
c© 2012 Prateek Mittal

TRUSTWORTHY AND SCALABLE ANONYMOUS COMMUNICATION

BY

PRATEEK MITTAL

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Doctoral Committee:

Assistant Professor Nikita Borisov, Chair
Assistant Professor Matthew Caesar
Dr. George Danezis, Microsoft Research
Adjunct Professor P. R. Kumar
Professor Nitin Vaidya

ABSTRACT

The architectures of deployed anonymity systems such as that of the Tor net-

work suffer from the problems of (a) limited scalability, (b) reliance on a few

central points of trust, and (c) trust issues due to Sybil attack. In this thesis,

we investigate the design of novel approaches to anonymous communication

that are scalable, decentralized, and Sybil-resilient.

First, we begin by investigating security vulnerabilites in existing P2P

anonymity systems, and find fundamental limitations in their designs. Sec-

ond, we propose novel protocols for P2P anonymous communication that can

successfully overcome these limitations. Third, we describe a protocol for

detecting malicious Sybil identities using information about social network

trust relationships. Fourth, we present protection mechanisms for DHTs that

also leverage social network trust relationships to defend against the Sybil

attack while preserving the privacy of social contacts and providing a basis

for pseudonymous communication. Finally, we describe a protocol for trust-

worthy and scalable anonymous communication that can directly leverage

users’ trusted social contacts. We evaluate the effectiveness of our proto-

cols using theoretical analysis, simulations, implementations and a Facebook

application.

ii

To my family

iii

ACKNOWLEDGMENTS

This dissertation would not have been possible without the help of my advisor

Nikita Borisov. I would like to thank Nikita for his mentorship and support

throughout my doctoral studies. Nikita has been a role model for my research

career, and his approach to problem solving and mentoring students has been

a great learning experience. I would also like to thank Matthew Caesar, who

has been like a second advisor to me. I learned a lot about systems research by

working with Matt, and have benefited tremendously from our conversations

over these years.

I am grateful to my doctoral committee members George Danezis, P. R.

Kumar and Nitin Vaidya for their feedback. My internship with George at

Microsoft Research introduced me to the wonderful world of social networks,

which has helped shape my research.

I would like to thank my fellow students and faculty at Illinois for all

their help. In particular, I am grateful to my colleagues in the Hatswitch

research group - Amir Houmansadr, Robin Snader, David Albrecht, Nabil

Schear, Qiyan Wang, Joshua Juen, Sonia Jahid, Giang Nyugen, Xun Gong,

and Anupam Das. Thanks for many insightful discussions, and making grad

school a memorable experience.

I would like to thank all of my collaborators, both at Illinois and outside.

My internships at ICSI and Philips Research broadened my research interests.

I am grateful to my mentors, Vern Paxson, Robin Sommer, Vinay Varadan,

Nevenka Dimitrova, Angel Janevski, Sirtharthan Kamalakaran, and Nilan-

jana Banerjee. I am also grateful to Matthew Wright, who is my collaborator

on the Pisces protocol in this dissertation, and whose paper on Salsa inspired

my doctoral research.

I would like to thank the Tor project and the PETS community for their

feedback, in particular, Roger Dingledine, Nick Mathewson, Paul Syverson,

Apu Kapadia, Ian Goldberg, Steven Murdoch, Nick Hopper, Carmela Tron-

iv

coso, Femi Olumofin, Eugene Vasserman, and Mike Perry.

My work was supported in part by NSF CNS 06-27671, 08-31488, 09-

53655, and an HP Labs IRP grant. I would also like to thank the ECE

department at Illinois for its support in the form the RAMBUS award and

M. E. VanValkenburg award.

Parts of this dissertation have been published in ACM CCS 2007, ACM

CCS 2008, ACM CCS 2009, NDSS 2009, ACM CCS 2010, USENIX HotSec

2010, USENIX Security 2011, NDSS 2012 and ACM TISSEC 2012. The

Pisces protocol is currently under submission at ACM CCS 2012.

Finally, I would like to thank my family and friends. I am especially grate-

ful to Amelia, for her love and support.

v

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER 1 INTRODUCTION . 1
1.1 Contributions . 2

CHAPTER 2 LITERATURE REVIEW 6
2.1 Low-Latency Anonymous Communication 6
2.2 Peer-to-Peer Anonymous Communication 9
2.3 Sybil Defenses and Social Networks 12

CHAPTER 3 INFORMATION LEAKS IN STRUCTURED PEER-
TO-PEER ANONYMOUS COMMUNICATION SYSTEMS 16
3.1 Information Leaks via Secure Lookups 17
3.2 Salsa . 21
3.3 Summary . 29

CHAPTER 4 SHADOWWALKER: PEER-TO-PEER ANONY-
MOUS COMMUNICATION USING REDUNDANT STRUC-
TURED TOPOLOGIES . 31
4.1 ShadowWalker . 32
4.2 Anonymity Evaluation . 38
4.3 Experimental Results . 48
4.4 Summary . 51

CHAPTER 5 SYBILINFER: DETECTING SYBIL NODES US-
ING SOCIAL NETWORKS . 53
5.1 Overview . 56
5.2 Model and Algorithm . 57
5.3 Security Evaluation . 65
5.4 Deployment Strategies . 76
5.5 Summary . 80

vi

CHAPTER 6 X-VINE: SECURE AND PSEUDONYMOUS ROUT-
ING USING SOCIAL NETWORKS 81
6.1 X-Vine Overview . 84
6.2 X-Vine Protocol . 87
6.3 Securing X-Vine . 93
6.4 Experiments and Analysis . 97
6.5 Limitations . 107
6.6 Summary . 107

CHAPTER 7 PISCES: TRUSTWORTHYAND SCALABLE ANONY-
MOUS COMMUNICATION . 109
7.1 Pisces Protocol . 110
7.2 Evaluation: Reciprocal Neighborhood Policy 117
7.3 Evaluation: Securing Reciprocal Neighborhood Policy 126
7.4 Anonymity . 129
7.5 Discussion . 138
7.6 Summary . 139

CHAPTER 8 CONCLUSION . 141

APPENDIX A MATHEMATICAL ANALYSIS OF X-VINE: 144

APPENDIX B X-VINE PSEUDOCODE 149

REFERENCES . 151

vii

LIST OF TABLES

6.1 Topologies . 98
6.2 Mean Lookup Path Length . 102

viii

LIST OF FIGURES

3.1 Salsa lookup mechanism. 19
3.2 False positives in bridging an honest first stage. 24
3.3 Information leak attacks on Salsa. 25
3.4 Conventional path compromise attacks: Increasing redun-

dancy counters active attacks. 25
3.5 Information leak attacks: Increasing redundancy makes the

passive adversary stronger. 26
3.6 All conventional and information leak attacks: For maxi-

mal anonymity, r = 3 is optimal for small f . Note that
there is a crossover point at f = 0.1 when r = 6 becomes
optimal. 26

3.7 Comparison of all attacks with conventional active attacks:
Note that for f > 0.12, fraction of compromised paths is
greater than f . 26

3.8 Salsa with a PKI—All conventional and information leak
attacks. Even with a PKI, the security of Salsa is much
worse as compared to conventional analysis. 27

3.9 Effect of varying the path length: Note that there is only
limited benefit of increasing path length. 27

4.1 Redundant structured topology. 34
4.2 The pseudocode for circuit establishment of length l. 35
4.3 Circuit construction. 36
4.4 P (k’th hop is compromised). 39
4.5 P (Mi): Note that the probability of end-to-end timing

analysis P (M1) is less than 5% for f = 0.2. 41
4.6 Effect of varying circuit length: Increasing circuit length

increases entropy. 43
4.7 Effect of varying redundancy: There is little advantage in

increasing redundancy beyond r = 2. 43
4.8 Using last two hops for anonymous communication: Mit-

igating restricted topology attacks while keeping circuit
length constant. 45

ix

4.9 Comparison with Salsa: For f = 0.2, our protocol has 4.5
bits more entropy than Salsa. 46

4.10 Selective-DoS attack: Using l =2–6 resists selective DoS attack. 48
4.11 Impact of churn on reliability. 50
4.12 Churn distributions. 50
4.13 Lookup security. 51
4.14 Anonymity. 52

5.1 Illustration of honest nodes, Sybil nodes and attack edges
between them. 57

5.2 Illustrations of the SybilInfer models. 61
5.3 Synthetic scale-free topology: SybilInfer evaluation as a

function of additional Sybil identities (ψ) introduced by
colluding entities. False negatives denote the total number
of dishonest identities accepted by SybilInfer while false
positives denote the number of honest nodes that are mis-
classified. 69

5.4 Scale-free topology: fraction of total malicious and Sybil
identities as a function of real malicious entities. 71

5.5 LiveJournal topology: fraction of total malicious identities
as a function of real malicious entities. 73

5.6 Comparison with related work. 74

6.1 Illustration of honest nodes, Sybil nodes, and attack edges
between them. 85

6.2 Overview of X-Vine. 88
6.3 Example: backtracking. 91
6.4 Routing state, with no bounds on state: Due to temporal

correlation, some nodes exhibit high state requirements. . . . 99
6.5 Routing state, with node and edge bounds: Bounding state

significantly reduces state requirements. Using a successor
list of size 5, the average routing state for the three topolo-
gies is 67, 81, and 76 records respectively. X-Vine requires
orders of magnitude less state than Whanau [1]. 100

6.6 Probability of secure lookup as a function of number of
attack edges. 103

6.7 Lookup resilience against churn. 105
6.8 Lookup latency. 106

7.1 Probability of the l’th hop being compromised (Sampling
Bias), under an increasing node degree attack: For short
random walks, this is a losing strategy for the adversary.
For longer random walks, the adversary does not gain any
advantage. 119

7.2 Attack model. 120

x

7.3 Probability of the l’th hop being compromised (Sampling
Bias) under a route capture attack. As more edges to the
honest nodes are removed, the attacker’s loss is higher.
Note that the impact is very high on small length random
walks, but gets smaller for longer length random walks. . . . 123

7.4 Probability of l’th hop being compromised (Sampling Bias)
under route capture attack with global blacklisting. As more
edges to the honest nodes are removed, the attacker’s loss
is higher. Note that the impact is the same for all random
walk lengths. 125

7.5 Probability of end-to-end timing analysis under route cap-
ture attack. 128

7.6 Probability of end-to-end timing analysis under route cap-
ture attack with global blacklisting. 128

7.7 Probability of detecting a route capture [Facebook wall
post interaction graph]. Attack model includes 10 Sybils
per attack edge. 128

7.8 Unreliability in circuit construction [Facebook wall post
interaction graph]. 128

7.9 Circuit build times in Tor as a function of circuit length. . . . 129
7.10 Expected entropy as a function of random walk length. We

can see that the entropy of the Metropolis-Hastings random
walk is less than the conventional random walk due to its
slower mixing properties. However, even the Metropolis-
Hastings random walks quickly converge to the station-
ary distribution. From the CDF, we also note that an
overwhelming fraction of users can expect a high level of
anonymity. 132

7.11 Entropy as a function of fraction of attack edges using (a)
realistic model of an imperfect Sybil defense (10 Sybils per
attack edge) and (b) perfect Sybil defense for Facebook
wall post interaction graph. 134

7.12 Comparison with ShadowWalker. Entropy as a function
of fraction of attack edges using (a) realistic model of an
imperfect Sybil defense (10 Sybils per attack edge) and (b)
perfect Sybil defense for Facebook wall post interaction
graph. 135

7.13 Anonymity using the two hop performance optimization,
Facebook wall post interaction graph. k=12 results in pro-
vides a good tradeoff between anonymity and performance. . . 136

7.14 Anonymity degradation over multiple communication rounds,
Facebook wall post interaction graph. 138

A.1 X-Vine lookup. 145

xi

A.2 Validation of analytic model using d = 10. 148

xii

CHAPTER 1

INTRODUCTION

Anonymous communication is a key privacy enhancing technology, and is

gaining widespread popularity in an era of pervasive surveillance [2]. Anony-

mous communication hides the identity of communication partners from third

parties, or hides user identity from the remote party. The Tor network [3],

deployed in 2003, now serves hundreds of thousands of users [4] and carries

terabytes of traffic a day [5]. Originally an experimental network used by pri-

vacy enthusiasts, it is now entering mainstream use; a recent attack showed

a number of foreign consulates were using Tor to avoid surveillance by their

host countries [6].

The Tor network comprises approximately 2 000 relays as of April 2011 [7].

Tor clients first download a complete list of relays from directory servers. The

relay information is signed by trusted directory authorities to prevent direc-

tory servers from manipulating its contents. Clients select three random

relays to build circuits for anonymous communication. We note that there

are several problems with Tor’s architecture. First, Tor requires all users to

maintain a global view of all the relays. As the number of relays increases,

maintaining a global view of the system becomes costly, since churn will

cause frequent updates and large bandwidth overhead. Second, the Tor pro-

tocol relies on a few centralized directory authorities, which makes them an

attractive target for the attackers. Finally, Tor is also vulnerable to Sybil [8]

attacks, in which a single attacker can insert a large number of Tor relays

and break the anonymity guarantees provided by the network.

In order to address the first problem, a peer-to-peer architecture will likely

be necessary. However, peer-to-peer networks present new challenges to

anonymity, one of which is the ability to securely locate relays for anonymous

traffic. Additional challenges include defending against the Sybil attack to

prevent a single entity from compromising the security guarantees of the sys-

tem, as well as eliminating central points of trust from the design. In this

1

thesis, we investigate the design of a trustworthy (Sybil-resilient) peer-to-peer

(P2P) anonymous communication system.

1.1 Contributions

1.1.1 Information leaks in existing mechanisms

As a first step towards our goal, we perform a security evaluation of the state-

of-art P2P anonymous communication system called Salsa [9]. Salsa [9] is

built on top of a distributed hash table (DHT), and uses a specially designed

secure lookup operation to select random relays in the network. The secure

lookups use redundant checks to mitigate attacks that try to bias the result

of the lookup. We show that Salsa is vulnerable to information leak attacks:

as the attackers can observe a large fraction of the lookups in the system, a

node’s selection of relays is no longer anonymous and this observation can be

used to compromise user anonymity [10, 11]. Salsa was designed to tolerate

up to 20% of compromised nodes; however, our analysis shows that in this

case, over one quarter of all paths will be compromised by using information

leaks. We show that Salsa is also vulnerable to a selective denial-of-service

attack, where nodes break circuits that they cannot compromise. Selective

DoS attack is devastating for user anonymity in Salsa; at 20% compromised

nodes, the probability of path compromise is 0.7, thus rendering the system

insecure for most proposed uses.

1.1.2 P2P anonymity using structured topologies

Next, we propose ShadowWalker, a P2P anonymous communication system

that satisfies all of our design goals (secure against a Byzantine adversary,

decentralized design) assuming an external Sybil defense mechanism. Shad-

owWalker is based on a random walk over structured topologies. The key

challenge in this system is to prevent attackers from biasing the results of the

random walk process (route capture attack). Our main idea is the creation

of shadow nodes, which redundantly verify the correctness of a given nodes’

routing table and certify it as correct (to prevent attackers from biasing the

results). Such certificates can then be used to check the steps of a random

2

walk; by using certificates rather than online checks, we can avoid informa-

tion leak attacks [12]. We show that our design is effectively able to prevent

route capture attacks by employing a small number of shadows per node.

In particular, the anonymity levels achieved by our system are much higher

than those of Salsa [9] when 20% of all nodes are compromised.

1.1.3 Sybil detection using social networks

Next, we propose SybilInfer, a protocol to detect Sybil identities using social

network trust relationships. Our main contribution is to propose a formal

model for detecting Sybil nodes in a social network, that makes use of all

information available to the defenders. Our model casts the problem of de-

tecting Sybil nodes in the context of Bayesian inference: given a set of stated

relationships between nodes, the task is to label nodes as honest or dishon-

est. Based on some simple and generic assumptions, like the fact that social

networks are fast mixing [13], we sample cuts in the social graph according

to the probability they divide it into honest and dishonest regions. These

samples not only allow us to label nodes as honest or Sybil attackers, but also

to associate with each label a measure of uncertainty. We demonstrate the

practical efficacy of our approach using both synthetic scale-free topologies as

well as real world livejournal data. We show an order of magnitude security

improvements over state-of-art systems like SybilGuard and SybilLimit.

1.1.4 Sybil-resilient distributed hash table using social
networks

SybilInfer is a generic tool for Sybil defense that does not provide support

for P2P routing. Moreover, SybilInfer requires knowledge of the full social

network topology, presenting challenges pertaining to scalability as well as

privacy of social contacts. Next, we propose X-Vine, a protection mechanism

for distributed hash tables that does not require knowledge of the full social

graph. X-Vine is resilient to denial of service via Sybil attacks, and in fact

is the first Sybil defense that requires only a logarithmic amount of state per

node, making it suitable for large-scale and dynamic settings. X-Vine also

helps protect the privacy of users social network contacts and keeps their IP

3

addresses hidden from those outside of their social circle, providing a basis for

pseudonymous communication. X-Vine operates entirely by communicating

over social network links, and leverages ideas from network layer distributed

hash tables such as virtual ring routing [14]. We evaluate X-Vine using

theoretical analysis, simulations, PlanetLab implementation and a Facebook

plugin. We find that X-Vine allows Sybil-resilient communications with low

stretch and communication overhead.

1.1.5 P2P anonymity using unstructured social network
topologies

We note that a combination of ShadowWalker with SybilInfer yields a Sybil-

resilient protocol for P2P anonymous communication, and satisfies the objec-

tives of this thesis. However, such a design is not optimal. Malicious nodes

accepted by social network based Sybil defenses such as SybilInfer are local-

ized with respect to honest nodes. ShadowWalker arranges all accepted nodes

into a structured topology, resulting in malicious nodes being uniformly dis-

tributed in the topology, and losing information about the localized nature of

the adversary. We propose PISCES, a protocol for P2P anonymous commu-

nication that directly performs secure random walks on unstructured social

network trust topologies. Pisces brings together the benefits of trust rela-

tions, in the form of a social network, with the advantages of secure random

walks in a P2P environment. The main technique that we leverage for our

random walks is the reciprocal neighborhood policy (RNP). The RNP states

that all links in the graph must be bi-directional; for social networks, this

means that social relationships must be mutual (friends, not followers). By

providing techniques that enforce this policy (leveraging the X-Vine proto-

col), we ensure that a random walk on the topology is truly random. Using a

real world social network topology and a reasonable set of trust assumptions,

we find that Pisces significantly outperforms ShadowWalker, and provides up

to 6 bits higher entropy in a single communication round.

4

1.1.6 Organization

We first discuss the state of art in P2P anonymity, as well as mechanisms

leveraging social network trust relationships in Chapter 2. We present in-

formation leak attacks in existing P2P anonymity designs in Chapter 3. We

propose the ShadowWalker protocol that resists information leak attacks in

Chapter 4. In Chapter 5 and Chapter 6, we present the SybilInfer and X-

Vine protocols for Sybil defense using social networks. We present the Pisces

protocol for anonymous communication using social networks in Chapter 7,

and conclude in Chapter 8.

5

CHAPTER 2

LITERATURE REVIEW

In this section, we review related work on anonymous communication, peer-

to-peer anonymous communication, as well as Sybil defense mechanisms. We

also describe our threat model.

2.1 Low-Latency Anonymous Communication

Anonymous communication systems can be classified into low-latency and

high-latency systems. High-latency anonymous communication systems like

Mixminion [15] and Mixmaster [16] are designed to be secure even against a

powerful global passive adversary; however, the message transmission times

for such systems are typically on the order of several hours. This makes them

unsuitable for use in applications involving interactive traffic like web brows-

ing and instant messaging. The focus of this dissertation is on low-latency

anonymous communication systems, such as Tor [3], Anonymizer.com [17],

AN.ON, I2P [18], Freedom [19] and Freenet [20].

Most of these networks rely on onion routing [21–23] for anonymous com-

munication. Onion routing enables anonymous communication by using a

sequence of relays as intermediate nodes to forward traffic. Such a sequence

of relays is referred to as an onion routing circuit. A key property of onion

routing is that each relay on the circuit only sees the identity of the previous

hop and the next hop, but no single relay can link both the initiator and the

destination of the communication.

Anonymizer.com [17] is effectively a centralized proxy server with a single

point of control. If the proxy server becomes compromised or is subject to

subpoena, the privacy provided by the system would be lost. AN.ON [24]

distributes the trust among three independently-operated servers; again, the

compromise of just a few nodes suffices to undermine the entire system. Both

6

Anonymizer.com and AN.ON are prone to simple, flooding-based denial of

service attacks.

Tor is the most popular anonymous communication system in use today.

Tor serves hundreds of thousands of users [4], and carries terabytes of traffic

every day [5]. The Tor network is substantially more distributed than either

Anonymizer.com or AN.ON, with over 2 400 onion routers as of November

2011 [7]. This helps to protect against direct attacks and eavesdropping on

the entire system.

Tor relies on trusted entities called directory authorities to maintain up-

to-date information about all relays that are online in the form of a network

consensus database. Other low-latency anonymity systems such as I2P [18]

and Freedom [19] also use centralized directory servers. Users download the

full database, and then locally select random relays for anonymous commu-

nication using onion routing. This database is periodically downloaded every

three hours to handle relay churn.

There are several problems with Tor’s architecture. First, the requirement

for all users to maintain global information about all online relays becomes

a scalability bottleneck. As the number of servers increases, maintaining a

global view of the system becomes costly, since churn will cause frequent

updates and a large bandwidth overhead. In fact, McLachlan et al. [25]

showed that under reasonable growth projections, the Tor network could

be spending more bandwidth to maintain this global system view than for

the core task of relaying anonymous communications. Second, the trusted

directory authorities are attractive targets for attack; in fact, some directory

authorities were recently found to have been compromised [26].

We note that our recent proposal for PIR-Tor [27] might address the net-

working scalability issues, but it still does not mitigate the basic trust and

denial of service issues in a centralized approach. In order to address these

problems, we argue that a peer-to-peer architecture will be necessary.

2.1.1 Threat model

We consider a partial adversary who controls a fraction f of all the nodes

in the network. This set of malicious nodes colludes and can launch both

passive and active attacks. In terms of the standard terminology introduced

7

by Raymond [28], our adversary is internal, active, and static. We note that

the adversary may also launch Sybil attacks [8] (inserting multiple identities

in the system) to attain an f arbitrarily close to 1, and thus any secure

solution would need to mitigate the Sybil attack.

2.1.2 Attacks

Low-latency anonymous communication systems are not designed to to be

secure against a global passive adversary. In particular, an adversary who can

observe the entry and exit of a circuit can use end-to-end timing analysis [29–

32] to break user anonymity. Thus. traditional security analyses of Tor [3]

assume that a user who controls (or observes) a fraction f of the network

can compromise the anonymity of f 2 of all circuits by end-to-end timing

analysis (by observing the entry and exit point of a stream). Note that due

to bandwidth-weighted relay selection, f is best thought of as the fraction of

Tor bandwidth controlled or observed by an adversary.

There is a thread of research that deals with degradation of anonymity

over a period of time. Reiter and Rubin [33] proposed the predecessor attack,

which was later extended by Wright et al. [34–37]. In this attack, an attacker

tracks an identifiable stream of communication over multiple communication

rounds and logs the preceding node on the path. To identify the initiator,

the attacker uses the observation that the initiator is more likely to be the

predecessor than any other node in the network.

In similar spirit to the predecessor attack, Berthold et al. [38] and Ray-

mond [28] propose intersection attacks that aim to compromise sender anonymity

by intersecting sets of users that were active at the time the intercepted mes-

sage was sent, over multiple communication rounds. Similarly, Kesdogan et

al. [39] use intersection to find recipients of a given users message. A statisti-

cal version of this attack was proposed by Danezis [40] and later extended by

Mathewson and Dingledine [41]. These attacks typically require an adversary

to observe a significant fraction of the network.

Conventional anonymity analysis often abstracts away many important

properties of anonymity systems. Recent research has shown that, when

these properties are properly considered, the potential for anonymity com-

promise is significantly greater than predicted by conventional models. Ex-

8

amples of such properties include congestion and interference [42–46], clock

skew [47,48], heterogeneous path latency [43,49,50], the topology of the un-

derlying Internet paths used to forward traffic between relays [51–53], and the

reliability of relays [54]. Borisov et al. [54] proposed a selective-DoS attack

on anonymous communication and showed that attackers could selectively

affect the reliability of the system in states that are hardest to compromise.

The selective-DoS attack affects peer-to-peer anonymous communication the

most, because of the added complexity of knowing only a subset of the nodes

in the network.

2.2 Peer-to-Peer Anonymous Communication

Several designs for decentralized peer-to-peer anonymous communication

have been proposed. The key challenge in these systems is to securely locate

random relays. Based on the mechanism used to locate random relays, we

can broadly classify these systems into two categories.

2.2.1 Random paths in unstructured topologies

The first approach to scale anonymous communication is to connect relays

into a restricted (non-clique) topology and construct circuits along paths in

this topology. For example, in Tarzan [55], each node has a small set of

mimics, and all circuits must be created on links between mimics. The use

of a restricted topology has the advantage that the local view at each hop is

sufficient to extend the circuit.1

Though communication in Tarzan is carried out over links between mimics,

to be able to verify that paths are constructed correctly (to prevent route

capture attacks), each node needs to maintain a global view of the system,

updated using a gossip protocol. This limits Tarzan to networks of about

10 000 or fewer nodes. MorphMix [56] was designed to eliminate such scaling

constraints by creating a randomized, unstructured overlay between relays,

with circuits built on paths along the overlay. MorphMix faced a similar

1They also provide an opportunity for cover traffic to be sent along all the links in the
restricted topology, something that would be infeasible for the full clique topology even of
the current size of Tor, let alone much larger P2P networks of the future.

9

challenge in needing to trust a node to correctly specify its neighbors when

extending a circuit. Instead of maintaining a global view, MorphMix designed

a mechanism involving witness nodes and a collusion detection mechanism

to verify neighbor information. However, the collusion detection mechanism

can be circumvented by a set of colluding adversaries who model the internal

state of each node, thus violating anonymity guarantees [57].

Nagaraja [58] and the recent Drac [59] system describe a compelling vi-

sion for P2P anonymity by leveraging such random walks over unstructured

social network topologies. However, neither of these designs provide any

mechanisms to verify the authenticity of neighbor information returned by

intermediate nodes in the system, and are thus vulnerable to malicious insider

attacks. Securely leveraging random walks for anonymous communication is

an open question, which we solve in this thesis in Chapter 4 and Chapter 7.

2.2.2 Random lookups in structured topologies

Structured peer-to-peer topologies, such as Chord [60] or Pastry [61] (also

known as distributed hash tables, or DHTs), have been used as a foundation

for peer-to-peer anonymous communication. Each node in a structured peer-

to-peer topology is assigned a collection of neighbors, also known as fingers.

Finger relationships are assigned using a mathematical formula based on

node identifiers. A node maintains a routing table, which consists of the IP

addresses and the public keys of its fingers. DHTs provide a lookup operation

which takes an identifier as an input, and returns the node closest to the input

identifier that is online. The main idea behind using DHTs is that lookup

for a random identifier approximately corresponds to a random node in the

system.

However, by default, DHTs are extremely vulnerable to active attacks on

the lookup mechanism [62, 63]. Attackers can intercept lookup requests and

return incorrect results by listing a colluding malicious node as the closest

node to a key. For this reason, P2P anonymity systems built of top of DHTs

must include mechanisms for secure routing (lookups). We now discuss the

state of art in P2P anonymous communication.

The design of Salsa [9] is similar to Tor, in that a circuit is built by selecting

three random nodes in the network and constructing a circuit through them.

10

For scalability reasons, Salsa does not maintain a global view; instead, it

uses a specially designed secure lookup operation over a specially designed

distributed hash table (DHT) to locate forwarder nodes. The secure lookups

use redundant checks to mitigate potential attacks; these checks are able to

limit the bias an adversary can introduce in the lookup.

AP3 [64] has a similar structure where paths are built by selecting ran-

dom relays using a secure lookup mechanism [65]. The design of AP3 is

more similar to Crowds [33] than to Tor, with paths being formed by per-

forming a stochastic expected-length random walk. The stochastic nature

of AP3 makes it difficult for a rogue node to decide whether its preceding

hop is the initiator or simply a relay in the path; however, for low-latency

communication, timing attacks may make this decision simpler.

In Chapter 3, we present information-leak attacks that break the secu-

rity guarantees of Salsa and AP3. Our key idea is that DHT lookups are

not anonymous, and information revealed from DHT lookups can be used to

break user anonymity. Danezis and Clayton [10] studied attacks on peer dis-

covery and route setup in anonymous peer-to-peer networks. They show that

if the attacker learns the subset of nodes known to the initiator (by observ-

ing lookups, for example), its routes can be fingerprinted unless the initiator

knows about the vast majority of the network. Danezis and Syverson [11]

extend this work to observe that an attacker who learns that certain nodes

are unknown to the initiator can carry out attacks as well and separate traffic

going through a relay node. These attacks are similar in spirit to the ones we

propose, but rather than absolute knowledge of the initiator’s routing state,

we use probabilistic inferences based on observed lookups. Upon publication

of our information-leak attacks, several new designs were proposed, that were

aimed at specifically mitigating our attacks.

Panchenko et al. proposed NISAN [66] in which information-leak attacks

are mitigated by a secure iterative lookup operation with built-in anonymity.

The secure lookup operation uses redundancy to mitigate active attacks, but

hides the identity of the lookup destination from the intermediate nodes by

downloading the entire routing table of the intermediate nodes and processing

the lookup operation locally. However, in followup work to our information

leak attacks [67], we were able to drastically reduce the lookup anonymity

by taking into account the structure of the topology and the deterministic

nature of the paths traversed by the lookup mechanism.

11

Torsk, introduced by McLachlan et al. [25], uses secret buddy nodes to

mitigate information leak attacks. Instead of performing a lookup opera-

tion themselves, nodes can instruct their secret buddy nodes to perform the

lookup on their behalf. Thus, even if the lookup process is not anonymous,

the adversary will not be able to link the node with the lookup destination

(since the relationship between a node and its buddy is a secret). How-

ever, our aforementioned work [67] also showed some vulnerabilities in the

mechanism for obtaining secret buddy nodes.

There have been some attempts to add anonymity to a lookup. Borisov [68]

proposed an anonymous DHT based on Koorde [69], which performs a ran-

domized routing phase before an actual lookup. Ciaccio [70] proposed the use

of imprecise routing in DHTs to improve sender anonymity. These lookups

were designed to be anonymous, but not secure: an active adversary could

easily subvert the path of the lookup. As such, neither lookup mechanism

can be used to build anonymous circuits.

Thus we can see that all current approaches to P2P anonymous commu-

nication that leverage DHTs are vulnerable to attacks, motivating the need

for new approaches to P2P anonymous communication. Our ShadowWalker

protocol proposed in Chapter 4 solves this open problem; ShadowWalker can

be used to perform a randomized routing phase before an actual lookup (as

proposed by Borisov [68]), to yield a lookup mechanism that is both secure

and anonymous.

2.3 Sybil Defenses and Social Networks

In a Sybil attack [8], a single malicious entity emulates the behavior of mul-

tiple identities to compromise system security. Any attempt to build fault

tolerance in the system is then doomed, since Sybil identities can obtain an

arbitrary fraction of all identities in the system.

Sybil defenses must fundamentally impose a cost on participation in the

network [8]. One approach, advocated by Castro et al. [65], requires users

to provide identity credentials and/or payment to a centralized authority,

who then issues certificates allowing users to participate. This authority, of

course, becomes a central point of trust. Decentralized approaches instead

allow nodes to directly verify some resource expenditure by other nodes,

12

such as CPU computation, or the possession of a unique IP address [71,72].

All these solutions face a tradeoff between creating too high a barrier for

participation by honest users and making it too easy for malicious users to

create Sybil identities. More recent work has recognized that it is expensive

for a malicious adversary to establish trust relationships with honest users

and thus social network topologies can be used to detect and mitigate social

Sybil attacks. The focus of this dissertation is on Sybil defense mechanisms

based on social network trust relationships.

2.3.1 Generic Sybil defense

SybilGuard [13] and SybilLimit [73] are decentralized systems for Sybil de-

fense. The main insight in these systems is the use of special random walks

called random routes for Sybil defense. For example in SybilLimit, the au-

thors show that as long as the number of attack edges is less than a threshold

(g = o
(

n
logn

)

, where n is the number of honest nodes), then with high prob-

ability, a short random walk of O(log n) steps is likely to stay within the

set of honest nodes. Nodes in SybilLimit perform
√
e short random walks

(where e is the number of edges amongst the honest nodes) and keep track

of their last edges (tails). By the birthday paradox, two honest nodes will

share a common tail with high probability. Each node allows only a certain

number of random routes to traverse it, thereby limiting the number of Sybil

identities that are validated by the honest nodes. We note that SybilGuard

suffers from high false negatives, while the guarantees of SybilLimit are also

not optimal. In Chapter 5 we propose the SybilInfer protocol that reduces

the number of accepted Sybil identities by an order of magnitude. Finally,

we note that all of these systems are stand-alone Sybil defenses and do not

provide support for secure peer-to-peer routing.

2.3.2 Sybil-resilient routing

Sybil-resistant DHT routing [74] uses the concept of a bootstrap graph (also

called introduction graph) to defend against Sybil attacks. A bootstrap graph

describes which node introduced which other nodes to the network. The

protocol is based on the insight that the adversary will be connected to

13

the graph at a limited number of points which can be turned into trust

bottlenecks. The lookup protocol is based on iterative routing and attempts

to ensure that a diverse set of nodes are used for the lookup, which minimize

the reliance on a localized set of malicious nodes.

Whanau [1] is the state-of-art Sybil-resilient DHT routing system that

leverages the short random walk primitive from SybilLimit to architect a

secure DHT where nodes can communicate with only one intermediate hop.

Each node performs
√
e random walks to sample nodes for construction of

their routing tables; the Sybil resistant property of short random walks en-

sures that a high fraction of the sampled nodes are honest. By querying rout-

ing table entries, nodes can construct their successor lists. While Whanau

does provide a secure routing primitive, it does so at the cost of maintaining
√
e log n state at each node. The large state requirement means that the sys-

tem has difficulty maintaining accurate state in face of social network churn

and node churn. The proposed solution outlined by the authors envisions

that nodes perform random walks once per day—which would mean that on

an average, new nodes would face about a twelve hour delay before being

validated by the system, presenting a significant usability problem. Whanau

also requires the social graph to be public, presenting significant privacy

concerns. In contrast, our proposal X-Vine (described in Chapter 6) builds

upon network-layer DHTs, embedding the DHT directly into the social net-

work fabric. This enables X-Vine to provide good security while achieving

improved scalability and privacy of social relationships.

2.3.3 Other systems

The concept of a bottleneck cut between a fast-mixing social network and

Sybil nodes has been used in a number of other systems, such as SumUp [75],

a protocol for online content rating that is resilient to Sybil attacks; Os-

tra [76], a system to prevent unwanted communication from nodes; and

Kaleidoscope [77], a system for censorship resistance.

There is a class of systems that augments traditional peer-to-peer networks

with social connections. Sprout [78] proposed augmenting the finger tables

in traditional DHTs, such as Chord, with social network links. The authors

showed that the added connections could improve the security of the routing

14

mechanism. However, Sprout does not defend against Sybil attacks, and is

not concerned with user privacy. OneSwarm [79] is a deployed peer-to-peer

communication system for improving user privacy where routing is performed

by combining trusted and untrusted peer relationships. Tribler [80] increases

download speed in BitTorrent by discovering and downloading file chunks

stored at peers. Similarly, Maze [81] leverages a social network to discover

peers and cooperatively download files. These three systems leverage flooding

to provide any-to-any reachability, and thus cannot scale to large networks.

These hybrid systems are not resilient to Sybil attacks.

