
c© 2012 Guanfeng Liang

NETWORK-AWARE MECHANISMS FOR TOLERATING BYZANTINE
FAILURES IN DISTRIBUTED SYSTEMS

BY

GUANFENG LIANG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Doctoral Committee:

Professor Nitin H. Vaidya, Chair
Associate Professor Chandra Chekuri
Adjunct Professor P.R. Kumar
Professor Venugopal V. Veeravalli

ABSTRACT

Given the growing reliance of industry and government on online information

services such as cloud computing and data centers, efficient fault-tolerance

algorithm design is of increasing importance in both industry and academia.

In this dissertation, we present some of our efficient fault-tolerant algorithms

for distributed systems under both point-to-point and broadcast communi-

cation models.

For the point-to-point model, we mainly consider Byzantine agreement al-

gorithms. We develop algorithms that require only O(nL) total bits of com-

munication for achieving agreement of L bits among n nodes for sufficiently

large L, without making any cryptographic assumption. Previous algorithms

either have higher communication cost or rely on cryptographic assumptions.

We also develop Byzantine agreement algorithms that perform well when the

communication links in the network are capacity-constrained. We develop

the first Byzantine broadcast algorithm that achieves constant fraction of

the optimal throughput in general point-to-point networks. For some special

class of networks, we develop algorithms that achieve the optimal through-

put. We then study the communication complexity of the multiparty equality

function, which is the core of the Byzantine agreement problem.

For the broadcast model, we study the problem of detecting packet tam-

pering attacks in multi-hop wireless networks. We propose a lightweight

detection scheme that integrates the idea of wireless watchdogs and error de-

tection coding. We show in a single flow example that even if the watchdog

can only observe a fraction of packets, by choosing the encoder properly, an

attacker will be detected with high probability while achieving throughput

arbitrarily close to optimal. The trade-off between throughput and security

in a more practical setting – there are multiple data flows in the network and

a distributed random access MAC protocol is used – is also studied.

ii

To my wife and parents, for their love and support

iii

ACKNOWLEDGMENTS

My deepest gratitude is to my advisor, Prof. Nitin Vaidya, for his guidance,

understanding, patience, and most importantly, his friendship during my

graduate studies at the University of Illinois at Urbana-Champaign. I have

been amazingly fortunate to have an advisor who gave me the freedom to

explore on my own, and at the same time the guidance to recover when my

steps faltered. He taught me how to question thoughts and express ideas. His

patience and support helped me overcome many crisis situations and finish

this dissertation.

I thank Prof. Chekuri, Prof. Kumar and Prof. Veeravalli for serving on

my doctoral committee, and for their insightful comments. Many past and

current colleagues in the Distributed Algorithms and Wireless Networking

Group have been very helpful in many ways during my graduate school days;

I thank all of them, in particular Ghazale Hosseinabadi, Tae Hyun Kim, Vijay

Raman, Shehla Saleem Rana, Benjamin Sommer and Lewis Tseng. Special

thanks to Benjamin Sommer, who has contributed significantly in implemen-

tation of some of the proposed algorithms and experimental evaluation, as

elaborated in Sections 2.7.4 and 2.7.5.

I acknowledge the National Science Foundation and the U.S. Army Re-

search Office for financially supporting this research.

Finally, and most importantly, I would like to thank my wife Ying Ding.

Her support, encouragement, quiet patience and unwavering love are unde-

niably the bedrock upon which the past eight years of my life have been

built. Her tolerance of my occasional vulgar moods is a testament in itself of

her unyielding devotion and love. I thank my parents, Yonghong Zhang and

Jinpei Liang, for their faith in me and allowing me to pursue the life that I

wanted. Their support during these years made this dissertation possible.

iv

TABLE OF CONTENTS

LIST OF ABBREVIATIONS . vii

CHAPTER 1 INTRODUCTION . 1
1.1 Research Summary . 1
1.2 Dissertation Outline . 5

CHAPTER 2 ERROR-FREE BYZANTINE FAULT TOLERANCE
WITH LINEAR COMPLEXITY 7
2.1 Introduction . 7
2.2 Problem Definitions and Models 10
2.3 Related Work . 12
2.4 Overview of the Proposed Algorithms 15
2.5 CBC – A Coding-Based Byzantine Consensus Algorithm . . . 19
2.6 Improving the CBC Algorithm 34
2.7 CBB – A Coding-Based Byzantine Broadcast Algorithm . . . 40
2.8 Summary . 55

CHAPTER 3 NETWORK-AWARE BYZANTINE AGREEMENT
ALGORITHM DESIGN . 56
3.1 Introduction . 56
3.2 Problem Definition and Models 57
3.3 Algorithm Overview . 61
3.4 Equality Check Algorithm with Parameter ρk 66
3.5 Correctness of NAB . 72
3.6 Throughput of NAB and Capacity of BB 72
3.7 The CAB Algorithms . 75
3.8 Network-Aware Byzantine Consensus 79
3.9 Summary . 80

CHAPTER 4 MULTIPARTY EQUALITY FUNCTION COMPU-
TATION . 81
4.1 Introduction . 81
4.2 Related Work . 82
4.3 Models and Problem Definition 84
4.4 Upper Bound of the Complexity 86

v

4.5 Equivalent MEQ-AD Protocols 88
4.6 MEQ-AD(3,6) . 92
4.7 MEQ-AD(3,2k) . 94
4.8 About MEQ-CD . 95
4.9 MEQ Problem with Larger n 96
4.10 Summary . 96

CHAPTER 5 WATCHDOG IN WIRELESS NETWORKS 97
5.1 Related Work . 98
5.2 Detecting Misbehavior . 100
5.3 Two Flows Case . 104
5.4 Identifying the Misbehaving Node 106
5.5 Summary . 114

CHAPTER 6 FUTURE WORK . 115
6.1 Fast Oblivious Byzantine Agreement Algorithms 115
6.2 Byzantine Agreement with Capacity Constraints in Wired

Networks . 115
6.3 Byzantine Agreement in Wireless Networks 116
6.4 Multiparty Equality Function Computation with Capacity

Constraints . 116

CHAPTER 7 CONCLUSIONS . 117

APPENDIX A ERROR-FREE BYZANTINE FAULT TOLER-
ANCE WITH LINEAR COMPLEXITY 119
A.1 Improving Computational Complexity of CBC 119
A.2 Proof of Correctness of Improved-CBC 120
A.3 Proof of Correctness of VCBC 122
A.4 Proof of Theorem 2.2 . 123

APPENDIX B NETWORK-AWARE BYZANTINE AGREEMENT
ALGORITHM DESIGN . 124
B.1 Unreliable Broadcast in Phase 1 124
B.2 Dispute Control . 124
B.3 Proof of Theorem 3.1 . 126
B.4 Throughput of NAB . 136
B.5 Construction of Γ . 139
B.6 Proof of Theorem 3.2 . 139
B.7 Correctness of Algorithm 3.7.6 144

APPENDIX C MULTIPARTY EQUALITY FUNCTION COM-
PUTATION . 148
C.1 Edge Coloring Representation of MEQ-AD(3,K) 148

REFERENCES . 151

vi

LIST OF ABBREVIATIONS

BA Byzantine Agreement

BFT Byzantine Fault-Tolerance

MEQ Multiparty Equality

CBC Coding-Based Byzantine Consensus

CBB Coding-Based Byzantine Broadcast

NAB Network-Aware Byzantine Broadcast

CAB Capacity-Achieving Network-Aware Byzantine Broadcast

vii

CHAPTER 1

INTRODUCTION

In recent years, we have seen tremendous growth in the development in dis-

tributed computing systems, which consist of a multitude of autonomous

computing devices that communicate through a network, wired or wireless.

In such systems, applications often require cooperation between multiple de-

vices, which are usually failure-prone. In many systems, such failures can

lead to unanticipated, potentially disruptive failure behavior and to service

unavailability. Hence, fault-tolerance is of increasing importance in the design

of such distributed network systems.

To achieve fault-tolerance in a distributed system, one must incorporate

redundancy, in the forms of information and/or processing components. Intu-

itively, the more redundancy introduced, the more fault-tolerant the system

can be made. However, more redundancy usually also means a less efficient

system. The goal of this dissertation is to investigate the trade-off between

the amount of redundancy required and the level of fault-tolerance in dis-

tributed systems under both point-to-point and broadcast communication

models. For the point-to-point model, we will mainly consider the Byzan-

tine fault-tolerance problem. For the broadcast model, we will focus on the

problem of detecting packet tampering attack by faulty intermediate nodes

in wireless multi-hop networks.

1.1 Research Summary

1.1.1 Communication Complexity of Byzantine

Fault-Tolerance

Recent years have seen a tremendous growth in the popularity of data-

oriented online services. Enterprises often run their critical business ap-

1

plications using “clouds” that provide storage as well as computing services.

Many individual users also have become dependent on the Internet to store

their personal data including photos, music and videos. As industry and in-

dividuals rely increasingly on data centers and other similar online services,

the threat posed by malicious attacks and software errors has also become

increasingly prominent. For example, software errors have brought down the

Amazon S3 storage system for several hours [1], and have resulted in mass

email deletion at Gmail [2]. Being able to provide reliable and consistent

access to the data and services has become an important quality-of-service

requirement that the online services must fulfill.

Byzantine fault-tolerance (BFT) provides a powerful state machine replica-

tion approach for building highly reliable services despite failures (or attacks).

In BFT state machine replication, n replicas collectively behave as one fault-

free server, even if up to f replicas, with f < n/3, are faulty and deviate from

the protocol, i.e., misbehave, in arbitrary (or “Byzantine”) fashion [3]. A key

requirement in implementing BFT is that all the fault-free replicas of a server

must execute identical client requests in an agreed upon order. A Byzantine

agreement algorithm is used to reach an agreement on the requests to be

handled. The agreement on requests guarantees that all fault-free replicas

always have consistent state and produce the same output. Then the clients

can obtain the correct output from the replicated server by taking a majority

vote of the individual replica outputs. The Byzantine fault model allows for

worst-case behavior by the faulty nodes. The fault model can be used to

characterize the behavior of a replica under attack (security compromise), or

to model the detrimental impact of undetected failures or software bugs.

Despite its potential for achieving a high level of reliability in the presence

of arbitrary nature of failure or attack, BFT was rarely adopted in practice

in the three decades after its introduction in 1980 [3]. The reluctance to use

BFT in practical systems stems from two causes: (a) the high overhead of

Byzantine agreement, and (b) the belief that the Byzantine fault model is

too pessimistic to model real failures that occur in practical systems.

From the high profile failures in recent years (e.g., [1, 2]), it is apparent

that not all failures in practical systems are “crash” or “fail-stop” failures,

and at least for some critical services, higher level of reliability offered by

BFT is desired. Thus, provided that the overheads are reduced, BFT can

become attractive for some applications.

2

In 1985, Dolev and Reischuk [4] proved that, without authentication, Θ(n2)

bits are necessary to be communicated, in order to achieve agreement on 1

bit, which results in a lower bound on the per-bit communication complexity

of agreement as Ω(n2). This result is one of the main reasons why BFT is

perceived as being too expensive to be practical.

The objective of this part of the dissertation is to mitigate the communi-

cation overhead of BFT. We show that, if the size of the value/message to

be agreed on is sufficiently large, the per-bit communication complexity for

agreement can be made much lower than Θ(n2). In particular, we design

and analyze algorithms that achieve Byzantine agreement of value/message

of L bits among n nodes with at most f < n/3 faulty nodes, while requiring

O(nL) bits of communication, even in the worst case. In addition to de-

veloping theoretical algorithms, we also demonstrate and evaluate them via

experimental implementations.

Work reported in this part has resulted in conference publications [5, 6]

and technical reports [7, 8].

1.1.2 Network-Aware Byzantine Fault-Tolerance

The past work on BFT has not considered processing or communication bot-

tlenecks when designing the Byzantine agreement algorithms. In particular,

previous algorithms do not consider the possibility that some of the commu-

nication links in the network may be constrained. These algorithms treat

all communication links in the network equally, and usually allocate roughly

the same amount of workload to each communication link in the network.

However, in practice, different links in the network may have very different

capacities. When applying the previous BFT algorithms in such systems, the

links with poor capacity can become a bottleneck: transmission of the work-

load over the bottleneck links takes a long time, so accordingly, completion

of agreement will take longer.

The objective of this part of the dissertation is to improve performance

of BFT algorithms by taking into account the communication constraints

of the underlying network. We say such algorithms are “network-aware”.

We consider the performance metric of throughput of network-aware BFT

algorithms. The notion of throughput here is similar to that used in the

3

networking/communications literature on unicast or multicast traffic. Infor-

mally, the throughput of a BFT algorithm in a given network is the average

number of bits that can be agreed on per unit time, while the traffic imposed

by the algorithm stays within the communication constraints of the networks.

In particular, we study the throughput of BFT algorithms in point-to-

point networks, in which each communication link is subject to a capacity

constraint. We derive an upper bound on the optimal throughput over all

possible BFT algorithms in general point-to-point networks. We develop a

network-aware BFT algorithm that is guaranteed to achieve at least 1/3 of

the optimal throughput in general point-to-point networks. It is the first

BFT algorithm that achieves constant fraction of the optimal throughput in

general networks. Moreover, for certain classes of point-to-point networks,

we also develop BFT algorithms that achieve the optimal throughput.

Work reported in this part has resulted in conference publications [9, 10, 11]

and technical reports [12, 13, 14, 15, 16].

1.1.3 Multiparty Equality Function Computation under

Point-to-Point Communication Model

In this part, we study the communication complexity of distributed compu-

tation of the multiparty equality function (MEQ), under the point-to-point

communication model. We generalize the two-party communication complex-

ity model [17] to the multiparty scenario: n ≥ 2 nodes are trying to compute

a function f(x1, · · · , xn) by communicating over point-to-point links, with

input xi ∈ Xi only known to node i.

We demonstrate that traditional techniques generalized from the two-party

communication complexity problem are not sufficient to obtain tight bounds

under the point-to-point communication model. We then introduce tech-

niques to significantly reduce the space of protocols to study. We then study

the MEQ problem of n = 3, |Xi| = 6, and introduce a protocol that achieves

the optimal complexity. This protocol is then used as a building block for

construction of efficient protocols for large |Xi|. The problem of finding the

communication complexity of the MEQ problem for general values of n and

|Xi| is still open.
Work reported in this part has resulted in a conference publication [18]

4

and a technical report [19].

1.1.4 Watchdog in Wireless Networks

In wireless ad hoc and sensor networks, paths between a source and desti-

nation are usually multihop, and data packets are relayed in several wireless

hops from their source to their destination. This multihop nature makes the

wireless networks subject to tampering attack: a compromised/misbehaving

node can easily ruin data communications by dropping or corrupting pack-

ets it should forward. Watchdog mechanism [20] is a monitoring method

used for such networks. The basic idea is to have nodes (called watchdogs)

to monitor their neighborhoods using overheard messages in order to detect

misbehavior, utilizing the broadcast nature of the wireless medium.

The main challenge for the watchdog mechanism is to balance the system

throughput and ability to detect most tampering attacks, given the unrelia-

bility of the wireless environment. In this problem, we propose a computa-

tionally simple scheme that integrates source error detection coding and the

watchdog mechanism. We show that by choosing the encoder properly, a mis-

behaving node will be detected with high probability while the throughput

approaches optimal, even in the case when the watchdog can only overhear

a fraction of the packets and the attacker is omniscient, i.e., knows what

encoder is being used and no secret is shared only between the source and

destination.

Work reported in this part has resulted in a conference publication [21]

and a technical report [22].

1.2 Dissertation Outline

• In Chapter 2, we present our Byzantine fault-tolerance algorithms that

achieve linear per-bit complexity, for sufficiently large input size. Proofs

for correctness and experimental comparison with existing algorithms

are also provided.

• In Chapter 3, we motivate the problem of designing network-aware

BFT algorithms under capacity constraints of the underlying commu-

5

nication network. We first present one BFT algorithm that is guar-

anteed to achieve a constant fraction of the optimal throughput in

general point-to-point networks. Then two algorithms that achieve op-

timal throughput in two special classes of point-to-point networks are

presented.

• In Chapter 4, we study the distributed computation of the multiparty

equality function.

• In Chapter 5, we introduce the idea of the integration of error-detection

coding and the watchdog mechanism. We then provide analytical re-

sults on some case studies.

• In Chapter 6, we summarize the list of future work.

• Finally, in Chapter 7 we conclude the dissertation.

6

CHAPTER 2

ERROR-FREE BYZANTINE FAULT
TOLERANCE WITH LINEAR
COMPLEXITY

2.1 Introduction

In recent years, there has been a tremendous growth in the popularity of

data-oriented online services, such as cloud computing, data centers and

online storage. For example, industrial leaders such as Amazon, Google,

IBM and Microsoft have been investing heavily in developing their cloud

computing systems and data centers. As the reliance of industry, government,

and individuals on data centers and other similar online information services

increases, so does the threat posed by malicious attacks and software errors

[1, 2]. Consequently, being able to provide reliable and consistent access to

the data and services that they host has become an important requirement

that these online services must fulfill.

Byzantine fault-tolerance (BFT), also known as Byzantine agreement (BA)

in the theoretical distributed computing literature, provides a powerful state

machine replication approach for providing highly reliable and consistent

services in spite of the presence of failures. In BFT state machine replication,

n ≥ 3f + 1 replicas collectively behave as one fault-free server, even if up

to f replicas are faulty and deviate from the algorithm, i.e., misbehave, in

arbitrary (Byzantine) fashions [3]. The key of BFT is to make sure that

all replicas agree upon the same sets as well as the order of requests, and

execute them in the agreed upon order. This guarantees that all fault-free

replicas always have consistent states and produce the same output. Then

the correct output can be obtained by taking the majority of the individual

outputs, since at least 2n/3 of the replicas are fault-free.

Unfortunately, BFT has been rarely adopted in practice for the three

decades following its introduction in 1980 [3], mainly because of the overhead

incurred due to the minimum 3f + 1 replicas required to tolerate f failures,

7

and the high communication overhead of previously proposed error-free BFT

algorithms.

In the last decade, there have been numerous efforts devoted to making

BFT systems practical [23, 24, 25, 26, 27, 28]. One common optimization

is that, to check the consistency of a request (or a piece of data) received

by different replicas, the replicas exchange hash values (sometimes called

“digests”) computed from the request, using some collision-resistant hash

function, and check the hash values against the original request, instead of

exchanging the entire request. Since the digest is much smaller than the

original request in size, communication cost is significantly reduced (roughly

by an order of n). Despite the impressive performance improvement achieved

by these systems, the use of a collision-resistant hash function may, in fact,

be problematic, for the following two reasons:

• First of all, the correctness of the aforementioned algorithms relies on

the collision-resistant property of the hash function used. With the

rapid improvement in modern cryptanalysis and computational power

of computers, defeating the hash functions may become computation-

ally feasible in the future, and a malicious adversary will be able to

find collisions of the hash function and then break the system. For ex-

ample, Castro and Liskov’s seminal practical Byzantine fault tolerance

(PBFT) [23] algorithm uses MD5, which has since been broken [29].

• The second reason is related to the first one. In a later implementa-

tion of PBFT in 2002 [25], MD5 was replaced by SHA-1 in order to

improve the reliability of the algorithm. However, SHA-1 was then

broken in 2008 [30]. It is likely that these algorithms need to use more

and more secure hash functions (e.g. SHA-256 and SHA-512), try-

ing to stay ahead of the development in technology and cryptanalysis.

However, the more secure a hash function, the more expensive it is

to compute. So the improvement we gain from reducing communica-

tion overhead with hashing can become overwhelmed by the increasing

computational/time cost we pay for using a stronger hash function.

The discussion above motivates our work in this chapter. In particular, we

ask the following question:

Is it possible to design a practical BFT system with the following two prop-

erties?

8

1. Reliability: Always correct (in other words “error-free”) and does not

rely on hash functions; and

2. Efficiency: Performance is comparable to the aforementioned systems

that use hash functions.

We give an affirmative answer to this question in this chapter:

• We present CBC – a Coding-based Byzantine consensus algorithm,

and CBB – a Coding-based Byzantine broadcast algorithm. These

two algorithms solve two variants of the BFT problem: Consensus and

Broadcast (formally defined later), respectively, without using any hash

function or relying on any cryptographic assumption. Both algorithms

are proved to be error-free, i.e., reliable.

• We prove that the communication complexity of both CBC and CBB

are O(nL) for sufficiently large input size L (formally defined later).

Moreover, we show that

– The communication complexity of CBC is at least one order of n

lower than all previously known error-free Byzantine consensus al-

gorithms. The best previously known communication complexity

of error-free consensus algorithms is O(n2L).

– The communication complexity of CBB is at most 1/2 of the best

previously known communication complexity of error-free Byzan-

tine broadcast algorithm, developed by Beerliova-Trubiniova and

Hirt [31].

• Experimental results on our testbed show that the CBB algorithm is

at least as efficient as the algorithms that use hash functions.

This chapter is structured as follows. We begin by giving formal problem

formulation and describing our system and failure models. Related work is

discussed in Section 2.3. Salient features of the two proposed algorithms are

then briefly discussed in Section 2.4. Then details of CBC and CBB will be

discussed in Section 2.5 and Section 2.7. Last, we summarize this chapter in

Section 2.8

9

2.2 Problem Definitions and Models

We first introduce the formal definition of the two versions of the Byzantine

agreement problem that we are going to study, as well as the system model

that will be considered in the rest of this chapter.

Byzantine Consensus (BC)

The Byzantine consensus problem considers n nodes, namely nodes 1, ..., n,

of which at most f nodes may be faulty and deviate from the algorithm in

arbitrary fashion. Each node i is given an L-bit input value xi. The basic

version of the consensus problem considered here requires that the following

properties to be satisfied.

• Termination: every node i eventually decides on an output value yi.

• Consistency: the output values of all fault-free nodes are equal, i.e.,

for every fault-free node i, yi = y for some y.

• Validity: if every node i holds the same input xi = x for some x, then

y = x.

These properties have been used as the requirements for consensus in previous

literature as well [28]. Other characterizations of the validity condition above

are also of potential interest in practice. For instance, we may want the nodes

to agree on the majority of the input values (if there is any), i.e., the agreed

output value y = x if at least �n+1
2
� nodes have input value equal to x. With

suitable parameterization, the CBC algorithm satisfies such more general

validity conditions as well (Section 2.5.5).

Byzantine Broadcast (BB)

Byzantine broadcast considers a similar problem. There are also n nodes

1, · · · , n in the system. One special node is designated as the source/sender.

Without loss of generality, assume that node n is the source. The other

nodes 1, · · · , n−1 are designated as the peers. The source node 1 is given an

L-bit input value x, which the source node tries to broadcast to the peers.

The goal is for all the fault-free nodes to “agree on” the value being sent by

10

the source, despite the possibility that some of the nodes (possibly including

the source) may be faulty. In particular, the following conditions must be

satisfied:

• Termination: every fault-free peer i (i < n) eventually decides on an

output value yi.

• Consistency: the output values of all fault-free peers are equal, i.e.,

for every fault-free peer i (i < n), yi = y for some y.

• Validity: if the source is fault-free, then y = x.

A consensus (or broadcast) algorithm is said to be error-free if in all pos-

sible executions of the algorithm, the properties of BC (or BB) are always

satisfied. We are interested in the communication complexity of error-free

consensus and broadcast algorithms. Communication complexity of an algo-

rithm is defined as the maximum (over all possible executions) of the total

number of bits transmitted by all the nodes according to the specification of

the algorithm. This measure of complexity was first introduced by Yao [17],

and has been used widely (e.g., [32, 28, 33]).

System Model

We assume a synchronous fully connected network of n nodes. Every pair

of nodes is connected by a pair of directed point-to-point communication

channels. Each node correctly knows the identity of the nodes at the other

end of its channels. Whenever a node receives a message on such a directed

channel, it can correctly assume that the message is sent by the node at the

other end of the channel. We assume a Byzantine adversary that has com-

plete knowledge of the state of the nodes, including the L-bit input value(s).

No secret is hidden from the adversary. The adversary can take over up to f

nodes (f < n/3) at any point during the algorithm. These nodes are said to

be faulty. The faulty nodes can engage in any “misbehavior”, i.e., deviations

from the algorithm, including collusion. The remaining nodes are fault-free

and follow the algorithm.

11

2.3 Related Work

Binary agreement: Binary agreement corresponds to L = 1 in our no-

tation. For binary agreement, optimal error-free algorithms (consensus and

broadcast) with communication complexity O(n2) have been proposed [34,

35]. King and Saia [36] introduced a randomized consensus algorithm with

communication complexity O(n1.5), allowing a non-zero probability of error.

Multi-valued agreement: Fitzi and Hirt [28] proposed a multi-valued con-

sensus algorithm in which an L-bit value (or message) is first reduced to a

much shorter message, using a universal hash function. Byzantine consensus

is then performed for the shorter hashed values. Given the result of consen-

sus on the hashed values, consensus on L bits is then achieved by requiring

nodes whose L-bit input value matches the agreed hashed value to deliver

their L-bit input value to the other nodes jointly. By performing initial con-

sensus only for the smaller hashed values, this algorithm is able to achieve

communication complexity linear in n, i.e., O(nL), for sufficiently large L

and up to f < n/2 failures, with a non-zero probability of error.

Beerliova-Trubiniova and Hirt have presented an error-free linear commu-

nication complexity multi-party computation algorithm, which uses a linear

complexity Byzantine broadcast algorithm as a sub-algorithm [31]. Their

algorithm uses the idea of coding to reduce communication complexity, as

does the Byzantine broadcast algorithm CBB we present in this chapter. Our

broadcast algorithm CBB improves on their algorithm: while both algorithms

have a similar structure, the communication complexity of the broadcast al-

gorithm from [31] is 2 to 4 times as high as that of CBB, depending on the

actual values of n and f . The main difference between the two algorithms is

in the manner in which a code is used for error detection. In addition, the al-

gorithm from [31] uses a player elimination framework, which is motivated by

the dispute control framework proposed in [37]. In player elimination, when

two nodes disagree with each other, one of the two nodes must be fault-free.

Then both the nodes are removed from the system, and the underlying algo-

rithm is performed on the smaller system, which must now tolerate one fewer

faulty node, with two fewer nodes. This approach has also been adopted by

asynchronous Byzantine agreement algorithms (e.g. [38]). While it may be

possible to also use player elimination to achieve consensus, we believe that

12

the approach we adopted for the design of our Byzantine consensus algorithm

CBC, in general, can more efficiently achieve stronger validity properties than

approaches that may be designed using player elimination.

Practical BFT: Efforts have been devoted to make BFT practical. Castro

and Liskov’s practical Byzantine fault-tolerant (PBFT) state-machine repli-

cation algorithm [23] showed for the first time that BFT can be made practi-

cal. PBFT adopts the client-server model: the clients submit their requests

to the servers, then the servers execute the requests and deliver the outcomes

to the clients. One designated server is called the “primary” (or source in

our terminology). The clients send their requests to the primary. Then the

primary authenticates and orders the requests. The ordered requests are

then broadcast to the other replicas (peers in our terminology) from the pri-

mary. In order to make sure that no two fault-free replicas accept different

requests, hash values computed from the requests are exchanged among the

replicas. Due to the use of hashing, the communication complexity is sig-

nificantly reduced (to roughly O(nL) for broadcasting L bits). Follow-ups

of PBFT, such as Zyzzyva [24] and Aardvark [39], all take the similar hash-

ing approach. However, due to the use of hashing, these algorithms are not

error-free. The probability of error depends on the probability of collision of

the hash function they use, and also on the adversary’s ability to break it.

In designing the proposed algorithms, we drew inspiration from well-known

ideas in prior work, as summarized next.

System-level diagnosis: Preparata, Metze and Chien [40] introduced the

system diagnosability problem in their 1967 paper. Since then there has been

a large body of work exploring different variations of the problem (e.g., [41]).

The work on system-level diagnosis considers a (un)directed diagnosis graph

(or a test graph), wherein each (un)directed edge represents a test: in essence,

when node X tests node Y, it may declare Y as faulty or fault-free, with a

faulty tester providing potentially erroneous test outcomes. The goal then is

to use the results of the tests to either exactly identify the faulty nodes, or

identify a small set of nodes that contains the faulty nodes. The past works

differ in the nature of tests being performed, and the nature of the faults being

diagnosed. In the system-level diagnosis jargon, our faults are intermittent

13

[42], and the tests are comparison-based [43]. We interpret the test outcome

fault-free (faulty) as equivalent to the corresponding two nodes trusting (not

trusting) each other, as discussed in detail later. In our work, we strengthen

the comparison-based system-level diagnosis approach by incorporating an

error detection code, which provides additional structure to our “comparison

test” outcomes. This structure can be exploited for computational efficiency

as well (see Appendix A.1).

Linear coding and block coding: A standard mechanism for improving

efficiency of information transmission is to use block codes, meaning that a

“block” (or multiple bits) of data is encoded together in a single codeword.

Our specific approach for using linear error detection (block) codes for Byzan-

tine consensus and broadcast is motivated by the rich literature on network

coding, particularly, multicasting in the presence of a Byzantine attacker

(e.g., [44, 45, 46]). Application of such an approach to Byzantine consensus

or broadcast in an arbitrary point-to-point networks under per-link capac-

ity constraints is non-trivial [10, 11]. However, under the communication

complexity model, the problem is simpler, as the algorithms in this chapter

demonstrate. Essentially, the simplification arises from the ability to treat

each point-to-point link identically, resulting in a solution that has a certain

symmetry. As we will see in the next chapter, such a symmetric solution is

generally not optimal when the different links have different capacities.

Make the common case fast: In fault-tolerant systems, a common trick

to improve average system performance (or reduce average overhead of fault-

tolerance) is to make the “common case”, namely, the failure-free execution,

efficient, with the possibility of much higher overhead when a failure does

occur. This approach works well when failure rates are low. There are many

instances of the application of this idea, but some examples include error

detection followed by retransmission for link reliability, and checkpointing

and rollback or roll-forward recovery after failure detection [47].

14

2.4 Overview of the Proposed Algorithms

The proposed Byzantine consensus and broadcast algorithms are designed

to perform efficiently for large-sized inputs, i.e., L � 1. Consequently, our

discussion will assume that L is “sufficiently large” (how large is “sufficiently

large” will become clearer later in this chapter). We now briefly describe

the salient features of the consensus algorithm, with the detailed algorithm

presented later in Sections 2.5 and 2.7.

Execution in Multiple Generations

To improve the communication complexity, consensus (or broadcast) for the

L-bit value is performed “in parts”. In particular, for a certain integer D,

the L-bit value is divided into L/D parts, each consisting of D bits. For

convenience of presentation, we will assume that L/D is an integer. A sub-

algorithm is used to perform consensus (or broadcast) on each of these D-

bit values, and we will refer to each execution of the sub-algorithm as a

“generation”.

Memory Across Generations

If during any one generation, misbehavior by some faulty node is detected,

then additional (and expensive) diagnostic steps are performed to gain infor-

mation on the potential identity of the misbehaving node(s). This informa-

tion is captured by means of a diagnosis graph, as elaborated later. As the

sub-algorithm is performed for each new generation, the diagnosis graph is

updated to incorporate any new information that may be learned regarding

the location of the faulty nodes. The execution of the sub-algorithm in each

generation is adapted to the state of the diagnosis graph at the start of the

generation.

Bounded Instances of Misbehavior

With Byzantine failures, it is not always possible to immediately determine

the identity of a misbehaving node. However, due to the manner in which the

diagnosis graph is maintained, and the manner in which the sub-algorithm

15

adapts to the diagnosis graph, the f (or fewer) faulty nodes can collectively

misbehave in at most f(f + 1) generations, before all the faulty nodes are

exactly identified. Once a faulty node is identified, it is effectively isolated

from the network, and cannot tamper with future generations. Thus, f(f+1)

is also an upper bound on the number of generations in which the expensive

diagnostic steps referred to above may need to be performed.

Low-Cost Failure-Free Execution

Due to the bounded number of generations in which the faulty nodes can mis-

behave, it turns out that the faulty nodes do not tamper with the execution

in a majority of the generations. We use a low-cost mechanism to achieve

consensus and broadcast in failure-free generations, which helps to achieve

low communication complexity. In particular, we use an error detection code-

based strategy in both algorithms to reduce the amount of information the

nodes must exchange to be able to achieve consensus and broadcast in the

absence of any misbehavior (the strategy, in fact, also allows detection of

potential misbehavior).

Consistent Diagnosis Graph Maintenance

A copy of the diagnosis graph is maintained locally by each fault-free node.

To ensure consistent maintenance of this graph, the diagnostic information

(elaborated later) needs to be distributed consistently to all the nodes in

the network. This operation is performed using an error-free 1-bit Byzantine

broadcast algorithm that tolerates f < n/3 Byzantine failures with commu-

nication complexity of O(n2) bits [35, 34]. This 1-bit broadcast algorithm is

referred to as Broadcast Binary in our discussion. While Broadcast Binary

is expensive, its cumulative overhead is kept low by invoking it a relatively

small number of times.

The structure above is inspired by prior work on fault-tolerant computing

and communications theory, which is discussed in Section 2.3. It turns out

that the “dispute control” approach used in the work on multi-party com-

putation (MPC) has also used this structure [37], and its variation called

16

player elimination has been used to design an error-free linear complexity

Byzantine broadcast algorithm [31].

We now elaborate on the error-detection code used in the proposed algo-

rithms, and also describe the diagnosis graph in some more detail.

Error Detection Code

We will use Reed-Solomon codes in our algorithms (potentially, other codes

may be used instead). Consider an (m, d) Reed-Solomon code in Galois

Field GF (2c), where c is chosen large enough (specifically, m ≤ 2c−1). This

code encodes d data symbols from GF (2c) into a codeword consisting of m

symbols from GF (2c). Each symbol from GF (2c) can be represented using c

bits. Thus, a data vector of d symbols contains dc bits, and the corresponding

codeword contains mc bits. Each symbol of the codeword is computed as a

linear combination of the d data symbols, such that every subset of d coded

symbols represents a set of linearly independent combinations of the d data

symbols. This property implies that any subset of d symbols from the m

symbols of a given codeword can be used to determine the corresponding

data vector. Similarly, knowledge of any subset of d symbols from a codeword

suffices to determine the remaining symbols of the codeword. So d is also

called the dimension of the code. The (m, d) code has the Hamming distance

of m−d+1, and can always detect up to m−d errors. We will denote a code

with dimension d as Cd, and the encoding/decoding operations as Z = Cd(x)

and x = C−1
d (Z) for a data vector x and the corresponding codeword Z.

