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ABSTRACT

In this dissertation, tools from information theory are used to study mul-

titerminal wireless networks. A compress-and-forward scheme with layered

decoding is presented for the unicast and multi-source wireless network and

shown to be approximately optimal. This scheme is shown to allow better

decoding complexity compared to previously known approximately optimal

schemes. Characterizing the layered decoding scheme is shown to be equiva-

lent to characterizing an information flow for the wireless network. A node-

flow for a graph with bisubmodular capacity constraints is presented and a

max-flow min-cut theorem is presented. This generalizes many well-known

results of flows over capacity constrained graphs studied in computer science

literature. In the final part of the dissertation, the intuitions from the re-

ciprocal nature of networks are used to present an approximately optimal

communication scheme for broadcast networks, which are the reciprocal of

the multi-source wireless networks.
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To the questions I failed to ask and the answers I failed to find
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CHAPTER 1

INTRODUCTION

Wireless networks are pervasive today. A casual look around and one can

easily spot a number of devices that communicate with each other wirelessly.

Further, this trend is only predicted to increase. It is, for this reason, im-

portant to understand wireless networks from a theoretical point of view, to

understand the fundamental limits of communication in wireless networks

and to invent efficient and optimal communication architecture for wireless

networks. Over the last few decades, many insights from the field of infor-

mation theory have spurred innovations and developments in the wireless

industry.

Information theory tries to establish fundamental limits on the rates of

communication with reliability guarantees. The insight also leads to design-

ing communication architecture and schemes, which come close to meeting

the fundamental limits.

The fundamental limits arise from both the physics and the engineering

limitations of the real world communication systems. For instance, the phys-

ical limitations could be the thermal noise that arises from the Brownian

motion of electrons in the electronic receiver systems, or the superposition

and broadcast nature of signals that arise from a shared medium in wire-

less systems. The engineering limits could be the power limitations on the

transmission, due to the limited power handling capabilities of the amplifiers

or the battery life of devices, or it could be the complexity of the schemes

allowed, due to the limitations on the circuits on which the schemes are im-

plemented. These limits are captured by a mathematical model, which is

the first and most important step in any theoretic analysis of a system. The

model often needs to be simplified to make the analysis tractable and to give

fundamental insights. The insights gained from the analysis are as useful to

the real world problem as the mathematical model is to the real world setup.

Over the last 60 years or so, the simple point-to-point Gaussian channel
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model first studied by Shannon has been extended to multi-terminal wireless

networks. The multiple-access channel, where many source nodes transmit

to a single destination node, and the broadcast channel, where a single source

node transmits to many destination nodes, have been fully understood. How-

ever, going beyond these simple cases has been much more difficult. In fact,

characterizing the fundamental limits on rates of reliable communication of

even seemingly small and simple wireless networks, like the three-node relay

channel or the two-user interference channel, remain open problems.

Many recent works have focused on characterizing communication archi-

tecture for larger networks, which can be shown to be approximately optimal.

Two approaches among these have been noteworthy. One approach, begin-

ning with the pioneering work of [1, 2], has been to to characterize schemes

which are asymptotically optimal in the size of the network, known as the

scaling laws.

The second approach has been to characterize an optimal scheme when

the signal power is much larger than the noise (called the high SNR regime).

The approximate optimality is in the sense that the schemes are shown to

achieve rates a constant gap away from the fundamental limits. Such an

approach was used for the two-user interference channel [3] and for the unicast

wireless relay network in [4]. A useful technique that has been employed

in understanding wireless networks in the high SNR regime is the use of

deterministic models, where the channel model is assumed to be noiseless,

but captures the signal interaction arising due to the shared nature of the

wireless medium.

In this thesis, the second approach is used to further our understanding

of the wireless networks. Chapter 2 lays the basic groundwork by setting

up the communication problem in multi-terminal wireless networks. It also

discusses the various models and establishes some of the tools that will be

used in the rest of the thesis.

In Chapter 3, the unicast relay network, where a single source node is

communicating with a single destination node in the presence of multiple

relay nodes, is studied. A compress-and-forward scheme is proposed and the

scheme is shown to be approximately optimal. The scheme allows possibilities

of a simplified decoding architecture compared to previously known schemes.

The simplification comes from the characterization of information flows in

wireless networks.
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Flows in graphs have been used to study routing of commodities in trans-

portation and communication networks. Information flow in a wired network

like the Internet consists of information packets being routed across the nodes

in the network from the source to the respective destination. The flow is

through the wired links which form the edges in the network. A wireless

network, on the contrary, has no edges. The notion of node-flows for a graph

is proposed in Chapter 4. While the motivation here to develop the concept

of node-flows comes from the study of the compress-and-forward architecture

for the wireless network, it is interesting in its own right, generalizing many

well known max-flow min-cut results in the computer science literature.

In Chapter 5, the notion of reciprocity in wireless networks is presented.

It is suggested, by pointing to known examples in the literature, that a

communication network and its reciprocal obtained by reversing the commu-

nication links and reversing the information flow are closely connected. This

intuition is then used in Chapter 6 in designing communication schemes for

a broadcast network, where a single source is communicating independent

messages to many destination nodes through a network of relay nodes. The

intuition for the approximately optimal communication schemes for such a

network comes from relating it to its reciprocal network for which schemes

are known and comparatively more intuitive.
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CHAPTER 2

MODELS

The first task in analytically understanding the fundamental limits of a wire-

less communication network is to develop and describe a mathematical model.

The goal of this chapter is to describe a mathematical model for the com-

munication network and to formulate an objective function that needs to

be optimized in the design of the communication architecture we seek. The

main criterion that will be considered is the rate of communication which is

a measure of the amount of information that can be exchanged between the

communicating nodes and is usually measured in bits per second per hertz.

2.1 Network and channel model

The term communication node is used to describe any device that has a radio

(or transceiver) embedded in it, which can be used to exchange signals with

other compatible nodes. The network model describes the geometry of the

nodes and the channel model describes the signal interaction between these

nodes.

2.1.1 General discrete-time memoryless network model

Consider a communication network denoted by N . The communication net-

work consists of the following components.

1. A collection of communication nodes (or radios) denoted by V. The

nodes can be thought of as points in a 3-dimensional space. For sim-

plicity, and as it often suffices, they can even be considered to be points

on a plane. The communication channel, described next, describes rela-

tionship between pairs of nodes and can be used to define edges between

the nodes. Thus, the set V forms the vertex set of a graph.
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2. The communication channel between these nodes is assumed to be a

discrete-time memoryless communication channel. More precisely, time

is assumed to be discrete and synchronized among all nodes. The trans-

mit symbol at any time at a node v ∈ V is given by xv ∈ Xv and the

receive symbol is given by yv ∈ Yv. Unless otherwise mentioned, the

input and output alphabet sets, Xv’s and Yv’s respectively, are assumed

to be finite sets. A memoryless network implies that the received sym-

bol at any node at any given time depends (stochastically when the

channel is noisy) only on the current transmitted symbols at other

nodes. This dependency is represented by directed edges between the

nodes. An edge (u, v) indicates that the transmit symbol of node u

influences the received symbol of node v. Often, by a principle of reci-

procity, if a node u influences a node v, then the transmitted symbol

of node v also influences the received symbol of node u and more so

in a commensurate manner. Therefore, the dependency can be repre-

sented by an undirected edge uv. The set of all edges is denoted by

the E . The precise relationship between the transmitted and received

symbols can, in general, be modeled by a conditional probability func-

tion p (YV |XV). Here, XA for any set A is used to denote the collection

of random variables {Xv|v ∈ A}. By default, a full duplex mode of

operation is assumed at each node, so that a node can transmit and

receive simultaneously.

2.1.2 Gaussian network model

The term wireless network commonly refers to the Gaussian network model.

The communication network is called a Gaussian network when the canonical

Gaussian channel model describes the relationship between the transmitted

and received symbols of the various nodes in the network. Denoting the

baseband transmit symbol (a complex number) of node k at time t by xk[t],

the average transmit power constraint at each node implies that

T
∑

t=1

|xk[t]|2 ≤ TPk, (2.1)
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where T is the time period over which the communication occurs. At each

time t, the received signal at any node ℓ

yℓ[t] =
∑

k 6=ℓ

hkℓ[t]xk[t] + zℓ[t]. (2.2)

Here {zℓ[t]}t is i.i.d. Gaussian noise and independent across the different

nodes ℓ.

For the most part here, it will be assumed that the channel is non-fading.

This means that the channel coefficients hkℓ do not depend on time t. By

scaling the channel coefficients appropriately, it can be assumed that the

zℓ[t] are unit variance and the power constraint at each node is unity. The

Gaussian network can equivalently be represented by the channel transition

probability p(YV |XV) given by

Yℓ =
∑

k 6=ℓ

hkℓXk + Zℓ, (2.3)

where Zℓ ∼ CN (0, 1).

Here a single antenna is assumed at each node. With multiple antennas,

the symbols are assumed to be complex vectors and the channel coefficient

is replaced by the matrix Hkℓ.

2.1.3 Deterministic network

To simplify analysis and to distill insights, a simplified noise-free or deter-

ministic model is often used. The communication network is called a deter-

ministic network when the received symbols are a deterministic function of

the transmitted symbols from the other nodes. More precisely,

yℓ[t] = gℓ

(

{xk[t]}k 6=ℓ

)

. (2.4)

The input and output alphabet sets, Xk’s and Yℓ’s respectively, are assumed

to be finite sets. Two special cases of the deterministic network are of par-

ticular importance as they capture the most important features of a wireless

network - superposition and broadcast nature of signals.
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1. Linear deterministic network:

The linear deterministic network assumes that transmit and receive

alphabet sets are vector finite field F
q
p, where p is the order of the finite

field and q is the length of the vector. The channel model is linear and

is given by

yℓ[t] =
∑

k 6=ℓ

Gℓkxk[t]. (2.5)

Here yℓ[t], xk[t] ∈ F
q
p and G ∈ F

q×q
p . The linear deterministic network

was first introduced in [4] as a simple model to capture wireless signal

interaction. In particular it considered the binary field (p = 2). The

channel was modeled by shift matrices Sq−k, where

S =



















0 0 0 · · · 0

1 0 0 · · · 0

0 1 0 · · · 0
...

. . .
. . .

. . .
. . .

0 · · · 0 1 0



















q×q

(2.6)

and k ∈ {0, 1, · · · , q} is a measure of the relative channel strength.

This philosophy of the deterministic model to capture channel strengths

was first introduced in the context of a compound point-to-point chan-

nel where it was successfully used to construct codes that universally

achieve the diversity-multiplexing tradeoff over any fading channel [5]

(see also Chapter 9 of [6]).

In [4], the capacity of the linear deterministic network with unicast and

multicast traffic was determined. The insights were then used to give

a coding theorem for the Gaussian network. The coding theorem was

used to establish the approximate capacity of the Gaussian network,

by showing that rates within a constant gap of an outer bound given

by the cutset bound can be achieved.

The linear deterministic, however, does not approximate the capacity

of the Gaussian network. In particular, it fails to capture the complex

phase in the channel model of the Gaussian network and the power

constraints. To overcome this limitation, the discrete superposition

network was introduced in [7]. The model is closely related to a similar
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model introduced for the two-user interference channel in [8] and the

truncated deterministic model introduced in [4] .

2. Discrete superposition network:

In the Gaussian network, the channel model is given by

yℓ[t] =
∑

k 6=ℓ

hkℓxk[t] + zℓ[t]. (2.7)

By scaling the channel coefficient hkℓ’s appropriately, it can be assumed

that each node has unit power constraint and the the noise has unit

variance. For every Gaussian network model, the corresponding DSN

channel model is given by

y
(DSN)
ℓ [t] =

[

∑

k 6=ℓ

[hkℓ] x
(DSN)
k [t]

]

, (2.8)

where [·] lies in Z + ıZ and corresponds to quantizing the real and

imaginary parts of the complex number by neglecting the fractional

part. Further, the transmit alphabet in the DSN is restricted to a

finite set, such that both the real and imaginary parts belong to the

finite set with equally spaced points given by

X (DSN)
v =

1√
2

{

0, 2−n, . . . , 1 − 2−n
}

, (2.9)

where n , max(i,j) ⌊max {log2 Re (hij) , log2 Im (hij)}⌋.

