
c© 2012 MICHAEL D. FORD

A GENERALIZED ADVERSARY DECISION ALGORITHM AND ANALYTIC
SOLUTION METHODS FOR ADVISE MODELS

BY

MICHAEL D. FORD

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Adviser:

Professor William H. Sanders

ABSTRACT

Quantitative security metrics are becoming increasingly important to system administra-

tors. ADVISE generates quantitative security metrics by combining a system vulnerability

graph with an adversary profile through an adversary decision algorithm. Previously, the

decision algorithm placed restrictive assumptions on the adversary profile, and simulation

was the sole solution method for ADVISE models. In this thesis, the decision algorithm is

generalized while simultaneously improving its performance by incorporating theory from

discrete-time Markov games. Furthermore, by exploring the state-space and generating the

transition probability matrix, numerical solution methods may be applied to solve ADVISE

models. Identifying key properties allows the models to be tested for compatibility with

alternative solution methods from the literature, enabling additional metrics for ADVISE

models. Finally, the performance of simulation is improved significantly by introducing de-

cision caching. Together these accomplishments expand the number of quantitative security

metrics and solution methods available to ADVISE models while lifting restrictions on the

adversary profile and improving performance.

ii

To my family

iii

ACKNOWLEDGMENTS

The work depicted here was performed, in part, with funding from the U.S. Department of

Homeland Security under contract FA 8750-09-C-0039 with the Air Force Research Labo-

ratory. I would like to thank Douglas Maughan, Director of the Cyber Security Division in

the Homeland Security Advanced Research Projects Agency (HSARPA), within the Science

and Technology Directorate of the Department of Homeland Security (DHS).

I wish to thank my adviser, Dr. William Sanders, for his support, advice, mentoring, and

friendship. This work would not have been possible without his guidance. I would also like

to thank Dr. Steve Lumetta and Dr. Klara Nahrstedt. Learning from and working with

them has been a privilege, and I owe my development to their direction. I am grateful to Dr.

Peter Buchholz for his assistance with the numerical techniques. His feedback and insight

on many aspects of this work have been invaluable.

This work would not have been possible without the previous work by Dr. Elizabeth

LeMay. I appreciate her advice and collaboration during my first year of graduate school.

Ken Keefe supported the ADVISE implementation, and our discussions led to the perfor-

mance improvements in this work. I thank Jenny Applequist for all of her editorial work.

Thanks to the members of the PERFORM group for great discussion and time spent around

the coffee machine.

I would like to thank Dr. Carol Muehrcke of the Cyber Defense Agency, Bruce Barnett

and Michael Dell’Anno of GE Global Research, and Chad Ackerman and Dan Murphy of

John Deere. GE funded the ADVISE project and John Deere funded my first research into

reliability modeling. I value the dedication and observations of these colleagues.

Finally, to my family and friends, thank you for loving me, for encouraging me, and for

always challenging me to be my best.

iv

TABLE OF CONTENTS

LIST OF SYMBOLS . vi

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 RELATED WORK . 2
2.1 Privilege Graphs . 2
2.2 Multiple-Prerequisite Graphs . 3
2.3 Exploit Dependency Graphs . 4

CHAPTER 3 ADVISE FORMALISM . 6
3.1 The Attack Execution Graph . 6
3.2 Properties of an Attack Execution Graph . 8
3.3 The Adversary Profile . 10

CHAPTER 4 THE ADVERSARY DECISION ALGORITHM 12
4.1 Generalizing the Attack Step Selection . 12
4.2 Computation of the Adversary Decision Algorithm 18
4.3 Performance of the Adversary Decision Algorithm 20

CHAPTER 5 SOLUTION METHODS . 24
5.1 State-Space and Transition Matrix Generation 24
5.2 Simulation . 26
5.3 Numerical Solutions . 29
5.4 Other Analyses . 36
5.5 Example Metrics . 38
5.6 Performance Comparison . 40

CHAPTER 6 CONCLUSION . 44

APPENDIX A MODEL DOCUMENTATION . 45
A.1 SCADA Network Models . 45
A.2 Gatekeeper Model . 45

REFERENCES . 51

v

LIST OF SYMBOLS

A The set of attack steps.

ai A single attack step.

at : Hn
σ → [0, 1] The attractiveness of an attack policy σ.

attrn : X × A→ [0, 1] The maximum attractiveness for a given starting state and attack
step.

Bi : X → {True, False} The attack step Boolean precondition.

β : X → ai The adversary decision algorithm.

Ci : X → R≥0 The attack step cost.

CCn : Hn → R≥0 The cumulative cost of a set of histories.

C(s, s′) The mean cost incurred from s′ before a state from Xa ∪Xn is reached.

CC(s, s′) The mean cost incurred from s′ before a state from Xa is reached.

cabs The mean cost to absorption.

cabsa The mean cost to absorption given success.

Ei : X ×Oi → X The outcome-dependent state transition function.

Fi : X ×Oi → [0, 1] The probability of non-detection for each outcome.

F The non-detection transition probability matrix.

fi The frequency of attack step ai.

FF n : Hn → [0, 1] The cumulative non-detection of a set of histories.

G The set of attack goals.

gabs The average gain until a state in Xn ∪Xa is reached.

Γ The set of state variables.

vi

γ A state variable.

H t The set of all histories of t steps.

ht A history of t steps.

H t
σ The set of all policy-consistent histories.

htσ A policy-consistent history.

H t
σ(〈s〉) The set of all policy-consistent histories beginning in state s.

I The identity matrix.

K The set of system knowledge.

L : S → [0, 1] The attack skill level function.

M(s, s′) The mean time in s′ before a state from Xa ∪Xn is reached.

MC(s, s′) The mean time in s′ before a state from Xa is reached.

µs The exponential distribution rate.

N ∈ N The adversary’s planning horizon.

Nm,m(s, s′) The mean number of visits to s′ before a state from Xa ∪Xn is reached.

NC
m,m The mean number of visits when absorption occurs in Xa.

Oi The finite set of attack outcomes.

Ωt The set of all policies with depth t.

Ωt
ai

The set of all policies with depth t and attack step ai as the first attack step.

P : X → R≥0 The payoff value function.

PP n : Hn → R≥0 The cumulative payoff of a set of histories.

P The transition probability matrix.

Pm,a The transition probability sub-matrix for Xm → Xa.

Pm,m The transition probability sub-matrix for Xm → Xm.

Pm,n The transition probability sub-matrix for Xm → Xn.

PC
m,a The transition probability matrix for a successful attack.

P{i} The probability transition matrix containing only transition probabilities according
to ai ∈ A.

vii

P¬{i} The probability transition matrix containing all transition probabilities except
those according to ai ∈ A.

P The probability transition matrix where each step has a duration of ∆.

pndet The probability on non-detection.

psucc The probability of successfully reaching a goal.

πl The stationary vector.

Pri : X ×Oi → [0, 1] The outcome probability distribution.

R The set of system accesses.

S The set of attack skills.

s A state.

s0 The initial state.

σ A policy.

σt A policy of depth t.

Ti : X × R+ → [0, 1] The attack step time distribution.

tabs The mean time to absorption.

tabsa The mean time to absorption given success.

τ A finite time horizon.

UC : R≥0 → [0, 1] The cost utility function.

UP : R≥0 → [0, 1] The payoff utility function.

UF : [0, 1]→ [0, 1] The non-detection utility functions.

(s, n).V The valuation for a state s and reachability depth n.

wC The attack preference weight for cost.

wF The attack preference weight for non-detection.

wP The attack preference weight for payoff.

X The state-space.

X The reachable state-space.

Xa The set of states in which the adversary has achieved their goal.

viii

Xm The set of states in which the adversary may achieve their goal.

Xn The set of states in which the adversary will never achieve their goal.

Yt The set of states reachable in t steps.

ix

CHAPTER 1

INTRODUCTION

Accessible quantitative security metrics are required to help system administrators accu-

rately assess the security of their systems. The ADVISE method has been shown to produce

insightful security metrics in [1] and [2]. We generalize the ADVISE adversary decision algo-

rithm while simultaneously introducing significant performance gains. With these additions,

ADVISE becomes applicable to a broad range of situations. By introducing the performance

gains, we can analyze large-scale systems and ADVISE can be incorporated into live anal-

ysis. With generalized analysis algorithms, ADVISE can generate complex metrics without

placing assumptions on attacker’s behavior.

The thesis is organized as follows. Chapter 2 explores related work in depth, focusing on

graph-based vulnerability representations. In Chapter 3, we present the ADVISE formalism

and discuss important properties of the representation. We explore the adversary’s decision

algorithm in Chapter 4 by generalizing the decision process, presenting decision algorithms,

and discussing their performance implications. Chapter 5 discusses solution methods to

produce security metrics. We explore simulation, numerical techniques, property-specific

methods, and finally we compare their performance. We conclude with Chapter 6 and

highlight future work.

1

CHAPTER 2

RELATED WORK

The field of quantitative computer security grew out of the reliability field as the need for

quantitative security metrics rose. Thus, quantitative security models closely parallel their

reliability counterparts. Fault trees in the reliability field became attack trees in the security

field. Markov models and Petri nets have undergone numerous design iterations as they were

adapted for the security field. Even failure mode and effects analysis (FMEA) has found a

home in some security domains.

We examine both the work of pioneers and recent successes in the quantitative security

field while focusing largely on the use of graphs in the literature. Graphs are the natural

way to represent connectivity between components. In previous work, graph nodes have

represented single machines, specific privilege levels, or arbitrary security assets. Typically,

edges in the graph represent security vulnerabilities that can be exploited by an attacker.

More complex schema have been developed over time as researchers recognized the fact

that complex interactions in state needed to be modeled. Additionally, graphs and modeling

environments have been extended in order to facilitate the computation of more complex

metrics. Attack graphs, multi-prerequisite graphs, and exploit dependency graphs are de-

scribed in the following sections.

2.1 Privilege Graphs

Dacier and Deswarte introduced privilege graphs in [3]. In a privilege graph, nodes repre-

sent privilege states, and weighted, directed edges represent attacks. Therefore, as in most

attack graphs, the privilege graph is a graph of state variables, not one which represents

the underlying state-space. The edge weights represent the time or effort an attacker must

2

spend on the specific attack.

An attacker begins at a single node, and follows a path to their goal. The main metric

used to analyze a privilege graph is the mean effort to failure (MEFT). This metric satisfies

three main properties outlined by Dacier and Deswarte as critical metric properties:

1. Security increases if the “length of the paths” leading to the target

increases.

2. Security decreases if the “number of paths” leading to the target increases.

3. Security is mainly affected by the shortest path leading to the target.

In [4] and [5], privilege graphs are converted into Petri nets [6]. The underlying Markov

chain [7] can be extracted from a stochastic Petri net and used to generate the state graph.

Additionally, the Markov chain can also be used to compute metrics numerically. This

parallels the computation of mean time to failure (MTTF) in the reliability field.

In a privilege graph, all attacks are monotonic; that is, an attack never loses a privilege

level that they previously possessed. Additionally, each attack edge has a single enabling

privilege, and a single resulting privilege. Finally, there is a single attack goal in the entire

graph.

2.2 Multiple-Prerequisite Graphs

Often in networked systems, computers and other resources are grouped into subnetworks.

After gaining access to a subnetwork, an attacker may launch the same attack against any

other computer on the subnetwork. Lippmann et al. recognized the potential for a reduction

of the attack graph in [8]. Their realization was that access to the subnetwork, or the more

general “reachability group,” and not just access to the machine, is a critical security state

variable. Their new graph representation is the multiple-prerequisite (MP) graph.

