

these systems using classical or quantum mechanical simulation methods have

been limited by the level of physical detail they are able to capture. Classical

methods are not able to capture quantum mechanical effects of systems and thus

require methods to include these quantum corrections in simulations.

Conversely, a commonly used quantum mechanical approach, the
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non-equilibrium Green’s function (NEGF), only superficially treats or neglects

altogether the scattering effects because of the high computational cost of

including them. Using a classical method, then, it is necessary to carefully

include the quantum mechanical effects along the 2D plane perpendicular to the

direction of charge transport in the MC kernel. Prior efforts using MC models

have not been able to provide 3D simulations with the appropriate quantum

mechanical and electron transport effects. Along with [5, 6] this dissertation

represents one of the most comprehensive models able to capture the effect of

carrier confinement on transport. This work is the first to do this with 3D

multi-subband, full-band ensemble MC with 2D quantum correction.

Aside from the challenge of capturing both classical and quantum mechanical

effects in a single model, other challenges may be considered. Increased

temperatures caused by high transistor packing densities, which contribute to

chip-level temperatures as well, are a significant challenge in scaled device

design. Heating, in fact, is often seen as the ultimate challenge to scaling. With

regards to transistors, heat is manifested through electron phonon interaction:

as phonons travel through the lattice, they increase its temperature and couple

back to electrons through electron phonon absorption. Accurate simulation tools

which thoroughly couple robust electrical and thermal transport models are

consequently instrumental to the development of improved transistors.

Electron and thermal transport models have been extensively detailed and

studied individually, but only a few studies have coupled both, especially within

the device design community. Lai and Majumdar [7] , for example,

simultaneously solved the electron and phonon transport problems with a

hydrodynamic model for electron transport and energy conservation model for

phonon transport. A solution by Sadi and coworkers [8] involves using a 2D MC

with parabolic bandstructure coupled to a simple diffusion equation. Rowlette

and his collaborators [9] solved both problems by pairing the frozen field 2D

particle MC developed by Pop et al. [10] and the split flux solver developed by

Sinha et al. [11]. Raleva and co-workers have also recently published several
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articles in this area [12]. Their work is based on the use of a 2D electro-thermal

simulator, coupling a more sophisticated electron MC with the hydrodynamic

phonon model proposed by Lai and Majumdar [7] to solve the moment equation

for acoustic and optical phonons.

Though these models have come closer to describing the interactions between

the phonons and electrons, they leave details to be explored. The model

presented here is the first coupled, quantum-corrected, 3D full-band particle MC

with a phonon MC. The code for this model takes into account both the

influence of anharmonic phonon decay on carrier transport and the temperature

dependent scattering rate. The inclusion of anharmonic phonon decay,

temperature dependent scattering rate, and full electron and phonon dispersion

helps create a clear picture of heat transfer and provides the ability to generate

a temperature map in nanoscale devices. The temperature map obtained from

the phonon transport model is fed back to the electron transport MC with a

temperature dependent scattering table in a self-consistent manner. This

process continues until the convergence criterion is met.

This dissertation explores the investigation of electro-thermal behavior of SOI

multigate devices at the limit of cross sectional scalability using the leading-edge

3D MC presented here. Specifically, the dependence of SCEs and Joule heating

is explored in narrowly scaled cross sections. Additionally, the basic tradeoff

between various n-channel multigate architectures with varying cross sections is

presented.
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CHAPTER 2

A PRELUDE TO DEVICE MODELING

In this chapter we briefly survey simulation approaches used to model the

transport of semiconductor devices.

2.1 Introduction

As device dimension approaches the size of a molecule, the need to model and

examine nanoscale structures is very compelling in order to understand the

details of their fascinating physical properties. The modeling approach to a

scientific problem since the advent of high-speed computers has paved the way

for the ever-growing field of computer experimentation. Incidentally, the role of

computer-aided design (CAD) simulation tools is ever increasing, as they

provide physical predicative insight into the device physics and help in the

design and production of new generations of device technologies. There are

many levels of device modeling depending on the extent to which physics is used

in the simulation. At the same time, it is important that these tools not require

immense computation time. The hierarchy of device simulation is shown in

Figure 2.1. It is arranged from physically more accurate (and computationally

more intensive) at the top to physically less accurate (and computationally less

intensive) at the bottom. At the top of the hierarchy are quantum models,

which take into account quantum effects such as size quantization, quantum

interference, and tunneling.

Quantum mechanics (QM) is fundamental to nanotechnology modeling,

because many of the properties and materials that nanotechnology research
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seeks to exploit can only be modeled using QM methods.The Schrödinger

equation fully describes the electronic structure of atoms, molecules, and solids.

The many-body Schrödinger equation is given by

HΨ(r,R) = EΨ(r,R) (2.1)

Ψ(r,R) = Ψ(r1, ..., rN ;R1, ..., RM ) (2.2)

where r is a function of the spatial position and spin for the electron, RM is the

coordinate of the M th ion and rN is the coordinate of the N th electron. The

kinetic energy (T ) and the potential energy (V ) are related to the Hamiltonian

as

H = Tn +Vnuc−nuc(R) +Tel +Vnu−el(x,R) +Vel−el(r) (2.3)

Although the above Schrödinger equation is precise within the non-relativistic

regime, exact solution is not possible. To make the equation numerically friendly,

we need to invoke approximations while retaining as much of the key physics as

possible. We shall describe these approximations in the subsequent sections.

Figure 2.1: Levels of abstraction in device modeling.
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2.1.1 Born-Oppenheimer adiabatic approximation: An attempt
to simplify the Schrödinger equation

Dirac was the first to declare the powerful capability of the Schrödinger equation

which ultimately describes completely all the interesting properties of

nanostructures; however, he also attested how it is computationally complex and

intractable. The Born-Oppenheimer adiabatic approximation is an important

assumption in most many-body quantum problems which decouples the

electronic and nuclear motion into two separate many-body problems; therefore,

adding a bit of simplification to the complex many-body Schrödinger equation.

The crux of this simplification is: Due to the difference in mass between the

nucleus and electrons, the nucleus of an atom essentially moves much slower

compared to its electrons. Therefore, due to the great disparities in the time

scales of motion, the nucleus can be regarded as fixed (i.e. infinitely heavy).

Hence, the electrons are assumed to follow the nuclear motion adiabatically (i.e.

“dragged” with the nucleus instantaneously). The assumption that the

electronic wavefunction adjusts virtually instantaneously to any changes in the

nucleus allows us to simplify the Hamiltonian and cancel out the non-adiabatic

(cross-coupling) electron-nuclear potential, which is expected to be quite small.

Mathematically, this allows us to invoke the separation of variables on the

many-body Schrödinger equation.

Ψ(r,R) = Ψel(r, R)Ψnuc(r, R) (2.4)

HelΨ
el(r1...rn;R1..., rN ) = EΨel(r1...rn;R1..., rN ) (2.5)

Hel = Tel +Vnu−el +Vel−el (2.6)

However, although the electronic wavefunction is decoupled from its nuclear

counterpart, it parametrically depends on the nucleus position R.
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2.2 Ab initio Quantum Transport Approximation of the

Schrödinger Equation

In this section we describe ab initio methods used to solve the many-body

Schrödinger equation. The term ab initio refers to a direct solution using first

principles with no empirical parameters.

2.2.1 Hartree-Fock method

Hartree-Fock theory was developed to solve the time-independent Schrödinger

equation after invoking the Born-Oppenheimer approximation. The main

assumption in the Hartree-Fock method is the independent-electron

approximation which, in essence, removes the potential due to the

electron-electron interaction and substitutes it with a self-consistent Hartree

potential that no longer couples the individual motions with all the other

electrons but instead depends simply upon the time-averaged electron

distribution of the system. This would again allow us to separate the variables

to further simplify the many-body Schrödinger equation. The electronic

wavefunction is dependent on four N variables, 3 spatial and 1 spin, for each of

the N particles. Hartree used the independent electron approximation to

decouple the many-body wavefunction and expressed it as a Hartree product

one-electron wavefunction.

Ψ(r1, r2, r3, ...rN ) = ψ1(r1)ψ2(r2)...ψN(rN) (2.7)

Clearly this is a substantial approximation, which reduces the physics and

accuracy of the problem. A shortcoming of the above Hartree product

wavefunction is that it fails to take into account the Pauli exclusion principle

which requires that two fermions do not exist at the same point in space with

the same set of quantum numbers. Essentially, the inclusion of the Pauli

exclusion principle would result in repulsion between any pair of identical
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fermions possessing the same set of quantum numbers. Mathematically, the

Pauli exclusion principle can be accounted for by ensuring that the wavefunction

of a set of identical fermions is antisymmetric. The antisymmetry requirement is

elegantly taken into account by writing the wavefunction as a single Slater

determinant (Hartree-Fock method) [13], [14]:

Ψ(r1, ..., rN ) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ1(r1) ψ1(r2) · · · ψ1(rN)

ψ2(r1) · · · · · · ψ2(rN)
...

. . . . . .
...

ψN(r1) ψN(r2) · · · ψN(rN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.8)

HHFψi = ξiψi (2.9)

HHF = − ~

2m
∇+ c1

∫

n(r)

|r − r′|dr + Ex[n] + Vext (2.10)

where Ex[n] is the exchange potential due to including the spin effect.

In order to solve the integro-differential Hartree-Fock equation numerically,

one needs to express each individual electron wavefunction as a set of primitive

functions called a basis set. This approach helps reduce the Hartree-Fock

equation to a linear algebra problem.

ψj =
M
∑

i=1

cijϕi (2.11)

In deciding upon a particular set of basis functions, one has to compromise

between computational cost and accuracy. A large basis would provide a

high-accuracy result and be computationally expensive. If the basis set φi is

complete, the results would be the same as a direct numerical solution to the

Hartree-Fock equation. But, for practical reasons, the set is always finite and far

from the Hartree-Fock limit. The simplest form of basis set available is the

minimal basis set, which includes as many basis sets as there are electrons for

the individual ψj.
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2.2.1.1 Limitation and computation cost of the Hartree-Fock method

There are two factors that limit the exactness of the Hartree-Fock method—the

accuracy with which one actually solves the Hartree-Fock equations and the

intrinsic limitation due to the simplification made in deriving the model. The

accuracy with which one solves the Hartree-Fock equations is determined by the

completeness of the expansion basis of the wavefunction. As we have seen, a

complete Hartree-Fock calculation would require that the many-electron

wavefunction should be represented by a linear combination of Slater

determinant wavefunctions. For high accuracy the number of Slater determinant

terms solved can go up to, for some calculation, 109, which scales horribly as we

increase the number of electrons in the system [15]. Thus having the

wavefunction as a key variable makes a complete Hartree-Fock model

computationally expensive, if not intractable, especially if one tries to model real

materials.

An intrinsic limitation of the Hartree-Fock model hinges upon the

independent electron approximation, which allowed us to approximate the

electron-electron potential by with an average field potential (self-consistent

field) that essentially neglects the true effects of the rather important

electron-electron repulsion in the system, which is called the electron correlation.

The error in energy is due to not including the correlation effect is given by:

EHF
corr = E − EHF (2.12)

Much work has been done to compensate this inherent shortcoming using

post-Hartree-Fock models which include an approximation of the electron

correlation effect in the Hartree-Fock model such as the many-body perturbation

techniques and configuration interaction (CI). However, these approaches add

much more computational cost to the already computationally demanding

model.
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2.2.2 Density functional theory (DFT)

In [15], Walter Kohn comments that many-body wavefunction method is not a

legitimate scientific concept for more than 1000 particles. The density functional

theory is a very elegant tool which help us overcome the complication of using

the wavefunction as the primary variable in solving the Schrödinger equation.

DFT utilizes the theorem by Hohenberg and Kohn which essentially legitimized

the use of the electron density as the primary variable in describing the

electronic system instead of the wavefunction itself [16]. The Hohenberg-Kohn

theorem [16] states that the electron density minimizes the electronic energy and

that there is a one-to-one correspondence between the ground-state

electron-density and the ground-state wavefunction. Consequently, all other

ground-state properties of the system are determined by the ground-state

electron density. The Hohenberg-Kohn theorem however does not provide the

details of such mapping and is only an existence theorem [13].

Kohn and Sham developed an approach which applied DFT to the Hartree

model [17]. The resulting Kohn-Sham equation takes on the below form .

HKSψi = ξψi (2.13)

HKS = − ~

2m
∇+ c1

∫

n(r)

|r − r′|dr + Exc[n] + Vext (2.14)

2.2.2.1 Exc[n]: Success and limitations

Unlike the Hartree model, Kohn and Sham included both exchange and

correlation effects in their model for all the many-particle interactions. In

essence, the key challenge in DFT is finding a good approximation to Exc[n],

which improves the accuracy of the model and constitutes a major area of

development in modern DFT particularly since there is no approximation of

Exc[n] that is valid for all cases, especially for problems with strong
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Table 2.1: Summary of some of the advantages and disadvantages of DFT
Method

Advantage Disadvantage
Fast Eigenvalues have no apriori meaning

Exact for total density and energy Restricted for ground-states
Softwares freely available Large deviation for bandgaps

electron-electron correlation.