Finally, we discuss a class of systems where all communication is over

social links. This enables participants in the network to be hidden from

each other, providing a high degree of privacy. Such a network is commonly

known as a darknet. WASTE [82] is a deployed decentralized chat, instant

messaging, and file sharing protocol, and is widely considered to be the first

darknet. WASTE does not attempt to scale beyond small networks, and

its suggested size is limited to 50 users. Turtle [83] is a deployed decentral-

ized anonymous peer-to-peer communication protocol. Nodes in Turtle do

not maintain any state information other than their trusted friend links and

use controlled flooding to search for data items. Flooding methods create

significant overhead as network size increases. Freenet [20] is a deployed

decentralized censorship-resistant distributed storage system. Version 0.7 of

Freenet nodes can be configured to run in darknet or opennet mode; the lat-

ter allows connections from untrusted nodes, and is expected to be used by

less privacy-sensitive users. Freenet’s routing algorithm is heuristic and does

not guarantee that data will be found at all; it has also been shown to be

extremely vulnerable even against a few malicious nodes [84]. Membership

concealing overlay networks (MCONs) (formalized by Vasserman et al. [85]),

hide the real-world identities of the participants through the use of overlay

and DHT-based routing. However, their design makes use of a trusted cen-

tralized server and also requires flooding when a new user joins the network.

In addition to these limitations, none of the above systems are resilient to

Sybil attacks.

15

CHAPTER 3

INFORMATION LEAKS IN STRUCTURED

PEER-TO-PEER ANONYMOUS

COMMUNICATION SYSTEMS

The state of art in anonymous communication systems leverage DHT lookups

to find random relays for anonymous communication. Such a lookup, how-

ever, can be subject to attack: malicious nodes can misdirect it to find relays

that are colluding and violate the anonymity of the entire system. All of the

P2P anonymous communication designs therefore incorporate some defense

against such attacks; e.g. AP3 [64] uses secure routing techniques devel-

oped by Castro et al. [65], and Salsa uses redundant routing with bounds

checks [9].

These defenses, however, come at a cost. They operate by performing

extra checks to detect incorrect results returned by malicious nodes. These

checks cause many messages to be exchanged between nodes in the network,

some of which might be observed by attackers. As a result, a relatively small

fraction of attackers can make observations about a large fraction of lookups

that occur in the P2P network, acting as a near-global passive adversary. As

most modern anonymity systems assume that a global passive adversary is

too costly, they are not designed to resist such attacks. Therefore, this small

fraction of attackers can successfully attack anonymity of the system.

We examine this problem through a case study of the Salsa anonymous

communication system. Defenses against active attacks create new opportu-

nities for passive attacks. Salsa makes heavy use of redundancy to address

active attacks, rendering it vulnerable to passive information leak attacks.

Further, increasing the levels of redundancy will improve passive attack per-

formance, and often make the system weaker overall. We find that even in

the best case, Salsa is much less secure than previously considered. Salsa was

designed to tolerate up to 20% of compromised nodes; however, our analysis

shows that in this case, over one quarter of all circuits will be compromised

by using information leaks.

We studied potential improvements to Salsa that can be achieved by in-

16

creasing the path length or introducing a public key infrastructure (PKI).

We found that these tools offer only a limited defense against our attacks,

and the system is still not secure for practical purposes. Our results demon-

strate that information leaks are an important part of anonymity analysis of

a system and that new advances in the state of the art of P2P anonymous

communication are needed.

The rest of the chapter is organized as follows. We discuss information

leaks from lookups in Section 3.1 and show the tradeoff between security

and anonymity. In Section 3.2 we present attacks based on information leaks

from lookups on Salsa. We summarize in Section 3.3.

3.1 Information Leaks via Secure Lookups

It has been recognized that unprotected DHTs are extremely vulnerable to

attacks on the lookup mechanism. First of all, malicious nodes can perform

a Sybil attack [8] and join the network many times, increasing the fraction f .

Second, they can intercept lookup requests and return incorrect results by

listing a colluding malicious node as the closest node to a key, increasing the

fraction of lookups that return malicious nodes. Finally, they can interfere

with the routing table maintenance and cause the routing tables of honest

nodes to contain a larger fraction of malicious nodes; this will increase the

chance that a lookup can be intercepted and the result can be subverted.

3.1.1 Castro et al.’s secure lookup

Castro et al. [65] designed a suite of mechanisms to counter these attacks. We

discuss their mechanisms in context of Pastry [61], a structured peer-to-peer

overlay network, though they are applicable to other DHTs. They proposed:

• Secure node identifier assignment: Each node is issued a certificate

by a trusted authority, which binds the node identifier with a public

key. The authority limits the number of certificates and prevents Sybil

attacks.

• Secure routing table maintenance: Even with secure node ID assign-

ment, attackers can maliciously influence routing table construction.

17

The Pastry routing algorithms allow flexibility in selecting a neighbor

for each slot, which is used for optimizing latency or other metrics.

Attackers can exploit this flexibility by suggesting malicious choices for

these slots. Secure routing table maintenance eliminates this flexibility

by creating a parallel, constrained routing table where each slot can

have only a single possible node, as verified by secure lookup. This so-

lution ensures that, on average, only a fraction f of a node’s neighbors

will be malicious.

• Secure lookups (secure message forwarding): For secure lookups, a two-

phase approach is employed. The message is routed via the normal

routing table (optimized for latency) and a routing failure test is ap-

plied. If the test detects a failure, redundant routing is used and all

messages are forwarded according to the constrained routing table. The

failure test makes use of the observation that the density of honest

nodes is greater than the density of malicious nodes. The idea behind

redundant routing is to ensure that multiple copies of messages are sent

to the key root via diverse routes. Note that Castro et al. consider the

problem of securely routing to the entire replica set, for which a neigh-

bor anycast mechanism is also used. We refer the reader to [65] for a

detailed explanation of the techniques.

Used together, these techniques are quite effective at ensuring that a lookup

returns the actual closest node to the randomly chosen identifier, which in

turn suggests that it is malicious with probability f . However, the secure

lookup mechanism generates many extra messages: the routing failure tests

involves contacting the entire root set of a node (L immediate neighbors

in the node ID space), and redundant routing sends a request across several

paths. These messages let attackers detect when a lookup has been performed

between two honest nodes with high probability. The probability of detecting

the lookup initiator can be approximated as 1−(1−f)L+log
2b

N , which is quite

high for the typical values of L = 16 and b = 4. In Figure 3.1(a), we plot the

probability of detection of the lookup initiator as a function of the fraction of

compromised nodes f . We can see that a small fraction of 5% compromised

nodes can detect the lookup initiator more than 60% of the time. Moreover,

when the fraction of compromised nodes is about 10%, the lookup initiator

is revealed 90% of the time.

18

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2

P
ro

ba
bi

lit
y

of
 In

de
nt

ify
in

g
Lo

ok
up

 In
iti

at
or

Fraction of Compromised Nodes

Salsa r=1
Salsa r=2
Salsa r=3
Salsa r=4
Salsa r=5
Salsa r=6

Castro

(a) Information leak from secure
lookups

 0

 10

 20

 30

 40

 50

 60

 0 0.05 0.1 0.15 0.2

P
e

rc
e

n
ta

g
e

 o
f

c
o

m
p

ro
m

is
e

d
 l

o
o

k
u

p
s

Fraction of compromised nodes

Salsa r=1
Salsa r=2
Salsa r=3
Salsa r=4
Salsa r=5
Salsa r=6

f

(b) Percentage of compromised
lookups

Figure 3.1: Salsa lookup mechanism.

This shows the fundamental tension that is encountered by a DHT lookup.

The default Pastry mechanisms provide little defense against active adver-

saries who try to disrupt the lookup process, dramatically increasing the

probability that a lookup returns a compromised node. Castro et al.’s mech-

anisms solve this problem, but introduce another, as the lookup is no longer

anonymous and can be observed by malicious nodes. A relatively small frac-

tion of malicious nodes can, therefore, act as a near-global passive adversary

and compromise the security of anonymous communication systems. The

secure lookup exposes nodes to increased surveillance; we note that this may

have consequences for protocols other than anonymous communication that

are built on top of secure lookup.

3.1.2 Salsa secure lookup

Salsa [9] is based on a custom-built DHT that maps nodes to a point in an

ID space corresponding to the hash of their IP address. The ID space in

Salsa is divided into groups, organized into a binary tree structure. Each

node knows all the nodes in its group (local contacts), and a small number

of nodes nodes in other groups (global contacts).

Similar to Pastry, nodes must rely on other nodes to perform a recursive

lookup. A malicious node who intercepts the request could return the identity

of a collaborating attacker node. Salsa makes use of redundant routing and

bounds checks to reduce the lookup bias. The Salsa architecture is designed

to ensure that redundant paths have very few common nodes between them

(unlike Pastry or Chord [60]). This reduces the likelihood that a few nodes

19

will be able to modify the results for all the redundant requests. A lookup

initiator asks r local contacts (chosen at random) to perform a lookup for a

random key. The returned value that is closest to the key is selected and a

bounds check is performed. If the distance between the prospective owner

and the key is greater than a threshold distance b, it is rejected, reasoning

once again that malicious nodes are less dense than honest ones and thus will

fail the bounds check much more frequently. If the bounds check test fails,

the result of the lookup is discarded and another lookup for a new random

key is performed. Redundant routing and the bounds check work together:

an attacker would need to both intercept all of the redundant lookups and

have a malicious node that is close enough to avoid the bounds check.

Salsa is resistant to conventional attacks that target the lookup mechanism

as long as the fraction of malicious nodes in the system is less that 20%. Since

Salsa does not provide adequate security for higher values of f , we shall limit

our analysis to low values.

In Figure 3.1(b), we study the effect of varying redundancy on the lookup

bias. To compute our results, we used a simulator developed by the authors

of Salsa [86].1 The simulator was configured to simulate 1000 topologies,

and in each topology, results were averaged over 1000 random lookups. The

lookup bias is sensitive to the average lookup path length, which in turn is

about log2 |G|, where |G| is the number of groups. This is because longer

path lengths give attackers more opportunities to intercept the lookup and

subvert the result. We therefore used 128 groups, which would be a typical

number in a large network, and 1000 nodes in our simulation. We can see

that increasing r clearly reduces the fraction of compromised lookups, thus

increasing security. For f = 0.2, the fraction of compromised lookups drops

from 39% to 27% when r is increased from 2 to 6.

The initiator of a lookup can be identified by the attackers if any of the

local contacts used for redundant lookups are compromised. The probability

of detecting the lookup initiator is 1− (1− f)r, as depicted in Figure 3.1(a).

Clearly, increasing r increases the chance that a lookup initiator is detected.

This illustrates the tradeoff between security and anonymity of a lookup.

In this section, we observed that secure lookups leak information about the

lookup initiator. Furthermore, we observed a tradeoff between the security

1Our results differ slightly from those shown in [9] because of a bug in the simulator.
We have communicated the bug to the authors and it has been accepted.

20

and anonymity of a lookup. A relatively small fraction of compromised nodes

are able to observe a large fraction of lookups. Next, we shall use this to break

the anonymity of AP3 and Salsa.

3.2 Salsa

We shall now analyze Salsa’s path building mechanism. For anonymous

communication, a path is built between the initiator and the recipient via

proxy routers (nodes). Layered encryption ensures that each node knows

only its previous and next hop in the path. The nodes used for the paths are

randomly selected from the global pool of nodes, even though each node has

only local knowledge of a small subset of the network.

3.2.1 Salsa path building

To build a circuit, the initiator chooses r random IDs ([9] sets r = 3) and

redundantly looks up the corresponding nodes (called the first set/stage of

nodes). Keys are established with each of these nodes. Each of the first set

of nodes does a single lookup for r additional nodes (second set of nodes). A

circuit is built to each of the nodes in the second group, relayed through one

of the nodes in the first group. Again, the initiator instructs the second set

of nodes (via the circuits) to do a lookup for a final node. One of the paths

created between the first and the second set of nodes is selected and the final

node is added to the circuit. We use the parameter l to refer to the number

of stages in the circuit ([9] sets l = 3). Figure 3.3(a) depicts the Salsa path

building mechanism for r = 3 and l = 3. Note that redundant lookups are

used only to look up the nodes in the first stage; later lookups rely on the

redundancy in the path building mechanism itself.

3.2.2 Active path compromise attacks on Salsa

Active attacks on the lookup mechanism can bias the probability that nodes

involved in Salsa’s path building mechanism are compromised. Borisov et

al. [54] noted that Salsa path building is also subject to a public key mod-

21

ification attack.2 If all the nodes in a particular stage are compromised,

they can modify the public keys of the next set of nodes being looked up.

This attack defeats Salsa’s bounds check algorithm that ensures the IP ad-

dress is within the right range, since it cannot detect an incorrect public key.

Also, since the traffic toward the node whose public key has been modified

is forwarded via corrupt nodes, the attackers are guaranteed to intercept the

messages. They can then complete the path building process by emulating

all remaining stages (and hence, the last node). The public key modification

attack and attacks on Salsa lookup mechanism are active attacks. Now, by

end-to-end timing analysis, the path will be compromised if the first and last

nodes in the circuit are compromised. Conventional analysis of anonymous

communication typically focuses on minimizing the chance of path compro-

mise attacks. By increasing the redundancy in the path building mechanism,

this chance can be minimized. This is because increasing r decreases the

chance of both active attacks on lookups as well as public key modification

attacks.

We now describe three types of passive information leak attacks on Salsa.

We shall also show that increasing redundancy increases the effectiveness

of the information leak attacks, resulting in a tradeoff between robustness

against active attacks and passive information leak attacks.

3.2.3 Conventional continuous stage attack

A path in Salsa can be compromised if there is at least one attacker node

in every stage of the path. Suppose that there are attacker nodes A1, A2, A3

in the three stages respectively. In the path building mechanism, a node

performs a lookup for all r nodes in the following stage implying that A1

would have looked up A2 and A2 would have looked up A3. Hence the attacker

can easily (passively) bridge the first and last stages, thereby compromising

the anonymity of the system. This attack was mentioned in [9]. Note that if

we increase redundancy as per conventional analysis, the effectiveness of the

continuous stage attack also increases. This is because increasing redundancy

increases the chance that attackers are present in each stage (which is 1 −
(1 − f)r), giving them more opportunities to launch this attack. Next, we

2Their analysis did not take into account the lookup bias.

22

shall describe two new bridging attacks also based on information leaks from

lookups.

3.2.4 Bridging an honest first stage

This attack is based on the observation that the initiator performs redun-

dant lookups for the nodes in the first stage. If the adversary can deduce the

identities of the nodes in the first stage (they need not be compromised), and

detect any of initiator’s redundant lookups for nodes in the first stage, the

anonymity of the system is compromised. Consider the Figure 3.3(a); mali-

cious nodes are depicted in black. The first stage (A1, B1, C1) is comprised

solely of honest nodes, the second stage (A2, B2, C2) has all malicious nodes

and the third stage node A3 is also compromised. The attackers know the

identities of A1, B1, C1 because of key establishment with them. Now if they

detect a node performing a lookup for either A1, B1, or C1, they can identify

that node as the initiator. Since the initiator performs 9 lookups for the first

stage nodes, the probability of detecting this initiator is 1− (1− f)9, which

translates into a probability of 0.87 for f = 0.2. A similar attack strategy is

applicable when only 2 or even one node in the second stage is compromised.

In the latter scenario, the second stage knows the identity of only a single

node in the first stage, and if the initiator is detected looking up that node,

then the path is compromised. This occurs with probability 1 − (1 − f)3,

which is 0.49 for f = 0.2. Similar to the continuous stage attack, notice that

an increase in r increases the probability that attackers can detect a lookup

by the initiator for the first node.

It is important to note that there are some false positives in the attack.

The false positives occur when a node (say A1) in the first stage is involved

in building more than one path. In such a scenario, more than one node will

look up A1, and the attackers may detect a lookup for A1 not done by the

actual initiator. Using the variable x to model the amount of lookup traffic

by other nodes, we can compute the false positives as:

1−
(

N − 1

N

)x(1−(1−f)r)

.

Figure 3.2 depicts the false positives for varying r using f = 0.2, N = 1000.

23

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 10 20 30 40 50 60 70 80 90 100

F
al

se
 P

os
iti

ve
s

x

r=3,f=0.2
r=4,f=0.2
r=5,f=0.2
r=6,f=0.2

Figure 3.2: False positives in bridging an honest first stage.

Note that for x < N
100

, the false positives are less than 0.1%.

3.2.5 Bridging an honest stage

Salsa is also vulnerable to a bridging attack where attacker nodes separated

by a stage with all honest nodes are able to deduce that they are on the

same path. Consider the arrangement of nodes depicted in Figure 3.3(b).

The first stage has one malicious node A1, the second stage consists solely of

honest nodes, and the last node A3 is compromised. A1 knows the identities

of all three nodes in the second stage, as it has performed a lookup for them.

Also, as part of the path building mechanism, one of the nodes in the second

stage will establish a key with the compromised third stage node A3. In

such a scenario, A1 and A3 can deduce that they are part of the same path

as they both observe a common honest node. Similarly, if any of the nodes

in the first stage are compromised and the last node is compromised, the

path is compromised. In such an attack the compromised nodes in the first

stage need not be selected as relays. Again, recall that increasing r increases

the chance of an attacker being present in a stage, resulting in a higher

probability of bridging an honest stage. The probability of false positives

in this scenario can be analyzed as 1 − (N−1
N

)x, which for x = N/100 and

N = 1000 is less than 1%.

24

(a) Bridging an honest first stage (b) Bridging an honest stage

Figure 3.3: Information leak attacks on Salsa.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.05 0.1 0.15 0.2

F
ra

c
ti

o
n

 o
f

c
o

m
p

ro
m

is
e

d
 p

a
th

s

Fraction of compromised nodes

r=2
r=3
r=4
r=5
r=6

Figure 3.4: Conventional path compromise attacks: Increasing redundancy
counters active attacks.

3.2.6 Results

We now present experimental results for active path compromise attacks

and information leak attacks on Salsa. Our results have been computed by

modeling the Salsa path building mechanism as a stochastic activity network

in the Möbius framework [87]. For a fixed f and r, the input to the model

is the lookup bias, which was computed using the Salsa simulator [86], with

simulation parameters N = 1000, |G| = 128.

Figure 3.4 shows the chance of active path compromise attacks on Salsa

for varying levels of redundancy. It is easy to see that increasing r reduces

the fraction of compromised paths. For instance, at f = 0.2, 17% paths are

compromised using r = 3. The corresponding value for r = 6 is approxi-

mately 8%. This is not surprising, as increasing r reduces the chance of both

active attacks on lookups and attacks involving public key modification.

The continuous stage attack and both our bridging attacks are examples of

25

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.05 0.1 0.15 0.2

F
ra

c
ti

o
n

 o
f

c
o

m
p

ro
m

is
e

d
 p

a
th

s

Fraction of compromised nodes

r=2
r=3
r=4
r=5
r=6

Figure 3.5: Information leak attacks: Increasing redundancy makes the
passive adversary stronger.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.05 0.1 0.15 0.2

F
ra

c
ti

o
n

 o
f

c
o

m
p

ro
m

is
e

d
 p

a
th

s

Fraction of compromised nodes

r=2
r=3
r=4
r=5
r=6

Figure 3.6: All conventional and information leak attacks: For maximal
anonymity, r = 3 is optimal for small f . Note that there is a crossover
point at f = 0.1 when r = 6 becomes optimal.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.05 0.1 0.15 0.2

F
ra

c
ti

o
n

 o
f

c
o

m
p

ro
m

is
e

d
 p

a
th

s

Fraction of compromised nodes

r=6
f

Conventional r=6
f*f

Figure 3.7: Comparison of all attacks with conventional active attacks:
Note that for f > 0.12, fraction of compromised paths is greater than f .

26

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.05 0.1 0.15 0.2

F
ra

c
ti

o
n

 o
f

c
o

m
p

ro
m

is
e

d
 p

a
th

s

Fraction of compromised nodes

r=2
r=3
r=4
r=5
r=6

Figure 3.8: Salsa with a PKI—All conventional and information leak
attacks. Even with a PKI, the security of Salsa is much worse as compared
to conventional analysis.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.05 0.1 0.15 0.2

F
ra

c
ti

o
n

 o
f

c
o

m
p

ro
m

is
e

d
 p

a
th

s

Fraction of compromised nodes

l=2
l=3
l=4
l=5
l=6

Figure 3.9: Effect of varying the path length: Note that there is only
limited benefit of increasing path length.

27

passive attacks. Figure 3.5 shows the fraction of compromised paths under

the passive attacks. We can see that an increase in r increases the effec-

tiveness of the passive attacks, and is detrimental to anonymity. For 20%

attackers, even for a small value of r = 3, the initiator can be identified with

probability 0.125. Higher values of r can increase the probability of identify-

ing the initiator to over 0.15. Note also that the bridging attack significantly

improves upon the previous attacks on Salsa: using only the continuous stage

attack, for r = 3, f = 0.2, anonymity is broken with a probability of only

0.048, less than half of what is possible with bridging.

The active path compromise attacks can be combined with passive infor-

mation leak attacks. Figure 3.6 shows the fraction of compromised paths

for all passive and active attacks. An interesting trend is observed where

increasing redundancy (beyond r = 2) is detrimental to security for small

values of f . This is in sharp contrast to conventional analysis; the inclusion

of information leak attacks have made the effect of passive attacks more dom-

inant over the effect of active attacks. There is a crossover point at about

10% malicious nodes, after which increasing r reduces to probability of path

compromise. This is because active attacks are dominant for higher values

of f . Note that r = 2 results in significantly worse security because of poor

resilience to both lookup attacks and public key modification attacks.

This shows the tension between the passive and active attacks. There is

an inherent redundancy in Salsa path building mechanism to counter active

attacks. However, the redundancy makes the passive adversary stronger and

provides more opportunities for attack. From Figure 3.7 we can see that

by conventional analysis, security provided by Salsa is close to that of Tor

(f 2). With our information leak attacks taken into account, for f > 0.12,

the security provided by Salsa is even worse than f .

3.2.7 Improvements to Salsa

We next consider whether simple changes to Salsa’s mechanisms would pro-

vide a defense against our attacks. First, we consider Salsa using a PKI, as

in AP3. The public key modification attack would no longer work; however,

other active attacks on the lookup mechanism and our passive information

leak attacks would still apply. Figure 3.8 depicts the probability of identi-

28

fying the initiator under all active and passive attacks in Salsa with PKI.

Again, we can see the tension between active and passive attacks. Increas-

ing redundancy (beyond r = 2) is detrimental to security for small values

of f , because of the dominance of our information leak attacks. There is a

crossover point, after which active attacks become dominant, and increasing

r increases security. With the public key modification attack gone, r = 2

becomes a more reasonable parameter, but even with a PKI, the fraction of

compromised paths increases from 8% under conventional active attacks to

more than 30% with our information leak attacks taken into account.

Finally, we explore the effect of increasing the path length (l) on the anony-

mity of Salsa. Figure 3.9 depicts the probability of identifying the initiator

for varying values of l. There is an interesting tradeoff in increasing the

path length. On one hand, increasing l reduces the chance of information

leak attacks, because the attacker needs to bridge all stages. On the other

hand, increasing l gives attackers more opportunities to launch active attacks,

thereby increasing the probability that last node is compromised, which in

turn gives attackers more observation points. This is basically a cascading

effect: the presence of a malicious node in each stage increases the proba-

bility of presence of malicious nodes in the next stage. For small values of

f , passive attacks are stronger, therefore increasing l increases security, but

for higher f , the active attacks and the cascading are dominant, therefore

increasing l decreases security.

We have proposed passive bridging attacks on Salsa that are based on in-

formation leaks from lookups, and can be launched by a partial adversary.

Moreover, we have shown a tradeoff between defenses against active and pas-

sive attacks. Even at the optimal point in the tradeoff, the anonymity pro-

vided by the system in significantly worse than what was previously thought.

This tradeoff is present even in Salsa with a PKI. Moreover, increasing path

length in Salsa has only a limited benefit on the user anonymity.

3.3 Summary

We showed that lookup mechanisms in DHTs are not anonymous, and reveal

information about the initiator of the lookup message. We showed that

such information leaks can be used to break the security guarantees of DHT

29

lookups based peer-to-peer anonymous communication systems like Salsa.

30

CHAPTER 4

SHADOWWALKER: PEER-TO-PEER

ANONYMOUS COMMUNICATION USING

REDUNDANT STRUCTURED

TOPOLOGIES
We propose a low-latency peer-to-peer anonymous communication system

that is based on a random walk over redundant structured topologies. Our

main idea is the creation of shadow nodes, which redundantly verify the

correctness of a given node’s routing table and certify it as correct. Such

certificates can then be used to check the steps of a random walk; by using

certificates rather than online checks, we can avoid information leak attacks.

We show that our design is effectively able to prevent route capture attacks by

employing a small number of shadows per node. We also analytically model

the effects of a restricted topology on the anonymity of the system and show

that, with an appropriate choice of an underlying topology, we can mitigate

this effect and achieve strong anonymity. In particular, the anonymity levels

achieved by our system are much higher than those of Salsa [9] when 20% of

all nodes are compromised.

We present an extension to our system that improves anonymous commu-

nication performance at the cost of slightly weakening the anonymity pro-

tection. This extension should result in latency and bandwidth constraints

similar to those achieved by Tor [3]. It also provides an effective defense

against the selective denial-of-service attack on anonymous systems [54]. We

also verified our analytic model with the help of simulations. We show that

our system has manageable communication and computation overheads, and

is able to handle a moderate amount of churn in the network.

The chapter is organized as follows. We propose the ShadowWalker scheme

based on a redundant structured topology in Section 4.1 and analytically

evaluate the anonymity provided by our scheme in Section 4.2. We describe

our experimental results in Section 4.3, and summarize in Section 4.4.

31

4.1 ShadowWalker

To motivate our design, we first briefly describe a simple random walk–based

anonymity protocol and discuss the attacks on it. In a random walk–based

protocol, an initiator first sets up a circuit with a random finger A. To

further extend the circuit, initiator sends A a random index i, and A returns

the public key of the finger B corresponding to the index i (i’th entry in the

routing table). The initiator can then extend the circuit via A to B. By

iterating these steps, a circuit of arbitrary length can be established. The

above protocol is susceptible to the following attacks:

Route Capture: An intermediate node A in a circuit may lie when asked

about its finger B and return an incorrect public key. Since traffic for B will

be forwarded through A, A can give its own public key and then pretend

to be B. Further, it can perform the same attack in the subsequent steps,

emulating the rest of the hops.

Restricted Topology: The terminus of the random walk in restricted topolo-

gies reveals some information about the initiator of the random walk [68,88].

This is because only a subset of the nodes in the network can reach the ter-

minus in a given number of hops. For instance, suppose that the first hop in

a two-hop random walk is not compromised, but the second hop is compro-

mised. In this scenario, although the initiator cannot be directly identified,

the attacker can be certain that the initiator lies in the set of nodes which

have the first hop as fingers. Because of route capture attacks, the random

walk can be thought to terminate after encountering the first malicious node

(say A). If the walk has traversed i hops so far, then the initiator of the ran-

dom walk must be within the set of nodes that can reach the previous hop

of node A in i− 1 hops. For fixed-length random walks, the number i can be

determined by emulating the rest of the random walk; for randomized-length

walks, timing analysis would need to be used to guess i.

4.1.1 Overview

We now describe our ShadowWalker protocol for peer-to-peer anonymous

communication. Our main idea is the creation of shadow nodes that redun-

dantly verify the correctness of a given node’s neighbor table and certify

it as correct. Such certificates can then be used to check the steps of a

32

random walk; by using certificates rather than online checks, we can avoid

information leak attacks [12]. We first describe the concept of introducing

redundancy into the topology itself, which lies at the heart of our solution.

Next, we describe two circuit construction protocols for anonymous commu-

nication that perform random walks on redundant structure topologies in a

secure manner. Finally we present a secure lookup protocol for routing table

maintenance and algorithms to handle node churn.

4.1.2 Redundant structured topology

We first define the concept of a shadow. Each node A has several shadows,

and each shadow is required to independently maintain the neighbor informa-

tion for A. The shadows will provide this information as a way to verify that

A is not attempting to perform a route capture attack. For a redundancy

parameter r, the shadow nodes of A are denoted as A1, . . . , Ar. The shadow

relationship is a deterministic, verifiable relationship that is calculated by

applying a mathematical formula to the node identifier. As an example, for

r = 2, the shadows for a node A can be considered to be its successor and

its predecessor. For a generic r, the shadows for a node A can be considered

to be its ⌊ r
2
⌋ predecessors and ⌈ r

2
⌉ successors in the DHT.

Using the shadow relationship, we can define a transformation to make

any P2P topology into a redundant one:

Property 1: In addition to fingers, a node A maintains secure information

about the shadow nodes of the fingers. This means that if A → B is an

edge in the structured topology, A → Bj is also an edge in the redundant

structured topology, for j = 1, . . . , r (r shadows of B).

Property 2: If a node Aj is the shadow of node A, it maintains a copy of the

fingers (as well as the shadows of the fingers) of A. In other words, if A→ B

is an edge in the structured topology, then Aj → B and Aj → Bk are also

edges in the redundant structured topology, for j = 1, . . . , r and k = 1, . . . , r.

Figure 4.1 depicts the transformation of an edge A→ B into a redundant

structured topology with redundancy parameter r = 2. Danezis [88] analyzed

the use of random paths along a restricted topology for mix networks and

proposed the use of topologies with high expansion so that the route length

necessary to provide maximal anonymity grows only logarithmically in the

33

A

A

A

B

B

B

1

1

2

2

Figure 4.1: Redundant structured topology.

number of nodes in the network. Borisov [68] analyzed random walks on

structured P2P topologies and proposed the use of the de Bruijn [89] topology

to provide anonymity with small path lengths. We use the de Bruijn topology

in our design. Note that nodes must be able to maintain the links in a

redundant structured topology securely, as described later in Section 4.1.6.

4.1.3 Circuit construction

We use the shadows of a node A to verify the information reported by A

during circuit construction. Note that an initiator I cannot contact the

shadows directly, since the shadows would learn that it was building a circuit

through A. I could use the circuit it has established with A to communicate

with Aj, similar to how MorphMix contacts its witness nodes. But this still

lets the node Aj know that a circuit is being built through node A.

We can completely avoid this information leak by having each shadow Aj

digitally sign its view of the routing table of A and transmit the signature to

A. Since the initiator knows the public key of all the shadows (by Property

1), it can verify the signatures without having to contact the shadows at

all. Thus, we are able to redundantly check the information provided by

A without contacting any other node. We now describe our secure random

walk protocol based on redundant structured topologies. Figure 4.2 shows

the pseudocode for our protocol. The initiator I first establishes a circuit to

a random finger A. Next, it queries node A for a finger B with random index

i (i’th entry in the routing table). A returns the following information to I:

1. IP address and public key of B, and Bk for k = 1..r

2. Signatures about the above information from Aj, j = 1..r

34

The initiator I then verifies that signatures of all Aj are correct. Note that

since A is a finger of I, Aj are also maintained by I (Property 1). Thus I

knows about the public keys of all Aj and can verify the signatures. If the

signatures are correct, I can extend the circuit to node B. Now, I can query

B for finger C with a random index i′, verify it using signatures from Bk and

repeat the process. The above example is illustrated in Figure 4.3. If the

signatures do not match, the circuit construction is aborted.

I.circuit setup(l)

Let A be a random finger of I
Let Aj be the shadows of A, ∀j = 1..r
Let Pub(Aj) be the public key of Aj, ∀j = 1..r
Create circuit between I and A
for count = 1 to l − 1 do
Let B be a random finger of A with index i
Let Pub(B) be the public key of B
/* The random finger is chosen by I*/
Let Bk be the shadows of B, ∀k = 1..r
Let Pub(Bk) be the public key of Bk, ∀k = 1..r
Let Signaturej be the signature given by Aj for A’s routing state.
I obtains B,Pub(B), all Bk, Pub(Bk), and
all Signaturej from A via the established circuit.
if B,Pub(B), and all Bk, Pub(Bk) are verified by all Signaturej then
extend circuit to B
A = B
Aj = Bj, ∀j = 1..r
Pub(Aj) = Pub(Bj), ∀j = 1..r

else
abort

end if
end for

Figure 4.2: The pseudocode for circuit establishment of length l.

4.1.4 Using shorter circuits

Relaying an interactive stream over 5 or 6 nodes may be expensive; we pro-

pose a modification to our protocol where the initiator uses only the last two

hops in the random walk to relay traffic. In essence, we use the random walk

35

I

A

A2

A1 B1

B

B2 C2

C

C1

Figure 4.3: Circuit construction.

as an anonymous peer discovery protocol.

Let us consider our modification to the protocol: a node performs a secure

l-hop random walk, and then uses the last two hops for anonymous commu-

nication, by building a circuit directly to the second to last hop and then

extending it to the last hop.1 Using only the last two hops will improve the

system performance as compared to using all l hops for anonymous com-

munication, at the cost of a slight loss of anonymity. Viewed from another

perspective, our extension improves anonymity as compared to an 2-hop

random walk. In general, if the initiator is interested in building a circuit of

length k, it can increase anonymity by performing a l-hop random walk for

l > k, and then use only the last k hops for anonymous communication. (As

long as l < logdN , since beyond that point, longer random walks provide

a limited improvement of anonymity [68]. Here d denotes the average node

degree in the topology.)

4.1.5 Using Merkle hash trees

Our circuit construction protocol requires that a node obtains signatures for

its routing state from its shadow nodes. We can do this efficiently by creating

a Merkle hash tree [90] over the set of fingers and have Aj sign the root of

the tree. Then when queried about a finger B, A can send the signature on

the root along with log2 d hashes to I, proving that B was part of the Merkle

hash tree signed by Aj.

1If the initiator is unable to connect to the second to last hop because of non-transitive
connectivity, the circuit construction is aborted.

36

4.1.6 Secure lookup

In Chapter 3, we described techniques for secure lookups like Halo [91] and

Castro et al. [65], which are effective at ensuring that a lookup returns the ac-

tual closest node to a chosen identifier. However, in the context of redundant

structured topologies, these mechanisms are not very efficient. For instance,

in a redundant structured topology, a node needs to maintain shadows of its

fingers. To achieve this, the above lookup protocols need to be invoked mul-

tiple times for each shadow node, the overhead for which is significant. We

propose a secure lookup protocol that is specifically tailored for redundant

structured topologies.

Say a node I wishes to securely lookup an identifier ID. Let A be the

closest preceding node for ID in the finger table of I. Following the iterative

routing strategy, I will query A for its finger, B, which is the closest preceding

node for ID. Since I also knows all of the shadows of A, I can verify this

information with them. In this way, I can learn the correct identity of B,

as well all of its shadows. It can now proceed iteratively, asking B and its

shadows for the closest preceding finger for ID. Note that as long as one

node among A and its shadows is honest, I will learn the true identity of B;

in case of conflicting answers, I should pick the closest one to ID.2 Thus, a

lookup is successful if there is at least a single honest node in each step of

the lookup.

An important consequence of our secure lookup protocol is that along

with the node corresponding to the chosen ID, its shadows are returned as

well! This significantly reduces the communication overhead of our protocol

because it obviates the need for performing multiple secure lookups for the

shadows of fingers.

4.1.7 Handling churn

Handling node churn is a major issue in peer-to-peer systems. Existing DHT

designs like Chord have developed algorithms that provide robustness guar-

antees in presence of churn. A stabilization protocol is used periodically to

ensure that the information about new nodes is propagated to the other

2Note that for an anonymous lookup, all nodes must agree for the lookup to proceed.
In the non-anonymous case, however, I can verify the existence of B directly, preventing
attackers from responding with fake nodes.

37

nodes in its neighborhood. Periodically, nodes perform a lookup for chosen

identifiers to keep their finger tables up to date. A successor list is also main-

tained to handle the case of node failures. We refer the reader to [60] for a

detailed description of how Chord handles churn.