In our algorithms, we also assume the availability of a null (⊥) symbol

that is distinguished from all other symbols. For an m-element vector X,

we denote X[j] as the j-th element of the vector, 1 ≤ j ≤ m. Given a

subset A ⊆ {1, . . . , m}, denote V |A as the ordered list of elements of X at

the locations corresponding to elements of A. For instance, if m = 5 and

A = {2, 4}, then X|A is equal to (X [2], X [4]). We will say that X|A ∈ Cd if

X|A contains at least d non-null (�=⊥) elements, and there exists a codeword

Z = Cd(x) for some x such that the non-null elements of X|A are equal to the

corresponding elements of Z|A. When such Z and x exist, by generalizing

the decoding operation, we define C−1
d (X|A) = x. If no such Z and x exist,

17

we will say that X|A /∈ Cd.

For our consensus algorithm CBC, we use an (n, v − f) distance-(n− v +

f + 1) code Cv−f , for a suitable v such that f + 1 ≤ v ≤ n − f , and ensure

that there are at least v−f non-null elements in the argument to C−1
v−f (when

the decoding function is used at a fault-free node).

For an improved version of CBC, we use an (n, n − f) distance-(f + 1)

code Cn−f . For the broadcast algorithm CBB, a (2(n− 1), n− f) distance-

(n+ f − 1) code is used. As will become clear from our later discussion, the

key of our proofs rely only on the dimension, but not the length, of the code

used. So to simplify the discussion, with a little abuse of notation, we also

denote both code used in the improved version of the consensus algorithm

CBC and the code used in the broadcast algorithm CBB as Cn−f , and ensure

that there are at least n−f non-null elements in the argument to C−1
n−f . The

code that we are referring to using Cn−f will be clear from the context.

Diagnosis Graph

The fault-free nodes’ (potentially partial) knowledge of the identity of the

faulty nodes is captured by a diagnosis graph. A diagnosis graph is an undi-

rected graph with n vertices, with vertex i corresponding to node i. A pair

of nodes are said to “trust” each other if the corresponding pair of vertices

in the diagnosis graph is connected with an edge; otherwise they are said

to “accuse” each other. In the dispute control jargon, two nodes that trust

each other are “not in dispute”, and two nodes that accuse each other are

“in dispute”.

Before the start of the very first generation, the diagnosis graph is initial-

ized as a fully connected graph, which implies that all the n nodes initially

trust each other. During the execution of the algorithm, whenever misbe-

havior by some faulty node is detected, the diagnosis graph will be updated,

and one or more edges will be removed from the graph, using the diagnostic

information communicated using the Broadcast Binary algorithm. The use

of Broadcast Binary ensures that the fault-free nodes always have a con-

sistent view of the diagnosis graph. The evolution of the diagnosis graph

satisfies the following properties:

• If an edge is removed from the diagnosis graph, at least one of the

18

nodes corresponding to the two endpoints of the removed edge must be

faulty.

• The fault-free nodes always trust each other.

• If more than f edges at a vertex in the diagnosis graph are removed,

then the node corresponding to that vertex must be faulty.

The last two properties above follow from the first property, and the assump-

tion that at most f node are faulty.

2.5 CBC – A Coding-Based Byzantine Consensus

Algorithm

In this section, we describe CBC – a Byzantine consensus algorithm that has

the properties listed in Section 2.1 – and present a proof of correctness. Also

algorithm parameterization to satisfy more general validity requirements will

be discussed in Section 2.5.5.

The L-bit input value xi at each node is divided into L/D parts of size D

bits each, as noted earlier. These parts are denoted as xi(1), · · · , xi(L/D).

The algorithm for achieving L-bit consensus consists of L/D sequential ex-

ecutions of Algorithm 2.5.1 presented in this section. Algorithm 2.5.1 is

executed once for each generation. For the g-th generation (1 ≤ g ≤ L/D),

each node i uses xi(g) as its input in Algorithm 2.5.1. Each generation of the

algorithm results in node i deciding on g-th part (namely, yi(g)) of its final

decision value yi.

The value xi(g) is represented by a vector of n− 2f symbols, each symbol

represented with D/(n − 2f) bits. For convenience of presentation, assume

that D/(n− 2f) is an integer. We will refer to these n− 2f symbols as the

data symbols.

An (n, n− 2f) distance-(2f +1) Reed-Solomon code, denoted as Cn−2f , is

used to encode the n − 2f data symbols into n coded symbols. We assume

that D/(n − 2f) is large enough to allow the above Reed-Solomon code to

exist, specifically, n ≤ 2D/(n−2f)−1, which implies that D = Ω(n logn). This

condition is met only if L is large enough (since L > D). As we will see later,

Cn−2f is used only for error detection.

19

Let the set of all the fault-free nodes be denoted as Pgood. Algorithm 2.5.1

for each generation g consists of three stages. We summarize the function of

these three stages first, followed by a more detailed discussion:

1. Matching stage: Each node i encodes its D-bit input xi(g) for genera-

tion g into n coded symbols, as noted above. Each node i sends one of

these n coded symbols to the other nodes that it trusts. Node i trusts

node j if and only if the corresponding vertices in the diagnosis graph

are connected by an edge. Using the symbols thus received from each

other, the nodes attempt to identify a “matching set” of nodes, denoted

as Pmatch, of size n−f such that the fault-free nodes in Pmatch are guar-

anteed to have an identical input value for the current generation. If

such a Pmatch is not found, it can be determined with certainty that all

the fault-free nodes do not have the same input value – in this case,

the fault-free nodes decide on a default output value and terminate the

algorithm.

2. Checking stage: If a set of nodes Pmatch is identified in the above match-

ing stage, each node j /∈ Pmatch checks whether the symbols received

from nodes in Pmatch correspond to a valid codeword. If such a code-

word exists, then the symbols received from Pmatch are said to be “con-

sistent”. If any node finds that these symbols are not consistent, then

misbehavior by some faulty node is detected. Else all the nodes are

able to correctly compute the value to be agreed upon in the current

generation.

3. Diagnosis stage: Whenever misbehavior is detected, the diagnosis stage

is performed, to learn (possibly partial) information regarding the iden-

tity of the faulty node(s). For fault diagnosis, the nodes in Pmatch are

required to broadcast the coded symbols they sent in the matching

stage, using the Broadcast Binary algorithm. Using the information

received during these broadcasts, the fault-free nodes are able to learn

new information regarding the potential identity of the faulty node(s).

The diagnosis graph (called Diag Graph in Algorithm 2.5.1) is updated

to incorporate this new information.

In the rest of this section, we discuss each of the three stages in more

detail. Note that whenever algorithm Broadcast Binary is used, all the

20

fault-free nodes will receive the broadcast information identically. One in-

stance of Broadcast Binary is needed for each bit of information broadcast

using Broadcast Binary.

Algorithm 2.5.1 CBC Algorithm (generation g)

1.Matching Stage:

Each node i performs the matching stage as follows:

(a)Compute (Si[1], . . . , Si[n]) = Cn−2f(xi(g)), and send Si[i] to every

trusted node j

(b)Ri[j]←

⎧⎪⎨
⎪⎩

symbol that node i receives from node j,

if node i trusts node j;

⊥, otherwise.

If a trusted node j does not send anything, then Ri[j]← 0.

(c)If Si[j] = Ri[j] then Mi[j]← TRUE; else Mi[j]← FALSE

(d)Node i broadcasts the vector Mi using Broadcast Binary

Using the received M vectors:

(e)Find a set of nodes Pmatch of size n− f such that

Mj [k] = Mk[j] = TRUE

for every pair of nodes j, k ∈ Pmatch. If multiple possibility exist

for Pmatch, then any one of the possible sets is chosen arbitrarily

as Pmatch (all fault-free nodes choose a deterministic algorithm to

select identical Pmatch).

(f)If Pmatch does not exist, then decide on a default value and termi-

nate;

else enter the Checking Stage

2.Checking Stage:

Each node j /∈ Pmatch performs steps 2(a) and 2(b):

(a)If Rj |Pmatch ∈ Cn−2f then Detectedj ← FALSE;

else Detectedj ← TRUE.

(b)Broadcast Detectedj using Broadcast Binary

21

Each node i performs step 2(c):

(c)Receive Detectedj from each node j /∈ Pmatch (broadcast in step

2(b)).

If Detectedj = FALSE for all nodes j /∈ Pmatch, then decide on

yi(g) = C−1
n−2f(Ri|Pmatch);

else enter Diagnosis Stage

3.Diagnosis Stage:

Each node j ∈ Pmatch performs step 3(a):

(a)Broadcast Sj [j] using Broadcast Binary

Each node i performs the following steps:

(b)R#[j] ← symbol received from node j ∈ Pmatch as a result of

broadcast in step 3(a)

(c)For all nodes j ∈ Pmatch,

if node i trusts node j and Ri[j] = R#[j] then

Trusti[j]← TRUE;

else Trusti[j]← FALSE

(d)Broadcast Trusti|Pmatch using Broadcast Binary

(e)For each edge (j, k) in Diag Graph, such that node j ∈ Pmatch,

remove edge (j, k)

if Trustj[k] = FALSE or Trustk[j] = FALSE

(f)If R#|Pmatch ∈ Cn−2f then

if for any node j /∈ Pmatch, Detectedj = TRUE, but no edge at

vertex j was removed in step 3(e), then

remove all edges at vertex j in Diag Graph

(g)If at least f + 1 edges at any vertex j have been removed so far,

then node j must be faulty, and all edges at j are removed.

(h)Find a set of nodes Pdecide ⊂ Pmatch of size n− 2f in the updated

Diag Graph,

such that every pair of nodes j, k ∈ Pdecide still trust each other

22

(i)Decide on yi(g) = C−1
n−2f(R

#|Pdecide)

NOTE: Instead of performing steps 3(h) and 3(i), Algorithm 2.5.1

may be repeated for generation g again after the diagnosis graph

has been updated in step 3(g). This alternative does not affect

algorithm correctness.

2.5.1 Matching Stage

The line numbers referred to below correspond to the line numbers for the

pseudo-code in Algorithm 2.5.1.

Line 1(a): In generation g, each node i first encodes xi(g), represented by

n−2f symbols, into a codeword Si from the code Cn−2f . The j-th symbol in

the codeword is denoted as Si[j]. Then node i sends Si[i], the i-th symbol of

its codeword, to all the other nodes that it trusts. Recall that node i trusts

node j if and only if there is an edge between the corresponding vertices in

the diagnosis graph (referred as Diag Graph in the pseudo-code).

Line 1(b): Let us denote by Ri[j] the symbol that node i receives from a

trusted node j. If a node i does not trust some node j, then node i sets Ri[j]

equal to null (⊥). Messages received from untrusted nodes are ignored.

Line 1(c): FlagMi[j] is used to record whether node i finds node j’s symbol

consistent with its own local value. Specifically, the pseudo-code in Line 1(c)

is equivalent to the following:

• When node i trusts node j:

If Ri[j] = Si[j], then Mi[j] = TRUE;

else Mi[j] = FALSE.

• When node i does not trust node j: Mi[j] = FALSE.

Line 1(d): As we will see later, if a fault-free node i does not trust another

node j, then node j must be faulty. Thus entry Mi[j] in vector Mi is FALSE

23

if (i) node i believes that node j is faulty, or (ii) the input value at node j

appears to differ from the input value at node i. Thus, entry Mi[j] being

TRUE implies that, as of this time, node i believes that node j is fault-free,

and that the value at node j is possibly identical to the value at node i. Node

i uses Broadcast Binary to broadcast Mi to all the nodes. One instance of

Broadcast Binary is needed for each bit of Mi.

Lines 1(e) and 1(f): Due to the use of Broadcast Binary, all fault-free

nodes receive identical vector Mj from each node j. Using these M vectors,

each node i attempts to find a set Pmatch containing n− f nodes such that,

for every pair of nodes j, k ∈ Pmatch, Mj [k] = Mk[j] = TRUE. If multiple

such sets Pmatch exist, the tie is broken by some predetermined function.

One example of the predetermined function is: map the set Pmatch into an

n-bit binary value such that the i-th bit is 1 if node i ∈ Pmatch, and 0

otherwise; then the one set with smallest binary value is picked as Pmatch

in the algorithm. Since the M vectors are received identically by all the

fault-free nodes (using Broadcast Binary), they can compute an identical

Pmatch. However, if such a set Pmatch does not exist, then the fault-free nodes

conclude that all the fault-free nodes do not have identical input – in this

case, they decide on a default value, and terminate the algorithm.

It is worth noting that finding Pmatch is, in fact, equivalent to identifying a

clique of size n− f in an undirected graph of size n, whose edges are defined

by theM vectors. Specifically, an edge exists between j and k in this graph, if

Mj [k] = Mk[j] = TRUE. Finding a clique of a certain size in general graphs

is NP-complete. It turns out that, with a slight modification, the algorithm

can perform correctly even if Pmatch is not a clique in the graph induced by M

vectors. Instead it suffices if Pmatch includes at least n− 2f fault-free nodes

with identical input for the current generation. In other words, the subgraph

induced by M and Pmatch will contain a clique of size n−2f corresponding to

fault-free nodes. Such a Pmatch can be found with polynomial computational

complexity (see Appendix A.1). However, for simplicity, in our proofs, we

will assume that Pmatch indeed corresponds to a clique of size n− f .

In the following discussion, we will show the correctness of the Matching

Stage. In the proofs of Lemmas 2.1, 2.2, and 2.3, we assume that the fault-

free nodes (that is, the nodes in set Pgood) always trust each other – this

24

assumption will be shown to be correct later in Lemma 2.4.

Lemma 2.1 If for each fault-free node i ∈ Pgood, xi(g) = x(g), for some

value x(g), then a set Pmatch necessarily exists (assuming that the fault-free

nodes trust each other).

Proof: Since all the fault-free nodes have identical input x(g) in generation

g, Si = Cn−2f(x(g)) for all nodes i ∈ Pgood. Since these nodes are fault-

free, and trust each other, they send to each other correct messages in the

matching stage. Thus, Ri[j] = Sj [j] = Si[j] for all nodes i, j ∈ Pgood. This

fact implies that Mi[j] = TRUE for all nodes i, j ∈ Pgood. Since there are

at least n− f fault-free nodes, it follows that a set Pmatch of size n− f must

exist.

�

Observe that, although the above proof shows that there exists a set Pmatch

containing only fault-free nodes, there may also be other such sets that con-

tain some faulty nodes as well. That is, all the nodes in Pmatch cannot be

assumed to be fault-free. The converse of Lemma 2.1 implies that, if a set

Pmatch does not exist, it is certain that all the fault-free nodes do not have

the same input values. In this case, they can correctly agree on a default

value and terminate the algorithm. Thus Line 1(f) is correct.

In the case when a set Pmatch is found, the following lemma is useful.

Lemma 2.2 All nodes in Pmatch ∩ Pgood have identical input in generation

g.

Proof: |Pmatch ∩ Pgood| ≥ n − 2f because |Pmatch| = n − f and there are

at most f faulty nodes. Consider any two nodes i, j ∈ Pmatch ∩ Pgood. Since

Mi[j] = Mj [i] = TRUE, it follows that Si[i] = Sj [i] and Sj[j] = Si[j].

Since there are n−2f fault-free nodes in Pmatch ∩Pgood, this implies that the

codewords computed by these fault-free nodes (in Line 1(a)) contain at least

n− 2f identical symbols. Since the code Cn−2f has dimension (n− 2f), this

implies that the fault-free nodes in Pmatch ∩ Pgood must have identical input

in generation g.

�

25

2.5.2 Checking Stage

When Pmatch is found during the matching stage, the checking stage is en-

tered.

Lines 2(a), 2(b): Each fault-free node j /∈ Pmatch checks whether the

symbols received from the trusted nodes in Pmatch are consistent with a valid

codeword: that is, check whether Rj |Pmatch ∈ Cn−2f . The result of this test

is broadcast as a 1-bit notification Detectedj , using Broadcast Binary. If

Rj |Pmatch /∈ Cn−2f , then node j is said to have detected an inconsistency.

Line 2(c): If no node announces in Line 2(b) that it has detected an in-

consistency, each fault-free node i chooses C−1
n−2f(Ri|Pmatch) as its output for

generation g.

The following lemma argues correctness of Line 2(c).

Lemma 2.3 If no node claims it has detected an inconsistency in Lines 2(a)-

2(b), all fault-free nodes i ∈ Pgood decide on the identical output value y(g)

such that y(g) = xj(g) for all nodes j ∈ Pmatch ∩ Pgood.

Proof: We assume that the fault-free nodes trust each other. Observe that

size of set Pmatch∩Pgood is at least n−2f , and hence the decoding operations

C−1
n−2f(Ri|Pmatch) and C−1

n−2f(Ri|Pmatch ∩ Pgood) are both defined at fault-free

nodes.

Since fault-free nodes send correct messages, and trust each other, for all

nodes i ∈ Pgood, Ri|Pmatch ∩ Pgood are identical. Since no inconsistency has

been detected by any node, every node i ∈ Pgood decides on C−1
n−2f(Ri|Pmatch)

as its output. Also, C−1
n−2f (Ri|Pmatch) = C−1

n−2f (Ri|Pmatch∩Pgood), since Cn−2f

has dimension (n − 2f). It then follows that all the fault-free nodes decide

on the identical value y(g) = C−1
n−2f(Ri|Pmatch ∩ Pgood) in Line 2(c). Since

Rj |Pmatch ∩ Pgood = Sj |Pmatch ∩ Pgood for all nodes j ∈ Pmatch ∩ Pgood, y(g) =

xj(g) for all nodes j ∈ Pmatch ∩ Pgood.

�

2.5.3 Diagnosis Stage

When any node that is not in Pmatch announces that it has detected an

inconsistency, the diagnosis stage is entered. The algorithm allows for the

26

possibility that a faulty node may erroneously announce that it has detected

an inconsistency. The purpose of the diagnosis stage is to learn new informa-

tion regarding the potential identity of a faulty node. The new information is

used to remove one or more edges from the diagnosis graph Diag Graph – as

we will soon show, when an edge (j, k) is removed from the diagnosis graph,

at least one of nodes j and k must be faulty. We now describe the steps in

the Diagnosis Stage.

Lines 3(a), 3(b): Every fault-free node j ∈ Pmatch uses Broadcast Binary

to broadcast Sj[j] to all nodes. Let us denote by R#[j] the result of the broad-

cast from node j. Due to the use of Broadcast Binary, all fault-free nodes

receive identical R#[j] for each node j ∈ Pmatch. This information will be

used for diagnostic purposes.

Lines 3(c), 3(d): Every fault-free node i uses flag Trusti[j] to record

whether it “believes”, as of this time, that each node j ∈ Pmatch is fault-free or

not. Then node i broadcasts Trusti|Pmatch to all nodes using Broadcast Binary.

Specifically,

• If node i trusts node j and Ri[j] = R#[j],

then set Trusti[j] =TRUE;

• If node i does not trust node j or Ri[j] �= R#[j],

then set Trusti[j] =FALSE.

Line 3(e): Using the Trust vectors received above, each fault-free node i

then removes any edge (j, k) from the diagnosis graph such that Trustj[k] =

FALSE or Trustk[j] = FALSE. Due to the use of Broadcast Binary for

distributing Trust vectors, all fault-free nodes will maintain an identical

view of the updated Diag Graph. Note that edges may only be removed

from Diag Graph.1

Line 3(f): As we will soon show, in the case R#|Pmatch ∈ Cn−2f , a node j /∈
Pmatch that announces that it has detected an inconsistency, i.e., Detectedj =

1If the system allows “repair” of faulty nodes, then edges will need to be added back
to Diag Graph.

27

TRUE, must be faulty if no edge attached to vertex j was removed in Line

3(e). Such a node j is “isolated”, by having all edges attached to vertex j

removed from Diag Graph, and the fault-free nodes will not communicate

with it anymore in subsequent generations.

Line 3(g): As we will soon show, a node j must be faulty if at least f + 1

edges at vertex j have been removed. The identified faulty node j is then

isolated.

Lines 3(h) and 3(i): Since Diag Graph is updated only with information

broadcast with Broadcast Binary (Detected, R# and Trust), all fault-free

nodes maintain an identical view of the updated Diag Graph. Then they can

compute an identical set Pdecide ⊂ Pmatch containing exactly n − 2f nodes

such that every pair of nodes j, k ∈ Pdecide trust each other. Finally, every

fault-free node chooses C−1
n−2f(R

#|Pdecide) as its decision value for generation

g.

Lemma 2.4 Every time the diagnosis stage is performed, at least one edge

attached to a vertex corresponding to a faulty node will be removed from

Diag Graph, and only such edges will be removed.

Proof: We prove this lemma by induction. For the convenience of discus-

sion, let us say that an edge (j, k) is “bad” if at least one of nodes j and k is

faulty.

Consider a generation g starting with any instance of the Diag Graph in

which only bad edges have been removed. Suppose that a node i /∈ Pmatch

“claims” that it detects a failure by broadcasting Detecti =TRUE in Line

2(b). This implies that, if node i is fault-free, Ri|Pmatch cannot be a valid

codeword, i.e., Ri|Pmatch /∈ Cn−2f .

The symbols broadcast by nodes of Pmatch in Line 3(a), i.e., R#|Pmatch, can

either be a valid codeword of Cn−2f or not. We consider the two possibilities

separately:

• R#|Pmatch ∈ Cn−2f : In the case, if node i is actually fault-free, R#[k] �=
Ri[k] must be true for some faulty node k ∈ Pmatch, which is trusted

by node i. Thus, Trusti[k] = FALSE and the bad edge (i, k) will

be removed in Line 3(e). The converse of this argument implies that

28

if Detectedi =TRUE but no edge attached to vertex i is removed in

Line 3(e), then node i must be faulty. As a result, all bad edges at

vertex i are removed in Line 3(f).

• R#|Pmatch /∈ Cn−2f : There are always at least n − 2f fault-free nodes

in Pmatch ∩ Pgood, and Rj|Pmatch ∈ Cn−2f is TRUE for every node j ∈
Pmatch∩Pgood. Thus, if R

#|Pmatch /∈ Cn−2f , then R#|Pmatch �= Rj|Pmatch

must be true for every node j ∈ Pmatch ∩Pgood. Similar to the previous

case, R#[k] �= Rj[k] must be true for some faulty node k ∈ Pmatch which

is trusted by every node j ∈ Pmatch ∩ Pgood. As a result, Trustj[k] =

FALSE and the bad edge (j, k) will be removed in Line 3(e), for all

nodes j ∈ Pmatch ∩ Pgood.

At this point, we can conclude that by the end of Line 3(f), at least one new

bad edge has been removed. Moreover, since Ri[k] = R#[k] for every pair of

fault-free nodes i, k ∈ Pgood, Trusti[k] remains TRUE, which implies that

the vertices corresponding to the fault-free nodes will remain fully connected,

and each will always have at least n− f − 1 edges. It follows that a node j

must be faulty if at least f + 1 edges at vertex j have been removed. So all

edges at j are bad and will be removed in Line 3(g).

Now we have proved that for every generation that begins with aDiag Graph

in which only bad edges have been removed, at least one new bad edge, and

only bad edges, will be removed in the updated Diag Graph by the end of

the diagnosis stage. Together with the fact that Diag Graph is initialized as

a complete graph, we finish the proof.

�

The above proof of Lemma 2.4 shows that all fault-free nodes will trust

each other throughout the execution of the algorithm, which justifies the

assumption made in the proofs of the previous lemmas. The following lemma

shows the correctness of Lines 3(h) and 3(i).

Lemma 2.5 By the end of diagnosis stage, all fault-free nodes i ∈ Pgood

decide on the same output value y(g), such that y(g) = xj(g) for all nodes

j ∈ Pmatch ∩ Pgood.

Proof: First of all, the set Pdecide necessarily exists since there are at least

n−2f ≥ f +1 fault-free nodes in Pmatch∩Pgood that always trust each other.

29

Secondly, since the size of Pdecide is n− 2f ≥ f + 1, it must contain at least

one fault-free node k ∈ Pdecide ∩ Pgood. Since node k still trusts all nodes

of Pdecide in the updated Diag Graph, R#|Pdecide = Rk|Pdecide = Sk|Pdecide.

The second equality is due to the fact that node k ∈ Pmatch. Finally, since

the size of set Pdecide is n− 2f , the decoding operation of C−1
n−2f(R

#|Pdecide)

is defined, and it equals to xk(g) = xj(g) for all nodes j ∈ Pmatch ∩ Pgood, as

per Lemma 2.2.

�

We can now conclude the correctness of the Algorithm 2.5.1.

Theorem 2.1 Given n nodes with at most f < n/3 are faulty, each given an

input value of L bits, Algorithm 2.5.1 achieves consensus correctly in L/D

generations, with the diagnosis stage performed for at most f(f + 1) times.

Proof: Lemmas 2.1 to 2.5 imply that consensus is achieved correctly for

each generation g of D bits. So the termination and consistency properties

are satisfied for the L-bit outputs after L/D generations. Moreover, in the

case all fault-free nodes are given an identical L-bit input x, theD bits output

y(g) in each generation g equals to x(g) as per Lemmas 2.1, 2.3 and 2.5. So

the L-bit output y = x and the validity property is also satisfied.

According to Lemma 2.4 and the fact that a faulty node Pj will be removed

once more than f edges at vertex j have been removed, it takes at most

f(f +1) instance of the diagnosis stage before all faulty nodes are identified.

After that, the fault-free nodes will not communicate with the faulty nodes.

Thus, the diagnosis stage will not be performed any more. So it will be

performed for at most f(f + 1) times in all cases.

�

2.5.4 Communication Complexity of CBC

Let us denote by B the complexity of broadcasting 1 bit with one instance

of Broadcast Binary. In every generation, the complexity of each stage is

as follows:

• Matching stage: every node i sends at most n − 1 symbols, each of

D/(n− 2f) bits, to the nodes that it trusts, and broadcasts n− 1 bits

30

for Mi. So at most n(n−1)
n−2f

D + n(n − 1)B bits in total are transmitted

by all n nodes.

• Checking stage: every node j /∈ Pmatch broadcasts one bit Detectedj

with Broadcast Binary, and there are f such nodes. So tB bits are

transmitted.

• Diagnosis stage: every node j ∈ Pmatch broadcasts one symbol Sj [j] of

D/(n− 2f) bits with Broadcast Binary, and every node i broadcasts

n−f bits of Trusti|Pmatch with Broadcast Binary. So the complexity

is n−f
n−2f

DB + n(n− f)B bits.

According to Theorem 2.1, there are L/D generations in total. In the

worst case, Pmatch can be found in every generation, so the matching and

checking stages will be performed for L/D times. In addition, the diagnosis

stage will be performed for at most f(f +1) time. Hence the communication

complexity of the proposed consensus algorithm, denoted as CCBC(L), is then

computed as

CCBC(L) =

(
n(n− 1)

n− 2f
D + n(n− 1)B + fB

)
L

D

+f(f + 1)

(
n− f

n− 2f
D + n(n− f)

)
B. (2.1)

For a large enough value of L, with a suitable choice ofD =
√

(n2−n+f)(n−2f)L
f(f+1)(n−f)

,

we have

CCBC(L) =
n(n− 1)

n− 2f
L+ f(f + 1)n(n− f)B

+2BL0.5

√
(n2 − n + f)f(f + 1)(n− f)

n− 2f
. (2.2)

Error-free algorithms that broadcast 1 bit with communication complex-

ity Θ(n2) bits are known [34, 35]. So we assume B = Θ(n2). Then the

complexity of our algorithm for t < n/3 becomes

CCBC(L) =
n(n− 1)

n− 2f
L+O(n4L0.5 + n6)

= O(nL+ n4L0.5 + n6). (2.3)

31

For L = Ω(n6), the communication complexity becomes O(nL). (This re-

quirement can be improved to L = Ω(n5) if we use a technique from [37] in

the Diagnosis stage.2)

2.5.5 Other Validity Conditions

Algorithm 2.5.1 satisfies the validity conditions stated in Section 2.1. As

noted earlier, other validity conditions may also be desirable in practice.

Algorithm 2.5.1 is flexible in the sense that, with proper parameterization,

it can achieve other (reasonable) validity properties. In particular, v-validity

property defined below can be achieved for f + 1 ≤ v ≤ n− f :

• v-Validity: If at least v fault-free nodes hold an identical input x, then

the output y agreed by the fault-free nodes equals input xj for some

fault-free node j. Furthermore, if v ≥ �n+1
2
�, then y = x.

In order to achieve v-validity, we need to change the error detection code

and the size of Pmatch in Algorithm 2.5.1 as follows (v is said to be the

parameter of the algorithm):

• Throughout the algorithm, we replace the (n, n−2f) distance-(2f +1)

code Cn−2f with a (n, v− f) distance-(n− v + f + 1) code, denoted as

Cv−f . Since v ≥ f + 1, v − f ≥ 1. Thus Cv−f always exists for large

enough L.

• Line 1(e): Choose a set of v nodes Pmatch such that Mj[k] = Mk[j] =

TRUE for every pair of node j, k ∈ Pmatch.
3

• Lines 3(h) and 3(i): For the more general validity conditions, in-

stead of performing steps 3(h) and 3(i), as stated in the NOTE at the

end of Algorithm 2.5.1, the algorithm can be repeated for generation

g with the updated diagnosis graph. For v > 2f , we also have the

alternative of retaining steps 3(h) and 3(i), but the size of the chosen

Pdecide must be v − f .

Similar to Lemmas 2.1 through 2.5, we can prove that

2We would like to thank Martin Hirt for suggesting this improvement.
3The validity condition achieved can be made stronger, particularly for v ≤ n/2, by

choosing the largest possible set Pmatch with size at least v.

32

1. If at least v fault-free nodes i ∈ Pgood hold the same input xi(g) = x(g)

for some x(g), then a set Pmatch of size v necessarily exists.

2. There are at least v − f ≥ 1 fault-free nodes in Pmatch and all the

fault-free nodes in Pmatch have the same input for generation g.

3. If no node detects inconsistency in Line 2(a), all fault-free nodes i ∈
Pgood decide on the identical output value y(g) such that y(g) = xj(g)

for all nodes j ∈ Pmatch ∩ Pgood. Furthermore, when v ≥ �n+1
2
�, and

at least v fault-free nodes have identical input x, at least one of these

fault-free nodes is bound to be in Pmatch, and therefore, y(g) = x.

4. In case (for v > 2f) steps 3(h) and 3(i) are used, by the end of diagno-

sis stage, all fault-free nodes i ∈ Pgood decide on the same output value

y(g), such that y(g) = xj(g) for all nodes j ∈ Pmatch ∩ Pgood. Other-

wise, if steps 3(h) and 3(i) are not used, the algorithm is repeated for

generation g with the updated diagnosis graph.

Then Algorithm 2.5.1 achieves v-validity for f+1 ≤ v ≤ n−f with the afore-

mentioned parameterization. The communication complexity for achieving

v-validity is

Cv
CBC(L) =

n(n− 1)

v − f
L+O(n4L0.5 + n6)

= O(nL+ n4L0.5 + n6), if v − f = Ω(n).

When v < �n+1
2
�, there may be more than one choice for Pmatch in Line

1(e). For example, there can be two disjoint cliques, one containing v fault-

free nodes with the same input x, and the other containing v − f fault-free

nodes with input z (x �= z) and f faulty nodes that pretend to have input z.

It is possible that the second clique is picked to be Pmatch and the consensus

value ends up being z. So in this case, even though at least v fault-free nodes

hold the same input, we can only guarantee agreement on the input of some

fault-free nodes, but not necessarily equal to the v identical inputs. However,

when v ≥ �n+1
2
�, it is guaranteed that, if at least v inputs at the fault-free

nodes equals to x, then the agreed output equals x.

33

2.5.6 Multiple Consensus

In the above discussion, we considered consensus on a single long L-bit value.

An alternate view of the problem is likely to be more relevant in practice. In

particular, let us consider the problem of performing g instances of consensus,

with each node receiving a D-bit input for each instance (in particular, the

input for node i is xi(g) for instance g). Then the consensus properties need

to be satisfied for each instance separately. We assume that the identity

of faulty nodes remains fixed across the different instances. Then it should

not be difficult to see that Algorithm 2.5.1 solves the multiple instances of

the consensus problem, with the algorithm for g-th generation essentially

performing the g-th instance of the consensus problem for D-bit values.

Let us denote the average per-instance complexity for performing g in-

stances of consensus on D-bit values as CCBC(g,D). Similar to the analysis

in Section 2.5.4, for g ≥ f(f + 1), we have

CCBC(g,D) =
n(n− 1)

n− 2f
D + n(n− 1)B + tB

+
f(f + 1)

g

(
n− f

n− 2f
D + n(n− f)

)
B (2.4)

= O

((
n +

n4

g

)
D + n4 +

n6

g

)
. (2.5)

From Equation 2.5, we can conclude that we only need D = Ω(n3) and

g = Ω(n3) instances of D-bit consensus for the per consensus complexity to

reduce to O(nD). In other words, when the goal is to sequentially perform

a large number (Ω(n3)) of instances of consensus, the input size for each

instance only needs to be Ω(n3) in order to achieve complexity linear in n,

rather than Ω(n6) as discussed in Section 2.5.4.

2.6 Improving the CBC Algorithm

2.6.1 Improving Communication Complexity of CBC

The CBC algorithm has complexity n(n−1)
n−2f

L (ignoring the terms sub-linear

in L). In this section, we present Improved-CBC, an improved version of

CBC that achieves communication complexity n(n−1)
n−f

L, which can be twice

34

as efficient as CBC when f gets close to n/3. Pseudo-code of the Improved-

CBC algorithm is presented in Algorithm 2.6.2.

The main difference between CBC and Improved-CBC is the way in which

Pmatch is found. In CBC, a set Pmatch is found in each generation indepen-

dently, and Pmatch from different generations can contain different nodes. On

the other hand, Pmatch is maintained across generations in Improved-CBC

such that Pmatch in generation g + 1 is always a subset of Pmatch in gener-

ation g. In generation 1, Pmatch is initialized to the set of all n nodes in

Improved-CBC.

Algorithm 2.6.2 Improved-CBC Algorithm (generation g)

In the following steps, for every node i: Ri[k] ← Sj [k] whenever node i

receives Sj[k] from its trusted node j. If a trusted node j does not send

anything when it should send Rj[k], then Ri[k]← 0.

1.Matching Stage:

Each node Pi ∈ Pmatch performs steps 1(a) and 1(b) as follows:

(a)Compute (Si[1], . . . , Si[n]) = Cn−f(xi(g)), and send Si[i] to every

trusted node j (including those not in Pmatch, and node i itself).

(b)For every node j /∈ Pmatch that is trusted by node i:

If i = min{l|l ∈ Pmatch and node j trusts node l}, then node i

sends Si[k] to node j for each k ∈ Pmatch such that node j does

not trust node k.

Each node j /∈ Pmatch performs step 1(c) as follows:

(c)Using the first n − f symbols it has received in steps 1(a) and

1(b), node j computes Sj [j] according to Cn−f , then sends Sj[j]

to all trusted nodes (including node j itself).

