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ABSTRACT

Typical queries on online social network (OSN) applications are complex

and require “feeds” to be compiled with timely information about many

friends and friends’ friends, which may be stored across many servers.

Partitioning the OSN social graph in such a way as to promote data

locality, i.e. such that a user’s data will be stored on the same server as his

friends’ data, has proven difficult to do, and many existing OSN

partitioning systems do not even attempt this. However, recent work has

demonstrated techniques that do achieve data locality for social network

queries by placing replicas of user data. We show that exploiting temporal

characteristics of user behavior can enable effective partitioning for data

locality without replication. We then build on this concept and

demonstrate improved data locality by placing replicas sparingly. The

result is a system which allows one to allocate a memory budget for

replication and in return get a commensurate improvement in data locality.
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CHAPTER 1

INTRODUCTION

The importance of online social networks has increased dramatically in

recent years, introducing a host of new challenges. Key differences between

social networks and traditional web services motivate the design of

innovative architectures to support them. These innovative designs aspire

to allow social networking services to scale more readily, to provide faster

responses to queries, and to reduce the load that queries impose on the

distributed systems that run them.

1.1 The Problem

Typical queries in social networking applications are demanding. A single

page load may require that a user be provided with a “feed” compiled of

recent information about that user’s friends. In some social networking

applications these feeds further allow users to see relevant updates and

messages between their friends and their friends’ friends. The responses to

these queries are typically very sensitive to time and expire quickly; when a

user checks her feed in the afternoon she may expect to see an entirely

different feed than was shown to her that morning. Furthermore, users’ sets

of friends are largely unique. These characteristics of social networking

applications conspire to make common queries not only expensive to

process but largely non-repeatable, making them poorly suited for

traditional performance-enhancing techniques such as caching. The fact

that users expect their page requests to be handled nearly instantaneously

only complicates the issue further.

The characteristics of the social graph further differentiate social

networking applications from traditional web services. For example, in an

online shopping service, a user may require to see his order history or
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shopping cart contents; this is information which is specific to that user and

can easily be stored and retrieved accordingly. By contrast, a user of an

online social network requires to see information about his entire network,

which may include hundreds of friends. Because social networks are often

very large (hundreds of millions of nodes), the user’s friends and friends’

friends are likely to be stored on many servers across the network. It is

readily apparent that this would motivate a good partitioning of the social

graph in which users and their friends are stored on the same server, but

the highly interconnected structure of social graphs makes this difficult to

achieve.

1.2 Previous Work

Common practice in industry is to employ horizontal partitioning, which

provides fast access to information regarding a particular user but does not

attempt to store connected users together to promote data locality.

Twitter’s Gizzard architecture makes use of range partitioning [1].

Facebook developed Cassandra, which partitions user data via consistent

hashing of user IDs [2]. Both of techniques require fetching data from a

large number of servers to compile feeds for a given user.

Consequently, we are motivated to seek better partitioning techniques

which are able to achieve high locality of relevant user data. Such advanced

algorithms would group users together in a partition by leveraging the

structure of the social graph and of users’ query patterns over time.

Improved user data locality has the promise of faster response times [3], a

decreased load required on the internal network (as a user’s friends’ data

could be retrieved by polling fewer partitions), and improved scalability. [4]

But effective partitioning to promote data locality is hard to do.

Nonetheless, recent work has shown promising results for advanced

partitioning techniques. In [5], strict local semantics are guaranteed by

ensuring that either a replica or the master copy of each of a user’s friends

is stored in the same partition as that user. As the social graph evolves,

their algorithm adaptively makes partitioning decisions which result in the

fewest required replicas. While their system provides substantially reduced

network traffic and improved response times over traditional systems, the
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replication overhead it requires can be very large [3].

1.3 New Methods

While the method in [5] provides data locality by guaranteeing local

semantics for every query, we examine loosening this strict requirement. A

good partitioning of the social graph could ensure that relevant data is

local for most queries. This way, resources would not be wasted by keeping

excessive replicas of infrequently accessed data.

By observing trends in user behavior, it is possible to construct a model

of an activity graph [3]. We will show how such an activity graph can be

used to effectively partition the social network data in prediction of future

query patterns. The resulting method will provide good data locality not

for all possible query patterns but specifically for those which are

considered most likely to occur in the near future, minimizing the

interactions between partitions required to serve common queries. In

contrast to [5], this is achieved without any replication at all.

Expanding on this idea further, we subsequently examine the potential

for additional benefit by bringing replication back into the picture. By

partitioning the social graph in general to maximize data locality for likely

queries, while selectively adding replicas in specific situations in which it is

advantageous to do so, we will demonstrate a superior algorithm which

balances both replication and inter-partition interaction to find beneficial

partition configurations for the social network.

Such a hybrid system has advantages over both approaches previously

introduced. While the large factor of replication required by [5] may make

it too expensive for use in some systems, an improved system would allow

an administrator to allocate how much replication could be afforded, and in

return get commensurate data locality while tolerating some degree of

interaction to serve queries. Meanwhile, a system which merely minimizes

interactions via strategic partitioning may be wasting extra memory which

could otherwise be used for replicas to greatly improve data locality. The

resulting system we will propose employs both interaction and replication

to provide high data locality for common social network queries. It can also

be tailored to the resources of a specific deployment.
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The rest of this thesis proceeds as follows. The next chapter contains a

review of relevant literature on social networks and partitioning. The

subsequent chapter describes a method of partitioning a social network to

provide high data locality for queries without replication by exploiting

time-dependent characteristics of user behavior. The next chapter

introduces an improved algorithm which provides enhanced data locality by

leveraging replication as well as strategic partitioning. The final chapter

draws conclusions from our research and provides recommendations for

future work.
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CHAPTER 2

LITERATURE REVIEW

There has been significant work in research literature on modeling online

social network (OSN) graphs and finding effective strategies to partition

and store them. The problem was discussed in [6], which mentioned many

existing opportunities for optimization in current “feed-following” systems

including OSNs. They surmise that the question of how to best balance the

costs and benefits of clustering or partitioning in feed-following systems

remains wide-open, and they suggest a clever combination of replication

and clustering algorithms would be required to adequately handle the

challenges presented by these kinds of systems.

Facebook’s Cassandra [2] and Amazon’s Dynamo [7] are distributed

storage systems which rely on distributed hashing to partition data across

many servers. These systems are intended to be fault-tolerant and scalable.