The simplest approximation of Exc[n] is the local density approximation

(LDA) which gives the functional dependence of the Exc[n] to the electronic

density n [15]:

Exc[n] ≡
∫

exc(n(r))n(r)dr (2.15)

where exc(n(r)) is the exchange–correlation energy per electron in a uniform

electron gas of density n and can be computed exactly or through the Monte

Carlo method depending on the problem.

Table 2.1 summarizes the advantages and disadvantages of the DFT method.

As the table shows, an inherent problem with the DFT method is that it

consistently underpredicts the electronic bandgaps due to it being restricted to

only ground-state description. Figure 2.2 shows the bandgap computed using

DFT for various semiconductor materials and compares it with the actual

bandgap through the use of exact correlation.

Various methods have been used to overcome this hurdle such as the GWA, a

hybrid method which incorporate DFT with Green’s function.
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2.3 Overview of Non-ab initio Quantum Transport Models

2.3.1 Non-equilibrium Green’s function (NEGF)

A first-principles description of non-equilibrium systems is extremely

complicated. Solving the time-dependent Schrödinger equation for the full

many-particle system is not an option due to the large computational effort [14],

[16]-[18]. Instead, Green’s function techniques offer a natural and relatively

simple method for describing non-equilibrium correlated many-particle systems.

The non-equilibrium Green’s function (NEGF) formalism provides a powerful

means to handle open quantum systems which have non-vanishing boundary

conditions for the Schrödinger wavefunctions. Given a partial differential

equation of the form [19] , [20] :

(i~
∂

∂t
−H(r))ψ(r, t) = 0 (2.16)

The time-independent Green’s function is defined as the solution to

(i~
∂

∂t
−H(r))G(r, r′, t− t′) = ~δ(r− r

′)δ(t− t′) (2.17)

Figure 2.2: DFT bandgap calculation vs. calculation with exact exchange effect.
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which satisfies the same solution and boundary condition of the original problem

but with a source term added. Note that H is not a function of time. The

Fourier transform of the energy dependent Green’s function is give by:

G(r, r′, t− t′) =
1

2π

∫

G(r, r′, E) exp(
−iE(t− t′)

~
)dE (2.18)

Substituting Equation (2.13) back to (2.11) will give us the time-independent

Green’s function, which is practical for steady-state solution to the transport

problem.

(E −H)G(r, r′, E) = δ(r− r
′) (2.19)

In operator notation it can be written and expanded as

(H(r)− E(r))G(r, r′, t− t′) = −1 (2.20)

G =
1

E −H
=

∑

n

|n >< n|
E − En

+

∫

dn
|n >< n|
E − En

Note that the Green’s function has a singularity at E = En which thus

prevents us from evaluating the integral given by Equation (2.18). However, we

can use the path integral method on the complex z-place to solve this problem.

Depending on the path we choose to evaluate our integral, we obtain either the

retarded or advanced Green’s function (see Figure 2.3) [19]:

GR =
∑

n

|n >< n|
E − En + i0+

(2.21)

GA =
∑

n

|n >< n|
E − En − i0+

(2.22)

where GA is the retarded Green’s function and GR is the advanced Green’s

function. Since GA =GR, we only need to solve one equation. Further, when the
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Figure 2.3: Calculating the Green’s function using path integral with the
assumption that only one singular point exists at the origin [19].

system involves some sort of interaction Σ, we can use Dayson’s equation to

relate the total Green’s function of the full system (G) with the non-interacting

original Green’s function (G0):

G = G0 +G0ΣG (2.23)

Self-energy can also be added to account for various interactions (i.e.

scattering, open terminals, etc.). Using Σ to denote the various self-energy terms

such as the coupling to the outside world through open boundary ( ΣB ), the

coupling due to phonon scattering ( ΣP) for phonon scattering, etc.

Σ = ΣB + ΣP + Σe−e + ... (2.24)
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2.3.1.1 Device modeling using NEGF

The main question when it comes to using NEGF to model nanostructures is

whether it is plausible to incorporate all the correct interactions properly into

NEGF. This indeed is the main hurdle that limits its potential to fully model

the quantum mechanical effects of a nanostructure. As we have shown in the

previous section, self-energy is added to NEGF to capture important

interactions such as scattering. However, the main challenge to this approach is

that in defining the interaction, a general self-energy is usually assumed for the

scattering. This self-energy is developed using the Langreth theorem from the

full two-particle interaction Green’s function, but this theorem is only proven for

near-equilibrium systems [21]. Incidentally, numerical tools which use NEGF do

an excellent job describing quantum mechanical effects; however, they include

only limited scattering processes in their model.

2.3.2 Transport based on the Wigner distribution function

Classical and quantum mechanical formulation of statistical mechanics differ in

structure. The relationship between a quantum mechanical description of

particles and its classical counterpart has been the object of much discussion.

Wigner presented a phase space quantum mechanical distribution function

which in the proper limit, coincides with the classical phase space distribution

function. The Wigner function is defined as the Fourier transform product of the

overlap of the wavefunction with its mirror image [22].

f(r, k, t) =
1

π3

∫

Ψ(r − r′, t)Ψ∗(r − r′, t) exp(i2r′k)dr′ (2.25)

From the Wigner function we can derive the quantum mechanical

Wigner-Boltzmann transport equation as:

∂f

∂t
+ v.∇rf +

q

~

∞
∑

κ=0

(−1)2κ

4κ(2n+ 1)!
.∇2n+1

r V (r).∇2n+1
k f =

∂f

∂t C
(2.26)
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At the limit of κ = 0 the quantum mechanical Wigner-Boltzmann transforms

into the semi-classical Boltzmann transport equation which we will discuss in

the next section. Further, using the moments method one can derive the

quantum hydrodynamic and quantum drift diffusion model from the

Boltzmann-Wigner equation, in the same way it is done for the semi-classical

Boltzmann transport equation (BTE). Figure 2.4 shows prototype results

obtained from Wigner method. Numerically, the Wigner transport can be

implemented using the Monte Carlo method or some finite element scheme.

Figure 2.5 shows a comparison between the Wigner MC approach and Green’s

function for a resonant tunneling diode (RTD).

A key limitation to the Wigner method is that the Wigner distribution

function f is not a true distribution function, in that it can become negative.

Much work on the Wigner approach has been explored. For a good review of

this topic, see [23]- [24].

2.4 Overview of Semi-classical Transport Models

2.4.1 Boltzmann transport equation

The Boltzmann transport equation model has been the main tool used in the

analysis of transport in semiconductors. The BTE equation is given by:

∂f

∂t
+

1

~
∇kE(k).∇rf +

qF (r)

~
.∇kf = [

∂f

∂t
]collision (2.27)

v =
1

~
∇kE(k) (2.28)

The distribution function, f , is a dimensionless function which is used to

extract all observables of interest and gives a full depiction of electron

distribution in both real and k space. Further, it physically represents the

probability of particle occupation of energy k at position r and time t. In
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(a)

(b)

Figure 2.4: Comparison of the Schrödinger (a) and BTE with the Wigner model
(b) [25].
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Figure 2.5: IV characteristics of an RTD device using Wigner MC and
NEMO-1D (Green’s function). Transport is coherent or dissipative [26].

addition, due to being a seven-dimensional integro-differential equation (six

dimensions in the phase space and one in time) the solution to the BTE is

cumbersome and can be solved in closed analytical form under very special

restrictions. Numerically, the solution to the BTE is employed using either a

deterministic or stochastic method. The deterministic method solution is based

on a grid-based numerical method such as the spherical harmonics approach,

whereas the Monte Carlo is the stochastic approach used to solve the BTE.

2.4.2 Monte Carlo solution of the BTE

The semi-classical Monte Carlo method is a statistical method used to yield

exact solutions to the Boltzmann transport equation which includes complex

bandstructure and scattering processes. This approach is semi-classical for the

reason that scattering mechanisms are treated quantum mechanically using the

Fermi golden rule, whereas the transport between scattering events is treated
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using the classical particle notion. The Monte Carlo model in essence tracks the

particle trajectory at each free flight and chooses a corresponding scattering

mechanism stochastically. Two of the great advantages of semi-classical Monte

Carlo are its capability to provide accurate quantum mechanical treatment of

various distinct scattering mechanisms within the scattering terms, and the

absence of assumptions about the form of carrier distribution in energy or k

space. The semi-classical equation describing the motion of an electron is

dr

dt
=

1

~
∇kE(k) (2.29)

dk

dt
=
qF (r)

~
(2.30)

where F is the electric field, E(k) is the energy dispersion relation, and k is the

momentum wave vector. To solve the above equations of motion, one needs

strong knowledge of the bandstructure (E(k)). The E(k) relation describes how

the particle moves inside the device, in addition to depicting useful information

necessary for transport such as the density of states (DOS) and the particle

velocity. A full-band E(k) relation can be obtained using the semi-empirical

pseudopotential method.

2.4.3 Drift diffusion method

Both drift diffusion (DD) and the hydrodynamic models can be derived from the

moments of the Boltzmann transport equation (BTE) using simplified

approximation valid for long channel devices. The moment of BTE is defined as

the integral over k space of the of the BTE multiplied by the weight function Υ.

In general the moment of function (f) is:

1

4π3

∫

Υf(k, r)dk (2.31)
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The drift diffusion model can be derived using the zeroth moment (continuity

equation) and the first-order moment (current equation) of the BTE. The zeroth

order moment is given by using Υ = 1 and integrating the BTE over dk:

∫

dk
∂f

∂t
+

∫

dkv.∇rf +

∫

dk
qF (r)

~
.∇kf =

∫

dk[
∂f

∂t
]collision +

∫

dk[
∂f

∂t
]G−R

(2.32)

Where:

∫

dk[
∂f

∂t
] =

∂n

∂t
(2.33)

∫

dk[v.∇rf ] = ∇rv.n = −1

q
∇rJ (2.34)

∫

dk[
qF (r)

~
.∇kf ] = 0 =

∫

dk[
∂f

∂t
]collision (2.35)

Putting all the above terms of the zeroth order moment, we finally get the

continuity equation:

∂n

∂t
− 1

q
∇rJ = [

∂f

∂t
]G−R = G−R (2.36)

Using the same process as above, the first-order moment is obtained by letting

Υ = k and integrating over all possible wave-vectors. Doing this we get the

current equation. Finally, the governing equations for the drift-diffusion model

are obtained by writing the Poisson equation along with the current and

continuity equation we obtained from the first two moments of the BTE for both

electrons and holes:

∇r(εE) = ρ (2.37)
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Jn −
∂[〈τ〉Jn]
∂t

= qnµnE + q∇r(Dnn) (2.38)

Jp −
∂[〈τ〉Jp]
∂t

= qnµpE + q∇r(Dpp) (2.39)

∂n

∂t
− 1

q
∇rJn = G(n)−R(n) (2.40)

∂p

∂t
+

1

q
∇rJp = G(p)−R(p) (2.41)

The second term of Equations (2.38) and (2.39) is negligible unless the current

density varies rapidly. The above equations are solved simultaneously to model

carrier transport in the drift-diffusion limit. We also note that in the DD

approach, the charge transit time is assumed to be very large in comparison to

the energy relaxation time [27].

2.4.4 Energy balance/hydrodynamic model

The energy balance (hydrodynamic) equations consist of carrier, momentum,

and energy balance equations and are derived using higher moments of the

Boltzmann Transport Equation (BTE) [28],[29] . These higher moments add

more equations to the set of equations used in DD. The second moment of the

BTE, for example, can be derived by repeating the same process we used to get

the continuity and the current equation. This time, we weight the BTE by Υ=

Energy. The second moment will yield the energy flow equation (e.g. for

electrons):

∂εn
∂t

=
1

n
Jn.E − 1

n
∇r.Sn (2.42)

where the term Jn.E is the well-known Joule heating, εn is the energy, and Sn is

the entropy flux and is given by:
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Sn =
~

4π3m∗

∫

dk[kE(k)f(k)] (2.43)

The extra equations added by the second moment will allow us to capture and

calculate physical details such as carrier heating and the velocity overshoot

effect, which is not attainable using the DD model. Methods based on the first

three to four moments are generally referred to as the energy transport (ET)

model or the HD model. However, some authors employ higher-order moments

to derive mathematically sophisticated hydrodynamic transport equations;

nonetheless, the physical intuition attained from these moments become less

clear. Needless to say, in the end, an accurate discretization method is required

in HD simulation, since the governing equations are strongly coupled and one

has to deal with a larger number of variables compared to the DD scheme.