2.Checking Stage:

Each node i (in Pmatch or not) performs Checking Stage as follows:

(a)IfRi ∈ Cn−f thenDetectedi ← FALSE; elseDetectedi ←TRUE.

(b)If node i ∈ Pmatch and Ri �= Si then Detectedi ← TRUE.

(c)Broadcast Detectedi using Broadcast Binary.

35

(d)Receive Detectedj from each node j (broadcast in step 2(c)).

If Detectedj = FALSE for all node j, decide on yi(g) = C−1
n−f(Ri);

else enter Diagnosis Stage.

3.Diagnosis Stage:

Each node i (in Pmatch or not) performs Diagnosis Stage as follows:

(a)Broadcast Si and Ri using Broadcast Binary.

(b)S#
j ← Sj and R#

j ← Rj received from node j as a result of

broadcast in step 3(a).

Using the broadcast information, all nodes perform the following steps

identically:

(c)For each edge (i, j) in Diag Graph: Remove edge (i, j) if ∃k, such
that node j receives Si[k] from node i in Matching stage and

R#
j [k] �= S#

i [k]

(d)For each node i ∈ Pmatch: If S#
i /∈ Cn−f , then node i must be

faulty. So remove vertex i and the adjacent edges from Diag Graph.

(e)For each node j /∈ Pmatch: If S
#
j [j] is not consistent with (accord-

ing to Cn−f) the subset of n− f symbols of R#
j , from which S#

j [j]

is computed, node j must be faulty. So remove vertex j and the

adjacent edges from Diag Graph.

(f)If at least f + 1 edges at any vertex i have been removed, then

node i must be faulty. So remove vertex i and the adjacent edges.

(g)Find the maximum set of nodes Pnew ⊆ Pmatch such that S#
i = S#

j

for every pair of nodes i, j ∈ Pnew. In case of a tie, pick any one.

(h)If |Pnew| < n − f , terminate the algorithm and decide on the

default output.

Else, decide on yi(g) = C−1
n−f(S

#
j) for any node j ∈ Pnew, and

update Pmatch = Pnew.

The proof of correctness of Improved-CBC is similar to that for CBC, and is

included in Appendix A.2 for completeness. We compute the communication

complexity of Improved-CBC in a similar way as in CBC:

36

In Lines 1(a) to 1(c), every node receives at most n − 1 symbols, so at

most n(n − 1) symbols are communicated in the Matching stage. With an

appropriate choice ofD, the complexity of Algorithm 2.6.2 can be made equal

to
n(n− 1)

n− f
L+O(n4L0.5). (2.6)

So for sufficiently large L = Ω(n6), the complexity approaches n(n−1)
n−f

.

While the Improved-CBC algorithm may not be better in terms the order

of the communication complexity, in practice, a factor of 2 reduction in com-

munication overhead is quite significant. Whether this algorithm is optimal

for arbitrary f and n (f < n/3) remains an open question. What we do

know, however, is that the degenerate version of the algorithm for f = 0

with complexity (n− 1)L is not optimal for all n. When f = 0, the consen-

sus problem reduces to the multiparty equality (MEQ) problem in which all

nodes are necessarily fault-free. The MEQ problem is discussed in Chapter

4.

2.6.2 Improving the Communication Complexity for

v-Validity

In Section 2.5.5, we have discussed how to achieve v-validity with CBC and

analyzed its communication complexity. One weakness of the CBC algo-

rithm is that it achieves v-validity with O(nL) communication complexity

only when v = f + Ω(n). In particular, for v = f + 1, the communication

complexity of CBC becomes O(n2L). In this section, we present VCBC,

an improved algorithm that achieves v-validity with O(nL) communication

complexity for all all f + 1 ≤ v ≤ n− f as long as v = Ω(n).

In VCBC, an (n, v) distance-(n − v + 1) Reed-Solomon code, denoted as

Cv, is used to encode v data symbols into n coded symbols. The operations

in each generation g are presented in Algorithm 2.6.3

Algorithm 2.6.3 VCBC Algorithm (generation g)

In the following steps, for every node i: Ri[k] ← Sj [k] whenever node i

receives Sj[k] from its trusted node j. If a trusted node j does not send

anything when it should send Rj[k], then Ri[k]← 0.

37

1.Matching Stage:

Every node i performs steps 1(a) to 1(e) as follows:

(a)Compute (Si[1], . . . , Si[n]) = Cv(xi(g)), and send Si[i] to every

trusted node j.

(b)If Si[j] = Ri[j] then Mi[j]← TRUE; else Mi[j]← FALSE

(c)Node i broadcasts the vector Mi using Broadcast Binary

Using the received M vectors:

(d)Find a set of nodes Pmatch of size v such that

Mj [k] = Mk[j] = TRUE

for every pair of nodes j, k ∈ Pmatch. If multiple possibilities exist

for Pmatch, then any one of the possible sets is chosen arbitrarily

as Pmatch (all fault-free nodes choose a deterministic algorithm to

select identical Pmatch).

(e)If Pmatch does not exist, then decide on a default value and con-

tinue to the next generation;

else continue to the following steps.

Note: At this point, if Pmatch does not exist, it is, in fact, safe

to terminate the algorithm with a default output since it can be

asserted that no v fault-free nodes have identical inputs. However,

by continuing to the next generation instead of terminating, v-

validity is satisfied for the inputs of each individual generation.

When Pmatch of size v is found, each node i ∈ Pmatch performs steps

1(f) as follows:

(f)For every node j /∈ Pmatch that is trusted node i:

If i = min{l|l ∈ Pmatch and node j trusts node l}, then node i

sends Si[k] to node j for each k ∈ Pmatch such that node j does

not trust node k.

Each node j /∈ Pmatch performs step 1(g) as follows:

38

(g)Using the first v symbols it has received from the nodes in Pmatch

in steps 1(a) and 1(f), node j computes Sj[j] according to Cv,

then sends Sj[j] to all trusted nodes.

Note: For every node i trusted by node j, it has set Ri[j] to the

Sj [j] received from node j in step 1(a). It will be replaced with

the new Sj[j] received in step 1(g).

2.Checking Stage:

Each node i (in Pmatch or not) performs Checking Stage as follows:

(a)If Ri ∈ Cv then Detectedi ← FALSE; else Detectedi ← TRUE.

(b)If node i ∈ Pmatch and Ri �= Si then Detectedi ← TRUE.

(c)Broadcast Detectedi using Broadcast Binary.

(d)Receive Detectedj from each node j (broadcast in step 2(c)).

If Detectedj = FALSE for all j, then decide on yi(g) = C−1
v (Ri);

else enter Diagnosis Stage.

3.Diagnosis Stage:

Each node i (in Pmatch or not) performs Diagnosis Stage as follows:

(a)Broadcast Si and Ri using Broadcast Binary.

(b)S#
j ← Sj and R#

j ← Rj received from node j as a result of

broadcast in step 3(a).

Using the broadcast information, all nodes perform the following steps

identically:

(c)For each edge (i, j) in Diag Graph: Remove edge (i, j) if ∃k, such
that node j receives Si[k] from node i in Matching stage and

R#
j [k] �= S#

i [k].

(d)For each node i ∈ Pmatch: If S
#
i /∈ Cv, then node i must be faulty.

So remove vertex i and the adjacent edges from Diag Graph.

(e)For each node j /∈ Pmatch: If S
#
j [j] is not consistent with the subset

of v symbols of R#
j |Pmatch, from which S#

j [j] is computed, node j

must be faulty. So remove vertex j and the adjacent edges from

Diag Graph.

39

(f)If at least f + 1 edges at any vertex i have been removed, then

node i must be faulty. So remove vertex i and the adjacent edges.

(g)Find a set Pdecide of maximum size such that all nodes in Pdecide

trust each other and S#
i = S#

j for every pair of nodes i, j ∈ Pdecide.

In case of a tie, pick any one.

(h)If |Pdecide| < v, decide on the default output.

Else, decide on yi(g) = C−1
v (S#

j) for any node j ∈ Pdecide.

The proof of correctness of VCBC is similar to those for CBC and Improved-

CBC, and is included in Appendix A.3 for completeness. We compute

the communication complexity of VCBC in a similar way as in CBC and

Improved-CBC:

In Lines 1(a) and 1(f), every node receives at most n − 1 symbols, so

at most n(n − 1) symbols are communicated in these two steps. In Line

1(g), every node Pj /∈ Pmatch sends at most n − 1 symbols, and there are

at most n − v nodes not in Pmatch, so at most (n − v)(n − 1) symbols are

communicated in this step. So in total, no more than (2n−v)(n−1) symbols

are communicated in the Matching stage. Then with an appropriate choice

of D, the complexity of Algorithm 2.6.3 can be made to

(2n− v)(n− 1)

v
L+O(n4.5L0.5). (2.7)

So for any v = Ω(n) and f+1 ≤ v ≤ n−f , with a sufficiently large L (Ω(n7)),

the communication complexity for achieving v-validity with algorithm VCBC

is O(nL).

2.7 CBB – A Coding-Based Byzantine Broadcast

Algorithm

In this section, we present CBB, a coding-based error-free Byzantine broad-

cast algorithm. For comparison, we first introduce Digest, a PBFT-like algo-

rithm for Byzantine broadcast. Both Digest and CBB have similar structure

as CBC. They both divide the L-bit input value x into generations of D bits,

and a diagnose graph Diag Graph is maintained across generations.

40

Figure 2.1: Normal case operation of Digest. Dashed arrows represent
broadcasting using Broadcast Binary.

2.7.1 Digest: A PBFT-Like Algorithm

In this section we briefly describe a simple PBFT-like algorithm: Digest.

Digest provides the readers a general idea how algorithms such as those in

[23, 25, 39, 28] utilize collision-resistant hash functions to achieve Byzantine

broadcast. It will also serve as a baseline for the performance evaluation of

the CBB algorithm.

In Digest, the Byzantine broadcast of the g-th generation starts with the

source node n multicasting a pre-prepare message 〈PRE− PREPARE, x(g)〉 to
all of the peers, where x(g) is the input for the g-th generation.

After a peer i (i < n) receives pre-prepare message 〈PRE− PREPARE, xi(g)〉
from the source node n, it sends one prepare message 〈PREPARE, ki,j, di,j〉
to each peer j (j < n), where ki,j is a randomly generated key, and di,j =

H(xi(g), ki,j) is xi(g)’s “digest” computed using key ki,j and a pre-determined

collision-resistant hash function H .

A peer i waits until it receives all n − 2 prepare messages from the other

peers. Then it checks if dj,i = H(xi(g), kj,i) for all j. If yes, then node i sets

Detectedi to FALSE. Otherwise, it sets Detectedi to TRUE. Then node i

broadcasts an one-bit message 〈Detectedi〉 to the rest of the network (includ-

ing the source node n), using Broadcast Binary. Since Broadcast Binary

is error-free, all fault-free nodes receive identical Detectedi from each peer i.

When all n− 1 instances of Broadcast Binary terminate, every node (in-

cluding the source node n) checks if all Detectedj ’s are FALSE. If yes, it

agrees on its local copy of x(g) (xi(g) if the node is a peer i). Otherwise,

failure is detected and diagnosis will be performed. Figure 2.1 illustrates the

41

failure-free operations of Digest.

Failure-Case Operation

It should not be hard to see that whenever at least one of the Detectedi is

TRUE, the faulty node(s) must have misbehaved in one or some combination

of the following ways: (1) a faulty source node sends different x(g) to different

peers; (2) a faulty peer i sends incorrect prepare message to one or more

peers; or (3) a faulty peer i broadcasts Detectedi =TRUE even though it

should be FALSE. Different algorithms handle failures differently. Here we

present one technique known as “dispute control” [37], which is similar to

the diagnosis stage of the CBC algorithm from Section 2.5.

In dispute control, when failure is detected, every node broadcasts all mes-

sages it has sent and received in the current generation, using Broadcast Binary.

The peers first agree on the value x(g) broadcast by the source using

Broadcast Binary. Then, by comparing the information broadcast by each

pair of nodes, the fault-free nodes will be able to jointly update the diagnosis

graph Diag Graph identically. By the end of dispute control, at least one of

the following claims is true.

1. One new node is correctly identified as faulty and this node has not been

identified as faulty before. This node is then isolated from the rest of

the system, by having all edges attached to its corresponding vertex in

Diag Graph removed. This is similar to Line 3(f) in Algorithm CBC.

2. One new pair of nodes, say nodes a, b, are “in dispute” with each other,

i.e., their broadcasts, using Broadcast Binary, contradict each other.

When a node pair a, b is found in dispute, it is guaranteed that (i) at

least one of these two nodes is faulty, and (ii) these two nodes trust

each other at the beginning of the current generation. Then the edge

connecting the corresponding vertices in Diag Graph is removed. This

is similar to Line 3(e) in Algorithm CBC.

The correctness of the above claims follows from a similar argument as

those for Lines 3(e)-3(f) in Algorithm CBC. Our network-aware Byzan-

tine broadcast algorithm NAB (presented in Chapter 3) also uses a similar

dispute control structure with a few additional steps, which is discussed in

42

detail in Appendix B.2. The discussion of steps DC1-DC3 in Appendix B.2

can serve as a proof of correctness for two claims above, by substituting Vk
as Diag Graph.

Following the same argument for Line 3(g) in Algorithm CBC, any node

that is accused by at least f + 1 other nodes must be faulty, and it will be

isolated, in the same way as Line 3(g) in Algorithm CBC. It then follows

that dispute control will be performed for at most f(f + 1) times. If at any

time the source node n is identified as faulty, all fault-free nodes terminate

the algorithm and decide on a default output.

Correctness and Traffic Load Analysis

The correctness of Digest follows from the correctness of PBFT [23]. Now

we consider the communication complexity of Digest in the failure-free case,

because this is the scenario that determines the performance of the system

[23]. Also similar to our earlier discussion of the communication complexity

of CBC, the failure-free case dominates the complexity of the algorithm for

sufficiently large value of L. Recall that D is the size of each generation. Let

κ be the size of the key-digest pair (ki,j, di,j) and B = Θ(n2) be the com-

munication cost of each execution of Broadcast Binary. The per-generation

complexity imposed by Digest is

(n− 1)D + (n− 1)(n− 2)κ+ (n− 1)B (2.8)

= (n− 1)D + κO(n2) +O(n3). (2.9)

So for sufficiently large D (D = Ω(κn2) and D = Ω(n3)), the per-generation

of Digest is roughly (n− 1)D.

2.7.2 The CBB Algorithm

CBB has a similar structure as Digest. But instead of using hashing, it uses

the technique of error-detection coding, similar to CBC. The pseudo-code of

CBB is presented in Algorithm 2.7.4.

43

Algorithm 2.7.4 CBB Algorithm (generation g)

In the following steps, Ri is a 2(n−1)-dimension vector, which is initialized

as all ⊥. For every peer i: Ri[k]← Rj [k] whenever node i receives Rj [k] from

a trusted node j. If a trusted node j does not send anything when it should

send Rj[k] or Sk, then Ri[k]← 0.

Source node n:

1.Encode x(g) into (S1, · · · , S2(n−1)) = Cn−f(x(g)).

2.For each trusted peer i (i < n): Send (Si, Si+(n−1)) to node i.

Each peer i (i < n) trusted by source node n:

3.(Ri[i], Ri[i+ (n− 1)])← (Si, Si+(n−1)) received from node n in step 2.

4.Send Ri[i] to all trusted peers.

Each peer i (i < n) not trusted by source node n:

5.If k < n− f peers are trusted by both node i and source node n, node

i receives < n− f symbols in step 4:

Receive Rj [j + (n − 1)] from each peer j trusted by both node i and

source node n, until Ri has n− f non-null symbols.

6.Now Ri has n− f non-null symbols:

Decode Z = C−1
n−f(Ri) and set Ri[i] to be the i-th symbol of Z. If the

decoding fails, set Ri[i] to 0.

7.Send Ri[i] to all trusted peers.

Every peer i:

8.If Ri /∈ Cn−f , then Detectedi ← TRUE;

Otherwise Detectedi ← FALSE.

9.Broadcast Detectedi using Broadcast Binary.

10.Receive Detectedj from each node j (broadcast in step 9):

If Detectedj = FALSE for all j, agree on C−1
n−f(Ri).

Otherwise perform dispute control (Similar to Digest).

44

11.Proceed to the next generation.

Lines 1 to 3: These steps correspond to the source node n multicasting

the pre-prepare message to the peers in Digest. The difference lies in that,

in CBB, the source node n encodes the input of the current generation x(g)

into 2(n − 1) coded symbols with code Cn−f and only sends a small set

of the coded symbols to each of the trusted peers, rather than sending the

whole D bits of x(g) to every peer as in Digest. In particular, two symbols

(Si, Si+(n−1)) are sent to every peer i that the source node n trusts.

Lines 4 to 7: These steps correspond to the peers exchanging prepare

messages in Digest. Each peer i trusted by the source node n simply relays

Si to all of its trusted peers after it is received from source node n (Figure

2.2(a)).

For a peer i not trusted by source node n, if there is any, it first gathers

enough (≥ n−f) coded symbols from the peers trusted by both itself and the

source node n (Figure 2.2(b)). Notice that both of nodes n and i must each

trust at least n−f−1 other peers; otherwise, at least one of them is accused by

at least f + 1 other nodes, and should have already been identified as faulty

and isolated from the rest of the system. Through simple counting, there

must be at least n− 2f peers that are trusted by both nodes n and i. Given

that n ≥ 3f + 1, these peers together receive at least 2(n− 2f) ≥ n− f + 1

coded symbols from the source node n. So it is guaranteed that peer i will

receive enough coded symbols in line 5, which are then used to generate

the i-th symbol of the codeword that peer i should have received from source

node n if they had trusted each other. Then node i sends the i-th symbol to

all its trusted peers (Figure 2.2(c)).

Lines 8 and 9: Every fault-free peer i checks whether the set of symbols

received from its trusted node belong to part of a valid codeword of Cn−f by

trying to apply the decoding function C−1
n−f(Ri). If the decoding fails, i.e.,

Ri /∈ Cn−f , node i detects a failure/misbehavior. Then node i broadcasts

Detectedi using Broadcast Binary. This is the counterpart of checking mi

against the received hash value and key pairs in Digest.

45

(a) Source node 4 does not trust node 3.
Transmissions by nodes 4, 1 and 2 are
shown. Node 3 receives 2 < n − f = 3
coded symbols by the end of step 4.

(b) Peer 3 receives S4 from node 1 so that
it has 3 = n− f coded symbols. Then node
3 uses them to reconstruct S3 in step 6.

(c) Peer 3 sends S3 to all its trusted peers.
By the end of step 7, all peers share packets
S1, S2, S3.

Figure 2.2: Example: One peer does not trust the source with n = 4 and
f = 1. Two nodes connected by an edge in the figure trust each other. The
direction of an arrow indicates the direction of a transmission along that
edge. Next to each arrow, the coded symbol(s) transmitted on that edge is
listed. The boxes near to the peers indicate the coded symbols that are
available to the peers by the end of steps 4, 6 and 7, respectively.

Line 10: If no peer claims that it detects a failure, then each peer i agrees

on C−1
n−f(Ri) as the output of the current generation. Otherwise, dispute

control is performed in the same way as in Digest.

2.7.3 Correctness and Communication Complexity of CBB

The correctness of CBB is guaranteed by Theorem 2.2. The proof is similar to

that for Lemma 2.3. The proof is included in Appendix A.4 for completeness.

Theorem 2.2 If none of the peers claims failure detected, the peers agree

on an identical output y. In the case the source node n is fault-free, y = x.

46

The communication complexity of CBB, denoted as CCBB, is computed

similarly to that of CBC. In each generation

• Lines 1-7: every node i receives at most n symbols, each of D/(n−f)

bits, from the nodes that it trusts. So at most n(n−1)
n−f

D bits in total are

transmitted by all n nodes.

• Lines 8-9: every peer i that is not identified as faulty broadcasts one

bit Detectedi with Broadcast Binary. So at most (n − 1)B bits are

transmitted.

• Dispute control: every symbol transmitted in Lines 1-7 is broadcast by

two nodes with Broadcast Binary. So the complexity is 2n(n−1)
n−f

DB

bits.

Recall that there are L/D generations in total, and dispute control is

performed by at most f(f+1) times. So the total communication complexity

of CBB can be formulated as

CCBB(L) =
n(n− 1)

n− f
L+ (n− 1)B

L

D
+ f(f + 1)

2n(n− 1)

n− 2f
DB

=
n(n− 1)

n− f
L+O(n4L0.5), if D = Θ(L0.5/n). (2.10)

Similar to CCBC(g,D), we define the average per-generation complex-

ity for performing g instances of Byzantine broadcast on D-bit values as

CCBB(g,D), which is formulated as

CCBB(g,D) =
n(n− 1)

n− f
D + (n− 1)B +

f(f + 1)

g

2n(n− 1)

n− 2f
DB

= O

((
n+

n5

g

)
D + n3

)
. (2.11)

So for D = Ω(n2) and g = Ω(n5), the per-generation communication com-

plexity imposed by CBB is roughly n(n−1)
n−f

D < 1.5(n − 1)D, since f < n/3.

Recall that the cost of Digest is approximately (n − 1)D. So in terms of

traffic load, CBB is at most 50% more expensive than Digest. But the de-

coding function C−1
n−f() is much less expensive in computational complexity

for small f , compared to the hash function used in Digest. The performance

of the algorithms is determined by the combination of communication and

47

computational costs. As we will see later, according to experimental results,

CBB performs comparably with Digest, without the need for a secure hash

function.

2.7.4 Implementation

For performance evaluation, we implemented both Digest and CBB in Linux.

In this section, we discuss some of our implementation choices and some

optimization we adopted for CBB.

MultiThreading

We implement both Digest and CBB in a multithreading fashion. On every

node, there is one listener thread for each of the other nodes, which simply

accepts incoming connection requests from the node that it listens to. TCP

is used for communication between every pair of nodes. Also since Digest

and CBB share the same structure, it also makes it easier to share the same

code between the two algorithms.

A worker thread is launched whenever a listener thread receives a TCP

connection request. The worker thread establishes a TCP session with the

requesting node. When the TCP session completes, the worker thread checks

whether the received information follows the specification of the algorithm,

and if enough messages have been received from different nodes. If yes, it

proceeds to the consistency checking part (checking the digests against the

local generation in Digest, and decoding C−1(Ri) in CBB) and the rest of

the algorithm.

Of course, the algorithms can be implemented in the sequential manner as

well. However, this will require careful coordination among the nodes about

when and who should transmit to whom. Otherwise the system will end up

deadlocked when two nodes try to send messages to each other. This can be

very complicated in large systems. With multithreading, this complication

is avoided.

Multithreading also makes it very easy to incorporate different optimiza-

tions. For example, with “speculative execution” technique in Zyzzyva [24], a

node executes the request speculatively when it receives a minimum number

of matching prepare messages, even if it cannot confirm that all other nodes

48

have accepted the same request. So by the time it confirms an agreement of

the request, the output has already been computed and is waiting to be sent

to the client. This technique can be incorporated into our implementation

by having the worker thread launch a “speculate” thread for performing the

request speculatively.

Synchrony

Although we assume a synchronous system model in the previous discus-

sion, bad things can happen in real life. Synchrony might be violated tem-

porarily in practice. For example, packets might be lost in the network

and never reach the destination. Since we use TCP as the underlying com-

munication algorithm, packet losses in the middle of a TCP session have

been taken care of by the retransmission mechanism of TCP. So the only

problem packet losses can cause is when one node attempts to create a con-

nection with another node. Our implementation incorporates this concern

by allowing each node to try to connect to another node for no more than

MAX ATTEMPTS times. If a node fails to create a connection with another node

after MAX ATTEMPTS attempts, it considers that node as being faulty. In our

experiments, MAX ATTEMPTS is set to 2.

Optimization for single failure

In replication systems where each individual replica is reasonably reliable,

the probability that more than one node fails at the same time is very small.

In this case, designing for f = 1 suffices, and CBB can be optimized to

further reduce the computational cost as follows.

Instead of using a (2(n−1), n−1) Reed-Solomon code, we use an (n, n−1)
Reed-Solomon code, which is in fact a parity code: S1, · · · , Sn−1 are just raw

data symbols, and the parity symbol Sn = ⊕n−1
i=1 Si, where ⊕ denotes bitwise

exclusive or (XOR). Then we simply substitute all Si+(n−1) in Algorithm

2.7.4 with Sn. For failure detection, a peer just needs to check if the received

symbols pass the parity check. If all peers claim with Broadcast Binary that

their symbols passed the parity check, then the output is simply S1, · · · , Sn−1.

The computation for this modified CBB algorithm is very efficient: each node

just needs to perform bitwise XOR’s.

49

2.7.5 Experimental Evaluation

We dedicate this section to investigations of how Byzantine broadcast algo-

rithms perform in real systems. We implemented four algorithms in Linux:

Digest, CBB and the following two:

• BASIC: This is the classic algorithm developed by Pease, Shostak and

Lamport [3]. It is also used to realize Broadcast Binary in the other

algorithms. When there is at most one faulty node (f = 1), BASIC

is very simple: the source sends the value x to every peer and the

peer forwards that to every other peer. The output at each peer is

computed as the majority of the received values. If there is no clear

majority, then all peers know that source must be faulty and will agree

on some default message.

• BTH: The error-free Byzantine broadcast algorithm proposed by Beerliova-

Trubiniova and Hirt in [31]. This algorithm uses similar ideas of cod-

ing and fault diagnosis as CBB to reduce communication complexity

to O(nL). But it has a higher communication and computational cost

than CBB.

We conduct our experiments in systems of both four and five nodes: four

(or five) Dell Inspiron 1545 laptops connected by a Netgear GS108 gigabit

switch. Each Inspiron 1545 was running Ubuntu 9.04 and a 2.0 GHz Intel

Core 2 Duo Processor T6400. One Inspiron machine was designated to be

the source node and the remaining three (or four) machines made up the

group of peers. In order to ensure consistency between test runs, the role

performed by each machine remained constant throughout the experiment.

In Digest, we use SHA-256 as the collision-resistant hash function. We use

the realization of SHA-256 from the OpenSSL toolkit [48]. The results with

five nodes are very similar to the ones with four nodes. So we only present

results for four nodes in this section.

To minimize any external error introduced by thread scheduling and back-

ground services, each data point in the following discussion/figures represents

an average of 100 identical trials. To further reduce any skew, the trials

between the three different algorithms were interleaved so that any unfore-

seeable incident would affect the algorithms as evenly as possible. In each

trial, the actual content of each generation was randomly generated. This

50

random generation occurred at run time and differed for each algorithm. We

see no reason for the content of each generation to have any bearing on the

results of our experiment. For each set of 100 trials, the generation size D

and the number of generations g is fixed. All algorithms were timed from

the moment the source begins executing at the first generation until the

moment that broadcast of all g generations terminates at the source node.

Timing only the source is an accurate measure since for every algorithm the

source cannot terminate until it has reliably received all n− 1 Decidedi bits

as FALSE from Broadcast Binary. So when the source terminates, it is

guaranteed that all peers have agreed upon the correct information.

Effects of Generation Sizes

We first test the failure-free performance of CBB, Digest, BASIC and BTH

for different values of generation size D. In particular, we measure each

algorithm’s throughput: total size of data in bytes divided by the time it

takes to finish broadcasting. For the experiments of four nodes (n = 4 and

f = 1), the per-generation communication costs of the four implemented

algorithms for large D are approximately,

• CBB: n(n− 1)D/(n− f) = 4D;

• Digest: (n− 1)D = 3D;

• BASIC: 9D;

• BTH: 2n(n− 1)D/(n− 2f) = 12D.

It follows that, if only communication cost is considered, the throughput of

Digest should be 4/3 times that of CBB, while the throughput of BASIC and

BTH should be 4/9 and 1/3 times the throughput of CBB, respectively.

Figure 2.3(a) shows how the throughputs of the four tested algorithms

change as the generation size D varies from 1.5KB to 1500KB, while the total

size L is fixed to 1500KB, and Figure 2.3(b) zooms-in for generation size D ≤
30KB. We first observe that CBB and Digest achieve similar throughput for

all values of D. For all values of D, the throughput of CBB is at least as

high as that of Digest, and for D ≥ 150KB, the throughput of CBB is even

higher than that of Digest by roughly 3% ∼ 8%. This justifies our earlier

51

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 200 400 600 800 1000 1200 1400 1600

Th
ro

ug
hp

ut
 (K

by
te

s/
se

c)

Generation size D (Kbytes)

Total Size 1500 KB, n = 4

CBB
Digest
BASIC

BTH

(a) Generation size ≤ 1500 KB

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30

Th
ro

ug
hp

ut
 (K

by
te

s/
se

c)

Generation size D (Kbytes)

Total Size 1500 KB, n = 4

CBB
Digest
BASIC

BTH

(b) Generation size ≤ 30 KB

Figure 2.3: Throughput under different generation sizes.

argument that although CBB introduces more traffic than Digest does, it

can still outperform Digest in practice, since CBB does not need to compute

any collision-resistant hash function, resulting in a lower computational cost

than Digest.

We next observe that the throughput of BASIC is roughly 60% that of

CBB for D ≥ 150KB. This is slightly higher than we expect according

to the comparison of these two algorithms’ per-generation communication

cost. We believe this is the joint effect of the extra communication overhead

in CBB introduced by the executions of Broadcast Binary for broadcast-

52

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 50 100 150 200 250

Fa
ul

t E
ffe

ct
 R

at
io

Number of batches after failure

One "crazy" faulty peer, D = 30 KB, n = 4

CBB
Digest
BASIC

Figure 2.4: One “crazy” faulty peer keeps sending arbitrary corrupted
messages to all other nodes, starting from the first generation.

ing the Detected bits and the computational overhead introduced by en-

coding/decoding for the Reed-Solomon code Cn−f . Finally, BTH achieves

roughly 15% of CBB’s throughput. This is about 1/2 lower than we expect

according to the previous analysis. We believe this is mainly because that

BTH uses a more complicated code than CBB, which results in higher com-

putational cost and hence reduces its throughput, and includes an additional

round of messages exchange than CBB.

Performance with Failure

We also conduct tests for the failure cases. To quantify the effect of the

presence of one faulty node on the performance of the algorithms, we define

“fault effect ratio” as:

Throughput after failure

Throughput before failure
. (2.12)

It reflects how much slower/faster an algorithm becomes when one of the

nodes goes “bad” (or fails). At this time, we have only implemented the

normal case of BTH. So we will only compare CBB, Digest and BASIC

below.

We first test the scenario when a faulty peer goes “crazy”: the faulty peer

sends arbitrary corrupted messages to all other nodes. Figure 2.4 shows how

53

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

Fa
ul

t E
ffe

ct
 R

at
io

Number of batches after failure

One "milder" faulty peer, D = 30 KB, n = 4

CBB
Digest
BASIC

Figure 2.5: One “milder” faulty peer keeps sending arbitrary corrupted
messages to only one other node, starting from the first generation.

the fault effect ratios of CBB, Digest and BASIC change after the faulty

peer becomes “crazy”. It is easy to see that BASIC’s performance does

not depend on the presence of failures, so its fault effect ratio is always 1.

On the other hand, immediately after the faulty peer becomes “crazy”, the

fault effect ratio is as small as 0.2 for CBB and about 0.3 for Digest. This

means when a faulty node starts to misbehave, throughputs of CBB and

Digest are reduced to approximately 20% and 30% of their throughput before

failure, respectively. The reduction is due to the fault diagnosis process,

in which every node is required to broadcast everything it has received or

sent using Broadcast Binary. As the number of generations after failure

increases, the fault effect ratio increases. After 250 generations, the fault

effect ratio becomes larger than 1 (roughly 1.15 - 1.25), which implies that

when a faulty node misbehaves, the system, in fact, becomes faster in the

long run. It may seem counter-intuitive that a faulty node could improve the

performance. The explanation for this phenomenon is that since the faulty

peer sends corrupted messages to all other nodes, conflicts are found between

the faulty peer and all other nodes during the fault diagnosis process. Then

the faulty peer is immediately identified by the others. Hence all fault-free

nodes will not communicate with the faulty peer, and do not need to check

the consistency of the faulty peer’s messages in the subsequent generations.

As a result, both communication and computation costs are reduced after the

54

first generation, and hence the algorithms become more efficient. The cost

of diagnosis in the first generation becomes negligible once it is amortized

over a large number of generations. Since the computational cost of the hash

function in Digest is much higher than the decoding function of CBB, Digest

saves more than CBB from identifying the faulty node. As a result, the fault

effect ratio of Digest is always slightly larger than that of CBB.

We also test a “milder” faulty peer, which only sends corrupted messages

to one fault-free peer. In this scenario, only one conflict is found and the

faulty node is not exactly identified. In Figure 2.5, a similar trend as in

Figure 2.4 is observed. R converges to 1 when the number of generations

is large, which means that the performance is the same as in normal-case,

because the faulty node is not isolated.

Both tests show that with the fault diagnosis process in Digest and CBB,

the misbehavior of faulty nodes will only degrade the performance of the

system temporarily, and the long term performance will not be degraded (or

may even be improved), even if the faulty nodes persistently misbehave.

2.8 Summary

In this chapter, we have presented two efficient error-free Byzantine fault-

tolerant algorithms: CBC for the consensus problem, and CBB for the broad-

cast problem. Both algorithms require O(nL) total bits of communication

for achieving Byzantine consensus and Byzantine broadcast, respectively, of

L bits for sufficiently large L. These algorithms make no cryptographic as-

sumption.

55

CHAPTER 3

NETWORK-AWARE BYZANTINE
AGREEMENT ALGORITHM DESIGN

3.1 Introduction

In Chapter 2, we present a Byzantine consensus algorithm CBC and a Byzan-

tine broadcast algorithm CBB that solve the consensus and broadcast prob-

lems with communication complexity O(nL) for sufficiently large L. Both

CBC and CBB, as well as most existing Byzantine consensus/broadcast al-

gorithms, are network-oblivious, by which we mean that these algorithms are

designed without taking into account constraints of the underlying commu-

nication networks.

In this chapter, we study the design of Network-Aware Byzantine broad-

cast algorithms. The proposed Byzantine broadcast algorithms are “network-

aware” in the sense that their design takes the link capacities into account. In

particular, we consider the problem of maximizing the throughput of Byzan-

tine broadcast in synchronous networks of point-to-point links, wherein each

directed communication link is subject to a “capacity” constraint. Informally

speaking, throughput of Byzantine broadcast is the number of bits that can

be broadcast from the source to the peers per unit time (on average), under

the worst-case behavior by the faulty nodes. Despite the large body of work

on Byzantine consensus and broadcast [49, 35, 34, 36, 31, 38], performance

of consensus and broadcast in arbitrary point-to-point network has not been

investigated previously. When capacities of the different links are not iden-

tical, previously proposed algorithms can perform poorly. In fact, one can

easily construct example networks in which previously proposed algorithms

achieve throughput that is arbitrarily worse than the optimal throughput.