Now, to accommodate a redundant structured topology, the following

changes are to be made:

1. A node periodically performs secure lookups to determine the identity of

nodes (say the set S) for which it is the shadow.

2. A node periodically performs secure lookups for the fingers of the nodes

in the set S.

This above steps suffice to maintain a redundant structured topology be-

cause secure lookups return the shadows of the fingers as well. Moreover,

for the purpose of anonymous communication, a node also periodically sends

signatures to nodes in the set S over their respective routing states.

4.2 Anonymity Evaluation

4.2.1 Anonymity metric

Low-latency anonymity systems are often studied from the point of view of

path compromise attacks by counting the fraction of compromised circuits.

This metric shows whether attackers are able to identify the initiator of a

circuit or not. However, in P2P systems, there may be observations that re-

veal some information about the initiator even when complete identification

is impossible. Therefore, rather than using the binary concept of path com-

promise, we use the entropy-based anonymity metric [92, 93]. This metric

considers the distribution of potential initiators of a circuit, as computed by

attackers, and computes its entropy:

H(I) = −
∑

i

pi log2 pi, (4.1)

where pi is the probability that the node i was the initiator of the circuit.

Note that a colluding set of attackers can launch a variety of attacks in

order to infer the initiator of the circuit. Under some observation o, we can

compute the probability distribution given o and compute the corresponding

38

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.05 0.1 0.15 0.2

P
ro

b
a

b
il

it
y

 o
f

n
o

d
e

 c
o

m
p

ro
m

is
e

Fraction of compromised nodes

hop 1
hop 2
hop 3
hop 4
hop 5

Figure 4.4: P (k’th hop is compromised).

entropy H(I|o). To model the entropy of the system as a whole, we compute

a weighted average of the entropy for each observation (including the null

observation):

H(I|O) =
∑

o

P (o)H(I|o), (4.2)

where P (o) is the probability of the observation o occurring, and O is the set

of all observations. This is also known as the conditional entropy of I based

on observing O.

4.2.2 Circuit construction

Our protocol is subject to the following attacks:

Route Capture Attacks: A single malicious intermediate node cannot launch

route capture attacks, because its information is verified by its shadows.

However, if an intermediate node and all of its shadows are compromised,

they can launch a route capture attack by returning colluding malicious nodes

as next hops, or by modifying the public keys of the remaining hops to

emulate them. This means that if an intermediate node in the circuit and

all of its shadows are are malicious, then the remaining nodes in the circuit

are also malicious. Thus the initiator anonymity is compromised if the first

node in the circuit and all its shadows are malicious.

End-to-End Timing Analysis: Like other low-latency schemes, ShadowWalker

is also vulnerable to end-to-end timing analysis, where malicious nodes on

both ends of the circuit can use timing correlations of the packets to infer

that they are on the same circuit and compromise the initiator anonymity. If

39

the first and the last nodes are compromised, the circuit anonymity is broken.

Restricted Topology Attack: In a simple random walk design, the first mali-

cious node is also the terminus of a random walk, due to the route capture

attack. However, in our protocol, the random walk may continue past the

first malicious node in case one of its shadows is honest. In particular, if the

last node in the circuit is honest, the malicious nodes will not learn the des-

tination of the circuit, and as such will gain nothing by learning (or guessing

at) the identity of the initiator. However, if the last node is compromised,

then the first malicious node in the circuit can perform timing analysis to

establish that the two nodes are on the same circuit. It can then assign prob-

abilities to the initiator as before, by considering all nodes that can reach its

previous hop within i−1 hops. Thus if the last hop is compromised, and the

first malicious node is at the i’th position, then it can infer that the initiator

lies in the set of nodes who can reach its previous hop in i− 1 hops. (i will

have to be found out by timing analysis between the first malicious node and

the last.)

We first study the effect of route capture attacks by modeling the sampling

bias. We can think of an k-hop random walk as sampling a node that is k

hops away from the initiator. If the walk proceeded undisturbed, then the

probability that this sampled node would be malicious would be f . However,

the route capture attack introduces a bias into this sampling, such that the

longer the random walk, the larger the possibility of the route being captured

and thus the last node being compromised. We now compute the bias we

can expect when sampling nodes using a k-hop random walk. The k’th hop

will be definitely malicious if any of the first k − 1 stages are able to launch

a route capture attack. The probability of launching route capture is given

by 1 − (1− f r+1)
k−1

. If the attacker is unable to launch the route capture

attack in the first k− 1 hops, then the k’th hop is malicious with probability

f . We can now compute the probability that the k’th hop is compromised

as follows:

P (k’th hop is compromised) =
(

1−
(

1− f r+1
)k−1

)

· 1

+
(

1− f r+1
)k−1 · f. (4.3)

Figure 4.4 shows the probability that the k’th hop is compromised, for

40

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.05 0.1 0.15 0.2

P
(M

i)

Fraction of Compromised Nodes

P(M1)
P(M2)
P(M3)
P(M4)

P(Last node compromised)

Figure 4.5: P (Mi): Note that the probability of end-to-end timing analysis
P (M1) is less than 5% for f = 0.2.

r = 2. We can see the cascading effect due to route capture attacks: as

the random walk length is extended, the probability that the next hop is

compromised becomes higher. Note that there is hardly any sampling bias

for f < 0.1, and even when f = 0.2, the sampling bias is less than 3% for

5 hops. Thus, even at a small redundancy level, our protocol mitigates the

route capture attack.

We will now quantify the anonymity that our design provides. Let Mi be

the event that the first malicious node on the circuit (say A) is at the i’th

position, and the last node is also compromised. Under the event Mi, let

the entropy in the choice of the initiator be H(I|Mi). Then, the conditional

entropy for the simple random walk protocol can be computed as:

H =
l
∑

i=1

P (Mi)H(I|Mi) +

(

1−
l
∑

i=1

P (Mi)

)

log2N. (4.4)

Let us compute P (Mi). The first malicious node is at the i’th position with

probability (1− f)i−1f . Given this, we now need to compute the probability

of the last node being malicious. The last node will be malicious with proba-

bility 1 if the attackers are able to launch the circuit capture attack between

stages i to l−1 (capture). Otherwise (no capture), the last node is malicious

with probability with f . P (no capture) is given by (1− f r)·(1− f r+1)
l−(i+1)

.

Also, P (capture) = 1− P (no capture). Thus, we can express P (Mi) as:

41

P (Mi) = f(1− f)i−1 (P (capture) + P (no capture)f)

= f(1− f)i−1
((

1− (1− f r)
(

1− f r+1
)l−(i+1)

)

+ (1− f r)
(

1− f r+1
)l−(i+1)

f
)

. (4.5)

Figure 4.5 shows the values of P (Mi) as a function of f for l = 4, r = 2.

P (M1) is the probability of end-to-end timing analysis, and is about 5% for

f = 0.2. This is close to the current state in Tor, where the probability

of end-to-end timing analysis is 4%.3 Also note that Ml is the dominating

event, because unlike other events, it only requires a single node (last node)

to be compromised.

We now need to computeH(I|Mi). Note thatH(I|Mi) depends on the par-

ticular network topology. Though any topology can be used for the random

walk, we have considered the de Bruijn [89] topology in this paper because

it has optimal mixing properties. In this topology, the expected number of

nodes who can reach a particular node in i hops is given by di, where d is

the average node degree in the topology.4 We compute H(I|Mi) as follows.

H(I|Mi) = min(log2 d
i−1, log2N). (4.6)

We can now compute the conditional entropy using Equation (4.4). Fig-

ure 4.6 shows the plot of entropy with varying circuit length for r = 2,

N = 1000 000 and d = 20. We can see that increasing circuit length results

in a significant increase in entropy. In our secure random walk design, the

sampling bias due to route capture is small, and the restricted topology at-

tack dominates. Increasing circuit length mitigates the restricted topology

attack and thus increases anonymity. (Note that increasing the circuit length

past l = 6 will offer no benefit, unless logdN > 6.5) Finally, we study the

effect of increasing redundancy. Figure 4.7 shows the plot of entropy with

varying redundancy for l = 3. We can see that increasing redundancy beyond

3This is a slight simplification, as the exact fraction of compromised tunnels will depend
on the share of bandwidth and the guard/exit status of compromised nodes.

4Fingers of fingers do not overlap in a regular de Bruijn topology.
5In real networks, the lack of perfect load-balancing will result in somewhat worse

mixing, and thus values of l > logd N may still make sense.

42

 16.5

 17

 17.5

 18

 18.5

 19

 19.5

 20

 0 0.05 0.1 0.15 0.2

E
n

tr
o

p
y

Fraction of Compromised Nodes

l=2
l=3
l=4
l=5
l=6

Figure 4.6: Effect of varying circuit length: Increasing circuit length
increases entropy.

 16

 16.5

 17

 17.5

 18

 18.5

 19

 19.5

 20

 0 0.05 0.1 0.15 0.2

E
n

tr
o

p
y

Fraction of Compromised Nodes

r=1
r=2
r=3

Figure 4.7: Effect of varying redundancy: There is little advantage in
increasing redundancy beyond r = 2.

2 does not have any significant benefit. We use r = 2 in the remainder of

our analysis.

4.2.3 Using shorter circuits

First, consider a two-hop random walk. Let us denote the first hop as A and

the second hop as B. If both A,B are malicious, then the initiator anonymity

is compromised. When only B is compromised, the initiator can be narrowed

to the set of nodes that have A as their fingers. The expected size of this

set is quite small (d), resulting in poor anonymity. Also note that the latter

event happens frequently, with probability about f , where as both A and B

are malicious with probability about f 2.

Now, let us consider our modification to the protocol: a node performs

a secure three-hop random walk (A,B,C), and then uses the last two hops

(B,C) for anonymous communication, by building a circuit directly to B

43

and then extending it to C. Again, the dominant event is when only C is

compromised. Under this event, the attacker can narrow the choice of the

initiator to the set of nodes who have B within two hops. The expected

size of this set is now d2. Thus our modification results in an increase in

anonymity, while keeping the circuit length constant.

Note that in the anonymity analysis of the modified two hop random walk

protocol, the entropy is 0 when the last two nodes are compromised. Thus

let us redefine Mi for (i ≤ l− 2) to be the event such that the first malicious

node on the circuit is at the i′th position, the last node is also compromised,

but the second last node is honest. We define Ml−1 as the event that the last

two nodes are compromised, regardless of whether any previous nodes were

compromised as well. P (Ml−1) = f 2, and H(I|Ml−1) = 0, since the initiator

contacts the second last node directly. We keep the definition ofMl the same

as before; i.e., only the last hop is compromised. For i ≤ l − 2, P (Mi) can

be expressed as:

P (Mi) = f(1− f)i−1(1− f r)
(

1− f r+1
)l−2−i

(1− f)f. (4.7)

Figure 4.8 shows the plot of entropy for our modified protocol, computed

as:

H =
l−2
∑

i=1

P (Mi)H(I|Mi) + P (Ml)H(I|Ml)

+

(

1−
l
∑

i=1

P (Mi)

)

log2N. (4.8)

Here, l = 2–6 refers to our modified protocol where a node performs a 6

hop random walk and then uses only the last two hops for anonymous com-

munication. We can see that that our modification allows a user to derive

higher anonymity using longer random walks, but keeping the circuit length

constant. Viewed from another perspective, this extension creates a trade-

off between anonymity and performance. Using all l hops for anonymous

communication is more secure, but introduces higher latency on the commu-

nication and uses more system resources. Using only the last two hops will

improve the system performance, at the cost of revealing the identity of the

initiator to the second-to-last hop. As can be see in Figure 4.8, the loss of

44

 16.5

 17

 17.5

 18

 18.5

 19

 19.5

 20

 0 0.05 0.1 0.15 0.2

E
n

tr
o

p
y

Fraction of Compromised Nodes

l=2
l=2-3
l=2-4
l=2-5
l=2-6

l=6

Figure 4.8: Using last two hops for anonymous communication: Mitigating
restricted topology attacks while keeping circuit length constant.

anonymity is slight: using l = 2–6 results in anonymity that is only slightly

lower than l = 6.

4.2.4 Comparison with Salsa

We will now compare our ShadowWalker protocol with Salsa [9]. Salsa uses

secure lookup as a primitive to build a circuit for anonymous communica-

tion, which makes Salsa susceptible to information leak attacks [12]. To

compute the effect of active attacks on lookups, we used a simulator devel-

oped by the authors of Salsa [86]. The simulator was configured to simulate

1000 topologies, and in each topology, results were averaged over 1000 ran-

dom lookups. The Salsa architecture divides the identifier space into groups,

where the number of groups is denoted by |G|. We used the parameters

N = 10, 000 and |G| = 128 for the simulation (it is difficult to scale the

simulations beyond 10, 000 nodes). Next, we modeled the Salsa path build-

ing process as a stochastic activity network in the Möbius framework [87].

Figure 4.9 compares the anonymity provided by ShadowWalker and Salsa.

In our system, we use the degree d = 13 and r = 2. In the next section, we

will see that this translates into an effective degree of 39 ((r + 1) · d). This

is comparable to the effective degree of Salsa in this configuration, which is

85 (10000/128 + log2 128). We can see that for f = 0.2, our protocol using

l = 5 has an entropy of 12, while Salsa only has an entropy of 7.5. Even our

modified protocol which uses only two hops for anonymous communication,

gives much better anonymity than Salsa.

45

 7

 8

 9

 10

 11

 12

 13

 14

 0 0.05 0.1 0.15 0.2

E
n

tr
o

p
y

Fraction of Compromised Nodes

l=5
l=2-5
Salsa

Figure 4.9: Comparison with Salsa: For f = 0.2, our protocol has 4.5 bits
more entropy than Salsa.

4.2.5 Selective DoS attack

Recently, Borisov et al. [54] proposed a selective denial-of-service attack on

anonymous communication. In this attack, malicious nodes can selectively

drop packets in order to shut down any circuits that they are a part of,

but which they cannot compromise. Borisov et al. found that selective

DoS attack is most effective against peer-to-peer anonymous communication

systems, because the circuit construction in P2P systems is complex and may

provide many nodes with the opportunity to selectively deny service. Our

design is vulnerable to the selective DoS attack in two ways:

Selective DoS by shadows: As a shadow node, a malicious node M may

refuse to give signatures to honest nodes, or may give incorrect signatures

to honest nodes. This attack will ensure that the honest nodes who have a

malicious node as a shadow will never get selected in the random walk as an

intermediate node, since the initiator will not be able to verify the neighbor

relationships.

Selective DoS during circuit construction: Malicious nodes can also selec-

tively break any circuits that they cannot compromise. Whenever malicious

nodes find that they are part of a circuit in which they are unable to infer

any information about the initiator, they stop forwarding packets on the cir-

cuit, causing a new circuit to be constructed. This attack is similar to the

selective-DoS attack on Tor described by Borisov et al.

We can mitigate the first attack by using a symmetric shadow relationship.

This means that if node A is a shadow of node B, then node B is a shadow

of node A. If a node stops receiving signatures from its shadow, it can recip-

rocate by no longer certifying the shadow’s routing information. As a result,

46

malicious nodes that do not follow the protocol and refuse to provide signa-

tures will themselves be excluded from the circuit construction process. An

adversary may decide to sacrifice its nodes, and in this process DoS (atmost)

r honest nodes. However, since small redundancy levels of r = 2, 3 suffice for

the security of our protocol, this strategy does not benefit the adversary.

For the second attack, the best strategy for malicious nodes is to shut

down any circuit in which the last node is honest, since there is no hope of

compromising it. Thus the only circuits that will be built are those where the

last node is compromised, or where all the nodes are honest. The following

equation quantifies the effect of the selective DoS attack on our protocol.

H =
l
∑

i=1

P (Mi)
∑l

j=1 P (Mj) + (1− f)l
H(I|Mi)

+
(1− f)l

∑l
i=1 P (Mi) + (1− f)l

log2N (4.9)

Figure 4.10 plots the entropy for our protocol under the selective DoS attack.

There is an interesting tradeoff here. On one hand, increasing circuit length

mitigates the restricted topology attack and increases anonymity. On the

other hand, increasing circuit length gives more opportunities to the attack-

ers to launch a selective DoS attack. We can see that for small values of f ,

the former effect dominates, and increasing circuit length increases anony-

mity. There is a crossover point at about 18% of compromised nodes, when

increasing circuit length beyond l = 4 becomes counterproductive, because

of the selective-DoS attack. We note that our modified protocol, in which

the initiator only chooses the last two hops for anonymous communication,

provides a good defense against the selective-DoS attack. This is because the

intermediate hops do not decide to abort until the circuit construction has

reached the last hop. However, at that point, only the second-to-last hop

can perform denial-of-service on the circuit. We can see from the figure, that

l = 2–5 is most resilient to selective-DoS attack. Also note that selective-DoS

presents a significant problem for Salsa. Salsa is able to provide only 4 bits

of entropy at f = 0.2, as compared to about 11.5 bits of entropy for l =2–5.

47

 10

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 14

 0 0.05 0.1 0.15 0.2

E
n

tr
o

p
y

Fraction of Compromised Nodes

l=2
l=3
l=4
l=5

l=2-5
Salsa

Figure 4.10: Selective-DoS attack: Using l =2–6 resists selective DoS attack.

4.3 Experimental Results

We implemented our protocol using an event-based simulator in C++ with

1.2KLOC. We consider a WAN setting, where latencies between each pair of

nodes are estimated using the King data set [94]. This data set contains mea-

sured latencies between Internet domain name servers (DNS) and is highly

heterogeneous. The average round trip time (RTT) in the data set is around

182ms and the maximum RTT is around 800ms. To handle churn, we run

the stabilization protocol every second. The time period for refreshing fingers

and signing certificates is also set to 1 second. We simulate our protocol for

N = 1000 nodes with a redundancy parameter r = 2 and d = 10.

Studies have shown that in many popular peer-to-peer networks, the mean

value of node uptime is about 60 minutes [95,96]. We considered two widely

used synthetic models for node uptime 1) PDF f(x) = λe−λx. We set λ =

1/60. This is an exponential distribution with mean 60 minutes. 2) PDF

f(x) = aba

(x+b)a+1 . We set a = 1.5, 2, 3 and b fixed so that the distribution

had mean 60 minutes. This is a standard Pareto distribution, shifted b

units (without the shift, a node would be guaranteed to be up for at least b

minutes).

4.3.1 Communication overhead

Topology maintenance: As compared to a structured network, the overhead

for topology maintenance in our protocol is higher due to the inherent re-

dundancy in topology. The transformation from a structured topology to a

redundant structured topology increases the effective node degree from d to

48

(r+1)2d. (Each finger has r shadows, and each node is a shadow for (around)

r+1 nodes.) An important consequence of our secure lookup protocol is that

along with the node corresponding to the chosen ID, its shadows are returned

as well. This significantly reduces the communication overhead of our pro-

tocol because it obviates the need for performing multiple secure lookups for

the shadows of fingers. The use of our secure lookup protocol reduces the

effective node degree to (r+1) · d. In the previous section, we had seen that

our system provides better anonymity than Salsa with similar effective node

degree. For N = 1000 nodes and r = 2, the mean communication overhead

per node was measured to be 5980 bytes/sec.

Circuit Setup: To establish a circuit of length l, the initiator performs l

key establishments and rl signature verifications. The corresponding figure

for Salsa is r(l − 1) + 1 key establishments and r2(l − 1) + r lookups. The

table below shows the mean circuit setup latency. We can see that even for

l = 6, the circuit setup time is less than 4 seconds. Since we avoid the use of

lookups, the circuit setup latency for our protocol is smaller than Salsa.

Mean Circuit Setup Latency (ms)

l=2 l=3 l=4 l=5 l=6

546 1092 1820 2730 3822

4.3.2 Reliability of circuit construction under churn

Due to churn, the routing states at different nodes may be inconsistent at

times, resulting in different views of the network. This will mean that corre-

sponding signatures by shadow nodes for the routing state of a node A may

not be consistent, and our circuit construction protocol may fail.

Figure 4.11 shows the effect of churn on the reliability of our circuit con-

struction protocol. Let us first consider the exponential distribution for node

uptimes. We can see that increasing path lengths increases the probability of

failure. This is because there is an higher chance of a node and its shadows

having an inconsistent view of the network. For a path length l = 6, the

probability of failure is about 0.05. Next, observe that the probability of

failure increases if we model node churn as a Pareto distribution. Moreover,

smaller values of the exponent a lead to higher probabilities of failure. To

get some intuition for this, observe that Pareto distributions with smaller

49

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 1 2 3 4 5 6 7

P
ro

ba
bi

lit
y

of
 F

ai
lu

re

Path Length

Exponential, t=1
Pareto, alpha=3, t=1
Pareto, alpha=2, t=1

Pareto, alpha=1.5, t=1
Exponential, t=0.5

Figure 4.11: Impact of churn on reliability.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

C
D

F

Time (Minutes)

CDF of node uptime (mean =60 minutes)

Exponential Distribution
Pareto a=1.5

Pareto a=2
Pareto a=3

Figure 4.12: Churn distributions.

exponents a have a longer ‘tail’ in the CDF, as depicted by Figure 4.12. This

results in a larger number of node arrivals and node departures (even though

the mean node uptimes are the same), leading to an decrease in reliability of

circuit construction.

We note that reliability of circuit construction can be increased by being

more aggressive in topology maintenance (i.e., reducing the time period t

for refreshing fingers and signing state). Figure 4.11 depicts this tradeoff

between bandwidth use and reliability of circuit construction. We can see

that for exponential distribution of node uptimes, by reducing the time period

from t = 1 seconds to t = 0.5 seconds, the probability of failure has been

approximately halved.

4.3.3 Secure lookup

A lookup is successful if there is at least a single honest node in each step

of the lookup. For a lookup of path length l, the probability that a lookup

succeeds can be modeled as:

50

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.05 0.1 0.15 0.2

P
ro

ba
bi

lit
y

of
 a

 s
uc

ce
ss

fu
l l

oo
ku

p

Fraction of compromised nodes

Analysis, r=1
Simulation, r=1

Analysis, r=2
Simulation, r=2

Analysis, r=3
Simulation, r=3

Figure 4.13: Lookup security.

P (secure lookup) =
(

1− f r+1
)l
.

Figure 4.13 plots of probability of a successful lookup for varying values

of r. For f = 0.1, r = 2, the probability of a successful lookup is 0.99. Even

when we increase the value of f to f = 0.2, the lookup is still successful with

probability 0.95. The lookup security improves exponentially with increasing

r, because the chance that a node and all its shadows are malicious falls

exponentially in r. Thus for f = 0.2 and r = 3, the lookup succeeds with

probability 0.99. Note that for small values of r, the lookup security can also

be improved by performing redundant versions of the above lookup.

4.3.4 Anonymity

Finally, we present simulation results for the anonymity provided by Shad-

owWalker. Using simulations, we have performed a whole system evaluation

of ShadowWalker to check for any hidden correlations not captured by our

analytic model. Our simulator also captures real world behavior like the ef-

fect of irregular topologies, which is not considered in our model. Figure 4.14

depicts the anonymity provided by ShadowWalker for l = 4 and l = 2 − 4.

We can see that our simulation and analytic results closely match.

4.4 Summary

We proposed ShadowWalker: a new design for low-latency P2P anonymous

communication. ShadowWalker is able to effectively defend against common

51

 8.6

 8.8

 9

 9.2

 9.4

 9.6

 9.8

 10

 0 0.05 0.1 0.15 0.2

E
nt

ro
py

Fraction of compromised nodes

Analysis l=4
Simulation l=4
Analysis l=2-4

Simulation l=2-4

Figure 4.14: Anonymity.

attacks on peer-to-peer systems and achieve levels of anonymity superior to

the state of the art in P2P anonymous communication.

52

CHAPTER 5

SYBILINFER: DETECTING SYBIL NODES

USING SOCIAL NETWORKS

The peer-to-peer paradigm allows cooperating users to enjoy a service with

little or no need for any centralised infrastructure. While communication [60]

and storage [97] systems employing this design philosophy have been pro-

posed, the lack of any centralised control over identities opens such systems

to Sybil attacks [8]: a few malicious nodes can simulate the presence of a

very large number of nodes, to take over or disrupt key functions of the

distributed or peer-to-peer system. Any attempt to build fault-tolerance

mechanisms is doomed since adversaries can control arbitrary fractions of

the system nodes. This Sybil attack is further made practical through the

use of the existing large number of compromised networked machines (often

called zombies) being part of bot-nets.

Similar problems plague Web 2.0 applications that rely on collaborative

tagging, filtering and editing, like Wikipedia [98], or del.icio.us [99]. A

single user can register under different pseudonyms, and bypass any elec-

tions of velocity check mechanism that attempts to guarantee the quality

of the data through the plurality of contributors. On-line forums, starting

with USENET [100], to contemporary blogs or virtual worlds like Second

Life [101], always have to deal with the issue of disruption in the discus-

sion threads, with persistent abusers coming back under different names. All

these are forms of Sybil attacks at the high-level application layers.

There are two schools of Sybil defence mechanisms, the centralised and

decentralised ones. Centralised defences assume the existence of an authority

that is capable of doing admission control for the network [65]. Its role is

to rate limit the introduction of ‘fake’ identities, to ensure that the fraction

of corrupt nodes remains under a certain threshold. The practicalities of

running such an authority are very system-specific and in general it would

have to act as a public key certification authority as well as a guardian of the

moral standing of the nodes introduced – a very difficult problem in practice.

53

Such centralised solutions are also at odds with the decentralisation guiding

principle of peer-to-peer systems.

Decentralised approaches recognise the difficulty in having a single au-

thority vouching for nodes, and distribute this task across all nodes of the

system. The first such proposal is Advogato [102], which aimed to reduce

abuse in on-line services, followed by a proposal to use introduction graphs

of DHTs [74] to limit the potential for routing disruption in those systems.

The state of the art SybilGuard [13] and SybiLimit [73] propose the use of

social networks to mitigate Sybil attacks. As we will see, SybilGuard suffers

from high false negatives, while SybilLimit makes unrealistic assumptions

about the knowledge of number of honest nodes in the network. In both

cases the systems Sybil detection strategies are based on heuristics that are

not optimal.

Our key contribution is to propose SybilInfer, a method for detecting Sybil

nodes in a social network, that makes use of all information available to the

defenders. The formal model underlying our approach casts the problem

of detecting Sybil nodes in the context of Bayesian Inference: given a set

of stated relationships between nodes, the task is to label nodes as honest

or dishonest. Based on some simple and generic assumptions, like the fact

that social networks are fast mixing [58], we sample cuts in the social graph

according to the probability they divide it into honest and dishonest regions.

These samples not only allow us to label nodes as honest or Sybil attackers,

but also to associate with each label output by our algorithm a degree of

certainty.

The proposed techniques can be applied in a wide variety of settings where

high reliability peer-to-peer systems, or Sybil-resistant collaborative mecha-

nisms, are required even under attack:

• Secure routing in DHTs motivated early research into this field, and

our proposal can be used instead of a centralised authority to limit the

fraction of dishonest nodes, that could disrupt routing [65].

• In public anonymous communication networks, such as Tor [3], our

techniques can be used to eliminate the potential for a single entity

introducing a large number of nodes, and de-anonymize users’ circuits.

This was so far a key open problem for securely scaling such systems.

54

• Leader election [103] and Byzantine agreement [104] mechanisms that

were rendered useless by the Sybil attack can again be of use, after

Sybil nodes have been detected and eliminated from the social graph.

• Finally, detecting Sybil accounts is a key step in preventing false email

accounts used for spam, or preventing trolling and abuse of on-line

communities and web-forums. Our techniques can be applied in all

those settings, to fight spam and abuse [102].

SybilInfer applies to settings where a peer-to-peer or distributed system is

somehow based on or aware of social connections between users. Proper-

ties of natural social graphs are used to classify nodes are honest or Sybils.

While this approach might not be applicable to very traditional peer-to-peer

systems [60], it is more and more common for designers to make distributed

systems aware of the social environment of their users. Third party social

network services [105, 106], can also be used to extract social information

to protect systems against sybil attacks using SybilInfer. Section 5.4 de-

tails deployment strategies for SybilInfer and how it is applicable to current

systems.

We show analytically that SybilInfer is, from a theoretical perspective,

very powerful: under ideal circumstances an adversary gains no advantage

by introducing into the social network any additional Sybil nodes that are

not ‘naturally’ connected to the rest of the social structure. Even linking

all dishonest nodes with each other (without adding any Sybils) changes the

characteristics of their social sub-graph, and can under some circumstances

be detected. We demonstrate the practical efficacy of our approach using

both synthetic scale-free topologies as well as real-world LiveJournal data.

We show very significant security improvements over both SybilGuard and

SybilLimit, the current state of the art Sybil defence mechanisms. We also

propose extensions that enable our solution to be implemented in decen-

tralised settings.

This chapter is organised as follows: in Section 5.1 we present an overview

of our approach that can be used as a road-map to the technical sections.

In Section 5.2 we present our security assumptions, threat model, the proba-

bilistic model and sampler underpinning SybilInfer; a security evaluation fol-

lows in Section 5.3, providing analytical as well as experimental arguments

supporting the security of the method proposed along with a comparison

55

with SybilInfer. Section 5.4 discusses the settings in which SybilInfer can be

fruitfully used, followed by a summary in Section 5.5.

5.1 Overview

The SybilInfer algorithm takes as an input a social graph G and a single

known good node that is part of this graph. The following conceptual steps

are then applied to return the probability each node is honest or controlled

by a Sybil attacker:

• A set of traces T are generated and stored by performing special random

walks over the social graph G. These are the only information retained

about the graph for the rest of the SybilInfer algorithm, and their

generation is detailed in Section 5.2.1.

• A probabilistic model is then defined that describes the likelihood a

trace T was generated by a specific honest set of nodes within G, called

X. This model is based on our assumptions that social networks are

fast mixing, while the transitions to dishonest regions are slow. Given

the probabilistic model, the traces T and the set of honest nodes we are

able to calculate Pr[T |X is honest]. The calculation of this quantity is

the subject of Section 5.2.1 and Section 5.2.2.

• Once the probabilistic model is defined, we use Bayes’ theorem to calcu-

late for any set of nodes X and the generated trace T , the probability

that X consists of honest nodes. Mathematically this quality is de-

fined as Pr[X is honest|T]. The use of Bayes’ theorem is described in

Section 5.2.1.

• Since it is not possible to simply enumerate all subsets of nodes X of

the graph G, we instead sample from the distribution of honest node

sets X, to only get a few X0, . . . , XN ∼ Pr[X is honest|T]. Using

those representative sample sets of honest nodes, we can calculate the

probability any node in the system is honest or dishonest. Sampling

and the approximation of the sought marginal probabilities are the

subject of Section 5.2.3.

56

Figure 5.1: Illustration of honest nodes, Sybil nodes and attack edges
between them.

The key conceptual difficulty of our approach is the definition of the prob-

abilistic model over the traces T , and its inversion using Bayes’ theorem to

define a probability distribution over all possible honest sets of nodes X.

This distribution describes the likelihood that a specific set of nodes is hon-

est. The key technical challenge is making use of this distribution to extract

the sought probability each node is honest or dishonest, that we achieve via

sampling. Section 5.2 describes in some detail how these issues are tackled

by SybilInfer.

5.2 Model and Algorithm

Let us denote the social network topology as a graph G comprising vertices

V , representing people and edges E, representing trust relationships between

people. We consider the friendship relationship to be an undirected edge in

the graph G. Such an edge indicates that two nodes trust each other to not

be part of a Sybil attack. Furthermore, we denote the friendship relationship

between an attacker node and an honest node as an attack edge and the

honest node connected to an attacker node as a naive node or misguided node.

Different types of nodes are illustrated in Figure 5.1. These relationships

must be understood by users as having security implications, to restrict the

promiscuous behaviour often observed in current social networks, where users

often flag strangers as their friends [107].

We build our Sybil defence around the following assumptions:

1. At least one honest node in the network is known. In practise, each

node trying to detect Sybil nodes can use itself as the a priori honest

57

node. This assumption is necessary to break symmetry: otherwise

an attacker could simply mirror the honest social structure, and any

detector would not be able to distinguish which of the two regions is

the honest one.

2. Social networks are fast mixing: this means that a random walk on

the social graph converges quickly to a node following the stationary

distribution of the graph. Several authors have shown that real-life

social networks are indeed fast mixing [58,108].

3. A node knows the complete social network topology (G) : social network

topologies are relatively static, and it is feasible to obtain a global

snapshot of the network. Friendship relationships are already public

data for popular social networks like Facebook [105] and Orkut [106].

This assumption can be relaxed to using sub-graphs, making SybilInfer

applicable to decentralised settings.

Assumptions (1) and (2) are identical to those made by the SybilGuard

and SybilInfer systems. Previously, the authors of SybilGuard [13] observed

that when the adversary creates too many Sybil nodes, then the graph G has

a small cut: a set of edges that together have small stationary probability

and whose removal disconnects the graph into two large sub-graphs.

This intuition can be pushed much further to build superior Sybil defences.

It has been shown [109] that the presence of a small cut in a graph results in

slow mixing which means that fast mixing implies the absence of small cuts.

Applied to social graphs this observation underpins the key intuition behind

our Sybil defence mechanism: the mixing between honest nodes in the social

networks is fast, while the mixing between honest nodes and dishonest nodes

is slow. Thus, computing the set of honest nodes in the graph is related to

computing the bottleneck cut of the graph.

One way of formalising the notion of a bottleneck cut, is in terms of graph

conductance (Φ) [110], defined as:

Φ = min
X⊂V :π(X)<1/2

ΦX ,

58

where ΦX is defined as:

ΦX =
Σx∈XΣy/∈Xπ(x)Pxy

π(X)
,

and π(·) is the stationary distribution of the graph. Intuitively for any subset

of verticesX ⊂ V its conductance ΦX represents the probability of going from

X to the rest of the graph, normalised by the probability weight of being on

X. When the value is minimal the bottleneck cut in the graph is detected.

Note that performing a brute force search for this bottleneck cut is com-

putationally infeasible (it is actually NP-Hard, given its relationship to the

sparse-cut problem). Furthermore, finding the exact smallest cut is not as

important as being able to judge how likely any cut is, to be dividing nodes

into an honest and dishonest region. This probability is related to the de-

viation of the size of any cut from what we would expect in a natural, fast

mixing, social network.

5.2.1 Inferring honest sets

In this paper, we propose a framework based on Bayesian inference to detect

approximate cuts between honest and Sybil node regions in a social graph

and use those to infer the labels of each node. A key strength of our ap-

proach is that it not only associates labels to each node, but also finds the

correct probability of error that could be used by peer-to-peer or distributed

applications to select nodes.

The first step of SybilInfer is the generation of a set of random walks on

the social graph G. These walks are generated by performing a number s of

random walks, starting from each node in the graph (i.e. a total of s · |V |
walks.) A special probability transition matrix is used, defined as follows:

Pij =







min(1
di
, 1
dj
) if i→ j is an edge in G

0 otherwise
,

where di denotes the degree of vertex i in G.

This choice of transition probabilities ensures that the stationary distri-

bution of the random walk is uniform over all vertices |V |. The length of

the random walks is l = O(log |V |), which is rather short, while the num-

59

ber of random walks per node (denoted by s) is a tunable parameter of the

model. Only the starting vertex and the ending vertex of each random walk

are used by the algorithm, and we denote this set of vertex-pairs, also called

the traces, by T .

Now consider any cut X ⊂ V of nodes in the graph, such that the a priori

honest node is an element of X. We are interested in the probability that

the vertices in set X are all honest nodes, given our set of traces T , i.e.

P (X = Honest|T). Through the application of Bayes’ theorem we have an

expression of this probability:

P (X = Honest|T) = P (T |X = Honest) · P (X = Honest)

Z
,

where Z is the normalization constant given by: Z = ΣX⊂V P (T |X =

Honest) · P (X = Honest). Note that Z is difficult to compute because it

involves the summation of an exponential number of terms in the size of |V |.
Only being able to compute this probability up to a multiplicative constant

Z is not an impediment. The a priori distribution P (X = Honest) can be

used to encode any further knowledge about the honest nodes, or can simply

be set to be uniform over all possible cuts.