2.2 Communication model

The information traffic in the network refers to the message streams that

need to be communicated in the network. The messages are assumed to be

independent. Each message is associated with one source node and at the

least one, and possibly many, destination nodes. Some of the common traffic

patterns we consider are:

• Unicast - single message stream with one source and one destination

node.
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• Broadcast - many independent message streams from a single source

node S but to multiple destination nodes - D1, . . . , DJ .

• Multicast - single message stream from a single source node S but to

multiple destination nodes - D1, . . . , DJ .

• Multiple unicast - many independent message streams with different

source nodes and different destination nodes.

Note that in general a communication network could have any or a com-

bination of the above traffic patterns.

The communication problem can be described mathematically as follows.

The communication is done over a block of T time symbols over which J

independent messages (information streams) are communicated in the net-

work.

1. Each independent message in the network is associated with an inde-

pendent random variables Wi which is distributed uniformly on [2TRi ]

for i ∈ [J ] respectively. The message Wi is assumed to be known at

precisely one node in the network called the source node for that mes-

sage. At the end of the communication period, the message needs to be

determined at some nodes (could be one for unicast or many for multi-

cast) in the network. These nodes are called the destination nodes for

the message.

2. The encoding at any node v ∈ V and time t is given by

fv,t :
(

Wv,Y t−1
v

)

→ Xv, (2.10)

where Wv represents all the messages for which node v is the source

node. If a node is purely a source node, then the encoding corresponds

to a source mapping and is given by

fv : Wv → X T
v . (2.11)

If a node is purely a relay node, then the encoding corresponds to a

relay mapping and is given by

fv,t : Y t−1
v → Xv. (2.12)
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3. The decoding map for a message Wi at destination node D,

gD,Wi
: YT

Di
→ Ŵi. (2.13)

The probability of error for the above decoding is given by

Pe(D,Wi) , Pr{gD,Wi
6= Wi}. (2.14)

A rate tuple (R1, R2, . . . , RJ), where Ri is the rate of communication in bits

per unit time for message Wi, is said to be achievable if for any ǫ > 0, there

exists an encoding and decoding scheme that achieves a probability of error

less than ǫ for all messages and for all corresponding destination nodes, i.e.,

maxi Pe(D,Wi) ≤ ǫ. The capacity region C is the set of all achievable rates.

2.3 Miscellaneous notions

2.3.1 Cutset bound

The following is the well known cutset outer bound to the rate tuples of

reliable communication [9, 10].

A cut (or more precisely vertex-cut) in the network is represented by a set

of nodes Ω ⊂ V. The cut partitions V into two sets Ω and Ωc. Let Λ denote

the set of all subsets Ω ⊂ V. We say that the cut separates the message

stream Wi if the source node corresponding to the message is in Ω and at

the least one destination node is in Ωc. Let δ(Ω) denote the set of all indices

of messages that are separated by the cut Ω.

The cutset bound states that if (R1, . . . , RJ) is achievable then there is a

joint distribution p ({Xv|v ∈ V}) (denoted by Q) such that

Rδ(Ω) ≤ I (YΩc ;XΩ|XΩc) , (2.15)

where RA ,
∑

j∈ARj .

Let C̄(Q) denote the set of all rate tuples that satisfy the cutset outer
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bound for a given joint distribution Q

C̄(Q) , {(R1, . . . , RJ) : Rδ(Ω) ≤ I (YΩc ;XΩ|XΩc) ∀Ω ∈ Λ}. (2.16)

C̄ ,
⋃

Q

C̄(Q). (2.17)

C̄ denotes the cutset bound.

Cutset bound for the Gaussian network: For the Gaussian network, due to

the power constraint the cutset bound is evaluated by considering all p(XV)

with E [|Xv|2] = 1. Further, it can be shown that the cutset region is al-

ways maximized when XV are jointly Gaussian. Therefore for the Gaussian

network the cutset bound is given by restricting XV ∼ CN (0, KX),

C̄g(KX) ,
{

(R1, . . . , RJ) : Rδ(Ω) ≤ log (|I +HΩΩcKXH
∗
ΩΩc|) ,

∀ Ω ∈ Λ} , (2.18)

and

C̄g ,
⋃

KX ,KX(ii)=1

C̄g(KX). (2.19)

Here,

YΩc = HΩΩcXΩ + ZΩc (2.20)

is the MIMO channel formed by the cut Ω with the nodes on Ω forming the

source and the nodes in Ωc forming the destination node.

The following lemma due to [4] characterizes the gap from cutset when

the distribution is further restricted to i.i.d. Gaussian. This will come in

useful in characterizing approximate optimality of schemes.

Lemma 1. (Lemma 6.6, [4]) If the rate vector ~R ∈ C̄g, then (~R − 2|V|~1) ∈
C̄g(I).

2.3.2 Layered network

A network is a layered network if the underlying graph of the network (V, E),

which determines the connectivity of the graph, has a layered topology as

described below. A network is called an L-layered network if the set of vertices

V can be partitioned into L disjoint sets, such that the source nodes are in

the 1st layer and the J destination nodes are in the L-th layer. The nodes in
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Layer 2 Layer L−1 Layer LLayer 1

SJ

D1

D2

DK

S1

S2

Figure 2.1: Layered network.

the intermediate layers are relaying nodes. The received signal at the nodes

in the l + 1-th layer only depend on the transmitted signals at the nodes in

the l-th layer. This dependency is often represented by edges connecting the

nodes from the l-th layer to the (l + 1)-th layer. An example of a layered

network is shown in Figure 2.1.

The advantage of working with a layered network is that we can consider

layered schemes for such a network. The layered scheme is such that nodes

operate over blocks of T symbols. The source node sends independent mes-

sage in each block. The independent messages can be seen as propagating

from one layer to the next without getting intertwined.

It is shown in [4] that any arbitrary network N can be dealt with by

considering a corresponding unfolded L-layered network N unf, which is con-

structed as follows.

• The node set for the unfolded network is as follows. The first layer

has only the source nodes and the last layer has only the destination

nodes. The remaining layers each have a replication of all the nodes in

the original network.

• Next we describe the edge set and the channel model in the unfolded

network. The edge set consists of L− 1 subsets (or stages), where the

i-th stage gives the connection between the i-th layer of nodes and the

(i+ 1)-th layer. A node in a layer is connected to its own replicate in

the subsequent layer by an orthogonal link of infinite capacity. This
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represents the memory in the network. For the first and the last stage,

these are the only connections. For the other stages, any node in a

layer is connected to another node in the following layer, if there was a

connection between the two nodes in the original network. The channel

model for every stage is identical to the channel model in the original

network.

The following two lemmas prove the relationship between a network and

its corresponding unfolded L-layered network

Lemma 2. If a rate tuple ~R = (R1, . . . , RJ) is achievable for the unfolded L

layered network, then ~R/(L− 2) is achievable for the original network.

The lemma follows from the observation that any scheme for the unfolded

network over B symbols can be emulated on the original network in B(L−
2)symbols.

Lemma 3. If C̄N and C̄N unf

denote the cutset bound of the original network

and the unfolded network, then

C̄N = lim
L→∞

1

L− 2
C̄N unf

. (2.21)

This lemma was proved in [4] by a careful analysis of the cutsets of the

unfolded network.
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CHAPTER 3

COMPRESS-AND-FORWARD SCHEME

WITH LAYERED DECODING

In [4] a quantize-map-forward scheme was presented for the unicast and mul-

ticast Gaussian relay network. It was shown that this scheme is approxi-

mately optimal, i.e. it gives a reliability criterion for rates within a constant

gap of the cutset bound, where the constant gap depends only on the size

of the network and not on the channel parameters. In this scheme, each

node quantizes the received signal, symbol by symbol, at the noise level.

The quantized symbols accumulated together in a block are then mapped to

a transmit codeword at that node. These transmission codebooks at every

node are generated independently of each other.

In [11], a related scheme was presented for the unicast Gaussian net-

work. Here, the coding and quantization is done in a structured manner

using lattices. The scheme was shown to achieve performance similar to the

quantize-map-forward scheme of [4] in terms of the reliable rates.

In [12], a noisy network coding scheme in the more general setting of

the discrete memoryless network was presented for the unicast relay network

and also generalized to the case of multicast and multiple sources with single

destination. In this scheme, the relay quantizes the received signal in blocks

using vector-quantization, subsequently mapping each quantized codeword

to a unique codeword, which is re-transmitted by the relay. Specialized to

the Gaussian network, the noisy network coding can be thought of as a vector

version of the quantize-map-forward scheme, where each relay does a vector

quantization rather than the scalar quantization proposed in [4].

In [7], an alternate approach was provided, wherein the discrete superpo-

sition network was used as a digital interface for the Gaussian network and

the scheme was constructed by lifting the scheme for the discrete superposi-

tion network. The discrete superposition network provided the quantization

interface for this scheme.

In this chapter, a compress-and-forward scheme is presented for a relay
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network in the general setting of the discrete memoryless network. This

scheme is similar to the noisy network scheme, but generalizes it in the

following sense. In the compress-and-forward scheme, the relay node bins

the quantized received signal and subsequently maps the bin number to a

unique codeword, which is then retransmitted by the relay. The feasible

region of communication rate and compression rates at each relay node is

characterized under the optimal maximum likelihood decoding rule and a

reduced complexity layered decoding scheme.

The compress-and-forward scheme with the layered decoding scheme presents

an efficient architecture for the relay network, wherein the encoding and de-

coding operation is done over smaller sized local sub-networks. Further, this

architecture too is approximately optimal.

In the next section, the compress-and-forward scheme is presented in

the context of the unicast network. The extension to multiple-source and

multicast is presented in Section 3.2.

3.1 Compress-and-forward scheme for unicast network

Recall that a unicast network has a single source node, denoted by S, with

the message, denoted by W , which is required at a single destination node,

denoted by D. Further, only a layered network is considered as shown in

Figure 3.1, so that

V =
L
⋃

l=1

Ol, (3.1)

where Ol denotes the ml nodes in the l-th layer. The k-th node in the l-th

layer will be denoted by v(l,k). The first layer has only one node which is

the source node and is denoted by v(1,1) or S. The last layer has only the

destination node and is denoted by v(L,1) or D. The nodes other than the

source and the destination node will be referred to as the relay nodes and

are denoted by Vr.

In the layered network, the received symbol for a node in the l + 1-

th layer depends only on the transmit symbol from the nodes in the l-th

layer. The probability transition function describing the general discrete-

time memoryless channel model can be decomposed into a product form as
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v(3,1)

S D

O1 O2 O3 OL

v(1,1)

v(2,m2) v(3,m3)

v(2,2) v(3,2) v(L,1)

v(2,1)

Figure 3.1: Layered unicast network.

follows.

p(yV |xV) =

L−1
∏

l=1

p(yOl+1
|xOl

). (3.2)

Here xOl
is used to denote {xv : v ∈ Ol} and yOl

’s are similarly defined.

Further, the additive noise at each node is assumed to be independent of

each other. This implies that the channel model at each layer can be further

decomposed as follows:

p(yOl+1
|xOl

) =

ml+1
∏

k=1

p(yv(l+1,k)
|xOl

). (3.3)

A block-encoded layered scheme is considered where each node performs

its operation over blocks of time symbols. The relay node quantizes (or

compresses) the symbols it receives over a block of time to finite bits. These

bits are then transmitted in the next block. The compression rate at a relay

node is defined to be the rate of transmission of the compressed bits.