Main contributions: This chapter studies throughput and capacity of

Byzantine broadcast in point-to-point networks.

56

1. We develop a Network-Aware Byzantine broadcast algorithm NAB for

arbitrary point-to-point networks wherein each directed communication

link is subject to a capacity constraint.

2. We derive an upper bound on the capacity of BB in arbitrary point-to-

point networks.

3. We show that NAB can achieve throughput at least 1/3 of the capacity

in arbitrary point-to-point networks. When the network satisfies an

additional condition, NAB can achieve throughput at least 1/2 of the

capacity.

4. We develop Capacity-Achieving network-aware Byzantine broadcast

(CAB) algorithms for two special families of networks, namely 4-node

networks and symmetric fully connected networks.

This chapter is structured as follows. In Section 3.2, we first recapitulate

the definition of the Byzantine broadcast problem, and introduce the formal

definition of the point-to-point network. We then define throughput and

capacity of Byzantine broadcast in a given network. Overview of the NAB

algorithm is then presented in Section 3.3. Detailed discussion of the NAB

algorithm is given in Sections 3.4 and 3.6. A general upper bound on the

capacity of Byzantine broadcast in arbitrary point-to-point networks is then

proved in Section 3.6.2. Then in Section 3.7 we introduce the CAB algorithm,

which can achieve a throughput arbitrarily close to the upper bound in 4-

nodes networks and symmetric fully-connected networks.

3.2 Problem Definition and Models

We have introduced the definition of the Byzantine broadcast problem in

Chapter 2.1. For convenience in the following discussion, we restate the

definition below. We consider a synchronous system consisting of n nodes,

named 1, 2, · · · , n, with one node designated as the sender or source node. In

particular, we assume here that node 1 is the source node. Source node 1 is

given an input value x containing L bits, and the goal here is for the source

to broadcast its input to all the other nodes. The following conditions must

be satisfied when the input value at the source node is x:

57

• Termination: Every fault-free node i must eventually decide on an

output value of L bits; let us denote the output value of fault-free node

i as yi.

• Agreement: All fault-free nodes must agree on an identical output

value, i.e., there exists y such that yi = y for each fault-free node i.

• Validity: If the source node is fault-free, then the agreed value must

be identical to the input value of the source, i.e., y = x.

Failure Model: The faulty nodes are controlled by an adversary that has

a complete knowledge of the network topology, the algorithm, and the infor-

mation the source is trying to send. No secret is hidden from the adversary.

The adversary can take over at most f nodes at any point during execution of

the algorithm, where f < n/3. These nodes are said to be faulty. The faulty

nodes can engage in any kind of deviations from the algorithm, including

sending incorrect or inconsistent messages to the neighbors.

We assume that the set of faulty nodes remains fixed across different in-

stances of execution of the BB algorithm. This assumption captures the

conditions in practical replicated server systems. In such a system, the repli-

cas may use Byzantine broadcast to agree on requests to be processed. The

set of faulty (or compromised) replicas that may adversely affect the agree-

ment on each request does not change arbitrarily. We model this by assuming

that the set of faulty nodes remains fixed over time.

When a faulty node fails to send a message to a neighbor as required by the

algorithm, we assume that the recipient node interprets the missing message

as being some default value.

Network Model: We assume a synchronous point-to-point network mod-

eled as a directed simple graph G(V, E), where the set of vertices V =

{1, 2, · · · , n} represents the nodes in the point-to-point network, and the

set of edges E represents the links in the network. The capacity of an edge

e ∈ E is denoted as ze. With a slight abuse of terminology, we will use the

terms edge and link interchangeably, and use the terms vertex and node inter-

changeably. We assume that n ≥ 3f + 1 and that the network connectivity

is at least 2f + 1 (these two conditions are necessary for the existence of a

correct BB algorithm [49]).

58

In the given network, links may not exist between all node pairs. Each

directed link is associated with a fixed link capacity, which specifies the max-

imum amount of information that can be transmitted on that link per unit

time. Specifically, over a directed edge e = (i, j) with capacity ze bits/unit

time, we assume that up to zeτ bits can be reliably sent from node i to node j

over time duration τ (for any non-negative τ). This is a deterministic model

of capacity that has been commonly used in other work [50, 45, 51, 46]. All

link capacities are assumed to be positive integers. Rational link capacities

can be turned into integers by choosing a suitable time unit. Irrational link

capacities can be approximated by integers with arbitrary accuracy by choos-

ing a suitably long time unit. Propagation delays on the links are assumed to

be zero (relaxing this assumption does not impact the correctness of results

shown for large input sizes). We also assume that each node correctly knows

the identity of the nodes at the other end of its links.

This point-to-point communication model has been widely used for wired

networks. It can also be used for wireless networks, if capacity constraint is

imposed for each point-to-point wireless link.

Throughput and Capacity of Byzantine Broadcast

When defining the throughput of a given BB algorithm in a given network,

we consider Q ≥ 1 independent instances of BB. The source node is given

an L-bit input for each of these Q instances, and the validity and agreement

properties need to be satisfied for each instance separately (i.e., independent

of the outcome for the other instances).

For any BB algorithm A, denote t(G, L,Q,A) as the duration of time re-

quired, in the worst case, to complete Q instances of L-bit Byzantine broad-

cast, without violating the capacity constraints of the links in G. Throughput
of algorithm A in network G for L-bit inputs is then defined as

T (G, L,A) = lim
Q→∞

LQ

t(G, L,Q,A) .

We then define capacity CBB as follows.

Capacity CBB of Byzantine broadcast in network G is defined as the supre-

mum over the throughput of all algorithms A that solve the BB problem and

59

all values of L. That is,

CBB(G) = sup
A,L

T (G, L,A). (3.1)

Generalization of the Problem

Recall that the goal of Byzantine broadcast is for all nodes in the system,

except for the source node, to learn about the input value (if source is fault-

free). In practice, similar to the multicast problem in networking, we may

only need to reliably deliver the input value to a subset of the nodes in the

system, namely the receivers; there are some other nodes in the system,

namely the helpers, that are just to “help” the delivery of the input value

and themselves do not necessary need to learn the input value. For example,

an Ethernet switch or a router can be considered as a helper node. If this is

the case, then the Byzantine Broadcast problem can be generalized in many

ways. We list some possibly interesting generalizations below:

• We do not differentiate the faulty nodes: the only constraint on the

capability of the adversary is that it can control up to f nodes (can

include the source, the receivers, and the helpers).

• We differentiate the faulty nodes: the adversary can control up to f1

non-helper nodes (source and receivers), and up to f2 helpers.

• In addition to the link capacity constraints in G, each helper node has

a total traffic constraint. In other words, the total number of bits a

helper node can send and receive together per unit time cannot exceed

its total traffic constraint.

There are many more ways to generalize the problem. However, for this

dissertation, we only consider the original problem in which all non-source

nodes in the system are the receivers and the only constraints are the link

capacity constraints.

60

3.3 Algorithm Overview

Each instance of our NAB algorithm performs Byzantine broadcast of an L-

bit value. We assume that the NAB algorithm is used repeatedly, and during

all these repeated executions, the cumulative number of faulty nodes is upper

bounded by f . Due to this assumption, the algorithm can perform well by

amortizing the cost of fault tolerance over a large number of executions.

Larger values of L also result in better performance for the algorithm. The

algorithm is intended to be used for sufficiently large L, to be elaborated

later.

The k-th instance of NAB executes on a network corresponding to graph

Gk(Vk, Ek), defined as follows:

• For the first instance, k = 1, and G1 = G. Thus, V1 = V and E1 = E .

• The k-th instance of NAB occurs on graph Gk in the following sense:

(i) all the fault-free nodes know the node and edge sets Vk and Ek, (ii)
only the nodes corresponding to the vertices in Vk need to participate

in the k-th instance of BB, and (iii) only the links corresponding to the

edges in Ek are used for communication in the k-th instance of NAB

(communication received on other links can be ignored).

During the k-th instance of NAB using graph Gk, if misbehavior by

some faulty node(s) is detected, then, as described later, additional

information is gleaned about the potential identity of the faulty node(s).

In this case, Gk+1 is obtained by removing from Gk appropriately chosen

edges and possibly some vertices (as described later).

On the other hand, if during the k-th instance, no misbehavior is de-

tected, then Gk+1 = Gk.

The k-th instance of NAB algorithm consists of three phases, as described

next. The main contributions of this chapter are (i) the algorithm used in

Phase 2 below, and (ii) a performance analysis of NAB.

If graph Gk does not contain the source node 1, then (as will be clearer

later) by the start of the k-th instance of NAB, all the fault-free nodes already

know that the source node is surely faulty; in this case, the fault-free nodes

can agree on a default value for the output, and terminate the algorithm.

Hereafter, we will assume that the source node 1 is in Gk.

61

Phase 1: Unreliable Broadcast

In Phase 1, source node 1 broadcasts L bits to all the other nodes in Gk. This
phase makes no effort to detect or tolerate misbehavior by faulty nodes. As

elaborated in Appendix B.1, unreliable broadcast can be performed using a

set of spanning trees embedded in graph Gk. Now let us analyze the time

required to perform unreliable broadcast in Phase 1.

MINCUT (Gk , 1, j) denotes the minimum cut in the directed graph Gk
from source node 1 to node j. Let us define

γk = min
j∈Vk

MINCUT (Gk, 1, j).

MINCUT (Gk, 1, j) is equal to the maximum flow rate possible from node 1

to node j ∈ Vk. It is well-known [52] that γk is the maximum rate achievable

for unreliable broadcast from node 1 to all the other nodes in Vk, under the
capacity constraints on the links in Ek. Thus, the least amount of time in

which L bits can be broadcast by node 1 in graph Gk is given by1

L / γk. (3.2)

Clearly, γk depends on the capacities of the links in Gk. For example, if

Gk were the directed graph in Figure 3.1(a), then MINCUT (Gk, 1, 2) =

MINCUT (Gk, 1, 4) = 2, MINCUT (Gk, 1, 3) = 3, and hence γk = 2.

(a) (b)

Figure 3.1: Example graphs.

1To simplify the analysis, we ignore propagation delays. Analogous results on through-
put and capacity can be obtained in the presence of propagation delays as well.

62

At the end of the broadcast operation in Phase 1, each node should have

received L bits. At the end of Phase 1 of the k-th instance of NAB, one of

the following four outcomes will occur:

(i) the source node 1 is fault-free, and all the fault-free nodes correctly

receive the source node’s L-bit input for the k-th instance of NAB, or

(ii) the source node 1 is fault-free, but some of the fault-free nodes receive

incorrect L-bit values due to misbehavior by some faulty node(s), or

(iii) the source node 1 is faulty, but all the fault-free nodes still receive an

identical L-bit value in Phase 1, or

(iv) The source node is faulty, and all the fault-free nodes do not receive an

identical L-bit value in Phase 1.

The values received by the fault-free nodes in cases (i) and (iii) satisfy the

agreement and validity conditions, whereas in cases (ii) and (iv) at least one

of the two conditions is violated.

Phase 2: Failure Detection

Phase 2 performs the following two operations. As stipulated in the fault

model, a faulty node may not follow the algorithm specification correctly.

• (Step 2.1) Equality check: Using an Equality Check algorithm, the nodes

in Vk perform a comparison of the L-bit value they received in Phase

1, to determine if all the nodes received an identical value. The source

node 1 also participates in this comparison operation (treating its input

as the value “received from” itself).

Section 3.4 presents the Equality Check algorithm, which is designed to

guarantee that if the values received by the fault-free nodes in Phase

1 are not identical, then at least one fault-free node will detect the

mismatch.

• (Step 2.2) Agreeing on the outcome of equality check: Using a previ-

ously proposed Byzantine broadcast algorithm, such as [3], each node

performs Byzantine broadcast of a 1-bit flag to other nodes in Gk indi-

cating whether it detected a mismatch during Equality Check.

63

If any node broadcasts in step 2.2 that it has detected a mismatch, then

subsequently Phase 3 is performed. On the other hand, if no node an-

nounces a mismatch in step 2.2 above, then Phase 3 is not performed; in

this case, each fault-free node agrees on the value it received in Phase 1, and

the k-th instance of NAB is completed.

We will later prove that, when Phase 3 is not performed, the values agreed

above by the fault-free nodes satisfy the validity and agreement conditions

for the k-th instance of NAB. On the other hand, when Phase 3 is performed

during the k-th instance of NAB, as noted below, Phase 3 results in correct

outcome for the k-th instance.

When Phase 3 is performed, Phase 3 determines Gk+1. Otherwise, Gk+1 =

Gk.

Phase 3: Dispute Control

Phase 3 employs a dispute control mechanism that has also been used in

prior work [37, 5] and our design of linear-complexity Byzantine consensus

and broadcast algorithms (CBC and CBB) in the previous chapter. Dispute

control is used to update the communication graph Gk used for the each

instance of NAB. The way Gk is updated is similar to the way in which

Diag Graph is updated in CBC and CBB. The main difference is that, in

order to better utilize the link capacities in the network, some operations

performed in dispute control of NAB are more complicated than in CBC and

CBB. Appendix B.2 provides the details of the dispute control algorithm used

in Phase 3. Here we summarize the outcomes of this phase – this summary

should suffice for understanding the main contributions of this chapter.

The dispute control in Phase 3 has very high overhead, due to the large

amount of data that needs to be transmitted. From the above discussion of

Phase 2, it follows that Phase 3 is performed only if at least one faulty node

misbehaves during Phases 1 or 2. The outcomes from Phase 3 performed

during the k-th instance of NAB are as follows.

• Phase 3 results in correct Byzantine broadcast for the k-th instance of

NAB. This is obtained as a byproduct of the Dispute Control mecha-

nism.

• By the end of Phase 3, either one of the nodes in Vk is correctly iden-

64

tified as faulty, or/and at least one pair of nodes in Vk, say nodes a, b,

is identified as being “in dispute” with each other. When a node pair

a, b is found in dispute, it is guaranteed that (i) at least one of these

two nodes is faulty, and (ii) at least one of the directed edges (a, b) and

(b, a) is in Ek. Note that the dispute control phase never finds two

fault-free nodes in dispute with each other.

• Phase 3 in the k-th instance of NAB computes graph Gk+1. In par-

ticular, any nodes that can be inferred as being faulty based on their

behavior so far are excluded from Vk+1; links attached to such nodes are

excluded from Ek+1. In Appendix B.2 we elaborate on how the faulty

nodes are identified. Then, for each node pair in Vk+1, if that node pair

has been found in dispute at least in one instance of NAB so far, the

links between the node pair are exluded from Ek+1. Phase 3 ensures that

all the fault-free nodes compute an identical graph Gk+1 = (Vk+1, Ek+1)

to be used during the next instance of NAB.

Consider two special cases for the k-th instance of NAB:

• If graph Gk does not contain the source node 1, it implies that all the

fault-free nodes are aware that node 1 is faulty. In this case, they can

safely agree on a default value as the outcome for the k-th instance of

NAB.

• Similarly, if the source node is in Gk but f other nodes are excluded

from Gk, that implies that the remaining nodes in Gk are all fault-free;

in this case, algorithm NAB can be reduced to just Phase 1.

Observe that during each execution of Phase 3, either a new pair of nodes

in dispute is identified, or a new node is identified as faulty. Once a node

is found to be in dispute with f + 1 distinct nodes, it can be identified

as faulty, and excluded from the algorithm’s execution. Therefore, Dispute

Control needs to be performed at most f(f + 1) times over repeated execu-

tions of NAB. Thus, even though each dispute control phase is expensive,

the bounded number ensures that the amortized cost over a large number of

instances of NAB is small, as reflected in the performance analysis of NAB

(in Section 3.6 and Appendix B.4).

65

3.4 Equality Check Algorithm with Parameter ρk

We now present the Equality Check algorithm used in Phase 2, which has an

integer parameter ρk for the k-th instance of NAB. Later in this section, we

will elaborate on the choice of ρk, which is dependent on capacities of the

links in Gk.
Let us denote by xi the L-bit value received by fault-free node i ∈ Vk in

Phase 1 of the k-th instance. For simplicity, we do not include index k in

the notation xi. To simplify the presentation, let us assume that L/ρk is

an integer. Thus we can represent the L-bit value xi as ρk symbols from

Galois Field GF (2L/ρk). In particular, we represent xi as a 1× ρk vector Xi

in GF (2L/ρk),

Xi = [Xi(1), Xi(2), · · · , Xi(ρk)]

where each symbol Xi(j) ∈ GF (2L/ρk) can be represented using L/ρk bits.

As discussed earlier, for convenience, we assume that all the link capacities

are integers when using a suitable time unit.

Algorithm 3.4.5 Equality Check in Gk with parameter ρk

Each node i ∈ Vk should performs these steps:

1.On each outgoing link e = (i, j) ∈ Ek whose capacity is ze, node i

transmits ze linear combinations of the ρk symbols in vector Xi, with

the weights for the linear combinations being chosen from GF (2L/ρk).

More formally, for each outgoing edge e = (i, j) ∈ Ek of capacity ze, a

ρk× ze matrix Ce is specified as a part of the algorithm. Entries in Ce

are chosen from GF (2L/ρk). Node i sends to node j a vector Ye of ze

symbols obtained as the matrix product Ye = XiCe. Each element of

Ye is said to be a “coded symbol”. The choice of the matrix Ce affects

the correctness of the algorithm, as elaborated later.

2.On each incoming edge d = (j, i) ∈ Ek, node i receives a vector Yd

containing zd symbols from GF (2L/ρk). Node i then checks, for each

incoming edge d, whether Yd = XiCd. The check is said to fail iff

Yd �= XiCd.

3.If checks of symbols received on any incoming edge fails in the previous

66

step, then node i sets a 1-bit flag equal to MISMATCH; else the flag is

set to NULL. This flag is broadcast in Step 2.2 above.

In the Equality Check algorithm, ze symbols of size L/ρk bits are transmit-

ted on each link e of capacity ze. Therefore, the Equality Check algorithm

requires time duration

L / ρk. (3.3)

Salient Feature of Equality Check Algorithm

In the Equality Check algorithm, a single round of communication occurs

between adjacent nodes. No node is required to forward packets received from

other nodes during the Equality Check algorithm. This implies that, while

a faulty node may send incorrect packets to its neighbors, it cannot tamper

with information sent between fault-free nodes. This feature of Equality

Check is important in being able to prove its correctness despite the presence

of faulty nodes in Gk.

Choice of Parameter ρk

We define a set Ωk as follows using the disputes identified through the first

(k − 1) instances of NAB.

Ωk = { H | H is a subgraph of Gk containing (n− f) nodes such that

no two nodes in H have been found in dispute through

the first (k − 1) instances of NAB }

As noted in the discussion of Phase 3 (Dispute Control), fault-free nodes

are never found in dispute with each other (fault-free nodes may be found in

dispute with faulty nodes, however). This implies that Gk includes all the

fault-free nodes, since a fault-free node will never be found in dispute with

f + 1 other nodes. There are at least n− f fault-free nodes in the network.

This implies that set Ωk is non-empty.

Corresponding to a directed graph H(V,E), let us define an undirected

graph H(V,E) as follows: (i) both H and H contain the same set of vertices,

67

(ii) undirected edge (i, j) ∈ E if either (i, j) ∈ E or (j, i) ∈ E, and (iii)

capacity of undirected edge (i, j) ∈ E is defined to be equal to the sum of

the capacities of directed links (i, j) and (j, i) in E (if a directed link does

not exist in E, here we treat its capacity as 0). For example, Figure 3.2(b)

shows the undirected graph corresponding to the directed graph in Figure

3.2(a).

(a) Directed graph G (b) Undirected graph G

(c) Two unit-capacity spanning trees in
the directed graph. Every directed edge
has capacity 1

(d) A spanning tree in the undirected
graph shown in dotted edges

Figure 3.2: Different graph representations of a network. Numbers next to
the edges indicate link capacities.

Define a set of undirected graphs Ωk as follows. Ωk contains undirected

version of each directed graph in Ω.

Ωk = { H | H ∈ Ωk }

68

Define

Uk = min
H∈Ωk

min
i,j∈H

MINCUT (H, i, j)

as the minimum value of the MINCUTs between all pairs of nodes in all

the undirected graphs in the set Ωk. For instance, suppose that n = 4,

f = 1 and the graph shown in Figure 3.1(a) on page 62 is G, whereas Gk
is the graph shown in Figure 3.1(b). Thus, nodes 2 and 3 have been found

in dispute previously. Then, Ωk and Ωk each contain two subgraphs, one

subgraph corresponding to the node set {1, 3, 4}, and the other subgraph

corresponding to the node set {2, 3, 4}. In this example, Uk = 2.

Parameter ρk is chosen such that

ρk ≤ Uk

2
.

Under the above constraint on ρk, as per (3.3), execution time of Equality

Check is minimized when ρk = Uk

2
. Under the above constraint on ρk, we

will prove the correctness of the Equality Check algorithm, with its execution

time being L/ρk.

3.4.1 Correctness of the Equality Check Algorithm

The correctness of Algorithm 3.4.5 depends on the choices of the parameter

ρk and the set of coding matrices {Ce|e ∈ Ek}. Let us say that a set of coding

matrices is correct if the resulting Equality Check Algorithm 3.4.5 satisfies the

following requirement:

• (EC) if there exists a pair of fault-free nodes i, j ∈ Gk such that

Xi �= Xj (i.e., xi �= xj),

then the 1-bit flag at at least one fault-free node is set to MIS-

MATCH.

Recall thatXi is a vector representation of the L-bit value xi received by node

i in Phase 1 of NAB. Two consequences of the above correctness condition

are:

• If some node (possibly source node) misbehaves during Phase 1 leading

to outcomes (ii) or (iv) for Phase 1, then at least one fault-free node will

set its flag to MISMATCH. In this case, the fault-free nodes (possibly

69

including the sender) have not received identical L-bit values in Phase

1.

• If no misbehavior occurs in Phase 1 (thus the values received by fault-

free nodes in Phase 1 are correct), but MISMATCH flag at some fault-

free node is set in Equality Check, then misbehavior must have occurred

in Phase 2.

The following theorem shows that when ρk ≤ Uk/2, and when L is suffi-

ciently large, there exist of coding matrices {Ce|e ∈ Ek} that are correct.

Theorem 3.1 For ρk ≤ Uk/2, when the entries of the coding matrices {Ce|e ∈
Ek} in step 1 of Algorithm 3.4.5 are chosen independently and uniformly

at random from GF (2L/ρk), then {Ce|e ∈ Ek} is correct with probability

≥ 1 − 2−L/ρk

[(
n

n−f

)
(n− f − 1)ρk

]
. Note that when L is large enough, 1 −

2−L/ρk

[(
n

n−f

)
(n− f − 1)ρk

]
> 0.

Proof Sketch: The detailed proof is presented in Appendix B.3. Here we

provide a sketch of the proof. The goal is to prove that property (EC) above

holds with a non-zero probability. That is, regardless of which (up to f)

nodes in G are faulty, when Xi �= Xj for some pair of fault-free nodes i and

j in Gk during the k-th instance, at least one fault-free node (which may be

different from nodes i and j) will set its 1-bit flag to MISMATCH. To prove

this, we consider every subgraph of H ∈ Ωk (see definition of Ωk above).

By definition of Ωk, no two nodes in H have been found in dispute through

the first (k − 1) instances of NAB. Therefore, H represents one potential set

of n − f fault-free nodes in Gk. Denote 01×z as a 1 × z vector of which all

symbols equal to 0. For each edge e = (i, j) in H , steps 1-2 of Algorithm 3.4.5

together have the effect of checking whether or not (Xi − Xj)Ce = 01×ze .

Without loss of generality, for the purpose of this proof, rename the nodes

in H as 1, · · · , n− f . Denote a 1× ρk vector in GF (2L/ρk)

Di = Xi −Xn−f

70

for i = 1, · · · , (n− f − 1), then

(Xi −Xj)Ce = 01×ze ⇔

⎧⎪⎨
⎪⎩
(Di −Dj)Ce = 01×ze , if i, j < n− f ;

DiCe = 01×ze , if j = n− f ;

−DjCe = 01×ze , if i = n− f.

(3.4)

Define

DH = [D1,D2, · · · ,Dn−f−1].

DH is a 1 × ρk(n − f − 1) vector in GF (2L/ρk). Let m be the sum of the

capacities of all the directed edges in H . As elaborated in Appendix B.3, we

define CH to be a (n− f − 1)ρk ×m matrix in GF (2L/ρk) whose entries are

obtained using the elements of Ce for each edge e in H in an appropriate

manner. For the suitably defined CH matrix, we can show that the compar-

isons in steps 1-2 of Algorithm 3.4.5 at all the nodes in H ∈ Ωk are equivalent

to checking whether or not

DHCH = 01×m. (3.5)

We can show that for a particular subgraph H ∈ Ωk, when ρk ≤ Uk/2,

m ≥ (n − f − 1)ρk; and when the set of coding matrices {Ce|e ∈ Ek} are

generated as described in Theorem 3.1, for large enough L, with non-zero

probability CH contains a (n − f − 1)ρk × (n − f − 1)ρk square submatrix

that is invertible. In this case DHCH = 01×m if and only if DH = 01×m,

i.e., X1 = X2 = · · · = Xn−f . In other words, if all nodes in subgraph H are

fault-free, and Xi �= Xj for two fault-free nodes i, j, then DHCH �= 01×m

and hence the check in step 2 of Algorithm 3.4.5 fails at some fault-free node

in H .

We can then show that, for large enough L, with a non-zero probability,

this is also simultaneously true for all subgraphs H ∈ Ωk. This implies

that, for large enough L, correct coding matrices (Ce for each e ∈ Ek) can

be found. These coding matrices are specified as a part of the algorithm

specification. Further details of the proof are in Appendix B.3. �

71

3.5 Correctness of NAB

For Phase 1 (Unreliable Broadcast) and Phase 3 (Dispute Control), the proof

that the outcomes claimed in Section 3.3 indeed occur follows directly from

the prior literature cited in Section 3.3 (and elaborated in Appendices B.1

and B.2). Now consider two cases:

• The values received by the fault-free nodes in Phase 1 are not identical:

Then the correctness of Equality Check ensures that a fault-free node

will detect the mismatch, and consequently Phase 3 will be performed.

As a byproduct of Dispute Control in Phase 3, the fault-free nodes

will correctly agree on a value that satisfies the validity and agreement

conditions.

• The values received by the fault-free nodes in Phase 1 are identical: If

no node announces a mismatch in step 2.2, then the fault-free nodes

will agree on the value received in Phase 1. It is easy to see that this is

a correct outcome. On the other hand, if some (faulty) node announces

a mismatch in step 2.2, then Dispute Control will be performed, which

will result in correct outcome for the broadcast of the k-th instance.

Thus, in all cases, NAB will lead to correct outcome in each instance.

3.6 Throughput of NAB and Capacity of BB

3.6.1 A Lower Bound on Throughput of NAB for Large Q
and L

In this section, we provide the intuition behind the derivation of the lower

bound. More detail is presented in Appendix B.4. We prove the lower bound

when the number of instances Q and input size L for each instance are both

“large” (in an order sense) compared to n. Two consequences of L and Q

being large:

• As a consequence of Q being large, the average overhead of Dispute

control per instance of NAB becomes negligible. Recall that Dispute

Control needs to be performed at most f(f+1) times over Q executions

of NAB.

72

• As a consequence of L being large, the overhead of 1-bit broadcasts

performed in step 2.2 of Phase 2 becomes negligible when amortized

over the L bits being broadcast by the source in each instance of NAB.

It then suffices to consider only the time it takes to complete the Unreliable

broadcast in Phase 1 and Equality Check in Phase 2. For the k-th instance

of NAB, as discussed previously, the unreliable broadcast in Phase 1 can be

done in L/γk time units (see definition of γk in section 3.3.). We now define

Γ = { J | J is a subgraph of G containing source node 1,

and Gk may equal J in some execution of NAB for some k }

Appendix B.5 provides a systematic construction of the set Γ. Define the

minimum value of all possible γk:

γ∗ = min
Gk∈Γ

γk = min
Gk∈Γ

min
j∈Vk

MINCUT (Gk, 1, j).

Then an upper bound of the execution time of Phase 1 in all instances of

NAB is L/γ∗.

With parameter ρk = Uk/2, the execution time of the Equality Check in

Phase 2 is L/ρk. Recall that Uk is defined as the minimum value of the

MINCUTs between all pairs of nodes in all undirected graphs in the set

Ωk. As discussed in Appendix B.3.2, according to the way Gk is constructed

and the definition of Ωk, Gk is a subgraph of G1 = G, and Ωk ⊆ Ω1. Then

according to the definition of Uk,

Uk = min
H∈Ωk

min
i,j∈H

MINCUT (H, i, j)

≥ min
H∈Ω1

min
i,j∈H

MINCUT (H, i, j)

= U1

for all possible Gk. Define

ρ∗ =
U1

2
.

Then ρk ≥ ρ∗ for all possible Gk and the execution time of the Equality Check

is upper-bounded by L/ρ∗. So the throughput of NAB for large Q and L can

73

be lower-bounded by2

lim
L→∞

T (G, L,NAB) ≥ L

L/γ∗ + L/ρ∗
=

γ∗ρ∗

γ∗ + ρ∗
. (3.6)

3.6.2 An Upper Bound on Capacity of BB

Theorem 3.2 In any point-to-point network G(V, E), the capacity of Byzan-

tine broadcast (CBB) with node 1 as the source satisfies the following upper

bound:

CBB(G) ≤ min(γ∗, 2ρ∗).

Appendix B.6 presents a proof of this upper bound. Given the throughput

lower bound in (3.6) and the upper bound on CBB(G) from Theorem 3.2, we

show that the NAB algorithm always achieves throughput at least as high as

1/3 of the capacity, as stated as the following theorem:

Theorem 3.3 For graph G(V, E):

lim
L→∞

T (G, L,NAB) ≥ min(γ∗, 2ρ∗)
3

≥ CBB(G)
3

.

Moreover, when γ∗ ≤ ρ∗:

lim
L→∞

T (G, L,NAB) ≥ min(γ∗, 2ρ∗)
2

≥ CBB(G)
2

.

Proof: Let us denote

TNAB(G) = γ∗ρ∗

γ∗ + ρ∗
.

From Equality 3.6, we know that limL→∞ T (G, L,NAB) ≥ TNAB(G). We

will compare TNAB(G) with min(γ∗, 2ρ∗) – the upper bound on CBB(G) from
Theorem 3.2. There are 3 possible cases in terms of the relative values of γ∗

and ρ∗:

1. γ∗ ≤ ρ∗: Observe that TNAB(G) is an increasing function of both γ∗

and ρ∗. For a given γ∗, it is minimized when ρ∗ is minimized. So

TNAB(G) ≥ γ∗2

γ∗ + γ∗ =
γ∗

2
≥ CBB(G)

2
. (3.7)

2To simplify the analysis above, we ignored propagation delays. Appendix B.4 describes
how to achieve this bound even when propagation delays are considered.

74

The last inequality is due to γ∗ ≥ CBB(G).

2. γ∗ ≤ 2ρ∗:

TNAB(G) ≥ γ∗ρ∗

2ρ∗ + ρ∗
=

γ∗

3
≥ CBB(G)

3
. (3.8)

The last inequality is due to γ∗ ≥ CBB(G).

3. γ∗ > 2ρ∗: Since TNAB(G) is an increasing function of γ∗, for a given ρ∗,

it is minimized when γ∗ is minimized. So

TNAB(G) ≥ 2ρ∗2

2ρ∗ + ρ∗
=

2ρ∗

3
≥ CBB(G)

3
. (3.9)

The second inequality is due to 2ρ∗ ≥ CBB(G).
�

3.7 The CAB Algorithms

In the previous sections of this chapter, we have shown that the NAB algo-

rithm can achieve Byzantine broadcast throughput arbitrarily close to 1/3

of the upper bound on the capacity of Byzantine broadcast from Theorem

3.2, in a general point-to-point network G. In this section, we will show that

the upper bound from Theorem 3.1 is tight in the two particular families of

networks below by providing algorithms that achieve throughput arbitrarily

close to the upper bound of capacity.

• Four-node networks: fully connected network of four nodes and at most

one faulty node, with arbitrary distribution of link capacities.

• Symmetric networks: fully connected network in which all link capac-

ities are identical, with arbitrary number of nodes n ≥ 4 and number

of faulty nodes f < n/3.

3.7.1 CAB Algorithm for Four-Node Networks

In this section, we use the same notations (such as Gk,Vk, Ek) as in previous

sections. For four-node networks, Theorem 3.2 reduces to the following:

75

Figure 3.3: Four-node network. Labels denote some link capacities.

Corollary 3.1 In any four-node network with arbitrary distribution of link

capacities, the capacity of Byzantine broadcast (CBB4) is upper-bounded by

• the sum capacity of any two incoming links to a peer node i, for i =

2, 3, 4.

• the sum capacity of any two outgoing links of the source node 1.

Figure 3.3 shows a complete four-node network. The labels near the vari-

ous links denote the link capacities. With this notation, the first condition

in Corollary 3.1 implies, for instance, that t + u ≥ CBB4; and the second

condition implies, for instance, that l +m ≥ CBB4.

The CAB algorithm for four-node networks is in fact similar to the NAB

algorithm for general point-to-point networks. The main difference is that,

by exploring the structure of the four-node networks, the CAB algorithm

performs the unreliable broadcast in Phase 1 of NAB and failure detection

in Phase 2 of NAB simultaneously. In other words, the transmissions for

delivering x from source node 1 to the three peers are also used for equality

checking. By doing this, the link capacities are fully utilized and throughput

matching the upper bound can be achieved.

As in NAB, we represent the L-bit input value x of the k-th instance of

Byzantine broadcast as a vector X of R symbols from Galois Field GF (2L/R).

The operation of the CAB algorithm is described in pseudo-code in Algorithm

76

3.7.6. For the following discussion, denote zi,j as the capacity of edge e =

(i, j).

Algorithm 3.7.6 CAB Algorithm for four-node networks, with Gk and pa-

rameter R (instance k)

1.Source node 1:

On each outgoing link e = (1, i) ∈ Ek whose capacity is ze, node 1

transmits a vector of ze coded symbols Ye = XCe, with the weights

for the linear combinations being chosen from GF (2L/R).

2.Each peer node i that is not in dispute with the source, i.e., (1, i) and

(i, 1) are both in Ek:
On each outgoing link d = (i, j) ∈ Ek (j �= 1) whose capacity is zd, node

i forwards to node j the first min{zd, ze} coded symbols of Ye received

from node 1 in the previous step on link e = (1, i) ∈ Ek, following an

increasing order of the indices.