Bayes’ theorem has allowed us to reduce the initial problem of inferring

the set of good nodes X from the set of traces T , to simply being able to

assign a probability to each set of traces T given a set of honest nodes X,

i.e. calculating P (T |X = Honest). Our only remaining theoretical task is

deriving this probability, given our model’s assumptions.

Note that since the set X is honest, we assume (by assumption (2)) fast

mixing amongst its elements, meaning that a short random walk reaches

any element of the subset X uniformly at random. On the other hand, a

random walk starting in X is less likely to end up in the dishonest region X̄,

since there should be an abnormally small cut between them. (This intuition

is illustrated in Figure 5.2(a).) Therefore we approximate the probability

that a short random walk of length l = O(log |V |) starts in X and ends at

a particular node in X is given by ProbXX = Π + EXX , where Π is the

stationary distribution given by 1/|V |, for some EXX > 0. Similarly, we

approximate the probability that a random walk starts in X and does not

end in X is given by ProbXX̄ = Π − EXX̄ . Notice that ProbXX > ProbXX̄ ,

which captures the property that there is fast mixing amongst honest nodes

60

(a) A schematic rep-
resentation of transi-
tion probabilities be-
tween honest X and dis-
honest X̄ regions of the
social network.

(b) The model of the probability a short
random walk of length O(log |V |) starting
at an honest node ends on a particular
honest or dishonest (Sybil) node. If no
Sybils are present the network is fast mix-
ing and the probability converges to 1/|V |,
otherwise it is biased towards landing on
an honest node.

Figure 5.2: Illustrations of the SybilInfer models.

and slow mixing between honest and dishonest nodes. The approximate

probabilities ProbXX and ProbXX̄ and their likely gap from the ideal 1/|V |
are illustrated in Figure 5.2(b).

Let NXX be the number of traces in T starting in the honest set X and

ending in same honest set X. Let NXX̄ be the number of random walks

that start at the honest set X and end in the dishonest set X̄. NX̄X̄ and

NX̄X are defined similarly. Given the approximate probabilities of transitions

from one set to the other and the counts of such transitions we can ascribe

a probability to the trace:

P (T |X = Honest) = (ProbXX)
NXX · (ProbXX̄)

NXX̄ ·
(ProbX̄X̄)

NX̄X̄ · (ProbX̄X)
NX̄X ,

where ProbX̄X̄ and ProbX̄X are the probabilities a walk starting in the dis-

honest region ends in the dishonest or honest regions respectively.

The model described by P (T |X = Honest) is an approximation to reality

that is suitable enough to perform Sybil detection. It is of course unlikely

that a random walk starting at an honest node will have a uniform probability

to land on all honest or dishonest nodes respectively. Yet this simple proba-

bilistic model relating the starting and ending nodes of traces is rich enough

to capture the “probability gap” between landing on an honest or dishonest

node, as illustrated in Figure 5.2(b), and suitable for Sybil detection.

61

5.2.2 Approximating EXX

We have reduced the problem of calculating P (T |X = Honest) to finding a

suitable EXX , representing the ‘gap’ between the case when the full graph is

fast mixing (for EXX = 0) and when there is a distinctive Sybil attack (in

which case EXX >> 0).

One approach could be to try inferring EXX through a trivial modification

of our analysis to co-estimate P (X = Honest, EXX |T). Another possibility

is to approximate EXX or ProbXX directly, by choosing the most likely can-

didate value for each configuration of honest nodes X considered. This can

be done through the conductance or through sampling random walks on the

social graph.

Given the full graph G, ProbXX can be approximated as ProbXX =
Σx∈XΣy∈XΠ(x)P l

xy

Π(X)
, where P l

xy is the probability that a random walk of length

l starting at x ends in y. This approximation is very closely related to the

conductance of the set X and X̄. Yet computing this measure would require

some effort.

Notice that ProbXX , as calculated above, can also be approximated by

performing many random walks of length l starting at X and computing the

fraction of those walks that end inX. Interestingly our traces already contain

random walks over the graph of exactly the appropriate length, and therefore

we can reuse them to estimate a good ProbXX and related probabilities.

Given the counts NXX , NXX̄ , NX̄X and NX̄X̄ :

ProbXX =
NXX

NXX +NXX̄

· 1

|X|

and

ProbX̄X̄ =
NX̄X̄

NX̄X̄ +NX̄X

· 1

|X̄| ,

and ProbXX̄ = 1− ProbXX and ProbX̄X = 1− ProbX̄X̄ .

Approximating ProbXX through the traces T provides us with a simple

expression for the sought probability, based simply on the number of walks

62

starting in one region and ending in another:

P (T |X = Honest) = (
NXX

NXX +NXX̄

· 1

|X|)
NXX ·

(
NXX̄

NXX̄ +NXX

· 1

|X̄|)
NXX̄ ·

(
NX̄X̄

NX̄X̄ +NX̄X

· 1

|X̄|)
NX̄X̄ ·

(
NX̄X

NX̄X +NX̄X̄

· 1

|X|)
NX̄X .

This expression concludes the definition of our probabilistic model, and con-

tains only quantities that can be extracted from either the known set of nodes

X, or the set of traces T that is assigned a probability. Note that we do not

assume any prior knowledge of the size of the honest set, and it is simply a

variable |X| or |X̄| of the model. Next, we shall describe how to sample from

the distribution P (X = Honest|T) using the Metropolis-Hastings algorithm.

5.2.3 Sampling honest configurations

At the heart of our Sybil detection techniques lies a model that assigns

a probability to each sub-set of nodes of being honest. This probability

P (X = Honest|T) can be calculated up to a constant multiplicative factor

Z, that is not easily computable. Hence, instead of directly calculating this

probability for any configuration of nodes X, we will attempt instead to sam-

ple configurations Xi following this distribution. Those samples are used to

estimate the marginal probability that any specific node, or collections of

nodes, are honest or Sybil attackers.

Our sampler for P (X = Honest|T) is based on the established Metropolis-

Hastings algorithm [111] (MH), which is an instance of a Markov Chain

Monte Carlo sampler. In a nutshell, the MH algorithm holds at any point a

sample X0. Based on the X0 sample a new candidate sample X ′ is proposed

according to a probability distribution Q, with probability Q(X ′|X0). The

new sample X ′ is ‘accepted’ to replace X0 with probability α:

α = min(
P (X ′|T) ·Q(X0|X ′)

P (X0|T) ·Q(X ′|X0)
, 1);

63

otherwise, the original sample X0 is retained. It can be shown that after mul-

tiple iterations this yields samples X according to the distribution P (X|T)
irrespective of the way new candidate sets X ′ are proposed or the initial state

of the algorithm, i.e. a more likely state X will pop-out more frequently from

the sampler, than less likely states.

A relatively naive strategy can be used to propose candidate statesX ′ given

X0 for our problem. It relies on simply considering sets of nodes X ′ that are

only different by a single member from X0. Thus, with some probability padd

a random node x ∈ X̄0 is added to the set to form the candidate X ′ = X0∪x.
Alternatively, with probability premove, a member of X0 is removed from the

set of nodes, defining X ′ = X0 ∩ x for x ∈ X0. It is trivial to calculate

the probabilities Q(X ′|X0) and Q(X
′|X0) based on padd, premove and using a

uniformly at random choice over nodes in X0, X̄0, X
′ and X̄ ′ when necessary.

A key issue when utilizing the MH algorithm is deciding how many iter-

ations are necessary to get independent samples. Our rule of thumb is that

|V | · log |V | steps are likely to guarantee convergence to the target distribu-

tion P . After that number of steps the coupon collector’s theorem states

that each node in the graph would have been considered at least once by the

sampler, and assigned to the honest or dishonest set. In practice, given very

large traces T , the number of nodes that are difficult to categorise is very

small, and a non-naive sampler requires few steps to produce good samples

(after a certain burn-in period that allows it to detect the most likely honest

region).

Finally, given a set of N samples Xi ∼ P (X|T) output by the MH algo-

rithm it is possible to calculate the marginal probabilities any node is honest.

This is key output of the SybilInfer algorithm: given a node i it is possi-

ble to associate a probability it is honest by calculating: Pr[i is honest] =
∑

j∈[0,N−1) I(i∈Xj)

N
, where I(i ∈ Xj) is an indicator variable taking value 1 if

node i is in the honest sample Xj , and value zero otherwise. Enough sam-

ples can be extracted from the sampler to estimate this probability with an

arbitrary degree of precision.

More sophisticated samplers would make use of a better strategy to propose

candidate states X ′ for each iteration. The choice of X ′ can, for example,

be biased towards adding or removing nodes according to how often random

walks starting at the single honest node land on them. We expect nodes

that are reached often by random walks starting in the honest region to be

64

honest, and the opposite to be true for dishonest nodes. In all cases this bias

is simply an optimization for the sampling to take fewer iterations, and does

not affect the correctness of the results.

5.3 Security Evaluation

In this section we discuss the security of SybilInfer when under Sybil attack.

We show analytically that we can detect when a social network suffers from

a Sybil attack, and correctly label the Sybil nodes. Our assumptions and full

proposal are then tested experimentally on synthetic as well as real-world

data sets, indicating that the theoretical guarantees hold.

5.3.1 Theoretical results

The security of our Sybil detection scheme hinges on two important results.

First, we show that we can detect whether a network is under Sybil attack,

based on the social graph. Second, we show that we are able to detect Sybil

attackers connected to the honest social graph, and this for any attacker

topology.

Our first result states that:

Theorem A. In the absence of any Sybil attack, the distribution of

P (X = Honest|T), for a given size |X|, is close to uniform, and all cuts

are equally likely (EXX ≅ 0).

This result is based on our assumption that a random walk over a social

network is fast mixing, meaning that, after log(|V |) steps, it visits nodes

drawn from the stationary distribution of the graph. In our case the random

walk is performed over a slightly modified version of the social graph, where

the transition probability attached to each link ij is:

Pij =







min(1
di
, 1
dj
) if i→ j is an edge in G

0 otherwise
,

which guarantees that the stationary distribution is uniform over all nodes

(i.e. Π = 1
|V |

). Therefore we expect that in the absence of an adversary the

65

short walks in T to end at a network node drawn at random amongst all

nodes |V |. In turn this means that the number of end nodes in the set of

traces T , that end in the honest set X is NXX = lim|TX |→∞
|X|
|V |

· |TX |, where
TX is the number of traces in T starting within the set |X|. Substituting this

in the equations presented in Sections 5.2.1 and 5.2.2 we get:

ProbXX =
NXX

NXX +NXX̄

· 1

|X| ⇒ (5.1)

Π + EXX =
NXX

NXX +NXX̄

· 1

|X| ⇒ (5.2)

1

|V | + EXX =
(|X|/|V |) · |TX |

|TX |
· 1

|X| ⇒ (5.3)

EXX = 0. (5.4)

As a result, by sufficiently increasing the number of random walks T per-

formed on the social graph, we can get EXX arbitrarily close to zero. In turn

this means that our distribution P (T |X = Honest) is uniform for given sizes

of |X|, given our uniform a priori P (X = Honest|T).
In a nutshell by estimating EXX for any sample X returned by the MH

algorithm, and testing how close it is to zero we detect whether it corresponds

to an attack (as we will see from theorem B) or a natural cut in the graph.

We can increase the precision of the detector arbitrarily by increasing the

number of walks T .

Our second results relates to the behaviour of the system under Sybil

attack:

Theorem B. Connecting any additional Sybil nodes to the social net-

work, through a set of corrupt nodes, lowers the dishonest sub-graph

conductance to the honest region, leading to slow mixing, and hence

we expect EXX > 0.

First we define the dishonest set X̄0 comprising all dishonest nodes connected

to honest nodes in the graph. The set X̄S contains all dishonest nodes in

the system, including nodes in X̄0 and the Sybil nodes attached to them. It

must hold that |X̄0| < |X̄S|, in case there is a Sybil attack. Second we note

that the probability of a transition between an honest node i ∈ X and a

dishonest node j ∈ X̄ cannot increase through Sybil attacks, since it is equal

to Pij = min(1
di
, 1
dj
). At worst the corrupt node will increase its degree by

66

connecting Sybils which has only the potential to decrease this probability.

Therefore we have that
∑

x∈X̄S

∑

y 6∈X̄S
Pxy ≤ ∑x∈X̄0

∑

y 6∈X̄0
Pxy. Combining

the two inequalities we get that:

∑

y 6∈X̄S
Pxy

|X̄S|
<

∑

x∈X̄0

∑

y 6∈X̄0
Pxy

|X̄0|
⇔ (5.5)

∑

y 6∈X̄S

1
|V |
Pxy

|X̄S| 1
|V |

<

∑

x∈X̄0

∑

y 6∈X̄0

1
|V |
Pxy

|X̄0| 1
|V |

⇔ (5.6)

∑

y 6∈X̄S
π(x)Pxy

Π(X̄S)
<

∑

x∈X̄0

∑

y 6∈X̄0
π(x)Pxy

Π(X̄0)
⇔ (5.7)

Φ(X̄S) < Φ(X̄0). (5.8)

This result signifies that independently of the topology of the adversary re-

gion the conductance of a sub-graph containing Sybil nodes will be lower

compared with the conductance of the sub-graph of nodes that are simply

compromised and connected to the social network. Lower conductance in

turn leads to slower mixing times between honest and dishonest regions [109]

which means that EXX > 0, even for very few Sybils. This deviation is sub-

ject to the sampling variation introduced by the trace T , but the error can

be made arbitrarily small by sampling more random walks in T .

These two results are very strong: they indicate that, in theory, a set of

compromised nodes connecting to honest nodes in a social network, would

get no advantage by connecting any additional Sybil nodes, since that would

lead to their detection. Sampling regions of the graph with abnormally small

conductance, through the use of the random walks T , should lead to their

discovery, which is the theoretical foundation of our technique. Furthermore

we established that techniques based on detecting abnormalities in the value

of EXX are strategy proof, meaning that there is no attacker strategy (in

terms of special adversary topology) to foil detection.

5.3.2 Practical considerations

Models and assumptions are always an approximation of the real world. As a

result, careful evaluation is necessary to ensure that the theorems are robust

to deviations from the ideal behaviour assumed so far.

The first practical issue concerns the fast mixing properties of social net-

67

works. There is a lot of evidence that social networks exhibit this be-

haviour [58], and previous proposals relating to Sybil defence use and vali-

date the same assumption [13, 73]. SybilInfer makes an further assumption,

namely that the modified random walk over the social network, that yields

a uniform distribution over all nodes, is also fast mixing for real social net-

works. The probability Pij = min(1
di
, 1
dj
), depends on the mutual degrees of

the nodes i and j, and makes the transition to nodes of higher degree less

likely. This effect has the potential to slow down mixing times in the honest

case, particularly when there is a high variation in node degrees. This effect

can be alleviated by removing random edges from high degree nodes to guar-

antee that the ratio of maximum and minimum node degree in the graph is

bounded (an approach also used by SybilLimit).

The second consideration also relates to the fast mixing properties of net-

works. While in theory fast mixing networks should not exhibit any small

cuts, or regions of abnormally low conductance, in practice they do. This is

especially true for regions with new users that have not had the chance to con-

nect to many others, as well as social networks that only contain users with

particular characteristics (like interest, locality, or administrative groups).

Those regions yield, even in the honest case, sample cuts that have the po-

tential to be mistaken as attacks. This effect forces us to consider a threshold

EXX under which we consider cuts to be simply false positives. In turn this

makes the guarantees of schemes weaker in practice than in theory, since the

adversary can introduce Sybils into a region undetected, as long as the set

threshold EXX is not exceeded.

The threshold EXX is chosen to be α ·EXXmax, where EXXmax = 1
|X|

− 1
|V |

,

and α is a constant between 0 and 1. Here α can be used to control the

tradeoff between false positives and false negatives. A higher value of alpha

enables the adversary to insert a larger number of sybils undetected but

reduces the false positives. On the other hand, a smaller value of α reduces

the number of Sybils that can be introduced undetected but at the cost of

higher number of false positives.

Given these practical considerations, we can formulate a weaker security

guarantee for SybilInfer:

Theorem C. Given a certain “natural” threshold value for EXX in

an honest social network, a dishonest region performing a Sybil attack

68

(a) Average degree compromised nodes (b) Low degree compromised nodes

Figure 5.3: Synthetic scale-free topology: SybilInfer evaluation as a
function of additional Sybil identities (ψ) introduced by colluding entities.
False negatives denote the total number of dishonest identities accepted by
SybilInfer while false positives denote the number of honest nodes that are
misclassified.

will exceed it after introducing a certain number of Sybil nodes.

This theorem is the result of Theorem B that demonstrates that the con-

ductance keeps decreasing as the number of Sybils attached to a dishonest

region increases. This in turn will slow down the mixing time between the

honest and dishonest region, leading to an increasingly large EXX .

Intuitively, as the attack becomes larger, the cut between honest and dis-

honest nodes becomes increasingly distinct, which makes Sybil detection eas-

ier. It is important to note that as more Sybils are introduced into the dis-

honest region, the probability of the whole region being detected as an attack

increases, not only the new Sybil nodes. This provides strong disincentives

to the adversary from performing larger Sybil attacks, since even previously

undetected malicious nodes might be flagged as Sybils.

5.3.3 Experimental evaluation using synthetic data

We first experimentally demonstrate the validity of Theorem C using syn-

thetic topologies. Our experiments consist of building synthetic social net-

work topologies, injecting a variable number of Sybil nodes, and applying

SybilInfer to establish how many of them are detected. A key issue we ex-

plore is the number of introduced Sybil nodes under which Sybil attacks are

not detected.

69

Social networks exhibit a scale-free (or power law) node degree topol-

ogy [112]. Our network synthesis algorithm replicates this structure through

preferential attachment, following the methodology of Nagaraja [58]. We

create m0 initial nodes connected in a clique, and then for each new node

v, we create m new edges to existing nodes, such that the probability of

choosing any given node is proportional to the degree of that node; i.e.:

Pr[(v, i)] = di∑
j dj
, where di is the degree of node i. In our simulations, we use

m = 5, giving an average node degree of 10.

In such a scale-free topology of 1000 nodes, we consider a fraction f = 10%

of the nodes to be compromised by a single adversary. The compromised

nodes are distributed uniformly at random in the topology. Compromised

nodes introduce ψ additional Sybil nodes and establish a scale-free topology

amongst themselves. We configure SybilInfer to use 20 samples for comput-

ing the marginal probabilities, and label as honest the set of nodes whose

marginal probability of being honest is greater than 0.5. The experiment is

repeated 100 times with different scale-free topologies.

Figure 5.3(a) illustrates the false positives and false negatives classifications

returned by SybilInfer, for varying value of ψ, the number of additional Sybil

nodes introduced. We observe that when ψ < 100, α = 0.7 , then all the

malicious identities are classified as honest by SybilInfer. However, there is

a threshold at ψ = 100, beyond which all of the Sybil identities, including

the initially compromised entities are flagged as attackers. This is because

beyond this point, the EXX for the Sybil region exceeds the natural threshold

leading to full detection, validating Theorem C. The value ψ = 100 is clearly

the optimal attack strategy, in which the attacker can introduce the maximal

number of Sybils without being detected. We also note that even in the worst

case, the false positives are less than 5%. The false positive nodes have been

misclassified because these nodes are closer to the Sybil region; SybilInfer is

thus incentive compatible in the sense that nodes which have mostly honest

friends are likely not to be misclassified.

We can also see the effect of varying the threshold EXX . As α is increased

from 0.65 to 0.7, the ψ for the optimal attacker strategy increases from 70 to

100. This is because an increase in the threshold EXX allows the adversary to

insert more Sybils undetected. The advantage of increasing α lies in reducing

the worst case false positives. We can see that by increasing α from 0.7 to

0.75, the worst case false positives can be reduced from 5% to 2%.

70

Figure 5.4: Scale-free topology: fraction of total malicious and Sybil
identities as a function of real malicious entities.

Note that for the remainder of the paper, we shall use α = 0.7.

We also wish to show that the security of our scheme depends primarily

on the number of colluding malicious nodes and not on the number of attack

edges. To this end, we chose the compromised nodes to have the lowest

number of attack edges (instead of choosing them uniformly at random),

and repeat the experiment. Figure 5.3(b) illustrates that the false positives

and false negatives classifications returned by SybilInfer, where the average

number of attack edges are 500. Note that these results are very similar to the

previous case illustrated in Figure 5.3(a), where the number of attack edges is

around 800. This analysis indicates that the security provided by SybilInfer

primarily depends on the number of colluding entities. The implication is

that the compromise of high degree nodes does not yield any significant

advantage to the adversary. As we shall see, this is in contrast to SybilGuard

and SybilLimit, which are extremely vulnerable when high degree nodes are

compromised.

Our next experiment establishes the number of Sybil nodes that can be

inserted into a network given different fractions of compromised nodes. We

vary the fraction of compromised colluding nodes f , and for each value of

f , we compute the optimal number of additional Sybil identities that the

attackers can insert, as in the previous experiment.

Figure 5.4 presents a plot of the maximum Sybil identities as a function

of the compromised fraction of nodes f . Note that our theoretical prediction

(which is strategy-independent) matches closely with the attacker strategy

of connecting Sybil nodes in a scale-free topology. The adversary is able

to introduce roughly about 1 additional Sybil identity per real entity. For

71

instance, at f = 0.2, the total number of Sybil identities is 0.37. As we

observe from the figure the ability of the adversary to just include about

one additional Sybil identity per compromised node embedded in the social

network remains constant, no matter the fraction f of compromised nodes

in the network.

5.3.4 Experimental evaluation using real-world data

Next we validate the security guarantees provided by SybilInfer using a sam-

pled LiveJournal topology. A variant of snowball [113] sampling was used to

collect the full data set data, comprising over 100,000 nodes.

To perform our experiments we chose a random node and collect all nodes

in its three hop neighbourhood. The resulting social network has about

50,000 nodes. We then perform some pre-processing step on the sub-graph:

• Nodes with degree less than 3 are removed, to filter out nodes that are

too new to the social network, or inactive.

• If there is an edge between A→ B, but no edge between B → A, then

A → B is removed (to only keep the symmetric friendship relation-

ships.)

We note that despite this pre-processing nodes all degrees can be found in

the final dataset, since nodes with initial degree over 3 will have some edges

removed reducing their degree to less than 3.

After pre-processing, the social sub-graph consists of about 33,000 nodes.

First, we ran SybilInfer on this topology without introducing any artificial

attack. We found a bottleneck cut diving off about 2, 000 Sybil nodes. It is

impossible to establish whether these nodes are false positives (a rate of 6%)

or a real-world Sybil attack present in the LiveJournal network. Since there

is no way to establish ground truth, we do not label these nodes as either

honest/dishonest.

Next, we consider a fraction f of the nodes to be compromised and compute

the optimal attacker strategy, as in our experiments with synthetic data.

Figure 5.5 shows the fraction of malicious identities accepted by SybilInfer

as a function of fraction of malicious entitites in the system. The trend is

similar to our observations on synthetic scale-free topologies. At f = 0.2,

the fraction of Sybil identities accepted by SybilInfer is approximately 0.32.

72

Figure 5.5: LiveJournal topology: fraction of total malicious identities as a
function of real malicious entities.

5.3.5 Comparison with SybilLimit and SybilGuard

SybilGuard [13] and SybilLimit [73] are state of the art decentralized proto-

cols that defend against Sybil attacks. Similar to SybilInfer, both protocols

exploit the fact that a Sybil attack disrupts the fast mixing property of the

social network topology, albeit in a heuristic fashion. A brief overview of the

two systems can be found in the appendix, and their full descriptions is given

in [13,73].

Figure 5.6 compares the performance of SybilInfer with the performance

of SybilLimit. First it is worth noting that the fraction of compromised

nodes that SybilLimit tolerates is only a small fraction of the range within

which SybilInfer provide its guarantees. SybilLimit tolerates up to f = 0.02

compromised nodes when the degree of attackers is low (about degree 5 –

green line), while we have already shown the performance of SybilLimit for

compromised fractions up to f = 0.35 in Figure 5.4. Within the interval

SybilLimit is applicable, our system systematically outperforms: when very

few compromised nodes are present in the system (f = 0.01) our system

only allows them to control less than 5% of the entities in the system, ver-

sus SybilLimit that allows them to control over 30% of entities (rendering

insecure Byzantine fault tolerance mechanisms that require at least 2/3 hon-

est nodes). At the limit of SybilLimit’s applicability range when f = 0.02,

our approach caps the number of dishonest entities in the system to fewer

than 8%, while SybilLimit allows about 50% dishonest entities. (This large

fraction renders leader election or other voting systems ineffective.)

An important difference between SybilInfer and SybilLimit is that the for-

mer is not sensitive to the degree of the attacker nodes. SybilLimit provides

73

Figure 5.6: Comparison with related work.

very weak guarantees when high degree (e.g. degree 10 – red line) nodes are

compromised, and can protect the system only for f < 0.01. In this case

SybilInfer allows for 5% total malicious entities, while SybilLimit allows for

over 50%.

This is an illustration that SybilInfer performs an order of magnitude bet-

ter than the state of the art both in terms of range of applicability and

performance within that range (SybilGuard’s performance is strictly worse

than SybilLimit’s performance, and is not illustrated). An obvious question

is: Why does SybilInfer perform so much better than SybilGuard and Sybil-

Limit? It is particularly pertinent since all three systems are making use of

the same assumptions, and a similar intuition, that there should be a “gap”

between the honest and Sybil regions of a social network. The reason Sybil-

Limit and SybilGuard provide weaker guarantees is that they interpret these

assumptions in a very sensitive way: they assume that an overwhelming ma-

jority of random walks staring in the honest region will stay in the honest

region, and then bound the number of walks originating from the Sybil re-

gion via the number of corrupt edges. As a result they are very sensitive to

the length of those walks, and can only provide strong guarantees for a very

small number of corrupt edges. Furthermore the validation procedure relies

on collisions between honest nodes, via the birthday paradox, which adds a

further layer of inefficiency to estimating good from bad regions.

SybilInfer, on the other hand, interprets the disruption in fast-mixing be-

tween the honest and dishonest region simply as a faint bias in the last node

of a short random walk (as illustrated in Figures 5.2(a) and 5.2(b)). In our

experiments, as well as in theory, we observe a very large fraction of the

T walks crossing between the honest and dishonest regions. Yet the faint

74

difference in the probability of landing on nodes in the honest and dishonest

regions is present, and the sampler makes use of it to get good cuts between

the honest and dishonest nodes.

5.3.6 Computational and time complexity

Two implementations of the SybilInfer sampler were build in Python and

C++, of about 1KLOC each. The Python implementation can handle 10K

node networks, while the C++ implementation has handled up to 30K node

networks, returning results in seconds.

The implementation strategy for both samplers has favoured a low time

complexity over storage costs. The critical loop performs O(|V | · log |V |)
Metropolis Hastings iterations per sample returned, each only requiring about

O(log |V |) operations. Two copies of the full state are stored, as well as

associated data that allows for fast updating of the state, which requires

O(|V |) storage. The transcript of evidence traces T is also stored, as well as

an index over it, which dominates the storage required and makes it order

O(|V | · log |V |).
There is a serious time complexity penalty associated with implementing

non-naive sampling strategies. Our Python implementation biases the can-

didate moves towards nodes that are more or less likely to be part of the

honest set. Yet exactly sampling nodes from this known probability distri-

bution, naively may raise the cost of each iteration to be O(|V |). Depending
on the differential between the highest and lowest probabilities, faster sam-

pling techniques like rejection sampling [114] can be used to bring the cost

down. The Python implementation uses a variant of Metropolis-Hastings to

implement selection of candidate nodes for the next move, at a computation

cost of O(log |V |). The C++ implementation uses naive sampling from the

honest or dishonest sets, and has a very low cost per iteration of order O(1).

The Markov chain sampling techniques used consider sequences of states

that are very close to each other, differing at most by a single node. This

enables a key optimization, where the counts NXX , NXX̄ , NX̄X and NX̄X̄ are

stored for each state and updated when the state changes. This simple variant

of self-adjusting computation [115], allows for very fast computations of the

probabilities associated with each state. Updating the counts, and associated

75

information is an order O(log |V |) operation. The alternative of recounting

these quantities from T would cost O(|V | log |V |) for every iteration, leading

to a total computational complexity for our algorithm of O((|V | log |V |)2).
Hence implementing it is vital to getting results fast.

Finally our implementations use a zero-copy strategy for the state. Two

states and all associated information are maintained at any time, the current

state and the candidate state. Operations on the candidate state can be

done and undone in O(log |V |) per operation. Accepted moves can be com-

mitted to the current state at the same cost. These operations can be used

to maintain the two states synchronised for use by the Metropolis-Hastings

sampler. The naive strategy of re-writing the full state would cost O(|V |)
per iteration, making the overall complexity of the scheme O(|V |2 log |V |).

5.4 Deployment Strategies

So far we presented an overview of the SybilInfer algorithm, as well as a theo-

retical and empirical evaluation of its performance when it comes to detecting

Sybil nodes. The core of the algorithm outperforms SybilGuard and Sybil-

Limit, and is applicable in settings beyond which the two systems provide no

security guarantees whatsoever. Yet a key difference between the previous

systems and SybilInfer is the latter’s reliance on the full friendship graph to

perform the random walks that drive the inference engine. In this section

we discuss how this constraint still allows SybilInfer to be used for impor-

tant classes of applications, as well as how it can be relaxed to accommodate

peer-to-peer systems with limited resources per client.

5.4.1 Full social graph knowledge

The most straightforward way of applying SybilInfer is using the full graph

of a social network to infer which nodes are honest and which nodes are

Sybils, given a known honest seed node. This is applicable to centralised on-

line services, like free email hosting services, blogging sites, and discussion

forums that want to deter spammers. Today those systems use a mixture of

CAPTCHA [116] and network based intrusion detection to eliminate mass

attacks. SybilInfer could be used to either complement those mechanisms

76

and provide additional information as to which identities are suspicious, or

replace those systems when they are expensive and error prone. One of the

first social network based Sybil defence systems, Advogato [102], worked in

such a centralized fashion.

The need to know the social graph does not preclude the use of SybilInfer

in distributed or even peer-to-peer systems. Social networks, once mature,

are generally stable and do not change much over time. Their rate of change

is by no means comparable to the churn of nodes in the network, and as a

result the structure of the social network could be stored and used to perform

inference on multiple nodes in a network, along with a mechanisms to share

occasional updates. The storage overhead for storing large social networks

is surprisingly low: a large social network with 10 billion nodes (roughly the

population of planet earth) with each node having about 1000 friends, can

be stored in about 187Gb of disk space uncompressed. In such settings it is

likely that SybilInfer computation will be the bottleneck, rather than storage

of the graph, for the foreseeable future.

A key application of Sybil defences is to ensure that volunteer relays in

anonymous communication networks belong to independent entities, and are

not controlled by a single adversary. Practical systems like Mixmaster [16],

Mixminion [15] and Tor [3] operate such a volunteer based anonymity in-

frastructure, that are very susceptible to Sybil attacks. Extending such an

infrastructure to use SybilInfer is an easy task: each relay in the system

would have to indicate to the central directory services which other nodes it

considers honest and non-colluding. The graph of nodes and mutual trust

relations can be used to run SybilInfer centrally by the directory service, or

by each individual node that wishes to use the anonymizing service. Cur-

rently, the largest of those services, the Tor network has about 2000 nodes,

which is well within the computation capabilities of our implementations.

5.4.2 Partial social graph knowledge

SybilInfer can be used to detect and prevent Sybil attacks, using only a

partial view of the social graph. In the context of a distributed or peer-

to-peer system, each user discovers only a fixed diameter sub-graph around

them. For example a user may choose to retrieve and store all other users

77

two or three hops away in the social network graph, or discover a certain

threshold of nodes in a breadth first manner. SybilInfer is then applied on

the extracted sub-graph to detect potential Sybil regions. This allows the

user to prune its social neighbourhood from any Sybil attacks, and is sufficient

for selecting a set of honest nodes when sampling from the full network is not

required. Distributed backup and storage, and all friend and friend-of-friend

based sharing protocols, can benefit from such protection. The storage and

communication cost of this scheme is constant and relative to the number of

nodes in the chosen neighbourhood.

In cases where nodes can afford to know a larger fraction of the social graph,

they could choose to discover O(c ·
√

|V |) nodes in their neighbourhood, for

some small integer c. This increases the chances two arbitrary nodes have

to know a common node, that can perform the SybilInfer protocol and act

as an introduction point for the nodes. In this protocol Alice and Bob want

to ensure the other party is not a Sybil. They find a node C that is in

the c ·
√

|V neighbourhood of both of them, and each make sure that with

high probability it is honest. They then contact node C that attests to

both of them, given its local run of the SybilInfer engine, that they are not

Sybil nodes (with C as the honest seed). This protocol introduces a single

layer of transitive trust, and therefore it is necessary for Alice and Bob to

be quite certain that C is indeed honest. Its storage and communication

cost is O(
√

|V |), which is the same order of magnitude as SybilLimit and

SybilGuard. Modifying this simple minded protocol into a fully fledged one-

hop distributed hash table [117] is an interesting challenge for future work.

SybilInfer can also be applied to specific on-line communities. In such

cases a set of nodes belonging to a certain community of interest (a social

club, a committee, a town, etc.) can be extracted to form a sub-graph.

SybilInfer can then be applied on this partial view of the graph, to detect

nodes that are less well integrated than others in the group. There is an

important distinction between using SybilInfer in this mode or using it with

the full graph: while the results using the full graph output an “absolute”

probability for each node being a Sybil, applying SybilInfer to a partial view

of the network only provides a “relative” probability the node is honest in

that context. It is likely that nodes are tagged as Sybils, because they do

not have many contacts within the select group, which given the full graph

would be classified as honest. Before applying SybilInfer in this mode it is

78

important to assess, at least, whether the subgroup is fast-mixing or not.

5.4.3 Using SybilInfer output optimally

Unlike previous systems the output of the SybilInfer algorithm is a proba-

bilistic statement, or even more generally, a set of samples that allows prob-

abilistic statements to be estimated. So far in the work, we discussed how to

make inferences about the marginal probability that specific nodes are hon-

est of dishonest by using the returned samples to compute Pr[i is honest] for

all nodes i. In our experiments we applied a 0.5 threshold to the probability

to classify nodes as honest or dishonest. This is a rather limited use of the

richer output that SybilInfer provides.

Distributed system applications can, instead of using marginal probabili-

ties of individual nodes, estimate the probability that the particular security

guarantees they require hold. High latency anonymous communication sys-

tems, for example, require a set of different nodes such that with high prob-

ability at least one of them is honest. Path selection is also subject to other

constraints (like latency). In this case the samples returned by SybilInfer can

be used to calculate exactly the sought probability, i.e. the probability a sin-

gle node in the chosen path is honest. Onion routing based systems, on the

other hand are secure as long as the first and last hop of the relayed commu-

nication is honest. As before, the samples returned by SybilInfer can be used

to choose a path that has a high probability to exhibit this characteristic.

Other distributed applications, like peer-to-peer storage and retrieval, have

similar needs, but also tunable parameters that depend on the probability of

a node being dishonest. Storage systems like OceanStore use Rabin’s infor-

mation dispersion algorithm to divide files into chunks stored and retrieved

to reconstruct a file. The degree of redundancy required crucially depends on

the probability nodes are compromised. Such algorithms can use SybilInfer

to foil Sybil attacks, and calculate the probability that the set of nodes to

be used to store particular files contains certain fractions of honest nodes.

This probability can in turn inform the choice of parameters to maximise the

survivability of the files.

Finally, a note of warning should accompany any Sybil prevention scheme:

it is not the goal of SybilInfer (or any other such scheme) to ensure that

79

all adversary nodes are filtered out of the network. The job of SybilInfer is

to ensure that a certain fraction of existing adversary nodes cannot signifi-

cantly increase its control of the system by introducing ‘fake’ Sybil identities.