Vulnerabilities in a typical attack graph are represented as edges, which implies using a

single state variable as the precondition and a single state variable as the outcome. Lippmann

et al. changed the structure of the attack graph by creating two new types of nodes: the

prerequisite node and the vulnerability instance node. A prerequisite node is enabled by any

3

of the state nodes connecting to it. The prerequisite node enables all vulnerability nodes it

connects to. The outcome of a vulnerability node is the single state node it connects to.

There are two ways to view MP graphs. The first is to consider both state nodes and

prerequisite nodes as state variables. In this instance, the vulnerability node has a single

prerequisite, and the outcome may affect several state variables. The second is to consider

prerequisite nodes as simple Boolean algebraic expressions that define the enabling conditions

for a vulnerability node. Then, the precondition for a vulnerability node is complex, however

the outcome affects a single state variable.

Regardless of this distinction, the MP graph can be seen as a reduction of the full graph,

which improves performance by reducing the number of vulnerabilities in the graph. In the

analysis of the MP graph, Lippmann et al. assume monotonicity. This assumption implies

that the order of attack steps does not impact the resulting state. Because the main analysis

performed on MP graphs is the percentage of hosts that may be compromised, the monotonic

assumption does not have any affect on analysis, only on performance.

2.3 Exploit Dependency Graphs

Noel et al. introduced the exploit dependency graph in [9]. The exploit dependency graph

is constructed from a set of exploits, and is then reduced to produce those attacks which

are sufficient and necessary in order to achieve the goals. The exploits are represented as a

Boolean precondition and monotonic postcondition.

The construction resembles a forward state space exploration, beginning with an initial

state and applying exploits to traverse into new states. Once the full dependency graph is

constructed, a backward reduction is performed, producing the attack paths that are both

sufficient and necessary to reach a goal in an exploit dependency graph.

The analysis of an exploit dependency graph is to produce the set of choices of which se-

curity countermeasures with the lowest total cost to deploy for network hardening. Analysis

requires a further backward traversal of the graph. Each goal’s preconditions are recursively

replaced with the disjunction of the preconditions of any exploit which results in the goal.

This results in a Boolean condition for accessing the goal in terms of the initial conditions.

4

Finally, the set of hardening measures that satisfy the safety of the goals while minimizing

cost are suggested.

We have closely examined the most widely used formalisms for modeling vulnerabilities in

and attacks against a system. Each of those formalisms make limiting assumptions for ease

of analysis. These assumptions include the monotonicity of state-variables, the exponential

nature of attack time, single state-variable prerequisites, and single state-variable outcomes.

These assumptions place unnecessary restrictions on the types of analysis that can be com-

pleted. For instance, the monotonic assumption implies that an active defense cannot be

modeled. These assumptions, while important, should not be forced on the model. We

present a general attack graph where analysis methods may be applied depending on the

structure of the model.

5

CHAPTER 3

ADVISE FORMALISM

In this chapter, we review the ADVISE formalism, which is defined in [1] and [2]. The attack

execution graph (AEG) is a state-based attack graph that represents system vulnerabilities

that an adversary may exploit. The adversary profile (AP) describes the attributes of an

adversary, and the adversary decision algorithm (ADA) selects the optimal attack step to

attempt from a given state. The ADA allows the attributes in the adversary’s profile to

produce emergent behavior. ADVISE combines the attack execution graph and the adversary

profile via the adversary decision algorithm in order to predict how an adversary attacks a

system.

In this chapter, we formally define the attack execution graph, present properties of the

attack execution graph, define the adversary profile, and define the optimal conditions for

the adversary decision algorithm.

3.1 The Attack Execution Graph

An attack execution graph is defined by the tuple

〈A,R,K, S,G〉,

where

A is the set of attack steps,

R is the set of system accesses,

K is the set of system knowledge,

S is the set of attack skills,

6

and G is the set of attack goals.

3.1.1 Notion of State

The sets R, K, and G are sets of Boolean state variables. S is a set of skill variables that

are statically defined for each adversary. Since an adversary’s evaluation of all skill variables

is static and known a priori, S is not included in the state. This evaluation is discussed

further in Section 3.3.

We define:

Γ = R
⋃
K
⋃
G as the set of state variables.

γ ∈ Γ as a state variable.

X = P(Γ) as the state-space, or the set of all possible states.

s ∈ X as a state. Therefore, s ⊆ Γ.

This representation of state relies on the assumption that all state variables in Γ are

Boolean. Therefore, the two values a state variable takes on are represented by the state

variable name being included in, true, or excluded from, false, the set that represents the

state of the model. This assumption is just for notational convience; it is simple to extend

the notion of state to a discrete set of values. We use this representation for its simplicity,

especially with respect to the attack graph properties in Section 3.2.

3.1.2 Attack Steps

An attack step ai ∈ A is defined by the tuple

ai = 〈Bi, Ti, Ci, Oi, P ri, Fi, Ei〉,

7

where

Bi : X → {True, False} is the attack step Boolean precondition,

Ti : X × R+ → [0, 1] is the attack step time distribution,

Ci : X → R≥0 is the attack step cost,

Oi is the finite set of attack outcomes,

Pri : X ×Oi → [0, 1] is the outcome probability distribution,

Fi : X ×Oi → [0, 1] is the probability of non-detection for each outcome,

Ei : X ×Oi → X is the outcome-dependent state transition function.

3.2 Properties of an Attack Execution Graph

In this section, we list properties of an attack execution graph (AEG) that are commonly

used in the security metrics literature discussed in Chapter 2. The following properties are

often required in order for a specific type of analysis to be performed. These properties show

the modeling power of the AEG and allow us to identify which types of analysis can be used

with a specific AEG.

Exponential (in Time)

The timing distribution is exponential for all attack steps in the AEG.

If Ti(s) = λe−λt, λ ∈ R+, ∀ai ∈ A, then the AEG is exponential in time.

Static

• Static with respect to Cost:

If, for attack step i, Ci(s) = c, ∀s ∈ X, then attack step i is static w.r.t. cost.

• Static with respect to Time:

If, for attack step i, Ti(s) = τ , ∀s ∈ X, then attack step i is static w.r.t. time.

• Static with respect to Outcome Probability:

If, for attack step i, Pri(s) = p, ∀s ∈ X, then attack step i is static w.r.t. outcome

probability.

8

• Static with respect to Detection Probability:

If, for attack step i, Di(s) = d, ∀s ∈ X, then attack step i is static w.r.t. detection

probability.

• Static with respect to State Transition:

Let e+ , Ei(∅, o) and e− , Ei(Ω, o).

If, for attack step i, Ei(s, o) = s′ and s′ \ s ⊆ e+ and s \ s′ ⊆ e−, ∀o ∈ Oi, ∀s ∈ S, then

attack step i is static w.r.t. state transition.

If all attack steps in the AEG are static with respect to cost, time, outcome probability,

and state transition, then the AEG is static.

Simple Enabling Conditions

An attack step’s enabling condition depends on a single state variable.

The AEG has simple enabling conditions if ∃ a state variable γ ∈ Γ

such that Bi(s) =

 True γ ∈ s

False γ /∈ s
.

Monotonic Enabling Conditions

An AEG has monotonic enabling conditions, if, when an attack step is enabled for a given

state, the addition of any state variables to that state may not disable the attack step.

Formally, if Bi(s) = True ⇒ Bi(s ∪ s′) = True, ∀s′ ∈ X, ∀ai ∈ A, then the AEG has

monotonic prerequisites.

Singular Outcomes

An AEG has singular outcomes, if, there is only a single outcome per attack step.

Formally, if |Oi| = 1 ∀ai ∈ A, then the AEG has singular outcomes.

9

Simple Outcomes

An AEG has simple outcomes, if, any outcome transition from a give state affects only one

state variable.

Formally, if Ei is of the form Ei(s, o) =

 s

s ∪ γ
∀o ∈ Oi, ∀s ∈ X, ∀ai ∈ A, then the AEG

has simple outcomes.

Monotonic Outcomes

An AEG has monotonic outcomes, if, for any state, a transition from that state may never

relinquishes a state variable. In effect, this means that once an adversary gains an access, a

piece of knowledge or a goal, they never lose it by attempting another attack step.

Formally, if s′ = Ei(s, o)⇒ s ⊆ s′, ∀o ∈ Oi, ∀s ∈ X, ∀ai ∈ A, then the AEG has monotonic

outcomes.

It is important to note that the properties listed above are restrictions placed on an attack

execution graph. Therefore, an attack execution graph is inherently not exponential, static,

monotonic, or simple. However, these properties apply to other representations, and the

analysis techniques used with those representations rely on assumptions that the properties

provide. The AEG properties enable one to compare the assumptions of various representa-

tions and identify which analysis techniques can be applied to a representation.

3.3 The Adversary Profile

The adversary profile is defined by the tuple

〈s0, L, P, wC , wP , wF , UC , UP , UF , N〉,

10

where

s0 ∈ X is the initial model state,

L : S → [0, 1] is the attack skill level function,

P : X → R≥0 is the payoff value function,

wC , wP , wF ∈ [0, 1] are the attack preference weights,

UC : R≥0 → [0, 1] is the cost utility function,

UP : R≥0 → [0, 1] is the payoff utility function,

UF : [0, 1]→ [0, 1] is the non-detection utility functions,

N ∈ N is the adversary’s planning horizon.

Each adversary may begin with a unique initial state, s0. The attack skill level function,

L, translates skill variables in an AEG into adversary specific values. The value of a state to

the adversary is given by the payoff value function, P . The utility functions UC , UP , and UF

convert the cost, payoff, and non-detection probability of an attack path into units of utility

for the adversary. These utility values are weighted by the corresponding preference weights

(wC , wP , and wF) and then summed to create a measure of attractiveness of an attack path

to the adversary. Finally, the adversary can plan N attack steps into the future.

The attack execution graph is a rich modeling formalism for describing the vulnerabilities

in a system. We have identified key properties of the AEG that help us relate an AEG to

other representations. Finally, the adversary profile provides a descriptive environment to

model adversaries. The next chapter will explore the interaction between the adversary

profile and the attack execution graph.

11

CHAPTER 4

THE ADVERSARY DECISION ALGORITHM

The adversary decision is the way in which the adversary profile combines with the attack

execution graph to produce security metrics. In a given state, the adversary selects an attack

step to attempt, the attack step’s outcome is selected probabilistically, and the state changes

based on the outcome effects. Then the cycle repeats.

The Adversary Decision Algorithm (ADA), or β(s), dictates the way in which the adver-

sary profile values deterministically influence the attack step selection. A specific recursive

decision algorithm is presented in [1] and [2]. In this chapter, we introduce a generalization

of the adversary decision algorithm, define an optimality condition, present specific decision

algorithms, optimize them, and analyze their performance.

4.1 Generalizing the Attack Step Selection

The attack step selection explores the future state space and determines which attack step

provides the optimal future based on their specific weights and utility functions in the ad-

versary profile. This future value is called the attractiveness. Here, we present a formal

framework for defining the optimal attack step for an adversary to attempt in a given state.

4.1.1 Exploring the Future

The adversary’s decision is similar to one made in a stochastic game. Since a Markov perfect

equilibrium exists in a stochastic game [10], it is possible to find the optimal adversary

decision for an ADVISE model. Therefore we borrow the concepts of event histories and

decision policies from the field of game theory.

12

The term ht denotes a history looking t steps into the future:

ht = 〈s0, a0, o0, s1, . . . , st−1, at−1, ot−1, st〉.