2.4.5 Comparison of semi-classical models

We compare the accuracy of semi-classical models based on the BTE by

investigating how they treat the classical velocity overshoot problem, a key

short-channel effect (SCE) in transistor structures. Essentially, velocity

overshoot is a non-local effect of scaled devices, which is related to the

experimentally observed increase in current drive and transconductance [30]. As

the channel length becomes shorter, the velocity is no longer saturated in the

high field region, but it overshoots the predicted saturation velocity. The cause

of this phenomenon is that the carrier transit time becomes comparable to the

energy relaxation time, and therefore the mobile carriers do not have enough

time to reach equilibrium with the applied electric field by scattering in the

short-channel devices [31].

The summary of simulation results in which we compare an MC model (UIUC

MoCa) with DD and HD model is shown in Figure 2.6. In Figure 2.6(a) we see

the case when the field is not high enough to cause the velocity overshoot effect
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in the whole channel region. Note that at such a limit, the data from the DD

model fit well to the MC model in the non-overshoot region, but the HD model

overestimates the velocity in that region. The velocity overshoot is observed

only near the drain junction in the MC data, and the HD model fits well in that

region. From the MC data, it can be noticed that the velocity overshoot effect is

abrupt in the high field region, which is not properly included in the HD model.

For high field conditions as shown in Figure 2.6(b) velocity overshoot is observed

almost all over the channel; in addition, the HD results and the MC results are

very close in the channel region.

2.5 Summary

We have reviewed some of the basic theoretical approaches used to model the

electronic properties of nanostructure materials and devices. The continuing

advancement of the field of modeling and design has contributed in solving a

diverse range of problems and aided experimentation as a predicative tool. As

we are reaching the nanometer regime, modeling a system requires the inclusion

of very detailed physical descriptions. Understanding the various theoretical

methods used to approximate the many-body Schrödinger equation is only the

beginning. A great deal of experimental and theoretical collaboration is

necessary in order to develop a modeling tool which describes the essential

physics as observed by experimental measurement.
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(a)

(b)

Figure 2.6: Average carrier velocity for a 80 nm N-channel MOSFET comparing
the various semi-classical simulation models (a) Vds= 0.3 V (b) Vds= 0.6 V.
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CHAPTER 3

3D MULTI-SUBBAND MONTE CARLO WITH

FULL ELECTRON AND PHONON

DISPERSION

In this chapter we present the details of MoCa, the 3D particle Monte Carlo

simulator developed at the University of Illinois. As was indicated in Chapter 2,

the semi-classical Monte Carlo method is a statistical method used to yield

exact solutions to the Boltzmann transport. A key strength of the MC method

is the relative ease of including complex bandstructures and scattering processes.

Furthermore, to extend the applicability of the MC model into the nanoscale

regime, quantum correction becomes unavoidable. Here, we begin by reviewing

details of the MC model. We also discuss the recent inclusion of subband

scattering into our 3D MC kernel.

3.1 Details of the Monte Carlo Model

3.1.1 Bandstructure

Reproducing the E-k dispersion (Band structure) relation is the starting point

in transport analysis. Equation (2.29) shows that carrier velocity has a strong

dependence on the details of the band structure. In addition, bandstructure

calculation readily renders the density of states (DOS), a key element essential

in characterizing solids. The basic problem to be addressed by the

determination of the electronic bandstructure is that of a many-electron system

within a periodic potential. However, due to our current computational

constraints, we often need to employ drastic simplifications to obtain the correct

dispersion for a given material .
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There are two classes of electronic bandstructure calculation: ab initio

methods and empirical methods. Ab initio methods compute the material

bandstructure from first principles without relying on any experimental inputs.

Examples of common ab initio schemes include density functional theory (DFT)

and Hartree-Fock. However, such methods are often limited to elucidating

ground state properties of a given material or are used for thin (non-bulk) films.

Empirical methods, on the other hand, rely heavily on the availability of

experimental inputs for the material of interest. Examples of common empirical

methods include the pseudopotential, k.p, tight binding, and orthogonalized

plane wave (OPW). These methods are especially attractive because the

many-body problem is replaced by a one-electron Schrödinger equation with

empirical fitted potential. Consequently, empirical methods are computationally

less expensive as compared to ab initio calculations and provide a relatively easy

means of generating the electronic bandstructure.

Following the seminal paper by Cohen and Bergstresser [32] in which they

computed the bandstructure for common diamond and zinc-blende materials

using empirical deformation potential, the empirical pseudopotential method has

gained popularity. In our 3D Monte Carlo simulator (MoCa), the numerical

bandstructure of silicon is obtained from a local pseudopotential solution

approach [33], and it is used to create tables for the energy dispersion, carrier

group velocity, and the density of states. An empirical psuedopotential method

(EPM) calculation of silicon bandstructure is provided in Figure 3.1 The choice

of EPM is natural as it provides a stunning accuracy but yet is simple and easy

to integrate into the Monte Carlo framework. Nonetheless, EPM is not very well

suited to compute bandstructures of ultra-thin (confined) materials such as

superlattices.
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3.1.2 Scattering mechanisms

Electron transport in the diffusive regime is disturbed by scattering. Electrons

may scatter due to interaction with the surface, other electrons, defects, and/or

ionized impurities. It is important to incorporate such scattering mechanisms

into the Monte Carlo simulation. In tackling the scattering problem, one often

assumes that the effect of collision mechanism on carrier motion inside the

crystal is weak and hence first-order perturbation theory maybe utilized. As

such, the transition from one electron state to another due to scattering is

treated via Fermi’s golden rule:

S(k, k
′

) =
2π

~
|Mk

′
,k|

2δ[E(k
′

)− E(k)−∆(E)] (3.1)

where S(k, k
′

) denotes the transition rate, Mk
′
,k is the matrix element, and

∆(E) is the change in energy caused by the scattering event. The term in the

bracket ensures energy conservation. The above transition rate expresses the

probability per unit time in which a carrier with an initial momentum k scatters

Figure 3.1: Empirical pseudopotential calculation of the electronic
bandstructure for silicon.
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to a state with final momentum k
′

. It is widely known that scattering events in

semiconductor devices is the main mechanism which tends to restore equilibrium

distribution within the device, and therefore minimizes the prominence of

non-local effects. However, scattering also poses a limit to device mobility and

current. The mobility of device is given by:

µ =
〈V〉
E

=
qE

me

(3.2)

and
1

τ
=

∑

k′

S(k, k′) =
〈V〉
l
, (3.3)

where l is the scattering length (mean free path), τ is the scattering time, and V
is the drift velocity.

Within the Monte Carlo simulation, the durations of the carrier free flight and

the scattering events are selected stochastically in agreement with the given

distribution probabilities determined by the scattering probabilities. The

scattering mechanism selects the momentum state after the scattering event for

energy conservation, according to the relative probabilities of all possible

scattering mechanisms. To ensure accuracy of results for phonon events, a full

phonon dispersion is included in MoCa3D. The full phonon dispersion is

calculated from an adiabatic bond charge model and tabulated for lookup [34].

Figure 3.2 shows the final state selection algorithm utilized for the full phonon

dispersion. This algorithm is employed at each iteration to ensure energy

conservation with the tabulated full phonon dispersion. MoCa3D accounts for

various scattering mechanisms such as phonon, carrier-carrier, impact ionization,

and surface roughness scattering. In addition, the total scattering rate is

adjusted so that at high energies it follows the density of states.
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Figure 3.2: Flowchart showing the details of the final state selection with the full
phonon dispersion. This algorithm is applied at each iteration in order to ensure
energy conservation with the phonon dispersion which is tabulated from the
adiabatic bond charge algorithm.

3.1.3 Electrostatic based quantum corrections for Monte Carlo
simulation

The current trend of scaling down semiconductor devices has forced physicists to

incorporate quantum mechanical issues in order to acquire a thorough

understanding of device behavior. Simulating the behavior of nanoscale devices

necessitates the use of a full quantum transport model especially for cases when

the quantum effects cannot be ignored. For practical devices like the modern

day MOSFET, the semi-classical transport model can be augmented to capture

some of the relevant quantum effects. For example, electrostatic quantum

corrections can be incorporated into a Monte Carlo simulator by simply

introducing a quantum potential term which is superimposed onto the classical

electrostatic potential seen by the simulated particles. Figure 3.3 shows the

essential features of this technique. The various quantum approaches available

for implementation are described next [35].
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3.1.3.1 Wigner-based correction

The Wigner transport equation forms the basis for the Wigner-based quantum

correction.

∂f

∂t
+ r.∇rf − 1

~
∇rV.∇kf

+
∞
∑

α=1

(−1)α+1

~4α(2α + 1)!
× (∇r.∇k)

2α+1V f

=

(

∂f

∂t

)

c

(3.4)

where, k is the crystal momentum, V is the classical potential, the term on the

right-hand side (RHS) is the effect of collision, the fourth term on the left-hand

side (LHS) represents non-local quantum mechanical effects. The standard

Boltzmann Transport Equation is obtained when the non-local terms on the

LHS disappear in the limit of slow spatial variations. The simplified (for α = 0)

Figure 3.3: Effects of quantum correction.
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quantum-corrected BTE then becomes

∂f

∂t
+ r.∇rf − 1

~
∇rVw.∇kf+ =

(

∂f

∂t

)

c

(3.5)

where the quantum potential is contained in the term Vw.

3.1.3.2 Effective potential correction

This method of quantum correction was developed by Feynman and Hibbs [36].

In this method the effective potential is derived by calculating the contribution

to the path integral of a particle’s quantum fluctuations around its classical

path. This calculation is undertaken by a variational method using a trial

potential to first order. The effective classical potential on the average point on

each path then becomes

Veff(x) =
1√
2πa

∫ ∞

−∞

V (x′)e−
(x′−x)2

2a2 dx′ (3.6)

a2 =
~
2

12m∗kBT

3.1.3.3 Schrödinger-based correction

This approach involves periodical solving of a Schrödinger equation in a

simulation with the input being the self-consistent electrostatic potential. The

exact energy levels and wavefunctions relating to the electrostatic potential

solution are employed to calculate the quantum potential. The quantum

potential obtained from this approach produces a field which repels electrons

from the interface to force the shape of the quantum density. The quantum

correction potential Vqc(y, z) and the quantum carrier density are related as:

Vqc(y, z) = −kBTt log[nq(y, z)]− Vp(y, z) + Vo (3.7)

32



where Vp(y, z) is obtained from the self-consistent solution of the Poisson

equation, Vo is a reference potential point in the device where the quantum

correction is fixed to zero, and nq(y, z) is the carrier density obtained from the

solution of the Schrödinger equation. The total potential is related to the

quantum potential as:

Vtotal(y, z) = Vp(y, z) + Vqc(y, z). (3.8)

The corrected potential differs from the classical electrostatic potential mainly in

the vicinity of the interfaces. Here, the strongly attractive nature of the

electrostatic potential that would be applied in a classical model is transformed

into a repulsive potential by the quantum correction. As a consequence, the

charge density is shifted toward the center of the channel cross-section.

Even though the above mentioned potentials for quantum correction differ in

their method of calculation and their basic assumptions, yet when it comes to

their inclusion into Monte Carlo simulation, they are all incorporated the same

way.

3.2 Quantum Corrected MC with Subband Phonon

Scattering

Current research in silicon device scaling is directed towards one-dimensional

electron gases (1DEG) structures incorporating nanowire channels, like

multigate MOSFET, nanoribbons, and nanowire MOSFET [37, 38, 39, 40].

One-dimensional electron gas based devices confine carriers in the two directions

perpendicular to carrier transport. Low-dimensional semiconductors offer

interesting physical phenomena, such as volume inversion, which affect carrier

mobility and current. There are two opposing views on the mobility of carriers

in quasi-1D structures. Sakaki [41] argued that the decrease in density of states

(DOS) for scattering states enhances the mobility of nanowire as compared to
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bulk structure. The other view attributes mobility reduction to strong

electron-phonon wavefunction overlap which substantially influences the phonon

scattering rate calculation as compared to the bulk scattering rate calculation.

This section introduces the inclusion of such a mechanism into our MC kernel.

Previous attempts to carry out the multi-subband approach into the MC

simulation have been limited to 1D transport simulations assuming infinitely

long channel length [5], 2D MC simulation [42], or 3D simulation which does not

take into consideration the wavefunction penetration into the oxide [43].

Since we are dealing with a one-dimensional (1D) electron gas, the expressions

employed for the calculation of the scattering rates should be modified

accordingly. In this respect, acoustic and intervalley scattering rates have been

considered following a previous work [5] that demonstrated that the 1D density

of states and the overlap integral between initial and final states are the

dominant terms in the calculation of the phonon scattering rate. To our

knowledge, this is the first 3D Monte Carlo simulator with full electron and

phonon dispersion.