As illustrated by the examples on anonymous communications and storage,

system-specific mechanisms are still crucial to ensure that a minority of ad-

versary entities cannot compromise any security properties. SybilInfer can

only ensure that this minority remains a minority and cannot artificially

increase its share of the network.

Sybil defence schemes are also bound to contain false-positives, namely,

honest nodes labeled as Sybils. For this reason other mechanisms need to

be in place to ensure that those users can seek a remedy to the automatic

classification they suffered from the system, potentially by making some ad-

ditional effort. Proofs-of-work, social introduction services, or even payment

targeting those users could be a way of ensuring SybilInfer is not turned into

an automated social exclusion mechanism.

5.5 Summary

We presented SybilInfer, an algorithm aimed at detecting Sybil attacks against

peer-to-peer networks or open services, and labeling which nodes are hon-

est and which are dishonest. Its applicability and performance in this task

are an order of magnitude better than previous systems making similar as-

sumptions, like SybilGuard and SybilLimit, even though it requires nodes to

know a substantial part of the social structure within which honest nodes are

embedded.

80

CHAPTER 6

X-VINE: SECURE AND PSEUDONYMOUS

ROUTING USING SOCIAL NETWORKS

Securing DHTs has always been a challenging task [62, 63, 65], especially in

the face of a Sybil attack [8], where one node can pretend to have multiple

identities and thus interfere with routing operations. Traditional solutions to

this attack require participants to obtain certificates [65], prove possession of

a unique IP address [9,118], or perform some computation [71]. This creates

a barrier to participation, limiting the growth of the P2P user base, and at

the same time does not fully address the problem of Sybil attacks.

To address this, recent research proposes to use social network trust rela-

tionships to mitigate Sybil attacks [13,73,119]. However, these systems share

some key shortcomings:

High control overhead: These systems rely on flooding or large numbers of

repeated lookups to maintain state. For example, Whanau [1] is the state-

of-art design that secures routing in DHTs, but it is built upon a one-hop

DHT routing mechanism, and has high overheads: state and control over-

head increases with O(
√
n log n), where n is the number of participants in

the social network. As networked systems become increasingly deployed at

scale (e.g., in the wide area, across service providers), in high-churn envi-

ronments (e.g., developing regions, wireless, mobile social networks [120]),

and for applications with stronger demands on correctness and availability

(e.g., online storage, content voting, reputation systems), the problem of high

overhead in existing works stands to become increasingly serious; multi-hop

DHT routing mechanisms are going to be necessary.

Lack of privacy: These systems require a user to reveal social contact infor-

mation (friend lists). Some of these schemes require global distribution of this

contact information. This is unfortunate, as social contacts are considered to

be private information: leading real-world systems like Facebook [105] and

LiveJournal [121] provide users with a functionality to limit access to this

information. Forcing users to reveal this private information could greatly

81

hinder the adoption of these technologies.

A second privacy concern, common to both traditional DHTs and those

that use social networking information, is that users must communicate di-

rectly with random peers, revealing their IP addresses. This provides an

opportunity for the attacker to perform traffic analysis and compromise user

privacy [122, 123]. Prior work [12, 67]has demonstrated that a colluding ad-

versary can associate a DHT lookup with its lookup initiator, and thus infer

the activities of a user. A pseudonymous routing mechanism can defend

against such attacks, and would be especially beneficial for privacy sensitive

DHT applications [20, 118].

To address these shortcomings, we propose X-Vine, a protection mecha-

nism for large-scale distributed systems that leverages social network trust

relationships. X-Vine has several unique properties. X-Vine protects privacy

of social relationships by ensuring that a user’s relationship information is

revealed only to the user’s immediate friends. At the same time, X-Vine

also protects correctness of DHT routing, by mitigating Sybil attacks while

requiring only logarithmic state and control overhead. To the best of our

knowledge, X-Vine is the first system to provide both properties, which may

serve to make it a useful building block in constructing the next generation

of social network based distributed systems. Finally, X-Vine also provides a

basis for pseudonymous communication; a user’s IP address is revealed only

to his/her trusted social network contacts.

X-Vine achieves these properties by incorporating social network trust rela-

tionships in the DHT design. Unlike traditional DHTs, which route directly

between overlay participants (e.g., [1]), X-Vine embeds the DHT directly

into the social fabric, allowing communication through the DHT to leverage

trust relationships implied by social network links. This is done by using

mechanisms similar to network layer DHTs like VRR [14]. We leverage this

structure for two purposes. First, communication in X-Vine is carried out

entirely across social-network links. The use of social network links enables

pseudonymous communication; while the recipient may know the opaque

identifier (pseudonym) for the source, the IP address of the source is re-

vealed only to his/her friends. Second, recent work has shown that social

networks can be used to detect Sybil attacks by identifying a bottleneck cut

that connects the Sybil identities to the rest of the network [13, 73, 119]. X-

Vine enables comparable Sybil resilience by bounding the number of DHT

82

relationships that can traverse a particular edge. With this multi-hop ap-

proach, we can limit the number of Sybil identities per attack edge (attack

edges illustrated in Figure 6.1) to logarithmic in the size of the network with

logarithmic control and routing state, a dramatic reduction from previous

Sybil defense approaches. This allows X-Vine to scale to large user bases

and high-churn environments.

We evaluate X-Vine both analytically and experimentally using large scale

real-world social network topologies. Since recent work [124, 125] has advo-

cated the use of interaction networks as a more secure realization of social

trust, we also demonstrate the performance of X-Vine on interaction graphs.

From our evaluation, we find that X-Vine is able to route using 10–15 hops

(comparable to other DHTs) in topologies with 100 000 nodes while using

only O(log n) routing state. In particular, we show that the overhead of

X-Vine is two orders of magnitude smaller than Whanau. With respect to

Sybil resistance, we found that honest nodes are able to securely route to

each other with probability greater than 0.98 as long as the number of at-

tack edges is g ∈ o(n/(log n)). Using an implementation on PlanetLab, we

estimate the median lookup latency in a 100 000 node topology to be less than

1.2 seconds. Even when 20% of the nodes fail simultaneously, the lookups

still succeed with a probability greater than 95%. Finally, we also implement

a plugin for DHT designers that can enable them to easily integrate social

network contacts with a DHT by leveraging existing online social networks

like Facebook.

Our proposed techniques can be applied in a wide variety of scenarios that

leverage DHTs:

• Large scale P2P networks like Vuze/Kad/Overnet are popularly used

for file sharing and content distribution. However, these networks are

vulnerable to attacks on the routing protocol [126] and do not protect

the privacy of the user [12]. X-Vine protects against attacks that target

the DHT mechanisms and provides a basis for pseudonymous commu-

nication. Moreover, X-Vine is also robust to the high churn prevalent

in these networks.

• Applications like Coral [127], Adeona [128], and Vanish [129] are built

on top of DHTs. The security properties of these applications can

often be compromised by exploiting vulnerabilities in the DHT. As an

83

example, the security of Vanish was recently compromised by a low-

cost Sybil attack on the Vuze network [130]. Our proposed techniques

protect these applications by bounding the number of Sybil identities

in the DHT.

• Decentralized P2P anonymous communication systems like Tarzan [55],

Salsa [9] and ShadowWalker [118] assume an external Sybil defense

mechanism. X-Vine is particularly suitable for designing Sybil-resilient

P2P anonymous communication systems, since it provides secure as

well as pseudonymous routing.

• Freenet [20] is a widely used censorship resistant overlay network, but

its routing algorithm has been shown to be extremely vulnerable in

presence of even a few malicious nodes [84]. X-Vine can enable peers

to resist censorship by securely and pseudonymously retrieving data

objects from the Freenet network.

• Membership concealing overlay networks (MCONs) [85] hide the identi-

ties of the peers participating in a network (different from pseudonymity).

Our proposed techniques can provide a substrate for designing fully de-

centralized membership concealing networks.

This chapter describes and evaluates X-Vine. We start by giving a high-

level overview of the problem we address and our approach (Section 6.1),

followed by a detailed description of our routing algorithm (Section 6.2) and

its security mechanisms (Section 6.3). We then describe our experimental

results (Section 6.4). Finally, we discuss X-Vine’s limitations (Section 6.5),

and summarize (Section 6.6).

6.1 X-Vine Overview

6.1.1 Design goals

We start by defining the goals for our design.

1. Secure routing: if an honest node X performs a lookup for an identi-

fier ID, then the lookup mechanism must return the global successor of ID

84

Figure 6.1: Illustration of honest nodes, Sybil nodes, and attack edges
between them.

(present in the routing tables of honest nodes).

2. Pseudonymous communication: an adversary should not be able to deter-

mine the IP address corresponding to a user.

3. Privacy of user relationships: an adversary should not be able to infer a

user’s social contacts.

4. Low control overhead: the control overhead of the system should be small

to enable a scalable design. This excludes flooding-based and single-hop

mechanisms.

5. Low latency: the length of the path used to route to an arbitrary identifier

should be small, in order to minimize lookup latency.

6. Churn resilience: even when a significant fraction of nodes fail simultane-

ously, lookup queries should still succeed.

7. Fully decentralized design: we target a fully decentralized architecture

without any central points of trust/failure.

We note that requirements 2, 3 and 4 distinguish us from prior work—

state-of-the-art approaches do not provide pseudonymous routing, do not

preserve privacy of user relationships, and have high control overhead.

6.1.2 Threat model and assumptions

We assume that a fraction of real users are compromised and colluding.

Recent work [13, 73, 119] has leveraged the insight that it is costly for an

attacker to establish many trust relationships. Following this reasoning, we

assume that the number of attack edges, denoted by g, is bounded. Similar

85

to prior work, we assume that the attack edges are not specially chosen.

Recent work has challenged the assumption that it is costly for an attacker

to create attack edges with honest nodes in friendship graphs [124,131–133],

and proposed the use of interaction graphs as a more secure realization of real

world social trust. In this work, we will evaluate X-Vine with both traditional

friendship graphs as well as topologies based on interaction graphs. Other

mechanisms to infer the strength of ties between user [134] may also be

helpful in creating resilient social graphs, but are not the focus of this paper.

We also assume that the set of colluding compromised nodes is a Byzantine

adversary, and can deviate from the protocol in arbitrary ways by launching

active attacks on the routing protocol. In particular, the set of compromised

nodes can launch a Sybil attack by trying to insert multiple fake identities in

the system. The key assumption we make about the adversary is that Sybil

identities are distributed randomly in the DHT identifier space. We note

that this assumption is a limitation of the X-Vine protocol, as discussed in

Section 6.5. An exploration of defenses against adversaries who concentrate

their nodes in a particular region of the overlay is beyond the scope of this

paper.

6.1.3 Solution overview

We start by describing our algorithm in the context of an abstract, static

network. Suppose we have a graph G, where nodes correspond to users

of the social network, and edges correspond to social relationships between

them. Our approach runs a DHT-based routing scheme over the graph that

embeds path information in the network. We first describe how routing is

performed, and then describe how the path information it creates can be

used to mitigate Sybil attackers.

Pseudonymous routing in the social network: We construct a DHT

on top of the social network, using mechanisms similar to network layer

DHTs [14]. Each node in the network selects a random numeric identifier,

and maintains paths (trails) to its neighbors in the identifier space in a DHT-

like fashion. To join the network, a node performs a discovery process to

determine a path to its successors in the DHT. Then, the node embeds trails

in the network that point back to the joining node’s identifier. To route

86

messages, packets are forwarded along these trails. By maintaining trails to

each of the node’s successors, a node can forward a message to any point

in the namespace. Users that are directly connected by a social network

link simply communicate via the IP layer. All communication performed by

a node is done only with its friends, and this communication is done in a

manner that does not reveal the node’s local topology, preventing leakage

of friendship list information to non-friends. Routing over social links also

enables a user to communicate pseudonymous with respect to non-friends.

Protecting against Sybils: The scheme described above does not miti-

gate the Sybil attack, as a malicious node can repeatedly join with different

identifiers, and thereby “take over” a large portion of the identifier space.

Malicious nodes can in fact pretend that there is an entire network of Sybil

nodes behind themselves (Figure 6.1). To protect against the Sybil attack,

we constrain the number of paths between honest nodes and malicious nodes.

Since Sybil nodes by their very nature are likely to be behind a small “cut”

in the graph, by constraining the number of paths that may be set up, we

can constrain the impact that a Sybil node can have on the entire network.

In particular, honest nodes rate-limit the number of paths that are allowed

to be constructed over their adjacent links, thereby limiting the ability of

Sybil nodes to join the routing scheme, and hence participate in the net-

work. When a joining node attempts to establish a trail over an edge that

has reached its limit, the node adjacent to the full link sends the joining

node a message indicating failure of the join request. This limits Sybil nodes

from constructing very many paths into the network. Since Sybil nodes can-

not construct many trails, they cannot place many identifiers into the DHT.

Hence, an honest node can send traffic to another honest node by forwarding

traffic over the DHT, as trails are unlikely to traverse Sybil-generated regions

of the network.

6.2 X-Vine Protocol

The key feature of our design is that all DHT communication happens over

social network links.1 By ensuring that all communication takes place over

1Applications such as Vuze may optionally choose to benefit only from X-Vine’s Sybil
resilience, and can forgo pseudonymity by directly transferring files between overlay nodes

87

Figure 6.2: Overview of X-Vine.

social network links, we can leverage the trust relationships in the social

network topology to enforce security properties. A trivial security property

of our design is that an adversary needs to be connected to honest users via

a series of social network links to communicate with them. Moreover, the IP

address of the nodes only needs to be revealed to their contacts, enhancing

privacy for users. Most importantly, our design is able to effectively resist

Sybil attacks even when the number of attack edges is large.

6.2.1 Routing over social networks

Figure 6.2 illustrates the design of X-Vine. Our design uses a VRR-like [14]

protocol to construct and maintain state at the overlay layer. Here, we first

describe the state maintained by each node, and then describe how that state

is constructed and maintained over time.

State maintained by each node: X-Vine constructs a social overlay on

top of the social network, where a node has direct links to friends, but also

maintains “overlay links” to remote nodes. These remote nodes (overlay end-

points) are selected in a manner similar to Chord [60]: each node is assigned

an identifier from a ring namespace, and forms overlay links to nodes that are

successors (immediately adjacent in the namespace), and (optionally) fingers

(spaced exponentially around the ring). Unlike Chord however, a node is not

allowed to directly send packets to its overlay neighbor: for security reasons,

nodes only receive packets from their social network links. Hence, to forward

a packet from a node to one of its overlay endpoints, the packet will have to

after the lookup operation.

88

traverse a path in the social network graph. To achieve this, corresponding

to each of its overlay endpoints, a node maintains a trail through the social

network. Each node along the trail locally stores a record consisting of four

fields: the identifiers of the two endpoints of the trail, and the IP addresses

of the next and previous hops along the trail. Using this information, a node

can send a packet to its endpoints, by handing the packet off to the first

node along the trail, which looks up the next hop along the trail using its

trail records, and so on. Furthermore, using a Chord-like routing algorithm,

a node can route to any other node in the namespace, by (upon reaching an

endpoint) selecting the next overlay hop that maximizes namespace progress

to the destination (without overshooting). As an optimization, instead of

waiting until the endpoint is reached to determine the next overlay hop, in-

termediate nodes along the path may “shortcut” by scanning all their trail

records, and choosing the endpoint that maximizes progress in the names-

pace (see Algorithm 1 in Appendix B). If the intermediate node discovers

an endpoint that makes more namespace progress to the destination than

the current next overlay hop, the intermediate node may choose to forward

the packet towards this new endpoint, to speed its progress (while explicitly

maintaining the next overlay hop in the packet is not strictly necessary for

routing, we do so to simplify parts of our design described later).

State construction and maintenance: Since nodes can route, we can

perform other DHT operations by simply performing routing atop this struc-

ture. For example, we can execute a Chord-like join: upon arriving at the

network, a node can route a join request towards its own identifier, and the

node that receives it can return back the identifiers which should be the join-

ing node’s successors. However, there are two key changes we need to make.

First, when a node initially arrives, it does not yet have any trail state and

hence cannot forward packets. To address this, the joining node randomly

selects one of its friends in the social network to act as a bootstrap node.

The joining node sends its join request using the bootstrap node as a proxy.

Second, the joining node also needs to build trails to each of its endpoints

(e.g., its successors). To do this, for each endpoint, it sends a trail construc-

tion request to the identifier of that endpoint. As the request is routed, each

intermediate node along the path locally stores a record corresponding to the

trail. Finally, when these steps are completed, the joining node can route to

89

any node in the network (by forwarding packets through its endpoints), and

it can receive packets from any node in the network (by accepting packets

through its endpoints). To maintain this state, we need to achieve two things.

First, we would like to correctly maintain the set of records along each trail

in the presence of churn, so each node can reach the trail endpoint. This is

done in a manner similar to AODV [135]: each node along the path locally

probes its neighbors and removes trail records (sending teardown messages

upstream if necessary) corresponding to failed trails. Second, we would like

to make sure each trail points to the corresponding globally correct succes-

sor/finger. To do this, we leverage the stabilization mechanisms from Chord

and VRR [14,60].

6.2.2 Balancing routing state

Temporal correlation: while the scheme above is correct, it performs

poorly in practice. The reason for this is due to temporal correlation—since

trails are constructed using other trails, social network links that are initially

chosen to be part of a trail become increasingly likely to be part of later trails.

Because of this, nodes that join the network early tend to accumulate more

state over time. To illustrate this problem, we describe an example. Suppose

a node X has d friends a1, a2, .., ad. Suppose also that there is a trail from

X to Y for which the next hop is node ad. Next, suppose node X is an

intermediate node in a new overlay path that is being setup from node a1

(which is also the previous hop). With probability 2/d, the next hop of the

overlay path will be ad. Similarly, in the future, the probability of ad being

chosen as the next hop in an overlay path increases to 3/(d + 1), and then

to 4/(d + 2), and so on. This example illustrates that a social network link

that was initially chosen as part of a trail has an increasing chance of being

chosen in trails that are set up in the future. Consequently nodes that join

the social network early tend to be part of many trails. This is not desirable

from both a security perspective or a performance perspective.

Stabilization algorithms: To address the problem of temporal correla-

tion, we propose two modifications to the core X-Vine algorithms: The first

algorithm leverages the social connections of new users to reduce the path

lengths of existing trails. When a new node joins the system, its social con-

90

Figure 6.3: Example: backtracking.

tacts that are already part of the X-Vine system consider all trails in their

routing tables that have a path length greater than a threshold thr 1 (set to

the upper quartile of trail path path lengths). Corresponding to each such

trail, the social contacts check if modifying the trail via the new node would

reduce the path length, and if so, a teardown message is sent to the old trail

and another trail via the new node is setup. The threshold on the path length

helps to avoid needless communication for trails that are already short, and

are thus unlikely to benefit much from new edges in the social graph topology.

The second algorithm helps to load balance the routing state at nodes, and

also leads to a reduction in the path lengths of trails. This algorithm is run

by all nodes whose routing state is greater than a threshold thr 2. Such nodes

consider all trails in their routing tables whose path length is greater than a

threshold thr 1 (similar to the previous algorithm), and send messages to the

overlay end points to check if alternate trails can be established, and if their

path length is shorter than the current path length. If a shorter alternate

trail exists, then it replaces the existing trail. This helps reduce the routing

state size at congested nodes, while simultaneously reducing the trail path

lengths.

6.2.3 Bounding state with local policies

We have seen that the shortcut-based routing protocol described in Sec-

tion 6.2.1 faces the problem of temporal correlation, leading to unbounded

growth in routing state. To complement our stabilization algorithms, we

propose a mechanism by which nodes can set a hard bound on their routing

state size using local routing policies. These policies can be set to account

for heterogeneity across nodes, users’ desired degree of participation in the

network, and to limit the worst-case state overhead at any particular node.

Our architecture allows users to set two types of policies pertaining to state

maintained at their local node:Bounding routes per link: If the number of

91

trails traversing an adjacent social network link reaches a threshold bl, then

the user’s node refuses to set up any more trails traversing that link. Bound-

ing routes per node: If the number of trails traversing the user’s node reaches

a threshold value bn, then the node refuses to set up any more trails via it-

self. Due to these routing policies, it is possible that a request to set up

a trail may be unable to make forward progress in the overlay namespace.

To address this, we introduce a technique called backtracking that explores

alternate social network paths in case an intermediate node refuses to pro-

cess a path setup request. To do this, each node maintains a failed setup list,

containing a list of trails that have failed to set up. When a node attempts to

set up a trail via a next hop, and receives a rejection message indicating that

the next hop is full, the node inserts an entry into its failed setup list. Each

record in the list contains the identifier of the destination overlay endpoint

that the packet was traversing towards, and the identifier of the next hop in

the social network that rejected the path setup. When forwarding a message

to a particular destination endpoint, a node removes from consideration next

hops contained in the failed setup list corresponding to that endpoint (see

Algorithm 2 in Appendix B). The failed setup list is periodically garbage

collected by discarding entries after a timeout.

For example (Figure 6.3), suppose node A wishes to establish a path to

E, and determines B is the best next overlay hop. A places E into the next

overlay hop field in the message, and forwards the message to B. Similarly,

B forwards the message to C. Suppose D is congested (has more than bn

paths traversing it). In this case, C sends the path setup message to D, but

D responds back with a rejection message. C then stores the entry (E,D) in

its failed setup list, to indicate that establishing a path via D to reach E was

unsuccessful. C then attempts to select an alternate next hop that makes

progress in the namespace (either a route to the current next overlay hop, or

a “shortcut” route that makes more progress than the current next overlay

hop). If C does not have such a route, it sends a rejection message back to

B, which inserts the entry (E,C) in its failed setup list. This process repeats

until a path is discovered, or a time-to-live (TTL) contained in the packet is

exceeded. When the TTL is exceeded, the path setup fails, and the source

node must attempt to rejoin to establish the path.

92

6.3 Securing X-Vine

The previous section described our approach to perform routing atop the

social network. In this section, we describe how to extend and tune the

design in the previous section to improve its resilience to attack. We start

by providing an overview of attacks on our design(Section 6.3.1), and then

propose extensions to improve resilience to them (Section 6.3.2).

6.3.1 Attacks on the routing protocol

We investigate defenses to the following attacks on DHTs:

Sybil attack [8]: The attacker can insert a large number of Sybil iden-

tities in the DHT, and set up paths with their successors and predecessors.

The attack results in honest nodes’ routing tables being populated by mali-

cious Sybil identities. This increases the probability that lookup queries will

traverse some malicious nodes, which can then drop or misroute the lookup

queries. Observe that to minimize resources, it suffices for Sybil identities

to maintain paths with only nodes in the predecessor list, since paths to the

nodes in the successor list will result in a shortcut to the honest successor

nodes.

Attacks on routing table maintenance: In addition to the Sybil at-

tack, the adversary could also manipulate the routing table maintenance

protocols to increase the probability of malicious nodes being present in hon-

est nodes’ routing tables. Intercepting trails: During churn, malicious nodes

can become part of a large number of trail paths between nodes, in order

to attract lookup traffic (for example, by refusing to send trail teardown

messages). Attacking trail construction: The attacker could prevent honest

nodes from finding a trail path to their correct successor. This could be done

by dropping or misrouting the trail setup messages. Attacks on message

integrity: Malicious nodes that forward control traffic could modify the con-

tent of the messages, to disrupt trail setup (for example, by creating routing

loops). Forgery attacks: The malicious nodes could spoof source identifiers

in messages sent to honest nodes (for example, to give the appearance that

the message came from the honest node’s friends).

93

Attacks on lookups: Once the attacker is able to intercept a lookup

query, it can either drop the packet or misroute it. Such attacks can prevent

the honest nodes from either discovering their correct successor in the ring,

or discovering a malicious successor list set respectively. By advertising mali-

cious nodes as the successors of an honest joining node, a significant fraction

of the honest joining node’s traffic would traverse malicious nodes. Note that

attacks on both overlay construction and overlay routing are captured by this

attack, since in a DHT, both bootstrap and routing are accomplished by the

same operation: a lookup.

6.3.2 Proposed defenses

We note that it is imperative to secure both the routing table maintenance

and lookup forwarding. If the routing table maintenance protocol were inse-

cure, then the adversary could manipulate the routing table entries of honest

nodes to point to malicious nodes, and routing to honest nodes would not

be successful. However, even if the routing table maintenance mechanisms

are secure, the adversary still has the opportunity to drop lookup packets or

misroute them.

Mitigating the Sybil attack: To limit the impact of the Sybil attack,

we propose that nodes implement a routing policy that bounds the number

of trails that traverse a social network edge. We denote the bound parameter

as bl. Since the attacker has limited attack edges, this bounds the number of

overlay paths between the honest subgraph and the Sybil subgraph regardless

of the attacker strategy. Thus, we limit the number of Sybil identities that are

part of the honest node’s routing table. The key challenge in this approach

is to determine the bound bl that enables most honest nodes to set up trails

with each other while hindering the ability of Sybil nodes to join the DHT.

Our analytic and experimental results suggest that a bound of bl ∈ Θ(log n)

works quite well. Similar to Yu et al. [73], we assume that the bound bl is a

system wide constant known to all honest nodes. Honest nodes are able to

set up trails with each other even though there is a bound on the number of

trails per social network link because of the fast-mixing nature of the social

network. On the other hand, a Sybil attack gives rise to a sparse cut in the

social network topology, and we use this sparse cut to limit the impact of the

94

Sybil identities. The number of overlay paths between the honest and Sybil

subgraphs is bounded to g · bl. The adversary could choose to allocate each

overlay path to a different Sybil identity, resulting in g · bl Sybil identities in
the DHT (in the routing tables of honest nodes). We can further limit the

number of Sybil identities in the routing tables of honest nodes by ensuring

that the adversary must allocate at least a threshold t number of overlay

paths per Sybil identity. This would bound the number of Sybil identities

in honest nodes routing tables to g · bl/t. Note that the number of overlay

paths between the honest and Sybil regions does not change. We propose

the following mechanism to ensure that the adversary sets up trails with at

least a threshold t overlay neighbors. Nodes periodically probe their overlay

neighbors to check if each successor in their routing table has set up a trail

with at least t other nodes in the overlay neighborhood. Note that the check

is performed by directly querying the overlay neighbors. The threshold t is

set to t < 2 ·num successors to account for malicious overlay nodes returning

incorrect replies. If the adversary does not allocate t trails per Sybil identity

(set up with its successors and predecessors), the honest nodes can detect

this via probing and can teardown the trails to the malicious Sybil identity.

Note that the adversary cannot game the probing mechanism unless it has a

large number of Sybil identities in the overlay neighborhood of a node. Since

the Sybil identities are distributed at random in the overlay namespace, this

is unlikely to happen unless the adversary has a large number of attack edges

(g ∈ Ω(n/(log n))).

Securing routing table maintenance: We provide the following de-

fenses to attacks on routing table maintenance:

Trail interception attacks: Observe that our mechanism to defend against

Sybil attacks, i.e., bounding the number of trails that traverse a social net-

work link, also defends against malicious nodes that attempt to be a part

of a large number of trails. Specifically, the adversary has a quota of g · bl
trails between honest nodes and itself, and it can choose to utilize this quota

either by inserting Sybil identities in the DHT or by being part of trails be-

tween two honest nodes. Either way, the effect of this attack is limited by

the bound bl.

Trail construction attacks: Suppose that a node X is trying to set up a trail

with its overlay neighbor Y. To circumvent the scenario where a malicious

intermediate node M simply drops X’s path set up request to Y, we propose

95

that upon path setup the end point Y sends an acknowledgment along the

reverse path back to X. If after a timeout, the node X does not receive an

acknowledgment from Y, then it can retry sending the trail set up request

over a different route. Again, the fast-mixing nature of the social network

topology guarantees that two nodes are very likely to have multiple paths

between each other.

Message integrity and forgery attacks: To provide message integrity is the

use of self-certifying identifiers [136–138]. Nodes can append their public keys

to the message and produce a digital signature of the message along with the

appended public key. The self-certifying nature of identifiers ensures that

the public key for a specified node identifier cannot be forged; this enables

us to provide both message integrity as well as authentication.

Securing the lookup protocol: Even if the routing table maintenance

protocol is secure, the adversary can still drop or misroute lookup requests

that traverse itself. We secure the lookup protocol using redundant routing,

similar to Castro et al. [65]. Instead of a single lookup, a node can choose to

perform r lookups for the destination (where r is the redundancy parameter)

using r diverse trusted links in the social network topology. Redundant

routing increases the probability that at least one lookup will traverse only

honest nodes and find the correct successor. If the lookup is performed during

route table maintenance, the correct successor can be identified since it will

be impossible to set up a trail to an incorrect one; if the lookup is searching

for a particular node or data item, then self-certifying techniques can be used

to identify incorrect responses.

6.3.3 Privacy protection

All communication in X-Vine happens over social network links; while a

user’s IP address is revealed to his/her social contacts, it is not exposed to

random peers in the network. Therefore as long as a user’s social contacts are

trusted, he/she can communicate pseudonymously. Moreover, observe that

X-Vine’s mechanisms do not require a user to expose his/her social contacts.

This is in sharp contrast to prior work [1], wherein this information is revealed

as part of protocol operations to everyone in the network. Note that in

the absence of a mapping from a DHT ID to an IP address, the adversary

96

cannot perform traffic analysis to infer social contacts. The only source of

information leakage is when the adversary can map DHT IDs of two users to

their respective IP addresses (for example, by virtue of being their trusted

contacts); in this case the adversary can perform traffic analysis attacks to

infer whether the two users have a trust relationship or not. In X-Vine, the

privacy risk is with respect to social contacts, rather than random peers in

the network. Note that in this paper, we are only concerned with overlay

level adversaries; adversaries which operate at the ISP level, or have external

sources of information [139] are outside the scope of our threat model.

6.4 Experiments and Analysis

We evaluate X-Vine with theoretical analysis, experiments using real-world

social network topologies, and a prototype implementation. We measure

routing state size, lookup path lengths, security against Sybil attacks, re-

silience against churn, and lookup latency. We also developed a Facebook

application to facilitate the use of our design.

Simulation environment: We constructed an in-house event-driven

simulator. As done in [14], we bootstrap X-Vine by selecting a random node

in the social network as the first node, and the social network neighbors of

that node then become candidates to join the X-Vine network. Next, one

of these neighbors is selected to join, with a probability proportional to the

number of trust relationships it has with nodes that are already a part of the

X-Vine network. This process is then repeated. Note that some nodes may

not be successful in joining because of the bound on number of trails per link

(as discussed in detail later).

Data sets: Recent work has proposed the use of interaction graphs [124,

125] as a better indicator of real world trust than friendship graphs. Hence

we consider both traditional social network graph topologies as well as inter-

action graph topologies in our evaluation. The datasets that we use have

been summarized in Table 6.1.

Facebook friendship graph from the New Orleans regional network [125]:

The original dataset consists of 60 290 nodes and 772 843 edges. We processed

the dataset in a manner similar to the evaluation done in SybilLimit [73] and

SybilInfer [119], by imposing a lower bound of 3 and an upper bound of 100

97

on the node degree (see [73,119] for details). 2 After processing, we are left

with 50 150 nodes and 661 850 edges.

Facebook wall post interaction graph from the New Orleans regional net-

work [125]: The original dataset consists of 60 290 users. After processing,

we are left with 29 140 users and 161 969 edges. Note that links in this

dataset are directed, and we consider an edge between users only if there

were interactions in both directions.

Facebook interaction graph from a moderate-sized regional 3 network [124]:

The dataset consists of millions of nodes and edges, but our experiments

are memory limited and do not scale to millions of nodes. Instead, we first

truncate the dataset by considering only a four hop neighborhood from a seed

node. After processing, we are left with 103 840 nodes and 961 418 edges.

Synthetic scale-free graphs: Social networks exhibit a scale-free node degree

topology [112]. Our network synthesis algorithm replicates this structure

through preferential attachment, following the methodology of Nagaraja [58].

The use of synthetic scale free topologies enables us evaluate X-Vine while

varying the number of nodes in the network.

Table 6.1: Topologies

Dataset Nodes Edges Mean Degree

New Orleans Facebook
Friendship graph

50 150 661 850 26.39

New Orleans Facebook
Interaction graph

29 140 161 969 11.11

Anonymous Facebook
Interaction graph

103 840 961 418 18.51

Overhead: Figure 6.4 plots the routing table size for different successor list

sizes. We can see the temporal correlation effect here, as the distribution of

state shows super-exponential growth. Temporal correlation is highly unde-

sirable both from a performance and a security standpoint. If the few nodes

with very large state become unavailable due to churn, the network could get

2Recent work by Mohaisen et al. [140] shows that social networks may not be as fast
mixing as previously believed. However, we note that their results do not directly apply to
X-Vine since they did not consider node degree bounds in their analysis. X-Vine excludes
users having few friends from participating in the routing protocol, though such users
could use their trusted friends to lookup keys.

3Because of privacy reasons, the name of the regional network has been left anonymous
by the authors of [124].

98

 1

 10

 100

 1000

 10000

 100000

 0 10000 20000

R
ou

tin
g

ta
bl

e
si

ze

Node index

succ=1
succ=5

succ=10

(a) New Orleans Interaction graph

 1

 10

 100

 1000

 10000

 100000

 0 20000 40000

R
ou

tin
g

ta
bl

e
si

ze

Node index

succ=1
succ=5

succ=10

(b) New Orleans Friendship graph

 1

 10

 100

 1000

 10000

 100000

 0 25000 50000 75000 100000

R
ou

tin
g

ta
bl

e
si

ze

Node index

succ=1
succ=5

succ=10

(c) Anonymous Interaction graph

Figure 6.4: Routing state, with no bounds on state: Due to temporal
correlation, some nodes exhibit high state requirements.

99

 1

 10

 100

 1000

 10000

 100000

 0 10000 20000

R
ou

tin
g

ta
bl

e
si

ze

Node index

succ=1
succ=5

succ=10
Degree

(a) New Orleans Interaction graph

 1

 10

 100

 1000

 10000

 100000

 0 20000 40000

R
ou

tin
g

ta
bl

e
si

ze

Node index

succ=1
succ=5

succ=10
Degree

(b) New Orleans Friendship graph

 1

 10

 100

 1000

 10000

 100000

 0 25000 50000 75000 100000

R
ou

tin
g

ta
bl

e
si

ze

Node index

succ=1
succ=5

succ=10
Degree

(c) Anonymous Interaction graph

Figure 6.5: Routing state, with node and edge bounds: Bounding state
significantly reduces state requirements. Using a successor list of size 5, the
average routing state for the three topologies is 67, 81, and 76 records
respectively. X-Vine requires orders of magnitude less state than
Whanau [1].

100

destabilized. Moreover, if one of these nodes is malicious, it could easily in-

tercept a large number of lookups and drop them. To address this, we enable

the routing policy that bounds the number of paths traversing nodes and

links. Based on our analytic model in Appendix A, we propose the following

bound on the number of paths per link: bl = α · 2 · num successors · log(n),
where α is a small fixed constant. The bound per link ensures that if a node

has degree d, then its routing table size will never exceed d · bl ∈ O(log n).

We can see that the routing state does not undergo an exponential increase

as in previous plots. Moreover, routing state increases with node degrees,

which is desirable. Based on these routing table sizes, we can estimate the

communication overhead of X-Vine by computing the cost of sending heart-

beat traffic for all records in the routing table. Considering the routing table

size to be 125 records, UDP ping size to be 40 bytes, and a heartbeat interval

of 1 s, the estimated mean communication overhead is only 4.8KBps.