A single history consists of a sequence of states s0, . . . , st ∈ X such that a state si transitions

to si+1 based on the effects of oi ∈ Oai for 0 ≤ i < t, or more formally, si+1 = E(si, oi),

oi ∈ Oai . We use the notation si
ai,oi
−→ si+1 for compactness. Figure 4.1(a) depicts a single

history ht within the set of all possible histories extending from the initial state.

(a) ht: A Single Path

(b) Ht: The Set of All Possible Paths

(c) Ht
σ: The Set of Possible Paths Given a Policy

Figure 4.1: History Trees

13

Let H t(〈s0〉) denote the set of all possible histories ht, with look-ahead t, that begin with

state s0. We extend this definition recursively as follows:

H t(Hs) =



Hs t = s

{ht−1 ⊕ 〈a, o, Ea(st−1, o)〉 s.t. t > s

ht−1 = (s0, . . . , st−1) ∈ H t−1(Hs)

a ∈ A : Ba(st−1) = true, and o ∈ Oa},

where the symbol ⊕ represents the append operator that appends a new step, outcome, and

state to a history, i.e., 〈s0, a0, o0, s1, . . . , st−1, at−1, ot−1, st〉⊕〈at, ot, st+1〉 = 〈s0, a0, o0, . . . , at, ot, st+1〉.

Figure 4.1(b) depicts the set of all possible histories H t within the state space of depth

t. In this figure, from the initial state, the adversary selects one of two attack steps, each

of which will result in either of two possible outcomes. From those resulting states, the

adversary may select from three attack steps, again with two possible outcomes each.

Notice that ht is a single path through the state space, while H t represents the entire set

of paths through the state space of depth t. A history ht is the path an adversary could take

if both attack steps and outcomes were fixed. H t is the set of paths an adversary could take

if neither the attack steps nor outcomes were fixed. What remains is to depict the potential

paths of an adversary given the deterministic choice of the best attack step with respect to

state and the non-deterministic nature of attack step outcomes.

Therefore, a policy σ is defined to be a mapping at each look-ahead level from a state to

an attack step, and σt is defined to be a policy with a look-ahead of t. Then σt = (f1, . . . , ft),

where fk : X → A, i.e., fk(s) = a means that attack a is chosen in step k. The set of all

policies with look-ahead t is Ωt, and Ωt
ai

is the set of policies with look-ahead t and attack

step ai as the first attack step. Note that set Ωt
ai

is empty in state s if Bi(s) = false. A

policy-consistent history, htσ, is a history such that ∀k, fk(sk) = ak. That is, the history

follows the attack steps prescribed by the policy.

Then, the set of all policy-consistent histories, denoted by H t
σ(〈s〉), is the set of all pos-

sible sample paths through the state space starting with state s, given that the adversary

14

follows the policy σ for selecting attack steps and only the outcomes are stochastic. See

Figure 4.1(c).

4.1.2 Policy Attractiveness

With those notations, we can extend the notation for reward values that are required for the

computation of the attractiveness. In particular, let

CCn(Hn(〈s〉)) =
∑
hn∈Hn

(
n−1∑
i=0

Cai(si)×
n−1∏
i=0

Prai(si, oi)

)

PP n(Hn(〈s〉)) =
∑
hn∈Hn

(
n−1∑
i=0

Gai(si, oi)×
n−1∏
i=0

Prai(si, oi)

)

FF n(Hn(〈s〉)) =
∑
hn∈Hn

(
n−1∏
i=0

Fai(si, oi)×
n−1∏
i=0

Prai(si, oi)

)
.

The values are the cumulative cost (CCn), gain (PP n), and probability that the attack is not

detected (FF n) over all possible histories of length n. To help understand these formulae,

we describe how the cumulative cost is computed. First, the sum of the costs for all of the

attack steps in a single history is computed. Then this sum is weighted by the probability

of that history, that is by the product of the probabilities for each outcome in the history.

The sum of the probabilistically weighted cost of each history is the cumulative cost for the

policy.

With those values, the attractiveness of a policy σ is given by converting the cumulative

cost, payoff, and probability of nondetection to a common unit of adversary utility and

weighting the values by the adversary’s preference weights:

at(Hn
σ (〈s〉)) = wCUC(CCn(Hn

σ (〈s〉))) + wPUP (PP n(Hn
σ (〈s〉)))

+wFUF (FF n(Hn
σ (〈s〉))) (4.1)

Then, the attractiveness of an attack step, ai, is the maximum of all policy attractivenesses

15

where the policy dictates that ai be attempted from state s:

attrn(s, ai) = max
σ∈Ωnai

(at(Hn
σ (〈s〉))) . (4.2)

Observe that the functions U(.) in (Eq. 4.1) can be arbitrary non-linear functions. Function

β is defined for a look-ahead of N as

β(s) = argmax
ai∈A

(
attrN(s, ai)

)
. (4.3)

Therefore, β(s) gives the attack step that results in the most attractive future based on the

adversary’s utility of the cumulative cost, gain, and probability of non-detection.

In general, as already noted in [2, Theorem 3.2], the computation of β(s) requires the

computation of at(s, .) for all policies of length N , which means that for each of the (S ·A)

policies, |A||O|N−1
paths have to be considered. That becomes impractical for larger values

of N . Therefore, we consider cases where the computation over all paths can be avoided. Of

course, that implicitly or explicitly puts some restrictions on the functions U(.). However,

restrictions, such as monotonically increasing utility functions, seem to be natural.

4.1.3 Defining an Optimality Ordering

In order to reduce the computational complexity of β(s), we define an ordering on the

cumulative cost, payoff, and probability of nondetection values. This ordering enables the

direct comparison of two policies at intermediate locations in the β(s) computation. If

one policy sufficiently outperforms a second policy, the second policy can be ingored in the

remainder of the β(s) computation.

The attractiveness of using the policy σ in state s is characterized by three values: c =

CCn(Hn
σ (〈s〉)), p = PP n(Hn

σ (〈s〉)), and d = FF n(Hn
σ (〈s〉)). We define an order � on the

triples (c, p, d).

16

To formally define (c, p, d)� (c′, p′, d′), let σt1, σ
t
2 ∈ ASt such that:

(c, p, d) =
(
CCn(Hn

σt1
(〈s〉)), PP n(Hn

σt1
(〈s〉)), FF n(Hn

σt1
(〈s〉))

)
(c′, p′, d′) =

(
CCn(Hn

σt2
(〈s〉)), PP n(Hn

σt2
(〈s〉)), FF n(Hn

σt2
(〈s〉))

)
We use the notation (c, p, d)�n (c′, p′, g′), n > t if:

at
(
H l+t
σlσt1

(s)
)
≥ at

(
H l+t
σlσts

(s)
)
∀l ∈ {1, . . . , n− t}, ∀σl ∈ Ωl, and ∀s ∈ X.

The notation (c, p, d)� (c′, p′, d′) is used if (c, p, d) �n (c′, p′, d′) ∀n ∈ N+.

Usually, the adversary’s utility functions U(.)(.) are of such a form that (c, p, d)� (c′, p′, d′)

holds if c ≤ c′, p ≥ p′, and d ≥ d′, i.e., the costs are smaller and the gain and the probability

of not being detected are higher. However, there may be other cases, depending on the

definition of the utility functions.

Specifically, we consider the Markov decision process case (MDP-case), where an adver-

sary’s decisions are independent of the past. Markov decision processes are discussed in

general in [11], while their impact on the adversary decision is discussed in [2]. For this case,

the adversary decision function, βn(s), can be defined recursively. Then,

β1(s) = argmax
ai∈A

(wCUC(Ci(s)) + wPUP (Pi(s)) + wFUF (Fi(s)))

with C1
∗(s) = Cβ1(s)(s), P

1
∗ (s) = Pβ1(s)(s), and D1

∗(s) = Dβ1(s)(s). That makes it possible

to recursively compute Cn
∗ (s), P n

∗ (s), Dn
∗ (s) as well as βn(s) (see [2, Eq. (3.8)-(3.12)]. Let

v = wCUC(c) + wPUP (p) + wFUF (d) and v′ = wCUC(c′) + wPUP (p′) + wFUF (d′).

Then in the MDP-case, the relation � is defined as follows:

v > v′ ⇔ (c, p, d)� (c′, p′, d′).

Furthermore, if the two values are identical, we define

v = v′ ⇔ (c, p, d) ≈ (c′, p′, d′),

and in this case, it does not matter whether we choose (c, p, d) or (c′, p′, d′). Consequently,

17

in the MDP-case � and ≈ define a total order, i.e., two values (c, p, d) and (c′, p′, d′) are in

relation � or in relation � or in relation ≈. Below, we use the notation (c, p, d)�(c′, p′, d′)

for (c, p, d) � (c′, p′, d′) or (c, p, d) ≈ (c′, p′, d′) and use this relation in Algorithm 3 in the

next section for evaluating function β(s).

4.2 Computation of the Adversary Decision Algorithm

In the most general case, the function β() must evaluate all policies from ΩN , and therefore,

all histories HN
σ , σ ∈ ΩN . This can be done using Algorithm 1, in which • denotes the

undefined value.

Algorithm 1 Simple β(s) Computation

1: β = • and best val = −∞;
2: for all σ ∈ ΩN do
3: determine val = at(Hn

σ (〈s〉) using (4.1);
4: if val > best val then
5: best val = val;
6: β = i1;
7: return β;

Algorithm 1 is rather naive and may compute values recursively several times. If the

relation � is available, a graph-based approach that can exploit the relation is much more

efficient. In that case, successor states up to N steps apart are explored and an acyclic multi-

graph is generated. This alternative algorithm for determining β(s) consists of a forward

and a backward phase as given in Algorithm 2 and 3 respectively. In the forward phase, all

states are generated that can be reached in 1, 2, . . . , N steps (Lines 4-7), and they are stored

in sets Yn (Line 8). Furthermore, all transitions s (ai,o)
→ s′ with s ∈ Yn and s′ ∈ Yn+1 are

stored with the source states to be used in the subsequent backward phase (Line 9). Since

several transitions can exist between two states s and s′, the graph is a multigraph.

In the subsequent backward phase, the values are evaluated bottom-up in the multigraph.

Since the valuation is computed bottom-up, we store a set of valuations V with each state-

level pair 〈s, n〉 in the form (s, n).V . A valuation is of the form (c, p, d), with the same

18

Algorithm 2 Forward β(s) Computation

1: Y0 = {s0};
2: for n = 1 to N do
3: Yn = ∅;
4: for all s ∈ Yn−1 do
5: for all ai ∈ A with Bi(s) = true do
6: for all o ∈ Oi do
7: let s′ = Ei(s, o);
8: Yn = Yn ∪ {s′};
9: add an edge between s and s′ labeled with (ai, o) to state s;

10: return Y0, . . . ,YN ;

meaning described above. For the states s ∈ YN , (s,N).V = {(0, 0, 1)} is used for initializa-

tion; the other values are computed in Algorithm 3.