3.2.1 Acoustic phonon scattering rate in quasi-one-dimensional
electron gas

The phonon mode interacting with the electron are assumed to be 3D and bulk

in nature. The Fermi golden rule is utilized to compute the scattering rate. The

interaction Hamiltonian used for acoustic scattering has been derived by the

deformation potential theory of Bardeen and Schockley. This theory considers

scattering due to long-wavelength acoustic modes and assumes that dilation and

compression due to longitudinal acoustic modes distorts the crystal by shifting

the energy band. The shift in energy band due to the electron-lattice interaction

is expressed by means of a deformation Hamiltonian which takes into account

the electron phonon coupling:
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Hac
el−ph = Dac

δV

V
= Dac∇.u(r) (3.9)

where Dac is the acoustic deformation potential. The displacement of ions due

to collective vibration of atoms around their equilibrium position is often

approximated by summing terms, each representing a harmonic oscillator

corresponding to normal modes. The lattice displacement at point r at time t is :

u(r) = i
∑

q

√

~

2ρV ωq

eq

(

aqe
iq.r + a†−qe

−iq.r
)

(3.10)

where q is the wave vector, ωq is the angular frequency, V is the volume of the

crystal, aq and a−q are the phonon annihilation and creation operators and eq is

the polarization vector. Substituting Equation (3.10) into (3.9), the interaction

Hamiltonian due to acoustic phonons becomes:

Hac = Dac

∑

q

√

~

2MNωq

eq.q
(

aqe
iq.r + a†−qe

−iq.r
)

(3.11)

We define the z coordinate as the direction of current transport and the y-z as

the confinement plane. The usual plane wave basis is used to compute the initial

and final wavefunction:

Ψn(x, y, z) =
1

Lx

exp(ikxx)Ψn(y, z) (3.12)

Ψm(x, y, z) =
1

Lx

exp(ik
′

xx)Ψm(y, z) (3.13)
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At this point, we are ready to evaluate the matrix element using the above

perturbation Hamiltonian. The matrix element expressing the effect of the

perturbing potential on the incident electronic wavefunction is:

Mnm(kx, kx) = < k
′

x, nq |Hac|kx, nq
′ >

= Dac

∑

q

√

~

2MNωq

(ieq.q)Inm(qy, qz)

√

nq +
1

2
± 1

2
δ(kx + kx′ ± qx) (3.14)

where Inm is given by:

Inm(qy, qz) =

∫

ψn(y, z)ψm(y, z)e
i(qyy+qzz)dydz (3.15)

The scattering probability as given by the Fermi golden rule is:

Snm(kx, k
′

x) =
2π

~
|Mnm|2δ[E(k

′

x)− E(kx)−∆(E)] (3.16)

Once we compute the above scattering transition, we compute the expression

for the acoustic scattering phonon scattering rate:

Γac
nm =

D2
ackBT

√
2m∗

2~ρvs2
Jnm

(1 + 2αEf )
√

Ef (1 + αEf )
Θ(Ef ) (3.17)

where Θ(Ef ) is the Heaviside step function and ensures energy conservation

after scattering and Jnm is the overlap integral associated with the

electron-phonon interaction and is given by:

Jnm =

∫ ∫

ψ2
n(y, z)ψ

2
m(y, z)dydz (3.18)
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3.2.2 Intravalley phonon scattering rate

Intervalley phonon scattering rate is mediated by short wavelength acoustic and

optical phonons with wave vectors near the zone boundary. The interaction

Hamiltonian is assumed to take the following form:

H iv
el−ph = Div.u(r) (3.19)

where Div is the intervalley deformation potential. Repeating the procedure we

presented above for acoustic phonon, the scattering rate becomes

Γiv
nm =

D2
ivkBT

√
m∗

√
2~ρwo

2
Jnm(No +

1

2
± 1

2
)

(1 + 2αEf )
√

Ef (1 + αEf )
Θ(Ef ) (3.20)

3.2.3 Multi-subband 3D Monte Carlo

Here we present the effect of size quantization in confined quasi-1D trigate

MOSFETs. Figure 3.4 describes the implementation of subband scattering

correction to the MC kernel. A schematic of a trigate device considered here is

also presented in Figure 3.5. In our simulator, the carrier movement is supposed

to be semi-classical along the x axis, and is separated from the y and z axes,

along which the energy is quantized. The whole device is divided in Nx slices

from source to drain where the time-independent 2D Schrödinger equation is

solved. Their solutions provide the eigenpairs (En, ψn) associated with the

subbands necessary to calculate the charge density used as input of a 3D Poisson

equation. Both equations are self-consistently coupled and iterated to get the

desired convergence criterion. Figure 3.6(a) shows a comparison of the subband

scattering rate and the bulk scattering rate for a triple gate SOI nanowire

whereas Figure 3.6(b) demonstrate the velocity profile.
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Figure 3.4: Flowchart describing the inclusion of multi-subband model into our
3D Monte Carlo simulator.

Figure 3.5: Application of multi-subband to a trigate MOSFET. The governing
quantum mechanical equation is solved for each slice along the channel.
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Figure 3.6: Comparison of the (a) scattering rate and (b) average velocity for
quantum-corrected MC simulation of a trigate MOSFET with and without
subband scattering. The reduction in carrier velocity is attributed to the
increase in subband scattering rate as compared to bulk at energies below 1 V
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3.3 Size Quantization in Confined Structures

The inclusion of quantum effects on the physical description of semiconductor

devices has important consequences when dimensions are reduced. Simulation

results (not shown here) have verified that the importance of the quantum

correction potential Vqc(y, z) increases through the whole silicon slab, not only

next to the interfaces as device dimensions are reduced. Figure 3.7 shows a

prototypical electron density plot along the cross-section of a trigate (TG)

MOSFET with square cross-section, TSi = HSi = 10 nm, under an applied bias

VG = 0.5 V. In Figure 3.7(a) the classical electron distribution reveals a

maximum located at the insulator interface, especially at the corners, and an

overestimation of the peak density is clearly observed when these results are

compared with their corresponding quantum description depicted in

Figure 3.7(b), which shows a shift of the maximum of carrier concentration away

from the Si-SiO2 interface. The average distance of this shift is a function of

different parameters [44] and has been modeled in a parameter known as the

inversion charge centroid (zave). As a consequence of this shift, the total gate

capacitance is reduced since it is now the series combination of two capacitances:

the gate insulator (ǫox/tox ) and the inversion charge capacitance (ǫsi/zave). This

effect has been thoroughly studied in bulk MOSFETs; in spite of that, there is

still a lack of reliable models for this effect in multigate devices where the

nonplanar structure of the devices precludes the use of the well-known bulk

models. The reduction of the total gate capacitance leads to a reduction of the

inversion charge for the same gate overdrive.

Moreover, it has been demonstrated that classical simulations of electron

transport lead to a higher average velocity in the channel. This behavior can be

traced to the energy distribution of particles. In the classical case, most of the

electrons are found in the inversion region near the interface where the

transverse fields are high, causing the particles to be more energetic. Phonon

interactions redirect some of this energy along the longitudinal direction with
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(a)

(b)

Figure 3.7: Electron density calculated for a TG MOSFET with square
cross-section TSi = HSi = 10 nm. In (a), the classical electron distribution is
shown for an applied gate voltage of 0.5 V and the peak density is reached at
the Si-SiO2 interface. (b) represents the quantum electron density at VG = 0.5 V
and the maximum is shifted at a certain distance from the interface.

41



corresponding higher average velocity in the channel. In contrast, for the

quantum-corrected case, a large percentage of charge carriers flow closer to the

middle of the cross-section with lower average energy [45].

This effect is shown in Figure 3.8, where we show current density distribution

in a TG (sliced at x = Lg/2) for square cross sections TSi = HSi = 5, 10, and 20

nm for VG = VD = 0.5 V. As the lateral dimensions are reduced, electrons from

independent channels start to interact and more carriers are placed in the

central region producing the so-called volume inversion effect [42, 46]. This

effect is clearly amplified for the TG with the smallest cross-section where we

observe that the magnitude of current flowing in the middle of the 5 nm x 5 nm

fin is comparable to the magnitude of current flowing in the corner of the larger

cross-sections. The main consequence of this phenomenon is that electrons on

average are located farther from the insulator interface and, in this regime,

quantum corrections are even more noticeable.

3.4 Volume Inversion and Charge Compensation

Figures 3.9 and 3.10 show the current variation along cross-section of the TG

as we scale down the cross-section (TSi = HSi) from 30 nm to 10 nm. Here, we

show both the raw drain current in amperes and the current normalized with

respect to the perimeter, Weff = 2HSi + TSi . We observe that quantization yields

stronger coupling between the channels which in effect produces a volume

inversion effects and the current is concentrated at the device corners

irrespective of the device cross-section. Figures 3.11 and 3.12 depict the current

dependence on the effective channel width. Note that the normalized device

current drops non-linearly as we reduce the cross-section of the TG transistors.

The reduction of the perimeter produces a lower value of the normalized current

as can also be seen in Figure 3.12, which depicts the normalized drain current

obtained in steady state for three different square cross-sections. The

explanation to this is hinted in Figure 3.13 where we observe that as
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Figure 3.8: Contour plot showing the current density distribution, at x = Lg/2,
along the cross-section of a 20 nm channel length TG with cross-sections
TSi = HSi = 5, 10, and 20 nm at an applied bias VG = VD = 1.0 V.
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cross-section decreases, the potential along different axes is modified, and as a

consequence the charge distribution is also altered. This, in addition to the

observation that volume inversion effect increases as we reduce the cross-section,

suggests that the perimeter perhaps is not the most viable choice for effective

width in the cross-sections considered in this work.
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Figure 3.9: Evolution of drain current along the y direction for trigates of
cross-section TSi = HSi = 20 nm. The bottom plot corresponds to the drain
current normalized with respect to the perimeter, whereas the top figure shows
the drain current of each trigate in amperes.
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Figure 3.10: Evolution of drain current along the z direction for trigates of
cross-section TSi = HSi = 20 nm. The bottom plot corresponds to the drain
current normalized with respect to the perimeter, whereas the top figure shows
the drain current of each trigate in amperes.
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Figure 3.11: Normalized drain current as a function of the trigate perimeter
defined as 2HSi + TSi .

0 2 4 6 8 10

x 10
4

2

2.2

2.4

2.6

2.8

3

3.2

C
ur

re
nt

 [m
A

/u
m

]

Iteration

T
si

 = H
si

 =10 nm

T
si

 = H
si

 =20 nm

T
si

 = H
si

 =30 nm
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Figure 3.13: Potential distribution along the x direction (a) and z direction (b)
for a TG with cross-section TSi = HSi = 20 nm at an applied bias Vd = Vg = 1.0
V.
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3.5 Summary

We have have presented the details of our in-house 3D quantum-corrected

particle Monte Carlo simulator. Predictive simulation tools, which capture both

relevant quantum mechanical effects and transport properties, play a vital role

in the development and evaluation of highly confined quasi-one-dimensional

devices. To extend the validity of our 3D Monte Carlo simulation, we have

augmented the electrostatic Schrödinger based correction by introducing a

multi-subband quantum correction approach which in essence adds quantum

correction to carrier transport via scattering. Using our 3D Monte Carlo, we

demonstrated the influence of size quantization on quasi-1D silicon-on-insulator

TG MOSFETs. We have shown that the interplay between carrier confinement,

and the coupling between the top and bottom gates leads to field compensation

which as we will see in the next chapter limits the overall device performance on

multigate structures.
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CHAPTER 4

ISO-THERMAL SIMULATION OF

MULTIGATE NANOWIRE MOSFET

4.1 Overview

In this chapter we employ quantum-corrected 3D full-band Monte Carlo

simulation coupled with full phonon dispersion to investigate the electro-thermal

behavior of silicon-on-insulator (SOI) multigate devices at the limit of

cross-section scalability. We particularly explore the dependence of

short-channel effects and Joule heating on the lateral scaling of the cross-section.

The basic tradeoff between n-channel double-gate (DG), trigate (TG), and

gate-all-around (GAA) transistors with square cross-section lengths varying

from 30 nm down to 5 nm are presented.

Figure 4.1 schematizes the cross-section layout of the devices considered in

this chapter. A summary of the device parameters is also shown in Table 4.1.

We have simulated DG, TG, and GAA n-MOSFET structures with a square

cross-section length (channel thickness (TSi) equal to the channel height (HSi))

varying from 5 to 30 nm . The substrate was lightly doped (P type) with

NA = 1016 cm−3. Unless otherwise stated, the devices have a gate length (Lg) of

20 nm and a gate oxide thickness (tox ) of 10 Å. The source (S) and drain (D)

were n doped with 1020 cm−3 impurities with the S/D junctions ending abruptly

at the gate edge. The channel region starts at x = 35 nm for all the results

shown in this chapter.
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Figure 4.1: Schematic diagram showing the cross-section of DG, TG, and GAA
transistors considered in this chapter.