When used for OSNs, distributed hash partitioning can lead to poor

performance due to lack of data locality. They also can create other

problems such as Facebook’s “multi-get hole” [4] which can cause

performance and scalability issues depending on which resources are

constrained.

The “One Hop Replication” system in [8] tackles the problem of

scalability by leveraging the community structure in OSNs and the fact

that most of the information accessed is just “one-hop” away with regards

to the friendship graph. Instead of replicating all the users (which would

not be possible for a real system with a very large number of users), only

the inter-partition activity links are replicated. Also the “bridge”

users—users who have weak ties among them—are also replicated.

In SPAR [5], this idea is implemented in a form of middleware that

transparently provides local semantics for social network application

development, giving the appearance of a fully-replicated social network on

each server in the distributed system. This is accomplished by guaranteeing
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that the server containing each user also contains a replica (if not the

master copy) for each of that user’s friends. They propose an algorithm

which leverages social graph structure to choose a partition configuration

which requires a minimum number of replicas to be maintained throughout

the network. The local semantics, as well as promoting scalability, can also

serve to improve performance via reduced network I/O requirements.

However, it has been noted [3] that the factor of replication required by

SPAR can be quite large, which could make it expensive to use in a

production environment. It also does not exploit temporal characteristics of

user behavior to make better partitioning decisions as other methods do [3].

In contrast, [3] demonstrates usage of temporal characteristics of user

behavior to partition the graph in the time domain, so that users’

information is grouped together for the time periods during which they are

relevant to one another. This is done by constructing an activity prediction

graph (APG) weighted to represent which edges between users are most

important at the current point in time. This APG is easier to partition

than the social graph itself, having a lighter tail on its power-law degree

distribution. In general, it is known to be difficult to partition graphs with

a power-law degree distribution in a balanced way [9]. Further discussion of

this technique is provided in the next chapter.

Schism [10] partitions a distributed database based on workload and

query patterns. Not specific to use with social networks, it works well

where queries are static and repeated many times. However, it will not be

able to predict future queries in social networks, in which both data and

the network are changing over time.

TAMER [11] is another system that supports partitioning of large-scale

OSN data for the purposes of broad distribution across geographic

locations. Current OSNs replicate all user data in each geo-distributed data

center, leading to redundancy and expensive synchronization. This is

ameliorated by defining a threshold latency for information exchange such

that only the minimum number of replicas satisfying this threshold across

all the geo-distributed datacenters are maintained while others are

discarded.

Partitioning, replication, and data locality in distributed database

systems are not a topic unique to their application for OSNs. Distributed

processing systems such as MapReduce and Dryad motivate advanced
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scheduling algorithms which promote data locality for distributed tasks.

Quincy [12] schedules distributed jobs based on data locality and fairness

constraints. Another system detailed in [13] employs “delay scheduling” to

improve data locality while preserving fairness.

7



CHAPTER 3

DYNAMIC PARTITIONING

Most online social networks use distributed hashing [2, 7] to partition users’

data across a distributed database. With this kind of partitioning, a user’s

friends’ data will be stored in many different partitions. But characteristics

of user behavior—how frequently they post messages and query their

feeds—can be used to predict which users’ information will be requested

together to serve common queries. We can leverage this information to

build a better partition configuration, ensuring that most queries will only

require information from a few partitions.

To this end, we will construct an activity prediction graph (APG) which

does not necessarily contain all of the “friendship” connections between

users present in the full social graph, but instead contains only those

connections which are “active”—that is, in which messages have been

exchanged between the users recently. This APG will have a simpler

topography than the full social graph, and its power-law degree distribution

will have a much lighter tail [14]. This will make it easier to partition

effectively.

Because characteristics of user behavior change over time, we will need to

partition the social network data not only in the spatial domain of the

nodes on the graph but also along the time dimension. That is, all

messages between two users will not necessarily be stored on the same

server, though they will be divided according to their time stamps and

placed within a particular time range on a particular server.

When partitioning the APG, we will consider the two-hop neighborhood

surrounding users and messages. This will supply greater data locality for

applications which require consideration of the entire two-hop network,

Content in this chapter previously appeared in “Partitioning Social Networks for Fast
Retrieval of Time-dependent Queries” by Mindi Yuan, David Stein, Berenice Carrasco,
Joana M. F. Trindade, and Yi Lu [3]. c© 2012 IEEE. Reprinted with permission.
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such as Facebook’s “news-feed” application in which users see not only

messages between themselves and their friends but also between their

friends and their friends’ friends. For the algorithm we will describe, we

also will assume that the friendship relationship is necessarily symmetrical,

which is to say that if user a is a friend of user b, then user b must be a

friend of user a.

3.1 Graph Model

Consider a graph G on the vertex sets U and V where U is the set of users

in the social network and V is the set of messages between a pair of users.

The message vertex v ∈ V always has degree 2 and connects to the two user

vertices who are interacting. We index a node v by the unordered pair of

the indexes of the user vertices to which v is connected. Figure 3.1 shows

an example of a graph with 6 user vertices and 5 message vertices.

3 1 2
(1,3) (1,2)

(2,4)

(2,5)

6 4

5

(3,6)

Figure 3.1: Graph with 6 user vertices and 5 message vertices.

We define the neighborhood set of a user vertex and a message vertex.

Let Nu denote the neighborhood of user node u, where

Nu = {u′, (u, u′) if u < u′, (u′, u) if u > u′

: (u, u′) ∈ V or (u′, u) ∈ V }

Let Nu,u′ denote the neighborhood of message node (u, u′), where

Nu,u′ = {u, u′}

The neighborhood of a user node includes all the user nodes sharing a

common message node and their common message nodes. The
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neighborhood of a message node includes the two user nodes connected to

it. We now define the two-hop neighborhood of a user node and a message

node.