Algorithm 3 Backward β(s) Computation

1: β = • and best val = −∞;
2: for n = N − 1 downto 0 do
3: for all s ∈ Yn do
4: for all ai ∈ A with Bi(s) = true do
5: for all combinations (c′, p′, d′) ∈ (s′, n+ 1).V where s (ai,o)

−→ s′ do
6: c = Ci(s) +

∑
o∈Oi Pri(s, o)c

′;
7: p =

∑
o∈Oi Pri(s, o)(Gi(s, o, s

′) + g′);
8: d =

∑
o∈Oi Pri(s, o)(Fi(s, o)d

′);
9: if n = 0 then

10: val = wCUC(c) + wPUP (p) + wFUF (d);
11: if val > best val then
12: best val = val;
13: β = ai;
14: else if no (c, p, d)′ ∈ (s, n).V with (c, p, d)′�(c, p, d) exists then
15: (s, n).V = (s, n).V ∪ {(c, p, d)};
16: remove all (c, p, d)′ from (s, n).V with (c, p, d)�(c, p, d)′;
17: return β;

Step 5, in which all combinations of possible valuations in successor states have to be

evaluated, is crucial. Since Oi usually has two outcomes, success or failure, the number of

possible valuations grows with the product of the valuations in the successor states. In the

worst case, the number of valuations in the algorithm equals N · |A|N , as for Algorithm 1.

However, if states contain identical successor states or� can be used to reduce the number of

valuations, then the effort is reduced. In the MDP-case, we only need to store one valuation

19

per state, which implies that the effort equals the number of edges in the graph defined by

Y0, . . . ,YN .

A further improvement can be achieved if results are reused in consecutive β(s) calcula-

tions. We store the values of (s, n).V between β(s) calculations. If, in a subsequent forward

phase, state s ∈ Yn is generated, (s, n).V can be used directly, and no successors of s need

to be generated, since the evaluation for the backward phase is already available. Therefore,

the condition if |(s, n).V| > 0 then may be inserted into Algorithm 2 at line 5, surround-

ing the inner two for loops and stopping further exploration of the path if the valuation is

available. That reuse of results should improve runtimes significantly for most models. If

memory becomes a problem, only values from the upper levels of Yn (where n is small) are

stored, since their reuse introduces the largest benefits.

In [2], the adversary decision algorithm is a depth-first search of the state space in N steps.

The ADA does not utalize caching, so parts of the state space may be explored repeatedly.

Additionally, in order for the ADA in [2] to generate the optimal attack step, the adversary’s

utility functions must follow a specified form. This form allows for the recursive combination

of the cost, detection, and payoff to satisfy Bellman’s Equation.

4.3 Performance of the Adversary Decision Algorithm

The time to complete the adversary decision algorithm corresponds directly to the number

of states that are explored. For typical models, the complexity can be hard to compute since

the number of enabled attacks is not known a priori. However, for a general model in which

all attack steps are enabled, and each attack step has a fixed number of outcomes, O, the

recursive algorithm in [2] visits |A||O|N states and is therefore exponential in the look-ahead.

4.3.1 Algorithm Comparison

The simplest method of executing the adversary decision algorithm is to use the depth-

first, recursive approach. That method leads to |A||O|N states being explored, as mentioned

above. An improvement is to use a graph-based approach of Algorithms 2 and 3, caching

20

intermediate valuations and reusing them if the same state is encountered again at the

same look-ahead level. A comparison of the depth-first exploration and the graph-based

exploration are presented in Figure 4.2(a) and 4.2(b) respectively.

In practice, we cache the cost, detection probability, and expected payoff of the sub-

graph for each state and look-ahead level pair rather than construct the entire graph and

iterate over it. This is the caching extension to Algorithms 2 and 3 outlined in the previous

section. The nature of Algorithms 2 and 3, as well as the addition of the caching technique,

significantly reduce the branching of the decision algorithm.

Because all intermediate values are cached, the number of states explored is bounded by

the look-ahead times the size of the state space (N ∗ 2|A||K||G|). That can still be very large;

however, because of the sequential nature of attacks, in typical models, the reachable state

space is significantly smaller than the potential state space.

4.3.2 Performance Data

In Table 4.1, we present full execution timings for the base implementation of the recursive

algorithm and when caching was used within Algorithms 2 and 3 with caching. Those

timings are generated from an easily extensible model.

The model consists of eight accesses, eight attack steps, and seven goals. One access is

designated as the initial access. Then, seven of the attack steps are set up in order, so

that they can only be performed sequentially. The eighth attack step is always enabled.

Additionally, each attack step has two outcomes, success and failure. The structure of the

model provides the exact number of states exlpored in the decision algorithm, since two

attack steps are always enabled, and each attack step has two outcomes. The number of

states explored is 4N , where N is the look-ahead.

The recursive algorithm scales poorly with respect to the look-ahead since it is exponential.

By caching within the algorithm, essentially converting the tree to a graph, we achieve

significant improvements. Most notably, the caching algorithm scales linearly with respect

to the look-ahead.

21

(a
)

D
ep

th
-F

ir
st

E
x
p

lo
ra

ti
o
n

(b
)

G
ra

p
h

-B
a
se

d
E

x
p

lo
ra

ti
o
n

F
ig

u
re

4.
2:

A
D

A
E

x
p
lo

ra
ti

on
w

it
h

a
L

o
ok

ah
ea

d
of

2

22

Table 4.1: Simulation Timing (in seconds)

Recursive Caching in
Look-ahead Algorithm Algorithms 2 & 3

1 0.87 1.12
2 1.71 2.59
3 4.79 5.23
4 17.80 8.96
5 69.12 13.89
6 289.81 19.78
7 1134.02 26.99
8 4303.11 34.63
9 18455.96 42.50

Applying theory from stochastic games in order to allow the adversary utility functions to

take on general forms and using a forward-backward algorithm augmented with caching to

improve performance are both significant accomplishments. However, without the optimality

ordering, there would be no way to combine the two. While the ordering does place some

restrictions on the adversary utility functions, they are not as strict as the previous optimality

requirements. By using the optimality ordering within the forward-backward algorithm

with caching, performance is significantly improved while placing as few restrictions on the

adversary profile as possible.

23

CHAPTER 5

SOLUTION METHODS

In this chapter, we identify solution methods to produce quantitative security metrics from

the combination of the attack execution graph and the adversary profile.

5.1 State-Space and Transition Matrix Generation

Exploring the reachable state-space offers an alternative to the on-the-fly adversary decision

and attack step outcome used during simulation. It also enables the creation of the transition

matrix, which is required for the numerical solution methods presented in Section 5.3. In this

section, we present the algorithm used for state-space generation and discuss the generation

of the transition matrix.

5.1.1 State-Space Generation

Let X̂ be the potential state space that contains all combinations of values of the Boolean

state variables and, consequently, has a cardinality of 2|R|·|K|·|G|. In ADVISE models, the

potential state space may be too large to be enumerated; however, for typical models, the

reachable state space X usually only contains a small subset of the states.

For the basic state-space generation algorithm, we use a data structure U to store state

descriptions and a data structure X to store state description plus the adversary decision

β(s). Then, Algorithm 4 presents a generic algorithm for state-space generation.

For finite state spaces, the algorithm terminates after computing the set of states and

the index of the attack step to be performed in the state. That information is sufficient to

characterize the complete stochastic process.

24

Algorithm 4 State Space Generation

1: U = {s0};
2: while U 6= ∅ do
3: remove s from U ;
4: ai = determine beta(s);
5: for all o ∈ Oi do
6: s′ = Ei(s, o);
7: if s′ /∈ X ∪ U ∪ {s} then
8: U = U ∪ {s′};
9: X = X ∪ {(s, ai)};

5.1.2 Transition Matrix Generation

After the state-space generation, X contains the selected attack steps together with the

transitions. Therefore, it contains all information necessary for the analysis steps. Let m

be the cardinality of the state space. We describe the underlying stochastic process now in

terms of vectors and matrices. The dimension of the vector is 1×m or m× 1, and the order

of the matrices is m×m.

Let P be the transition matrix of the embedded discrete-time Markov chain (DTMC) that

considers the state of the system when an attack steps ends. We have

P(s, s′) =
∑

o∈Oβ(s)

δ(Eβ(s)(s, o) = s′)Prβ(s)(s, o) s.t. δ(b) =

 1 b = true

0 b = false

Since P is usually not irreducible, the state space may be analyzed and reordered before

the matrix is generated. The analysis is done using an algorithm, such as Tarjan’s algorithm

[12], to detect strongly connected components in the graph. Then X can be decomposed into

X0, which is the set of transient states, and X1, . . . , XL, which are L absorbing, irreducible

subsets. As long as X0 is nonempty, we may generate P according to this decomposition.

25

In doing so, we obtain the following structure:

P =



P0,0 P0,1 · · · · · · P0,L

0 P1,1 0 · · · 0
... 0 P2,2 0

...
...

. 0

0 · · · · · · 0 PL,L


.

P0,0 is a sub-stochastic matrix for the subset X0, and

N0,0 = (I−P0,0)−1 =
∞∑
k=0

(P0,0)k

exists and is nonnegative [7]. Moreover, N0,0(s, s′) equals the mean number of visits to state

s′ before the set of transient states, X0, is left if the current state is s. s0 belongs to X0, and

we can assume that it is the first state in the set. Often P0,0 has an additional structure such

that N0,0 will not become a full matrix. However, this point will not be considered here.

Using standard arguments from absorbing Markov chains [7], we find that the probability

of entering subset Xl from the initial state equals

pel = e1N0,0P0,l I1 = n1∗P0,l I1,

where I1 is a column vector of 1 of appropriate length. Since we have a unique initial state s0,

only the first row of matrix N is required which results from the solution of n1∗(I−P0,0) = e1.

If X0 is empty, then the set of states is irreducible, and we can use matrix P as it is; we

assume that s0 is the first state. Thus, the initial vector is defined as e1, which is a row

vector in which the first element is 1 and all remaining elements are 0.

5.2 Simulation

The first method of analysis is simulation. Inherently, simulation explores a single path that

an adversary may take while attacking the system. The results of the single run are aggre-

26

gated over thousands of runs, so that the resulting mean result has statistical significance.

There are two methods for supplying the simulation loop with the adversary decision and

attack step outcome. The first method is to generate the values as needed. That is, for each

loop of the simulation, the adversary’s decision is recalculated, and an attack step outcome

is selected probabilistically. The second option is to generate the state transition matrix as

detailed in the previous section (Sec. 5.1), and use it to drive the simulation.

The on-the-fly approach may be used if the state-space is extremely large, and the transi-

tion matrix can not be generated due to memory limitations. There are methods to reduce

the number of adversary decision computations performed over the course of all of the simu-

lation runs. This will be discussed in detail in Section 5.6. Additionally, once the transition

matrix is generated, many metrics may be produced directly, as detailed in the following

section.

5.2.1 Simulation with As-Needed Adversary Decision Computations

A typical simulation loop consists of identifying enabled transitions, selecting one probabilis-

tically, and changing model state. An example ADVISE simulation algorithm is presented

in Algorithm 5. By including the adversary decision in the simulation loop (Line 6), we

require an optimization problem to be solved for each state transition. The inclusion of the

adversary decision poses a significant performance hurdle.

Algorithm 5 Simple As-Needed Simulation

1: r = 0;
2: while r < MaxRuns do
3: s = s0;
4: t = 0;
5: while t < τ do
6: ai = β(s);
7: o = O, O ∼ Pri(s);
8: t = t+ T , T ∼ Ti(s);
9: s = Ei(s, o);

The exponential adversary decision algorithm is executed for each state the adversary en-

ters, over many simulation iterations. However, the adversary’s decision is static with respect

27

to the state. By caching the decision associated with a state, as presented in Algorithm 6,

we avoid subsequent state-space exploration, and the complexity of the decision algorithm

is reduced from exploring attack paths to a simple lookup. The cache quickly returns the

adversary’s decision if the adversary revisits a state.