Comparison with Whanau [1]: Routing state in Whanau depends on the

number of objects stored in the DHT. Routing tables in Whanau are of size

Θ(
√
no log no), where no is the number of objects in the DHT. If there are too

many objects stored in the DHT, Whanau resorts to maintaining information

about all the nodes and edges in the social network (increasing state/overhead

to Θ(n)). If there are too few objects in the DHT, Whanau resorts to flooding

to find objects [1]. We note that such properties make Whanau unsuitable

for many common applications. Even if we consider the case where each

node in the DHT stores only tens of objects, the average routing table size in

Whanau for the 103 840 node anonymous interaction graph is about 20 000

records—an increase of more than two orders of magnitude as compared

with X-Vine. If we consider a heartbeat interval of 1 second in Whanau (in

order to accurately maintain object states for common DHT applications),

the resulting communication overhead is about 800KBps. This difference

increases further with an increase in the number of objects in the DHT or

the size of the network. For instance, we scaled up our experiments to a

larger 613 164 node anonymous interaction graph topology using a machine

with 128GB RAM, and found that the average routing state in X-Vine using

a successor list size of 10 was only 195 records, as compared with more than

50 000 records in Whanau. Note that routing state in X-Vine is independent

of the number of objects in the DHT.

101

Table 6.2: Mean Lookup Path Length

Succ New Orleans interaction New Orleans friendship Anonymous interaction

r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 r = 1 r = 5 r = 10

1 97.9 57.7 51.7 103.6 57.5 48.1 166.7 96.3 81.0
5 30.0 18.2 16.8 34.8 19.3 16.7 48.9 25.5 21.7
10 20.2 13.0 12.16 23.1 13.7 12.1 29.9 16.9 14.8
20 15.4 10.3 9.6 17.0 10.7 9.45 21.0 12.8 11.3

False Positive Analysis: Next, we consider the impact of link/node

path bounds on honest node’s ability to join the DHT. We found that most

honest nodes were able to join the DHT due to the fast mixing nature of

honest social networks. In fact, for all our experimental scenarios, the false-

positive rate was less than 0.5%, which is comparable to the state-of-the-art

systems [73, 119]. By tuning the parameter bl, it is possible to trade off the

false-positive rate for Sybil resilience: bl will reduce the false-positive rate at

the cost of increasing the number of Sybil identities in the system. For the

remainder of the paper, we shall use α = 1, β = 5.

Path Length Analysis: Table 6.2 depicts the mean lookup path lengths

for the real world datasets with varying successor list sizes and varying redun-

dancy parameter. We first observe that lookup performance improves with

increasing successor list sizes. For example, in the New Orleans interaction

graph, the mean lookup path length decreases from 97.9 to 15.4 when the

successor list size increases from 1 to 20 (using r = 1). Further improvements

in performance can be realized by performing redundant lookups as described

in Section 6.3 and caching the lookup with the smallest path length. We can

see that in the same dataset, mean lookup path length decreases from 15.4 to

10.3 when the redundancy parameter is increased from r = 1 to r = 5 (using

successor list of size 20). Further increases in redundancy show diminishing

returns. Observe that when the successor list size is at least 10, and the

redundancy parameter is at least 10, then the mean lookup path lengths for

all datasets are less than 15 hops. Increasing the successor list size to 20

(and keeping r = 10) reduces this value to less than 11.5 for all datasets.

Security under Sybil Attack: Recall that if the adversary has g attack

edges, then the number of trails between the honest and the Sybil subgraph

is bounded by g · bl (regardless of the attacker strategy). Our attack method-

ology is as follows: we randomly select a set of compromised nodes until

the adversary has the desired number of attack edges. The compromised

102

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 500 1000 1500 2000

P
ro

ba
bi

lit
y

of
 S

ec
ur

e
Lo

ok
up

Attack Edges

r=2, succ=10
r=5, succ=10
r=2, succ=20
r=5, succ=20

(a) New Orleans interaction graph

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 1000 2000 3000 4000 5000

P
ro

ba
bi

lit
y

of
 S

ec
ur

e
Lo

ok
up

Attack Edges

r=2, succ=10
r=5, succ=10
r=2, succ=20
r=5, succ=20

(b) New Orleans friendship graph

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 2000 4000 6000 8000 10000

P
ro

ba
bi

lit
y

of
 S

ec
ur

e
Lo

ok
up

Attack Edges

r=2, succ=10
r=5, succ=10
r=2, succ=20
r=5, succ=20

(c) Anonymous Interaction graph

Figure 6.6: Probability of secure lookup as a function of number of attack
edges.

103

nodes then launch a Sybil attack, and set up trails between Sybil identities

and their overlay neighbors. If the trail set up request starting from a Sybil

node gets shortcutted back to the Sybil identities, the request is backtracked.

This ensures that the adversary uses only a single attack edge per trail. Node

identifiers of Sybil identities are chosen at random with the adversarial goal

of intercepting as many lookups as possible. All lookups traversing compro-

mised/Sybil nodes are considered unsuccessful.

Figure 6.6 plots the probability of a secure lookup as a function of number

of attack edges, redundancy parameter, and size of successor list. We find

that the probability of secure lookup increases as the redundancy parameter

is increased. This is because as the number of redundant lookups increases,

there is a greater chance that a lookup will traverse only honest nodes and

return the correct result. We also find that the probability of secure lookup

also increases when the size of the successor list increases. This is because

increasing successor list size reduces the mean lookup path length, reducing

the probability that an adversary can intercept the lookup query. As long

as g ∈ o(n/(log n)), the probability of secure lookup can be made arbitrarily

high by increasing the redundancy parameter and the successor list size.

Finally, reducing bl would further limit the impact of Sybil identities, at the

cost of increased false positives.

Churn Analysis: Next, we evaluate the performance of X-Vine under

churn. We are interested in the static resilience of X-Vine, i.e., the probabil-

ity of lookup success after a fraction of the nodes in the system fail simulta-

neously. To account for churn, we modified the lookup algorithm to backtrack

whenever it cannot make forward progress in the overlay namespace. Fig-

ure 6.7 depicts the mean probability of lookup success as a function of the

fraction of nodes that fail simultaneously, averaged over 100 000 lookups.

Similar to the analysis of lookup security, we can see that an increase in

either the redundancy parameter or the successor list size result in improved

resilience against churn. We can also see that as the fraction of failed nodes

increases, the probability of lookup success decreases, but is still greater than

0.95 for all scenarios using r = 4 and succ = 20.

PlanetLab Implementation: To validate our design and evaluate lookup

latency in real-world environments, we implemented the X-Vine lookup pro-

tocol in C++ as a single-threaded program using 3 000 LOC.We used libasync

104

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 2 4 6 8 10 12 14 16 18 20

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss
fu

l l
oo

ku
p

Percentage of failed nodes

succ=10, r=1
succ=10, r=4
succ=20, r=1
succ=20, r=4

(a) New Orleans Interaction graph

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 2 4 6 8 10 12 14 16 18 20

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss
fu

l l
oo

ku
p

Percentage of failed nodes

succ=10, r=1
succ=10, r=4
succ=20, r=1
succ=20, r=4

(b) New Orleans Friendship graph

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2 4 6 8 10 12 14 16 18 20

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss
fu

l l
oo

ku
p

Percentage of failed nodes

succ=10, r=1
succ=10, r=4
succ=20, r=1
succ=20, r=4

(c) Anonymous Interaction graph

Figure 6.7: Lookup resilience against churn.

105

[141, 142] and Tame [143] to implement non-blocking socket functionality

(UDP) in an event-based fashion. We ran our implementation over 100 ran-

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 100 1000 10000

C
D

F

Latency (ms)

X-Vine
Chord

Figure 6.8: Lookup latency.

domly selected nodes in the PlanetLab network. We used a synthetic scale-

free graph as the social network topology. The duration of the experiment

was set to 1 hour, and nodes performed lookups every 1 second. Figure 6.8

depicts the CDF of observed one-way lookup latencies. We can see that the

median lookup latency was only 400ms (as compared to 200ms in Chord),

for the mean lookup path length of 5 hops (not shown in the figure). Using

these values, we can estimate the median lookup latency for mean lookup

path lengths of 10 hops and 15 hops (that were observed in our experiments

over real world social network topologies in Table 6.2) to be about 800ms

and 1200ms respectively. We see some outliers in Figure 6.8 due to the pres-

ence of a few slow/unresponsive nodes in PlanetLab. For this experiment, we

mapped vertices in the social network topology to random PlanetLab nodes

(possibly in different geographic locations). Thus, our analysis is conserva-

tive; accounting for locality of social network contacts would likely improve

the lookup performance.

Facebook Application: To bootstrap a X-Vine node, its user needs

to input the IP addresses of his/her friends. Since this can be a cum-

bersome for a user, we implemented a Facebook application (available at

http://apps.facebook.com/x--vine) that automates this process and im-

proves the usability of our design. The work flow of the application is as

follows: (i) When a user visits the Facebook application URL, Facebook

checks the credentials of the user, the user authorizes the application, and

then the request gets redirected to the application hosting server. (ii) The

106

application server authenticates itself, and is then able to query Facebook for

user information. The application server records the user information along

with the user IP address. (iii) The application server then queries Facebook

for a list of user’s friends, and returns their previously recorded IP addresses

(if available) to the user.

This list of IP addresses could then be used by the DHT software to boot-

strap its operations. Our implementation demonstrates that a user’s social

contacts can be integrated into the DHT protocol using only a few hundred

lines of glue code. Keeping in spirit with our fully decentralized design goal,

in future, our application could be implemented on a decentralized platform

like Diaspora [144] such that the app server is not a central point of trust or

failure.

6.5 Limitations

We now discuss some limitations of our design. First, X-Vine requires a

user’s social contacts to be part of the overlay; the DHT needs to be boot-

strapped from a single contiguous trust network. Next, X-Vine assumes that

Sybil identities are distributed randomly in the DHT identifier space. We

emphasize that this assumption is shared by prior systems [74], and that de-

fending multi-hop DHTs against targeted clustering attacks is currently an

open problem. In future work, we will investigate the possibility of adapt-

ing the cuckoo hashing mechanism [117] proposed by Lesniewski-Laas (for

one-hop DHTs) in the context of securing multi-hop DHTs. X-Vine also

does not defend against attackers who target users by compromising nodes

close to them in the social network topology. Finally, applications using

X-Vine experience higher than usual latencies since all communications are

pseudonymous and traverse multiple social network links.

6.6 Summary

We described X-Vine, a protection mechanism for DHTs that operates en-

tirely by communicating over social network links. X-Vine requires O(log n)

state, two orders of magnitude less in practical settings as compared with ex-

107

isting techniques, making it particularly suitable for large-scale and dynamic

environments. X-Vine also enhances privacy by not revealing social relation-

ship information and by providing a basis for pseudonymous communication.

108

CHAPTER 7

PISCES: TRUSTWORTHY AND

SCALABLE ANONYMOUS

COMMUNICATION

To our knowledge, no proposed system securely leverages trust information

in a scalable anonymity system. ShadowWalker is secure and scalable, but

incorporating trust information is very difficult due to the rules governing

communication links. Johnson et al. propose a method to incorporate trust

into a Tor-like system, in which all proxies are known to all users [145, 146],

but it cannot be easily applied to P2P systems in which users only know

about a small set of all proxy nodes. Both Nagaraja [58] and Danezis et

al. [59] describe a compelling vision for incorporating trust into P2P anony-

mity by building circuits over edges in a social network graph. Unfortunately,

social links cannot be fully trusted, as users can be manipulated into adding

links [131,132]. This fact makes both approaches vulnerable to route capture

attacks, in which the entire circuit is comprised of attacker-controlled nodes.

We propose to bring together the benefits of trust relations, in the form

of a social network, with the advantages of secure random walks in a P2P

environment. Simply put, we construct the random walks on a social network

topology to select circuits in such a way that they cannot be manipulated

by the attacker. This provides substantial protection to users, even when

they add a few social links to malicious peers. The main technique that we

leverage for our random walks is the reciprocal neighborhood policy (RNP).

The RNP states that all links in the graph must be bi-directional; for social

networks, this means that social relationships must be mutual (friends, not

followers). By providing techniques that enforce this policy, we ensure that

a random walk on the topology is truly random. Further, to prevent an

attacker from benefiting by creating a large clique of malicious peers in the

graph, we bias random walks away from peers with many friends.

Using the RNP, we present the design of Pisces, a P2P anonymity system

that uses secure random walks on social networks to take advantage of trust

without being exposed to circuit manipulation. A core contribution of our

109

work is a technique for enforcing the RNP in a fully decentralized fashion.

We efficiently distribute each node’s current list of contacts so that those

contacts can verify periodically that they are in the list. A contact that

should be in the list, but is not, can remove the node permanently from its

contacts. Further, the list is signed by the node, so any mismatched lists for

the same time period constitute proof that the node is cheating.1 First we

demonstrate through a combination of analysis, simulation, and experiments,

that our RNP provides good deterrence against active attacks. Next, we also

show that our distributed design provides robust enforcement of the RNP,

with manageable overhead for distributing and checking contact lists.

Based on the RNP, we also present a circuit construction algorithm for

Pisces. Using a real world social network topology and a reasonable set

of trust assumptions, we find that Pisces significantly outperforms Shad-

owWalker, and provides up to 6 bits higher entropy in a single communica-

tion round. Also, compared with the naive strategy of using conventional

random walks over social networks (as in the Drac system), Pisces provides

twice the amount of entropy over 100 communication rounds.

This chapter is organized as follows. We present an overview of our system

and the Pisces protocol in Section 7.1. We evaluate Pisces in Section 7.2,

Section 7.3, and Section 7.4. We present a discussion in Section 7.5, and

summarize in Section 7.6.

7.1 Pisces Protocol

7.1.1 Design goals

1. Scalable anonymity: we are interested in the design of anonymous com-

munication systems that can scale to millions of users and relays, with low

communication overhead. Since anonymity is defined as the state of being

unidentifiable in a group [147], architectures that can support millions of

users provide the additional benefit of increasing the overall system anony-

mity.

2. Trustworthy anonymity: we target an architecture that is able to leverage

1In astrology, though not according to any source we can still find, it is said that a
smart Pisces is good at detecting liars; hence the name of our system.

110

a user’s social trust relationships to improve the security of anonymous com-

munication. Current mechanisms for scalable anonymous communication are

based on structured peer-to-peer topologies [9,25,66,118], and are unable to

leverage trust represented in unstructured social network graphs (G).

3. Decentralized design: the design should not have any central entities. Cen-

tral entities are attractive targets for attackers, in addition to being a single

point of failure for the entire system.

7.1.2 Threat model

In this work, we consider a colluding adversary who can launch Byzantine

attacks against the anonymity system. The adversary can perform passive

attacks such as logging information for end-to-end timing analysis [32], as

well as active attacks such as deviating from the protocol and selectively

denying service to some circuits [54].

We assume the existence of mechanisms to defend against the Sybil at-

tack [73, 119]. In particular, we consider two defense models: (a) an ideal

Sybil defense which does not allow the insertion of any Sybil identity and

(b) a realistic Sybil defense which allows the insertion of a bounded number

of Sybil identities in the system. The latter model also requires the number

of attack edges to be bounded by g = h
log h

, where h is the number of honest

nodes in the system.

7.1.3 System model and assumptions

Each node generates a local public-private key pair. Pisces is a fully de-

centralized protocol and does not assume any PKI infrastructure. A node’s

identity in the system refers to its public key. Existing Sybil defense mech-

anisms can be used to validate node identities (public keys). We assume

that the identities in the system can be blacklisted; i.e., the adversary can-

not whitewash its identities by rejoining the system with a different public

key. This is a reasonable assumption, since (a) mechanisms such as Sybil-

Limit only allow the insertion of a bounded number of Sybil identities, and

(b) replacing deleted attack edges is expensive for the attacker, particularly

in a social network graph based on interactions. Finally, we assume loose

111

time synchronization amongst nodes. Existing services such as NTP [148]

can provide time synchronization on the order of hundreds of milliseconds in

wide area networks [149].

7.1.4 Problem overview

Random walks are an integral part of many anonymity systems. In a random

walk based circuit construction, an initiator I of the random walk first selects

a random node A from its neighbors in some topology (in our case, the social

network graph). The initiator sets up an onion routing circuit with node

A, and uses the circuit to download a list of node A’s neighbors (containing

the IP addresses and public keys of neighbors). Node I can then select a

random node B from the downloaded list of node A’s neighbors, and extend

the onion routing circuit to node B. This process can be repeated to set up

a circuit of length l.

Random walks are vulnerable to active route capture attacks that enable

an adversary to bias the peer discovery process towards colluding malicious

nodes. First, malicious nodes can exclude honest nodes from their neighbor

list to bias the peer discovery process. Second, malicious nodes can modify

the public keys of honest nodes in their neighbor list. When an initiator of

the random walk extends a circuit from a malicious node to a neighboring

honest node, the malicious node can simply emulate the honest neighbor.

The malicious node can repeat this process for further circuit extensions as

well. Finally, the malicious nodes can add more edges between each other in

the social network topology to increase the percentage of malicious nodes in

their neighbor lists.

To secure the random walk process, we first propose a policy which allows

users to blacklist their neighboring node(s) if the neighbor is not advertising

their information correctly. Second, we propose a protocol that securely

realizes the above policy by detecting instances of route capture attacks by

malicious nodes.

112

7.1.5 Reciprocal neighborhood policy

We present a new primitive for securing random walks, which we call recip-

rocal neighbor policy. Our main idea is to consider undirected versions of

structured or unstructured topologies, and then entangle the routing tables

of neighboring nodes with each other; i.e., if a malicious node X does not

correctly advertise an honest node Y in its neighbor list, then Y also excludes

X from its neighbor list (tit-for-tat).

The reciprocal neighborhood policy ensures that route capture attacks

based on incorrect advertisement of honest nodes during random walks serves

to partially isolate malicious nodes behind a small cut in the topology, reduc-

ing the probability that they will be selected in a random walk. In particular,

this policy mitigates the first two types of route capture attacks described

above, namely the exclusion of malicious nodes, as well as the public key

modification attack. However, the adversary can still bias the peer discovery

process by continuing to keep all honest nodes in its neighbor list while insert-

ing a large number of malicious nodes therein. Thus, as described so far, such

a reciprocal neighborhood policy would only be effective for topologies where

node degrees are bounded as well as homogeneous, such as structured peer-

to-peer topologies like Chord [60] and Pastry [61]. However, node degrees in

unstructured social network topologies are highly heterogeneous, presenting

an avenue for attack.

Handling the node degree attack

Addition of edges amongst colluding malicious nodes in a topology increases

the probability that a malicious node is selected in a random walk. To

prevent such increasing node degree attacks, we propose to perform random

walks using the Metropolis-Hastings modification [111,150] — the transition

matrix used for our random walks is as follows:

Pij =







min(1
di
, 1
dj
) if i→ j is an edge in G

0 otherwise
, (7.1)

where di denotes the degree of vertex i in G. Since the transition proba-

bilities to neighbors may not always sum upto 1, nodes add a self loop to

the transition probabilities to address this. The Metropolis-Hastings modi-

113

fication ensures that attempts to add malicious nodes in the neighbor table

decrease the probability of malicious nodes being selected in a random walk.

We will show that the Metropolis-Hastings modification along with recip-

rocal neighborhood policy is surprisingly effective at mitigating active attacks

on random walks. A malicious node’s attempts to bias the random walk pro-

cess by launching route capture attacks reduce its own probability of getting

selected as an intermediate node in future random walks, nullifying the effect

of the attack.

7.1.6 Securing reciprocal neighbor policy

We now present our protocol for securely implementing the reciprocal neigh-

borhood policy.

Intuition: Our key idea is to keep each node’s neighbor list static for the

duration of a time interval (t), regardless of churn events in the network,

such as node joins or leaves. This proposal is a departure from conventional

networks where neighbor lists are updated as soon as a node learns about

churn events. The main advantage in having a static neighbor list for the full

duration of a time interval is that presence of conflicting neighbor lists issued

by a malicious node becomes a clear indication of malicious behavior, and can

be used by nodes to set up blacklists. On the other hand, if malicious nodes

advertise a single neighbor list for the entire time slot, then honest neighbors

can directly query their neighbors to check if they have been included in

the neighbor lists. To handle churn, all nodes update their neighbor lists

after every time interval in a synchronized fashion (based on our assumption

of loose time synchronization). The duration of the time interval for which

the policy remains static determines the tradeoff between the communication

overhead for securing the reciprocal neighborhood policy and the unreliability

of circuit construction due to churn.

Setting up static neighbor list certificates: A short time prior to the begin-

ning of a new time interval, each node sets up a new neighbor list that it will

use in the next time interval:

1. Liveness check : In the first round, nodes exchange messages with their

trusted neighbors to check for liveness and reciprocal trust. A recip-

rocal exchange of messages ensures that both neighbors are interested

114

in advertising each other in the next time interval (and are not in each

other’s local blacklists). Nodes wait for a time duration to receive these

messages from all neighbors, and after the timeout, construct a prelim-

inary version of their next neighbor list, comprising node identities of

all nodes which responded in the first communication round.

2. Degree exchange: Next, the nodes broadcast the length of their prelim-

inary neighbor list to all the neighbors. This step is important since

Metropolis-Hastings random walks require node degrees of neighboring

nodes to determine their transition probabilities.

3. Final list : After receiving these broadcasts from all the neighbors, a

node creates a final neighbor list and digitally signs it with its private

key. The final list includes the IP address, public key, and node degree

of each neighbor, as well as the time interval for the validity of the list.

Note that a neighbor may become offline between the first and second

step, before the node has a chance to learn its node degree, in which

case it can simply be omitted from the final list.

4. Local integrity checks: At the beginning of every new time interval,

each node queries all its neighbors and downloads their signed neighbor

lists. When a node A receives a neighbor list from B, it performs local

integrity checks, verifying that B’s neighbor entry for A contains the

correct IP address, public key, and node degree. Additionally, it verifies

that the length of the neighbor list is at most as long as was broadcast

in phase 2. (Note that intentionally broadcasting a higher node degree

is disadvantageous to a B, as it will reduce the transition probability

of it being chosen by a random walk.) If any local integrity checks

fails, A places B in its permanent local blacklist, severing its social

trust relationship with B and refusing all further communication. If all

the checks succeed, then these neighbor lists serve as a cryptographic

commitment from these nodes–the presence of any conflicting neighbor

lists for the same time interval issued by the same node is a clear

evidence of misbehavior.

If B’s neighbor list omits A entirely, or if B simply refuses to send its

neighbor list to A, B is placed on a temporary blacklist, and A will

refuse further communication with B for the duration of the current

time period, preventing any circuits from being extended from A to

B. (Effectively, A performs a selective denial-of-service against B; see

115

Section 7.4.5 for more discussion of this.) The blacklist only lasts for the

duration of the current round, since the omission could have resulted

of a temporary communication failure.

Duplicate detection: Next, we need to ensure that B uses the same neighbor

list during random walks as it presented to its neighbors. Our approach is

to use the Whanau DHT to check for the presence of several conflicting

neighbor lists signed by the same node for the same time period. After

performing the local checks, A will store a copy of B’s signed neighbor list

in the Whanau, using B’s identity (namely, its public key) as the DHT key.

Then, when another node C performs a random walk that passes through B,

it will receive a signed neighbor list from B. It will then perform a lookup

in the DHT for any stored neighbor lists under B’s key. If it discovers a

different list for the same period with a valid signature, then it can notify

B’s neighbors about the misbehavior, causing them to immediately blacklist

B.

One challenge is that the Whanau lookups are not anonymous and may

reveal to external observers the fact that C is performing a random walk

through B. This information leak, linking C and B, can then be used to

break C’s anonymity. To address this problem, we introduce testing random

walks that are not actually used for anonymous communication but are other-

wise indistinguishable from regular random walks. Whanau lookups to check

for misbehavior are performed during2 testing random walks only, since infor-

mation leaks in that case will not reveal private information, whereas during

regular random walks no lookups are performed. If each node performs a

small number of testing walks within a each time period, any misbehavior

will be detected with high probability.

Blacklisting: When C detects a conflicting neighbor list issued by B, it

immediately notifies all of B’s neighbors (as listed in the neighbor list stored

in the DHT), presenting the two lists as evidence of misbehavior. B’s neigh-

bors will thereafter terminate their social relationships with B, blacklisting it.

Note, however, that the two conflicting lists form incontrovertible evidence

that B was behaving maliciously, since honest nodes never issue two neigh-

bor lists in a single time interval. This evidence can be broadcast globally

2More precisely, the lookups must happen after the testing walk is complete, to ensure
that information leaks from lookups cannot be used to distinguish it from a regular walk.

116

to ensure that all nodes blacklist B, as any node can verify the signatures

on the two lists, and thus B will not be able to form connections with any

honest nodes in the system. Moreover, honest nodes will know not to select

B in any random walk, effectively removing it from the social graph entirely.

Proactive vs. reactive security: Our system relies on detecting malicious

behavior and blacklisting nodes. Thus, as described so far, Pisces provides

reactive security. To further strengthen random walk security in the scenario

when the adversary is performing route capture for the first time, we propose

an extension to Pisces that aims to provide proactive security. We propose

a discover but wait strategy, in which users build onion routing circuits for

anonymous communication, but impose a delay between building a circuit

and actually using it for anonymous communication. If misbehavior is de-

tected by a testing random walk within the delay period, the circuit will be

terminated as B’s neighbors blacklist it; otherwise, if a circuit survives some

timeout duration, then it can be used for anonymous communication.

Performance optimization: Using all hops of a random walk for anonymous

communication has significant performance limitations. First, the latency

experienced by the user scales linearly with the random walk length. Second,

long circuit lengths reduce the overall throughput that a system can offer to

a user. Inspired by prior work [118], we propose the following performance

optimization. Instead of using all hops of a random walk for anonymous

communication, the initiator can use the random walk as a peer discovery

process, and leverage the kth hop and the last hop to build a two-hop circuit

for anonymous communication. In our evaluation, we find that values of k

that are close to half the random walk length provide a good tradeoff between

anonymity and performance.

7.2 Evaluation: Reciprocal Neighborhood Policy

In this section, we evaluate Pisces with theoretical analysis as well as ex-

periments using real-world social network topologies. In particular, we (a)

show the security benefits provided by the RNP, (b) evaluate the security,

performance, and overhead of our protocol that implements the RNP and (c)

evaluating the overall anonymity provided by Pisces.

We consider five datasets for our experiments, which were processed in a

117

manner similar to evaluation done in SybilLimit [73] and SybilInfer [119]: (i)

a Facebook friendship graph from the New Orleans regional network [125],

containing 50 150 nodes and 772 843 edges; (ii) a Facebook wall post interac-

tion graph from the New Orleans regional network [125], containing 29 140

users and 161 969 edges; (iii) a Facebook interaction graph from a moderate-

sized regional network [124], containing about 380 564 nodes and about 3.24

million edges; (iv) a Facebook friendship graph from a moderate-sized regional

network [124], containing 1 033 805 nodes and about 13.7 million edges; and

(v) Synthetic scale-free graphs: Social networks exhibit a scale-free node de-

gree topology [112]. Our network synthesis algorithm replicates this structure

through preferential attachment [58].

To demonstrate the effectiveness of the RNP primitive for implementing

trust-based anonymity, let us assume for now that there is a mechanism to

securely achieve the RNP, i.e., that if a node X does not advertise a node Y

in its fingertable, then Y also excludes X. In this scenario, we are interested

in characterizing the probability distribution of random walks terminating at

malicious nodes. In our analysis, we consider two attack models: (a) an ideal

Sybil defense mechanism that does not permit any Sybil attacks and (b) a

realistic (imperfect) Sybil defense that tolerates h
log h

attack edges and admits

10 Sybils [73] per attack edge. First, we consider the security of reciprocal

neighborhood policy under an ideal Sybil defense.

Theorem 1. Node degree attack: Given h honest nodes and m malicious

nodes that have g edges (attack edges) amongst each other in a connected

social network, the adversary cannot bias the stationary distribution of an

honest random walk by adding edges amongst malicious nodes.

Proof. Let us denote πi as the stationary probability for node i, and let Pij

denote the transition probability from node i to node j. Let n denote the total

number of nodes in the social network (n = h+m). Since the transition prob-

abilities between nodes are symmetric (Pij = Pji = min
(

1
degree(i)

, 1
degree(j)

)

),

observe that ∀z, πz = 1
n
is solution to the equation πi · Pij = πj · Pji. Since

social networks are non-bipartite as well as undirected graphs, the solution

to the above equation (π = 1
n
) must be the unique stationary distribution

for the random walk. Thus the introduction of new edges amongst malicious

nodes does not change the uniform stationary distribution of the random

walk.

118

(a) Without attack

(b) g = 1000 attack edges

(c) g = 2000 attack edges

Figure 7.1: Probability of the l’th hop being compromised (Sampling Bias),
under an increasing node degree attack: For short random walks, this is a
losing strategy for the adversary. For longer random walks, the adversary
does not gain any advantage.

119

Next, we present simulation results using a synthetic scale-free topology

with 1000 nodes. Figure 7.1(a) depicts the probability of a Pisces random

walk terminating at malicious nodes as a function of random walk length for

g = 1000 (100 malicious nodes) and g = 2000 (250 malicious nodes). We can

see that the random walk quickly reaches its stationary distribution, and at

the stationary distribution, the probability of a random walk terminating at

one of the malicious nodes is 0.1 and 0.25 respectively. Figure 7.1(b) and (c)

depict the probability of a random walk terminating at one of the malicious

nodes under the node degree attack, for g = 1000 and g = 2000 respectively.

We can see that adding edges amongst malicious nodes does not help the

adversary for any random walk length.

Theorem 2. Local blacklisting: Suppose that an adversary sacrifices y ≤ g

attack edges. While the stationary distribution of the random walk remains

uniform, the transient distribution of the random walk terminating at mali-

cious nodes becomes smaller than without attack.

H M

P

P

MH

HM

M M
HH P

P

Figure 7.2: Attack model.

Proof. To characterize the transient distribution of the random walk, we

model the process as a Markov chain (shown in Figure 7.2). Let us denote

the honest set of nodes by H, and the set of malicious nodes by M .

The probability of an l hop random walk ending in the malicious region

(P (l)) is given by:

P (l) = P (l − 1) · PMM + (1− P (l − 1)) · PHM . (7.2)

The terminating condition for the recursion is P (0) = 1, which reflects

that the initiator is honest.

We can estimate the probabilities PHM and PMH as the forward and back-

ward conductance [110] between the honest and the malicious nodes, denoted

by φF and φB respectively. Thus we have that:

120

P (l) = P (l − 1) · (1− φB) + (1− P (l − 1)) · φF

= P (l − 1) · (1− φB − φF) + φF . (7.3)

P (l) = φF · [1 + (1− φB − φF) + (1− φB − φF)
2

. . .+ (1− φB − φF)
l−1]. (7.4)

With g edges between honest and malicious nodes, we can estimate the

forward conductance φF as follows:

φF =
Σx∈HΣy∈Mπx · Pxy

πH

=
Σx∈HΣy∈M · Pxy

|H| = O
(g

h

)

. (7.5)

Similarly, with g edges between honest and malicious nodes, the backward

conductance φB is estimated as:

φB =
φF · |H|
|M | =

O(g
h
) · h
m

= O
(g

m

)

. (7.6)

Thus, we have that φF = O(g
h
), and φB = O(g

m
). If malicious nodes ex-

clude y edges to honest nodes from their fingertables, application of the RNP

ensures that the honest nodes also exclude the y edges from their fingertables

(local blacklisting). Thus, route capture attacks result in deleting of attack

edges which reduces both forward and backward transition probabilities.

Observe that the probability of the first hop being in the malicious region

is equal to φF , which gets reduced under attack. We will now show this for a

general value of l. Following Equation (7.4) and using Σi=m
i=0 x

i = 1−xm+1

1−x
for

0 < x < 1, we have that:

121

P (l) =
φF · (1− (1− φB − φF)

l)

1− (1− φB − φF)

=
φF

φF + φB

· (1− (1− φB + φF)
l). (7.7)

Using φB = h
m
· φF , we have that:

P (l) =
m

n
· (1− (1− φB + φF)

l)

P (l) =
m

n
·
(

1−
(

1− n

m
· φF

)l
)

. (7.8)

Differentiating P (l) with respect to φF , we have that:

d

dφF

(P (l)) =
m

n
·
(

l ·
(

1− n

m
· φF

)l−1
)

. (7.9)

Note that (1− n
m
φF) = (1−φB−φF) ≥ 0. This implies d

dφF
P (l) ≥ 0. Thus,

P (l) is an increasing function of φF , and since the reduction of the number

of attack edges reduces φF , it also leads to a reduction in the transient

distribution of the random walk terminating at malicious nodes.

Next, we validate our analysis using simulation. Figure 7.3 depicts the

probability of a random walk terminating at one of the malicious nodes as

a function of the number of attack edges as well as the fraction of sacrificed

attack edges. We can see that in all scenarios, this bias is a decreasing

function of the fraction of deleted edges. Moreover, it is notable that the

decrease is larger for shorter random walks than for longer random walks.

This reflects the fact that the stationary distribution under local blacklisting

being unchanged, which we address next.

Theorem 3. Global blacklisting: suppose that x ≤ m malicious nodes sacri-

fice y1 ≤ g attack edges. Also suppose that these x malicious nodes originally

had y2 ≤ g attack edges. The stationary probability of random walk ter-

minating at malicious nodes gets reduced proportional to x. The transient

distribution of stationary walks terminating at malicious nodes is reduced as

a function of y2.

122

(a) l = 1

(b) l = 3

(c) l = 6

Figure 7.3: Probability of the l’th hop being compromised (Sampling Bias)
under a route capture attack. As more edges to the honest nodes are
removed, the attacker’s loss is higher. Note that the impact is very high on
small length random walks, but gets smaller for longer length random walks.

123

Proof. If x malicious nodes perform the route capture attack and are globally

blacklisted, these nodes become disconnected from the social trust graph. It

follows from our analysis of Theorem 1 that the stationary distribution of

the random walk is uniform for all connected nodes in the graph. Thus,

the stationary distribution of random walks terminating at malicious nodes

gets reduced from m
m+h

to m−x
m−x+h

. Furthermore, it follows from our proof of

Theorem 2 that the transient distribution of random walks terminating at

malicious nodes is an increasing function of the number of remaining attack

edges, i.e, an increasing function of y2.

Figure 7.4 depicts the probability of random walks terminating at malicious

nodes as a function of number of attack edges as well as the fraction of deleted

edges when honest nodes use a global blacklisting policy. Again, we can see

that sacrificing attack edges so as to perform route capture attacks is a losing

strategy for the attacker. Moreover, the decrease is similar for all random

walk lengths; this is because even the stationary distribution of the random

walk terminating at malicious nodes is reduced.

7.2.1 Anonymity implication

To de-anonymize the user without the help of the destination node (e.g.

the website to which the user connects anonymously), both the first hop

and the last hop of the random walk need to be malicious to observe the

connecting user and her destinations, respectively. End-to-end timing anal-

ysis [151, 152] makes it so that controlling these two nodes is sufficient for

de-anonymization. Figure 7.5 depicts the probability of such an attack being

successful as a function of the number of attack edges and the fraction of

deleted edges using the local blacklisting policy. While it is expected that

the probability of attack would be a decreasing function of the fraction of

deleted edges, we note that the decrease is larger than the reduction in pre-

viously depicted transient/ stationary probabilities. Figure 7.6 depicts the

probability of end-to-end timing analysis for a global blacklisting policy. We

see that, for attempting to undermine anonymous communications, route

capture attacks are clearly a losing strategy against our approach.

So far, we presented theoretical and simulation results assuming an ideal

Sybil defense. Our theorems and analysis also hold for a more realistic Sybil

124

(a) l = 1

(b) l = 3

(c) l = 6

Figure 7.4: Probability of l’th hop being compromised (Sampling Bias)
under route capture attack with global blacklisting. As more edges to the
honest nodes are removed, the attacker’s loss is higher. Note that the
impact is the same for all random walk lengths.

125

defense that permits a bounded number of Sybils per attack edge. The key

difference between the analysis of these two models is that, for a bounded

number of Sybils, we model the random walk process as a three state Markov

chain, with states for honest nodes, compromised nodes, and Sybil identities.