Assuming that uniformly sized blocks of T symbols are used by each

node for this operation, a compress-and-forward scheme is parametrized by
(

T,R, {rv}v∈Vr

)

, where R is the overall rate of communication and rv’s are

the compression rates at the relay nodes. A rate vector
(

R, {rv}v∈Vr

)

is said

to be feasible w.r.t. the compress-and-forward scheme, if for any arbitrary
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ǫ > 0, there exists a compress-and-forward scheme
(

T,R, {rv}v∈Vr

)

which

achieves a probability of error less than ǫ.

The following theorem characterizes the feasible region of
(

R, {rv}v∈Vr

)

for the compress-and-forward scheme.

Theorem 1. A rate vector
(

R, {rv}v∈Vr

)

is feasible if for some collection of

random variables
{

XV , ŶV

}

, henceforth denoted by Qp, which is distributed

as

p(XV , ŶV , YV) =

(

∏

v∈V

p(Xv)

)

p(YV |XV)

(

∏

v∈V

p(Ŷv|Yv)

)

, (3.4)

the vector
(

R, {rv}v∈Vr

)

satisfies

R < r(Ωc\Φ) + I(ŶΦ;XΩ|XΩc) − I(ŶΦc ;YΦc|XV), (3.5)

∀ Ω,Φ, s.t., S ∈ Ω ⊆ V, D ∈ Φ ⊆ Ωc, where r(A) ,
∑

v∈A rv.

(Note: The choice ŶD = YD is always optimal for (3.5)).

Proof. The proof is by random coding technique. A random ensemble of cod-

ing scheme is defined using the collection of random variables Qp distributed

as given by (3.4). A scheme in the ensemble is generated as follows.

1. Source codebook and encoding: For each message w ∈ [2TR], the source

generates a T -length sequence xT
s (w) using i.i.d. p(XS).

2. Relay codebooks and mappings: For every relay node v ∈ Vr a binned

quantization codebook is generated with 2Trv bins. The binned quan-

tization codebook is given by ŷT
v (wv, w̄v), where wv ∈ [2Trv ] and w̄v ∈

[2T r̄v ]. And it is generated using i.i.d. p(Ŷv).

Every relay node also generates a transmission codebook of size 2Trv ,

which consists of xT
v (wv) sequences generated using i.i.d. p(Xv).

On receiving yT
v , the relay node finds a vector ŷT

v (wv, w̄v) in the quanti-

zation codebook and transmits xT
v (wv) corresponding to the bin number

of the quantization vector.

If the relay cannot find any quantization vector, it transmits a sequence

corresponding to any bin uniformly at random. The probability that

this latter event is arbitrarily is small is ensured by letting

r̄v = I(Yv, Ŷv) − rv + ǫ1, (3.6)
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for an arbitrarily small ǫ1 > 0. This ensures that the total size of the

quantization codebook is of the order 2TI(Yv,Ŷv).

3. Decoding: On receiving yT
D, the destination node finds a unique ŵ, and

any
{

(ŵv, ˆ̄wv)
}

v∈Vr
, such that

(

xT
S (ŵ),

{

Ŷ T
v (ŵv, ˆ̄wv), x

T
v (ŵv)

}

v∈Vr

, yT
D

)

∈ T T
ǫ . (3.7)

If it is successful, the destination declares ŵ as the decoded message;

if not, the destination declares an error.

The theorem follows by the standard argument of showing that the av-

erage probability of error, averaged over the ensemble of codes and over all

messages, goes to 0 as T tends to infinity. The details of the error probability

analysis are in Appendix A.1.

In the usual communication problem setup, one is interested in only max-

imizing the overall communication rate R. The following corollary of the

above theorem establishes the achievable rate by the compress-and-forward

scheme.

Corollary 1. The communication rate R is achievable by the compress-and-

forward scheme if

R < min
Ω⊆V ,S∈Ω

I(ŶΩc;XΩ|XΩc) − I(ŶΩ;YΩ|XV , ), (3.8)

for some collection of random variables Qp.

Proof. The compress-and-forward scheme with Rv = I(Yv, Ŷv) + ǫ1 achieves

this rate.

It should be noted that the achievable rate in (3.8) is the same as the one

obtained in noisy network coding scheme in [12]. This is not surprising as

by allowing the compression rates to be large enough, the scheme essentially

reduces to the noisy network coding scheme, where every quantized codeword

is uniquely mapped to a re-transmission codeword at the relay node.
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3.1.1 A low-complexity layered decoding scheme

A maximum likelihood decoder maximizes the probability of the received

vector conditioned on the transmitted codeword at the source. (Note that

the jointly-typical-set decoding is a proof technique for the random coding

argument and it upper-bounds the error probability that can be achieved by

the maximum likelihood (ML) decoder.

ML decoder: ŵ = argmaxwp
(

yT
D|xT

S (w)
)

. (3.9)

The conditional probability depends on the channel model and the oper-

ations (quantization, compression and mapping) at each node. Therefore

implementing a ML decoder has very high complexity. In [13], the ML de-

coder is implemented for a simple one-relay network with binary LDPC codes

and a reduced quantizer operation for which the decoding reduces to belief-

propagation over a large Tanner graph, which comprises the Tanner graphs of

the LDPC codes for each node, the quantization and mapping operation, and

the network itself. Even when this simplified encoding scheme is extended to

a network with multiple layers of relay nodes, the decoding complexity would

be large. In this section, a simplified decoding architecture is presented for

the compress-and-forward scheme which operates layer-by-layer and decodes

the compressed bits transmitted by each relay node.

Layered decoding scheme: The decoder at the destination node operates

backwards layer-by-layer. First, it decodes the messages (or compressed bits)

transmitted by the nodes in the layer OL−1. Then using these decoded mes-

sages, it decodes the messages in the layer OL−2. This process continues till

the destination node eventually decodes the source message.

The following theorem characterizes the feasible region of
(

R, {rv}v∈Vr

)

.

Theorem 2. A rate vector
(

R, {rv}v∈Vr

)

is feasible for the compress-and-

forward scheme, under the layered decoding scheme, if for some Qp the vector
(

R, {rv}v∈Vr

)

satisfies

r(U) ≤ I(XU ;YD|XOL−1\U), ∀ U ⊆ OL−1, (3.10)

r(U) − r(Ol+1\V ) ≤ I(XU ; ŶV |XOl\U ) − I(ŶOl+1\V ;YOl+1\V |XOl
),

∀ U ⊆ Ol, V ⊆ Ol+1, 2 ≤ l ≤ L− 2, (3.11)

R − r(O2\V ) ≤ I(XS; ŶV ) − I(ŶOl+1\V ;YOl+1\V |XS), ∀V ⊆ O2. (3.12)
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Proof. The proof is by backward induction. Assuming that the destination

has decoded the messages transmitted by the relay nodes in layer Ol+1, the

probability of error for decoding the messages from the layer Ol is considered.

To do so, a hypothetical layered network as shown in Figure 3.2 is considered.

This network consists of the layers Ol and Ol+1 and in addition a layer with

an aggregator node A. A node v(l+1,j) in layer Ol+1 is connected to the

aggregator node with wired link of capacity rv(l+1,j)
bits per symbol. This

layer represents the forward part of the network beyond layer Ol+1.

A

Ol Ol+1

v(2,m2) v(3,m3)

v(2,2) v(3,2)

v(2,1) v(3,1)

rv(3,1)

rv(3,1)

rv(3,1)

Figure 3.2: A hypothetical network.

This network is now a multiple-source single-destination relay network,

with all the nodes in layer Ol being source nodes and the aggregator node

as the destination node. The node v(l,j) has a message for the aggregator

node with rate rv(l,j)
. The noisy network coding scheme [12] assures that the

messages can be decoded with arbitrarily small probability of error, if

r(U) − r(Ol+1\V ) ≤ I(XU ; ŶV |XOl\U) − I(ŶV c ;YV c|XOl
), (3.13)

∀ U ⊆ Ol, V ⊆ Ol+1, where the above inequality corresponds to the cut

Ω = U
⋃

V c.

Note that the layered decoding scheme is weaker than the ML decoding

scheme. Therefore the feasible region under the layered decoding scheme

should be a strict subset of the feasible region under the ML decoding scheme.

However, the following theorem that will be proved in the next chapter

in Section 4.3 shows that the compress-and-forward scheme with layered
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decoding achieves similar communication rate as the noisy network coding

scheme.

Theorem 3. The communication rate R is achievable by the compress-and-

forward scheme with layered decoding if for some collection of random vari-

ables Qp,

R < min
Ω⊆V ,S∈Ω

I(ŶΩc;XΩ|XΩc) − κ1, (3.14)

where the constant κ1 is given by the recursive relation,

κl = I(ŶOl+1
;YOl+1

|XOl
) + κl+1|Ol+1|, (3.15)

and κL−1 = 0.

(Note: It is conjectured that the constant κ1 can be further tightened to

make the achievable rate region comparable to the region in Theorem 2.)

The above theorem will be proved by characterizing an information flow

for the network. Note that the conditions of Theorem 2 can be interpreted

as a flow decomposition for the layered network. If R is the information

that flows from the source to the destination, then the flow decomposition

gives the effective amount of information that flows through each node. If

the compression rate at each relay node is made approximately equal to the

information flowing through that node, then the layered decoding where the

destination ends up decoding the effective information at each node has a

chance to work. Thus, in order to choose the right compression rates at each

node, a flow decomposition for the network must be obtained. These notions

are made more precise in the next chapter.

3.2 Generalizations to multi-source networks

Consider the communication network with multiple source nodes {Si|i ∈ [J ]}.
The source node Si has independent message Wi at rate Ri. There is a

common destination node D. The network is illustrated in Figure 3.3. The

noisy network coding scheme of [12] extends to this case as well. In fact this

result was used for each layer to analyze the layered decoding scheme in the

proof of Theorem 2.

21



SJ

D

O1 O2 O3 OL

v(2,m2) v(3,m3)

v(2,2) v(3,2) v(L,1)

v(2,1) v(3,1)v(1,1)

S1

v(1,2)

S2
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Figure 3.3: A layered multi-source network.

The results of the compress-and-forward scheme and the layered decod-

ing scheme can be generalized to the communication network with multiple

source nodes and a common destination node.

The following corollary extends the results of the compress-and-forward

scheme for the unicast network to the multi-source relay network.

Theorem 4. The communication rates ~R = (R1, . . . , RJ) are achievable by

the compress-and-forward scheme (with joint decoding) for the multi-source

single destination network if, for some collection of random variables Qp

which is distributed as (3.4), the rates satisfy

R(Ω1) < I(ŶΩc;XΩ|XΩc) − I(ŶΩ;YΩ|XV , ), ∀ Ω, s.t., Ω ⊆ V, D ∈ Ωc,

(3.16)

where Ω1 , Ω ∩ O1.

Further, with the layered decoding scheme, the rates ~R = (R1, . . . , RJ) are

achievable if

R(Ω1) < I(ŶΩc;XΩ|XΩc) − |Ω1|κ1, (3.17)

where κ1 is given by (3.15).

The results can be proved by adding a hypothetical supernode in layer
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0, which is connected to the source nodes with orthogonal wired links such

that the wired link to node Si is of rate Ri.

3.3 Special cases

3.3.1 Gaussian network

For the special case of the Gaussian network described in Section 2.1.2, the

achievable rates can be compared to the cutset bound.

As noted in [12], a good choice for Ŷv for the Gaussian network is given

by

Ŷv = Yv + Ẑv, (3.18)

where Ẑv ∼ CN (0, 1) is independent across nodes.

The particular choice of Ŷv implies that the quantization is done at the

noise level. This also agrees with the philosophy in [4, 7], where the quan-

tization was done at the noise level to show approximate optimality; in [4],

scalar quantization was done at the noise level, and in [7], quantization was

done using the discrete superposition network, which was a model obtained

from the Gaussian network by clipping the signal at the noise level.