Let Hu denote the two-hop neighborhood of user node u, where

Hu =
⋃

u′∈Nu

Nu′

Let Hu,u′ denote the two-hop neighborhood of message node (u, u′), where

Hu,u′ = Nu

⋃
Nu′

The two-hop neighborhood of user i includes vertices whose content is

visible to user i. A user can view the messages between him and his friends

and all messages initiated or received by his friends. The messages initiated

or received directly by user i are in the one-hop neighborhood centered at

user i, while the messages initiated or received by all friends of user i reside

in the two-hop neighborhood centered at user i. For example, the set of

user vertices {2, 3, 4, 5, 6} and the edges connecting them constitute the

two-hop neighborhood centered at user 1. The two-hop neighborhood

centered at a message vertex is the union of the one-hop neighborhood of

its initiators and receivers. For example, the set of user vertices

{1, 2, 3, 4, 5} and the edges connecting them constitutes the two-hop

neighborhood centered at message vertex (1, 2).

Consider the following retrieval scenario. Each user is assigned an access

frequency mi and retrieves the data in the two-hop neighborhood. Each

message node stores messages and is assigned a weight wi,j. Potential

values for wi,j are the number of messages at the node, or a weighted sum

of the messages. The objective is to define weights eii,j and eji,j, for the

edges connecting user nodes i and j to the message node (i, j), so that

minimizing the cross-partition edges in the graph will correspond to

maximizing locality for accesses.

Let Di denote the sum of all message node weights in the two-hop

neighborhood of user i,

Di =
∑

(i,j)∈Hi

wi,j

Let W k
(i,j),i denote the message node weights in a remote partition if the
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edge between user vertex i and edge vertex (i, j) is cut. Let G∼(i,j),i denote

the graph with the edge between (i, j) and i removed, and let N∼(i,j),i and

H∼(i,j),i be the neighborhoods in G∼(i,j),i, then

W k
(i,j),i = (Hk −H∼(i,j),ik )

⋃
(i, j) if i ∈ Nk

= (Hk −H∼(i,j),ik )
⋃

i if (i, j) ∈ Nk

3 1 2
(1,3) (1,2)

(2,4)

(2,5)

[22]
6 4

5

(3,6) [46] [71]

[5]

[10]

Figure 3.2: Graph with 6 user vertices and 5 message vertices, with weights
on each message vertex.

For example, the total weight of messages accessible to user 1 in Figure

3.2 is

D1 = w3,6 + w1,3 + w1,2 + w2,4 + w2,5

= 22 + 46 + 71 + 5 + 10 = 154

and the total message weight in a remote partition for node 1 if the edge

between (1, 2) and 1 is cut is

W 1
(1,2),1 = w1,2 + w2,4 + w2,5

= 71 + 5 + 10 = 86

The total message weight in a remote partition for node 3 if the edge

between (1, 2) and 1 is cut is

W 3
(1,2),1 = w1,2 = 71

We now define the edge weights. Let eii,j denote the weight on edge
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between nodes i and (i, j), then

eii,j =
∑

k∈Hi,j

mk

W k
(i,j),i

Dk

which is the sum of the fraction of remote message weights weighted by

user frequency.

Consider accesses at each user node as an independent Poisson process

with intensity mi, and interaction between user i and j an independent

Poisson process with intensity wi,j.

If only considering the one-hop network, the wi,j can be directly used as

the edge weight, i.e. eii,j = eji,j = wi,j. However, this only captures the

influence to the one-hop network of cutting an edge.

3.2 Periodic Algorithm

The periodic algorithm computes a partition configuration every month

using the APG which has been updated to reflect the frequencies of recent

interactions. We define the interaction node weights wi,j to be the

discounted message frequency

wi,j = C
K∑

k=1

fk n
k
i,j

where K is the total number of past periods considered, C is a scaling

constant, nk
i,j is the number of messages exchanged between users i and j in

month k. We define fk as the decay factor computed on a monthly basis for

month k

fk =
|Lk ∩ L|
|Lk|

in which Lk is the set of links in month k and L is the set of links in the

current month. The cardinality of a set is denoted by | · |.
The weight of each message vertex is used for computing balanced

partitions as it is a prediction of the number of messages to expect at each

link based on past queries. We use KMETIS, a software program from the

METIS library [15], to partition the APG. KMETIS uses a multilevel k-way
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min-cut algorithm to produce partitions that balance vertex weights in each

partition and minimize edge weights across partitions.

For a message whose corresponding node is present in the APG, it is

stored in that message node’s partition. For a message whose node is not

present and is therefore not predicted by the APG, we use the following

simple algorithm:

1. If both the initiator and receiver of the message exist in the APG, but

no previous message exists, store the message with the user with a

smaller value of D, as the new message will contribute a larger

fraction of this user’s future query.

2. If exactly one of the initiator and receiver of the message exists in the

APG, store the new message in the same partition as that user.

3. If neither the initiator nor the receiver exists in the APG, store the

new message in the partition with the least number of messages.

The values Di are updated for each user i as new messages are stored in

each partition.

3.3 Adaptive Local Algorithm

The periodic algorithm has two drawbacks: (1) It changes the placement of

a large number of message nodes at the end of a period, creating artificial

remote accesses for subsequent retrievals as two messages on the same

message node can reside in different partitions; (2) It fails to take advantage

of the strong time correlation of messages as no repartitioning takes place

within the period. This motivates the design of a local adaptive algorithm.

We propose a local algorithm that is triggered when a retrieval results in

remote accesses. We define the boundary pairs

B = { (i, (i, j)) : i and (i, j) are in different partitions }

Only the subset of boundary pairs for which the weights in the two-hop

network have changed since the last repartitioning will be considered.

Changes in message weights outside the two-hop network can have an effect

13



on the boundary pair, but are ignored to reduce complexity as the effect is

usually small. We recompute the edge weights in the APG updated with

current messages. For each pair in the boundary set, we consider the

following reward function:

Z = −∆E − M

where ∆E is defined as the change in cross-boundary cost in the APG if

the node in consideration is moved. The threshold parameter M represents

a base cost of movement for one node. Movement occurs only when Z > 0.

For a message node (i, k) currently in the same partition as i,

∆E = eii,k − eki,k

is used to decide whether to move it to the same partition as k. For a user

node i, which can connect to multiple message nodes in different partitions,

we define ∆E as

∆E = max
P∈{adjacent partitions}

∑

(i,k)∈P

eii,k −
∑

(i,j) local

eii,j

Thus we represent the reward for moving the user node into the best choice

among its adjacent partitions.