Algorithm 6 As-Needed Simulation with Caching

1: r = 0;
2: Q(s) = • ∀s ∈ X;
3: while r < MaxRuns do
4: s = s0;
5: t = 0;
6: while t < τ do
7: if Q(s) = • then
8: Q(s) = β(s);
9: ai = Q(s);

10: o = O, O ∼ Pri(s);
11: t = t+ T , T ∼ Ti(s);
12: s = Ei(s, o);
13: r = r + 1;

In addition, the cache can be used for more than a single simulation iteration. In order

to return accurate metrics within a specified confidence interval, a given experiment is run

many times. Since nothing in the underlying model changes between iterations, we can

continue to use the cache. Depending on the model, we can achieve a very high cache hit

rate after the first few simulation iterations, since only the attack outcomes are probabilistic.

The performance implications are discussed further in Section 5.6.

5.2.2 Simulation with the Transition Matrix

Using the transition matrix within the simulation loop to determine state transitions ensures

that the adversary decision must never be computed during any simulation run. However,

there are drawbacks. In the case of extremely rare events, states resulting from rare events

are explored in the state-space exploration and are therefore present in the transition matrix

despite their low probability of appearing during simulation. Since the accuracy of the

metrics is limited by the number of simulation runs, and the probabilistic nature of sampling

28

the attack step outcomes, the extra time to compute the adversary’s decision for a rare state

is wasted computation.

Reusing the transition matrix is the most efficient when simulation is not the only analysis

method being performed. There are metrics that dictate the use of other solution methods.

In the following section, we identify other numerical metrics that can be computed directly

from the transition matrix.

5.3 Numerical Solutions

In this section, we explore the use of numerical solution methods after generating the tran-

sition matrix. These metrics are formed by direct manipulation of the transition matrix.

We begin with infinite horizon metrics, highlighting both state-based and attack-specific

metrics, then we present various types of transient solution methods.

5.3.1 State-Based Metrics

Several example metrics have been defined in [2, Chapter 4.5]. We show some metrics that

can be computed using analytical techniques that work on the state space. We also define

several new metrics, which provide fresh insight.

The first class of metrics considers the adversary who achieves a goal or a set of goals.

These measures can be defined for states. Thus, the state space can be decomposed into

three subsets. Xa is the set of states in which the adversary has already achieved his or her

goal. Xm is the subset in which the adversary may achieve his or her goal in the future. I.e.,

there exists a path from each state in Xm to a state in Xa. Finally, Xn is the set of states

from which the adversary will never achieve his or her goal. I.e., from a state in Xn, no state

in Xa is reachable.

The three subsets can be computed with an extended algorithm for reachability analysis

using the directed graph defined by matrix P. Initially Xa contains all states where the

adversary already achieved his or her goal. All states s ∈ X that are not connected to any

s′ ∈ Xa are collected in Xn. Then all states s ∈ X \ {Xa ∪Xn} without a connection to a

29

state s′′ ∈ Xn are added to Xa since from those states the adversary will eventually reach

the goal. Xm consists of the remaining states that are neither in Xa nor in Xn.

If the initial state belongs to Xa or Xn, analysis is not necessary. In the former case,

the probability of reaching the required goals is 1, and the latter case, it is 0. To compute

the probability if s0 belongs to Xm, we make states in the sets Xa and Xn absorbing by

removing all outgoing transitions and setting the probability of remaining in the state to 1.

If we reorder the states according to the sets, P looks as follows:

P =


Pm,m Pm,a Pm,n

0 I 0

0 0 I

 .

The success probability corresponds to the absorption probability of the process in Xa, which

equals

psucc = e1

∞∑
k=0

(Pm,m)kPm,a I1 = e1(I−Pm,m)−1Pm,a I1.

Since all states in Xm are connected to states in Xa, the above inverse matrix exists. Again,

e1(I−Pm,m)−1 can be determined by solving a set of linear equations of order |Xm|.

Let Nm,m = (I−Pm,m)−1. Then Nm,m(s, s′) is the mean number of visits to state s′ before

a state from Xa ∪Xn is reached, under the condition that the current state is s ∈ Xm. To

integrate timing information, we define a row vector t with t(s) = E[Tβ(s)(s)]. Consequently,

M(s, s′) = Nm,m(s, s′) · t(s′) is the mean time spent in state s′ and tabs = e1M I1 is the mean

time to absorption. tabs is the mean time before the goal is achieved or it becomes clear that

it will not be achieved.

Time

To compute the time under the condition that the goal is eventually achieved, we have to

consider the conditional absorbing Markov chain (see [13]). Let pm,a = Pm,a I1 and define

u = (I−Pm,m)−1pm,a.

30

Then, u contains no 0 elements, since we have assumed that from every state in Xm a state

in Xa is reachable. Define U = diag(u), PC
m,m = U−1Pm,mU, and pCm,a = U−1pCm,a. Matrix

PC
m,a and vector pCm,a describe a new absorbing Markov chain with

NC
m,m = (I−PC

m,m)−1 = U−1Nm,mU

such that NC
m,m(s, s′) contains the main number of visits to state s′ under the condition

that the current state is s and absorption occurs in a state from Xa. Consequently, we can

use NC
m,m rather than Nm,m to compute the mean time to a successful attack by defining

MC(s, s′) = NC
m,m(s, s′) · t(s′) and tabsa = e1M

C I1 as the mean time of a successful attack

under the condition that the attack is successful.

Cost

The computation of cost-related measures is similar to the computation of mean times.

Thus, define

C(s, s′) = Nm,m(s, s′)Cβ(s)(s).

Then cabs = e1C I1 is the average cost before absorption, i.e., before the goal states have been

reached or become unreachable. The costs of a successful attack are cabsa = e1C
C I1, where

CC is built like C using NC
m,m rather than Nm,m.

Gain

Computation of the gain is again similar; the only difference arises from the gain’s association

with transitions rather than states. Thus, define

gm(s) =
∑
s′∈Xm

∑
(i,o):ai=β(s)∧s i,o−→ s′

Pri(s, o)Gi(s, o, s
′)

 .

Then ∑
s′∈Xm

Nm,m(s0, s
′)gm(s′)

31

is the average gain due to attack steps that do not leave Xm. To compute the average gain

until a state outside Xm is reached, the gain of the transition that leaves Xm must also be

considered. The probability of leaving Xm from state s ∈ Xm such that s′ ∈ Xa ∪Xn equals

Nm,m(s0, s)P(s, s′). That implies that we obtain gabs for the average gain until a state in

Xn ∪Xa is reached.

g′m(s′) =
∑

s′′∈Xa∪Xn

∑
(i,o):ai=β(s′)∧s′ i,o−→ s′′

Pri(s
′, o)Gi(s

′, o, s′′)



gabs =
∑
s′∈Xm

Nm,m(s0, s
′) (gm(s′) + g′m(s′))

Again, the conditional gain if a state from Xa is entered can be computed using NC
m,m in

the previous equations.

Detection

For the computation of the probability that an attack step is not detected, let F be an m×m

matrix defined as follows:

F(s, s′) =
∑

(i,o):ai=β(s)∧s i,o−→ s′

Pri(s, o)Fi(s, o).

Matrix F includes the probabilities that an attack step is performed and not detected. F

can be decomposed like P, and since F(s, s′) ≤ P(s, s′), the inverse matrix (I − Fm,m)−1

exists and

pndet = e1(I− Fm,m)−1Pm,a I1

is the probability that the adversary reaches a state in Xa without being detected.

32

5.3.2 Attack-Specific Metrics

Another class of metrics is related to the occurrence of specific attack steps or outcomes of

attack steps in a sequence of attacks. To determine these measures, we use the matrices P{i}

and P¬{i}.

Matrix P does not distinguish between different attack steps. To introduce such a dis-

tinction, we define P{i} as the matrix containing only transition probabilities according to

ai ∈ A.

P =
∑
ai∈A

P{i}.

Define P¬{i} = P − P{i} and p{i} = P{i} I1. Of course, P{i} and P¬{i} are structured like

P, but some of the non-zero sub-matrices in P may be zero in P{i} or P¬{i}. The notation

can be extended to sets of attack steps or pairs of attack steps and outcomes. E.g., P{(i,o),j}

captures all transitions according to attack step i with outcome o and attack step j with an

arbitrary outcome.

We overload notation slightly; from here on, we use P{i} for probabilities related to specific

attack steps as well as attack step outcome pairs, where the index (i, o) would be more

appropriate. If the state is irreducible and P{i} 6= 0, then the probability of performing

attack step i is 1. Otherwise, the probability of performing attack step i in a transient state

equals pai0 = 1− e1(I−P
¬{i}
0,0)−1

∑L
l=1 P

¬{i}
0,l I1, and the probability of performing attack step

i in Xl (l = 1, . . . , L) under the condition that it has not been performed in a state from

X0 equals 0 if P
{i}
l,l = 0 and equals pai0 = e1(I − P

¬{i}
0,0)−1P

¬{i}
0,l I1 otherwise, such that the

probability of performing attack step i is given by pai =
∑L

l=0 pa
i
l. The computations can be

extended to sequences of attack steps and attack step outcome pairs. E.g., the probability

of performing attack step i before j is given by

e1

∞∑
k=0

(P¬{i,j})kP{i}
∞∑
k=0

(P¬{j})kP{j} I1.

If all states in matrices P¬{i,j} or P¬{j} are transient, then the infinite matrix sums can be

replaced by the inverse matrices (I−P¬{i,j})−1 and (I−P¬{j})−1 if appropriate.

33

In stationary analysis, one must compute the stationary distribution inside each irreducible

subset; it is then multiplied by the probability of reaching the subset from the initial state,

i.e., by probability pel. The embedded stationary distribution of the states in subset l is

given by the solution of

pl = plPl,l and pl I1 = pel.

The embedded stationary distribution does not consider the different sojourn times due to

different values for T (s). The stationary vector can be achieved by normalizing the values

of the embedded stationary distribution according to the sojourn times for the states in the

irreducible subset. The components of the stationary vector π are computed as

πl(s) =
pl(s)t(s)∑

s′∈Xl pl(s
′)t(s′)

.

The frequency of attack step i is then given by

fi =
L∑
l=1

∑
s∈Xl

πl(s)
∑

s′∈Xl P
{i}(s, s′)

T (s)
.

5.3.3 Types of Transient Analysis

The metrics computed up to now are all related to an infinite time horizon on which the

time might be stopped when a specific condition is observed, i.e., a state has been reached

or an attack has occurred. The situation is more complex if the system should be analyzed

for a finite time horizon τ . In that case, transient analysis has to be performed. We briefly

consider five different approaches, all of which have specific advantages and disadvantages.

First, if P can be reordered to an upper triangular matrix, then the system is completely

acyclic. In that case, the behavior of the system is described by a finite set of paths, and

a path-based analysis can be performed. Each path starts in the initial state s0 and ends

after finitely many steps in an absorbing state. For a path, the path probability and the

probability of being in a specific state at time τ can be computed. However, computation

of the latter requires the computation of convolutions of the distributions Ti along the path,

34

which is cumbersome for longer paths.

The second approach is to substitute attack step timing distributions by geometric distri-

butions with the same mean. Define 0 < ∆ ≤ mins∈X(Tβ(s)(s)/(1 − P(s, s))) as the basic

time step of the new discrete-time Markov chain. Then, a new transition matrix P is defined

as

(1−P(s, s)) = (1−P(s, s))
∆

Tβ(s)(s)
,

which implies 0 ≤ P(s, s) < 1. Then define

P(s, s′) = P(s, s′)
∆

Tβ(s)(s)
for s 6= s′,

which implies

∑
s′∈X

P(s, s′) =
∑

s′∈X\{s}

P(s, s′) + P(s, s)

= 1− (1−P(s, s))
∆

Tβ(s)(s)
+ (1−P(s, s))

∆

Tβ(s)(s)
= 1.