3.Peer node j that is in dispute with the source (if there is any), i.e.,

neither (1, j) nor (j, 1) is in Ek:
Denote the other two peers as l and p. Note that links (j, l), (j, p), (l, j)

and (p, j) are all in Ek; otherwise, node j must have been identified as

faulty and removed. Node l computes max{zl,j−z1,l, 0} coded symbols

as linear combinations of the coded symbols it has received from node

1 and node p in steps 1-2, and sends them to node j. Similarly, node p

computes and sends max{zp,j− z1,p, 0} symbols to node j. Now node j

has received zl,j+zp,j coded symbols from node l and node p in steps 2-3.

Then it computes min{zj,l, zj,p} coded symbols as linear combinations

of the coded symbols it has received. Then node j sends these set of

min{zj,l, zj,p} coded symbols on both links (j, l) and (j, p).

4.Each peer node i checks if there exists a unique 1 × R vector Yi from

GF (2L/R) that satisfies all the linear combinations represented by all

the coded symbols it has received through steps 1-3. The check is said

to fail iff such an unique vector cannot be found.

5.The rest is the same as in the NAB algorithm.

77

Steps 1-3 here correspond to the unreliable broadcast in Phase 1 and steps

1 of the equality checking algorithm in Phase 2 of the NAB algorithm, and

step 4 here corresponds to step 2 of the equality checking algorithm. Similar

to the proof of Theorem 3.1, we show that when parameter R is no greater

than the upper bound stated in Corollary 3.1 and the value L is sufficiently

large, there exist sets of weights for computing the linear combinations such

that the resulting Algorithm 3.7.6 is correct, where the correctness of the

algorithm is defined as in Section 3.4.1. The proof is included in Appendix

B.7 for completeness.

Algorithm 3.7.6 can achieve throughput arbitrarily close to the upper

bound stated in Corollary 3.1, as per a similar throughput analysis as in

Section 3.6 for NAB. Hence,

Theorem 3.4 In any four-node network, the capacity of Byzantine broadcast

is equal to the minimum value of

• the sum capacity of any two incoming links to a peer node i, for i =

2, 3, 4.

• the sum capacity of any two outgoing links of the source node 1.

Additionally, Algorithm 3.7.6 can achieve throughput arbitrarily close to

the capacity.

3.7.2 CAB Algorithm for Symmetric Networks

In a symmetric network of n nodes, every pair of nodes i and j in V is

connected with a pair of directed links (i, j), (j, i) ∈ E . Also, every edge

e ∈ E has the same capacity, i.e., ze = z for some positive constant z. In

such a symmetric network with up to f < n/3 faulty nodes, Theorem 3.2

reduces to the following:

Corollary 3.2 In any symmetric network with up to f < n/3 faulty nodes,

the capacity of Byzantine broadcast (CSYM) is upper-bounded by

CSYM ≤ (n− f − 1)z,

where z is the capacity of each link in the network.

78

The CAB algorithm for symmetric networks is in fact almost identical to

the CBB Algorithm from Section 2.7.2, with the following modifications:

• Replace the (2(n− 1), n− f) distance-(n+ f − 1) Reed-Solomon code

Cn−f used in CBB with a (n − 1, n − f − 1) distance-(f + 1) Reed-

Solomon code, denoted as Cn−f−1. Also accordingly replace (n− f) in

CBB with (n− f − 1).

• In Line 5 of CBB, instead of receiving Rj [j+(n−1)] from each peer j

trusted by both node i and source node n, we require every node j that

is trusted by both node i and the source node n to compute a linear

combination of the coded symbols it has received through Lines 1-4

and send it to node i.

• Dispute control is done in the same way as the NAB algorithm does.

With these modifications, the algorithm achieves throughput arbitrarily

close to (n−f−1)z, as per similar proof of correctness for CBB and through-

put analysis as in Section 3.6 for NAB. Hence,

Theorem 3.5 In any symmetric network with up to f < n/3 faulty nodes

and link capacity z, the capacity of Byzantine broadcast is equal to (n−f−1)z.
Additionally, the CBB algorithm with the above modifications can achieve

throughput arbitrarily close to the capacity.

3.8 Network-Aware Byzantine Consensus

In previous sections of this chapter, we have discussed the design of network-

aware Byzantine broadcast algorithms in point-to-point networks. For the

Byzantine consensus problem, we can define throughput and capacity in

point-to-point networks in a similar way as for the Byzantine broadcast prob-

lem. Also, the same 3-phase structure used in NAB can be used to develop

network-aware Byzantine consensus algorithms in general point-to-point net-

works.

The main difference between Byzantine broadcast and Byzantine consensus

is that in the consensus problem there is no designated node acting as the

source of information as in the broadcast problem, and every node’s input

79

value will possibly contribute to the final output value. So in Phase 1 for

the consensus problem, instead of performing unreliable broadcast from the

source node, we need to first identify a subset of nodes that appear to have

identical input values, and then try to agree with that value. For this, we

need to perform steps similar to the Matching stage of the CBC algorithm,

with appropriate modifications so that link capacities are better utilized.

After that, we can perform failure detection in Phase 2 and dispute control

in Phase 3 (if failure is detected) in the same way as in NAB.

We have developed an upper bound on the capacity of Byzantine consensus

in general point-to-point networks. For four-node networks, we have devel-

oped a capacity-achieving consensus algorithm. Details of the upper bound

and algorithm can be found in our paper [11]

3.9 Summary

In this chapter, we study the design of network-aware Byzantine agreement

algorithms. We derive an upper bound on the capacity of Byzantine broad-

cast for general point-to-point networks. A network-aware Byzantine broad-

cast algorithm NAB is proposed and proved to achieve throughput at least

1/3 of the capacity in general point-to-point networks. In two particular

families of point-to-point networks, capacity-achieving Byzantine broadcast

algorithms are developed.

80

CHAPTER 4

MULTIPARTY EQUALITY FUNCTION
COMPUTATION

4.1 Introduction

In this chapter, we study the problem of computing the following multiparty

equality function (MEQ):

MEQ(x1, · · · , xn) =

{
0 if x1 = · · · = xn

1 otherwise.
(4.1)

The input vector x = (x1, · · · , xn) is distributed among n ≥ 2 nodes, with

only xi known to node i, and each xi chosen from the set {1, · · · , K}, for
some integer K ≥ 1.

Communication Complexity: The notion of communication complexity

(CC) was introduced by Yao in 1979 [17]. They investigated the problem

of quantifying the number of bits that two separated parties need to com-

municate between themselves in order to compute a function whose inputs,

namely X and Y , are distributed between them.

The communication cost of a protocol P , denoted as C(P), is the number of

bits exchanged for the worst case input pair. The communication complexity

of a Boolean function f : X × Y �→ {0, 1} is the minimum of the cost of the

protocols for f .

Multiparty Function Computation: The notion of communication

complexity can be easily generalized to a multiparty setting, i.e., when the

number of parties > 2.

The communication complexity of a Boolean function f : X1×· · ·×Xn �→
{0, 1}, is the minimum of the cost of the protocols for f .

There is more than one communication model for the multiparty problems.

81

Two commonly used models are the “number on the forehead” model [53] and

the “number in hand” model. Consider function f : X1 × · · · ×Xn �→ {0, 1}
and input (x1, x2, · · · , xn) where each xi ∈ Xi. In the number on the forehead

model, the i-th party can see all the xj such that j �= i; while in the number

in hand model, the i-th party can only see xi. As in the two-party case,

the n parties have an agreed-upon protocol for communication, and all this

communication is posted on a “public blackboard”. In these two models,

the communication may be considered as being broadcast using the public

blackboard, i.e., when any party sends a message, all other parties receive the

same message. Tight bounds often follow from considering two-way partitions

of the set of parties.

In this chapter, we consider a different point-to-point communication model,

in which nodes communicate over private point-to-point links. This means

that when a party transmits a message on a point-to-point link, only the

party on the other end of the link receives the message. This model makes

the problem significantly different from that with the broadcast communica-

tion model. We are interested in the communication complexity of the MEQ

problem under the point-to-point communication model.

4.2 Related Work

The 2-party version of the MEQ problem (i.e., n = 2), which is usually

referred to as the EQ problem, was first introduced by Yao in [17]. It is shown

that the communication complexity of the EQ problem with deterministic

algorithms is logK [54]. The complexity of the EQ problem can be reduced to

O(log logK) if randomized algorithms are allowed [54]. MEQ problem with

n ≥ 3 has been studied under the number on the forehead model and the

number in hand model, both assuming a “public blackboard” for broadcast

communications. The MEQ problem with n ≥ 3 can be solved with cost of

2 bits [54] under the number on the forehead head model, while it requires

Θ(logK) bits under the number in hand model. On the other hand, the

result changes significantly if we consider the point-to-point communication

model used in this chapter (it is easy to show at least Ω(n logK) bits are

needed).

The MEQ problem is related to the Set Disjointness problem and the con-

82

sensus problem [55]. In the n-party Set Disjointness problem, we have n

parties, and given subsets S1, . . . , Sn ⊆ {1, . . . , K}, and the parties wish

to determine if S1 ∩ · · · ∩ Sn = φ without communicating many bits. The

disjointness problem is closely related to our MEQ problem. Consider the

two-party set disjointness problem with subsets S1 and S2. Let x1 and x2 be

the binary representations of S1 and S2, respectively. Then it is not hard to

show that x1 = x2 is equivalent to S1 ∩ S2 = φ and S1 ∩ S2 = φ. The multi-

party set disjointness problem has been widely studied under the “number

on the forehead” and broadcast communication model, e.g. [56, 57]. The

set disjointness problem has also been studied under the “number in hand”

model and point-to-point communication model (i.e., the same models we

are using in this chapter), with randomized algorithms. In [58], a lower

bound of Ω(K/n4) on its communication complexity is proved for random-

ized algorithms. The lower bound was then improved to Ω(K/n2) in [59]. In

[60], the authors established a further improved near-optimal lower bound of

Ω(K/(n logn)). Nevertheless, these papers focus on the order of the commu-

nication complexity of randomized algorithms. On the other hand, in this

chapter, our goal is to characterize the exact communication complexity of

deterministic algorithms.

In the Byzantine consensus problem, n parties, each of which is given an

input xi of logK bits, want to agree on a common output value x of logK

bits under the point-to-point communication model, despite the fact that up

to t of the parties may be faulty and deviate from the algorithm in arbitrary

fashion [55]. The core of the consensus problem is to make sure that all

fault-free parties’ outputs are identical, which is essentially what the MEQ

problem tries to solve. In our recent report [7], we established a lower bound

on the communication complexity of the Byzantine consensus problem of n

parties as a function of the communication complexity of the MEQ problem

of n− f parties. This motivates the MEQ problem under the point-to-point

communication model. The consensus problem has also been studied under a

slightly different fault-free model [61]. Authors of [61] investigated the fault-

free consensus problem, which is essentially solving the MEQ problem with

1-bit inputs, i.e., K = 2, in tree topologies. We consider the problem under

a more general setting with arbitrary K and do not assume any structure of

the communication topology.

83

4.3 Models and Problem Definition

4.3.1 Communication Model

In this chapter, we consider a point-to-point communication model. We

assume a synchronous fully connected network of n nodes. We assume that

all point-to-point communication channels/links are private such that when

a node transmits, only the designated recipient can receive the message. The

identity of the sender is known to the recipient.

4.3.2 Protocol

A protocol P is a schedule that consists of a sequence of steps. In each step

l, as specified by the protocol, a pair of nodes are selected as the transmitter

and receiver, denoted respectively as Tl and Rl. The transmitter Tl will

send a message the receiver Rl. The message being sent is computed as a

function ml(xTl
, T+

l (l)), where xTl
denotes Tl’s input, and T+

l (l) denotes all

the messages Tl has received so far. When it is clear from the context, we

will use T+
l to denote T+

l (l) to simplify the presentation.

In this chapter, we design protocols that are static : the triple 〈Tl, Rl, ml(·)〉
are pre-determined by the protocol and are independent of the inputs. In

other words, in step l, no matter what the inputs are, the transmitter, re-

ceiver, and the function according to which the transmitter compute the

message are the same. Since the schedule is fixed, a static protocol can be

represented as a sequence of L(P) steps: {α1, α2, · · · , αL(P)}, where αl =

〈Tl, Rl, ml(xTl
, T+

l)〉 in the l-th step. L(P) is called the length of the pro-

tocol P , and P always terminates after the L(P)-th step. Denote Sl(P) as

the cardinality of ml(), i.e., the number of possible channel symbols needed

in step l of a static protocol P , considering all possible inputs. Then the

communication cost of a static protocol P is determined by

C(P) =

L(P)∑
l=1

log2 Sl(P). (4.2)

If only binary symbols are allowed, Sl(P) = 2 for all l, and C(P) becomes

L(P).

84

4.3.3 Problem Definitions

We define two versions of the MEQ problem.

MEQ-AD (Anyone Detects): We consider protocols in which every node

i decides on a one-bit output EQi ∈ {0, 1}. A node i is said to have detected

a mismatch (or inequality of inputs) if it sets EQi = 1. A protocol P is said

to solve the MEQ-AD problem if and only if at least one node detects a

mismatch when the inputs to the n nodes are not identical. More formally,

the following property must be satisfied when P terminates:

EQ1 = · · · = EQn = 0⇔MEQ(x1, · · · , xn) = 0. (4.3)

MEQ-CD (Centralized Detect): The second class of protocols we con-

sider are the ones in which one particular node is assigned to decide on an

output. Without loss of generality, we can assume that node n has to com-

pute the output. Then a protocol P is said to solve the MEQ-CD problem

if and only if, when P terminates, node n computes output EQn such that

EQn = MEQ(x1, · · · , xn). (4.4)

Communication Complexity: Denote ΓAD(n,K) and ΓCD(n,K) as the

sets of all protocols that solve the MEQ-AD and MEQ-CD problems with n

nodes, respectively. We are interested in finding the communication complex-

ity of the two versions of the MEQ problem, which is defined as the infimum

of the communication cost of protocols in ΓAD(n,K) and ΓAD(n,K), i.e.,

CAD(n,K) = inf
P∈ΓAD(n,K)

C(P), and CCD(n,K) = inf
P∈ΓCD(n,K)

C(P).

Communication Complexity with General Protocols: In general, a

protocol that solves the MEQ problem may not necessarily be static. The

schedule of transmissions might be determined dynamically on-the-fly, de-

pending on the inputs. So the transmitter and receiver in a particular step

l can be different with different inputs. Since the set of all static protocols

is a subset of all general protocols, the communication complexities of the

two versions of the MEQ problem are bounded from above by the cost of

85

static protocols. The purpose of this chapter is to show that there exist in-

stances of the MEQ problem whose communication complexity is lower than

the intuitive upper bound we are going to present in the next section. For

this purpose, it suffices to show that, even if we constrain ourselves to static

protocols, some MEQ problems can still be solved with cost lower than the

upper bound. In sections 4.6 to 4.7, such examples of static protocols are

presented.

4.4 Upper Bound of the Complexity

An upper bound of the communication complexity of both versions of the

MEQ problem is (n − 1) log2K, for all positive integer n ≥ 2 and K ≥ 1.

This can be proved by a trivial construction: in step i, node i sends xi to

node n, for all i < n. The decisions are computed according to

EQi =

{
MEQ(x1, · · · , xn) , i = n;

0 , i < n.
(4.5)

It is obvious that this protocol solves both the MEQ-AD and MEQ-CD prob-

lems with communication cost (n−1) log2K, which implies CAD(CD)(n,K) ≤
(n − 1) log2K. In particular, when K = 2k, we have CAD(CD)(n, 2

k) ≤
(n− 1)k.

For the two-party equality problem (n = 2), this bound is tight [54], for

arbitrary K. The bound is also tight when K = 2 (binary inputs). (n −
1) log2 2 = n − 1 bits are necessary when K = 2, since any protocol with

communication cost < n− 1 will have at least one node not communicating

with any other node at all, making it impossible to solve the MEQ problem.

However, in the following sections, we are going to show that the (n−1) logK
bound is not always tight, by presenting a static protocol that solves instances

of the MEQ problem with communication cost lower than (n− 1) log2K.

86

4.4.1 Loose Lower Bound of Complexity using Traditional
Techniques

In most of the existing literature on multiparty communication complexity,

the “number on the forehand” model or a broadcast communication model is

assumed. Under these models, when a node transmits, all other nodes receive

the same message. This broadcasting property makes it possible to consider

two-way partitions of the set of nodes since the nodes in each partition share

the same information being broadcast and can be viewed as one virtual node.

Thus, results from two-party communication complexity can be extended to

the multiparty case, and tight bounds (rather than just capturing the order)

can then be obtained.

However, the above technique no longer works well in obtaining tight

bounds under our point-to-point communication model. For example, the

complexity of the two-party equality problem of k-bit inputs (n = 2, K = 2k)

can be proved to be k with the “fooling set” argument [54]: Suppose in con-

tradiction that there exists a protocol of complexity at most C(P) < k that

solves the two-party equality problem. Then there are at most 2C(P) ≤ 2k−1
communication patterns possible between the two nodes. Consider all sets

of 2k pairs of input values (x, x). Using the pigeonhole principle we conclude

there exist two pairs (x, x) and (x′, x′) on which the communication patterns

are the same. It is easy to see that the communication pattern of (x, x′) is

also the same as (x, x). Hence, the nodes’ final decisions on (x, x) must agree

with their decisions on (x, x′). But then the protocol must be incorrect, since

EQ(x, x′) = 1 �= EQ(x, x).

The “fooling set” argument above can be extended to the case with n > 2

nodes and arbitrary M ≥ 1: partitioning the n nodes into two sets (say L

and R), there must be at least M patterns of communication between the

two sets L and R. By applying this argument to all possible two-partitions

such that |L| = 1 and |R| = n − 1, we can obtain a lower bound on the

communication complexity as

CAD(CD)(n,K) ≥ n

2
log2K. (4.6)

This lower bound is within a factor of 1/2 of the upper bound we obtain

previously, which implies that CAD(CD)(n,K) = Θ(n log2K). However, we

87

can show that the lower bound of n
2
log2K is generally not achievable. An

example for this is the MEQ(3,4) problem. It can be shown that CAD(3, 4) =

CCD(3, 4) = 4, while n
2
log2K = 3. Details can be found in Appendix C.1.

The example above has demonstrated that, under our point-to-point com-

munication model, we can no longer extend results from two-party commu-

nication complexity to multiparty version for tight bounds in the way it has

been done under the broadcast communication models. The main reason for

this is the lack of modeling of the “networking” aspect of the problem in

both the two-party model and the broadcast communication models. In the

two-party model, since there are only two nodes, no networking is necessary.

In the broadcast communication models, all the nodes share a lot information

from the broadcast and have roughly the same view of system, which makes

it a not-so-distributed network. On the other hand, under our point-to-point

communication modes, each node may only receive information from a sub-

set of nodes; it is even possible that two nodes may receive information from

two disjoint sets of nodes. As a result, different nodes can have very different

views of the system. This makes the problem of finding the tight bound of

communication complexity difficult, and new techniques may be required.

4.5 Equivalent MEQ-AD Protocols

In the rest of this chapter, except for Section 4.8, we will focus on static

protocols that solve the MEQ-AD problem.

It is not hard to see that a static protocol P can be interpreted as a directed

multi-graph G(V,E(P)), where the set of vertices V = {1, · · · , n} represents
the n nodes, and the set of directed edges E(P) = {(T1, R1), · · · , (TL(P), RL(P))}
represents the transmission schedule in each step. From now on, we will use

the terms protocol and graph interchangeably, as well as the terms transmis-

sion and link. Figure 4.1(a) gives an example of the graph representation of

a protocol for n = 4. In Figure 4.1(a), the numbers next to the directed links

indicate the corresponding step numbers.

Two protocols P and P ′ in are said to be equivalent if their costs are

equal, i.e., C(P) = C(P ′). The following lemma says that we can flip the

direction of any edge in E(P) and obtain a protocol P ′ that is equivalent to

P .

88

Lemma 4.1 Given any static protocol P for MEQ-AD of length L(P), and

any positive integer l ≤ L(P), there exists an equivalent static protocol P ′ of

the same length, such that E(P) and E(P ′) are identical, except that in the

l-th step, the transmitter and receiver are swapped, i.e.,

E(P ′) = E(P)\{(Tl, Rl)} ∪ {(Rl, Tl)}
= {(T1, R1), · · · , (Tl−1, Rl−1), (Rl, Tl), (Tl+1, Rl+1), · · · , (TL(P), RL(P))}.

Proof: Given the integer l and a protocol

P = {α1, · · · , αl−1, αl, αl+1, · · · , αL(P)}

with αl = (Tl, Rl, ml(xTl
, T+

l)), we construct

P ′ = {α′
1, · · · , α′

l−1, α
′
l, α

′
l+1, · · · , α′

L(P)}

by modifying P as follows:

• α′
j = αj for 1 ≤ j ≤ l − 1.

• α′
l = (Rl, Tl, m

′
l(xRl

, R+
l)). Herem

′
l(xRl

, R+
l) = ml(xTl

, T+
l)|x1=···=xn=xRl

is the symbol that party Rl expects to receive in step l of protocol P ,

assuming all parties have the same input as xRl
.

• α′
j = (Tj , Rj , m

′
j(xTj

, T+
j)) for j > l.

– If Tj = Rl, m
′
j(xTj

, T+
j) = mj(xTj

, T+
j)|ml(xTl

,T+
l)=m′

l(xRl
,R+

l) is the

symbol that party Rl sends in step j, pretending that it has

received m′
l(xRl

, R+
l) in step l of P .

– If Tj �= Rl, m
′
j(xTj

, T+
j) = mj(xTj

, T+
j).

• To compute the output, Tl first computes EQTl
in the same way as in

P . Then Tl sets EQTl
= 1 if m′

l(xRl
, R+

l) �= ml(xTl
, T+

l), else no change.

That is, Tl sets EQl to 1 if the symbol it receives from Rl in step l of

P ′ differs from the symbol Tl would have sent to Rl in step l of P . The

other nodes compute their outputs in the same way as in P .

To show that P and P ′ are equivalent, consider the two cases:

89

(a) Graph representation
of P

(b) Equivalent protocol of
P with Step 5 flipped

(c) iid equivalent protocol
of P

Figure 4.1: Example of graph representation of a protocol P and its
equivalent protocols. The numbers next to the links indicate the
corresponding step number.

• m′
l(xRl

, R+
l) = ml(xTl

, T+
l): It is not hard to see that in this case, the

execution of every step is identical in both P and P ′, except for step l.

So for all i �= Tl, EQi is identical in both protocols. Sincem′
l(xRl

, R+
l) =

ml(xTl
, T+

l), EQTl
remains unchanged, so it is also identical in both

protocols.

• m′
l(xRl

, R+
l) �= ml(xTl

, T+
l): Observe that these two functions can be

different only if the n inputs are not all identical. So it is correct to set

EQTl
= 1.

�

In Figure 4.1(b), the graph for an equivalent protocol obtained by flipping

the link corresponding to the 5-th step of the 4-node example in Figure 4.1(a)

is presented.

Let us denote all the symbols a node i receives from and sends to the other

nodes throughout the execution of protocol P as i+ and i−, respectively.

It is obvious that i− can be written as a function Mi(xi, i
+), which is the

union of ml(xi, i
+(l)) over all steps l in which node i is the transmitter. If

a protocol P satisfies Mi(xi, i
+) = Mi(xi) for all i, we say P is individual-

input-determined (iid). The following theorem shows that there is always

an iid equivalent for every protocol.

Theorem 4.1 For every static protocol P for MEQ-AD, there always exists

an iid equivalent static protocol P ∗, which corresponds to an acyclic graph.

Proof: According to Lemma 4.1, we can flip the direction of any edge in

E(P) and obtain a new protocol which is equivalent to P . It is to be noted

90

that we can keep flipping different edges in the graph, which implies that we

can flip any subset of E(P) and obtain a new protocol equivalent to P .

In particular, we consider a protocol equivalent to P , whose corresponding

graph is acyclic, and for all (i, j) ∈ E(P), the property i < j is satisfied. In

this protocol, every node i has no incoming links from any node with index

greater than i. This implies that the messages transmitted by node i are

independent of the inputs to nodes with larger indices. Thus we can re-order

the transmissions of this protocol such that node 1 transmits on all of its

out-going links first, then node 2 transmits on all of its out-going links, ...,

node n− 1 transmits to n at the end. Name the new protocol Q. Obviously

Q is equivalent to P .

Since we can always find a protocol Q equivalent to P as described above,

all we need to do now is to find P ∗. If Q itself is iid, then P ∗ = Q and we are

done. If not, we obtain P ∗ in the following way (using function M ′), which

is similar to how we obtain the equivalent protocol P ′ in Lemma 4.1:

• For node 1, since it receives nothing from the other nodes, M1(x1, 1
+) =

M1(x1) is trivially true.

• For node 1 < i < n, we modify Q as follows: node i computes its

out-going message as a function M ′
i(xi) = Mi(xi, i

+|x1=···=xn=xi
), where

i+|x1=···=xn=xi
are incoming messages node i expects to receive, assum-

ing that all parties have the same input xi. At the end of the protocol,

node i checks if i+|x1=···=xn=xi
equals to the actual incoming symbols

i+. If they match, nothing is changed. If they do not match, the inputs

cannot be identical, and node i can set EQi = 1. (The correctness of

this step may be easier to see by induction: apply this modification one

node at a time, starting from node 1 to node n− 1.)

�

Theorem 4.1 shows that, to find the least cost of static protocols, it is

sufficient to investigate only the static protocols that are iid and the cor-

responding communication graph is acyclic. From now on, such protocols

are called iid static protocols for MEQ-AD. Figure 4.1(c) shows an iid static

protocol that is equivalent to the one shown in Figure 4.1(a).

91

4.6 MEQ-AD(3,6)

Let us first consider MEQ-AD(3,6), i.e., the case where 3 nodes (say A, B and

C) are trying to solve the MEQ-AD problem when each node is given input

from one out of six values, namely {1, 2, 3, 4, 5, 6}. According to Theorem

4.1, for any protocol that solves this MEQ-AD problem, there exists an

equivalent iid partially ordered protocol in which node A has no incoming

link, node B only transmits to node C, and node C has no out-going link.

We construct one such protocol that solves MEQ-AD(3,6) and requires only

3 channel symbols, namely {1, 2, 3}, per link. Denoting the channel symbol

being sent over link ij as sij , the schedule of the proposed protocol is: (1)

Node A sends sAB(xA) to node B; (2) Node A sends sAC(xA) to node C; and

(3) Node B sends sBC(xB) to node C. Table 4.1 shows how sij is computed

as a function of xi.

Table 4.1: A protocol for MEQ-AD(3,6)

x 1 2 3 4 5 6

sAB 1 1 2 2 3 3
sAC 1 2 2 3 3 1
sBC 1 2 3 1 2 3

Now consider the outputs. Node A simply sets EQA = 0. For nodes B

and C, they just compare the channel symbol received from each incoming

link with the expected symbol computed with its own input value, and detect

a mismatch if the received and expected symbols are not identical. For

example, node B receives sAB(xA) from node A. Then it detects a mismatch

if the sAB(xA) �= sAB(xB).

It can be easily verified that if the three input values are not all identical,

at least one of nodes B and C will detect a mismatch. Hence the MEQ-

AD(3,6) problem is solved with the proposed protocol. The communication

cost of this protocol is

3 log2 3 = log2 27 ≈ 0.92× 2 log2 6. (4.7)

Notice that in this case, the upper bound from Section 4.4 equals to

(3− 1) log2 6 = 2 log2 6. So we have found a static MEQ-AD protocol whose

communication cost is lower than the upper bound. In fact, this protocol

92

Figure 4.2: Bipartite graph for the MEQ-AD(3,6) protocol in Table 4.1.

is optimal in the sense that it can be shown to achieve the minimum com-

munication cost among all static protocols We prove the optimality of this

protocol using an edge coloring argument.

4.6.1 Edge Coloring Representation of MEQ-AD(3,K)

From Sections 4.5, we have shown that it is sufficient to study 3-node systems

where messages are transmitted only on links AB, AC and BC. Let us denote

|sAB|, |sAC| and |sBC | as the number of different symbols being transmitted

on links AB, AC and BC, respectively.

Theorem 4.2 The existence of a MEQ-AD(3,K) static protocol P with cost

C(P) is equivalent to the existence of a simple bipartite graph G(U, V, E)

and a distance-2 edge coloring scheme W , such that |U |× |V |× |W | = 2C(P),

given |E| = K, |U | × |V | ≥ K, |U | × |W | ≥ K and |V | × |W | ≥ K. Here

U and V are disjoint sets of vertices, E is the set of edges, |U | = |sAB| and
|V | = |sAC | are the sizes of sets U and V , and |W | = |sBC | is the number of

colors used in W .

The detailed proof can be found in Appendix C.1. According to Theorem

4.2, we can conclude that the problem of finding a least cost static protocol

for MEQ − AD(3, K) is equivalent to the problem of finding the minimum

of |U | × |V | × |W | for the bipartite graphs and distance-2 coloring schemes

that satisfy the above constraints.

Using Theorem 4.2, to show that CAD(3, 6) = log2 27, we only need to

show that for every combination of |U | × |V | × |W | < 27, there exists no

93

bipartite graph G(U, V, E) and distance-2 coloring scheme W that satisfy

the conditions as described in Theorem 4.2. It is not hard to see that there

are only two combinations (up to permutation) that satisfy all conditions and

have product less than 27: (2, 3, 3) and (2, 3, 4). Notice that in both cases,

|E| = |U | × |V |, where every pair of edges is within distance 2 of each other,

which means that the corresponding graph G(U, V, E) can only be distance-2

edge colored with at least |E| = 6 > 4 > 3 colors. So neither (2, 3, 3) nor

(2, 3, 4) satisfies the aforementioned conditions. Hence, together with the

protocol presented before, we can conclude that CAD(3, 6) = log2 27. The

bipartite graph corresponding to Table 4.1 is illustrated in Figure 4.2. Near

the nodes Ui (or Vi) we show the set of value x’s such that sAB(x) = i (or

sAC(x) = i). The number near each edges is the input value corresponding

to that edge.

4.7 MEQ-AD(3,2k)

Now we construct a protocol when the number of possible input values K =

2k, k ≥ 1 and only binary symbols can be transmitted in each step, using

the MEQ-AD(3,6) protocol we just introduced in the previous sections as a

building block.

First, we map the 2k input values into 2k different vectors in the vector

space {1, 2, 3, 4, 5, 6}h, where h = �log6 2k� = �k log6 2�. Then h instances

of the MEQ-AD(3,6) protocol are performed in parallel to compare the h

dimensions of the vector. Since 3 channels symbols are required for each

instance of the MEQ-AD(3,6) protocol, we need to transmit a vector from

{1, 2, 3}h on each of the links AB, AC and BC. One way to do so is to

encode the 3h possible vectors from {1, 2, 3}h into b = �log2 3h� = �h log2 3�
bits, and transmit the b bits through the links. Since the h instances of

MEQ-AD(3,6) protocols solve the MEQ-AD(3,6) problem for each dimension,

altogether they solve the MEQ-AD(3,2k) problem. The communication cost

this protocol can be computed as [19]

C(P) = 3�h log2 3� < (0.92× 2k) + 7.755. (4.8)

From Equation 4.8, we can see that when k is large enough, the commu-

94

nication cost of this protocol is upper-bounded by 0.92 times of the upper

bound 2 log2 2
k = 2k from Section 4.4. The way in which the above protocol

is constructed can be generalized to obtain a MEQ-AD(3,K) protocol P with

similar cost

C(P) < (0.92× 2 log2K) + Δ (4.9)

for arbitrary value of K, where Δ is some positive constant.

4.8 About MEQ-CD

In this section, we will show that CCD(n,K) roughly equals to CAD(n,K):

CAD(n,K) ≤ CCD(n,K) ≤ CAD(n,K) + n− 1. (4.10)

We have shown the first inequality in Section 4.3.3. The second inequality

can be proved by the following simple construction: Consider any protocol

P for MEQ-AD, and construct a protocol P ′ by having node i send EQi to

node n by the end of P , for all i < n. Node n collects the n − 1 decisions

from all other nodes and computes the final decision

EQ′
n = max{EQ1, · · · , EQn}. (4.11)

It is easy to see that EQ′
n = MEQ(x1, · · · , xn). So P ′ ∈ ΓCD(n,K). Since

C(P ′) = C(P)+n−1, the second inequality is proved. From Equation 4.9 it

then follows that for large enoughK, the MEQ-CD(3,K) problem can also be

solved with communication strictly less than 2 log2K bits. The performance

can be improved somewhat by exploiting communication that may be already

taking place between node n and the other nodes. For example, to solve

MEQ-CD(3,6), instead of having nodes A and B sending 1 extra bit to node

C at the end of the MEQ-AD(3,6) protocol in Section 4.6, we only need to

add one possible value to sBC , namely sBC ∈ {1, 2, 3, 4}, where sBC = 4

means that node B has detected a mismatch. The cost of this protocol

is 2 log2 3 + log2 4 = 2 log2 3 + 2 < 3 log2 3 + 2. The same approach can

also be applied to the MEQ-AD(3,2k) protocol from Section 4.7 by making

|sBC | = �log2(3h + 1)�, and obtain an MEQ-CD(3,2k) protocol with cost of

2�h log2 3� + �log2(3h + 1)� bits, which is almost the same as 3�h log2 3� for

95

large h.

4.9 MEQ Problem with Larger n

Our construction in Sections 4.6 and 4.7 can be generalized to larger net-

works. For brevity, just consider the case when n = 3m. The nodes are orga-

nized in m− 1 layers of “triangles”. At the bottom ((m− 1)-th) layer, there

are 3m−1 triangles, each of which is formed with 3 nodes running the MEQ-

AD(3,K) protocol presented in section 4.7. Then the i-th layer (i < m − 1)

consists 3i triangles, each of which is formed with 3 “smaller” triangles from

the (i + 1)-th layer running the MEQ-AD(3,K) protocol. So the top layer

consists of one triangle. For K = 2k, the cost of this protocol is approxi-

mately
n− 1

2
(0.92× 2k + 7.755) ≈ 0.92(n− 1)k (4.12)

for large k. Notice that (n − 1)k is the upper bound from Section 4.4. So

the improvement of a constant factor of 0.92 can also be achieved for larger

networks.

4.10 Summary

In this chapter, we study the communication complexity problem of the mul-

tiparty equality function, under the point-to-point communication model.

The point-to-point communication model changes the problem significantly

compared with previously used broadcast communication models. We focus

on static protocols in which the schedule of transmissions is independent of

the inputs. We then introduce techniques to significantly reduce the space

of protocols to be studied. We then study the MEQ-AD(3,6) problem and

introduce an optimal static protocol that achieves the minimum communi-

cation cost among all static protocols that solve the problem. This protocol

is then used as a building block for construction of efficient protocols for

more general MEQ-AD problems. The problem of finding the communica-

tion complexity of the MEQ problem for arbitrary values of n and K is still

open.