Table 4.1: Device Parameters of Simulated MOSFETs

Lg tox TSi = HSi S/D Doping Channel Doping

5 - 20 1 5 - 30 1× 1020 1× 1016

[nm] [nm] [nm] [cm−3] [cm−3]
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4.2 Electrical Performance of Multigate Structures

4.2.1 Influence of cross-section scalability on drain current

Within the limits of a large cross-section, we expect the total charge obtained in

the device to resemble that of a bulk MOSFET with an effective width defined

by the perimeter of the gate αTSi , where α amounts to the number of gates. As

such, one would ideally expect TG and GAA to yield, respectively, 50% and

100% current enhancement relative to a DG MOSFET with all other device

parameters being equal, since each added gate effectively introduces a new

inversion channel. In this section, we look at how current drive in multigate

architectures deviates from this ideal behavior at the limit of small

cross-sections.

The results obtained are summarized in Figures 4.2 and 4.3, where we show

the change in drain current and inversion charge as the square cross-section

length (TSi = HSi) is varied from 5 to 30 nm. All findings shown in this section

were computed for a 20 nm channel length at an applied bias VG = VD = 0.5 V.

Figure 4.2(a) presents drain current variation as a function of the cross-section

length. We observe that the total drain current increases with lateral scaling of

the cross-section; nonetheless, the relative drain current difference among the

multigate structures reduces with scaling. Additionally, it is interesting to note

how normalization with respect to the perimeter (Figure 4.2(b)) reveals that the

drain current per channel is most efficient for the structure with the least

number of gates. In Figure 4.4, we have calculated the linear density obtained

by integration of the electron density at x = Lg/2 along the cross-section. There

is an apparent parallelism between Figure 4.2(a) and Figure 4.4 where we see

that the boost in both the inversion charge and drain current, because of using

more gates, becomes less prominent as we reduce the cross-section. This effect is

stressed in Figure 4.3 which demonstrates that although GAA and TG

MOSFETs provide an unconcealed current improvement as compared to DG,
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Figure 4.2: Cross-sectional variation of the (a) total drain current, (b) drain
current normalized with the perimeter, and (c) drain current normalized with
respect to the cross-section for Lg = 20 nm and VD = VG = 0.5 V.
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Figure 4.3: Performance enhancement of GAA and TG with respect to DG.
Note that the gain in current is well below the ideal 100% and 50% current
improvement for GAA and TG, respectively. This gain is reduced as we
downsize their cross-section.
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Figure 4.4: Inversion charge along the cross-section for DG,TG, and GAA. All
three devices were simulated under VD = VG = 0.5 V and had a channel length
of 20 nm. The gap in charge density between the simulated structures decreases
as we shrink the cross-section.
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this gain is substantially below their ideal 100% and 50% aptitude, respectively.

Furthermore, the reduction of drive currents below their expected ideal limits is

even more pronounced as we shrink the cross-section. The main inference

obtained from these plots is that shrinking the lateral cross-section to the

nanometer scale results in a considerable reduction of the relative differences

between multigate devices. Accordingly, to gauge the effectiveness of DG, TG,

and GAA at such limits, one has to assess the gain in current improvement

obtained from each of these structures with the overall cost and ease of

fabrication associated with them.

4.2.2 Comparison of device performance and short-channel effects

With the scaling of the cross-section, the electrical coupling between the silicon

channel and the gate increases as we add more gates. Consequently, we

accomplish better suppression of SCEs and a promise of device scalability,

provided that technological challenges to fabrication are met. In this section, we

investigate the effect of the nonlinearity of electron current gain due to lateral

scaling of the cross-section on device performance. Most of the analysis

presented will focus on devices with the 5 nm square cross-section length to

highlight the differences between multigate architectures at the edge of lateral

scalability.

Our MC simulator allows the calculation of the linear charge density through

the whole device for an arbitrary bias as it is shown in Figure 4.5 for DG, TG,

and GAA transistors with a silicon fin size of 5 nm. We observe an important

distinction between the line charge profile inside the channel, due to the

disparity between the number of gates in these devices. The carrier

concentrations inside the channel are largest for GAA with its four gates,

followed by the TG with three gates, and finally the DG with two gates.

Nevertheless, we note that there is no distinction in the electron density along

the source and drain regions between the various multigate structures. Similar
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Figure 4.5: Spatial variation of the line charge profile along the channel for DG,
TG, and GAA with the following parameters: TSi = HSi = 5 nm, Lg = 20 nm
and VD = VG = 0.5 V. Note that the line charge profile is the same for all
structures in the source and drain regions.

results were obtained for the all other lateral dimensions. This point imposes

important difference in the average velocity profile of DG, TG, and GAA along

the S/D reservoir, since the charge density in those regions is the same but their

respective drive current is different. Figure 4.6 illustrates the clear distinction

between the average velocity profile of DG, TG, and GAA inside the source and

drain regions. It is interesting to highlight how this trend is inverted along the

channel where electrons in the DG show higher average velocity than in the TG

and GAA; this is exactly the opposite of what was previously described in the

contacts. Furthermore, our simulations consistently reveal that the disparity in

average velocity between these devices becomes increasingly explicit with lateral

scaling of cross-section.

In order to explain the implication of higher velocity in the source and drain

regions on device performance, the average conduction band along the channel

for the three devices is presented in Figure 4.7. We observe a voltage drop in the

source and drain because of the velocity profile in those regions. We have chosen

the 5 nm by 5 nm cross-section to highlight the potential drop along the highly
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Figure 4.6: Average velocity profile for DG, TG, and GAA with TSi = HSi = 5
nm, Lg = 20 nm and VD = VG = 0.5 V.
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Figure 4.7: Conduction band profile sliced at y = z = TSi/2 along the channel
for DG, TG, and GAA MOSFETs with the following parameters:
VD = VG = 0.5 V, TSi = HSi = 5 nm and Lg = 20 nm. Potential drop in the
source and drain regions increases with the number of gates.
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Table 4.2: Series Resistance (VG = VD = 0.5 V)

△VS △VD I RS RD

GAA 129 38.3 8.7 147.7 43.9
TG 110 26.1 10.3 106.7 25.3
DG 90 13.1 13.2 68.3 9.93

[mV] [mV] [A / cm] [Ωµm] [Ωµm]

doped source side (from 10 nm to 35 nm) and also because higher differences in

the average electron velocity were found for this case. In our simulations the

contribution of the contact resistance is neglected; nonetheless, our results

systematically reveal that for a given cross-section, both the voltage drop and

the computed series resistance is largest for GAA, followed by TG and then DG.

An estimation of the series source/drain resistance for the three devices is shown

in Table 4.2. Values higher than 140 Ωµm (as RS for the GAA) are against ITRS

recommendations. Since the electrons reach the drain region with high energies,

the drain contact appears to be less resistive than the source [47]. In order to

alleviate the influence of series resistance, doping density may be increased or

the length of the source and drain regions may be reduced. However, this may

degrade other aspects of device performance, and the tradeoffs should be

considered. Similar inferences may be obtained by looking at the longitudinal

electric field profile along the channel shown in Figure 4.8, where we observe

that the electric field profile in the S/D region increases as we add more gates.

Meanwhile, since increasing the number of gates would naturally enhance gate

control over the channel, we see this relation is inverted along the channel.

Figure 4.9(a) shows the IDS–VDS characteristic of a 20 nm channel length DG

and GAA MOSFET with cross-section size of 5, 10, and 20 nm. We observe

considerable deterioration of the drain conductance, gD , regardless of the

number of gates considered, when Lg = TSi = HSi = 20 nm. This illustrates the

unsubtle need for multigate structures to obey design criteria in order to subdue

short-channel effects. A rather transparent design rule to enhance gate control

57



10 20 30 40 50 60 70 80
−4

−2

0

2

4

6

8

10
x 10

5

X (nm)

E
le

ct
ric

 F
ie

ld
 (

V
/c

m
)

DG
TG
GAA

Figure 4.8: Electric field profile along the channel for a DG, TG, and GAA with
square cross-section TSi = HSi = 5 nm, Lg = 20 nm and VG = VD = 0.5 V. As
the number of gates is increased the electric field inside the channel is reduced.
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Figure 4.9: I-V characteristics of TSi = HSi = 5 nm, 10 nm, and 20 nm DG and
GAA MOSFETs with VD = VG = 0.5 V.
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over the channel is to ensure that TSi ≤ Lg/2. We see substantial improvement

of gD as we reduce the cross-section as shown for the 10 nm and 5 nm silicon

fins. Interestingly, the drain conductance calculated with two or four gates is

quite similar and gD appears to be independent of the multigate structure

considered. Finally, in order to estimate the drain-induced barrier lowering

(DIBL) in these structures, we show a comparison of the conduction band edge

profile for a GAA MOSFET with cross-sections of 20 nm and 10 nm in Figure

4.10. As anticipated, we found clear reduction in DIBL when the cross-section is

reduced to 10 nm. Similar results where obtained for other structures.

4.2.3 Ballistic limit statistics: 2D example

In this section, our aim is to investigate the ballisticity of deeply scaled devices.

We utilize a 2D full-band Monte Carlo (MoCa2D) with quantum correction to

monitor particle scattering in a DG MOSFET with a silicon thickness of 2 nm

and a channel length varied from 5 to 20 nm. Each particle entering the channel

from the source region may either backscatter to the source, cross through the

channel with no scattering, or experience one or more scatterings before it gets

collected in the drain. The acquired statistics are summarized in Table 4.3,

which was computed by tracing the trajectories of individual electrons inside the

channel for a gate and drain bias of 0.5 V. It is evident from the table that the

number of scattering events decreases as a function of channel length; however,

even at such very small dimensions the devices are not entirely ballistic. We

have also collected statistics at VG = VD = 0.8 V and we found a slight increase

in the percentage of ballistic electrons. The backscattering statistics for a gate

and drain bias of 0.5 V is shown in Table 4.4 and, interestingly, we see that a

large fraction of the electrons do not backscatter (first row of the table). In

addition, only a small fraction of the overall particles experience more than two

backscattering events. Simulations for VG = VD = 0.8 V produced similar

results.
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Figure 4.10: An example of the average conduction band edge profile obtained
for a 20 nm channel length GAA MOSFET under an applied bias
VD = VG = 0.5 V. We see that in (a) the device clearly suffers from DIBL effect
when TSi = HSi = Lg = 20 nm. In (b) we observe the DIBL is alleviated as we
reduce the cross-sectional length to TSi = hsi = Lg/2.
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Table 4.3: Overall Particle Scattering Statistics (VG = VD = 0.5 V)

No. of
Scatterings

Lg [nm]
20 15 10 5

0 43.5377 48.2446 54.7889 68.0814
1 24.0662 25.9196 26.5784 22.4583
2 15.5195 13.7623 11.2084 6.8050
3 8.3519 6.5113 4.5793 1.8657
4 4.3071 3.0114 1.8116 0.5144
5+ 4.2176 2.5509 1.0334 0.2751

Total 100.0000 100.0000 100.0000 100.0000
unit: %

Table 4.4: Particle Backscattering Statistics (VG = VD = 0.5 V)

No. of
Scatterings

Lg [nm]
20 15 10 5

0 65.0070 66.2766 68.8277 74.4315
1 20.7797 21.3919 21.5091 19.5449
2 7.4352 7.0822 6.2167 4.4069
3 3.3260 2.8607 2.0930 1.1469
4 1.6332 1.2566 0.8052 0.3218
5+ 1.8188 1.1321 0.5482 0.1481

Total 100.0000 100.0000 100.0000 100.0000
unit: %
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4.3 Joule Heating in Multigate Devices

The generation of heat in silicon MOSFETs is a hot topic due to the continued

scaling of device dimensions, which allows increasing packing densities of

transistors and switching at higher frequencies. As a consequence, device

performance and circuit reliability may be degraded due to high temperatures

effects. Joule heating is caused by emission of phonons as electrons traverse

through the semiconductor channel. In common silicon MOSFETs, most of the

emission is concentrated in the small region where the channel meets the drain.

In this section, we have employed a 3D self-consistent Monte Carlo device

simulator with full electron bandstructure and a full phonon dispersion

relationship to analyze the influence of size effects on thermal emission.

Data on scattering events were obtained from a Monte Carlo simulation with

an iterative algorithm devised to make all scattering events involving phonon

energy and momentum conserving with the full phonon dispersion relationship.

The algorithm starts at each scattering event with an estimate for the energy of

the phonon involved. This energy can be calculated from the momenta involving

transitions between bottoms of the X and L equivalent valleys in silicon [48].