DTMC analysis can be performed using matrix P, in which every step has a duration of ∆

such that the distribution of the DTMC at discrete time points k ·∆ can be computed.

Similarly, one can use continuous-time Markov chains (CTMCs) for analysis. In that case,

each sojourn time is replaced by an exponential distribution with rate µs = (E[Tβ(s)(s)])
−1.

The resulting model is a CTMC on the same state space X, and standard CTMC analysis

can be applied.

The approach may be extended through the representation of each sojourn time Tβ(s)(s)

as a PH distribution. E.g., fitting the first two moments results in a PH distribution with

2 phases, if the coefficient of variation is not too small. In that case, the state space of the

CTMC is enlarged, since the phase of the distribution has to be considered in addition to

the state from X. If each sojourn time is replaced with a PH distribution with 2 phases, the

size of the state space doubles. Extended CTMC analysis can then use standard techniques

for the transient analysis of CTMCs.

The final analysis method is simulation, which can easily be performed using matrix P

35

and Tβ(s)(s) for all s ∈ X. This method has been discussed in detail in Section 5.2.2. This

method is more efficient than traditional simulation since the values for β(s) are available,

and do not need to be recomputed during.

5.4 Other Analyses

Other types of analysis may be possible if the attack execution graph conforms to certain

assumptions. In this section, we highlight some of the analysis techniques used in the related

work that are applicable to an attack execution graph. The solution methods presented up

to this point are general and apply to any attack execution graph and adversary profile

combination.

5.4.1 Exponential Time

If the AEG is exponential in time, then the mean effort to failure (METF) method discussed

in [4] is applicable. Since calculating the METF requires analyzing the underlying Markov

chain, the steps to explore the reachable state-space and generate the transition matrix must

be completed.

Once the transition probability matrix is available, metrics such as mean up time, mean

down time, mean cycle time, mean time to first failure, and mean time to failure are easily

computable using the techniques in [14].

5.4.2 Attack Step Interchangeability

In exploring the related work, we recognized that the assumption of monotonicity was often

made during analysis. The monotonic property is not invoked in order to minimize the

size of the graph by eliminating loops or by minimizing the reachable state-space. Rather,

it ensures that the order of the attack steps does not affect the analysis. So long as the

ordering of attack steps is relevant, the analysis remains exponential in complexity.

In order for the two attack steps shown in Figure 5.1, a1 and a2, to be interchangeable,

36

s0

s1

s2

s¢

1

a1

a2

a2

a1

Figure 5.1: The Interchangeability of Attack Steps

they must conform to the following two requirements, which depend on the assumption that

both attack steps are enabled from some starting state s0. That is, B1(s0) = True and

B2(s0) = True. The following conditions must hold regardless of that initial state.

Then, each attack step must remain enabled regardless of the outcome of the other attack

step.

B2(E1(s0, o1)) = True ∀o1 ∈ Oa1

B1(E2(s0, o2)) = True ∀o2 ∈ Oa2

(5.1)

And finally, the resulting state must be the same regardless of the ordering of the attack

steps for all possible outcome combinations.

E2(E1(s0, o1), o2) = E1(E2(s0, o2), o1)

∀o1 ∈ Oa1 ∀o2 ∈ Oa2

(5.2)

Equation 5.1 implies that the AEG must be static with respect to state transitions. If the

AEG is not static w.r.t. transitions, then Eq. 5.1 does not hold for all initial states s0.

If an AEG is static w.r.t. transitions and has monotonic enabling conditions and out-

37

comes, then both Equations 5.1 and 5.2 are satisfied. This means that once an attack step

is enabled, regardless of the additions to the state, the attack step remains enabled. Addi-

tionally, the outcomes of attack steps only add to the state. Together, these imply that once

an attack step is enabled, it is always enabled.

The same holds if simple outcomes are substituted for monotonic outcomes, and if simple

enabling conditions are substituted for monotonic enabling conditions since the “simple”

properties imply the corresponding monotonic properties.

Once the interchangeability of attack steps is ensured, we may apply the reachability al-

gorithms from [8] and [15] to the AEG. While these algorithms only identify if a goal is

reachable from the starting state, they may be augmented to use additional AEG informa-

tion. For instance, one may analyze the cost to a goal. However, the aggregation function,

in this case the sum of the costs, must also be proven to be independent of attack step

ordering.

5.5 Example Metrics

In this section, we present example metrics for two models; a DMZ and a non-DMZ model.

In order to validate our method, we compare these metrics to the metrics presented for the

same models in [1]. We also present new metrics to provide further insight.

Each of these models represents a SCADA network. The two models demonstrate the

effects of using a demilitarized zone (DMZ) between networks. One model allows direct

communication between the corporate and control networks (non-DMZ), and the other sep-

arates the two with a DMZ. The non-DMZ model contains 19 state variables, while the DMZ

model contains 20 state variables. Note that the adversaries we define for analysis typically

have a look-ahead of 3 or 4 steps. The models and adversaries are fully documented in

Appendix A.1.

First, we consider the time that the adversary takes to reach a goal. This is the metric

that was reported in [1] using simulation. Table 5.1 contains the resulting metric mean and

95% confidence interval range from a simulation over 500 runs as well as the result of the

numerical analysis. Note that the simulation results are imprecise when compared to the

38

results from numerical analysis. The precision and the short computation time are significant

advantages of the numerical analysis. Performance comparisons are presented in Section 5.6.

Table 5.1: Time to Goal (in minutes)

Simulation Numerical
Adversary Non-DMZ DMZ Non-DMZ DMZ

Nation State 116.3 ± 3.58 209.8 ± 5.2 114.3 209.3
Lone Hacker 116.3 ± 3.58 - 114.3 -
Terrorist Org 348.9 ± 13.8 353.1 ± 20.1 370. 370.

Employee 15.04 ± 0.48 - 15.3 -
Sys Admin 15.72 ± 0.76 15.2 ± 1.5 15.29 15.29

Next, we present two new metrics: the probability of detecting an attack, and the fre-

quency of specific attacks within a sequence of attacks. The frequency of an attack step is

explored in [2], but not in [1]. In order to enable calculation of the frequency of an attack

step during simulation, a reward event must be fired each time an attack step is selected.

If we had comparison values, we would likely see the same imprecision in the results from

simulation as we did for the “time to goal” metric. It would be due simply to the limitations

of simulation as a solution method.

Table 5.2: Frequency of Attack Steps

Adversary Non-DMZ DMZ

Nation State
Hack User Acct. 87.5% Hack User Acct. 57.3%
Access Data 12.5% Hack Data Server 35.8%

Access Data 6.8%

Lone Hacker
Hack User Acct. 87.5% Do Nothing 100%
Access Data 12.5%

Terrorist Org
Hack User Acct. 32.4% Hack User Acct. 32.4%
Elevate Privilege 13.5% Elevate Privilege 13.5%
Hack Ctrl. Server 54.0% Hack Ctrl. Server 54.0%

Employee
User Login 6.5% Do Nothing 100%
Access Data 93.5%

Sys Admin
Admin Login 6.5% Admin Login 6.5%
Access Data 93.5% Access Data 93.5%

Table 5.2 reports the percentage of time spent attempting specific attack steps. Here,

it is once again notable that adding the DMZ to the system deters both the Lone Hacker

and the Employee adversaries from attempting any attack whatsoever. Also, the Nation

39

State adversary clearly changes its route to the goal. In addition to tracing the paths of

adversaries through the system, the frequency of attack steps is also useful for determining

the effects of deterrent mechanisms on the time an adversary spends on a given attack.

Table 5.3: Probability of Detection

Adversary Non-DMZ DMZ
Nation State 0.0784516 0.220143
Lone Hacker 0.0784516 -
Terrorist Org 0.478188 0.478188

Employee 0.0241125 -
Sys Admin 0.0241125 0.0635423

Finally, we present the probability of detection in Table 5.3. This metric is simple to

compute using numerical analysis; to produce it via simulation, however, modification of the

main simulation loop would be required. We note that the Terrorist Organization attacker

is much more likely to be detected than any other attacker. Furthermore, by adding the

demilitarized zone to the network, we triple the probability of detecting the Nation State

and System Administrator adversaries.

5.6 Performance Comparison

While the types of numerical analysis we demonstrate can significantly reduce the analysis

runtime when compared to the simulation approach used in [1] and [2], they require full

exploration of the reachable state space. In this section, we present timing measurements to

assess the scalability of the state-space generation algorithm and the attack step selection

algorithm.

First, we present an example model that scales easily in both the state space and the

reachable state space. The attack execution graph for this “gatekeeper model” is shown in

Figure 5.2. The AEG consists of a single initial state variable that enables the entire row of

attack steps. The successful outcome for each attack step captures the corresponding state

variable in the row below. One final attack step is enabled by possessing any of the state

variables in the state variable row, and a successful outcome results in achieving the goal.

40

The gatekeeper model is fully documented in Appendix A.2.

SV

Attack Attack Attack

SV SV SV

Attack

Goal

Figure 5.2: Gatekeeper Model

We took timing measurements while varying two factors in the model. One was the number

of attack step and state variable node pairs in the center rows of the AEG. One node pair is

circled in the figure for clarity. The other factor was the look-ahead of the adversary in the

adversary profile. The size of the state-space is 2(N+2), where N is the number of nodes in

the AEG. More importantly, the complexity of the determine beta function is on the order

of O((2N)L), where L represents the look-ahead. For each configuration, we measured the

overall time spent to generate the state space. The results are shown in Table 5.4.

The time to generate the state space followed the general exponential formula expressed

41

Table 5.4: State-Space Generation Timing (in seconds)

Look-ahead 5 Nodes 10 Nodes 20 Nodes 40 Nodes
3 0.002 0.036 0.513 15.16
4 0.022 0.577 16.128 1003
5 0.174 8.885 569.98 -
6 1.336 149.20 - -
7 10.131 - - -

earlier in the paper. The time increased significantly as the look-ahead and the number

of available attack steps increased. Some configurations took too long to compute within

reasonable bounds.

However, those results were generated from a model in which the reachable state space

was almost as large as the overall state space. In typical models, that would not be the

case. There is an inherent ordering to attack steps that prevents the reachable state space

from being anywhere near the size of the full state space. In order to demonstrate that, we

repeated the timing experiments on the two models used in Section 5.5 and in [1].

Table 5.5: Simulation and Numerical Solution Timing (in seconds)

Simulation Numerical
Adversary Non-DMZ DMZ Non-DMZ DMZ

Nation State 121.94 74.99 0.009 0.004
Lone Hacker 123.17 5.94 0.008 0.001
Terrorist Org 40.63 18.90 0.017 0.005

Employee 6.58 5.09 0.002 0.001
Sys Admin 75.10 55.65 0.021 0.010

Table 5.5 contains timing measurements for both simulation and state-space generation

of the two typical models. The numerical solution techniques significantly outperform the

simulations. That is primarily due to the optimization of computing determine beta by

using a graph-based approach.

In comparison to the state-space generation times of our Gatekeeper model, real-world

models with the same number of state variables take considerably less time to complete.

First, we note that the size of the reachable state space is very small compared to the

size of the full state space. Also, although the DMZ model has one more state variable,

its reachable state space is smaller than that of the non-DMZ model. It shows that the

42

structure of the model has a significant impact on the timing. And, most importantly, the

state-space generation completes quickly for typical models.