96

CHAPTER 5

WATCHDOG IN WIRELESS NETWORKS

In wireless ad hoc and sensor networks, paths between a source and destina-

tion pair are usually multihop, and data packets are relayed in several wireless

hops from their source to their destination. This multihop nature makes the

wireless networks subject to tampering attack: a compromised/misbehaving

node can easily ruin data communications by dropping or corrupting packets

it should forward.

The watchdog mechanism proposed in [20] is a monitoring method used for

ad hoc and sensor networks, and is the basis of many misbehavior detection

algorithms and trust or reputation systems. The basic idea of the watchdog

mechanism is that nodes (called watchdogs) police their downstream neigh-

bors locally using overheard messages in order to detect misbehavior. If a

watchdog detects that a packet is not forwarded within a certain period or

is forwarded but altered by its neighbor, it deems the neighbor as misbehav-

ing. When the misbehavior rate for a node surpasses a certain threshold, the

source is notified and subsequent packets are forwarded along routes that

exclude that node [20].

The main challenge for most watchdog mechanisms is the unreliable wire-

less environment. Due to possible reasons such as channel fading, collision

with other transmissions, or interference, even when the source node and

the attacker are both within the communication range, the watchdog may

not be able to overhear every transmission and therefore may be unable to

determine whether there is an attack.

To mitigate the misbehavior of the malicious nodes, a watchdog mechanism

must achieve the following two goals: (1) Malicious behavior in the network

should be detected; and (2) The throughput under the detection mechanism

should be comparable to the throughput without detection if there is no

attack. These two goals seem to conflict. On one hand, more redundancy is

required to improve the probability of detection. On the other hand, higher

97

throughput requires redundancy to be reduced.

In this work, we show that both goals can be achieved simultaneously by

introducing error detection block coding to the watchdog mechanism. The

main contributions of this work are as follows:

• We propose a computationally simple scheme that integrates source

error detection coding and the watchdog mechanism. We show that

by choosing the encoder properly, a misbehaving node will be detected

with high probability while the throughput approaches optimal, even

in the case when the watchdog can only overhear a fraction of the

packets and an omniscient attacker, i.e., the attacker knows what en-

coder is being used and no secret is shared only between the source and

destination.

• We also propose a simple protocol that identifies the misbehaving node

using exactly two watchdog nodes per unreliable relay node. We show

that our protocol can be interpreted as a maximum likelihood decision

making scheme. Finally, we show that with multiple rounds of detec-

tion, the probability of correctly locating the malicious node can be

made arbitrarily close to one.

• We illustrated the effectiveness of our schemes with some small example

topologies, and we also show that these results generalize to multihop

networks.

5.1 Related Work

To ensure the reliability of packet delivery, trust for ad hoc and sensor net-

works has been investigated in past literature. The foundation of such dy-

namic trust systems is the node behavior monitoring mechanism, most fre-

quent discussion being on the watchdog mechanism [20]. The main idea of

watchdog was promiscuous monitoring, as discussed before. Once a node

is deemed to be misbehaving, the source would choose a new route free of

misbehaving node with the aid of a “path-rater”.

A variant of the watchdog mechanism is proposed in [62] where next-hop’s

behavior is measured with the local evaluation record, defined as a 2-tuple:

packet ratio and byte ratio, forwarded by the next-hop neighbor. Local

98

evaluation records are broadcast to all neighbors. The trust level of a node is

the combination of its local observation and the broadcast information. Trust

level is inserted to the RREQ (Route REQuest). Route is selected in the

similar way to AODV (Ad hoc On Demand Distance Vector) [63]. Although

many ad hoc trust or reputation systems such as [64], [65] and [66] adopt

different trust level calculation mechanisms, the basic processes are similar

to [62], including monitoring, broadcasting local observation, combing the

direct and indirect information into the final trust level.

Recently, the security issue in network coding systems has drawn much

attention. Due to the mixing nature of network coding, such systems are

subject to a severe security threat, known as a pollution attack, where at-

tackers inject corrupted packets into the network.

Several solutions to address pollution attacks in intra-flow coding systems

use carefully designed digital signatures [67], [68], [69], [70] or hash functions

[71], [72], which allow intermediate nodes to verify the integrity of combined

packets. Packets that fail the test will be dropped to save some bandwidth.

Such cryptographic solutions largely rely on either the private key being

kept secret from the adversary or the difficulty of reversing the hash function.

Non-cryptographic solutions have also been proposed [51], [46]. [73] proposes

two practical schemes to address pollution attacks against network coding in

wireless mesh networks without requiring complex cryptographic functions

and incur little overhead. Reference [74] studies the transmission overhead

associated with the schemes in [69], [51], and [46].

Reference [75] and our earlier work [22] propose two similar monitoring

schemes, independently. The two-hop wireless network investigated in [75] is

similar to the single flow example in section IV of [22] and section 5.2.1 of

this chapter. Both schemes introduce redundancy at the source of data to

improve the detection at the monitoring node, in the form of a polynomial

hash function and MDS (maximum distance separable) code, respectively.

While [75] considers general network codes, we focus on a particular network

code – forward and compare. Both works show that as the amount of redun-

dancy increases, the probability that the malicious node being undetected

approaches zero.

99

5.2 Detecting Misbehavior

In this work, we focus on multihop wireless networks in which data packets

are transmitted from source to destination through multiple relay nodes.

We assume no coding is performed on relaying nodes so that packets are

forwarded as they are received at the relay nodes. In such a network, a node

W can be assigned as a watchdog for a relay node R if W can overhear

both incoming and outgoing transmissions to and from R. W ’s duty is to

compare the two copies of a packet it overhears from both R and its upstream

neighbor, and to report an attack to the source or destination if there is a

mismatch.

We are interested in detecting tampering attacks: we want the source

or destination to be able to detect if there are misbehaving nodes in the

network sending corrupted data. Moreover, we will focus tampering attack

detection under a single node failure adversary model, i.e., the adversary can

compromise at most one node in the network except for the source(s) and

destination(s). If a watchdog is misbehaving, the only way to attack is to

report an attack even though all other nodes are well-behaving. This is a

trivial case since the source/destination always knows some node is misbe-

having upon receiving the report of attack from the misbehaving watchdog.

So it is more interesting to look at the case when a relay node misbehaves.

Since the wireless broadcast channel is usually unreliable, a watchdog node

may only be able to overhear a fraction of the transmissions to/from the

node it is monitoring for reasons such as channel fading and interference. As

a result, an adversary may be able to avoid being detected by the watchdog

with high probability by keeping the fraction of packets it tampers lower

than a certain threshold Thwatchdog. To overcome this drawback of watchdog

mechanisms, we propose to integrate source coding with watchdogs: the

source node encodes the data packets with some error detecting code and

sends the coded packets through the multihop network with watchdogs. By

applying error detecting codes, the destination can detect an attack during

the decoding process with high probability if the fraction of packets tampered

with by the adversary is lower than a certain threshold Thcode. Intuitively,

if Thwatchdog < Thcode, even an omniscient adversary will be detected with

high probability no matter how many packets it corrupts. Throughout this

chapter, we assume the adversary to be omniscient, i.e., the adversary has

100

RS D

W

Figure 5.1: A single flow network. The thick (directed) lines denote a
reliable connection from the tail node to the head node, a dashed line
denotes the overhearing and a blue line denotes a secure asymptotically
negligible rate channel between the two nodes.

complete knowledge of the misbehaving detection mechanism being used,

and there is no secret between the source and destination hidden from the

adversary.

5.2.1 Single Flow Case

To illustrate the idea, let us look at the example of a single flow network as in

Figure 5.1. There are 4 nodes in the network: the source node S, destination

node D, attacker R, and the watchdog node W . The thick (directed) lines

denote a link from the tail node to the head node, a dashed line denotes the

overhearing and a blue line denotes a secure asymptotically negligible rate

channel between the two nodes. We assume that all links (except for the

blue one) have the same transmission rate of 1 packet per unit time. We

also assume an optimal centralized schedule is enforced and the watchdog W

knows what to compare. Moreover, we assume all transmissions along the

path S → R→ D are reliable while W can only overhear both transmission

of a packet with probability q 1.

The source node S encodes every k data packets into a block of n coded

packets with an (n, k) MDS (maximum distance separable) code. We assume

the packet size is large enough so that an MDS code always exists for the

desired value of n and k. With an (n, k) MDS code, an attack will always be

detected at the decoder as long as no more than n − k packets are altered.

As a result, R has to alter at least n − k + 1 packets in a block in order to

1Transmissions along the data path are usually protected by channel coding or/and
retransmission mechanisms, while the watchdog can only overhear packets opportunisti-
cally.

101

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Overhear probability q

M
is

s
de

te
ct

io
n

pr
ob

ab
ili

ty
 P

m
is

s

n=63, β=1
n=127, β=1
n=255, β=1
n=63, β=2
n=127, β=2
n=255, β=2

(a) Miss detection probability v.s. observe probability

10
1

10
2

10
3

10
4

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

M
is

s
de

te
ct

io
n

pr
ob

ab
ili

ty
 P

m
is

s

Block length n

q=0.25, β=1
q=0.25, β=2
q=0.5, β=1
q=0.5, β=2

(b) Miss detection probability with k = n+ 1− β lnn
q

Figure 5.2: Miss detection probability in the single flow example.

avoid being detected by the decoder. Since the more packets node R tampers

with, the more likely it will be caught by node W , it is in R’s interest to just

attack the minimum number of packets per block: n− k + 1. In this case, it

is easy to show that the probability of node R not being caught is

Pmiss(n, k, q) = (1− q)n−k+1. (5.1)

102

If we construct a (n, k) encoder such that

k = n+ 1− f(n, q)

q
, (5.2)

then from Equation 5.1 we have

Pmiss(n, k, q) ≤ e−q(n−k+1) = e−f(n,q). (5.3)

We can then choose the function f(n, q) appropriately so that we can make

Pmiss arbitrarily small while the coding rate k/n approaches arbitrarily close

to optimal (1). For example, by making f(n, q) = β lnn for any positive

constant β, we have

Pmiss(n, k, q) ≤ e−β lnn

= n−β → 0 as n→∞, (5.4)

and the coding rate becomes

k

n
=

n+ 1− β lnn
q

n

= 1 +
1

n
− β

q

lnn

n
→ 1 as n→∞. (5.5)

So we can reduce the incentive for R to attack by making n large and choosing

β appropriately.

Since the delay to verify a block equals the time it takes to transmit n

packets in the block, the trade-off between probability of miss-detection and

n is of interest. Figure 5.2(a) and Figure 5.2(b) show the probability of miss-

detection with the observe probability q and with the number of packets n

respectively. We can see that by integrating a watchdog and error detection

coding, we can reduce the incentive for the attacker to attack by allowing

longer delay.

Notice that by making n large, the coding/decoding complexity increases.

In the case complexity is a concern, the source can scramble coded packets

of multiple (n, k) encoded blocks and transmit these packets in a random

order. By doing so, the attacker will have to corrupt more packets in order

to destroy a particular block, which makes it easier to be detected by the

103

R1S1 D1

R2S2 D2

W

Figure 5.3: A two flow network.

watchdog.

5.3 Two Flows Case

In Section 5.2.1, we have illustrated the effectiveness of source coding on top

of watchdog mechanisms by a single flow example with a centralized optimal

scheduler. In this section, we will study the trade-off between throughput

and security in a more practical setting: there are multiple data flows in

the network and a distributed random access MAC protocol is used. In the

following example, we show that the proposed scheme achieves a high level

of security while maintaining a reasonably good throughput.

Consider the network shown in Figure 5.3 with two flows: S1 → R1 → D1

and S2 → R2 → D2. Suppose the flows are far enough away from each other

so there is no inter-flow interference, but the watchdog W is sitting between

the flows and can overhear transmissions on all the four links. So even though

a transmission is successful along its path, it may collide with packets from

the other flow received at W . We assume a slotted aloha access protocol with

access probability α. To simplify the analysis, we further assume that a node

will access the channel by transmitting dummy packets when it has no data

packet to send. Under these assumptions, we can compute the throughput

of each flow and the probability W can compare a particular packet as

T = α(1− α), (5.6)

q = (1− α)5. (5.7)

104

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Channel access probability α

M
is

s
de

te
ct

io
n

pr
ob

ab
ili

ty
 P

m
is

s

n=63, β=1
n=127, β=1
n=255, β=1
n=63, β=2
n=127, β=2
n=255, β=2

(a) Miss detection probability v.s. channel access probabil-
ity

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Channel access probability α

E
ffe

ct
iv

e
th

ro
ug

hp
ut

n=63, β=1
n=127, β=1
n=255, β=1
n=63, β=2
n=127, β=2
n=255, β=2

(b) Effective throughput v.s. channel access probability

Figure 5.4: Miss detection probability and effective throughput in the two
flows example with k = n+ 1− β lnn

(1−α)5
. Where the curves stop means no

code is available.

The exponent in Equation 5.7 is 5 because given that the transmission from

S1 to R1 is successful, W can overhear it if neither S2 nor R2 transmits, which

occurs with probability (1−α)2. To compare this packet, W should overhear

the transmission from R1 to D1 too, which happens with probability (1−α)3

for S1, S2 and R2 to remain silent.

Similar to the single-flow example, we can make Pmiss arbitrarily small by

105

choosing

k = n+ 1− β lnn

(1− α)5
, (5.8)

and the effective throughput is

TE = T × k

n

= α(1− α)(1 +
1

n
)− αβ lnn

(1− α)4n
. (5.9)

In Figure 5.4(a) and Figure 5.4(b), we plot the miss-detection probability

and effective throughput when the error detection code is chosen according

to Equation 5.8. We only plot the result for α ≤ 0.5 because further in-

creasing α will only reduce the throughput. We can see from Figure 5.4(a)

the probability of miss-detection increases as α increases and converges to

roughly n−β. Since the higher the α is, the fewer packets the watchdog can

observe, the source has to sacrifice coding rate in order to maintain a certain

probability of missing an attack as α increases.

As shown in Figure 5.4(b), as α increases, the effective throughput in-

creases up to a certain level then drops to zero as α gets larger. We can also

see the optimal access probability changes according to the value of n and β:

the larger n, the higher α should be; the larger β, the smaller α should be.

For instance, if the source does not perform any coding (which is not plotted

here), it is well known that the optimal α = 0.5 and the per-flow throughput

is 0.25 packet per slot. In the case n = 255 and β = 1, the optimal α is

about 0.35 and the throughput is about 0.19 packets per slot. Although the

throughput is higher without source coding, it comes with the cost of not

being able to provide any security guarantee. On the contrary, our scheme

guarantees by upper-bounding Pmiss by n−β . Our scheme provides a method

to optimize the balance among throughput, delay, and security.

5.4 Identifying the Misbehaving Node

In the previous section, we have studied the detection of misbehavior in the

network. While misbehavior detection is essential in some applications, it is

also important to identify the node that is misbehaving in order to avoid that

node in future transmissions. The scheme discussed in the previous section

106

cannot determine which node is misbehaving.

In this section, we present a simple protocol that identifies the misbehav-

ing node with two watchdogs. This includes the cases when a watchdog node

is misbehaving. However, we show that for the proposed protocol, the adver-

sary has no incentive to attack the watchdog. In particular, if the adversary

attacks the watchdog, our protocol locates the adversarial node determin-

istically (with probability equal to one). However, if the adversary attacks

the relay node, our scheme is guaranteed to locate the attacker with a prob-

ability that quickly approaches to unity with increasing number of packets

transmitted.

The protocol in the following subsection can be viewed as several nodes

making a decision on the correctness of the message transmitted by the relay

node. The protocol can be visualized as the maximum likelihood decision

scheme, and as we show in the following subsection, gives an optimal decision

based on the decisions of the watchdogs.

5.4.1 The Protocol

Consider a relay node R that is observed by two watchdogs W1 and W2 and

relays the information from a source node S to destination node D. Assume

that the source node employs an (n, k)-MDS code. Assume that each source

packet contains a unique generation number that identifies the generation to

which a particular packet belongs. Each watchdog in the network decides

whether or not the relay node is misbehaving based on all the overheard

packets that belong to the current generation. If R is misbehaving (one of

the n packets transmitted by R does not match the corresponding packet

transmitted by S), it transmits a “decision bit” 1 to the judge node2, else it

transmits a decision bit 0 to the judge node. We assume that if the watchdog

is misbehaving, it may transmit a 0 or a 1 for any particular relay node (same

watchdog may transmit different decisions for different relay nodes). Denote

the bits received from W1 and W2 by w1 and w2. The judge node collects

the decision bits and makes a decision as follows:

2A judge node may be a destination node or the source node or both the nodes. In case
of the destination node, it may decide to treat the information as authentic if it infers the
relay node of not misbehaving. In case of the source node, it may decide to consider the
path S → R→ D secure if it infers the relay node to be not misbehaving.

107

• w1w2 = 11: R is misbehaving;

• w1w2 = 10: W1 is misbehaving;

• w1w2 = 01: W2 is misbehaving;

• w1w2 = 00: none of the nodes is under attack.

We remark that our scheme gives a decision based on maximum likelihood

probability of a particular node misbehaving. To see the protocol as a max-

imum likelihood decision making scheme, first consider the two simple cases

of the decision bits being 11 and 00: in the former, the relay node must be

misbehaving, else W1 and W2 cannot both detect a misbehavior at R (note

that one of them can; if that particular watchdog is misbehaving, it could

pretend that the relay node is actually misbehaving). And in the latter,

there is no way to detect which node is misbehaving; indeed there may be

no misbehaving node in such a case. For the case of 01 (10), note that if

the attacker is at W1(W2), W2(W1) will never send a 1. Hence, assuming

each node can be misbehaving with equal probability and the miss-detection

probability for W1 and W2 are both Pmiss, it is easy to compute probability

of each node misbehaves given w1w2 = 01 as:

PW1|01 = 0

PR|01 =
Pmiss × (1− Pmiss)

1 + (Pmiss × (1− Pmiss))

PW2|01 =
1

1 + (Pmiss × (1− Pmiss))

The protocol in such a scenario decides that the watchdog sending a 1 is

under attack, which is precisely the maximum likelihood decision given such

a configuration (note that PW2|01 > PR|01).

We show in the following subsections that the misbehaving node can be

located with a very high probability using just two watchdogs. We finally

comment on how to bring the probability of correct location detection arbi-

trarily close to unity.

Let PL|N denote the probability of correctly locating the misbehaving node

in the network given the adversary is at node N (where N may be R, W1,

or W2); PF |N denote the probability that a node other than N is accused

108

RS D

W1

W2

Figure 5.5: Single flow network of Figure 5.1 with an extra watchdogs.

to be misbehaving while in fact N is the adversary; and PU |N denote the

probability when the adversary at node N operates undetected.

5.4.2 Performance – Single Flow Case

For the single flow case, only one extra watchdog is required to locate the

adversary in the network (see Figure 5.5). We employ the protocol discussed

above at destination D. Given this scheme, we have the following lemmas

characterizing the performance of the protocol:

Lemma 5.1 In single flow case of Figure 5.5, if any of the watchdogs is

misbehaving, it will be located, i.e.,

PL|W1 = PL|W2 = 1

PF |W1
= PU |W1

= PF |W2
= PU |W2

= 0

Proof: Let us assume, without loss of the generality, that W1 is misbehav-

ing. In such a scenario, W2 will always send a decision bit 0 to D since it will

never overhear any incorrect packet being transmitted by R. A misbehaving

W1, on the other hand, will accuse the relay node of misbehaving. Then,

the received decision bits at node D are 10. Given our protocol, D will de-

cide that R is a reliable node and hence, the node W1 sending a 1 must be

misbehaving. Hence, D will always be able to locate the misbehaving node.

�

The above lemma implies that the adversary has no incentive to attack

either of the watchdogs in the network. Using the results of previous sections,

this further restricts the capabilities of the attacker: it is not only restricted

109

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Channel access probability α

F
al

se
 d

et
ec

tio
n

pr
ob

ab
ili

ty
 P

F
|R

n=63, β=1
n=127, β=1
n=255, β=1
n=63, β=2
n=127, β=2
n=255, β=2

(a) False detection probability v.s. channel access probabil-
ity

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

−90

10
−80

10
−70

10
−60

10
−50

10
−40

10
−30

10
−20

10
−10

10
0

Channel access probability α

F
al

se
 d

et
ec

tio
n

pr
ob

ab
ili

ty
 P

F
|R

n=63, β=1
n=127, β=1
n=255, β=1
n=63, β=2
n=127, β=2
n=255, β=2

(b) Miss-detection probability v.s. channel access probabil-
ity

Figure 5.6: False location probability and undetected probability in the
single flow example with k = n+ 1− β lnn

(1−α)5
. The curves stop where no code

is available.

to attack the relay node but also needs to corrupt a large number of packets.

The following lemma characterizes the performance of the protocol when the

relay node misbehaves (corrupts more than (n−k) packets out of n packets):

110

Lemma 5.2 In single flow network of Figure 5.5, if R is misbehaving, then:

PL|R = (1− Pmiss)
2

PF |R = 2× Pmiss × (1− Pmiss)

PU |R = P 2
miss.

Proof: Let R be misbehaving and the decision bits sent by W1 and W2 be

w1 and w2 respectively. Then, R goes undetected if and only if w1w2 = 00,

i.e., when both the watchdogs miss all the packets corrupted by the attacker.

Hence, the probability of R operating undetected is PU |R = Pmiss × Pmiss.

On the other hand, R will be detected if and only if none of the watchdogs

miss any of the packets corrupted by R, i.e., w1w2 = 11, leading to the fact

that PL|R = (1− Pmiss)× (1− Pmiss).

Finally, the case of false detection is when exactly one of the watchdogs

misses all the packets corrupted by R, i.e., when w1w2 is either 10 or 01; in

this case W1 or W2 is detected as bad (not R). This gives PF |R = Pmiss ×
(1− Pmiss) + Pmiss × (1− Pmiss). Notice that PF |R = 1− (PL|R + PU |R).

�

The probabilities PF |R and PU |R are plotted in Figure 5.6(a) and Figure

5.6(b) as a function of channel access probability for k = n + 1− β lnn
(1−α)5

.

In Lemma 5.2, we have assumed that both the watchdogs have the same

probability Pmiss. This might not be the case since different nodes might

observe different channel conditions due to being at different locations. We

consider this case in the following subsection but the results of Lemma 5.2

can be modified easily to incorporate such a difference in probability of W1

and W2 missing the detection of packet modification by the relay node.

5.4.3 Performance – Two Flows Case

In this section, we study the location detection of the misbehaving node for

the two flow case of Section 5.3. We first consider the case when the desti-

nation nodes may collaborate among themselves to locate the misbehaving

node and show that such a collaboration does not necessarily reduce the con-

nectivity requirement and/or improve the detection probability as long as the

misbehaving node is not oblivious to the attack detection mechanism. We

111

R1

S D

R2

W1

W2

W3

Figure 5.7: Corresponding netowrk for the two flow network of Figure 5.3
with extra watchdogs, when the judge nodes collaborate among themselves.
The illustration also captures the multipath routing case when S relays the
information to D via multiple relay nodes.

then show that the case of two flow network reduces to the case of multiple

single flows with appropriate modifications to the probabilities of missing an

attack at the watchdog nodes.

Assume that the two destinations D1 andD2 collaborate among themselves

(share a few bits in order to locate the misbehaving node) and that the

misbehaving node is oblivious to any attack detection mechanism in the

network. This means that if the watchdog W2 is the misbehaving node, it

will send decision bits 1 to both D1 and D2. However, since there is a single

adversary in the network, R1 and R2 cannot be both misbehaving. If D1 and

D2 both receive 1 from W2, they will (collaboratively) decide that W2 is the

misbehaving node. On the other hand, if R1 or R2 is misbehaving, W2 sends

a 1 to the corresponding destination node and a 0 to the other destination

node, which will certainly imply that the corresponding relay node is under

attack (assuming that W2 is oblivious to the attack detection mechanism).

Notice that in the above case, we do not need W1 and W3 for locating the

misbehaving node. The problem arises when the misbehaving node knows

that an attack detection scheme is being employed in the network. In such

a case, the misbehaving node (at W2) may send a decision bit 1 to one

destination node (say D1) and a 0 to the other destination node, making

D1 (incorrectly) think that R1 is actually misbehaving. In such a case, we

112

R1S1 D1

R2S2 D2

W1

W2

W3

Figure 5.8: Two flow network of Figure 5.3 with extra watchdogs.

need W1 and W3 to be able to correctly decide the location of the adversary.

Note that the above discussion implies that even if several judge nodes start

collaborating, at least two watchdogs are required to correctly locate the

misbehaving node. Hence, collaboration of judge nodes does not help in

reducing connectivity requirements and/or devising a better attack detection

scheme.

Notice that the above discussion of collaborating judge nodes also captures

the multipath transmission mechanism where a source node might relay the

information to the same destination via multiple relay nodes (see Figure

5.7). Hence, to (correctly) locate the misbehaving node, the connectivity

requirements for the network is every relay node being monitored by at least

two watchdogs. We derive the results for the two flow case when the judge

nodes do not collaborate but as discussed above, these results hold even if

the judge nodes collaborate among themselves.

If the destination nodes do not collaborate, then the decision made by any

of the destination nodes, say D1, is dependent only on the decision bits of

the watchdogs observing the corresponding relay node, i.e., W1 and W2 for

D1 (similar remarks hold for D2). This in turn means that each destination

node individually behaves as if it is participating in a single flow network.

However, as discussed earlier, it might be the case that the watchdogsW1 and

W3 have probabilities of detection different from that of W2. The following

lemmas hold for the case of two flow network of Figure 5.8, where we denote

113

the probabilities of missing an attack at the relay node for watchdogs W1

and W3 are Pmiss,1 and that of W2 is Pmiss,2.

Lemma 5.3 In the two flow case of Figure 5.8 with our protocol, if the

attacker attacks at any of the watchdogs, it will be located, i.e.,

PL|W1
= PL|W2

= 1

PF |W1 = PU |W1 = PF |W2 = PU |W2 = 0

Proof: Similar to Lemma 5.1, collaboration of destination nodes does not

play a role.

�

Lemma 5.4 In the two flow case with our protocol, if the adversary attacks

R1 or R2, then:

PL|R1
= PL|R2

= (1− Pmiss,1)× (1− Pmiss,2)

PF |R1
= PF |R2

= Pmiss,1 + Pmiss,2 − 2× Pmiss,1Pmiss,2

PU |R1 = PU |R2 = Pmiss,1 × Pmiss,2

Proof: Similar to Lemma 5.2, collaboration of destination nodes does not

play a role.

�

5.5 Summary

In this work, we have studied the problem of misbehavior detection in wireless

networks. We propose a lightweight misbehavior detection scheme which

integrates the idea of watchdogs and error detection coding. We show in a

single flow example that even if the watchdog can only observe a fraction of

packets, by choosing the encoder properly, an attacker will be detected with

high probability while achieving throughput arbitrarily close to optimal. The

trade-off between throughput and security in a more practical setting – there

are multiple data flows in the network and a distributed random access MAC

protocol is used – is also studied. This technique can also be used to locate

the misbehaving node, by using just one extra watchdog per relay node.

114

CHAPTER 6

FUTURE WORK

In this chapter, we summarize the future goals of our research.

6.1 Fast Oblivious Byzantine Agreement Algorithms

In the Byzantine broadcast algorithms we present in Chapter 3, every time

a failure is detected, the dispute control (or fault diagnosis) broadcast stage

is performed in addition to the normal operations. Moreover, the order

according to which the nodes transmit will change after a mode transition,

depending on the location of the failure. In practice, the diagnostic process is

preferred to be avoided since it introduces excessive delay before agreement

is achieved for the current instance. It is also desirable that the algorithm is

oblivious, by which we mean the schedule of transmissions does not change

over time. Fast oblivious algorithms that have these properties is one possible

topic for future work.

6.2 Byzantine Agreement with Capacity Constraints in

Wired Networks

In Chapter 3, we have presented the NAB algorithm that achieves at least 1/3

of the capacity of Byzantine broadcast for general point-to-point networks.

For future work, providing better performance guarantee in the following two

aspects are of interests:

1. Provide tighter upper bounds on the capacity of Byzantine broadcast

or consensus in general point-to-point networks.

2. Develop Byzantine broadcast or consensus algorithm that achieves bet-

ter throughput than NAB. One possible approach for achieving this

115

goal is to combine the unreliable broadcast in Phase 1 and fault detec-

tion in Phase 2 of NAB. The two capacity-achieving Byzantine broad-

cast algorithms for four-node networks and symmetric networks suggest

good potential of this approach.

6.3 Byzantine Agreement in Wireless Networks

In Chapter 5, we have explored the broadcast property of the wireless medium

for misbehavior detection in unicast communication. In fact, Byzantine

agreement algorithms may also benefit from the broadcast communication

model when wireless medium is considered. Therefore, investigating the

Byzantine agreement problem in the broadcast communication model setting

is part of the future work. A potential strategy would be try to integrate the

watchdog mechanism into a Byzantine agreement algorithm.

6.4 Multiparty Equality Function Computation with

Capacity Constraints

As we have seen in the previous chapters on Byzantine agreement, the main

procedure of our agreement algorithms is to check whether all n−f fault-free

nodes decide on the same value, which is in fact solving the MEQ problem

for every subset of n − f nodes in the network. In Chapter 4, preliminary

results of the MEQ problem with no capacity constraint have been discussed.

However, even the smallest non-trivial instance of the problem – MEQ(3, K)

– is still unsolved for general K. Part of the future work would be to con-

tinue investigating the MEQ(3, K) problem. The first step would be to study

the MEQ(3, K) problem under point-to-point capacity constraints, which we

believe would provide useful insight for the unconstrained problem. Mean-

while, better understanding of the MEQ problem in the constrained setting

will likely provide useful insights for the Byzantine agreement problem.

116

CHAPTER 7

CONCLUSIONS

In this dissertation, we have discussed various algorithms for tolerating fail-

ures in distributed systems. More specifically, in Chapter 2, we propose

CBC, a linear-complexity Byzantine consensus algorithm; and CBB, a linear-

complexity Byzantine broadcast algorithm. In design of both CBC and CBB,

we incorporate techniques such as error-detection coding and system level

diagnosis to improve the communication complexity of Byzantine consensus

and broadcast, without relying on any cryptographic assumption.

In Chapter 3, we study the design of network-aware Byzantine agreement

algorithms. In particular, we focus on optimizing the throughput of Byzan-

tine broadcast in point-to-point networks, in which each link has a link ca-

pacity constraint. We derive an upper bound on the achievable through-

puts of Byzantine broadcast for general point-to-point networks. A network-

aware Byzantine broadcast algorithm NAB is proposed and proved to achieve

throughput at least 1/3 fraction of the optimal in general point-to-point

networks. In two particular families of point-to-point networks, capacity-

achieving Byzantine broadcast algorithms are developed.

In Chapter 4, we investigate the problem of multiparty equality (MEQ)

function computation, under the point-to-point communication model. The

point-to-point communication model changes the problem significantly com-

pared with previously used broadcast communication models. We focus on

static protocols in which the schedule of transmissions is independent of the

inputs. We then introduce techniques to significantly reduce the space of

protocols to be studied. We then study the MEQ-AD(3,6) problem and

introduce an optimal static protocol that achieves the minimum communi-

cation cost among all static protocols that solve the problem. This protocol

is then used as a building block for construction of efficient protocols for

117

more general MEQ-AD problems. The problem of finding the communica-

tion complexity of the MEQ problem for arbitrary values of n and K is still

open.

In Chapter 5, we study the problem of misbehavior detection in wireless

networks. We propose a lightweight misbehavior detection scheme which

integrates the idea of watchdogs and error-detection coding. We show in a

single flow example that even if the watchdog can only observe a fraction of

packets, by choosing the encoder properly, an attacker will be detected with

high probability while achieving throughput arbitrarily close to optimal. The

trade-off between throughput and security in a more practical setting – there

are multiple data flows in the network and a distributed random access MAC

protocol is used – is also studied. This technique can also be used to locate

the misbehaving node, by using just one extra watchdog per relay node.

The design principle of the fault-tolerant algorithms in this dissertation

is based on the observation that if the locations of the faulty component(s)

in the system do not change frequently, error-detection suffices, in contrast

to the commonly adopted error-correction approach. Error-detection guar-

antees safety, i.e., no erroneous outcome can be arrived. When error (or

failure) is detected, diagnostic operations can be performed to learn infor-

mation of the locations of the faulty components and reduce their capability

in interfering with the normal operation of the algorithm in the future. It is

our belief that this methodology could be applied to other open challenging

problems in fault-tolerance networking and distributed computing research.

118

APPENDIX A

ERROR-FREE BYZANTINE FAULT
TOLERANCE WITH LINEAR
COMPLEXITY

A.1 Improving Computational Complexity of CBC

To make the algorithm computationally more efficient, we need to modify

Algorithm 1 slightly, as elaborated later in this appendix. With this change,

the algorithm only looks for a set Pmatch of size n− f such that all the fault-

free processors in Pmatch ∩ Pgood have the same input in generation g. The

algorithm’s response when such a Pmatch is not found is now somewhat differ-

ent, as sketched below. A complete description and the proof of correctness

of the modified algorithm is omitted for brevity.

Pmatch is found as follows. We maintain a set Q that contains the largest

set of processors that appear to have identical input up to the previous

generation. Initially, Q is the set of all n processors. The matching stage is

performed as it is in Algorithm 1, up to Line 3(d). The subsequent steps of

the matching stage are different.

(i) Determine the largest set Q′ ⊆ Q such that all the processors in set Q′

haveM vectors that contain at least n−f TRUE entries. If |Q′| < n−f , then
the fault-free processors must have different L-bit inputs, and the algorithm

terminates with the decision being a default value. If |Q′| ≥ n − f , the

proceed to the following steps.

(ii) For every pair of nodes i, j ∈ Q′ that trusts each other, if there are

more than t distinct processors not trusted by node i or j, then one of nodes

i and j must be faulty. Remove edge (i, j) in the diagnosis graph, set Mi[j] =

FALSE and Mj [i] = FALSE, and go back to step (i) above.

(iii) For every pair of nodes i, j ∈ Q′ (that now trust the same set of at

least n− f processors), check whether Mi[k] = Mj [k] for each node k that is

trusted by both nodes i and j. If this check fails, then either vi(g) and vj(g)

are different (or, pretending to be different, in case one of these processors is

119

faulty), or node k has sent different symbols to nodes i and j. In this case,

go to step (iv); otherwise it can be proved that vi(g) = vj(g) if nodes i and j

are both fault-free. If all these checks pass, then Pmatch can be chosen as any

subset of Q′ of size n − f , and it always contains a clique of at least n − 2t

fault-free processors that have the same input for the current generation.

Then proceed to the Checking stage as in Algorithm 1.