As shown in [12], with this choice of Ŷv and with XV ∼ CN (0, I),

I(ŶΩc ;XΩ|XΩc) = log

∣

∣

∣

∣

I +
HΩΩcH∗

ΩΩc

2

∣

∣

∣

∣

(3.19)

≥ log |I +HΩΩcH∗
ΩΩc| − |Ωc|

2
. (3.20)

And further,

I(Ŷv;Yv|XV) ≤ 1. (3.21)

Using (3.20), (3.21) and Lemma 1, the following corollary of Theorem 4

follows.

Corollary 2. If ~R = (R1, . . . , RJ) is in C̄g, then rates ~R− 3|V|~1 are achiev-

able by the compress-and-forward scheme (with joint decoding) for the multi-

source single destination Gaussian network. Further, with the layered decod-
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ing scheme, the rates ~R− (2|V| + κg
1)~1 are achievable, where

κg
l = 1 + κg

l+1|Ol+1|, (3.22)

and κg
L−1 = 0.

3.3.2 Deterministic network

For the special case of the deterministic network described in Section 2.1.3,

the optimal choice of Ŷv is Yv and with this choice

I(ŶΩc;XΩ|XΩc) = H(ŶΩc|XΩc). (3.23)

And further,

I(Ŷv;Yv|XV) = 0. (3.24)

Therefore, specializing the results of Theorem 4 leads to the following

corollary.

Corollary 3. For the multi-source single-destination deterministic network,
~R = (R1, . . . , RJ) is achievable by the compress-and-forward scheme with the

layered decoding scheme if for some collection of random variables Qp which

is distributed as (3.4),
~R ∈ C̄(Qp). (3.25)

Specializing further to the linear deterministic region, it can be shown

that the product distribution (with uniformly distributed Xv over all input

alphabets) maximizes the cutset bound, thereby showing that all rates in the

cutset bound are achievable.
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CHAPTER 4

FLOWS WITH BISUBMODULAR

CAPACITY CONSTRAINTS

4.1 Introduction

Maximum flow problems are extensively studied in graph theory and com-

binatorial optimization [14]. The problems are most often motivated from

the study of transportation and communication networks. A directed graph

(V, E) consists of the set of vertices or nodes V and the set of edges E ⊆ V×V.

Traditionally, flow is defined to be a non-negative function over the set of all

edges which satisfy the flow-conservation law at each vertex other than the

source and the destination node. Further, the flow over any edge is less than

the capacity of that the edge. The classic max-flow min-cut result of [15]

characterizes the maximum flow from the source to destination node and

shows it to be equal to the min-cut of the graph. In order to distinguish

from the concept of the node-flow that will be introduced here, such a flow

is called an edge flow over an edge-capacitated graph. Beginning from the

single commodity result of [15], various extensions of these problems have

been considered. In particular, the edge-capacitated graph was extended to

a polymatroidal network [16], where the flow is constrained not only by the

edge-capacities but by joint capacities on sets of incoming and outgoing edges

at every vertex. A special case is the node-capacitated graph [17], where the

constraints on the flow are on the sum-total of the incoming and outgoing

flow at each node.

In this chapter, the concept of a node-flow in the context of a layered

graph with bisubmodular constraints on the flows is introduced. The node-

flows can be related to the edge-flows with flow-conservation at the node.

Note that the conservation law for edge-flow enforces that the net incoming

flow at any node is equal to the net outgoing flow at the node and this

quantity can be viewed as the node-flow for a node. The bisubmodular
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constraints can be viewed as generalizations of the polymatroidal constraints

of [16]. The definitions here are motivated by the layered coding scheme for

the wireless network, which was presented in the previous chapter. The main

result is a max-flow min-cut theorem for the single-commodity node-flow for

a graph with bisubmodular capacity constraints. The result is closely related

to, and can be viewed as a generalization of, the flow introduced in the context

of the linear deterministic networks and polylinking systems in [18, 19].

4.2 A max-flow min-cut theorem

In this section, the max-flow min-cut theorem is proved for single-commodity

node-flow on a layered graph with bisubmodular capacity constraints.

Layered graph: A layered graph is considered, which is represented by

a set of nodes V, which can be decomposed into subsets Ol, 1 ≤ l ≤ L as

shown in Figure 3.1. The layering is ensured by the edges of the graph, which

connect nodes in any layer l to nodes in the subsequent layer l + 1. Since

the edges do not play any role in the problem here, beyond ensuring the

layering, they will henceforth be neglected. The first layer O1 has a single

node, which is the source node and the last layer OL has a single node, which

is the destination node.

Bisubmodular capacity functions: The bisubmodular capacity functions

are defined for the layered graph using a family of L− 1 functions

{ρl : 1 ≤ l ≤ L− 1}, ρl : 2Ol × 2Ol+1 → R
+, which satisfy the following prop-

erties:

1. ρl is bisubmodular, i.e., ∀U1, U2 ⊆ Ol, V1, V2 ⊆ Ol+1,

ρl(U1∪U2, V1∩V2)+ρl(U1∩U2, V1∪V2) ≤ ρl(U1, V1)+ρl(U2, V2). (4.1)

2. ρl is non-decreasing, i.e.

ρl(U, V ) ≤ ρl(U1, V1), for U ∪ V ⊆ U1 ∪ V1. (4.2)

3. If U = ∅ or V = ∅, then

ρl(U, V ) = 0. (4.3)
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Node-flow: The node-flow for the layered graph is defined as a function

f : V → R
+ which satisfies the capacity constraints, i.e.,

f(V ) − f(Ol\U) ≤ ρl(U, V ), ∀ U ⊆ Ol, V ⊆ Ol+1, ∀l ∈ [L− 1], (4.4)

where f(A) is an over-loaded notation, such that when A ⊆ V then f(A) ,
∑

v∈A f(v). Further, the destination node must sink the flow from the source.

Therefore f(D) = f(S).

The max-flow problem is to find the maximum f(S) that can be sup-

ported given the capacity constraints on the graph. An efficient algorithm

to compute the flow at each node given any f(S) that can be supported is

also sought.

An upper bound on the max-flow is given by the cut function.

Cut function: The cut function C : 2V → R+ is defined as

C(Ω) ,

L−1
∑

l=1

ρl(Ωl,Ol+1\Ωl+1), (4.5)

where Ωl , Ω ∩ Ol.

Clearly,

max f(S) ≤ min
Ω⊆V

C(Ω). (4.6)

The next theorem shows that the min-cut is achievable. The proof is

constructive and gives and efficient method of computing the flow.

Theorem 5.

max f(S) = min
Ω⊆V

C(Ω). (4.7)

Proof. The proof is based on the polymatroid intersection theorem. The

details are in Appendix B.1.

The max-flow min-cut theorem for node-flows with bisubmodular con-

straints presented here is closely related to the max-flow min-cut results

of [18, 19]. [18] considered linear deterministic networks, which led to bisub-

modular capacity functions arising from the rank of a matrix. [19] considered

polylinking systems, where the bisubmodular capacity functions are given by

the polylinking function. The results of [19] generalized the results of [18] by

showing that a linear deterministic network is a special case of polylinking

system.
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The max-flow min-cut theorem can be easily generalized to the following

two cases:

• Consider a layered graph with J source nodes in O1 and a single desti-

nation node in OL, such that f(O1) = f(D). For this case, the following

corollary generalizes Theorem 5.

Corollary 4. {f(v)|v ∈ O1} is a feasible flow iff,

f(Ω1) ≤ C(Ω), ∀ Ω ⊆ V, (4.8)

where Ω1 , Ω ∩ O1.

• Consider a layered graph with a single source node in O1 and J destina-

tion nodes in OL, such that f(S) = f(OL). For this case, the following

corollary generalizes Theorem 5.

Corollary 5. {f(v)|v ∈ OL} is a feasible flow iff,

f(ΩL) ≤ C(Ω), ∀ Ω ⊆ V, (4.9)

where ΩL , Ω ∩OL.

Note that the proof for the multiple sources (or destinations) case follows

by adding a hypothetical supernode A in layer 0 (or L + 1) with capacity

functions ρ0 (or ρL) given by ρ0(A, V ) =
∑

f(v), ∀ V ⊆ O1 (or ρL(V,A) =
∑

f(v), ∀ V ⊆ OL).

4.3 A compress-and-forward scheme from flows

In this section, Theorem 3 is proved by establishing a connection between

the compression rates of the compress-and-forward scheme with the layered

decoding and the node-flows with bisubmodularity constraints. Recall that

the achievable rates for the compress-and-forward with the layered decoding

scheme are given by (3.10)-(3.12), which appear very much like the bisub-

modular capacity constraints.

To make this connection more precise, first observe the following propo-

sition.
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Proposition 1. Given the collection of random variables Qp distributed as

given by (3.4), the family of L−1 functions ρl : Ol×Ol+1 → R
+, ∀l ∈ [L−1]

defined by

ρl(U, V ) , I(XU ; ŶV |XOl\U ) (4.10)

forms a family of bisubmodular capacity functions.

Proof. Appendix B.3.

For any Ω ⊆ V, the corresponding cut value C(Ω) is now given by

C(Ω) =
L−1
∑

l=1

I(XΩl
; ŶOl+1\Ωl+1

|XOl\Ωl
) (4.11)

= I(ŶΩc
;XΩ|XΩc). (4.12)

Theorem 5 is then used construct a flow f(v) for this network, such that

f(S) ≤ min
Ω
I(ŶΩc

;XΩ|XΩc), S ∈ Ω, D ∈ Ωc, (4.13)

and

f(V ) − f(Ol\U) ≤ ρl(U, V ), ∀ U ⊆ Ol, V ⊆ Ol+1, ∀l ∈ [L− 1]. (4.14)

For any v ∈ Ol, l ∈ [L− 1], let

rv = f(v) − κl, (4.15)

and R = f(S) − κ1, where κl is given by (3.15).

Then ∀U 6= ∅ ⊆ Ol, V ⊆ Ol+1,

r(U) − r(Ol+1\V ) = f(U) − f(Ol+1\V ) − |U |κl + |Ol+1\V |κl+1 (4.16)

≤ ρl(U, V ) − κl + |Ol+1|κl+1 (4.17)

= ρl(U, V ) − I(ŶOl+1
;YOl+1

|XOl
) (4.18)

≤ I(XU ; ŶV |XOl\U ) − I(ŶOl+1\V ;YOl+1\V |XOl
). (4.19)

Therefore
(

R, {rv}v∈Vr

)

satisfies (3.10)-(3.12). This proves Theorem 3.
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CHAPTER 5

RECIPROCITY

5.1 Introduction
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Figure 5.1: An example of a layered network with two-unicast (a), and its
reciprocal (b).

Consider a network N with multiple unicast traffic. The reciprocal of

such a network N ′ is illustrated with an example in Figure 5.1 and is defined

as follows.

• The set of nodes in N ′ is the same set of nodes V in N .

• The direction of the edges is reversed. This implies a reciprocal relation

in the sense that if the transmit symbol of node v influenced the received

symbols of a set of nodes in N , then in the reciprocal network the

received symbol of the node v is influenced by exactly the same set

of nodes. To complete the picture, the exact channel model for the

reciprocal network needs to be defined. It is not clear what is the most
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appropriate way to do so for a general network, but we look at this in

the context of two particular network models of interest.

1. Gaussian network: The channel attenuation between any pair of

nodes in both networks, the original and its reciprocal, is assumed

to be the same. This is in agreement with the physical nature of

electromagnetic propagation. With multiple antennas, the chan-

nel matrix for a pair of nodes in the reciprocal network is given by

the transpose of the channel matrix in the opposite direction for

the original network. The subtle part is with respect to the power

constraint and the additive noise. A simplification could be that

all nodes have unit power constraint and the additive noise is unit

variance.