Then the final state can be looked up from a table of electron energies and

momenta. Finally, this result is checked with the phonon dispersion to ensure

energy conservation. If energy is not conserved to within a small tolerance

dictated by collision broadening [49, 50, 51], then the final state is rejected and a

new state is sought. To ensure fast convergence, the new state is calculated

based on the previous estimate of the phonon energy. After several iterations, a

final state is found that satisfies both momentum and energy conservation. This

gives us a more accurate value for the phonon momentum and energy. Another

consequence of this process is ensuring that all possible transitions are well

represented, not just those with a fixed, predetermined phonon energy.

One additional quantum effect considered in the simulation is that of finite

state lifetime and collisional broadening. Due to high scattering rates present in
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such scaled devices, the energy shift due to scattering becomes comparable to

the thermal energy and the impact of quasi-particle states needs to be taken into

account. In the present implementation, this is accomplished by selecting the

final state after each phonon scattering from a Lorentzian distribution instead of

strict energy conservation [49]. In order to avoid unphysical accumulation of

broadening, the non-accumulated broadening (NAB) algorithm due to Register

and Hess [51] is employed. This allows each particle to take on a full range of

quasi-particle states without conflicting with the full phonon dispersion.

Once the simulation run is complete, data on all phonon events that occurred

are tabulated and total net emission per electron is obtained by summing the

energy of all the emitted phonons, subtracting the energy of all the absorbed

phonons, and finally dividing by the total number of simulated electrons. This

provides a straightforward way of analyzing the thermal emission of a simulated

device. Figure 4.11 summarizes the effect of reducing the cross-section on energy

loss rate for all three multigate architectures. The energy loss rate increases as

the cross-section is reduced and as more gates are added. This is intuitive since,

classically, Joule heating is defined by the product of current density with

electric field. Consequently an increase in current drive capability will naturally

lead to an increase in power dissipation. This statement is demonstrated by

Figure 4.12 and 4.13 where the trends of the energy loss rate of the multigate

devices as a function of drain bias and channel length are plotted. In both cases,

the behavior is intuitive since the electric field increases when drain voltage

grows or the channel length is shrunk, providing more energy to electrons

crossing the channel. Accordingly, thermal and electrical design considerations

may appear at first to be conflicting, since an increase in current density, which

is desirable electrically for enhancing device performance, would result in an

increase in Joule heating. This is made apparent from the average energy plots

shown in Figure 4.14 and 4.15 where, although the average energy inside the

channel is reduced for a higher number of gates, the trend inside the drain

region is reversed due to the current drive difference. This behavior is consistent
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with results shown in Figure 4.6 where we observe that the average electron

velocity along both the channel and source and drain regions follows the same

trend as that of the energy.

4.4 Summary

We have studied the effect of scaling the cross-section of DG, TG, and GAA

MOSFETs on device performance and heat generation rate using a

self-consistent quantum-corrected 3D Monte Carlo device simulator with full

electron bandstructure and a full phonon dispersion. Our calculations show that

the variation of current gain in these structures deteriorates when cross-sections

are reduced, and the number of gates per se is not a definite indication of the

improvement of device performance. Further, more energy per electron is

dissipated when both the cross-section and channel length are reduced as

Moore’s law demands. In addition, it was shown that a higher number of gates

increases the amount of energy dissipated. As such, for comparative purposes, a

high Joule heating rate in and by itself is not ill-favored, unless it is coupled

with SCEs and fabrication concerns. Consequently, for an optimal device design

one has to weigh collectively both the thermal and electrical issues of the device

under consideration.
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Figure 4.11: Variation of phonon energy dissipation as a function of square
cross-section length for three multigate MOSFETs with Lg = 20 nm.
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Figure 4.12: Variation of phonon energy dissipation as a function of drain
voltage for three multigate transistors with Lg = 20 nm.
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Figure 4.13: Phonon energy dissipation as a function of channel length for three
different devices at an applied bias of VD = VG = 0.5 V.
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Figure 4.14: Spatial variation of the average energy along the channel for a TG
MOSFET with Lg = 20 nm and Vd = Vg = 0.5 V for three cross-sections.
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Figure 4.15: Comparison of the spatial variation of average energy along the
channel for DG, TG, and GAA MOSFET with Lg = 20 nm, TSi = HSi = 10 nm,
and Vd = Vg = 0.5 V.
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CHAPTER 5

LATTICE DYNAMIC AND TRANSPORT

5.1 Overview

This chapter introduces the principles of phonons and the various approaches

used to model phonon transport. Phonons are the dominant carriers of heat

energy in most semiconductors and dielectric materials. Understanding phonon

physics and transport is essential to predicting thermal transport coefficients

and in elucidating the details of heat flow in nanoscale devices. We will apply

some of the theories presented here to compute transport coefficients of silicon

nanowire structures with various cross-sections. The foundations developed in

this chapter will be applied to chapter 6, where we will couple electron and

phonon transport.

5.2 Phonons as Heat Particles

It is well established that atoms in a crystal oscillate about their equilibrium

lattice position. These collective oscillations induce a propagating and energy

carrying vibrational wave. It is possible to resolve these vibrational waves as

linear combination of normal modes (i.e. collective oscillations with well-defined

frequency and wavelength). However, unlike classical normal modes which may

have any amplitude and energy, the allowed frequencies of oscillation are

quantized similarly to those of an electromagnetic field in a vacuum. The

constraints set by the quantum mechanical equation quantize the normal mode

energies. The quantization makes the lattice excitation particle-like (each
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particle carries a discrete amount of energy). This picture applies to both

photons and phonons. A quantum of lattice vibration has an energy which is a

multiple of ~(ω + 1
2
) and is called phonon. Simply put, phonons are the

quantized normal modes of a particle oscillator having many modes. If many

quanta are excited, the mode will look classical. Many physical properties can

be accounted for by classical treatment if the effect of quantization is small

(usually the case at high temperatures). The particle nature of phonons is

justified as long as the energy transfer with electrons (or matter) involves the

exchange of a single quanta.

5.3 Lattice Dynamics

The static model of crystals has been widely utilized to study many

material-related properties including hardness, chemical properties, and

electronic structures and properties [52]. However, one must also take into

account that the motion of ions is essential to defining temperature and

describing thermal-related coefficients and phenomena in solids such as heat

capacity, thermal conductivity, and expansion. The goal here is to understand

how the vibrational normal modes (phonon dispersion) are computed under the

harmonic approximation. The calculation of phonon dispersion is fundamental

to understanding thermal properties and transport coefficients. In the spirit of

Born-Oppenheimer, the total Hamiltonian of the ions is given by:

H =
∑

i

(

P 2
i

2Mi

)

+ V (r1, r2, ..., rN ) (5.1)

where the summation is over all ions and V (r1, r2, ..., rN ) represent the ion

potential energy.
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Figure 5.1: The interatomic potential as a function of the spacing between atoms

5.3.1 Harmonic approximation

Under the harmonic approximation, the atoms are slightly displaced from their

equilibrium position. The total potential energy of the crystal can be described

by the interatomic potential between a pair of atoms as shown in Figure 5.1.

Under the harmonic approximation, the variations of the atoms from the

equilibrium is small and, therefore neglecting cubic and higher-order terms, we

can expand the potential variation from the equilibrium lattice point as:

V (R1, R2, ..., RN ) = V (R10 , R20 , ..., RN0) +
∑

i

(

1

2

)(

∂V

∂Ri

)

0

δri

+
∑

i,j

(

∂2V

∂Ri∂Rj

)

0

δriδrj + ... (5.2)

where Ri,o represents the equilibrium position of the ith atom while the deviation

of the ith atom from its equilibrium position is represented by δr = Ri −Ro. The

subscripts i and j indicate the three Cartesian coordinates. The second term of

the Equation (5.2) is zero and we can rewrite the equation as:

V (R1, R2, ..., RN ) = V (R10 , R20 , ..., RN0) +
∑

i,j

γi,jδriδrj (5.3)
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with γi,j denoting the force constant:

γi,j =

(

∂2V

∂Ri∂Rj

)

0

(5.4)

This allows us to represent the lattice as a system of n-coupled quantum

harmonic oscillators where each pair of atoms are connected by a spring. The

main difficulty is in the form of the force constant. With the force constant

being the unknown parameter, we can rewrite the overall Hamiltonian and the

equation of motion as:

H =
∑

i

(

P 2
i

2Mi

)

+
∑

i,j

γi,jδriδrj (5.5)

∂p

∂t
= −∂H

∂ui
= −

∑

j

γi,jδrj (5.6)

∂δr

∂t
= −∂H

∂Pi

(5.7)

Newton’s equation can be obtained by combining Equations (5.6) and (5.7):

M
∂2r

∂t2
= −∂H

∂ui
= −

∑

j

γi,jδrj (5.8)

5.3.2 Phonon bandstructure calculation

A key challenge in computing the vibrational modes of a solid is how accurately

to describe the atomic potentials. Once the potential is known, the forces on the

atoms can be easily computed. Here we focus on surveying (semi)empirical

models used for computing semiconductor phonon dispersion. Generally, the

phonon frequencies can be computed using either phenomenological models or

computationally intensive models based on first principles. Phenomenological

models describe the problem of lattice dynamics in terms of charges and force

constants, which are then used to construct the relevant dynamical matrix. We
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can classify the phenomenological models into three groups: models of

interatomic forces, rigid-ion model and dipolar model [53]. The parameters of

these phenomenological models are determined empirically. A brief review of

these models follows.

5.3.2.1 Force constant models

Many parametrized and phenomenological models for the force constant have

been proposed. Within the force constant model, all force constants are treated

as independent parameters. Examples include the Born-von Kármán model and

the valence force field model. The Born-von Kármán model is the simplest and

takes into account the nearest neighbor interaction. In this model, the atoms are

assumed to be hard spheres connected by springs, and the spring constant can

be determined empirically. This model has been applied by Hsieh [54] to

calculate the phonon dispersion of silicon. The calculated curve failed to fit the

experimental dispersion curve at short wavelengths since this model did not

accurately capture long-range interatomic interaction. Herman [55] extended

this to include the fifth-nearest neighbor interaction and was able to reproduce

the phonon dispersion of germanium using 15 force constants. However, the

inclusion of higher-order interactions demonstrates that the interaction potential

became larger for distant neighbors. As such, the presence of long-range forces

in a semiconductor restricts the Born-von Kármán applicability to most

semiconductors. In the valence force field model, the interatomic potential is

written in terms of bond lengths and angles. Among the various valence force

field approaches, the model utilizing Keating’s potential with two parameters

(harmonic bond bending and bond stretching term) has become the most

popular [56].
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5.3.2.2 Rigid-ion model

The rigid-ion model (RIM) was initially used to study the vibrational frequency

in ionic crystals and was latter applied to ionic III-V and II-VI semiconductors

[53, 57]. In this model, the rigid-ions are connected to adjustable springs which

represent the interatomic forces. The ions are presumed to move as

non-deformable point charges, and the only allowed interactions are (i)

short-range forces and (ii) long-range interactions due to the Coulomb forces

between the ions. For the Coulomb interaction, the charges in this model are

assumed to be unpolarized point charges. Despite its simplistic picture, the

model depends on a substantial number of parameters in order to attain

reasonably good results. In addition, RIM-based models fail to describe the

electronic polarization induced by a charge on the surrounding lattice, which can

change the energy spectrum of the crystal.

5.3.2.3 Dipole model

Dipolar methods which take into account the effect of polarization on the atoms

include the shell and bond charge models. Shell models of varying complexity

have been proposed [58, 59] which separate the core ion and the valence

electrons as separate shells. These models are successful because they take into

account electronic polarizability and can be used for a wider selection of

materials, particularly ionic and covalent crystals. The basic assumptions of the

shell and the rigid-ion models are the same except the point charges of the ions

are replaced by a polarizable ion in the shell model. The idea behind the shell

models is shown in Figure 5.2. Each atom is described in terms of a positively

charged ion core and a negatively charged shell consisting of polarizable

electrons which are bound by spring-like harmonic forces. These forces model

the dipole polarization of the atom by the force constants. As shown in figure

5.2, six types of interactions are captured in this model: two are due to the

coupling between each core and the neighboring shell, another two due are to
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the coupling of a particular shell with its own core, and one each to the coupling

between the neighboring shell and between the neighboring cores. These

interactions capture both short-range and long-range Coulomb forces. The

dynamical matrix of the shell model is the same as that of the rigid-ion model

plus the polarization term arising from the induced dipolar forces.