3.4 Evaluation

The dataset for our evaluation was produced from an event trace from a

subgraph of the Facebook social graph in New Orleans between 2005 and

2006. We train the APG with the events from January 2005 through

November 2006, and we test the algorithms with messages in the month of

December 2006. Each user is assigned an access process that retrieves the

most recent 6 messages in the two-hop neighborhood. We choose the

number of messages to be 6 as our data set is relatively small: the data in

December 2006 contains a total of 13948 messages with 8640 active users.

We evaluate the performance of both the periodic and local algorithms.
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3.4.1 Periodic Algorithm

We compare our algorithm to two hash-based horizontal partitioning

algorithms. These are the algorithms used in commercial online social

networks. The first algorithm, “hash p1,” hashes the initiator ID of a

message. As a result, all messages generated by the same user are grouped

in one partition. The second algorithm, “hash p1p2,” hashes the unordered

sender-receiver pair of a message. All messages exchanged between a

particular pair of users are grouped in one partition. We compare the

experiments with different numbers of partitions up to 20. We did not

experiment with a larger number of partitions as there are only 8640 active

users for December 2006, and we are considering the locality of messages in

a two-hop neighborhood. We also show the results from a retrospective

algorithm, denoted by “retro”, where the actual messages in December

2006 were used to train the APG. This is the optimal result for a static

partitioning algorithm. We use C = 12 and K = 23 to construct the APG,

where C is a scaling constant and K is the total number of past periods

considered. We experimented with other values of C and K and the result

is not sensitive to the change of the values. We associate a frequency mi to

each user i. For this experiment, we let mi =
∑

(i,j)∈Gwi,j, which is the sum

of all weights on message nodes connected to user node i. This assumes

that the frequency of reads are proportional to the number of messages sent

or received by a user. We did not consider the balance of accesses across

partitions in this experiment, but it can be readily integrated by assigning

weights to user vertices proportional to its frequency.

Figure 3.3 compares the proportion of queries that have all 6 most recent

messages in a single partition for the three algorithms. With 5 partitions,

the periodic algorithm produces 50% of all queries with all 6 messages in

one partition, whereas both hashing algorithms have less than 10% of local

queries. With 20 partitions, the periodic algorithm achieves 34% of local

queries as some two-hop neighborhoods need to be cut to keep the balance

of the data storage, which is still over 12 times better than the hashing

algorithms, each achieving 2.8% and 2.6% of local queries. In all cases, the

performance of the periodic algorithm is within 80% of the retrospective

algorithm, showing a good prediction quality of the APG.

Figure 3.4 compares the proportion of queries that have all 6 most recent
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takes place within the period. This motivates the design of a
local adaptive algorithm.

We propose a local algorithm that is triggered when a
retrieval results in remote accesses. We define the boundary
pairs B = {(i, (i, j)) : i and (i, j) are in different partitions}.

Only the subset of boundary pairs for which the weights
in the two-hop neighborhood have changed since the last
repartitioning will be considered. Changes in message weights
outside the two-hop neighborhood can have an effect on the
boundary pair, but are ignored to reduce complexity as the
effect is usually small. We recompute the edge weights in
the APG updated with current messages. For each pair in
the boundary set, we consider the following reward func-
tion F = ΔE − M , where ΔE is the change in cross-
boundary cost in APG if the node in consideration is moved
and M is a parameter designating the cost of movement
for one node. Movement occurs only when F > 0. For
a message node (i, k) currently in the same partition as i,
ΔE = eii,k − eki,k is used to decide whether to move it to
the same partition as k. For a user node i, it can connect
to multiple message nodes in different partitions, so ΔE =
maxP∈{adjacentpartitions}(

∑
(i,j) local e

i
i,j −

∑
(i,k)∈P eii,k )

To avoid the problem of having messages on the same
message node in different partitions after movement, we
replicate the most recent few messages in the new partition.
The discontinuity caused by movements is less of a problem
with the local algorithm than with the periodic, as movements
are distributed across time, with only a few movements daily.

C. Implementation

When a user initiates a retrieval, its two-hop neighborhood
is looked up from a hash table, and messages are retrieved
accordingly. With the time-dependent partitioning algorithms,
the same message node can reside in different partitions at
different times. This requires an extra hash table lookup, which
returns the time stamp at which a node changes its physical
location, together with the number of messages from that time
interval. The actual locations to be accessed by the retrieval
are determined from the time stamps and number of messages.

V. EVALUATION

We test the algorithms with messages in the month of Dec
2006. Each user is assigned an access process that retrieves
the most recent 6 messages in the two-hop neighborhood.
We choose the number of messages to be 6 as our data set
is relatively small: the data in Dec 2006 contains a total of
13948 messages with 8640 active users. We demonstrate the
advantage of considering the two-hop neighborhoods over the
original activity network, and evaluate the performance of the
periodic and local algorithms.

A. Periodic Algorithm

We compare our algorithm to two hash-based horizontal
partitioning algorithms. These are the algorithms used in com-
mercial online social networks. The first algorithm, hash p1,
hashes the initiator ID of a message. As a result, all messages

generated by the same user are grouped in one partition. The
second algorithm, hash p1p2, hashes the unordered sender-
receiver pair of a message. All messages exchanged between
a particular pair of users are grouped in one partition. We
compare the experiments with different number of partitions
up to 20. We did not experiment with a larger number of
partitions as there are only 8640 active users for Dec 2006,
and we are considering the locality of messages in a two-hop
neighborhood. We also show the results from a retrospective
algorithm, denoted by “retro”, where the actual messages in
Dec 2006 are included in computing the APG. This is the
optimal result for a static partitioning algorithm.

We use C = 12 and K = 23 to construct the APG. Recall
that C is a scaling constant and K is the total number of
past periods considered. We experimented with other values
of C and K and the result is not sensitive to the change of
the values. We associate a frequency mi to each user i. For
this experiment, we let mi =

∑
(i,j)∈G wi,j , which is the sum

of all weights on message vertices connected to user vertex
i. This assumes that the frequency of reads are proportional
to the number of messages sent or received by a user. We do
not consider the balance of accesses across partitions in this
paper, but it can be readily integrated by assigning weights to
user vertices proportional to its frequency.
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Fig. 10. Proportion of queries that access only 1 partition. Compari-
son of the periodic algorithm with hashing the initiator ID (hash p1)
and the unordered initiator-receiver pair (hash p1p2).