2. Linear deterministic network: The linear deterministic network is

noiseless and does not have a power constraint. Therefore, the

difficulties that arise for the case of a Gaussian network are not

present. The channel matrix between any two nodes in the recip-

rocal network is the transpose of the channel matrix of the original

network

• The reciprocal network has the same set of messages as the original net-

work, but with the roles of the source and destination nodes swapped.

5.2 Examples of reciprocity in wireless networks

While it is unresolved whether a given network and its reciprocal (when

defined appropriately) have the same capacity region, many interesting ex-

amples are known for which this is true. For some cases, this reciprocity

is applicable even at the scheme level. We discuss some of the interesting

examples below:

• In [20, 21], reciprocity (or duality) was shown between the Gaussian

multiple access channel (MAC) and the Gaussian broadcast channel

(BC). It was shown that the capacity region of the MAC is equal to

the capacity region of the BC under the same sum power constraint.

This duality was also shown, interestingly, at the scheme level between
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the dirty-paper pre-coding for the BC and the successive cancellation

for the MAC.

• Two-user interference channel: The exact capacity of the linear de-

terministic two-user interference channel was characterized in [3]. It

was shown that the capacity of this channel is the same as that of

its reciprocal, which is a different two-user interference channel. For

the Gaussian version of the problem, the reciprocity was shown with

respect to the generalized degrees of freedom.

Two modifications of the two-user interference channel, with source

cooperation and with destination cooperation, were considered in [22,

23]. The two networks are reciprocal of each other. It was shown

that the capacity regions for the linear deterministic version and the

generalized degrees of freedom region of the Gaussian version of the

two networks are the same.

• One-to-many and Many-to-one interference channels are reciprocal net-

works and were studied in [24]. The capacity regions for the linear

deterministic channel model and the generalized degrees of freedom re-

gion of the Gaussian channel model of the two networks were found to

be the same.

• A Wireline network is a noiseless network and a special case of the

deterministic network described in Chapter 2. It is a network of nodes

with noiseless links between pairs of connected nodes with a certain

capacity. It was been shown in [25] that wireline networks are reciprocal

(also called reversible in the literature) under linear coding.

In the next section, the result of [25] for wireline networks is generalized

to linear deterministic networks. It is shown that the linear deterministic

network is reciprocal when the operations at each node are restricted to be

linear.
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5.3 Reciprocity in linear deterministic network under

linear coding

A linear deterministic network with n unicast messages flowing in the net-

work is considered. Consider a communication scheme over T transmission

times (symbols). Every message Wk, for 1 ≤ k ≤ n, is a vector of indepen-

dent symbols of length wkT , i.e. Wk ∈ F
wkT
p . The message Wk is available

at the source node Sk and is demanded by the destination node Dk. The

corresponding rate associated with the message Wk is Rk = wk log p bits.

Thus the network is associated with a rate requirement (R1, . . . , Rn).

At any time instant t, 0 ≤ t ≤ T − 1, a node j transmits a signal xj [t],

which is determined by the encoding function f
(t)
j . The destination node for

the message with index k reconstructs an estimate Ŵk using the decoding

function gk. A communication scheme is said to be linear coding, if the

functions f
(m)
j and gk are linear.

A linear deterministic network is solvable if there exists a coding scheme

such that Ŵk = Wk. Further, if there exists a linear coding scheme, the

network is linearly solvable. This follows the standard definitions in the

(wireline) network coding literature [26].

Recall that for the reciprocal of the linear deterministic network, the

channel gain matrix associated with the an edge (j, i) N ′

Gji is given by the

the reciprocal of the channel gain matrix associated with the edge (i, j) in

the original network NGT
ij. Note that for the shift deterministic network,

the reciprocal is no longer a shift deterministic network, but rather a flipped

shift deterministic network, where the vectors are shifted upwards rather

than downwards. This is discussed separately in Section 5.3.2.

A network is reversible if the reciprocal of the network is solvable. Further,

a network is linearly reversible if the reciprocal of the network is linearly

solvable. The main result of this section is the following theorem.

Theorem 6. Any linear deterministic network which is linearly solvable is

linearly reversible.

Note that the above theorem is equivalent to the statement that the linear

deterministic network and its reciprocal have the same achievable rate region

under the class of linear coding scheme.
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Figure 5.2: Layered linear deterministic network.

5.3.1 Layered linear deterministic network.

Consider the L-layered linear deterministic network illustrated in Figure 5.2.

A layered transmission scheme over such a network is considered, such that

each node only transmits once and it does so after it has received signals from

the nodes in the previous layer. The concepts of solvable, linearly solvable,

reversible and linearly reversible hold for the layered network with the layered

transmission scheme too.

In Appendix C.1, it is shown that any linear deterministic network with a

coding scheme over a block of time L−1 can be unfolded over time to create

a layered linear deterministic network. Further, it is straightforward to see

that the reciprocal of the original network corresponds to the reciprocal of

the layered network. Thus it suffices to prove Theorem 6 for the layered

network only.

Proof of Theorem 6 (Layered networks): Consider a linear layered network

N , which is solvable by a linear coding scheme. The linear coding scheme

is specified by a set of linear matrices. The coding matrices at the source

nodes are denoted by Ck ∈ F
q×wk
p , for k = 1, . . . , n. If j is a source node for a

subset of the messages, Ωj ⊆ {1, . . . , n}, then the signal transmitted by node

j is given by

xj =
∑

k∈Ωj

CkWk. (5.1)

The decoding matrices are denoted by Dk ∈ F
wk×q
p , for k = 1, . . . , J . If j
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is a destination node for a subset of the messages, Ωj ⊆ {1, . . . , J}, then

the node j reconstructs the messages from the received signal yj using the

decoding matrix,

Ŵk = Dkyj, ∀ k ∈ Ωj . (5.2)

Any intermediate relay node is associated with relay coding matrix Fj such

that

xj = Fjyj. (5.3)

Note that since transmission happens at each node in the layered network

only once, we can conveniently drop the time index.

The original messages at the source nodes, {Wk}J

1 , and the reconstructed

messages at the destination nodes,
{

Ŵk

}J

1
, can be related linearly as

Ŵk =
∑

l

ΓlkWl. (5.4)

Γlk is the transfer coefficient matrix between the source node Sl and the

destination node Dk. It can be obtained by considering any path from the

source node to the destination node, taking the product of the encoding and

the channel matrices as you move along that path and then summing up

this product for all such paths. In the example of Figure 5.1, the transfer

coefficient matrices for the network N are

Γ11 = D1G35F3G13C1 +D1G45F4G14C1

Γ12 = D2G36F3G13C1 +D2G46F4G14C1

Γ22 = D2G36F3G23C2 +D2G46F4G24C2

Γ21 = D1G35F3G23C2 +D1G45F4G24C2.

Since the network is solvable by this linear scheme, we must have Ŵk =

Wk, ∀ 1 ≤ k ≤ J . Therefore, the transfer coefficient matrices Γlk must

satisfy the following condition:

Γlk = δlkI. (5.5)

Similarly, consider the reciprocal network with the linear coding scheme

parameterized by some coding matrices C ′
k, decoding matrices D′

k and relay
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coding matrices F ′
j . The transmitted messages Wk and the reconstructed

version Ŵk can again be linearly related by the matrices Γ′
lk. In the example

of Figure 5.1, the transfer coefficient matrices for the reciprocal network N ′

are

Γ′
11 = D′

1G
T
13F

′
3G

T
35C

′
1 +D′

1G
T
14F

′
4G

T
45C

′
1

Γ′
12 = D′

2G
T
23F

′
3G

T
35C

′
1 +D′

2G
T
24F

′
4G

T
45C

′
1

Γ′
22 = D′

2G
T
23F

′
3G

T
36C

′
2 +D′

2G
T
24F

′
4G

T
46C

′
2

Γ′
21 = D′

1G
T
13F

′
3G

T
36C

′
2 +D′

1G
T
14F

′
4G

T
46C

′
2.

Note that this follows from the fact that G′
ji = GT

ij . Letting

C ′
k = DT

k , ∀ 1 ≤ k ≤ n,

D′
k = CT

k , ∀ 1 ≤ k ≤ n,

and F ′
j = F T

j ,

it can be seen that Γ′
lk = ΓT

kl. Finally, from (5.5), it follows that

Γ′
lk = δlkI. (5.6)

Therefore, the reciprocal network N ′ is linearly solvable and hence the net-

work N is linearly reversible. 2

5.3.2 Some special cases

The linear deterministic model captures two important special cases: the

noiseless wireline network and the shift linear deterministic network, which

models the wireless network.

Noiseless wireline networks: Noiseless wireline networks have been exten-

sively studied in network coding literature [27], [28]. They are characterized

by orthogonal communication links, so that they are free of both features,

interference and broadcast, present in wireless networks. The linear deter-

ministic network model captures the wireline network as a special case ob-

tained by choosing the channel gain matrices Gij such that the incoming and

outgoing links become orthogonal. The linear reversibility result of theorem

6, specialized to the wireline networks, gives the known result in [25].
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Shift linear deterministic networks: Another special case is the linear deter-

ministic network with the channel gain matrices being shift matrices Sij =

S(q−gij). The shift matrix shifts a vector of length q downwards by q−gij levels

and hence gij represents the strength of the channel. Basic electromagnetic

principles suggest that physical media are reversible, i.e. the communication

link (channel) behaves the same way in both the forward and the reverse

direction. Therefore in the reciprocal network, we should expect the channel

gain matrix to be the same. The reciprocal of the linear deterministic net-

work is obtained by taking the transpose of the channel gain matrices. The

transpose of the shift matrix Sij shifts the vector of length q by q − gij, but

instead of downwards this shift is upwards. An important observation here

is the following: the transpose of the shift matrix can be interpreted as a

flipping of all the signal vectors.

More formally: consider the physical reciprocal network with the same

channel gain matrix Sij on each edge as the original network. Given any

coding scheme for this reciprocal network, we modify it as follows. Every

node flips its vector before transmitting and flips the vector it receives before

coding. The flipping operation is denoted by left-multiplying the vector with

the matrix J , where

J =



















0 · · · 0 0 1

0 · · · 0 1 0

0 · · · 1 0 0
...

. . .
. . .

. . .
. . .

1 0 0 · · · 0



















q×q

. (5.7)

These matrices can then be “absorbed” into the channel matrix Sij to give

the effective channel matrix JSijJ . We readily see that JSijJ is the same as

ST
ij . In the context of the reciprocal network, the actually encoding matrices

for the physical reciprocal network should be JC ′
kJ, JD

′
kJ and JFjJ .
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CHAPTER 6

BROADCASTING IN WIRELESS RELAY

NETWORKS

6.1 Introduction

D

R5

R6

R4

R2

R1

R3

S

Figure 6.1: A wireless broadcast network.

Consider a communication network with broadcast traffic as illustrated

using Figure 6.1. A single source node S is reliably communicating J inde-

pendent messages, W1, . . . ,WJ , to multiple destination nodes, D1, . . . , DJ ,

respectively, at rate R1, . . . , RJ respectively.

In the example of a cellular system, the setting represents downlink com-

munication where the base-station is transmitting to multiple terminals with

the potential help of relay stations. Note that some of the terminals can

themselves act as relays.

The broadcasting setup we present here captures two important special

cases, which have been extensively studied before - unicast relay network and

broadcast channel.

The unicast relay network is a special case when there is only one destina-
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tion node. The unicast relay network was discussed in Chapter 3. It has been

studied extensively. In particular [4, 7, 12] presented schemes for the relay

network, which all had the underlying philosophy of a quantize-and-forward

operation at the relay nodes. In Chapter 3 a compress-and-forward scheme

was presented with a layered decoding architecture. All these schemes when

specialized to the Gaussian network model were shown to be approximately

optimal in the sense that it achieves rates, within a constant gap of the well

known cutset outer bound, where the constant gap does not depend on the

power and the channel parameters but only on the size of the network.