This takes into account that random walks cannot directly transition from

Sybil states to honest states.

7.3 Evaluation: Securing Reciprocal Neighborhood

Policy

We now discuss the security and performance of our protocol that implements

the reciprocal neighborhood policy.

7.3.1 Security proof sketch

Let us suppose that a malicious node A aims to exclude an honest node B

from its fingertable. To pass node B’s local integrity checks, node A has

to return a neighborlist to node B that correctly advertises node B. Since

random walks for anonymous communication are indistinguishable from test-

ing random walks, there is a probability that the adversary will advertise a

conflicting neighbor list that does not include node B to an initiator of the

testing random walk. The initiator of the testing random walk will insert

the malicious neighbor list into the Whanau DHT, and node B can perform

a robust lookup for node A’s key, and obtain the conflicting neighborlist.

Since Whanau only provides availability, node B can check for integrity of

the results by verifying node A’s signature. Since honest nodes never adver-

tise two conflicting lists within a time interval, node B can infer that node

A is malicious (local blacklist) and also prove this to any third party (global

blacklist).

7.3.2 Performance evaluation

First, we analyze the number of testing random walks that each node must

perform to achieve a high probability of detecting a malicious node that

126

attempts to perform a route capture attack. Nodes must perform enough

testing walks such that a high percentage of compromised nodes (which are

connected to honest nodes) have been probed in a single time slot. First, we

consider a defense strategy where honest nodes only insert the terminal hop

of the testing random walks in Whanau (Strategy 1). Intuitively, from the

coupon collectors problem, we have that log n walks per node should suffice to

catch a malicious node with high probability. Indeed, from Figure 7.7, we can

see that six testing walks per time interval suffice to catch a malicious node

performing route capture attacks with high probability. The honest nodes

can also utilize all hops of the testing random walks to check for conflicts

(Strategy 2), in which case only two or three testing walks are required per

time interval (at the cost of increased communication overhead for the DHT

operations).

Next, we address the question of how to choose the duration of the time

interval (t). The duration of the time slot governs the tradeoff between

communication overhead and reliability of circuit construction. A large value

of the time slot interval results in a smaller communication overhead but

higher unreliability in circuit construction, since nodes selected in the random

walk are less likely to still be online. On the other hand, a smaller value of

the time interval provides higher reliability in higher circuit construction,

but also has increased communication overhead, since a fixed number of

testing walks must be performed within the duration of the timeslot. We

can see this tradeoff in Figure 7.8. We consider two churn models for our

analysis: (a) nodes have a mean lifetime of 24 hours (reflecting behavior of

Tor relays), and (b) nodes have a mean lifetime of 1 hour (reflecting behavior

of conventional P2P networks). For the two scenarios, using a time slot

duration of 3 hours and 5 minutes, respectively, results in a 2-3% probability

of getting an unreliable random walk for up to 25 hops.

7.3.3 Overhead

There are three main sources of communication overhead in our system. First

is the overhead due to setting up the neighbor lists; which requires about d2

KB of communication, where d is the node degree. The second source of

overhead is the testing random walks, where nodes are required to perform

127

Figure 7.5: Probability of end-to-end timing analysis under route capture
attack.

Figure 7.6: Probability of end-to-end timing analysis under route capture
attack with global blacklisting.

Figure 7.7: Probability of detecting a route capture [Facebook wall post
interaction graph]. Attack model includes 10 Sybils per attack edge.

Figure 7.8: Unreliability in circuit construction [Facebook wall post
interaction graph].

128

Figure 7.9: Circuit build times in Tor as a function of circuit length.

about six such walks of length 25 (see Section 7.3.2). The third source of

overhead comes from participation in the Whanau DHT. Typically, key churn

is a significant source of overhead in Whanau, requiring all of its routing

tables to be rebuilt. However, in our scenario, only the values corresponding

to the keys change quickly, but not the keys themselves, requiring only a

modest amount of heartbeat traffic [1]. Considering the Facebook wall post

topology, we estimate the mean communication overhead per time interval

to be only about 6 MB.

We also evaluate the latency of constructing long onion routing circuits,

using experiments over the live Tor network. We used the Torflow utility

to build Tor circuits with varying circuit lengths; Figure 7.9 depicts our

experimental results. Using this analysis, we estimate that 25 hop circuits

would take about 1 minute to construct.

7.4 Anonymity

Earlier, we considered the probability of end-to-end timing analysis as our

metric for anonymity. This metric considers the scenario where the adver-

sary has exactly de-anonymized the user. However, in random walk based

anonymous communication, the adversary may sometimes have probabilistic

knowledge of the initiator. To quantify all possible sources of information

leaks, we now consider the entropy metric to quantify anonymity [92, 93].

The entropy metric considers the probability distribution of nodes being pos-

sible initiators, as computed by the attackers. In this paper, we will restrict

our analysis to Shannon entropy, since it is the most widely used mechanism

for analyzing anonymity. There are other ways of computing entropy, such

129

as guessing entropy [153] and min entropy [154], which we will consider in

the full version of this work. Shannon entropy is computed as:

H(I) =
i=n
∑

i=0

−pi · log2(pi), (7.10)

where pi is the probability assigned to node i of being the initiator of a circuit.

Given a particular observation o, the adversary can first compute the proba-

bility distribution of nodes being potential initiators of circuits pi|o and then

the corresponding conditional entropy H(I|o). We can model the entropy

distribution of the system as a whole by considering the weighted average of

entropy for each possible observation, including the null observation.

H(I|O) =
∑

o∈O

P (o) ·H(I|o). (7.11)

Now, we first consider the scenario where an initiator performs an l hop

random walk to communicate with a malicious destination, and the nodes in

the random walk are all honest, i.e., the adversary is external to the system.

For this scenario, we will analyze the expected initiator anonymityunder the

conservative assumption that the adversary is aware of the complete social

network graph.

7.4.1 Malicious destination: expected entropy

A naive way to compute initiator entropy for this scenario is to consider the

set of nodes that are reachable from the terminus of the random walk in

exactly l hops (the adversary’s observation), and assign a uniform probabil-

ity to all nodes in that set of being potential initiators. However, such an

approach does not consider the mixing characteristics of the random walk; l

hop random walks starting at different nodes may in fact have heterogeneous

probabilities of terminating at a given node.

We now outline a strategy that explicitly considers the mixing characteris-

tics of the trust topology. Let the terminus of an l hop random walk be node

j. The goal of the adversary is to compute probabilities pi of nodes being

130

potential initiators of the circuit. Observe that:

pi =
P l
ij

∑

x P
l
xj

, (7.12)

where P l denotes the l hop transition matrix for the random walk process.

Note that even for moderate size social graphs, the explicit computation of P l

is infeasible in terms of both memory and computational constraints. This

is because even though P is a sparse matrix, iterative multiplication of P

by itself results in a matrix that is no longer sparse. To make the problem

feasible, we propose to leverage the time reversibility of our random walk

process. We have previously modeled the random walk process as a Markov

chain. Markov chains which satisfy the following property are known as time

reversible Markov chains [155].

πi · Pij = πj · Pji. (7.13)

It is trivial to see that both the conventional random walk and the Metropolis-

Hastings random walk satisfy the above property and are thus time reversible

Markov chains. It follows from time reversibility [155], that:

πi · P l
ij = πj · P l

ji =⇒ P l
ij =

πj
πi

· P l
ji. (7.14)

Thus it is possible to compute P l
ij using P

l
ji. Let Vj be the initial probability

vector starting at node j. Then the probability of an l hop random walk

starting at node j and ending at node i can be computed as the i’th element

of the vector Vj ·P l. Observe that Vj ·P l can be computed without computing

the matrix P l as follows:

Vj · P l = (Vj · P) · P l−1. (7.15)

Since P is a sparse matrix, Vj ·P can be computed in O(n) time, and Vj ·P l

can be computed in O(nl) time. Finally, we can compute the probabilities

131

of nodes being potential initiators of circuits using Equation (7.12), and the

corresponding entropy gives us the initiator anonymity under this scenario.

We average the resulting entropy over 100 random choices of the terminal

node j to compute the expected anonymity.

(a) Facebook wall post graph (b) Facebook link graph

(c) Anonymous Interaction graph (d) Anonymous link graph

(e) CDF of entropy for Facebook wall graph

Figure 7.10: Expected entropy as a function of random walk length. We can
see that the entropy of the Metropolis-Hastings random walk is less than
the conventional random walk due to its slower mixing properties.
However, even the Metropolis-Hastings random walks quickly converge to
the stationary distribution. From the CDF, we also note that an
overwhelming fraction of users can expect a high level of anonymity.

Figure 7.10(a)-(d) depicts the expected initiator anonymity as a function

of random walk length for different social network topologies. We can see

that longer random walks result in an increase in anonymity. This is because

132

for short random walks of length l in restricted topologies such as trust

networks, not every node can reach the terminus of the random walk in l

hops. Secondly, even for nodes that can reach the terminus of the random

walk in l hops, the probabilities of such a scenario happening can be highly

heterogeneous. Furthermore, we can see that conventional random walks

converge to optimal entropy in about 10 hops for all four topologies. In

contrast, the Metropolis-Hastings random walks used in Pisces take longer

to converge. This is because random walks in Pisces have slower mixing

properties than conventional random walks. However, we can see that even

the Metropolis-Hastings random walk starts to converge after 25 hops in all

scenarios.

To get an understanding of the distribution of the entropy, we plot the

CDF of entropy over 100 random walk samples in Figure 7.10(e). We can

see that the typical anonymity offered by moderately long random walks is

quite high. For example, using a Metropolis-Hastings random walk of length

25, 95% of users get an entropy of at least 11 bits.

So far, we observed the effect of mixing time of social network topologies

on initiator anonymity. We found that Metropolis-Hastings random walks

need to be longer than conventional random walks for equivalent level of

anonymity against a malicious destination. Next, we will see the benefit of

using Metropolis-Hastings random walks in Pisces, since these walks can be

secured against an insider adversary.

7.4.2 Insider adversary

We now analyze the anonymity of the system with respect to an overlay level

insider adversary. We first consider an adversary which has g attack edges

to honest nodes, with g = O(h
log h

), and 10 sybils per attack edge. When

both the first and the last hop of a random walk are compromised, then

initiator entropy is 0 due to end-to-end timing analysis. Let Mi be the event

where the first compromised node is at the ith hop and the last hop is also

compromised. Suppose that the previous hop of the first compromised node

is node A. Under this scenario, the adversary can localize the initiator to the

set of nodes that can reach the node A in i−1 hops. If we denote the initiator

anonymity under this scenario as H(I|Mi), then from Equation (7.11), it

133

(a) (b)

Figure 7.11: Entropy as a function of fraction of attack edges using (a)
realistic model of an imperfect Sybil defense (10 Sybils per attack edge) and
(b) perfect Sybil defense for Facebook wall post interaction graph.

follows that the overall system anonymity is:

H(I|O) =
i=l
∑

i=1

P (Mi) ·H(I|Mi) + (1−
i=l
∑

i=1

P (Mi)) · log2 n. (7.16)

We compute P (Mi) using simulations, and H(I|Mi), using the expected

anonymity computations discussed above. Figure 7.11(a) depicts the ex-

pected entropy as a function of the number of attack edges. We find that

Pisces provides close to optimal anonymity. Moreover, as the length of the

random walk increases, the anonymity does not degrade. In contrast, with-

out any defense, the anonymity decreases with an increase in the random

walk length (not shown in the figure), since at every step in the random

walk, there is a chance of the random walk being captured by the adver-

sary. At g = 3000, the anonymity provided by a conventional 10 hop random

walk without any defenses is 14.1 bits, while Pisces provides close to optimal

anonymity at 14.76 bit (anonymity set increases by a factor of 1.6).

It is also interesting to see that the advantage of using Pisces increases as

the number of attack edge increases. To better investigate this, we consider

the attack model with perfect Sybil defense and vary the number of attack

edges. Figure 7.11(b) depicts the anonymity as a function of the number of

attack edges. We can see that at 60 000 attack edges, the expected anonymity

without defenses is 7.5 bits, as compared to more than 13 bits with Pisces

(anonymity set increases by a factor of 45).

134

7.4.3 Comparison with ShadowWalker

(a) (b)

Figure 7.12: Comparison with ShadowWalker. Entropy as a function of
fraction of attack edges using (a) realistic model of an imperfect Sybil
defense (10 Sybils per attack edge) and (b) perfect Sybil defense for
Facebook wall post interaction graph.

ShadowWalker [118] is a state of art approach for scalable anonymous com-

munication that organizes nodes into a structured topology such as DeBruijn,

and performs secure random walks on such topologies. We now compare our

approach with ShadowWalker.

To compute the anonymity provided by ShadowWalker, we use the frac-

tion f of malicious nodes in the system as an input to the analytic model of

ShadowWalker [118], and use ShadowWalker parameters that provide maxi-

mum security. Figure 7.12(a) depicts the comparative results between Pisces

(using l = 25) and ShadowWalker. We can see that Pisces significantly out-

performs ShadowWalker. At g = 1000 attack edges, Pisces provides about

2 bits higher entropy than ShadowWalker, and this difference increases to 6

bits at g = 3000 attack edges.3 This difference arises because Pisces directly

performs random walks on the social network topology, limiting the impact

of Sybil attackers, while ShadowWalker is designed to secure random walks

only on structured topologies. Arranging nodes in a structured topology

loses information about trust relationships between users, resulting in poor

anonymity for ShadowWalker.

For comparison, we also consider the attack model with perfect Sybil de-

fense and vary the number of attack edges. Figure 7.12(b) depicts the results

3At such high attack edges, ShadowWalker may even have difficulty in securely main-
taining its topology, which could further lower anonymity.

135

for this scenario. We can see that even in this scenario where trust rela-

tionships lose meaning since the adversary is randomly distributed, Pisces

continues to provides comparable anonymity to ShadowWalker. Pisces en-

tropy is slightly lower since social networks are slower mixing than structured

networks, requiring longer length random walks than ShadowWalker, which

gives more observation points to the adversary.

7.4.4 Performance optimization

We now analyze the anonymity provided by our two hop optimization, which

uses the kth hop and last hop of the random walk for anonymous communi-

cation. To analyze anonymity in this scenario, let us redefine Mi (i 6= k) as

the event when the first compromised node is at the ith hop, the last node

is also compromised, but the kth node is honest. Let Mk be the event where

the kth hop and the last hop is compromised (regardless of whether other

nodes are compromised or not) and the definition of Ml remains the same

as before, i.e., only the last hop is compromised. We can compute system

anonymity as:

H(I|O) =
i=k−1
∑

i=1

P (Mi) ·H(I|Mi) +
l
∑

i=k+1

P (Mi) ·H(I|Mk)

+(1−
i=l
∑

i=1

P (Mi)) · log2 n. (7.17)

Figure 7.13: Anonymity using the two hop performance optimization,
Facebook wall post interaction graph. k=12 results in provides a good
tradeoff between anonymity and performance.

136

Figure 7.13 depicts the anonymity for our two hop optimization for differ-

ent choices of k. We see a very interesting tradeoff here. Small values of k

are not optimal, since even though the first hop is more likely to be honest,

when the last hop is compromised, then the initiator is easily localized. On

the other hand, large values of k are also not optimal, since these nodes are

far away from the initiator in the trust graph and are less trusted. We find

that optimal tradeoff points are in the middle, with k = 12 providing the best

anonymity for our optimization. We also note that the anonymity provided

by our two hop optimization is close to the anonymity provided by using all

25 hops of the random walk for anonymous communication.

7.4.5 Selective denial of service

Next, we evaluate Pisces anonymity against the selective DoS attack [54]. In

this attack, an adversary can cause a circuit to selectively fail whenever he or

she is unable to learn the initiator identity. This forces the user to construct

another circuit, which results in a degradation of anonymity. We found that

the degradation in initiator anonymity under this attack is less than 1%.

7.4.6 Anonymity over multiple communication rounds

So far, we had limited our analysis to a single communication round. Next,

we analyze system anonymity over multiple communication rounds. Let us

suppose that in communication rounds 1 . . . z, the adversaries observation is

O1 . . . Oz. Let us denote a given node’s probability of being the potential

initiators after z communication rounds by P (I = i|O1, . . . , Oz). Now, after

communication round z + 1, we are interested in computing the probability

P (I = i|O1, . . . , Oz+1). Using Bayes’ theorem, we have that:

P (I = i|O1, . . . , Oz+1) =
P (O1, . . . , Oz+1|I = i) · P (I = i)

P (O1, . . . , Oz+1)
. (7.18)

The key advantage of this formulation is that we can now leverage the

observations O1, . . . Oz+1 being independent given a choice of initiator. Thus

we have that:

137

P (I = i|O1, . . . , Oz+1) =
Πj=z+1

j=1 P (Oj|I = i) · P (I = i)

P (O1, . . . , Oz+1)

=
Πj=z+1

j=1 P (Oj|I = i) · P (I = i)
∑p=h

p=1 P (O1, . . . , Oz+1|I = p) · P (I = p)

=
Πj=z+1

j=1 P (Oj|I = i) · P (I = i)
∑p=h

p=1 Π
j=z+1
j=1 P (Oj|I = p) · P (I = p)

. (7.19)

Finally, assuming a uniform prior over all possible initiators, we have that:

P (I = i|O1, . . . , Oz+1) =
Πj=z+1

j=1 P (Oj|I = i)
∑p=h

p=1 Π
j=z+1
j=1 P (Oj|I = p)

. (7.20)

Figure 7.14: Anonymity degradation over multiple communication rounds,
Facebook wall post interaction graph.

Figure 7.14 depicts the expected anonymity as a function of number of

communication rounds. We can see that the entropy provided by Pisces

outperforms conventional random walks by more than a factor of 2 after 100

communication rounds.

7.5 Discussion

Integration with Sybil defenses: We outline two strategies for integrating

Pisces with Sybil defense. The first approach is to leverage mechanisms that

require the whole social graph as input for Sybil defense, such as SybilInfer.

This has the downside of communication overhead for reliably maintaining

the social graph accurately, in presence of social graph churn such as new

138

users and new trust relationships. The upside of this approach is that while

performing random walks, both for anonymous communication and for test-

ing, no further communication is required to validate identities for Sybil

defense. The second approach is to leverage decentralized mechanisms like

SybilLimit that do not require users to maintain global information about

the social graph. However, in this scenario, while performing random walks,

each hop of the random walk must be validated for Sybil defense. A key

challenge in validating nodes while performing random walks is to prevent

other entities in the network from learning the nodes involved in the random

walk performed by an initiator. Towards this end, we propose that the node

being validated return its list of SybilLimit tails to the initiator using the

partial onion routing circuit, who can then perform a privacy preserving set

intersection protocol with its tails to perform Sybil defense.

Limitations: While Pisces is the first design that can scalably leverage

social network trust relationships while mitigating route capture attacks, its

architecture has several limitations. First, circuit establishment in Pisces has

higher latency than existing systems, since random walks in Pisces tend to

be longer. However, we note that circuits can be established pre-emptively,

such that this latency does not affect the user. In fact, deployed systems

such as Tor already build circuits preemptively. Second, some users that are

not well connected in the social network topology may not benefit from using

Pisces since reasonable length random walks starting from those nodes may

not converge to the stationary probability distribution quickly. Third, Pisces

currently does not support important constraints such as bandwidth based

load balancing and exit policies. The focus of our architecture was to secure

the peer discovery process in unstructured social network topologies, and we

will consider the incorporation of these constraints in future work.

7.6 Summary

We proposed a mechanism for scalable anonymous communication that can

securely leverage a user’s trust relationships. Our key insight is that appear-

ance of nodes in each other’s neighbor lists can be made reciprocal. Using

theoretical analysis and experiments on real world social network topologies,

we demonstrate that Pisces substantially reduces the probability of active

139

attacks on circuit constructions.

140

CHAPTER 8

CONCLUSION

We have shown that lookup mechanisms in DHTs are not anonymous, and

reveal information about the lookup initiator. To secure the lookup mech-

anism itself, redundant messages are used which enables a relatively small

fraction of attackers to observe a large number of lookups in the network.

We have shown how attacks based on information leaks from lookups can

be used to break the anonymity guarantees of low-latency P2P anonymous

communication systems like Salsa. Salsa was previously reported to tolerate

up to 20% compromised nodes, but our results show that, with information

leaks taken into account, over a quarter of all circuits are compromised. Our

results demonstrate that information leaks are an important part of anony-

mity analysis of a system. In followup work [67], we showed that even newly

proposed designs such as NISAN [66] and Torsk [25] are vulnerable to infor-

mation leaks. An important question for future work is the design of analysis

tools that can automaticall quantify information leaks in a system and aid

the system designers towards the design of more secure systems.

We proposed ShadowWalker, a new design for low-latency P2P anonymous

communication. ShadowWalker is able to effectively defend against common

attacks on peer-to-peer systems (including the information leak attack dis-

cussed above) and achieve levels of anonymity superior to the state of the

art in P2P anonymous communication. In particular, when 20% of all nodes

are compromised, ShadowWalker provides 4.5 bits more entropy than Salsa.

Moreover, the probability of end-to-end timing analysis in this case is less

than 5%, which is close to the ideal scenario as in Tor, where the probability

of end-to-end timing analysis is 4%. Our system presents several tradeoffs be-

tween anonymity and performance overhead. We have demonstrated points

along these tradeoffs that have manageable computation and communica-

tion overheads while providing strong anonymity guarantees. ShadowWalker

is also able to handle moderate churn in the network. As such, it presents a

141

promising new direction for P2P anonymous communication. In future work,

we will also investigate the benefits of ShadowWalker’s redundant structured

topology design beyond anonymity systems.

We presented SybilInfer, an algorithm aimed at detecting Sybil attacks

against peer-to-peer networks or open services, and label which nodes are

honest and which are dishonest. Its applicability and performance in this

task is an order of magnitude better than previous systems making similar

assumptions, like SybilGuard and SybilLimit, even though it requires nodes

to know a substantial part of the social structure within which honest nodes

are embedded. SybilInfer illustrates how robust Sybil defences can be boot-

strapped from distributed trust judgements, instead of a centralised identity

scheme. This is a key enabler for secure peer-to-peer architectures as well as

collaborative web 2.0 applications. SybilInfer is also significant due to the

use of machine learning techniques and their careful application to a security

problem. Cross-disciplinary designs are a challenge, and applying probabilis-

tic techniques to system defence should not be at the expense of strength of

protection, and strategy-proof designs. Our ability to demonstrate that the

underlying mechanisms behind SybilInfer is not susceptible to gaming by an

adversary arranging its Sybil nodes in a particular topology is, in this aspect,

a very important part of the SybilInfer security design.

We describe X-Vine, a protection mechanism for DHTs that is resilient

to the Sybil attack. X-Vine operates entirely by communicating over so-

cial network links, using network layer DHT techniques. X-Vine requires

O(log n) state, two orders of magnitude less in practical settings as com-

pared with existing techniques like Whanau [1], making it particularly suit-

able for large-scale and dynamic environments. X-Vine also enhances privacy

by not revealing social relationship information and by providing a basis for

pseudonymous communication. A key limitation of X-Vine is that it assumes

that malicious identities are uniformly distributed in the DHT namespace;

mechanisms that enforce this assumption would be an important direction

for future work.

The final component of this dissertation is Pisces, a mechanism for P2P

anonymous communication that can securely leverage a user’s trust relation-

ships. Pisces leverages social network based Sybil defense mechanisms such

as SybilInfer and X-Vine. Our key insight is that appearance of nodes in

each other’s neighbor lists can be made reciprocal, in order to defend against

142

active attacks on the system. Using real world social network topologies

and a reasonable set of trust assumptions, we find that Pisces significantly

outperforms ShadowWalker, and provides up to 6 bits higher entropy in a

single communication round. Also, compared with the naive strategy of using

conventional random walks over social networks (as in the Drac system [59]),

Pisces provides twice the amount of entropy over 100 communication rounds.

In future work, we will investigate the open problem of incorporating the is-

sues of heterogeneous node bandwidth and exit policies.

143

APPENDIX A

MATHEMATICAL ANALYSIS OF X-VINE:

As a first step in formally modeling X-Vine security, we develop an analytic

model for routing in X-Vine. The model enhances our understanding of

the relationship between operational parameters of X-Vine, and can serve as

a stepping stone for a complete formal model to analyze X-Vine’s security

against Sybil identities.

Let there be N nodes in the system with node identifiers ranging from

0..N − 1. Let L(0, w) be the expected lookup path length between the node

with identifier 0 and w. Let us suppose that node maintain trails with a

single successor. Without loss of generality, the average lookup path length

can be computed as follows:

E(L) =

∑w=N−1
w=0 L(0, w)

N
. (A.1)

In the simplest case, L(0, 0) = 0. Let us first compute L(0, 1). Note

that node 0 and node 1 have a trail between them because they are overlay

neighbors. Let d be the average node degree in the underlying topology. We

assume that the length of the trail between overlay neighbors is close to their

shortest path in the social network topology (approximately logd(N)). The

lookup will proceed from node 0 along the trail to node 1. Thus we have

that:

L(0, 1) = Expected trail length (A.2a)

L(0, 1) = logd(N). (A.2b)

Notice that there cannot be any shortcutting in the intermediate nodes on

the trail path from node 0 to node 1 because we have assumed the trail to be

144

Figure A.1: X-Vine lookup.

the shortest path in the social network topology. Let us now compute L(0, 2).

There are two possible scenarios. In the first case, there may be a trail with

an end point at node 2 going through node 0. In this case, the packet is

routed along the trail to node 2. Again, there cannot be any shortcutting

along this trail because it is the shortest path. The mean path length in this

case is logd N
2

. In the second case, the packet will be routed towards overlay

node 1 (successor of node 0). Thus we have that:

L(0, 2) = P (trail) · logdN
2

+ (1− P (trail)) · (1 + l((logdN)− 1, 1, 2)) , (A.3a)

where l(x, y, z) is defined as the expected path length when z is the destina-

tion identifier, y is the next overlay hop in the lookup, and x is the physical

distance along a trail between the current node and y (Figure A.1). This

means that l((logdN) − 1, 1, 2) is the expected path length when the desti-

nation identifier is 2, the next overlay hop is 1, and the next overlay hop is

logdN hops away from the current node.

Note that each node maintains a trail to its successor, and the mean length

of the trails is logd(N). This means that the average routing state maintained

by a node in the system is logd(N). Since each routing table entry specifies

two end points for a trail, the probability that a node has a trail with a

particular end point going through it is 2 logd N
N

. Thus:

L(0, 2) =
2 logdN

N
· logdN

2

+

(

1− 2 logdN

N

)

· (1 + l((logdN)− 1, 1, 2)) . (A.3b)

145

We now need to compute l(x, 1, 2). Similar to our computation of L(0, 2),

again, there are three possible scenarios. In the first case, the current node

(say A) is a friend of node 2. Then the path length is 1. In the second case,

there is a trail with an end point at node 2 going through node A. In this

case, the mean path length is logd(N)
2

. In the third case, the packet continues

along the current trail to node 1.

l(x, 1, 2) =
2 logdN

N
·
(

logdN

2

)

+

(

1− 2 logdN

N

)

· (1 + l(x− 1, 1, 2)). (A.4)

Here, the boundary conditions for terminating the recursion are as follows:

l(x, 1, 1) = x if 0 ≤ x ≤ logdN (A.5a)

l(x, z, z) = x if 0 ≤ x ≤ logdN, 1 ≤ z ≤ N − 1 (A.5b)

l(0, y, z) = L(y, z) = L(0, (z − y)) if 1 ≤ y ≤ z ≤ N − 1. (A.5c)

Let us now compute L(0, w). Consider the following two scenarios. In the

first case, let the closest preceding node in node 0’s routing table be node i

(shortcut to i 6= 1). Now node i may either be a friend of node 0, in which

case, the path length is 1+L(i, w), or node i may be the end point of a trail

going through node 0, in which case, the path length is 1+l
(

logd N
2

− 1, i, w
)

.

In the second case, there is no shortcutting, and the lookup proceeds towards

the next overlay hop node 1. Thus, we have that:

L(0, w) =
w
∑

i=2

P (shortcut to i) · P (shortcut via friend)

· (1 + L(i, w)) +
w
∑

i=2

P (shortcut to i)·

P (shortcut via trail) ·
(

1 + l

(

logdN

2
− 1, i, w

))

+ P (no shortcut) · (1 + l((logdN)− 1, 1, w)). (A.6)

146

Let us now compute the probability of shortcutting to a node i. The

probability of shortcutting to node w is simply d+2 logd N
N

. The probability

of shortcutting to node w − 1 can be computed as P (no shortcut to w) ·
P (shortcut to w − 1| no shortcut to w). This is equal to

(

1− d+2 logd N
N

)

·
d+2 logd N

N−1
. Similarly, we can compute the probability of shortcutting to node

i as:

P (shortcut to i) = P (no shortcut to w..i+1)·
d+ 2 logdN

N − (w − i)
(A.7a)

P (no shortcut to w..j) = P (no shortcut from w..j+1)·
(

1− d+ 2 logdN

N − (w − j)

)

. (A.7b)

Now, given that the lookup shortcuts towards overlay hop node i, it may

do so because of a friendship entry in the routing table, or a trail in the

routing table. The probability that the shortcut happened via a friend en-

try, P (shortcut via friend) = d
d+2 logd(N)

. The probability that the shortcut

happened because of a X-Vine entry is

P (shortcut via trail) = 2 logd(N)
d+2 logd(N)

. Thus, we can rewrite Equation (A.6) as

L(0, w) =
w
∑

i=2

P (shortcut to i) · d

d+ 2 logdN
· (1 + L(i, w))

+
w
∑

i=2

P (shortcut to i) · 2 logdN

d+ 2 logdN
·
(

1 + l

(

logdN

2
− 1, i, w

))

+ P (no shortcutting) · (1 + l((logdN)− 1, 1, w)). (A.8)

Similar to the above analysis, we can compute l(x, i, w) as follows:

147

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000

M
ea

n
Lo

ok
up

 P
at

h
Le

ng
th

Number of Nodes

Analysis, s=1
Simulation, s=1
Analysis, s=20

Simulation, s=20

Figure A.2: Validation of analytic model using d = 10.

l(x, j, w) =

j+1
∑

i=2

P (shortcut to i) · d

d+ 2 logdN
· (1 + L(i, w))

+

j+1
∑

i=2

P (shortcut to i) · 2 logdN

d+ 2 logd(N)
·
(

1 + l

(

logdN

2
− 1, i, w

))

+ P (no shortcutting) · (1 + l(x− 1, j, w)). (A.9)

The boundary conditions for the termination of recursion are the same as

in Equation (A.5).

Validation of analytic model: Figure A.2 plots the mean lookup path length

as a function of number of nodes for a synthetic scale-free topology with

average degree d = 10 using a redundancy parameter of r = 1. We can see

that the results of simulation are a very close match with our analytic model,

increasing confidence in our results. We note that our analytic model has

implications for modeling network layer DHTs like VRR.

148

APPENDIX B

X-VINE PSEUDOCODE

We now describe pseudocode for X-Vine’s lookup and trail path setup mech-

anisms.

Algorithm 1 Fwd lookup(identifier myid, message M): Determines next hop
for a lookup message.

bestroute=0
foreach element E in RoutingTable
if distance(E.endpoint,M.dest)<

distance(bestroute,M.dest)
bestroute=E

endfor
return bestroute

149

Algorithm 2 Fwd trailsetup(identifier myid, message M): Determines next
hop for trail path setup message.

bestroutes=∅
/* select all routes that make progress */
foreach element E in RoutingTable
if distance(E.endpoint,M.dest)<distance(myid,M.dest)
bestroutes.insert(E)

endfor
/* of these, discard (a) backtracked routes, (b) routes that have reached
bounds, (c) routes that don’t make namespace progress compared to
M.nextovlhop*/
foreach element E in bestroutes
if failed set.contains(E.endpoint,E.nexthop) or

(E.nexthop.numtrails > bn) or
(numtrailsto(E.nexthop) > bl) or
(distance(E.endpoint,M.dest) <
distance(M.nextovlhop,M.dest)

bestroutes.remove(E)
endfor
/* if no remaining options, backtrack */
if bestroutes == ∅
send reject to(M.prevhop)
return

/* of remaining routes, select route with maximum namespace progress */
routetouse=0
foreach element E in bestroutes
if distance(E.endpoint,M.dest)<

distance(routetouse,M.dest)
routetouse=E

endfor
return routetouse

150

REFERENCES

[1] C. Lesniewski-Laas and M. F. Kaashoek, “Whanau: a sybil-proof
distributed hash table,” in Proceedings of the 7th USENIX Conference
on Networked Systems Design and Implementation, ser. NSDI’10.
Berkeley, CA, USA: USENIX Association, 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855711.1855719 pp. 8–8.

[2] C. Williams, “BT admits misleading customers over Phorm experi-
ments,” The Register, March 17 2008.

[3] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: the second-
generation onion router,” in Proceedings of the 13th Conference
on USENIX Security Symposium - Volume 13, ser. SSYM’04.
Berkeley, CA, USA: USENIX Association, 2004. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251375.1251396 pp. 21–21.

[4] K. Loesing, “Measuring the Tor network: Evaluation of client requests
to the directories,” The Tor project, Tech. Rep., 2009.

[5] The Tor Project, “Tor metrics portal, April 2011,”
http://metrics.torproject.org/.

[6] D. Goodin, “Tor at heart of embassy passwords leak,” The Register,
September 10 2007.

[7] “Tor network status,” http://torstatus.blutmagie.de/, accessed April
2011.

[8] J. R. Douceur, “The Sybil attack,” in Revised Papers from
the First International Workshop on Peer-to-Peer Systems, ser.
IPTPS ’01. London, UK: Springer-Verlag, 2002. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646334.687813 pp. 251–260.

[9] A. Nambiar and M. Wright, “Salsa: a structured approach
to large-scale anonymity,” in Proceedings of the 13th ACM
conference on Computer and Communications Security, ser. CCS
’06. New York, NY, USA: ACM, 2006. [Online]. Available:
http://doi.acm.org/10.1145/1180405.1180409 pp. 17–26.

151

[10] G. Danezis and R. Clayton, “Route fingerprinting in anonymous
communications,” in Proceedings of the Sixth IEEE International
Conference on Peer-to-Peer Computing. Washington, DC, USA:
IEEE Computer Society, 2006. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1157740.1158240 pp. 69–72.

[11] G. Danezis and P. Syverson, “Bridging and fingerprinting: Epistemic
attacks on route selection,” in Proceedings of the 8th International
Symposium on Privacy Enhancing Technologies, ser. PETS ’08.
Berlin, Heidelberg: Springer-Verlag, 2008. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-70630-4 10 pp. 151–166.

[12] P. Mittal and N. Borisov, “Information leaks in structured peer-to-
peer anonymous communication systems,” in Proceedings of the 15th
ACM Conference on Computer and Communications Security, ser.
CCS ’08. New York, NY, USA: ACM, 2008. [Online]. Available:
http://doi.acm.org/10.1145/1455770.1455805 pp. 267–278.

[13] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, “Sybilguard:
defending against Sybil attacks via social networks,” in Proceedings
of the 2006 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, ser. SIGCOMM
’06. New York, NY, USA: ACM, 2006. [Online]. Available:
http://doi.acm.org/10.1145/1159913.1159945 pp. 267–278.

[14] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Rowstron,
“Virtual ring routing: network routing inspired by DHTs,” in
Proceedings of the 2006 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, ser.
SIGCOMM ’06. New York, NY, USA: ACM, 2006. [Online].
Available: http://doi.acm.org/10.1145/1159913.1159954 pp. 351–362.

[15] G. Danezis, R. Dingledine, and N. Mathewson, “Mixminion: Design
of a type iii anonymous remailer protocol,” in Proceedings of
the 2003 IEEE Symposium on Security and Privacy, ser. SP ’03.
Washington, DC, USA: IEEE Computer Society, 2003. [Online].
Available: http://dl.acm.org/citation.cfm?id=829515.830555 pp. 2–.