Fig. 10 compares the proportion of queries that have all
6 most recent messages in a single partition for the three
algorithms. With 5 partitions, the periodic algorithm produces
50% of all queries with all 6 messages in one partition whereas
both hashing algorithms have less than 10% of local queries.
With 20 partitions, the periodic algorithm achieves 34% of
local queries as some two-hop neighborhoods need to be cut
to keep the balance of the data storage, which is still over
12 times better than the hashing algorithms, each achieving
2.8% and 2.6% of local queries. In all cases, the performance
of the periodic algorithm is within 80% of the retrospective
algorithm, showing a good prediction quality of the APG.

Fig. 11 compares the proportion of queries that have all 6
most recent messages in at most 3 partition. For all numbers of
partitions, more than 90% of queries access at most 3 partitions
with the periodic algorithm. For the hashing algorithms, while
71% of all queries access at most 3 partitions when there

Figure 3.3: Proportion of queries that access only 1 partition. Comparison
of the periodic algorithm with hashing the initiator ID (hash p1) and the
unordered initiator-receiver pair (hash p1p2).

messages in at most 3 partitions. For all numbers of partitions, more than

90% of queries access at most 3 partitions with the periodic algorithm. For

the hashing algorithms, while 71% of all queries access at most 3 partitions

when there are a total of 5 partitions, the fraction decreases to less than

40% when there are a total of 20 partitions. The performance of the

periodic algorithm is within more than 95% of the retrospective algorithm.

3.4.2 Local Algorithm

Figures 3.5 and 3.6 show the performance of the local algorithm with

M = 10. Recall that M is the constant cost for moving one node. With 5

partitions, the local algorithm results in 20% more local queries than the

periodic algorithm and almost 6 times more than the hash algorithms.

With 20 partitions, the local algorithm achieves 30% better than the

periodic algorithm and 13 times better than the hash. Both the local and

periodic algorithms have more than 90% queries accessing at most 3

partitions, with the local algorithm performing slightly better. The total

number of movements for the local algorithm with 5 partitions is 1122,

evenly distributed across time. This amounts to 40 movements daily, which

is small. The number of movements increases with the number of

partitions, reaching 1859 at 20 partitions.
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Fig. 11. Proportion of queries that access at most 3 partitions.
Comparison of the periodic algorithm with hashing the initiator ID
(hash p1) and the unordered initiator-receiver pair (hash p1p2).

are a total of 5 partitions, the fraction decreases to less than
40% when there are a total of 20 partitions. The performance
of the periodic algorithm is within more than 95% of the
retrospective algorithm.

B. Two-hop Neighborhoods

The edge weights defined in Theorem 1 reflect the access
frequencies and message distribution in the two-hop neighbor-
hoods. We highlight the advantage of using such edge weight
with the following experiment.

We sample the access frequencies mi from a power-law
distribution, where P(mi > x) = x−1.1. We define the
edge weights to be the number of messages on the original
activity network, plus the access frequencies to account for
the difference in read activities: eii,j = wi,j + C ∗ mi. We
refer to this definition of edge weights as the one-hop APG.
For each user i, mi read operations are randomly inserted into
the trace of Dec. 2006. This models the fact that more users
read than write, and the read frequency can be large.
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Fig. 12. One-hop vs. two-hop. Sample 11 random cases and average.

Fig. 12 shows the performance comparison of the two-hop
and one-hop edge weights. When the number of partitions is 5,
the two-hop edge weights achieve 17% more local queries than
the one-hop. With 20 partitions, the two-hop is 37% better.
We also compared the performance with other distributions of
access frequency and found that the two-hop edge weights
always perform as well as the one-hop, and significantly
outperforms the latter in some cases.

C. Local Algorithm

Fig. 13 and 14 show the performance of the local algorithm
with M = 10. Recall that M is the constant cost for moving
one node. With 5 partitions, the local algorithm results in 20%
more local queries than the periodic algorithm and almost
6 times more than the hash algorithms. With 20 partitions,
the local algorithm achieves 30% better than the periodic
algorithm and 13 times better than the hash. Both the local
and periodic algorithms have more than 90% queries accessing
at most 3 partitions, with the local algorithm performing
slightly better. The total number of movements for the local
algorithm with 5 partitions is 1122, evenly distributed across
time. This amounts to 40 movements daily, which is small. The
number of movements increases with the number of partitions,
reaching 1859 at 20 partitions.
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Fig. 13. Locality tests for the periodic algorithm, local (M = 10)
and hash p1p2.
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Fig. 14. Locality tests for the periodic algorithm, local (M = 10)
and hash p1p2.

The static algorithm uses KMETIS to produce balanced
partitions of the APG. However, as APG only provides a
prediction of the actual messages, the resulting evenness of
message distribution is a random variable. The local algorithm
only considers evenness by assigning new nodes to parti-
tions with fewer messages. Fig. 15 compares the evenness
of distribution of the messages in Dec 2006, defined by∑K

k=1 |Wk − W/K|/W , where Wk is the total message
weights in partition k and W =

∑K
k=1 Wk. There is no

observable difference in evenness of actual messages between
the local and periodic algorithms.

Figure 3.4: Proportion of queries that access at most 3 partitions.
Comparison of the periodic algorithm with hashing the initiator ID
(hash p1) and the unordered initiator-receiver pair (hash p1p2).
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Fig. 11. Proportion of queries that access at most 3 partitions.
Comparison of the periodic algorithm with hashing the initiator ID
(hash p1) and the unordered initiator-receiver pair (hash p1p2).

are a total of 5 partitions, the fraction decreases to less than
40% when there are a total of 20 partitions. The performance
of the periodic algorithm is within more than 95% of the
retrospective algorithm.

B. Two-hop Neighborhoods

The edge weights defined in Theorem 1 reflect the access
frequencies and message distribution in the two-hop neighbor-
hoods. We highlight the advantage of using such edge weight
with the following experiment.

We sample the access frequencies mi from a power-law
distribution, where P(mi > x) = x−1.1. We define the
edge weights to be the number of messages on the original
activity network, plus the access frequencies to account for
the difference in read activities: eii,j = wi,j + C ∗ mi. We
refer to this definition of edge weights as the one-hop APG.
For each user i, mi read operations are randomly inserted into
the trace of Dec. 2006. This models the fact that more users
read than write, and the read frequency can be large.
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Fig. 12. One-hop vs. two-hop. Sample 11 random cases and average.