The broadcast channel is a special case with only a source node and mul-

tiple destinations (i.e., no relays). The capacity of the Gaussian broadcast

channel with multiple antennas (MIMO broadcast channel) was character-

ized in [29]. The capacity achieving scheme is based on the Marton’s coding

scheme [30], which is the best known achievable scheme for the general broad-

cast channel.

The coding scheme presented here for broadcasting in wireless relay net-

works is based on combining the schemes for the unicast relay network and

Marton’s coding scheme for the broadcast channel.

Broadcasting in wireless networks has been studied previously for a sim-

ple scenario in [31]. A simple two-user broadcast channel was considered

where the destination nodes could also transmit, thereby also acting as relay

nodes. Decode-and-forward schemes were considered and specialized outer

bounds were given for this network, which were shown to be better than

cut-set bounds. More recently, [32] considered broadcasting over two classes

of information networks: (a) a network composed of multiple-access channels

alone and (b) a network composed of deterministic broadcast channels alone.

For such networks, it was shown there that cut-set bound can be achieved.

The scheme was a separation based scheme - a local physical layered scheme

over the constituent networks to create a wired overlay network and a global

routing scheme over the overlay network. Here, generalization to any arbi-

trary network is considered. The coding scheme presented here is shown to

be approximately optimal by comparing it to the cut-set outer bound.

The main result of interest is the following.

Theorem 7. For the Gaussian broadcast network, a rate vector ~R = (R1, . . . , RJ)
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is achievable if ∀ J ,
~R + k~1 ∈ C̄ (6.1)

for some constant k, which depends only on the number of nodes, and not on

the channel coefficients, and k = O(|V| log |V|).

The approach to prove the above theorem is the following. A coding

theorem is first proved for the deterministic network. The proposed scheme

operates in two steps. In the inner code, the relays essentially perform a

quantize-map-forward operation. This induces a vector broadcast channel

end-to-end between the source node and the destination nodes. The outer

code is essentially a Marton code ( [30,33]) for the broadcast channel induced

by the relaying scheme.

The coding scheme for the discrete superposition network is then lifted

to the Gaussian network by using the discrete superposition network as a

digital interface for the Gaussian network.

6.1.1 A lesson from reciprocity

The key intuition motivating the scheme presented here is the lesson learned

from reciprocity. Note that the reciprocal of the broadcast network is the

network with the multiple-source and single-destination. It was shown in

Section 3.2 that the schemes for the unicast network naturally extend to the

multi-source single-destination case. These schemes were further shown to be

approximately optimal by comparing them to the cutset bound. Reciprocity

would suggest the existence of similar schemes for the broadcast network.

In going from the multi-source to the reciprocal broadcast case, certain

difficulties naturally arise. These difficulties were seen even in the simple

case of the multiple-access and the broadcast channel. While the capacity

schemes for the multiple access channel generalized simply from the point-to-

point case, schemes for the broadcast channel involved clever coding at the

source node. The difference can be attributed to where (at the transmitter

or the receiver) the complexity of the scheme lies. For the multiple-access

channel the complexity lies at the decoder. It is easy to show the existence

of good coding schemes for the multiple access channel using simple random

codebooks and analyzing performance of the complex joint decoder. For

the broadcast channel (reciprocally!), the complexity is at the encoder. The
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complex encoding is often elusive. In fact, for a general broadcast channel the

optimal scheme and the capacity are still unknown. The best known scheme

is a family of schemes due to Marton [30] which is optimal only for certain

special cases. For the Gaussian channel with multiple antennas it is known

that a particular Marton coding scheme (called Costa’s dirty paper coding)

is optimal [20, 21, 29]. For the degraded broadcast channel, superposition

coding is optimal. For the deterministic channel, a simple Marton coding

scheme achieves the cutset bound [34].

Carrying this intuition forward to networks, the scheme for the multiple-

source network suggests the following scheme for the broadcast network. The

relays and the destination node perform a quantize-map-forward operation.

The source takes into account the effect of the channel and operations per-

formed by the relay node and needs to do a well-designed scheme for the

effective broadcast channel. The limitations on the understanding of the

broadcast channel restrict us to design such a scheme only when the channel

model is deterministic. Even when the channel model is Gaussian, taking

into account the relay operation leads to an end-to-end non-Gaussian broad-

cast channel. However, for the Gaussian network, the discrete superposition

network (DSN) is used as a quantization interface for the Gaussian network.

The rest of the chapter makes these ideas more precise. In Section 6.2, a

coding scheme is given for the deterministic broadcast networks. In Section

6.3, we prove Theorem 7 by giving a coding scheme for the Gaussian network.

6.2 Deterministic broadcast networks

For the broadcast problem, the cutset outer bound that was described in

Section 2.3.1 can be simplified as follows. If (R1, . . . , RJ) is achievable, then

∀J ⊆ [J ], and there is a joint distribution p ({Xv|v ∈ V}) (denoted by Q)

such that

RJ ≤ C̄J (Q) , min
Ω∈ΛJ

I (YΩc ;XΩ|XΩc) . (6.2)

Here ΛJ is the set of all cuts Ω, such that S ∈ Ω and DJ , {Di|i ∈ J } ⊆ Ωc.

The following theorem characterizes an achievable region for the deter-

ministic broadcast network.

Theorem 8. For the deterministic broadcast network, a rate vector (R1, . . . , RJ)
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is achievable if ∀ J , and there is a product distribution
∏

v∈V

p(Xv) (denoted

by Qp) such that

RJ ≤ C̄J (Qp). (6.3)

Remark 1. For many special classes of deterministic networks such as the

the linear deterministic network and the network composed of deterministic

broadcast channels [32], it can be shown that the cutset bound is also maxi-

mized by the product distribution, thereby characterizing the capacity of such

networks completely.

Proof. Theorem 8 is proved next for the layered network alone. Layering a

non-layered network was described in Section 2.3.2.

6.2.1 Coding scheme: Outline

The basic idea of the coding scheme is as follows:

• The broadcast network is converted into a unicast network by adding a

super-destination D which has links from each of the destinations Di by

a wired link of capacity ri. If (r1, ..., rJ) is in C̄J (Qp) (the cutset region

of the broadcast network evaluated under product-distributions), then

C̄uc
J (Qp) (the min-cut of the unicast network evaluated under product-

distributions) is equal to r ,
∑

j rj .

• For the relay network, a zero-error coding scheme is employed that

operates over T1 time instants, which achieves the rate r.

• The relaying scheme creates an end-to-end deterministic vector broad-

cast channel between the source and the destinations over vectors of T1

symbols.

• A Marton code is used over T2 vectors to achieve the cutset of the

induced deterministic broadcast channel.

6.2.2 Coding scheme in detail

The random ensemble of coding operations is described for a fixed product

distribution Qp. Further, the random coding is described to achieve an ar-
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bitrary rate tuple (r1, ..., rJ) ∈ C̄J (Qp). The coding is done over a period of

T1T2 time instants.

Creating the unicast network:

We add a super-sink D to the deterministic broadcast network to obtain

a deterministic unicast network. The unicast network is obtained by adding

wired links of capacity ri from destination Di to super-sink D.

Lemma 4. If (r1, ..., rJ) ∈ C̄J (Qp), where C̄J (Qp) is the cut-set of the broad-

cast network evaluated under a distribution Q, then the cut-set of the unicast

network with wired links r1, ..., rJ evaluated under Qp is equal to r.

Proof. See Appendix D.1.

For a deterministic unicast network, Theorem 4.1 in [4] shows that the

cut-set under product form distributions is achievable using an ǫ-error scheme

(this is proved by a random coding argument). Since the channel is deter-

ministic, this also implies that there is a zero error scheme which can achieve

arbitrarily close to the cut-set bound under product form distributions. Thus

the rate r is achievable using such a scheme. Suppose this relaying scheme

operates over a block length of T1. Let ~xv , xT1
v and ~yv , yT1

v denote the

transmit and receive block at any node v ∈ V. Thus, we have a source

codebook for the unicast network given by CS, a collection of 2rT1 vectors of

length T1 each. And the relay mappings,

fv : ~Yv → ~Xv, (6.4)

for the relay node v ∈ VR.

Relay mappings:

The scheme for the broadcast network operates over T1T2 time interval

and this entire time duration is divided into T2 blocks, each composed of

T1 time interval. Each set of T1 time instants is treated as a block and the

vector ~x(t2) denotes x over the T1 time instants corresponding to the t2-th

block: ~x(t2) = (x((t2 − 1)t1 + 1), x((t2 − 1)t1 + 2), .., x(t2t1)). Furthermore

~xT denotes (~x(1), ..., ~x(T )).

The relaying operation for the broadcast network is performed in blocks

using the relaying scheme for the unicast network as follows. Each relay

transmits a T1 block using only the information from the previous received
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T1 block. Thus

~xv(t2) = fv(~yv(t2 − 1)), ∀t2 = 1, 2, . . . , T2. (6.5)

Source mappings:

With the fixed relaying operations for the relaying nodes, as defined

above, an end-to-end deterministic channel results, as shown in Figure 6.2,

between the source and the destination nodes. Note that the input alpha-

bet set at the source node is given by the source codebook of the unicast

network CS . The deterministic broadcast channel is time-invariant since the

same relay mappings are used for all t2 and is characterized by the functions

~yDi
= ψi{~xS} ∀i = 1, 2, ..., J. (6.6)

fVR
, gj(.)

~YD2

~YD1

~XS

Figure 6.2: Effective end-to-end deterministic broadcast channel created by
an inner code.

The capacity of the deterministic broadcast channel is well known (see

[30, 35]). In particular, the coding scheme described for the deterministic

broadcast channel in [33], commonly referred to as the “Marton code,” can

be used and is described below succinctly.

A description of the Marton code is given here for completeness: the

reader is referred to [33] for further details. The random code ensemble is

constructed as follows. Consider a uniform distribution over CS , which is a

collection of ~XS. The channel and the relay mapping ψi induce the joint

distribution over the random variables
(

~XS, ~YV

)

. Create auxiliary random

variables ~UDi
such that p ~X,~UD1

,~UD2
,...,~UDJ

is the same as p ~X,~YD1
,~YD2

,...,~YDJ

.

The set T T2
δ (~UDi

) of all typical ~uT2
Di

are binned into 2T1T2Ri bins, where

each bin index corresponds to a message, for i = 1, 2, . . . , J . For each vector
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(~uT2
D1
, . . . , ~uT2

DJ
) ∈ T T2

δ (~YD1, . . . ,
~YDJ

), there exists a sequence ~xT2
S (~uT2

D1
, . . . , ~uT2

DJ
),

since the channel is deterministic, such that

(~xT2
S , ~u

T2
D1
, . . . , ~uT2

DJ
) ∈ T T2

δ ( ~XS, ~YD1, . . . , ~YDJ
). (6.7)

Encoding: To transmit the message (W1, ...,WJ), the source tries to find a

vector
(

~uT2
1 , . . . , ~u

T2
J

)

∈ T T2
δ (~U1, . . . , ~UJ) such that ~uT2

i is also in the bin with

index Wi. If the source can find such a vector, it transmits ~xT2
s (~uT2

1 , . . . , ~u
T2
J ).

If the source cannot find such a sequence it transmits a random sequence.

Decoding: The destination Di finds the bin in which the received vector ~yT2
Di

falls and decodes that bin index as the transmitted message.

6.2.3 Performance analysis

First, the rate constraints for the Marton code are identified under which

arbitrarily low probability of error is guaranteed provided a large enough T2

is chosen. It is shown in [33] that this is guaranteed, provided the rate tuple

(R1, ..., RJ) satisfies

∑

j∈J

Rj <
1

T1
H(~YDJ

) ∀J ⊆ {1, ..., J}, (6.8)

where DJ = {Dj}j∈J .