Simulation was the only method available to solve ADVISE models. In this chapter, we

improved the performance of the simulator by introducing a caching technique. We also

introduced new solution methods that require state space and transition probability matrix

generation. Those solution methods enable new quantitative security metrics, such as the

mean cost to achieve a goal. The state space and transition probability matrix generation

complete quickly, and solving for metrics using this approach is faster than the origional

simulation method. ADVISE models can be quickly analyzed using a variety of techniques.

43

CHAPTER 6

CONCLUSION

We have extended the ADVISE method by generalizing the adversary decision algorithm,

introducing new solution methods, and improving performance.

By generalizing the adversary decision algorithm, we remove the assumptions previously

placed on system adversaries. More complex adversaries may be modeled since there are

no restrictions placed on the adversary’s utility functions. This enables adversary decisions

based on thresholds such as budgets, time-dependent valuations, and any other arbitrary

function.

The solution methods we introduce enable ADVISE to produce insightful metrics. Simula-

tion is inherently a transient analysis. We have enabled the computation of both steady-state

and transient metrics by generating the state-space and transition probability matrix. We

also introduce alternative analyses that may be enabled if the model satisfies specific as-

sumptions.

Finally, performance optimizations to the adversary decision algorithm and the simulation

algorithm allow ADVISE to produce accurate metrics quickly and efficiently. We achieve

this by adapting the adversary decision to use a graph-based rather than a tree-based algo-

rithm. We also improve simulation by caching the adversary’s decision over the course of

the simulation.

These extensions to ADVISE allow extensive modeling of system security and adversary

preferences, and enable the accelerated computation of relevant quantitative security metrics.

44

APPENDIX A

MODEL DOCUMENTATION

A.1 SCADA Network Models

There are two SCADA network models, the Non-DMZ model and the DMZ model. There

are only slight differences between the models, and therefore they are documented together.

Table A.1 documents the state-variables in both models. Any state-variable without ad-

ditional marking is included in both models, while a state-variable with an asterisk(*) is

unique to the Non-DMZ model and a state-variable with a dagger(†) is unique to the DMZ

model. The adversary profile is documented in Table A.2. The AP is common to both

models. Finally, the attack steps are presented in Tables A.3 and A.4. Table A.3 contains

all of the attack steps which are common to both models, while Table A.4 documents the

model-unique attack steps using the same labels as above.

A.2 Gatekeeper Model

The gatekeeper model depends on two variables: the look-ahead N and the number of attack

step-access nodes M. Table A.5 documents the gatekeeper model.

45

T
ab

le
A

.1
:

S
C

A
D

A
:

N
on

-D
M

Z
*
an

d
D

M
Z
† :

A
E

G
V

ar
ia

b
le

s

A
cc

es
se

s
G

oa
ls

K
n
ow

le
d
ge

S
k
il
ls

A
p
p
li
ca

ti
on

S
er

ve
rA

cc
es

s
C

or
ru

p
tD

at
a

V
P

N
P

as
sw

or
d

V
P

N
H

ac
k
S
k
il
l

P
h
y
si

ca
lW

or
k
st

at
io

n
A

cc
es

s
R

u
n
A

u
th

or
iz

ed
P

L
C

C
o
d
e

H
M

IP
as

sw
or

d
H

ac
k
S
k
il
l

H
M

IU
se

rA
cc

es
s

R
u
n
U

n
au

th
or

iz
ed

P
L

C
C

o
d
e

A
d
m

in
W

or
k
st

at
io

n
P

as
sw

or
d

A
d
m

in
W

or
k
st

at
io

n
A

cc
es

s
R

u
n
U

n
au

th
or

iz
ed

C
on

tr
ol

S
er

ve
rC

o
d
e

U
se

rW
or

k
st

at
io

n
P

as
sw

or
d

In
te

rn
et

A
cc

es
s

A
cc

es
sD

at
a

D
at

aH
is

to
ri

an
A

cc
es

s
H

M
IP

h
y
si

ca
lA

cc
es

s
U

se
rW

or
k
st

at
io

n
A

cc
es

s
D

at
aS

er
ve

rA
cc

es
s†

46

T
ab

le
A

.2
:

S
C

A
D

A
:

N
on

-D
M

Z
an

d
D

M
Z

:
A

d
ve

rs
ar

y
P

ro
fi
le

s

(a
)

A
d

ve
rs

a
ry

S
k
il

l
V

a
lu

es

N
at

io
n

S
ta

te
H

ac
ke

r
H

os
ti

le
O

rg
.

E
m

p
lo

ye
e

S
y
s

A
d
m

in
V

P
N

H
ac

k
S
k
il
l

90
0

90
0

90
0

20
0

60
0

H
ac

k
S
k
il
l

90
0

90
0

90
0

20
0

60
0

(b
)

A
d

ve
rs

a
ry

G
o
a
l

P
ay

o
ff

N
at

io
n

S
ta

te
H

ac
ke

r
H

os
ti

le
O

rg
.

E
m

p
lo

ye
e

S
y
s

A
d
m

in
A

cc
es

sD
at

a
40

0
40

0
40

0
40

0
R

u
n
A

u
th

or
iz

ed
P

L
C

C
o
d
e

10
0

10
0

10
0

10
0

10
0

R
u
n
U

n
au

th
or

iz
ed

C
on

tr
ol

S
er

ve
rC

o
d
e

50
0

50
0

50
0

50
0

50
0

C
or

ru
p
tD

at
a

20
0

20
0

20
0

20
0

20
0

R
u
n
U

n
au

th
or

iz
ed

P
L

C
C

o
d
e

30
0

30
0

30
0

30
0

30
0

R
u
n
U

n
au

th
or

iz
ed

C
on

tr
ol

S
er

ve
rC

o
d
e

10
00

(c
)

A
d

ve
rs

a
ry

W
ei

g
h
ts

a
n

d
In

it
ia

l
C

o
n

d
it

io
n

s

L
o
ok

-a
h
ea

d
w
C

w
F

w
P

In
it

ia
l

A
cc

es
se

s
In

it
ia

l
K

n
ow

le
d
ge

N
at

io
n

S
ta

te
4

0.
01

0.
59

0.
4

In
te

rn
et

A
cc

es
s

-
H

ac
ke

r
4

0.
2

0.
4

0.
4

In
te

rn
et

A
cc

es
s

-
H

os
ti

le
O

rg
.

4
0.

05
0.

15
0.

8
In

te
rn

et
A

cc
es

s
-

E
m

p
lo

ye
e

4
0.

4
0.

1
0.

5
In

te
rn

et
A

cc
es

s
V

P
N

P
as

sw
or

d
P

h
y
si

ca
lW

or
k
st

at
io

n
A

cc
es

s
U

se
rW

or
k
st

at
io

n
P

as
sw

or
d

S
y
s

A
d
m

in
4

0.
4

0.
1

0.
5

In
te

rn
et

A
cc

es
s

V
P

N
P

as
sw

or
d

P
h
y
si

ca
lW

or
k
st

at
io

n
A

cc
es

s
U

se
rW

or
k
st

at
io

n
P

as
sw

or
d

A
d
m

in
W

or
k
st

at
io

n
P

as
sw

or
d

H
M

IP
as

sw
or

d

47

T
ab

le
A

.3
:

S
C

A
D

A
A

tt
ac

k
S
te

p
s

P
ar

t
1:

C
om

b
in

ed
N

on
-D

M
Z

an
d

D
M

Z

A
tt

ac
k

S
te

p
N

am
e

P
re

co
n
d
it

io
n

C
os

t
T

im
e

O
u
tc

om
es

P
ro

b
ab

il
it

y
D

et
ec

ti
on

P
ro

b
.

E
ff

ec
ts

A
d
m

in
W

or
k
st

at
io

n
L

o
ca

lL
og

in
((

!A
d
m

in
W

or
k
st

at
io

n
A

cc
es

s
)

&
&

P
h
y
si

ca
lW

or
k
-

st
at

io
n
A

cc
es

s
&

&
A

d
m

in
W

or
k
st

at
io

n
P

as
sw

or
d
)

1
1

S
u
cc

es
s

1
0.

05
A

d
m

in
W

or
k
st

at
io

n
A

cc
es

s

C
h
an

ge
P

L
C

In
st

ru
ct

io
n
sf

ro
m

C
on

tr
ol

S
er

ve
r

((
!R

u
n
A

u
th

or
iz

ed
P

L
C

C
o
d
e)

&
&

R
u
n
U

n
au

th
o-

ri
ze

d
C

on
tr

ol
S
er

ve
rC

o
d
e)

20
20

S
u
cc

es
s

.9
.5

R
u
n
A

u
th

or
iz

ed
P

L
C

C
o
d
e

F
ai

lu
re

0.
1

0
C

or
ru

p
tD

at
aH

is
to

ri
an

((
!C

or
ru

p
tD

at
a)

&
&

(A
d
m

in
W

or
k
st

at
io

n
A

cc
es

s
‖

D
at

aH
is

to
ri

an
A

cc
es

s)
)

20
20

S
u
cc

es
s

.8
0.

5
C

or
ru

p
tD

at
a

F
ai

lu
re

0.
2

0
D

oN
ot

h
in

g
0

1
O

u
tc

om
e

1
1

0
E

sc
al

at
eN

et
w

or
k
P

ri
v
il
eg

e
((

!A
d
m

in
W

or
k
st

at
io

n
A

cc
es

s)
&

&
U

se
rW

or
k
st

a-
ti

on
A

cc
es

s
&

&
(H

ac
k
S
k
il
l
>

50
0)

)
30

30
S
u
cc

es
s

0.
6

0.
25

A
d
m

in
W

or
k
st

at
io

n
A

cc
es

s

F
ai

lu
re

0.
4

0
F

or
w

ar
d
U

n
au

th
or

iz
ed

P
L

C
C

o
d
e

((
!R

u
n
U

n
au

th
or

iz
ed

P
L

C
C

o
d
e)

&
&

R
u
n
U

n
au

th
o-

ri
ze

d
C

on
tr

ol
S
er

ve
rC

o
d
e)

45
90

S
u
cc

es
s

0.
5

.8
5

R
u
n
U

n
au

th
or

iz
ed

P
L

C
C

o
d
e

F
ai

lu
re

0.
5

0
H

ac
k
C

on
tr

ol
S
er

ve
rf

ro
m

A
d
m

in
((

!R
u
n
U

n
au

th
or

iz
ed

C
on

tr
ol

S
er

ve
rC

o
d
e)

&
&

(H
ac

k
S
k
il
l
>

50
0)

&
&

A
d
m

in
W

or
k
st

at
io

n
A

cc
es

s)
60

15
0

S
u
cc

es
s

0.
75

0.
05

R
u
n
U

n
au

th
or

iz
ed

C
on

tr
ol

S
er

ve
rC

o
d
e

F
ai

lu
re

0.
25

0
H

ac
k
C

on
tr

ol
S
er

ve
rf

ro
m

H
M

I
((

!R
u
n
U

n
au

th
or

iz
ed

C
on

tr
ol

S
er

ve
rC

o
d
e)

&
&

(H
ac

k
S
k
il
l
>

50
0)

&
&

H
M

IU
se

rA
cc

es
s)

60
90

S
u
cc

es
s

.6
5

0.
05

R
u
n
U

n
au

th
or

iz
ed

C
on

tr
ol

S
er

ve
rC

o
d
e

F
ai

lu
re

0.
35

0
H

ac
k
U

se
rW

or
k
st

at
io

n
((

!U
se

rW
or

k
st

at
io

n
A

cc
es

s)
&

&
(H

ac
k
S
k
il
l
>

50
0)

&
&

(A
p
p
li
ca

ti
on

S
er

ve
rA

cc
es

s
‖

In
te

rn
et

A
cc

es
s)

)
60

60
S
u
cc

es
s

0.
5

0.
05

U
se

rW
or

k
st

at
io

n
A

cc
es

s

F
ai

lu
re

0.
5

0
H

M
IL

og
in

((
!H

M
IU

se
rA

cc
es

s)
&

&
H

M
IP

h
y
si

ca
lA

cc
es

s
&

&
H

M
IP

as
sw

or
d
)

1
1

S
u
cc

es
s

1
0.