Fig. 12 shows the performance comparison of the two-hop
and one-hop edge weights. When the number of partitions is 5,
the two-hop edge weights achieve 17% more local queries than
the one-hop. With 20 partitions, the two-hop is 37% better.
We also compared the performance with other distributions of
access frequency and found that the two-hop edge weights
always perform as well as the one-hop, and significantly
outperforms the latter in some cases.

C. Local Algorithm

Fig. 13 and 14 show the performance of the local algorithm
with M = 10. Recall that M is the constant cost for moving
one node. With 5 partitions, the local algorithm results in 20%
more local queries than the periodic algorithm and almost
6 times more than the hash algorithms. With 20 partitions,
the local algorithm achieves 30% better than the periodic
algorithm and 13 times better than the hash. Both the local
and periodic algorithms have more than 90% queries accessing
at most 3 partitions, with the local algorithm performing
slightly better. The total number of movements for the local
algorithm with 5 partitions is 1122, evenly distributed across
time. This amounts to 40 movements daily, which is small. The
number of movements increases with the number of partitions,
reaching 1859 at 20 partitions.
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Fig. 13. Locality tests for the periodic algorithm, local (M = 10)
and hash p1p2.
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Fig. 14. Locality tests for the periodic algorithm, local (M = 10)
and hash p1p2.

The static algorithm uses KMETIS to produce balanced
partitions of the APG. However, as APG only provides a
prediction of the actual messages, the resulting evenness of
message distribution is a random variable. The local algorithm
only considers evenness by assigning new nodes to parti-
tions with fewer messages. Fig. 15 compares the evenness
of distribution of the messages in Dec 2006, defined by∑K

k=1 |Wk − W/K|/W , where Wk is the total message
weights in partition k and W =

∑K
k=1 Wk. There is no

observable difference in evenness of actual messages between
the local and periodic algorithms.

Figure 3.5: Locality tests for the period, adaptive local, and hash p1p2
algorithms. The vertical axis shows the percent of queries which require
data from only a single partition.
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Fig. 11. Proportion of queries that access at most 3 partitions.
Comparison of the periodic algorithm with hashing the initiator ID
(hash p1) and the unordered initiator-receiver pair (hash p1p2).

are a total of 5 partitions, the fraction decreases to less than
40% when there are a total of 20 partitions. The performance
of the periodic algorithm is within more than 95% of the
retrospective algorithm.

B. Two-hop Neighborhoods

The edge weights defined in Theorem 1 reflect the access
frequencies and message distribution in the two-hop neighbor-
hoods. We highlight the advantage of using such edge weight
with the following experiment.

We sample the access frequencies mi from a power-law
distribution, where P(mi > x) = x−1.1. We define the
edge weights to be the number of messages on the original
activity network, plus the access frequencies to account for
the difference in read activities: eii,j = wi,j + C ∗ mi. We
refer to this definition of edge weights as the one-hop APG.
For each user i, mi read operations are randomly inserted into
the trace of Dec. 2006. This models the fact that more users
read than write, and the read frequency can be large.
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Fig. 12. One-hop vs. two-hop. Sample 11 random cases and average.

Fig. 12 shows the performance comparison of the two-hop
and one-hop edge weights. When the number of partitions is 5,
the two-hop edge weights achieve 17% more local queries than
the one-hop. With 20 partitions, the two-hop is 37% better.
We also compared the performance with other distributions of
access frequency and found that the two-hop edge weights
always perform as well as the one-hop, and significantly
outperforms the latter in some cases.

C. Local Algorithm

Fig. 13 and 14 show the performance of the local algorithm
with M = 10. Recall that M is the constant cost for moving
one node. With 5 partitions, the local algorithm results in 20%
more local queries than the periodic algorithm and almost
6 times more than the hash algorithms. With 20 partitions,
the local algorithm achieves 30% better than the periodic
algorithm and 13 times better than the hash. Both the local
and periodic algorithms have more than 90% queries accessing
at most 3 partitions, with the local algorithm performing
slightly better. The total number of movements for the local
algorithm with 5 partitions is 1122, evenly distributed across
time. This amounts to 40 movements daily, which is small. The
number of movements increases with the number of partitions,
reaching 1859 at 20 partitions.
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Fig. 13. Locality tests for the periodic algorithm, local (M = 10)
and hash p1p2.
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Fig. 14. Locality tests for the periodic algorithm, local (M = 10)
and hash p1p2.

The static algorithm uses KMETIS to produce balanced
partitions of the APG. However, as APG only provides a
prediction of the actual messages, the resulting evenness of
message distribution is a random variable. The local algorithm
only considers evenness by assigning new nodes to parti-
tions with fewer messages. Fig. 15 compares the evenness
of distribution of the messages in Dec 2006, defined by∑K

k=1 |Wk − W/K|/W , where Wk is the total message
weights in partition k and W =

∑K
k=1 Wk. There is no

observable difference in evenness of actual messages between
the local and periodic algorithms.

Figure 3.6: Locality tests for the period, adaptive local, and hash p1p2
algorithms. The vertical axis shows the percent of queries which require
data from at most 3 partitions.
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CHAPTER 4

DYNAMIC PARTITIONING WITH
REPLICATION

A significant drawback of the partitioning algorithm in the previous chapter

is that it cannot place replicas of important data in multiple partitions,

regardless of how beneficial such a configuration would be. Figure 4.1 shows

an example social network in which the ability to replicate would be

advantageous.
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Figure 4.1: A partitioned social graph with 6 users. The numbers in
brackets indicate how often that user will query for his feed each month.

We notice that user 1’s friends query for their feeds frequently. Queries

which require user 1’s information come from user 1’s partition 310 times

per month, while queries from his friend user 4’s partition which require

user 1’s information come 300 times per month. Regardless of which

partition user 1 were to be placed in, a large amount of inter-partition

interaction will occur to serve his friends’ queries. Moving user 4 into user

1’s partition also will not help, as user 4 also frequently demands

information from his friends users 5 and 6, from whom he would be cut off

if he moved. For the purposes of maintaining evenness among partitions, we

do not allow the trivial configuration which would place all users in the

same partition. We can see that in this example no way of partitioning the

graph is very good.