Next, H({~YDi
}Di∈L) is evaluated with the relaying operations that was

chosen using the following lemma:

Lemma 5. Given arbitrary ǫ > 0, ∃ T1 s.t.,

H(~YDJ
) ≥ T1(

∑

j∈J

rj − ǫ), ∀ J ⊆ {1, . . . , J} . (6.9)

Proof. See Appendix D.2 for the proof.

Using (6.8) and Lemma 5, it can be concluded that the rate tuple (r1, . . . , rJ)

is achievable.

Since (r1, . . . , rJ) was chosen to be any point in C̄(Qp), the region C̄(Qp)

is achievable. This proves the theorem.
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6.3 Gaussian broadcast network

As for the deterministic network, only a layered network is considered here.

For the Gaussian network, while it is possible to do the inner code as done

in the deterministic network and induce an end-to-end broadcast channel;

the induced broadcast channel would be a vector non-linear non-Gaussian

broadcast channel due to the complicated nature of the relay mappings. For

general broadcast channels, it is unknown whether a Marton coding scheme

or any other scheme achieves rates within a constant gap of the cut-set bound.

Therefore, a different approach along the lines of [7], with the discrete

superposition network (DSN) approximation for the Gaussian network as a

digital interface is used. The DSN is a deterministic network. The germane

code for this deterministic network is constructed and then appropriately

“lifted” to construct the code for the Gaussian network.

6.3.1 Unicast network: Connection between Gaussian and

DSN

First, the connection between Gaussian and DSN unicast networks, which

was established in [7], is revisited.

The following lemma establishes a crucial relationship between the two

networks by relating the cutset bounds in the two networks.

Lemma 6. (Theorem 3.2 in [7]) There exists a constant k1 = O(|V| log |V|),
such that if R is the min-cut of a Gaussian unicast network, then R − k1

is the min-cut for the corresponding DSN unicast network evaluated under

product form distributions.

In [7], a coding scheme for the Gaussian network was presented, which

used the corresponding DSN as a digital interface. A coding scheme for the

DSN was first constructed and the coding scheme for the Gaussian network

was constructed by defining an emulation function that operated on top of

the DSN scheme. This strategy is revisited next.

Emulation scheme for the Gaussian unicast network:

Consider a unicast Gaussian network and its corresponding DSN unicast

network. The transmitted and received symbols at node v in the DSN are

denoted by x̂v and ŷv, and the transmitted and received symbols at node v in
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the Gaussian network are denoted by xv and yv respectively. Let X̂v, Ŷv be

the output and input alphabets at node v of the DSN and Xv,Yv the output

and input alphabets for the Gaussian network.

The coding scheme for the DSN network is comprised of the following:

1. A source codebook fS : [2TR] → X̂ T
S , i.e., x̂T

S = fS(W )

2. The relay mappings fv : ŶT
v → X̂ T

v ,i.e., x̂T
v = fv(ŷ

T
v )

3. The destination decoder gD : ŶT
D → [2TR], i.e., Ŵ = gD(ŷT

D)

For the Gaussian network, the DSN coding scheme can be emulated on the

Gaussian network using “emulation mappings” ev that convert the received

vector in the Gaussian network to the received vector in the DSN given by

ev : YT
v → ŶT

v . (6.10)

The emulation mapping along with the coding scheme of the DSN com-

prises the coding scheme for the Gaussian network.

The probability of error for emulation is defined as the probability that

the emulated vector is different from the vector in the DSN and is given by

P{∃v : ev(y
T
v (W )) 6= ŷT

v (W )}. (6.11)

In [7], it has been shown that there exits an emulation mapping such that

the probability of error for emulation can be made arbitrarily small for rate

within a constant of the cutset bound. This is stated more precisely in the

following lemma.

Lemma 7. [7] Given a zero-error coding scheme for the DSN unicast net-

work of rate R, a pruned coding scheme of rate R − κ (with κ = log(6|V| −
1)+11) can be created for the DSN unicast network and an emulation scheme

can be created for the Gaussian network with probability of emulation error

less than ǫ, for any arbitrary ǫ > 0.

Proof. For proof, refer Theorem 3.4 in [7].

6.3.2 Coding scheme for the Gaussian broadcast network

Let us consider a specific rate vector (r1, ..., rJ) in the interior of C̄g, the

cutset region for the Gaussian network. A coding scheme with rate vector a
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constant away from the rate vector (r1, ..., rJ) is constructed as follows.

1. Consider the corresponding DSN network to the Gaussian network.

Next, construct the unicast network by adding a super-destination D

to both the Gaussian and the DSN network. This unicast network is

constructed by adding incoming edges from each of the destinations Di

by a rate-limited wired link of capacity ri.

The cutset bound of the Gaussian unicast network is equal to r ,
∑

i ri.

The cutset bound of the DSN unicast network (under product form

distributions) is given by r̃ ≥∑i ri − k1 where k1 = O(|V| log(|V|)) by

Lemma 6. Theorem 8 then implies that there exists a zero-error coding

scheme for the DSN unicast network at rate r − k1.

2. Construct a (2(r−κ)T1 , T1)-pruned coding scheme for this DSN unicast

network at rate r − k, with k = k1 + κ = O(|V| log(|V|)) and κ =

log(6|V| − 1) + 11, as given by Lemma 7. This scheme can be emu-

lated on the Gaussian unicast network with an arbitrarily small error

probability.

3. The relay mappings from the DSN unicast network can then be used

to create a coding scheme for the DSN broadcast network as described

in Section 6.2.2. This is done using the relay mapping to construct a

deterministic end-to-end broadcast channel and then using the Marton

code.

Recall that the coding scheme is over T1T2 time instants, where each set

of T1 time instants is treated as a block and the vector ~x(t2) denotes

x over the T1 time instants corresponding to the t2-th block and is

denoted by ~x(t2). The relay mappings are given by f̂v and operate over

the blocks of T1 time instants.

4. For the Gaussian broadcast network, the emulation mapping is then

used to emulate the received vectors on the DSN and hence convert the

scheme for the DSN broadcast network to a scheme for the Gaussian

broadcast network.
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6.3.3 Performance analysis

First, the rates that can be achieved for the DSN broadcast network are

characterized. As seen in Section 6.2.3, this is given by

∑

j∈J

Rj <
1

T1
H(~YDJ

) ∀J ⊆ {1, ..., J}. (6.12)

Note that ~YDJ
is obtained by assuming a uniform distribution over the pruned

codebook for the DSN unicast network. The following lemma analogous to

Lemma 5 characterizes H(~YDJ
).

Lemma 8. Given arbitrary ǫ > 0, ∃ T1 s.t.,

H(~YDJ
) ≥ T1(

∑

j∈J

rj − k − ǫ) ∀ J ⊆ {1, . . . , J} . (6.13)

Proof. The proof of this lemma is the same as the proof of Lemma 5 with

r − k replacing r as the rate of the DSN unicast scheme.

Therefore, the rates Rj = rj − k can be achieved for the DSN broadcast

network.

Lemma 7 ensures an emulation mapping with arbitrarily small emulation

error probability and thus the rate vector (r1−k, . . . , rJ −k) can be achieved

for the Gaussian broadcast network. This completes the proof of Theorem 7.
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APPENDIX A

APPENDIX FOR CHAPTER 3

A.1 Proof of Theorem 1

Without loss of generality it is assumed that the message with index 1 is

transmitted at the source and the index corresponding to the quantized vec-

tors at each node is (1, 1). Next, the probability of error that this message

is wrongly decoded at the destination is found.

Let Ew,{(wv,w̄v)}v∈Vr
denote the event that

(

xT
S (w),

{

ŷT
v (wv, w̄v), x

T
v (wv)

}

v∈Vr
, yT

D

)

∈ T T
ǫ , (A.1)

where T T
ǫ is the set of all jointly typical sequences.

The required probability or error is then given by

P(error) = P(E c
1,{(1,1)}v∈Vr

) + P

(

⋃

w 6=1

Ew,{(wv,w̄v)}v∈Vr

)

. (A.2)

From the properties of joint typicality, it can be shown that the former term

goes to 0 as T → ∞. The latter term can be simplified by decomposing the

corresponding union of events into disjoint events using cut-set partitions.

Consider any Ω ⊂ Vr, and Φ ⊆ Vr\Ω; then

P

(

⋃

w 6=1

Ew,{(wv,w̄v)}v∈Vr

∣

∣

∣
E1,{(1,1)}

Vr

)

=
∑

Ω,Φ

P(Ω,Φ), (A.3)

where P(Ω,Φ) is the probability corresponding to the typical event Ew,{(wv,w̄v)}v∈Vr

with w 6= 1, wv 6= 1 for only v ∈ Ω and w̄v = 1 for only v ∈ Φ. It can be
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shown that

P(Ω,Φ) = 2T (R+r(Ω)+r̄(Φc))

×2T(H(YD ,ŶΦ,ŶΦc ,XΩ,XΩc ,XS)−H(XΩ,XS)−H(YD ,ŶΦ,XΩc )−
P

v∈Φc H(Ŷv))

= 2T (R+r(Ω)+r̄(Φc))

×2T(H(YD ,ŶΦ,ŶΦc |XΩ,XΩc ,XS)−H(YD ,ŶΦ|XΩc)−
P

v∈Φc H(Ŷv))

= 2T (R+r(Ω)+r̄(Φc))

×2−T(H(YD ,ŶΦ|XΩc)−H(YD ,ŶΦ|XΩ,XΩc ,XS)+
P

v∈Φc H(Ŷv)−H(ŶΦc |XΩ,XΩc ,XS))

= 2T (R+r(Ω)+r̄(Φc)) × 2−T(I(YD,ŶΦ;XΩ,XS |XΩc)+
P

v∈Φc I(Ŷv ;XVr ,XS))

The Markovian property of the random variables implies that

I(Ŷv;XVr
, XS) = H(Ŷv) −H(Ŷv|XVr

, XS) (A.4)

= H(Ŷv) −H(Ŷv|Yv) +H(Ŷv|Yv) −H(Ŷv|XVr
, XS) (A.5)

= H(Ŷv) −H(Ŷv|Yv) +H(Ŷv|Yv, XVr
, XS) −H(Ŷv|XVr

, XS)

(A.6)

= I(Ŷv;Yv) − I(Ŷv;Yv|XVr
, XS). (A.7)

Using the above and using (3.6) leads to

P(Ω,Φ) = 2T(R−r(Ωc\Φ)−I(YD ,ŶΦ;XΩ,XS |XΩc)+I(ŶΦc ;YΦc |XVr ,XS)). (A.8)

Therefore P(Ω,Φ) → 0, if

R < r(Ωc\Φ) + I(YD, ŶΦ;XΩ, XS|XΩc) − I(ŶΦc;YΦc|XVr
, XS). (A.9)
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APPENDIX B

APPENDIX FOR CHAPTER 4

B.1 Proof of Theorem 5

The theorem will be proved in a slightly general setting, allowing multiple

nodes in layer O1 and layer OL. Assuming that the flow values for these

layers O1 and OL are given and satisfy

f(O1) = f(OL), (B.1)

f(Ω1) − f(ΩL) ≤ C(Ω), ∀ Ω ⊆ V, (B.2)

the flow for all intermediate layers will be constructed.

The proof is by inductive construction.

For L=2, there are no intermediate layers and the theorem holds by defi-

nition. Consider L > 2. The induction hypothesis assumes that the flow can

be constructed with fewer than L layers and the flow for the boundary layers

are specified with the constraints given by (B.2)

Consider any L0 ∈ {2, . . . , L− 1}. Define networks NA and NB to be the

sub-networks of N with the set of vertices VA = ∪L0

l=1Ol and VB = ∪L
l=L0

Ol

respectively. Similarly, denote the cut for the two networks by CA and CB

respectively.