(iv) If misbehavior, or difference in processor inputs, is detected in step

(iii) above, some additional steps are needed: All processors in Q′ broadcast

their inputs for generation g. Q is then updated as the largest subset of Q′

that broadcast the same value. If |Q| < n − f , then terminate and decide

on a default output. If |Q| ≥ n − f , then decide on the value broadcast by

processors in Q. Additionally, diagnosis is also performed to remove an edge

from the diagnosis graph, if misbehavior has indeed occurred.

A.2 Proof of Correctness of Improved-CBC

In this section, we prove the correctness of Algorithm 2.6.2. Similar to the

proof of CBC, in the proofs of the following lemmas, we assume that the

fault-free nodes always trust each other.

Lemma A.1 If Detectedj =FALSE for every node j in Line 2(d), every

fault-free node i ∈ Pgood decides on the identical output value y(g) such that

y(g) = xj(g) for every node j ∈ Pgood ∩ Pmatch.

Proof: According to the algorithm, every fault-free node i ∈ Pgood has

sent Si[i] (computed from xi(g) directly if node i ∈ Pmatch, or computed

using symbols received in Lines 1(a) and 1(b) if node i /∈ Pmatch) to all the

other fault-free nodes. As a result, Ri|Pgood = Rj |Pgood is true for every

pair of fault-free nodes i, j ∈ Pgood. Since |Pgood| ≥ n − f and Cn−f is

a distance-(f + 1) code, it follows that either all fault-free nodes in Pgood

decide on the same output, or at least one fault-free node i ∈ Pgood sets

Detectedi ←TRUE in Line 2(a). In the case all Detectedj=FALSE, all

fault-free nodes decide on an identical y(g). Moreover, according to Line

2(b), every fault-free node j ∈ Pgood ∩ Pmatch finds Rj = Sj. It then follows

that y(g) = C−1
n−f(Rj) = C−1

n−f(Sj) = xj(g).

�

120

Lemma A.2 If a Pnew such that |Pnew| ≥ n−f is found in Line 3(g), every

fault-free node i ∈ Pgood decides on an identical output value y(g) such that

y(g) = xj(g) for every node j ∈ Pgood ∩ Pnew.

Proof: Since |Pnew| ≥ n − f and since at most f nodes are faulty, there

must be at least n−2f fault-free nodes in Pgood∩Pnew, which have broadcast

the same S#’s in Line 3(b). So at Line 3(h), all fault-free nodes decide on

the identical output y(g) = xj(g) for node j ∈ Pgood ∩ Pnew.

�

Lemma A.3 If a Pnew such that |Pnew| ≥ n − f can not be found in Line

3(g), then there must be two fault-free nodes i, j ∈ Pgood such that xi �= xj.

Proof: It is easy to see that if all fault-free nodes in Pgood are given the

same input, then a Pnew such that |Pnew| ≥ n − f can always be found in

Line 3(g). Then the lemma follows.

�

The correctness of the way Diag Graph is updated is proved in the same

way as in CBC. Now we can conclude the correctness of Algorithm Improved-

CBC as the following theorem:

Theorem A.1 Given n nodes with at most f < n/3 being faulty, each given

an input value of L bits, Algorithm 2.6.2 achieves consensus correctly in L/D

generations, with the diagnosis stage performed for at most f+f(f+1) times.

Proof: According to Lemmas A.1 and A.2, the decided output y(g) always

equals to xj(g) for some node j ∈ Pgood ∩ Pmatch, unless |Pnew| < n − f in

Line 3(h). So consistency and validity properties are satisfied until |Pnew|
becomes < n−f . In the case |Pnew| < n−f , according to Lemma A.3, there

must be two fault-free nodes that are given different inputs. Then it is safe

to decide on a default output and terminate. So the L-bit output satisfies

the consistency and validity properties.

Every time the diagnosis stage is performed, either at least one edge in

Diag Graph associated with a faulty node is removed, or at least one node is

removed from Pmatch. So it takes at most f(f +1) instances of the diagnosis

stage before all faulty nodes are identified. In addition, it will take at most

f instances to remove fault-free nodes from Pmatch until two fault-free nodes

121

are identified as having different inputs, and the algorithm terminates with

a default output. �

A.3 Proof of Correctness of VCBC

Lemma A.4 If there are a set of at least v fault-free nodes Q ⊆ Pgood such

that for each node i ∈ Q, xi(g) = x(g) for some x(g), then a set Pmatch of

size v necessarily exists.

Proof: Since all the fault-free nodes in Q have identical input x(g), Si =

Cv(x(g)) for every node i ∈ Q. Since these nodes are fault-free and always

trust each other, they send each other correct messages in the matching stage.

Thus, Ri[j] = Sj [j] = Si[j] for every pair of nodes i, j ∈ Q. This fact implies

that Mi[j] = Mj[i] =TRUE for all pairs i, j ∈ Q. Since there are |Q| ≥ v

fault-free nodes in Q, it follows that a set Pmatch of size v must exist. �

Lemma A.5 If Detectedj =FALSE for every node j in Line 2(d), every

fault-free node i ∈ Pgood decides on the identical output value y(g) such that

y(g) = xj(g) for every node j ∈ Pmatch ∩ Pgood.

Proof: Observe that size of set Pmatch ∩Pgood is at least v− f ≥ 1, so there

must be at least one fault-free node in Pmatch.

According to the algorithm, every fault-free node i ∈ Pgood has sent Si[i]

(computed from xi(g) directly if node i ∈ Pmatch, or computed using the v

symbols received from Pmatch in Lines 1(a) and 1(f) if node i /∈ Pmatch) to all

the other fault-free nodes. As a result, Ri|Pgood = Rj |Pgood is true for every

pair of fault-free nodes i, j ∈ Pgood. Since |Pgood| ≥ n − f ≥ v and Cv has

dimension v, it follows that either all fault-free nodes Pgood decide on the same

output, or at least one fault-free node i ∈ Pgood sets Detectedi ←TRUE

in Line 2(a). In the case Detectedj=FALSE for every node j, all fault-

free nodes decide on an identical y(g). Moreover, according to Line 2(b),

every fault-free node j ∈ Pgood ∩ Pmatch finds Rj = Sj . It then follows that

y(g) = C−1
v (Rj) = C−1

v (Sj) = xj(g) where node j ∈ Pgood ∩ Pmatch.

�

Then we can have the following theorem about the correctness of Algorithm

2.6.3.

122

Theorem A.2 Given n nodes with at most f < n/3 being faulty, each given

an input value of L bits, Algorithm 2.6.3 achieves v-validity for each one of

the L/D generations, with the diagnosis stage performed for at most f(f+1)

times.

Proof: Similar to Theorem A.1. �

A.4 Proof of Theorem 2.2

Proof: First consider the case when source node n is faulty. In this case,

every fault-free peer i < n sends Ri[i] to all peers that it trusts. Also, as

we have discussed in Section 2.7.2, fault-free node always trust each other.

These two facts together imply that among coded symbols received by the

fault-free peers, at least n − f of them are shared identically. According to

the property of the (2(n − 1), n − f) Reed-Solomon code Cn−f , either all

fault-free peers succeed in decoding the received symbols to some identical

output, or at least one of them cannot decode and detects the failure.

In the case that source node n is fault-free, each fault-free peer i receives

at least n − f coded symbols either directly from node n or through other

fault-free peers. So these symbols must be the same as the corresponding

ones in Cn−f(x(g)), and hence C−1
n−f(Ri) = x(g) if it succeeds. �

123

APPENDIX B

NETWORK-AWARE BYZANTINE
AGREEMENT ALGORITHM DESIGN

B.1 Unreliable Broadcast in Phase 1

According to [76], in a given graph Gk with γk = minj∈Vk
MINCUT (Gk, 1, j),

there always exist a set of γk unit-capacity spanning trees of Gk such that

the total usage on each edge e ∈ Ek by all the γk spanning trees combined

is no more than its link capacity ze. Each spanning tree is “unit-capacity”

in the sense that 1 unit capacity of each link on that tree is allocated for

transmissions on that tree. For example, Figure 3.2(c) shows 2 unit-capacity

spanning trees that can be embedded in the directed graph in Figure 3.2(a):

one spanning tree is shown with solid edges and the other spanning tree is

shown in dotted edges. Observe that link (1,2) is used by both spanning

trees, each tree using a unit capacity on link (1,2), for a total usage of 2

units, which is the capacity of link (1,2).

To broadcast an L-bit value from source node 1, we represent the L-bit

value as γk symbols, each symbol being represented using L/γk bits. One

symbol (L/γk bits) is then transmitted along each of the γk unit-capacity

spanning trees.

B.2 Dispute Control

The dispute control algorithm is performed in the k-th instance of NAB only

if at least one node misbehaves during Phases 1 or 2. The goal of dispute

control is to learn some information about the identity of at least one faulty

node. In particular, the dispute control algorithm will identify a new node as

being faulty, or/and identify a new node pair in dispute (at least one of the

nodes in the pair is guaranteed to be faulty). The steps in dispute control in

124

the k-th instance of NAB are as follows:

• (DC1) Each node i in Vk uses a previously proposed Byzantine broad-

cast algorithm, such as [35], to broadcast to all other nodes in Vk all

the messages that this node i claims to have received from other nodes,

and sent to the other nodes, during Phases 1 and 2 of the k-th instance.

Source node 1 also uses an existing Byzantine broadcast algorithm [35]

to broadcast its L-bit input for the k-th instance to all the other nodes.

Thus, at the end of this step, all the fault-free nodes will reach correct

agreement for the output for the k-th instance.

• (DC2) If for some node pair a, b ∈ Vk, a message that node a claims

above to have sent to node b mismatches with the claim of received

messages made by node b, then node pair a, b is found in dispute. In

step DC1, since a Byzantine broadcast algorithm is used to disseminate

the claims, all the fault-free nodes will identify identical node pairs in

dispute.

It should be clear that a pair of fault-free nodes will never be found in

dispute with each other in this step.

• (DC3) The NAB algorithm is deterministic in nature. Therefore, the

messages that should be sent by each node in Phases 1 and 2 can be

completely determined by the messages that the node receives, and, in

case of node 1, its initial input. Thus, if the claims of the messages

sent by some node i are inconsistent with the message it claims to have

received, and its initial input (in case of node 1), then that node i

must be faulty. Again, all fault-free nodes identify these faulty nodes

identically. Any nodes thus identified as faulty until now (including

all previous instances of NAB) are deemed to be “in dispute” with all

their neighbors (to whom the faulty nodes have incoming or outgoing

links).

It should be clear that a fault-free node will never be found to be faulty

in this step.

• (DC4) Consider the node pairs that have been identified as being in

dispute in DC2 and DC3 of at least one instances of NAB so far.

125

We will say that a set of nodes Fi, where |Fi| ≤ f , “explains” all the

disputes so far, if for each pair a, b found in dispute so far, at least one

of a and b is in Fi. It should be easy to see that for any set of disputes

that may be observed, there must be at least one such set that explains

the disputes. It is easy to argue that the nodes in the set below must

be necessarily faulty (in fact, the nodes in the set intersection below

are also guaranteed to include nodes identified as faulty in step DC3).

Δ⋂
δ=1

Fδ

Then, Vk+1 is obtained as Vk −
⋂Δ

δ=1 Fδ. Ek+1 is obtained by removing

from Ek edges incident on nodes in
⋂Δ

δ=1 Fδ, and also excluding edges

between node pairs that have been found in dispute so far.

As noted earlier, the above dispute control phase may be executed in at

most f(f + 1) instances of NAB.

B.3 Proof of Theorem 3.1

To prove Theorem 3.1, we first prove that when the coding matrices are

generated at random as described, for a particular subgraph H ∈ Ωk, with

non-zero probability, the coding matrices {Ce|e ∈ Gk} define a matrix CH

(as elaborated later) such that DHCH = 0 if and only if DH = 0. Then we

prove that this is also simultaneously true for all subgraphs H ∈ Ωk.

B.3.1 For a Given Subgraph H ∈ Ωk

Consider any subgraph H ∈ Ωk. For each edge e = (i, j) in H , we “expand”

the corresponding coding matrix Ce (of size ρk × ze) to a (n− f − 1)ρk × ze

matrix Be as follows: Be consists n − f − 1 blocks, each block is a ρk × ze

matrix:

• If i �= n − f and j �= n − f , then the i-th and j-th block equal to Ce

126

and −Ce, respectively. The other blocks are all set to 0.

Be =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0

i-th block Ce

0
...

0

j-th block −Ce

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

• If i = n − f , then the j-th block equals to −Ce, and the other blocks

are all set to 0 matrix.

Be =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0

j-th block −Ce

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

• If j = n− f , then the i-th block equals to Ce, and the other blocks are

127

all set to 0 matrix.

Be =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0

i-th block Ce

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

LetDi(β) = Xi(β)−Xn−f (β) for i < n−f as the difference between Xi and

Xn−f in the β-th element. Recall thatDi = Xi−Xn−f =
(
Di(1) · · · Di(ρk)

)
and DH =

(
D1 · · · Dn−f−1

)
. So DH is a row vector of (n− f − 1)ρk el-

ements from GF (2L/ρk) that captures the differences between Xi and Xn−f

for all i < n− f . It should be easy to see that, for edge e = (i, j)

(Xi −Xj)Ce = 0⇔ DHBe = 0.

So for edge e, steps 1-2 of Algorithm 3.4.5 have the effect of checking whether

or not DHBe = 0.

If we label the set of edges in H as e1, e2, · · · , and let m be the sum of the

capacities of all edges in H , then we construct a (n − f − 1)ρk ×m matrix

CH by concatenating all expanded coding matrices:

CH =
(
Be1 Be2 · · ·

)

where each column of CH represents the equality checking of one coded

symbol sent in H over the corresponding edge. Note that the sum of the

capacities of all edges in H equals to m. Then steps 1-2 of Algorithm 3.4.5

for all edges inH have the same effect of checking whether or notDHCH = 0.

So to prove Theorem 3.1, we need to show that there exists at least one CH

such that

DHCH = 0 ⇔ DH = 0.

It is obvious that if DH = 0, then DHCH = 0 for any CH. So all left to

show is that there exists at least one CH such that DHCH = 0⇒ DH = 0.

128

It is then sufficient to show that CH contains a (n− f − 1)ρk× (n− f − 1)ρk

submatrixMH that is invertible, because when such an invertible submatrix

exists,

DHCH = 0 ⇒ DHMH = 0 ⇒ DH = 0.

Now we describe how one such submatrixMH can be obtained. Notice that

each column of CH represents one coded symbol sent on the corresponding

edge. A (n−f−1)ρk×(n−f−1) submatrix S ofCH is said to be a “spanning

matrix” ofH if the edges corresponding to the columns of S form a undirected

spanning tree of H; recall that H is the undirected representation of H . In

Figure 3.2(d), an undirected spanning tree of the undirected graph in Figure

3.2(b) is shown in dotted edges. It is worth pointing out that an undirected

spanning tree in an undirected graph H does not necessarily correspond to a

directed spanning tree in the corresponding directed graph H . For example,

the directed edges in Figure 3.2(a) corresponding to the dotted undirected

edges in Figure 3.2(d) do not form a spanning tree in the directed graph in

Figure 3.2(a).

It is known that in an undirected graph whose MINCUT equals to U , at

least U/2 undirected unit-capacity spanning trees can be embedded [76].1

This implies that the sum of link capacities m ≥ (n − f − 1)Uk/2, and CH

contains a set of Uk/2 spanning matrices such that no two spanning matrices

in the set covers the same column in CH. Let {S1, · · · ,Sρk} be one set of

ρk ≤ Uk/2 such spanning matrices of H . Each of these spanning matrices

has dimension (n− f − 1)ρk× (n− f − 1). Then the union of these spanning

matrices forms an (n− f − 1)ρk × (n− f − 1)ρk submatrix of CH:

MH =
(
S1 · · · Sρk

)
.

Next, we will show that when the set of coding matrices are generated as

described in Theorem 3.1, with non-zero probability we obtain an invertible

square matrix MH. When MH is invertible,

DHMH = 0 ⇔ DH = 0 ⇔ X1 = · · · = Xn−f .

1The definition of embedding undirected unit-capacity spanning trees in undirected
graphs is similar to embedding directed unit-capacity spanning trees in directed graphs
(by dropping the direction of edges).

129

For the following discussion, it is convenient to reorder the elements of DH

into

D̃H =
(
D1(1) · · · Dn−f−1(1) D1(2) · · · Dn−f−1(2) · · · D1(ρk) · · ·

Dn−f−1(ρk)
)
,

so that the (β − 1)(n− f − 1) + 1-th through the β(n− f − 1) elements of

D̃H represent the difference between Xi (i = 1, · · · , n− f − 1) and Xn−f in

the β-th element.

We also reorder the rows of each spanning matrix Sq (q = 1, · · · , ρk)
accordingly to match with the order of elements in D̃H . After reordering, Sq

becomes S̃q and has the following structure:

S̃q =

⎛
⎜⎜⎜⎜⎝

AqSq,1

AqSq,2

...

AqSq,ρk

⎞
⎟⎟⎟⎟⎠ . (B.1)

Here Aq is a (n− f − 1)× (n− f − 1) square matrix, and it is called the

adjacency matrix of the spanning tree corresponding to Sq. Aq is formed as

follows. Suppose that the r-th column of Sq corresponds to a coded symbol

sent over a directed edge (i, j) in H , then

1. If i �= n − f and j �= n − f , then the r-th column of Aq has the i-th

element as 1 and the j-th element as −1, the remaining entries in that

column are all 0;

2. If i = n − f , then the j-th element of the r-th column of Aq is set to

−1, the remaining elements of that column are all 0;

3. If j = n − f , then the i-th element of the r-th column of Aq is set to

1, the remaining elements of that column are all 0.

For example, suppose H is the graph shown in Figure 3.2(b), and Sq cor-

responds to a spanning tree of H consisting of the dotted edges in Figure

3.2(d). Suppose that we index the corresponding directed edges in the graph

shown in Figure 3.2(a) in the following order: (2,3), (1,4), (4,3). The result-

130

ing adjacency matrix Aq =

⎛
⎜⎝

0 1 0

1 0 0

−1 0 −1

⎞
⎟⎠.

On the other hand, each Sq,p is a (n− f −1)× (n− f −1) square diagonal

matrix. The r-th diagonal element of Sq,p equals to the p-th coefficient

used to compute the coded symbol corresponding to the r-th column of Sq.

For example, suppose the first column of Sq corresponds to a coded symbol

3X1(1)+ 4X1(2) being sent on link (1, 2). Then the first diagonal element of

Sq,1 is 3 and the first diagonal element of Sq,2 is 4.

So after the above reordering, MH can be written as M̃H that has the

following structure:

M̃H =

⎛
⎜⎜⎜⎜⎝

A1S1,1 A2S2,1 · · · AρkCρk,1

A1S1,2 A2S2,2 · · · AρkCρk,2

...
. . .

...

A1S1,ρk A2S2,ρk · · · AρkSρk,ρk

⎞
⎟⎟⎟⎟⎠ . (B.2)

Notice that M̃H is obtained by permuting the rows of MH. So showing that

MH is invertible is equivalent to showing that M̃H is invertible.

Define Mq =

⎛
⎜⎜⎝
A1S1,1 · · · AqSq,1

...
. . .

...

A1S1,q · · · AqSq,q

⎞
⎟⎟⎠ for 1 ≤ q ≤ ρk. Note that Mq1 is

a sub-matrix of Mq2 when q1 < q2, and Mρk = M̃H. We prove the following

lemma:

Lemma B.1 For any ρk ≤ Uk/2, with probability at least
(
1− n−f−1

2L/ρk

)ρk
,

matrix M̃H is invertible. Hence MH is also invertible with the same proba-

bility.

Proof: We now show that each Mq is invertible with probability at least(
1− n−f−1

2L/ρk

)q
for all q ≤ ρk. The proof is done by induction, with q = 1

being the base case.

Base Case: q = 1

M1 = A1S1,1. (B.3)

131

As shown later in Appendix B.3.3, Aq is always invertible and det(Aq) = ±1.
Since S1,1 is a (n − f − 1)-by-(n − f − 1) diagonal matrix, it is invert-

ible provided that all its (n − f − 1) diagonal elements are non-zero. Re-

member that the diagonal elements of S1,1 are chosen uniformly and inde-

pendently from GF (2L/ρk). The probability that they are all non-zero is(
1− 1

2L/ρk

)n−f−1

≥ 1− n−f−1

2L/ρk
.

Induction Step: q to q + 1 when 1 ≤ q < ρk

Recall that Mq is a (n − f − 1)q × (n − f − 1)q square matrix. The

(n− f − 1)(q+1)× (n− f − 1)(q+1)square matrix Mq+1 can be written as

Mq+1 =

(
Mq Pq

Fq Aq+1Sq+1,q+1

)
(B.4)

where

Pq =

⎛
⎜⎜⎜⎜⎝
Aq+1Sq+1,1

Aq+1Sq+1,1

...

Aq+1Sq+1,q

⎞
⎟⎟⎟⎟⎠ (B.5)

is an (n− f − 1)q × (n− f − 1) matrix, and

Fq =
(
A1S1,q+1 · · · AqSq,q+1

)
(B.6)

is an (n− f − 1)× (n− f − 1)q matrix.

Assuming that Mq is invertible, consider the following matrix M′
q+1:

M′
q+1 =

(
I(n−f−1)q 0

0 A−1
q+1

)
Mq+1

(
I(n−f−1)q −M−1

q Pq

0 I(n−f−1)

)

=

(
I(n−f−1)q 0

0 A−1
q+1

)(
Mq Pq

Fq Aq+1Sq+1,q+1

)(
I(n−f−1)q −M−1

q Pq

0 I(n−f−1)

)

=

(
Mq Pq

A−1
q+1Fq Sq+1,q+1

)(
I(n−f−1)q −M−1

q Pq

0 I(n−f−1)

)

=

(
Mq 0

A−1
q+1Fq Sq+1,q+1 −A−1

q+1FqM
−1
q Pq

)
.

Here I(n−f−1)q and I(n−f−1), respectively, denote (n−f −1)q× (n−f −1)q

132

and a (n− f − 1)× (n− f − 1) identity matrices. For this proof, we need to

show that Mq+1 is invertible, i.e., det(Mq+1) �= 0. Note that | det(M′
q+1)| =

| det(Mq+1)|, since the matrix multiplied at the left has determinant ±1, and
the matrix multiplied at the right has determinant 1. So it suffices to show

that M′
q+1 is invertible.

Observe that the diagonal elements of the (n−f−1)×(n−f −1) diagonal
matrix Sq+1,q+1 are chosen independently from A−1

q+1FqM
−1
q Pq. Then as

shown later in Appendix B.3.4, Sq+1,q+1−A−1
q+1FqM

−1
q Pq is invertible with

probability at least 1−n−f−1

2L/ρk
, given thatMq is invertible, which happens with

probability at least
(
1− n−f−1

2L/ρk

)q
according to the induction assumption. So

we have

Pr{Mq+1 is invertible} = Pr{M′
q+1 is invertible}

≥
(
1− n− f − 1

2L/ρk

)q (
1− n− f − 1

2L/ρk

)
(B.7)

=

(
1− n− f − 1

2L/ρk

)q+1

. (B.8)

This completes the induction. Now we can see that Mρk = M̃H is invertible

with probability

≥
(
1− n− f − 1

2L/ρk

)ρk

(B.9)

≥ 1− (n− f − 1)ρk
2L/ρk

(B.10)

→ 1, as L→∞. (B.11)

�

Now we have proved that there exists a set of coding matrices {Ce|e ∈ Ek}
such that the resulting CH satisfies the condition that DHCH = 0 if and

only if DH = 0.

B.3.2 For All Subgraphs in Ωk

In this section, we are going to show that, for Gk, if the coding matrices

{Ce|e ∈ Ek} are generated as described in Theorem 3.1, then with non-

zero probability the set of square matrices {MH|H ∈ Ωk} are all invertible

133

simultaneously. When this is true, there exists a set of coding matrices

that is correct.

To show that MH’s for all H ∈ Ωk are simultaneously invertible with

non-zero probability, we consider the product of all these square matrices:

∏
H∈Ωk

MH.

According to Lemma B.1, each MH (H ∈ Ωk) is invertible with non-zero

probability. It implies that det(MH) is a non-identically-zero polynomial of

the random coding coefficients of degree at most (n − f − 1)ρk (recall that

MH is a square matrix of size (n− f − 1)ρk.). So

det

(∏
H∈Ωk

MH

)
=
∏

H∈Ωk

det (MH)

is a non-identically-zero polynomial of the random coefficients of degree at

most |Ωk|(n− f − 1)ρk. Notice that each coded symbol is used once in each

subgraph H . So each random coefficient appears in at most one column in

each MH. It follows that the largest exponent of any random coefficient in

det
(∏

H∈Ωk
MH

)
is at most |Ωk|.

According to Lemma 1 of [77], the probability that det
(∏

H∈Ωk
MH

)
is

non-zero is at least

(
1− 2−L/ρk |Ωk|

)(n−f−1)ρk ≥ 1− 2−L/ρk [|Ωk|(n− f − 1)ρk] .

According to the way Gk is constructed and the definition of Ωk, it should

not be hard to see that Gk is a subgraph of G1 = G, and Ωk ⊆ Ω1. Notice

that |Ω1| =
(

n
n−f

)
. So |Ωk| ≤

(
n

n−f

)
and Theorem 3.1 follows.

B.3.3 Proof that Aq is Invertible

Given an adjacency matrix Aq, let us call the corresponding spanning tree of

H as Tq. For edges in Tq incident on node n− f , the corresponding columns

in Aq have exactly one non-zero entry. Also, the column corresponding to an

edge that is incident on node i has a non-zero entry in row i. Since there must

be at least one edge in Tq that is incident on node n − f , there must be at

134

least one column of Aq that has only one non-zero element. Also, since every

node is incident on at least one edge in Tq, every row of Aq has at least one

non-zero element(s). Since there is at most one edge between every pair of

nodes in Tq, no two columns in Aq are non-zero in identical rows. Therefore,

by column manipulation, we can transform matrix Aq into another matrix in

which every row and every column has exactly one non-zero element. Hence

det(Aq) equals to either 1 or −1, and Aq is invertible.

B.3.4 Proof that Sq+1,q+1 −A−1q+1FqM
−1
q Pq is Invertible

Consider W to be an arbitrary fixed w×w matrix. Consider a random w×w

diagonal matrix S with w diagonal elements s1, · · · , sw.

S =

⎛
⎜⎜⎜⎜⎝
s1 0 · · · 0

0 s2 · · · 0
...

. . .
...

0 · · · 0 sw

⎞
⎟⎟⎟⎟⎠ . (B.12)

The diagonal elements of S are selected independently and uniformly ran-

domly from GF (2ρk). Then we have:

Lemma B.2 The probability that the w × w matrix S −W is invertible is

lower-bounded by:

Pr{(S−W) is invertible} ≥ 1− w

2ρk
. (B.13)

Proof: Consider the determinant of matrix S−W.

det(S−W) = det

⎛
⎜⎜⎜⎜⎝
(s1 −W1,1) −R1,2 · · · −W1,w

−R2,1 (s2 −W2,2) · · · −R2,w

...
. . .

...

−Rw,1 · · · −Ww,w−1 (sr −Rw,w)

⎞
⎟⎟⎟⎟⎠

= (s1 −W1,1)(s2 −W2,2) · · · (sw −Ww,w) + other terms

= Πw
i=1si + Ww−1 (B.14)

The first term above, Πw
i=1si, is a degree-w polynomial of s1, · · · , sw. Ww−1

is a polynomial of degree at most w − 1 of s1, · · · , sw, and it represents the

135

remaining terms in det(S−W). Notice that det(S−W) cannot be identically

zero since it contains only one degree-w term. Then by the Schwartz-Zippel

Theorem, the probability that det(S −R) = 0 is ≤ w/2ρk . Since S −W is

invertible if and only if det(S−W) �= 0, we conclude that

Pr{(S−W) is invertible} ≥ 1− w

2ρk
. (B.15)

By setting S = Sq+1,q+1, W = A−1
q+1FqM

−1
q Pq, and w = n − f − 1, we

prove that Sq+1,q+1 −A−1
q+1FqM

−1
q Pq is invertible with probability at least

1− n−f−1

2L/ρk
.

�

B.4 Throughput of NAB

First consider the time cost of each operation in instance k of NAB :

• Phase 1: It takes L/γk ≤ L/γ∗ time units, since unreliable broadcast

from the source node 1 at rate γk is achievable and γk ≥ γ∗, as discussed

in Appendix B.1.

• Phase 2 – Equality check: As discussed previously, it takes L/ρk ≤
L/ρ∗ time units.

• Phase 2 – Broadcasting outcomes of equality check: To reliably

broadcast the 1-bit flags from the equality check algorithm, a previ-

ously proposed Byzantine broadcast algorithm, such as [35], is used.

The algorithm from [35], denoted as Broadcast Binary hereafter, re-

liably broadcasts 1 bit by communicating no more than P (n) bits in

a complete graph, where P (n) is a polynomial of n. In our setting,

G might not be complete. However, the connectivity of G is at least

2f + 1. It is well-known that, in a graph with connectivity at least

2f + 1 and at most f faulty nodes, reliable end-to-end communication

from any node i to any other node j can be achieved by sending the

same copy of data along a set of 2f + 1 node-disjoint paths from node

i to node j and taking the majority at node j. By doing this, we can

emulate a complete graph in an incomplete graph G. Since every simple

path in G is at most n−1 hops long, and each edge in E has capacity at

136

least 1 bit/time unit, it takes at most n− 1 time units to emulate in G
the transmission of 1 bit in the complete graph. Then we can conclude

that, by running Broadcast Binary on top of the emulated complete

graph, reliably broadcasting the 1-bit flags can be completed in O(nα)

time units, for some constant α > 0.

• Phase 3: If Phase 3 is performed in instance k, every node i in Vk uses
Broadcast Binary to reliably broadcast all the messages that it claims

to have received from other nodes, and sent to the other nodes, during

Phase 1 and 2 of the k-th instance. Denote the total capacity of edges

in E as m. Since Phases 1 and 2 takes at most L/γ∗+L/ρ∗ time units,

at most mL(1/γ∗ + 1/ρ∗) bits have been communicated in G during

Phases 1 and 2. Similar to the discussion above about broadcasting

the outcomes of equality check, the time it takes to complete Phase 3

is O(mL(1/γ∗ + 1/ρ∗)nα).

Now consider a sequence of Q > 0 instances of NAB. As discussed pre-

viously, Phase 3 will be performed at most f(f + 1) times throughout the

execution of the algorithm. So we have the following upper bound of the

execution time of Q instances of NAB:

t(G, L,Q,NAB) ≤ Q

(
L

γ∗ +
L

ρ∗
+O(nα)

)
+ f(f + 1)O

(
mL(

1

γ∗ +
1

ρ∗
)nα

)
.

Then the throughput of NAB can be lower-bounded by

T (G, L,NAB) = lim
Q→∞

LQ

t(G, L,Q,NAB)

≥ lim
Q→∞

LQ

Q
(

L
γ∗ + L

ρ∗ +O(nα)
)
+ f(f + 1)O

(
mL(1

γ∗ + 1
ρ∗)n

α
)

≥ lim
Q→∞

(
γ∗ + ρ∗

γ∗ρ∗
+O

(
nα

L

)
+O

(
m(γ∗ + ρ∗)nα+2

γ∗ρ∗Q

))−1

The last inequality is due to f < n/3.

Notice that for a given graph G, {n, γ∗, ρ∗, α,m} are all constants inde-

pendent of L and Q. So for sufficiently large values of L and Q, specifically

when L = Ω(nα) and Q = Ω
(

m(γ∗+ρ∗)nα+2

γ∗ρ∗

)
, the last two terms in the last

inequality becomes negligible compared to the first term, and the through-

put of NAB approaches to a value that is at least as large as TNAB, which is

137

Figure B.1: Example of pipelining

defined

TNAB(G) = γ∗ρ∗

γ∗ + ρ∗
. (B.16)

In the above discussion, we implicitly assumed that transmissions during

the unreliable broadcast in Phase 1 accomplish all at the same time, by

assuming no propagation delay. However, when propagation delay is consid-

ered, a node cannot forward a message/symbol until it finishes receiving it. So

for the k-th instance of NAB, the information broadcast by the source prop-

agates only one hop every L/γk time units. So for a large network, the “time

span” of Phase 1 can be much larger than L/γk. This problem can be solved

by pipelining: We divide the time horizon into rounds of
(

L
γ∗ +

L
ρ∗ +O(nα)

)
time units. For each instance of NAB, the L-bit input from the source node

1 propagates one hop per round, using the first L/γ∗ time units, until Phase

1 completes. Then the remaining
(

L
ρ∗ +O(nα)

)
time units of the last round

is used to perform Phase 2. An example in which the broadcast in Phase

1 takes 3 hops is shown in Figure B.1. In a particular round q, first hop

transmissions of the unreliable broadcast in Phase 1 of the q-th instance,

the second hop transmissions of the Phase 1 of the (q − 1)-th instance , and

the third hop transmissions of the phase 1 of the (q − 2)-th instance are

performed simultaneously during the first L/γ∗ time units. Phase 1 of the

(q − 2)-th instance completes by then. Then failure detection of Phase 2

of the (q − 2)-th instance is performed using the remaining L/ρ∗ + O(nα)

unit time, illustrated as the gray area. During the gray area, all links in the

network are used.

By pipelining, we achieve the lower bound from Equation 3.6.

138

B.5 Construction of Γ

A subgraph of G belonging to Γ is obtained as follows: We will say that

edges in W ⊂ E are “explainable” if there exists a set F ⊂ V such that (i)

F contains at most f nodes, and (ii) each edge in W is incident on at least

one node in F . Set F is then said to “explain set W”.

Consider each explainable set of edges W ⊂ E . Suppose that F1, · · · , FΔ

are all the subsets of V of size ≤ f that explain edge set W . A subgraph ΨW

of G is obtained by removing edges in W from E , and nodes in
⋂Δ

δ=1 Fδ from

V.2 In general, ΨW above may or may not contain the source node 1. Only

those ΨW ’s that do contain node 1 belong to Γ.

B.6 Proof of Theorem 3.2

In arbitrary point-to-point network G(V, E), the capacity of the BB problem

with node 1 being the source and up to f < n/3 faults satisfies the upper

bounds proved in Sections B.6.1 and B.6.2.

B.6.1 CBB(G) ≤ γ∗

Proof: Consider any ΨW ∈ Γ and let W be the set of edges in G but not

in ΨW . By the construction of Γ, there must be at least one set F ⊂ V that

explains W and does not contain the source node 1. We are going to show

that CBB(G) ≤MINCUT (ΨW , 1, i) for every node i �= 1 that is in ΨW .

Notice that there must exist a set of nodes that explains W and does not

contain node 1; otherwise node 1 is not in ΨW . Without loss of generality,

assume that F1 is one such set of nodes. So F1 does not contain source node

1.