However, if we replicate user 1’s information in user 4’s partition, we can
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dramatically reduce the number of queries which require information from a

remote partition. This configuration is shown in Figure 4.2. If the extra

memory required to store the replica of user 1 can be afforded, the number

of inter-partition requests needed to serve queries in one month can be

reduced from 315 to only 15. (User 1 will still need to access user 4’s

information during the few times when he will query for his feed.)
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Figure 4.2: A replica of user 1 has been placed in the other partition. The
numbers in brackets indicate how often a user will query for his feed each
month.

This realization motivates us to describe an algorithm which not only

partitions the social graph to minimize requests across partition boundaries

but also strategically places replicas where they will be most helpful. Such

an algorithm can be constrained by the amount of memory allocated for

storing replicas—what we will call the replication budget.

The replication budget can be parameterized by a target replication

factor rtarget and a cap replication factor rcap—the latter a threshold which

the algorithm will not cross. The replication factor denotes the quantity of

replicas in place in the social network. If we make 50 replicas on a graph

containing 100 master nodes, we say the replication factor is 1.5.

In this chapter we present an algorithm which uses both replication and

strategic partitioning to promote data locality for common queries. We

simplify our discussion of this algorithm by addressing the one-hop network

only. We also will not consider message nodes as we did in the previous

chapter, and will simply assume that all messages are stored with the

recipient at his user node. Finally, unlike the system discussed in the

previous chapter, this algorithm will support asymmetric friendship

relationships in the social graph.
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4.1 Graph Model

Let a social network be represented as a directed graph G on vertex set V .

Let each node in V represent one user on the social network. Let each

directed edge (i, j) ∈ G represent the relationship “user i follows user j,”

which is to say that user j’s recent information will appear in user i’s feed.

We further define for each user node i both an access frequency mi and a

message weight wi. The access frequency mi of a given user node denotes

how often she will query for her feed in the next period of time. The

message weight wi of a given user node denotes how many messages will be

posted at that user node in the next period of time. Both mi and wi can be

considered the intensities of independent Poisson processes for the arrival of

query and message events, respectively, for user i.

We define a set of partitions P = {p1, p2, . . . , pk} and a mapping

p : V → P indicating in which partition a node resides. Every node in V is

in exactly one partition. Each partition also may contain replicas, and we

define the function R : V × P → {0, 1} such that R(i, pa) = 1 if and only if

a replica of user node i is in pa. We further assert that if p(j) = pb, then it

also must hold that R(j, pb) = 0, meaning that a partition cannot hold both

a node and its replica.

By nature of its access frequency, we say that a user node exerts demand

on all nodes whom she follows. The weight of this demand also depends on

the message weight of the node being demanded. If node i follows node j,

then we define the demand from i to j as follows:

D(i, j) = m(i)w(j)

4.2 Algorithm

The partitioning algorithm will seek to minimize the following objective

function:

Z = interaction + evenness + replication
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in which

interaction =
∑

i∈V

∑

(i,j)∈E
p(i)6=p(j)

R(j,p(i))=0

D(i, j) (4.1)

and in which the evenness index is a cost function which penalizes the

increasing variance among the partitions of message weights, access

frequencies, and/or replicas and their weights; and in which the replication

index is a cost function which penalizes an increasing count of replicas

beyond a target replication rate rtarget. Optimal formulas and coefficients

for the evenness and replication indexes are expected to depend on

application-specific resource characteristics and constraints, such as internal

bandwidth and the cost of memory.

The cost of a replica is understood to be derived from the fact that there

is scarcity of space for them in memory, not from any cost required to keep

them up to date. Social networking applications are well-suited for a loose

consistency model; we do not require feed information regarding all friends

to be accessible instantly. Granted this, we assume that the maintenance of

replicas can be put on a low priority, and we therefore consider it “free.”

We describe an iterative greedy algorithm which searches for a more

optimal configuration of partitions and replicas. For simplicity in our

demonstration, wi was set to 1 for all i.

We define two functions, pull and push, which will be useful in

implementing our greedy algorithm.

pull(i, pa) =
∑

(j,i)∈E
p(j)=pa

D(j, i)

push(i, pa) =
∑

(i,j)∈E
p(j)=pa

D(i, j)

Pull describes the aggregate demand exerted onto a node by all of her

followers in a given partition. Push describes the aggregate demand exerted

by a node onto all nodes she follows in a given partition.

In each iteration, potential rewards are evaluated from within two

categories:

1. move v from p(v) to pb
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for which the reward Z is defined

Z = push(i, pb) + pull(i, pb) + push(i, p(i))

+ pull(i, p(i)) + CRR(i, pb)− CE(pb) + CE(p(i))− T

where CR is the cost (here treated as reward) for freeing v’s replica in

partition pb, and CE(pb) is the “evenness” cost—the cost (or reward)

of moving a node into partition pb based on that partition’s size

relative to the sizes of the other partitions. T is a threshold set to

prevent trivial moves. For more details about the replication and

evenness cost terms, see Appendix A.

2. create a replica of v in pb

for which the reward Z is defined

Z = pull(i, pb)−min(CR, C
∗
R)− TR

where C∗R is the lowest cost replica in partition pb. TR is a threshold

set to prevent trivial replicas from being created.

For each node in the graph, the rewards are computed for each option

described above and for each partition. The results are sorted so that the

most advantageous move or replication and destination partition are chosen

for each node. The changes are then committed to the graph in descending

order of reward. Nodes whose best potential action has negative reward are

left untouched.

When a replica is created, the reward value associated with it is saved.

After reward values are computed for all replication options, these data are

used to prune out replicas which are no longer worthwhile by the end of the

iteration. If a replica’s new reward value is negative, the replica will be

deleted.

4.3 Evaluation

Our algorithm was tested using four datasets derived from an event trace of

Facebook data from the New Orleans network between 2005 and 2006. In

this chapter we discuss the metrics and methodology used.
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4.3.1 Metrics

At the start of each test and at the end of each iteration, we stored the

interaction index, replication index, and evenness index of the graph.

The interaction index, defined in Equation 4.1, denotes the average

number of additional partitions (other than a user’s home partition) which

need to be accessed in order to serve a request. For the purposes of

evaluating this algorithm, it is assumed that all friends whom a user is

following will be mentioned in that user’s feed for all feed queries. (This

assumption could be removed by using non-uniform weights wi.)