Figure 5.2: The interactions captured by the shell models [60]

A variation of the shell model is the bond charge model which was first

proposed by Phillips [61]. In this model, the induced dipole can be viewed as

being due to the displacement of the electronic charges situated on the bond

(bond-charge) Martin [62] modified the Phillips model and assumed a

free-electron-like screening potential which he computed using first principle

pseudopotential calculations. Weber [63] later modified Martin’s approach and

allowed the bond-charges to be particle-like and move adiabatically from the

midpoints of the bond. In addition, he treated the coupling forces as adjustable

parameters. Weber’s bond charge model, widely known as the adiabatic bond

charge model, has been one of the most popular semi-empirical methods used to

compute phonon dispersion and is applied to a wide range of materials including

elemental group IV semiconductors, III-V zinc-blende structures, II-VI

semiconductors, wurtzite and superlattices [64, 65, 66]. The bond charge model

takes into account the bond forces due to the electronic charge between nearest
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neighbors in a covalently bonded crystal. The accumulated charge distribution

(i.e. bond charge) is taken into account by placing a negative point charge

between each pair of nearest neighbors. A schematic of the bond charge model is

shown in Figure 5.3. The potential between the nearest-neighbor ions is given

by ϕi−i while ϕi−b represents the potential between the bond-charge and the ion.

−Z represents the ion charge while VK and 2Z are the bond potential and

charge. The forces captured in this model include: (i) long-range Coulombic

interaction between the ions and the bond charges, (ii) short-range central

potential ion-ion interaction between nearest neighbors, (iii) short-range

ion-bond charge central interaction, and (iv) short-range noncentral Keating-like

bond charge to bond charge interaction. A result for the phonon dispersion

curve using the adiabatic bond charge model is shown in Figure 5.4. There is a

good agreement between the theory and the experimental results (represented

by dots in the graph).

Figure 5.3: Schematic of Weber’s adiabatic bond charge model [64].
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Figure 5.4: Phonon Dispersion of GaAs computed using adiabatic bond charge
model.

5.4 Phonon Transport

Generally, transport describe processes in which mass, momentum, angular

momentum, and energy move about in matter. Thus it includes diffusional

phenomena, fluid dynamics, and heat transport. Here we briefly review some of

the commonly used scheme to model phonon transport.

5.4.1 Molecular dynamic

Molecular dynamic (MD) was first introduced by the seminal paper of Alder and

Wainraight in which they studied interaction of hard spheres [67]. Since then,

this approach has emerged as a popular modeling technique to characterize

materials, molecules, and biological properties. MD simulation describe the

interaction of all the atoms or ions in a system using Newton’s law of motion for
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a given interatomic potential. A typical MD simulation numerically solves

Newton’s equations of motions periodically for each atom and computes their

corresponding trajectory and velocity as a function of time:

dpj
dt

= Fj (5.9)

drj
dt

=
pj
mj

(5.10)

where rj and pj describe the position and momentum of the jth atom. The force

term (Fj) captures the interatomic forces between the atom and is related to the

total potential energy of the system:

Fj = −∇riV (r1, r2, ..., rN ) (5.11)

The interaction potential is a key input to the simulation, which allows us to

solve the forces on the atoms (or ions) and takes into account all possible

interactions (e.g. electron-ion interaction, electron-electron interaction, etc.)

except for the kinetic energy of the atom (or ion), which we solve directly using

the particle velocities. As such, a key approximation in a typical MD simulation

lies in the choice of the interatomic potential, which is obtained either

empirically or from ab initio methods such as the density functional theory and

quantum Monte Carlo. The use of ab initio methods to compute the interatomic

potentials introduces computational burden into our simulation and hence limits

the problems we can compute to a few ions. In the end, the essence of MD

simulation is to use the computed dynamic variables and the interatomic

potential to determine the macroscopic properties of a system, such as pressure

and temperature, using the formalism averages and fluctuations obtained from

statistical mechanics. For example, the thermal conductivity which is a key

parameter in heat transfer problems can be derived from the MD simulation by

using the fluctuation dissipation theorem.
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5.4.2 Boltzmann transport equation

The Boltzmann transport equation (BTE) can be applied to study phonon

transport. The wave nature of the phonons can be neglected when the length

scale of the system is much larger than the wavelength of the phonon. The

phonon BTE is written as:

∂f

∂t
+

1

~
∇kE(k).∇rf +

qF (r)

~
.∇kf = [

∂f

∂t
]collision (5.12)

where f is the phonon distribution and E(k) is generally obtained from the full

phonon dispersion. The right-hand side as usual represents the scattering term.

Some of the relaxation time approximation methods used to solve the phonon

BTE problem are summarized below. We will demonstrate the Monte Carlo

solution to the phonon BTE in the next chapter.

5.4.2.1 Gray and semi-Gray BTE

In the gray BTE method, the phonons are grouped together in one mode and

are characterized by a single group velocity and relaxation time. No distinction

is made between different phonon modes [68, 69].Another common approach

used to simplify the BTE is using semi-gray BTE which in essence categorizes

phonons into two modes: propagating (i.e. carrying energy) or stationary. Both

phonon groups are allowed to exchange energy [68, 69].

5.4.2.2 Phonon radiative approach equation

Majumdar proposed a phonon radiative transport equation for phonons

employing the relaxation time approximation and demonstrated that phonon

transport at the ballistic limit could be studied using radiative phonon transfer

[70]. The radiative phonon transfer equation maybe derived from the Boltzmann

transport equation by weighting the BTE by v · ~ω ·D. This term is related to

the phonon intensity (Ik) as:
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Ik (r, k, s, t) = v (k, s) · f (r, k, s, t) · ~ω (k, s) (5.13)

The resulting phonon radiative heat transfer equation can be written as:

∂Ik
∂t

+ v · ∇kIk =

(

∂Ik
∂t

)

collision

(5.14)

5.4.3 Fourier law and heat conduction

The most basic model for heat flow was introduced by Fourier, who introduced a

rate equation which determines heat flux in a medium based on the temperature

distribution:

q
′′

= −κ∇T (5.15)

The Fourier equation like other parabolic equations provides an infinite

propagation speed of heat. Realistically, thermal energy propagation is

dependent on the finite velocity of the associated phonon mode. In addition the

diffusive nature of heat transfer is questionable when the phonon mean free path

is comparable or larger than the size of the device structure. One way to

overcome the limitation of Fourier’s law is to use the hyperbolic wave equation,

which demonstrates finite propagation speed. This equation can be derived from

the phonon BTE under the absence of external force in a manner similar to the

one we used to derive the hydrodynamic equation from the electron BTE. In this

case, the phonon BTE is weighted by the function v · ~ω ·D(ω) and integrated

over all frequency ω:

∫

dω (v · w ·D(ω))
∂f

∂t
+

∫

dω (v · w ·D(ω)) v.∇rf =

∫

dω (v · w ·D(ω)) [
∂f

∂t
]collision

(5.16)
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q =

∫

dωv(ω)~ωf(r, w, t)D (ω) (5.17)

where q is the heat flux, D (ω) is the density of states, v is the velocity. Utilizing

an energy independent relaxation time approximation and expanding

∂f0

∂x
= ∂f0

∂T
∂T
∂x

we obtain the Cattaneo equation [71, 72]:

τ
∂q

∂t
+ q = −κ∂T

∂x
(5.18)

where τ is the average relaxation time and κ is the thermal conductivity.

Cattaneo’s equation demonstrates that heat propagates with finite speed and

reduces to the Fourier equation when the relaxation time τ is negligibly small.

The hyperbolic equation can be easily obtained by coupling the Cattaneo

equation with the energy conservation equation:

∂T

∂t
= −C ∂q

∂X
(5.19)

The specific heat term is represented by C. Using the above two equations the

hyperbolic wave equation can be written as:

∂2T

∂t2
+
∂T

∂t
= − k

C

∂2T

∂x2
(5.20)

The above equation demonstrates a wave propagating at a speed
√

κ
Cτ

. This

model is non-local in time but local in space since the temperature represents a

spatially localized thermodynamic equilibrium [72]
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CHAPTER 6

COUPLED ELECTRO-THERMAL MONTE

CARLO ANALYSIS OF SELF-HEATING IN

NANOWIRES

6.1 Overview

Thermal management and power dissipation in microprocessors are quickly

emerging as the ultimate bottleneck to improving the performance of

consumer/commercial electronics. Controlling device temperature and power

dissipation is crucial to sustaining electronic devices with longer battery life and

improving the overall device reliability and life expectancy. As such, thermally

conscious blueprints have become recently the focal concern of semiconductor

roadmaps, at all design phases, as the temperature at the chip level and within a

single transistor rises for future electronic devices [73]. Without proper thermal

management, inordinate power dissipation can potentially halt integrated circuit

functionality.

This chapter explores the electro-thermal behavior of silicon-on-insulator

(SOI) multigate (MG) nanowires. Our approach is unique in that we couple our

in-house 3D quantum-corrected Monte Carlo with a phonon model explicitly

taking into account the anharmonic decay. The anharmonic three-phonon decay

and the use of full dispersion facilitate a detailed description of heat transfer and

the determination of the temperature map in nanoscale devices.

6.2 3D Electro-Thermal Simulator

The hierarchy of electron and phonon simulation models is shown in Figure 6.1.

The most detailed level of simulation is to solve the wave (Schrödinger)
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equations when device dimensions are comparable to the particle (electron/hole)

wavelength. However, although the electron community has utilized Schrödinger

based solutions to device modeling, the phonon community is still lagging

behind. For heat transfer, the most detailed level of simulation is the direct

solution of the lattice dynamical equations or the equivalent treatment of the

solid as an elastic continuum. If phase/coherence effects can be neglected, as

they can in many applications with diffuse interfaces and boundaries, it is

possible to treat phonon transport under a particle framework. Under this

framework, Monte Carlo simulation offers the most comprehensive simulation

tool.

Here we describe the thermal transport model used in this work and the

coupling between the electron (described in the previous chapters) and the

phonon model.

Figure 6.1: Hierarchy of electron and phonon transport models.
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6.2.1 Thermal transport

Thermal energy is largely transported in semiconductors by the collective

vibrational motion of ions. The collective vibration waves of a periodic solid are

made of quantized units of vibrational energy, referred to as phonons. In order

to capture the details of self-heating in nanoscale devices, we need to carefully

model phonon generation and transport. At length scales between the phonon

mean free path (Λsi,bulk 300 nm at room temperature) and phonon wavelength (1

nm at room temperature) continuum heat transfer models (e.g. Fourier law) are

inadequate. At this limit, the Boltzmann transport equation provides the most

appropriate means to study phonon transport. The main difference between the

electron and the (uncharged) phonon BTE is the irrelevance of Lorentz force to

phonons :

∂f
ph

∂t
+ υ(q)

∂f
ph

∂r
=
∂f

ph

∂t
|
el-ph

−
∂f

ph

∂t
|
anharmonic

(6.1)

The right-hand side identifies two terms which cause a variation in the phonon

distribution function: the first term represents the electron phonon scattering

events and the second term comprises anharmonic phonon decay processes

which are treated as a scattering mechanism.

6.2.1.1 Phonon Monte Carlo

The application of MC to particle transport is relatively simple to understand.

Assuming the carrier motion consists of free flights interrupted by scattering

mechanisms, a computer is utilized to simulate the trajectories of particles as

they move across the device. The scattering events and the duration of particle

flight are determined using random numbers. The general flow chart for the

phonon Monte Carlo employed here is shown in Figure 6.2. A fundamental step

in the phonon MC used in this work is that it takes as an input the detail of

phonon generation (i.e. iteration number in which the scattering event occurred,
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phonon branch/position/momentum, etc.) computed from the electron MC. The

first step to simulate heat transport consists of using the data obtained from the

electrical Monte Carlo to calculate the average lifetime (τanh) of the emitted

phonon due to anharmonic decay for each phonon energy and branch [9]. The

average lifetime is then used to stochastically compute phonon decay time. This

is usually achieved utilizing

Figure 6.2: The flow chart of the phonon Monte Carlo used in this work

τdecay = ln(r)τanh (6.2)

Here r is a random number uniformly distributed between 0 and 1. At this

point, the emitted phonon is allowed to drift from its original position rems up to

the position rdecay in which it will decay into two other phonon modes:

rdecay = rems + υdt (6.3)
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where v is velocity of the emitted phonon extracted from the phonon dispersion.

The next step is to determine a pair of final states for the emitted phonon. This

step is accomplished using the rejection algorithm on the probability

distribution for anharmonic decay including the matrix element [74]. The

probability distribution for anharmonic decay was obtained by Klemens using

time-dependent perturbation theory as the product of the anharmonic matrix

element for the three phonon processes and a time-dependent resonance factor:

P (q, q′) = |〈q|H ′|q′〉|21− cos(△wt)
△2t

(6.4)

where △w = w − w′ − w′′ is the net energy exchange between the initial phonon

momentum (q) and the final states (q′, q′′) and H ′ is the perturbing Hamiltonian

due to cubic anharmonicity. The rejection algorithm starts by estimating a

possible pair of final states generated by the anharmonic decay processes; q′ is

chosen randomly from a uniform distribution in the first Brillouin zone, while

the second final state (q′′) is determined by ensuring momentum conservation:

q′′ = q − q′ ±G (6.5)

To determine whether the pair of of final states is accepted, a random number

( rrej) uniformly distributed in the unit interval is generated and compared to

the probability P (q, q′). The pair of final state is rejected if P (q, q′) < rrej , and a

new pair is searched. Finally, once the final state is determined, the phonons are

transported until the end of simulation without undergoing any further

anharmonic decay.