01
H

M
IU

se
rA

cc
es

s

O
b
ta

in
H

M
IP

h
y
si

ca
lA

cc
es

s
((

!H
M

IP
h
y
si

ca
lA

cc
es

s)
&

&
P

h
y
si

ca
lW

or
k
st

a-
ti

on
A

cc
es

s)
10

10
S
u
cc

es
s

0.
7

0
H

M
IP

h
y
si

ca
lA

cc
es

s

F
ai

lu
re

0.
3

1
R

ep
or

tF
al

se
D

at
aU

p
st

re
am

((
!C

or
ru

p
tD

at
a)

&
&

R
u
n
U

n
au

th
or

iz
ed

C
on

-
tr

ol
S
er

ve
rC

o
d
e)

20
20

S
u
cc

es
s

0.
85

0.
1

C
or

ru
p
tD

at
a

F
ai

lu
re

0.
15

0
U

se
rW

or
k
st

at
io

n
L

o
ca

lL
og

in
((

!U
se

rW
or

k
st

at
io

n
A

cc
es

s)
&

&
U

se
rW

or
k
st

at
io

n
-

P
as

sw
or

d
&

&
P

h
y
si

ca
lW

or
k
st

at
io

n
A

cc
es

s)
1

1
S
u
cc

es
s

1
0.

02
U

se
rW

or
k
st

at
io

n
A

cc
es

s

C
h
an

ge
P

L
C

In
st

ru
ct

io
n
sf

ro
m

H
M

I
((

!R
u
n
A

u
th

or
iz

ed
P

L
C

C
o
d
e)

&
&

H
M

IU
se

rA
cc

es
s)

20
20

S
u
cc

es
s

0.
95

0.
5

R
u
n
A

u
th

or
iz

ed
P

L
C

C
o
d
e

F
ai

lu
re

0.
05

0
U

se
rW

or
k
st

at
io

n
V

P
N

L
og

in
((

!U
se

rW
or

k
st

at
io

n
A

cc
es

s)
&

&
In

te
rn

et
A

cc
es

s
&

&
V

P
N

P
as

sw
or

d
)

1
1

S
u
cc

es
s

1
0.

01
U

se
rW

or
k
st

at
io

n
A

cc
es

s

V
P

N
H

ac
k

((
!U

se
rW

or
k
st

at
io

n
A

cc
es

s)
&

&
In

te
rn

et
A

cc
es

s
&

&
(V

P
N

H
ac

k
S
k
il
l
>

50
0)

)
30

30
S
u
cc

es
s

0.
3

0.
02

U
se

rW
or

k
st

at
io

n
A

cc
es

s

F
ai

lu
re

0.
7

0

48

T
ab

le
A

.4
:

S
C

A
D

A
A

tt
ac

k
S
te

p
s

P
ar

t
2:

U
n
iq

u
e

N
on

-D
M

Z
*
an

d
D

M
Z
†

A
tt

ac
k

S
te

p
N

am
e

P
re

co
n

d
it

io
n

C
os

t
T

im
e

O
u

tc
om

es
P

ro
b

ab
il

it
y

D
et

ec
ti

on
P

ro
b

.
E

ff
ec

ts

A
cc

es
sD

at
aH

is
to

ri
an

*
((

!A
cc

es
sD

at
a)

&
&

(U
se

rW
or

k
st

at
io

n
A

cc
es

s
‖

D
at

aH
is

to
ri

an
A

cc
es

s
‖

A
d

m
in

W
or

k
st

at
io

n
A

cc
es

s
‖

A
p

p
li

ca
ti

on
S

er
ve

rA
cc

es
s)

)

10
10

S
u

cc
es

s
.7

0.
01

A
cc

es
sD

at
a

F
ai

lu
re

0.
3

0
A

cc
es

sD
at

aH
is

to
ri

an
†

((
!A

cc
es

sD
at

a)
&

&
D

at
aH

is
to

ri
an

A
cc

es
s)

10
10

S
u

cc
es

s
.9

5
0.

01
A

cc
es

sD
at

a
F

ai
lu

re
0.

05
0

A
cc

es
sD

at
aS

er
ve

r†
((

!A
cc

es
sD

at
a)

&
&

(A
d

m
in

W
or

k
st

at
io

n
A

cc
es

s
‖

D
at

aS
er

ve
rA

cc
es

s
‖

A
p

p
li

ca
ti

on
S

er
ve

rA
cc

es
s)

)
10

10
S

u
cc

es
s

0.
7

0.
01

A
cc

es
sD

at
a

F
ai

lu
re

0.
3

0

H
ac

k
A

p
p

li
ca

ti
on

S
er

ve
r*

((
!A

p
p

li
ca

ti
on

S
er

ve
rA

cc
es

s)
&

&
(H

ac
k
S

k
il

l
>

50
0)

&
&

(U
se

rW
or

k
st

at
io

n
A

cc
es

s
‖

In
te

rn
et

A
cc

es
s
‖

D
at

aH
is

to
ri

an
A

cc
es

s)
)

60
90

S
u

cc
es

s
0.

3
0.

35
A

p
p

li
ca

ti
on

S
er

ve
rA

cc
es

s

F
ai

lu
re

0.
7

0
H

ac
k
A

p
p

li
ca

ti
on

S
er

ve
r†

((
!A

p
p

li
ca

ti
on

S
er

ve
rA

cc
es

s)
&

&
(H

ac
k
S

k
il

l
>

50
0)

&
&

(U
se

rW
or

k
st

at
io

n
A

cc
es

s
‖

In
te

rn
et

A
cc

es
s)

)
60

90
S

u
cc

es
s

0.
3

0.
35

A
p

p
li

ca
ti

on
S

er
ve

rA
cc

es
s

F
ai

lu
re

0.
7

0

H
ac

k
D

at
aH

is
to

ri
an

*
((

!D
at

aH
is

to
ri

an
A

cc
es

s)
&

&
(H

ac
k
S

k
il

l
>

50
0)

&
&

(I
n
te

rn
et

A
cc

es
s
‖

U
se

rW
or

k
st

at
io

n
A

cc
es

s
‖

A
p

p
li

ca
ti

on
S

er
ve

rA
cc

es
s)

)

60
60

S
u

cc
es

s
0.

1
0.

5
D

at
aH

is
to

ri
an

A
cc

es
s

F
ai

lu
re

0.
9

0
H

ac
k
D

at
aH

is
to

ri
an
†

((
!D

at
aH

is
to

ri
an

A
cc

es
s)

&
&

(H
ac

k
S

k
il

l
>

50
0)

&
&

D
at

aS
er

ve
rA

cc
es

s)
60

60
S

u
cc

es
s

0.
7

0.
5

D
at

aH
is

to
ri

an
A

cc
es

s

F
ai

lu
re

0.
3

0
H

ac
k
D

at
aS

er
ve

r†
((

!D
at

aS
er

ve
rA

cc
es

s)
&

&
(H

ac
k
S

k
il

l
>

50
0)

&
&

(A
p

p
li

ca
ti

on
S

er
ve

rA
cc

es
s
‖

U
se

rW
or

k
st

at
io

n
A

c-
ce

ss
‖

A
d

m
in

W
or

k
st

at
io

n
A

cc
es

s)
)

60
60

S
u

cc
es

s
.8

0.
1

D
at

aS
er

ve
rA

cc
es

s

F
ai

lu
re

0.
2

0

49

T
ab

le
A

.5
:

G
at

ek
ee

p
er

M
o
d
el

(a
)

A
E

G
V

a
ri

a
b

le
s

A
cc

es
se

s
G

oa
ls

K
n
ow

le
d
ge

S
k
il
ls

In
it

ia
lA

cc
es

s
G

at
eG

oa
l

-
-

A
cc

es
s1

. . .
A

cc
es

sM
(b

)
A

d
ve

rs
a
ry

P
ro

fi
le

L
o
ok

-a
h
ea

d
w
C

w
F

w
P

In
it

ia
l

A
cc

es
se

s
G

oa
ls

V
al

u
e

In
it

ia
l

K
n
ow

le
d
ge

S
k
il
ls

V
al

u
e

N
0

0
1

In
it

ia
lA

cc
es

s
G

at
eG

oa
l

10
00

-
-

-

50

REFERENCES

[1] E. A. LeMay, M. D. Ford, K. Keefe, W. H. Sanders, and C. Muehreke, “Model-based
security metrics using adversary view security evaluation (advise),” in Quantitative
Evaluation of Systems (QEST). IEEE, 2011, pp. 191–200.

[2] E. A. LeMay, “Adversary-driven state-based system security evaluation,” Ph.D. disser-
tation, University of Illinois at Urbana-Champaign, 2011.

[3] M. Dacier and Y. Deswarte, “Privilege graph: an extension to the typed access matrix
model,” Computer SecurityESORICS 94, pp. 319–334, 1994.

[4] M. Dacier, Y. Deswarte, and M. Kaâniche, “Quantitative assessment of operational
security: Models and tools,” LAAS Research Report, vol. 96493, p. 5, 1996.

[5] R. Ortalo, Y. Deswarte, and M. Kaâniche, “Experimenting with quantitative evaluation
tools for monitoring operational security,” Software Engineering, IEEE Transactions on,
vol. 25, no. 5, pp. 633–650, 1999.

[6] J. Peterson, Petri Net Theory and the Modeling of Systems. Pretence-Hall, Inc., En-
glewood Cliffs, NJ, 1981.

[7] J. Kemeny and J. Snell, Finite Markov Chains. Springer, 1960.

[8] K. Ingols, R. Lippmann, and K. Piwowarski, “Practical attack graph generation for
network defense,” in Computer Security Applications Conference, 2006. ACSAC’06.
22nd Annual. IEEE, 2006, pp. 121–130.

[9] S. Noel, S. Jajodia, B. O’Berry, and M. Jacobs, “Efficient minimum-cost network hard-
ening via exploit dependency graphs,” in Proceedings of the 19th Annual Computer
Security Applications Conference. IEEE, 2003, pp. 86–95.

[10] D. Fudenberg and J. Tirole, Game Theory. MIT Press, 1991.

[11] H. Mine and S. Osaki, Markovian Decision Processes. American Elsevier, 1970.

[12] R. E. Tarjan, “Depth-first search and linear graph-algorithms,” SIAM Journal on Com-
puting, vol. 1, no. 2, pp. 146–160, 1972.

[13] P. Narain, “The conditional Markov chain in a genetic context,” Journal of Genetics,
vol. 63, no. 2, pp. 49–62, 1977.

51

[14] J. Buzacott, “Markov approach to finding failure times of repairable systems,” IEEE
Transactions on Reliability, vol. 19, no. 4, pp. 128–134, 1970.

[15] S. Jajodia, S. Noel, and B. O’Berry, “Topological analysis of network attack vulner-
ability,” in Managing Cyber Threats: Issues, Approaches and Challenges, V. Kumar,
J. Srivastava, and A. Lazarevic, Eds. New York, NY: Springer, 2005, ch. 9.

52