The replication index for evaluation of this experiment was defined as

follows:

replication =
1

|V ||P |
∑

i∈V

∑

pa∈P

R(i, pa)

where | · | denotes the cardinality of a set. The replication index can be

intuitively understood as the factor by which the number of nodes is

multiplied to obtain the number of nodes and replicas.

The evenness index for evaluation is defined as:

evenness =

∑
pa

∣∣∣∣
∑

i∈V
p(i)=pa

wi −
∑

j∈V wj

|P |

∣∣∣∣
|V |

The evenness index measures the spread in sum weights among the

partitions. It is intended to be kept low.

4.3.2 Methodology

The algorithm was implemented as a simulation on a single machine. Four

test sets were run numerous times under different parameters to achieve

different target replication factors. Each test used a given social graph as

its initial state and ran 20 iterations of the algorithm. After each iteration,

the interaction, replication, and evenness indexes were stored so that they

could be plotted versus the iteration number.

The datasets were produced from an event trace from a subgraph of the

Facebook social graph in New Orleans between 2005 and 2006; it is the

same dataset which was used in [3]. All tests feature a graph with the same
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topology of 7945 nodes and 18163 undirected edges. Tests were run starting

from both random and structured partitionings and having both 15 and 20

partitions. The structured partition configurations were generated using

KMETIS, a program in the METIS library [15]. KMETIS produced

balanced partitions which minimized edge-cut in the social graph, where we

defined edge weights e(i,j) to be

e(i,j) = D(i, j) +D(j, i)

This experiment tested the algorithm’s ability to find better partition

configurations from a given initial state, both by placing replicas and by

rearranging nodes among partitions to minimize interaction costs. The

experiment did not specifically explore the algorithm’s effect along the

temporal dimension, but it could be adapted easily to a scenario as

described in [3]. At each time period, several iterations of our algorithm

could be run. Changes in graph topology could be handled as in [5] and [3].

Changes in user activity (such as changes in access frequencies) could be

handled as in [3] where a decay rate causes old data to have an increasingly

diminished effect on access frequencies mi and message weights wi.

4.3.3 Results

Figure 4.3 shows the effect after 20 iterations when the algorithm was run

on the test graph with 15 partitions. The test graph had an initial partition

configuration generated using the method described in [3]. The greedy

algorithm quickly adds replicas, increasing the replication factor but

decreasing the interaction index. The target replication factor was set to

1.5, demonstrating a reduction in the interaction index from 1.78 to 0.32.

This means that queries would now require communication with an average

of 1.32 partition servers (including the user’s home partition server), down

from an average of 3.78 before—a 65% reduction—in return for a 52%

increase in memory subscribed for storing replicas.

Figure 4.4 shows the same experiment run on the same graph, except

with a different, randomly-generated initial partition configuration. While

the state after 20 iterations shows considerable improvements from the

initial state (0.96 interaction index down from 5.97—an 83% reduction in
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Figure 4.3: Simulation with 15-partition graph for 20 iterations.

average number of servers to serve a request—for only a 51% increase in

replication), it is not as good as the result from the previous experiment

which began with a better-partitioned graph.

These results show that, though the algorithm yields a benefit, namely

leveraging additional space for replicas to reduce the interaction index and

improve data locality for queries, it shows itself to converge towards local

optima when far better configurations may be possible.

Figure 4.5 displays the trade-off between interaction and replication seen

in the experiments. While the simulation confirms the intuition that we can

build a system which delivers an improvement in data locality

commensurate with the amount of memory which can be afforded for

replication, our algorithm requires a good initial partitioning to be able to

produce its best results.
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Figure 4.4: Simulation with randomized 15-partition graph.
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Figure 4.5: Experimental interaction-replication trade-off relationships for
both 15- and 20-partition graphs, after 20 iterations.
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CHAPTER 5

DISCUSSION AND CONCLUSIONS

The results of our experiments demonstrate that our algorithms succeed in

partitioning social networks for data locality. Strategic partitioning using

an activity prediction graph populated with temporal characteristics of user

behavior dramatically reduces the number of servers required to serve a

typical query compared to traditional hash-based techniques. Adding the

possibility for replication further reduces inter-partition interaction.

Unlike [5] which guarantees strict local semantics via complete local

replication (which can be very expensive), our algorithm is a demonstration

that there can be a middle ground between replication-only and

interaction-only paradigms.

While [3] stressed the importance of partitioning for data locality for the

two-hop neighborhood, we stayed with a one-hop model in our replication

algorithm as was done in [5]. We believe our concepts of demand, push, and

pull could be generalized to allow for consideration for the user’s extended

neighborhood more than one hop away.

5.1 Future Work

Formal analysis of the proposed algorithms is beyond the scope of this

thesis. Questions of whether and under what conditions the greedy

algorithms converge towards optima are left to future work.

We expect that the minimum factor of replication required to obtain

acceptable locality would depend on characteristics of the graph’s structure,

such as the clustering coefficient. Whether and how graph structure

predicts the required amount of replication is left to future work.

The replication algorithm’s requirement to iterate over the entire social

graph could make it poorly suited for real-world deployments where social
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graphs are very large. It is conceivable that a decentralized version of this

system could be designed in which the partitions communicate with one

another as independent agents to make node-movement and replication

decisions. This is in contrast to the current algorithm which requires

knowledge of all nodes’ information to be stored and processed at a central

location. Development of a distributed version of this algorithm would be

an important step towards a real deployment of our system.
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APPENDIX A

COST FUNCTIONS

A.1 Evenness Cost

In our implementation we use the following definition for evenness cost

CE(pa):

t(pa) =
∑

i∈V
p(i)=pa

wi

t̂ =

∑
p∈P t(p)

|P |

ê(pa) =

∑
p∈P t(p)

|P | − t(pa)∑
p∈P t(p)

∑
i∈V mi

|V |
CE(pa) = β|ê(pa)|ê(pa)

A.2 Replication Cost

The following is used for replication cost CR. Note that the current

replication index is represented as IR, and the target replication factor

parameter is rtarget. The list of recorded current replicas’ costs is H.

CR =

{
min

({
x | y ∈ H, |{y < x}| >

(
IR−rtarget

IR
|H|
)})

if IR > rtarget

0 otherwise

Note that at the end of each iteration, as an additional step, the replica

count |H| is checked against (rcap − 1)|V |, where rcap is the maximum

allowed replication factor IR. If it is greater, the least valuable replicas are

removed to bring IR back down to rcap.
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