[16] U. Möller, L. Cottrell, P. Palfrader, and L. Sassaman, “Mixmaster
Protocol — Version 2,” IETF Internet Draft, July 2003.

[17] J. Boyan, “The anonymizer: Protecting user privacy on the web,”
Computer-Mediated Communication Magazine, vol. 4, no. 9, 1997.

[18] I2P, “I2P anonymous network,” http://www.i2p2.de/index.html, 2003.

152

[19] P. Boucher, A. Shostack, and I. Goldberg, “Freedom systems 2.0 ar-
chitecture,” Zero Knowledge Systems, Inc., White Paper, December
2000.

[20] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: a
distributed anonymous information storage and retrieval system,” in
International Workshop on Designing Privacy Enhancing Technologies:
Design Issues in Anonymity and Unobservability. New York, NY,
USA: Springer-Verlag New York, Inc., 2001. [Online]. Available:
http://dl.acm.org/citation.cfm?id=371931.371977 pp. 46–66.

[21] D. M. Goldschlag, M. G. Reed, and P. F. Syverson, “Hiding routing
information,” in Proceedings of the First International Workshop on
Information Hiding. London, UK: Springer-Verlag, 1996. [Online].
Available: http://dl.acm.org/citation.cfm?id=647594.731526 pp. 137–
150.

[22] P. F. Syverson, D. M. Goldschlag, and M. G. Reed, “Anonymous
connections and onion routing,” in Proceedings of the 1997 IEEE
Symposium on Security and Privacy, ser. SP ’97. Washington,
DC, USA: IEEE Computer Society, 1997. [Online]. Available:
http://dl.acm.org/citation.cfm?id=882493.884368 pp. 44–.

[23] D. Goldschlag, M. Reed, and P. Syverson, “Onion routing,” Commun.
ACM, vol. 42, pp. 39–41, February 1999. [Online]. Available:
http://doi.acm.org/10.1145/293411.293443

[24] H. Federrath, “Project: An.on - anonymity.online: Protection of pri-
vacy on the Internet,” http://anon.inf.tu-dresden.de/index en.html.

[25] J. McLachlan, A. Tran, N. Hopper, and Y. Kim, “Scalable
onion routing with Torsk,” in Proceedings of the 16th ACM
Conference on Computer and Communications Security, ser. CCS
’09. New York, NY, USA: ACM, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1653662.1653733 pp. 590–599.

[26] “Tor blog,” https://blog.torproject.org/blog/tor-project-
infrastructure-updates.

[27] P. Mittal, F. Olumofin, C. Troncoso, N. Borisov, and
I. Goldberg, “PIR-Tor: scalable anonymous communication
using private information retrieval,” in Proceedings of the
20th USENIX conference on Security, ser. SEC’11. Berke-
ley, CA, USA: USENIX Association, 2011. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2028067.2028098 pp. 31–31.

153

[28] J.-F. Raymond, “Traffic analysis: protocols, attacks, design issues,
and open problems,” in International Workshop on Designing
Privacy Enhancing Technologies: Design Issues in Anonymity and
Unobservability. New York, NY, USA: Springer-Verlag New York,
Inc., 2001. [Online]. Available: http://dl.acm.org/citation.cfm?id=
371931.371972 pp. 10–29.

[29] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao, “On flow corre-
lation attacks and countermeasures in mix networks,” in Proceedings
of Privacy Enhancing Technologies workshop (PET 2004), ser. LNCS,
vol. 3424, May 2004, pp. 207–225.

[30] V. Shmatikov and M.-H. Wang, “Timing analysis in low-latency mix
networks: Attacks and defenses,” in Proceedings of ESORICS 2006,
September 2006.

[31] P. Syverson, G. Tsudik, M. Reed, and C. Landwehr, “Towards
an analysis of onion routing security,” in International Workshop
on Designing Privacy Enhancing Technologies: Design Issues in
Anonymity and Unobservability. New York, NY, USA: Springer-
Verlag New York, Inc., 2001. [Online]. Available: http://dl.acm.org/
citation.cfm?id=371931.371981 pp. 96–114.

[32] B. N. Levine, M. K. Reiter, C. Wang, and M. K. Wright, “Timing
attacks in low-latency mix-based systems,” in Proceedings of Financial
Cryptography (FC ’04), A. Juels, Ed. Springer-Verlag, LNCS 3110,
February 2004, pp. 251–265.

[33] M. K. Reiter and A. D. Rubin, “Crowds: anonymity for web
transactions,” ACM Trans. Inf. Syst. Secur., vol. 1, pp. 66–92,
November 1998. [Online]. Available: http://doi.acm.org/10.1145/
290163.290168

[34] M. Wright, M. Adler, B. N. Levine, and C. Shields, “An analysis of the
degradation of anonymous protocols,” in Proceedings of the Network
and Distributed Security Symposium - NDSS ’02. IEEE, February
2002.

[35] M. Wright, M. Adler, B. N. Levine, and C. Shields, “Defending
anonymous communications against passive logging attacks,” in
Proceedings of the 2003 IEEE Symposium on Security and Privacy,
ser. SP ’03. Washington, DC, USA: IEEE Computer Society, 2003.
[Online]. Available: http://dl.acm.org/citation.cfm?id=829515.830556
pp. 28–.

[36] M. K. Wright, M. Adler, B. N. Levine, and C. Shields, “The
predecessor attack: An analysis of a threat to anonymous

154

communications systems,” ACM Trans. Inf. Syst. Secur., vol. 7, pp.
489–522, November 2004. [Online]. Available: http://doi.acm.org/10.
1145/1042031.1042032

[37] M. K. Wright, M. Adler, B. N. Levine, and C. Shields, “Passive-logging
attacks against anonymous communications systems,” ACM Trans.
Inf. Syst. Secur., vol. 11, pp. 3:1–3:34, May 2008. [Online]. Available:
http://doi.acm.org/10.1145/1330332.1330335

[38] O. Berthold, H. Federrath, and M. Köhntopp, “Project ȧnonymity and
unobservability in the Internet’̇’ in Proceedings of the Tenth Conference
on Computers, Freedom and Privacy: Challenging the Assumptions,
ser. CFP ’00. New York, NY, USA: ACM, 2000. [Online]. Available:
http://doi.acm.org/10.1145/332186.332211 pp. 57–65.

[39] D. Kesdogan, D. Agrawal, and S. Penz, “Limits of anonymity in
open environments,” in Revised Papers from the 5th International
Workshop on Information Hiding, ser. IH ’02. London, UK, UK:
Springer-Verlag, 2003. [Online]. Available: http://dl.acm.org/citation.
cfm?id=647598.731881 pp. 53–69.

[40] G. Danezis, “Statistical disclosure attacks: Traffic confirmation in open
environments,” in Proceedings of Security and Privacy in the Age of
Uncertainty, (SEC2003), Gritzalis, Vimercati, Samarati, and Katsikas,
Eds., IFIP TC11. Athens: Kluwer, May 2003, pp. 421–426.

[41] N. Mathewson and R. Dingledine, “Practical traffic analysis: Extend-
ing and resisting statistical disclosure,” in Proceedings of Privacy En-
hancing Technologies Workshop (PET 2004), ser. LNCS, vol. 3424,
May 2004, pp. 17–34.

[42] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of Tor,” in
Proceedings of the 2005 IEEE Symposium on Security and Privacy.
Washington, DC, USA: IEEE Computer Society, 2005. [Online].
Available: http://dl.acm.org/citation.cfm?id=1058433.1059390 pp.
183–195.

[43] A. Back, U. Möller, and A. Stiglic, “Traffic analysis attacks
and trade-offs in anonymity providing systems,” in Proceedings of
the 4th International Workshop on Information Hiding, ser. IHW
’01. London, UK, UK: Springer-Verlag, 2001. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647597.731866 pp. 245–257.

[44] N. S. Evans, R. Dingledine, and C. Grothoff, “A practical
congestion attack on Tor using long paths,” in Proceedings of the
18th Conference on USENIX Security Symposium, ser. SSYM’09.

155

Berkeley, CA, USA: USENIX Association, 2009. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855768.1855771 pp. 33–50.

[45] S. Chakravarty, A. Stavrou, and A. D. Keromytis, “Traffic
analysis against low-latency anonymity networks using available
bandwidth estimation,” in Proceedings of the 15th European
Conference on Research in Computer Security, ser. ESORICS’10.
Berlin, Heidelberg: Springer-Verlag, 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1888881.1888901 pp. 249–267.

[46] P. Mittal, A. Khurshid, J. Juen, M. Caesar, and N. Borisov,
“Stealthy traffic analysis of low-latency anonymous communication
using throughput fingerprinting,” in Proceedings of the 18th ACM
Conference on Computer and Communications Security, ser. CCS
’11. New York, NY, USA: ACM, 2011. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046732 pp. 215–226.

[47] S. J. Murdoch, “Hot or not: revealing hidden services by their clock
skew,” in Proceedings of the 13th ACM Conference on Computer
and Communications Security, ser. CCS ’06. New York, NY, USA:
ACM, 2006. [Online]. Available: http://doi.acm.org/10.1145/1180405.
1180410 pp. 27–36.

[48] S. Zander and S. J. Murdoch, “An improved clock-skew measurement
technique for revealing hidden services,” in Proceedings of the 17th
Conference on Security Symposium. Berkeley, CA, USA: USENIX
Association, 2008. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1496711.1496726 pp. 211–225.

[49] N. Hopper, E. Y. Vasserman, and E. Chan-Tin, “How much
anonymity does network latency leak?” in Proceedings of the 14th
ACM Conference on Computer and Communications Security, ser.
CCS ’07. New York, NY, USA: ACM, 2007. [Online]. Available:
http://doi.acm.org/10.1145/1315245.1315257 pp. 82–91.

[50] N. Hopper, E. Y. Vasserman, and E. Chan-TIN, “How much
anonymity does network latency leak?” ACM Trans. Inf. Syst.
Secur., vol. 13, pp. 13:1–13:28, March 2010. [Online]. Available:
http://doi.acm.org/10.1145/1698750.1698753

[51] N. Feamster and R. Dingledine, “Location diversity in anonymity
networks,” in Proceedings of the 2004 ACMWorkshop on Privacy in the
Electronic Society, ser. WPES ’04. New York, NY, USA: ACM, 2004.
[Online]. Available: http://doi.acm.org/10.1145/1029179.1029199 pp.
66–76.

156

[52] S. J. Murdoch and P. Zieliński, “Sampled traffic analysis by internet-
exchange-level adversaries,” in Proceedings of the 7th International
Conference on Privacy Enhancing Technologies, ser. PET’07.
Berlin, Heidelberg: Springer-Verlag, 2007. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1779330.1779341 pp. 167–183.

[53] M. Edman and P. Syverson, “As-awareness in Tor path selection,”
in Proceedings of the 16th ACM Conference on Computer and
Communications Security, ser. CCS ’09. New York, NY, USA:
ACM, 2009. [Online]. Available: http://doi.acm.org/10.1145/1653662.
1653708 pp. 380–389.

[54] N. Borisov, G. Danezis, P. Mittal, and P. Tabriz, “Denial of
service or denial of security?” in Proceedings of the 14th ACM
Conference on Computer and Communications Security, ser. CCS
’07. New York, NY, USA: ACM, 2007. [Online]. Available:
http://doi.acm.org/10.1145/1315245.1315258 pp. 92–102.

[55] M. J. Freedman and R. Morris, “Tarzan: a peer-to-peer anonymizing
network layer,” in Proceedings of the 9th ACM Conference on
Computer and Communications Security, ser. CCS ’02. New York,
NY, USA: ACM, 2002. [Online]. Available: http://doi.acm.org/10.
1145/586110.586137 pp. 193–206.

[56] M. Rennhard and B. Plattner, “Introducing MorphMix: peer-to-
peer based anonymous Internet usage with collusion detection,” in
Proceedings of the 2002 ACM Workshop on Privacy in the Electronic
Society, ser. WPES ’02. New York, NY, USA: ACM, 2002. [Online].
Available: http://doi.acm.org/10.1145/644527.644537 pp. 91–102.

[57] P. Tabriz and N. Borisov, “Breaking the collusion detection mecha-
nism of MorphMix,” in Proceedings of the Sixth Workshop on Privacy
Enhancing Technologies (PET 2006), G. Danezis and P. Golle, Eds.
Cambridge, UK: Springer, June 2006, pp. 368–384.

[58] S. Nagaraja, “Anonymity in the wild: mixes on unstructured
networks,” in Proceedings of the 7th International Conference on
Privacy Enhancing Technologies, ser. PET’07. Berlin, Heidelberg:
Springer-Verlag, 2007. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1779330.1779346 pp. 254–271.

[59] G. Danezis, C. Diaz, C. Troncoso, and B. Laurie, “Drac:
an architecture for anonymous low-volume communications,” in
Proceedings of the 10th International Conference on Privacy Enhancing
Technologies, ser. PETS’10. Berlin, Heidelberg: Springer-Verlag,
2010. [Online]. Available: http://dl.acm.org/citation.cfm?id=1881151.
1881163 pp. 202–219.

157

[60] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan, “Chord: A scalable peer-to-peer lookup service for
internet applications,” in Proceedings of the 2001 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications, ser. SIGCOMM ’01. New York, NY, USA: ACM,
2001. [Online]. Available: http://doi.acm.org/10.1145/383059.383071
pp. 149–160.

[61] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems,”
in Proceedings of the IFIP/ACM International Conference on
Distributed Systems Platforms Heidelberg, ser. Middleware ’01.
London, UK: Springer-Verlag, 2001. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=646591.697650 pp. 329–350.

[62] D. S. Wallach, “A survey of peer-to-peer security issues,” in
Proceedings of the 2002 Mext-NSF-JSPS International Conference
on Software Security: Theories and Systems, ser. ISSS’02.
Berlin, Heidelberg: Springer-Verlag, 2003. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1765533.1765539 pp. 42–57.

[63] E. Sit and R. Morris, “Security considerations for peer-to-
peer distributed hash tables,” in Revised Papers from the First
International Workshop on Peer-to-Peer Systems, ser. IPTPS
’01. London, UK: Springer-Verlag, 2002. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646334.687810 pp. 261–269.

[64] A. Mislove, G. Oberoi, A. Post, C. Reis, P. Druschel, and D. S. Wallach,
“AP3: cooperative, decentralized anonymous communication,” in
Proceedings of the 11th Workshop on ACM SIGOPS European
Workshop, ser. EW 11. New York, NY, USA: ACM, 2004. [Online].
Available: http://doi.acm.org/10.1145/1133572.1133578

[65] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach,
“Secure routing for structured peer-to-peer overlay networks,” in
Proceedings of the 5th Symposium on Operating Systems Design and
Implementation, ser. OSDI ’02. New York, NY, USA: ACM, 2002.
[Online]. Available: http://doi.acm.org/10.1145/1060289.1060317 pp.
299–314.

[66] A. Panchenko, S. Richter, and A. Rache, “Nisan: network information
service for anonymization networks,” in Proceedings of the 16th
ACM Conference on Computer and Communications Security, ser.
CCS ’09. New York, NY, USA: ACM, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1653662.1653681 pp. 141–150.

158

[67] Q. Wang, P. Mittal, and N. Borisov, “In search of an anonymous
and secure lookup: attacks on structured peer-to-peer anonymous
communication systems,” in Proceedings of the 17th ACM Conference
on Computer and Communications Security, ser. CCS ’10. New York,
NY, USA: ACM, 2010. [Online]. Available: http://doi.acm.org/10.
1145/1866307.1866343 pp. 308–318.

[68] N. Borisov, “Anonymous routing in structured peer-to-peer overlays,”
Ph.D. dissertation, University of California at Berkeley, Berkeley, CA,
USA, 2005, chair-Eric A. Brewer.

[69] M. F. Kaashoek and D. R. Karger, “Koorde: A simple degree-optimal
distributed hash table,” in Proceedings of the 2nd International Work-
shop on Peer-to-Peer Systems (IPTPS ’03), 2003.

[70] G. Ciaccio, “Improving sender anonymity in a structured overlay with
imprecise routing,” in PETS, June 2006.

[71] N. Borisov, “Computational puzzles as Sybil defenses,” in Proceedings
of the Sixth IEEE International Conference on Peer-to-Peer Computing.
Washington, DC, USA: IEEE Computer Society, 2006. [Online].
Available: http://dl.acm.org/citation.cfm?id=1157740.1158254 pp.
171–176.

[72] H. Rowaihy, W. Enck, P. McDaniel, and T. La Porta, “Limiting Sybil
attacks in structured P2P networks,” in INFOCOM 2007. 26th IEEE
International Conference on Computer Communications. IEEE, may
2007, pp. 2596 –2600.

[73] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao, “Sybillimit:
A near-optimal social network defense against Sybil attacks,” in
Proceedings of the 2008 IEEE Symposium on Security and Privacy.
Washington, DC, USA: IEEE Computer Society, 2008. [Online].
Available: http://dl.acm.org/citation.cfm?id=1397759.1398053 pp.
3–17.

[74] G. Danezis, C. Lesniewski-laas, M. F. Kaashoek, and R. Anderson,
“Sybil-resistant dht routing,” in In ESORICS. Milan, Italy: Springer,
September 2005, pp. 305–318.

[75] N. Tran, B. Min, J. Li, and L. Subramanian, “Sybil-resilient online
content voting,” in Proceedings of the 6th USENIX Symposium
on Networked Systems Design and Implementation, ser. NSDI’09.
Berkeley, CA, USA: USENIX Association, 2009. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1558977.1558979 pp. 15–28.

159

[76] A. Mislove, A. Post, P. Druschel, and K. P. Gummadi, “Ostra:
leveraging trust to thwart unwanted communication,” in Proceedings
of the 5th USENIX Symposium on Networked Systems Design
and Implementation, ser. NSDI’08. Berkeley, CA, USA: USENIX
Association, 2008. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1387589.1387591 pp. 15–30.

[77] Y. Sovran, J. Li, and L. Subramanian, “Unblocking the Internet: Social
networks foil censors,” NYU, Tech. Rep., 2008.

[78] S. Marti, P. Ganesan, and H. Garcia-Molina, “SPROUT: P2P routing
with social networks,” in Proceedings of the 1st International Workshop
on Peer-to-Peer Computing and Databases, 2004, pp. 425–435.

[79] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson, “Privacy-
preserving P2P data sharing with oneswarm,” in Proceedings of the
ACM SIGCOMM 2010 conference on SIGCOMM, ser. SIGCOMM
’10. New York, NY, USA: ACM, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1851182.1851198 pp. 111–122.

[80] J. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup,
D. Epema, M. Reinders, M. van Steen, and H. Sips, “Tribler: A
social-based peer-to-peer system,” Delft University of Technology,
Tech. Rep., Feb 2006. [Online]. Available: http://www.pds.ewi.tudelft.
nl/reports/2006/PDS-2006-002/PDS-2006-002.pdf

[81] H. Chen, X. Li, and J. Han, “Maze: a social peer-to-peer network,” in
In of CEC-East, 2004.

[82] J. Frankel, “http://waste.sourceforge.net.”

[83] B. Popescu, B. Crispo, and A. S. Tanenbaum, “Safe and private data
sharing with Turtle: Friends team-up and beat the system,” in 12’th
Cambridge International Workshop on Security Protocols, April 2004.

[84] N. S. Evans, C. GauthierDickey, and C. Grothoff, “Routing in the dark:
Pitch black,” ACSAC, 2007.

[85] E. Vasserman, R. Jansen, J. Tyra, N. Hopper, and Y. Kim,
“Membership-concealing overlay networks,” in Proceedings of the 16th
ACM Conference on Computer and Communications Security, ser.
CCS ’09. New York, NY, USA: ACM, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1653662.1653709 pp. 390–399.

[86] A. Nambiar and M. Wright, “The Salsa simulator,” http://ranger.uta.
edu/∼mwright/code/salsa-sims.zip, accessed October 2008.

160

[87] D. Daly, D. D. Deavours, J. M. Doyle, P. G. Webster, and W. H.
Sanders, “Möbius: An extensible tool for performance and depend-
ability modeling,” in Computer Performance Evaluation: Modelling
Techniques and Tools, B. R. Haverkort, H. C. Bohnenkamp, and C. U.
Smith, Eds., vol. 1786. Schaumburg, IL: Springer, Mar. 2000, pp.
332–336.

[88] G. Danezis, “Mix-networks with restricted routes,” in Proceedings of
Privacy Enhancing Technologies Workshop (PET 2003), R. Dingledine,
Ed. Springer-Verlag, LNCS 2760, March 2003, pp. 1–17.

[89] N. de Bruijn, “A combinatorial problem,” Koninklijke Nederlandse
Akademie van Wetenschappen, vol. 49, 1946.

[90] R. Merkle, “Protocols for public key cryptosystems,” in IEEE Sympo-
sium on Security and Privacy, 1980, pp. 122–133.

[91] A. Kapadia and N. Triandopoulos, “Halo: High-Assurance Locate for
Distributed Hash Tables,” in Proceedings of the 15th Annual Network
and Distributed System Security Symposium (NDSS), Feb. 2008, pp.
61–79.

[92] C. Dı́az, S. Seys, J. Claessens, and B. Preneel, “Towards
measuring anonymity,” in Proceedings of the 2nd International
Conference on Privacy Enhancing Technologies, ser. PET’02.
Berlin, Heidelberg: Springer-Verlag, 2003. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1765299.1765304 pp. 54–68.

[93] A. Serjantov and G. Danezis, “Towards an information theoretic
metric for anonymity,” in Proceedings of the 2nd International
Conference on Privacy Enhancing Technologies, ser. PET’02.
Berlin, Heidelberg: Springer-Verlag, 2003. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1765299.1765303 pp. 41–53.

[94] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: estimating
latency between arbitrary internet end hosts,” SIGCOMM Comput.
Commun. Rev., vol. 32, pp. 11–11, July 2002. [Online]. Available:
http://doi.acm.org/10.1145/571697.571700

[95] R. Bhagwan, S. Savage, and G. Voelker, “Understanding availability,”
International Workshop on Peer-to-Peer Systems, pp. 256–267, 2003.

[96] S. Saroiu, P. Gummadi, and S. Gribble, “A measurement study of
peer-to-peer file sharing systems,” in Multimedia Computing and Net-
working, 2002.

161

[97] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica,
“Wide-area cooperative storage with CFS,” in Proceedings of the
Eighteenth ACM Symposium on Operating Systems Principles, ser.
SOSP ’01. New York, NY, USA: ACM, 2001. [Online]. Available:
http://doi.acm.org/10.1145/502034.502054 pp. 202–215.

[98] “Wikipedia,” www.wikipedia.org.

[99] “del.icio.us,” delicious.com.

[100] D. J. Phillips, “Defending the boundaries: Identifying and countering
threats in a usenet newsgroup,” Inf. Soc., vol. 12, no. 1, 1996.

[101] “Secondlife,” secondlife.com.

[102] R. Levien and A. Aiken, “Attack-resistant trust metrics for
public key certification,” in Proceedings of the 7th conference
on USENIX Security Symposium - Volume 7. Berkeley, CA,
USA: USENIX Association, 1998. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1267549.1267567 pp. 18–18.

[103] B. Awerbuch, “Optimal distributed algorithms for minimum weight
spanning tree, counting, leader election and related problems (detailed
summary),” in STOC. ACM, 1987, pp. 230–240.

[104] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals prob-
lem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401,
1982.

[105] “Facebook,” www.facebook.com.

[106] “Orkut,” www.orkut.com.

[107] Sophos, “Sophos Facebook id probe shows 41% of users happy to reveal
all to potential identity thieves,” August 14 2007.

[108] S. Milgram, “The small world problem,” Psychology Today, vol. 2, pp.
60–67, 1967.

[109] D. Randall, “Rapidly mixing Markov chains with applications in com-
puter science and physics,” Computing in Science and Engineering,
vol. 8, no. 2, pp. 30–41, 2006.

[110] R. Kannan, S. Vempala, and A. Vetta, “On clusterings: Good, bad
and spectral,” J. ACM, vol. 51, no. 3, pp. 497–515, 2004.

[111] W. K. Hastings, “Monte carlo sampling methods using Markov chains
and their applications,” Biometrika, vol. 57, no. 1, pp. 97–109, April
1970. [Online]. Available: http://dx.doi.org/10.1093/biomet/57.1.97

162

[112] M. Ripeanu, A. Iamnitchi, and I. Foster, “Mapping the gnutella
network,” IEEE Internet Computing, vol. 6, pp. 50–57, January 2002.
[Online]. Available: http://dl.acm.org/citation.cfm?id=613352.613670

[113] L. Goodman, “Snowball sampling,” Annals of Mathematical Statistics,
vol. 32, no. 1, pp. 148–170, 1961.

[114] D. J. C. MacKay, Information Theory, Inference & Learning Algo-
rithms. New York, NY, USA: Cambridge University Press, 2002.

[115] U. A. Acar, “Self-adjusting computation,” Ph.D. dissertation, Carnegie
Mellon University, Pittsburgh, PA, USA, 2005, co-Chair-Guy Blelloch
and Co-Chair-Robert Harper.

[116] L. V. Ahn, M. Blum, N. J. Hopper, and J. Langford, “CAPTCHA:
using hard AI problems for security,” in Proceedings of the 22nd
International Conference on Theory and Applications of Cryptographic
Techniques, ser. EUROCRYPT’03. Berlin, Heidelberg: Springer-
Verlag, 2003. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1766171.1766196 pp. 294–311.

[117] C. Lesniewski-Laas, “A Sybil-proof one-hop dht,” in Proceedings
of the 1st Workshop on Social Network Systems, ser. SocialNets
’08. New York, NY, USA: ACM, 2008. [Online]. Available:
http://doi.acm.org/10.1145/1435497.1435501 pp. 19–24.

[118] P. Mittal and N. Borisov, “Shadowwalker: peer-to-peer anonymous
communication using redundant structured topologies,” in Proceedings
of the 16th ACM Conference on Computer and Communications
Security, ser. CCS ’09. New York, NY, USA: ACM, 2009. [Online].
Available: http://doi.acm.org/10.1145/1653662.1653683 pp. 161–172.

[119] G. Danezis and P. Mittal, “Sybilinfer: Detecting Sybil nodes using
social networks,” in Proceedings of the Network and Distributed System
Security Symposium,. The Internet Society, 2009.

[120] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu,
M. Musolesi, S. B. Eisenman, X. Zheng, and A. T. Campbell,
“Sensing meets mobile social networks: the design, implementation
and evaluation of the cenceme application,” in Proceedings of the
6th ACM Conference on Embedded Network Sensor Systems, ser.
SenSys ’08. New York, NY, USA: ACM, 2008. [Online]. Available:
http://doi.acm.org/10.1145/1460412.1460445 pp. 337–350.

[121] “Livejournal,” www.livejournal.com.

163

[122] K. Bauer, D. Mccoy, D. Grunwald, and D. Sicker, “Bitstalker: Accu-
rately and efficiently monitoring bittorent traffic,” in Proceedings of the
International Workshop on Information Forensics and Security, 2009.

[123] M. Liberatore, B. N. Levine, and C. Shields, “Strengthening
forensic investigations of child pornography on P2P networks,” in
Proceedings of the 6th International Conference, ser. Co-NEXT
’10. New York, NY, USA: ACM, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1921168.1921193 pp. 19:1–19:12.

[124] C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and B. Y. Zhao, “User
interactions in social networks and their implications,” in Proceedings
of the 4th ACM European Conference on Computer systems, ser.
EuroSys ’09. New York, NY, USA: ACM, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1519065.1519089 pp. 205–218.

[125] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On
the evolution of user interaction in Facebook,” in Proceedings of
the 2nd ACM Workshop on Online social networks, ser. WOSN
’09. New York, NY, USA: ACM, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1592665.1592675 pp. 37–42.

[126] P. Wang, J. Tyra, E. Chan-Tin, T. Malchow, D. F. Kune, N. Hopper,
and Y. Kim, “Attacking the kad network,” in Proceedings of the 4th
International Conference on Security and Privacy in Communication
Networks, ser. SecureComm ’08. New York, NY, USA: ACM, 2008.
[Online]. Available: http://doi.acm.org/10.1145/1460877.1460907 pp.
23:1–23:10.

[127] M. J. Freedman, E. Freudenthal, and D. Mazières, “Democratizing
content publication with coral,” in Proceedings of the 1st Conference
on Symposium on Networked Systems Design and Implementation -
Volume 1. Berkeley, CA, USA: USENIX Association, 2004. [Online].
Available: http://dl.acm.org/citation.cfm?id=1251175.1251193 pp.
18–18.

[128] T. Ristenpart, G. Maganis, A. Krishnamurthy, and T. Kohno,
“Privacy-preserving location tracking of lost or stolen devices:
cryptographic techniques and replacing trusted third parties with
DHTs,” in Proceedings of the 17th Conference on USENIX Security
symposium. Berkeley, CA, USA: USENIX Association, 2008. [Online].
Available: http://dl.acm.org/citation.cfm?id=1496711.1496730 pp.
275–290.

[129] R. Geambasu, T. Kohno, A. A. Levy, and H. M. Levy, “Vanish:
increasing data privacy with self-destructing data,” in Proceedings of

164

the 18th Conference on USENIX Security Symposium, ser. SSYM’09.
Berkeley, CA, USA: USENIX Association, 2009. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855768.1855787 pp. 299–316.

[130] S. Wolchok, O. S. Hofmann, N. Heninger, E. W. Felten, J. A. Halder-
man, C. J. Rossbach, B. Waters, and E. Witchel, “Defeating vanish
with low-cost sybil attacks against large DHTs,” in NDSS, 2010.

[131] Y. Boshmaf, I. Muslukhov, K. Beznosov, and M. Ripeanu, “The
socialbot network: when bots socialize for fame and money,” in
Proceedings of the 27th Annual Computer Security Applications
Conference, ser. ACSAC ’11. New York, NY, USA: ACM, 2011.
[Online]. Available: http://doi.acm.org/10.1145/2076732.2076746 pp.
93–102.

[132] L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda, “All your contacts are
belong to us: automated identity theft attacks on social networks,”
in Proceedings of the 18th International Conference on World Wide
Web, ser. WWW ’09. New York, NY, USA: ACM, 2009. [Online].
Available: http://doi.acm.org/10.1145/1526709.1526784 pp. 551–560.

[133] D. Irani, M. Balduzzi, D. Balzarotti, E. Kirda, and C. Pu,
“Reverse social engineering attacks in online social networks,”
in Proceedings of the 8th International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, ser.
DIMVA’11. Berlin, Heidelberg: Springer-Verlag, 2011. [Online].
Available: http://dl.acm.org/citation.cfm?id=2026647.2026653 pp.
55–74.

[134] E. Gilbert and K. Karahalios, “Predicting tie strength with social
media,” in Proceedings of the 27th International Conference on Human
Factors in Computing Systems, ser. CHI ’09. New York, NY, USA:
ACM, 2009. [Online]. Available: http://doi.acm.org/10.1145/1518701.
1518736 pp. 211–220.

[135] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on-demand distance
vector (AODV) routing,” United States, 2003.

[136] D. Mazieres, “Self-certifying file system,” Ph.D. dissertation, MIT,
2000, supervisor-Kaashoek, M. Frans.

[137] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, and
I. Stoica, “Rofl: routing on flat labels,” in Proceedings of
the 2006 conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, ser. SIGCOMM
’06. New York, NY, USA: ACM, 2006. [Online]. Available:
http://doi.acm.org/10.1145/1159913.1159955 pp. 363–374.

165

[138] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,
and S. Shenker, “Accountable internet protocol (aip),” in Proceedings
of the ACM SIGCOMM 2008 conference on Data communication,
ser. SIGCOMM ’08. New York, NY, USA: ACM, 2008. [Online].
Available: http://doi.acm.org/10.1145/1402958.1402997 pp. 339–350.

[139] A. Narayanan and V. Shmatikov, “De-anonymizing social networks,” in
Proceedings of the 2009 30th IEEE Symposium on Security and Privacy.
Washington, DC, USA: IEEE Computer Society, 2009. [Online].
Available: http://dl.acm.org/citation.cfm?id=1607723.1608132 pp.
173–187.

[140] A. Mohaisen, A. Yun, and Y. Kim, “Measuring the mixing time
of social graphs,” in Proceedings of the 10th Annual Conference on
Internet Measurement, ser. IMC ’10. New York, NY, USA: ACM, 2010.
[Online]. Available: http://doi.acm.org/10.1145/1879141.1879191 pp.
383–389.

[141] “Sfslite,” http://www.okws.org/doku.php?id=sfslite.

[142] “Using libasync,” http://pdos.csail.mit.edu/6.824-2004/async/.

[143] M. Krohn, E. Kohler, and M. F. Kaashoek, “Events can
make sense,” in 2007 USENIX Annual Technical Conference
on Proceedings of the USENIX Annual Technical Conference.
Berkeley, CA, USA: USENIX Association, 2007. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1364385.1364392 pp. 7:1–7:14.

[144] “Diaspora,” wwww.joindiaspora.com/.

[145] A. Johnson and P. Syverson, “More anonymous onion routing through
trust,” in Proceedings of the 2009 22nd IEEE Computer Security
Foundations Symposium. Washington, DC, USA: IEEE Computer
Society, 2009. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1602936.1603616 pp. 3–12.

[146] A. M. Johnson, P. Syverson, R. Dingledine, and N. Mathewson,
“Trust-based anonymous communication: adversary models and
routing algorithms,” in Proceedings of the 18th ACM Conference on
Computer and Communications Security, ser. CCS ’11. New York,
NY, USA: ACM, 2011. [Online]. Available: http://doi.acm.org/10.
1145/2046707.2046729 pp. 175–186.

[147] A. Pfitzmann and M. Hansen, “A terminol-
ogy for talking about privacy by data minimiza-
tion: Anonymity, unlinkability, undetectability, unobservabil-
ity, pseudonymity, and identity management,” http://dud.inf.tu-
dresden.de/literatur/Anon Terminology v0.34.pdf, Aug. 2010, v0.34.

166

[Online]. Available: http://dud.inf.tu-dresden.de/literatur/Anon\
Terminology\ v0.34.pdf

[148] D. L. Mills, Computer Network Time Synchronization: The Network
Time Protocol. CRC Press, 2006.

[149] C.-Y. Hong, C.-C. Lin, and M. Caesar, “Clockscalpel: understanding
root causes of internet clock synchronization inaccuracy,” in
Proceedings of the 12th International Conference on Passive and Active
measurement, ser. PAM’11. Berlin, Heidelberg: Springer-Verlag,
2011. [Online]. Available: http://dl.acm.org/citation.cfm?id=1987510.
1987531 pp. 204–213.

[150] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equation of state calculations by fast computing machines,”
The Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953.
[Online]. Available: http://link.aip.org/link/?JCP/21/1087/1

[151] X. Wang, S. Chen, and S. Jajodia, “Tracking anonymous peer-
to-peer voip calls on the internet,” in Proceedings of the 12th
ACM Conference on Computer and Communications Security, ser.
CCS ’05. New York, NY, USA: ACM, 2005. [Online]. Available:
http://doi.acm.org/10.1145/1102120.1102133 pp. 81–91.

[152] A. Houmansadr, N. Kiyavash, and N. Borisov, “Rainbow: A robust
and invisible non-blind watermark for network flows,” in NDSS, 2009.

[153] J. L. Massey, “Guessing and entropy,” in IEEE ISIT, 1994.

[154] V. Shmatikov and M.-H. Wang, “Measuring relationship anonymity in
mix networks,” in Proceedings of the 5th ACM Workshop on Privacy in
eEectronic Society, ser. WPES ’06. New York, NY, USA: ACM, 2006.
[Online]. Available: http://doi.acm.org/10.1145/1179601.1179611 pp.
59–62.

[155] D. Aldous and J. A. Fill, “Reversible Markov chains and random walks
on graphs,” http://www.stat.berkeley.edu/∼aldous/RWG/book.html,
accessed February 2012.

167