Next, a flow for the layer OL0 will be constructed which satisfies the

following conditions.

f(OL0) = f(O1), (B.3)

f(ΩA ∩ O1) − f(ΩA ∩ OL0) ≤ CA(ΩA), ∀ ΩA ⊆ VA, and (B.4)

f(ΩB ∩OL0) − f(ΩB ∩ OL) ≤ CB(ΩB), ∀ ΩB ⊆ VB. (B.5)

The induction hypothesis would then guarantee that the flows for the inter-
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mediate layers in the sub-networks NA and NB can be constructed.

The set of linear inequalities given by (B.4) and (B.5) can be rewritten

as

f(T ) ≤ rA(T ) , min {CA(ΩA) + f(Ωc
A ∩ O1) : Ωc

A ∩ OL0 = T} , (B.6)

f(T ) ≤ rB(T ) , min {CB(ΩB) + f(ΩB ∩OL) : ΩB ∩ OL0 = T} ,(B.7)

∀ T ⊆ OL0 .

The following properties for the functions rA(T ) and rB(T ) can be estab-

lished.

Lemma 9. The functions rA(T ) and rB(T ) are

• submodular,

• non-decreasing, and

• satisfy rA(∅) = 0 and rB(∅) = 0.

Proof. Appendix B.2.

Define the following polymatroids with the functions rA and rB.

PA =
{

x ∈ R
mL0
+ : x(U) ≤ rA(U), ∀ U ∈ OL0

}

(B.8)

PB =
{

x ∈ R
mL0
+ : x(U) ≤ rB(U), ∀ U ∈ OL0

}

, (B.9)

where x = [x(1) . . . x(mL0)] and x(U) ,
∑

u∈U x(u). The conditions (B.3)-

(B.5) are now equivalent to finding

[f(L0, 1) . . . f(L0, mL0)] ∈ PA ∩ PB, (B.10)

such that f(OL0) = f(O1). It then follows from Edmond’s polymatroid

intersection ( [14], Corollary 46.1c) that:

max {x(OL0) : x ∈ PA ∩ PB} = min
T⊆OL0

{rA(OL0\T ) + rB(T )} . (B.11)

Therefore the required flow exists since

f(O1) ≤ min
T⊆OL0

{rA(OL0\T ) + rB(T )} (B.12)

= min
Ω∈V

{C(Ω) + f(O1\Ω1) + f(ΩL)} . (B.13)
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Further, in Theorem 47.1 of [14] it is shown that the maximizing x in (B.11)

can be computed in polynomial time in the dimension of x. Hence, the flow

can also be computed in polynomial time in the number of nodes.

B.2 Proof of Lemma 9

We will prove the lemma for rB(T ). The proof for rA(T ) is similar.

1. Submodularity:

Let

rB(T (1)) = CB(Ω
(1)
B ) + d(Ω

(1)
B ∩OL),

∀ Ω
(1)
B ∩OL0 = T (1) (B.14)

rB(T (2)) = CB(Ω
(2)
B ) + d(Ω

(2)
B ∩OL),

∀ Ω
(2)
B ∩OL0 = T (1). (B.15)

Since

(Ω
(1)
B ∪ Ω

(2)
B ) ∩ OL0 = T (1) ∪ T (2), (B.16)

(Ω
(1)
B ∩ Ω

(2)
B ) ∩ OL0 = T (1) ∩ T (2), (B.17)

it follows that

rB(T (1) ∪ T (2)) ≤ CB(Ω
(1)
B ∪ Ω

(2)
B )

+d((Ω
(1)
B ∪ Ω

(2)
B ) ∩OL), (B.18)

rB(T (1) ∩ T (2)) ≤ CB(Ω
(1)
B ∩ Ω

(2)
B )

+d((Ω
(1)
B ∩ Ω

(2)
B ) ∩OL). (B.19)

By definition of cut and the bi-submodularity of ρl, it is easy to verify

that CB(ΩB) is submodular. And since d is an additive function, it

then follows that rB(T ) is submodular.

2. Non-decreasing:
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Consider T (1) ⊆ T (2). Let

rB(T (1)) = CB(Ω
(1)
B ) + d(Ω

(1)
B ∩OL),

∀ Ω
(1)
B ∩OL0 = T (1). (B.20)

Let ΩB = Ω
(1)
B ∪ T (2)\T (1) ⊇ Ω

(1)
B , so that ΩB ∩ OL0 = T (2). By the

definition of cut and the non-decreasing property of ρl, it follows that

CB(Ω
(1)
B ) ≤ CB(ΩB). Also d(Ω

(1)
B ∩ OL) ≤ d(ΩB ∩OL). Therefore

rB(T (2)) = CB(ΩB) + d(ΩB ∩ OL) (B.21)

≥ CB(Ω
(1)
B ) + d(Ω

(1)
B ∩OL) (B.22)

= rB(T (1)). (B.23)

3. rB(∅) = 0:

When T = ∅, by letting ΩB = ∅, it follows that rB(∅) = 0.

B.3 Proof of Proposition 1

To prove the lemma, it needs to be shown that I(XU ; ŶV |XOl\U) satisfies the

three properties of bisubmodular capacity functions.

• I(XU ; ŶV |XOl\U ) is bi-submodular.

I(XU ; ŶV |XOl\U) = H(ŶV |XOl\U) −H(ŶV |XOl
) (B.24)

= H(ŶV , XOl\U) −H(XOl\U )

−H(ŶV |XOl
). (B.25)

The submodularity of entropy [36] implies that H(ŶV , XOl\U) is bi-

submodular. The submodularity of entropy follows from the fact that

given collection of random variables Υ1 and Υ2, we have

H(Υ1) +H(Υ2) −H(Υ1 ∪ Υ2) −H(Υ1 ∩ Υ2)

= I(Υ1\Υ2; Υ2\Υ1|Υ1 ∩ Υ2)

≥ 0.
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The product form of the random variables implies that H(XOl\U ) and

H(ŶV |XOl
) are modular or additive. Therefore, I(XU ; ŶV |XOl\U) is

bi-submodular.

• I(XU ; ŶV |XOl\U ) is non-decreasing. Given U1 ⊆ U ⊆ Ol and V1 ⊆ V ⊆
Ol+1,

I(XU ; ŶV |XOl\U) = H(XU |XOl\U) −H(XU |XOl\U ŶV ) (B.26)

≥ H(XU |XOl\U) −H(XU |XOl\U ŶV1) (B.27)

= I(XU ; ŶV1|XOl\U) (B.28)

= H(ŶV1|XOl\U) −H(ŶV1|XOl
) (B.29)

≥ H(ŶV1|XOl\U1
) −H(ŶV1|XOl

) (B.30)

= I(XU1 ; ŶV1|XOl\U1), (B.31)

where both the inequalities follow from the fact that conditioning re-

duces entropy.

• I(∅; ŶV |XOl
) = I(XU ; ∅|XOl\U ) = 0 follows trivially.
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APPENDIX C

APPENDIX FOR CHAPTER 5

C.1 Layering for linear deterministic network

We show that a coding scheme (not necessarily linear) over T time instants

for any linear deterministic network can be equivalently represented as a

layered coding scheme over an unfolded T + 1 layered network. We unfold

the network to T + 1 stages such that the mth-stage is representing what

happens in the network during the mth time duration. Every node ν in the

unlayered network appears at stage 1 ≤ m ≤ T + 1 in the unfolded network

as ν[m]. If there is an edge connecting node νi to node νj with channel gain

matrix Gij ∈ F
q×q
p in the unlayered network, then there is an edge connecting

the nodes νi[m] to node νj [m + 1] in the layered network with channel gain

matrix given by Ĝij ∈ F
q(T+2)×q(T+2)
p , where

Ĝij =







0 0 0

0 0 0

Gij 0 0






. (C.1)

Note that if Gij is a shift matrix, then so is Ĝij . Further, every node

ν[m] is connected to its next instance ν[m + 1] by a link with channel gain

Iq(T+2)×q(T+2). Figure C.1 illustrates a simple example of a network and the

corresponding layered network.

We first show that any coding scheme for the unlayered network can

be used to construct a layered coding scheme for the layered network. If

xνj
[m] ∈ F

q
p is the vector transmitted by the node νj in the unlayered network,

then the vector transmitted by the node νj[m] is x̂νj [m] ∈ F
q(T+2)
p and is given
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by

x̂νj [m] =







xνj
[m]

sνj
[m− 1]

0q×1






, (C.2)

where sνj
[m − 1] represents the state of the node νj at time instant m − 1

in the unlayered network and is the stack of all received vectors at node νj

until that time instant. Note that the received vector at a node νj [m+ 1] in

the layered network is

ŷνj [m+1] =







xνj
[m]

sνj
[m− 1]

yνj
[m]






. (C.3)

It is essentially all the information at node νj till time instant m. Thus any

coding function for the node νj at time instant m+ 1 can be converted to a

coding function for node νj [m+ 1].

Conversely, for any scheme on the layered network, the corresponding

scheme on the unlayered network is given by

xνj
[m] =

(

x̂νj [m][1] . . . x̂νj [m][q]
)T
. (C.4)

It is easy to see that xνj
[m] can be written as a function of the previous

received vectors and the source messages, if any, at that node.
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S

R

D

G1 G2

(a) Un-
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Ĝ3

D[2]

R[1]

S[0] S[1]

D[3]

R[2]

I I

I

I I

D[1]

S[2]

Ĝ1 Ĝ1

Ĝ2Ĝ2 Ĝ2

Ĝ3

(b) Layered

Figure C.1: Layering a network by unfolding over time.
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APPENDIX D

APPENDIX FOR CHAPTER 6

D.1 Proof of Lemma 4

Consider any cut Ω such that S ∈ Ω and D ∈ Ωc. There are two components

that contribute to the value of the cut: one part c1 comes from the added rate

limited links and the other part c2 comes from the original network. Let J be

such that DJ c ⊆ Ω and DJ ⊆ Ωc; this implies that the rate limited links of

capacity c1 =
∑

j∈J c are included in the cuts. Recall that C̄J (Q) denotes the

value of the cutset bound evaluated under the distribution Q for separating

the source from the set DJ . As the cut Ω separates S from DJ , the value

of cut gained from the original network is bigger than C̄J (Q). Furthermore,

since (r1, ..., rJ) ∈ C̄(Q),
∑

j∈J rj ≤ C̄J (Q). This implies that the value of

cut gained from the original network is bigger than this value: c2 ≥
∑

j∈J rj .

Thus the total value of the cut is c = c1 + c2 ≥ ∑

j rj . The min-cut value

is actually equal to
∑

j rj since the cut that separates D1, ..., DJ from D has

value
∑

j rj .

D.2 Proof of Lemma 5

Let the min-cut between the source and the destination be r. Since the

relaying scheme can achieve any rate close to the cut-set bound for large

enough T1, the information transmitted by all the sinks should be greater
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than rate r; therefore for any subset J ⊆ {1, 2, .., J},

T1r ≤ H( ~XD1 , ...,
~XDJ

) (D.1)

≤ H( ~XDJ
) +H( ~XDJc ) (D.2)

≤ H( ~XDJ
) +

∑

j∈J c

H( ~XDj
) (D.3)

= H( ~XDJ
) +

∑

j∈J c

H(XT1
Dj

) (D.4)

≤ H(~YDJ
) +

∑

j∈J c

T1
∑

t=1

H(XDj
(t)) (D.5)

≤ H(~YDJ
) +

∑

j∈J c

T1rj (D.6)

⇒ 1

T1
H(~YDJ

) ≥ r −
∑

j∈J c

rj . (D.7)

Note that (D.6) follows due to the rate-limited links. Furthermore, the

min-cut (under product distributions) is r =
∑

i ri by Lemma 4, and this

gives

1

T1
H(~YDJ

) ≥
∑

j∈J

rj ∀J ⊆ {1, 2, ..., J}. (D.8)
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