6.2.2 Coupling electron and thermal transport

In order to capture the details of self-heating in nanoscale devices, we need to

carefully model phonon generation and transport. In the transistor level, heating

is established when immensely energetic electrons, exiting the highly resistive
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channel, relax by giving off their excess energy to the crystal through

electron-phonon interactions. Particularly, the effectual energy relaxation

mechanism for energetic electrons is to couple with high frequency optical

phonon [75, 10]. Optical phonons, however, have insufficient group velocity

imperative for efficient heat transport and hence this process promotes the

confinement of thermally nonequilibrium distribution of hot optical phonon at

the vicinity of the source-drain region. The excess phonon population eventually

diffuse diffuse out as the optical modes slowly decay into acoustic phonon mode

with higher group velocity. As such, the coupling between electrons and optical

phonons, and the subsequent decay of optical phonons towards equilibrium, are

found to play a large role in determining the temperature distribution in silicon

devices. Figure 6.3 and 6.4 summarize the electro-thermal coupling process. As

shown in the flow diagram in Figure 6.3(a) the self consistent coupling entails

feeding the heat generation obtained from our 3D quantum-corrected Monte

Carlo to a thermal Monte Carlo which dissipates the anharmonic phonon

processes. The anharmonic three-phonon decay and the use of full dispersion

(Figure 6.4(a) facilitate a detailed description of heat transfer and the

determination of temperature map in nanoscale devices. The temperature map

obtained from the heat transport model is fed back to the electron Monte Carlo,

which uses temperature-dependent scattering table (Figure 6.4(b) in a

self-consistent manner until the convergence criterion is met.

6.2.3 Temperature distribution

One approach to obtaining the temperature map uses the data from the phonon

simulation and performing direct conversion between the lattice energy and

temperature. The method entails careful bookkeeping of phonon emission and

absorption along each cubic mesh simulated. For each cube, the energies of the

phonon falling into it are either summed (for emission) or subtracted (for

absorption) from the initial energy. Phonons which leave the region of interest
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during drift and anharmonic decay process are ignored. The updated energy

map represents the final lattice thermal energy. At the end of this process,

reverse temperature look-up is performed utilizing the energies of each cube.

This method of computing the temperature map, although conceptually simple,

places an unacceptable computational burden on the thermal simulation due to

the great amount of phonon data involved. To surmount this, we employ a

second approach that restricts our analysis only to the phonons generated at the

end of the electrical simulation. This is well justified since we generally run the

simulation long enough until steady state is met. As such, it is sufficient to

consider only phonons generated ensuing steady state. With this approach, the

energy of the phonon is not added to the energy map, but is considered by itself.

Nonetheless, in order to make the results of this approach independent of the

number of phonons processed, phonon contribution is normalized by the

appropriate time window reflecting the iteration of the first phonon processed to

Figure 6.3: Flow chart demonstrating the approach we use in thermal MC to
couple both the electrical and phonon transport models.
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Figure 6.4: The coupled electro-thermal simulation uses full phonon dispersion
data (a) and temperature-dependent scattering rates (b).
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the final iteration.

6.3 Results and Discussion

The performance gains and short-channel effects of multigate architectures have

been discussed in Chapter 4. We have seen that these architectures lack true

immunity from short-channel effects and a need to scale the cross-sectional area

along with the channel length itself is required. Particularly, to suppress

short-channel effects in these structures, we need to facilitate a behavior which

nearly follows the ideal gradual channel approximation (GCA)—i.e. the electric

field induced by the gate (VG/Lsi) must be much stronger then the electric along

the channel ((VD/Lg)) . Here VD is the applied drain voltage, VG is gate voltage,

while LG and Lsi represent the channel length and the cross-sectional length

(Tsi=Hsi), respectively. Because the applied drain and gate voltages are

comparable, GCA-like behavior is realized if the cross-sectional length (Lsi) is

much smaller than the channel length (Lg). This design rule allows the gate to

have better control of switching the transistor on or off, while the source and

drain voltages serve only to transport carriers across the channel. Furthermore,

with increased scaling of the cross-sectional length, the performance differential

between different multigate architectures diminishes at the limit of small

cross-sections. Therefore, practical issues such as ease and cost of fabrication

become much more relevant in choosing which structure to use. In addition, the

number of gates is not as strongly correlated with performance enhancements as

previously expected.

In this section we explore multigate devices further, adding to the discussion

the influence of the thermal effects on device performance by utilizing the

coupled 3D electro-thermal Monte Carlo simulator (also referred to as thermal

MoCa) introduced in this chapter and compare it to the 3D electrical Monte

Carlo (which we refer to as MoCa or electrical MoCa here). For the purposes of

this discussion, a GAA multigate device is considered with the following
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parameters: square cross-sections (Tsi=Hsi) varying from 5 to 35 nm, constant

gate length of 20 nm, substrate doping at 1016 cm−3, and fixed oxide thickness of

1.5 nm. The device geometry and doping is in accordance with those presented

in Chapter 4. The carriers are confined along the y-z plane and the direction of

current flow is along the x axis. The source and drain edge of the 20 nm channel

is at x = 35 nm and x = 55 nm. Except in instances where we show how the

cross-sectional scaling influences device behavior, the analysis presented here

picks the smallest cross-section (Tsi=Hsi=5 nm) in order to ensure immunity to

short-channel effects.

The temperature profile of the GAA structure using thermal MoCa in Figure

6.5 illustrates the effect of scaling the cross-sectional length on temperature

distribution within the device. The three plots show that as the square

cross-sectional length is reduced from 20 nm, 10 nm, and 5 nm, the temperature

distribution of the device increases. This is expected as the reduced

cross-sections trap more nonequilibrium phonons which are unable to escape

from the channel due to the low conductivity of the surrounding oxide region.

This effect is further illustrated in Figure 6.6 where the peak temperature

consistently increases with decreasing cross-sectional area. This, again, is due to

the increased thermal resistance within the small cross-sectional area. It should

also be noted that the hotspot in Figure 6.5 is not localized to the drain region

and extends into almost half the channel.

In Figure 6.7 we demonstrate how the overall temperature distribution

relates directly to the drain voltage. This result is expected, since higher drain

voltages increase the energy of the electrons and promote higher optical phonon

emission rates. The corresponding peak temperature is shown in Figure 6.8 as

the drain bias is ramped from 0.1 V to 1.2 V.
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Figure 6.5: Temperature distribution of a GAA structure with square
cross-section of (a) 20 nm, (b) 10 nm, and (c) 5 nm TG at an applied bias
VG = VD = 0.5 V. The channel region range is from x = 35 to x = 55 nm.
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Figure 6.6: Variation of temperature as a function of the square cross-section
bias for a GAA MOSFET with Lg = 20 nm, TSi = HSi = 5 nm, and
Vd = Vg = 0.5 V.

Figure 6.9 shows a comparison between the drive current obtained using the

thermal and the electrical MoCA simulators. The result clearly shows that

thermal effects degrade the drive current due to the influence of temperature

dependent scattering rate on carrier transport. In the electrical MoCa, the

scattering rates are calculated at a fixed temperature (300 K), without

consideration of the spatial variations of temperature within the channel. In

thermal MoCa, however, the temperature distribution (obtained from the

phonon transport) is used to determine the temperature dependent scattering

rates, providing a much more accurate illustration of the device performance. In

Figure 6.10, we further emphasize this result by showing the impact of

cross-sectional area on drain current. The results shown in Figure 6.10 is for a

GAA MOSFET with a cross-sectional length of 5 nm and an applied bias VD =

VG = 0.5 V. Figure 6.10(a) seems to suggest that thermal effects are less

important at small cross-sections since the difference between the total drive

currents obtained MoCa and thermal MoCa is not significant. However, this is

an incorrect assessment and is due to the fact that the plots are shown in linear

scale and in the y axis and not logarithmic. A clearer picture is shown in Figure
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(a)

(b)

Figure 6.7: Temperature map of a 5 nm x 5 nm GAA MOSFET for (a)
Vd = Vg = 0.7 V and (b) Vd = Vg = 1.0 V.
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Figure 6.8: Variation of temperature as a function of the applied drain bias for a
GAA MOSFET with Lg = 20 nm, TSi = HSi = 5 nm, and Vd = Vg = 0.5 V.

6.10(b) in which we compare the percentage of current enhancement in GAA

relative to DG using both the electrical and electro-thermal Monte Carlo

models. We find that there is indeed a significant difference between the current

increase under the electro-thermal model relative to the electrical model even at

the 5 nm x 5 nm cross-sections.

In order to demonstrate the cause of current reduction, we examine the

difference between the electron concentration and average velocity obtained from

MoCa and thermal MoCa. Figure 6.11(b) clearly shows that the electron

concentration does not considerably change between the MoCa and thermal

MoCa. Figure 6.11(a), however, shows that the average velocity is significantly

changed between the two models. Again, this is because the electrical MoCa

simulation is run under a fixed temperature. This is a gross simplification of

what happens in real devices as a device would heat up during operation, which

would result in increased scattering rates. In thermal MoCa, the influence of

self-heating on the electrical performance is readily captured by first obtaining a

spatially varying temperature distribution along the device from the phonon

simulator and then utilizing the temperature dependent scattering rate in the

electron transport. The higher scattering rate results in further reduction of
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Figure 6.9: Comparison of GAA IDS-VDS characteristic obtained from a coupled
electro-thermal MC simulation and 3D electrical MC simulation. The
electro-thermal MoCa simulation shows current degradation as a consequence of
heating.

average velocity of the carriers trying to move through a device hotter than the

room temperature of 300 K. It also worth noting that there is little change in

the carrier velocity between the source edge (x = 35 nm) and drain edge (x = 55

nm) of the channel. The slow variation of the velocity profile along the channel

indicates that highly energetic (hot) electrons are distributed across the channel

and that these hot electrons are not simply concentrated in the vicinity of the

drain. The higher distribution of hot electrons, in turn, may help explain why

the temperature distribution seen earlier extends to half the channel rather than

being concentrated near the drain edge.

Finally, we show the distribution of the electron kinetic energy as we move

from the source to the drain in Figure 6.12. It is evident that the distribution

progressively departs further from the Maxwellian source distribution as we

move towards the drain. In addition, the distribution becomes more and more

asymmetric with respect to the maximum, especially in the drain region where it

is rather flat for energies up to the maximum, with a thermal equilibrium tail for
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(a)

(b)

Figure 6.10: Comparison of the results obtained from thermal MoCa simulation
and electrical MoCa simulation for a GAA structure. The variation of the drain
current as we reduce the cross-section is shown in (a) while (b) shows the
reduction in current gain.
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(a)

(b)

Figure 6.11: Comparison of the (a) average velocity profile and (b) the electron
density obtained using a 3D quantum-corrected Monte Carlo simulator with and
without electro-thermal coupling.

99



larger kinetic energies corresponding to the lattice temperature.

6.4 Summary

Although the planar bulk MOSFET technology has dominated chip design for

many years, as we reach the limits of the capabilities of this technology, new

architectures are constantly being explored. Heat has risen to be one of the most

important considerations in assessing novel 3D nonplanar nanowire-like devices.

In addition, 3D simulation tools which accurately couple electrical and thermal

transport models are becoming increasingly important in order to validate these

novel structures.

In this chapter, we have introduced our newly coupled 3D quantum corrected

electro-thermal Monte Carlo simulation tool. Our model incorporates

anharmonic phonon decay and temperature dependent scattering rates which

are essential to obtaining the temperature distribution within the device. Our

simulator readily provides all the relevant phonon statistics. The temperature

hot spots, current degradation, and transport coefficients obtained can be used

to compare various device architectures. We have demonstrated the impact of

this tool by using it to study a test case of an SOI GAA structure. Our results

have shown that current enhancement is decreased due to thermal effect, further

reducing the limited gain from these devices, as has been discussed in Chapter 4.

These results also indicate the promise of these tools to explore different areas of

device design, including environmental impact. By optimizing heat issues at the

transistor level, and consequently at all higher design levels, many advantages

are gained. By using electro-thermal simulation and having a better

understanding and control over the thermal issues within devices, designs can be

more thermally conscious devices. Until recently, device design has been

primarily driven by performance considerations, but this development allows

them to optimize their design with respect to environmental issues, as well as to

heat management and energy efficiency at the nanoscale level, and to packaging
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and material selection at other levels. The use of electro-thermal device

simulators will help create a cycle which will push designs to have lower carbon

footprints and be more environmentally conscious.
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(a)

(b)

(c)

Figure 6.12: Electron distribution as a function of kinetic energy along the (a)
source , (b) channel and (c) drain. The electron distribution progressively
departs from an equilibrium distribution as we move towards the drain region.
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