First consider any node i �= 1 in ΨW such that i /∈ F1. Let all the nodes

in F1 be faulty such that they refuse to communicate over edges in W , but

otherwise behave correctly. In this case, since the source is fault-free, node

i must be able to receive the L-bit input that node 1 is trying to broadcast.

So CBB(G) ≤MINCUT (ΨW , 1, i).

2It is possible that ΨW for different W may be identical. This does not affect the
correctness of our algorithm.

139

Next we consider a node i �= 1 in ΨW such that i ∈ F1, if it exists. Notice

that node i cannot be contained in all sets of nodes that explainW ; otherwise,

node i is not in ΨW . Then there are only two possibilities:

1. There exists another set F that explains W and contains neither node

1 nor node i. In this case, CBB(G) ≤ MINCUT (ΨW , 1, i) according

to the above argument by replacing F1 with F .

2. Otherwise, there must exist a set F2 �= F1 that explains W such that

i /∈ F2 and 1 ∈ F2.

Define V − = V−F1−F2. V
− is not empty since F1 and F2 both contain

at most f nodes and there are n ≥ 3f + 1 nodes in V. Consider two

scenarios with the same input value x: (1) Nodes in F1 (which does not

contain node 1) are faulty and refuse to communicate over edges in W ,

but otherwise behave correctly; and (2) Nodes in F2 (which contains

node 1) are faulty and refuse to communicate over edges in W , but

otherwise behave correctly. In both cases, nodes in V − are fault-free.

Observe that among edges connecting nodes in V − to/from nodes in

F1 ∪ F2, only edges connecting nodes in V − to/from nodes F1 ∩ F2

could have been removed, because otherwise W cannot be explained

by both F1 and F2. So nodes in V − cannot distinguish between the

two scenarios above. In scenario (1), the source node 1 is not faulty.

Hence nodes in V − must agree with the value x that node 1 is trying

to broadcast, according to the validity condition. Since nodes in V −

cannot distinguish between the two scenarios, they must also set their

outputs to x in scenario (2), even though in this case the source node

1 is faulty. Then according to the agreement condition, node i must

agree with nodes in V − in scenario (2), which means that node i also

has to learn x. So CBB(G) ≤MINCUT (ΨW , 1, i).

This completes the proof. �

B.6.2 CBB(G) ≤ 2ρ∗

Proof: For a subgraph H ∈ Ω1 (and accordingly H ∈ Ω1), denote

UH = min
nodes i,j in H

MINCUT (H, i, j).

140

(a) Scenario 1. Source is in F1, and
the input value is u.

(b) Scenario 2. Source is in F2, and
input value is v.

(c) Scenario 3

Figure B.2: Three scenarios for the proof of CBB(G) ≤ 2ρ∗.

We will prove the upper bound by showing that CBB(G) ≤ UH for every

H ∈ Ω1.

Suppose on the contrary that Byzantine broadcast can be done at a rate

R > UH + ε for some constant ε > 0. So there exists a BB algorithm, named

A, that can broadcast t(UH + ε) bits in using t time units, for some t > 0.

Let E be a set of edges in H that corresponds to one of the minimum-cuts

in H. In other words,
∑

e∈E ze = UH , and the nodes in H can be partitioned

into two non-empty sets L and R such that L and R are disconnected from

each other if edges in E are removed. Also denote F as the set of nodes that

are in G but not in H . Since H contains (n− f) nodes, F contains f nodes.

Notice that in t time units, at most tUH < t(UH + ε) bits of information

can be sent over edges in E. According to the pigeonhole principle, there

must exist two different input values of t(UH + ε) bits, denoted as u and v,

141

such that in the absence of misbehavior, broadcasting u and v with algorithm

A results in the same communication pattern over edges in E.

There are two possible cases: (1) F contains the source node 1; and (2) F

does not contain the source node 1.

First case: F contains the source node 1 Consider the three scenarios

using algorithm A:

1. Node 1 broadcasts u, and none of the nodes misbehaves. So all nodes

should set their outputs to u.

2. Node 1 broadcasts v, and none of the nodes misbehaves. So all nodes

should set their outputs to v.

3. Nodes in F are faulty (includes the source node 1). The faulty nodes

in F behave to nodes in L as in scenario 1, and behave to nodes in R
as in scenario 2.

Next, we will show that nodes in L cannot distinguish scenario 1 from

scenario 3, and nodes in R cannot distinguish scenario 2 from scenario 3.

For this purpose, we construct 3 state machines, one for each of the above

scenarios in Figure B.2. The state machine for scenario 1 is shown in Figure

B.2(a): it is a copy of G, and the circles F1, L1 and R1, respectively, represent

copies of the nodes in F , L and R. The bidirectional edge E1 between L1

and R1 represents copies of the edges connecting nodes in L to/from nodes in

R, i.e., edges in E. Similarly, the other two bidirectional edges represent the

edges connecting nodes in F to/from nodes in L, and the edges connecting

nodes in F to/from nodes in R, respectively. Edges connecting nodes within

each set are not shown in the figure. The copy of source node 1 in F1 is

given input value u. The information being communicated between L1 and

R1 over edges in E1 is denoted as LR(u). Similarly, Figure B.2(b) is the state

machine for scenario 2, with the input value to the copy of the source node

being v, and the corresponding information communicated between L2 and

R2 over edges in E2 is denoted as LR(v).

The state machine in Figure B.2(c) is constructed as follows: (1) detach E1

from R1 and attach it to R2 as L and R are connected by E; (2) similarly,

detach E2 from R2 and attach it to R1 as L and R are connected by E.

Recall that LR(u) = LR(v). It follows that the behaviors of the nodes in

142

F1, L1, R1, F2, L2, R2 are not affected by above modification of switching edges

in E1 and E2. In particular, L1 behave identically in both state machines

from Figure B.2(a) and Figure B.2(c); and R2 behave identically in both

state machines from Figure B.2(b) and Figure B.2(c). For scenario 3, we let

L = L1, R = R2, and the faulty nodes in F behave to L as F1 and behave

to R as F2 in Figure B.2(c).

Now we have showed that nodes in L cannot distinguish scenario 1 from

scenario 3, and nodes in R cannot distinguish scenario 2 from scenario 3.

So in scenario 3, nodes in L set their outputs to u and nodes in R set their

outputs to v. This violates the agreement condition and contradicts with the

assumption that A solves BB at rate UH + ε. Hence CBB(G) ≤ UH .

Second case: F does not contain the source node 1 Without loss

of generality, suppose that node 1 is in L. Consider the following three

scenarios:

1. Node 1 broadcasts u, and none of the nodes misbehave. So all nodes

should set their outputs to u.

2. Node 1 broadcasts v, and none of the nodes misbehave. So all nodes

should set their outputs to v.

3. Node 1 broadcasts u, and nodes in F are faulty. The faulty nodes in

F behave to nodes in L as in scenario 1, and behave to nodes in R as

in scenario 2.

For this part, we construct 3 state machines, one for each of the above sce-

narios, that are almost the same as those in Figure B.2 for the first case,

with the modification that now the source node is in L1 and L2 in Figures

B.2(a) and B.2(b), respectively. Similar to the first case, nodes in L cannot

distinguish scenario 1 from scenario 3, and nodes in R cannot distinguish

scenario 2 from scenario 3. So in scenario 3, nodes in L set their outputs to u

and nodes in R set their outputs to v. This violates the agreement condition

and contradicts with the assumption that A solves BB at rate UH + ε. Hence

CBB(G) ≤ UH , and this completes the proof. �

143

B.7 Correctness of Algorithm 3.7.6

As in network coding [46], for sufficiently large value of L and R no greater

than the upper bound from Corollary 3.1, as discussed later, there exist sets

of coefficients that make every subset of R coded symbols computed in Algo-

rithm 3.7.6 correspond to a set of R linearly independent linear combinations

of the R data symbols of X. We assume in the following discussion that one

set of such coefficients is chosen. A set of coded symbols are said to be linearly

independent if the corresponding linear combinations of the data symbols are

linearly independent. From basic linear algebra, we know that there exists

a unique vector Y that satisfies all the linear combinations represented by

any subset of R linearly independent coded symbols. We call vector Y the

unique solution to the set of R linearly independent coded symbols.

Notice that the source node 1 can be in dispute with at most one peer,

otherwise it must have been identified as faulty and the fault-free peers should

have terminated the algorithm with a default output. So there are three

cases: the source is fault-free, the source is faulty and not in dispute with

any peer, and the source is faulty and in dispute with one peer. We consider

these three cases separately.

For the following discussion, denote zi,j as the capacity of edge e = (i, j).

With this notation, Corollary 3.1 can be expressed as follows:

zj,i + zk,i ≥ CBB4, i ∈ {2, 3, 4}; j, k ∈ {1, 2, 3, 4}; i �= j, i �= k, j �= k;

z1,i + z1,j ≥ CBB4, i �= 1, j �= 1, i �= j.

To prove the correctness of Algorithm 3.7.6, consider any R that is no

greater than the upper bound from Corollary 3.1, i.e.,

zj,i + zk,i ≥ R, i = 2, 3, 4; i �= j, i �= k, j �=; (B.17)

z1,i + z1,j ≥ R, i �= 1, j �= 1, i �= j. (B.18)

Source is fault-free: Consider any two fault-free peer nodes i and j. Ac-

cording to the manner in which coded symbols are transmitted in Algorithm

144

3.7.6, it is easy to see that node i receives at least

z1,i +min(z1,j , zj,i) = min(z1,i + z1,j , z1,i + zj,i)

≥ R

untampered linearly independent coded symbols, either directly from source

or via the other fault-free peer node j. Since X is the unique solution to any

set of untampered linearly independent coded symbols, either node i finds

the unique solution to the coded symbols it has received as Yi = X, or there

does not exist a unique solution, in which case failure is detected. So when

the source is fault-free, either all fault-free peers decide on the correct output

X, or at least one node detects a failure.

Source is faulty and not in dispute with any peer: In this case, all

peer nodes are fault-free; they are never in dispute with each other. Accord-

ing to Equation B.17, we have

(z2,3 + z3,2) + (z2,4 + z4,2) + (z3,4 + z4,3)

= (z3,2 + z4,2) + (z2,3 + z4,3) + (z2,4 + z3,4) ≥ 3R.

This implies at least one of the terms (z2,3+z3,2), (z2,4+z4,2) and (z3,4+z4,3)

must exceed R. Without loss of generality, suppose that z2,3 + z3,2 ≥ R.

Now, let us consider the number of coded symbols nodes 2 and 3 ex-

change in step 2 on links (2,3) and (3,2) together. Observe that node 2

sends min{z1,2, z2,3} coded symbols to node 3 on (2,3), and node 3 sends

min{z1,3, z3,2} to node 2 on link (3,2). So the number of coded symbols they

exchange on links (2,3) and (3,2) together is

min{z1,2, z2,3}+min{z1,3, z3,2} (B.19)

= min{z1,2 + z1,3, z1,2 + z3,2, z2,3 + z1,3, z2,3 + z3,2} (B.20)

≥ min{R, z2,3 + z3,2} (B.21)

The reason for the ≥ in Equation B.21 is that each of the first three terms on

the right-hand side of Equation B.20, namely z1,2+ z1,3, z1,2+ z3,2, z2,3+ z1,3,

is ≥ R, as per Equations B.17 and B.18. z2,3 + z1,3 ≥ R and Equation B.21

together imply that after step 2, nodes 2 and 3 share at least R coded symbols.

145

That is, among the symbols nodes 2 and 3 have received, there are R identical

symbols. Thus, nodes 2 and 3 will not agree on different data symbols (since

the agreed data must satisfy linear combinations corresponding to all received

coded symbols).

Thus, either at least one of nodes 2 and 3 will detect misbehavior by node

1, or all the symbols they have received will be consistent with an identical

vector Y (of R symbols). In the former case, the misbehavior by node 1 is

detected. In the latter case, neither node 2 nor 3 detects the misbehavior. In

this case, we will now consider what happens at node 4. In particular, there

are three possibilities:

• z2,4 + z4,2 ≥ R: Similar to the above argument for nodes 2 and 3,

we can argue that nodes 2 and 4 will have at least R coded symbols

in common, and therefore, they will not agree on two different data

vectors. This, combined with the fact that nodes 2 and 3 will also not

agree on two different vectors, implies that if none of the three fault-

free peers detects a misbehavior, then they will agree on an identical

vector Y.

• z3,4 + z4,3 ≥ R: This case is similar to the previous case.

• z2,4+z4,2 < R and z3,4+z4,3 < R: In this case, similar to Equation B.21,

we can show that:

min{z1,2, z2,4}+min{z1,4, z4,2} ≥ min{R, z2,4 + z4,2}

min{z1,3, z3,4}+min{z1,4, z4,3} ≥ min{R, z3,4 + z4,3}.

This implies that these four links are all “saturated” (that is, the num-

ber of coded symbols sent on each of these links in round 2 is equal

to the link capacity). It follows that node 4 receives z2,4 + z3,4 ≥ R

coded symbols from nodes 2 and 3 together, and node 4 has at least R

coded symbols in common with the union of symbols available to nodes

2 and 3. Since nodes 2 and 3 have not detected a misbehavior, these R

symbols must all be consistent with the solution obtained at nodes 2

and 3 both. Thus, node 4 cannot possibly decide on an output that is

different from that agreed upon by nodes 2 and 3. Thus, it follows that

146

either at least one of the peers will detect the misbehavior by node 1,

or they will all agree.

Source is faulty and in dispute with one peer: Without loss of gen-

erality, assume that the faulty source node 1 is in dispute with the fault-free

peer node 4. By the end of step 2, node 2 has received z1,2+min(z1,3, z3,2) ≥ R

coded symbols from source node 1 and node 3 together. Similarly, node 3

has received z1,3 +min(z1,2, z2,3) ≥ R coded symbols. So the coded symbols

nodes 2 and 3 compute and send to node 4 in step 3 satisfy the linearly inde-

pendent requirement. Then in steps 2-3, node 4 receives z2,4+z3,4 ≥ R coded

symbol from nodes 2 and 3 together. As before, the coded symbols node 4

computes and sends in step 3 satisfy the linearly independent requirement.

Then, in step 3, node 4 sends min(z4,2, z4,3) identical coded symbols to

both nodes 2 and 3. It then follows that nodes 2 and 3 share

min(z1,2, z2,3) + min(z1,3, z3,2) + min(z4,2, z4,3)

= min(z1,2 + z1,3 + z4,2, z1,2 + z1,3 + z4,3,

z1,2 + z3,2 + z4,2, z1,2 + z3,2 + z4,3,

z2,3 + z1,3 + z4,2, z2,3 + z1,3 + z4,3,

z2,3 + z3,2 + z4,2, z2,3 + z3,2 + z4,3)

linearly independent coded symbols identically. Following directly from Equa-

tion B.17 and Equation B.18, all 8 summations in the min function above

are ≥ R. It follows that nodes 2 and 3 have at least R coded symbols in

common, and hence they cannot possibly agree on different outputs. Similar

to the previous case, it follows that either at least one of the peers will detect

the misbehavior by node 1, or they will all agree. This completes the proof.

147

APPENDIX C

MULTIPARTY EQUALITY FUNCTION
COMPUTATION

C.1 Edge Coloring Representation of MEQ-AD(3,K)

From Sections 4.5 and 4.6, we have shown that it is sufficient to study 3-

node systems where information is transmitted only on links AB, AC and

BC. Let us denote |sAB|, |sAC| and |sBC | as the number of different symbols

being transmitted on links AB, AC and BC, respectively. Now consider the

following simple bipartite graph G(U, V, E), where U and V are the two

disjoint sets of vertices and E is the set of edges:

• |U | = |sAB|, each vertex is labeled as UsAB(x) for all K values of x;

• |V | = |sAC|, each vertex is labeled as VsAC(x) for all K values of x;

• eij = (Ui, Vj) ∈ E if and only if i = sAB(x) and j = sAC(x) for some x.

In essence, each vertex Ui (or Vi) represents the set of value x’s that produce

the same value sAB(x) = i (or sAC(x) = i); and each edge eij = (Ui, Vj)

represents the set of value x’s that produces the same pair of channel symbols

sAB(x) = i and sAC(x) = j. Figure 4.2 on page 93 shows the bipartite graph

corresponding to the MEQ-AD(3,6) protocol we introduced in Section 4.6.

Near the nodes Ui and Vi we show the set of value x’s such that sAB(x) = i and

sAC(x) = i, respectively. The number near each edges is the corresponding

value of that edge.

Let |eij | be the size of the set of value x’s corresponding to edge eij. We

first argue that

Lemma C.1 |eij| = 1 for all eij ∈ E. Hence |E| = M and |U | × |V | ≥M .

148

Proof: Suppose to the contrary that there exists some eij ∈ E with |eij | ≥
2. Then there must be two values x, x′ such that x �= x′, sAB(x) = sAB(x

′)

and sAC(x) = sAC(x
′). Similar to the “fooling set” argument in [17], it is

impossible for nodes B and C to tell the difference between the two input

vectors (x, x, x) and (x′, x, x); hence they will not be able to solve the MEQ-

AD(3,M) problem, which leads to a contradiction. Then the first part of the

lemma follows.

Since every edge represents one x, and there are M possible values of x,

it follows that |E| = K. Also, in a simple bipartite graph, we always have

|U | × |V | ≥ |E|. Thus |U | × |V | ≥ K. �

Since there is a one-to-one mapping from the set of input values {1, · · · , K}
to the edges E, we will use the terms input value (x) and edge (eij) inter-

changeably. Now we prove the following theorem on the constraint of sBC :

Lemma C.2 sBC(x) �= sBC(x
′) if edges x and x′ are adjacent or there is

some other edge that is adjacent to both of them, in the bipartite graph

G(U, V, E).

Proof: Consider any pairs x, x′ such that x �= x′ and (UsAB(x), VsAC(x′)) ∈ E.

Let x∗ (maybe equal to x or x′) be the input value that edge (UsAB(x), VsAC(x′))

corresponds to. So we have sAB(x
∗) = sAB(x) and sAC(x

∗) = sAC(x
′). Now

consider the input vector (x∗, x, x′) at node A, B and C. Since sAB(x
∗) =

sAB(x), node B cannot differentiate (x∗, x, x′) from (x, x, x). So node B

cannot detect the mismatch. Meanwhile, since sAC(x
∗) = sAC(x

′), node C

can not differentiate (x∗, x, x′) from (x′, x′, x′) by just looking into the receives

sAC . So sBC(x) must be different from sBC(x
′); otherwise, the MEQ-AD

problem is not solved. Then the lemma follows. �

Now we can conclude that the problem of designing sBC , given functions

sAB(·) and sAC(·), is equivalent to finding a distance-2 edge coloring for the

corresponding bipartite graph G(U, V, E). Furthermore, it should not be

hard to see that any protocol P that solves MEQ-AD(3,M) is equivalent to

a bipartite graph G(U, V, E) together with a distance-2 coloring scheme W

such that |U | = |sAB|, |V | = |sAC|, |E| = M , and |W | = |sBC |, where |W |
denotes the number of colors in scheme W . Notice that

C(P) = log2 |sAB|+log2 |sAC |+log2 |sBC | = log2(|sAB|×|sAC|×|sBC |). (C.1)

149

Then Theorem 4.2 follows.

According to Theorem 4.2, we can conclude that the problem of finding

CAD(3, K) is equivalent to the problem of finding the minimum of |U |×|V |×
|W | for the bipartite graphs and distance-2 coloring schemes that satisfy the

above constrains.

Using Theorem 4.2, to show that CAD(3, 4) = 4, we only need to show

that for every combination of |U | × |V | × |W | < 24 = 16 there exists no

bipartite graph G(U, V, E) and distance-2 coloring scheme W that satisfy the

conditions as described in Theorem 4.2. In other words, if the conditions are

all satisfied, then the bipartite graph G(U, V, E) cannot be distance-2 colored

with |W | colors. It is not hard to see that there are only two combinations

(up to permutation) that satisfy all conditions and have product less than

16: (2, 2, 2) and (2, 2, 3). Notice that in both cases, |E| = |U | × |V |,
where every pair of edges are within distance of 2 of each other, which means

graph G can only be distance-2 colored with at least |E| colors, which in this

case is 4. Together with the upper bound from Section 4.4, this proves that

CAD(3, 4) = CCD(3, 4) = 4.

Similarly, it can be shown that CAD(3, 6) = log2 27. There are only two

combinations that satisfy all conditions in Theorem 4.2 and have product

less than 27: (2, 3, 3) and (2, 3, 4). Again, |E| = |U | × |V |, so at least

|E| = 6 colors are needed, which proves that CAD(3, 6) = log2 27.

150

REFERENCES

[1] “Amazon S3 availability event,” July 2008. [Online]. Available:
http://status.aws.amazon.com/s3-20080720.html

[2] “Gmail disaster: Reports of mass email deletions,” Decem-
ber 2006. [Online]. Available: http://techcrunch.com/2006/12/28/
gmail-disaster-reports-of-mass-email-deletions

[3] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” Journal of the ACM (JACM), vol. 27, pp. 228–234,
1980.

[4] D. Dolev and R. Reischuk, “Bounds on information exchange for Byzan-
tine agreement,” Journal of ACM (JACM), vol. 32, pp. 191–204, 1985.

[5] G. Liang and N. Vaidya, “Error-free multi-valued consensus with Byzan-
tine failures,” in ACM Symposium on Principles of Distributed Comput-
ing (PODC), 2011, pp. 11–20.

[6] G. Liang, B. Sommer, and N. Vaidya, “Experimental performance com-
parison of Byzantine fault-tolerant protocols for data centers,” in IEEE
International Conference on Computer Communications (INFOCOM),
2012.

[7] G. Liang and N. Vaidya, “Complexity of multi-valued Byzantine
agreement,” Coordinated Science Laboratory, University of Illinois at
Urbana-Champaign, Tech. Rep., June 2010.

[8] G. Liang and N. Vaidya, “New efficient error-free multi-valued consensus
with Byzantine failures,” Coordinated Science Laboratory, University of
Illinois at Urbana-Champaign, Tech. Rep., June 2011.

[9] G. Liang and N. Vaidya, “Brief announcement: Capacity of byzantine
agreement with finite link capacity - complete characterization of four-
node networks,” in ACM Symposium on Principles of Distributed Com-
puting (PODC), 2010.

[10] G. Liang and N. Vaidya, “Capacity of Byzantine agreement with finite
link capacity,” in IEEE International Conference on Computer Commu-
nications (INFOCOM), 2011, pp. 739–747.

151

[11] G. Liang and N. Vaidya, “Capacity of Byzantine consensus in capacity
limited point-to-point networks,” in International Conference on COM-
munication Systems and NETworkS (COMSNETS), 2012, pp. 1–10.

[12] G. Liang and N. Vaidya, “Capacity of Byzantine agreement: Complete
characterization of the four node network,” Coordinated Science Lab-
oratory, University of Illinois at Urbana-Champaign, Tech. Rep., April
2010.

[13] N. Vaidya and G. Liang, “Capacity of Byzantine agreement (preliminary
draft - work in progress),” Coordinated Science Laboratory, University
of Illinois at Urbana-Champaign, Tech. Rep., January 2010.

[14] G. Liang and N. Vaidya, “Capacity of Byzantine agreement: Tight
bound for the four node network,” Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign, Tech. Rep., February 2010.

[15] G. Liang and N. Vaidya, “Capacity of Byzantine consensus with ca-
pacity limited point-to-point links,” Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign, Tech. Rep., March 2011.

[16] G. Liang and N. Vaidya, “Byzantine broadcast in point-to-point net-
works using local linear coding,” Coordinated Science Laboratory, Uni-
versity of Illinois at Urbana-Champaign, Tech. Rep., November 2011.

[17] A. C.-C. Yao, “Some complexity questions related to distributive com-
puting (preliminary report),” in ACM Symposium on Theory of Com-
puting (STOC), 1979, pp. 209–213.

[18] G. Liang and N. Vaidya, “Multiparty equality function computation in
networks with point-to-point links,” in SIROCCO, 2010, pp. 258–269.

[19] G. Liang and N. Vaidya, “Multiparty equality function computation in
networks with point-to-point links,” Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign, Tech. Rep., October 2010.

[20] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating routing mis-
behavior in mobile ad hoc networks,” in ACM International Conference
on Mobile Computing and Networking (MobiCom), 2000, pp. 255–265.

[21] G. Liang, R. Agarwal, and N. Vaidya, “When watchdog meets coding,”
in IEEE International Conference on Computer Communications (IN-
FOCOM), 2010, pp. 2267–2275.

[22] G. Liang and N. Vaidya, “When watchdog meets coding,” Coordinated
Science Laboratory, University of Illinois at Urbana-Champaign, Tech.
Rep., May 2009.

152

[23] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 1999, pp. 173–186.

[24] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
Speculative Byzantine fault tolerance,” ACM Transactions on Computer
Systems, vol. 27, pp. 7:1–7:39, 2010.

[25] M. Castro and B. Liskov, “Practical Byzantine fault tolerance and proac-
tive recovery,” ACM Transactions on Computer Systems, vol. 20, pp.
398–461, 2002.

[26] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and
J. J. Wylie, “Fault-scalable Byzantine fault-tolerant services,” in ACM
Symposium on Operating Systems Principles (SOSP), 2005, pp. 59–74.

[27] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira, “HQ
replication: A hibrid quorum protocol for Byzantine fault-tolerance,” in
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2006, pp. 177–190.

[28] M. Fitzi and M. Hirt, “Optimally efficient multi-valued Byzantine agree-
ment,” in ACM Symposium on Principles of Distributed Computing
(PODC), 2006, pp. 163–168.

[29] T. Xie and D. Feng, “How to find weak input differences for MD5 colli-
sion attacks,” Cryptology ePrint archive, May 2009.

[30] S. Manuel, “Classification and generation of distrubance vectors for col-
lision attacks against SHA-1,” Journal of Designs, Codes and Cryptog-
raphy, vol. 59, pp. 247–263, 2011.

[31] Z. Beerliova-Trubiniova and M. Hirt, “Perfectly-secure mpc with linear
communication complexity,” in IACR Theory of Cryptography Confer-
ence (TCC), 2008, pp. 213–230.

[32] D. Dolev and H. R. Strong, “Authenticated algorithms for Byzantine
agreement,” SIAM Journal on Computing, vol. 12, pp. 656–666, 1983.

[33] B. Pfitzmann and M. Waidner, “Information-theoretic pseudosignatures
and Byzantine agreement for t ≥ n/3,” IBM Research, Tech. Rep., 1996.

[34] P. Berman, J. A. Garay, and K. J. Perry, “Bit optimal distributed con-
sensus,” in Computer science. Plenum Press, 1992, pp. 313–321.

[35] B. A. Coan and J. L. Welch, “Modular construction of a Byzantine
agreement protocol with optimal message bit complexity,” Journal of
Information and Computation, vol. 97, pp. 61–85, 1992.

153

[36] V. King and J. Saia, “Breaking the O(n2) bit barrier: Scalable Byzan-
tine agreement with an adaptive adversary,” in ACM symposium on
Principles of Distributed Computing (PODC), 2010, pp. 420–429.

[37] Z. Beerliova-Trubiniova and M. Hirt, “Efficient multi-party computa-
tion with dispute control,” in IACR Theory of Cryptography Conference
(TCC), 2006.

[38] A. Patra and C. P. Rangan, “Communication optimal multi-valued
asynchronous Byzantine agreement with optimal resilience,” Cryptol-
ogy ePrint Archive, 2009.

[39] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti, “Making
Byzantine fault tolerant systems tolerate Byzantine faults,” in USENIX
Symposium on Netowrked Systems Design and Implementation (NSDI),
2009, pp. 153–168.

[40] F. P. Preparata, G. Metze, and R. T. Chien, “On the connection assign-
ment problem of diagnosable systems,” IEEE Transactions on Electronic
Computers, vol. EC-16, pp. 848–854, 1967.

[41] G. M. Masson, D. M. Blough, and G. F. Sullivan, “System diagnosis,”
in Fault-Tolerant Computer System Design. Prentice Hall, 1996.

[42] S. Mallela and G. Masson, “Diagnosable systems for intermittent faults,”
IEEE Transactions on Computers, vol. C-27, pp. 560–566, 1978.

[43] D. Blough and A. Pelc, “Complexity of fault diagnosis in comparison
models,” IEEE Transactions on Computers, vol. 41, pp. 318–324, 1992.

[44] R. W. Yeung and N. Cai, “Network error correction, part I: Basic con-
cepts and upper bounds,” Communications in Information and Systems,
vol. 6, pp. 19–6, 2006.

[45] N. Cai and R. W. Yeung, “Network error correction, part II: Lower
bounds,” Communications in Information and Systems, vol. 6, pp. 37–
54, 2006.

[46] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. Medard,
“Resilient network coding in the presence of Byzantine adversaries,” in
IEEE International Conference on Computer Communications (INFO-
COM), 2007, pp. 616–624.

[47] D. Pradhan and N. Vaidya, “Roll-forward and rollback recovery:
performance-reliability trade-off,” IEEE Transactions on Computers,
vol. 46, pp. 372–378, 1997.

[48] “Openssl project.” [Online]. Available: http://www.openssl.org/

154

[49] M. J. Fischer, N. A. Lynch, and M. Merritt, “Easy impossibility proofs
for distributed consensus problems,” in ACM symposium on Principles
of Distributed Computing (PODC), 1985, pp. 59–70.

[50] S.-Y. Li, R. Yeung, and N. Cai, “Linear network coding,” IEEE Trans-
actions on Information Theory, vol. 49, pp. 371–381, 2003.

[51] T. Ho, B. Leong, R. Koetter, M. Medard, M. Effros, and
D. Karger, “Byzantine modification detection in multicast networks
using randomized network coding (extended version),” 2004. [Online].
Available: http://www.its.caltech.edu/∼tho/multicast.ps

[52] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Al-
gorithms and Complexity. Courier Dover Publications, 1998.

[53] A. K. Chandra, I. Merrick, L. Furst, and R. J. Lipton, “Multi-party
protocols,” in ACM Symposium on Theory of Computing (STOC), 1983,
pp. 94–99.

[54] E. Kushilevitz and N. Nisan, Communication Complexity. Cambridge
University Press, 2006.

[55] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals prob-
lem,” ACM Transaction on Programming Languages and Systems, vol. 4,
pp. 382–401, 1982.

[56] E. Kushilevitz and E. Weinreb, “The communication complexity of set-
disjointness with small sets and 0-1 intersection,” in IEEE Symposium
on Foundations of Computer Science (FOCS), 2009, pp. 63–72.

[57] M. Pătraşcu and R. Williams, “On the possibility of faster SAT al-
gorithms,” in Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2010, pp. 1065–1075.

[58] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of ap-
proximating the frequency moments,” in ACM Symposium on Theory
of Computing (STOC), 1996, pp. 20–29.

[59] Z. Bar-yossef, T. S. Jayram, R. Kumar, and D. Sivakumar, “An infor-
mation statistics approach to data stream and communication complex-
ity,” in IEEE Symposium on Foundations of Computer Science (FOCS),
2002, pp. 209–218.

[60] A. Chakrabarti, S. Khot, and X. Sun, “Near-optimal lower bounds on
the multi-party communication complexity of set disjointness,” in IEEE
Conference on Computational Complexity (CCC), 2003, pp. 107–117.

155

[61] Y. Dinitz, S. Moran, and S. Rajsbaum, “Exact communication costs for
consensus and leader in a tree,” Journal of Discrete Algorithms, vol. 1,
pp. 167–183, 2003.

[62] T. Ghosh, N. Pissinou, and K. Makki, “Towards designing a trusted
routing solution in mobile ad hoc networks,” Journal of Mobile Networks
and Applications, vol. 10, pp. 985–995, 2005.

[63] C. Perkins and E. Royer, “Ad-hoc on-demand distance vector routing,”
in Workshop on Mobile Computing Systems and Applications (WM-
CSA), 1999, pp. 90–100.

[64] S. Buchegger and J.-Y. Le Boudec, “Performance analysis of the CON-
FIDANT protocol,” in ACM International Symposium on Mobile ad hoc
Networking & Computing (MobiHoc), 2002, pp. 226–236.

[65] C. Zouridaki, B. L. Mark, M. Hejmo, and R. K. Thomas, “A quanti-
tative trust establishment framework for reliable data packet delivery
in MANETs,” in ACM Workshop on Security of Ad hoc and Sensor
Networks (SASN), 2005, pp. 1–10.

[66] S. Ganeriwal and M. B. Srivastava, “Reputation-based framework for
high integrity sensor networks,” in ACM Workshop on Security of Ad
hoc and Sensor Networks (SASN), 2004, pp. 66–77.

[67] D. C. Kamal, D. Charles, K. Jain, and K. Lauter, “Signatures for net-
work coding,” in IEEE Conference on Information Sciences and Systems
(CISS), 2006, pp. 857–863.

[68] Z. Yu, Y. Wei, B. Ramkumar, and Y. Guan, “An efficient signature-
based scheme for securing network coding against pollution attacks,” in
IEEE International Conference on Computer Communications (INFO-
COM), 2008, pp. 1409–1417.

[69] F. Zhao, T. Kalker, M. Medard, and K. J. Han, “Signatures for con-
tent distribution with network coding,” in International Symposium on
Information Theory (ISIT), 2007.

[70] Q. Li, D.-M. Chiu, and J. Lui, “On the practical and security issues of
batch content distribution via network coding,” in IEEE International
Conference on Network Protocols (ICNP), 2006, pp. 158–167.

[71] M. N. Krohn, “On-the-fly verification of rateless erasure codes for effi-
cient content distribution,” in IEEE Symposium on Security and Pri-
vacy, 2004, pp. 226–240.

[72] C. Gkantsidis and P. Rodriguez Rodriguez, “Cooperative security for
network coding file distribution,” in IEEE International Conference on
Computer Communications (INFOCOM), 2006, pp. 1–13.

156

[73] J. Dong, R. Curtmola, and C. Nita-Rotaru, “Practical defenses against
pollution attacks in intra-flow network coding for wireless mesh net-
works,” in ACM Conference on Wireless Network Security (WiSec),
2009, pp. 111–122.

[74] M. Kim, M. Medard, and J. Barros, “Counteracting Byzantine adver-
saries with network coding: An overhead analysis,” in IEEE Military
Communications Conference (MILCOM), 2008.

[75] M. Kim, R. Kotter, M. Medard, and J. Barros, “An algebraic watchdog
for wireless network coding,” in International Symposium on Informa-
tion Theory (ISIT), 2009.

[76] E. M. Palmer, “On the spanning tree packing number of a graph: a
survey,” Journal of Discrete Mathematics, vol. 230, pp. 13–21, 2001.

[77] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The ben-
efits of coding over routing in a randomized setting,” in International
Symposium on Information Theory (ISIT), 2003.

157

